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Preface

In questions of science, the authority of a thousand is not

worth the humble reasoning of a single individual.

Galileo Galilei, physicist and astronomer (1564-1642)

This book is a second edition of “Classical Electromagnetic Theory” which derived
from a set of lecture notes compiled over a number of years of teaching electro-
magnetic theory to fourth year physics and electrical engineering students. These
students had a previous exposure to electricity and magnetism, and the material
from the first four and a half chapters was presented as a review. I believe that the
book makes a reasonable transition between the many excellent elementary books
such as Griffith’s Introduction to Electrodynamics and the obviously graduate level
books such as Jackson’s Classical Electrodynamics or Landau and Lifshitz’ Electro-
dynamics of Continuous Media. If the students have had a previous exposure to
Electromagnetic theory, all the material can be reasonably covered in two semesters.
Neophytes should probable spend a semester on the first four or five chapters as
well as, depending on their mathematical background, the Appendices B to F. For
a shorter or more elementary course, the material on spherical waves, waveguides,
and waves in anisotropic media may be omitted without loss of continuity.

In this edition I have added a segment on Schwarz-Christoffel transformations to
more fully explore conformal mappings. There is also a short heuristic segment on
Cherenkov radiation and Bremstrahlung. In Appendix D there is a brief discussion
of orthogonal function expansions. For greater completeness, Appendices E and F
have been expanded to include the solution of the Bessel equation and Legendre’s
equation as well as obtaining the generating function of each of the solutions. This
material is not intended to supplant a course in mathematical methods but to
provide a ready reference provide a backstop for those topics missed elsewhere.
Frequently used vector identities and other useful formulas are found on the inside
of the back cover and referred to inside the text by simple number (1) to (42).

Addressing the complaint “I don’t know where to start, although I understand all
the theory”, from students faced with a non-transparent problem, I have included
a large number of examples of varying difficulty, worked out in detail. This edition
has been enriched with a number of new examples. These examples illustrate both
the theory and the techniques used in solving problems. Working through these
examples should equip the student with both the confidence and the knowledge
to solve realistic problems. In response to suggestions by my colleagues I have
numbered all equations for ease of referencing and more clearly delineated examples
from the main text.

Because students appear generally much less at ease with magnetic effects than

—v—



vi Classical Electromagnetic Theory

with electrical phenomena, the theories of electricity and magnetism are developed
in parallel. From the demonstration of the underlying interconvertability of the
fields in Chapter One to the evenhanded treatment of electrostatic and magneto-
static problems to the covariant formulation, the treatment emphasizes the relation
between the electric and magnetic fields. No attempt has been made to follow the
historical development of the theory.

An extensive chapter on the solution of Laplace’s equation explores most of the
techniques used in electro- and magnetostatics, including conformal mappings and
separation of variable in Cartesian, cylindrical polar, spherical polar and oblate el-
lipsoidal coordinates. The magnetic scalar potential is exploited in many examples
to demonstrate the equivalence of methods used for the electric and magnetic po-
tentials. The next chapter explores the use of image charges in solving Poisson’s
equation and then introduces Green’s functions, first heuristically, then more for-
mally. As always, concepts introduced are put to use in examples and exercises. A
fairly extensive treatment of radiation is given in the later portions of this book.
The implications of radiation reaction on causality and other limitations of the
theory are discussed in the final chapter.

I have chosen to sidestep much of the tedious vector algebra and vector cal-
culus by using the much more efficient tensor methods, although, on the advice
of colleagues, delaying their first use to chapter 4 in this edition. Although it al-
most universally assumed that students have some appreciation of the concept of
a tensor, in my experience this is rarely the case. Appendix B addresses this fre-
quent gap with an exposition of the rudiments of tensor analysis. Although this
appendix cannot replace a course in differential geometry, I strongly recommend it
for self-study or formal teaching if students are not at ease with tensors. The latter
segments of this appendix are particularly recommended as an introduction to the
tensor formulation of Special Relativity.

The exercises at the end of each chapter are of varying difficulty but all should
be within the ability of strong senior students. In some problems, concepts not
elaborated in the text are explored. A number of new problems have been added to
the text both as exercises and as examples. As every teacher knows, it is essential
that students consolidate their learning by solving problems on a regular basis. A
typical regimen would consist of three to five problems weekly.

I have attempted to present clearly and concisely the reasoning leading to in-
ferences and conclusions without excessive rigor that would make this a book in
Mathematics rather than Physics. Pathological cases are generally dismissed. In an
attempt to have the material transfer more easily to notes or board, I have labelled
vectors by overhead arrows rather than the more usual bold face. As the material
draws fairly heavily on mathematics I have strived to make the book fairly self
sufficient by including much of the relevant material in appendices.

Rationalized SI units are employed throughout this book, having the advantage
of yielding the familiar electrical units used in everyday life. This connection to
reality tends to lessen the abstractness many students impute to electromagnetic
theory. It is an added advantage of SI units that it becomes easier to maintain a
clear distinction between B and H, a distinction frequently lost to users of gaussian
units.
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Chapter1

Static Electric and Magnetic Fields in Vacuum

1.1 Static Charges

Static electricity, produced by rubbing different materials against one another, was
known to the early Greeks who gave it its name (derived from ήλεκτρoν, pronounced
ēlectron, meaning amber). Experiments by Du Fay in the early 18th century estab-
lished that there are two kinds of electricity, one produced by rubbing substances
such as hard rubber and amber, called resinous, and another produced by rub-
bing glassy substances such as quartz, dubbed vitreous. Objects with like charge
were found to repel one another, while objects with unlike charge were found to
attract. Benjamin Franklin attempted to explain electricity in terms of an excess
or deficiency of the vitreous electric fluid, leading to the designations positive and
negative.

A report by Benjamin Franklin that a cork ball inside an electrically charged
metal cup is not attracted to the inside surface of the cup led Joseph Priestly to
infer that, like gravity, electrical forces obey an inverse square law. This hypothesis
was almost immediately confirmed (to limited accuracy) by John Robison, but the
results were not published for almost 50 years. Cavendish, in an elegant experiment,
showed that if a power law holds,1 the exponent of r in the force law could not
differ from minus two by more than 1 part in 50, but he failed to publish his
results. Charles Augustin de Coulomb, who, in the late 18th century, measured
both the attractive and repulsive force between charges with a delicate torsion
balance, is credited with the discovery of the force law bearing his name – he found
that the force is proportional to the product of the charges, acts along the line
joining the charges, and decreases inversely as the square of the distance between
them. Charges of opposite sign attract one another, whereas charges of the same
sign repel. It has been verified experimentally that the exponent of r varies from
minus two by no more than 1 part in 1016 over distances of order one meter.

1A modern interpretation suggests that a test of the exponent is not appropriate because a
power law is not the anticipated form. In line with considerations by Proca and Yukawa, the
potential should take the form e−βr/r (β = mγc/ h̄) where mγ is the rest mass (if any) of the
photon. Astronomical measurements of Jupiter’s magnetic field place an upper limit of 4 × 10−51

kg on the mass of the photon

—1—



2 Classical Electromagnetic Theory

Figure 1.1: When q and q′ are situated at r and r′ respectively, the vector
pointing from q′ to q is (�r − �r ′).

1.1.1 The Electrostatic Force

The inverse square electric force on a particle with charge q located at �r due to a
second charged particle with charge q ′ located at �r ′ is (Figure 1.1) economically
expressed by Coulomb’s law:

�Fq = ke
qq′(�r − �r ′ )

|�r − �r ′|3 (1–1)

Various system of units assign different values to ke. Gaussian Units (Appendix A),
used in many advanced texts, set ke ≡ 1 thereby defining the unit of charge, the esu.
In Gaussian units, the force is measured in dynes and r in cm. In this book we will
uniformly use SI units, which have the advantage of dealing with ordinary electrical
units such as volt and amperes at the cost of requiring ke to take on a value of
roughly 9 × 109 N-m2/C2. Anticipating later developments, we write k = 1/4πε0

to obtain:

�Fq =
1

4πε0

qq′(�r − �r ′)

|�r − �r ′|3 (1–2)

where ε0, the permittivity of free space, is experimentally determined to be 8.84519×
10−12 C2 /N-m2. More properly, as we will see, ε0 can be derived from the (defined)
speed of light in vacuum, c ≡ 299,792,458 m/s and the (defined) permeability of
free space, µ0 ≡ 4π × 10−7 kg-m/C2, to give ε0 ≡ 1/µ0c

2 = 8.85418781 · · · × 10−12

C2 /N-m2.
The force of several charges q′i on q is simply the vector sum of the force q′1 exerts

on q plus the force of q′2 on q and so on until the last charge q′n. This statement
may be summarized as

�Fq =
q

4πε0

n
∑

i=1

q′i(�r − �ri)

|�r − �ri|3
(1–3)

or, to translate it to the language of calculus, with the small element of source
charge denoted by dq′

�Fq =
q

4πε0

∫

(�r − �r ′)dq′

|�r − �r ′|3 (1–4)
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Although we know that electric charges occur only in discrete quanta ±e =
±1.6021917 × 10−19 coulomb (or ± 1

3e and± 2
3e if quarks are considered), the ele-

mentary charge is so small that we normally deal with many thousands at a time
and we replace the individual charges by a smeared-out charge density. Thus the
charge distribution is described by a charge density ρ(�r ′) = n(�r ′)e, with n the net
number (positive minus negative) of positive charges per unit volume centered on
r′. For a distributed charge, we may generally write

�Fq =
q

4πε0

∫

τ

ρ(�r ′)(�r − �r ′ )

|�r − �r ′|3 d3r′ (1–5)

where dq ′ has been replaced byρ(�r ′)d3r′. The differential d3r′ represents the three-
dimensional differential volume in arbitrary coordinates. For example, in Cartesians
d3r′ ≡ dx′dy′dz′, whereas in spherical polars, d3r′ ≡ r′2sinθ′dr′dθ′dϕ′. For charges
distributed over a surface, it suffices to replace dq ′ by σ(�r ′)dA′ and for line charges
we write dq′ = λ(�r ′)dℓ′.

If required, the lumpiness of a point charge q′ can be accommodated in (1–5) by
letting the charge density have the form of a three-dimensional Dirac δ function.2

Line charges and surface charges can similarly be accommodated.

The original form (1–2) is easily recovered by setting ρ(�r ′) = q′δ(�r ′ − �rq) with
δ(�r ′ − �rq) = δ(x′ − xq)δ(y

′ − yq)δ(z
′ − zq)

3 and carrying out the integration called
for in (1–5).

Example 1.1: Find the force on a charge q lying on the z axis above the center of a
circular hole of radius a in an infinite uniformly charged flat plate occupying the
x-y plane, carrying surface charge density σ (Figure 1.2).

Figure 1.2: Example 1.1 – A uniformly distributed charge lies on the x-y
plane surrounding the central hole in the plate.

2The δ function δ(x − a) is a sharply spiked function that vanishes everywhere except at x =

a, where it is infinite. It is defined by
∫

f(x)δ(x − a)dx = f(a) when a is included in the region
of integration; it vanishes otherwise. For further discussion, see Appendix C.

3In non-Cartesian coordinate systems the δ function may not be so obvious. In spherical polar
coordinates, for example, δ(�r − �r ′) = r′−2δ(r − r ′)δ(cos θ − cos θ ′) δ(ϕ − ϕ ′).
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Solution: The boundary of the integration over the charge distribution is most
easily accommodated by working in cylindrical polar coordinates. The field point is
located at zk̂ and the source points have coordinates r′ and ϕ′ giving �r−�r ′ = zk̂−
r′ cos ϕ′ ı̂ − r′ sinϕ′̂. An element of charge dq′ takes the form dq′ = σ(r ′, ϕ′)dA′ =
σr′ dr ′dϕ′. The distance |�r − �r ′| of the source charge element from the field point
is

√
z2 + r′2 leading us to write:

�Fq =
q

4πε0

∫ ∞

a

∫ 2π

0

σ(zk̂ − r′ cos ϕ ı̂ − r′ sinϕ ̂)

(z2 + r′2)3/2
r′dr′dϕ′ (Ex 1.1.1)

The integrations over sinϕ and cos ϕ yield 0, reducing the integral to:

�Fq =
q

4πε0
2π

∫ ∞

a

σzk̂

(z2 + r′2)3/2
r′dr′

=
q

2ε0

−σzk̂√
z2 + r′2

∣

∣

∣

∣

∣

∞

a

=
qσzk̂

2ε0

√
z2 + a2

(Ex 1.1.2)

The force points upward above the plane and downward below. At large dis-
tances it tends to a constant, 1

2ε0
qσk̂, exactly what it would be in the absence of

the hole. We further verify that as z → 0, in the center of the hole, the force
vanishes. It is probably worth mentioning that the charge would not distribute
itself uniformly on a conducting plate so that we have not solved the problem of a
charged conducting plate with a hole.

Example 1.2: Find the force exerted on a point charge Q located at �r in the x-y plane
by a long (assume infinite) line charge λ, uniformly distributed along a thin wire
lying along the z axis (Figure 1.3).

Solution: An element of charge along the wire is given by dq′ = λdz′ so that using
(1–4) we can write the force on the charge

Figure 1.3: A line charge λ is distributed uniformly along the z axis.
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�FQ =
Q

4πǫ0

∫ ∞

−∞

(rr̂ − z′k̂)λdz′

(r2 + z′2)3/2
(Ex 1.2.1)

where r̂ is a unit vector in the x-y plane pointing from the origin to the charge Q.
The integral is best evaluated in two parts. The second part,

∫ ∞

−∞

−λz′k̂dz′

(r2 + z′2)3/2
= 0 (Ex 1.2.2)

because the integrand is odd. The remaining integral is then,

�FQ =
Q

4πǫ0

∫ ∞

−∞

λrr̂dz′

(r2 + z′2)3/2
(Ex 1.2.3)

r and r̂ are constants with respect to dz′ so that we may use (28) to evaluate the
integral:

�FQ =
Qλrr̂z′

4πǫ0r2
√

r2 + z′2

∣

∣

∣

∣

∞

−∞
=

Qλr̂

2πǫ0r
(Ex 1.2.4)

This question will be revisited in example 1.5 where we will allow the charge carrying
wire to have finite size.

1.1.2 The Electric Field

Although Coulomb’s law does an adequate job of predicting the force one particle
causes another to feel, there is something almost eerie about one particle pushing or
pulling another without any physical contact. Somehow, it would be more satisfying
if the charged particle felt a force due to some local influence, a field, created by
all other charged particles. This field would presumably exist independent of the
sensing particle q. (In quantum electrodynamics, even the notion of a field without
a carrier [the photon] is held to be aphysical.)

The force on the sensing particle must be proportional to its charge; all the other
properties of the force will be assigned to the electric field, �E(�r ). Thus we define
the electric field by

�F = q �E(�r ) (1–6)

where �F is the force on the charge q situated at �r and �E(�r ) is the electric field at
position �r due to all other charges. (The source charge’s coordinates will normally
be distinguished from the field point by a prime [′].) One might well wonder why
the sensing particle, q’s field would not be a component of the field at its position.
A simple answer in terms of the electric field’s definition, (1–6) above, is that since
a particle can exert no net force on itself, its own field cannot be part of the field it
senses (in the same way that you cannot lift yourself by your bootstraps). Unfor-
tunately, this appears to suggest that two point charges at the same position might
well experience a different field. That argument, however, is somewhat academic, as
two point charges at the same location would give rise to infinite interaction forces.
One might also argue that, as a point particle’s field must be spherically symmetric,
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it would, in fact make no difference whether we included the sensing particle’s own
field in computing the force on the particle. This particular point of view runs into
trouble when we consider the no longer spherically symmetric fields of accelerated
charges in Chapter 12. Whatever the best answer, this self field will continue to
trouble us whenever we deal seriously with point particles.

Factoring the charge q from Coulomb’s law (1–5), we find that the electric field
produced by a charge distribution ρ(�r ′) must be

�E(�r ) =
1

4πε0

∫

ρ(�r ′) (�r − �r ′)

|�r − �r ′|3 d3r′ (1–7)

where the integration is carried out over all space (ρ must of course vanish at
sufficiently large r, making the volume of integration less than infinite). We reiterate
that coordinates of the source of the field will be primed, while the field points are
denoted by unprimed coordinates.

Example 1.3: Find the electric field above the center of a flat, circular plate of radius
R, bearing a charge Q uniformly distributed over the top surface (Figure 1.3).

Figure 1.4: The field at height z above a uniformly charged disk.

Solution: The charge density on the plate takes the form ρ(�r ) = Q
πR2 δ(z′) for

x′2 + y′2 ≤ R2 and 0 elsewhere. Using

�E(�r ) =
1

4πε0

∫

ρ(�r ′) (�r − �r ′)

|�r − �r ′|3 d3r′ (Ex 1.3.1)

we obtain the explicit expression

�E(0, 0, z) =
1

4πε0

Q

πR2

∫ R

−R

∫

√
R2−y′2

−
√

R2−y′2

zk̂ − x′ ı̂ − y′̂

(x′2 + y′2 + z2)3/2
dx′dy′ (Ex 1.3.2)

In cylindrical polar coordinates, x′ = r′ cos ϕ′, y′ = r′ sin ϕ′, and dx′dy′ = r′dr′dϕ′,
giving

�E(0, 0, z) =
1

4πε0

Q

πR2

∫ R

0

∫ 2π

0

(zk̂ − r′ cos ϕ′ ı̂ − r′ sin ϕ′̂ ) dϕ′ r′ dr′

(r′2 + z2)3/2
(Ex 1.3.3)
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The integration over ϕ′ eliminates the sinϕ′ and the cos ϕ′ terms, leaving only

�E(0, 0, z) =
Q

2πε0R2

∫ R

0

zk̂r′dr′

(r′2 + z2)3/2
= − Q

2πε0R2

zk̂

(r′2 + z2)
1/2

∣

∣

∣

∣

∣

R

0

=
Q

2πε0R2

(

zk̂√
z2

− zk̂√
R2 + z2

)

=
Qk̂

2πε0R2

(

1 − z√
R2 + z2

)

(Ex 1.3.4)

When z is small compared to R the field reduces to (σ/2ε0)k̂, the value it would
have above an infinite sheet, whereas at large distances it tends to Q/(4πε0z

2). It
is worth noting that adding to Ex 1.3.4 the field of the plate with the hole deduced
from Ex 1.1.2 gives precisely the field of the infinite plate with the hole filled in.

The invention of the electric field appears at this point no more than a response
to a vague uneasiness about the action at a distance implicit in Coulomb’s law.
As we progress we will endow the field, �E, with properties such as energy and
momentum, and the field will gain considerable reality. Whether �E is merely a
mathematical construct or has some independent objective reality cannot be settled
until we discuss radiation in Chapter 10.

1.1.3 Gauss’ Law

It is evident that the evaluation of �E, even for relatively simple source charge
distributions, is fairly cumbersome. When problems present some symmetry, they
can often be solved much more easily using the integral form of Gauss’ law, which
states

∮

S

�E(�r ) · d�S(�r ) =
q′

ε0
(1–8)

where S is any closed surface, q′ is the charge enclosed within that surface, d�S is
surface element of S pointing in the direction of an outward-pointing normal, and �r
is the location of the element d�S on the surface. Note that S need not be a physical
surface.

To prove this result, we expand �E in (1–8) using (1–7) to obtain

∮

S

�E(�r ) · d�S(�r ) =
1

4πε0

∮ [ ∫

ρ(�r ′)(�r − �r ′)

|�r − �r ′|3 d3r′
]

· d�S(�r )

=
1

4πε0

∫ [ ∮

(�r − �r ′)

|�r − �r ′|3 · d�S(�r )

]

ρ(�r ′) d3r′ (1–9)

We must now evaluate the surface integral
∮ (�r−�r ′)

|�r−�r ′|3 · d�S.

We divide the source points into those lying inside the surface S and those lying
outside. The divergence theorem (20) generally allows us to write

∮

(�r − �r ′)

|�r − �r ′|3 · d�S =

∫

�∇ · (�r − �r ′)

|�r − �r ′|3 d3r (1–10)
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For any fixed source point with coordinate �r ′ outside the closed surface, S ,
the field point �r (located inside S for the volume integration resulting from the
application of the divergence theorem) never coincides with �r ′, and it is easily
verified by direct differentiation that the integrand on the right hand side of (1–10),
the divergence of (�r − �r ′)/|�r − �r ′|3, vanishes identically. We conclude, therefore,
that charges lying outside the surface make no contribution to the surface integral
of the electric field.

When �r ′ is inside the bounding surface S, the singularity at �r = �r ′ prevents a
similar conclusion because the divergence of (1–10) becomes singular. To deal with
this circumstance, we exclude a small spherical region of radius R centered on �r ′

from the
∮

and integrate over this spherical surface separately. In the remaining
volume, excluding the small sphere, (�r − �r ′)/|�r − �r ′|3 again has a vanishing diver-
gence and presents no singularities, allowing us to conclude that it too, makes no
contribution to the surface integral of �E. Setting �R = (�r − �r ′) and R̂ · d�S = R2dΩ,
with dΩ = sin θ dθ dϕ, an element of solid angle, we may write the integral

∮

sphere

(�r − �r ′)

|�r − �r ′|3 · d�S(�r ) =

∮

sphere

(�R · R̂)R2 dΩ

R3
= 4π (1–11)

We substitute this result, (1–11) into (1–9) to get (1–8), the desired result

∮

sphere

�E(�r ) · d�S(�r ) =
1

4πε0
· 4π

∫

ρ(�r ′)d3r′ =
q′

ε0

A more geometric insight into the evaluation of (1–10) may be obtained by
recognizing that the left hand side of (1–10) represents the solid angle covered by
the surface as seen from �r ′. When �r ′ is inside the surface, S encloses the entire
4π solid angle, whereas when �r ′ lies outside S, the contribution from near side of
the surface makes the same solid angle as the back side, but the two bear opposite
signs (because the normals point in opposite directions) and cancel one another.

To reiterate, only the charge inside the surface S enters into the integration.
In words, Gauss’ law states that the perpendicular component of the electric field
integrated over a closed surface equals 1/ε0 times the charge enclosed within that
surface, irrespective of the shape of the enclosing surface.

Example 1.4: Find the electric field at a distance r from the center of a uniformly
charged sphere of radius R and total charge Q .

Solution: The charge Q(r) enclosed within a sphere of radius r centered on the
charge center is

Q(r) =

{
( r

R

)3

Q for r ≤ R

Q for r > R

(Ex 1.4.1)

On a spherical surface of radius r, symmetry requires �E = Er(r)r̂ with no ϕ
dependence. Gauss’ law then gives us

∮

�E · d�S =

∮

�E · r̂ r2dΩ = 4πr2 Er (Ex 1.4.2)
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Equating this to Q(r)/ε0 yields

Er =











rQ

4πε0R3
r ≤ R

Q

4πε0r2
r > R

(Ex 1.4.3)

The electric field inside the sphere grows linearly with radius and falls off
quadratically outside the sphere. As Gauss’ law applies equally to gravity and
electrostatics (it depends only on the r−2 nature of the force), the same field de-
pendence pertains to gravitational fields within gravitating bodies.

Example 1.5: Find the electric field near a long, uniformly charged cylindrical rod of
radius a.

Figure 1.5: The cylinder about the rod forms a Gaussian surface perpen-
dicular to the electric field. The end faces contribute nothing to the surface
integral.

Solution: Ez = 0, as reversing the z axis, or translating the origin along the z axis
does not change the problem. Eθ = 0 as reversing θ or rotating the system about
the z axis leaves the system invariant. Evidently �E(r, θ, z) = Er(r) r̂. Drawing a
cylinder about the rod as indicated in Figure 1.4 (the cylinder may be interior to
the rod), we obtain from Gauss’ law, (1–8),

∮

�E · d�S =

∫

ρ

ε0
d3r′

For r > a, this becomes

2πrℓEr =
ρπ a2ℓ

ε0
, or Er =

ρa2

2ε0r
, (Ex 1.5.1)

while for r < a we obtain

2πrℓEr =
ρπ r2ℓ

ε0
, or Er =

ρr

2ε0
. (Ex 1.5.2)

We will make frequent use of Gaussian cylinders (and “pill-boxes” in the next ex-
ample) throughout the remainder of this book.
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Example 1.6: Find the electric field between two conducting infinite parallel plates
bearing surface charge densities σ and −σ.

Solution: For a Gaussian enclosing surface we now choose a very flat cylinder (com-
monly referred to as a pillbox ) that includes one of the two charged surfaces, say the
top surface, of the bottom plate, as illustrated in Figure 1.6. The charge enclosed
within the pillbox is σA where A is the flat area included in the box. Because of
the symmetry we anticipate an electric field whose only non vanishing component
is Ez. Gauss’ law then becomes:

∮

�E · d�S = A(Etop − Ebott) =
σA

ε0
(Ex 1.6.1)

If the plates are conductors, then the electric field on the bottom surface of the
pillbox lying inside the conductor must vanish (otherwise charges inside the metal
would be subject to a Coulomb force and move until the field does vanish). We
conclude, then, that the electric field at the top surface of the pillbox is Ez = σ/ε0.
Increasing the height of the pillbox straddling the bottom plate so that its top
surface lies progressively closer to the top plate produces no variation of the enclosed
charge; we infer that the field is uniform, (i.e., it does not vary with z .)

A similar argument could of course have been employed at the top plate, giving
exactly the same result. This time below the plate, the surface of the pillbox along
which �E does not vanish points downward so that −Ez = −σε0. As stated above,
we shall make frequent use of the pillbox whenever we deal with the behavior of the
field at surfaces, both conducting and nonconducting.

Gauss’ law may be restated in terms of the local charge density by means of
the divergence theorem. Writing the charge enclosed within the boundary S as the
volume integral of the charge density enclosed, we find

∮

�E · d�S =

∫

ρ

ε0
d3r′ (1–12)

Figure 1.6: The “pillbox” encloses one of the charged surfaces. The electric
field is parallel to the curved surface side so that the integral over the curved
side makes no contribution to the surface integral.
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With the aid of the divergence theorem, the surface integral of the electric field
may be rewritten:

∫

vol

�∇ · �E(�r )d3r =

∫

vol

ρ(�r ′)

ε0
d3r′ (1–13)

Since the boundary and hence the volume of integration was arbitrary but the
same on both sides, we conclude that the integrands must be equal

�∇ · �E(�r ) =
ρ(�r )

ε0
(1–14)

1.1.4 The Electric Potential

The expression for the electric field arising from a charge distribution may be use-
fully expressed as a gradient of a scalar integral as follows.

�E(�r ) =
1

4πε0

∫

ρ(�r ′)
(�r − �r ′)

|�r − �r ′|3 d3r′

= − 1

4πε0

∫

ρ(�r ′) �∇
(

1

|�r − �r ′|

)

d3r′ (1–15)

As �∇ acts only on the unprimed coordinates, we may take it outside the integral
(1–15) to obtain

�E(�r ) = − �∇
(

1

4πε0

∫

ρ(�r ′)

|�r − �r ′| d3r′
)

≡ − �∇V (1–16)

We identify the electric potential, V, with the integral

V (�r ) =
1

4πε0

∫

ρ(�r ′)

|�r − �r ′| d3r′ (1–17)

Since the curl of any gradient vanishes, we have immediately

�∇× �E = − �∇× (�∇V ) = 0 (1–18)

There are obvious advantages to working with the scalar V instead of the vector
field �E. First, the integral for V requires computing only one component rather
than the three required for �E . Second, the electric field obtained from several
localized sources would require taking the vector sum of the fields resulting from
each source. Since taking the gradient is a linear operation, the electric field could
as well be found from

�E = −�∇V1 − �∇V2 − �∇V3 − . . .

= −�∇(V1 + V2 + V3 + . . .)

where now we need only find a scalar sum of potentials. These simplifications make
it well worthwhile to use the electric scalar potential whenever possible.
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Figure 1.7: The circular plate is assumed to lie in the x-y plane.

Example 1.7: Find the potential V at height z above the center of a disk of radius a
carrying charge Q uniformly distributed over its top surface (Figure 1.7).

Solution: The charge density on the disk is

ρ =











Q

πa2
δ(z′) for x′2 + y′2 ≤ a2

0 elsewhere

(Ex 1.7.1)

The potential above the center of the plate is then

V (0, 0, z) =
1

4πε0

∫

ρ(�r ′) d3r ′

|�r − �r ′| =
1

4πε0

∫ a

0

∫ 2π

0

Q

πa2

r′dr′dϕ′
√

r′2 + z2

=
Q

2πε0a2

√

r′2 + z2

∣

∣

∣

∣

a

0

=
Q

2πε0a2

(

√

a2 + z2 − z
)

(Ex 1.7.2)

To find the field �E as we have already done in the example 1.3, we merely find the
gradient of V giving

Ez(0, 0, z) = − ∂V

∂z
=

Q

2πε0a2

(

1 − z√
a2 + z2

)

(Ex 1.7.3)

At large distance the field reduces to that of a point charge. (Notice that because
we have not calculated V as a function of x and y [or r and ϕ], no information
about Exor Ey can be obtained from V, however, symmetry dictates that they must
vanish on the z axis.)

Like the electric field, the potential can also be expressed in terms of the local
charge density by combining the differential form of Gauss’ law with the definition
of V, −�∇V = �E:

�∇ · �E = �∇ · (−�∇V ) = −∇2V =
ρ

ε 0
(1–19)
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The differential equation solved by V, ∇2V = −ρ/ε0, is known as Poisson’s
equation. Its homogeneous counterpart (ρ = 0) is the Laplace equation. The
Laplace equation will be discussed in considerable detail in Chapter 5 and the
solution of Poisson’s equation is the subject of Chapter 6.

1.2 Moving Charges

In the remainder of this chapter we consider the forces and fields due to slowly
moving charges. Although the charges are allowed to move, we do insist that a
steady state exist so that the forces are static. This restriction will be lifted in later
chapters.

1.2.1 The Continuity Equation

Among the most fundamental conservation laws of physics is conservation of charge.
There is no known interaction that creates or destroys charge (unlike mass, which
can be created or annihilated). This conservation law is expressed by the equation
of continuity (1–24).

We define the current flowing into some volume as the rate that charge accumu-
lates in that volume:

I =
dQ

dt
(1–20)

More usefully, we express I as the net amount of charge crossing the boundary
into the volume τ with boundary S per unit time,

I = −
∮

S

ρ�v · d�S = −
∮

S

�J · d�S (1–21)

where �J ≡ ρ�v is the current density . (Recall that d�S points outward from the

volume so that �J · d�S is an outflow of current, hence the negative sign for current
flowing into the volume.) Combining (1–20) and (1–21) and replacing Q with the
volume integral of the charge density, we obtain

∮

S

�J · d�S = −dQ

dt
= − d

dt

∫

τ

ρ d3r (1–22)

With the aid of the divergence theorem, the right and left hand side of this
equation become

∫

τ

�∇ · �J d3r = −
∫

τ

∂ρ

∂t
d3r (1–23)

Since the volume of integration τ was arbitrary, the integrands must be equal,
giving the continuity equation

�∇ · �J +
∂ρ

∂t
= 0 (1–24)

(It is perhaps useful to maintain this intuitive view of divergence as the outflow of a
vector field from a point.) The equation of continuity states simply that an increase
in charge density can only be achieved by having more current arrive at the point
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than leaves it. The continuity equation expresses the conservation of charge, one
of the cornerstones of physics and is fundamental to the study of electromagnetic
theory. When dealing with electrostatics we have �∇· �J = 0 (note that this does not
preclude current flows, only that ∂ρ/∂t = 0).

1.2.2 Magnetic Forces

Magnetic forces were familiar to Arab navigators before 1000 A.D. who used lode-
stones as primitive compasses. Magnetic poles of the earth were postulated in the
thirteenth century but it was not until about 1820 that Biot, Savart and Ampère
discovered the interaction between currents and magnets.

As Biot, Savart and Ampère discovered, when charges are in motion, a force
additional to the electrical force appears. We could merely postulate a force law
(Equation (1–38), but it would be more satisfying to demonstrate the intimate
connection between electricity and magnetism by obtaining magnetism as a conse-
quence of electricity and relativistic covariance.

As a simple demonstration of why we expect currents to interact, let us consider
two long line charges, each of length L with linear charge density λ1 (consider them
tending to infinity, requiring only that λL be a finite constant) lying along the x-axis
and λ2 parallel to the λ1, at distance r from the x-axis. As seen by a stationary
observer, the force on wire 2 is (Ex 1.2.4)

F = Fe =
1

2πε0

λ1λ2L

r2
�r (1–25)

A second observer moving with velocity v along the x axis sees the line charges
in motion with velocity −v. According to special relativity, the transverse (to the
motion) components of forces in a stationary and a moving (indicated by a prime)
reference frame are related by F = γF ′ [γ ≡ (1−v2/c2)−1/2]. We deduce, therefore,
that in the moving observer’s frame, the total force of one wire on the other should
be F ′ = γ−1F . 4

Alternatively, we calculate a new length L′ for the moving line charges using
the length contraction formula L′ = γ−1L, and we deduce, assuming conservation
of charge, an appropriately compressed charge density λ′

1 = γλ1 and λ′
2 = γλ2 in

the moving frame. Thus, if the same laws of physics are to operate, the moving
observer calculates an electric force

�F ′
e =

1

2πε0

λ′
1λ

′
2L

′

r2
�r =

1

2πε0

(γλ1)(γλ2)γ
−1L

r2
�r =

γ

2πε0

λ1λ2L

r2
�r = γ �Fe (1–26)

clearly not the result anticipated above.
In fact, the moving observer, who of course believes the line charges to be in

motion, must invent a second force, say Fm, in order to reconcile the results of the
alternative calculations.

Thus

4More properly, the transverse force F , on a particle moving with velocity v in system Σ,
is related to F ′ in Σ′ where the particle has velocity v′ by γF = γ′F ′, and transverse means
perpendicular to the velocity of frame Σ′ with respect to Σ.
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�F ′ =
�Fe

γ
= �F ′

e + �F ′
m = γ �Fe + �F ′

m (1–27)

which we may solve for �F ′
m:

�F ′
m =

�Fe

γ
− γ �Fe = γ �Fe

(

1

γ2
− 1

)

= γ �Fe

(

1 − v2

c2
− 1

)

= −v2

c2
γ �Fe

= − �F ′
e

v2

c2
=

(λ′
1vλ′

2v)L′

2πε0c2r2
�r

= − I ′1I
′
2L

′

2πε0c2r2
�r ≡ −µ0 I ′1I

′
2L

′

2πr2
�r (1–28)

In the frame where the line charges move, we find a force opposite to the electrical
force, proportional to the product of the currents. Parallel currents attract one
another; antiparallel currents repel. The term 1/ε0c

2, conventionally abbreviated
as µ0, is called the permeability of free space. The constant µ0 has a defined value
4π × 10−7 kg-m/C2. This choice fixes the unit of charge, the coulomb, which we
have conveniently left undefined to this point.

Again shying away from action at a distance we invent a field �B, produced by
I2 at the location of the current I1 with which the current I1 interacts. Since d�Fm,
the magnetic force on a short segment Id�ℓ of current 1, is perpendicular to I1, it
must be of the form

d�Fm = I1d�ℓ × �B (1–29)

where �B is a yet undetermined vector field known as the magnetic induction field,
or alternatively the magnetic flux density.

The magnetic force on a moving charged point particle is easily deduced by
identifying �vdq with Id�ℓ in (1–29) to obtain d�Fm = dq(�v × �B). The total force on
a charged particle in a static electromagnetic field is known as the Lorentz force

�F = q( �E + �v × �B) (1–30)

Let us attempt to determine the magnetic induction field produced by the cur-
rent I2 assumed to run along the z axis. Equation (1–29) requires �B to be perpen-

dicular to d�Fm (which is directed along �r, the cylindrical radial position vector of the

current I1dℓ). If, in addition, we make the not unnatural assumption that �B is also

perpendicular to I2, then �B must be directed along �I2 × �r. Taking �B = C(�I2 × �r )
and substituting this form into (1–29), we find

d�Fm = CI1d�ℓ × (�I2 × �r ) = −CI1I2dℓ�r

which, when compared with the result from (1–28)

d�Fm = −µ0 I1dℓ I2

2πr2
�r (1–31)
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Figure 1.8: The current is assumed to run along the z axis, and we pick the
observer in the x-y plane.

leads immediately to

�B(�r ) =
µ0

2π

�I2 × �r

r2
(1–32)

1.2.3 The Law of Biot and Savart

The magnetic induction field, B , of the long straight wire (1–32), must in fact be
the sum of contributions from all parts of wire 2 stretching from −∞ to +∞. Since
the magnetic force is related to the electric force by a Lorentz transformation that
does not involve r, �E and �B must have the same r dependence, (1/r2). The field,

d �B, generated by a short segment of wire, d�ℓ carrying current I2 at the origin, must
therefore be given by

d �B =
µ0

4π

I2d�ℓ ′ × �r

r3
(1–33)

(The choice of numeric factor [µ0/4π] will be confirmed below.) Equation (1–33)
is easily generalized for current segments located at �r ′, rather than at the origin,
giving

d �B(�r ) =
µ0

4π

I2d�ℓ ′ × (�r − �r ′)

|�r − �r ′|3 (1–34)

Integrating over the length of the current source, we obtain the Biot-Savart law:

�B(�r ) =
µ0

4π

∫

I2d�ℓ ′ × (�r − �r ′)

|�r − �r ′|3 (1–35)

We might verify that this expression does indeed give the field (1–32) of the
infinite straight thin wire. Without loss of generality we may pick our coordinate
system as in Figure 1.8, with the wire lying along the z-axis and the field point in
the (x-y plane. Then �r−�r ′ = rr̂− z′k̂, |�r−�r ′| =

√
r2 + z′2 , and d�ℓ ′ = k̂ dz′. The

flux density, �B, may now be calculated:

�B(�r ) =
µ0I2

4π

∫ +∞

−∞

k̂ × (rr̂ − z′k̂ )

(r2 + z′2)3/2
dz′ =

µ0I2

4π

∫ ∞

−∞

r (k̂ × r̂)

(r2 + z′2)3/2
dz′
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=
µ0I2(k̂ × r̂)r

4π

z′√
r2 + z′2

∣

∣

∣

∣

∞

−∞
=

µ0

2π

�I2 × �r

r2
(1–36)

Noting that (1–36) reproduces (1–32), we consider the factor µ0/4π confirmed.
As we will normally deal with currents that have finite spatial extent, the current

element I2d�ℓ in (1–35) should in general be replaced by
∫

S
�J · d�Sdℓ, where S is the

cross section I2 occupies. The Biot-Savart law may then be written

�B(�r ) =
µ0

4π

∫ �J(�r ′) × (�r − �r ′)

|�r − �r ′|3 d3r′ (1–37)

Equation (1–37) plays the same role for magnetic fields as Coulomb’s law (1–7) does
for electric fields.

Example 1.8: A circular loop of radius a carrying current I lies in the x-y plane with
its center at the origin (Figure 1.9). Find the magnetic induction field at a point
on the z-axis.

Solution: In cylindrical coordinates, �J(�r ) = Iδ(r′ − a) δ(z′) ϕ̂ and �r−�r ′ = zk̂− ar̂.
The numerator of the integrand of (1–37) then becomes

�J × (�r − �r ′) = I δ(r′ − a) δ(z′) (zr̂ + ak̂) (Ex 1.8.1)

Thus (1–37) becomes:

�B( 0, 0, z) =
µ0

4π

∫

I δ(r′ − a) δ(z′) (zr̂ + ak̂)

(a2 + z2)3/2
r′ dr′ dϕ′ dz′

=
µ0

4π

∫ 2π

0

I(−zr̂ + ak̂)

(a2 + z2)3/2
a dϕ =

µ0

4π

2πa2Ik̂

(a2 + z2)3/2
(Ex 1.8.2)

where we have used the fact that
∮

r̂dϕ = 0. In terms of the magnetic moment ,

�m = Iπa2k̂, (defined in Chapter 2, usually just current times area of the loop) of
the loop, we may approximate this result at large distances as

�B(0, 0, z) = 2
µ0

4π

�m

R3
(Ex 1.8.3)

Figure 1.9: A circular loop carrying current I in the x-y plane.
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Figure 1.10: When the current is integrated around the loop, either the
limits of the integral, or the vector integrand determines the direction, in
other words, the second integral in Ex 1.9.2 should use

∫ a

−a
−ı̂dx as shown or

alternatively
∫

−a

a
ı̂dx.

The magnetic induction field of the circular current loop is of recurrent importance
both experimentally and theoretically.

Example 1.9: Find the magnetic induction field at a point z above the center of a
square current loop of side 2a lying in the x-y plane (Figure 1.10).

Solution: The field may be written as

�B(0, 0, z) =
µ0

4π

∫ �J(�r ′) × (�r − �r ′)

|�r − �r ′|3 d3r′ =
µ0

4π

∮

I d�ℓ′ × (�r − �r ′)

|�r − �r ′|3 (Ex 1.9.1)

=
µ0I

4π

[∫ a

−a

ı̂dx′ × (zk̂ − x′ ı̂ + â)

(z2 + a2 + x′2 )3/2
+

∫ a

−a

− ı̂dx′ × (zk̂ − x′ ı̂ − â)

(z2 + a2 + x′2)3/2

+

∫ a

−a

̂dy′ × (zk̂ − aı̂ − y′̂)

(z2 + a2 + y′2)3/2
+

∫ a

−a

− ̂dy′ × (zk̂ + aı̂ − y′̂)

(z2 + a2 + y′2)3/2

]

(Ex 1.9.2)

=
µ0I

4π
· 4

a
∫

−a

ak̂ dx′

(z2 + a2 + x′2)3/2
=

µ0Ia2

π

2k̂

(z2 + a2)
√

z2 + 2a2
(Ex 1.9.3)

Replacing I(2a)2k̂ by �m, we recover the expression for the circular loop (Ex1.8.3)
at sufficiently large z.

We have observed that a current Id�ℓ located at �r is subject to a magnetic force
d�F = Id�ℓ × �B(�r ). This result is easily generalized to the expression for the force
between two current loops, Γ1 and Γ2 to yield the force law we alluded to at the
beginning of Section 1.2.2:

�F1 =
µ0

4π

∮

Γ1

I1d�ℓ1(�r1) ×
(

∮

Γ2

I2d�ℓ2 × (�r1 − �r2)

|�r1 − �r2|3

)

(1–38)
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While this expression gives a phenomenological description for calculating the
force between two current carrying conductors, it is less than satisfactory in that it
reimports action at a distance when it eliminates �B.

Even more than was the case for Coulomb’s law, it will be evident that using the
Biot-Savart law is rather cumbersome for any but the simplest of problems. Where
the geometry of the problem presents symmetries, it is frequently far easier to use
Ampère’s law in its integral form to find the magnetic flux density. Ampère’s law
states that

∮

Γ

�B · d�ℓ = µ0

∫

S

�J · d�S (1–39)

where Γ is a curve enclosing the surface �S.

Rather than attempting to integrate (1–37) directly, we will first obtain the

differential form of Ampère’s law, �∇× �B = µ0
�J , which may be integrated with the

help of Stokes’ theorem to obtain (1–39).

We begin by recasting (1–37) into a slightly different form by noting a frequently

used relation �∇|�r − �r ′|−1 = −(�r − �r ′)/|�r − �r ′|3. Making this substitution in (1–37)
we obtain:

�B(�r ) = −µ0

4π

∫

�J(�r ′) × �∇
(

1

|�r − �r ′|

)

d3r′ (1–40)

We then use the identity (6) for �∇×(f �J) to “integrate (1–40) by parts”. Specifically,

− �J(�r ′) × �∇
(

1
∣

∣�r − �r ′
∣

∣

)

= �∇×
(

�J(�r ′)
∣

∣�r − �r ′
∣

∣

)

− 1
∣

∣�r − �r ′
∣

∣

�∇× �J(�r ′) (1–41)

Because �∇ acts only on the unprimed coordinates, the term �∇× �J(�r ′) vanishes and
because the integral is over the primed coordinates, we can take the curl outside
the integral to yield

�B(�r ) =
µ0

4π
�∇×

∫ �J(�r ′)
∣

∣�r − �r ′
∣

∣

d3r′ (1–42)

As the divergence of any curl vanishes (11) we note in passing that

�∇ · �B(�r ) = 0, (1–43)

an important result that is the analogy of Gauss’ law for Electric fields. Equation (1–
43) implies via Gauss’ theorem that no isolated magnetic monopoles exist because
no volume can be found such that the integrated magnetic charge density is nonzero.

We take the curl of B as given by (1–42) to get

�∇× �B(�r ) =
µ0

4π
�∇× �∇×

∫ �J(�r ′)
∣

∣�r − �r ′
∣

∣

d3r′ (1–44)

1.2.4 Ampère’s Law
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now using (13), we can replace �∇× �∇× by grad div −∇2 to obtain

�∇× �B =
µ0

4π

[

�∇
∫

�J(�r ′) · �∇
(

1
∣

∣�r − �r ′
∣

∣

)

d3r′ −
∫

�J(�r ′)∇2

(

1
∣

∣�r − �r ′
∣

∣

)

d3r ′
]

(1–45)

where we have used (7) to recast ∇ · ( �J/R) as �J · �∇(1/R). We will show the first of
the integrals in (1–45) to vanish whereas the second gives, using (26),

−µ0

4π

∫

�J(�r ′)∇2

(

1
∣

∣�r − �r ′
∣

∣

)

d3r′ = µ0

∫

�J(�r ′)δ(�r − �r ′)d3r′ = µ0
�J(�r ) (1–46)

We return now to the first integral in (1–45). We observe that �∇f(�r − �r ′) =

−�∇′f(�r − �r ′) and invoke identity (7) to transform the integral to one part which
can be integrated with the divergence theorem and a second that has the divergence
acting on �J(�r ′) :

µ0

4π

∫

�J(�r ′) · �∇
(

1
∣

∣�r − �r ′
∣

∣

)

d3r′ = −µ0

4π

∫

�J(�r ′) · �∇′
(

1
∣

∣�r − �r ′
∣

∣

)

d3r′

= −µ0

4π

[

∫

�∇′ ·
(

�J(�r ′)
∣

∣�r − �r ′
∣

∣

)

d3r′ −
∫ �∇′ · �J(�r ′)
∣

∣�r − �r ′
∣

∣

d3r′
]

(1–47)

In the case of static charge densities, as we are discussing here, the continuity
equation (1–24) states that �∇′ · �J(�r ′) = 0. Hence the second integral vanishes. We
apply the divergence theorem (20) to the first integral to get

−µ0

4π

∫

�∇′ ·
(

�J(�r ′)
∣

∣�r − �r ′
∣

∣

)

d3r′ = −µ0

4π

∫ �J(�r ′)
∣

∣�r − �r ′
∣

∣

· d�S (1–48)

Now, the volume of integration was supposed to contain all currents so that no
current crosses the boundary to the volume meaning that (1–48) also vanishes. If
we wish to have non-zero current densities in the problem extending over all space,
we take our volume of integration over all space. It suffices that �J diminish as
|�r − �r ′|α with α < −1 or faster as �r ′ → ∞ to make the integral vanish. Having
disposed of the integrals of (1–47), the integral (1–45) reduces to

�∇× �B(�r ) = µ0
�J(�r ) (1–49)

With the aid of Stokes’ theorem (18), we convert (1–49) to a line integral and obtain

∮

Γ

�B · d�ℓ = µ0

∫

S

�J · d�S (1–50)

In words, Ampère’s law asserts that the line integral of B along the perimeter
of any area equals µ0 times the current crossing that area.

Example 1.10: Find the magnetic induction field outside a long straight wire.
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Figure 1.11: A circle of radius r, centered on the wire is used to calculate
Bϕ nearby.

Solution: From symmetry we expect the field to be independent of ϕ or z . The ϕ
component of the field is then easily evaluated by integrating Bϕ around a circle of
radius r centered on the wire as in Figure 1.11. Taking Bϕ to be constant on the
circle, the contour integration is easily carried out:

∮

Bϕdℓ = µ0

∫

A

�J · d�S (Ex 1.10.1)

2πrBϕ = µ0 I (Ex 1.10.2)

leading to

Bϕ =
µ0 I

2πr
(Ex 1.10.3)

Example 1.11: Find the magnetic field inside a long (assume infinite) closely wound
solenoid with N with turn per unit length, each carrying the current I . Neglect the
pitch of the windings.

Figure 1.12: A current NI threads the rectangular loop of width W shown.

Solution: We construct a rectangular loop as shown in Figure 1.12. The inside
segment lies inside the solenoid, whereas the segment completely outside the loop
is placed sufficiently far from the solenoid that any field vanishes. Any supposed
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radial component of the field must be the same on both sides of the loop and, its
contribution therefore cancels from the integral. Again applying Ampère’s law,

∮

�B · d�ℓ = µ0

∫

�J · d�S (Ex 1.11.1)

BzW = µ0 NI (Ex 1.11.2)

We conclude that for a unit length of solenoid (W = 1), Bz = µ0NI.

If we move the segment of the rectangular loop inside the solenoid to the outside,
we have zero current threading the loop, which leads to the conclusion that the field
has no z-component outside the solenoid. The field inside the solenoid is evidently
uniform, as the placement of the loop’s inner segment does not change our result. We
have not proved the radial component of the field zero; however, since the magnetic
induction field is perpendicular to the current, we conclude that Bϕ vanishes whence
�∇ · �B = 0 requires Br to vanish.

To gain some insight into the effect of nonzero pitch of the windings, we draw
an Ampèrian loop around the coil in a plane perpendicular to the coil axis. When
the loop is outside the coil, exactly I crosses the plane of the loop, leading us
to conclude that the field outside no longer vanishes, instead, appealing to the
rotational invariance, we deduce a field corresponding to a line current I along the
axis. Inside the coil, no current crosses the loop, and the nonzero pitch has only
minimal effect.

Example 1.12: Find the magnetic induction field inside a closely wound torus having
a total of N turns. Neglect the pitch of the windings.

Figure 1.13: A circle drawn in the interior of the torus includes a current
NI, whereas outside the torus the included (net) current is zero.

Solution: Assuming the torus has its midplane coinciding with the x-y plane, we
construct a circle parallel to the x-y plane in the interior of the torus as shown in
Figure 1.15. Integrating the azimuthal component of the field Bϕ around the circle,
we obtain 2πrBϕ = µ0NI, from which we conclude that

Bϕ =
µ0NI

2πr
(Ex 1.12.1)
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Interestingly, so long as the loop remains within the torus, up or down displacement
makes no difference. The field is independent of z but decreases radially as 1/r .

It would be convenient if �B could generally be derived from a scalar potential,
much in the fashion of the electric field. Unfortunately, since the curl of �B is
not generally zero, �B cannot generally be expressed as the gradient of a scalar
function. (Notwithstanding this caution, wherever the current density vanishes, �B
can usefully be found as the gradient of a scalar function we will call the scalar
magnetic potential, Vm.)

In fact, since, according to (1–43) and to the chagrin of many physicists whose
theories predict the existence, there are no magnetic charges (monopoles) analogous

to electric charges, �B has zero divergence.
A field without divergence (no sources or sinks) can always be expressed as the

curl of a vector. We define the magnetic vector potential, �A(�r ), by

�B(�r ) = �∇× �A(�r ) (1–51)

In much the same manner as the derivation of the electrical scalar potential
where we expressed �E as the gradient of a function, we now seek to express �B as
the curl of a vector field. Glancing back at (1–42), we find �B expressed in exactly
this form. We conclude that

�A(�r ) ≡ µ0

4π

∫ �J(�r ′)

|�r − �r ′| d3r′ (1–52)

serves as an expression for the magnetic vector potential
For many years it was thought that the vector potential �A was merely a math-

ematical construct since all forces and apparently physical effects depend on �B. In
fact, the phase of a charged particle’s wave function depends on the line integral
of the vector potential along the particle’s path. The Bohm-Aharanov experiment5

has directly demonstrated a shift in the fringe pattern of electron waves diffracted
by a long magnetized needle that, though presenting no appreciable magnetic flux
density along the path, does have a nonzero vector potential outside the needle.
Since forces play no central role in quantum mechanics, the disappearance of �E
and �B from the formulation should come as no surprise. As we will see when dis-
cussing the covariant formulation in Chapter 11, the potentials V and �A appear
to be somewhat more fundamental than �E and �B in the relativistic formulation as
well.

It is worth noting that according to (1–52), �A is always parallel to the mean

weighted current flow. We note also that from its definition, �A is not unique. We
can add the gradient of any function, say Λ(�r ), to �A without changing curl �A.

5See for example R. P. Feynman, R. B. Leighton, and M. Sands (1964) The Feynman Lectures
on Physics, Vol. 2 , Addison-Wesley Publishing Company, Reading (Mass.).

1.2.5 The Magnetic Vector Potential
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Although the evaluation of �A from (1–52) appears quite straight-forward, in

practice it is frequently necessary to calculate �B first and then derive �A from �B

The vector potential of a slowly moving point charge is obtained by setting
�J(�r ′) = ρ�v(�r ′) = q δ (�r ′ − �rq(t))�v, giving on integration of (1–52)

�A(�r ) =
µ0q�v

4π |�r − �rq(t)|
(1–53)

Example 1.13: Find the vector potential �A(0, 0, z) above a circular current loop of
radius a in the x-y plane.

Solution: �J = I δ(r′−a) δ(z′) ϕ̂ where r′ is the radial coordinate of a current element
in cylindrical coordinates. Then

�A(0, 0, z) =
µ0

4π

∫ �J d3r′

|�r − �r ′| =
µ0

4π

∫

I δ(r′ − a) δ(z′) ϕ̂√
a2 + z2

r′dr′dϕ′ dz′ (Ex 1.13.1)

=
µ0 Ia

4π
√

a2 + z2

∫ 2π

0

ϕ̂ dϕ′ =
µ0Ia

4π
√

a2 + z2

∫ 2π

0

dr̂

dϕ′ dϕ′ (Ex 1.13.2)

=
µ0Ia

4π
√

a2 + z2
[r̂(2π) − r̂(0)] = 0 (Ex 1.13.3)

Since we expect �B to have no x or y component at this point, �A should not
have any z dependence. Clearly this result is not very useful. We will tackle this
problem again using the magnetic scalar potential. Notwithstanding the successfully
integration of the equations above using a curvilinear basis, the student is strongly
advised to avoid using anything but a Cartesian basis in integrals.

Example 1.14: Find the vector potential at distance r from a long straight wire of
radius a ≪ r carrying current I (Figure 1.13).

Figure 1.14: Since the wire is infinitely long, we may pick the origin so that
�r lies in the x-y plane.
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Solution: Without loss of generality we can place the field point in the x-y plane.
If we try

�A(r, ϕ, z) =
µ0

4π

∫ �J(�r ′) d3r′

|�r − �r ′| (Ex 1.14.1)

Neglecting a, we obtain for �A outside the wire

�A =
µ0

4π

∫ �J d3r′

|�r − �r ′| =
µ0

4π

∫ ∞

−∞

Ik̂dz′√
r2 + z′2

(Ex 1.14.2)

giving

�A =
µ0Ik̂

4π
ln
(

z′ +
√

r2 + z′2
)

∣

∣

∣

∣

∣

∞

−∞
(Ex 1.14.3)

which is infinite. We can however evaluate �A by equating its curl to the expression
for �B as found in (1–32) and integrating.

Setting �A = Az k̂ and noting that �B = µ0I
2πr ϕ̂, we replace �Bϕ by the ϕ component

of the curl of �A to write

(

�∇× �A
)

ϕ
=

(

∂Ar

∂z
− ∂Az

∂r

)

=
µ0I

2πr
(Ex 1.14.4)

We conclude:

∂Az

∂r
= − µ0I

2πr
⇒ Az = −µ0I

2π
ln r + const. (Ex 1.14.5)

The vector potential �A outside the wire then becomes

�A = − µ0Ik̂

2π
ln r + �∇Λ (Ex 1.14.6)

with Λ an arbitrary scalar function.

The expression (Ex 1.14.6) provides us with a useful form of the expression for
the vector potential; for, if we consider that it governs the vector potential produced
by a filament of current dI extending infinitely in the z-direction at r = 0,

dAz(�r ) = −µ0

2π
ln r dI (1–54)

The vector potential of the entire current considered as a superposition of the fila-
ments located ar �r ′ becomes, with the replacement dI = Jz(�r

′)dS′,

Az(�r ) = −µ0

2π

∫

Jz(�r
′) ln |r − r′| dS′ (1–55)

which may be integrated over arbitrary cross-sections.
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The vector potential of a uniform magnetic induction field may be written as

�A(�r ) =
�B × �r

2
(1–56)

which is easily verified as follows:

�∇× �A = �∇×
(

�B × �r

2

)

=
�B(�∇ · �r ) − �r(�∇ · �B ) + (�r · �∇ ) �B − ( �B · �∇)�r

2

=
3 �B − �B

2
= �B (1–57)

1.2.6 The Magnetic Scalar Potential

Although not of the same theoretical importance as the magnetic vector potential,
the magnetic scalar potential is extremely useful for solving problems involving
magnetic fields. As we have already pointed out, in regions of space where the
current density is zero (outside wires for instance), �∇ × �B = 0 (this holds only

for static fields), which implies that �B can be expressed as the gradient of a scalar
potential:

�B = −µ0
�∇Vm (1–58)

The reason for including the constant µ0 in (1–58) will become clearer in Chapter
7 when we deal with fields in ponderable matter.

Merely knowing that Vm exists, does not give a prescription for finding this
scalar potential. To obtain the magnetic scalar potential for a closed current loop
we proceed as follows.

In general, the change in any scalar function, and in particular Vm(�r ), in res-
ponse to a small change d�r of its argument, is given to first order by

dVm = �∇Vm · d�r = −
�B · d�r
µ0

(1–59)

Using the line current form of the Biot-Savart law, (1–35), to substitute an

expression for �B we obtain, with the abbreviation �R = �r − �r ′,

dVm =

(

− I

4π

∮

d�ℓ × �R

R3

)

· d�r = − I

4π

∮

(d�ℓ × �R ) · d�r
R3

(1–60)

It is interesting to relate this expression to the solid angle, Ω, subtended by the
current loop. With reference to Figure 1.15,

Ω ≡
∫

A

d �A · (−R̂ )

R2
=

∫ − d �A · �R

R3
(1–61)

where −�R is a vector pointing from the observer at the field point to a point on
the surface enclosed by the loop. It should be evident that the shape of the surface
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Figure 1.15: The area enclosed by the loop points in the direction shown,
determined by the direction of the current.

enclosed is immaterial; only the boundary is significant. If the observer moves by
an amount d�r or, equivalently, the loop moves by −d�r, the solid angle subtended
by the loop will change. In particular, the area gained by any segment d�ℓ of the
loop is −d�r × d�ℓ, giving a change in solid angle subtended (see Figure 1.16):

dΩ =

∮

[(− d�r ) × d�ℓ ] · (− �R )

R3

=

∮

d�r · (d�ℓ × �R)

R3
(1–62)

Comparing dΩ, the integrand of (1–62) with dVm, (1–60), we find that

dVm = − I

4π
dΩ (1–63)

Since we may in general write dVm = �∇Vm · d�r and dΩ = �∇Ω · d�r , we conclude
that

Vm = − I

4π
Ω (1–64)

Figure 1.16: Although the area does not change under displacement, the
solid angle does, because the mean R changes.
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serves as a scalar potential for the magnetic induction field.

Example 1.15: Find the magnetic scalar potential at a point below the center of a
circular current loop of radius a (Figure 1.17). Use the scalar potential to find the
magnetic induction field on the central axis.

Figure 1.17: The observer is directly below the center of the loop.

Solution: We first find Ω. To this end, we note �R = zk̂ − r′r̂, R =
√

z2 + r′2 and
�R · d �A = zr′dr′dϕ′, so that

−Ω =

∫

d �A · �R

R3
=

∫ a

0

∫ 2π

0

zr′dr′dϕ′

(z2 + r′2)3/2

=
− 2πz√
z2 + r′2

∣

∣

∣

∣

a

0

= 2π

(

1 − z√
z2 + a2

)

(Ex 1.15.1)

from which we conclude

Vm = −I

2

(

z√
z2 + a2

− 1

)

(Ex 1.15.2)

(the constant term may of course be dropped without loss). As shown in the next
example, (1.16), the scalar potential of the current loop becomes a building block
for a number of other problems whose currents can be decomposed into current
loops.

The magnetic induction field along the z axis previously obtained in example
1.8 is now easily found:

Bz(0, 0, z) = −µ0
∂

∂z
Vm

=
Iµ0

2

[

1

(z2 + a2)1/2
− z2

(z2 + a2)3/2

]

=
Iµ0

2

a2

(z2 + a2)3/2
(Ex 1.15.3)
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Example 1.16: Find the scalar magnetic potential along the axis of a solenoid of
length L with N closely spaced turns, carrying current I. Assume the pitch may be
neglected.

Solution: We choose our coordinate system so that the z axis runs along the axis
of the solenoid and the origin is at the center of the solenoid. Using the preceding
example 1.15, the magnetic scalar potential of a coil at the origin is

Vm = −I

2

z√
z2 + a2

(Ex 1.16.1)

If the loop were located at position z′ instead of the origin, the expression for
Vm would become

Vm(z) = −I

2

(z − z′)
√

(z − z′)2 + a2
(Ex 1.16.2)

The scalar potential from N turns at varying locations z′ is then obtained by sum-
ming the potential from each of the loops:

Vm(z) = −I

2

∫

(z − z′)dN
√

(z − z′)2 + a2
= − N I

2L

∫ L/2

−L/2

(z − z′) dz′
√

(z − z′)2 + a2

=
NI

2L

√

(z − z′)2 + a2

∣

∣

∣

∣

L/2

−L/2

= −NI

2L

(

√

(

z + 1
2L
)2

+ a2 −
√

(

z − 1
2L
)2

+ a2

)

(Ex 1.16.3)

The calculation of the magnetic induction field along the axis of the solenoid is now
a simple matter. (Exercise 1-23)
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Exercises and Problems

Figure 1.18: A Helmholtz coil consists of two
identical parallel coils, spaced at their common
radius.

Figure 1.19: Geometry of the solenoid of ques-
tion 21.

1-1 Verify that Ex 1.3.4 yields the limit-
ing form Q/4πε0z

2 when z → 0.

1-2 Find the electric field along the axis
of a charged ring of radius a lying in the
x-y plane when the charge density on the
ring varies sinusoidally around the ring
as

ρ = λ0(1 + sinϕ) δ(r − a)δ(z)

1-3 Find the electric field above the
center of a flat circular plate of radius
a when the charge distribution is ρ =
br2δ(z ) when r ≤ a and 0 elsewhere.

1-4 Find the electrostatic field estab-
lished by two long concentric cylinders
having radii a and b, bearing respective
surface charge densities σa and σb, in the
region inside the inner cylinder, between
the cylinders, and outside the two cylin-
ders.

1-5 Find the electrostatic field produced
by a spherical charge distribution with
charge density ρ0e

−kr.

1-6 Find the electric field produced by
a spherically symmetric charge distribu-
tion with charge density

ρ =

{

ρ0

(

1 − r

a

)2

for r ≤ a and

0 for r ≥ a

1-7 Two large parallel flat plates bear
uniform surface charge densities σ and
−σ. Find the force on one of the plates
due to the other. Neglect the fringing
fields. Note that just using the electric
field between the plates to calculate the
force as σ �EA gives twice the correct re-
sult. (Why?)

1-8 Find the electric field at any point
(not on the charge) due to a line charge
with charge density

ρ =

{

bzδ(x)δ(y) z ∈ (−a, a)

0 elsewhere

lying along the z axis between a and −a.
(Fairly messy integral!)

1-9 Within a conductor, charges move
freely until the remaining electric field
is zero. Show that this implies that the
electric field near the surface of a conduc-
tor is perpendicular to the conductor.

1-10 Find the electric potential for the
charge distribution of problem 1-8.

1-11 Find the electric potential for the
charge distribution of problem 1-2.

1-12 Find the electric potential for the
charge distribution of problem 1-3.
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1-13 A fine needle emits electrons iso-
tropically at a steady rate. Find the di-
vergence of the current density and the
resulting current flux at distance r from
the point in the steady state.

1-14 Using the magnetic scalar poten-
tial, find the magnetic induction field
along the spin axis of a uniformly char-
ged spinning disk.

1-15 Using the results from 1-14, find
the magnetic induction field along the
spin axis of a uniformly charged spinning
thin spherical shell of radius R at a point
outside the shell.

1-16 Using the results from 1-15, find
the magnetic induction field along the
spin axis of a uniformly charged spinning
sphere of radius R at a point outside the
sphere.

1-17 A Helmholtz coil consists of two
parallel plane coils each of radius a and
spaced by a (Figure 1.18). Find the mag-
netic induction field at the center (a/2
from the plane of each coil).

1-18 Use the Biot-Savart law to find the
axial magnetic induction field of a closely
wound solenoid having length L and N
closely spaced turns. (Ignore the pitch
of the windings.)

1-19 Find the magnetic induction field of
a long coaxial cable carrying a uniformly
distributed current on its inner conduc-
tor (radius a) and an equal counter-
current along its outer conductor of ra-
dius b and thickness << b.

1-20 Expresses the vector potential of a
filamentary current loop as a line inte-
gral and show that the magnetic vector
potential of the current loop vanishes.

1-21 Show that the magnetic vector po-
tential satisfies ∇2 �A = −µ0

�J .

1-22 Find the vector potential of two
long parallel wires each of radius a,
spaced a distance h apart, carrying equal
currents I in opposing directions.

1-23 A low-velocity beam of charged
particles will spread out because of mu-
tual repulsion. By what factor is the mu-
tual repulsion reduced when the particles
are accelerated to .99c?

1-24 Differentiate the axial scalar mag-
netic potential of a solenoid of length L
with N closely spaced turns to obtain
the axial magnetic induction field. Show
that this field can be conveniently writ-
ten

Bz =
NIµ0

2L
(cos θ1 + cos θ2)

where θ1 and θ2 are respectively the an-
gles subtended by the solenoid’s radius
at the left and the right end of the coil
(Figure 1.19).

1-25 A charged particle in a crossed elec-
tric and magnetic induction field experi-
ences no net force when it moves through
the fields with an appropriate velocity
known as the plasma drift velocity . Find
an expression for the plasma drift veloc-
ity.
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Chapter2

Charge and Current Distributions

2.1 Multipole Moments

When the charge and current distribution does not exhibit considerable symmetry
or, alternatively, the potential is required at some point not on a symmetry axis,
the evaluation of the integrals in Coulomb’s law or in the Biot-Savart law becomes
rather formidable. It becomes useful to approximate the potentials by a power
series in the field point coordinates. The coefficients of such a power series, called
the (multipole) moments of the charge distribution, are independent of the field
point coordinates. The utility of such an expansion rests on the fact that once the
moments of a distribution have been determined, the evaluation of the potential at
any point becomes merely a matter of substituting the field point coordinates into
the power series.

Before embarking on the general expansion, let us briefly consider the potential
of a pair of closely spaced charges of opposite sign. We place the positive charge at
1
2
�d from the origin and the negative charge at −1

2
�d from the origin.

The potential at �r due to the two charges q and −q is

V (�r ) =
q

4πε0

(

1
∣

∣�r − 1
2
�d
∣

∣

− 1
∣

∣�r + 1
2
�d
∣

∣

)

(2–1)

=
q

4πε0





1
√

r2 + (d/2)2 − �r · �d
− 1
√

r2 + (d/2)2 + �r · �d



 (2–2)

Assuming r ≫ d, we retain only the first order terms in d/r, to approximate the
potential of the two charges by

V (�r) ≈ q

4πε0r













1
√

1 − �r · �d

r2

− 1
√

1 +
�r · �d

r2













(2–3)

—33—
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Figure 2.1: The dipole moment of a pair of equal but opposite charges points
from −q to q.

We expand (2–3) with the binomial expansion (33)6 to obtain

V (�r ) ≈ q

4πε0r

(

1 +
�r · �d

2r2
− 1 +

�r · �d

2r2
+ · · ·

)

=
�r · (q�d )

4πε0r3
=

�p · �r
4πε0r3

(2–4)

The bracketed term (q�d ) ≡ �p is known as the dipole moment of the charge pair
(Figure 2.1). The neglected terms of order d2 and higher involve the quadrupole
moment, octopole moment, hexadecapole moment, and so forth. Once �p is known,
no further integrations are required to evaluate the potentials of an electric dipole
at any (sufficiently distant) point.

Example 2.1: Find the electric field resulting from an electric dipole �p placed at the
origin.

Solution: The potential of the dipole is (2–4)

V (�r ) =
�p · �r

4πε0r3
(Ex 2.1.1)

leading to an electric field

�E = −�∇V = −
�∇(�p · �r)
4πε0r3

+
3 (�p · �r )�r

4πε0r5

=
−1

4πε0r3

(

�p − 3(�p · �r )�r

r2

)

(Ex 2.1.2)

6The binomial expansion,

(1 + ε)r = 1 + rε +
r(r − 1)ε2

2!
+

r(r − 1)(r − 2)ε3

3!
+

r(r − 1)(r − 2)(r − 3)ε4

4!
+ . . .

is finite when r is a positive integer. When r is negative or a noninteger, the infinite series converges
only for ε < 1.
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Had we placed the dipole at �r ′ instead of at the origin, we need merely replace �r
by (�r − �r ′) in Ex 2.1.2.

2.1.1 The Cartesian Multipole Expansion

In general the term 1/|�r − �r ′| in the expression for the electric potential may be
written as

1

|�r − �r ′| =
1√

r2 + r′2 − 2�r · �r ′ =
1

r>

√

1 +

(

r<

r>

)2

− 2�r> · �r<

r2
>

(2–5)

where we have defined r> as the greater of r and r ′ and r< as the lesser of r and
r ′. This slightly cumbersome notation is necessary to ensure that the binomial ex-
pansion of the radical converges. We proceed to expand the radical by the binomial
expansion (33) to obtain

1

|�r − �r ′| =
1

r>

[

1 − 1

2

(

r2
<

r2
>

− 2�r> · �r<

r2
>

)

+
3

2

1

2

1

2!

(

r2
<

r2
>

− 2�r> · �r<

r2
>

)2

+ . . .

]

(2–6)

=
1

r>
+

�r> · �r<

r3
>

− 1

2

r2
<

r3
>

+
3

8r>

4(�r> · �r<)2

r4
>

+ . . . (2–7)

where the neglected terms are of order (r</r>)3 or higher. We evaluate the two
terms in r2

< in such a manner as to separate the r< and r> terms.

3

8r>

4(�r> · �r<)2

r4
>

− 1

2

r2
<

r3
>

=

[

3(�r> · �r<)2 − r2
<r2

>

]

2r5
>

=
3(�r · �r ′)2 − r2r′2

2r5
>

(2–8)

=
1

2r5
>

3,3
∑

i=1
j=1

3(xix
′
i)(xjx

′
j) − xixix

′
jx

′
j (2–9)

=
1

2r5
>

3,3
∑

i=1
j=1

xixj(3x
′
ix

′
j − δijr

′2) (2–10)

The primed and unprimed coordinates could, of course, have been exchanged. To
be explicit we assume that the source coordinates r′ are consistently smaller than
r (only then does the multipole expansion make sense), and we can write

1

|�r − �r ′| =
1

r
+

�r · �r ′

r3
+

1

2r5

3,3
∑

i=1
j=1

xixj

(

3x′
ix

′
j − δijr

′2)+ . . . (2–11)

leading to

V (�r ) =
1

4πε0

∫

ρ(�r ′)

|�r − �r ′|d
3r′ (2–12)
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=
1

4πε0

(
∫

ρ(�r ′)d3r′

r
+

�r ·
∫

ρ(�r ′)�r ′ d3r′

r3

+

∑

xixj

∫

ρ(�r ′)
[

3x′
ix

′
j − δijr

′2] d3r′

2r5
+ . . .

)

(2–13)

=
1

4πε0

(

q

r
+

�r · �p
r3

+

∑

xixjQij

2r5
+ . . .

)

(2–14)

Here q is the total charge of the source,

�p =

∫

ρ(�r ′)�r ′d3r′ (2–15)

is the dipole moment of the distribution and

Qij ≡
∫

ρ(�r ′)(3x′
ix

′
j − δijr

′2)d3r′ (2–16)

is the ij component of the Cartesian (electric) quadrupole moment tensor. In prin-
ciple this expansion could be continued to higher order, but it is rarely fruitful to
do so. The trace (or sum of diagonal elements) of the quadrupole moment tensor
is easily seen to vanish:

Q11 + Q22 + Q33 =

∫

ρ
[

(3x′2 − r′2) + (3y′2 − r′2) + (3z′2 − r′2)
]

d3r′

=

∫

ρ(3x′2 + 3y′2 + 3z′2 − 3r′2)d3r′ = 0 (2–17)

To confuse matters, when a quadrupole has azimuthal symmetry, the zz com-
ponent, Q33 = −2Q11 = −2Q22, is often referred to as the quadrupole moment.

The multipole moment of a charge distribution generally depends on the choice
of origin. Nonetheless, the lowest order nonzero moment is unique, independent of
the choice of origin.

Example 2.2: Find the dipole moment of a line charge of length a and charge density
ρ(�r ′) = λz′δ(x′)δ(y′) for z′ ∈ (−a/2, a/2) and 0 elsewhere.

Solution: The x and y components of the dipole moment clearly vanish, and the z
component is easily obtained from the definition (2–15).

px = py = 0 (Ex 2.2.1)

pz =

∫ a/2

−a/2

λz′2 dz′ =
λz′3

3

∣

∣

∣

∣

a/2

−a/2

=
λa3

12
(Ex 2.2.2)

We note that as the net charge is zero, the dipole moment should be unique.
Shifting the origin to − 1

2a along the z axis, for instance, gives us a new charge den-
sity, ρ = λ(z′− 1

2a)δ(x′)δ(y′) and the dipole moment with the shifted origin becomes
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pz =

∫ a

0

λ(z′ − 1
2a)z′dz′ =

λa3

12
(Ex 2.2.3)

Example 2.3: Find the quadrupole moment of the charge distribution shown in Figure
2.2.

Figure 2.2: Two positive charges occupy diagonally opposite corners, and
two equal, negative charges occupy the remaining corners.

Solution: The xx (1,1) component of the quadrupole tensor is again easily evaluated
from its definition (2–16) replacing the integral over the source by a sum over the
source particles:

Qxx = (+q)

[

3
(a

2

)2

−
(

a2

2

)]

+ (−q)

[

3

(−a

2

)2

−
(

a2

2

)

]

+(+q)

[

3

(−a

2

)2

−
(

a2

2

)

]

+ (−q)

[

3
(a

2

)2

−
(

a2

2

)]

= 0 (Ex 2.3.1)

In the same manner, Qyy and Qzz are found to be 0. Qxy = Qyx is

Qxy = 3q
(a

2
· a

2

)

− 3q

(

a

2
· − a

2

)

+ 3q

(− a

2
· − a

2

)

− 3q

(− a

2
· a

2

)

(Ex 2.3.2)

= 3qa2 (Ex 2.3.3)

and Qxz = Qzx vanishes.

Example 2.4: Find the quadrupole moment of a uniformly charged ellipsoid of revo-
lution, with semi-major axis a along the z axis and semi-minor axis b bearing total
charge Q.

Solution: We begin by finding the zz component of the quadrupole moment tensor.
The equation of the ellipsoid can be expressed as

s2

b2
+

z2

a2
= 1 (Ex 2.4.1)
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where s =
√

x2 + y2 is the cylindrical radius. Then

Qzz =

∫

volume

(3z′2 − r′2)ρd3r′ =

a
∫

z′=−a

b
√

1−(z′/a)2
∫

s′=0

ρ(2z′2 − s′2)2πs′ds′dz′ (Ex 2.4.2)

= 2πρ

∫ a

−a

[

z′2b2

(

1 − z′2

a2

)

− 1

4
b4

(

1 − z′2

a2

)2
]

dz′ (Ex 2.4.3)

= 8
15πρab2(a2 − b2) (Ex 2.4.4)

The total charge in the volume is 4
3πρab2, so that Qzz = 2

5Q(a2 − b2). Rather
than compute the xx and yy components, we make use of the fact that the trace of
the quadrupole tensor vanishes, requiring Qxx = Qyy = − 1

2Qzz. The off-diagonal
elements vanish.

The net charge on the ellipsoid is not zero, hence we conclude that the com-
puted quadrupole moment is not unique. The identical calculation has considerable
application in gravitational theory with mass replacing charge.

The vector potential �A can be expanded in precisely the same fashion as V. Let
us consider the expression for the vector potential of a plane current loop (1–52)

�A(�r ) =
µ0

4π

∫ �J(�r ′)d3r′

|�r − �r ′|

=
µ0I

4π

∮

d�ℓ ′

|�r − �r ′| (2–18)

in which we expand the denominator using the binomial theorem (33) as

�A(�r ) =
µ0I

4πr

∮

d�ℓ ′ +
µ0I

4πr3

∮

d�ℓ ′(�r · �r ′) + . . . (2–19)

The first term vanishes identically, as the sum of vector displacements around a
loop is zero. The second term is the contribution from the magnetic dipole moment
of the loop. Using identity (17),

∮

(�r · �r ′)d�ℓ ′ =

∫

d�S′ × �∇′(�r · �r ′) = −
∫

�r × d�S′ (2–20)

we find for the vector potential of a small current loop

�A(�r ) =
µ0I

4πr3

∫

d�S′ × �r =
µ0

4πr3

(

I

∫

d�S′
)

× �r (2–21)

The bracketed term,

I

∫

d�S′ ≡ �m (2–22)
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is the magnetic dipole moment of the loop. We have then, to first order, the
magnetic vector potential

�A(�r ) =
µ0

4πr3
�m × �r (2–23)

Other useful forms for the magnetic moments are easily obtained by generalizing to
not necessarily planar current loops:

�m = I

∫

d�S′ =
I

2

∮

�r ′ × d�ℓ ′ =
1

2

∫

�r ′ × �J(�r ′)d3r′ (2–24)

Example 2.5: Find the magnetic dipole moment of a uniformly charged sphere of
radius a rotating with angular velocity ω about the z axis.

Solution: The magnetic moment may be found from �m = 1
2

∫

(�r ′ × �J ) d3r′. The
integrand can be rearranged as follows.

�r ′ × �J = �r ′ × ρ�v = ρ�r ′ × (�ω × �r ′) = ρ
[

r′2 �ω − (�r ′ · �ω)�r ′] (Ex 2.5.1)

= ρω
[

r′2k̂ − (r′ cos θ)�r ′
]

(Ex 2.5.2)

= ρω
(

r′2k̂ − r′2 cos2 θk̂ − r′2 sin θ cos θŝ
)

(Ex 2.5.3)

where ŝ is the unit cylindrical radial basis vector. The last term of the preceding
expression (the ŝ term) vanishes when integrated over ϕ, leaving

�m = 1
2ρωk̂

(∫ a

0

∫ 4π

0

r′2r′2dr′dΩ′

−
∫ a

0

∫ π

0

∫ 2π

0

r′2 cos2 θ′r′2dr′ sin θ′ dθ′dϕ′
)

( Ex 2.5.4)

= 1
2ρωk̂

(

4πa5

5
− 2

3

2π a5

5

)

=
4πρωa5

15
k̂ Ex 2.5.5)

To obtain the magnetic induction field of a magnetic dipole at the origin, we
merely take the curl of the vector potential (2–23) yielding

�B(�r ) = �∇× �A =
µ0

4π

(

− �m

r3
+

3(�m · �r )�r

r5

)

(2–25)

The magnetic induction field of a small loop is illustrated in Figure 2.3. The dipole
field is obtained as the area of the loop is shrunk to zero. The expression (2–25)
can also be written as

�B(�r ) = −µ0
�∇
(

�m · �r
4πr3

)

(2–26)

Recalling that outside current sources �B can be expressed as �B = −µ0
�∇Vm, we

deduce that the scalar magnetic potential for a small current loop located at the
origin is

Vm(�r ) =
�m · �r
4πr3

(2–27)
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Figure 2.3: The magnetic induction field of a small current loop.

This form of the magnetic scalar potential allows us to easily generate our earlier
result (1–64) for the arbitrary current loop. If the loop is considered as a sum of
small bordering loops (each of which is adequately described as a dipole) situated
at r′ (Figure 2.4), we find

Figure 2.4: The scalar magnetic potential of the loop may be found as the
sum of the potentials of each of the small loops. The countercurrents along
the boundary of the inner loops are fictitious and cancel exactly.

Vm =

∫

dVm =

∫

d�m(�r ′) · (�r − �r ′)

4π |�r − �r ′|3 =

∫

Id �A · �R

4πR3
= −IΩ

4π
(2–28)

Although only the current along the outside of the loop is real, we supply cancelling
currents along the boundaries of contiguous loops. The fact that we need look at
no further terms than those of the magnetic dipole to generate the correct form of
the magnetic scalar potential suggests there is little to be gained from considering
higher order terms.

2.1.2 The Spherical Polar Multipole Expansion

An alternative expansion for the potential of a charge distribution is offered by the
generating function, (F–34), for Legendre polynomials:

1
√

1 − 2t cos γ + t2
=

∞
∑

n=0

tnPn(cos γ) (2–29)
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The term
1

|�r − �r ′| =
1

r>

√

1 − 2r< cos γ

r>
+
(r<

r>

)2
(2–30)

where γ is the angle between �r and �r ′, has almost exactly this form. Thus

1

|�r − �r ′| =
1

r>

∞
∑

n=0

(

r<

r>

)n

Pn(cos γ) (2–31)

and

V (�r ) =
1

4πε0

∫

ρ(�r ′)d3r′

|�r − �r ′| =
1

4πε0

∫ ∞
∑

n=0

rn
<

rn+1
>

Pn(cos γ)ρ(�r ′) d3r′ (2–32)

Two special cases arise. If the charge distribution lies along the z axis—that is,
ρ(�r ′) = λ(z′)δ(x′)δ(y′) —then γ is the polar angle θ of �r, and we find for a line
charge located on the z axis that

V (�r ) =
1

4πε0

∞
∑

n=0

Pn(cos θ)

rn+1

∫

(z′)nλ(z′)dz′ (2–33)

when the source dimensions are smaller than r and

V (�r ) =
1

4πε0

∑

rnPn(cos θ)

∫

λ(z′)

z′n+1
dz′ (2–34)

when r lies closer to the origin than any part of the source does. For any fixed r
it is possible to divide the source into two parts, one part that lies inside a sphere
defined by r and one that lies outside. The potential may then be found as the sum
of the two contributions.

Alternatively, if we confine �r to the z axis, then γ = −θ′, the polar angle of −�r ′,
giving for a general (r > r′) charge distribution

V (0, 0, z) =
1

4πε0

∞
∑

n=0

1

zn+1

∫

r′nPn(cos θ′)ρ(�r ′)r′2dr′ sin θ′dθ′dϕ′ (2–35)

The unrestricted expansion in the “spherical basis” is obtained using the sum-
mation identity for spherical harmonics (F–47)

Pℓ(cos γ) =
4π

(2ℓ + 1)

ℓ
∑

m=−ℓ

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′) (2–36)

Here γ is the angle between two vectors having polar angles (θ, ϕ) and (θ′, ϕ′)
respectively, and Y∗m

ℓ is the complex conjugate of Ym
ℓ , so that for r > r′

V (�r ) =
1

ε0

∑

ℓ,m

Ym
ℓ (θ, ϕ)

(2ℓ + 1) rℓ+1

∫

ρ(�r ′)r′ℓY∗m
ℓ (θ′, ϕ ′)d3r′ (2–37)
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The integral in the preceding expression, which we abbreviate qℓ,m, is the m
component of the 2 ℓ-pole moment of the charge distribution in the spherical basis.
Given these numbers, characteristic of the distribution, it is easy to calculate the
potential anywhere in space. The relationship between the components of the dipole
and quadrupole moments in the spherical and Cartesian basis is

q1,0 =
√

3
4π pz q1,±1 = ∓

√

3
8π (px ∓ ipy)

(2–38)

q2,0 =
√

5
16π Qzz q2,±1 =

√

5
24π (Qxz ∓ iQyz) q2,±2 =

√

5
96π (Qxx − Qyy ∓ 2iQxy)

Example 2.6: Find the dipole moment of a sphere of radius a centered on the origin
bearing charge density ρ = ρ0z

′ for r′ ≤ a.

Solution: We exploit the convenient normalization of spherical harmonics (F–45) to
simplify the integration. Writing ρ(�r ′) = ρ0z

′ as a spherical harmonic,

ρ0z
′ = ρ0r

′ cos θ′ =

√

4π

3
ρ0r

′Y0
1(θ

′, ϕ′) (Ex 2.6.1)

using (2–38), we find that the integral for q1,0 takes the form

q1,0 =

√

4π

3

∫ a

0

∫ 4π

0

ρ0r
′2Y0

1(θ
′, ϕ′)Y0

1(θ
′, ϕ′)r′2dΩ′dr′ (Ex 2.6.2)

the orthonormality relation (F–45) reduces the solid angle integral to unity so that
the integral reduces to

q1,0 =

√

4π

3

∫ a

0

ρ0r
′4dr′ =

√
4π

5
√

3
ρ0a

5 (Ex 2.6.3)

finally then,

pz =
√

4π
3 q1,0 = 4π

15 ρ0a
5 (Ex 2.6.4)

Symmetry dictates that the remaining components vanish. Of course we could have
integrated ρ0z

′ over the sphere directly to obtain the same results.

2.2 Interactions with the Field

For electric monopoles we have already seen that the force on a charge is given by
�F = q �E. For the dipole of Section 2.1, it should be clear that in a uniform field the
force on one of the charges is exactly balanced by the opposite force on the second
charge, leaving us with zero net force. If the field is not parallel to the dipole axis,
however, the two forces will not act along the axis, and a nonzero torque acts on
the dipole. Thus we would conclude that in order to obtain a force on a dipole, a
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Figure 2.5: A small dipole in a nonhomogeneous electric field.

nonuniform field is required, whereas any field not parallel to the dipole suffices to
produce a torque.

2.2.1 Electric Dipoles

Consider the small dipole composed of a negative charge situated at �r ′ and an equal
positive charge situated at �r ′ + δ�r ′ in a nonhomogeneous electric field (Figure 2.5).
The ℓ component of the field at �r ′ + δ�r ′ can be expressed to first order in δ�r ′ as

Eℓ(�r
′ + δ�r ′) = Eℓ(�r

′) +
∂Eℓ

∂x′
j

∣

∣

∣

∣

∣

�r ′

δx′
j

= Eℓ(�r
′) + (δ�r ′ · �∇′)Eℓ(�r

′) (2–39)

The net force on the dipole is then

�Fnet = −q �E(�r ′) + q �E(�r ′ + δ�r ′)

= q(δ�r ′ · �∇′) �E(�r ′)

= (�p · �∇′) �E(�r ′)

(2–40)

The torque on the dipole about the negative charge is easily found as �τ =
q δ�r ′ × �E(�r ′ + δ�r ′), which is to first order in δ�r ′

�τ = �p × �E(�r ′) (2–41)

If the net force on the dipole vanishes, the torque calculated is independent of the
choice of origin.

Example 2.7: Find the force on an electric dipole �p = (px, py, pz) at distance r from
a point charge q , located at the origin.

Solution: The electric field at the position of the dipole due to the point charge at
the origin is q�r

4πε0r3 . The force on the dipole is then

�F = (�p · �∇) �E =

(

px
∂

∂x
+ py

∂

∂y
+ pz

∂

∂z

)

�E (Ex 2.7.1)
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=
q

4πε0

(

�p

r3
− 3(�p · �r )�r

r5

)

(Ex 2.7.2)

We could, of course, just as well have found the force on q due to the electric field
of the dipole, which gives the same result with only the sign reversed.

2.2.2 Magnetic Dipoles

The evaluation of the force on the magnetic dipole is slightly more complicated.
We consider the small rectangular current loop of dimensions δx and δy in the x-y
plane shown in Figure 2.6, threaded by a nonhomogeneous field �B. The net force
in the x-direction is readily found to be

Fnet,x = I δy Bz(x + δx) − I δy Bz(x) (2–42)

= I δy
∂Bz

∂x
δx = mz

∂Bz

∂x
(2–43)

Obtaining the other two components of the net force in like fashion, we have for
the force on a z-directed magnetic dipole

�Fnet = mz
�∇Bz = �∇(mz Bz) (2–44)

Repeating the steps leading to (2–44) with similar loops having normals in the
x and y direction easily generalizes (2–44) for a magnetic dipole with components
(mx,my,mz) pointing in an arbitrary direction to give

�F = �∇(�m · �B) (2–45)

It is worth pointing out that the form of the force on the magnetic dipole is
subtly different from that on the electric dipole. For example, if both dipoles are
z-directed, then the force on the electric dipole is �F = pz∂ �E/∂z, whereas that on

the magnetic dipole is �F = mz
�∇Bz.

The torque on a loop such as that of Figure 2.6 placed in a uniform magnetic
induction field is fairly easily found. We compute the torque for each of three
projections of an arbitrarily oriented loop. Since the monopole moment vanishes,

Figure 2.6: A small rectangular loop in the x-y plane has magnetic moment
�m = mz k̂.
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Figure 2.7: Forces on the sides of rectangular current loops in the (a) x-y
plane, (b) y-z plane and (c) y-z plane.

we are free to choose the point about which we calculate the torque. For the loop
of Figure 2.7, we calculate torques about the lower left corner of the loop in each
of the three orientations. So long as the magnetic field intensity, �B, is uniform over
the area of the loop, there is no net force, hence the torque is independent of origin.

x-y plane, F igure 2.7(a) y-z plane, F igure 2.7(b) x-z plane, F igure 2.7(c)

τy = +δxIδyBx = +mzBx τz = +δyIδzBy = +mxBy τz = +δxIδzBx = −myBx

τx = −δyIδxBy = −mzBy τy = −δzIδyBz = −mxBz τx = −δzIδxBz = +myBz

Considering each of these loops as the projection of an arbitrarily oriented loop,
we combine these results to obtain generally

τx = myBz − mzBy

τy = mzBx − mxBz

τz = mxBy − myBx

(2–46)

or, more briefly

�τ = �m × �B (2–47)

2.3 Potential Energy

The potential energy W of a dipole in a field derives primarily from its orientation
in the field. Not surprisingly, when the dipole is parallel to the field, its potential
energy is lowest. Since, for a conservative force �F = −�∇W , we deduce immediately
from (2–45) that the magnetic energy is given by

W = −�m · �B (2–48)

The case of the electric dipole in an electric field is not quite so obvious from
our work. Suffice it to say that when �F is conservative, curl �E must vanish. If, in
addition, �p is independent of the coordinates, we have (�p · �∇) �E = �∇(�p · �E), which
leads to

W = −�p · �E (2–49)
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A more instructive approach to the potential energy of a charge distribution in
an external field is obtained by considering the potential energy, W =

∑

qiV (�r (i))
of a collection of point charges qi. Expanding the potential energy as a Taylor series
about the origin, we obtain

∑

qiV (�r (i)) =
∑

qiV (0) +
∑

qir
(i)
ℓ

∂V

∂xℓ
+

1

2!

∑

qir
(i)
ℓ r(i)

m

∂2V

∂xℓ ∂xm
+ · · · (2–50)

where the superscript (i) on the coordinates indicates the charge to which the coor-
dinate belongs. Since the external field cannot have charges at the locations �r (i) as
these positions are already occupied by the charges subjected to the field, we have
�∇ · �E = ∇2V = 0, which we use to rewrite W as follows:

W = QV + �p · �∇V + 1
6

∑

3qix
(i)
ℓ x

(i)
m

∂2V

∂xℓ∂xm
+ · · · (2–51)

= QV − �p · �E + 1
6

∑

qi

(

3x
(i)
ℓ x(i)

m

∂2V

∂xℓ∂xm
− r(i)2 ∇2V

)

· · · (2–52)

= QV − �p · �E + 1
6

∑

qi

(

3x
(i)
ℓ x(i)

m − δℓmr(i)2
) ∂2V

∂xℓ∂xm
· · · (2–53)

= QV − �p · �E + 1
6Qℓm

∂2V

∂xℓ ∂xm
· · · (2–54)

We assume summation over repeated indices in (2–54).

Example 2.8: Find the energy of the quadrupole of Figure 2.2 in the potential
V (x, y) = V0xy.

Solution: Using the form of the quadrupole energy given in (2-54), we have

W = 1
6

(

Qxx
∂2V

∂x2
+ Qxy

∂2V

∂x ∂y
+ Qxz

∂2V

∂x ∂z

+Qyx
∂2V

∂y∂x
+ Qyy

∂2V

∂y2
+ · · ·

)

(Ex 2.8.1)

= 1
6

(

3qa2V0 + 3qa2V0

)

= qa2V0 (Ex 2.8.2)
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Exercises and Problems

Figure 2.8: The square has alternating posi-
tive and negative charges along the edges.

Figure 2.9: Classical model of helium.

2-1 Find the electric dipole moment of
a thin ring lying in the x-y plane cen-
tered on the origin bearing line charge
ρ = λ δ(r − a) δ(z) cos ϕ.

2-2 Find the dipole moment of a thin,
charged rod bearing charge density ρ =
λ z δ(x) δ(y) for z ∈ (−a, a).

2-3 Compute the curl of (2–23) to obtain
(2–25).

2-4 Show that the dipole moment of a
charge distribution is unique when the
monopole (charge) vanishes.

2-5 Find the quadrupole moment of two
concentric coplanar ring charges q and
−q, having radii a and b respectively.

2-6 Find the quadrupole moment of a
square whose edges, taken in turn, have
alternating charges ± q uniformly dis-
tributed over each as illustrated in Fig-
ure 2.8.

2-7 Find the gyromagnetic ratio, g (�m =

g�L), for a charged, spinning object whose
mass has the same distribution as its
charge.

2-8 Find the gyromagnetic ratio of a
charged spinning sphere whose mass is
uniformly distributed through the vol-
ume and whose entire charge is uni-
formly distributed on the surface.

2-9 Find the quadrupole moment of a
rod of length L bearing charge density
ρ = η (z2 − L2/12) , with z measured
from the midpoint of the rod.

2-10 Show that the potential generated
by a cylindrically symmetric quadrupole
at the origin is

V =
Qzz

16πε0r3
(3 cos2 θ − 1)

2-11 Find the charge Q contained in a
sphere of radius a centered on the origin,
whose charge density varies as ρ0z

2.

2-12 Find the quadrupole moment of the
sphere of radius a of problem 2-11.

2-13 Show that the dipole term of the
multipole expansion of the potential can
be written

V2 = − 1

4πε0

∑

qi�r
(i) · �∇

(

1

r

)

2-14 Show that the quadrupole term of
the multipole expansion of the potential
can be written

V3 =
1

8πε0

∑

qi�r
(i) · �∇

[

�r (i) · �∇
(

1

r

)]

2-15 Use the “multipole expansion” (2–
32) to find the potential due to the rod
of (2-2) at points |�r | > a.
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2-16 Use (2–32) to find the potential due
to the charged rod of (2-2) at points not
on the rod having |�r | < a.

2-17 A classical model of the helium
atom has two electrons orbiting the nu-
cleus. Assuming the electrons have co-
planar circular orbits of radius a and ro-
tate with angular frequency ω, find the
electric dipole and quadrupole moments
as a function of time in each of the fol-
lowing cases. (a) The electrons co-rotate
diametrically opposed, (b) the electrons
counter-rotate (see Figure 2.9).

2-18 Find an expression for the force be-
tween two dipoles �p1, and �p2, separated
by �r.

2-19 Find an expression for the force
between a quadrupole with components
Qℓm and a dipole �p separated by r.

2-20 If magnetic monopoles existed,
their scalar magnetic potential would be
given by

Vm(�r ) =
1

4π

qm

|�r − �r ′|

Obtain the magnetic scalar potential for
two such hypothetical monopoles of op-
posite sign separated by a small distance
�a. Show that, if we set qm = m/a,
the magnetic scalar potential becomes,
in the limit of a → 0, that of a magnetic
dipole of strength qm�a.

2-21 The proton has a Landé g-factor
of 5.58 (the magnetic moment is �m =
2.79 eh̄/2m). When a proton is placed in
a magnetic induction field, its spin pre-
cesses about the field axis. Find the fre-
quency of precession.

2-22 Obtain an expression for the poten-
tial arising from a sheet of dipoles dis-
tributed over some surface. Assume a
dipole layer density �D = n〈 �p 〉, where n
is the number of dipoles per unit area
and 〈 �p 〉 is the mean dipole moment of
these dipoles.

2-23 In the Stern-Gerlach experiment,
atoms with differently oriented mag-
netic moments are separated in pas-
sage through a nonhomogeneous mag-
netic field produced by a wedge-shaped
magnet. Assuming the field has

∂ �B

∂z
= αk̂

find (classically) the transverse force on
atoms whose magnetic moment makes
angle θ with the z axis.

2-24 Clearly, one could separate electric
quadrupoles using an approach similar
to that of the Stern-Gerlach experiment.
Given that molecules have quadrupole
moments of order 10−39 C-m2, find the
electric field gradient required to impart
an impulse of 10−26 kgm/s to a molecule
travelling at 100 m/s through a 1 mm
region containing the gradient.



Chapter3

Slowly Varying Fields in Vacuum

3.1 Magnetic Induction

In this chapter, we consider the effect of a slow variation in the electromagnetic
fields. By slow, we mean that the sources do not change significantly during the
time it takes for their fields to propagate to any point in the region of interest.

We have seen that charged particles experience a force when moving through a
magnetic field, so it should come as no surprise that a moving source of magnetic
field exerts a force on a stationary charged particle. At the position of the particle, a
moving source of field is perceived as a temporally varying magnetic field. Any local
field interpretation would therefore require that the force on the particle depend on
∂ �B/∂t. It will evolve that the force felt by such a stationary particle must be
reinterpreted as resulting from an electric field.

We begin our consideration of time varying-fields with a short discussion of
electromotive force.

3.1.1 Electromotive Force

When a (long) wire is connected between the terminals of a battery, it is not sur-
prising that a current will flow through the circuit just completed. On further
reflection, this obvious physical effect seems at odds with

∮

�E · d�ℓ = 0 for static

fields, a result that follows from �∇ × �E = 0 (equation 1–18). Clearly, there must
be a yet-unaccounted-for force driving the charges around the circuit. The force
responsible for the motion of charges must be nonelectrostatic in nature and may
be mechanical or chemical. In this particular case, of course, the battery provides
the “motive force,” which is communicated throughout the wire by the electric field.
The line integral of the electric field along the wire is precisely cancelled by the line
integral of the field through the battery. The force communicated to the charges is
well defined only as a line integral. The line integral around the loop of the total
force per charge is called the electromotive force, or EMF, which we give the symbol
E .

E =

∮ �F

q
· d�ℓ (3–1)

—49—
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The name is rather a misnomer because the EMF is certainly not a force, rather,
it is the work that would be performed on a unit charge in travelling around the
loop. In electrostatics it makes no difference whether forces arising from the static
electric field �E are included in

∮

�F ·d�ℓ, because this contribution would sum to zero
in any case.

To clarify how chemistry might give rise to nonelectrostatic forces, we digress
briefly to the specific example of a dilute solution of an electrolyte such as HCl,
whose concentration varies spatially. The electrolyte will be almost entirely disso-
ciated into H+ and Cl− ions. H+, being much lighter, diffuses more rapidly than
Cl−; therefore, more H+ ions than Cl− diffuse into regions of low concentration.
If the concentration gradient is maintained, a net positive current will flow into
the low-concentration region until the accumulation of excess charge produces an
electric field large enough to counter the differential diffusion. We might usefully
think of the diffusion resulting from a force �F causing the movement of the ions. In
terms of this force, the equilibrium condition becomes �F + e �E = 0. Clearly, inside
the medium, e �E = −�F . We could build a battery on this principle–separating two
halves of a container with a permeable membrane, filling one side of the container
with HCl and filling the other with clear water.

3.1.2 Magnetically Induced Motional EMF

When a charge is forced to move through a magnetic induction field, it is subjected
to a force (1–30) due to motion through the field:

�F = q�v × �B (3–2)

Although the motion produced by this force gives the charged particle the ca-
pacity to do work, it is important to recognize that the magnetic field does not do
any work on the charge; instead, whatever agent produces or maintains �v does the
work. Let us consider the EMF for a mobile loop placed in a static electric and
magnetic field. In particular, we allow the loop to stretch and deform with velocity
�v(�r, t). The force on a charge attached to the moving loop is then q( �E + �v × �B),

Figure 3.1: A small segment of the loop increases the area at a rate �v × d�ℓ.
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leading to an EMF

E =

∮

Γ(t)

�E · d�ℓ +

∮

Γ(t)

(�v × �B) · d�ℓ (3–3)

For static fields, the first integral vanishes, and the triple product in the second
integral may be rearranged to give

E =

∮

Γ(t)

(d�ℓ × �v) · �B (3–4)

During a time dt, a segment of the loop of length dℓ moves to increase the area
within the loop by d�S = �vdt × d�ℓ (Figure 3.1). Thus we write d�ℓ × �v = −d�S/dt,
and, instead of summing over the length of the loop, we sum the area increments:

E = −
∫

Σ(t)

d�S

dt
· �B

where Σ(t) is the area included in the loop.
Defining the magnetic flux , Φ, as

Φ ≡
∫

Σ

�B · d�S (3–6)

we see that in the case of static fields,

E = −dΦ

dt
(3–7)

(It should, incidently, now be clear why B is sometimes called the magnetic flux
density.)

Example 3.1: A flat circular coil of N turns and radius a travels in a direction parallel
to the plane of the coil through a uniform magnetic induction field perpendicular
to the plane of the coil. Find the EMF generated.

Solution: The flux through the loop is constant; hence, no EMF will be generated.
The EMF generated at the leading edge (semicircle) is precisely cancelled by the
EMF at the trailing edge.

Example 3.2: A nova sheds a ring of ionized gas expanding radially through a uniform
magnetic induction field Bz k̂ with velocity �v. Find the tangential acceleration of
the charged particles in the ring.

Solution: The EMF generated around a loop of radius r is

∮ �F

q
· d�ℓ = − dΦ

dt
= − 2πrBz

dr

dt
(Ex 3.2.1)

The line integral of the tangential force is just 2πrFϕ, giving Fϕ = qvrBz (a result
we might have anticipated) and finally

aϕ = − q

m
vBz (Ex 3.2.2)

(3–5)
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negative charges are accelerated in the ϕ̂ direction whereas positive charges are ac-
celerated in the opposite direction. This conclusion could, of course, have been
reached much more easily from a direct application of the Lorentz force �F =
q(d�r/dt) × �B.

3.1.3 Time-Dependent Magnetic Fields

Figure 3.2: The rectangular loop moves in the x direction through a non-
homogeneous magnetic induction field.

Let us now consider a loop whose area does not change but instead moves through
a magnetic induction field whose strength varies with position. The sides of the
moving loop will evidently experience a time-dependent field. To simplify matters,
consider a small rectangular loop of dimensions δx and δy in the x-y plane, moving
in the x direction through a magnetic induction field whose z component varies (to
first order) linearly with x (Figure 3.2). The EMF generated around the moving
loop is generally

E =

∮ �F

q
· d�ℓ =

∮

(�v × �B) · d�ℓ (3–8)

If the field is not homogeneous, having value Bz(x, y) at x and Bz(x + δx, y) =
Bz(x, y) + (∂Bz/∂x) δx on the other side of the loop, we expand the integral as

E =

∫

δy

(

�v × �B(x, y)
)

· −̂ dy +

∫

δy

(

�v × �B(x + δx, y)
)

· ̂ dy (3–9)

The integrals over the sides parallel to the velocity make no contribution to the
EMF and have therefore been neglected. Gathering the two terms, we have

E =

∫

δy

�v × ∂ �B(x, y)

∂x
δx · ̂dy (3–10)

which becomes, on putting in the explicit directions of �v and �B,

E =

∫

δy

ı̂
dx

dt
× k̂

∂Bz(x, y)

∂x
δx · ̂ dy

= −
∫

δy

∂Bz

∂t
δx dy (3–11)
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We conclude that

E = −
∫ ∫

∂Bz

∂t
dSz (3–12)

It is not difficult to generalize this result to fields and motions in arbitrary
directions, to obtain for a loop of arbitrary, but constant, area

E = −
∫ ∫

∂ �B

∂t
· d�S = − d

dt

∫ ∫

�B · d�S (3–13)

We note that this result can again, as in (3–7), be written

E = − d

dt
Φ

If instead of moving the loop we move the magnet responsible for the field above,
special relativity would require the same EMF, but since now the velocity v = 0,
implying there can be no contribution from �v × �B. Charges within the wire of the
loop have no way to tell whether the loop is moving or some other means is used
to vary the field temporally. The conclusion must then be that the first integral of
(3–3) cannot vanish when we have temporally varying fields. Instead, we must have

E =

∮

�E · d�ℓ = − dΦ

dt
(3–14)

We note that as a consequence of (3–14), when �B varies in time, we cannot maintain

a vanishing curl of �E.

Example 3.3: An electron with speed v executes cyclotron motion between the
parallel faces of an electromagnet whose field is increased at a rate of dBz/dt.
Determine the tangential acceleration of the electron.

Figure 3.3: When the cyclotron field �B and its derivative d �B/dt are parallel,
the charged particle increases its speed.

Solution: The radius of the electron’s orbit (Figure 3.3) is readily obtained from

− evBz =
mv2

r
⇒ r =

mv

− eBz
(Ex 3.3.1)
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The flux included in the orbit is just Φ = πr2Bz, so that the EMF is given by
∮

�E · d�ℓ = 2πrEϕ = −πr2 dBz

dt
(Ex 3.3.2)

giving rise to a tangential acceleration

�a =
e �E

m
= − er

2m

dBz

dt
ϕ̂ =

v

2Bz

dBz

dt
ϕ̂ (Ex 3.3.3)

The electron is accelerated in the direction of its motion.

3.1.4 Faraday’s Law

Moving the magnet is, of course, just one means of changing �B within the loop as
a function of time. We might equally well decrease or increase the current to an
electromagnet or use other means of changing the field. We postulate that, under
all conditions,

∮

Γ

�E · d�ℓ = − d

dt

∫

Σ

�B · d�S (3–15)

The relation (3–15) is Faraday’s law in integral form. We can obtain the differential
form by applying Stokes’ theorem to the leftmost integral:

∫

Σ

(�∇× �E) · d�S = − d

dt

∫

Σ

�B · d�S = −
∫

Σ

∂ �B

∂t
· d�S (3–16)

Since Σ was arbitrary, the integrands must be equal, giving

�∇× �E = − ∂ �B

∂t
(3–17)

for the required result. We note that because �∇ · �B vanishes, �∇ · (�∇× �E) vanishes,
as of course it must.

3.2 Displacement Current

In this section, we will see that just as a time-varying magnetic induction field
causes a curl of the electric field, so a time-varying electric field causes a curl of the
magnetic field.

Consider the current flowing along a wire terminated by a capacitor plate that
charges in response to the current, as shown in Figure 3.4. Drawing an Ampèrian
loop Γ around the wire, as in the figure, we have from (1–39)

∮

Γ

�B · d�ℓ = µ0

∫ ∫

S

�J · d�S (3–18)

Now, although there is no ambiguity about what is meant by the path Γ, the
included area could be either the flat surface S1 or the bulbous surface S2. If we
use area S1 to compute B from Ampère’s law, then we get simply

∮

�B · d�ℓ = µ0I (3–19)
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Figure 3.4: The surface included by the loop shown may be either the flat
surface S1 or the baglike surface S2.

If, on the other hand, we use surface S2, we find that J = 0 on the surface for
a result quite inconsistent with (3–19). Since B cannot depend on which surface
we use to compute it, (3–18) cannot be complete for nonstatic fields and we must
postulate a second term to compensate for the discontinuity in the current, I.

With the Ampèrian loop indicated in Figure 3.4, the normal to the surface
S1 points into the volume enclosed by S1 and S2. The enclosing surface then
becomes S2 − S1. (The minus sign in front of S1 occurs because the sense in
which the boundary Γ is followed indicates an inward orientation of the enclosed
surface element S1, while the enclosing surface of the volume must be taken with
an outward-directed normal.) Because no current flows through surface S2, we may
without loss of generality replace

∫

S1

∫

µ0
�J · d�S by minus

∮

S2−S1

µ0
�J · d�S (3–20)

and of course the right hand side of (3–20) can be converted to a volume integral
using the divergence theorem (20). Thus

∫

S1

∫

�J · d�S = −
∫ ∫

volume

∫

(�∇ · �J )d3r (3–21)

We use the continuity equation to replace �∇ · �J by − ∂ρ/∂t to get
∫

S1

∫

�J · d�S =

∫ ∫ ∫

∂ρ

∂t
d3r (3–22)

and with the aid of (1–14),

∫

S1

∫

�J · d�S =

∫ ∫ ∫

ε0
∂

∂t
(�∇ · �E ) d3r =

∮

S2−S1

ε0
∂ �E

∂t
· d�S (3–23)

Thus,
∮

�B · d�ℓ can be calculated equally well from integrating µ0
�J over �S1 or

from integrating µ0ε0∂ �E/∂t over the enclosing surface S2−S1. This term, ε0∂ �E/∂t,
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is called the displacement current, not a terribly descriptive name as it is not a
current but only plays the role of one in Ampère’s law. Since we can certainly
imagine situations in which both �J and ∂ �E/∂t are nonzero, it seems reasonable to
modify Ampère’s law to read

�∇× �B = µ0
�J + µ0ε0

∂ �E

∂t
(3–24)

This modification to Ampère’s law is in fact necessary to preserve the general vector
identity �∇ · (�∇× �B) = 0, as shown below:

�∇ · (�∇× �B) = µ0

(

�∇ · �J +
∂

∂t
(ε0

�∇ · �E)

)

(3–25)

= µ0

(

�∇ · �J +
∂ρ

∂t

)

= 0 (3–26)

It is this latter reasoning that rigorously yields (3–24).

Example 3.4: A Van de Graaff generator with a spherical bowl of radius R is charged
at a constant rate with a current I. Find the magnetic induction field at a distance
a from the axis above the sphere. (Assume the current enters at the bottom of the
bowl.)

Figure 3.5: The surface enclosed by the loop can be taken to be either the
flat surface on the left, or the spherical cap on the right.

Solution: As charge accumulates on the bowl, the electric field will increase at the
following rate:

∂ �E

∂t
=

1

4πε0

dQ
dt r̂

r2
=

I

4πε0

r̂

r2
(Ex 3.4.1)

We draw a loop of radius a about the z axis above the sphere where �J = 0 and
integrate (3–24) over an arbitrary surface enclosed by the loop

∫

S

(�∇× �B) · d�S =

∮

�B · d�ℓ = µ0ε0

∫

∂ �E

∂t
· d�S (Ex 3.4.2)
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2πaBϕ =
µ0I

4π

∫

r̂

r2
· d�S (Ex 3.4.3)

The surface integral can be evaluated easily either over the flat surface included by
the loop or alternatively over a spherical cap concentric with the sphere, as shown
in Figure 3.5.

(a) For the flat surface, we need the z component of r̂ in order to compute r̂ · d�S.

Calling the cylindrical radial coordinate ρ, we write r =
√

ρ2 + z2 and (r̂)z =
cos θ = z/r, to obtain

Bϕ(z) =
µ0 I

8π2a

∫ a

0

z

r3
2πρ dρ (Ex 3.4.4)

=
µ0I

4πa

(

z

|z| −
z√

z2 + a2

)

(Ex 3.4.5)

The reader is cautioned that lowering the surface below the top of the sphere
will introduce a contribution from the current required to charge the sphere.

(b) The element of surface area for the spherical cap on the right of Figure 3.5 is

d�S = r̂r2 dΩ = 2πr̂r2 sin θ dθ, leading for positive z to

Bϕ =
µ0I

8π2a

∫ cos−1(z/r)

0

r̂ · 2πr̂r2 sin θ dθ

r2
(Ex 3.4.6)

=
µ0 I

4πa

∫ cos−1(z/r)

0

sin θ dθ =
µ0 I

4πa
(− cos θ)

∣

∣

∣

∣

∣

cos−1(z/
√

z2+a2)

0

(Ex 3.4.7)

=
µ0 I

4πa

(

1 − z√
z2 + a2

)

(Ex 3.4.8)

Although the electric field grows spherically symmetrically about the bowl, the
magnetic field induced has only axial symmetry. Presumably, the current entering
at the bottom makes the z axis privileged. Interestingly, below the sphere, the
magnetic induction field Bϕ due to the temporally increasing electric field is replaced
by the field from the real current running into the globe. It is in general impossible
to produce a (non-trivial) zero divergence field that is spherically symmetric, a
theorem that is most easily visualized by thinking of arrows representing the curling
vector field as similar to the fuzz on a peach combed flat. It is not hard to convince
oneself that the peach fuzz always presents at least two “crowns”, meaning that the
spherical symmetry is broken.

3.3 Maxwell’s Equations

The results of the first chapter and this are very neatly summarized by four coupled
differential equations first obtained by James Clerk Maxwell. (Maxwell did not have
available to him the short hand notations for curl and div and wrote these equations
out component by component, nor is the following the exact, final formulation,
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which will have to wait until chapter 8.) The equations (3–27) are appropriately
known as Maxwell’s equations.

�∇ · �E =
ρ

ε0
Gauss’ law

�∇ · �B = 0

�∇× �E = −∂ �B

∂t
Faraday’s law

�∇× �B = µ0
�J + µ0ε0

∂ �E

∂t
Ampère’s law

(3–27)

Equations (3–27) are linear, meaning that superimposed solutions still solve the
equations. It is worth noting that this linearity is not always true, in particular
in materials the fields may not be simply additive. Even in vacuum, quantum
mechanics would predict a nonlinearity, because virtual pairs of charged particles
created by photons in the field can scatter other photons in the field.

Maxwell’s equations and the Lorentz force equation together with Newton’s
second law constitute the basis of all classical electromagnetic interactions. Our
development of electromagnetic theory rests almost entirely on Maxwell’s equations,
and we will use them frequently. The importance of these equations cannot be
overstated, and it is earnestly recommended that they be committed to heart, as
having to refer to this page each time we have need of Maxwell’s equations will
prove a considerable impediment to learning.

3.4 The Potentials

When the fields are time dependent, �E can no longer be found simply as the gradient
of a scalar potential since �∇ × �E �= 0. In all cases �∇ · �B ≡ 0, so that we can still
express �B as �B = �∇× �A. From Faraday’s law we have

�∇× �E = −∂ �B

∂t
= − ∂

∂t
(�∇× �A)

= − �∇×
(

∂ �A

∂t

)

(3–28)

or

�∇×
(

�E +
∂ �A

∂t

)

= 0 (3–29)

We conclude that not �E, but instead �E + ∂ �A/∂t, is expressible as the gradient

of a scalar potential. We have then �E + ∂�A/∂t = −�∇V , or

�E = − �∇V − ∂ �A

∂t
(3–30)

Taking the divergence of (3–30), we obtain the equation

�∇ · �E = �∇ ·
(

− �∇V − ∂ �A

∂t

)
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or, equating the right hand side to ρ/ε0,

−∇2V − ∂

∂t

(

�∇ · �A
)

=
ρ

ε0
(3–31)

Similarly, putting �B = (�∇ × �A) into Ampère’s law we obtain the analogous

equation for the vector potential �A.

�∇×
(

�∇× �A
)

= �∇
(

�∇ · �A
)

−∇2 �A = µ0
�J − µ0ε0

∂

∂t

(

�∇V +
∂ �A

∂t

)

or
(

∇2 �A − µ0ε0
∂2�A

∂t2

)

− �∇
(

�∇ · �A + µ0ε0
∂V

∂t

)

= −µ0
�J (3–32)

3.4.1 The Lorentz Force and Canonical Momentum

In classical mechanics it is frequently useful to write conservative forces as gradients
of potential energies. Although the forces associated with �B are not conservative,
we can nonetheless find a canonical momentum whose time derivative is the gradient
of a quasipotential. We begin by writing the Lorentz force as the rate of change of
momentum of a charge in an electromagnetic field,

d�p

dt
= q( �E + �v × �B) (3–33)

= q

[

− �∇V − ∂ �A

∂t
+ �v × (�∇× �A)

]

(3–34)

The last term of (3–34) may be expanded using (9)

�∇(�v · �A) = (�v · �∇) �A + ( �A · �∇)�v + �A × (�∇× �v) + �v × (�∇× �A)

If �v, although a function of time, is not explicitly a function of position, we may
eliminate spatial derivatives of �v from the expansion of �∇(�v · �A) to obtain �v × (�∇×
�A) = �∇(�v · �A)− (�v · �∇) �A. Replacing the last term of (3–34) by this equality we find

d�p

dt
= q

[

−�∇V − ∂ �A

∂t
+ �∇(�v · �A) − (�v · �∇) �A

]

(3–35)

The pair of terms

∂ �A

∂t
+ (�v · �∇) �A ≡ d �A

dt
(3–36)

is called the convective derivative7 of �A. Substituting d �A/dt for the pair of terms

7As a charge moves through space, the change in �A it experiences arises not only from the
temporal change in �A but also from the fact that it samples �A in different locations.

d �A = �A [�r(t + dt), t + dt] − �A [�r(t), t]

=
{

�A [�r(t) + �vdt, t + dt] − �A [�r(t) + �vdt, t]
}

+
{

�A [�r(t) + �vdt, t] − �A [�r(t), t]
}

=
∂ �A

∂t
dt + (�v · �∇) �Adt
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(3–36), equation (3–35) may be written

d�p

dt
= q

(

− �∇ (V − �v · �A) − d �A

dt

)

(3–37)

Grouping like terms gives the desired result:

d

dt

(

�p + q �A
)

= −�∇
(

qV − q�v · �A
)

(3–38)

The argument of �∇ on right hand side of (3–38) is the potential that enters La-
grange’s equation as the potential energy of a charged particle in an electromagnetic
field and the term mvi + qAi on the left hand side is the momentum conjugate to
the coordinate xi (see Exercise 3.9).

3.4.2 Gauge Transformations

As we have mentioned previously, �A is not unique since we can add any vector field
whose curl vanishes without changing the physics. We see now from (3-30) that,
concomitant with any change in A, we also require a compensating change in V in
order to keep �E (and hence the physics) unchanged.

Recall that a curl free field must be the gradient of a scalar field; hence we write
as before, �A′ = �A+ �∇Λ. Let us denote the correspondingly changed potential as V ′.
The magnetic induction field is invariant under this change and we can use (3–30)
to express the electric field in terms of the changed (′) potentials,

�E = −�∇V ′ − ∂ �A ′

∂t
(3–39)

= −�∇V ′ − ∂

∂t

(

�A + �∇Λ
)

= −�∇
(

V ′ +
∂Λ

∂t

)

− ∂ �A

∂t
(3–40)

or in terms of the unchanged potentials �E = −�∇V − ∂ �A/∂t. Comparison of the
terms gives V ′ = V − ∂Λ/∂t.

The pair of coupled transformations

�A′ = �A + �∇Λ

V ′ = V − ∂Λ

∂t

(3–41)

given by (3–41) is called a gauge transformation and the invariance of the fields
under such a transformation is called gauge invariance. The transformations are
useful for recasting the somewhat awkward equations (3–31) and (3–32) into a more
elegant form. Although many different choices of gauge can be made, the Coulomb
gauge and the Lorenz gauge are of particular use.
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In statics it is usually best to choose Λ so that �∇ · �A vanishes, a choice known
as the Coulomb gauge. With this choice (3–31) and (3–32) reduce to Poisson’s
equation,

∇2V = − ρ

ε0
(3–42)

and ∇2 �A = −µ0
�J (3–43)

If the fields are not static it is frequently still useful to adopt the Coulomb gauge.
The “wave” equation (3–32) for the vector potential now takes the form

∇2 �A − µ0ε0
∂2 �A

∂t2
= −µ0

�J + µ0ε0
�∇
(

∂V

∂t

)

(3–44)

Any vector can be written as a sum of curl free component (called longitudinal) and

a divergence free component (called solenoidal or transverse). As we expect �∇V to
be curl free, such a decomposition may be useful. Labelling the components of such
a resolution of �J by subscripts l and s we write

�J = �Jl + �Js (3–45)

Substituting this into the general vector identity (13), �∇×(�∇× �J ) = �∇(�∇· �J )−∇2 �J ,
we obtain separate equations for Jl and Js:

∇2 �Js = −�∇× (�∇× �J ) (3–46)

and
∇2 �Jl = �∇(�∇ · �J ) (3–47)

Although (3–46) and (3–47) can be solved systematically, the reader is invited to
consider (1–19) where V is shown to be the solution of ∇2V = −ρ/ε0. We know
the solution to this equation to be (1–17). Inserting our form of the inhomogeneity
instead of −ρ/ε0 we obtain the solutions

�Js(�r ) =
1

4π

∫ �∇′ × [�∇′ × �J(�r ′)]d3r′

|�r − �r ′| (3–48)

�Jl(�r ) = − 1

4π

∫ �∇′[�∇′ · �J(�r ′)]d3r′

|�r − �r ′| (3–49)

Focussing on (3–49), we integrate “by parts”, noting from (5) that A�∇B = �∇(AB)−
B�∇A so that we write

∫ �∇′[�∇′ · �J(�r ′)]d3r′

|�r − �r ′| =

∫

�∇′
( �∇′ · �J(�r ′)

|�r − �r ′|

)

d3r′ −
∫

(�∇′ · �J)�∇′
(

1

|�r − �r ′|

)

d3r′

(3–50)
The first of the integrals in (3–50) may be integrated using (19) to get

∫

�∇′
( �∇′ · �J(�r ′)

|�r − �r ′|

)

d3r′ =

∮ ( �∇′ · �J(�r ′)

|�r − �r ′|

)

d�S (3–51)
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The volume integral (3–49) was to include all current meaning that zero current
crosses the boundary allowing us to set the integral (3–51) to zero. Focussing now on

the remaining integral on the right hand side of (3–50), we use �∇′ 1
|�r−�r ′| = −�∇ 1

|�r−�r ′|
to get

Jl = − 1

4π
�∇
∫ �∇′ · �J(�r ′)d3r′

|�r − �r ′| (3–52)

Finally with the aid of the continuity equation (1–24) we replace �∇ · �J by −∂ρ/∂t
to obtain

Jl =
1

4π
�∇
∫

(∂ρ/∂t)d3r′

|�r − �r ′| = �∇ ∂

∂t

∫

ρ(�r ′)d3r′

|�r − �r ′| = ε0
�∇∂V

∂t
(3–53)

Returning now to (3–44). we find that the last term, µ0ε0
�∇(∂V/∂t) precisely cancels

the longitudinal component of −µ0
�J . Equation (3–4) may therefore be recast as

∇2 �A − µ0ε0
∂2 �A

∂t2
= −µ0

�Js (3–54)

while the electric potential obeys

∇2V = − ρ

ǫ0
(3–55)

It is interesting to note that in the Coulomb gauge, V obeys the static equation
giving instantaneous solutions (with no time lapse to account for the propagation
time of changes in the charge density). The vector potential, on the other hand,
obeys a wave equation which builds in the finite speed of propagation of disturbances
in Js. We will meet the solenoidal current again in Chapter 10 when we deal with
multipole radiation.

In electrodynamics, it is also frequently useful to choose �∇ · �A = −µ0ε0∂V /∂t,
a choice known as the Lorenz gauge. With this choice, equations (3–31) and (3–32)
take the form of a wave equation:

∇2V − µ0ε0
∂2V

∂t2
= − ρ

ε0
(3–56)

∇2 �A − µ0ε0
∂2�A

∂t2
= −µ0

�J (3–57)

It is clear that in the Lorenz gauge V and �A obey manifestly similar equations
that fit naturally into a relativistic framework.

The invariance of electromagnetism under gauge transformations has profound
consequences in quantum electrodynamics. In particular, gauge symmetry permits
the existence of a zero mass carrier of the electromagnetic field.

3.5 The Wave Equation in Vacuum

We have seen that a changing magnetic field engenders an electric field and, con-
versely, that a changing electric field generates a magnetic field. Taken together,
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Faraday’s law and Ampère’s law give a wave equation whose solution we know as
electromagnetic waves.

We can uncouple the curl equations using techniques analogous to those we use
to decouple other pairs of differential equations. For example, the pair dx/dt =
−ky and dy/dt = k′x is easily decoupled by differentiating each once more to give

d2x

dt2
= − k

dy

dt
= −kk′x and

d2y

dt2
= k′ dx

dt
= − kk′y

In the same spirit, we take the curl of (�∇× �E) in (3–27) to obtain, using (13)

�∇× (�∇× �E) = −�∇× ∂ �B

∂t

�∇ (�∇ · �E) −∇2 �E = − ∂

∂t
(�∇× �B) = − ∂

∂t

(

µ0
�J + µ0ε0

∂ �E

∂t

)

(3–58)

Eliminating (�∇ · �E) and µ0
�J as we wish to postpone consideration of sources of

waves until Chapter 10, we obtain the homogeneous wave equation

∇2 �E = µ0ε0
∂2 �E

∂t2
(3–59)

and, in similar fashion

∇2 �B = µ0ε0
∂2 �B

∂t2
(3–60)

3.5.1 Plane Waves

We will now give the simplest solutions to the wave equations (3–59) and (3-60). In
attempting to solve these equations, it is important to recognize that ∇2, acting on
a vector, is not merely ∇2 acting on each of the vector’s components.8 Only when
the basis is independent of the coordinates can we make the simplification (∇2 �A)i

= ∇2Ai. Fortunately this covers the important case of Cartesian coordinates. Thus
(3–59) and (3–60) reduce to six identical, uncoupled scalar differential equations of
the form

∇2ψ(�r, t) = µ0ε0
∂2ψ(�r, t)

∂t2
(3–61)

with Ψ representing any one of Ex, Ey, Ez, Bx, By, or Bz.

8As an example, the Laplacian of a vector �V in terms of its polar coordinates is given below:

(∇2�V )r = ∇2Vr − 2Vr

r2
− 2Vr

r2

∂Vθ

∂θ
− 2 cos θ Vθ

r2 sin θ
− 2

r2 sin θ

∂Vϕ

∂ϕ

(∇2�V )θ = ∇2 Vθ − Vθ

r2 sin2 θ
+

2

r2

∂Vr

∂θ
− 2 cos θ

r2 sin2 θ

∂Vϕ

∂ϕ

(∇2 �V )ϕ = ∇2 Vϕ − Vϕ

r2 sin2 θ
+

2

r2 sin θ

∂Vr

∂ϕ
+

2 cos θ

r2 sin2 θ

∂Vθ

∂ϕ
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Figure 3.6: �E and �B oscillate in phase and are directed perpendicular to
one-another as well as to �k.

Among the solutions of (3–61) are plane-wave solutions of the form

ψ (�r, t) = ψ0e
i(�k·�r±ωt) (3–62)

We back-substitute ψ into the scalar wave equation (3–61) and find, with the
help of ∇2ψ = −k2ψ and ∂2ψ/∂t2 = −ω2ψ, that k2ψ = ω2µ0ε0ψ. We conclude that
both the phase velocity ω/k and the group velocity ∂ω/∂k are equal to c = 1/

√
ε0µ0.

In deriving (3–59) and (3–60), we differentiated to remove the coupling between
�E and �B. The fields �E and �B are not independent of each other, and we must
now restore the lost coupling by insisting that �E and �B satisfy not only (3-59) and

(3–60) but also Maxwell’s equations (3–27) with ρ = 0 and �J = 0. Thus, noting

that for a vector plane wave �∇· = i�k · and �∇× = i�k×, we see that the fields satisfy

�∇ · �E = 0 ⇒ i�k · �E = 0

�∇ · �B = 0 ⇒ i�k · �B = 0

�∇× �E = −∂ �B

∂t
⇒ i�k × �E = iω �B

�∇× �B = µ0ε0
∂ �E

∂t
⇒ i�k × �B = −iωµ0ε0

�E

(3–63)

The first two of these expressions imply that �E and �B are each perpendicular
to the propagation vector �k, while the second two imply that �E and �B are perpen-
dicular to each other. The relative orientations of �E, �B, and �k are illustrated in
Figure 3.6.

We reiterate that these conclusions are valid only for infinite plane waves and
do not apply to spherical waves or bounded waves.

The curl equations in (3–63) give one other fact of physical importance. Rewrit-

ing the �∇× �E equation in terms of the magnitudes of the relevant vectors we have
k |E| = ω |B|. In other words, the freely propagating electromagnetic wave has an
electric field with a magnitude c times greater than that of its magnetic induction
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field. The force (1–30) that the wave exerts on a charged particle is the sum of qE,
due to the electric field, and (v/c)qE due to the magnetic induction field associated
with the electromagnetic wave. Inside atoms and molecules, the relative speed of
electrons, v/c, is of order α ≈ 1/137, leading us to conclude that the interaction of
matter with electromagnetic radiation is almost entirely through the electric field
component of the wave. The alignment of �E (perpendicular to the propagation

vector, �k) is known as the polarization of the wave.

3.5.2 Spherical Waves

To obtain the solution to the vector wave equations (3–59) or (3–60), we employ
a trick that allows us to generate the vector solutions from the solutions of the
scalar equation, (3–61). For that reason we consider initially solutions to the scalar
equation

∇2ψ(r, θ, ϕ) =
1

c2

∂2ψ

∂t2
(3–64)

Using separation of variables (explored at length in Chapter 5) in spherical polar
coordinates, we obtain the solution

ψ(r, θ, ϕ) =
∑

ℓ

[Aℓjℓ(kr) + Bℓnℓ(kr)] Ym
ℓ ( θ, ϕ) e−iωt (3–65)

where Ym
ℓ is a spherical harmonic of order ℓ,m; jℓ(z) and nℓ(z) are spherical Bessel

functions and spherical Neumann functions of order ℓ and Aℓ and Bℓ are arbitrary
constants.

The vector solution can generally be generated from the scalar solution by the
following stratagem. When ψ solves the scalar wave equation, then �∇ψ and �r ×
�∇ψ both satisfy the corresponding vector equation (see problem 3–12). Of these

solutions, only the second, �r× �∇ψ = −�∇×(�rψ), has zero divergence—a requirement

for �B and also for �E in a source-free region of space. If we let �E = �r × �∇ψ, we
obtain one kind of solution for the electromagnetic wave, called transverse electric
(TE ), or M type. Alternatively, if we take �B = �r × �∇ψ, we obtain a transverse
magnetic (TM ), or E type wave. The function ψ from which the fields may be
derived is known as the Debye Potential. A superposition of the two types of waves
is the most general possible.

For the case of TE waves we find �B from �B = �∇ × �E/iω, while for TM waves

we find �E from �E = ic2�∇× �B/ω. To summarize (after rescaling ψ),

�ETE = ik�∇× �rψ �BTE =
1

c
�∇× (�∇× �rψ)

�ETM = �∇× (�∇ × �rψ) �BTM = − ik

c
�∇× �rψ

(3–66)

where the “constants” ik and 1/c have been introduced to give both the correspond-
ing TE fields and TM fields the same dimensions (and the same energy flux).

We may write the components explicitly. Abbreviating the linear combination

of spherical Bessel functions, Ajℓ + Bnℓ = fℓ (the combination h
(1)
ℓ = jℓ + inℓ is
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required to produce radially expanding waves), we obtain for TEℓ,m waves

Er = 0 Br =
1

c

ℓ(ℓ + 1)

r
fℓ(kr)Ym

ℓ (θ, ϕ)

Eθ = − km

sin θ
fℓ(kr)Ym

ℓ (θ, ϕ) Bθ =
1

cr

d[rfℓ(kr)]

dr

∂Ym
ℓ (θ, ϕ)

∂θ

Eϕ = − ikfℓ(kr)
∂Ym

ℓ (θ, ϕ)

∂θ
Bϕ =

im

cr sin θ

d[rfℓ(kr)]

dr
Ym

ℓ (θ, ϕ)

(3–67)

For TMℓ,m waves, the components are:

Er =
ℓ(ℓ + 1)

r
fℓ(kr)Ym

ℓ (θ, ϕ) Br = 0

Eθ =
1

r

d [rfℓ(kr)]

dr

∂Ym
ℓ (θ, ϕ)

∂θ
Bθ =

km

c sin θ
fℓ(kr)Ym

ℓ (θ, ϕ)

Eϕ =
im

r sin θ

d [rfℓ(kr)]

dr
Ym

ℓ (θ, ϕ) Bϕ =
ik

c
fℓ(kr)

∂Ym
ℓ (θ, ϕ)

∂θ

(3–68)

The fields described above are the 2ℓ-pole radiation fields. As we will see in
Chapter 10, the TE waves are emitted by oscillating magnetic multipoles, while
the TM waves are emitted by oscillating electric multipoles. Note that in contrast
to the conclusion for plane waves that �E and �B are both perpendicular to �k, for
spherical waves only one of the two can be perpendicular to �k.
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Exercises and Problems

Figure 3.7: The voltmeter is attached to the loop ensuring that its leads do
not add any area to the loop. (Exercise 3.18)

3-1 Show that the flux Φ threading a
loop Γ may be written in terms of the
vector potential as

Φ =

∮

Γ

�A · d�ℓ

3-2 The flux threading a single turn coil
is gradually reduced, resulting in an in-
duced current in the coil. Find the mag-
netic field produced at the center of the
coil by the induced current of a coil with
resistance R and radius a.

3-3 In a Betatron electrons are acceler-
ated by an increasing magnetic flux den-
sity (as in example 3.3). How must the
field at the orbit relate to the average
field in order that the electron’s orbit re-
main of constant radius?

3-4 Find the flux in a toroidal coil such
as that illustrated in Figure 1.13 carry-
ing current I. The mean radius of the coil
is a, and the cross-sectional radius of the
tube is b.

3-5 A current I charges a parallel plate
capacitor made of two circular plates
each of area A spaced at small distance
d. Find the magnetic induction field be-
tween the plates.

3-6 Show that the magnetic induction
field encircling the capacitor of problem
3-5 at a large enough distance for the
electric field to vanish is given by

Bϕ =
µ0I

2πr

Thus at a sufficient distance, it is impos-
sible to tell from the magnetic field that
the circuit is broken by the capacitor.

3-7 A pendulum consisting of a conduct-
ing loop of radius a and resistance R at
the end of a massless string of length ℓ
swings through an inhomogeneous mag-
netic induction field �B perpendicular to
the plane of the loop. Write an equation
of motion for the pendulum.

3-8 A flip coil is a rectangular coil that
is turned through 180◦ fairly rapidly
in a static magnetic induction field.
Show that the total charge transported
through the coil as it is flipped is inde-
pendent of the speed of flipping. (As-
sume a finite resistance.)

3-9 The Lagrangian of a charged parti-
cle moving in an electromagnetic field is
L = 1

2mṙ2 − qV (�r ) + q�̇r · �A(�r ). Show
that the i-component of �p, pi = ∂L/∂ẋi

yields the canonical momentum on the
left hand side of (3–38).
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3-10 Show that, for plane waves, �∇ ×
�E = i�k × �E and �∇ · �E = i�k · �E.

3-11 Obtain the wave equation for �B (3–
60) to verify that it is indeed identical to

that for �E.

3-12 In order to ionize an atom, one
needs to overcome the binding energy of
the electron (of order 10 eV) in a dis-
tance of several atomic radii (say 10−9

m) in order to provide a reasonable tun-
nelling rate. Focused ruby pulse lasers
can produce air sparks. Estimate the
electric field strength and hence the irra-
diance of the laser light required to pro-
duce air sparks.

3-13 Show that if ψ solves the scalar
wave equation, then �∇ψ and �r × �∇ψ
each solve the corresponding vector wave
equation.

3-14 Fill in the missing steps in the last
step of the footnote (page 59) to show
that

�A [�r(t)+ �vdt, t] − �A [�r(t), t] = (�v · �∇) �Adt

3-15 Show that a gauge transformation

with Λ satisfying ∇2Λ = 0 preserves the
Coulomb gauge.

3-16 Find the condition that a gauge
function Λ needs to satisfy in order to
preserve the Lorenz gauge.

3-17 A circular disk of conducting ma-
terial spins about its axis in a magnetic
field parallel to the axis. Find the EMF
generated between the axis and a fixed
point on the rim of the disk.

3-18 Resolve the following paradox. A
voltmeter has its terminals attached to
diametrically opposite points of a circu-
lar loop. From their points of attach-
ment, the leads follow the curve of the
loop and, after meeting, continue to the
voltmeter as a twisted pair, as in Fig-
ure 3.7. A time-varying flux threads the
loop. When the voltmeter leads are con-
sidered as part of the loop, the EMF
measured appears to depend on whether
the top half of the loop completes the
circuit (Figure 3.7b) in which case the
flux is zero, or the bottom half (Figure
3.7c) completes it, in which case the flux
is just that through the original loop.



Chapter4

Energy and Momentum

4.1 Energy of a Charge Distribution

To this point we have taken stationary or moving charge distributions as a given
without any consideration of how such distributions were assembled. In this chapter
we consider the work required to assemble the required distribution. The charges’
gain in potential energy can be expressed in terms of their relative positions, but
in analogy to a compressed spring’s energy being stored in the strain of the spring
rather than the position of the ends, we will also be able to identify the energy of
the system with the strength of the fields created by the charge distribution.

4.1.1 Stationary Charges

Let us begin our calculation of the work required to assemble a given charge distri-
bution by calculating the work required to move two charges, q1 and q2, to positions
�r1 and �r2, respectively. For brevity we will write rij = |�ri − �rj |.

It requires no work at all to move the first charge to �r1 since there is not yet
any field to work against. To move the second charge into place from infinity to �r2,
the work

W2 =
q1q2

4πε0r12
(4–1)

must be performed on the charge. To bring a third charge to �r3, requires work

W3 =
1

4πε0

(

q1q3

r13
+

q2q3

r23

)

(4–2)

and a fourth charge would require

W4 =
1

4πε0

(

q1q4

r14
+

q2q4

r24
+

q3q4

r34

)

(4–3)

It will be convenient to symmetrize each of these terms by repeating each entry
with indices reversed and halving the result. In other words, we rewrite (4–1) as

W2 =
1

8πε0

q1q2 + q2q1

r12
(4–4)

—69—
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The succeeding terms are similarly rewritten

W3 =
1

8πε0

(

q1q3 + q3q1

r13
+

q2q3 + q3q2

r23

)

(4–5)

W4 =
1

8πε0

(

q1q4 + q4q1

r14
+

q2q4 + q4q3

r24
+

q3q4 + q4q3

r34

)

(4–6)

Finally, to put the nth charge into place,

Wn =
1

8πε0

(

q1qn + qnq1

r1n
+

q2qn + qnq2

r2n
+

q3qn + qnq3

r3n
+ · · · + qn−1qn + qnqn−1

rn−1,n

)

(4–7)

We add the terms to obtain the work to assemble all the charges,

W = W2+W3+W4+· · ·+Wn (4–8)

=
1

8πε0

[

q1

(

q2

r12
+

q3

r13
+

q4

r14
+ · · · + qn

r1,n

)

+q2

(

q1

r21
+

q3

r23
+

q4

r24
+ · · · + qn

r2,n

)

+ q3

(

q1

r31
+

q2

r32
+

q4

r34
+ · · · + qn

r3,n

)

+ · · ·

· · · + qn−1

(

q1

rn−1,1
+

q2

rn−1,2
+ · · · + qn

rn−1,n

)]

(4–9)

=
1

8πε0

n−1
∑

i=1

qi

n
∑

j=1
j �=i

qj

rij
=

1

8πε0

n
∑

i=1

n
∑

j=1
j �=i

qiqj

rij
(4–10)

where in the last step we have increased the upper limit of the i summation by one
which adds nothing as the (n, n) term is eliminated from the sum by the j �= i
requirement. It is useful to rewrite W as

W = 1
2

n
∑

i=1

qi

n
∑

j=1
j �=i

1

4πε0

qj

rij
(4–11)

= 1
2

n
∑

i=1

qiV (�ri) (4–12)

where V (�ri) is the potential at �ri established by all the charges except qi. Equation
(4–12) leads to the obvious generalizations

W = 1
2

∫

ρ(�r )V (�r ) d3r (4–13)

and, replacing V by its integral form,
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W =
1

8πε0

∫

ρ(�r )

(∫

ρ(�r ′)

|�r − �r ′| d3r′
)

d3r (4–14)

for continuous charge distributions. There is clearly a requirement that �r not coin-
cide with �r ′ in equation (4–14).

Let us now express the energy of a charge distribution in terms of the field estab-
lished. Starting with (4–13), we replace ρ by ε0

�∇ · �E. The energy of the assembled
charges may then be written

W = 1
2

∫

ε0

(

�∇ · �E
)

V d3r (4–15)

which, with the use of the identity (7), �∇ · (V �E) = V (�∇ · �E) + �E · �∇V , and the
divergence theorem, gives

W =
ε0

2

∫

�∇ · (V �E)d3r − ε0

2

∫

�E · �∇V d3r (4–16)

=
ε0

2

∮

V �E · d�S +
ε0

2

∫

E2 d3r (4–17)

where the region of integration must extend over all regions of nonzero charge
density. We extend the region of integration to large distances R. We note that
if the volume of interest contains finite charge, the surface integral diminishes as
1 over R or faster, while the volume integral can only increase. Therefore, if we
extend the integration to all space, we may write

W =
ε0

2

∫

all
space

E2d3r (4–18)

One might now reasonably reinterpret the work in (4–18) as the work required to
produce the field E, or even as the energy of the field.

Example 4.1: Find the energy of a conducting sphere of radius a carrying total charge
Q uniformly distributed on its surface.

Solution: We will calculate the energy by each of the methods suggested by (4–13),
(4–17), and (4–18).

(a) If we use (4–13),

W = 1
2

∫

ρV d3r (Ex 4.1.1)

= 1
2

∫ 4π

0

Q

4πa2

Q

4πε0a
a2 dΩ =

Q2

8πε0a
(Ex 4.1.2)

(b) Next we use (4–17). Since the charge resides entirely on the surface of the
sphere we need only integrate over a very thin spherical shell including the
surface. As the thickness of the volume of integration decreases to zero, the
second integral of (4–17) vanishes, (the field interior to the sphere vanishes
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in any case, so even if the interior volume were included, the integral would
vanish) leaving

W =
ε0

2

∮

V �E · d�S

=
ε0

2

∫ 4π

0

Q

4πε0a

Q

4πε0a2
a2dΩ =

Q2

8πε0a
(Ex 4.1.3)

(c) Finally we use (4-18):

W =
ε0

2

∫

E2 dV =
ε0

2

∫ ∞

a

Q2

(4πε0r2)2
4πr2 dr (Ex 4.1.4)

=
Q2

8πε0

∫ ∞

a

dr

r2
=

Q2

8πε0a
(Ex 4.1.5)

On further reflection (4–18) seems to lead to a rather uncomfortable paradox.
An elementary calculation of the potential energy of two opposite sign charges
shows that this energy is negative, yet (4–18), having a positive definite integrand,
can never be less than zero. The problem arises in generalizing from (4–14) to
(4–18). In (4–14), we carefully excluded the contribution from qi to the potential
V (�ri), but in (4–15) this exclusion is nowhere evident. This excluded energy is the
energy it would take to assemble the charge qi, which, for a point charge, would by
our calculations be infinite! So long as the charge density ρ does not include point
charges, the contribution ρ(�r ) makes to V (�r ) vanishes as d3r → 0, so that including
this self-energy has no untoward effect. If, however, ρ includes point charges, (4-8)
and its consequences cannot be correct. In fact, the integral will diverge so that the
problem will be obvious. This self-energy will haunt us in later chapters, and even
quantum electrodynamics does not satisfactorily resolve this problem.

4.1.2 Coefficients of Potential

In a system of discrete charges, or charges situated on disconnected conductors,
the potential at any place bears a linear relationship to the charges in question. In
particular, for a system of charge-bearing conductors, we may write the potential
on conductor i in terms of the charges Qj on conductor j :

Vi =
∑

j

pijQj (4–19)

The coefficients pij are known as the coefficients of potential and depend only on
the geometry of the problem. Although the coefficients are not always calcula-
ble, the system is completely characterized by the pij , which may be determined
experimentally.

The energy of the system of charged conductors is given by
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W = 1
2

∑

i,j

pijQiQj (4–20)

Alternatively, we can invert (4–19) to write

Qj =
∑

i

(P−1)ijVi ≡
∑

i

CijVi (4–21)

where the coefficients Cii are known as the coefficients of capacitance and the Cij

(i �= j) are the coefficients of induction. In terms of the Cij we can write the elec-
trostatic energy as

W = 1
2

∑

j

QjVj = 1
2

∑

i,j

Cij Vi Vj (4–22)

The coefficients pij and Cij are symmetric in their indices (i.e., pij = pji) as we
show below. Using the expression for the energy (4–20), we calculate the change
in energy of the system as a small increment of charge ∆Qk is added to the kth

conductor while the charge on all others is maintained constant:

∆W =
∂W

∂Qk
∆Qk = 1

2

∑

i,j

pij

(

Qj
∂Qi

∂Qk
+ Qi

∂Qj

∂Qk

)

∆Qk

= 1
2

∑

i,j

(pij δik Qj∆Qk + pijδjk, Qi∆Qk)

= 1
2

∑

j

pkjQj∆Qk + 1
2

∑

i

pikQi∆Qk (4–23)

Relabelling the dummy index i in the second sum as j, we obtain

∆W = 1
2

∑

j

(pkj + pjk) Qj∆Qk (4–24)

The increase in energy of the system of charged conductors could equally have
been written

∆W = Vk∆Qk

=
∑

j

pkjQj∆Qk (4–25)

Comparison of (4–24) and (4–25) leads immediately to pjk = pkj .

Example 4.2: Two conductors of capacitance C1 and C2 are placed a large (compared
to their dimensions) distance r apart. Find the coefficients Cij to first order.

Solution: The approximate coefficients of potential for the system are easily found.
If the charge on conductor 1 is q1 and conductor 2 is not charged, we would have
to first order

V1 =
q1

C1
and V2 =

q1

4πε0r
(Ex 4.2.1)
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where we have neglected the redistribution of charge over the second conductor.
We conclude that the coefficients in the expression

Vi =
∑

j

pijQj

take the values p11 = 1/C1, p12 = 1/4πε0r, and p22 = 1/C2 or

pij =







1

C1

1

4πε0r
1

4πε0r

1

C2






(Ex 4.2.2)

Inverting the system to obtain the Cij using

(

A B
C D

)− 1

=

(

D −B
−C A

)/ ∣

∣

∣

∣

A B
C D

∣

∣

∣

∣

(Ex 4.2.3)

we find

C11 =
1

C2









1
1

C1C2
− 1

(4πε0r)2









≃ C1

[

1 +
C1C2

(4πε0r)2

]

C22 ≃ C2

[

1 +
C1C2

(4πε0r)2

]

and C12 = − 1

4πε0r









C1C2

1 − C1C2

(4πε0r)2









≃ −C1C2

4πε0r
(Ex 4.2.4)

4.1.3 Forces on Charge Distributions in Terms of Energy

Frequently the forces or torques on a component of a system of charges cannot
easily be computed from Coulomb’s law. If, however, the energy of the system can
be evaluated in terms of the physical parameters, it is relatively easy to obtain the
forces or torques.

Let us consider first an isolated system of charged components. If the net elec-
trostatic force �F (es) were to produce a displacement dζ in the �ζ direction, it would
perform mechanical work �F (es) ·d�ζ. This work must be performed at the expense of
the electrostatic energy W (es) (note that we have used W to denote energy rather
than work) stored in the system. Conservation of energy in the isolated system then
requires

F
(es)
ζ dζ = −dW (es) (4–26)

Practically, the requirement of isolation of the system means that no charge enters
or leaves the system. We therefore write the ζ component of the force on the mobile
component as

F
(es)
ζ = − dW (es)

dζ

∣

∣

∣

∣

Q

(4–27)
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a result entirely compatible with the usual form �F = −�∇W . A more interesting
result obtains when the system is not isolated but charge is allowed to flow into or
out of components of the system in order to maintain a constant potential on each of
those components. Typically such an arrangement would have batteries maintaining
the constant potentials. The electrostatic work done on the mobile component can
now draw its energy from either a decrease of the stored electrostatic energy or
from the batteries’ energy W (bat), so that the expression of conservation of energy
becomes

F
(es)
ζ dζ = − dW (es)

∣

∣

∣

V
+ dW (bat)

∣

∣

∣

V
(4–28)

The work done by the batteries in supplying charges dQi to each of the components
labelled i at constant potential Vi is

dW (bat)
∣

∣

∣

V
=
∑

VidQi (4–29)

The electrostatic energy of the system may be written in similar terms:

W (es) = 1
2

∑

ViQi ⇒ dW (es)
∣

∣

V
= 1

2

∑

VidQi (4–30)

We find, therefore,

F
(es)
ζ · dζ

∣

∣

∣

V
= + dW (es)

∣

∣

∣

V
(4–31)

leading to

F
(es)
ζ

∣

∣

∣

V
= +

dW (es)

dζ

∣

∣

∣

∣

V

(4–32)

Example 4.3: A parallel plate capacitor of width h and spacing d ≪ h is held at
potential V with respect to ground. A larger, thin, grounded conducting sheet
is partially inserted midway between the capacitor plates, as shown in Figure 4.1.
Find the force drawing the sheet into the capacitor. Ignore fringing fields.

Solution: Although the fringing fields are directly responsible for a lateral force on
the sheet, because they don’t change as sheet is inserted, they may be ignored in the
calculation of the virtual change in energy of the system under lateral movement.
The energy of the capacitor with the central plate inserted a distance ζ is given by

W (es) =
ε0

2

∫

E2 d3r (Ex 4.3.1)

Figure 4.1: The field between the equipotential plates vanishes. Only where
the grounded sheet is interposed is there a nonzero field.
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=
ε0

2

(

2V

d

)2

dhζ (Ex 4.3.2)

since the electric field is zero everywhere except in the volume ζhd.

The force on the inserted sheet is then given by

Fζ

∣

∣

V
= +

∂W (es)

∂ζ

∣

∣

∣

∣

V

=
2ε0V

2h

d
(Ex 4.3.3)

The displacements, of course, need not be linear; they could equally well be
angular in which case the associated “force” becomes a torque eg. τ = ± ∂W/∂θ.

4.1.4 Potential Energy of Currents

While for charges we could merely separate the charges to infinity to reduce their
potential energy to zero, it is far from clear that stretching current loops out to
infinity would in fact diminish their energy. Instead we will use another strategy
to find the energy of current loops. Unlike charge, we can make currents vanish by
merely stopping the motion of charges. If we now calculate how much nondissipative
work we have to do in gradually building the currents to their final value, we will
have the potential energy of the currents.

When a current is established in a circuit, work must be done to overcome
the induced EMF caused by the changing current. This work is fully recoverable,
quite unlike the resistive losses, and does not depend on the rate that the current is
increased. Only its final value and the geometry of the current loop(s) are important.
Let us consider a system composed of a number n of current loops, each carrying
a time dependent current Ik. Focusing our attention on the j th loop, we note that
the magnetic flux Φ in the j th loop must have the form

Φj =
n
∑

k=1

MjkIk (4–33)

since the magnetic field produced at a point inside the (j th loop by any current loop
k (including the jth loop under consideration) is just proportional to the current
in loop k. The coefficients Mjk are known as the mutual inductance of loop j and
k, while Mjj ≡ Lj is the self-inductance of loop j. The EMF generated around the
loop is

E = − dΦj

dt
= −

n
∑

k=1

Mjk
dIk

dt
(4–34)

In the presence of this counter-EMF, the rate that work is done pushing Ij around
the loop is just

dWj

dt
= −EIj = Ij(t)

n
∑

k=1

Mjk
dIk

dt
(4–35)
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The rate that the potential energy of the entire system is changed is the sum of
(4–35) over all j :

dW

dt
=

n
∑

j=1

n
∑

k=1

IjMjk
dIk

dt
(4–36)

This is usefully rewritten as half the symmetric sum

dW

dt
= 1

2





∑

j,k

MjkIj
dIk

dt
+
∑

j,k

MkjIk
dIj

dt





= 1
2

∑

j,k

Mjk
d

dt
(IjIk) (4–37)

where we have used the symmetry Mjk = Mkj .
9 The total work performed to es-

tablish all currents against the opposition of the counter EMF is now easily found
by integrating (4–37)

W = 1
2

∑

j

∑

k

MjkIkIj

= 1
2

∑

j

ΦjIj (4–38)

As in the case of electric charges, we would like to express the energy in terms
of the potential and the field. To this end, we replace Φj with

Φj =

∫

�B · d�Sj =

∫

(�∇× �A) · d�Sj =

∮

Γj

�A · d�ℓj (4–39)

permitting us to write

W = 1
2

∑

j

∮

Γj

�A · Ijd�ℓj (4–40)

This expression (4–40) is easily generalized for distributed currents to yield

W = 1
2

∫

�A · �J d3r (4–41)

Example 4.4: Calculate the self-inductance per unit length of two parallel wires, each
of radius a carrying equal currents in opposite directions (Figure 4.2).

9The symmetry of the mutual inductance under exchange of the indices is easily seen by writing
the explicit expression for the contribution of the kth current to the flux in the j th loop as follows:

MjkIk =

∫

�Bjk · d�Sj =

∫

(�∇× �Ajk) · d�Sj =

∮

�Ajk · d�ℓj

=

∮ (

µ0

4π

∮

Ikd�ℓk

|�r − �r ′|

)

· d�ℓj = Ik
µ0

4π

∫

d�ℓk · d�ℓj

|�r − �r ′|
where Bkj and Ajk are, respectively, the magnetic induction field and vector potential due to
loop k at the position of loop j . (Note that the subscripts are not coordinate indices; no implicit
summation is intended.)
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Figure 4.2: Two parallel wires carry equal currents in opposite directions.

Solution: We will calculate 1
2

∫

�A · �Jd3r and equate this to 1
2LI2 to obtain the self-

inductance L (= Mii). For convenience we take the leftmost wire to be centered on
the z-axis, while the center of the right wire lies at distance h from the origin.10

We begin by calculating the vector potential �A both interior and exterior to a
wire carrying current I in the z direction by solving ∇2 �A = −µ0

�J (Equation 3–43).

Since �A is parallel to �J in the Coulomb gauge, it suffices to solve for Az.
Interior to the wire, the current density is

�J =
Ik̂

πa2
(Ex 4.4.1)

while it vanishes for r ≥ a.
In cylindrical coordinates, ∇2Az = −µ0Jz becomes

1

r

∂

∂r

(

r
∂Az

∂r

)

=







−µ0 Jz r ≤ a

0 r > a
(Ex 4.4.2)

Integrating the expression in (Ex 4.2.2) for r ≤ a twice, we obtain

Az(r ≤ a) = − µ0Jz r2

4
+ C ln r + D (Ex 4.3.3)

Because Az must be finite as r → 0, we must set C = 0 leaving

Az(r ≤ a) =
µ0I

4π

(

D′ − r2

a2

)

(Ex 4.4.4)

For r ≥ a, (Ex 4.4.2) implies that Az(r ≥ a) = C ln r + E . We can determine C

by the requirement that the exterior magnetic induction field, �∇× �A, be given by
(Ex 1.10.3)

∂Az

∂r
=

C

r
= −Bϕ = − µ0I

2πr
(Ex 4.4.5)

10We point out to the reader who was tempted to try to calculate the inductance from L =
dΦ/dI that the boundary of the loop implied by Φ is ill defined. This problem recurs whenever
finite-size wires are used.
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We conclude that

C =
−µ0I

2π
(Ex 4.4.6)

Hence

Az(r ≥ a) =
µ0I

4π

(

E′ − 2 ln
r

a

)

(Ex 4.4.7)

As B is finite at the boundary to the wire, A must be continuous. Matching the
interior solution to the exterior solution at r = a, we obtain

µ0I

4π

(

D′ − a2

a2

)

=
µ0I

4π

(

E′ − 2 ln
a

a

)

(Ex 4.4.8)

from which we conclude that D′ − 1 = E′.
To summarize, for the vector potential of a long cylindrical wire, we have

Az(r ≥ a) =
µ0I

4π

(

D′ − 1 − ln
r2

a2

)

(Ex 4.4.9)

Az(r ≤ a) =
µ0I

4π

(

D′ − r2

a2

)

(Ex 4.4.10)

Returning to our problem, we note that interior to the wire at the origin, the
vector potential is the superposition of its own interior Az (Ex 4.4.10) and the
exterior Az, (Ex4.4.9), of the second wire carrying the same current in the opposite
direction. Adding Az(r2 ≥ a,−I) to Az(r1 ≤ a, I) we get

Az =
µ0I

4π

(

1 − r2
1

a2
+ ln

r2
2

a2

)

(Ex 4.4.11)

From the geometry, r2
2 = r2

1 + h2 − 2r1h cos ϕ. With this substitution, we evaluate

the volume integral of �A · �J over a length ℓ of the wire centered on the z axis:

∫

wire 1

�J · �A d3r =
µ0 I2ℓ

4π2a2

2π
∫

0

a
∫

0

(

1 − r2
1

a2
+ ln

r2
1 + h2 − 2r1h cos ϕ

a2

)

r1dr1dϕ

=
µ0I

2ℓ

2π2a2

∫ a

0

(

π − πr2
1

a2
+ 2π lnh − 2π ln a

)

r1dr1

=
µ0 I2ℓ

2πa2

(

a2

2
− a4

4a2
+ a2 ln

h

a

)

=
µ0I

2ℓ

4π

(

1

2
+ 2 ln

h

a

)

(Ex 4.4.12)

This result is just twice the energy integral (4–41) over one of the wires (or equal
the integral over both). Equating the energy of the currents as expressed by the
preceding integral to 1

2LI2, we find the inductance of the wires to be

L =
µ0ℓ

4π
[1 + 4 ln(h/a)] (Ex 4.4.13)
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It is worth noting that for h ≫ a, the logarithmic term of (Ex 4.4.13) dominates.
The constant term, µ0ℓ/4π, represents the self inductance of the current in each
wire on itself.

As we previously did for electric charge distributions, we proceed now to express
the potential energy of the current distribution in terms of the fields alone. Assum-
ing there are no time-varying electric fields to contend with, we replace �J in (4–41)

by (�∇× �B)/µ0 to obtain

W =
1

2µ0

∫

(�∇× �B) · �Ad3r (4–42)

The argument of the integral in (4–42) may be rearranged with the aid of (8) as

(�∇× �B) · �A = �B · (�∇× �A) − �∇ · ( �A × �B) = B2 − �∇ · ( �A × �B), so that invoking the
divergence theorem, the work expended to produce the field may be expressed as

W =
1

2µ0

∫

B2d3r − 1

2µ0

∮

( �A × �B) · d�S (4–43)

B2 is positive definite, implying that the volume integral of B2 can only increase
as the region of integration expands. By contrast, ( �A × �B) from a dipole field
decreases as R−5 or faster, meaning that the surface integral goes to zero as 1/R3

or faster as R → ∞. If, therefore, we include all space in the integral, we may write

W =
1

2µ0

∫

all

space

B2d3r (4–44)

4.2 Poynting’s Theorem

We will reconsider the energy required to produce a given electromagnetic field,
this time less constrained by the construction of current loops or static charge
distributions than the foregoing. This will give us not only the energy density of
the fields but also the rate that energy is transported by the field.

We begin by considering the work dW done by the electromagnetic field on the
charge dq contained in a small volume d3r, moving through the field with velocity
�v when it is displaced though distance d�ℓ. The work done on the charge is just the
gain in mechanical energy (kinetic and potential) of the charge. If the field was the
only agent acting on the charge, perhaps accelerating it, then the field must have
supplied this energy and therefore decreased its own energy, or else there must have
been a corresponding external input of energy.

The work performed by the Lorentz force is

dW = dq
(

�E + �v × �B
)

· d�ℓ

= dq
(

�E + �v × �B
)

· �vdt (4–45)
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Replacing dq with ρd3r, we find the rate of increase of energy of all the charge
contained in some volume τ as the volume integral

dW

dt
=

∫

τ

(

�E + �v × �B
)

· �vρd3r

=

∫

τ

(

�E · �J
)

d3r (4–46)

We can express (4–46) using Ampère’s law (3–24) in terms of the fields alone by

replacing �J with

�J =
1

µ0
(�∇× �B) − ε0

∂ �E

∂t
(4–47)

With this substitution, the integrand of (4–46) can be rearranged as follows:

�E · �J = �E ·
(

1

µ0
(�∇× �B) − ε0

∂ �E

∂t

)

=
1

µ 0

[

− �∇ · ( �E × �B) + �B · (�∇× �E)
]

− ε0
�E · ∂ �E

∂t

=
1

µ0

(

− �∇ · ( �E × �B) − �B · ∂ �B

∂t

)

− ε0
�E · ∂ �E

∂t

= −1

2

∂

∂t

(

ε0E
2 +

B2

µ0

)

− �∇ ·
�E × �B

µ0
(4–48)

With (4–48) and the divergence theorem (20), we cast (4-46) into the form

dW

dt
= − d

dt

∫

1
2

(

ε0E
2 +

B2

µ0

)

d3r −
∮

( �E × �B)

µ0
· d�S (4–49)

To interpret (4–49) we note that we have already met the terms in the volume
integral in (4–18) and (4–44) as the energy density of the field of the electric and
magnetic induction field respectively. If we suppose for the moment that the surface
integral vanishes, (4–49) states that the rate at which the particles gain mechanical
energy is just equal to the rate at which the fields lose energy. Now suppose that in
spite of doing work on charges in the volume of interest, the fields remained constant.
Clearly we would need an inflow of energy to allow this. The surface integral has
exactly this form; including the minus sign, it measures the total (�E × �B )/µ0

crossing the surface into the volume. Clearly

�S ≡ ( �E × �B)/µ0 (4–50)

is the energy flux11 crossing the surface out of the volume. �S is known as Poynting’s
vector, and it is the rate that the electromagnetic field transports energy across a
unit surface.

11A word of caution is advised. In reality, only the surface integral of �S is associated with energy
flow. It is easily verified that the field surrounding a charged magnetic dipole has a nonvanishing
Poynting vector, but one would be most reluctant to associate an energy flow with this.
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Example 4.5: Find the energy flux (irradiance) of an electromagnetic plane wave with

electric field amplitude �E.

Solution: Using �S = ( �E × �B)/µ0, with �B = (k̂ × �E)/c, we find that

�S =
�E × (k̂ × �E)

µ0c
=

E2k̂

µ0c
(Ex 4.5.1)

This result is correct for the instantaneous flux. It should be noted, however,
that one rarely measures an energy flux over time periods less than 10−14 seconds.
Therefore it would be more correct to use the average value of the electric field in
(Ex 4.5.1), namely 〈E2〉 = 1

2E2.

4.3 Momentum of the Fields

As the electromagnetic field is capable of imparting momentum to charges, we would
anticipate that the field must itself possess momentum. In the absence of external
forces, we expect the total momentum (that of the charges and the electromagnetic
field) to be conserved. If there are, on the other hand, external forces, they must
present themselves at the boundary of the isolated region. Placing the volume of
interest in an imaginary box, we may find the force on the volume by integrating
the stress on the surface over the whole bounding surface (Figure 4.3).

4.3.1 The Cartesian Maxwell Stress Tensor for Electric Fields

As a preliminary to the development of the general Maxwell Stress Tensor in vac-
uum, we restrict ourselves to the stresses resulting from electric fields. Moreover,
we sidestep questions of covariance by limiting this discussion to Cartesian coordi-
nates. We seek in this section to express the force acting on an isolated system in
terms of the fields at the bounding surface of the system. More quantitatively, the i
component of the force acting on a surface element dSj is given by dF i = −T ijdSj ,

where the Cartesian stress tensor
↔
T has components T ij and the summation over

repeated indices is assumed. Familiar components of the mechanical stress tensor

Figure 4.3: When a positive stress such as a pressure is applied to a surface,
the resulting force is inward directed. The forces dFy and dFz shown on the
right face result from shear stresses Txy and Txz .
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are

pressure = 1
3

3
∑

i=1

T ii (4–51)

compressional stress, T jj , and shear stress, T ij (i �= j). The i component of the
force on the entire volume is12

F i = −
∮

T ij dSj (4–52)

where we have adopted the convention of summing over repeated indices (B.1.5)
when they occur once as subscript and once as superscript. Expressing this force
as the volume integral of the force per unit volume (or force density) �f ,

F i =

∫

τ

f id3r (4–53)

we find, using a generalization of the divergence theorem for tensors,

∮

T ijdSj =

∫

(

∂jT
ij
)

d3r (4–54)

meaning that the force density may be expressed as f i = −∂jT
ij (∂j ≡ ∂/∂xj and

j is not an exponent but only a label or index ). Thus in analogy to the force being
found as minus the gradient of the potential energy, we can find it as minus the
divergence of the stress tensor (the comments in the footnote again apply).

In line with our earlier restriction, let us consider the stress tensor associated
with a static electric field. We will express the force per unit volume on a given
volume of charge as the divergence of a second rank tensor. The i component of
the force density f is given by

f i = ρEi = (ε0
�∇ · �E)Ei = ε0(∂jE

j)Ei

= ε0

[

∂j(E
jEi) − Ej∂jE

i
]

(4–55)

The first term of the (4–55) is already in the required form and we can transform

the second term to the appropriate form using �∇× �E = 0, or, in tensor form, ∂jEi =
∂iEj . Multiplying both sides by the “raising operator” gik we get gik∂jEi = gik∂iEj

which becomes ∂jE
k = ∂kEj . Relabelling k as i and multiplying both sides by Ej ,

we have
Ej∂jE

i = Ej∂iEj

= 1
2∂i(EjEj)

= 1
2δij∂jE

2 (4–56)

12Some authors define the stress tensor with the opposite sign. As this would require the tensor
elements representing an isotropic positive pressure to be negative, contrary to common use, we
prefer the sign used. This choice of sign means that the Maxwell stress tensor’s elements will be
the negative of those defined by Griffiths, Wangsness, and others.
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With this substitution, (4–55) may be written

f i = − ∂jε0

(

−EiEj + 1
2δijE2

)

(4–57)

The Maxwell stress tensor of a static electric field may now be written explicitly
in matrix form:

↔
T = ε0













1
2E2 − E2

x −ExEy −ExEz

−EyEx
1
2 E2 − E2

y −EyEz

−EzEx −EyEz
1
2E2 − E2

z













(4–58)

This tensor is a symmetric tensor of second rank with eigenvalues λ1 = − 1
2ε0E

2

and λ2 = λ3 = 1
2ε0E

2. The eigenvector of λ1 is parallel to the field �E, whereas

those of λ2 and λ3 are perpendicular to �E. In the principal axis system, with x
chosen parallel to the electric field,

↔
T becomes

↔
T = 1

2ε0





−E2 0 0
0 E2 0
0 0 E2



 (4–59)

Figure 4.4: The force derived from the stress tensor when �E is (a) perpen-
dicular, (b) parallel, and (c) makes angle θ with the normal to the surface.

For various orientations of the field relative to a bounding surface this results in
forces as illustrated in Figure 4.4. One can now use this formalism to calculate the
force on a charge by drawing a box around the charge and integrating the stress
tensor over the surface of the box.

Example 4.6: Use the Maxwell stress tensor to find the forces two equal charges q of
opposite sign exert on each other.

Solution: To make the problem somewhat more specific, we place the positive charge
on the left, a distance 2d from the negative charge. We enclose one charge, say the
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Figure 4.5: The stress tensor may be integrated of the hemisphere enclosing
one of the two charges to find the force on the charge enclosed.

negative charge on the right of Figure 4.5 by a hemispherical “box” whose plane
side lies along the midplane between the two charges. If we let the radius of the
hemisphere grow large, the field at the hemispherical boundary becomes that of a
dipole, ∝ R−3. The surface integral then varies as R−4. Taking the hemisphere to
∞ makes this part of the surface integral vanish. At the midplane,

Ez =
2

4πε0

qd

(d2 + r2)3/2
(Ex 4.6.1)

⇒ E2 =

(

2qd

4πε0

)2
1

(d2 + r2)
3 (Ex 4.6.2)

where the transverse components of the fields of the two charges just cancel. The
zz component of the stress tensor Tzz is ε0(E

2
z − 1

2E2), and the surface element is
dSz = −2πrdr. The force on the charge from the stress at the midplane is then

Fz = −
∫ ∞

0

− 1
2ε0E

2(−2πrdr)

= −1
2ε0

4q2d2

(4πε0)2

∫ ∞

0

2πr dr

(r2 + d2)3

= − q2d2

4πε0

∫ ∞

d

ds

s5
= − q2

4πε0(2d)2
(Ex 4.6.3)

where we have defined s2 = r2 + d2 to effect the integration. The result obtained is
of course exactly the result given by Coulomb’s law.

4.3.2 The Maxwell Stress Tensor and Momentum

We now consider the implications of conservation of momentum when the fields
are not static. As before, we consider the force per unit volume (= d�P/dt, where
�P is the momentum density) exerted by the electromagnetic field on charges and
currents contained in a volume τ and described by charge density ρ and current
density �J . We will write this force as the divergence of a second rank tensor after



86 Classical Electromagnetic Theory

eliminating ρ and �J with the use of Maxwell’s equations. The derivation requires
considerable vector manipulation; therefore, to reduce the apparent arbitrariness
of the manipulation and minimize the work, we use tensor notation and the Levi-
Cevita symbol ǫijk to express the cross products. To assure that these results will
hold in any coordinate system, we employ full co– and contra-variant notation. If
the reader is not familiar with these methods it is strongly advised that Appendix
B.2.5 and B.3 be consulted.

The rate of change of the i component of the charges’ momentum density, Ṗi,
is given by the Lorentz force expression (1–30)

Ṗi = ρEi + ǫijkJjBk

= ε0(∂jE
j)Ei + ǫijk

[

1

µ0
(�∇× �B)j − ε0Ėj

]

Bk

= ε0(∂jE
j)Ei +

1

µ0
ǫijkǫjℓm(∂ℓBm)Bk − ε0ǫ

ijkĖjBk (4–60)

= ε0(∂jE
j)Ei +

1

µ0
(δk

ℓ δi
m − δk

mδi
ℓ)Bk∂ℓBm − ε0ǫ

ijk

[

∂

∂t
(EjBk) − EjḂk

]

= ε0(∂jE
j)Ei +

1

µ0
(Bℓ∂

ℓBi −Bm∂iBm)− ε0
∂

∂t
( �E × �B)i − ε0ǫ

ijk
[

Ej(�∇× �E)k

]

We group the time derivatives on the left and collect terms in E and B

Ṗi + ε0
∂

∂t
( �E × �B)i = ε0

[

(∂jE
j)Ei − ǫijkEjǫkℓm∂ℓEm

]

+
1

µ0

(

Bℓ∂
ℓBi − Bm∂iBm

)

= ε0

[

(∂jE
j)Ei − (δi

ℓδ
j
m − δi

mδj
ℓ )Ej∂

ℓEm
]

+
1

µ0

(

Bℓ∂
ℓBi − Bm∂iBm

)

= ε0

[

(∂jE
j)Ei − Em∂iEm + Ej∂jE

i
]

+
1

µ0

(

Bℓ∂
ℓBi − Bm∂iBm

)

(4–61)

where we have rewritten δj
ℓEj∂

ℓ = gjkgkℓEj∂
ℓ = Ek∂k and then relabelled k as j.

We can add the inconsequential, identically vanishing term Bi∂ℓB
ℓ to the inside

of the brackets containing the magnetic field terms of (4–61) to give it the same
appearance as the electric field terms. With this addition we write

Ṗi + ε0
∂

∂t
( �E × �B)i = ∂j

[

ε0

(

EjEi − 1
2δijE2

)

+
1

µ 0

(

BjBi − 1
2δijB2

)

]

(4–62)

The interpretation of (4–62) is simplified if, instead of considering the densities of
(4–62), we integrate them over some finite volume. Anticipating our conclusions,
we abbreviate the square bracketed term as −T ij ,

T ij = −
[

ε0

(

EiEj − 1
2δijE2

)

+
1

µ 0

(

BiBj − 1
2δijB2

)

]

( 4–63)

Then, integrating (4–62) over a volume τ , we obtain

d

dt

∫

τ

[

Pi + ε0( �E × �B)i
]

d3r =

∫

τ

−∂jT
ijd3r
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= −
∫

Γ

T ijdSj (4–64)

where Γ is the bounding surface to τ and we have used an obvious generalization
of the divergence theorem (20).

Now, if the volume of integration is chosen large enough that the fields and
hence the elements T ij vanish on the boundary, we have

d

dt

∫

[

�P + ε0( �E × �B)
]

d3r = 0 (4–65)

Since the system now has no external forces acting on it, the total momentum
must be conserved. If the enclosed matter’s momentum changes, the second term
must change to compensate. Thus we are led to the conclusion that the term

�Pem ≡ ε0( �E × �B) (4–66)

is the momentum density of the electromagnetic field. This momentum density is,
by inspection, equal to µ0ε0

�S, the energy flux divided by c2. Since the energy flux
is just c times the energy density, U × c, we find the momentum density to be 1/c
times the energy density, as might have been anticipated. This relation between
U and P can of course hold only when there is in fact an energy flux and all the
energy in the volume is being transported at velocity c in the same direction.

If the total momentum of the system does change, then an external force must
be provided for by the term on the right of (4–64), which we have already seen to
have the correct form.

The expression (4–64) lends itself to another interpretation, for we see the mo-
mentum in the volume decreasing at the rate that T ij crosses the surface out of the
volume. Clearly, then, T ij also represents the momentum flux of the electromag-
netic field exiting the volume.

A similar result can be obtained for the angular momentum of the fields. Writing
the angular momentum density �Lem = �r × �Pem, we can write

∂

∂t

(

�Lem + �Lmech

)

+ �∇ · ↔
M = 0 (4–67)

where
↔
M is the pseudo tensor

↔
M = �r × ↔

T or M j
i = ǫikℓx

kT jℓ.
At this point we might reflect on the question of the reality of the fields we

posed early in Chapter 1. We have been able to associate with the fields energy,
momentum, and angular momentum giving the fields considerably more substance
than we had originally endowed them with. Nevertheless, as should be clear from
the derivations, the momenta and energies could equally well be associated with the
sources of the fields.

There are, however, cases of fields not obviously associated with their sources.
The electromagnetic waves we discussed in the previous chapter carry an energy flux
〈 �S 〉 = 〈 �E × �B/µ0〉 = E2

0/2µ0c independently of whatever sources produced them.
If the fields are merely mathematical constructs, it is difficult to see how energy
and momentum might be transported across space without the material sources of
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the fields. We are therefore forced to the view that the fields do indeed have some
reality.

⋆ 4.4 Magnetic Monopoles

Although to date there have been no confirmed observations of magnetic monopoles,
a number of arguments (advanced notably by Dirac) in favor of their existence has
led to a continuing search for primitive magnetic monopoles.13 Dirac found that
an electron moving in the field of a hypothetical magnetic monopole would have a
multivalued wave function unless the product of the electron charge and monopole
charge were quantized. This quantization could provide an explanation for the
apparently arbitrary quantization of charge. Most current grand unified theories
(GUTs for short) require the existence of magnetic monopoles.

Taking a somewhat different approach from Dirac’s, we may easily show that a
magnetic monopole in the vicinity of an electric charge would produce an electro/-
magneto–static field whose angular momentum is not zero. Remarkably, this an-
gular momentum is independent of the spacing between the electric and magnetic
monopoles. We produce below a demonstration of this assertion.

Let us consider the angular momentum, �L, of the fields of a magnetic monopole
qm located at the origin, and an electric charge e located at ak̂:

�L =

∫

�r × ε0( �E × �B)d3r = ε0

∫

[

(�r · �B) �E − (�r · �E) �B
]

d3r (4–68)

where �E is the electric field produced by the electric charge at ak̂. For a magnetic
monopole at the origin, the magnetic induction field �B is given by

�B =
µ0 qm�r

4πr3
(4–69)

which we substitute into the expression for �L above to obtain

�L =
µ0ε0qm

4π

∫ ( �E

r
− �r ( �E · �r )

r3

)

d3r (4–70)

We effect the integration of (4–70) one component at a time. To this end, we write

Lk =
qm

4πc2

∫ [

Ek

r
− xk(Eixi)

r3

]

d3r =
qm

4πc2

∫

Ei∂i

(

xk

r

)

d3r (4–71)

We integrate (4–71) by parts using

Ei∂i

(

xk

r

)

= ∂i

(

Eixk

r

)

− xk

r
∂iE

i (4–72)

13The only positive report is a single uncorroborated candidate event reported by B. Cabrera,
Phys. Lett. 48, 1387 (1982). Among the more imaginative proposals for a search was the sugges-
tion that because cosmic monopoles are more likely to be found in the oceans than on dry land,
and oysters are prodigious filters of ocean water, we carefully distill many tons of oysters. The
feasibility depends on the presumed massiveness of monopoles.
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to obtain

Lk =
qm

4πc2

∫

∂i

(

Eixk

r

)

d3r − qm

4πc2

∫

xk

r
(�∇ · �E)d3r

=
qm

4πc2

∮

Eixk

r
dSi −

qm

4πc2

∫

xk

r

ρ

ε0
d3r (4–73)

At sufficiently large distance from the charge, |E|r2dΩ = edΩ/4πε0, a constant.
Moreover,

∮

xkdΩ = 0 for any spherical volume centered on the origin. We conclude
that in the limit as the volume of integration tends to infinity, the surface integral
vanishes. The charge density for the point charge e situated at ak̂ is ρ = eδ(�r−ak̂).
The remaining integral then becomes

Lk = − qme

4πε0c2

∫

xk

r
δ(�r − ak̂)d3r (4–74)

The integration is now easily performed to give 0 for Lx and Ly and

Lz = − qme

4πε0c2
(4–75)

independent of a! Even if the magnetic and electric monopoles are separated by
galactic distances, this intrinsic angular momentum of their fields remains.

We hypothesize that, consistent with quantum mechanics, the smallest permit-
ted angular momentum is h̄/2, leading to the smallest non-zero magnetic monopole
charge

qm =
2πε0c

2h̄

e
(4–76)

4.5 Duality Transformations

We might see how Maxwell’s equations would be altered to accommodate magnetic
monopoles. Clearly we can no longer sustain �∇ · �B = 0, but have instead �∇ · �B =
µ0ρm. Moving monopoles would constitute a magnetic current and presumably add
a term to the �∇× �E equation. Postulating

�∇× �E = −∂ �B

∂t
− µ0

�Jm (4–77)

we verify a continuity equation for magnetic monopoles:

0 = �∇ · (�∇× �E) = − ∂

∂t
(�∇ · �B) − µ0

�∇ · �Jm (4–78)

or
∂ρm

∂t
+ �∇ · �Jm = 0 (4–79)

The generalized Maxwell’s equations then become
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�∇ · �E =
ρe

ε0

�∇ · �B = µ0ρm

�∇× �E = −∂ �B

∂t
− µ0

�Jm
�∇× �B =

1

c2

∂ �E

∂t
+ µ0

�Je

(4–80)

The generalized equations present considerable symmetry. A duality transfor-
mation defined by

�E′ = �E cos θ + c �B sin θ

c �B′ = − �E sin θ + c �B cos θ

(4–81)

together with

cρ′e = cρe cos θ + ρm sin θ ρ′m = −cρe sin θ + ρm cos θ (4–82)

and the associated current transformations

cJ ′
e = cJe cos θ + Jm sin θ J ′

m = −cJe sin θ + Jm cos θ (4–83)

leaves Maxwell’s equations and therefore all ensuing physics invariant. Thus with
the appropriate choice of mixing angle θ, magnetic monopoles may be made to
appear or disappear at will. So long as all charges have the same ratio ρe/ρm (the
same mixing angle), the existence or nonexistence of monopoles is merely a matter
of convention. The Dirac monopole, on the other hand, would have a different
mixing angle than customary charges.
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Exercises and Problems

Figure 4.6: The concentric cylinders of prob-
lem 4-15.

Figure 4.7: The variable capacitor of problem
4-16.

4-1 Find the potential energy of eight
equal charges q, one placed at each of
the corners of a cube of side a.

4-2 Find the inductance of a closely
wound solenoid of radius R and length
L having N turns when R ≪ L.

4-3 Find the inductance of a closely
wound toroidal coil of N turns with
mean radius b and cross-sectional radius
a using energy methods.

4-4 Find the inductance of a coaxial wire
whose inner conductor has a radius a and
whose outer conductor has inner radius b
and the same cross-sectional area as the
inner conductor. Assume the same cur-
rent runs in opposite directions along the
inner and outer conductor. (Hint: The
magnetic induction field vanishes outside
the outer conductor, meaning that the
volume integral of B2 is readily found.)

4-5 Find the magnetic flux Φ enclosed
by a rectangular loop of dimensions ℓ ×
(h−2a) placed between the two conduc-
tors of figure 4.2. Compare the induc-
tance computed as L = dΦ/dI to the
result of example 4.4.

4-6 Find the energy of a charge Q spread
uniformly throughout the volume of a
sphere of radius a.

4-7 Find the energy of a spherical charge

whose density varies as

ρ = ρ0

(

1 − r2

a2

)

for r ≤ a and vanishes when r exceeds a.

4-8 Find the electric field strength in a
light beam emitted by a 5-watt laser if
the beam has a 0.5 mm2 (assume uni-
form) cross section.

4-9 Show that the surface integral of (4–
43) vanishes for the parallel wire field at
sufficiently large distance. Chose as vol-
ume of integration a large cylinder cen-
tered on one of the wires.

4-10 Estimate the mutual inductance of
two parallel circular loops of radius a
spaced by a small distance b (b ≪ a).

4-11 A superconducting solenoid of
length L and radius a carries current I
in each of its N windings. Find the ra-
dial force on the windings and hence,
the tensile strength required of the wind-
ings. (Note that the radial force result-

ing from the interior �B is outward di-
rected whereas the force on the end faces
is inward.)

4-12 Find the force between two prim-
itive magnetic monopoles, and compare
this force to the force between two elec-
tric charges e.
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Figure 4.8: A directional Power meter may constructed by attaching the
field coils of a power meter to an inductive loop and the movement coil to a
capacitive element inside a coaxial conductor.

4-13 Show that the generalized Maxwell
equations (4-44) are invariant under a
duality transformation.

4-14 Find approximately the mutual
capacitance of two 1-m radius spheres
whose centers are separated by 10 m.

4-15 A pair of concentric cylinders of
radii a and b, (Figure 4.6) are connected
to the terminals of a battery supplying
an EMF V. Find the force in the axial
direction on the inner cylinder when it is
partially extracted from the outer one.

4-16 A variable capacitor has 15 semi-
circular blades of radius R spaced at dis-
tance d (Figure 4.7). Alternate blades
are charged to ±V . The capacitance is
varied by rotating one set of blades about
an axis on the center of the diameter of
the blades with respect to the other set.
Find the electrostatic torque on the mov-
able blades when partly engaged. Ne-
glect any fringing fields. Could one rea-
sonably design an electrostatic voltmeter
using this principle?

4-17 A power meter may be constructed
by using a signal proportional to the cur-
rent to power the field (instead of the

customary permanent magnet) of a gal-
vanometer and a signal proportional to
the voltage to power the moving coil of
the galvanometer. A directional power
meter may be constructed as illustrated
in figure 4.8. Given that the torque on
the needle is τ = kI1I2 where I1 is the
current induced in the loop by the os-
cillating current in the coaxial wire and
I2 is the current required to capacitively
charge the plate adjacent to the cental
conductor, write an expression for the
torque on the needle in terms of fre-
quency, loop area and plate area, curved
to maintain constant distance from the
central conductor and the distance of
each from the center.

4-18 A spherical soap bubble has a
charge Q distributed over its surface. If
the interior pressure and exterior pres-
sure are the same, find the radius at
which the compressive force from the
surface tension balances the repulsive
electrical force. Is the radius stable
against perturbations? (Hint: the sur-
face tension T on a spherical surface
with radius of curvature r gives an in-
ward pressure of 2T/r.)



Chapter5

Static Potentials in Vacuum – Laplace’s Equation

5.1 Laplace’s Equation

To this point we have assumed that all relevant charge and current distributions
are known, allowing us to use Coulomb’s law or the Biot-Savart law to obtain
a closed form expression of the fields or potentials. In most cases, however, the
charge distribution will not be known a priori. We might, for instance, know the
total charge on the two plates of a finite size parallel plate capacitor, but the charge
density, not being uniform, remains a mystery. Even when most of the charge
density is known, induced charge densities on nearby conductors, or as we will
see in the next chapter, polarizations or magnetizations of nearby materials, will
generally contribute to the field. In such cases, the potentials or fields must be
deduced from the boundary conditions, such as the requirement that the electric
field be everywhere perpendicular to the surface of the conductor or, alternatively,
that the surface of the conductor be a surface of constant potential. Finally, the
unknown charge densities might be computed from the field at the surface of the
conductor.

In this chapter we focus our attention on static fields resulting from charges or
currents entirely on or outside the boundary of the region of interest. The lack of
time dependence means that �E has zero curl, and the absence of currents makes �B
curl free. Either �E or �B may therefore be expressed as the gradient of a potential
V. The lack of sources inside the region makes the divergence of the fields vanish
(of course �∇ · �B vanishes identically in any case). Under these conditions, as has
already been remarked in Chapter 1 (Section 1.1.3), the potential, V, satisfies the
Laplace equation ∇2V = 0. The particular solutions of Laplace’s equation must
satisfy the boundary conditions imposed by the physical situation.

The boundary conditions we will consider are of two general types. The first, the
Dirichlet boundary condition, specifies the value of V everywhere on the boundary,
while the second, the Neumann boundary condition, specifies the normal derivative
∂V/∂n (the electric field) at the surface. Of course it is entirely possible to have
mixed boundary conditions with V specified on part of the boundary and the normal
derivative on another part of the boundary. Before embarking on a detailed study

—93—
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of the solution of Laplace’s equation, we prove a uniqueness theorem which asserts
that the solution of Laplace’s equation satisfying Dirichlet or Neumann (or mixed)
boundary conditions over an enclosing surface is unique. This means that no matter
how we arrive at a solution, if the solution satisfies ∇2V = 0 and the boundary
conditions we have the solution.

5.1.1 Uniqueness Theorem

Let us consider two proposed solutions V1 and V2, each satisfying the boundary
conditions and ∇2V = 0. The difference between these solutions, Φ = V1−V2, then
also satisfies ∇2Φ = 0 and in addition satisfies Φ = 0 or ∂Φ/∂n = 0 according to

the boundary conditions specified. In either case, the product of Φ and (�∇Φ)n must
vanish on the boundary. Thus, with the aid of the divergence theorem and making
use of the vanishing of the Laplacian of Φ, we have

0 =

∮

Φ�∇Φ · d�S

=

∫

�∇ · (Φ�∇Φ)d3r

=

∫

(

(�∇Φ)2 + Φ∇2Φ
)

d3r

=

∫

(�∇Φ)2 d3r

(5–1)

As (�∇Φ)2 is nowhere negative, the integral can vanish only if (�∇Φ)2 is identically

zero. We conclude then that �∇Φ = 0, implying Φ is constant. In the case that
Φ was zero on the boundary (Dirichlet condition), it must be zero everywhere,
implying V1 = V2. For the case that the normal derivative vanished (Neumann
condition), V1 and V2 can differ only by a constant. This minor freedom in the
latter case is not surprising; because we have essentially specified only the field at the
boundary and we know that the field cannot determine the potential to better than
an additive constant, we should have fully expected this inconsequential ambiguity
in the solution.

The theorem we have just proved also proves incidently the useful observation
that a charge-free region of space enclosed by a surface of constant potential has a
constant potential and consequently a vanishing electric field within that boundary.

We proceed now to explore a number of techniques for solving Laplace’s equa-
tion. Generally it will be best, if possible, to choose a coordinate system in which
coordinate surfaces coincide with the boundary, as this makes the application of
boundary conditions considerably easier. To clearly demonstrate the techniques we
systematically explore one-, two- and three-dimensional solutions in a number of
different coordinate systems.

5.1.2 ∇2V = 0 in One Dimension

When the problem of interest is invariant to displacements in all but one of the coor-
dinates, ∇2 reduces to the one-dimensional ordinary differential operator. Despite
calling this a one-dimensional problem, it is really a problem with one variable
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in three dimensional space. In the most frequently used coordinate systems the
operators and the corresponding solutions are easily found as follows.

Cartesian Coordinates: Since V depends only on one of the coordinates, say
z,

d2V

dz2
= 0 ⇒ V = Az + B (5–2)

Cylindrical Coordinates: Assuming that V depends only on r , we have

1

r

d

dr

(

r
dV

dr

)

= 0 ⇒ V = A ln r + B (5–3)

Spherical Polar Coordinates: Assuming that V depends only on r, we find

1

r2

d

dr

(

r2 dV

dr

)

= 0 ⇒ V =
A

r
+ B (5–4)

In each of these cases, boundary conditions must be applied to find the arbitrary
constants A and B. It is worth noting that for A �= 0, the one-dimensional solution
in cylindrical coordinates diverges as r → ∞ or r → 0.

Example 5.1: Find the potential between two concentric conducting spheres of radius
a and b at potential Va and Vb, respectively.

Solution: The general solution V =
A

r
+ B gives, at the boundaries,

A

a
+ B = Va

A

b
+ B = Vb (Ex 5.1.1)

Solving the two equations simultaneously gives

A =
ab(Va − Vb)

b − a
and B =

aVa − bVb

a − b
(Ex 5.1.2)

5.2 ∇2V = 0 in Two Dimensions

In this section we will explore a number of techniques for solving Laplace’s equa-
tion in two dimensions. We include as two dimensional those cylindrical problems in
three dimensions where there is no variation with z as well as those spherical prob-
lems where there is no dependence on the azimuthal angle. Since only the boundary
conditions separate one problem from another, considerable attention will be given
to the acquisition and application of boundary conditions.

One of the simplest techniques of reducing a partial differential equation in sev-
eral variables to a set of ordinary differential equations is the separation of variables.
In separating variables, we look for solutions V to Laplace’s equation that can be
expressed as a product of functions, each depending on only one of the coordinates,
and obtain a differential equation for each of the “basis” functions. If the set of
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basis functions in each variable is complete in the space of that variable (in the
sense that any reasonably behaved function in that space can be expanded in terms
of the basis functions), then all solutions to Laplace’s equation can be expressed as
a linear combination of the products of the basis functions. The particular linear
combination that is the solution for the potential V must be chosen to satisfy the
boundary conditions. The separation and fitting to boundary conditions will be
explicitly carried out in various coordinate systems.

We will also explore the use of conformal mappings in the solution of two-
dimensional problems. Finally, a numerical approach, easily extended to three-
dimensional problems, is briefly discussed.

5.2.1 Cartesian Coordinates in Two Dimensions

Let us consider the problem of finding the potential within a box of dimensions
a × b, extending infinitely in the z direction with the potential Φ1, Φ2, Φ3 and Φ4

on its four faces labelled 1, 2, 3, and 4. To solve ∇2V = 0 we place the cart before
the horse and begin by simplifying the boundary conditions before effecting the
separation of variables. To simplify the boundary conditions we proceed as follows.

Figure 5.1: The rectangular box has the potential Φ as indicated along each
of its sides.

(a) We temporarily set Φ1 = Φ2 = Φ3 = 0, keeping only Φ4(x) as specified in the
problem posed.

(b) We solve ∇2V4(x, y) = 0 subject to the boundary condition as simplified in (a).

(c) We repeat the procedure with Φ1 = Φ2 = Φ4 = 0, keeping only Φ3(y) as
specified, and solve for the corresponding V3. We continue in similar fashion
to obtain V1 and V2.

(d) The sum V = V1 + V2 + V3 + V4 satisfies ∇2V = 0 and evidently also satisfies
the boundary conditions.

To solve ∇2V4 = 0, we assume that V4 can be factored into a product, V4(x, y) =
X(x )Y(y) (a linear combination of such solutions will be required to satisfy the
boundary conditions). Then

∇2V4

V4
=

∂2V4

∂x2
+

∂2V4

∂y2

V4
=

Y
∂2X

∂x2

XY
+

X
∂2Y

∂y2

XY
= 0 (5–5)
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or
1

X

∂2X

∂x2
= − 1

Y

∂2Y

∂y2
(5–6)

On the left of (5–6) we have a function depending on x only, which, according to
the right side, is independent of x ; therefore it must be constant. We can take this
constant to be either positive or negative. Anticipating the requirements of the
boundary condition, we take he separation contant to be negative and call it −λ2

resulting in the equations,

1

X

∂2X

∂x2
= −λ2 and

1

Y

∂2Y

∂y2
= λ2 (5–7)

With this choice, we readily obtain the solution

X = A cos λx + B sinλx
Y = C cosh λy + D sinhλy

(5–8)

Had we made the alternate choice for the sign of the separation constant (+λ2), we
would have obtained solution

X = A cosh λx + B sinhλx
Y = C cos λy + D sinλy

(5–9)

It is of course equally valid to write the cosh and the sinh solutions in terms of ex

and e−x. The benefit of using cosh and sinh is that they have convenient values of
1 and 0 respectively at x = 0. Applying the boundary conditions, we note that V4

is zero at boundary 1 and 3, so that the solution X must have two zeros. The cosine
and sine readily yield any number of zeros as they are periodic. A nontrivial linear
combination of cosh and sinh, on the other hand, has only one root. To illustrate,
suppose we attempt to satisfy X = A cosh λx + B sinhλx = 0 at x = a. Clearly
A = −B tanhλa is such a solution. Now applying this solution to evaluate X at 0,
A cosh 0 + B sinh 0 = A. Requiring the solution to vanish at 0 now requires A to
vanish meaning only the trivial solution X = 0 ⇒ V = 0 can satisfy the boundary
condition. Proceeding with the non-trivial solution, the boundary condition at x =
0 is

V4(0, y) = A
(

C cosh λy + D sinhλy
)

= Φ1(y) = 0 (5–10)

We conclude that either C = D = 0, or A = 0. To avoid a trivial solution, we pick
A = 0. At the opposite boundary (x = a),

V4(a, y) = B sinλa
(

C cosh λy + D sinhλy
)

= Φ3(y) = 0 (5–11)

This time, to avoid a trivial solution (B = 0 or C = D = 0), we must pick λ so that
sin λa vanishes; (in other words, λ = nπ/a with n an integer).

Along the side labelled 2 (y = b) in Figure 5.1, V4 must also vanish, meaning
that

V4(x, b) = B sin
nπx

a

(

C cosh
nπb

a
+ D sinh

nπb

a

)

= Φ2(x) = 0 (5–12)
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which implies C = −D tanh nπb
a .

Finally fitting the last boundary, y = 0, V4 = BC sin(nπx/a). Clearly a single
solution cannot fit an arbitrary Φ4(x); we note, however, that n is undetermined
other than being an integer. We therefore propose a linear combination of solutions
V4,n that satisfies both the boundary conditions and Laplace’s equation as the
solution for V4. Setting B to unity to avoid unnecessary arbitrary constants, we
have

V4(x, 0) = Φ4(x) =
∞
∑

n=1

Cn sin
nπx

a
(5–13)

We immediately recognize the equation above as the Fourier expansion of Φ4(x),
allowing us to write

Cn =
2

a

∫ a

0

Φ4(x) sin
nπx

a
dx (5–14)

Gathering terms, we have finally

V4(x, y) =
∞
∑

1

Cn sin
nπx

a

(

cosh
nπy

a
− coth

nπb

a
sinh

nπy

a

)

(5–15)

Repeating the procedure for each of the other sides taken nonzero one at a time
yields V1, V2, and V3 for the complete solution to the problem. It is noteworthy
that although the solution of Laplace’s equation is particularly simple in Cartesian
coordinates, the fitting of boundary conditions is somewhat cumbersome compared
to what we will experience when using other coordinate systems.

5.2.2 Plane Polar Coordinates

In plane polar coordinates, ∇2V assumes the form

1

r

∂

∂r

(

r
∂V

∂r

)

+
1

r2

∂2V

∂ϕ2
= 0 (5–16)

We assume a separable solution and try V of the form V = R(r)Φ(ϕ) with R
independent of ϕ and Φ independent of r. Substituting this form into (5–16), we
get

1

r

∂

∂r

(

r
∂R

∂r

)

R
+

1

r2

∂2Φ

∂ϕ2

Φ
= 0 (5–17)

or

r
∂

∂r

(

r
∂R

∂r

)

R
= −

∂2Φ

∂ϕ2

Φ
= constant = m2 (5–18)

where we have chosen a positive separation constant, m2, in anticipation of a re-
quirement by the boundary condition on Φ. The equation

∂2Φ

∂ϕ2
= −m2Φ (5–19)
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is easily solved to give

Φ = A cos mϕ + B sin mϕ (5–20)

The physical requirement that Φ be periodic with period 2π justifies our choice
of a positive separation constant and further restricts m to integer values.

The remaining equation

r
∂

∂r

(

r
∂R

∂r

)

= m2R (5–21)

is easily solved. Clearly the equation suggests a monomial solution as differentiating
rℓ lowers the exponent of r by one and multiplication by r promptly restores the
original exponent. We try R = krℓ, which, when substituted into (5–21), gives

ℓ2krℓ = ℓ2R = m2R ⇒ ℓ = ±m (5–22)

We conclude that R takes the form R = Crm + Dr−m. The linear combination of
the two linearly independent solutions is the general solution when m �= 0. When
m = 0, however, only one solution is obtained. To obtain the second, we integrate
(5–21) directly with m = 0.

∂

∂r

(

r
∂R

∂r

)

= 0 ⇒ r
∂R

∂r
= C ⇒ ∂R

∂r
=

C

r
(5–23)

Thus, when m = 0, R = C0 ln r + D0 is the solution.
Combining the two forms of the solution, we find the most general solution to

∇2V = 0 in plane polar coordinates to be

V (r, ϕ) = C0 ln r + D0 +

∞
∑

m=1

(

Cmrm +
Dm

rm

)

(Am cos mϕ + Bm sin mϕ) (5–24)

It might be noted that there are more arbitrary constants in (5–24) than can be
uniquely determined. The two trigonometric terms might, for instance, be added
to give a single phase-shifted cosine at which point Am and Bm become superfluous
since the amplitude is already determined by C and D. In order to avoid a prolif-
eration of constants, we will freely rename constants and product of constants as
convenient.

Example 5.2: Find the potential when a neutral, long conducting circular cylinder is
placed in an initially uniform electric field with its axis perpendicular to the field
(Figure 5.2).

Solution: We choose the x axis along the initially uniform field so that at sufficiently
large r, �E = E0 ı̂. To obtain this field at sufficiently large r, we must have V
→ −E0x = −E0r cos ϕ.

We now apply the boundary conditions to the general solution (5–24). Reflection
symmetry about the x axis requires that V (ϕ) = V (−ϕ), implying for m �= 0,
Bm = 0. The term C0 �= 0 implies a net charge on the cylinder. The terms Cmrm
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Figure 5.2: The coordinate system is chosen so that the axis of the cylinder
lies along the z axis whereas the electric field at large distances is purely x
directed.

all grow too rapidly as r → ∞, requiring that Cm = 0 for m �= 1. The general
solution then reduces to

V (r, ϕ) = D0 − E0r cos ϕ +

∞
∑

m=1

Dm

rm
cos mϕ (Ex 5.2.1)

where the products of arbitrary constants, Am and Dm, have been replaced by
single constants, Dm.

On the surface of a conductor, the potential must be a constant, say V0; therefore

V (a, ϕ) = V0 = D0 − E0a cos ϕ +

∞
∑

m=1

Dm

am
cos mϕ (Ex 5.2.2)

0 = (D0 − V0) +

(

D1

a
− E0a

)

cos ϕ +

∞
∑

m=2

Dm

am
cos mϕ (Ex 5.2.3)

As the {cos mϕ} are linearly independent functions, each coefficient in the expansion
must vanish (i.e., D0 = V0, D1 = E0a

2, Dm = 0 for m ≥ 2). The final result is then

V (r, ϕ) = V0 − E0r cos ϕ +
E0a

2

r
cos ϕ (Ex 5.2.4)

It is straightforward to verify that (Ex 5.2.4) satisfies the boundary conditions V =
V0 at r = a and V → −E0r cos ϕ as r → ∞.

More generally, the boundary conditions may be applied to two nested cylinders
sharing a common axis. We sketch the procedure in the following example.

Example 5.3: Two coaxial, nonconducting cylinders have surface charge densities
σa(ϕ) and σb(ϕ) on the inner and outer cylinders, giving rise to potentials Va(ϕ)
and Vb(ϕ) on the two surfaces (Figure 5.3). Find the potential (a) for r < a, (b)
for r > b , and (c) for r ∈ (a, b).

Solution: We assume the general solution (5–24) and tailor it to the appropriate
boundary conditions in each of the three regions.
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Figure 5.3: The two concentric cylinders of radius a and b are x at potential
Va(ϕ) and Vb(ϕ) respectively.

(a) For r ≤ a: terms in ln r or 1/rm diverge at r = 0 and must be eliminated from
the sum by setting their coefficients equal to 0. Hence

V = D0 +
∑

rm (Am cos mϕ + Bm sin mϕ) (Ex 5.3.1)

At r = a, this specializes to

Va(ϕ) = A0 +
∑

(amDm cos mϕ + amBm sin mϕ) (Ex 5.3.2)

We recognize the righthand side as the Fourier expansion of Va(ϕ). The ex-
pansion coefficients are

A0 =
1

2π

∫ 2π

0

Va(ϕ)dϕ (Ex 5.3.3)

amAm =
1

π

∫ 2π

0

Va(ϕ) cos mϕdϕ (Ex 5.3.4)

amBm =
1

π

∫ 2π

0

Va(ϕ) sin mϕdϕ (Ex 5.3.5)

(b) For r ≥ b: This time the terms in rm diverge at ∞ (ln r also diverges, but such a
term would be required by a nonzero net charge on the cylinders). Eliminating
all the divergent terms except ln r, we write the expansion of the potential as

V (r ≥ b) = C0 ln r + D0 +

∞
∑

m=1

1

rm
(Am cos mϕ + Bm sinmϕ) (Ex 5.3.6)

Matching the boundary condition at b, we have

Vb(ϕ) = (C0 ln b + D0) +

∞
∑

m=1

1

bm
(Am cos mϕ + Bm sin mϕ) (Ex 5.3.7)
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and we again identify the coefficients of the trigonometric terms with the coef-
ficients of the Fourier series of Vb(ϕ) to obtain

C0 ln b + D0 =
1

2π

∫ 2π

0

Vb(ϕ)dϕ (Ex 5.3.8)

Am =
bm

π

∫ 2π

0

Vb(ϕ) cos mϕdϕ (Ex 5.3.9)

Bm =
bm

π

∫ 2π

0

Vb(ϕ) sin mϕdϕ (Ex 5.3.10)

It is not possible to tell from Vb alone whether there is a net charge on the
cylinders, hence we cannot distinguish between C0 and B0 without further
information.

(c) For a ≤ r ≤ b: There is now no reason to eliminate any of the terms from
(5–24). Fortunately we have twice as many boundary conditions; one at a and
one at b. Equating the potential (5–24) to the values on the boundaries, we
have

Va = C0 ln a+D0 +

∞
∑

m=1

(

Cmam +
Dm

am

)

(Am cos mϕ + Bm sinmϕ) (Ex 5.3.11)

and

Vb = C0 ln b + D0 +

∞
∑

m=1

(

Cmbm +
Dm

bm

)

(Am cos mϕ + Bm sinmϕ) (Ex 5.3.12)

leading for m = 0 to

C0 ln a + D0 =
1

2π

∫ 2π

0

Va(ϕ)dϕ C0 ln b + D0 =
1

2π

∫ 2π

0

Vb(ϕ)dϕ (Ex 5.3.13)

and for m �= 0 we get

(

Cmam +
Dm

am

)(

Am

Bm

)

=
1

π

∫ 2π

0

Va(ϕ)

(

cos mϕ

sin mϕ

)

dϕ (Ex 5.3.14)

(

Cmbm +
Dm

bm

)(

Am

Bm

)

=
1

π

∫ 2π

0

Vb(ϕ)

(

cos mϕ

sinmϕ

)

dϕ (Ex 5.3.15)

These equations may now be solved (two at a time) to obtain Am, Bm, Cm,
and Dm for a complete solution. For example, equations (Ex 5.3.13) yield

C0 ln
b

a
=

1

2π

∫ 2π

0

[ Vb(ϕ) − Va(ϕ)] dϕ (Ex 5.3.16)
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Figure 5.4: A current flowing around a resistive cut cylinder establishes a
potential that varies linearly with ϕ around the cylinder.

and

D0 ln
a

b
=

1

2π

∫ 2π

0

[ Vb(ϕ) ln a − Va(ϕ) ln b ] dϕ (Ex 5.3.17)

Example 5.4: A resistive cylinder of radius a with a narrow longitudinal gap at
ϕ = π carries a current in the azimuthal direction, giving rise to a linearly varying
potential V (a, ϕ) = V0ϕ/2π for −π < ϕ < π (Figure 5.4). Find the potential inside
the cylinder.

Solution: Interior to the cylinder, the solution is of the form (we have redefined the
constants Aℓ and Bℓ slightly in order to write r in normalized form):

V (r < a) =
∑

ℓ

(

r

a

)ℓ

(Aℓ cos ℓϕ + βℓ cos ℓϕ) (Ex 5.4.1)

giving, at r = a,

V (a, ϕ) =
∑

Aℓ cos ℓϕ + Bℓ sin ℓϕ =
V0

2π
ϕ (Ex 5.4.2)

We obtain the coefficients Aℓ and Bℓ in the usual fashion; multiplying both sides of
the equation by cos mϕ and integrating from −π to +π, we get

∫ π

−π

(Aℓ cos ℓϕ + Bℓ sin ℓϕ) cos mϕdϕ =
V0

2π

∫ π

−π

ϕ cos mϕdϕ (Ex 5.4.3)

or Am = 0, which could have been predicted from the symmetry of V. Multiplying
by sinϕ and integrating, we have

∫ π

−π

Bℓ sin ℓϕ sin mϕdϕ =
V0

2π

∫ π

−π

ϕ sin mϕdϕ (Ex 5.4.4)

or

πBm =
V0

2π

∫ π

−π

ϕ sin mϕdϕ = −V0 cos mπ

m
=

(−1)m+1V0

m
(Ex 5.4.5)
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The potential interior to the cylinder is then

V (r, ϕ) = V0

∞
∑

ℓ=1

(−1)ℓ+1

ℓπ

(

r

a

)ℓ

sin ℓϕ (Ex 5.4.6)

Frequently, even when there are free charges or currents on some surface, it is
feasible to solve for the potentials inside and outside the surface, and to convert the
presence of charges or currents into a boundary condition that relates the difference
between the inside and outside solutions to the source term.

Example 5.5: A hollow cylindrical shell bearing no net charge of radius a has a surface
charge σ = σ0 cos ϕ distributed on it. Find the potential both inside and outside
the shell.

Solution: The interior and exterior potentials are given by

V (r < a, ϕ) =
∑

(

r

a

)ℓ

(Aℓ cos ℓϕ + Bℓ sin ℓϕ) (Ex 5.5.1)

and

V (r > a, ϕ) =
∑

(

a

r

)ℓ

(Cℓ cos ℓϕ + Dℓ sin ℓϕ) (Ex 5.5.2)

The boundary conditions can be obtained from Maxwell’s electric field equations,
�∇× �E = 0 and �∇ · �E = ρ/ε0, as follows.

Figure 5.5: A thin box enclosing a small segment of the cylindrical surface.

(a) We integrate �∇ · �E over the thin cylindrical shell segment of Figure 5.5 that
encloses an area A of the cylinder:

∫

�∇ · �Ed3r =

∫

ρ

ε0
d3r =

σ̄A

ε0
(Ex 5.5.3)

where σ̄ is the average charge density on the surface A. With the aid of the
divergence theorem, we recast this as

∮

�E · d�S =
σ̄A

ε0
(Ex 5.5.4)
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Figure 5.6: The loop encloses a section of the cylinder on a plane perpen-
dicular to the cylinder.

We decompose the integral in terms of integrals along the top, the bottom,
and the thin side

∮

�E · d�S =

∫

bottom

−ErdS +

∫

top

ErdS +

∫

sides

�E · d�S (Ex 5.5.5)

As we diminish the thickness of the box, the integral over the sides vanishes,
leaving only Ēr(a+)A− Ēr(a−)A = σ̄A/ε0. Now, letting the area tend to zero,
Ēr → Er and σ̄ → σ. Thus Er(a+) = Er(a−) + σ/ε0.

(b) The second of Maxwell’s �E equations, �∇× �E = 0, integrated over the area of
the thin loop with long sides straddling the cylinder as shown in Figure 5.6,
gives, using Stokes’ theorem (18)

∫

Σ

(�∇× �E) · d�S =

∮

�E · d�ℓ

=

∫

L1

−Eϕdℓ +

∫

L2

Eϕdℓ +

∫

short
sides

�E · d�ℓ (Ex 5.5.6)

Shrinking the short sides to vanishingly small gives us

−Ēϕ(a−)L + Ēϕ(a+)L = 0 (Ex 5.5.7)

which, when L → 0, becomes Eϕ(a−) = Eϕ(a+).

To summarize, the boundary conditions are Eϕ is continuous at a, or

− 1

a

∂V (r, ϕ)

∂ϕ

∣

∣

∣

∣

a+

= − 1

a

∂V (r, ϕ)

∂ϕ

∣

∣

∣

∣

a−

(Ex 5.5.8)

and Er is discontinuous, increasing by σ/ε0 as it crosses the surface out of the
enclosed cylinder, or

− ∂V (r, ϕ)

∂r

∣

∣

∣

∣

a+

= − ∂V (r, ϕ)

∂r

∣

∣

∣

∣

a−

+
σ

ε0
(Ex 5.5.9)
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Applying the first of these conditions (Ex 5.5.8) to the series for V , we obtain

∑

(ℓAℓ sin ℓϕ − ℓBℓ cos ℓϕ) =
∑

(ℓCℓ sin ℓϕ − ℓDℓ cos ℓϕ) (Ex 5.5.10)

Grouping terms, we have

∑

ℓ (Aℓ − Cℓ) sin ℓϕ +
∑

ℓ (Bℓ − Dℓ) cos ℓϕ = 0 (Ex 5.5.11)

The linear independence of the trigonometric functions then requires that the co-
efficients of each term in the sum above equal zero; therefore Aℓ = Cℓ and Bℓ =
Dℓ.

The second boundary condition (Ex 5.5.9) applied to the series gives

∑

ℓ

ℓ

a
(Cℓ cos ℓϕ + Dℓ sin ℓϕ) = −

∑ ℓ

a
(Aℓ cos ℓϕ + Bℓ sin ℓϕ) +

σ0

ε0
cos ϕ

(Ex 5.5.12)
We again equate the coefficient of each linearly independent function to zero, giving
for the cosϕ term

(

C1 + A1 −
σ0a

ε0

)

cos ϕ = 0 (Ex 5.5.13)

while the remaining terms give Bℓ + Dℓ = 0 and Aℓ + Cℓ = 0. Together with
the equations from (Ex 5.5.11) these latter imply that except for A1 and C1, the
coefficients vanish. Substituting A1 = C1 in the equation above yields A1 = C1 =
σ0a/2ε0. Finally, then,

V (r < a) =
σ0r

2ε0
cos ϕ (Ex 5.5.14)

and

V (r > a) =
σ0a

2

2ε0r
cos ϕ (Ex 5.5.15)

It might be noted that Exercise 5.5 is essentially a Neumann problem in that the
derivatives of the potential are specified, albeit indirectly, on the boundary. It
should be obvious that an arbitrary constant may be added to V without changing
the fields.

5.2.3 Spherical Polar Coordinates with Axial Symmetry

When the potential is specified on a spherical boundary it is fairly clear that it would
be advantageous to use spherical polar coordinates. It will develop, however, that
even when there is only cylindrical symmetry in the problem it is still frequently
advantageous to work in spherical polar coordinates. Laplace’s equation in spherical
polar coordinates when the solution is independent of ϕ reads as follows:

1

r

∂2

∂r2
(rV ) +

1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

= 0 (5–25)
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We assume a separable solution of the form V = R(r)Θ(θ), then r2∇2V/V = 0
becomes

r2

rR

d2

dr2
(rR) = − 1

Θ sin θ

d

dθ

(

sin θ
dΘ

dθ

)

= ℓ(ℓ + 1) (5–26)

with no restrictions on ℓ yet. Our rather peculiar choice of writing the separation
constant anticipates a well-behaved solution. The radial equation

r2 d2

dr2
(rR) = ℓ(ℓ + 1) (rR) (5–27)

is readily solved to give rR = Arℓ+1 + Br−ℓ, whence we conclude

R(r) = Arℓ +
B

rℓ+1
(5–28)

The remaining equation for Θ,

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ ℓ(ℓ + 1)Θ = 0 (5–29)

is may be converted to the Legendre equation (see Appendix F) by setting x =
cos θ ⇒ d/dθ = − sin θ · d/dx, which results in

d

dx

[

(1 − x2)
dΘ

dx

]

+ ℓ(ℓ + 1)Θ = 0 (5–30)

The solutions to (5–30) are well known as the Legendre functions Pℓ(x) and
Qℓ(x). Qℓ(±1) = ±∞ and Pℓ(x) diverges as x → ±1 unless ℓ is an integer. The
integral ℓ solutions Pℓ(x) are the Legendre Polynomials encountered earlier.

Recapitulating, we have found the well-behaved solutions to ∇2V = 0 to be of
the form

V (r, θ) =

(

Arℓ +
B

rℓ+1

)

Pℓ(cos θ) (5–31)

and the general solution for problems including θ = 0 and θ = π is

V (r, θ) =
∞
∑

ℓ=0

(

Aℓr
ℓ +

Bℓ

rℓ+1

)

Pℓ(cos θ) (5–32)

Example 5.6: A grounded conducting sphere of radius a is placed in an initially
uniform electric field �E = E0k̂ . Find the resulting potential and electric field.

Solution: Besides the obvious boundary condition V (a, θ, ϕ) = 0, we have also
V (r → ∞) = −E0r cos θ. In addition we expect the solution to be symmetric about
the z axis . We therefore rewrite

V (r, θ) =
∑

ℓ

(

Aℓr
ℓ +

Bℓ

rℓ+1

)

Pℓ(cos θ) (Ex 5.6.1)
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The boundary condition at ∞ implies that the potential can have no terms
growing faster than r : V (r) → −E0r cos θ = A1rP1(cos θ) as r → ∞ then gives A1

= −E0, and Aℓ �= 1 = 0. With this restriction the solution at r = a reduces to

0 = V (a, θ) = −E0a cos θ +

∞
∑

ℓ=0

Bℓ

aℓ+1
Pℓ(cos θ) (Ex 5.6.2)

=
B0

a
+

(

B1

a2
− E0a

)

cos θ +
∞
∑

ℓ=2

Bℓ

aℓ+1
Pℓ(cos θ) (Ex 5.6.3)

As the Legendre polynomials are linearly independent functions, they can add to
zero only if the coefficient of each vanishes. We conclude then that

B0

a
= 0 ⇒ B0 = 0

B1

a2
− E0a = 0 ⇒ B1 = E0a

3

Bℓ

aℓ+1
= 0 ⇒ Bℓ �=1 = 0

(Ex 5.6.4)

Recapitulating, we have found that the potential is

V (r, θ) =

(

a3

r2
− r

)

E0 cos θ (Ex 5.6.5)

from which we easily deduce the electric field �E = −�∇V :

�E =

(

1 +
2a3

r3

)

E0r̂ cos θ +

(

a3

r3
− 1

)

E0θ̂ sin θ (Ex 5.6.6)

It is worth noting that as k̂ = r̂ cos θ − θ̂ sin θ,

�E = E0k̂ + E0
a3

r3

(

3r̂ cos θ + θ̂ sin θ − r̂ cos θ
)

(Ex 5.6.7)

= E0k̂ +
E0a

3

r3

[

3(r̂ · k̂)r̂ − k̂
]

(Ex 5.6.8)

In other words, the field of the charge distribution on the sphere induced by the
initially uniform external field �E0 is just that of a dipole of strength 4πε0a

3E0k̂.

As a somewhat more powerful use of the spherical polar solution of Laplace’s
equation, we can use as boundary condition the known (by other means) potential
along a symmetry axis. The solution thus obtained will give us the potential at any
point in space.

Example 5.7: Obtain the magnetic scalar potential of a circular current loop of radius
a at a point in the vicinity of the center (r < a).
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Solution: The general solution for Vm that does not diverge as r → 0 is

Vm(r, θ) =
∑

ℓ

Aℓr
ℓPℓ(cos θ) (Ex 5.7.1)

For �r along the z axis θ = 0, allowing us to replace Pℓ(cos θ) by Pℓ(1) = 1. Along
the z axis, Vm becomes

Vm(z) =
∑

ℓ

Aℓz
ℓ (Ex 5.7.2)

The magnetic scalar potential along the central axis of a circular current loop was
found in (Ex 1.15.3) to be

Vm(z) = −I

2

z√
z2 + a2

(Ex 5.7.3)

which can be expanded by the binomial theorem as a power series in (z/a):

Vm = −Iz

2a

(

1 +
z2

a2

)−1/2

(Ex 5.7.4)

= −Iz

2a

(

1 − 1

2

z2

a2
+

3

2

1

2

1

2!

z4

a4
− 5

2

3

2

1

2

1

3!

z6

a6
+ . . .

)

(Ex 5.7.5)

= − I

2a
z +

I

4a3
z3 − 3I

16a5
z5 +

15

96a7
z7 − . . . (Ex 5.7.6)

A comparison of coefficients yields

A1 = − I

2a
, A3 =

I

4a3
, A5 = − 3I

16a5
, A7 =

15I

96a7
, . . .

The general result for the magnetic scalar potential of a circular current loop is then

Vm = −I

2

[

r

a
P1(cos θ) − r3

2a3
P3(cos θ) +

3r5

8a5
P5(cos θ) − 15r7

48a7
P7(cos θ) + . . .

]

(Ex 5.7.7)

The magnetic induction field is now easily obtained as �B = −µ0
�∇Vm.

The magnetic induction field of a plane coil is sufficiently important that we
might try expressing the result above (Ex 5.8.5) in cylindrical coordinates in some-
what more elementary terms. Writing P1(cos θ) = cos θ = z/r, we expand

P3(cos θ) =
1

2

[

5

(

z

r

)3

− 3

(

z

r

)

]

(5–33)

P5(cos θ) =
1

8

[

63

(

z

r

)5

− 70

(

z

r

)3

+ 15

(

z

r

)

]

(5–34)
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Then, using the cylindrical coordinate ρ for distance from the axis, r2 = ρ2 + z2

and we obtain

r

a
P1(cos θ) =

r

a
· z

r
=

z

a
(5–35)

(

r

a

)3

P3(cos θ) =
1

2

(

5
z3

a3
−3

r2z

a3

)

=
1

2

(

5
z3

a3
− 3(z2 + ρ2)z

a3

)

=
z3

a3
− 3

2

ρ2z

a3
(5–36)

(

r

a

)5

P5(cos θ) =
1

8

(

63
z5

a5
− 70

z5

a5
− 70

ρ2z3

a5
+ 15

(ρ2 + z2)2z

a5

)

=
1

8a5

(

8z5 − 40z3ρ2 + 15zρ4
)

(5–37)

Collecting terms, we obtain finally for Vm(ρ, z)

Vm(ρ, z) = −I

2

[

z

a
− 1

2a3

(

z3 − 3

2
ρ2z

)

+
3

64a5

(

8z5 − 40ρ2z3 + 15ρ4z
)

· · ·
]

(5–38)

We see that centrally, the magnetic induction field takes the value Bz = µ0I/2a,
decreases quadratically along the z axis and increases quadratically as the wire is
approached.

Example 5.8: Obtain the magnetic scalar potential of a circular current loop of radius
a at a point r > a.

Solution: The general expression for Vm that does not diverge as r → ∞ is

Vm(r, θ) = A0 +
∑

ℓ

Bℓ

rℓ+1
Pℓ(cos θ) (Ex 5.8.1)

giving along the z axis Vm(z) = A0 +
∑

ℓ

Bℓ

zℓ+1
(Ex 5.8.2)

The previously found expression for the potential along the z axis can again be
expanded in a power series, but this time in (a/z ) to ensure convergence.

Vm(z) = −I

2

z√
z2 + a2

= −I

2

[

1 +

(

a

z

)2
]− 1

2

= −I

2

[

1 − 1

2

(

a

z

)2

+
1

2

3

2

1

2!

(

a

z

)4

− 1

2

3

2

5

2

1

3!

(

a

z

)6

+ · · ·
]

(Ex 5.8.3)

Comparing terms, we have B1 = 1
4Ia2, B3 = − 3

16Ia4, B6 = 5
32Ia6, and so forth.

The expansion for arbitrary �r, r > a, is then

Vm(r, θ) =
I

2

[

−1 +
1

2

a2

r2
P1(cos θ) − 3

8

a4

r4
P3(cos θ) +

5

16

a6

r6
P5(cos θ) + · · ·

]

(Ex 5.8.4)
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As a final example of the utility of this technique we compute the noncentral
field of a pair of coils with parallel planes, separated by their radius. Such pairs of
coils are known as Helmholtz coils and are useful for producing uniform magnetic
induction fields over relatively large, open volumes. The spacing of the coils is
exactly that required for the cubic terms of the scalar potential to cancel one-
another.

Example 5.9: Find the scalar magnetic potential and magnetic induction field at
points near the axis of a pair of Helmholtz coils each of which has radius a and has
one turn carrying current I .

Solution: The magnetic scalar potential of two coils centered at z = ±1
2a is easily

written as

Vm(0, 0, z) = −I

2





z − 1
2a

√

(z − 1
2a)2 + a2

+
z + 1

2a
√

(z + 1
2a)2 + a2



 (Ex 5.9.1)

We begin by expanding this axial potential as a power series in z/a. Some care is
required in carrying all terms to order (z/a)6. The result is

Vm(0, 0, z) =
−8I

53/2

[

z

a
− 144

54

(

z

a

)5

+ O
(

z

a

)7
]

(Ex 5.9.2)

The general solution in spherical polar coordinates (assuming the obvious az-
imuthal symmetry) may be written

Vm(r, θ) =
∑

ℓ

Aℓ

(

r

a

)ℓ

Pℓ(cos θ) (Ex 5.9.3)

for r < a. Along the z axis the general solution specializes to

Vm(z) =
∑

ℓ

Aℓ

(

z

a

)ℓ

(Ex 5.9.4)

Comparison of series leads to A1 = −(8I/5)3/2, A2 = A3 = A4 = 0, A5 =
−(8I/5)3/2(−144/54), A6 = 0, · · · ; therefore

Vm(r, θ) =
−8I

53/2

[

(

r

a

)

P1(cos θ) − 144

54

(

r

a

)5

P5(cos θ) + · · ·
]

(Ex 5.9.5)

where P5(x) = 1
8 (63x5 − 70x3 + 15x).

In cylindrical polar coordinates with z = r cos θ and r2 = ρ2 + z2, the scalar
potential of the Helmholtz pair becomes

Vm(r, θ) = − 8I

53/2

[

z

a
− 144

625

(

z5

a5
+

15

8

zρ4

a5
− 5

z3ρ2

a5

)

+ · · ·
]

(5–39)
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The components of the magnetic induction field are now easily found, giving

Bz(ρ, z) =
8µ0I

53/2a

{

1 − 144

125

[

(

z

a

)4

+
3

8

(

ρ

a

)4

− 3
z2ρ2

a4

]

+ · · ·
}

(5–40)

and

Bρ(ρ, z) =
8µ0I

53/2
· 144

125

(

4ρz3 − 3zρ3

2a5

)

+ · · · (5–41)

It will be noted that the central field is very homogeneous, a 10% of the radius
displacement in any direction leads to only about a 10−4 deviation from the field’s
central value.

As mentioned before, when charges or currents reside entirely on the boundary,
these may frequently be taken into account by the boundary conditions. In the next
example we consider how we may account for a current on the bounding surface.

Example 5.10: Obtain the magnetic induction field both inside and outside a uni-
formly charged rotating spherical shell.

Solution: The magnetic scalar potential will be of the form

Vm(�r ) =

∞
∑

ℓ=0

Aℓr
ℓPℓ(cos θ) for r < a (Ex 5.10.1)

and

Vm(�r ) =

∞
∑

ℓ=0

Bℓ

rℓ+1
Pℓ(cos θ) for r > a (Ex 5.10.2)

The boundary conditions are obtained by integrating Maxwell’s equations at the
surface of the sphere. Integrating �∇ · �B = 0 over the thin volume of Figure 5.7, we
have with the aid of the divergence theorem

0 =

∫

τ

�∇ · �Bd3r =

∮

S

�B · �S = B̄ext
r S1 − B̄int

r S2 + 2πrǫ〈 �Bt〉 (Ex 5.10.3)

Figure 5.7: A thin pillbox shaped volume whose top and bottom surfaces
are, respectively outside and inside the spherical boundary is used to obtain
the boundary condition on Br.
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where 〈 �Bt〉 is the mean value of the component of tangential field perpendicular
to curved side of the pillbox. Letting the thickness ǫ approach zero, the last term
vanishes, and S1 approaches S2. As the expression above is independent of the
surface area S of the pillbox, we conclude Bext

r = Bint
r . The perpendicular com-

ponent of the induction field is continuous across the sphere.

Figure 5.8: The loop lies in a plane perpendicular to the current and is
traversed by current lσω sin θ.

Integrating �∇× �B = µ0
�J over the area Σ illustrated in Figure 5.8 gives

∫

Σ

(�∇× �B) · d�S =

∫

µ0
�J · d�S (Ex 5.10.4)

or, with the aid of Stokes’ theorem (d�S = −ϕ̂dS),

∮

�B · d�ℓ = −µ0

∫

JϕdS (Ex 5.10.5)

Following the boundary in the direction indicated in Figure 5.16 we break the
contour into four segments to get,

∮

�B · d�ℓ = lB̄int
θ − lB̄ext

θ + 2ǫB̄r (Ex 5.10.6)

The bar indicates a mean value of the quantity under it. As we let ǫ tend to zero the
last term vanishes. On the surface of the sphere, the current density is �J = σδ(r−a)�v
= σδ(r−a)rω sin θϕ̂. The current passing through the thin rectangular area is then

∫

µ0
�Jϕ · d�S = µ0

∫ a+ǫ/2

a−ǫ/2

∫ rθ0+l

rθ0

ωσδ(r − a)r sin θ drdℓ

= µ0σaωl sin θ (Ex 5.10.7)

Again, the relation must hold independent of l , meaning that

Bext
θ − Bint

θ = µ0ωσa sin θ (Ex 5.10.8)
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These boundary conditions are easily translated to boundary conditions on Vm.
Since �B = −µ0

�∇Vm, these conditions reduce to

∂Vm

∂r

∣

∣

∣

∣

r=a+

=
∂Vm

∂r

∣

∣

∣

∣

r=a−

(Ex 5.10.9)

and
1

a

∂Vm

∂θ

∣

∣

∣

∣

r=a+

− 1

a

∂Vm

∂θ

∣

∣

∣

∣

r=a−

= −ωσa sin θ (Ex 5.10.10)

Using the general interior and exterior forms of the potential to evaluate the
derivatives at a− and a+, respectively, we write for the latter equation (Ex 5.10.10)

∞
∑

ℓ=0

(

Bℓ

aℓ+2
− Aℓa

ℓ−1

)

P′
ℓ(cos θ) sin θ = aσω sin θ (Ex 5.10.11)

which requires that
Bℓ

aℓ+2
= Aℓa

ℓ−1 (Ex 5.10.12)

except when P′
ℓ(cos θ) is a constant in which case ℓ = 1 and P ′

1 = 1. Hence for ℓ =
1, we obtain

(

B1

a3
− A1

)

= aσω (Ex 5.10.13)

The boundary condition involving the radial derivatives (Ex 5.10.9) gives

− (ℓ + 1)Bℓ

aℓ+2
Pℓ(cos θ) = Aℓℓa

ℓ−1Pℓ(cos θ) (Ex 5.10.14)

which reduces to

− (ℓ + 1)Bℓ

aℓ+2
= Aℓℓa

ℓ−1 (Ex 5.10.15)

Comparison of this term with the one above for which, for ℓ �= 1, shows that the
two can be compatible only if ℓ equals −(ℓ + 1). No integer solutions exist leading
us to conclude that Aℓ = Bℓ = 0 for ℓ �= 1.

When ℓ = 1, the relation (Ex 5.10.15) leads to

−2B1

a3
= A1 (Ex 5.10.16)

Substituting for A1 in the equation (Ex 5.10.13) above, we conclude

(

B1

a3
+

2B1

a3

)

= aσω ⇒ B1 =
a4σω

3
and A1 = −2aσω

3
(Ex 5.10.17)

The potentials are then

Vm(r > a) =
a4σω

3r2
cos θ (Ex 5.10.18)
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and

Vm(r < a) = −2σaω

3
r cos θ = −2σaωz

3
(Ex 5.10.19)

The magnetic induction field �B is now readily evaluated as �B = −µ0
�∇Vm,

�B(r < a) = 2
3µ0aσωk̂ (Ex 5.10.20)

B(r > a) = 2
3

µ0a
4σω

r3
cos θr̂ + 1

3

µ0a
4σω

r3
sin θθ̂ (Ex 5.10.21)

The magnetic induction field inside the sphere above is uniform throughout the
entire sphere. While it is not practical to construct an apparatus inside a charged,
rotating sphere, the same current density and hence the same magnetic field are
achieved by a coil wound around the sphere with constant (angular) spacing between
the windings.

5.2.4 Conformal Mappings

The idea behind conformal mappings is to take the solution to a very simple bound-
ary condition problem and then to fold, stretch, or otherwise deform the boundary
by a conformal mapping to match the boundary for a more complicated problem
of interest. The same mapping that changes the boundary will also deform the
field lines and constant potential lines of the simple problem to those of the more
complicated problem. As the use of complex functions is central to the technique,
we begin with a consideration of complex functions of a complex variable z = x+iy.

Generally, a complex function f(z) may be written as the sum of a real part and
an imaginary part, f(z) = u(x, y) + iv(x, y) . This means that for a point x + iy in
the (complex) z plane we can find a corresponding point u + iv in the image plane
(or, more briefly, the f plane) defined by f. The function f may be said to map the
point (x+ iy) to (u+ iv). A series of points in the z plane will be mapped by f to a
series of points in the f plane. If the function f is well behaved, adjacent points in
the z plane are mapped to adjacent points in the f plane (i.e., a line in the z plane
is mapped to a line in the f plane). It is such well-behaved complex functions or
mappings that we will consider.

A function f(z) is said to be analytic (the terms regular or holomorphic are also
used) at a point z0 if its derivative, defined by

df

dz
= lim

∆z→0

f(z + ∆z) − f(z)

∆z
(5–42)

exists (and has a unique value) in some neighborhood of z0. A moment’s reflection
will show this to be a considerably stronger condition than the equivalent for func-
tions of real variables because ∆z can point in any direction in the z plane. The
direction of taking this limit is immaterial for an analytic function. To investigate
the consequence of this property, let us take the derivative first in the real direction
and then in the imaginary direction.
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Taking ∆z along the real axis results in

df

dz
= lim

∆x→0

u(x + ∆x, y) − u(x, y) + i
(

v(x + ∆x, y) − v(x, y)
)

∆x

=
∂u

∂x
+ i

∂v

∂x
(5–43)

whereas taking the derivative in the imaginary direction results in

df

dz
= lim

∆y→0

u(x, y + ∆y) − u(x, y) + i
(

v(x, y + ∆y) − v(x, y)
)

i∆y

= −i
∂u

∂y
+

∂v

∂y
(5–44)

Comparing the two expressions (5–41) and (5–42), we find that the real and
imaginary parts of an analytic function f are not arbitrary but must be must be
related by

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
(5–45)

These two equalities (5–45) are known as the Cauchy-Riemann equations. The va-
lidity of the Cauchy-Riemann equations is both a necessary and sufficient condition
for f to be analytic.

To illustrate these ideas, we consider the function f(z) = z2 = (x + iy)2 =
(x2 − y2) + 2ixy. Then u = x2 − y2 and v = 2xy. The derivatives are easily
obtained

∂u

∂x
= 2x,

∂v

∂y
= 2x;

∂u

∂y
= −2y,

∂v

∂x
= 2y

in accordance with the Cauchy-Riemann equations.
The Cauchy-Riemann equations can be differentiated to get

∂2u

∂x2
=

∂2v

∂x∂y
and

∂2u

∂y2
= − ∂2v

∂y∂x
(5–46)

Since the order of differentiation should be immaterial, these can be added to give

∂2u

∂x2
+

∂2u

∂y2
= ∇2u = 0 (5–47)

In similar fashion

∂2v

∂y2
=

∂2u

∂y∂x
and

∂2v

∂x2
= − ∂2u

∂x∂y
⇒ ∇2v = 0 (5–48)

The functions u and v each solve Laplace’s equation. Any analytic function there-
fore supplies two solutions to Laplace’s equation, suggesting that we might look for
the solutions of static potential problems among analytic functions. The functions
u and v are known as conjugate harmonic functions. It is easily verified that the
curves u = constant and v = constant are perpendicular to one another, suggesting
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Figure 5.9: The image of the rectangular grid in the f plane under the

mapping z =
√

f is shown on the right in the z plane.

that if either u or v were to represent potential, then the other would represent
electric field.

To return now to the notion of conformal mappings,14 let us consider the map-
ping produced by the analytic function f(z) = z2, (Figure 5.97). The inverse map-

ping, z =
√

f , is analytic everywhere except at z = 0. The image of the line v
= 0 in the z plane is easily found: for u > 0, z =

√
u produces an image line

along the positive x axis, while for u < 0, z =
√

u = i
√
−u produces an image line

along the positive y axis of the z plane. The image of v = 1 is easily found from
(u + iv) = x2 − y2 + 2ixy, implying that 2xy = 1. Similarly, the line u = c has
image x2 − y2 = c.

Let us now consider the potential above an infinite flat conducting plate with
potential V = V0, lying along the u axis. Above the plate, the potential will be
of the form V = V0 − av. (A second plate at a different potential, parallel to the
first would be required to determine the constant a. In a more general problem,
V would be a function of both u and v. V may generally be considered to be the
imaginary (or alternatively, real) part of an analytic function

Φ(u, v) = U(u, v) + iV (u, v) = Φ(f) (5–49)

For this example, taking V to be the imaginary part of an analytic function Φ,
Φ(u, v) = iV0 − af = −au + i(V0 − av). The corresponding electric field has
components Ev = a and Eu = 0.

14The mappings are called conformal because they preserve the angles between intersecting lines
except when singular or having zero derivative. To see this, we consider two adjacent points z0

and z on a line segment that makes angle ϕ with the x axis at z0. Then z − z0 may be written
in polar form as reiϕ. The image of the segment ∆f = f(z) − f(z0) can be expressed to first
order as f ′(z0)(z − z0) = aeiα(z − z0). If we write each term in polar form, ∆f takes the form
Reiθ = aeiαreiϕ. Thus the image line segment running from f(z0) to f(z) makes angle θ = α + ϕ
with the u axis. This means that any line passing through z0 is rotated through angle α in the
mapping to the f plane providing that the derivative f ′(z0) exists and that a unique polar angle
α can be assigned to it. When f ′ is zero as it is for f(z) = z2 at z = 0, conformality fails.
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Figure 5.10: The figure on the left is the mapping of the rectangular grid
on the right produced by the function z = ℓ sin f .

Now the mapping that takes the grid lines from the f plane to the z plane also
takes Φ to the z plane. Expressed in terms of x and y

Φ(f(z)) = iV0 − az2 = a(y2 − x2) + i(V0 − 2axy) (5–50)

Thus, in the z plane, U(x, y) = a(y2−x2) and V (x, y) = V0−2axy. The latter is
the potential produced by two conducting plates at potential V0 intersecting at right
angles. The field lines produced by v = constant in the u-v plane are now obtained
from u = y2 − x2 = constant, while the constant potential lines are produced by v
= 2xy = constant. Figure 5.9 illustrates this mapping as it takes line segments and
areas from the f plane to the z plane

A second example is offered by the mapping z = ℓ sin f , which maps the entire
u axis onto a finite line segment of length 2ℓ in the z plane. We express z in terms
of u and v by expanding sin f as

sin f =
eif − e−if

2i
(5–51)

to obtain

sin f =
ei(u+iv) − e−i(u+iv)

2i
=

e−veiu − eve−iu

2i

=
e−v (cos u + i sin u) − ev (cos u − i sin u)

2i

= i sinh v · cos u + cosh v · sinu (5–52)

Thus x = ℓ cosh v · sinu and y = ℓ sinh v · cos u.
We again take for the potential above the v = 0 “plane” the imaginary part of

Φ(u, v) = V0 − af . It is somewhat awkward, however, to find Φ in terms of x and y
directly by substituting for f in the expression for Φ. Fortunately this is not really
necessary. For a given point (u, v) in the f plane (where V is assumed to be known),
the corresponding (x, y) value is readily found. In particular, the equipotentials at
v = constant are easily obtained, for

x2

ℓ2 cosh2 v
+

y2

ℓ2 sinh2 v
= 1 (5–53)
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In other words, the equipotentials around the flat strip are ellipses of major axis
ℓ cosh v and minor axis ℓ sinh v. At large distances cosh v and sinh v both tend to
1
2ev, meaning the equipotentials tend to circles. The potential and field lines are
shown in Figure 5.10. (This problem can also be solved using separation of variables
in elliptical coordinates.)

For a last example of somewhat more interest, let us consider the transformation

z =
a

2π

(

1 + f + ef
)

(5–54)

We begin by considering some of the properties of this mapping. If f is real,
then z is also real, and, as u varies from −∞ to +∞, x will take on values from
−∞ to +∞. The real axis maps (albeit non-linearly) onto itself. Next consider the
horizontal line f = u + iπ. Substituting this into the expression for z gives

Figure 5.11: The infinite “planes” at ±iπ in the f plane map to the semi-
infinite “planes” in the z plane at y = ±a/2 on the right.

z =
a

2π

(

1 + u + iπ + eu+iπ
)

=
a

2π
(1 + u + iπ − eu) (5–55)

We conclude that

x =
a

2π
(1 + u − eu) and y =

a

2
(5–56)

For u large and negative, x ≃ au/2π increases to 0 as u goes to zero. As u
passes zero, eu it becomes larger than 1 + u and x retraces its path at 1

2a above
the x axis from 0 to −∞. The line in the f plane folds back on itself at u = 0 on
being mapped to the z plane. Similarly, the line at v = −π maps to the half-infinite
line at y = −a/2 with negative x. If we let the lines at ±iπ in the f plane be the
constant potential plates of the infinite parallel plate capacitor of Figure 5.9, the
mapping carries this potential to that of the semi-infinite capacitor on the right.
We can, with this mapping, find the fringing fields and potentials near the edge of
a finite parallel plate capacitor. As we will see in the next section, we will also be
able find the correction to the capacitance due to the fringing fields.

Letting the plates of the infinite capacitor in the f plane be at potential ±V0/2,
with the top plate positive, the potential at any point in between the plates becomes
V = V0v/2π. The analytic function of which V is the imaginary part is easily
obtained as Φ(f) = V0f/2π. Again it is somewhat awkward to substitute for f in
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terms of x and y. Instead, we separate the equation for z into real and imaginary
components to get

x =
a

2π
(1 + u + eu cos v) (5–57)

and y =
a

2π
(v + eu sin v) (5–58)

which we can evaluate parametrically by varying u to obtain the constant v (con-
sequently also the constant V = V0v/2π) curves. Similarly, the electric field lines
are obtained in the x -y plane by varying v. The field and potential lines are plotted
in Figure 5.12.

Figure 5.12: The equipotential and field lines near the edge of a semi-infinite
plate capacitor.

Verifying that a given mapping does indeed map a particular surface onto an-
other is fairly straightforward. It is not, however, obvious how mappings for given
boundaries are to be obtained, other than perhaps by trial and error. For polygonal
boundaries, a general method of constructing the mapping is offered by Schwarz-
Christoffel transformations. For nonpolygonal boundaries, one must rely on “dic-
tionaries” of mappings.15

5.2.5 Schwarz-Christoffel Transformations

In this segment we will briefly consider the mappings of the real axis in the f plane
to a polygonal boundary not necessarily closed or continuous) in the z plane. The
transformation that maps the upper half of the x plane to the “interior” of a polygon
was given independently by Schwarz (also spelled Schwartz) and by Christoffel,
the latter preceding Schwarz by two years. Nonetheless, the transformations are
frequently referred to as simply “Schwarz transformations”.

15For for a dictionary of Schwarz-Christoffel transformations, see for instance K.J. Binns and
P.J. Lawrenson. (1973) Analysis and Computation of Electric and Magnetic Field Problems, 2nd
ed. Pergamon Press, New York.
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To begin, we note that a polygon is a figure made up of line segments, each
of which has a constant slope, terminated by a vertex where the slope suddenly
changes to a new value. We therefore consider a differential equation (an equation
for the slope) relating f and z. In particular, consider the differential equation

dz

df
= A

n
∏

i=1

(f − ui)
βi (5–59)

where the ui are points on the real axis in the f plane. We see immediately that
conformality fails at every point f = ui. The real axis of the f plane will be
mapped in continuous segments between these points, to distinct line segments in
the z plane. Recall that a complex number may be represented in polar form, Reiθ.
The argument of the number, θ, gives the inclination of a line joining the origin to
z. The angle of the segments in z plane may be determined from the argument of
the derivative (5–59) above. Using arg(f − ui)

βi = arg(Reiθ)βi = arg(Rβieiθβi) =
βiarg(eiθ) = βiarg(f − ui), we may write

arg

(

dz

df

)

= argA + β1arg(f − u1) + β2arg(f − u2) + · · · + βnarg(f − un) (5–60)

Since we were interested in mappings of the real axis, we restrict f to the real axis.
When u < u1, f − ui < 0, implying each of the arguments equals π. As u increases
to greater than u1, the argument of (f − u1) vanishes. Further increases will make
more and more of the terms vanish as u passes each of the roots ui. With f on the
real axis df = du so that

arg

(

dz

df

)

= arg

(

dx + idy

du

)

= arg (dx + idy) = tan−1

(

dy

dx

)

(5–61)

In other words, the argument of the derivative is just the slope of the line segment
at x. We abbreviate this slope in the interval u ∈ (ui, ui+1) as θi.

Let us evaluate this angle when u lies between ui and ui+1. u is larger than every
point to the left, meaning the argument is zero and it is smaller than every point
on the right, meaning the argument for all factors of the product with subscript > i
is π. Therefore

θi = argA + π(βi+1 + βi+2 + · · · + βn) (5–62)

We conclude that the image of the segment lying between ui and ui+1 in the f
plane is mapped to a segment in the z plane inclined at angle θi to the x axis. If
we subtract θi from θi+1 to find the difference between two successive segments’
slopes, we obtain the bend at the point where the two segments meet,

θi+1 − θi = −πβi+1 (5–63)

We can relate this change in slope to the interior angle, αi+1 of the polygon at the
point mapped from ui+1 as indicated in Figure 5.13.

αi+1 = π + πβi+1 (5–64)
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Figure 5.13: The angle αi+1 is complementary to −πβi+1.

which we solve for βi+1 to give

βi+1 =
αi+1

π
− 1 (5–65)

In terms of the interior angles, (5–59) becomes

dz

df
= A

n
∏

i=1

(f − ui)
αi/π−1 (5–66)

The argument of the (complex) factor A will rotate the whole figure and the
magnitude will scale it. The equation (5–66) is useful provided it can be integrated
in terms of elementary functions which is frequently not possible. We will illustrate
the procedure with several examples.

Example 5.11: Use the Schwarz-Christoffel transformation to produce the 90◦ bent
plane mapping of page 117.

Solution: We wish to produce the mapping that maps the real axis of the f plane
to +y axis for u < 0 and the +x axis for u > 0. This means we want to produce a
bend of π/2 at u = 0. The mapping is according to (5–66)

dz

df
= A(f − 0)1/2−1 = Af−1/2 (Ex 5.11.1)

which is readily integrated to give

z = A′f1/2 + k (Ex 5.11.2)

Choosing k = 0 and A′ real gives the required mapping.

Example 5.12: Find the mapping that maps the real axis onto the real axis and a
line parallel to the real axis a distance a above it.

Solution: We choose as before, the point zero on the u-axis to produce the singular
point, and this time as we want parallel lines we choose α = 0. (5–66) then becomes

dz

df
= A(f − 0)0−1 = Af−1 (Ex 5.12.1)
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which we integrate to obtain
z = A ln f + k (Ex 5.12.2)

Again we can eliminate k without loss (it merely identifies z = −∞ with f = 0). For
positive u, we have z = A ln |u| whereas for negative u, we have z = A(ln |u| + iπ).
Thus the negative u axis maps to a line Aπ above the x axis. Choosing A = a/π
gives the required mapping.

Example 5.13: Find the mapping that carries the real axis onto the real axis with
a gap of width 2a straddling the origin. (This would be a slotted plane in three
dimensions.)

Figure 5.14: The plane with a slot can be formed by cutting the infinite
plane at the center and folding the edges back at ±b.

Solution: It is help to imagine how the real axis might be bent and cut to achieve
this mapping. Figure 15.14 illustrates the operation. The real axis is cut at u = 0.
At u = ±b, the line is folded back, meaning the image of the segment of the u
axis straddling zero has a ±π ‘bend’ while the image of ±b has a 2π bend. The
prescription for the mapping then gives us

dz

df
= A(f + b)(f − b)(f − 0)−2 = A

f2 − b2

f2
(Ex 5.13.1)

Integrating (Ex 13.1) gives

z = A

(

f +
b2

f

)

+ B (Ex 5.13.2)

When f = ±b we wish z = ±a which gives B = 0 and A = a/2b so that the required
mapping is

z =
a

2

(

f

b
+

b

f

)

(Ex 5.13.3)

As a final example we will obtain the mapping of the top half of the semi-finite
parallel plate capacitor.

Example 5.14: Obtain a transformation to map the real axis onto the real axis and
z = id for x < 0.
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Solution: For this mapping we need two vertices (the vertices at ±∞ are irrelevant),
one to split the line and one to fold the upper ‘electrode’ back onto itself in order
to have it terminate. Let the image of the vertex producing the 2π fold lie at a and
the image of displacement vertex with 0 vertex angle at b on the real axis in the f
plane. The mapping then obeys

dz

df
= A(f − a)(f − b)−1 (Ex 5.14.1)

Although we have three constants to determine, there is only one significant con-
stant in the geometry, namely d. Therefore any two of the constants may be given
convenient values with the third left to fit the correct boundary. For convenience
then, we choose b = 0 and a = −1, resulting in

dz

df
= A

(

f + 1

f

)

(Ex 5.14.2)

which, when integrated gives

z = A(f + ln f) + B (Ex 5.14.3)

For large positive real f, z is real so that we conclude B is real. For negative real
f, z = A(u + iπ + ln |u|) + B so that we conclude Aπ = d. Letting our fold point
u = −1 correspond to x = 0 we obtain B = d/π. The required mapping is then

z =
d

π
(1 + f + ln f) (Ex 5.14.4)

Before leaving the example above entirely, we note that the mapping used earlier
mapped the semi-infinite plate not from the real axis but from a line above the real
axis. Substituting for f the results from example 5.13 will complete the transfor-
mation. In particular, letting ln f = w with w = u + iv we can recast (Ex 5.14.4)
as

z =
d

π
(1 + w + ew)

which maps w = u + iπ onto the top ‘plate’ and w = u onto the x axis. Cascading
maps in this fashion is frequently useful.

5.2.6 Capacitance

The mapping of two plates with known potential between them will allow us to
calculate the capacitance of the mapped system. Given the potential everywhere
in the mapped system, we could presumably take the normal derivative at the
conductors to obtain the charge density. Integrating the charge density over the
surface of one of the two conductors involved would then give the charge stored.
Finally, dividing the charge by the potential difference between the conductors
would give us the capacitance of the system.
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Figure 5.15: The charge on the lower plate between x1, y1 and x2, y2 is just
ε0(U1 − U2).

The complex mapping Φ of the potential, as we have seen, has a real part U ,
perpendicular to the lines of constant potential, parallel to the electric field lines.
The relationship between lines of constant U and �E is in fact more complete. In the
case of electric field lines, we interpret the density of lines as field strength. Under
this interpretation, the amount of charge contained on a conductor bounded by two
given field lines is just proportional to the number of lines between the boundaries.
Not surprisingly the density of constant U lines, may also be interpreted as field
strength. We therefore surmise that it may be possible to evaluate the charge on a
conductor between U = U1 and U = U2 from the difference U2 − U1.

Let us consider two segments of the equipotential surfaces having V = V1 and
V = V2 (formed perhaps by two plates of a capacitor) bounded by U = U1 and
U = U2, as shown in Figure 5.15, extending a distance dz into the z direction (out
of the page). (We abandon the use of z as a complex variable using it instead as
the third spatial dimension in order that we have surfaces to deal with when we
employ Gauss’ law.) With the aid of Gauss’ law, the charge on the lower surface is
given by

Q = ε0

∫ x2,y2

x1,y1

�E · d�S (5–67)

Writing the electric field as �E = −�∇V , we express the charge Q as

Q = −ε0

∫ 2

1

∂V

∂x
dSx +

∂V

∂y
dSy (5–68)

where we have abbreviated the limits of integration (x1, y1) as 1 and (x2, y2) as 2.
We use the Cauchy-Riemann equations

∂U

∂x
=

∂V

∂y
and

∂U

∂y
= −∂V

∂x
(5–69)

to recast (5–68) in terms of U :

Q = ε0

∫ 2

1

∂U

∂y
dSx − ∂U

∂x
dSy (5–70)
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Figure 5.16: dSx = −dy dz and dSy = dx dz. The decomposition of d�S into
components is not to scale but is intended only to show directions.

With reference to Figure 5.16, dSx = −dydz and dSy = dxdz. (Had we taken an
downward sloping segment, we would have had dSx = dydz and dSy = −dxdz.)
Substituting for dSx and dSy in (5–70), we have

dQ

dz
= −ε0

∫ 2

1

∂U

∂y
dy +

∂U

∂x
dx

= −ε0

∫ 2

1

dU = −ε0 (U2 − U1) (5–71)

Recognizing that the sign is inconsequential, the capacitance per unit length is now
easily obtained as

C1−2 = ε0
U2 − U1

V2 − V1
(5–72)

We use this result to find the capacitance of a large width w of the semi-infinite
capacitor considered on page 119. The deviation from the infinite capacitor result
will yield the contribution of the fringing field to the capacitance. We begin by
writing Φ in the f plane, Φ = V0f/2π = V0(u + iv)/2π = U + iV. Equation (5–72)
is therefore equivalent to

C = ε0
u2 − u1

v2 − v1
(5–73)

We note from Figure 5.12, any point x on the plate has two corresponding points u,
one on the outside surface with u > 0, and one on the inside with u < 0. To obtain
the capacitance of a strip of width w to the edge of the plate, we choose u1 and u2

on one of the two plates, say the upper plate, corresponding to x = −w. In other
words, u1 and u2 are the roots of (a/2π)(1 + u − eu) = −w. When |w/a| ≫ 1, the
approximate roots are u1

∼= −2πwa and u2
∼= ln(2πw/a). The capacitance per unit

length of a width w (including the edge) of a long parallel plate capacitor is now
easily obtained:

C = ε0

(

w

a
+

1

2π
ln

2πw

a

)

(5–74)

The term ε0w/a is just the capacitance per unit length of a segment width w
of an unbounded parallel plate capacitor. The remaining term reflects the effect of
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the edge on the capacitance. It is now a simple matter to deduce the capacitance
per unit length of a finite width (width ≫ spacing) strip bounded on both sides to
be

C = ε0

(

w

a
+

1

π
ln

2πw

a

)

(5–75)

Moreover, the capacitance of a strip of metal above a parallel ground plane satisfies
exactly the same boundary conditions so that its capacitance is also given by (5–75).
Finally, we can get a good approximation of the capacitance of a pair of rectangular
plates of dimensions w × b (each ≫ the spacing a) to be

C = ε0

[

wb

a
+

1

π

(

b ln
2πw

a
+ w ln

2πb

a

)]

(5–76)

The corners, of course, make this only an approximate solution becoming less valid
as the plates get smaller.

5.2.7 Numerical Solution

When finding an analytic solution to Laplace’s equation, we have seen that we
frequently obtain a series solution whose evaluation requires the substitution of nu-
merical values. If only numerical solutions are required, it is often much faster, par-
ticularly in Cartesian coordinates, simply to solve Laplace’s equation numerically.
In addition, the numerical solution can cope with arbitrarily complex boundaries.
To see why Laplace’s equation lends itself particularly well to numerical solution,
we consider the Taylor expansion for the potential V (x±h, y) and V (x, y±h) about
(x, y):

V (x + h, y) = V (x, y) +
∂V

∂x
h +

1

2!

∂2V

∂x2
h2 +

1

3!

∂3V

∂x3
h3 + O(h4)

V (x − h, y) = V (x, y) − ∂V

∂x
h +

1

2!

∂2V

∂x2
h2 − 1

3!

∂3V

∂x3
h3 + O(h4)

V (x, y + h) = V (x, y) +
∂V

∂y
h +

1

2!

∂2V

∂y2
h2 +

1

3!

∂3V

∂y3
h3 + O(h4)

V (x, y − h) = V (x, y) − ∂V

∂y
h +

1

2!

∂2V

∂y2
h2 − 1

3!

∂3V

∂y3
h3 + O(h4)

(5–77)

where O(h4) stands for terms of order h4 or higher. Summing all four equations
gives

V (x+h, y)+V (x−h, y)+V (x, y+h)+V (x, y−h) = 4V (x, y)+h2∇2V (x, y)+O(h4)
(5–78)

If V satisfies Laplace’s equation, ∇2V = 0 and we find that

V (x, y) =
V (x + h, y) + V (x − h, y) + V (x, y + h) + V (x, y − h)

4
+ O (h4) (5–79)
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Figure 5.17: The potential at any point is to an excellent approximation
the average of the potentials of its four nearest neighbors points.

If we were to draw a square grid over the region of interest, then (5–79) indicates
that the potential at any point on the grid may be approximated by the average
of its four nearest neighbors’ potentials (Figure 5.17). We can make an initial
guess of the solution inside a region whose bounding potential is given and then
improve on our guess by successively replacing the potential at each point by that
of the average of its four nearest neighbors. This process may be iterated until the
values at the grid points stabilize. If h is sufficiently small (varying h can allow
one to extrapolate to h = 0), the grid values “relax” to the solution of Laplace’s
equation with the given boundary conditions. The algorithm above is well suited to
implementation in almost any computer language and yields solutions for arbitrary
boundaries. Inspection of the method by which we arrived at equation (5–79) leads
to the immediate generalization in three dimensions where we find the potential at
any point should be well approximated by the average of that of the six nearest
neighbor points.

5.3 ∇2V = 0 in Three Dimensions

In this section we will explore the three-dimensional solutions to Laplace’s equation.
In the case of Cartesian coordinates, a straightforward generalization of the two-
dimensional results applies. Likewise, the preceding numerical method immediately
generalizes to three dimensions. Only in the curvilinear coordinate systems are new
results obtained. For the three-dimensional examples we will obtain the general
solution in cylindrical coordinates and in spherical polar coordinates. Lest the
reader be led to believe that spherical polar and cylindrical systems are the only ones
of interest, a final example (really a single-variable problem) is solved in ellipsoidal
coordinates.

5.3.1 Cylindrical Polar Coordinates

In cylindrical polar coordinates ∇2V = 0 takes the form

1

r

∂

∂r

(

r
∂V

∂r

)

+
1

r2

∂2V

∂ϕ2
+

∂2V

∂z2
= 0 (5–80)
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We assume a separable solution of the form V (r, ϕ, z) = R(r)Φ(ϕ)Z(z); then, divid-
ing ∇2V by V, we obtain

∇2V

V
=

1

r

∂

∂r

(

r
∂R

∂r

)

R
+

1

r2

∂2Φ

∂ϕ2

Φ
+

∂2Z

∂z2

Z
= 0 (5–81)

Taking (∂2Z/∂z2)
/

Z to the righthand side of the equation we have an expression
independent of z on the left, from which we conclude that either expression (on the
right or on the left) must be a constant. Explicitly putting in the sign (which must
still be determined from the boundary conditions) of the separation constant, we
have

∂2Z

∂z2

Z
= λ2 ⇒ Z(z) = A sinhλz + B cosh λz (5–82)

or, alternatively,

∂2Z

∂z2

Z
= −λ2 ⇒ Z(z) = A sin λz + B cos λz (5–83)

For the moment we restrict ourselves to the choice of sign made in (5–82). The
Laplace equation then reduces to

r
d

dr

(

r
dR

dr

)

R
+ λ2r2 = −

d2Φ

dϕ2

Φ
= m2 (5–84)

where the choice of sign is dictated by the requirement of Φ’s periodicity. Equation
(5–84) is now easily solved for Φ:

Φ(ϕ) = C sinmϕ + D cos mϕ (5–85)

with m an integer. The remaining equation

r
d

dr

(

r
dR

dr

)

+ (λ2r2 − m2)R = 0 (5–86)

is Bessel’s equation (Appendix E), having solutions

R(r) = EJm(λr) + FNm(λr) (5–87)

where Jm and Nm are Bessel and Neumann functions of order m. Had we picked
the negative separation constant as in equation (5–83), we would have obtained for
R the modified Bessel equation

r
d

dr

(

r
dR

dr

)

+ (−λ2r2 − m2)R = 0 (5–88)

having as solutions the modified Bessel functions Im(λr) and Km(λr). (Km and
Nm diverge at r = 0 and are therefore excluded from problems where the region of
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Figure 5.18: The cylinder has potential VL(r, ϕ) on its top face, 0 on the
bottom, and Va(ϕ, z) on the curved face.

interest includes r = 0, while Im diverges as r → ∞ and will therefore be excluded
from any exterior solution.) The complete solution is then of the form

Vλm(r, ϕ, z) =
∑

λ,m

{

Jm(λr)
Nm(λr)

}

·
{

sinmϕ
cos mϕ

}

·
{

sinhλz
cosh λz

}

+
∑

λ,m

{

Im(λr)
Km(λr)

}

·
{

sinmϕ
cos mϕ

}

·
{

sin λz
cos λz

}

(5–89)

where the braces { } stand for the arbitrary linear combination of the two terms
within.

To see how the general solution may be applied to a given problem, let us
consider the problem of finding the potential inside the right circular cylinder of
length L and radius a shown in Figure 5.18. For simplicity we set the potential
on the bottom surface to zero while the top surface has potential VL(r, ϕ) and the
curved side has potential Va(ϕ, z). As in the case of Cartesian coordinates, we divide
the problem into two (three in general, when the top, bottom and sides are all non-
zero) distinct problems; we solve first for the potential holding the top surface at
V = 0, and then solve for the potential when the curved face is held at zero. The
sum of the two solutions satisfies the complete boundary condition.

(a) Solution with top (and bottom) surface grounded: V (r, ϕ, L) = V (r, ϕ, 0) = 0.
To avoid an infinite solution at r = 0, the Km and Nm must be absent from
the solution. The requirement that V vanish at z = 0 and z = L eliminates
any terms in sinhλz and coshλz (as no linear combination of these will vanish
at two discrete points). Finally, this same condition eliminates the cosλz term
and requires λ = nπ/L, leaving

V1(r, ϕ, z) =
∑

m,n

(Amn sinmϕ + Bmn cos mϕ) Im

(

nπr

L

)

sin
nπz

L
(5–90)
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At r = a, this becomes

Va(ϕ, z) =
∑

n,m

Im

(

nπa

L

)

sin
nπz

L
(Amn sinmϕ + Bmn cos mϕ) (5–91)

The right side of (5–91) is of course just the double Fourier expansion of Va.
The coefficients are then easily found from

(

Amn

Bmn

)

=
2

LπIm
(

nπ a
L

)

∫ 2π

0

∫ L

0

Va(ϕ, z)

(

sinmϕ

cos mϕ

)

sin
nπz

L
dϕdz (5–92)

(The stacked sin mϕ and cos mϕ are intended to be read as either the top line
in both sides of the equation or the bottom line in both sides of the equation,
much the way ± is used.)

(b) Solution with the curved surface grounded: V (a, ϕ, z) = 0. Again, the interior
solution cannot support Km or Nm. Im has no zeros, and its inclusion in the
solution would prevent V from vanishing at r = a for all ϕ and z. Equation
(5–89) reduces to

V2 =
∑

m

Jm(λr)

{

sin mϕ
cos mϕ

}

·
{

sinhλz
cosh λz

}

(5–93)

In order for V to vanish at z = 0, the coshλz term must be eliminated,
and finally, the requirement that V vanish at r = a translates to requiring
λa to be a root of Jm. We denote the ith root of Jm by ρmi Appendix E),
giving λ = ρmia. The general solution that satisfies this half of the boundary
conditions is

V2(r, ϕ, z) =
∑

m,i

sinh
ρmiz

a
Jm

(

ρmir

a

)

(Ami sin mϕ + Bmi cos mϕ) (5–94)

At z = L, this reduces to

VL(r, ϕ) =
∑

m,i

sinh
ρmiL

a
Jm

(

ρmir

a

)

(Ami sinmϕ + Bmi cos mϕ) (5–95)

The orthogonality of the trigonometric functions and weighted orthogonal-
ity of the Bessel functions (E–20) may be exploited to evaluate the coeffi-
cients of the expansion. Abbreviating Cmi = Ami sinh(ρmiL/a) and Dmi=
Bmi sinh(ρmiL/a), we multiply both sides of (5–95) by

Jℓ

(

ρℓjr

a

)(

cos ℓϕ

sin ℓϕ

)

and integrate over the entire top surface of the cylinder to obtain

∑

m,i

∫ a

0

∫ 2π

0

(Cmi sin mϕ + Dmi cos mϕ) Jm

(

ρmir

a

)

Jℓ

(

ρℓjr

a

)(

cos ℓϕ

sin ℓϕ

)

rdrdϕ
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=

∫ a

0

∫ 2π

0

VL(r, ϕ)Jℓ

(

ρℓjr

a

)

(

cos ℓϕ

sin ℓϕ

)

rdrdϕ ≡ ℑℓj (5–96)

Performing the integration over ϕ and using the orthogonality of the trigono-
metric functions to eliminate all terms for which m �= ℓ (for ℓ = 0, replace π
by 2π for the cosine term in all the following formulas), we find

∑

i

(

Cℓi

Dℓi

)

π

∫ a

0

Jℓ

(

ρℓir

a

)

Jℓ

(

ρℓjr

a

)

rdrdϕ = ℑℓj (5–97)

and using (E–20)

∫ a

0

Jℓ

(

ρℓir

a

)

Jℓ

(

ρℓjr

a

)

rdr = 1
2a2J2

ℓ+1(ρℓj)δij (5–98)

we perform the remaining integration over r to obtain

(

Cℓj

Dℓj

)

1
2πa2J2

ℓ+1(ρℓj) =

∫ a

0

∫ 2π

0

VL(r, ϕ)Jℓ

(

ρℓjr

a

)(

cos ℓϕ

sin ℓϕ

)

rdrdϕ (5–99)

The original expansion coefficients are now easily found:
(

Aℓj

Bℓj

)

=
2

πa2J2
ℓ+1(ρℓj) sinh

(ρℓjL
a

)

∫ a

0

∫ 2π

0

VL(r, ϕ)Jℓ

(

ρℓjr

a

)(

sin ℓϕ

cos ℓϕ

)

rdrdϕ

(5–100)
The complete solution satisfying both boundary conditions is then the sum of (5–90)
with coefficients given by (5–92) and of (5–94) with coefficients given by (5–100).

5.3.2 Spherical Polar Coordinates

When the potential (or the field) varies both in θ and ϕ on the surface of a sphere,
it is advantageous to use spherical polar coordinates to solve the problem. We will
find that several of the steps retrace our solution of the ϕ independent solution of
Laplace’s equation. Laplace’s equation in spherical polars reads as follows:

1

r

∂2

∂r2
(rV ) +

1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

+
1

r2 sin2 θ

∂2V

∂ϕ2
= 0 (5–101)

We assume a separable solution of the form V = R(r)Θ(θ)Φ(ϕ), then r2 sin2 θ ·
∇2V/V = 0 becomes

r2 sin2 θ

rR

d2

dr2
(rR) +

sin θ

Θ

d

dθ

(

sin θ
dΘ

dθ

)

= − 1

Φ

d2Φ

dϕ2
= m2 (5–102)

The separation constant has been chosen positive in anticipation of the solution Φ
= Acos(h)mϕ + B sin(h)mϕ. Since Φ must be periodic with period 2π, we accept
only the trigonometric solution with m an integer. We eliminate Φ from (5–102).
After dividing the remaining equation by sin2 θ, it is separated as

r2

rR

d2

dr2
(rR) = − 1

Θ sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
m2

sin2 θ
= ℓ(ℓ + 1) (5–103)
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with no restrictions on ℓ yet. Our rather peculiar choice of writing the separation
constant anticipates a well-behaved solution. The radial equation

r2 d2

dr2
(rR) = ℓ(ℓ + 1) (rR) (5–104)

is easily solved to give rR = Crℓ+1 + Dr−ℓ, whence we conclude

R = Crℓ +
D

rℓ+1
(5–105)

The remaining equation for Θ,

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+

[

ℓ(ℓ + 1) − m2

sin2 θ

]

Θ = 0 (5–106)

may be converted to the associated Legendre equation by setting x = cos θ ⇒
d/dθ = − sin θ · d/dx, which results in

d

dx

[

(1 − x2)
dΘ

dx

]

+

[

ℓ(ℓ + 1) − m2

1 − x2

]

Θ = 0 (5–107)

The solutions to (5–107) are the associated Legendre functions Pm
ℓ (x) and

Qm
ℓ (x). Qm

ℓ (±1) = ±∞ and Pm
ℓ (x) diverges as x → ±1 unless ℓ is an integer.

P0
ℓ(x) ≡ Pℓ(x) are the Legendre Polynomials encountered in section 5.2.3 and

earlier.
Recapitulating, we have found the well-behaved solutions to ∇2V = 0 to be of

the form

V (r, θ, ϕ) =
∑

ℓ,m

(Am sin mϕ + Bm cos mϕ)

(

Cℓr
ℓ +

Dℓ

rℓ+1

)

Pm
ℓ (cos θ) (5–108)

or, more briefly, the entire solution may be written in terms of spherical harmonics,

V (r, θ, ϕ) =
∑

ℓ,m

(

Aℓ,mrℓ +
Bℓ,m

rℓ+1

)

Ym
ℓ (θ, ϕ) (5–109)

where Aℓ,m and Bℓ,m are complex constants.

Example 5.15: Find the potential inside a hollow sphere of radius a given that the
potential on the surface is Va(θ, ϕ).

Solution: Since V is finite at the origin, Bℓ,m of equation (5–109) must vanish;
hence the general solution in the region of interest is of the form

V (r, θ, ϕ) =
∑

ℓ,m

Aℓ,mrℓYm
ℓ (θ, ϕ) (Ex 5.15.1)

At r = a, this specializes to

Va(θ, ϕ) =
∑

ℓ,m

Aℓ,maℓYm
ℓ (θ, ϕ) (Ex 5.15.2)
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Multiplying both sides by Y∗m′

ℓ′ (θ, ϕ), the complex conjugate of Ym′

ℓ′ (θ, ϕ), and
integrating over the entire solid angle, we have with the aid of the orthonormality
(F–43) of the spherical harmonics

∫ 2π

0

∫ π

0

Va(θ, ϕ)Y∗m′

ℓ′ (θ, ϕ) sin θdθdϕ = Aℓ′,m′aℓ′ (Ex 5.15.3)

The coefficients Aℓ,m of the expansion follow immediately.

Example 5.16: A sphere of radius a centered on the origin has potential V =
V0 sin2 θ cos 2ϕ on its surface. Find the potential both inside and outside the sphere.

Solution: Inside the sphere the potential must take the form

V (r < a, θ, ϕ) =
∑

ℓ,m

Aℓ,mrℓYm
ℓ (θ, ϕ) (Ex 5.16.1)

Whereas we could in principle use the prescription in the previous problem to de-
termine the coefficients it is easier to write the potential on the surface in spherical
harmonics and then depend on the linear independence of the spherical harmonics
to find the coefficients. Therefore, using (F–42), we write the boundary condition
for the problem as

Va(θ, ϕ) = 1
2V0 sin2 θ

(

e2iϕ + e−2iϕ
)

=

√

8π

15

(

Y2
2(θ, ϕ) + Y−2

2 (θ, ϕ)
)

(Ex 5.16.2)

Equating the general potential (Ex 5.16.1) to (Ex 5.16.2) at r = a, we have

∑

ℓ,m

Aℓ,maℓYm
ℓ (θ, ϕ) =

√

8π

15
V0

(

Y2
2(θ, ϕ) + Y−2

2 (θ, ϕ)
)

(Ex 5.16.3)

We conclude immediately

A2,2 = A2,−2 =
V0

a2

√

8π

15
(Ex5.16.4)

We can, of course express the potential in terms of trigonometric functions by
substituting the trigonometric expressions for Y±2

2 (θ, ϕ)

V (r < a, θ, ϕ) =
V0r

2

a2

√

8π

15

√

15

32π
sin2 θ

(

e2iϕ + e−2iϕ
)

=
V0r

2

a2
sin2 θ cos 2ϕ

(Ex 5.16.5)

The exterior solution is obtained in much the same way. The solution must take
the form:

V (r > a, θ, ϕ) =
∑

ℓ,m

Bℓ,m

rℓ+1
Ym

ℓ (θ, ϕ) (Ex 5.16.6)
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We again equate this potential at a to that on the sphere to obtain

∑

ℓ,m

Bℓ,m

aℓ+1
Ym

ℓ (θ, ϕ) =

√

8π

15
V0

(

Y2
2(θ, ϕ) + Y−2

2 (θ, ϕ)
)

(Ex 5.16.7)

leading to the conclusion that the only nonvanishing coefficients are

B2,±2 = a3V0

√

8π

15
(Ex 5.16.8)

and the potential for r > a is

V (r > a, θ, ϕ) =
a3V0

r3

√

8π

15

(

Y2
2(θ, ϕ) + Y−2

2 (θ, ϕ)
)

=
a3V0

r3
sin2 θ cos 2ϕ

(Ex 5.16.9)
It is evident in both cases that the solution satisfies the boundary conditions.

Example 5.17: Find the potential inside and outside a sphere of radius R that has
surface charge with density σ = σ0 sin2 θ cos 2ϕ distributed on its surface.

Solution: The presence of a surface charge means the electric field is discontinuous
by σ/ε0 across the surface of the sphere. The second boundary condition that the

tangential component of �E is continuous across the surface means that both ∂V/∂θ
and ∂V/∂ϕ are continuous which in turn implies that the potential is continuous
across the surface. The form of the potential is

V (r < R, θ, ϕ) =
∑

ℓ,m

Aℓ,mrℓYm
ℓ (θ, ϕ) (Ex 5.17.1)

V (r > R, θ, ϕ) =
∑

ℓ,m

Bℓ,mr−(ℓ+1)Ym
ℓ (θ, ϕ) (Ex 5.17.2)

We apply the radial boundary condition to obtain

∂V

∂r

∣

∣

∣

∣

R−

− ∂V

∂r

∣

∣

∣

∣

R+

=
σ

ε0
(Ex 5.17.3)

or

∑

ℓ,m

(

ℓAℓ,mRℓ−1 +
(ℓ + 1)Bℓ,m

Rℓ+2

)

Ym
ℓ (θ, ϕ) =

σ0

ǫ0

√

8π

15

(

Y2
2(θ, ϕ) + Y−2

2 (θ, ϕ)
)

(Ex 5.17.4)
The linear independence of the spherical harmonics means that for (ℓ,m) �= (2,±2)

Aℓ,m = − (ℓ + 1)Bℓ,m

ℓR2ℓ+1
(Ex 5.17.5)

while for (ℓ,m) = (2,±2) we have

2A2,±2R +
3B2,±2

R4
=

σ0

ε0

√

8π

15
(Ex 5.17.6)
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The continuity of the potential across the boundary gives for all (ℓ,m)

Aℓ,m =
Bℓ,m

R2ℓ+1
(Ex 5.17.7)

(Ex 5.17.7) and (Ex 5.17.5) together yield only trivial solutions for Aℓ,m and Bℓ,m,
leaving us to solve only (Ex 5.17.7) and (Ex 5.17.6) for the (ℓ,m) = (2,±2) coeffi-
cients. Solving these two equations simultaneously yields

A2,±2 =
σ0

5ε0R

√

8π

15
and B2,±2 =

σ0R
4

5ε0

√

8π

15
(Ex 5.17.8)

We conclude the potentials are

V (r < R, θ, ϕ) =
σ0r

2

5ε0R

√

8π

15

(

Y −2
2 (θ, ϕ) + Y2

2(θ, ϕ)
)

(Ex 5.17.9)

and

V (r > R, θ, ϕ) =
σ0R

4

5ε0r3

√

8π

15

(

Y−2
2 (θ, ϕ) + Y2

2(θ, ϕ)
)

(Ex 5.18.10)

⋆ 5.3.3 Oblate Ellipsoidal Coordinates

As a last example of separation of variables we consider a problem in oblate (pancake
shaped) ellipsoidal coordinates. This by no means exhausts the separable coordi-
nate systems: prolate ellipsoidal (cigar-shaped), bispherical, conical, and toroidal
systems (not strictly speaking separable, see Appendix B) come to mind immedi-
ately.16 Rather than obtain the general solution we will solve what is really a one
variable problem, the potential due to a charged, constant potential oblate ellipsoid
of revolution. We will specialize to find the potential around a charged, conducting,
flat circular plate. We begin by constructing the Laplacian in oblate ellipsoidal
coordinates ρ, α, and ϕ defined by

x = aρ sin α cos ϕ
y = aρ sin α sin ϕ

}

s ≡
√

x2 + y2 = aρ sin α

z = a
√

ρ2 − 1 cos α ρ ≥ 1, 0 ≤ α ≤ π, 0 ≤ ϕ ≤ 2π
(5–110)

where, for convenience we have defined the cylindrical radius s as ρ has already
been used as one of the oblate elliptical coordinates. Surfaces of constant ρ obey
the equation

s2

a2ρ2
+

z2

a2(ρ2 − 1)
= 1 (5–111)

16Toroidal coordinates are discussed in Appendix B. The metric tensor, curl, grad, div, and the
Laplacian for a large number of orthogonal coordinate systems may be found in Parry Moon and
Domina E. Spencer. (1961) Field Theory Handbook, Springer-Verlag, Berlin. The separation of
the Laplace equation and the Helmholtz equation is effected for each of the coordinate systems in
this small volume, and the general solutions are given.
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demonstrating that the constant ρ surface is an ellipsoid of revolution with major
radius aρ in the x-y plane and minor radius a(ρ2 − 1)1/2 along the z axis. The
surface described by ρ = 1 has z ≡ 0 and s lies between 0 and a on this surface.
It is a (two-sided) circular flat disk of radius a.

Although there are other methods, we construct the Laplacian using the methods
of Appendix B, by means of the metric tensor whose nonzero elements are

gρρ =

(

∂x

∂ρ

)2

+

(

∂y

∂ρ

)2

+

(

∂z

∂ρ

)2

=
a2(ρ2 − sin2 α)

ρ2 − 1

gαα =

(

∂x

∂α

)2

+

(

∂y

∂α

)2

+

(

∂z

∂α

)2

= a2(ρ2 − sin2 α)

gϕϕ =

(

∂x

∂ϕ

)2

+

(

∂y

∂ϕ

)2

+

(

∂z

∂ϕ

)2

= a2ρ2 sin2 α (5–112)

The Laplacian may now be constructed:

∇2V =

√

ρ2 − 1

a2ρ2(ρ2 − sin2 α)

∂

∂ρ

(

ρ
√

ρ2 − 1
∂V

∂ρ

)

+
1

a2 sin α(ρ2 − sin2 α)

∂

∂α

(

sin α
∂V

∂α

)

+
1

a2ρ2 sin2 α

∂2V

∂ϕ2
(5–113)

For the particular problem of the (constant potential) metal circular disk, the
boundary conditions are independent of ϕ or α (as ρ → ∞, α → θ), leading us
to seek a solution depending only on ρ. V must then satisfy

∂

∂ρ

(

ρ
√

ρ2 − 1
∂V

∂ρ

)

= 0 (5–114)

Integrating twice we obtain
∂V

∂ρ
=

k

ρ
√

ρ2 − 1
(5–115)

followed by

V (ρ) = −k sin−1

(

1

ρ

)

+ C (5–116)

where k and C are constants of integration. At very large values of ρ, (where aρ is
indistinguishable from r) we expect the potential to vanish. The value of C follows,
V (∞) = 0 = −k sin−1 0 + C ⇒ C = 0. Setting the potential on the surface of the
ellipsoid defined by ρ = ρ0 to V0, we find V0 = −k sin−1(1/ρ0). [For the flat plate
defined by ρ0 = 1, V0 = −k sin−1(1) = − 1

2kπ]. The potential at any point ρ is then

V (ρ) =
V0

sin−1(1/ρ0)
sin−1

(

1

ρ

)

(5–117)
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To relate V0 to the total charge on the ellipsoid, we first compute the electric field

�E = −�∇V = − 1
√

gρρ

∂V

∂ρ
ρ̂ (5–118)

where ρ̂ is a unit vector in the ρ direction. The electric field is then

�E =
V0

sin−1(1/ρ0)

ρ̂

aρ
√

ρ2 − sin2 α
(5–119)

To obtain the charge on the ellipsoid, we integrate �E over any constant ρ = ρ0

surface containing the charged ellipsoid and equate the surface integral to Q/ε0

(Gauss’ law).

Q

ε0
=

∮

�E · d�S =

∮

Eρ
√

gααgϕϕ dαdϕ

=
V0

sin−1(1/ρ0)

∫ 2π

0

∫ π

0

a2ρ0 sinα
√

ρ2
0 − sin2 α

ρ0a
√

ρ2
0 − sin2 α

dαdϕ

=
V0

sin−1(1/ρ0)

∫ 2π

0

∫ π

0

a sin α dαdϕ =
4πV0a

sin−1(1/ρ0)
(5–120)

The potential V0 on the conductor is then related to the charge by

V0 =
Q sin−1(1/ρ0)

4πε0a
(5–121)

giving

V (ρ) =
Q

4πε0a
sin−1

(

1

ρ

)

(5–122)

and
�E =

Q

4πε0a

ρ̂

aρ
√

ρ2 − sin2 α
(5–123)

Specializing now to the flat circular plate of radius a corresponding to ρ = 1,
we have

�E(ρ = 1) =
Qρ̂

4πε0a
√

a2 − s2
(5–124)

with ρ̂ = ±k̂ .
The surface charge density on the plate is given by

σ = ε0E⊥ =
Q

4πa
√

a2 − s2
(5–125)

(At s = 0, the center of the plate, this is just half of the charge density it would
have if the charge were uniformly distributed over both sides.)
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Exercises and Problems

Figure 5.19: The rectangular pipe has three
sides grounded, while the fourth has uniform
potential V0.

Figure 5.20: The pipe has potential difference
V0 applied between the upper and lower halves.

5-1 Show that the potential at the cen-
ter of a charge-free sphere is precisely the
average of the potential on the surface of
the sphere.

5-2 Two large flat conducting plates are
placed so that they form a wedge of angle
α < π/2. The plates are insulated from
each other and have potentials 0 on one
and V = V0 on the other. Find the po-
tential between the plates.

5-3 Two conducting coaxial cones with
vertex at the origin and apex angles α1

and α2 are isolated from each other. The
inner and outer cones have potential V1

and V2, respectively. Find the potential
between the cones.

5-4 A rectangular pipe (Figure 5.19) of
dimensions a = 10 cm and b = 8 cm has
three of its sides maintained at zero po-
tential while the remaining side is insu-
lated and maintained at V0. Use separa-
tion of variables to evaluate the potential
along the y = b/2 line at x = 1 cm, 5 cm,
and 9 cm to three significant figures.

5-5 A cylindrical pipe (Figure 5.20) of
radius a is sawn lengthwise into two

equal halves. A battery connected be-
tween the two halves establishes a po-
tential difference of V0 between the two
halves. Use separation of variables to
find the potential inside and outside the
pipe.

5-6 A conducting sphere of radius a with
its center at the origin is cut into two
halves at the x-y plane. The two halves
are separated slightly, and the top half
is charged to V0 while the bottom half is
charged to −V0. Find the potential both
interior to the sphere and exterior to the
sphere.

5-7 Find the scalar magnetic potential
in the vicinity of the center of a solenoid
of length L with N turns, each carrying
current I.

5-8 Use the mapping

f = ln

(

a + z

a − z

)

to map the infinite parallel plates at
v = ±π/2 to the cross section of the split
cylinder of Figure 5.20. (Hint: Express
[a + z]/[a − z] as Reiα, giving u + iv =
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lnR+iα or v = α.) Express the potential
in the pipe in closed form, and compare
this to the result obtained by summing
the first five nonzero terms of the series
of exercise 5-5 for the point y = 0.2a and
x = 0.

5-9 Obtain the mapping that carries the
+u axis in the f plane to the positive x
axis and the −u axis to an axis inclined
at α to the x axis.

5-10 Obtain the charge density on the
constant potential right angled plate of
Figure 5.9 (page 116).

5-11 Verify that the mapping

z =
2a

π
ln cosh f

carries the infinite lines at v = π/2, 0,
and −π/2 to two infinite lines and one
half-infinite line. Use this mapping to
find the capacitance of a metal plate in-
serted in the middle between two larger
grounded plates.

5-12 Calculate the capacitance of two
parallel flat circular conducting plates
with a space d between them and a ra-
dius R ≫ d. How good an approxima-
tion is your result?

5-13 Draw the image in the z plane of
the v = 1 and v = 2 (potential) lines as
well as the u = 1

4b and 1
2b (field) lines

under the mapping (Ex 5.13.3).

5-14 Find the image of the real axis un-
der the mappings and determine what
happens off the real axis

z =
i − f

i + f
and z =

i + f

i − f

5-15 Find the image of the real axis un-
der the mappings

z =

√
f − 1√
f + 1

and z =

(√
f − 1√
f + 1

)1/n

5-16 Find the image of the real axis un-
der the mapping

z = d(f1/2 − f−1/2)

5-17 Find the image of the real axis un-
der the mapping

z = {2(f+1)1/2−2 ln[(f+1)1/2+1]+ln f}

5-18 Find the image of the upper half
plane under the mapping z = a

√

f2 − 1.

5-19 A right circular cylinder of radius
a has a potential

V = V0

(

1 − r2

a2

)

on its top surface and zero on all its other
surfaces. Find the potential anywhere
inside the cylinder. Note that

d

dz
(zνJν(z)) = zνJν−1(z)

implies that
∫

xnJn−1(x)dx = xnJn(x),
allowing xJ0(x) to be integrated directly
while x3J0(x) may be integrated by
parts.

5-20 A hollow spherical shell has sur-
face charge σ0 cos θ distributed on its
surface. Find the electro-static potential
and electric field due to this distribution
both inside and outside the sphere.

5-21 A sphere of radius a has potential
sin 2θ cos ϕ on its surface. Find the po-
tential at all points outside the sphere.

5-22 A hollow spherical shell carries
charge density σ(θ, ϕ) = σ0 sin θ sinϕ.
Calculate the potential both inside and
outside the sphere
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5-23 Use prolate ellipsoidal coordinates

x = a
√

ρ2 − 1 sin α sinϕ

y = a
√

ρ2 − 1 sin α cos ϕ
z = aρ cos α

to compute the potential in the vicin-
ity of a thin conducting needle carry-
ing charge Q. Show that the charge dis-
tributes itself uniformly along the needle.

5-24 Bispherical coordinates defined by

x =
a sin α cos ϕ

cosh ρ − cos α

y =
a sin α sinϕ

cosh ρ − cos α

z =
a sinh ρ

cosh ρ − cos α

may be used to obtain the potential in
the vicinity of two identical conducting
spheres of radius 1 m with centers sepa-
rated by 10 m charged to potentials Va

and Vb, respectively. The relevant coor-
dinate surface satisfies

x2 + y2 + (z − a coth ρ)2 =
a2

sinh2 ρ

Sketch the method of obtaining the so-
lution. (Hint: Use the substitution

V = (cosh ρ − cos α)1/2U

to separate the variables.)
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Chapter6

Static Potentials with Sources—Poisson’s Equation

6.1 Poisson’s Equation

Frequently, the charge distribution in the region of interest does not vanish. The
presence of a source term for the fields changes Laplace’s equation to Poisson’s
equation. When sources are present, the static electric field �E is still curl free,
meaning that it can still be expressed as �E = −�∇V . Combining this with �∇ · �E =
ρ/ε0, we obtain Poisson’s equation

∇2V = − ρ

ε0
(6–1)

For the magnetic induction field, things are not quite so straightforward, since
sources in the form of currents necessarily introduce a curl in the field. However, if
the magnetic field arises from magnetic point dipoles, the curl vanishes everywhere
(Stokes’ theorem gives zero line integral about any point) and we still usefully

express �B as the gradient of a scalar potential. Because there is no magnetic
equivalent of a conductor, we delay consideration of the magnetic field problems to
the next chapter, where we will deal with fields in matter.

In this chapter we investigate the solution of (6–1), initially by the use of image
charges, and then using Green’s functions for a number of common geometries.

To put our problem into perspective, we might consider a charge q in the vicinity
of a conductor on whose surface it induces a variable charge density ρ(�r ′). The
resulting potential at any point �r is then given by

V (�r ) =
q

4πε0|�r − �rq|
+

1

4πε0

∫

ρ(�r ′)

|�r − �r ′|d
3r′ (6–2)

Our problem would consist of determining the charge density induced by the in-
troduction of known charges. Even more subtly, we might encounter a charged
conductor that adjusts its charge density in the presence of another conductor. In
fact, it is usually more practical to determine the potential by solving (6–1) and
then to determine the induced charge density from the field at the surface of the
conductor.

—143—
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6.2 Image Charges

It will often prove possible to find a single charge whose field precisely mimics that
of the induced charge distribution. Such a charge is known as an image of the
inducing charge. We will find image charges for infinite plane conducting surfaces,
for cylindrical conducting surfaces, and for spherical conducting surfaces in the
vicinity of a given charge by choosing images such that the sum potential of both
the source and the image is constant on the conducting surface. The uniqueness
theorem will guarantee that the solution that satisfies the boundary condition is
the solution. In each case it will be easy to extend the result to source charge
distributions.

6.2.1 The Infinite Conducting Plane

Figure 6.1: The charge q on the right of the conducting plane has an image
an equal distance behind the plane on the left.

Consider the potential arising from a charge q placed a distance z to the right of
the conducting x-y plane (Figure 6.1). If the conducting plane were removed, and
instead an image charge −q was placed a distance z behind the now missing x-y
plane, then we would find a vanishing potential midway between the two charges.
Reinserting the conducting surface along this plane would make no difference as the
potential already satisfies the boundary condition (V = constant on a conductor).
In other words, although q induces a nonzero charge distribution on the plate in
order to maintain a zero potential, the potential arising from this distribution is
mimicked exactly (for z ≥ 0) by the image charge −q behind the conducting plane.
Thus

V (x, y, z ≥ 0) =
1

4πε0

(

q

|�r − �rq|
− q

|�r − �r−q|

)

=
q

4πε0

(

1

|�r − �rq|
− 1

|�r − �rq + 2(n̂ · �rq)n̂|

)

(6–3)

where n̂ is an outward-facing normal to the conducting plane. We easily generalize
this result to the source charge distribution ρ(�r ′) instead of q.

V (x, y, z ≥ 0) =
1

4π

∫

ρ(�r ′)

ε0

(

1

|�r − �r ′| −
1

|�r − �r ′ + 2(n̂ · �r ′)n̂|

)

d3r′ (6–4)
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As we will see later, the term in parentheses is the Green’s function to this prob-
lem. It should be noted that the solution above is correct only for the region of
space containing the source charge. Behind the conducting plate, the field and the
potential vanish.

Example 6.1: Find the charge density induced on an infinite conducting plate by a
point charge q at distance a from the plate.

Solution: To be more explicit, we take the charge to lie along the z axis at z = a
while the conducting plane defines the x-y plane. The electric field produced in the
x-y plane by a charge +q at z = a and its image −q at z = −a is

�E(x, y, 0) =
−2qak̂

4πε0 (x2 + y2 + a2)
3/2

(Ex 6.1.1)

from which we obtain the surface charge density as σ = ε0
�E · n̂. The surface charge

density is therefore

σ =
−qa

2π (x2 + y2 + a2)
3/2

(Ex 6.1.2)

Not surprisingly, the total charge on the plate, assuming it was grounded, is just
equal to −q as is easily seen by integrating σ over the entire plate.

∫

σdA = −qa

∫ ∞

0

2πr dr

2π(r2 + a2)3/2
=

qa√
a2 + r2

∣

∣

∣

∣

∞

0

= −q (Ex 6.1.3)

A charge placed near the corner of two intersecting plates has images not only
behind each of the conducting planes, but each of the images in turn has an image in
the other planes and so on, very much like an optical image. Thus when two plates
meet at right angles, a negatively charged image “appears” behind each plate, and
a positive image lies diagonally through the point of intersection. It is not hard
to see that this arrangement does indeed lead to equipotential surfaces along the
planes defined by the conductors. When the planes intersect at 60◦, five images of
alternating sign will be required (the kaleidoscope is the optical analogue of this
arrangement). Clearly when the angle is not commensurate with 360◦, this method
will not work because an infinite number of images would be required. The reader
might reflect on what happens when two conducting planes intersect at 72◦.

Example 6.2: Two conducting planes along the x and y axes intersect at the origin,
as shown in Figure 6.2. A charge q is placed distance b above the x axis and a
distance a to the right of the y axis. Find the force on the charge.

Solution: The force is most easily found in terms of its x and y components.

Fx =
q2

4πε0

[

− 1

4a2
+

a

4 (a2 + b2)
3/2

]

(Ex 6.2.1)
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Figure 6.2: A charge placed near the corner of a large grounded conducting
plate with a 90◦ bend requires three image charges to mimic the field.

and

Fy =
q2

4πε0

[

− 1

4b2
+

b

4 (a2 + b2)
3/2

]

(Ex 6.2.2)

6.2.2 The Conducting Sphere

We again start by trying to find an image charge q′ that will mimic the surface
charge induced by q on the sphere (Figure 6.3). The potential on the surface of the
sphere resulting from both charges must be constant (say zero, since it can always
be changed to a different constant by the placement of a charge at the center of the
sphere). By symmetry, if q lies on the z axis, then q′ must also lie on the z axis. We
place q′ at a distance b from the center of the sphere. The potential on the surface
is then given by

V (R, θ) =
1

4πε0

(

q

r1
+

q′

r2

)

Figure 6.3: A point charge in the vicinity of a spherical conductor induces
surface charge whose field is mimicked by a smaller image charge placed a
distance b from the center of the sphere.
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=
1

4πε0

(

q√
h2 + R2 − 2Rh cos θ

+
q′√

b2 + R2 − 2Rb cos θ

)

= 0 (6–5)

We require then that b be chosen so that

q2(b2 + R2 − 2Rb cos θ) = q′2(h2 + R2 − 2Rh cos θ) (6–6)

As this equality must hold independent of θ, we have

q2(b2 + R2) = q′2(h2 + R2) (6–7)

and

q2Rb = q′2Rh ⇒ q′2

q2
=

b

h
(6–8)

Substituting for q′2 in (6–7), we get

b2 + R2 =
b

h
(h2 + R2) (6–9)

which is solved by b = R2/h to give

q′2

q2
=

R2

h2
or q′ = −R

h
q (6–10)

More generally, a charge at �r ′ has an image charge q′ = −(R/r ′)q placed at
position

�r ′
2 =

R2

r′
r̂′ =

R2

r′2
�r ′ (6–11)

leading to

V (�r ) =
q

4πε0









1

|�r − �r ′| −
|R/r′|

∣

∣

∣

∣

�r − R2

r′2
�r ′
∣

∣

∣

∣









(6–12)

The latter expression is easily generalized to give the expression for the potential
of a continuous charge distribution in the neighborhood of a conducting sphere

V (�r ) =
1

4π

∫

ρ(�r ′)

ε0









1

|�r − �r ′| −
|R/r′|

∣

∣

∣

∣

�r − R2

r′2
�r ′
∣

∣

∣

∣









d3r′ (6–13)

for r > R.
It is important to recognize the reciprocity of q and q′. When the original

charge is interior to the sphere and the potential inside the sphere is sought, the
image charge is found outside the sphere at h (hb = R2). In other words, the results
are identical with only (q, r) and (q′, r′) interchanged.
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Figure 6.4: The image of the point dipole is most easily found as the limit
of the finite size dipole. In this case each charge in finite dipole is separately
imaged by charges inside the sphere.

Example 6.3: An electric dipole �p is placed in the vicinity of a grounded conducting
sphere of radius R. Find the image dipole whose field mimics that of the induced
charge on the sphere.

Solution: We usefully replace the point dipole of the problem above with a pair
of charges separated by small displacement �a, as illustrated in Figure 6.4. We let
the dipole be located at �r and the positive and negative charges at �r+ and �r−,
respectively. The dipole moment of the charges shown is �p = q�r+ − q�r− = q�a. To
allow for point dipoles, we set q = p/a, which now gives �p = pâ even when a → 0.
The charge +q has an image charge −qR/r+ located at (R2/r2

+)�r+, while −q has an
image charge +qR/r− located at (R2/r2

−)�r−. The dipole moment �p ′ of the image
dipole is now readily computed as

�p ′ =
qR

r−
· R2

r2
−

�r− − qR

r+
· R2

r2
+

�r+

= qR3

(

�r−
r3
−

− �r+

r3
+

)

(Ex 6.3.1)

We wish to find the limit of this expression as |�a | → 0. We write

�r+ = �r + 1
2�a and �r− = �r − 1

2�a (Ex 6.3.2)

giving 1/r3
+ = (�r+ ·�r+)−3/2 = (r2 +�r ·�a+ 1

4a2)−3/2 and a similar expression for �r−.
Expanding these expressions with the binomial theorem, discarding terms quadratic
(and higher power) in a, we have

1

r3
+

≃ 1

r3

(

1 +
�r · �a
r2

)−3/2

=
1

r3

[

1 − 3

2

�r · �a
r2

+ O(a2)

]

(Ex 6.3.3)

and
1

r3
−

≃ 1

r3

(

1 − �r · �a
r2

)−3/2

=
1

r3

[

1 +
3

2

�r · �a
r2

+ O(a2)

]

(Ex 6.3.4)

The induced dipole is then

�p ′ =
qR3

r3

[

�r−

(

1 +
3

2

�r · �a
r2

)

− �r+

(

1 − 3

2

�r · �a
r2

)]
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=
pR3

ar3

[

(�r− − �r+) +
3

2

�r · �a
r2

(�r− + �r+)

]

=
R3

r3

[

−�p +
3(�r · �p )�r

r2

]

(Ex 6.3.5)

and is located at �r ′ = (R2/r2)�r relative to the center of the sphere.

If the sphere in Example 6.3 had been neutral and isolated, the different charges
on the two images would have left a net charge inside, detectable by Gauss’ law,
unless we put a compensating point charge at the center. The net charge left by
the image dipole may be calculated in the limit of a point dipole as

q′+ + q′− = q

(

R

r−
− R

r+

)

= qR

(

r+ − r−
r+r−

)

≡ qRa cos θ

r2
(6–14)

with θ the angle �a makes with �r. We can, of course write the qa cos θ as �p · r̂ so that
the required neutralizing charge, qc becomes

qc = − R(�p · �r )

r3
(6–15)

6.2.3 Conducting Cylinder and Image Line Charges

Although the conducting cylinder does not yield image charges for point charges, it
more usefully images a uniform line charge λ to an image line charge λ′ inside the
cylinder to give essentially the two-dimensional analogue of the spherical problem
above.

Consider a line charge λ, (dq = λdz) at a distance h from the center of a
conducting cylinder of radius R (Figure 6.5). We would like to find an image line
charge λ′ that would make the surface of the cylinder an equipotential surface.
Suppose λ′ to be at a distance b from the center. At any point �r (r ≥ R), as
indicated in Figure 6.6, the potential is given by

Figure 6.5: The surface charge induced on a conducting cylinder by a line
charge λ is mimicked by the image line charge λ′ inside the cylinder.
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Figure 6.6: The line charge and its image seen end-on.

V (r ≥ R) = − λ

2πε0
ln r1 −

λ′

2πε0
ln r2

=
−1

2πε0

(

λ ln
√

r2 + h2 − 2rh cos θ + λ′ ln
√

r2 + b2 − 2rb cos θ
)

=
−1

4πε0

[

λ ln(r2 + h2 − 2rh cos θ) + λ′ ln(r2 + b2 − 2rb cos θ)
]

(6–16)

At r = R, we wish to have ∂V/∂θ = 0. Differentiating, we obtain

∂V

∂θ

∣

∣

∣

∣

r=R

= − ∂

∂θ

{

1

4πε0

[

λ ln(R2 + h2 − 2Rh cos θ) + λ′ ln(R2 + b2 − 2Rb cos θ)
]

}

=
−1

2πε0

(

λRh sin θ

r2
1

+
λ′Rb sin θ

r2
2

)∣

∣

∣

∣

r=R

(6–17)

from which we conclude
(

hλ

r2
1

+
bλ′

r2
2

)∣

∣

∣

∣

r=R

= 0 ⇒ r2
1

r2
2

∣

∣

∣

∣

r=R

= −h

b

λ

λ′ (6–18)

Writing the ratio
(

r2
1

/

r2
2

)∣

∣

r=R
out explicitly, we find

R2 + h2 − 2Rh cos θ = −h

b

λ

λ′ (R
2 + b2 − 2Rb cos θ) (6–19)

We appeal to the linear independence of the constant term and the cosine term
of (6–19) to equate the constants and the coefficients of cos θ separately in the
equation. Therefore,

2Rh cos θ = −h

b

λ

λ′ · 2Rb cos θ

= − λ

λ′ · 2Rh cos θ ⇒ λ′ = −λ (6–20)

Inserting this into the θ-independent portion of (6–19), we have

R2 + h2 =
h

b
(R2 + b2) ⇒ hb = R2 (6–21)
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Figure 6.7: A continuous distribution invariant to displacements along the
z axis has a spatially compressed image inside the cylinder.

The expression for the position of the image line charge is identical with that for
the image of the point charge and the conducting sphere. By contrast, the magni-
tude of the image line charge is the same as the source line charge. More generally,
for a line charge at �r ′ we need an image charge λ′ = −λ at �r ′′ = (R2/r′2)�r ′, giving
potential

V (r ≥ R) = − λ

2πε0
ln

(

r1

r2

)

= − λ

2πε0
ln

( |�r − �r ′|
|�r − (R2/r′2)�r ′|

)

(6–22)

We generalize this result to continuous distributions that are invariant with respect
to displacements along the z axis (Figure 6.7).

V (r ≥ R) = − 1

2π

∫

S

ρ(�r ′)

ε0
ln

( |�r − �r ′|
|�r − (R2/r′2)�r ′|

)

d3r′ (6–23)

It should be evident that the equipotentials of two equal uniform line charges of
opposite sign are nonconcentric cylinders. At the midpoint between the two line
charges lies an equipotential plane. This means that in general, parallel conducting
cylinders or conducting cylinders parallel to a conducting plane can have their
potentials mimicked by line charges.

Example 6.4: Find the capacitance per unit length of two parallel cylindrical wires
of radius R spaced at center-to-center distance D .

Solution: The wires may be considered the equipotential surfaces of two line charges
+λ and −λ, each displaced inward from the center of its cylinder by distance b. We

Figure 6.8: Geometry of two cylindrical wires, each of radius R, spaced at
center-to-center distance D.
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relate the geometry to our results with images to obtain the positions and equate
the potential of these line charges to those of the wires at the surface of the wires.
From Figure 6.8 we have h = D − b, while from our earlier results we have bh =
R2. Combining these relations, we have b(D − b) = R2, which is easily solved by
the quadratic formula to give

b± =
D ±

√
D2 − 4R2

2
(Ex 6.4.1)

(Note that b+b− = R2; i.e.,b+ = h.)
The potential on the surface of the wire bearing +λ is then

V (r = R) = − λ

2πε0
ln

r1

r2
= − λ

4πε0
ln

(

r1

r2

)2
∣

∣

∣

∣

∣

r=R

(Ex 6.4.2)

With the help of (6–18), the argument of the logarithm may be written as h/b =
R2/b2 to give

V (r = R) = − λ

2πε0
ln

(

R

b

)

=
λ

2πε0
ln

(

D −
√

D2 − 4R2

2R

)

(Ex 6.4.3)

The other wire has a potential of the same magnitude but opposite sign. Therefore,
using ln(b/R) = − ln(h/R) we obtain the result

∆V = ± λ

πε0
ln

(

D −
√

D2 − 4R2

2R

)

≡ ∓ λ

πε0
ln

(

D +
√

D2 − 4R2

2R

)

(Ex 6.4.4)

The capacitance per unit length is now obtained as λ∆V .

C

ℓ
=

πε0

ln

(

D +
√

D2 − 4R2

2R

)
=

πε0

cosh−1 (D/2R)
(Ex 6.4.5)

6.3 Green’s Functions

As we have seen in each of the cases considered, when we satisfied the boundary
conditions of a problem using image charges, the potential was simply the integral of
the source charge density multiplied by some function that varied with the boundary
conditions. The multiplying function known as the Green’s function to the problem
could be deduced from the solution for a point source charge. Thus we might at
the most elementary level think of a Green’s function as the solution to the Poisson
equation (with given boundary conditions) with only a point source. The Green’s
function that we will denote G(�r, �r ′) is in this case a function of two variables, �r and
�r ′, where �r ′ is the position vector of the point source charge. In fact, the utility of
Green’s functions stretches far beyond solving Poisson’s equation, and we will first
give a somewhat heuristic demonstration of how Green’s functions may be used to
solve inhomogeneous linear partial differential equations.
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Consider the function G(x, x′; t, t′) that solves the linear differential equation
DG(x, x′; t, t′) = −δ(x − x′)δ(t − t′) (we could of course have more variables each
with its own δ function source term) where D is a linear differential operator acting
on x and t. The function Ψ defined by Ψ(x, t) ≡

∫

f(x′, t′)G(x, x′; t, t′)dx′dt′ then
solves DΨ(x, t) = −f(x, t), as is shown below. Allowing D to act on the integral
form of Ψ,

DΨ(x, t) = D

∫

f(x′, t′)G(x, x′; t, t′)dx′dt′ =

∫

f(x′, t′)DG(x, x′; t, t′)dx′dt′

=

∫

−f(x′, t′)δ(x − x′)δ(t − t′)dx′dt′ = −f(x, t) (6–24)

In the case that the boundary condition on G is that it vanishes when x lies on
the boundary, Ψ clearly satisfies the same boundary condition. If, however, G does
not vanish on the boundary, our naive approach cannot quite give Ψ with the same
boundary condition. As we have noted at the end of section 6.2.2, the Green’s
function is symmetric in its spatial arguments x and x′,

G(x, x′) = G(x′, x) (6–25)

but, to preserve the time ordering of causally related events

G(t, t′) = G(−t′,−t) (6–26)

Many authors choose to include a factor of 4π in their definition of the Green’s
function, so that G satisfies DG(x, x′) = −4πδ(x − x′). We now turn to a some-
what more formal approach to Green’s functions and their use in solving Poisson’s
equation.

6.3.1 Green’s Theorem

Green’s theorem, also known as Green’s second identity, provides much of the formal
framework for converting Poisson’s differential equation to an integral equation and
is easily derived. The divergence theorem

∫

τ

�∇ · �Fd3r =

∮

S

�F · d�S =

∮

S

�F · n̂dS (6–27)

applies to any vector field �F . We choose in particular �F = V �∇Ψ, then �∇ · �F =
�∇V · �∇Ψ + V ∇2Ψ. Applying the divergence theorem to �∇ · �F yields

∫

τ

(V ∇2Ψ + �∇V · �∇Ψ)d3r =

∮

S

V �∇Ψ · d�S =

∮

S

V
∂Ψ

∂n
dS (6–28)

a result known as Green’s first identity. Writing the same identity with V and Ψ
interchanged gives

∫

τ

(Ψ∇2V + �∇V · �∇Ψ)d3r =

∮

S

Ψ�∇V · d�S =

∮

S

Ψ
∂V

∂n
dS (6–29)
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Subtracting this from the first form we obtain Green’s second identity (22):
∫

τ

(

V ∇2Ψ − Ψ∇2V
)

d3r =

∮

S

(

V
∂Ψ

∂n
− Ψ

∂V

∂n

)

dS (6–30)

6.3.2 Poisson’s Equation and Green’s Functions

Poisson’s equation, ∇2V = −ρ/ε0, can be converted to an integral equation by
choosing Ψ in (6–30) such that Ψ satisfies ∇2Ψ = −δ(�r − �r ′). Green’s second
identity then becomes

∫

τ

(

−δ(�r − �r ′)V (�r ′) + Ψ
ρ(�r ′)

ε0

)

d3r′ =

∮

S′

(

V
∂Ψ

∂n
− Ψ

∂V

∂n

)

dS′ (6–31)

or, carrying out the integration of the δ function,

V (�r ) =

∫

τ

Ψρ(�r ′)

ε0
d3r′ +

∮

S′

(

Ψ
∂V

∂n
− V

∂Ψ

∂n

)

dS′ (6–32)

To gain some insight into this expression, let us use a familiar solution to ∇2Ψ =
−δ(�r − �r ′), namely Ψ = 1/(4π|�r − �r ′|). Equation (6–32) then becomes

V (�r ) =
1

4πε0

∫

τ

ρ(�r′ )

|�r − �r ′|d
3r ′ +

1

4π

∮

S′

(

∂V/∂n

|�r − �r ′| − V
∂

∂n

1

|�r − �r ′|

)

dS′ (6–33)

The first integral is well known to us as the Coulomb integral over the source
charge density. The surface integrals reflect the contribution of induced charges
or fields on the boundary to the potential within the volume. The numerator of
the first term of the surface integral, ∂V/∂n, is just the normal component of the
field at the boundary. The potential due to this term is the same as that from
surface charge σ = −ε0∂V/∂n. The last term is the potential corresponding to a

dipole layer �D = ε0V n̂ on the surface. The surface charge and dipole layer need
not be real; we have shown only that the potential inside a volume can always be
expressed in these terms. It is interesting that higher multipole fields from outside
the boundary do not affect the potential inside the boundary. If the surface integral
vanishes as it would when S′ → ∞, we recover the familiar Coulomb result.

The choice of Ψ(�r, �r ′) is not unique, as ∇2Ψ = −δ(�r − �r ′) is satisfied by

Ψ(�r, �r ′) =
1

4π|�r − �r ′| + F(�r, �r ′) (6–34)

where F satisfies ∇2F(�r, �r ′) = 0. This freedom makes it possible to choose Ψ such
that the potential, V (�r ), calculated inside the boundary depends explicitly only on
either V or on the value of its normal derivative ∂V/∂n (the electric field), on S′.
We handle the Dirichlet and Neumann problems separately.

If the boundary condition specifies V on S′ (Dirichlet problem), we choose Ψ =
0 on S′, in which case (6–32) reduces to

V (�r ) =
1

ε0

∫

τ

ρ(�r ′)Ψ(�r, �r ′)d3r′ −
∮

S′

V (�r ′)
∂Ψ(�r, �r ′)

∂n
dS′ (6–35)
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and, assuming Ψ is known, solving Poisson’s equation is reduced to evaluating two
definite integrals.

If instead the boundary condition specifies the normal derivative ∂V/∂n on S′

(the Neumann problem), it would be tempting to choose ∂Ψ/∂n = 0, but this would
lead to an inconsistency with the definition of Ψ. Because the demonstration of the
inconsistency holds the resolution, we produce it below. Since

∇2Ψ(�r, �r ′) = �∇ · (�∇Ψ) = −δ(�r − �r ′) (6–36)

we find, on integrating ∇2Ψ over r′, that

∫

τ

∇2Ψd3r′ = −1 =

∮

S′

�∇Ψ · d�S′ =

∮

S′

∂Ψ

∂n
dS′ (6–37)

which cannot be satisfied when ∂Ψ/∂n = 0 on S′. In fact, choosing

∂Ψ

∂n

∣

∣

∣

∣

r′ on S′

= − 1

S′ (6–38)

does satisfy the δ function normalization, and with this replacement (6–32) becomes

V (�r ) =
1

ε0

∫

τ

ρ(�r ′)Ψ(�r, �r ′) d3r′ +

∮

S′

(

V (�r ′)
1

S′ +
∂V (�r ′)

∂n
Ψ(�r, �r ′)

)

dS′

= 〈V 〉 +

∫

τ

ρ(�r ′)

ε0
Ψ(�r, �r ′)d3r′ +

∮

S′

∂V (�r ′)

∂n
Ψ(�r, �r ′)dS′ (6–39)

where 〈V 〉 is the average potential on the boundary,

〈V 〉 =
1

S′

∮

S′

V (�r ′)dS′ (6–40)

Once the Green’s function is known, the solution of Poisson’s equation for all
problems with that boundary reduces to several integrations. We now proceed to
obtain the Green’s function for the special case of the Dirichlet problem with a
spherical (inner or outer) boundary. We will henceforth drop the masquerade and
denote the Green’s function Ψ by G(�r, �r ′).

6.3.3 Expansion of the Dirichlet Green’s Function in Spherical Harmonics

The potential of a point charge q located at �r ′ in the vicinity of a grounded sphere
solves the equation

∇2V = −qδ(�r − �r ′)

ε0
(6–41)

with the boundary condition V = 0 at the surface of the sphere. Except for the
size of the source inhomogeneity, this is precisely the same equation and boundary
condition that the Green’s function must satisfy. We may therefore conclude that
the expression (6–13) gives us the Green’s function for the problem of a charge
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distribution in the neighborhood of (but exterior to) a spherical boundary of radius
a, namely

G(�r, �r ′) =
1

4π

(

1

|�r − �r ′| −
a

r′|�r − (a2/r′2)�r ′|

)

(6–42)

We have previously expressed the first term in spherical polar coordinates (Section
2.1.2), using as an intermediate step the generating function for Legendre polyno-
mials (F–35)

1

|�r − �r ′| =
1

r>

∞
∑

ℓ=0

(

r<

r>

)ℓ

Pℓ(cos γ) (6–43)

where γ is the angle between �r and �r ′. A similar expansion may be found for the
second term.

a

r′|�r − (a2/r′2)�r ′| =
a

√

r2r′2 + a4 − 2a2rr′ cos γ
(6–44)

If the charge distribution and the field point �r lie outside the sphere, both �r and �r ′

are larger than a and we factor these from the radical in order to obtain a convergent
expansion

a

r′|�r − (a2/r′2)�r ′| =
a

rr′

√

1 +
a4

r2r′2
− 2a2

rr′
cos γ

=
a

rr′

∞
∑

ℓ=0

(

a2

rr′

)ℓ

Pℓ(cos γ) (6–45)

Combining the two terms and rewriting the product rr′ as r>r<, we have

G(�r, �r ′) =
1

4π

∞
∑

ℓ=0

(

rℓ
<

rℓ+1
>

− a2ℓ+1

rℓ+1
< rℓ+1

>

)

Pℓ(cos γ)

=
1

4π

∞
∑

ℓ=0

1

rℓ+1
>

(

rℓ
< − a2ℓ+1

rℓ+1
<

)

Pℓ(cos γ) (6–46)

Now using (F–47)) to rewrite Pℓ(cos γ) in terms of the polar coordinates of �r and �r ′,
we obtain the desired Green’s function for a charge distribution outside the sphere.

G(�r, �r ′) =

∞
∑

ℓ=0

1

2ℓ + 1

ℓ
∑

m=−ℓ

1

rℓ+1
>

(

rℓ
< − a2ℓ+1

rℓ+1
<

)

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′) (6–47)

It might be observed that G vanishes on the boundary, as of course it should.
When the source and field points are inside the sphere, the expansion above no

longer converges. We distinguish the result for the source and field points interior
to the sphere by renaming the radius b and regain a convergent series by factoring
b2 from the modified radical in (6–44). We proceed in the same fashion to obtain

b

r′|�r − (b2/r′2)�r ′| =
1

b

√

1 +
r2r′2

b4
− 2rr′

b2
cos γ
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=
1

b

∑

ℓ

(

rr′

b2

)ℓ

Pℓ(cos γ) (6–48)

As before, we combine the two terms in G and rewrite the product rr′ as r>r< to
get

G(�r, �r ′) =
∑

ℓ,m

1

2ℓ + 1

[

1

r>

(

r<

r>

)ℓ

− 1

b

(

r<r>

b2

)ℓ
]

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′)

=
∑

ℓ,m

rℓ
<

2ℓ + 1

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′) (6–49)

Again it is clear that the Green’s function vanishes at the surface of the enclosing
sphere where r = r> = b.

Example 6.5: Find the potential due to a uniformly charged thin circular disk of
radius a bearing charge Q placed in the center of a grounded conducting sphere of
radius b > a.

Solution: The charge density on the disk for r′ < a may be written

ρ(�r ′) =
Qδ(cos θ′)

πa2r′
(Ex 6.5.1)

as is readily verified by integrating the density over the volume of a sphere containing
part of the disk. In general, the potential inside the sphere may be found from

V (�r ) =
1

ε0

∫

τ

ρ(�r ′)G(�r, �r ′)d3r′ −
∮

S′

V (�r ′)
∂G

∂n
dS′ (Ex 6.5.2)

As the sphere is grounded, the surface integral vanishes, reducing V to

V =
1

ε0

∫

τ

ρ(�r ′)
∑

ℓ

∑

m

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′)

2ℓ + 1
rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

d3r′ (Ex 6.5.3)

Since V cannot depend on ϕ, only the Y0
ℓ(θ, ϕ) =

√

(2ℓ + 1)/4π Pℓ(cos θ) can enter
into the sum. We therefore write

V =
1

4πε0

∑

ℓ

∫

τ

Pℓ(cos θ)Pℓ(cos θ′)ρ(�r ′)rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

d3r′

=
Q

4πε0πa2

∑

ℓ

Pℓ(cos θ)

∫

τ

1

r′
δ(cos θ′)Pℓ(cos θ′)rℓ

<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

×r′2dr′d(cos θ′)dϕ′ (Ex 6.5.4)

We perform the integration over θ′ and ϕ′ to get

V =
Q

2πε0a2

∑

ℓ

Pℓ(0)Pℓ(cos θ)

∫ a

0

rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

r′dr′ (Ex 6.5.5)
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We focus our attention on the integral in (Ex 6.5.5) which we abbreviate ℑ(r).
When r > a, r′ is r< throughout the entire range of integration. Hence

ℑ(r) =

(

1

rℓ+1
− rℓ

b2ℓ+1

)∫ a

0

r′ℓ+1dr′ =
aℓ+2

ℓ + 2

(

1

rℓ+1
− rℓ

b2ℓ+1

)

(Ex 6.5.6)

When r < a, the form of the integrand changes as r′ passes r. To accommodate
this, we split the range of integration into two segments; one where r′ is r< and one
where r′ is r>. When ℓ �= 1,

ℑ(r) =

(

1

rℓ+1
− rℓ

b2ℓ+1

)∫ r

0

r′ℓ+1dr′ + rℓ

∫ a

r

(

1

r′ℓ
− r′ℓ+1

b2ℓ,+1

)

dr′

=
1

(ℓ − 1)(ℓ + 2)

[

(2ℓ + 1)r − rℓ

aℓ−1

(

ℓ + 2 − (ℓ − 1)a2ℓ+1

b2ℓ+1

)]

(Ex 6.5.7)

The explicit values of Pℓ(0), P2ℓ+1(0) = 0, and P2ℓ(0) = (−1)ℓ(2ℓ − 1)!!/2ℓℓ! may
be used to eliminate all odd terms from the series. Making this substitution we get

V (r > a) =
Q

2πε0

∞
∑

ℓ=0

(−1)ℓ(2ℓ − 1)!!a2ℓ

2ℓ(2ℓ + 2)ℓ!

(

1

r2ℓ+1
− r2ℓ

b4ℓ+1

)

P2ℓ(cos θ) (Ex 6.5.8)

V (r < a) =
Q

2πε0a2

∞
∑

ℓ=0

(−1)ℓ(2ℓ − 3)!!

2ℓℓ!(2ℓ + 2)

{

(4ℓ + 1)r

− r2ℓ

a2ℓ−1

[

(2ℓ + 2) − (2ℓ − 1)a4ℓ+1

b4ℓ+1

]}

P2ℓ(cos θ) (Ex 6.5.9)

Example 6.6: Find the potential due to a uniformly charged ring of radius a and total
charge Q enclosed concentrically within a grounded conducting sphere of radius b
(Figure 6.9).

Figure 6.9: A conducting sphere of radius b has a uniformly charged con-
centric ring of radius a enclosed.
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Solution: The charge density on the ring is

ρ(�r ′) =
Q

2πar′
δ(r′ − a)δ(cos θ′) (Ex 6.6.1)

The sphere is grounded, therefore the surface integral in (6–30) vanishes, reducing
the expression for the potential to

V =
1

ε0

∫

τ

ρ(�r ′)
∑

ℓ

∑

m

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′)

2ℓ + 1
rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

d3r′ (Ex 6.6.2)

and the lack of ϕ dependence again allows us to replace the spherical harmonics
with Legendre polynomials to give

V =
1

4πε0

∑

ℓ

∫

τ

Pℓ(cos θ)Pℓ(cos θ′)ρ(�r ′)rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

d3r′

=
Q

4πε02πa

∑

ℓ

Pℓ(cos θ)

∫

τ

δ(r′ − a)δ(cos θ′)Pℓ(cos θ′)rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

× r′dr′d(cos θ′)′dϕ′ (Ex 6.6.3)

The integration over θ′ and ϕ′ is easily performed to give

V =
Q

4πε0

∑

Pℓ(0)Pℓ(cos θ)

∫

δ(r ′ − a)rℓ
<

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

dr′ (Ex 6.6.4)

As in the previous example, the explicit values of Pℓ(0) eliminate all odd terms from
the series. The δ function ensures that r′ = a. For r < a , r = r<, allowing us to
write

V (r < a) =
Q

4πε0

∞
∑

ℓ=0

(−1)ℓ(2ℓ − 1)!!

2ℓℓ!
r2ℓ

(

1

a2ℓ+1
− a2ℓ

b4ℓ+1

)

P2ℓ(cos θ) (Ex 6.6.5)

while for r > a, r′ = r<, giving

V (r > a) =
Q

4πε0

∞
∑

ℓ=0

(−1)ℓ(2ℓ − 1)!!

2ℓℓ!
a2ℓ

(

1

r2ℓ+1
− r2ℓ

b4ℓ+1

)

P2ℓ(cos θ) (Ex 6.6.6)

In the limit as b → ∞, this should reduce to the expansion for the potential of
a charged ring in free space as found in Example 5.8.

This result (Ex 6.6.6) could of course also have been obtained using a ring of
image charge at a′ = b2/a bearing total charge Q′ = (−b/a)Q.

⋆ 6.3.4 Dirichlet Green’s function from the Differential equation

When there are both an inner and an outer spherical bounding surfaces there would
be an infinite number of images as the image produced by each surface is reflected
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in the other. Under these conditions it proves necessary to solve the defining differ-
ential equation for G, ∇2G = −δ(�r−�r ′). Expressing ∇2G in spherical polars using
(42) we have

1

r

∂2(rG)

∂r2
+

1

r2 sin θ

∂

∂θ

(

sin θ
∂G

∂θ

)

+
1

r2 sin2 θ

∂2G

∂ϕ2
= −δ(�r − �r ′) (6–50)

Considering G(�r, �r ′) as a function of �r we may generally expand it in spherical
polars as

G(�r, �r ′) =
∑

ℓ,m

Aℓ,m(θ′, ϕ′)Rℓ(r, r
′)Ym

ℓ (θ, ϕ) (6–51)

Substituting this expansion into (6–50) with the help of (F–39) we obtain

∑

ℓ,m

(

1

r

d2(rRℓ)

dr2
− ℓ(ℓ + 1)Rℓ

r2

)

Aℓ,m(θ′, ϕ′)Ym
ℓ (θ, ϕ) = −δ(�r − �r ′) (6–52)

We can also expand the right hand side of (6–52) first in terms of one dimensional
δ functions

δ(�r − �r ′) =
1

r2
δ(r − r′) δ(cos θ − cos θ′) δ(ϕ − ϕ′) (6–53)

and then in terms of spherical harmonics with the aid of the completeness relation
(F-46)

δ(�r − �r ′) =
1

r2
δ(r − r′)

∑

ℓ,m

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′) (6–54)

We immediately identify the coefficient Aℓ,m(θ′, ϕ′) with Y∗m
ℓ (θ′, ϕ′) allowing us to

remove these two terms from the equation. The remaining equation is

∑

ℓ,m

(

1

r

d2(rRℓ)

dr2
− ℓ(ℓ + 1)Rℓ

r2

)

Ym
ℓ (θ, ϕ) = − 1

r2
δ(r − r′)

∑

ℓ,m

Ym
ℓ (θ, ϕ) (6–55)

Finally we appeal to the linear independence of the Ym
ℓ to equate the coefficients

on the left and the right, resulting in

1

r

d2(rRℓ)

dr2
− ℓ(ℓ + 1)Rℓ

r2
= − 1

r2
δ(r − r′) (6–56)

So long as r �= r′, the right hand side of (6–56) vanishes it may be solved for rR in
terms of r

rRℓ = Aℓr
ℓ+1 +

Bℓ

rℓ
(6–57)

however, the δ function inhomogeneity at r = r′ means the expansion coefficients
will differ for r < r′ and r > r′ so that

Rℓ(r < r′) = Aℓr
ℓ +

Bℓ

rℓ+1
and Rℓ(r > r′) = Cℓr

ℓ +
Dℓ

rℓ+1
(6–58)
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The boundary condition on G, and hence on R, is that it vanish on the boundary.
At the inner sphere of radius a, r < r′ so that

Rℓ(a) = Aℓa
ℓ +

Bℓ

aℓ+1
⇒ Bℓ = −Aℓa

2ℓ+1 (6–59)

and

Rℓ(b) = Cℓb
ℓ +

Dℓ

bℓ+1
⇒ Cℓ = − Dℓ

b2ℓ+1
(6–60)

so that, explicitly recognizing that R is a function of both r and r′, we rewrite
(6–58) as

Rℓ(r < r′) = Aℓ(r
′)

(

rℓ − a2ℓ+1

rℓ+1

)

(6–61)

and

Rℓ(r > r′) = Dℓ(r
′)

(

1

rℓ+1
− rℓ

b2ℓ+1

)

(6–62)

recalling that the Green’s function is invariant under interchange of r and r′, we
can also express these results (6–61) and (6–62) in terms of r and r′ interchanged

Rℓ(r < r′) = Dℓ(r)

(

1

r′ℓ+1
− r′ℓ

b2ℓ+1

)

(6–63)

and

Rℓ(r > r′) = Aℓ(r)

(

r′ℓ − a2ℓ+1

r′ℓ+1

)

(6–64)

(6–61) and (6–63) taken together imply that

Rℓ(r < r′) = B′
ℓ

(

1

r′ℓ+1
− r′ℓ

b2ℓ+1

)(

rℓ − a2ℓ+1

rℓ+1

)

(6–65)

and (6–62) and (6–64) similarly lead to

Rℓ(r > r′) = C ′
ℓ

(

1

rℓ+1
− rℓ

b2ℓ+1

)(

r′ℓ − a2ℓ+1

r′ℓ+1

)

(6–66)

Finally, the continuity of G (required to make V continuous at r = r′ implies
B′

ℓ = C ′
ℓ and we can write (6–65) and (6–66) in the more economical form

Rℓ(r, r
′) = C ′

ℓ

(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)(

rℓ
< − a2ℓ+1

r<
ℓ+1

)

(6–67)

The constant C ′
ℓ is yet to be determined from the size of the source term, in

this case the δ function inhomogeneity. To evaluate the effect of the δ function, we
must integrate (6–56) over a vanishingly small interval about r′.

∫ r′+ǫ

r′−ǫ

(

d2(rRℓ)

dr2
− ℓ(ℓ + 1)Rℓ

r

)

dr = −
∫ r′+ǫ

r′−ǫ

δ(r − r′)

r
dr (6–68)
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or
d(rRℓ)

dr

∣

∣

∣

∣

r′+ǫ

r′−ǫ

−
〈

ℓ(ℓ + 1)Rℓ

r′

〉

2ǫ = − 1

r′
(6–69)

The term

lim
ǫ→0

〈

ℓ(ℓ + 1)Rℓ

r′

〉

2ǫ = 0 (6–70)

leaving
d(rRℓ)

dr

∣

∣

∣

∣

r′
+

− d(rRℓ)

dr

∣

∣

∣

∣

r′
−

= − 1

r′
(6–71)

For r = r′+, r > r′ and we use (6–66) to compute the required derivative

d(rRℓ)

dr

∣

∣

∣

∣

r′
+

= C ′
ℓ

(

r′ℓ − a2ℓ+1

r′ℓ+1

)[

d

dr

(

1

rℓ
− rℓ+1

b2ℓ+1

)]

r=r′

= C ′
ℓ

(

r′ℓ − a2ℓ+1

r′ℓ+1

)( −ℓ

r′ℓ+1
− (ℓ + 1)r′ℓ

b2ℓ+1

)

(6–72)

In the same fashion we use (6-64) (with C ′
ℓ substituted for B′

ℓ) to compute the
derivative of rR at r = r′−

d(rRℓ)

dr

∣

∣

∣

∣

r′
−

= C ′
ℓ

(

1

r′ℓ+1
− r′ℓ

b2ℓ+1

)[

d

dr

(

rℓ+1 − a2ℓ+1

rℓ

)]

r=r′

= C ′
ℓ

(

1

r′ℓ+1
− r′ℓ

b2ℓ+1

)(

(ℓ + 1)r′ℓ +
ℓa2ℓ+1

r′ℓ+1

)

(6–73)

Inserting (6–72) and (6–73) into (6–71) we obtain after some algebra

C ′
ℓ =

1

(2ℓ + 1)

[

1 −
(

a

b

)2ℓ+1
] (6–74)

Collecting terms we use (6–74) in (6–67) to construct the Green’s function in (6–51)

G(�r, �r ′) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′)

(2ℓ + 1)

[

1 −
(

a

b

)2ℓ+1
]

(

rℓ
<−

a2ℓ+1

rℓ+1
<

)(

1

rℓ+1
>

− rℓ
>

b2ℓ+1

)

(6–75)

When there is either no inner boundary or no outer bounding sphere, it suffices
to let a go to zero (no inner boundary) or let b go to ∞ (no outer boundary) to
recover our earlier solutions.
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Exercises and Problems

Figure 6.10: The bent, infinite, grounded con-
ducting sheet has a charge q midway between
the plates at distance b from the vertex.

Figure 6.11: A line charge λ = Q/2b spans
the enclosing sphere along the z axis.

6-1 Find the force between an isolated
conducting sphere of radius R and a
point charge q in its vicinity.

6-2 It is tempting to write the poten-
tial of a charge q situated a distance z
above a grounded conducting plane as
V = q/(4πε02z). Show that one obtains
twice the correct electric field when com-
puting −�∇V . Explain the reason for the
too-large result.

6-3 Show that when the potential at a
charge located at �r near a grounded con-
ducting sphere due to its image charge is
expressed in terms of the charge position
�r, −�∇V gives twice the correct electric
field at �r.

6-4 Use image charges to obtain the
force and the torque on a electric dipole
in the vicinity of a grounded conducting
plane.

6-5 A point charge is placed at distance
a from the left plate between two par-
allel conducting grounded plates spaced
distance D. Find a series expression for
the force on the charge.

6-6 A point electric dipole is placed at
the center of a conducting sphere. Find

the resulting electric field both inside
and outside the sphere.

6-7 Use image charges to find the poten-
tial along the z axis due to a uniformly
charged thin ring of radius a concentric
with a larger grounded sphere of radius
b (illustrated in Figure 6.9). Generalize
this result for r ∈ (a, b).

6-8 A small (point) electric dipole is
placed in the vicinity of a neutral con-
ducting sphere. Find the energy of the
dipole due to the induced dipole field of
the sphere. This potential has the gen-
eral form of the dipole-induced dipole en-
countered in molecular physics.

6-9 Find the force and torque on the
dipole in problem 6-8.

6-10 Find the image of a uniform
(straight) line charge in the vicinity of
a grounded conducting sphere.

6-11 Show that the problem of an un-
charged conducting sphere placed in an
initially uniform field can be solved by
images. (Hint: Place charges Q =
±2πε0L

2E0 at sufficiently large ±L to
produce a uniform electric field E0 in the
region the sphere will be placed.)
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6-12 A charge is placed distance b along
the bisector of the vertex of a bent, infi-
nite plane conductor as shown in Figure
6.10. Find the force on the charge.

6-13 Generalize problem 6-9 to vertex
with a small angle that divides 360◦

evenly.

6-14 Determine the images of a point
charge q placed above the center of a
hemispherical bump (radius a) in an oth-
erwise flat plate extending to infinity.
Assume all surfaces are grounded con-
ductors.

6-15 A line charge λ is placed inside
a grounded, conducting cylinder paral-
lel to the axis of the cylinder. Find the
potential inside the cylinder.

6-16 Calculate the capacitance of two
nested cylinders whose radii are a < b
and whose parallel axes are separated by
D < b − a.

6-17 A long wire of radius a is placed
with its axis parallel to a large conduct-
ing (assume infinite) sheet at distance d
from the sheet. Find the capacitance of
this arrangement.

6-18 Find the capacitance of two long
wires of differing radii a and b carry-
ing equal charges of opposite sign dis-
tributed over their surfaces.

6-19 A hollow conducting sphere of ra-
dius b encloses a uniform line charge λ
= Q/2b along the z axis (Figure 6.11).
Use Green’s functions to find the poten-
tial interior to the sphere. Hint: ρ(�r ′)
= Q/4bπr′2[δ(cos θ′ − 1) + δ(cos θ′ + 1)]
and care should be taken integrating

∫ b

0

rℓ
<

(

1

r

ℓ+1

>
− rℓ

>

b2ℓ+1

)

dr′

Break it up into intervals 0 ≤ r′ ≤ r.
and r ≤ r′ ≤ b to obtain

∫ b

0

(

· · ·
)

dr′ =
2ℓ + 1

ℓ(ℓ + 1)

[

1 −
(

r

b

)ℓ
]

This result is indeterminate for ℓ = 0;
direct integration works best in the ℓ =
0 case.

6-20 A point charge Q is placed mid-
way between two concentric conducting
grounded spheres of radius a and b. For
convenience assume the charge to be at
θ′= 0. Find the potential at other points
between the two spheres.

6-21 Obtain the Green’s function for
Poisson’s equation in cylindrical polar
coordinates using a Bessel function ex-
pansion for the Dirac δ function.



Chapter7

Static Electromagnetic Fields in Matter

7.1 The Electric Field Due to a Polarized Dielectric

We begin this discussion with a fairly phenomenological consideration of the electric
field arising from charges in matter. We consider a dielectric having charges, electric
dipoles, quadrupoles, etc. distributed throughout the material. The charge density
will, as before, be denoted by ρ(�r ′); the dipole moment density, or simply the

polarization, by �P (�r ′); and in principle, the quadrupole moment density by
↔
Q(�r ′);

and so on. The potential at position �r (with components (x1, x2, x3) due to this
distribution is given by

V (�r ) =
1

4πε0

∫





ρ(�r ′)

|�r − �r ′| +
(�r − �r ′) · �P (�r ′)

|�r − �r ′|3 +
∑

i,j

(xi − x′
i)(xj − x′

j)Qij

2|�r − �r ′|5 · · ·



 d3r′

=
1

4πε0

∫ [

ρ(�r ′)

|�r − �r ′| +
∑

i

∂

∂x′
i

(

1

|�r − �r ′|

)

Pi(�r
′)

+
1

6

∑

i,j

∂

∂x′
i

∂

∂x′
j

(

1

|�r − �r ′|

)

Qij + · · ·
]

d3r′ (7–1)

If the series is truncated at the dipole moment distribution, we obtain

V (�r ) =
1

4πε0

∫ [

ρ(�r ′)

|�r − �r ′| + �P (�r ′) · �∇′
(

1

|�r − �r ′|

)]

d3r′ (7–2)

We would like to investigate the effect of matter on Maxwell’s equations. We begin
with its effect on �∇ · �E. In particular, we would like to express the divergence of
the electric field in terms of the charge density and the polarization of the material.
To this end we write �E = −�∇V , and �∇ · �E = −∇2V . Thus

�∇ · �E = − 1

4πε0
∇2

∫ [

ρ(�r ′)

|�r − �r ′| + �P (�r ′) · �∇′
(

1

|�r − �r ′|

)]

d3r′

—165—
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Figure 7.1: The divergent polarization leads to a concentration of negative
charge that acts as a source of electric field.

= − 1

4πε0

∫ [

ρ(�r ′)∇2 1

|�r − �r ′| + �P (�r ′) · �∇′
(

∇2 1

|�r − �r ′|

)]

d3r′ (7–3)

Using the relation (26), ∇2
(

1/|�r − �r ′|
)

= −4πδ(�r − �r ′), we have

�∇ · �E =
1

ε0

∫

[

ρ(�r ′)δ(�r − �r ′) + �P (�r ′) · �∇′δ(�r − �r ′)
]

d3r′ (7–4)

The first term of the integral in (7–4) integrates without difficulty, and the second
part can be expanded in Cartesian coordinates
∫

�P (�r ′) · �∇′δ(�r − �r ′) =

∫

Px(�r ′)
∂

∂x′ [δ(x − x′) δ(y − y′) δ(z − z′)] dx′dy′dz′

+

∫

Py(�r ′)
∂

∂y′ δ(�r − �r ′)d3r′ +

∫

Pz(�r
′)

∂

∂z′
δ(�r − �r ′)d3r′ (7–5)

With the help of
∫∞
−∞ f(x)δ′(x − a)dx = −f ′(a) we integrate each term. Focusing

our attention on the first integral on the right hand side of (7–5) we obtain

∫

Px(�r ′)
∂

∂x′ δ(x − x′) δ(y − y′) δ(z − z′)dx′dy′dz′ =

∫

Px(x′, y, z)
∂

∂x′ δ(x − x′)dx′

= −∂Px(x, y, z)

∂x
= −∂Px(�r )

∂x
(7–6)

In exactly the same fashion, the second and third integrals of (7–5) integrate re-
spectively to

−∂Py(�r )

∂y
and − ∂Pz(�r )

∂z
(7–7)

to give

�∇ · �E =
ρ

ε0
−

�∇ · �P (�r )

ε0
(7–8)
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Figure 7.2: At the boundary of a polarized dielectric the exposed ends of
the dipoles generate a bound surface charge equal to �P · n̂, where n̂ is the
outward facing normal.

In other words, −�∇ · �P acts as a source of electric field and is often given the name
bound charge. Its origin is physically obvious if we consider a collection of dipoles
having a nonzero divergence. The divergence of �P in Figure 7.1 is positive, resulting
in an accumulation of negative charge in the center.

At discontinuities in �P , as at the boundaries of dielectrics, we get an accumu-
lation of bound surface charge even for uniform polarizations (Figure 7.2). This
observation is readily verified from equation (7–8). Setting the free charge to zero,
we write

�∇ · �E = −
�∇ · �P

ε0
(7–9)

Applying Gauss’ law to a small flat pillbox of Figure 7.3 with top and bottom
surface parallel to the dielectric surface, we find

∫

τ

�∇ · �E d3r = −
∫

τ

�∇ · �P

ε0
d3r (7–10)

whence,
∮

S

�E · d�S = − 1

ε0

∮

S

�P · d�S (7–11)

Noting that the surface of the pillbox inside the dielectric is directed opposite
to the outward-facing normal n̂, we find

( �Ee − �Ei) · �Se = − 1

ε0

�P · �Si =
�P · �Se

ε0
(7–12)

Figure 7.3: The Gaussian pillbox has ‘bottom’ surface �Si with normal facing
into the dielectric and ‘top’ surface �Se with normal facing out.
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requiring that

( �Ee − �Ei) · n̂ =
1

ε0

�P · n̂ (7–13)

where n̂ is a normal facing outward from the dielectric (Figure 7.3). This discon-

tinuity in the field is exactly the effect that a surface charge, σ = �P · n̂, at the
surface of the dielectric would have. In total then, the electric field produced by a
polarized dielectric medium is identical to that produced by a bound charge density
ρb = −�∇ · �P and a bound surface charge density σb = �P · n̂ on the surface. The
resulting electric field may be written

�E(�r ) =
1

4πε0

∫

τ

[

−�∇′ · �P (�r ′)
]

(�r − �r ′)

|�r − �r ′|3 d3r′ +
1

4πε0

∮

S

(�P · n̂)(�r − �r ′)

|�r − �r ′|3 dS′ (7–14)

Example 7.1: Find the electric field along the z-axis of a dielectric cylinder of length
L and radius a whose axis coincides with the z axis when the cylinder is uniformly
polarized along its axis.

Solution: For convenience we take one face, say the bottom, in the x-y plane.
According to (7–14) the electric field in the cylinder is given by

�E(z) =
1

4πε0

∮

(�P · n̂)(zk̂ − �r ′)

|�r − �r ′|3 dS′

=
1

4πε0

∫ a

0

∫ 2π

0

−P (zk̂ − rr̂)rdrdϕ

(z2 + r2)
3/2

+
1

4πε0

∫ a

0

∫ 2π

0

P (zk̂ − Lk̂ − rr̂)r drdϕ

[(z − L)2 + r2]
3/2

=
P k̂

2ε0

{

z

(z2 + r2)
1/2

− (z − L)

[(z − L)2 + r2]
1/2

}∣

∣

∣

∣

∣

a

0

=
P k̂

2ε0

{

z

(z2 + a2)1/2
− z − L

[(z − L)2 + a2]
1/2

− 2

}

(Ex 7.1.1)

Inside the cylinder, first two terms are both positive and less than one, meaning
the electric field points in the negative z direction. If a ≫ L, the electric field
becomes simply �E = P k̂/ε0, the field between two parallel plates carrying charge
density σ = P .

7.1.1 Empirical Description of Dielectrics

The molecules of a dielectric may be classed as either polar or nonpolar. We consider
first the case of nonpolar molecules. When such molecules (or atoms) are placed
in an electric field, the positive charges will move slightly in the direction of the
field while the negative charges move slightly in the opposite direction, creating a
polarization of the medium.

If, on the other hand, the molecules have intrinsic (permanent) dipole moments
that in the absence of an electric field are randomly oriented, they will attempt to
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align with the electric field, and their non-random alignment will lead to a polar-
ization of the medium. In either case, the resulting polarization will be a function
of the local electric field (including that of neighboring dipoles). We may write the
empirical relation

P i = P i
0 + χi

jε0E
j + χ

i(2)
jk ε2

0E
jEk + χ

i(3)
jkℓ ε3

0E
jEkEℓ + · · · (7–15)

(summation over repeated indices is implied). For isotropic materials, only the
diagonal terms of the dielectric susceptibility tensor χ survive, and (7–15) becomes

merely a power series expansion for the polarization �P .
Materials exhibiting large spontaneous polarization are known as ferroelectrics

(clearly there must be polar molecules involved). In analogy to magnets, ferro-
electric objects are known as electrets. The best known example of a ferroelectric
crystal is BaTiO3. Mechanical distortions of the crystal may result in large changes
of the polarization, giving rise to piezoelectricity. Similarly, changes in temperature
give rise to pyroelectricity.

A number of crystals have sufficiently large second or third order susceptibility
that optical radiation traversing the crystal may excite a polarization with cos2 ωt
or cos3 ωt dependence giving rise to the generation of frequency doubled or tripled
light. The efficiency of such doubling or tripling would be expected to increase—
linearly for doubling or quadratically for tripling—with incident field strength.

In sufficiently small electric fields, the relationship between �E and �P for isotropic
materials becomes simply

�P = χε0
�E (7–16)

The constant χ is called the linear dielectric susceptibility of the dielectric. The
ratio between the induced molecular dipole and ε0

�E, the polarizing field, is known
as the polarizability, α. Thus

�p = αε0
�E (7–17)

7.1.2 Electric Displacement Field

The calculation of the microscopic field �E arising from charges and molecular dipoles
of the medium requires considerable care. It is frequently useful to think of the
polarization of the medium as merely a property of the medium rather than as a
source of field. To do so requires the definition of the electric displacement field.
The differential equation (7–8),

�∇ · �E =
ρ

ε0
−

�∇ · �P

ε0

is more conveniently written

�∇ · (ε0
�E + �P ) = ρ (7–18)

The quantity �D ≡ ε0
�E + �P is the electric displacement field. In terms of �D,

Maxwell’s first equation becomes
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�∇ · �D = ρ (7–19)

The dipoles of the medium are not a source for �D; only the so-called free charges
act as sources.

When �P can be adequately approximated by �P = χε0
�E we find that

�D = ε0
�E + χε0

�E = ε0(1 + χ) �E = ε �E (7–20)

The constant ε is called the permittivity of the dielectric. The dielectric constant,
κ, is defined by

κ ≡ ε

ε0
= 1 + χ (7–21)

In general, because it takes time for dipoles to respond to the applied field, all three
constants–χ, ε, and κ–are frequency dependent.

Anticipating the boundary condition implied by (7–19), namely that �D⊥ is con-
tinuous across a dielectric interface bearing no free charge, we illustrate these ideas
with a simple example.

Example 7.2: A large parallel plate capacitor has a potential V applied across its
plates. A slab of dielectric with dielectric constant κ fills 9/10 of the gap between
its plates with air (κair = 1) filling the remaining space. Find the resulting electric
field in the air and in the dielectric between the capacitor plates as well as the
capacitance. Assume a separation t between the plates.

Solution: We take the lower capacitor plate to lie in the x-y plane and for simplicity
assume the air layer is the top 10%. In terms of the electric field Ea in air and the
electric field Ed in the dielectric, the potential difference V between the plates is

V = 0.1tEa + 0.9tEd (Ex 7.2.1)

The continuity of the perpendicular components of �D gives ε0Ea = εEd, or Ea =
κEd. With this substitution, we solve the equation above to get

Ed =
V

(0.9 + 0.1κ)t
and Ea =

(

κ

0.9 + 0.1κ

)

V

t
(Ex 7.2.2)

Note that the electric field in the air space is κ times as large as that in the dielectric.
The stored charge is most easily found from the air value of the electric field

since σ = ε0E⊥. We have then

Q =

(

ε0κA

0.9 + 0.1κ

)

V

t
(Ex 7.2.3)

leading to capacitance

C =
Q

V
=

ε0κA

(0.9 + 0.1κ)t
(Ex 7.2.4)

As the fraction of air layer decreases, the capacitance tends to κ times that of
the air spaced capacitor. The electric field in the dielectric is evidently smaller than
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it is in air. The diminution may be attributed to shielding produced by the aligned
dipoles at the air-dielectric interface. The thin air layer, on the other hand, has a
significantly increased electric field due to the dielectric, and is a major contributor
to the voltage difference between the plates.

7.2 Magnetic Induction Field Due to a Magnetized Material

Just as a material might contain within it a smooth distribution of electric dipoles
�p, it can also contain within it a smooth distribution of magnetic dipoles �m. The
vector potential due to a molecular dipole �m at position �rj is given by a slight
generalization of (2–23) as

�A(�r ) =
µ0

4π

�m × (�r − �rj)

|�r − �rj |3
(7–22)

For n such molecular magnetic dipoles per unit volume, the magnetization �M
is defined by �M ≡ n〈�m〉. The vector potential arising from both currents and
magnetic dipoles in the material is then

�A(�r ) =
µ0

4π

∫

τ

�J(�r ′)d3r′

|�r − �r ′| +
µ0

4π

∫

τ

�M(�r ′) × (�r − �r ′)

|�r − �r ′|3 d3r′ (7–23)

The second integral may be written
∫ �M(�r ′) × (�r − �r ′)

|�r − �r ′|3 d3r′ =

∫

�M(�r ′) × �∇′
(

1

|�r − �r ′|

)

d3r′ ≡ ℑ (7–24)

Using the identity (6), �∇× (Ψ �M) = �∇Ψ × �M + Ψ�∇× �M ,

ℑ =

∫ �∇′ × �M(�r ′)

|�r − �r ′| d3r′ −
∫

�∇′ ×
( �M(�r ′)

|�r − �r ′|

)

d3r′

=

∫

τ

�∇′ × �M(�r ′)

|�r − �r ′| d3r′ +

∮

S′

�M(�r ′)

|�r − �r ′| × d�S′ (7–25)

where we have used (21) for the last step. If �M is localized to a finite region and
S′ lies outside this region (this must necessarily be so, as the volume of integration

τ in (7–23) must include all �M and �J ), the second integral vanishes, giving

�A(�r ) =
µ0

4π

∫ �J(�r ′) + �∇′ × �M(�r ′)

|�r − �r ′| d3r′ (7–26)

Thus, according to (7–26), the magnetization of the medium contributes to the

vector potential like an effective current �Jm = �∇× �M .
To obtain a modified Maxwell equation for �∇× �B, we note �∇× �B = �∇×(�∇× �A)

= �∇(�∇ · �A)−∇2 �A. In the Coulomb gauge (electro -/magneto- statics) we set �∇· �A
= 0 and use (26) to obtain,

�∇× �B(�r ) = −∇2 µ0

4π

∫ �J(�r ′) + �∇′ × �M(�r ′)

|�r − �r ′| d3r′
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= µ0

∫

[

�J(�r ′) + �∇′ × �M(�r ′)
]

δ(�r − �r ′)d3r′

= µ0

[

�J(�r ) + �∇× �M(�r )
]

(7–27)

Again we find that, according to equation (7–27), the curl of the magnetization
behaves like a current density. Just as the polarization contributes an effective
surface charge at discontinuities, a discontinuity in magnetization, as, for example,
at the boundaries of magnetic materials, contributes an effective surface current.

In arriving at (7–26), we eliminated the surface integral by forcing the volume
of integration τ to extend beyond the region containing magnetized materials. The
penalty for this procedure is that the discontinuity of �M at the boundary of the
material makes �∇× �M undefined. If we had instead taken the region of integration
to be the “open” region containing all the magnetization, but not the boundary, we
could exclude the discontinuity from the region where the curl must be computed.
We would then obtain, instead of (7-26),

�A(�r ) =
µ0

4π

∫

S′ �∈τ

�J(�r ′) + �∇′ × �M(�r ′)

|�r − �r ′| d3r′ +
µ0

4π

∮

S′

�M(�r ′) × d�S′

|�r − �r ′| (7–28)

The added term is just that which would have been produced by a surface current
�j = �M × n̂ . This same conclusion can of course be reached from (7–27), as is shown

below. Consider a uniformly magnetized bar with magnetization �M = Mz k̂. Inside
the magnet, �∇× �M = 0, implying that �∇× �B = µ0

�J ; the uniform magnetization
makes no contribution to the induction field! At the boundary, since �∇ × �M is
undefined, we resort to a different stratagem. We draw a thin rectangular loop with
long sides parallel to the magnetization �M straddling the boundary (Figure 7.4)
and integrate the curl equation over the area included in the loop:

∫

(�∇× �B) · d�S = µ0

∫

(�∇× �M) · d�S (7–29)

For simplicity we have taken �J = 0 and take �M to be directed along z.
By means of Stokes’ theorem (18) both surface integrals may be recast as line

integrals
∮

�B · d�ℓ = µ0

∮

�M · d�ℓ (7–30)

Figure 7.4: The Ampèrian loop lies in the x-z plane straddling the boundary.
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Figure 7.5: The short side of the loop, inside the bar magnet, is taken
parallel to the magnetization.

which, after letting the width shrink to zero, gives Bint
z − Bext

z = µ0M . A surface

current �j = M̂ would produce exactly this kind of discontinuity in �B. Thus, at the
boundary, the effect of a discontinuity in the magnetization is exactly the same as
that of a surface current �j = �M × n̂.

Example 7.3: Find the magnetic induction field inside a long (assume infinite) bar

magnet with uniform magnetization �M .

Solution: We integrate the equation

�∇× �B(�r ) = µ0
�∇× �M(�r ) (Ex 7.3.1)

over the area of a rectangular loop with one short side inside the magnet and its
other short side sufficiently far removed that �B vanishes, as shown in Figure 7.5:

∫

(�∇× �B) · d�S = µ0

∫

(�∇× �M) · d�S (Ex 7.3.2)

Applying Stokes’ theorem to both integrals we obtain
∮

�B · d�ℓ = µ0

∮

�M · d�ℓ (Ex 7.3.3)

The translational invariance of the problem makes the integral of �B along the long
(perpendicular to the bar) side cancel (they would each vanish when they’re per-

pendicular to �B in any case). The integral along the distant short side also vanishes

since �B vanishes, reducing the integral for �B to BzL. Similarly, the integral of the
magnetization reduces to MzL. We conclude therefore that the magnetic induction
field inside the magnet is �B = µ0

�M . Having found �B inside the magnet, we can now
repeat the argument with the distant end of the loop brought close to the magnet
to obtain �B = 0 outside the magnet.

Example 7.4: Find the magnetic induction field along the center line of a uniformly
magnetized cylindrical bar magnet of length L.

Solution: Recognizing that we may replace the magnetization by a surface current,
we note that this problem is identical to that of a solenoid of length L with azimuthal
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current I = ML/N . The equivalent current density along the periphery of the
magnet is j = M, giving a current dI = j′dz′ = M ′dz′ for a current “loop” of width
dz′ centered at z′. According to example 1.8, the field due to a circular plane loop
of radius R, carrying current dI centered at z′, is

d �B(0, 0, z) =
µ0R

2dIk̂

2 [R2 + (z − z′)2]3/2
=

µ0R
2 �M ′dz′

2 [R2 + (z − z′)2]3/2
(Ex 7.4.1)

Integrating this expression from − 1
2L to 1

2L to obtain the contribution from all
parts of the magnet, we find that

�B(0, 0, z) =
µ0

2

∫ 1
2 L

− 1
2 L

�MR2dz′

[R2 + (z − z′)2]3/2
=

µ0R
2 �M

2
· −(z − z′)

R2
√

R2 + (z − z′)2

∣

∣

∣

∣

∣

1
2 L

− 1
2 L

=
µ0

�M

2





1
2L + z

√

( 1
2L + z)2 + R2

+
1
2L − z

√

( 1
2L − z)2 + R2



 (Ex 7.4.2)

Note the resemblance of this result to the equivalent result (Ex 7.1.1) for the polar-

ized dielectric cylinder if this result is restated for �D = ε0
�E+ �P and the appropriate

translation of the origin is made.

As was true in the case of electric polarization, it is frequently preferable to ascribe
the magnetization to the medium as an attribute rather than having it act as a
source of the appropriate field. We write equation (7-16), �∇× �B = µ0( �J + �∇× �M),
in more convenient form. Gathering all the curl terms on the left, we obtain

�∇×
( �B

µ0
− �M

)

= �J (7–31)

The quantity �H ≡ �B/µ0 − �M is called the magnetic field intensity. �H satisfies

�∇× �H = �J (7–32)

Because �H is directly proportional to the controllable variable �J , the relation
between �B and �H is conventionally regarded as �B being a function of �H with �H
the independent variable. This perspective leads us to write �B = µ0[ �H + �M( �H)].

In the linear isotropic approximation, �M( �H) = χm
�H, where χm is known as the

magnetic susceptibility. Under this approximation,

�B ≡ µ0( �H + �M) = µ0(1 + χm) �H ≡ µ �H (7–33)

where µ is known as the magnetic permeability. Materials with χm > 1 are para-
magnetic whereas those with χm < 0 are diamagnetic. For most materials, both

7.2.1 Magnetic Field Intensity
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paramagnetic and diamagnetic, |χm| ≪ 1. When χm ≫ 1, the material is ferromag-

netic. In this latter case the relation �B = µ0( �H + �M) still holds, but �M is usually

a very complicated, nonlinear, multivalued function of �H.
It is worth pointing out that to this point �H and �D appear to be nothing but

mathematical constructs derivable from the fields �B and �E. The Lorentz force
on a charged particle is �F = q( �E + �v × �B). This means the fields �E and �B are
detectable through forces they exercise on charges. The magnetic flux through a
loop remains Φ =

∫

�B · d�S. However, as we are gradually converting to the view
that fields, possessing momentum and energy have an existence independent of
interacting particles, there is no reason to suggest that �D and �H should have less
reality than �E and �B. As we recast Maxwell’s equations into their eventual form,
�H and �D will assume an equal footing with �E and �B. It is worthwhile to shift
our perspective on the fields, regarding �E and �B as the fields responsible for forces
on charged particles, whereas �H and �D are the fields generated by the sources.
In gravitational theory, by contrast, the gravitational mass and inertial mass are
identical meaning that the source and force fields are the same.

⋆

In the following sections we will briefly discuss the microscopic behavior of materials
responsible for polarization and magnetization. We also touch briefly on conduction
in metals for the sake of completeness.

7.3.1 Polar Molecules (Langevin-Debye Formula)

A polar molecule has a permanent dipole moment. If the nearest neighbor inter-
action energies are small, a material made of such molecules will normally have
the dipoles oriented randomly (to maximize entropy) in the absence of an electric
field. In an exceedingly strong field all the dipoles will align with the electric field,
giving a maximum polarization �P = n�p (n is the number density of molecules and
�p is the dipole moment of each). At field strengths normally encountered, thermal
randomizing will oppose the alignment to some extent. The average polarization
may be found from thermodynamics.

According to Boltzmann statistics, the probability of finding a molecule in a
state of energy W is proportional to e−W/kT . We consider only the energy of the
dipole in the electric field, W = −�p · �E = −pE cos θ. The mean value of �p must
just be the component along �E, the perpendicular components averaging to zero.
Hence the mean polarization is

〈 p cos θ 〉 =

∫

p cos θe+pE cos θ/kT dΩ
∫

e+pE cos θ/kT dΩ

= p

(

coth
pE

kT
− kT

pE

)

(7–34)

a result known as the Langevin formula.
The low field limit of the polarization is readily found. We abbreviate x =

pE/kT to write

7.3 Microscopic Properties of Matter
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Figure 7.6: The mean dipole moment of a molecule in thermal equilibrium
in an electric field. The low field susceptibility is 1

3
p2E/kT .

〈 p cos θ 〉 = p

(

coth x − 1

x

)

= p

(

ex + e−x

ex − e−x
− 1

x

)

(7–35)

This expression may be expanded for small x as

p

[

2 + x2

2(x + x3/3!)
− 1

x

]

≃ p

[

(2 + x2)(1 − x2/3!)

2x
− 1

x

]

≃ p

[

1

x
+

(x2 − x2/3)

2x
− 1

x

]

=
px

3
=

p2E

3kT
(7–36)

The Langevin-Debye results as well as their small x limit are plotted in Figure 7.6.
We obtain the polarization by multiplying the average dipole moment by n, the
number of dipoles per unit volume:

�P =
np2 �E

3kT
= χε0

�E (7–37)

The susceptibility is read directly from (7–37).

7.3.2 Nonpolar Molecules

Taking a simple classical harmonic oscillator model for an atom or molecule with
‘spring’ constant mω2

0 , we find that the displacement of charge at frequencies well
below the resonant (angular) frequency ω0 is given by

∆�r =
q �E

mω2
0

(7–38)

where q and m are, respectively, the charge and the reduced mass of the electron.
The induced molecular dipole moment is then

�p = q∆�r =
q2 �E

mω2
0

(7–39)
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Figure 7.7: The electric field in the cavity is equal to the field in dielectric
augmented by the field resulting from the exposed ends of the molecular
dipoles.

We deduce that the polarizability is α = q2/ε0mω2
0 and the susceptibility becomes

χ = nq2/ε0mω2
0 . Thus for molecular hydrogen with its lowest electronic resonance

near ω0 ≃ 1.8 × 1016 sec−1(λ ≃ 100nm) at STP (standard temperature and pres-
sure), n = 2.69 × 1025m−3) we obtain χ ≃ 2.64 × 10−4. The experimental value
is also (somewhat fortuitously) 2.64 × 10−4. Such good agreement should not be
expected for substances other than hydrogen and helium; generally a sum over all
resonant frequencies is required to obtain reasonable agreement. It is worth noting
that this value should be fairly good up to and above optical frequencies. By con-
trast, the orientation of polar molecules fails for frequencies approaching rotational
frequencies of the molecule, typically a few GHz. Thus water has χ ≃ 80 (it has
a strong dependence on temperature, varying from 87 at 0◦ C to 55 at 100◦ C) at
low frequencies, decreasing to χ ≃ .8 at optical frequencies. It will be recognized
that an exact calculation of the molecular dipole moment will require the quantum
mechanical evaluation of the expectation value of the dipole moment 〈ψ|

∑

ei�ri|ψ〉,
where |ψ〉 is the ground state of the atom or molecule involved.

7.3.3 Dense Media—The Clausius-Mosotti Equation

In the foregoing treatment, we have tacitly assumed that the electric field experi-
enced by a molecule is in fact the average macroscopic field in the dielectric. In
gases, where the molecular distances are large, there is little difference between the
macroscopic field and the field acting on any molecule. In dense media, however,
the closely spaced neighboring dipoles give rise to an internal field �Ei at any given
molecule that must be added to the externally applied field �E. A useful dodge is to
exclude the field arising from molecules within some small sphere of radius R about
the chosen molecule (small on the scale of inhomogeneities of �P but still containing
many molecules) and then to add the near fields of the molecules contained in the
sphere. As we will show in example 7.8, the electric field in the spherical cavity
formed by the removal of all the near neighbors is given by

�Ecav = �E0 +
�P

3ε0
(7–40)

The physical origin of the polarization contribution to the field is evident from



178 Classical Electromagnetic Theory

Figure 7.7. The calculation of the field from the nearby molecules is more difficult,
depending on the structure of the medium. In a simple cubic lattice of dipoles
this field vanishes at any lattice point, and it seems reasonable that the field will
also vanish for amorphous materials including liquids. Under this condition the
polarizing field for the molecule of interest is just the electric field in the cavity
(7–40). Therefore, we find

�p = ε0α

(

�E0 +
�P

3ε0

)

(7–41)

The polarization due to n such induced dipoles per unit volume is

�P = nε0α

(

�E0 +
�P

3ε0

)

(7–42)

which, solved for �P , gives
�P =

nα

1 − nα/3
ε0

�E (7–43)

The electric susceptibility may now be read from (7–43)

χ =
nα

1 − nα/3
(7–44)

The relationship (7–44) is known as the Clausius-Mosotti equation. When nα is
small, as is the case for a dilute gas, the nα/3 in the denominator is inconsequential.
For denser liquids, nα is of order unity and is not negligible.

7.3.4 Crystalline Solids

The near fields on a molecule within a crystal will not vanish for all crystal struc-
tures; nonetheless, the net result is generally not large. For the purpose of this
discussion let us assume that the we can replace nα/3 in (7–43) by nα/η with η
not very different from 3 to account for the field from nearby molecules.

A number of materials, when cooled in an electric field, freeze in an electric
polarization. A piece of such a material is called an electret. Electrets are much
less noticeable than magnets because the surfaces very quickly attract neutralizing
charges. When the polarization of the electret is changed, however, a net charge
will appear on the surface. This change of polarization may be brought about by
exceedingly small changes in the physical parameters when nα is near η. Thus,
heating a crystal decreases the density, n, giving rise to the pyroelectric effect.
Compressing the crystal increases n sometimes producing very large voltages. This
and the inverse effect are known as the piezoelectric effect.

At first sight it would appear that there is nothing to prevent nα from exceeding
η, resulting in a negative susceptibility, χ. Physically, however, as nα is increased
from less than η, the polarization becomes greater, in turn giving an increased
local field. If, in small field, nα is larger than η, then the extra field produced
by the polarization is larger than the original field producing it. The polarization
grows spontaneously until nonlinearities prevent further growth. A material with
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Figure 7.8: As the flux through the loop is increased, the electron is tangen-
tially accelerated. The change in field resulting from this acceleration must
oppose the externally imposed d �B/dt.

this property is ferroelectric. On heating the material it is possible to decrease the
density until at the Curie point nα no longer exceeds η and the material ceases to
have a spontaneous polarization. For BaTiO3 the Curie point is 118◦ C. Slightly
above this temperature χ may be as large as 50,000.

7.3.5 Simple Model of Paramagnetics and Diamagnetics

All materials exhibit diamagnetism. To better understand its origin, let us consider
the atoms and molecules of matter as Bohr atoms with electrons in plane orbit
about the nucleus. The orbiting electrons have magnetic moments, but because the
moments are randomly oriented, no net magnetization results. When a magnetic
field is introduced, Lenz’ law predicts that the electron orbits ought to change in such
a manner that field from their change in magnetic moment opposes the applied field,
yielding a negative magnetic susceptibility. Let us make this observation somewhat
more quantitative by considering an electron in a circular orbit (Figure 7.8).

The electromotive force around the loop of the electron’s orbit is given by

E =
1

e

∮

�F · d�ℓ = −
∫

d �B

dt
· d�S (7–45)

Replacing the force by the rate of change of momentum, we evaluate the two inte-
grals when the loop is perpendicular to the magnetic field to obtain

d|�p |
dt

2πr = eπr2 dB

dt
(7–46)

Integrating this expression over time, we have

∆p =
er∆B

2
(7–47)

We would like to relate the change of momentum to the change of the (orbital)
magnetic moment of the electron. The magnetic moment of an orbiting electron
with mass me is given by

�m =
e�v × �r

2
=

e�p × �r

2me
(7–48)
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leading to change in magnetic moment in response to the introduction of the mag-
netic field

∆|�m| =
e |∆�p × �r |

2me
=

e2r2∆B

4me
(7–49)

For several electrons inside an atom, the planes of the orbit will clearly not all
be perpendicular to the field and r2 should be replaced by 〈r2 cos2 θ〉, where θ is
the inclination of the orbit (the component of H perpendicular to the orbit and the

component of ∆�m along �H are each decreased by a factor cos θ). For an isotropic
distribution of orbits,

〈r2 cos2 θ〉 = 〈r2〉
∫

cos2 θdΩ

4π

=
〈r2〉
2

∫ π

0

cos2 θ sin θdθ = 1
3 〈r2〉 (7–50)

Since the currents inside atoms flow without resistance, the dipoles created by
the imposition of the field will persist until the magnetic induction field is turned
off again. The resulting magnetic susceptibility is χm = − 1

12ne2〈r2〉µ0/me.
Paramagnetism arises when the molecules’ nuclei have a nonzero magnetic mo-

ment that attempts to align with the local �B in much the same fashion that polar
molecules align with �E. This interaction tends to be very similar in size to the
diamagnetic interaction so that it is hard to predict whether any particular sub-
stance will have net positive or negative susceptibility. Because the nuclear mag-
netic dipole–field interaction is so much smaller than that for the electric field, large
alignments are attainable only at very low temperatures. A few molecules with un-
paired electrons such as O2, NO, and GdCl3 have a paramagnetic susceptibility
several hundred times larger due to the much larger (spin) magnetic moment of the
electron (compared to that of the nucleus).

Although it is tempting to ascribe ferromagnetism to a mechanism similar to
that of ferroelectricity, the magnetic dipole–field interaction is so much weaker than
the electric dipole–field interaction that thermal agitation would easily overwhelm
the aligning tendencies. A much stronger quantum mechanical spin–spin exchange
interaction must be invoked to obtain sufficiently large aligning forces. With the
exchange force responsible for the microscopic spin–spin interaction, the treatment
of ferromagnetism parallels that of ferroelectricity.

In metallic ferromagnets, magnetic moments over large distances (magnetic do-
mains) spontaneously align. An applied field will reorient or expand entire domains,
resulting in a very large magnetization. Materials exhibiting ferromagnetism are
usually very nonlinear, and the magnetization depends on the history of the mate-
rial.

7.3.6 Conduction

Qualitatively, a conductor is a material that contains (sub-) microscopic charged
particles or charge carriers that are free to move macroscopic distances through the
medium. In the absence of an electric field these charges move erratically through
the conductor in a random fashion. When an electric field is present, the charges
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accelerate briefly in the direction of (or opposite to) the field before being scattered
by other relatively immobile components. The random component of the carriers’
velocity yields no net current, but the short, directed segments yield a drift velocity
along the field (for isotropic conductors). This leads us to postulate that

�J = g(E) �E (7–51)

For many materials, g(E ) is almost independent of E, in which case the material

is labelled ohmic with constitutive relation �J = g �E. The constant g is called the
conductivity of the material and is generally a function of temperature as well as
dislocations in the material. (Many authors use σ to denote the conductivity.) The
resistivity η ≡ 1/g is also frequently employed.

A rough microscopic description can be given in terms of the carriers’ mean
time between collisions, τ , since 〈�v 〉 ≃ 1

2�aτ = 1
2q �Eτ/m. The quantity qτ/m is

commonly called the carrier mobility. Computing the net current density as �J =
nq〈�v 〉 = 1

2 (nq2τ/m) �E where n is the carrier number density, leads us to write the
conductivity as

g =
nq2τ

2m
(7–52)

When a magnetic field is present, we expect the current to be influenced by the
magnetic force on the charge carriers. The modified law of conduction should read

�J = g( �E + 〈�v 〉 × �B) (7–53)

This form of the conduction law governs the decay of magnetic fields in conduc-
tors. Substituting (7-53) into Ampère’s law and assuming, that inside the conductor

∂ �E/∂t is sufficiently small to ignore, we have �∇ × �B = µ�J . Taking the curl once
more we obtain

∇2 �B = gµ

[

∂ �B

∂t
− �∇× (〈�v 〉 × �B)

]

(7–54)

If the conductor is stationary, the equation above reduces to a diffusion equation.

The time-independent simplified Maxwell equations (3–27) are modified in the pres-
ence of matter to read

�∇ · �D = ρ �∇× �E = 0

�∇ · �B = 0 �∇× �H = �J

(7–55)

where �D = ε0
�E + �P and �B = µ0( �H + �M). The first and the last of these equations

may be integrated to give, respectively, Gauss’ law

∮

S

�D · d�S =

∫

τ

ρd3r (7–56)

7.4 Boundary Conditions for the Static Fields
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Figure 7.9: The Gaussian pillbox straddles the interface between two di-
electrics.

and Ampère’s law
∮

Γ

�H · d�ℓ =

∫

S

�J · d�S (7–57)

in the presence of matter. To determine the behavior of each of the fields at the
interface between differing materials, we integrate each of the equations (7–55). For
ease of referring to various direction, we take, without loss of generality, the x-y
plane to be tangential to the dielectric interface.

�∇ · �D = ρ

Consider �∇ · �D inside a thin pillbox of width ǫ whose flat sides lie on opposite
sides of a dielectric interface, as shown in Figure 7.9. We let the charge density be
described by ρ = ρv(x, y, z) + σ(x, y)δ(z), where ρv is a volume charge density and

σ a surface charge density confined to the interface. Integrating �∇ · �D = ρ over the
volume of the pillbox, we get

∫

τ

�∇ · �D d3r =

∫

τ

ρ d3r =

∫

τ

ρv(x, y, z) d3r +

∫

S

σ(x, y) dxdy (7–58)

which, with the aid of the mean value theorem and the divergence theorem (20),
becomes

∮

S

�D · d�S = ρ̄v · τ +

∫

S

σ(x, y)dxdy (7–59)

We break the surface integral of the electric displacement into integrals over
each of the three surfaces of the pillbox to write
∫

S

DI
z(x, y, ǫ/2)dxdy −

∫

S

DII
z (x, y,−ǫ/2)dxdy +

∫

curved
side

�D · d�S = ρ̄vSǫ +

∫

S

σ(x, y)dxdy

(7–60)
In the limit of vanishing ǫ this becomes

∫

S

(DI
z − DII

z )dxdy =

∫

S

σ(x, y)dxdy (7–61)

which can hold true for arbitrary S only if DI
z −DII

z = σ, or to make our conclusion
coordinate independent,

(

�DI − �DII
)

· n̂ = σ (7–62)
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Figure 7.10: The rectangular loop in (a) lies in the x-z plane, and y points
into the page. In (b), the loop is placed in the y-z plane leaving x to point
out of the page.

where n̂ is a unit normal to the interface pointing from region II to region I. In
conclusion, the perpendicular component of �D is discontinuous by σ.

�∇ · �B = 0

The same argument as above, may be applied to �∇ · �B = 0 and results in

(

�BI − �BII
)

· n̂ = 0 (7–63)

In other words, the perpendicular component of �B is continuous across the interface.

�∇× �E = 0

We obtain the boundary condition on the tangential component of �E by integrating
�∇× �E over the area of the thin loop whose two long sides lie on opposite sides of
the interface illustrated in Figure 7.10a.

0 =

∫

S

(�∇× �E) · d�S =

∮

�E · d�ℓ

=

∫ x0+L

x0

(

EII
x − EI

x

)

dx + W
[

Ēz(x0 + L) − Ēz(x0)
]

(7–64)

Taking the limit as W → 0, we require

∫ x0+L

x0

(

EII
x − EI

x

)

dx = 0 (7–65)

which can hold for all L only if EII
x = EI

x. Generally, then, the tangential component

of �E is continuous across the interface.

�∇× �H = �J

Consider �∇× �H inside the loop of Figure 7.10a, and let the current density consist of
a body current density �J(x, y, z) and a surface current density �j(x, y)δ(z) confined
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to the interface. (Surface currents are, strictly speaking, possible only with perfect
conductors, but they often constitute a good approximation to the currents on
metallic interfaces.) As �j lies in the x-y plane, jz = 0. Integrating �∇× �H over the
surface included by the loop of figure 7.10a gives

∫

(�∇× �H) · d�S =

∫

−JydS +

∫

−jyδ(z)dxdz

∮

�H · d�ℓ = −JyS −
∫ x0+L

x0

jydx (7–66)

Again, taking the limit as W → 0, we get

∫ x0+L

x0

(

HII
x − HI

x

)

dx = −
∫ x0+L

x0

jydx (7–67)

independent of x0 or L. Equating the integrands, gives HI
x−HII

x = jy. Next, placing
the loop in the z-y plane as illustrated in Figure 7.10b, we obtain a similar result
for Hy: HI

y − HII
y = −jx. (The change in sign occurs because the x axis points

out of the page, meaning that d�S = +ı̂dx dy.) We can generalize these results by
writing

n̂ ×
(

�HI − �HII
)

= �j (7–68)

In words, the parallel component of �H is discontinuous by j.
We summarize these boundary conditions below, labelling the components per-

pendicular and parallel to the surface by ⊥ and ‖ respectively.

( �D)⊥ is discontinuous by σ

( �E)‖ is continuous

( �B)⊥ is continuous

( �H)‖ is discontinuous by �j

(7–69)

Example 7.5: A large slab of uniform dielectric is placed in a uniform electric field �E
with its parallel faces making angle θ with the field. Determine the angle that the
internal electric field makes with the faces. (Note that this is not Snell’s law, which
arises from interference of waves.)

Solution: The following are the boundary conditions for the electric field: D⊥ is
continuous and E‖ is continuous. Labelling the vacuum fields with the subscript v
and those in the dielectric with subscript d, we have in vacuum Dv⊥ = ε0Ev cos θv

and E‖ = Ev sin θv. The boundary conditions then translate to

ε0Ev cos θv = εdEd cos θd and Ev sin θv = Ed sin θd (Ex 7.5.1)

Dividing one equation by the other, we have tan θd = (εd/ε0) tan θv. In other words,
the electric field bends away from the normal on entering the dielectric.
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A magnetic induction field, in exactly the same fashion, also bends away from
the normal when entering a medium of high permeability.

As a simple illustration of using the boundary conditions at the interface with
an anisotropic medium, we reconsider the preceding example with a hypothetical
dielectric having two different permittivities.

Example 7.6: A crystal whose two equivalent principal axes lie in the x-y plane
while the third lies along the z axis has two distinct permittivities, ε0(1 + χxx) =
ε0(1 + χyy) = εxx = 2ε0 and ε0(1 + χzz) = εzz = 3ε0. A large slab of this material
is placed in a uniform electric field in vacuum, making angle θ with the (normal) z

axis of the slab. Determine the directions of �E and �D in the dielectric.

Solution: In the medium, we have, denoting the dielectric values with subscript d
(

Dd,x

Dd,z

)

=

(

2ε0 0
0 3ε0

)(

Ed,x

Ed,z

)

=

(

2ε0Ed sin θE,d

3ε0Ed cos θE,d

)

(Ex 7.6.1)

which relates the displacement field to the electric field. We denote the vacuum
field and angles with a subscript v. The boundary conditions

E‖ is continuous ⇒ Ev sin θv = Ed sin θE,d (Ex 7.6.2)

and D⊥ is continuous ⇒ ε0Ev cos θv = 3ε0Ed cos θE,d (Ex 7.6.3)

Dividing (Ex 7.6.2) by (Ex 7.6.3) gives tan θE,d = 3 tan θv. Further, from (Ex 7.6.1)
tan θD,d = 2

3 tan θE,d. The angle of the electric displacement field is now obtained
from tan θD,d = 2

3 tan θE,d = 2 tan θv.

The electrostatic field �E satisfies �∇ × �E = 0, implying that �E may be written
�E = −�∇V . Furthermore, �∇ · �D = ρ becomes for a linear, isotropic dielectric,
�∇ · (ε �E) = �∇ · (−ε�∇V ) = ρ. If ε is piecewise constant, then the potential, V, must
satisfy Poisson’s equation, ∇2V = −ρ/ε. In a region of space devoid of free charges,
∇2V = 0. The same methods as those used for boundary condition problems in
vacuum may now be applied when dielectrics are involved, as illustrated below.

Example 7.7: Find the potential in the neighborhood of a sphere of radius R, made
of a linear isotropic dielectric placed in an initially uniform field �E0.

Solution: Solving the Laplace equation in spherical polar coordinates with the z
axis chosen to lie along �E0 and assuming no azimuthal angle dependence, we have

V (r < R) =
∑

ℓ=0

Aℓr
ℓPℓ(cos θ) (Ex 7.7.1)

We eliminate all terms that grow faster than r1 and separate the ℓ = 1 term from
the rest of the sum

V (r > R) =

∞
∑

ℓ=0

Bℓ

rℓ+1
Pℓ(cos θ) − E0r cos θ

7.5 Electrostatics and Magnetostatics in Linear Media
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=
B0

r
+

(

B1

r2
− E0r

)

cos θ +

∞
∑

ℓ=2

Bℓ

rℓ+1
Pℓ(cos θ) (Ex 7.7.2)

The term B0/r leads to an electric field �E = −B0/r2r̂ and could result only from a
net charge Q = −4πε0B0 on the sphere. We will neglect this term. The boundary
conditions relating the interior and exterior solutions are

D⊥(R+) = D⊥(R−) and E‖(R+) = E‖(R−) (Ex 7.7.3)

In terms of the potentials, these two boundary conditions become

ε1
∂V

∂r

∣

∣

∣

∣

R−

= ε0
∂V

∂r

∣

∣

∣

∣

R+

(Ex 7.7.4)

and
1

R

∂V

∂θ

∣

∣

∣

∣

R−

=
1

R

∂V

∂θ

∣

∣

∣

∣

R+

(Ex 7.7.5)

The first of these equations, (Ex 7.7.4), leads to

ε1A1 cos θ + ε1

∞
∑

ℓ=2

ℓAℓR
ℓ−1Pℓ(cos θ)

= −ε0

(

2B1

R3
+ E0

)

cos θ − ε0

∞
∑

ℓ=2

(ℓ + 1)Bℓ

Rℓ+2
Pℓ(cos θ) (Ex 7.7.6)

giving for ℓ = 1 ε1A1 = −ε0

(

2B1

R3
+ E0

)

(Ex 7.7.7)

and for ℓ �= 1 ε1ℓAℓR
ℓ−1 = −ε0(ℓ + 1)Bℓ

Rℓ+2
(Ex 7.7.8)

The second equation, (Ex 7.7.5), yields

−A1 sin θ +
∞
∑

ℓ=2

AℓR
ℓ−1 ∂

∂θ
[Pℓ(cos θ)]

= −
(

B1

R3
− E0

)

sin θ +

∞
∑

ℓ=2

Bℓ

Rℓ+2

∂

∂θ
[Pℓ(cos θ)] (Ex 7.7.9)

Since the derivatives of distinct Legendre polynomials are linearly independent,
we equate the coefficients of each order to obtain for ℓ = 1

A1 =
B1

R3
− E0 (Ex 7.7.10)

and for ℓ �= 1 AℓR
ℓ−1 =

Bℓ

Rℓ+2
(Ex 7.7.11)
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We now solve the equations for A1 and B1 simultaneously to find

B1 =

(

ε1 − ε0

ε1 + 2ε0

)

R3E0 and A1 =
B1

R3
− E0 = − 3ε0

ε1 + 2ε0
E0 (Ex 7.7.12)

Attempting to solve for the remaining coefficients Bℓ, ℓ �= 1, of the expansions
we obtain [ε1ℓ + ε0(ℓ + 1)]Bℓ = 0, which implies, except for peculiar combinations
of ε0 and ε1, that Bℓ = 0. The solution is then

V (r ≤ R, θ) = A1r cos θ = − 3ε0

ε1 + 2ε0
E0r cos θ (Ex 7.7.13)

and

V (r > R, θ) = −E0r cos θ +
B1

r2
cos θ =

[

E0

(

ε1 − ε0

ε1 + 2ε0

)

R3

r3
− E0

]

r cos θ

(Ex 7.7.14)
Inside the sphere, the electric field is unform and outside the field is the super-
position of the external field and that resulting from a dipole �p = 4πε0R

3(ε1 −
ε0) �E0/(ε1 + 2ε0). If the two permittivities differ little this result may be approxi-

mated as �p = 4π
3 R3∆ε �E0.

Example 7.8: Find the electric field inside a spherical cavity in an otherwise uni-
formly polarized dielectric when the electric field far from the cavity is �E0 and the
polarization is �P (parallel to �E0).

Solution: We choose the z axis to be directed along �E0, and, as in the last problem,
express the solution to Laplace’s equation in spherical polar coordinates:

V (r ≤ R) =
∑

Aℓr
ℓPℓ(cos θ) (Ex 7.8.1)

V (r > R) = −E0r cos θ +
∑ Bℓ

rℓ+1
Pℓ(cos θ) (Ex 7.8.2)

The boundary conditions are, as before, D⊥(R+) = D⊥(R−) and E‖(R+) =

E‖(R−). We cannot, this time, write �D = ε �E because there is no reason to assume
that a linear relationship exists between the polarization and the electric field.
Instead, we write �D = ε0

�E + �P , whence, outside the cavity, Dr = −ε0(�∇V )r +
P cos θ. The boundary conditions then become,

∑

−ε0ℓAℓR
ℓ−1Pℓ(cos θ) = P cos θ + ε0E0 cos θ +

∑

ε0
(ℓ + 1)Bℓ

R

ℓ+2

Pℓ(cos θ)

(Ex 7.8.3)
and

∑

− ∂

∂θ
[Pℓ(cos θ)]AℓR

ℓ−1 =
∂

∂θ
E0 cos θ − ∂

∂θ

∑ Bℓ

Rℓ+2
Pℓ(cos θ) (Ex 7.8.4)

Separating the ℓ = 1 term from the others and using the linear independence of the
Legendre polynomials, we equate their coefficients, to obtain
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A1 = −P

ε0
− E0 −

2B1

R3
(Ex 7.8.5)

and A1 = −E0 +
B1

R3
(Ex 7.8.6)

which, when solved for α1, give α1 = −E0 − 1
3P/ε0.

The ℓ �= 1 terms vanish as in the previous example. The potential inside the
spherical cavity is then

V (r ≤ R) = −
(

E0 + 1
3P/ε0

)

r cos θ = −
(

E0 + 1
3P/ε0

)

z ( Ex 7.8.7)

leading to an electric field �E = �E0 + 1
3
�P/ε0, a result we quoted earlier in Section

7.3.3.

Example 7.9: Magnetic shielding. A spherical shell of permeable material having
inner radius a and outer radius b is placed in an initially uniform magnetic induction
field �B0 (Figure 7.11). Find the magnetic induction field inside the spherical shell.

Solution: In the absence of any free currents, �∇× �H = 0, implying that �H may be
written as the gradient of a potential, �H = −�∇Vm. Furthermore,

�∇ · �B = �∇ · (µ �H) = �∇ · (−µ�∇Vm) = 0 (Ex 7.9.1)

which, for piecewise constant µ, may be written

µ∇2Vm = 0 (Ex 7.9.2)

Taking the z axis along the initial field �B0, we have �B = −µ�∇Vm. Thus at suf-
ficiently large distance from the shell, Vm(r → ∞) = −B0z/µ0 = −(B0/µ0)r cos θ.
Expanding Vm(�r ) in spherical polar coordinates in each of the three regions, explic-
itly putting in the asymptotic form of Vm for large r, we get

Vm(r > b) = −B0

µ0
r cos θ +

∑ Aℓ

rℓ+1
Pℓ(cos θ) (Ex 7.9.3)

Figure 7.11: The permeable shell has permeability µ1.
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Vm(a < r < b) =
∑

(

Cℓr
ℓ +

Dℓ

rℓ+1

)

Pℓ(cos θ) (Ex 7.9.4)

Vm(r < a) =
∑

Fℓr
ℓPℓ(cos θ) (Ex 7.9.5)

The boundary conditions at r = a and r = b are

Br(a+) = Br(a−) Br(b+) = Br(b−)

Hθ(a+) = Hθ(a−) Hθ(b+) = Hθ(b−)
(Ex 7.9.6)

or, in terms of the magnetic scalar potential,

µ1
∂Vm

∂r

∣

∣

∣

∣

a+

= µ0
∂Vm

∂r

∣

∣

∣

∣

a−

µ0
∂Vm

∂r

∣

∣

∣

∣

b+

= µ1
∂Vm

∂r

∣

∣

∣

∣

b−

(Ex 7.9.7)

and
∂Vm

∂θ

∣

∣

∣

∣

a+

=
∂Vm

∂θ

∣

∣

∣

∣

a−

∂Vm

∂θ

∣

∣

∣

∣

b+

=
∂Vm

∂θ

∣

∣

∣

∣

b−

(Ex 7.9.8)

Using arguments akin to those used in the electrostatic examples, but more
laboriously, we can show that all the coefficients with ℓ �= 1 vanish. The equations
for the ℓ = 1 coefficients are explicitly

µ1

(

C1 −
2D1

a3

)

= µ0F1 µ0

(

− B0

µ0
− 2A1

b3

)

= µ1

(

C1 −
2D1

b3

)

(Ex 7.9.9)

C1a +
D1

a2
= F1a − B0

µ0
b +

A1

b2
= C1b +

D1

b2
(Ex 7.9.10)

Eliminating C and D, we solve for A1 and F1 to obtain

A1 =

[

(2µ1 + µ0)(µ1 − µ0)

(2µ1 + µ0)(µ1 + 2µ0) − 2(a/b)3(µ1 − µ0)2

]

(b3 − a3)
B0

µ0
(Ex 7.9.11)

F1 =

[ −9µ1

(2µ1 + µ0)(µ1 + 2µ0) − 2(a/b)3(µ1 − µ0)2

]

B0 (Ex 7.9.12)

The exterior potential

Vm = −B0

µ0
r cos θ +

A1

r2
cos θ (Ex 7.9.13)

consists of that for a uniform field �H = �B0/µ0 plus the field of a dipole with

magnetic dipole moment 4πA1, oriented parallel to �B0. Inside the cavity, there
is a uniform magnetic induction �B = −µ0F1

�B0. When the permeability of the
shell µ1 is much greater than that of vacuum, the coefficient A1 ≃ b3B0/µ0 and
F1 ≃ −9B0/2µ1(1− a3/b3). For shields of high permeability, µ1 ranges from 103µ0

to 109µ0; even relatively thin shells cause a great reduction of B in the interior of
the shell. For example, taking µ1 = 105µ0 and a/b = .95, we find

�B(r < a) =
9 �B0

2 × 105[1 − (.95)3]
= 3.16 × 10−4 �B0 (Ex 7.9.13)
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Figure 7.12: The electric field outside the dielectric arising from the induced
polarization of the dielectric may be accounted for by the image charge q′.
Inside the dielectric, q′ does not exist, instead we see q screened by the induced
polarization. The screened charge q′′ takes the place of q and the induced
polarization.

7.5.1 Electrostatics with Dielectrics Using Image Charges

Consider a charge q placed at distance d from the plane interface of a semi-infinite
dielectric (Figure 7.12). We expect the electric field of the charge to induce a
polarization of the medium near the surface, the field of which an observer unaware
of the dielectric (not in the dielectric) might well suppose to be due to a charge
q′ behind the interface. Thus the observer (in vacuum) might suppose that the
potential outside the dielectric would be given by the expression

V (�r ) =
1

4πε0

(

q

R1
+

q′

R2

)

=
1

4πε0

[

q
√

ρ2 + (d − z)2
+

q′
√

ρ2 + (d + z)2

]

(7–70)

where ρ is the cylindrical radial coordinate. From a point inside the dielectric, we
cannot maintain the fiction of the image charge, since we must have �∇ · �D = 0
inside the medium. Instead we expect to see q partially screened by the dipoles in
the medium (or by the effective surface charge induced), thereby being effectively
reduced to q′′.

The potential inside the medium would under these conditions become

V (�r ) =
1

4πε1

q′′

R1
=

1

4πε1

q′′
√

ρ2 + (d − z)2
(7–71)

where z ≤ 0. Applying the boundary conditions

Eρ(z = 0+) = Eρ(z = 0−) Dz(z = 0+) = Dz(z = 0−) (7–72)

that must be satisfied, we solve for q′ and q′′ (thereby verifying that these image
charges do indeed give solutions that satisfy the boundary conditions). In terms of
the potential, the boundary conditions become

∂V

∂ρ

∣

∣

∣

∣

0+

=
∂V

∂ρ

∣

∣

∣

∣

0−

(7–73)
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and

ε0
∂V

∂z

∣

∣

∣

∣

0+

= ε1
∂V

∂z

∣

∣

∣

∣

0−

(7–74)

After we perform the differentiation, (7–73) yields

1

4πε0

[

−qρ

(ρ2 + d2)
3/2

− q′ρ

(ρ2 + d2)
3/2

]

=
1

4πε1

[

−q′′ρ

(ρ2 + d2)
3/2

]

(7–75)

which clearly implies
q + q′

ε0
=

q′′

ε1
(7–76)

while (7–74) yields

qd

(ρ2 + d2)
3/2

− q′d

(ρ2 + d2)
3/2

=
q′′d

(ρ2 + d2)
3/2

(7–77)

giving
q − q′ = q′′ (7–78)

Finally, we solve (7-76) and (7-78) for q′ and q′′:

q′ = −ε1 − ε0

ε1 + ε0
q and q′′ =

2ε1

ε1 + ε0
q (7–79)

The potential inside the dielectric may therefore be written

V (�r ) =
1

4πε1
· 2ε1

ε1 + ε0

q(�r ′)

|�r − �r ′ | =
2

4π(ε1 + ε0)

q(�r ′)

|�r − �r ′ | (7–80)

which we immediately generalize to obtain the potential inside the dielectric arising
from an arbitrary charge distribution ρ(�r ′) outside the dielectric:

V (�r ) =
2

4π(ε1 + ε0)

∫

ρ(�r ′)

|�r − �r ′|d
3r′ (7–81)

Similarly, outside the dielectric, the potential is given by

V (�r ) =
1

4πε0

∫

ρ(�r ′)

[

1

|�r − �r ′| −
(ε1 − ε0)/(ε1 + ε0)
∣

∣�r − [�r ′ − 2(n̂ · �r ′)n̂]
∣

∣

]

d3r′ (7–82)

7.5.2 Image Line Charges for the Dielectric Cylinder

The polarization of the medium in a cylindrical dielectric caused by an exterior line
charge λ can also be mimicked by image line charges as seen outside the dielectric
and by a partial screening of the charge as seen from inside the dielectric (Figure
7.13). Because we may in principle measure the field from the dielectric on a
Gaussian cylinder surrounding the dielectric to find zero net charge inside, any image
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Figure 7.13: The dielectric cylinder must remain neutral and has two line
charges, λ′ and −λ′ to accomplish this requirement. Inside the cylinder, only
the screened line charge λ′′ is detected.

charge λ′ inside the dielectric that we choose to satisfy the boundary conditions
must be neutralized by a second line charge −λ′ at the center of the cylinder (at
this position the line charge does not disturb the boundary conditions because the
field arising from it is purely perpendicular to the surface). From inside the cylinder,
we see again only the screened charge λ′′. To be explicit, we consider the line charge
λ placed at distance h from the center of the cylinder of radius a, inducing image
charge λ′ at distance b from the center line of the cylinder. The potential as seen
from a point P outside the dielectric is then

V (�r ) = − 1

2πε0
(λ lnR2 + λ′ lnR1 − λ′ ln r) (7–83)

while for a point r inside the cylinder it is

V (�r ) = − 1

2πε1
λ′′ lnR2 (7–84)

Expressing R1 and R2 in terms of r and θ (the point’s polar angle with respect to
the center of the cylinder), we have

R1 =
√

r2 + b2 − 2rb cos θ and R2 =
√

r2 + h2 − 2rh cos θ (7–85)

The boundary conditions that must be satisfied are

ε0
∂V

∂r

∣

∣

∣

∣

a+

= ε1
∂V

∂r

∣

∣

∣

∣

a−

(7–86)

and
∂V

∂θ

∣

∣

∣

∣

a+

=
∂V

∂θ

∣

∣

∣

∣

a−

(7–87)

The derivatives are explicitly

∂V

∂r

∣

∣

∣

∣

a−

= − λ′′

2πε1

1

R2(a)

∂R2

∂r

∣

∣

∣

∣

a−

= − λ′′

2πε1

a − h cos θ

R2
2(a)

(7–88)
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∂V

∂r

∣

∣

∣

∣

a+

= − 1

2πε0

[

λ(a − h cos θ)

R2
2(a)

+
λ′(a − b cos θ)

R2
1(a)

− λ′

a

]

(7–89)

∂V

∂θ

∣

∣

∣

∣

a−

= − λ′′

2πε1

1

R2(a)

∂R2

∂θ

∣

∣

∣

∣

a−

= − λ′′

2πε1

ah sin θ

R2
2(a)

(7–90)

∂V

∂θ

∣

∣

∣

∣

a+

= − a

2πε0

[

λh sin θ

R2
2(a)

+
λ′b sin θ

R2
1(a)

]

(7–91)

Substituting (7–90) and (7–91) into (7–87) we have

1

ε1

λ′′h

R2
2(a)

=
1

ε0

[

λh

R2
2(a)

+
λ′b

R2
1(a)

]

(7–92)

whereas inserting (7–88) and (7–89) into (7–86) we obtain

λ′′(a − h cos θ)

R2
2(a)

=
λ(a − h cos θ)

R2
2(a)

+
λ′(a − b cos θ)

R2
1(a)

− λ′

a
(7–93)

The solution of equations (7-92) and (7-93) is straightforward although slightly
laborious. Equation (7-92) may be rewritten

ε0

λ′b

(

λ′′

ε1
− λ

ε0

)

h =
R2

2(a)

R2
1(a)

=
a2 + h2 − 2ah cos θ

a2 + b2 − 2ab cos θ
(7–94)

We abbreviate the (constant) left side of this equation as K2 and find

(

a2 + h2 − 2ah cos θ
)

= K2
(

a2 + b2 − 2ab cos θ
)

(7–95)

which can be satisfied for all θ only if 2ah = 2K2ab, or K2 = h/b. When we
substitute this value of K2 into (7–95), the remaining terms give

(

a2 + h2
)

= K2
(

a2 + b2
)

=
a2h

b
+ bh (7–96)

implying that a2 = bh, the same result as for the conducting cylinder and the
conducting sphere. Returning once more to (7–94), we substitute K2 = h/b =
h2/a2 for [R2(a)/R1(a)]2, and obtain

(

λ′′

ε1
− λ

ε0

)

h =
λ′b

ε0

h2

a2
=

λ′(bh)h

ε0a2
=

λ′h

ε0
(7–97)

or
λ′′

ε1
− λ

ε0
=

λ′

ε0
(7–98)

To obtain a second equation in λ′ and λ′′, we rewrite (7–93) as

(λ′′ − λ)(a − h cos θ) = λ′R
2
2(a)

R2
1(a)

(a − b cos θ) − λ′R2
2(a)

a
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= λ′
[

h2

a2
(a − b cos θ) − a2 + h2 − 2ah cos θ

a

]

= −λ′ (a − h cos θ) (7–99)

Equating the terms in cos θ (or alternatively the θ independent parts) gives

λ′′ − λ = −λ′ (7–100)

The solutions for the image charges are then obtained from (7–98) and (7–100) as

λ′ =
ε0 − ε1

ε0 + ε1
λ and λ′′ =

2ε1

ε0 + ε1
λ (7–101)

Finally, for r > a, the potential becomes

V (r > a) = − λ

2πε0

(

lnR2 +
ε0 − ε1

ε0 + ε1
ln

R1

r

)

(7–102)

while for r < a, it is

V (r < a) = − λ

π(ε0 + ε1)
lnR2 (7–103)

It is worth pointing out that no image charge can be found for the analogous
point charge in the vicinity of a dielectric sphere.

7.5.3 Magnetostatics and Magnetic Poles

Although �∇· �B = 0 implies that no magnetic monopoles exist, they are nevertheless
a convenient fiction, very useful for visualizing the fields and for constructing image
dipoles. To begin, we note that from the definition of �H, �B ≡ µ0( �H + �M), �∇ · �B =
0 implies that

�∇ · �H = −�∇ · �M (7–104)

Furthermore, in regions of space where �J = 0, �∇ × �H = 0, implying that �H =
−�∇Vm, which combined with (7–104) yields

∇2Vm = �∇ · �M (7–105)

Clearly, �∇ · �M acts as a source for the magnetic scalar potential Vm just as �∇ · �P is
a source for the electric potential V. We also note that just as �∇ · �E = ρ/ε0 leads

to �E = −�∇V , it is properly �H that is derived from Vm, as �H = −�∇Vm, not �B as
we may have been led to believe in section 1.2.6.

If the potential vanishes at some appropriately distant boundary, Poisson’s equa-
tion is easily solved using Green’s functions (Section 6.3.2) or by analogy with the
electrostatic equations to give the solution

Vm(�r ) = − 1

4π

∫

τ

�∇′ · �M(�r ′)

|�r − �r ′| d3r′ (7–106)

where the volume of integration, τ , must contain all the magnetization.
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Expression (7–106) may be cast into a number of more useful forms. Using the
identity (7),

�∇′ ·
�M

|�r − �r ′| =
�∇′ · �M

|�r − �r ′| + �M · �∇′
(

1

|�r − �r ′|

)

(7–107)

we rewrite Vm as

Vm(�r ) = − 1

4π

∫

τ

�∇′ ·
�M

|�r − �r ′|d
3r′ +

1

4π

∫

τ

�M · (�r − �r ′)

|�r − �r ′|3 d3r′ (7–108)

Converting the first integral to a vanishing surface integral (as �M vanishes on the
boundary of the volume of integration) with the divergence theorem, the potential
becomes

Vm(�r ) =
1

4π

∫

τ

�M · (�r − �r ′)

|�r − �r ′|3 d3r′ (7–109)

as might well have been anticipated from the form of the scalar potential of a
magnetic dipole.

Integral (7–109) can also be written as

Vm(�r ) = − 1

4π

∫

τ

�M · �∇ 1

|�r − �r ′|d
3r′

= − 1

4π

∫

τ

�∇ ·
�M

|�r − �r ′|d
3r′

= − 1

4π
�∇ ·
∫

τ

�M

|�r − �r ′|d
3r′ (7–110)

a form that is frequently useful.

Example 7.10: Find the magnetic scalar potential of a magnetized sphere of radius
a having magnetization �M(�r ′) = M0z

′ ı̂.

Solution: Using the form (7-110) for the scalar potential,

Vm(�r ) = − 1

4π
�∇ ·
∫

τ

M0z
′ ı̂

|�r − �r ′|d
3r′

= −M0

4π

∂

∂x

∫

τ

z′

|�r − �r ′| d3r′

The integrals is most easily evaluated by expanding
∣

∣�r−�r ′∣
∣

−1
in terms of spherical

harmonics

1

|�r − �r ′| =
∑

ℓ,m

4π

2ℓ + 1
Ym

ℓ (θ, ϕ)Y∗m
ℓ (θ ′, ϕ′)

rℓ
<

rℓ+1
>

and noting that z′ =
√

4π/3 r′Y0
1(θ

′, ϕ′). Making these substitutions, we get

Vm(�r ) = −M0

4π

∂

∂x

∑

ℓ,m

4π

2ℓ + 1
Ym

ℓ (θ, ϕ)

×
∫

4π

√

4π

3
Y0

1(θ
′ϕ′)Y∗m

ℓ (θ′, ϕ′)dΩ′
∫ a

0

rℓ
<

rℓ+1
>

r′3dr′

(Ex 7.10.1)

(Ex 7.10.2)

(Ex 7.10.3)
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Figure 7.14: The volume of integration is subdivided into a region of uniform
magnetization, τ1 and an exterior region τ2, containing only the edge of the
magnetized body.

Only the ℓ = 1,m = 0, term survives the integration over Ω′, giving

Vm(�r ) = −M0

3

∂

∂x

[

√

4π

3
Y0

1(θ, ϕ)

∫ a

0

r<

r2
>

r′3dr′
]

= −M0

3

∂

∂x

∫ a

0

z

r

r<

r2
>

r′3dr′

When r is outside the sphere, r′ is r<, so that the integral becomes

∫ a

0

zr′4

r3
dr′ =

za5

5r3

giving

Vm(r > a) = −M0z

3

∂

∂x

a5

5r3
=

M0zxa5

5r5

For regions inside the sphere we must break the integral over r′ into two intervals:
0 to r, for which r′ = r<, and r to a, where r′ = r>. Thus, for r < a:

Vm(r < a) = −M0z

3

∂

∂x

(∫ r

0

r′4

r3
dr′ +

∫ a

r

r′dr′
)

= −M0z

3

∂

∂x

(

− 3r2

10
+

a2

2

)

=
M0zx

5

If �M is uniform, except for discontinuities at the edge of the material, a slightly
different approach is often useful. Intuitively we expect the exposed ends of the
magnetic dipoles to appear like magnetic surface charges (poles).

At the edges, where �M is discontinuous, the divergence is singular and (7–106)

cannot be integrated as it stands. To deal with the discontinuity of �M at the

(Ex 7.10.4)

(Ex 7.10.5)

(Ex 7.10.6)

(Ex 7.10.7)
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boundary of the material, we divide the volume over which we integrate into two
regions: τ1, ending a small distance ǫ inside the body, and a second volume τ2,
beginning a distance ǫ inside the material and extending past the outer edge of the
original volume of integration, τ (Figure 7.14).

Thus, formally

Vm(�r ) =

∫

τ1

−�∇′ · �M

4π|�r − �r ′| d3r′ +

∫

τ2

−�∇′ · �M

4π|�r − �r ′| d3r′ (7–111)

Using the vector identity (7), �∇ · (f �M) = �∇f · �M + f �∇ · �M , we recast the second
integral as

∫

τ2

�∇′ · �M

4π|�r − �r ′| d3r′ =

∫

τ2

�∇′ ·
( �M

4π|�r − �r ′|

)

d3r′ −
∫

τ2

�M · (�r − �r ′)

4π|�r − �r ′|3 d3r′ (7–112)

The divergence theorem allows us to rewrite the first of the two integrals on
the right as a surface integral. Note that there is both an exterior surface and an
interior surface to the volume τ2. We have then

∫

τ2

�∇′ · �Md3r′

4π|�r − �r ′| =

∮

S′

�M · d�S′

4π|�r − �r ′| +

∮

S′′

�M · d�S′′

4π|�r − �r ′| −
∫

τ2

�M · (�r − �r ′)

4π|�r − �r ′|3 d3r′ (7–113)

The integral over S′′ vanishes as �M is zero at the exterior boundary. If we let ǫ
tend to zero, the remaining volume integral over τ2 will also vanish, while S′ will
tend to the boundary S of the magnetized material. We note, however, that d�S, the
outward-pointing normal to the magnetized body, is −d�S′ (the “outward-pointing”
normal to τ2). Then, replacing the integral over S′ by one over S, we obtain

Vm(�r ) =
1

4π

∫

τ1

−�∇′ · �M

|�r − �r ′| d3r′ +
1

4π

∮

S

�M · d�S

|�r − �r ′| (7–114)

where the surface integral extends over all free surfaces and the volume integral
excludes all those surfaces. The surface integral is exactly the contribution to the
scalar potential that we would have expected from a magnetic surface charge �M · n̂
on the surface of the object.

Example 7.11: Find the magnetic scalar potential along the center line of a uniformly
magnetized cylindrical magnet of length L magnetized along its length.

Solution: The uniform magnetization in the volume of the magnet has no diver-
gence and therefore makes no contribution to the scalar magnetic potential. The
only contribution comes from the surface integrals at the ends of the magnet. For
convenience we place the origin at the center of the magnet with the z axis along
the center line. Then using (7–114)

Vm(0, 0, z) =
1

4π

∫

right
face

MdS
√

(z − 1
2L)2 + ρ2

+
1

4π

∫

left
face

−MdS
√

(z + 1
2L)2 + ρ2



198 Classical Electromagnetic Theory

Figure 7.15: The magnetic field intensity �H both inside and outside the
magnet points from North pole to South pole. Inside the magnet that means
that �H opposes the magnetization.

=
M

2

∫ a

0

ρdρ
√

(z − 1
2L)2 + ρ2

− M

2

∫ a

0

ρdρ
√

(z + 1
2L)2 + ρ2

= −M

2

[√

(z + 1
2L)2 + a2 −

√

(z + 1
2L)2

−
√

(z − 1
2L)2 + a2 +

√

(z − 1
2L)2

]

= −M

2

[√

( 1
2L + z)2 + a2 −

√

( 1
2L − z)2 + a2 − 2z

]

We might continue the calculation to obtain the z-component of the magnetic
induction field �B:

�B = µ0
�H + µ0

�M

= µ0(−�∇Vm + �M)

=
µ0

�M

2





1
2L + z

√

( 1
2L + z)2 + a2

+
1
2L − z

√

( 1
2L − z)2 + a2



 (7–115)

in agreement with the results obtained in example 7.4.
Note that �H points in a direction opposite to �M inside the magnet, a result

easily envisaged (Figure 7.14) in terms of the bound magnetic surface charges. We

see then, that it is the magnetic field intensity �H that points from north pole to
south poles, not the magnetic induction field.

Example 7.12: Find the magnetic scalar potential of the magnetized sphere with
magnetization �M(�r ′) = M0z

′ ı̂ of Example 7.10 using (7–114).

Solution: Using the form (7-114) for the scalar potential, the divergence of magne-

tization within the sphere vanishes and the term ı̂ · d�S in the second integral may
be written sin θ′ cos ϕ′a2dΩ allowing us to write

Vm(�r ) =
1

4π

∫

τ

−�∇′ · M0z
′ ı̂

|�r − �r ′| d3r′ +
1

4π

∮

M0z
′ ı̂ · d�S

|�r − �r ′|

(Ex 7.11.1)
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=
M0

4π

∮

z′ sin θ′ cos ϕ′a2dΩ′

|�r − �r ′|

We again use the expansion of
∣

∣�r−�r ′∣
∣

−1
in terms of spherical harmonics to evaluate

the integral. We substitute z′ = a cos θ′ and use the expansion (Ex 7.10.2) to write

M0

4π

∮

z′ sin θ′ cos ϕ′a2dΩ′

|�r − �r ′|

= M0a
3
∑

ℓ,m

Ym
ℓ (θ, ϕ)

2ℓ + 1

∮

Y∗m
ℓ (θ′, ϕ′) cos θ′ sin θ′ cos ϕ′rℓ

<dΩ′

rℓ+1
>

The trigonometric terms may be written as spherical harmonics using (F-42)

cos θ′ sin θ′ cos ϕ′ =

√

2π

15

(

Y−1
2 (θ′, ϕ′) − Y+1

2 (θ′, ϕ′)
)

so that the contribution from the second integral, using the orthogonality of spher-
ical harmonics, may be written

1

4π

∮ �M · d�S

|�r − �r ′| =
M0a

3

5

√

2π

15

(

Y−1
2 (θ, ϕ) − Y+1

2 (θ, ϕ)
)r2

<

r3
>

=
M0a

3

5

r2
<

r3
>

cos θ sin θ cos ϕ =
M0a

3

5

r2
<

r3
>

zx

r2
(Ex 7.12.4)

Thus for r < a, r> = a and the magnetic scalar potential is

Vm(r < a) =
M0zx

5
(Ex 7.12.5)

Outside the sphere, when r = r> and r< = a we have

Vm(r > a) =
M0zxa5

5r5
(Ex 7.12.6)

It is readily verified that these results are identical to those found in example 7.10.

7.5.4 Magnetic Image Poles

Despite the fact that magnetic monopoles appear not to exist, they are nonetheless
a convenient fiction in dealing with induced magnetizations. Supposing for the
moment that magnetic charges qm do exist and produce magnetic scalar potential

Vm(�r ) =
qm

4π|�r − �r ′| (7–116)

We postulate that the induced dipoles at the interface of a permeable substance
can be mimicked by an image charge q′m inside the material if seen outside the
material, while from inside the material, the shielding they produce reduces the

(Ex 7.12.1)

(Ex 7.12.2)

(Ex 7.12.3)
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Figure 7.16: A hypothetical magnetic charge induces magnetic dipoles that
screen the ‘charge’ and reduce the apparent charge to q′′m. Outside the mate-
rial, an image charge q′m imitates the magnetization.

effective charge to q′′m (Figure 7.16). The situation is entirely analogous to the
electrical equivalent. For convenience we place the x-y plane on the interface with
the magnetic charge qm lying at distance d from the origin along the z axis.

In the material the potential is then given by

Vm(z < 0) =
q′′m

4πR1
=

q′′m
4π
√

(d − z)2 + ρ2
(7–117)

while outside the material it is given by

Vm(z > 0) =
qm

4πR1
+

q′m
4πR2

=
qm

4π
√

(d − z)2 + ρ2
+

q′m
4π
√

(d + z)2 + ρ2
(7–118)

At the interface we must have H‖ = −∂Vm/∂ρ continuous and B⊥ = −µ∂Vm/∂z

continuous. At the surface, R1 = R2 = (d2+ρ2)1/2, which for brevity we abbreviate
as R. Performing the required differentiations we have

ρqm

R3
+

ρq′m
R3

=
ρq′′m
R3

or qm + q′m = q′′m (7–119)

and

−µ0
qmd

R3
+ µ0

q′md

R3
= −µ1

q′′m
R3

or − µ0qm + µ0q
′
m = −µ1q

′′
m (7–120)

Solving (7–119) and (7–120) simultaneously, we obtain

q′m =
µ0 − µ1

µ0 + µ1
qm and q′′m =

2µ0

µ0 + µ1
qm (7–121)

As there are no real magnetic monopoles, we immediately construct dipoles from
two monopoles.

Let qm be situated at �r+ and −qm at �r−. Then �m = qm(�r+ − �r−). The pole qm

has an image q′m located at �r+ − 2(�r+ · n̂)n̂ while −qm has an image −q′m located
at �r− − 2(�r− · n̂)n̂. The image dipole is therefore

�m′ = q′m [(�r+ − �r−) − 2n̂(�r+ − �r−) · n̂] =
µ0 − µ1

µ0 + µ1
[�m − 2(�m · n̂)n̂] (7–122)
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Figure 7.17: The difference between the current flowing into and out of a
gaussian pillbox is the rate that charge accumulates within the box.

Similarly, the screened dipole seen from inside the material is

�m′′ =
2µ0

µ0 + µ1
�m (7–123)

Torques and forces on magnetic dipoles in vicinity of a permeable material are
then found simply as the interaction of a dipole with its image. These results
could of course have been obtained, albeit much more laboriously, without invoking
monopoles.

7.6 Conduction in Homogeneous Matter

In ohmic materials, the current density �J is given by �J = g �E. In the absence of
charge imbalances, �J must then satisfy �J = −g�∇V with ∇2V = 0. The boundary
conditions on �J are easily obtained from the continuity equation and from �∇× �E = 0.
Thus �∇ · �J = −∂ρ/∂t is easily integrated over the volume of a Gaussian pillbox
(Figure 7.17) of thickness 2ǫ spanning the boundary taken on the x-y plane between
two media to give

∫

τ

�∇ · �Jd3r = −
∫

τ

∂ρ

∂t
d3r (7–124)

or
∮

�J · d�S = −
∫

∂ρ

∂t
d3r (7–125)

For a charge density made up of a volume charge density ρv and a surface charge
density σδ(z), the integrals become

∫ (

Jz

∣

∣

∣

ǫ
−Jz

∣

∣

∣

−ǫ

)

dS +

∫

curved
side

�J · d�S ≃ −2ǫ

∫

∂ρ

∂t
dS −

∫

∂σ

∂t
dS (7–126)

Shrinking the thickness of the pillbox to zero yields

Jz(0+) − Jz(0−) = −∂σ

∂t
(7–127)

This result is, of course, fully consistent with our intuitive view that if more
charge arrives at the surface than leaves, charge must pile up at the surface. If no
charge accumulates on the interface, then the component of �J perpendicular to the
interface is continuous, leading us to conclude that gE⊥ is continuous and E‖ is
continuous.
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Figure 7.18: A permeable toroidal core wrapped with N turns of wire has
a thin gap of width W perpendicular to the core axis.

Current flow problems can be solved using exactly the same techniques as elec-
trostatics problems. When current sources are present they behave like charges,
and image source techniques can be used.

7.7 Magnetic Circuits

Although of no great fundamental importance, the notion of magnetic circuits is
of considerable practical interest in the design of transformers, electromagnets, and
electric motors. In such circuits, current windings constitute a source of flux, while
permeable materials provide the conductors.

Consider the field of a torus of N turns uniformly wound around a core of
permeability µ (Figure 7.18). The magnetic field strength in the core a distance
r from center is easily found using Ampère’s law. Setting 2πr equal to ℓ, we have
Hϕ(r) · ℓ = NI. The corresponding magnetic induction field is then

Bϕ =
µNI

ℓ
(7–128)

If we were to cut a small gap of width W in the core, the line integral of the field
intensity H is still given by NI, but there is no reason to assume it will be constant
around the torus. Assuming that H is still largely contained in the same cross
section, we can find H by setting Hgap = Bgap/µ0 and using the continuity of B⊥
boundary condition at the interface, Bgap = Bcore. Thus the line integral of the
field intensity around the loop becomes

∮

�H · d�ℓ = Hcore(ℓ − W ) +
µHcore

µ0
W (7–129)

and Ampère’s law gives

Hcore

[

ℓ +

(

µ

µ0
− 1

)

W

]

= NI (7–130)

Clearly Hcore and Bcore = µHcore are smaller with the gap than without, indi-
cating that the gap offers greater reluctance to the field than the permeable core
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does. The observation that when µ is ≫ µ0, the flux is fairly well constrained to
the permeable material justifies the notion of magnetic circuits.

Let us consider a more general series “circuit” of several different core materials
surrounded by a toroidal winding of N turns carrying current I. From the application
of Ampère’s law,

∮

�H · d�ℓ = NI (7–131)

It is convenient to express H at each point in terms of the magnetic flux Φ =
BA = µHA where A is the cross-sectional area of the circuit at the point under
consideration. Then

∮

Φdℓ

µA
= NI (7–132)

and, since Φ is essentially constant around the circuit,

Φ

∮

dℓ

µA
= NI (7–133)

This is the basic magnetic circuit equation that enables us to solve for the flux
in terms of the circuit parameters. The equation is reminiscent of the elementary
series circuit equation I(ΣR) = E . (The resistance of a similar electric circuit is R
=
∮

dℓ/gA.) By analogy, the reluctance, ℜ, is defined as

ℜ =

∮

dℓ

µA
(7–134)

and NI is referred to as the magnetomotive force (mmf). With these definitions, Φℜ
= (mmf), and the conserved magnetic flux, Φ, plays the role of ‘magnetic current’.
If the circuit is made of several homogeneous pieces, each of uniform cross section,
the reluctance may be approximated as

ℜ =
∑

j

ℓj

µjAj
=
∑

j

ℜj (7–135)

Clearly reluctances in series and parallel add like resistors in series and parallel.
Although the theory is not exact (because of flux leakage), it is useful in engineering
applications. As the flux fringing is particularly severe for air gaps, an empirical
adjustment of increasing the effective cross-section dimensions (diameter or width
and height) by the length of the gap, is conventionally made by engineers.

Example 7.13: The magnetic circuit sketched in Figure 7.19 is wound with 100 turns
of wire, carrying a current of 1A. The winding is located on the extreme left-hand
leg of the circuit. All legs have the same 6 cm2 cross section and permeability of
5000 µ0.

Solution: The analogous electric circuit has 3R in parallel with R giving .75R in
series with 3R for a total of 3.75R. Transposing to the magnetic circuit, ℜ = 3.75ℜj

with ℜj = (10 cm)/(µ · 6 cm2) = 103/(6µ) (SI units). The flux through the coils is
then

Φ =
NI

3.75ℜj
=

100 × 6µ

3.75 × 103
= .16µ (SI) (Ex 7.13.1)
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Figure 7.19: The double-holed yoke has 100 turns on its leftmost leg. The
analogous electric circuit is shown on the right.

Of this flux, 3
4 passes through the central leg, and 1

4 passes though the right-hand
leg:

Φ1 = 3
4 × .16µ = (0.12 × 5000 × 4π × 10−7) = 7.54 × 10−4 Wb

Φ2 = 1
4 × .16µ = 2.51 × 10−4 Wb

(Ex 7.13.2)

giving magnetic induction fields

B1 =
Φ1

A
=

7.54 × 10−4

6 × 10−4
= 1.256T

B2 =
Φ2

A
= 0.418T

(Ex 7.13.3)

7.7.1 Magnetic Circuits Containing Permanent Magnets

Let us consider a magnetic circuit devoid of currents, but having instead a per-
manent magnet of length LPM as the source of fields, as shown in Figure 7.20.
Ampère’s law gives for a loop around the magnet and the yoke

∮

�H · d�ℓ = 0 (7–136)

or, integrating around the loop in clockwise direction from a to b
∫ b

a (yoke)

HY dℓ = −
∫ a

b (PM)

HPMdℓ (7–137)

Figure 7.20: A soft iron yoke connects the two end of a permanent magnet.
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Figure 7.21: A quadrant of a typical hysteresis curve for a permanent mag-
net.

In addition, we use the constancy of flux around the loop to find BPMAPM =
BY AY = µAY HY . Substituting for HY in the integrals (7–137) above, we obtain

APMBPMLY

µAY
= −HPMLPM (7–138)

which we invert to obtain

BPM = −LPM

APM

µAY

LY
HPM (7–139)

an equation linking B and H in the magnet. The resulting fields may then be found
from the hysteresis curve for the permanent magnet (figure 7.21). The ends of the
magnet produce a demagnetizing field H to reduce B, as we had noted in passing
earlier.

The result above may be generalized to more complicated yokes by recognizing
LY /µAY as the reluctance of the yoke. More generally, then

BM = − LM

AMℜY
HPM (7–140)

7.7.2 The Hysteresis Curve of a Ferromagnet

For a ferromagnetic material, �B = µ(H) �H, where µ is usually a very strong function
of H. A typical hysteresis curve is sketched in Figure 7.21. This curve will in general
depend on the history of the material. The induction field that remains even when
there is no field intensity H to induce it is known as the remanence. The magnetic
field intensity required to reduce the flux density to zero is the coercive force.

It is interesting to calculate the amount of work that must be done to move the
material from one point on the hysteresis curve to another. We consider a closely
wound torus with a core of the material of interest (Rowland’s ring). The EMF, E ,

induced on the N turns of the winding as we change �B from B1 to B2 is given by
E = −NdΦ/dt. The current required to produce the field strength H to cause the
change in B does work against this EMF at the rate dW/dt = NIdΦ/dt. Assuming
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Figure 7.22: A typical hysteresis curve for a permanent ferromagnet. The
lower trace is produced by �H increasing from large negative values.

that the ring is large enough that B is constant over the cross section S of the core,
we find that Φ = BS, and write NI in terms of H, NI = Hℓ so that

dW

dt
= ℓH

d

dt
(BS) = V H

dB

dt
(7–141)

where ℓS = V is the volume of the core. Consequently, the work required to change
B to B + dB in a unit volume is

d

(

W

V

)

= HdB (7–142)

leading to the conclusion that

W

V
=

∫ B2

B1

H(B)dB (7–143)

We interpret the integral (7–143) geometrically as the shaded area of Figure
7.22. If the material is cycled around its hysteresis loop, the energy input per unit
volume is given by the area of the loop. A transformer core would cycle around

Figure 7.23: A good transformer core should have a thin hysteresis curve.
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the loop many times. To minimize flux losses, the permeability should be large. In
order to minimize hysteresis losses one would use a ferromagnetic core with a very
thin loop. As B must remain large, this means that the curve should be very thin
in H, as illustrated in Figure 7.23.
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Exercises and Problems

7-1 A large parallel plate capacitor with
plates separated by d has a dielectric
slab with dielectric constant κ and thick-
ness t partially filling the space between
the plates. A potential ∆V is applied
across the plates. Find �E in the inter-
vening space and in the dielectric.

7-2 A large block of dielectric with po-
larization �P has a long thin slot cut in it
parallel to the polarization. Find the �E
and �D in the slot.

7-3 A large block of dielectric with polar-
ization �P has a thin disk-shaped cavity
perpendicular to the polarization. Find
�E and �D in the cavity.

7-4 Find the electric field at points along
the z axis outside a dielectric (right cir-
cular) cylinder of length L and radius a
whose axis coincides with the z axis and
is uniformly polarized along its axis.

7-5 A block of uniformly magnetized
material has the slot and disk of the
two problems above respectively parallel
and perpendicular to the magnetization.
Find �B and �H in each case.

7-6 Find the force between two identi-
cal charges embedded in a dielectric of
permittivity ε.

7-7 Find the force between two identical
charges embedded in different dielectrics
with permittivities ε1 and ε2. Assume
that the charges lie at equal distances
from the interface along a normal to the
interface. (Beware of images.)

7-8 A dielectric sphere of radius R
contains a uniform distribution of free
charge. Find the potential at the center.

7-9 A thick hemispherical shell of in-
ner radius a and outer radius b is uni-
formly magnetized along its symmetry

axis. Show that the magnetic induction
field at the center of curvature of the
shell vanishes.

7-10 An electric point dipole is placed in
the neighborhood of a thick large sheet
of dielectric of permeability ε. Find the
force and torque on the dipole resulting
from the induced polarization of the di-
electric.

7-11 A parallel plate capacitor with
plates of dimension a×b spaced at d has
the corner of a large slab of dielectric of
thickness d/2 and permittivity ε partly
inserted to depth of ∆x and ∆y in the
space between the plates. Find the force
on the slab, ignoring fringing fields.

7-12 A capacitor constituted of two ver-
tical concentric cylinders of radii a and b
has one end immersed in oil of dielectric
constant κ. To what height does the oil
rise in the space between the two cylin-
ders when the potential difference V is
applied between them? Ignore capillar-
ity and fringing fields.

7-13 A charged, conducting cylinder of
radius a carrying line charge density λ in
vacuum is placed near and parallel to the
plane interface with a dielectric medium.
Find the resulting charge distribution on
the surface of the cylinder.

7-14 A magnetron magnet has two op-
posing pole faces spaced at 1 cm and
an induction field in the gap of 2T. A
screwdriver (µ = 10,000 µ0, assume it
linear although it will clearly not be) of
cross section 0.5 cm2 is inadvertently in-
serted partway between the poles. Find
approximately the force on the screw
driver. Neglect fringing fields and as-
sume that inserting the screwdriver does
not appreciably affect the reluctance of
the magnet.
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Figure 7.24: Permanent magnet and yoke. Figure 7.25: Quadrant of hysteresis curve for
several permanent magnetic materials.

7-15 Find the magnetic induction field
of a uniformly magnetized sphere of ra-
dius a.

7-16 Find �B in a spherical cavity in a
large, uniformly magnetized block of ma-
terial when �H far from the cavity is H0k̂.
What does this become when H0 is zero
but �M is not?

7-17 Find �B and �H in a thin circular
disk of material uniformly magnetized
perpendicular to the flat face of the ma-
terial.

7-18 Use equation (7–114) to find the
magnetic scalar potential on the symme-
try axis in the gap be-tween the circular
pole pieces of a permanent magnet hav-
ing uniform magnetization M. Assume
that the radius of the pole pieces is a
and the width of the gap is b.

7-19 A long cylinder of radius a and per-
meability µ is placed in an initially uni-
form field �B0 so that the cylinder axis is
perpendicular to �B0. Calculate the re-
sulting field �B.

7-20 Find the dipole moment of a thin
cylindrical magnet with uniform magne-
tization M along its axis.

7-21 Find the force on a permanent
magnet of volume V and magnetization
M held in the neighborhood of a large
sheet of soft iron of permeability 104µ0

(a) when the magnetization (of the mag-
net) is parallel to the interface and (b)
when the magnetization is perpendicular
to the interface.

7-22 An Alnico-5 magnet of length 10
cm and cross section 1 cm2 is placed in a
magnetic circuit completed by permalloy
yoke of permeability µ = 25, 000µ0 and
1 cm2 cross section with a 1 cm air gap,
as illustrated in Figure 7.24. Use the
appropriate hysteresis curve from Figure
7.25 to find B and H in the magnet, the
permalloy yoke, and the air gap.

7-23 Find the electric displacement
field inside the cylinder of example 7.1.
Translate the origin so that the end faces
lie at z = ±1

2L and compare this result
with (Ex 7.4.2).

7-24 Find the magnetic induction field
both inside and outside a magnetized
sphere with magnetization �M = M0xı̂.

7-25 Show that the bulk permittivity of
an isotropic mixture of dielectrics with



210 Classical Electromagnetic Theory

permittivities εi is given by

εmix =
〈

ε
1/3
i

〉3

where 〈 〉 means the average over volume.
(Hint: write

〈 �D〉 = εmix〈 �E〉
=
〈

(〈ε〉 + δε)(〈 �E〉 + δ �E)
〉

and show that

〈δεδ �E〉 = 1
3 〈 �E〉〈(δε)2〉/〈ε〉.)

7-26 Use the diffusion equation (7–54)

that governs the temporal behavior of a
magnetic induction field in a conductor
to estimate the time required for an ini-
tial field �B0 in a stationary copper sphere
of radius 1 m to decay. Repeat the ex-
ercise using a nonrotating model of the
earth having a 3000 km core of iron with
conductivity g = 106/Ωm (600◦ C) (as-
sume µ = µ0). What does this imply for
the timescale of reversals of the earth’s
magnetic polarity?



Chapter8

Time-Dependent Electromagnetic Fields in Matter

8.1 Maxwell’s Equations

We begin this chapter with a consideration of how Maxwell’s equations ought to
be amended when matter is present. To start, we restate Maxwell’s equations in
vacuum (equations 3–27):

�∇ · �E =
ρ

ε0

�∇× �E = −∂ �B

∂t

�∇ · �B = 0 �∇× �B = µ0

(

�J + ε0
∂ �E

∂t

)

As we saw in section 7.1, the source term for �E, ρ(t), is augmented in the

presence of matter by the bound charge density ρb(t) = −�∇ · �P (t), leading to

�∇ · �D = ρ (8–1)

as in the static case. Because there was no time dependence in the vacuum equa-
tions, there is no reason to expect one when matter is present.

The �∇× �E equation

�∇× �E = −∂ �B

∂t
(8–2)

remains unchanged also because this is a relationship between the force fields that
does not involve the sources. (If magnetic monopoles existed, the magnetic current
would depend on the sources, and this term would change in the presence of matter.)

The �∇ · �B equation
�∇ · �B = 0 (8–3)

also remains unchanged, as there appear to be no magnetic monopoles (or, if there
are, they do not occur in any experiment we might consider).

The last of the four equations, in contrast to the others, must be modified. As
we have already seen in the static case, magnetizations are a source of magnetic

—211—
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field taken into account by augmenting the current density �J by �∇ × �M . In the
nonstatic case an additional term arises.

When a molecular dipole changes its orientation or size, a current flows on
a microscopic scale. When the change in polarization is uniform, the transient
current corresponds to the bound surface charge being transported from one side
of the medium to the other. When the change of polarization is not uniform,
charge concentrations in the form of bound charge accumulate. The accumulation
of bound charge corresponds to a current, which constitutes a source of field not
yet considered. To quantify this observation, we consider the bound charge in some
fixed volume τ , and use the divergence theorem (20) to obtain

Qb =

∫

τ

ρbd
3r = −

∫

τ

�∇ · �Pd3r = −
∮

�P · d�S (8–4)

Taking the time derivative of both sides of the equation, we have

dQb

dt
= −

∮

�Jb · d�S = −
∮

∂ �P

∂t
· d�S (8–5)

from which we conclude that

�Jb =
∂ �P

∂t
(8–6)

With this addition the last of Maxwell’s equations becomes

�∇× �B = µ0

(

�J + �∇× �M + ε0
∂ �E

∂t
+

∂ �P

∂t

)

(8–7)

Casting this equation in terms of �H and �D, we have

�∇×
( �B

µ0
− �M

)

= �J +
∂

∂t

(

ε0
�E + �P

)

(8–8)

or

�∇× �H = �J +
∂ �D

∂t
(8–9)

Summarizing Maxwell’s equations in their final form, we have

�∇ · �D = ρ

�∇× �E = −∂ �B

∂t

�∇ · �B = 0

�∇× �H = �J +
∂ �D

∂t

(8–10)

with �D = ε0
�E + �P and �B = µ0

(

�H + �M
)

.

For linear isotropic materials we have, in addition, the constitutive relations �P =
χε0

�E, �M = χm
�H, and �J = g �E. The interaction of matter with the electromagnetic

fields is entirely through the Lorentz force, (�f is the force per unit volume)

�f = ρ �E + �J × �B (8–11)



Chapter 8 - Time Dependent Electromagnetic Fields in Matter 213

The equation of continuity, expressing charge conservation, is easily seen to be
a consequence of Maxwell’s equations. To demonstrate this, we simply take the
divergence of �∇× �H:

0 = �∇ · (�∇× �H) = �∇ · �J + �∇ · ∂ �D

∂t

= �∇ · �J +
∂

∂t

(

�∇ · �D
)

= �∇ · �J +
∂ρ

∂t
(8–12)

It is a testament to the genius of James Clerk Maxwell that he deduced these
equations (8–10) from the “lines of force” that Faraday used to interpret the results
of his experiments in electromagnetism.

Example 8.1 A circular dielectric disk of thickness d and radius a, possessing both
linear and quadratic dielectric susceptibilities χ and χ(2), is placed between the
plates of a parallel plate capacitor also of radius a, spaced by d, that have an
alternating voltage V = V0e

−iωt difference impressed on them. Find the magnetic
field intensity �H near the dielectric.

Solution: We draw a loop of radius r encircling the dielectric in a plane parallel to
the capacitor plates and integrate �∇× �H over the surface of the loop. With the aid
of Stokes’ theorem we have

∫

Γ

�H · d�ℓ =

∫

S

∂

∂t

[

ε0(1 + χ)Ee−iωt + χ(2)ε2
0E

2e−2iωt
]

dS (Ex 8.1.1)

with E = V/d. The rotational symmetry guarantees that the ϕ component of H is
invariant around the loop allowing us to write

2πrHϕ = πa2

[

ε0(1 + χ)
−iωV e−iωt

d
+ ε2

0χ
(2)−2iωV 2e−2iωt

d2

]

(Ex 8.1.2)

The radial component of �H must vanish as a nonzero cylindrically symmetric
Hr would have a non-vanishing divergence in the absence of a magnetization.

8.1.1 Boundary Conditions for Oscillating Fields

We have, in dealing with refraction of waves in dielectrics, tacitly assumed that the
boundary conditions appropriate to a static field would serve. Nonstatic conditions
do alter at least some of the boundary conditions. We might anticipate, for instance,
that a time-dependent polarization of the medium would require a discontinuity in
current crossing the interface between two media in order to account for the arrival
or departure of bound charge. In this section we investigate the boundary conditions
in more detail. Our point of departure, as always, is Maxwell’s equations (8–10)

�∇ · �D = ρ �∇ · �B = 0

�∇× �E = −∂ �B

∂t
�∇× �H = �J +

∂ �D

∂t
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Figure 8.1: The thin loop has its long side parallel to the interface.

To obtain the boundary conditions we integrate each of the equations over a
volume or surface spanning the boundary between two media.

The first two (divergence) equations are unaltered from their static form (7–53),
and the same arguments lead to the same conclusions, namely that B⊥ is continuous
and D⊥ is discontinuous by the (time-dependent) surface charge σ. Only the curl
equations could be altered, and we consider them in detail.

Integrating the equation for �∇× �E over the area of the thin loop spanning the
interface shown in Figure 8.1, we have

∫

(�∇× �E) · d�S = −
∫

∂ �B

∂t
· d�S (8–13)

Application of Stokes’ theorem to the left side gives
∮

�E · d�ℓ =

∫

−∂ �B

∂t
· d�S (8–14)

and as width of the loop shrinks to zero, the surface integral on the right vanishes.
We conclude, then, that as before, �EII

‖ = �EI
‖ .

Integrating the equation for �∇ × �H over the same thin loop of Figure 8.1, we
have

∫

(�∇× �H) · d�S =

∫

�J · d�S +

∫

∂ �D

∂t
· d�S (8–15)

With the aid of Stokes’ theorem the left-hand side is converted to a line integral.
Letting the interface lie in the x-y plane, we write the current density as the sum of
a body current and surface current density, �J = �Jb +�jδ(z). Shrinking the width of
the loop to 0 eliminates all but the surface current contribution to the right-hand
side. The remaining terms give HII

‖ − HI
‖ = j, where j is the surface current that

threads the loop. On generalizing we recover our earlier result, (7–68)

n̂ ×
(

�HI − �HII
)

= �j

At this point we might well wonder where, if anywhere, the claimed distinction
between the static and nonstatic boundary conditions might occur. The difference
lies in the possibility of maintaining a zero surface charge density.

When fields oscillate, it is not generally possible to maintain a zero surface
charge density σ, as is easily seen from the continuity equation (1–24):

�∇ · �J = −∂ρ

∂t
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Figure 8.2: A thin Gaussian pillbox spans the interface between medium I
and II.

Integrating (1–24) over the volume of the thin pillbox of Figure 8.2 when ρ =
ρv(x, y, z) + σ(x, y)δ(z) (we have again taken the interface in the x-y plane), we
obtain

∫

�∇ · �J d3r = − ∂

∂t

[∫

ρv(x, y, z)d3r +

∫

σ(x, y)dS

]

(8–16)

or
∮

�J · d�S = − ∂

∂t

[

ρ̄vτ +

∫

σ(x, y) dS

]

(8–17)

where ρ̄ is the mean charge density in the volume of integration τ .
As the thickness of the pillbox shrinks to zero,

∫

(

�JI · n̂ − �JII · n̂
)

dS = − ∂

∂t

∫

σ(x, y) dS (8–18)

which leads to
(

�JI − �JII
)

· n̂ = −∂σ

∂t
(8–19)

Now, for σ = σ0e
−iωt and �J = g �E, this becomes g1E

I
n − g2E

II
n = iωσ. On the

other hand, from �∇ · �D = ρ we have DI
n − DII

n = σ . These two equations are
compatible with σ = 0 only when g1/ε1 = g2/ε2, a condition not generally satisfied.
Eliminating σ from the two equations, we obtain the following from the equation
in �D:

(

ε1 +
ig1

ω

)

EI
n =

(

ε2 +
ig2

ω

)

EII
n (8–20)

8.1.2 Special Cases

Three special cases may now be distinguished. In all cases we assume �J = g �E, �D =
ε �E, �B = µ �H, �H = �H0e

−iωt and �E = �E0e
−iωt.

— Both materials are nonconductors: E‖, H‖, D⊥, and B⊥ are all continuous across
the interface.

— Both materials have nonzero, finite conductivity: Surface currents cannot be
sustained in a less-than-perfect conductor; �j = 0. Therefore

E‖,

(

ε +
ig

ω

)

E⊥, H‖, and B⊥ are all continuous. (8–21)
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— One of the media is a perfect conductor: say g2 = ∞. This is frequently a good
approximation for a metal boundary. Using

�∇× �HII = �JII +
∂ �DII

∂t
= (g2 − iε2ω) �EII (8–22)

we obtain for |�∇ × �HII | < ∞ , �EII = 0. Next, using �∇ × �EII = −∂ �BII/∂t =

iµω �HII = 0, we find �HII = 0. The boundary conditions are therefore,

�EII = �HII = 0, BI
⊥ = BII

⊥ = 0, EI
‖ = 0,

ε1E
I
⊥ = σ, and n̂ × �HI = �j

(8–23)

where n̂ is the normal pointing outward from the perfect conductor.

8.2 Energy and Momentum in the Fields

We saw in Chapter 3 that the potential energy of particles could be associated
with their fields. In material media it seems fairly clear that indeed, the potential
energy will be stored in the polarization and magnetization of the medium. Before
finding the general result, we briefly consider the work, δW , required to add a
small quantity of charge δq in constructing a charge whose potential at the time
of adding δq is V. Let us suppose the charge increment is distributed over some
volume τ small enough that the potential is constant. We write then δq =

∫

δρ d3r.
The work performed in adding the charge is

δW = V δq =

∫

V (δρ)d3r =

∫

V δ(�∇ · �D)d3r =

∫

V �∇ · (δ �D)d3r (8–24)

The integral may be integrated by parts using �∇·(V δ �D) = �∇V ·δ �D+V (�∇·δ �D):

δW =

∫

�∇ · (V δ �D) d3r −
∫

�∇V · δ �Dd3r

=

∮

V (δ �D) · d�S +

∫

�E · δ �Dd3r (8–25)

If the field is produced by a finite charge occupying a finite region of space, the
potential at large r diminishes as r−1 (or faster) and �D diminishes as r−2 (or faster).

Therefore, at sufficiently large �r, V (δ �D) decreases more rapidly than S increases,
leading to a vanishing first integral. Dropping the first integral, we obtain

δW =

∫

all

space

�E · δ �D d3r (8–26)

where the integration extends over all space. The increment of work δW cannot
usually be integrated unless �D is given as a function of �E. For �D = ε �E, the work
required to assemble the entire charge distribution

W =

∫ D

0

δW =

∫ D

0

∫

τ

�E · δ �Dd3r
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=

∫

τ

∫ D

0

1
2ε �E · δ( �E )d3r = 1

2

∫

τ

εE2d3r = 1
2

∫

τ

�E · �Dd3r (8–27)

In the case that the material is linear but not isotropic, we set εi
j = ε0χ

i
j and

Di = εi
jE

j , leading to

δW =

∫ D

0

�E · δ �Dd3r =

∫ D

0

Ei(δD
i)d3r =

∫ D

0

Eiε
i
j(δE

j)d3r (8–28)

which integrates to

W =

∫

εi
jEiE

j

2
d3r =

∫

DjE
jd3r

2
=

∫ �E · �D

2
d3r (8–29)

as before.
The expression for the energy density of a linear anisotropic material

U = 1
2εi

jEiE
j ≡ 1

2εj
iEjE

i = 1
2εijE

iEj (8–30)

leads incidentally to the useful fact that the permittivity tensor is symmetric under
interchange of columns and rows, εi

j = εj
i .

8.2.1 Energy of Electric and Magnetic Fields

The more general case when both electric and magnetic fields are present is easily
obtained by manipulation of Maxwell’s equations. Consider the following applica-
tion of identity (8):

�∇ · ( �E × �H) = �H · (�∇× �E) − �E · (�∇× �H)

= − �H · ∂ �B

∂t
− �E · �J − �E · ∂ �D

∂t
(8–31)

Integrating this expression over some arbitrary volume τ , gives

∫

τ

�∇ · ( �E × �H)d3r = −
∫

τ

(

�E · ∂ �D

∂t
+ �H · ∂ �B

∂t

)

d3r −
∫

τ

�E · �Jd3r (8–32)

The last integral of (8–32) is simply the rate that work is done by the field on

currents in the region of interest ( �E · �J = ρ �E · �v = �f · �v ). If matter is linear and
isotropic, the terms within the parentheses of the second integral may be written

�E · ∂ �D

∂t
=

1

2

∂

∂t
(εE2) =

∂

∂t

( �E · �D

2

)

(8–33)

and

�H · ∂ �B

∂t
=

∂

∂t

( �H · �B

2

)

(8–34)
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Converting the left side of (8–32) to a surface integral, we write
∮

( �E × �H) · d�S = − ∂

∂t

∫ ( �E · �D

2
+

�B · �H

2

)

d3r −
∫

�E · �Jd3r (8–35)

We identify

U = 1
2 ( �E · �D + �B · �H) (8–36)

as the energy density of the fields, since whenever the left-hand side is zero, energy
conservation requires that any work done on the currents be compensated by a
decrease of the field energy.

The term on the left now clearly represents the rate that energy leaves the
volume by flowing out, across the surface. Thus

�S = �E × �H (8–37)

the Poynting vector, is identified with the energy flux. As we remarked earlier, it is,
strictly speaking, an energy flux only when it has zero curl. Conservation of energy
is now expressed as

∮

�S · d�S = − ∂

∂t

∫

Ud3r − ∂W ′

∂t
(8–38)

where ∂W ′/∂t =
∫

�E · �J d3r is the rate energy is imparted to motion of the charges
constituting the current.

8.2.2 Momentum and the Maxwell Stress Tensor

We anticipate that an energy flux will have a momentum flux associated with it. It
is therefore no surprise that when there is a net energy flow into or out of a given
volume of space, there is a change in the momentum contained within that volume;
there must be a force acting on the volume to precipitate this momentum change.
While we have no difficulty conceiving of forces acting on charges within the volume,
a different view emerges when we express the forces in terms of the fields created
by the charges. We proceed in a fashion very similar to that of Section 4.3.2.

We consider the force on a system of charges:

�F =
d

dt

∫

�Pd3r =

∫

(ρ �E + �J × �B)d3r

=

∫

[

(�∇ · �D) �E +

(

�∇× �H − ∂ �D

∂t

)

× �B

]

d3r

=

∫

[

(�∇ · �D) �E + (�∇× �H) × �B − ∂

∂t

(

�D × �B
)

+

(

�D × ∂ �B

∂t

)

]

d3r (8–39)

Replacing ∂ �B/∂t with −�∇ × �E and gathering all time derivatives on the left,
we get

d

dt

∫

(

�P + �D × �B
)

d3r =

∫

[

(�∇ · �D) �E − �B × (�∇× �H) − �D × (�∇× �E)
]

d3r

(8–40)
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If the fields are uniform, all the spatial derivatives of the right-hand side vanish,
and conservation of momentum requires that �Pem ≡ �D × �B be the momentum
density of the fields. As before, we would like to express the right-hand side of
(8–24) as the divergence of a second rank tensor. Denoting the argument of the

right hand side of (8–40) by �f ,

�f = (�∇ · �D) �E − �B × (�∇× �H) − �D × (�∇× �E) (8–41)

and using tensor notation to facilitate the manipulations gives

f j = ∂kDkEj − ǫjkℓBkǫℓmn∂mHn − ǫjkℓDkǫℓmn∂mEn

= ∂kDkEj − ǫℓjkǫℓmnBk∂mHn − ǫℓjkǫℓmnDk∂mEn

= ∂kDkEj −
(

δj
mδk

n − δj
nδk

m

)

Bk∂mHn −
(

δj
mδk

n − δj
nδk

m

)

Dk∂mEn

= ∂kDkEj − Bk∂jHk + Bk∂kHj − Dk∂jEk + Dk∂kEj (8–42)

This expression (8–42), may be symmetrized by adding the null term (�∇· �B)Hj

= (∂kBk)Hj to the right side:

f j = ∂kDkEj + Dk∂kEj + Bk∂kHj + ∂kBkHj −
(

Bk∂jHk + Dk∂jEk
)

= ∂k

(

DkEj
)

+ ∂k

(

BkHj
)

−
(

Bk∂jHk + Dk∂jEk
)

(8–43)

For linear materials (though not necessarily isotropic), the last term may be
written

Bk∂jHk + Dk∂jEk = 1
2∂j
(

�B · �H + �D · �E
)

= 1
2∂kδkj

(

�B · �H + �D · �E
)

resulting in

f j = ∂k

[

DkEj + BkHj − 1
2δjk

(

�B · �H + �D · �E
)

]

= −∂kT kj (8–44)

where we have made the obvious generalization of the Maxwell stress tensor:

T ij = −DiEj − BiHj + 1
2δij( �B · �H + �D · �E) (8–45)

⋆ 8.2.3 Blackbody Radiation Pressure

As an application of the stress tensor let us use it to compute the pressure offered
by the isotropic radiation in a cavity with absorbing walls. We will compute the
force d�F acting on a small segment d�S of the wall. From our earlier discussion,
d�F = −↔

T · d�S. To be explicit, we take d�S to be a segment of the right-hand wall
with normal −ı̂. By symmetry, the only nonvanishing component of force must be
normal to the walls. We have then

dF x = −T xjdSj (8–46)
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or, in Cartesians dFx = +TxxdSx. (Note that although we assume summation for
repeated i, j, etc., no summation is implied when specific indices such as x, y, or z
are used.)

Substituting for Txx, we obtain

dFx = −
[

ExDx + BxHx − 1
2 ( �E · �D + �B · �H)

]

dSx (8–47)

For isotropic radiation, ExDx = EyDy = EzDz = 1
3

�E · �D and BxHx = 1
3

�B · �H.
Inserting these expressions into (8–44), we obtain

dFx = −
[

1
3 ( �E · �D + �B · �H) − 1

2 ( �E · �D + �B · �H)
]

dSx

=
1

3

( �E · �D + �B · �H

2

)

dSx = 1
3UdSx (8–48)

We conclude that the pressure ℘ (= dFx/dSx) equals 1
3 of the energy density U.

This result forms the basis for the thermodynamic derivations of the Stefan-
Boltzmann law for blackbody radiation. We digress briefly to demonstrate the
realization of this law. We temporarily adopt for this discussion the notations Q
for the heat supplied to a system, u for the internal energy of the system, S for the
entropy, and V for the volume of the system.

The adiabatic law of compression for a blackbody follows immediately from the
pressure–energy density relation. For an adiabatic change the fundamental relation
reads

dQ = 0 = du + ℘dV (8–49)

Setting u = 3℘V , we have du = 3℘dV +3V d℘. Substituted into (8–49 ), this yields

0 = 3V d℘ + 4℘dV (8–50)

which, on integration, gives ℘V 4/3 = constant. In other words, blackbody radiation
behaves like a perfect gas with γ = 4

3 . We find the energy density u in terms of the
temperature by substituting ℘ = 1

3 (∂u/∂V )T into the thermodynamic relation17

(

∂u

∂V

)

T

= T

(

∂℘

∂T

)

V

− ℘ (8–51)

17This result is most easily obtained from du = TdS−℘dV with substitutions for dS as follows.
Considering the entropy S as a function of T and V, we write

dS =

(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV =
cV

T
dT +

(

∂℘

dT

)

V

dV

With this substitution, the equation for du becomes

du = cV dT +

(

T
∂℘

∂T
− ℘

)

V

dV

Comparing this to the general expression, du =
(

∂u
∂T

)

V
dT +

(

∂u
∂V

)

T
dV , we see that the second

term gives the required result.
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to obtain

U =
T

3

∂U

∂T
− U

3
(8–52)

On rearrangement this becomes

∂U

U
= 4

∂T

T
(8–53)

Integration of (8–53) leads to the Stefan-Boltzmann law,

U = aT 4 (8–54)

Thus, the energy density of radiation contained in a perfectly absorbing cavity
is seen to be proportional the fourth power of temperature. The radiation pressure,
as a consequence is given by ℘ = aT 4/3.

Radiation emitted from a small aperture of cross sectional area A in such a
black-walled cavity is readily computed. The rate of radiation exiting within dΩ of
angle θ to the normal derives from a column of volume Ac cos θ and has probability
dΩ/4π of having this direction. The rate of radiation from the aperture is then

du

dt
=

∫

2π

UAc cos θdΩ

4π
= −UAc cos2 θ

4

∣

∣

∣

∣

1
2 π

0

=
UAc

4
= σAT 4 (8–55)

The Stefan-Boltzmann constant, σ, is found experimentally to be 5.6697 ×
10−8 W m−2 ◦K−4.

8.3 The Electromagnetic Potentials

The introduction of matter has no effect on the field equations �∇· �B = 0 and �∇× �E
= −∂ �B/∂t, or on the former’s implication that �B = �∇ × �A. Combining the two
curl equations we have, as before

�∇×
(

�E +
∂ �A

∂t

)

= 0 ⇒ �E +
∂ �A

∂t
= −�∇V (8–56)

so that �E = −�∇V − ∂ �A/∂t. As in the vacuum case, gauge transformations allow

sufficient freedom in �A to pick �∇ · �A at our convenience.
The remaining Maxwell’s equations may be used to produce the time-dependent

equivalent of Poisson’s equation for linear, homogeneous matter:

�∇× �H = �J + ε
∂ �E

∂t
(8–57)

Expressed in terms of the potentials this becomes

�∇×
( �∇× �A

µ

)

=
1

µ

[

�∇(�∇ · �A) −∇2 �A
]

= �J + ε
∂

∂t

(

− �∇V − ∂ �A

∂t

)

(8–58)
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Rearranging the terms, we get

∇2 �A − µε
∂2 �A

∂t2
= −µ�J + �∇

[

�∇ · �A + µε
∂V

∂t

]

(8–59)

Similarly,

�∇ · �D = �∇ ·
(

ε �E
)

= ε�∇ ·
(

− �∇V − ∂ �A

∂t

)

= −ε∇2V − ε
∂

∂t

(

�∇ · �A
)

= ρ (8–60)

becomes

∇2V − µε
∂2V

∂t2
= −ρ

ε
− ∂

∂t

(

�∇ · �A + µε
∂V

∂t

)

(8–61)

upon rearrangement. Both (8–59) and (8–61) are simplified considerably by choos-

ing �∇ · �A = −µε∂V/∂t, the Lorenz gauge. We then obtain

∇2 �A − µε
∂2 �A

∂t2
= −µ�J(t) and ∇2V − µε

∂2V

∂t2
= −ρ(t)

ε
(8–62)

In words, the vector potential �A and scalar potential V satisfy the inhomo-
geneous wave equation with source terms −µ�J(t) and −ρ(t)/ε, respectively. We
postpone consideration of how oscillating sources generate waves to chapter 10 and
deal only with the homogeneous equation in this chapter.

8.4 Plane Waves in Material Media

To isolate fields �E and �B from Maxwell’s equations, we use the usual stratagem of
decoupling the equations by taking the curl of the curl equations,

�∇×
(

�∇× �E
)

= − ∂

∂t

(

�∇× �B
)

= −µ
∂

∂t

(

�J +
∂ �D

∂t

)

(8–63)

Expanding the left side and using the constitutive relations for linear, ohmic
materials to replace �J with g �E and ∂ �D/∂t with ε∂ �E/∂t, we find

�∇
(

�∇ · �E
)

−∇2 �E = − ∂

∂t

(

µg �E + µε
∂ �E

∂t

)

(8–64)

In the absence of free charges, �∇ · �E = 0,18 and, assuming harmonically varying
fields �E(�r, t) = �E0(�r )e−iωt, (picking harmonically varying fields is in reality no
restriction as we could always frequency analyze the temporal variation and apply
the following to each Fourier component) we may replace ∂/∂t with −iω to obtain

∇2 �E0 + µεω2

(

1 +
ig

ωε

)

�E0 = 0 (8–65)

18Actually �∇ · �D = 0, which implies that �∇ · �E = 0 only if �D can be written as �D = ε �E with ε
independent of the coordinates.
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Similarly for �B

�∇×
(

�∇× �H
)

= �∇×
(

�J +
∂ �D

∂t

)

= �∇×
(

g �E + ε
∂ �E

∂t

)

(8–66)

and, following the same steps as above,

1

µ

[

�∇
(

�∇ · �B
)

−∇2 �B
]

= − ∂

∂t

(

g �B + ε
∂ �B

∂t

)

(8–67)

leads to

∇2 �B0 + µεω2

(

1 +
ig

ωε

)

�B0 = 0 (8–68)

Another useful form of the wave equation is obtained by not incorporating the
polarization into the displacement field. If the material is not linear, this is in fact
the only legitimate procedure.

Again taking the curl of the curl equations, we obtain

�∇× (�∇× �E) = −µ0
∂

∂t
(�∇× �H) − µ0

∂

∂t
(�∇× �M)

= −µ0ε0
∂2 �E

∂t2
− µ0

∂2 �P

∂t2
− µ0

∂

∂t

(

�J + �∇× �M
)

(8–69)

Gathering terms in �E, we find

�∇× (�∇× �E) + µ0ε0
∂2 �E

∂t2
= −µ0∂

2 �P

∂t2
− µ0

∂

∂t

(

�J + �∇× �M
)

(8–70)

The terms on the right are source terms for electromagnetic waves. We note that
time-varying currents and polarizations constitute sources of electromagnetic waves.

The magnetic field term is handled in identical fashion to give

�∇× (�∇× �H) + µ0ε0
∂2 �H

∂t2
= −µ0ε0

∂2 �M

dt2
+ �∇×

(

�J +
∂ �P

∂t

)

(8–71)

In most cases, the magnetization term can be ignored.
We will investigate the plane wave solutions to (8–65) and (8–68) initially for

nonconductors (g = 0), and then for conductors.

8.4.1 Plane Waves in Linear, Isotropic Dielectrics

In nonconducting dielectrics, the fields satisfy the homogeneous wave equations

∇2 �E − µε
∂2 �E

∂t2
= 0 and ∇2 �H − µε

∂2 �H

∂t2
= 0 (8–72)

(We use �H instead of �B because of the increased symmetry in the constitutive rela-

tions, �D = ε �E and �B = µH, and because of the more parallel boundary conditions:
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Figure 8.3: The wave vectors �ki, �kr and �kt all lie in the plane of incidence.

D⊥ and B⊥ are continuous and E‖ and H‖ are continuous.) This pair of equations
is satisfied (these are not the only possible solutions) by the plane wave solutions

�E(�r, t) = �E0e
i(�k·�r−ωt) and �H(�r, t) = �H0e

i(�k·�r−ωt) (8–73)

The two solutions (8–73) are not independent but are linked by Maxwell’s equa-
tions. The divergence equations give for the plane waves

�k · �D0 = 0 and �k · �B0 = 0 (8–74)

implying that the wave vector �k is perpendicular to each of �D and �B. The curl
equations give

�k × �E0 = ωµ �H0 and �k × �H0 = −ωε�E0 (8–75)

implying that �E and �H are perpendicular to each other. For isotropic media �E
is parallel to �D, and �B is parallel to �H. We may therefore conclude that the
wave vector �k, the normal to the surfaces of constant phase, is parallel to the
Poynting vector �S = �E × �H. In other words, for isotropic media the direction of
energy propagation is along �k. We point out that this conclusion does not hold for
anisotropic media, in which �S is perpendicular to �E whereas �k is perpendicular to
�D.

Substituting the plane wave solutions (8–73) into the wave equation (8–72) im-
mediately gives the dispersion relation, −k2 + µεω2 = 0, from which we conclude
that the phase velocity ω/k of the wave is given by 1/

√
µε. The group velocity,

∂ω/∂k for isotropic media, will generally be different from the phase velocity.
Since most optical materials have µ ≃ µ0, the velocity of light through the

medium is ≃ c/
√

ε/ε0 . The laws of reflection and refraction are evidently merely
a matter of satisfying the boundary conditions at the interface of two dielectrics.

8.4.2 Reflection and Refraction—Snell’s law

Let us consider a plane wave with wave vector �ki incident on a plane interface,
giving rise to a reflected wave with wave vector �kr and a transmitted wave with
wave vector �kt, as shown in Figure 8.3.
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At a point �r on the interface, the parallel component of the electric field must
be the same on both sides of the interface. Therefore

E
‖
0,ie

i(�ki·�r−ωt) + E
‖
0,re

i(�kr·�r−ωt+ϕr) = E
‖
0,te

i(�kt·�r−ωt+ϕt) (8–76)

(a phase change on transmission or reflection is at least a theoretical possibility).
If this is to be satisfied at all �r on the interface, the arguments of the exponentials
must all have the same functional dependence on �r and t ; that is,

�ki · �r − ωt = �kr · �r − ωt + ϕr = �kt · �r − ωt + ϕt (8–77)

From the first equality of (8–77), we obtain (�ki − �kr) · �r = ϕr. The surface

defined by this equation, the interface, is perpendicular to (�ki − �kr). Further, as

(�ki −�kr) is perpendicular to the plane, the cross product of (�ki −�kr) with a normal

n̂ is zero: (�ki − �kr) × n̂ = 0, implying that

ki sin θi = kr sin θr (8–78)

or, since the incident and reflected waves are both in the same medium, the mag-
nitudes ki and kr are equal,

sin θi = sin θr ⇒ θi = θr when θi, θr ∈ (0, π/2) (8–79)

The angle of incidence is equal to the angle of reflection.
Using the second half of the equality (8–77) of arguments of the exponentials

gives
(�ki − �kt) · �r = ϕt (8–80)

The same argument now yields (�ki − �kt) × n̂ = 0 leading to

ki sin θi = kt sin θt (8–81)

after we multiply both sides of (8–81) by c/ω, this expression becomes

ni sin θi = nt sin θt (8–82)

where the refractive index, n, is defined by n = c/vphase. It is apparent that Snell’s
law is a consequence only of the plane wave nature of the disturbance and the
requirement of continuity. It will therefore find application well outside optics.

8.4.3 Fresnel’s Equations

To obtain the amplitudes E0,i, E0,r, and E0,t of the incident, reflected, and trans-
mitted wave, we must use the boundary conditions in more detail. We must first
resolve �E into two components, one labelled Ep, parallel to the plane of incidence
(perpendicular to the interface), and the other labelled Es, perpendicular to the
plane of incidence (parallel to the interface). (The plane of incidence is the plane
containing the incident and reflected rays; the s subscript derives from senkrecht,
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Figure 8.4: The electric vector of s-polarized
light is perpendicular to the plane of incidence.
The vectors illustrated refer to the fields at the
vertex of the rays.

Figure 8.5: The electric vector of p-polarized
light lies in the plane of incidence.

German for perpendicular, and the p stands for parallel.) The two components must
be handled separately.

s-polarization: An s-polarized wave has its electric field �E perpendicular to the
plane of incidence, meaning that �B lies in the plane of incidence. Assuming that
�Ei, �Er, and �Et all point in the same direction, we obtain for points on the interface

Ei + Er = Et (8–83)

Applying the requirement that H‖ be continuous, we have also from the diagram
in Figure 8.4

Hi cos θi − Hr cos θr = Ht cos θt (8–84)

In the medium, the magnitudes of H and E are related by H =
√

ε/µ E =
(1/vµ)E. Multiplying (8–84) by c and substituting for H, we find

ni

µi
(Ei − Er) cos θi =

nt

µt
Et cos θt (8–85)

Expressions (8–83) and (8–85) may be solved for Er and Et to obtain

(

Er

Ei

)

s

=
(ni/µi) cos θi − (nt/µt) cos θt

(ni/µi) cos θi + (nt/µt) cos θt
≡ rs (8–86)

and
(

Et

Ei

)

s

=
2(ni/µi) cos θi

(ni/µi) cos θi + (nt/µt) cos θt
≡ ts (8–87)

p-polarization: When the wave is p-polarized, the electric field is parallel to the
plane of incidence, while �B (and therefore �H) is perpendicular. Assuming that
�H has the same direction for the incident, transmitted, and reflected waves, we
construct the diagram of Figure 8.5. (Note that under this assumption, Ei and Er

point in opposite directions for a wave at normal incidence.)
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Again using the continuity of H‖ and E‖, we have

Hi + Hr = Ht (8–88)

and

Ei cos θ − Er cos θr = Et cos θt (8–89)

We again replace H with
√

ε/µ E = (1/vµ)E to rewrite the first of these equations
as

ni

µi
(Ei + Er) =

nt

µt
Et (8–90)

Solving (8–89) and (8–90) for Er and Et, we find

(

Er

Ei

)

p

=
(nt/µt) cos θi − (ni/µi) cos θt

(nt/µt) cos θi + (ni/µi) cos θt
≡ rp (8–91)

and
(

Et

Ei

)

p

=
2(ni/µi) cos θi

(nt/µt) cos θi + (ni/µi) cos θt
≡ tp (8–92)

Notice the distinction between (8–86, 87) and (8–91, 92). For virtually all di-
electrics of optical interest, µ = µ0, meaning that the permeabilities µ may be
cancelled from (8–85) and subsequent equations. (In microwave systems ferrites are
frequently used in isolators; µ is not negligible in that case.)

Using Snell’s law to eliminate the ratios of refractive indices (assuming µi = µt),
we can simplify (8–86, 87) and (8–91, 92) to obtain the Fresnel equations:

rs = − sin(θi − θt)

sin(θi + θt)
rp =

tan(θi − θt)

tan(θi + θt)

ts =
2 sin θt cos θi

sin(θi + θt)
tp =

2 sin θt cos θi

sin(θi + θt) cos(θi − θt)

(8–93)

An alternative way of expressing (8–86, 87) and (8-91, 92) is found by eliminating
the angle of transmission θt from the equations. Letting n = (nt/µt)/(ni/µi) and

cos θt =
√

1 − sin2 θt = 1
n

√

n2 − sin2 θi, we obtain

rs =
cos θi − n cos θt

cos θi + n cos θt
=

cos θi −
√

n2 − sin2 θi

cos θi +
√

n2 − sin2 θi

(8–94)

ts =
2 cos θi

cos θi +
√

n2 − sin2 θi

(8–95)

rp =
n cos θi − cos θt

n cos θi + cos θt
=

n2 cos θi −
√

n2 − sin2 θi

n2 cos θi +
√

n2 − sin2 θi

(8–96)

tp =
2n cos θi

n2 cos θi +
√

n2 − sin2 θi

(8–97)
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Figure 8.6: The external and internal amplitude reflection coefficients for
an air-glass interface.

At normal incidence the amplitude reflection coefficients reduce to rs = (1− n)
/(1 + n) and rp = −(1 − n)/(1 + n). As there is no distinction between an s and
p wave at normal incidence, at first sight, the difference in sign appears to be an
error. However, for n > 1, both correspond to a change in sign of the electric field
when a wave is reflected. The apparent contradiction is resolved by noting that Ei

and Er have been defined (Figure 8.4) so that Ei,s and Et,s both point in the same
direction when positive. On the other hand, we have taken Hi,p and Hr,p to be
parallel for p waves, leading to Ei,p and Er,p being antiparallel at normal incidence
when both are positive (Figure 8.5). The sign of the reflection coefficient varies
from author to author according to the choice for positive Er,p.

The amplitude reflection coefficients for an air-glass interface (n = 1.5 for ex-
ternal reflection and n = 1/1.5 for internal reflection) are sketched in Figure 8.6.
The angle where rp vanishes (tan θi = n) is known as Brewster’s angle.

When n is less than one, there is a critical angle beyond which the sine of θi

exceeds n and both rs and rp become complex numbers of unit magnitude. The
coefficients now give the phase change of the wave on reflection. To evaluate this
phase change, we write

rs =
cos θi − i

√

sin2 θi − n2

cos θi + i
√

sin2 θi − n2
(8–98)

and

rp =
n2 cos θi − i

√

sin2 θi − n2

n2 cos θi + i
√

sin2 θi − n2
(8–99)

Since rs has unit magnitude, it may be written as a complex exponential

rs = e−iϕs =
ae−iα

ae+iα
(8–100)
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Figure 8.7: Wave fronts for a totally internally reflected wave. The evanes-
cent wave carries half the phase shift of the reflected wave and travels along
the interface.

in which we have used the fact that the numerator and denominator of (equa-
tion 8–98) are complex conjugates. We conclude then that ϕs = 2α, where tan α
(= tan 1

2ϕs) is given by

tanα = tan 1
2ϕs =

√

sin2 θi − n2

cos θi
(8–101)

In the same fashion we write rp = e−ϕp = be−iβ/be+iβ resulting in

tan 1
2ϕp =

√

sin2 θi − n2

n2 cos θi
(8–102)

Each of the waves is totally internally reflected but suffers a phase shift that
differs for the two (s and p) polarizations.

8.4.4 The Evanescent Wave

In spite of the fact that the incident energy is totally reflected beyond the critical
angle, the electric field does not abruptly vanish at the boundary. The phase dif-
ference between the incident and reflected waves prevents the complete destructive
interference required to eliminate the transmitted wave. The “transmitted” field
that extends beyond the boundary of the dielectric when a wave is totally internally
reflected is known as the evanescent wave.

To investigate the evanescent wave, we postulate a transmitted wave of the form

�Et = �Et,0e
i(�kt·�r−ωt) (8–103)

We choose a coordinate system so that the boundary lies in the x-y plane and �k lies
in the x-z plane. Then, for points �r in the plane of incidence,

�kt · �r = ktx sin θt + ktz cos θt

= kt

(

x sin θi

n
+ iz

√

sin2 θi

n2
− 1

)

(8–104)

which leads to the form (recall sin θi > n)

�Et(�r, t) = �Et,0e
−αzei(k′x−ωt) (8–105)
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for the transmitted field. The wave propagates along the boundary (in the x direc-
tion) with propagation constant k′ = kt sin θt = ki sin θi, diminishing exponentially
with distance from the boundary (in the z direction) with decay constant α. A
representation of the incident, reflected, and evanescent wave fronts is shown in
Figure 8.7.

8.4.5 Plane Waves in a Tenuous Plasma

A gaseous medium with a considerable number of free (unbound) charges distributed
throughout is generally known as a plasma. The constitution of the sun is mostly
dense plasma with matter almost 100% ionized. Closer to home, the ionosphere
surrounding the earth is a much less dense plasma whose electromagnetic properties
have a significant impact on communications. The interstellar medium is also largely
plasma, a fact of considerable interest to astronomers.

By a tenuous plasma, we mean a medium with free charges that do not signifi-
cantly interact with one another. Thus we ignore any cooperative behavior such as
one might expect from electrons in metals.

The gas we will consider will be a homogeneous mix of free electrons and a
corresponding number of positive ions to maintain neutrality. Because low-mass
particles move much more than heavier ones in response to an alternating electro-
magnetic field, we consider the motion of electrons embedded in an overall neutral
gas and ignore any motion of the positive ions.

A free electron of charge e subjected to the electric field �E = �E0e
−iωt of a

passing electromagnetic wave responds with an acceleration

�̈r =
e �E0

m
e−iωt (8–106)

This expression is easily integrated to give the displacement of a typical electron:

�r = − e

mω2
�E (8–107)

leading to a dipole moment

�p = e�r = − e2

mω2
�E (8–108)

For n such electrons per unit volume, the resulting polarization is

�P = − ne2

mω2
�E ≡ −

ω2
p

ω2
ε0

�E (8–109)

where the plasma frequency ωp/2π is defined by ω2
p = ne2/mε0. The permittivity

of the plasma is therefore ε0(1−ω2
p/ω2). Substituting this form of the permittivity

into the homogeneous wave equation (8–72) and inserting a plane wave solution
(8–73), we obtain the dispersion relation

k2 = ω2µε =
ω2

c2

(

1 −
ω2

p

ω2

)

(8–110)
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It is evident that k2 tends to zero as ω tends to ωp. When ω is smaller than
ωp, k2 is negative, meaning that k is imaginary. Substitution of an imaginary

k into the plane wave exponential results in an electric field �E = �E0e
i(�k·�r−ωt) =

�E0e
−|�k·�r |e−iωt. The wave dies off exponentially as it enters the medium. We have

not provided any energy dissipation mechanisms, leading us to deduce that the
wave must be reflected when the frequency is less than the plasma frequency. For
a charged particle density n = 1015 electrons/m3, typical of the ionosphere, fp =
9 × 106 Hz. Thus radio waves below several megahertz are totally reflected by the
ionosphere. The higher frequency television and UHF waves (> 80 MHz.) are
transmitted by the ionosphere; in consequence they will not travel over the horizon.
During solar flares, the electron density fluctuates, leading to disruptions in radio
communication.

⋆ 8.4.6 Plane Waves in Linear Anisotropic Dielectrics

Although an exhaustive study of wave propagation in anisotropic dielectrics is be-
yond the scope of this book,19 a rudimentary discussion of double refraction will
form a reasonable introduction to the electro-magnetic aspects.

The introduction of anisotropy considerably complicates the relations between
the fields. Now rather than simply writing �P = χε0

�E, we must write �P as the
tensor product (in Cartesian coordinates) as Pi = χijε0E

j , where the susceptibility
tensor may be written in matrix form:

↔
χ =





χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33



 (8–111)

For nondissipative media, this tensor is symmetric, meaning that we can transform
to a principal axis system where χ has only diagonal elements χ11, χ22, and χ33,
known as the principal susceptibilities. (These elements are of course not the same
as those in the matrix above.)

The wave equation for the electric field is, as always, obtained by taking the curl
of �∇× �E in Maxwell’s equations to obtain

�∇× (�∇× �E) = �∇×
(

− ∂ �B

∂t

)

= − ∂

∂t

(

µ0
�J + µ0

∂ �D

∂t

)

(8–112)

In the anisotropic dielectric, ε is not independent of the coordinates so we can-
not eliminate the divergence of �E from the curl curl to reduce it to a (negative)

Laplacian. Taking �J = 0 for the nonconductor and inserting �D = ε0
�E + �P =

ε0( �E +
↔
χ · �E), we write

�∇(�∇ · �E) −∇2 �E = − 1

c2

∂2 �E

∂t2
−

↔
χ

c2
· ∂2 �E

∂t2
(8–113)

19The excellent optics book Principles of Optics, 4th edition by M. Born and E. Wolf (Pergamon,
New York, 1964) has a sound and complete discussion of double refraction and related topics.
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With the assumption of a plane wave solution of the form

�E = �E0e
i(�k·�r−ωt) (8–114)

the cartesian i component of the wave equation becomes

ki(�k · �E) − k2Ei +
ω2

c2
(δij + χij)E

j = 0 (8–115)

Writing the three components out in full in the principal axis system where the
three principal susceptibilities will be denoted χxx, χyy, and χzz, we have

[

−k2
y − k2

z +
ω2

c2
(1 + χxx)

]

Ex + kxkyEy + kxkzEz = 0

kxkyEx +

[

−k2
x − k2

z +
ω2

c2
(1 + χyy)

]

Ey + kykzEz = 0

kxkzEx + kykzEy +

[

−k2
x − k2

y +
ω2

c2
(1 + χzz)

]

Ez = 0

(8–116)

In order that the system have a solution, the determinant of the coefficients must
vanish. With the definition of the principal refractive indices— nx =

√
1 + χxx ,

ny =
√

1 + χyy and nz =
√

1 + χzz—we write this condition as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(nxω/c)2 − k2
y − k2

z kxky kxkz

kxky (nyω/c)2 − k2
x − k2

z kykz

kxkz kykz (nzω/c)2 − k2
x − k2

y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (8–117)

The solution for any constant ω generates a surface in k space. To gain some
insight, we restrict �k to lie in one of the coordinate planes, say the y-z plane. Then
kx = 0 and the characteristic equation reduces to

[

(nxω/c)2 − k2
y − k2

z

] {[

(nyω/c)2 − k2
z

] [

(nzω/c)2 − k2
y

]

− k2
yk2

z

}

= 0 (8–118)

In order for the product to vanish, one or both of the factors must vanish. We
obtain two distinct roots, one denoted �ko (o for ordinary) satisfying

k2
o,y + k2

o,z =

(

nxω

c

)2

(8–119)

and a second denoted �ke (e for extraordinary) satisfying

k2
e,y

(nzω/c)2
+

k2
e,z

(nyω/c)2
= 1 (8–120)

We deduce that when �k lies in the y-z plane, there are two possible values for
k2; one simply ko = nxω/c, the other, ke, varying with direction as a radius of the
ellipse described by (8–120).
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Figure 8.8: When �k is confined to the y-z plane, x polarized waves travel
with the same speed in all directions whereas waves with polarization parallel
y-z plane travel with speed that varies with direction.

It is fruitful to continue consideration of this special case before generalizing.
In particular, it is useful to determine the electric field alignment (polarization)
associated with these distinct values of k. Rewriting the set of equations for Ex,
Ey, and Ez when �k is restricted to the y-z plane, such that













(nxω/c)2 − k2 0 0

0 (nyω/c)2 − k2
z kykz

0 kykz (nzω/c)2 − k2
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Ex

Ey

Ez













= 0 (8–121)

we find that the first eigenvalue ko, admits only Ex �= 0; the other two components
must vanish. In other words, the wave vector of an x -polarized wave with �k in the
y-z plane satisfies (8–119) travelling with phase speed v = c/nx in all directions.

The second (distinct) eigenvalue ke has an eigenvector �Ee orthogonal to the first.
This field therefore lies in the y-z plane. We conclude that a wave with polarization
in the y-z plane has �ke satisfying (8–120); hence the phase speed vphase varies with

the direction of �k.
The circle described in the ky-kz plane by the first (ordinary) root has ky and

kz intercepts of nxω/c while the ellipse described by the second root has intercepts
nzω/c along the kz axis and nyω/c along the z axis as illustrated in Figure 8.8. The
polarization of the associated wave is indicated by the double-ended arrows placed
on the k vectors.

These results are easily transported to the other coordinate planes. The locus
of k on each coordinate plane consists of one circle and one ellipse. The fact that
the surfaces are quadratic allows us to extrapolate to points between the coordinate
planes.

If two of the principal indices are equal, the k surface consists of a sphere and
an ellipsoid of revolution that touch at two points. In the direction defined by these
two points, the two roots ko and ke are equal. A line through these points is known
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Figure 8.9: (a) A uniaxial crystal has its optic axis along the direction of
the distinct index. (b) When all three indices are distinct, a self-intersecting
surface results.

as the optic axis, and a crystal having a single optic axis, is said to be uniaxial.

If all three indices are distinct, the surface defined by �k at constant ω is a self-
intersecting surface sketched in Figure 8.9 (b). There will be two optic axes, and
the crystal is said to be biaxial.

The character of the susceptibility tensor is related to the crystal symmetry.
Cubic crystals such as NaCl can only be isotropic. Trigonal, tetragonal, and hexag-
onal crystals are uniaxial. The best known uniaxial crystal is probably calcite, with
no = 1.658 and ne = 1.486. Triclinic, monoclinic, and orthorhombic crystals are
biaxial with mica, feldspar, and gypsum as the best known examples.

While �k defines the normal to the constant phase planes (wave fronts) of the

wave, it is not the direction of the energy flux because �k and �E are not generally
perpendicular to each other. Instead, �k and �D are perpendicular. The energy
travels in the direction of the Poynting vector and, as evident from Figure 8.10, the
phase speed of the wave along �S is vphase/ cos θ, where θ is the angle between �D

Figure 8.10: The energy flux is perpendicular to �E and �H whereas �k is
perpendicular to �D and �H.
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and �E. The extraordinary ray does not obey Snell’s law at the interface between
dielectrics.

8.4.7 Plane Waves in Isotropic, Linear Conducting Matter

In linear, isotropic, homogeneous conducting media, the fields satisfy (8–65) and
(8–68)

∇2 �E + µεω2

(

1 +
ig

ωε

)

�E = 0 and ∇2 �H + µεω2

(

1 +
ig

ωε

)

�H = 0

together with the constitutive relations, �D = ε �E, �B = µ �H, and �J = g �E. Antici-
pating a damped wave solution, we consider solutions of the form

�E(�r, t) = �Eoe
i( �K·�r−ωt) and �H(�r, t) = �H0e

i( �K·�r−ωt) (8–122)

where the complex wave vector, �K is a vector whose components are complex num-
bers. Maxwell’s equations applied to these expressions give the relations between
the fields

�K · �E0 = 0 �K × �E0 = ωµ �H0

�K · �H0 = 0 �K × �H0 = −ω

(

ε +
ig

ω

)

�E0

(8–123)

and the wave equations (8–65) and (8–68) may be used to obtain the dispersion
relation

K2 = µω2

(

ε +
ig

ω

)

(8–124)

As a prelude to the general case we consider briefly the special case of the good
conductor, for which iµgω ≫ 1. In this case K =

√
iµgω =

√

µgω/2 + i
√

µgω/2
≡ k + iα. Substituting this form into the solution, we find

(

�E(�r, t)
�H(�r, t)

)

=

(

�E0

�H0

)

e−�α·�rei(�k·�r−ωt) (8–125)

The wave decays exponentially along its path. The penetration length δ = 1/α is
known as the skin depth. At microwave frequencies (10 GHz), the skin depth in
silver (g = 3 × 107Ω−1/m) is 9.2 × 10−7m. Very little would therefore be gained
by constructing microwave components of silver rather than thinly electroplating
them with silver to a thickness of several skin depths.

We return now to the more general conductor. The electric and magnetic fields
are not independent but are related by equations (8–123). Thus, if we take �E as
above, then H must take the form

�H(�r, t) =
�K × �E0

µω
ei( �K·�r−ωt) (8–126)
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The time averaged Poynting vector 〈 �S 〉 is obtained from the complex fields as

〈 �S 〉 = Re

( �E × �H∗

2

)

=
�E × �H∗ + �E∗ × �H

4

=
1

4







�E0 × ( �K∗ × �E∗
0 )ei �K·�r ·

(

ei �K·�r
)∗

ωµ
+

�E∗
0 × ( �K × �E0)

(

ei �K·�r
)∗

ei �K·�r

ωµ







=
1

4
|E0|2

( �K + �K∗

ωµ

)

ei �K·�re−i �K∗·�r =
1

4
|E0|2

( �K + �K∗

ωµ

)

ei( �K− �K∗)·�r

=
1

2
|E0|2

Re( �K)

ωµ
e−2Im( �K)·�r (8–127)

Similarly, the energy density U is calculated as

〈U〉= 1
8

(

�E · �D∗ + �E∗ · �D + �B · �H∗ + �B∗ · �H
)

= 1
2 |E0|2

(

ε +
K2

ω2µ

)

e−2Im( �K)·�r
(8–128)

To investigate more fully the effect of a complex wave vector �K, we again set
�K = �k + i�α, with �k and �α real (and collinear). We relate k and α to the physical
properties of the medium as follows. The dispersion relation (8–124) gives

K2 = k2 − α2 + 2iαk = µω2

(

ε +
ig

ω

)

(8–129)

Assuming that g and ε are real (in the next section we will see that ε is frequently
not real), we equate real and imaginary parts to obtain

k2 − α2 = µεω2 and 2αk = µωg (8–130)

This pair of relations (8–130), may be solved for k and α to give

k2 =
µεω2

2

[

1 +
√

1 + (g/εω)2
]

≡ µεω2

2
β and α2 =

µ2ω2g2

4k2
=

µg2

2εβ
(8–131)

with β ≡ 1 +
√

1 + (g/εω)2.
The wave properties for waves in a homogeneous conductor can now be expressed

in terms of the medium’s properties as:

λ =
2π

k
=

2π

ω
√

µε

√

2

β
≃ 2π

√

2

µgω
(8–132)

vphase =
ω

k
=

1√
µε

√

2

β
≃
√

2ω

µg
(8–133)
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δ =
1

α
=

2

g

√

ε

µ

√

β

2
≃
√

2

gµω
(8–134)

n =
c

vphase
= c

√
µε

√

β

2
≃ c

√

µg

2ω
(8–135)

where the near equality in each of the four expressions above holds for good con-
ductors only (g ≫ εω).

Example 8.2: Find the wavelength λ, skin depth δ, and refractive index for an elec-
tromagnetic wave of angular frequency ω = 2π × 1010 s−1 propagating through
aluminum (g = 3.53 × 107 Ω−1/m).

Solution: We use the good conductor approximation and assume the permeability
µ ≃ µ0 = 4π × 10−7. While the vacuum wavelength is 3 cm, it is reduced to

λ = 2π

√

2

4π × 10−7 × 3.53 × 107 × 2π × 1010
= 5.32 × 10−6 m = 5.32 µm

(Ex 8.2.1)

in aluminum. The skin depth is now easily obtained as λ/2π = 0.85 µm. The re-
fractive index may be found from n = c/vphase = 2πc/λω = 5.64×103. We conclude
that in a good conductor, electromagnetic waves have a very large refractive index,
very small wavelength, and very small skin depth. The electric field E is cancelled in
roughly one skin depth by free charges, while H is cancelled in the same distance by
eddy currents induced close to the surface of the conductor. Semiconductors such a
germanium are used as lens material for infrared radiation at λ = 10.4µm produced
by carbon-dioxide lasers. The much lower conductivity results in a refractive index
near 4.

8.4.8 Simple Model for the Frequency Dependence of Dielectric Susceptibility

As we have seen, the refractive index of a dielectric is normally given by
√

ε/ε0.
We now briefly investigate a simple model of the dielectric to give us some insight
into the frequency dependence of the permittivity.

Consider a dielectric composed of heavy positive ion cores surrounded by elec-
trons bound to the ions by a harmonic potential, V = 1

2kr2. The equation of motion
for such an electron is

m
d2�r

dt2
+ mγ

d�r

dt
+ k�r = q �E(�r, t) (8–136)

The viscous damping term has been introduced to allow for energy loss to the lattice
and radiation damping. If we set �E = �E0e

−iωt and �r = �r0e
−iωt, the equation of

motion becomes, with ω2
0 ≡ k/m,

(

−ω2 − iωγ + ω2
0

)

�r =
q

m
�E (8–137)
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Figure 8.11: The real part of n gives the dispersion curve on the left, while
the imaginary part gives the absorption curve on the right.

The polarization of a medium having n such oscillators per unit volume is then
�P = nq〈�r 〉 = χε0

�E, implying

χ =
nq2

mε0 (ω2
0 − ω2 − iωγ)

(8–138)

Rationalizing, we write χ as

χ =
nq2
[

(ω2
0 − ω2) + iωγ

]

mε0 [(ω2
0 − ω2)2 + ω2γ2]

(8–139)

and finally obtain

ε = ε0(1 + χ) = ε0 +
nq2(ω2

0 − ω2)

m [(ω2
0 − ω2)2 + ω2γ2]

+
inq2ωγ

m [(ω2
0 − ω2)2 + ω2γ2]

(8–140)

Most materials have γ in the range 106 to 1010 s−1 at optical frequencies (ω ≥
1014 s−1) varying approximately as ω3. Except when ω is very close to ω0, the
imaginary term will be much smaller than the real term, leading us to conclude
that ε is real except very near resonance. When not too close to resonance, we find
the deviation of the refractive index from unity to be

n − 1 ≃ nq2

2mε0(ω2
0 − ω2)

(

1 +
iωγ

ω2
0 − ω2

)

(8–141)

The imaginary part of n gives rise to absorption, while the real part is responsible
for dispersion. The real and imaginary parts of the refractive index are plotted in
Figure 8.11(a) and 8.11(b), respectively.

8.4.9 Simple Model of a Conductor in an Oscillating Field

A static electric field cannot penetrate into a conductor because the force on free
charges in the conductor resulting from the field would make those charges move
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until the force vanishes. When the charges have adjusted themselves so that no
further force remains, the field vanishes. The flow of charges into their shielding
positions is not, however, instantaneous, so that a time-dependent electric field
would be expected to penetrate into the conductor and generate transient currents.

Consider a metal having n free electrons per unit volume. Under the influence
of an oscillating electric field �E = �E0e

−iωt and a “viscous” drag force −mγ�v, we
may write down the equation of motion for a free electron:

m
d�v

dt
= −mγ�v + q �E0e

−iωt (8–142)

We assume an oscillating solution �v = �v0e
−iωt, which we insert into the equation

above to obtain

�v(t) =
q �E(t)

m(γ − i ω)
(8–143)

The current density in the metal is �J = nq�v = g �E, giving the conductivity g(ω)
= nq2/m(γ − iω). To estimate an order of magnitude for γ, we consider the con-
ductivity of copper at zero frequency. For copper n ≃ 8 × 1028/m3 and g(0) =
5.9 × 107 Ω−1/m = nq2/mγ; we deduce that γ = 3.8 × 1013 s−1. At frequencies
ω ≪ γ (including microwave frequencies), g is essentially real and independent of
ω for a good conductor.

Example 8.3: Obtain the ratio of reflected to incident power of an electromagnetic
wave reflecting from a conducting surface at normal incidence.

Figure 8.12: Normally incident waves at the boundary of a conductor.

Solution: We denote the incident, reflected, and transmitted fields by subscripts i,
r, and t respectively. Since we expect a complex wave vector inside the conductor,
we denote it with Kt in contrast to the incident ki of the nonconducting side of
incidence. Assuming transverse waves,

�Ei = �E0,ie
i(kiz−ωt)

�Er = �E0,re
i(−kiz−ωt)

�Et = �E0,te
i(Ktz−ωt)

(Ex 8.3.1)

and taking the interface at z = 0 for convenience, we apply the boundary conditions

E‖ is continuous ⇒ E0,i + E0,r = E0,t

H‖ is continuous ⇒ H0,i + H0,r = H0,t
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Further, �H0 is related to �E0 by �H0 = ( �K × �E0)/µω. For the nonconductor (on the
side of incidence), k/ω =

√
µiεi. Substituting this into the E–H relation gives

H0,i = ±
√

εi

µi
E0,i and H0,r = ∓

√

εi

µi
E0,r (Ex 8.3.2)

while on the conducting side, the dispersion relation gives

K2
t = µtω

2

(

εt +
igt

ω

)

leading to H0,t =

√

εt

µt
+

igt

µtω
E0,t (Ex 8.3.3)

The continuity of H‖ then gives

√

εi

µi

(

E0,i − E0,r

)

=

√

εt

µt
+

igt

µtω
E0,t (Ex 8.3.4)

which may be solved simultaneously with E0,i + E0,r = E0,t to give

E0,t =
2E0,i

1 + η
and E0,r =

1 − η

1 + η
E0,i with η ≡

√

µi

εi

(

εt

µt
+

igt

µtω

)

(Ex 8.3.5)

When the side of incidence is air and the conductor is a non-ferrous metal with
good conductivity, εi ≃ εt ≃ ε0, µi ≃ µt ≃ µ0, and gt ≫ εtω. Under these
conditions we may approximate η by

η =

√

ig

ωε0
=

√

g

ωε0

(

eiπ/2
)1/2

=

√

g

2ωε0
(1 + i) (Ex 8.3.6)

The ratio of the reflected to the incident power is |E0,r/E0,i|2 = |(1−η)/(1+η)|2,
which, for |η| ≫ 1, is best expressed as

∣

∣

∣

∣

1 − 1/η

1 + 1/η

∣

∣

∣

∣

2

≃
∣

∣

∣

∣

1 − 1

η

∣

∣

∣

∣

4

=

[(

1 − 1

η

)

·
(

1 − 1

η∗

)]2

≃ 1 − 2

(

1

η
+

1

η∗

)

= 1 − 2

√

2ωε0

g

(

1

1 + i
+

1

1 − i

)

= 1 − 2

√

2ωε0

g
(Ex 8.3.7)

to first order in 1/η.
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Exercises and Problems

Figure 8.13: The volume between the plates is filled with salt water.

8-1 Show that in a good conductor, �E
and �H oscillate 45◦ out of phase.

8-2 The conductivity of sea water is
about 4.3 Ω−1/m. Assume that µ =
µ0 and ε ≃ 80ε0. Calculate the pene-
tration depth in sea water of a typical
ELF (extremely low frequency) wave at
100 Hz. Comment on the suitability of
low-frequency radio waves as a means
of communication with or between sub-
marines.

8-3 How large could a soap bubble (sur-
face tension σ) be before blackbody ra-
diation pressure would destroy it? (As-
sume a temperature of 300◦K.)

8-4 Find the relationship between the
Poynting vector and the momentum den-
sity of an electromagnetic wave in a lin-
ear homogeneous dielectric.

8-5 Determine the magnitude and direc-
tion of force on a dielectric of refractive
index n when a beam carrying power
dW/dt impinges normally on it.

8-6 Light is incident internally on a di-
electric/air interface at 60◦ to the nor-
mal. Find the decay distance of the
evanescent wave in air when the refrac-
tive index of the dielectric is 1.7.

8-7 Find the phase difference between
the reflected s and p waves in problem
8-6, assuming they were in phase before
internally reflecting.

8-8 In the text, the dispersion relation
for a plasma was calculated on the basis
of displaced electrons producing a polar-
ization. Take the alternative view, that
the moving electrons constitute a cur-
rent, and recalculate the dispersion re-
lation on this basis. (Note that one may
take one view or the other but not both.)

8-9 Obtain the dispersion relation for an
electromagnetic wave travelling through
a tenuous plasma with a weak axial
(along �k ) magnetic field.

8-10 Two large, flat conducting plates
are separated by a 1-cm thickness of salt
water (g = 4.3Ω−1/m, ε ≃ 80ε0) (Figure
8.13). An oscillating voltage V0 cos ωt is
applied across the plates. Find the cur-
rent in the water as well as the charge
accumulation on the plates when ω =
π × 109 s−1.

8-11 An anisotropic dielectric with prin-
cipal indices nx = 1.3, ny = 1.5, and
nz = 1.7 has its principal axes aligned
with the x, y, and z axes. An electro-
magnetic wave with electric field ampli-
tude E0(̂ı+ ̂+ k̂)/

√
3 and magnetic field

strength amplitude H0(̂ı− ̂)/
√

2 propa-
gates in the medium. Find the direction
of �k and �S in the medium.

8-12 The squares of the amplitude trans-
mission coefficients (8–87) and (8–92) do
not give the ratio of transmitted to inci-
dent energy because the energy density
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is proportional to εE2, not E2, and be-
cause the cross section of any light beam
is changed on refraction. Obtain the cor-
rect expression for the energy transmis-
sion coefficient.

8-13 When, early in the age of the
universe the temperature had fallen to
1000◦K, sufficient recombination occur-
red for the universe to become transpar-
ent Radiation has expanded essentially
adiabatically since that time. Given that

the current black-body temperature is
currently about 2.73◦K, but what factor
has the universe increased in size since
decoupling from matter?

8-14 Obtain the power reflection coeffi-
cient for visible light reflecting normally
off silver (g = 6.8×107Ω−1/m) at an an-
gular frequency of ω = 1014 s−1. Obtain
also the phase change of the reflected and
transmitted waves.



Chapter9

Waveguide Propagation—Bounded Waves

9.1 Bounded Waves

The plane waves we have considered in Chapter 8 have wave fronts stretching in-
finitely in both directions. Such waves are clearly unphysical. In Chapter 3 we
briefly encountered spherical waves and saw that it was no longer possible to main-
tain the electric field and the magnetic field each perpendicular to the direction of
propagation; instead, waves were classified as transverse electric (TE) and trans-
verse magnetic (TM). In this chapter we consider travelling waves that are bounded
either by being enclosed within metallic waveguides or guided by dielectric rods. We
touch also on standing waves confined to a metal cavity. In the case that the di-
mensions of the guide are much larger than the wavelength, one can think of the
propagation as simply a plane wave reflecting successively from the walls either by
metallic reflection for metal waveguides, or total internal reflection for dielectric
waveguides. For smaller guides, this picture cannot be supported. It will be shown
that no TEM solutions (both the electric and magnetic fields perpendicular to the
direction of propagation) exist for guided waves inside hollow waveguides.

9.1.1 TE Modes in a Rectangular Waveguide

As a preliminary to our investigation we consider the simplest (also the most com-
monly used) mode of propagation in a rectangular cross section waveguide. Until
Section 9.2.3, where we consider losses in the guide, we will take the walls to be
perfect conductors. For simplicity, we assume that the space inside the waveguide
is empty and that the permeability is everywhere µ0.

Consider the x -polarized wave having no x dependence of the form

�E(�r, t) = E0(y)̂ı ei(kzz−ωt) (9–1)

propagating in the z direction inside the rectangular cross section waveguide il-
lustrated in Figure 9.1. Substituting this into the �∇ × �E equation of Maxwell’s

—243—



244 Classical Electromagnetic Theory

Figure 9.1: The wave propagates in the z direction inside the metal-walled
rectangular cross section waveguide.

equations (8–10), we find the associated magnetic field intensity �H is

�H(�r, t) =
�∇× �E(�r, t)

iµ0ω
=

1

iµ0ω

[

ikzE0(y)̂ − ∂E0(y)

∂y
k̂

]

ei(kzz−ωt) (9–2)

In the interior of the waveguide, where the conductivity g = 0 and µε = µ0ε0 =
1/c2, the field E0 satisfies

(

∇2 + µ0ε0ω
2
)

E0(y)ei(kzz−ωt) = 0 (9–3)

or
∂2E0(y)

∂y2
+

(

− k2
z +

ω2

c2

)

E0(y) = 0 (9–4)

Setting k2
y = ω2/c2 − k2

z , we abbreviate this as

∂2E0(y)

∂y2
+ k2

yE0(y) = 0 (9–5)

The form of E0(y) must clearly be E0(y) = A sin kyy +B cos kyy. At a perfectly
conducting surface, E‖ = 0, implying that E0 = 0 at y = 0 and at y = b. We
conclude that B = 0 and ky = nπ/b with n an integer.

This particular wave, a TE wave ( �H has a component along z and is not trans-
verse), has the form

�E TE
0,n = ı̂A sin

nπy

b
ei(kzz−ωt) (9–6)

and from (9–2)

�HTE
0,n =

A

ωµ0

[

kz sin
nπy

b
̂ +

inπ

b
cos

nπy

b
k̂

]

(9–7)

The fields in the walls of the perfectly conducting waveguide are zero, and are
therefore zero outside as well. The surface currents are given by �j = n̂× �H. On the
top surface, for instance, n̂ = −ı̂, implying that

�j =
A

ωµ0

[

−kz sin
nπy

b
k̂ +

inπ

b
cos

nπy

b
̂

]

ei(kzz−ωt) (9–8)
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Figure 9.2: Field and current patterns of the TE01 mode of a rectangular
conducting wall waveguide.

The field and current patterns of the TE01 mode are plotted in Figure 9.2.
The dispersion relation is obtained by substituting ∂2E0/∂y2 = −(nπ/b)2E0 into
the wave equation (9–4). The substitution gives

k2
z =

ω2

c2
−
(

nπ

b

)2

(9–9)

When ω < ωc ≡ nπc/b, kz becomes pure imaginary and the wave no longer
propagates. Equivalently, when the vacuum wavelength λ = 2πc/ω exceeds the
cutoff wavelength λc = 2b/n, the wave no longer propagates. The phase velocity,
vphase = ω/kz, is given by

vphase =
ω

kz
= c

√

1 +
n2π2

b2k2
z

= c

√

1 +

(

λ

λ c

)2

> c (9–10)

while the group velocity, vgroup = dω/dkz, is

dω

dkz
= c

d

dkz

√

k2
z +

n2π2

b2
=

kzc
2

c

√

k2
z +

n2π2

b2

=
kzc

2

ω
=

c2

vphase
(9–11)

less than the velocity of light, c, as of course it must be.
Another often useful way of looking at the propagation is to write (9–6) as

�E TE
0,n =

A

2i
ı̂
[

ei(nπy/b+kzz−ωt) − ei(−nπy/b+kzz−ωt)
]
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Figure 9.3: The mode may be visualized as two plane waves zigzagging along
the guide.

=
A

2i
ı̂
[

ei(�k+·�r−ωt) − ei(�k−·�r−ωt)
]

(9–12)

where �k± = ±(nπ/b)̂ + kz k̂. The wave is a superposition of two, 180◦ out-of-phase
waves of equal amplitude, zigzagging down the waveguide (Figure 9.3). Each wave’s

propagation vector �k± makes an angle θ = tan−1(bkz/nπ) with the normal of the
waveguide wall. As n increases, θ gets smaller, implying that higher modes suffer
more reflections per unit length, leading to higher losses. At cutoff, kz vanishes,
meaning that θ = 0. The waves merely bounce back and forth between the walls.
Measured along �k±, the wave is characterized by a wavelength

λ± =
2π

√

k2
y + k2

z

=
2π

ω/c
=

c

ν
= λ0 (9–13)

where λ0 is the vacuum wavelength, and the wave travels with speed c.
Modes with �E polarized in the y direction are also possible, giving TEm,0 modes,

and modes polarized in the x-y plane designated as TEm,n modes having

k2
z =

ω2

c2
− m2π2

a2
− n2π2

b2
(9–14)

are also possible.
In addition to the TE modes, there are others designated TMm,n modes, hav-

ing �H perpendicular to the direction of propagation while �E has a longitudinal
component.

9.2 Cylindrical Waveguides

In the preceding discussion, we assumed a very simple solution and verified that
it satisfied the boundary conditions, and explored some of the properties of waves
inside a metal tube. In this section we will obtain a tractable set of equations
governing the behavior of the fields inside a metal-wall waveguide of constant cross
section (the term cylindrical is not restricted to circular cylinders). In general,
solving

(

∇2 + µεω2
)

(

�E
�H

)

= 0 (9–15)
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is not as simple as it seems because �E and �H are coupled by Maxwell’s (curl)
equations. In fact, the curl equations may be used to show that the electromag-
netic field is entirely determined by the longitudinal (z ) components of �E and �H.
These longitudinal components satisfy a simple scalar wave equation and appropri-
ate boundary conditions. The other components of �E and �H can be derived from
the z components.

We start by assuming that waves propagate in the z direction, and that we may
write the fields in Cartesian coordinates as

(

�E(�r, t)
�H(�r, t)

)

=

(

�E0(x, y)
�H0(x, y)

)

ei(kz−ωt) (9–16)

Maxwell’s equations then give

�∇× �E = iω �B or























∂Ez

∂y
− ikEy = iµωHx

−∂Ez

∂x
+ ikEx = iµωHy

(9–17)

�∇× �H = −iεω �E or























∂Hz

∂y
− ikHy = −iωεEx

−∂Hz

∂x
+ ikHx = −iωεEy

(9–18)

The electric field component Ey may be eliminated from the top line of (9–17) and
the bottom line of (9–18) to obtain

Hx =
1

µεω2 − k2

(

ik
∂Hz

∂x
− iεω

∂Ez

∂y

)

(9–19)

Similarly, eliminating Ex from bottom line (9–17) and the top line (9–18), we have

Hy =
1

µεω2 − k2

(

ik
∂Hz

∂y
+ iεω

∂Ez

∂x

)

(9–20)

Alternatively, Hx may be eliminated from (9–17) and (9–18) to give

Ey =
1

µεω2 − k2

(

ik
∂Ez

∂y
− iµω

∂Hz

∂x

)

(9–21)

while eliminating Hy from (9–17) and (9–18) gives

Ex =
1

µεω2 − k2

(

ik
∂Ez

∂x
+ iµω

∂Hz

∂y

)

(9–22)

The four equations above are conveniently combined to obtain expressions for the
transverse fields in terms of only the z components. Defining �Ht ≡ ı̂Hx + ̂Hy, we
get

�Ht =
1

µεω2 − k2

(

ik�∇tHz + iεωk̂ × �∇tEz

)

(9–23)
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and similarly for �Et ≡ ı̂Ex + ̂Ey

�Et =
1

µεω2 − k2

(

ik�∇tEz − iµωk̂ × �∇tHz

)

(9–24)

where �∇t ≡ �∇− k̂(∂/∂z) is the transverse gradient operator.
It is clear now that once Ez and Hz are known, the remaining components of

the fields are completely specified.
Since we have already made explicit use of the form

(

�E(�r, t)
�H(�r, t)

)

=

(

�E0(x, y)
�H0(x, y)

)

ei(kz−ωt) (9–25)

we can recast the wave equation (9–15) for the z component of the fields as

[

∇2
t +
(

µεω2 − k2
)]

(

E0,z(x, y)
H0,z(x, y)

)

= 0 (9–26)

with ∇2
t ≡ ∇2 − ∂2/∂z2. The solution of this equation will be made subject to

the boundary conditions corresponding to a perfect conductor–dielectric interface,
namely B⊥ = 0 and E‖ = 0.

E‖ = Ez = 0 at the walls is easy to implement. The consequences of the
other condition, B⊥ = Bt = 0, on the z components of the fields is not so easily
fathomed. To see what the boundary condition on B⊥ implies for Hz, we consider
the expression for Ht in (9–23). B⊥ = 0 is equivalent to �H · n̂ = 0, where n̂ is a
normal to the waveguide wall. Thus,

�H · n̂ =
1

µεω2 − k2

[

ik
(

�∇tHz

)

· n̂ + iεωn̂ ·
(

k̂ × �∇tEz

)]

=
1

µεω2 − k2

[

ik
∂Hz

∂n
+ iεω(n̂ × k̂) · �∇t Ez

]

(9–27)

Now, (n̂ × k̂) defines a direction tangential (along the circumference) to the
conducting wall of a waveguide, say the t̂ direction. For a point �r0 on the wall,
an adjacent point �r0 + ǫt̂ is also a point on the wall. We can in general expand
Ez(�r0 + ǫt̂ ) = Ez(�r0) + ǫt̂ · �∇Ez(�r0). Since both Ez(�r0) and Ez(�r0 + ǫt̂ ) vanish,

t̂ · �∇tEz(�r0) must vanish for �r0 on the wall.
We therefore conclude that

�H · n̂
∣

∣

∣

wall
=

ik

µεω2 − k2

∂Hz

∂n
(9–28)

and that B⊥ = 0 on the wall implies ∂Hz/∂n = 0.
The fields in the waveguide now divide naturally into two distinct categories,

transverse magnetic (Hz = 0) and transverse electric (Ez = 0). The most general
travelling wave will of course be a linear combination of the two types.

In principle, there is also a degenerate mode designated TEM for which both
Ez and Hz vanish. In order to obtain nonvanishing transverse fields we must set
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k2 − µεω2 = 0, leading to k/ω =
√

µε. The wave travels as if it were in an infinite
medium without bounding surfaces. The two-dimensional wave equation, (9–26),
reduces to

∇2
t

(

ETEM
0,z

HTEM
0,z

)

= 0 (9–29)

The uniqueness theorem applied to E0,z or H0,z now requires that E0,z and
H0,z take on the value they have on the boundary everywhere inside the bound-
ary. A TEM mode cannot exist in a waveguide with only an exterior conductor.
TEM modes are, however, the dominant modes in coaxial cables and parallel wire
transmission lines. We dispose of the TEM mode with the example below before
continuing with hollow waveguides.

Example 9.1 Find the TEM mode for waves travelling between coaxial inner conduct-
ing circular cylinder of radius a and outer grounded conducting cylinder of radius
b.

Solution: As the problem insists there is no z component to �H or �E, the expression
of the transverse fields in terms of the z components is not very useful. Instead of
using (9–23) and (9–24), we return to Maxwell’s equations to obtain for the wave

of form �E0(x, y)ei(kz−ωt):

∂Ex

∂x
+

∂Ey

∂y
+ ikEz =

∂Ex

∂x
+

∂Ey

∂y
= 0 (Ex 9.1.1)

and
∂Ex

∂y
− ∂Ey

∂x
= iωµHz = 0 (Ex 9.1.2)

Since the curl of �E0 vanishes, we may derive it from a potential φ as �E0 = −�∇φ
which together with (Ex 9.1.1) means ∇2φ = 0. We’ve already solved this equation
in cylindrical coordinates in chapter 5, (5–24). The boundary conditions require
‘no ϕ dependence’ allowing us to eliminate the m ≥ 1 terms of (5–24) and retain
only

φ(r, ϕ) = C0 ln r + D0 (Ex 9.1.3)

so that �E0 = −�∇φ becomes

�E0 = −C0

r
r̂ and �H0 =

i�k × �E0

iωµ
=

k̂ × �E0

vµ
= − C0

vµr
ϕ̂ (Ex 9.1.4)

so that the wave is given by

�E(�r, t) = −C0

r
r̂ ei(kz−ωt) and �H(�r, t) = − C0

vµr
ϕ̂ ei(kz−ωt) (Ex 9.1.5)

The constant C0 may be evaluated from the potential on the central conductor
assuming the outer conductor is grounded,

Va = −
∫ a

b

�E · d�r = −C0 ln
( b

a

)

ei(kz−ωt) (Ex 9.1.6)
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so that finally

�E(�r, t) =
Var̂ ei(kz−ωt)

r ln(b/a)
and �H(�r, t) =

Vaϕ̂ ei(kz−ωt)

vµr ln(b/a)
(Ex 9.1.7)

The surface current on the inner conductor is given by �j = r̂ × �H
∣

∣

r=a
leading to

I = 2πa�j =
2πVak̂ ei(kz−ωt)

vµ ln(b/a)
(Ex 9.1.8)

It is interesting to note that the TEM mode fields correspond to the electrostatic
fields in the two transverse dimensions. Thus, the TEM mode electric field for the
transmission line (two parallel cylindrical wires) is just the negative gradient of the
potential we found in Example 6.4.

We briefly summarize the boundary conditions on Ez and Hz and the differential
equations for TM and TE modes. The reader is reminded that in general the wave
will propagate as a linear combination of TE and TM modes

Transverse magnetic modes: The longitudinal electric field Ez of TM modes is
a solution of

[

∇2
t +
(

µεω2 − k2
)]

E0,z = 0 (9–30)

subject to the boundary condition, Ez = 0 at the walls, while the longitudinal
magnetic field Hz vanishes everywhere (this trivially satisfies the wave equation

for Hz as well as the boundary condition ∂Hz/∂n = 0 at the walls). �H has only
transverse components.

Transverse electric modes: The longitudinal magnetic field Hz of TE modes is
a solution of

[

∇2
t +
(

µεω2 − k2
)]

H0,z = 0 (9–31)

subject to the boundary condition ∂H0,z/∂n = 0 on the walls while E0,z vanishes
everywhere.

Example 9.2: Find the dispersion relation and cutoff frequencies for the TM modes
of a rectangular cross section waveguide of sides a and b.

Solution: For a TM mode, B0,z = 0 and E0,z satisfies (9–30)
(

∇2
t + γ2

)

E0,z = 0 (Ex 9.2.1)

where we have set γ2 = µεω2 − k2 for brevity. We solve for E0,z by separation of
variables to obtain

E0,z =

{

cos αx
sinαx

}{

cos βy
sinβy

}

(Ex 9.2.2)

with α2 + β2 = γ2 and the braces are again used to indicate the arbitrary linear
combination of terms enclosed. Applying the boundary conditions Ez(x = 0) =
Ez(x = a) = 0 and Ez(y = 0) = Ez(y = b) = 0, we reduce the solution to

E0,z =
∑

m,n

Am,n sin
nπx

a
sin

mπy

b
(Ex 9.2.3)
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The dispersion relation for the m,n mode then becomes

ω2 = c2
(

γ2 + k2
)

= c2

(

n2π2

a2
+

m2π2

b2
+ k2

)

(Ex 9.2.4)

When ω2/c2 < (nπ/a)2 + (mπ/b)2, k becomes imaginary, leading to an expo-
nentially damped wave. The cutoff frequency for the waveguide carrying the m,n
mode is

ωc = c

√

n2π2

a2
+

m2π2

b2
(Ex 9.2.5)

Given E0,z above, and H0,z = 0, the remaining components of the field are easily
obtained from (9–23) and (9–24) as

�E0,t =
ik

γ2
�∇tE0,z and �H0,t =

iωε

γ2
k̂ × �∇tE0,z (Ex 9.2.6)

9.2.1 Circular Cylindrical Waveguides

For circular cross section waveguides we express the z components of the fields in
terms of the polar coordinates, r and ϕ. As before, E0,z(r, ϕ) and H0,z(r, ϕ) satisfy
the equation

(

∇2
t + γ2

)

(

E0,z

H0,z

)

= 0 (9–32)

with γ2 = µεω2 − k2. Letting ψ represent E 0,z for TM modes or H 0,z for TE
modes, we write in cylindrical (polar) coordinates

[

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂ϕ2
+ γ2

]

ψ = 0 (9–33)

Separating variables and applying a periodic boundary condition to the azimuthal
component, we find ψ =

∑

m Rm(r)e±imϕ, with m an integer. The radial function
Rm satisfies Bessel’s equation (E–1)

r2 d2Rm

dr2
+ r

dRm

dr
+
(

γ2r2 − m2
)

Rm = 0 (9–34)

whose general solution is of the form

Rm(r) = AmJm(γr) + BmNm(γr) (9–35)

Since Rm must be well behaved at r = 0, we set the expansion constants Bm to
zero, giving

ψ =
∑

m

AmJm(γr)e±imϕ (9–36)

TM modes: For TM modes, B0,z = 0 and E0,z = ψ. At r = a, the waveguide wall,
E0,z must vanish, implying that Jm(γa) = 0. The argument, γa, must therefore be
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a root of the Bessel function Jm, say the ith root we designate by ρm,i. Substituting
for γ, we obtain the z component of the electric field for the (m, i) mode

E0,z(r, ϕ) = AJm

(

ρm,i

a
r

)

e±imϕ (9–37)

The transverse fields �E0,t and �H0,t may be obtained from (9–24) and (9–23):

�E0,t =
ik

εµω2 − k2
�∇tE0,z =

ik

γ2
�∇tE0,z =

ika2

ρ2
m,i

�∇tE0,z (9–38)

and

�H0,t =
iεω

εµω2 − k2

(

k̂ × �∇tE0,z

)

=
iεωa2

ρ2
m,i

(

�k × �∇tE0,z

)

(9–39)

The dispersion relation reads k2 = εµω2 − γ2 = εµω2 − ρ2
m,i/a2. When ω2 becomes

less than ρ2
m,i/εµa2 ≡ ω2

c , k becomes imaginary and the wave no longer propagates.
The TM0,1 mode in particular (see Appendix E, Table E.1 for the first few roots

of J0 to J3.) has ρ0,1 ≃ 2.405. The fields are then, using J′0 = −J1,

E0,z = AJ0

(ρ0,1r

a

)

H0,z = 0

�E0,t = − ikaA

ρ0,1
J1

(ρ0,1r

a

)

r̂ �H0,t =
iωεaA

ρ0,1
J1

(ρ0,1r

a

)

ϕ̂

(9–40)

With this root, ωc = ρ0,1/a
√

µε. For µ = µ0 and ε = ε0, the cutoff wave-length is
λc = 2πc/ωc = 2πa/ρ0,1 = 2.61a.

TE modes: TE modes have E0,z = 0 and H0,z = AJm(γr)e±imϕ. The boundary
condition is ∂H0,z/∂n = −∂H0,z/∂r = 0 at r = a, which implies that J′(γa) = 0.
Therefore, γa must be a root of J′m, which we denote by ρ′m,i. The z component of
the magnetic field intensity is then

H0,z = AJm

(ρ′m,ir

a

)

e±imϕ (9–41)

and E0,z = 0, leading to the transverse fields

�H0,t =
ika2

ρ′ 2m,i

�∇tH0,z and �E0,t = − iµωa2

ρ′ 2m,i

(

k̂ × �∇tH0,z

)

(9–42)

The smallest root of all the Bessel function derivatives J′m, is the first root of
J′1, ρ′1,1 = 1.84118. . . (see Table E.2). The mode with the lowest cut-off frequency
is therefore the TE1,1 mode. Specializing to the TE1,1 mode, we get

H0,z = AJ1

(

ρ′1,1r

a

)

(9–43)
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Figure 9.4: Field pattern of the TE1,1 mode in a circular cylindrical wave-
guide.

�H0,t =
ika2A

ρ′21,1

[

± iϕ̂

r
J1

(

ρ′1,1r

a

)

e±iϕ +
1.841r̂

a
J′1

(

ρ′1,1r

a

)

e±iϕ

]

(9–44)

and

E0,z = 0 (9–45)

�E0,t = − iµωa2A

ρ′21,1

[

∓ ir̂

r
J1

(

ρ′1,1r

a

)

e±iϕ +
ρ′1,1ϕ̂

a
J′1

(

ρ′1,1r

a

)

e±iϕ

]

(9–46)

Taking the real part of E0,t and B0,t, we obtain the field pattern sketched in
Figure 9.4. The cutoff frequency and cutoff wavelength of this, the lowest mode,
are

ωc =
1√
µε

ρ′1,1

a
, λc =

2πa

ρ′1,1

= 3.41a (9–47)

Because J′0 = −J1, the roots of J′0 coincide with those of J1, leading to a degen-
eracy of the TM1,i modes and TE0,i modes.

9.2.2 Resonant Cavities

The modes of resonant cavities are easily obtained as linear combinations of waves
travelling in the ±z direction. For perfectly conducting plates at z = 0 and z = d
we find now additional boundary conditions on �H and �E, namely �E0,t = 0 and Hz

= 0. The latter implies for TE modes that

H0,z = ψ(x, y) sin
nπz

d
(9–48)

For TM modes, �E0,t = 0 on the end walls give ∂Ez/∂n = ±∂Ez/∂z = 0 using
an argument similar to that used in Section 9.2 for treating B⊥ = 0 on the side
walls. For a TM mode, then, we have

E0,z = ψ(x, y) cos
nπz

d
(9–49)

Formulas (9–23) and (9–24) made explicit use of the form �E = �E0(x, y)ei(kz−ωt),
whereas now we have a standing wave of the form (eikz ± e−ikz) e−iωt. Noting that



254 Classical Electromagnetic Theory

the ik arose from differentiating eikz with respect to z, we may replace ik by ∂/∂z
to make the result valid for ±k. The fields in a cavity are thus

�H0, t =
1

εµω2 − k2

(

�∇t
∂H0,z

∂z
+ iωεk̂ × �∇tE0,z

)

(9–50)

�E0,t =
1

εµω2 − k2

(

�∇t
∂E0,z

∂z
− iµωk̂ × �∇tH0,z

)

(9–51)

The transverse fields in the cavity become:

TM:
�E0,t = − nπ

dγ2
sin

nπz

d
�∇tψ(x, y) (9–52)

�H0,t =
iωε

γ2
cos

nπz

d
k̂ × �∇tψ(x, y) (9–53)

TE:
�E0,t = − iµω

γ2
sin

nπz

d
k̂ × �∇tψ(x, y) (9–54)

�H0,t =
nπ

dγ2
cos

nπz

d
�∇t ψ(x, y) (9–55)

with γ2 = µεω2 − (nπ/d)2.
The circular cylindrical cavity TMℓ,i,n mode has γ = ρℓ,i/a and a resonant

frequency

ωℓ,i,n =
1√
µε

√

(

ρℓ,i

a

)2

+

(

nπ

d

)2

(9–56)

while a TEℓ,i,n mode has

ωℓ,i,n =
1√
µε

√

(

ρ′ℓ,i
a

)2

+

(

nπ

d

)2

(9–57)

The resonant frequency of the TMℓ,i,0 mode is independent of the cavity length,
while all others depend on d. For tunable cavities, the TE1,0,n mode is usually
chosen. For this mode,

�H0,t =
nπ

d

a2

ρ′21,0

cos
nπz

d
�∇tJ0

(

ρ′1,0r

a

)

= −nπar̂

ρ′1,0d
J1

(

ρ′1,0r

a

)

cos
nπz

d
(9–58)

The surface current density on the walls is n̂ × �H. On the end faces, n̂ = ±k̂ so
that the surface current is

�j = ∓nπ

d

(

cos 0
cos nπ

)

a

ρ′1,0

J1

(

ρ′1,0r

a

)

ϕ̂ (9–59)
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Figure 9.5: The fields penetrating into the wall generate eddy currents
leading to resistive energy loss.

We see that there are no radial currents on the end plates, which means that the
cavity may be tuned by moving the end plate without a need for a good electrical
contact between the movable plates and the wall.

The modes of a resonant cavity may, of course, also be obtained by solving the
wave equation in the appropriate coordinate system with the boundary conditions
�E‖ = 0 and �H⊥ = 0 as well as the coupling equations between �E and �H.

9.2.3 Dissipation by Eddy Currents

In real conductors, the field does not decrease to zero instantaneously at the bound-
ary with the conductor. Instead, it decays over several skin depths δ. Solving the
exact boundary condition problem would be onerous and almost always unnecessary
since the mode pattern would hardly be disturbed by the finite conductivity. (The
apparent dimensions of the waveguide would increase slightly, by a distance of order
δ.) The only significant change brought by the finite conductivity is the resistive
dissipation of energy by the eddy currents induced by H near the wall. To calculate
the power loss, we assume that the fields are adequately described by the perfectly
conducting wall modes in the interior of the guide, but decay exponentially in the
metal walls. The subscript c will be used to denote the fields in the conductor.

Near the surface, the electric field in the wall is related to the eddy current
density �J by �J = g �Ec, leading to a power loss in the volume τ :

P = 1
2

∫

τ

�J · �E∗
c d3r = 1

2

∫

g|Ec|2dxdydz (9–60)

The rate at which power, P, is lost by the wave as it moves in the z direction is then

dP

dz
= 1

2

∫

S

g|Ec|2dxdy (9–61)

where S is a cross section of the waveguide wall shown darkened in figure 9.5. In
the conductor, the electric field is related to the magnetic field intensity �Hc by
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�Hc =
√

g/µω(n̂ × �Ec)e
iπ/4. Then g|Ec|2 = µω|Hc|2, and we can also write the

power loss integral as
dP

dz
=

µω

2

∫

S

|Hc|2dxdy (9–62)

As at the wall �E has vanishing parallel component, the perpendicular component
of �H is nearly zero, while the parallel component of �H diminishes exponentially as
it enters the metal.

We specialize, for convenience, to the rectangular guide with walls of thickness
t shown in Figure 9.5. We assume t ≫ δ. The surface integral can be split into
four separate integrals, one for each of the sides. Providing that the skin depth is
much smaller than the dimensions of the guide, we may neglect the contribution
from the corners. Let us look in detail at the contribution to the loss from one of
those sides, say the wall at x = a. Inside this wall, the magnetic field Hc takes the
form Hc = H‖e

−x/δ, where we have used the continuity of H‖ at the interface. The
power loss at this (x = a) wall for t ≫ δ is then

dP

dz

∣

∣

∣

∣

x=a

wall

=
µω

2

∫ b

y=0

∫ a+t

a

|H‖|2e−2x/δdxdy

=
µωδ

4

∫

|H‖|2dy (9–63)

Each of the four sides makes a similar contribution, whence we conclude

dP

dz
=

µωδ

4

∮

|H‖|2dℓ (9–64)

where the integration is carried out around the periphery of the waveguide. H‖ in
the integral may of course be replaced by the fictitious perfect-conductor surface
current j, using |�j |2 = |n̂ × �H‖|2 = |H‖|2. Making this substitution, we obtain

dP

dz
=

µωδ

4

∮

|j|2dℓ (9–65)

Further, for g ≫ εω we have from (8–134), δ2 = 2/gµω. The power dissipation rate
then becomes

dP

dz
=

1

2gδ

∮

|j|2dℓ (9–66)

There is a simple interpretation to this result. Pretending the current j is spread
evenly over a strip of width δ, and zero beyond it, we have Jequiv. = j/δ. The power
loss rate would then have been calculated as

dP

dz
=

1

2

∮

�J · �E δ dℓ =
1

2g

∮

|J |2δ dℓ =
1

2gδ

∮

| j |2 dℓ (9–67)

just the result (9–66) above.
The results above are of course not limited to waveguides of rectangular cross

section but apply equally to the circular guides already discussed.
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Example 9.3: Calculate the power transported by a TEn,m wave in a rectangular
waveguide of dimensions a × b. Estimate the power loss in the walls, assuming
ohmic losses. Use these results to find the attenuation (relative power loss per unit
length) of the waveguide.

Solution: The TEn,m mode has Ez = 0 and

Hz = H0 cos
nπx

a
cos

mπy

b
(Ex 9.3.1)

We begin by finding the remaining components of the fields in order that we may
compute �S = 1

2
�E × �H∗. Using (9–23) and (9–24) we obtain

�Ht =
ik

γ2
�∇tHz

=

[

− ik

γ2

(

nπ

a

)

sin
nπx

a
cos

mπy

b

]

ı̂ +

[

− ik

γ2

(

mπ

b

)

cos
nπx

a
sin

mπy

b

]

̂ (Ex 9.3.2)

and
�Et =

iωµ

γ2
k̂ × �∇tHz (Ex 9.3.3)

Rather than substitute these forms immediately, we first simplify

�E × �H∗ = −µωk

γ4

(

k̂ × �∇tHz

)

× �∇tH
∗
z

= −µωk

γ4

[(

k̂ · �∇tH
∗
z

)

�∇tHz − k̂
(

�∇tH
∗
z · �∇tHz

)]

=
µωk

γ4
k̂|�∇tHz|2 (Ex 9.3.4)

The Poynting vector of the fields in the guide,

�S =
µωkH2

0

2γ4
k̂

[

(

nπ

a

)2

sin2 nπx

a
cos2

mπy

b
+

(

mπ

b

)2

cos2
nπx

a
sin2 mπy

b

]

(Ex 9.3.5)
is readily integrated over the cross section of the waveguide to give the power trans-
ported:

P =
µωkH2

0

2γ4

∫ a

x=0

∫ b

y=0

dxdy

[(

nπ

a

)2

sin2 nπx

a
cos2

mπy

b

+

(

mπ

b

)2

cos2
nπx

a
sin2 mπy

b

]

=
µωkH2

0

2γ4

ab

4

[

(

nπ

a

)2

+

(

mπ

b

)2
]
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=
µωkH2

0ab

8γ2
(Ex 9.3.6)

We now proceed to find the power dissipated in travelling along the waveguide.
To do so, we require H‖ at each of the walls. Along the bottom wall, which we take
to be the x axis, y = 0, making

�H‖ = H0

[

k̂ cos
nπx

a
− ı̂

ik

γ2

(

nπ

a

)

sin
nπx

a

]

(Ex 9.3.7)

The power dissipation along this (y = 0) wall is

dP

dz

∣

∣

∣

∣

y=0

=
1

2gδ

∫

|H‖|2dx

=
H2

0

2gδ

∫ a

0

dx

[

cos2
nπx

a
+

k2

γ4

(

nπ

a

)2

sin2 nπx

a

]

=
H2

0

2gδ

{

a

2

[

1 +
k2

γ4

(

nπ

a

)2
]}

(Ex 9.3.8)

and the top wall gives an identical result.
On the side wall at x = 0, we have

�H‖ = H0

[

k̂ cos
mπy

b
− ̂

ik

γ2

(

mπ

b

)

sin
mπy

b

]

(Ex 9.3.9)

and the power dissipated on the side wall is

dP

dz

∣

∣

∣

∣

x=0

=
H2

0

2gδ

∫ b

0

dy

[

cos2
mπy

b
+

k2

γ4

(

mπ

b

)2

sin2 mπy

b

]

=
H2

0

2gδ

{

b

2

[

1 +
k2

γ4

(

mπ

b

)2
]}

(Ex 9.3.10)

Again, the right hand wall at x = a gives the same result. Adding all four terms,
we have

dP

dz
=

H2
0

2gδ

[

a + b +
π2k2

γ4

(

n2

a
+

m2

b

)]

(Ex 9.3.11)

Finally, we compute the relative power loss as the wave proceeds down the guide:

dP

dz
P

=
8γ2

µωkH2
0ab

H2
0

2gδ

[

a + b +
π2k2

γ4

(

n2

a
+

m2

b

)]

=
2δ

γ2kab

[

(a + b)γ4 + π2k2

(

n2

a
+

m2

b

)]

(Ex 9.3.12)
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with γ2 =
(

nπ/a
)2

+
(

mπ/b
)2

.

Similar methods may be employed to find the resistive losses in a cavity. It
should be evident that the electromagnetic energy contained in a cavity is propor-
tional to the volume, but for given energy density, the losses increase in proportion
to the surface area, leading us to conclude that the Q of the cavity increases lin-
early with the dimensions of the cavity. (The Q, or quality, of an oscillator may be
defined as 2π× the energy stored divided by the energy loss per cycle.)

9.3 Dielectric Waveguides (Optical Fibers)

Metallic waveguides are not alone in providing low-loss conduits for electromag-
netic radiation. Dielectric waveguides have in recent years gained great use as
wideband, low-loss carriers of electromagnetic waves for communication. Metallic
waveguides, being dispersive and useful only at microwave frequencies, have rather
limited information-carrying capacity compared to optical fibers operating at typi-
cally 2×1014 Hz.

In its simplest form, a large (compared to the wavelength, λ) diameter fiber can
be thought of confining the wave by successive total internal reflections. It will be
evident that the wave is not truly confined as the evanescent wave penetrates the
medium surrounding the fiber. A homogeneous fiber of this type is very dispersive
as each reflection gives a phase change to the wave; in addition, waves travelling
at different angles have different longitudinal velocities along the fiber. Some im-
provements can be made by giving the fiber a radial refractive index gradient, but
the cost and lack of flexibility of thick fibers makes them less than desirable. The
current emphasis is on “monomode” fibers whose radius is of the order of the wave-
length of the waves it carries. In these fibers, much of the electromagnetic field can
reside outside the fiber, making the fiber much more a guide than a conduit.

The relationships (9–23) and (9–24) between the longitudinal and transverse
fields did not depend on anything but the form ei(kz−ωt) of the travelling wave.
However, the boundary conditions that the fields inside a dielectric fiber must sat-
isfy lead to somewhat greater complication than the metal interface boundary con-
ditions.

The wave equation for E0,z andH0,z is

[

∇2
t + (µ1ε1ω

2 − k2)
]

(

E0,z

H0,z

)

= 0 inside the fiber (9–68)

and
[

∇2
t + (µ0ε0ω

2 − k2)
]

(

E0,z

H0,z

)

= 0 outside (9–69)

A cladding other than vacuum is easily accommodated by replacing ε0 and µ0 by
ε2 and µ2. The wave equations above must now be solved subject to the boundary
conditions that B0,⊥, E0,‖, D0,⊥, and H0,‖ all be continuous across the interface.

We substitute +γ2 for µ1ε1ω
2 − k2 and, to avoid an oscillatory solution and

hence a radial outflow of energy (recall that oscillatory fields lead to radiation)
outside the cylinder, we must choose µ0ε0ω

2 − k2 = −β2.
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Because of the more involved boundary conditions, the fields do not generally
separate into TE and TM modes except in special circumstances such as azimuthal
symmetry. For simplicity we consider first the propagation of a wave having no ϕ
dependence, along a circular cross section fiber of radius a.

Letting

ψ =

{

E0,z for TM modes

H0,z for TE modes
(9–70)

we express (9–68) and (9–69) in polar coordinates and recognize the resulting equa-
tion as Bessel’s equation and the modified Bessel equation, respectively, having
well-behaved solutions

ψ =

{

J0(γr) r ≤ a

AK0(βr) r ≥ a
(9–71)

where only a single arbitrary constant, A, is required to match the interior and ex-
terior solutions. The transverse fields are then readily obtained. Inside the cylinder

H0,r =
ik

γ2

∂H0,z

∂r
H0,ϕ =

iε1ω

γ2

∂E0,z

∂r

E0,r =
ik

γ2

∂E0,z

∂r
E0,ϕ = − iµ1ω

γ2

∂H0,z

∂r

(9–72)

Outside the cylinder, similar relations hold with −β2 replacing γ2. Explicitly,
noting that J′0(z) = −J1(z) and K′

0(z) = −K1(z), the fields for the TE modes are:

H0,z = J0(γr)

H0,r = − ik

γ
J1(γr)

E0,ϕ =
iµ1ω

γ
J1(γr)



































r ≤ a

H0,z = AK0(βr)

H0,r =
ikA

β
K1(βr)

E0,ϕ = − iµ0ωA

β
K1(βr)



































r ≥ a (9–73)

At the boundary r = a, the fields must satisfy

B⊥ = Br is continuous ⇒ − ikµ1J1(γa)

γ
=

ikµ0AK1(βa)

β

H‖ = Hz is continuous ⇒ J0(γa) = AK0(βa)

E‖ = Eϕ is continuous ⇒ iωµ1J1(γa)

γ
= − iωµ0AK1(βa)

β

(9–74)

The first and the last of these conditions merely repeat one another. Eliminating
the constant A from the first two equations, we obtain

µ1J1(γa)

µ0γJ0(γa)
+

K1(βa)

βK0(βa)
= 0 (9–75)
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Figure 9.6: −J1(γa)/γaJ0(γa) and K1(βa)/βaK0(βa) plotted as a function
of their arguments.

while from the definition of γ and β, γ2 + β2 = (ε1µ1 − ε0µ0)ω
2 implies that |γ|

and |β| are each less than ω
√

ε1µ1 − ε0µ0 . Considering β = β(γ), we can solve the
equations graphically. As an intermediate step, we first sketch −J1(γa)/γJ0(γa)
and K1(βa)/βK0(βa) as a function of γa and βa, respectively, as shown in Figure
9.6.

Clearly, J1/J0 diverges and changes sign at roots of J0. Moreover, since J1(x) →
x/2 for small x, the ratio −J1(x)/xJ0(x) will go to −1

2 for small x.

The modified Bessel function Kn(x) behaves like a decreasing exponential at
large z, but as z → 0, Kn(z) → 1

2 (n+1)!(2/z)n for n ≥ 1, while K0(z) → − ln(z/2).
Then K1(z)/zK0(z) → 1/z2[− ln(z/2)] → ∞ as z → 0.

Figure 9.7: The intersection of the curves mark the roots corresponding to
mode eigenvalues γn,0 for the TEn,0 modes of a cylindrical dielectric wave-
guide.



262 Classical Electromagnetic Theory

To solve (9–75) we superimpose the two graphs of Figure 9.6 with a common
argument γa. As γa increases to a maximum of ωa

√
ε1µ1 − ε0µ0, βa decreases

to zero. We plot both −J1/γJ0 and K1/βK0 as a function of γa in Figure 9.7.
The graph is plotted here for ωa = 8, sufficiently large that two roots of J1/γJ0 +
K1/βK0 = 0 exist. Corresponding to these two roots are two modes having γa = α1

and γa = α2 (and, of course, corresponding β).
If the value of γamax = ωa

√
ε1µ1 − ε0µ0 is less than 2.405, the first root of J0,

then no solutions exist. The cutoff frequency for TEn,0 modes is given by ωa =
αn. At this frequency, β = 0, giving k = ω

√
µ0ε0, the free space value. Below

this frequency, β becomes imaginary, making K0 and K1 into Bessel functions that
oscillate radially and decrease as 1/

√
r. The fiber no longer acts as a guide, but

instead as an antenna.
For frequencies well above cutoff, the curves of Figure 9.7 intersect near the

roots of J1. The dispersion relation then gives µ1ε1ω
2 = γ2 + k2 ≈ k2. The wave

propagates at the speed of light appropriate (c/n) to the dielectric. The dispersion
relation outside the dielectric gives β2 = k2 − µ0ε0ω

2 ≈ k2(1 − 1/n2), suggesting
that the wave dies off in a distance of order k−1 away from the fiber.

As we will see in the next section, monomode communication fibers are nor-
mally operated in the HE1,1 mode which has no low frequency cut-off. Diminishing
the difference of refractive index of the cladding and the fiber lowers the cut-off
frequency for the TE and TM modes, so that the need for microscopic fibres to
eliminate the higher order modes is relaxed.

⋆ 9.3.1 HE Modes

The most general modes propagating along dielectrics are called HE modes. They
have both Ez �= 0 and Hz �= 0. Although algebraically somewhat more cumbersome
than TE and TM modes, the HE1,1 mode is of special interest because it has no
low frequency cutoff and very little dispersion.

For a cylindrical fiber of radius a, we have for r ≤ a as general wave solution

E0,z = AmJm(γr)eimϕ and H0,z = BmJm(γr)eimϕ (9–76)

leading to the following transverse field components:

E0,r =

[

ik

γ
AmJ′m(γr) − ωmµ1

γ2r
BmJm(γr)

]

eimϕ (9–77)

H0,r =

[

ik

γ
BmJ′m(γr) +

ωmε1

γ2r
AmJm(γr)

]

eimϕ (9–78)

E0,ϕ =

[

−km

γ2r
AmJm(γr) − iωµ1

γ
BmJ′m(γr)

]

eimϕ (9–79)

H0,ϕ =

[

−km

γ2r
BmJm(γr) +

iωε1

γ
AmJ′m(γr)

]

eimϕ (9–80)

Similarly, for r > a, we choose again the exponentially decaying solutions:

E0,z = CmKm(βr)eimϕ and H0,z = DmKm(βr)eimϕ (9–81)



Chapter 9 - Waveguide propagation—Bounded Waves 263

where −β2 = µ0ε0ω
2 − k2. The associated transverse fields are

E0,r = −
[

ik

β
CmK′

m(βr) − ωmµ0

β2r
DmKm(βr)

]

eimϕ (9–82)

H0,r = −
[

ik

β
DmK′

m(βr) +
ωmε0

γ2r
CmKm(βr)

]

eimϕ (9–83)

E0,ϕ = −
[

− km

β2r
CmKm(βr) − iωµ0

β
DmK′

m(βr)

]

eimϕ (9–84)

H0,ϕ = −
[

− km

β2r
DmKm(βr) +

iωε0

β
CmK′

m(βr)

]

eimϕ (9–85)

The boundary conditions at r = a impose the following equalities:

Ez(a−) = Ez(a+) : ⇒ AmJm(γa) = CmKm(βa) (9–86)

Hz(a−) = Hz(a+) : ⇒ BmJm(γa) = DmKm(βa) (9–87)

Eϕ(a−) = Eϕ(a+) : ⇒
[

− km

γ2a
AmJm(γa) − iωµ1

γ
BmJ′m(γa)

]

=

[

km

β2a
CmKm(βa) +

iωµ0

β
DmK′

m(βa)

]

(9–88)

Hϕ(a−) = Hϕ(a+) : ⇒
[

− km

γ2a
BmJm(γa) +

iωε1

γ
AmJ′m(γa)

]

=

[

km

β2a
DmKm(βa) − iωε0

β
CmK′

m(βa)

]

(9–89)

Dr(a−) − Dr(a+) : ⇒ ε1

[

ik

γ
AmJ′m(γa) − mωµ1

γ2a
BmJm(γa)

]

= −ε0

[

ik

β
CmK′

m(βa) − mωµ0

β2a
DmKm(βa)

]

(9–90)

Br(a−) = Br(a+) : ⇒ µ1

[

ik

γ
BmJ′m(γa) +

mωε1

γ2a
AmJm(γa)

]

= −µ0

[

ik

β
DmK′

m(βa) +
mωε0

β2a
CmKm(βa)

]

(9–91)

Dropping the subscripts m and arguments γa and βa for the sake of brevity,
we reduce these six equations to a somewhat more tractable pair. From (9–88), we
write

−km

a

(

AJ

γ2
+

CK

β2

)

= iω

(

µ1

γ
BJ′ +

µ0

β
DK′

)

(9–92)

but, from (9–86), AJ = CK and, from (9–87), BJ = DK. We therefore substitute
for C and D in (9–92) to obtain

−mkA

a

(

1

γ2
+

1

β2

)

= iωB

(

µ1

γ

J′

J
+

µ0

β

K′

K

)

(9–93)
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Similarly, from (9–89),

−km

a

(

BJ

γ2
+

DK

β2

)

= −iω

(

ε1

γ
AJ +

ε0

β
CK′

)

(9–94)

or
mkB

a

(

1

γ2
+

1

β2

)

= iωA

(

ε1

γ

J′

J
+

ε0

β

K′

K

)

(9–95)

In the same way, (9–90) becomes

mωB

a

(

ε1µ1

γ2
+

ε0µ0

β2

)

= ikA

(

ε1

γ

J′

J
+

ε0

β

K′

K

)

(9–96)

while (9–91) becomes

mωA

a

(

ε1µ1

γ2
+

ε0µ0

β2

)

= −ikB

(

µ1

γ

J′

J
+

µ0

β

K′

K

)

(9–97)

The remaining constants may now be eliminated. Multiplying (9–93) and (9–
95), we have

m2k2AB

a2

(

1

γ2
+

1

β2

)2

= ω2AB

(

µ1

γ

J′

J
+

µ0

β

K′

K

)(

ε1

γ

J′

J
+

ε0

β

K′

K

)

(9–98)

Alternatively, we might have multiplied (9–96) and (9–97) to eliminate the con-
stants A and B. The same equation, (9-98), would be obtained. We finally restore
the arguments to the functions to make evident the equation to be solved:

m2k2

ω2

(

1

(γa)2
+

1

(βa)2

)2

=

[

µ1

γa

J′(γa)

J(γa)
+

µ0

βa

K′(βa)

K(βa)

] [

ε1

γa

J′(γa)

J(γa)
+

ε0

βa

K′(βa)

K(βa)

]

(9–99)

with β2 = (ε1µ1 − ε0µ0)ω
2 − γ2 = (n2 − 1)ω2/c2 − γ2. The roots of this equation

are the values γa can take. Finding the roots is rather laborious (note that k is also
a function of γa).

For m = 0, we recover the characteristic equations for TE and TM modes,
namely

µ1

γa

J′0(γa)

J0(γa)
+

µ0

βa

K′
0(βa)

K0(βa)
= 0 (9–100)

for TE modes and
ε1

γa

J′0(γa)

J0(γa)
+

ε0

βa

K′
0(βa)

K0(βa)
= 0 (9–101)

for TM modes.
Numerical calculations by Elasser20 give roots for m = 0 and 1 as sketched in

Figure 9.8 for a polystyrene rod (ε = 2.56 ε0) in terms of the dimensionless variables
kc/ω and ωa/πc = 2a/λ0.

20Walter M. Elasser (1949) Journal of Applied Physics, 20.
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Figure 9.8: The effect of fiber diameter on wave speed in a polystyrene
cylindrical rod for the HE1,1, TE1,0, and TM1,0 modes. (Data from Elasser).

The HE1,1 mode is unique in that it has no low-frequency cutoff. For small
ωa, the phase velocity ω/k = c. β then becomes very small, and most of the wave
travels outside the dielectric. The dispersion, indicated by the slope of the curve,
is also very low, and since most of the energy resides outside the fiber, losses can
be made very small. If a cladding other than vacuum is used, the speed, the losses,
and the dispersion of the wave will correspond to those of the cladding.

The dimensions of the fiber required to sustain only this mode in vacuum are of
order one-tenth of a wavelength, too small even to be seen. Practical fibers of this
sort will need to be clad in a second dielectric of macroscopic dimensions to gain
mechanical strength. Choosing a cladding with refractive index close to that of the
core raises the TE and TM cut-off frequencies so that only the HE1,1 mode can be
sustained in fiber cores of several micron diameter.21

21Much more information on optical fibers at this and more advanced levels can be obtained
from the collection of IEEE reprints: P.J.B. Clarricoats, ed. (1975) Optical Fibre Waveguides,
Peter Perigrinus Ltd.
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Exercises and Problems

Figure 9.9: A parallel plate waveguide.

9-1 Calculate the fields for a TMm,n

mode in a rectangular metal waveguide
of dimensions a× b. Find the dispersion
relation and the cutoff frequency.

9-2 Find the TE modes of a rectangular
cavity of dimensions a× b× c. In partic-
ular, find the three lowest resonant fre-
quencies.

9-3 A pair of air-spaced parallel plates
(Figure 9.9) form a waveguide. Find the
modes of propagation in such a guide.

9-4 Find the wavelength of 12-GHz mi-
crowaves travelling in the TE0,1 mode
in an X-band waveguide (2.28× 1.01 cm
cross section).

9-5 Calculate the attenuation of the
TE1,0 mode in a copper wall waveguide
(a) when the frequency is twice the cut-
off frequency and (b) when the frequency
is 1.05× the cutoff frequency.

9-6 Find the TE modes of a rectangular
cross section dielectric waveguide as well
as the associated cutoff frequencies.

9-7 Use the results on spherical waves
to obtain the resonant modes of a spher-
ical cavity with perfectly conducting
walls. Find the three lowest TE mode
frequency as well as the two lowest non-
degenerate TM mode frequencies. (Some
numerical work may be required to ob-
tain the latter.)

9-8 Find the Q of a rectangular cavity
of dimensions a× b× c when operated in
a TM1,0,1 mode. Assume the skin depth
is 0.5 µm.

9-9 Obtain the (m = 0) TM mode char-
acteristic equation for electromagnetic
waves in a dielectric cylinder of radius
a directly, as was done for the TE mode.

9-10 The space between two concentric,
conducting cylinders forms a coaxial
waveguide. Show that there are TEM
modes of propagation for such a wave-
guide. Are there also TE and TM modes
that have a longitudinal field?

9-11 Obtain the lowest frequency reso-
nant mode of the cavity formed by two
concentric, spherical conductors. The
earth and the ionosphere form such a
cavity with resonant frequencies of 8 Hz,
14 Hz, 20 Hz, · · · ; the modes are known
as Schumann resonances.

9-12 Calculate the impedance of a coax-
ial line carrying a wave in the TEM
mode. Assume the dielectric between
the inner conductor and the shield has
µ = µ0 and ε = 1.7ε0 and take an outer
to inner radius ratio of 5.

9-13 The impedance, Z, of a medium
may be deduced from

|S| = E2/Z
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Deduce that the impedance of a rectan-
gular waveguide for TE waves is given
by

Z =

√

µ

ε

λ

λ0

9-14 A coaxial cylindrical resonator is
formed in the space between two coaxial
conducting cylinders with radii R1 and
R2 sealed by two conducting planes, one

at z = 0 and another at z = L. Find the
TE modes and TM mode characteristic
equations for modes of such a cavity.

9-15 A communications optical fiber has
a 10 µm diameter core with refractive
index nc = 1.465 and cladding of index
1.420. Below the cut-off frequency for
transverse modes, the fiber will support
only the HE1,1 mode. Find the cut-off
frequency for TE1,0 modes.
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Chapter10

Electromagnetic Radiation

10.1 The Inhomogeneous Wave Equation

When variable currents carry charges from one locality to another, causing a tem-
porally changing charge density, the resulting time-dependent fields propagate out-
ward at the finite velocity of light. We might therefore anticipate that an observer
some distance from the varying charge distribution would sense temporally varying
electric and magnetic fields, each decreasing as r−2 or faster, lagging a time t =
r/c behind the source. These fields, known as the induction fields, carry a dimin-
ishing energy (integrated over an enclosing sphere) as the distance to the source
is increased. The vacuum wave equation, however, predicts the existence of elec-
tromagnetic waves whose fields diminish as r−1, leading to a distance-independent
energy transport.

It is in fact the temporal and consequential spatial variation of the potential
that leads to the radiation field. Whereas differentiating a 1/r potential gives rise
to a 1/r2 field, a potential of the form eikr/r gives rise to both a 1/r2 and a 1/r
component in the field. It is this latter part that corresponds to the radiation field.

In order to relate these radiation fields to their sources, we will need to solve
the inhomogeneous wave equations for the potentials, which in the Lorenz gauge,
(3–56, 57), read:

∇2V − µε
∂2V

∂t2
= −ρ(�r, t)

ε
(10–1)

and

∇2 �A − µε
∂2 �A

∂t2
= −µ�J(�r, t) (10–2)

The electric and magnetic fields may then be obtained from the solutions of these
equations as �E = −�∇V − ∂ �A/∂t and �B = �∇× �A . The two equations (10–1) and

(10–2) are not independent, since ρ and �J are related by the continuity equation.

In practice it is sufficient to evaluate �A since �B may be found directly as its
curl, and outside the source, �E may be obtained from �B. The problem of solving
(10–1, 2) will now be considered.

—269—
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10.1.1 Solution by Fourier Analysis

A commonly useful method of solving linear differential equations with a time de-
pendence such as (10–1) or (10–2) is to frequency analyze the disturbance and the
solution and temporarily deal with only one frequency component, thereby elimi-
nating the time dependence. After the single-frequency solution has been found,
the time dependent solution may be resynthesized by summing the frequency com-
ponents. Both wave equations (3–56, 57) have the same form for V or any one

Cartesian component of �A:

∇2ψ(�r, t) − 1

c2

∂2ψ(�r, t)

∂t2
= −f(�r, t) (10–3)

We assume that the source function f(�r, t)’s temporal behavior can be frequency
analyzed, that is,

f(�r, t) =
1√
2π

∫ ∞

−∞
fω(�r )e−iωtdω (10–4)

where the Fourier transform 22 fω(�r ) is given by the inverse transformation:

fω(�r ) =
1√
2π

∫ ∞

−∞
f(�r, t)eiωtdt (10–5)

In similar fashion we frequency analyze the solution ψ(�r, t) to write

ψ(�r, t) =
1√
2π

∫ ∞

∞
ψω(�r )e−iωtdω (10–6)

with inverse

ψω(�r ) =
1√
2π

∫ ∞

−∞
ψ(�r, t)eiωtdt (10–7)

Substituting (10–4) and (10–6) into the wave equation (10–3), we obtain

1√
2π

∫ ∞

−∞

[

∇2ψω(�r ) +
ω2

c2
ψω(�r ) + fω(�r )

]

e−iωtdω = 0 (10–8)

which can be satisfied for all values of t only when the bracketed term vanishes. The
Fourier components, which depend only on the spatial coordinates, must therefore
satisfy

∇2ψω(�r ) + k2ψω(�r ) = −fω(�r ) (10–9)

We can synthesize the solution of this equation by the superposition of unit
point source solutions, one at each point �r ′ of the source f, [i.e., solutions with f =
δ(�r − �r ′)]. Each unit point source solution G(�r, �r ′) then satisfies the equation

∇2G(�r, �r ′) + k2G(�r, �r ′) = − δ(�r − �r ′) (10–10)

22Many authors do not distribute the 1/
√

2π equally between the transform and its inverse,
instead giving one a unit coefficient before one integral and the other a 1/2π coefficient.



Chapter 10 - Electromagnetic Radiation 271

and the frequency component ψω of the total solution may be found by summing
all point source solutions with the appropriate weight fω(�r ′):

ψω(�r ) =

∫

fω(�r ′)G(�r, �r ′)d3r′ (10–11)

The perceptive reader will have recognized G as the Green’s function to the (inho-
mogeneous) Helmholtz equation (10–9). To find G, we note that the solution must
be spherically symmetric about �r ′. Denoting the distance from the source by R =
|�r − �r ′|, we find that at points other than R = 0, G must satisfy

1

R

d2

dR2
(RG) + k2G = 0 (10–12)

The solution of (10–12) is straightforward:

d2

dR2
(RG) + k2(RG) = 0 ⇒ RG = Ae±ikR ⇒ G =

Ae±ikR

R
(10–13)

The constant of integration A must be chosen to be consistent with the magnitude of
the source inhomogeneity. To evaluate A, we integrate (10–10) over a small sphere
of radius a, centered on R = 0 (or �r = �r ′) with G given by (10–13).

∫

[

∇2G(�r, �r ′) + k2G(�r, �r ′)
]

d3r = −
∫

δ(R)d3r (10–14)

As R → 0, G → A/R. Then for small R, the second term on the left-hand side of
the equation becomes

∫

sphere

k2G d3r →
∫

k2A

R
d3r =

∫ a

0

k2A

R
4πR2dR = 2πk2Aa2 (10–15)

which vanishes as the radius a of the sphere decreases to zero. With the help
of ∇2(1/R) = −4πδ(R), we write the remaining terms of (10–14) in the limit of
vanishing a as

lim
a→0

∫

−4πδ(R)Ad3r = lim
a→0

∫

−δ(R)d3r (10–16)

from which we conclude that A = 1/(4π). Thus G = e±ikR/4πR. We now retrace
our steps and synthesize ψω

ψω(�r ) =
1

4π

∫

fω(�r ′)
e±ikR(�r,�r ′)

R(�r, �r ′)
d3r′ (10–17)

and proceed to rebuild the time-dependent solution ψ(�r, t) by taking the inverse
Fourier transform of (10–17).

ψ(�r, t) =
1

4π

1√
2π

∫ ∞

−∞

∫

fω(�r ′)e±ikR(�r,�r ′)

R(�r, �r ′)
d3r′e−iωtdω
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=
1

4π

∫

1√
2π

∫ ∞

−∞

fω(�r ′)e−i(ωt∓kR)

R(�r, �r ′)
dω d3r′ (10–18)

With the definition t′ = t ± kR/ω = t ± R/c, we may rewrite this result as

ψ(�r, t) =
1

4π

∫

[

1√
2π

∫ ∞

−∞

fω(�r ′)e−iωt′dω

R(�r, �r ′)

]

d3r′

=
1

4π

∫

f(�r ′, t′)d3r′

|�r − �r ′| (10–19)

The general solution of (10–3) is then

ψ(�r, t) =
1

4π

∫

f
(

�r ′, t ± R/c
)

|�r − �r ′| d3r′ (10–20)

Mathematically, both the + and the − sign give valid solutions. Physically, the
term with the − sign (the retarded solution) states that the current potential at
�r corresponds to that which was created by the sources a travel time R/c earlier.
The term with the + sign (the advanced solution) says that the current potential
depends on the behavior of the source in the future (at t′ = t + R/c). For the time
being, at least, we discard the advanced solution as unphysical.

A retarded potential may be visualized as arising in the following manner. Con-
sider an observer located at �r. We might think of the observer surrounded by a
succession of information-collecting spheres contracting toward �r at velocity c (Fig-
ure 10.1). As a sphere passes a charged region of space, the then-existing charge
and current density (at t′) is divided by R and added to the potential already ac-
cumulated. When the sphere reaches �r (at t), the accrued potential corresponds to
that which the observer experiences at that particular time.

It is conventional to denote quantities evaluated at the retarded time by square
brackets, [ ]. With this shorthand, the potentials become:

�A(�r, t) =
µ0

4π

∫

[

�J(�r ′)
]

|�r − �r ′|d
3r′ (10–21)

Figure 10.1: An information collecting sphere passes over collections of
charge located at �r ′ at t′ = t − R/c to converge on �r at t.
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and

V (�r, t) =
1

4πε0

∫

[ρ(�r ′)]

|�r − �r ′|d
3r′ (10–22)

As we noted before, ρ and �J are intimately connected through the continuity
equation, so the two expressions are not independent of each other.

We have assumed �r ′ fixed in this derivation. When the sources are in motion,
R becomes a function of time, a circumstance we will postpone to consider in more
detail later in this chapter.

10.1.2 Green’s Function for the Inhomogeneous Wave Equation

It is fairly simple to find a Green’s function for the inhomogeneous wave equation
(10–3). Since time is involved, G will be G(�r, �r ′; t, t′) and must satisfy

(

∇2 − 1

c2

∂2

∂t2

)

G(�r, �r ′; t, t′) = −δ(�r − �r ′)δ(t − t′) (10–23)

In other words, G is the potential at (�r, t) due to a point charge at �r ′ which is
turned on for an infinitesimal interval at t′. In the previous section we have already
solved the problem for a single frequency point source term δ(�r − �r ′)e−iωτ , with τ
arbitrary. The result was

ψ(�r, τ) =
e±ikR

4πR
e−iωτ (10–24)

(the travel delay is all contained in the e±ikR term). In vacuum we write k = ω/c,
and with this substitution, ψ becomes

ψ(�r, τ) =
e±iωR/c

4πR
e−iωτ =

e−iω(τ∓R/c)

4πR
(10–25)

The δ function δ(t − t′) in the differential equation above may be expressed as

δ(t − t′) =
1

2π

∫ ∞

−∞
e−iω(t−t′)dω (10–26)

Picking the arbitrary τ to be t − t′, we see that the δ function is merely the sum,
∫

e−iωτdω, of varying ω source terms. We therefore immediately write the solution
G as the sum of the corresponding ψ:

G(R, τ) = G(�r, �r ′; t, t′) =
1

2π

∫ ∞

−∞

e−iω(τ∓R/c)dω

4πR

=
δ(τ ∓ R/c)

4πR
=

δ

(

t − t′ ∓ |�r − �r ′|
c

)

4π|�r − �r ′| (10–27)
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As before, we choose the retarded solution (with the − sign) in order to avoid
violating causality. The solution to the inhomogeneous wave equation in the absence
of boundaries may now be written

ψ(�r, t) =
1

4π

∫ ∫ f(�r ′, t′)δ

(

t − t′ − |�r − �r ′|
c

)

|�r − �r ′| d3r′dt′ (10–28)

When �r ′ is stationary (not a function of t′), we easily recover our earlier solution
(10–20) by integrating over t′.

10.2 Radiation from a Localized Oscillating Source

With a system whose charges and currents vary in time, we can frequency analyze
the time dependence and handle each Fourier component separately. We therefore
lose no generality by restricting our consideration to potentials, fields, and radiation
from localized systems that vary sinusoidally in time. We take

ρ(�r ′, t) = ρ(�r ′)e−iωt (10–29)

and
�J(�r ′, t) = �J(�r ′)e−iωt (10–30)

where �J and ρ are required to satisfy �∇ · �J = iωρ by the continuity equation. The
potential arising from the charge distribution is then

V (�r )e−iωt =
1

4πε0

∫

ρ(�r ′)e−iω(t−|�r−�r ′|/c)

|�r − �r ′| d3r′

=
e−iωt

4πε0

∫

ρ(�r ′)eik|�r−�r ′|

|�r − �r ′| d3r′ (10–31)

or

V (�r ) =
1

4πε0

∫

ρ(�r ′)eik|�r−�r ′|

|�r − �r ′| d3r′ (10–32)

where we have again set k = ω/c. Similarly, we find

�A(�r ) =
µ0

4π

∫ �J(�r ′)eik|�r−�r ′|

|�r − �r ′| d3r′ (10–33)

The integrals (10–32) and (10–33) are generally intractable, and various approx-
imations must be employed. We separate the problem into three special regions of
interest:

(a) In the near zone, k|�r − �r ′| ≪ 1 (or R ≪ λ) ⇒ eik|�r−�r ′| ≈ 1.

(b) In the far (radiation) zone, r ≫ λ and r ≫ r′, and the denominator
|�r−�r ′| is taken to be independent of r′ although the argument of the
complex exponential is not.

(c) In the intermediate zone r, r′, and λ are all of the same order.
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The consequences engendered by each of these approximations will now be con-
sidered. We write the appropriate approximations only for the vector potential �A;
the generalization to V is obvious.

Because the radiation fields are frequently observed from a distance large com-
pared to the source dimensions, it is convenient to place the source roughly at
the origin and to express the potentials in the spherical polar coordinates of the
observer.

(a) In the near zone (also called the induction zone) we set eik|�r−�r ′| = 1, giving

�A(�r ) =
µ0

4π

∫ �J(�r ′)

|�r − �r ′|d
3r′ (10–34)

(The amplitude of �A is the static solution.) Recalling the expansion

1

|�r − �r ′| =
∑

ℓ,m

4π

2ℓ + 1

rℓ
<

rℓ+1
>

Y∗m
ℓ (θ′, ϕ′)Ym

ℓ (θ, ϕ) (10–35)

we can express the induction zone result in spherical polars when r > r′ as

�A(�r ) = µ0

∑

ℓ,m

1

2ℓ + 1

Ym
ℓ (θ, ϕ)

rℓ+1

∫

�J(�r ′)r′ℓY∗m
ℓ (θ′, ϕ′)d3r′ (10–36)

(b) In the far zone, |�r −�r ′| ≈ r− (�r ·�r ′)/r + · · · . Taking 1/|�r −�r ′| to be constant
over the region of integration, we replace it by 1/r to get

�A(�r ) =
µ0

4π

eikr

r

∫

�J(�r ′)e−ik(�r ·�r ′)/rd3r′ (10–37)

If, in addition, the source dimensions r′ are small compared to a wavelength λ,
then kr′ ≪ 1, and we can expand the exponential to obtain

�A(�r ) =
µ0

4π

eikr

r

∑

ℓ

(−ik)ℓ

ℓ!

∫

�J(�r ′)

(

�r · �r ′

r

)ℓ

d3r′ (10–38)

This latter case includes the important example of an atom of typical dimen-
sions 10−10m radiating visible light of wavelength 5×10−7m, observed at macro-
scopic distances.

(c) In the intermediate zone, we must use an exact expansion of eik|�r−�r ′|/|�r − �r ′|.
The exact spherical polar expansion of this term is

eik|�r−�r ′|

|�r − �r ′| = 4πik
∑

ℓ,m

h
(1)
ℓ (kr>)jℓ(kr<)Ym

ℓ (θ, ϕ)Y∗m
ℓ (θ,′ ϕ′) (10–39)
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where h
(1)
ℓ ≡ jℓ+inℓ is a spherical Hankel function23 of the first kind. With this

expansion, the general expression for the vector potential when r > r′ becomes

�A(�r ) = iµ0k
∑

ℓ,m

h
(1)
ℓ (kr)Ym

ℓ (θ, ϕ)

∫

�J(�r ′)jℓ(kr′)Y∗m
ℓ (θ′, ϕ′)d3r′ (10–40)

If, in addition, the source dimensions are small compared to the wavelength
(kr′ ≪ 1), we can approximate jn(kr′) as (kr′)n/(2n + 1)!! 24 and the vector

potential �A may be written

�A(�r ) = iµ0k
∑

ℓ,m

h
(1)
ℓ (kr)Ym

ℓ (θ, ϕ)

∫

(kr′)ℓ

(2ℓ + 1)!!
�J(�r ′)Y∗m

ℓ (θ′, ϕ′)d3r′ (10–41)

In each of the cases the source terms have been untangled from the field point
terms. If the appropriate integral over the source (independent of the field point)
can be evaluated, the potential is obtained at all points in space. If the source
dimensions are small, the sums in (10–36), (10–38), and (10–41) each converge
rapidly. We examine the first few terms of (10–41) in detail.

10.2.1 Electric Dipole Radiation

If only the first (ℓ = 0) term of the expansion (10-41) for �A(�r ) is retained, (we have
assumed kr′ ≪ 1) we obtain

�A(�r ) =
µ0

4π

eikr

r

∫

�J(�r ′)d3r′ (10–42)

when h
(1)
0 (kr) is replaced by its explicit form. This expression, in fact, holds also

under the far field expansion, as is easily seen from (10–38).
To demonstrate that this term arises from the dipole component of the charge

distribution, we would like to express the field potentials in terms of the electric
charge distribution rather than the current density, a procedure that must clearly
involve the continuity equation. This consideration motivates attempting to express
the integrand as a function involving the divergence of �J .

Let us consider �∇′ · [x′ �J(�r ′)]:

�∇′ · [x′ �J(�r ′)] = �∇′x′ · �J(�r ′) + x′[�∇′ · �J(�r ′)]

= ı̂ · �J + x′(�∇′ · �J )

= Jx + x′(�∇′ · �J) (10–43)

23The first few spherical Hankel functions are explicitly

h
(1)
0 (x) =

−ieix

x
, h

(1)
1 (x) =

−eix

x

(

1 +
i

x

)

, h
(1)
2 (x) =

ieix

x

(

1 +
3i

x
− 3

x2

)

, etc.

24The double factorial (2ℓ + 1)!! conventionally means (2ℓ + 1)(2ℓ − 1)(2ℓ − 3) · · · continued
until either 0 or 1 is reached.
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We therefore find that Jx = �∇′ · (x′ �J ) − x′(�∇′ · �J ).
Integrating Jx over a volume large enough to contain all currents, we get

∫

Jx(�r ′)d3r′ =

∫

�∇′ · (x′ �J )d3r′ −
∫

x′(�∇′ · �J )d3r′

=

∮

x′ �J(�r ′) · d�S +

∫

x′ ∂ρ

∂t
d3r′

= −iω

∫

x′ρ(�r ′)d3r′ (10–44)

We generalize this for the other two components of �J and obtain the desired relation

∫

�Jd3r′ = −iω

∫

�r ′ρ(�r ′)d3r′ = −iω�p (10–45)

Thus

�A(�r ) =
−iωµ0

4π

eikr

r
�p0 (10–46)

where �p = �p0e
−iωt is the electric dipole moment of the charge distribution.

We find the magnetic induction field of the oscillating dipole by taking the curl
of the vector potential:

�B(�r ) = �∇× �A(�r ) =
−iωµ0

4π
�∇
(

eikr

r

)

× �p0

=
−iωµ0

4π

(

ik

r
− 1

r2

)

eikr r̂ × �p0

=
ωkµ0

4π

(

1 − 1

ikr

)

eikr

r
r̂ × �p0 (10–47)

In principle, we could now calculate V (�r ) to evaluate �E(�r ) = −�∇V + iω �A,

but in practice, outside the source, where �J = 0, the electric field �E is more easily
obtained from �∇× �B = µ0ε0∂ �E/∂t = −iω/c2 �E. Although it is somewhat laborious,

we evaluate �E by this method:

�E(�r ) =
ic2

ω
�∇× �B =

ic

k
�∇× �B

=
icωµ0

4π

[

�∇
(

eikr

r
− eikr

ikr2

)

× (r̂ × �p0) +

(

eikr

r
− eikr

ikr2

)

�∇× (r̂ × �p0)

]

=
icωµ0

4π

[

ik
eikr

r
r̂ × (r̂ × �p0) −

eikr

r2
r̂ × (r̂ × �p0) −

eikr

r2
r̂ × (r̂ × �p0)

+
2eikr

ikr3
r̂ × (r̂ × �p0) +

eikr

ikr2
(ikr − 1)�∇× (r̂ × �p0)

]

(10–48)
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To simplify this expression, we expand r̂ × (r̂ × �p0) = (r̂ · �p0)r̂ − �p0 in all but the
first term, and further, we expand

�∇× (r̂ × �p0) = r̂(�∇ · �p0) − �p0(�∇ · r̂) + (�p0 · �∇)r̂ − (r̂ · �∇)�p0

= −�p0(�∇ · r̂) + (�p0 · �∇)r̂ (10–49)

Each of the two terms in the latter expression may be further simplified using

�∇ · r̂ = �∇ ·
(

�r

r

)

= �∇
(

1

r

)

· �r +
�∇ · �r

r
= − �r

r3
· �r +

3

r
=

2

r
(10–50)

and

(�p0 · �∇)r̂ = p0,x
∂

∂x
r̂ + p0,y

∂

∂y
r̂ + p0,z

∂

∂z
r̂

= p0,x

(

ı̂

r
− x�r

r3

)

+ p0,y

(

̂

r
− y�r

r3

)

+ p0,z

(

k̂

r
− z�r

r3

)

=
�p0

r
− (�p0 · �r)�r

r3
(10–51)

Thus we obtain

�∇× (r̂ × �p0) = −2�p0

r
+

�p0

r
− (�p0 · �r)�r

r3
= −�p0

r
− (�p0 · r̂)r̂

r
(10–52)

Gathering terms for �E, we have

�E(�r ) =
ckωµ0

4π

eikr

r
(�p0 × r̂) × r̂

− icωµ0

4π

eikr

r3

1

ik

{

(2ikr − 2) [(r̂ · �p0)r̂ − �p0] + (ikr − 1) [�p0 + (r̂ · �p0)r̂]
}

=
ckωµ0

4π

eikr

r
r̂ × (�p0 × r̂) +

c2µ0

4π

eikr

r3
(1 − ikr) [3(r̂ · �p0)r̂ − �p0]

=
ckωµ0

4π

eikr

r
r̂ × (�p0 × r̂) +

1

4πε0

(1 − ikr)eikr

r3
[3(r̂ · �p0)r̂ − �p0] (10–53)

The magnetic induction field �B is everywhere transverse to �r as might have been
anticipated from the current flow in the oscillating dipole. Referring to figure 10.2,
we note that the current in the dipole has to flow along the dipole giving rise to a
magnetic induction field perpendicular to the plane containing �r. The electric field
�E has in general a component along �r. The nonvanishing longitudinal component
of the electric field will prove to be a general feature of electric multipole radiation.
We conclude that an oscillating electric dipole generates TM waves. We will see that
radiation arising from oscillating magnetic dipoles has a purely transverse electric
field, and �B will have a longitudinal component.

The terms of both �B and �E separate naturally into a term varying inversely as r
that will dominate at large distances and a second term diminishing as r−2 and r−3
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for the magnetic and electric fields, respectively, that will dominate at sufficiently
small r.

In the near field (kr′ ≪ kr ≪ 1) the fields are

�B(�r, t) =
iωµ0

4πr2
(r̂ × �p )ei(kr−ωt) and �E(�r, t) =

3(r̂ · �p )r̂ − �p

4πε0r3
ei(kr−ωt) (10–54)

The near field �E is just the “electrostatic” field of an electric dipole appropriately
delayed [ei(kr−ωt) = e−iω(t−r/c)] for travel, and �B is just the delayed “static” field
resulting from the current needed to make the dipole oscillate. We see then that
when we are sufficiently close to the source, ie, a small fraction of a wavelength, the
fields are just the travel delayed static fields arising from the charge and current
distribution r/c earlier.

In the radiation zone (kr ≫ 1), the fields take the form

�B(�r ) =
ωkµ0

4π

eikr

r
r̂ × �p (10–55)

and

�E(�r ) =
cωkµ0

4π

eikr

r
r̂ × (�p × r̂) = c �B × r̂ (10–56)

Both �E and �B are transverse to �r in the radiation zone and decrease as r−1. The
1/r decrease in fields strength is typical of the radiation field. As an aside, we note
that Gauss’ law dictates that no spherically symmetric 1/r fields can exist.

The energy flux carried by the harmonically oscillating radiation is given by the
Poynting vector:

〈 �S 〉 =
1

2µ0
〈 �E0 × �B∗

0〉 =
µ0ω

2k2c

32π2r2
|r̂ × �p0|2r̂

=
µ0ω

4

32π2r2c
|r̂ × �p0|2r̂ =

µ0ω
4

32π2r2c
(p2

0 sin2 θ)r̂ (10–57)

where θ is the angle between the dipole axis and �r. The power emitted per solid
angle is given by

dP

dΩ
= 〈 �S 〉 · r̂ r2 =

µ0ω
4p2

0 sin2 θ

32π2c
(10–58)

Figure 10.2: The radiation pattern of an oscillating electric dipole. The
length of the arrow representing the Poynting vector is proportional to the
radiation flux in the corresponding direction.
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The angular distribution is illustrated in Figure 10.2.
The total power P emitted by the dipole is found by integrating (10–58) over

the solid angle to obtain

〈P〉 =
µ0ω

4p2
0

32π2c

∫

sin2 θdΩ

=
µ0ω

4p2
0

32π2c

∫ 2π

0

∫ π

0

sin3 θdθdϕ =
µ0ω

4p2
0

32π2c
· 8π

3
=

µ0ω
4p2

0

12πc
(10–59)

Example 10.1: Find the power radiated by a short rotating wire of length ℓ initially
lying along the x axis centered at the origin carrying line charge density λ = λ0x
along its length. The wire rotates in the x-y plane about the z axis at angular
frequency ω. (ℓ ≪ c/ω)

Solution: The dipole moment of the wire at t = 0 is given by (Ex 2.2.2) as �p =
1
12λ0ℓ

3 ı̂. As the dipole rotates, its dipole moment at time t is

�p (t) =
λ0ℓ

3

12
(̂ı cos ωt + ̂ sin ωt) = Re

(

p(̂ı + î)e−iωt
)

(Ex 10.1.1)

This expression can be interpreted as two linear oscillators executing harmonic os-
cillations 90◦ out of phase with one another. We compute the term |r̂ × �p0|2 of

(10–57) with �p0 = p(̂ı + î ) and abbreviate the coefficients of ı̂, ̂, and k̂ as A,B,C
respectively

r̂ = sin θ cos ϕ ı̂ + sin θ sin ϕ ̂ + cos θ k̂ ≡ A ı̂ + B ̂ + C k̂ (Ex 10.1.2)
then

|r̂ × �p0| = p(Aı̂ + B̂ + Ck̂ ) × (̂ı + i ̂ ) = p[ iAk̂ − Bk̂ + Ĉ − iCı̂ ] (Ex 10.1.3)

whence

|r̂ × �p0|2 = p2(2C2 + A2 + B2) = p2(2 cos2 θ + sin2 θ) (Ex 10.1.4)

The angular distribution of power is then

dP

dΩ
=

µ0ω
4p2(2 cos2 θ + sin2 θ)

32π2c
=

µ0ω
4(2 − sin2 θ)

32π2c

(

λ0ℓ
3

12

)2

(Ex 10.1.5)

The rotating dipole radiates most strongly in the ±z direction. The total power
is found by integrating (Ex 10.1.5) over the 4π solid angle, Focussing on just the
angular part,

∫ 2π

0

∫ π

0

(2 − sin2 θ) sin θ dθ dϕ =
16π

3
(Ex 10.1.6)

The summarize, the total power emitted is

P =
µ0ω

4

6πc

(

λ0ℓ
3

12

)2

(Ex 10.1.7)
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It might be noted that this result is exactly twice that obtained in (10–59) for the
simple linear oscillator; a result that might have been anticipated from the fact that
two oscillators in quadrature do not interfere.

10.2.2 Magnetic Dipole and Electric Quadrupole Radiation

If the first term of the vector potential (10–41) vanishes, or the source dimensions
are not overwhelmingly small, the next (ℓ = 1) term will contribute significantly
to the field. This term will be seen to give rise to both electric quadrupole and
magnetic dipole radiation.

Returning to the expansion of the vector potential (10–41)

�A(�r ) = iµ0k
∑

ℓ,m

h
(1)
ℓ (kr)Ym

ℓ (θ, ϕ)

∫

�J(�r ′)jℓ(kr′)Y∗m
ℓ (θ′, ϕ′)d3r′

and using the summation identity for spherical harmonics (F–47)

∑

m

Ym
ℓ (θ, ϕ)Y∗m

ℓ (θ′, ϕ′) =
2ℓ + 1

4π
Pℓ(cos γ) =

2ℓ + 1

4π
Pℓ(r̂ · r̂ ′) (10–60)

(γ is the angle between �r and �r ′) we can write (10-41) as

�A(�r ) = µ0ik
∑

ℓ

2ℓ + 1

4π
h

(1)
ℓ (kr)

∫

�J(�r ′)jℓ(kr′)Pℓ(r̂ · r̂ ′)d3r′ (10–61)

(Notice that we have eliminated the summation over m at the expense of reintro-
ducing an �r dependence into the integral.) As P1(x) = x, the ℓ = 1 term yields

�A1(�r ) =
3µ0ik

4π
h

(1)
1 (kr)

∫

�J(�r ′)j1(kr′)(r̂ · r̂ ′)d3r′ (10–62)

For small kr′, we approximate jℓ(kr′) by (kr′)ℓ/(2ℓ + 1)!!, which gives for ℓ = 1,
j1(kr′) ≈ 1

3kr′. Thus, the ℓ = 1 term of the vector potential may be approximated
as

�A1(�r ) =
µ0ik

4π
h

(1)
1 (kr)

∫

�J(�r ′)kr′(r̂ · r̂ ′)d3r′

=
−µ0ik

2

4π

eikr

kr

(

1 +
i

kr

)
∫

�J(�r ′)(r̂ · �r ′)d3r′

=
−iµ0keikr

4πr2

(

1 − 1

ikr

)∫

�J(�r ′)(�r · �r ′)d3r′ (10–63)

Again we would like to relate this expression more directly to moments of the
charge and current distributions. Since the integral in (10–63) evidently contains

a moment of �J (which implies also a second moment of ρ), we anticipate a decom-
position in terms of a magnetic dipole and/or electric quadrupole. To remove the

magnetic dipole contribution, we use the identity
[

�r ′× �J(�r ′)
]

×�r = (�r ′·�r ) �J−(�r· �J )�r ′



282 Classical Electromagnetic Theory

to rewrite the integrand in the not immediately obvious form

(�r · �r ′) �J = 1
2

[

(�r ′ · �r ) �J + (�r · �J )�r ′ + (�r ′ × �J ) × �r
]

(10–64)

The magnetic moment of a current distribution is generally (2–24)

�m = 1
2

∫

�r ′ × �J(�r ′)d3r′

which lets us write (10–64) as

�A1(�r ) =
−iµ0keikr

4πr2

(

1− 1

ikr

){

�m×�r+ 1
2

∫

[

(�r ′ · �r ) �J + (�r · �J )�r ′
]

d3r′
}

(10–65)

We put aside, for the moment, the integral in (10–65) and focus our attention
on the magnetic dipole moment’s contribution to the vector potential, namely

�AM (�r ) =
iµ0keikr

4πr

(

1 − 1

ikr

)

(r̂ × �m) (10–66)

Comparing this expression with those for the fields of the electric dipole, (10–47)

and (10–53), we find that �AM has the same form as �B, in (10–47). Then �BM =
�∇× �AM will have the same form as the electric dipole electric field, �E = ic2/ω�∇× �B,
previously found in (10-53). Making allowance for the different constants, we find

[replacing �m by −iω�p to make the expression for �AM (10–66) correspond with that

for �B in (10–47)] �B = 1/c2× (10–53) with �m replacing �p0 or

�BM =
k2µ0

4π

eikr

r
r̂ × (�m × r̂) +

µ0

4π

(1 − ikr)eikr

r3
[3r̂(�m · r̂) − �m] (10–67)

The relation �∇ × �E = iω �B = iω(�∇ × �A) suggest �E = iω �A (this can of course be

verified by the rather tedious calculation of the curl of �B). Using this shortcut, we
find

�EM =
−kωµ0

4π

(

1 − 1

ikr

)

eikr

r
(r̂ × �m) (10–68)

The radiation pattern will clearly be identical to that of the electric dipole shown
in Figure 10.2. It will be noted that the electric field of magnetic dipole radiation
is purely transverse to �r.

We return now to the remaining terms of (10–65), which we denote �AQ, of the
vector potential:

�AQ =
−µ0ikeikr

8πr2

(

1 − 1

ikr

)∫

[

(�r · �r ′) �J + (�r · �J )�r ′
]

d3r′ (10–69)

The choice of subscript anticipates our conclusion that this component of the field
arises from oscillating quadrupoles. The integral can again be “integrated by parts”
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to yield a term in div �J , which we will replace by iωρ by means of the continuity
equation. The method is identical to that employed in Section 10.2.1. Consider

�∇′ ·
[

(�r · �r ′)x′α �J
]

= (�r · �r ′)x′α(�∇′ · �J ) + �J · �∇′ [(�r · �r ′)x′α]

= xβx′βx′α(�∇′ · �J ) + Jγ∂′
γ

(

xβx′βx′α)

= xβx′βx′α(�∇′ · �J ) + Jγxβ

(

x′α∂′
γx′β + x′β∂′

γx′α)

= xβx′βx′α(�∇′ · �J ) + xβJβx′α + xβx′βJα

= xβx′βx′α(�∇′ · �J ) + (�r · �J )x′α + (�r · �r ′)Jα (10–70)

The latter two terms are just the α component of the integrand in (10–69). Con-
cerning ourselves only with the α component for the moment, we have
∫

[

(�r · �J)x′α + (�r · �r ′)Jα
]

d3r′ =

∫

�∇′ ·
[

(�r · �r ′)x′α �J
]

d3r′−
∫

xβx′βx′α(�∇′ · �J )d3r′

=

∮

x′α(�r · �r ′) �J · d�S −
∫

xβx′βx′α(iωρ)d3r′

= −iω

∫

x′αxβx′βρ(�r ′)d3r′ (10–71)

so that generalizing for all three components we obtain

�AQ(�r ) =
−µ0ωkeikr

8πr2

(

1 − 1

ikr

)∫

�r ′(�r · �r ′)ρ(�r ′) d3r′ (10–72)

To relate �AQ to the quadrupole moment of the distribution, we consider the

α component of �AQ and recall the definition of the quadrupole moment (2–16) to
write:

(

�AQ

)α

=
−µ0ωkeikr

8πr2

(

1 − 1

ikr

)

1

3
xβ

∫

3x′βx′αρ(�r ′)d3r′

=
−µ0ωkeikr

24πr2

(

1 − 1

ikr

)[

xβQαβ + xβ

∫

δαβr′2ρ(�r ′)d3r′
]

=
−µ0ωkeikr

24πr2

(

1 − 1

ikr

)[

xβQαβ + xα

∫

r′2ρ(�r ′)d3r′
]

(10–73)

The complete induction and radiation fields are rather complicated to write out.
Instead we will restrict ourselves to the fields in the radiation zone, where they can
be found from

�B = ikr̂ × �A and �E = ikc(r̂ × �A) × r̂ (10–74)

Since both fields involve the cross product of �r with �A, the term with �r multiplying
the integral will make no contribution (only the α component is represented above)

and may therefore be dropped from the expression for �A without loss, leaving

(

�AQ

)α

=
−µ0ωkeikr

24πr2
xβQαβ (10–75)
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Abbreviating Xα = xβQαβ (or �X = �r · ↔
Q ) we compute the Poynting vector as

〈 �S 〉 =
�E0 × �B0

2µ0
=

µ0ω
2k4c

1152π2r4

[

(r̂ × �X) × r̂
]

×
[

r̂ × �X
]

=
µ0ω

6

1152π2r4c3

[

X2 − ( �X · r̂)2
]

r̂ (10–76)

which leads to the angular power distribution

dP

dΩ
= r2〈 �S 〉 · r̂ =

µ0ω
6

1152π2r2c3

[

xβQαβQαγxγ − xβQαβxαxγQγδx
δ

r2

]

(10–77)

In order to find the total power emitted, this expression must be integrated over
the solid angle. With xα, xβ , xγ , and xδ chosen from z = r cos θ, x = r sin θ cos ϕ,
and y = r sin θ sinϕ, we evaluate the integrals (most easily done by expressing x, y,
and z in terms of spherical harmonics):

∫ 4π

0

xαxβdΩ = 4
3πr2δβ

α (10–78)

∫ 4π

0

xαxβxγxδdΩ = 4
15πr4

(

δαβδγδ + δγ
αδδ

β + δδ
αδγ

β

)

(10–79)

The term of (10–77) enclosed by square brackets integrated over the solid angle
then becomes

∫ 4π

0

(

QαβQαγxβxγ − QαβQγδxαxβxγxδ

r2

)

dΩ

= 4
3πr2

[

QαβQαβ − 1
5

(

QαβδαβδγδQγδ + QαγQαγ + QαδQ
αδ
)]

(10–80)

↔
Q is a tensor with zero trace, Qαβδαβ =

∑

i Qii vanishes, leaving

P =
µ0ω

6

1152π2c3

4π

3

(

QαβQβα − 2
5QαγQαγ

)

=
µ0ω

6

1440πc3
QαβQαβ (10–81)

The power radiated by an electric quadrupole varies as the sixth power of ω com-
pared to the fourth power for the dipole. This means that for very high frequency
radiation such as that emitted by nuclei when they change internal energy states,
quadrupole and even higher order radiation may dominate the decay.

Example 10.2: Find the angular distribution of radiation as well as the total power
radiated by the oscillating linear quadrupole composed of two equal charges −q0

spaced at distance a from a central charge 2q0 oscillating in phase (illustrated in
Figure 10.3).

Solution: The nonzero components of the quadrupole moment are (2–16)

Qxx = Qyy = 2a2q0 and Qzz = −4a2q0 (Ex 10.2.1)
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Figure 10.3: A linear oscillating quadrupole. Figure 10.4: The radiation pattern of the lin-
ear quadrupole. The pattern is invariant under
rotation about the quadrupole (z ) axis.

The first term of the bracketed expression in (10-77) then becomes

Q2
xxx2 +Q2

yyy2 +Q2
zzz

2 = 4q2
0a4(x2 +y2 +4z2) = 4q2

0a4r2(1+3 cos2 θ) (Ex 10.2.2)

while the second term becomes

1

r2

(

Q2
xxx4 + Q2

yyy4 + Q2
zzz

4 + 2QxxQyyx2y2 + 2QxxQzzx
2z2 + 2QyyQzzy

2z2
)

=
4q2

0a4

r2

(

x4 + y4 + 4z4 + 2x2y2 − 4x2z2 − 4y2z2
)

=
4q2

0a4

r2

(

x2 + y2 − 2z2
)2

= 4q2
0a4r2

(

1 − 3 cos2 θ
)2

(Ex 10.2.3)

Combining the two terms, we obtain

dP

dΩ
=

µ0ω
6

1152π2c3
4a4q2

0

(

1 + 3 cos2 θ − 1 + 6 cos2 θ − 9 cos4 θ
)

=
µ0ω

6

32π2c3
a4q2

0 cos2 θ sin2 θ (Ex 10.2.4)

The angular distribution is independent of the polar angle ϕ as would be anticipated
from the geometry. A cross section in a plane containing the quadrupole gives the
four-lobed pattern in Figure 10.4. The entire radiation pattern consists of the double
cone obtained when the curve in Figure 10.4 is rotated about the z axis.

The mean total power radiated by the quadrupole may be obtained directly from
(10–81) to yield

〈P〉 =
µ0ω

6

1440πc3

(

4a4q2
0 + 4a4q2

0 + 16a4q2
0

)

=
µ0ω

6

60πc3
a4q2

0 (Ex 10.2.5)

This result could of course also have been obtained by integrating dP/dΩ di-
rectly.
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⋆ 10.2.3 Radiation by Higher Order Moments

The evaluation of higher multipole terms by the foregoing methods becomes pro-
gressively more difficult, particularly untangling the magnetic and electric moment
contributions. Instead of continuing in this manner, we will pursue a more general
approach. We will, using a method proposed by Bouwkamp and Casimir,25 relate
the spherical polar vacuum wave solution (3–67) and (3–68) to the source currents.

We briefly recall from Chapter 3 that the solutions of the vacuum wave equations
for �E and �B were derived from a Debye potential

ψm
ℓ (�r ) =

{

jℓ(kr)
nℓ(kr)

}

Ym
ℓ (θ, ϕ) (10–82)

The TE fields were then obtained by taking

�ETE = ik�∇× �rψ and �BTE =
1

c
�∇× (�∇× �rψ) (10–83)

while the TM fields are given by

�BTM =
−ik

c
(�∇× �rψ) and �ETM = �∇× (�∇× �rψ) (10–84)

In order to obtain outgoing waves of the form eikr/r, the particular linear com-

bination of jℓ(kr) and nℓ(kr) must be h
(1)
ℓ (kr). Of special interest are the radial

components of the fields which take the form

BTE
r =

ℓ(ℓ + 1)

cr
ψm

ℓ and ETM
r =

ℓ(ℓ + 1)

r
ψm

ℓ (10–85)

If Er and Br (or equivalently, the more convenient Hr) are known, the entire
field is determined. We will obtain the field components Er and Hr generated
by a harmonically oscillating source current distribution and so obtain the entire
solution. If the source were more conveniently described as an oscillating charge
distribution, the continuity equation would serve to relate the current to the charge
density.

We begin, as always, with Maxwell’s equations (8–10) to relate the fields to their

sources. Let us start with the magnetic field. For harmonically varying fields, �H is
directly related to the currents by

�∇× �H = �J − iωε0
�E (10–86)

while �E is given by
�∇× �E = iµ0ω �H (10–87)

As we want only the r component, we seek an inhomogeneous wave equation for
(�r · �H). To this end, we consider the vector identity26

∇2(�r · �H) = 2�∇ · �H + �r · ∇2 �H (10–88)

25C.J. Bouwkamp and H.B.G. Casimir (1954) Physica XX, pp. 539-554.
26The identity is easily obtained using tensor notation:

∂i∂
i(xjHj)= ∂i(δ

i
jHj + xj∂iHj) = ∂jHj + δij∂iHj + xj∂i∂

iHj

= 2∂jHj + xj∂i∂
iHj = 2�∇ · �H + �r · ∇2 �H
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The first term on the right hand side of (10–88) vanishes and we obtain an

explicit expression for ∇2 �H using the vector identity (13)

∇2 �H ≡ −�∇× (�∇× �H) + �∇(�∇ · �H)

whose last term of course must likewise vanish in vacuum. Substituting for curl �H
from equation (10–86) in the identity above we obtain

∇2 �H = −�∇× ( �J − iωε0
�E)

= −�∇× �J + iωε0
�∇× �E

= −�∇× �J − ω2ε0µ0
�H (10–89)

When this result is inserted into (10–88), we obtain the desired wave equation:
(

∇2 +
ω2

c2

)

(

�r · �H
)

= −�r · (�∇× �J ) (10–90)

The solution to equation (10-89) is, according to (10–32),

(�r · �H) =
1

4π

∫

�r ′ ·
[

�∇′ × �J(�r ′)
]

eik|�r−�r ′|

|�r − �r ′| d3r′ (10–91)

The same argument might be applied to �r · �E, but unfortunately the divergence
of �E need not vanish. Instead, we apply the identity (10–88) to the quantity with

vanishing divergence, �E − �J/iωε0. Following the tracks above,

∇2

[

�r ·
(

�E −
�J

iωε0

)

]

= 2�∇ ·
(

�E −
�J

iωε0

)

+ �r · ∇2

(

�E −
�J

iωε0

)

(10–92)

The definition of the vector Laplacian (13) gives

∇2

(

�E −
�J

iωε0

)

= −�∇×
[

�∇×
(

�E −
�J

iωε0

)

]

+ �∇
[

�∇ ·
(

�E −
�J

iωε0

)

]

= −�∇×
(

�∇× �E
)

+ �∇×
(

�∇×
�J

iωε0

)

= −�∇×
(

iωµ0
�H
)

+ �∇×
(

�∇×
�J

iωε0

)

= −iµ0ω
(

�J − iωε0
�E
)

+ �∇×
(

�∇×
�J

iωε0

)

= −ε0µ0ω
2

(

�E −
�J

iωε0

)

+ �∇×
(

�∇×
�J

iωε0

)

(10–93)

The analogue of (10–90) becomes

(

∇2 +
ω2

c2

)

[

�r ·
(

�E −
�J

iωε0

)

]

=
−i

ωε0
�r ·
[

�∇×
(

�∇× �J
)

]

(10–94)
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with solution

�r · �E =
�r · �J

iωε0
+

i

4πωε0

∫ �r ′ ·
{

�∇′ ×
[

�∇′ × �J(�r ′)
]

}

|�r − �r ′| eik|�r−�r ′|d3r′ (10–95)

Comparison of term under the integral with (3–46) we recognize the Laplacian of

the solenoidal current ∇′2 �Js(�r
′) = −�∇′ × [�∇′ × �J(�r ′)], so that we can abbreviate

�r · �E =
1

iωε0

[

�r · �J +
1

4π

∫

(�r ′ · ∇′2 �Js)e
ik|�r−�r ′|

|�r − �r ′| d3r′
]

(10–96)

verifying that the radiation field depends only on the solenoidal current as discussed
in 3.4.2. The longitudinal component of �J in (10–91) has no curl and we can

therefore, without loss, replace �J by �Js as well.
We can cast (10-91) and (10–95) into the form of the vacuum fields by expanding

eik|�r−�r ′|/|�r − �r ′| in spherical polar coordinates. Taking r′ as the lesser of r and r′,
equation (10–91) becomes

�H · �r = ik
∑

ℓ,m

h
(1)
ℓ (kr)Ym

ℓ (θ, ϕ)

∫

�r ′ ·
[

�∇′ × �J(�r ′)
]

jℓ(kr′)Y∗m
ℓ (θ′, ϕ′)d3r′ (10–97)

Comparing this to the result from the Debye potentials (3–67),

�H · �r =
∑

ℓ,m

bm
ℓ

√

ε0

µ0
ℓ(ℓ + 1)h

(1)
ℓ (kr)Ym

ℓ (θ, ϕ)

we find that the amplitude coefficient bm
ℓ for TE wave generated by current �J is

bm
ℓ =

ik

ℓ(ℓ + 1)

√

µ0

ε0

∫

�r ′ ·
[

�∇′ × �J(�r ′)
]

jℓ(kr′)Y∗m
ℓ (θ′, ϕ′)d3r′ (10–98)

The integral can be marginally simplified by using the identity

�r ′ξ ·
(

�∇′ × �J
)

= �J ·
(

�∇′ × �r ′ξ
)

+ �∇′ ·
(

�J × �r ′ξ
)

to replace the integrand above. The �∇′ · ( �J × �r ′ξ) term in the volume integral
may be converted to a surface integral surrounding the source, and since J is zero
outside the source, that term vanishes. Our final form for the coefficient is then

bm
ℓ =

ik

ℓ(ℓ + 1)

√

µ0

ε0

∫

�J(�r ′) ·
[

�∇′ × �r ′jℓ(kr′)Y∗m
ℓ (θ′, ϕ′)

]

d3r′ (10–99)

Similarly, from (10–95) we find that outside the source ( �J = 0),

�E · �r =
−k

ωε0

∑

ℓ,m

h
(1)
ℓ (kr)Ym

ℓ (θ, ϕ)

∫

�r ′ ·
{

�∇′×
[

�∇′× �J(�r ′)
]}

jℓ(kr′)Y∗m
ℓ (θ′, ϕ′)d3r′
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= −
√

µ0

ε0

∑

ℓ,m

h
(1)
ℓ (kr)Ym

ℓ (θ, ϕ)

∫

�J ·
{

�∇′×
[

�∇′× �r ′jℓ(kr′)Y∗m
ℓ (θ′, ϕ′)

]}

d3r′

=
∑

am
ℓ ℓ(ℓ + 1) h

(1)
ℓ (kr)Ym

ℓ (θ, ϕ) (10–100)

where the latter form corresponds to the TM r-component of the electric field given
in (3–68). This expression allows us to identify the amplitude coefficient for TM
wave generation am

ℓ as

am
ℓ =

−1

ℓ(ℓ + 1)

√

µ0

ε0

∫

�J ·
{

�∇′ ×
[

�∇′ × �r ′jℓ(kr′)Y∗m
ℓ (θ′, ϕ′)

]

}

d3r′ (10–101)

The radiation fields from an arbitrary source may now be written

�E =
∑

ℓ,m

am
ℓ

�E TM
ℓ,m (�r ) + bm

ℓ
�E TE

ℓ,m(�r ) (10–102)

and
�H =

∑

ℓ,m

am
ℓ

�H TM
ℓ,m (�r ) + bm

ℓ
�H TE

ℓ,m(�r ) (10–103)

If jℓ(kr′) is replaced by its first order approximation (kr′)n/(2n + 1)!! for small
kr′, the multipole expansion results, with am

ℓ due to the electric 2ℓ-pole moment and
bm
ℓ due to the magnetic 2ℓ-pole moment. In this treatment it is unfortunately not

transparent that Hr (or the TE coefficient, bm
ℓ ) derives directly from the currents,

while Er derives more directly from the charge distribution.
The “unit” fields have been defined so that the TE and TM fields give the

same energy flux. Inspection of (10–99) and (10–101) reveals that the electric
dipole-generated field coefficient, am

ℓ , has one more differentiation with respect to
the source coordinates than bm

ℓ , which corresponds very loosely to division by a
distance of order the source dimension a. We infer that a given current gives rise
to a magnetic multipole source term bm

ℓ roughly ka (≪ 1) times that of the electric
source term am

ℓ . With the harmonic time dependence assumed, ka = ωa/c ≈ v/c,
where v is the velocity of the charge giving rise to the current. For optical radiation
from atoms or molecules this leads to the expectation that magnetic dipole radiation
will have a strength v2/c2 ≈ 10−4 compared to that of the electric dipole.

⋆ 10.2.4 Energy and Angular Momentum of the Multipole Fields

To compute the energy radiated by an oscillating source, it suffices to use the large

kr asymptotic form of h
(1)
ℓ (kr) = (−i)ℓ+1eikr/(kr). Under this simplification, TM

2ℓ-pole radiation (electric multipole) with unit amplitude is given by (3–66) as

�HTM =
−ik

µ0c

{

�r × �∇
[

h
(1)
ℓ (kr)Ym

ℓ (θ, ϕ)
]

}

= −ik

√

ε0

µ0
h

(1)
ℓ (kr)�r × �∇Ym

ℓ (θ, ϕ)
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= i−ℓ

√

ε0

µ0

eikr

r
�r × �∇Ym

ℓ (θ, ϕ) (10–104)

while from the explicit expressions (3–68), the corresponding electric field is

�ETM ≈ i−ℓ eikr

r

[

∂

∂θ
Ym

ℓ (θ, ϕ)θ̂ +
im

sin θ
Ym

ℓ (θ, ϕ)ϕ̂

]

= i−ℓeikr �∇Ym
ℓ (θ, ϕ) (10–105)

For magnetic multipole radiation (TE waves), the equivalent results are

�ETE = i−ℓ eikr

r
�r × �∇Ym

ℓ (θ, ϕ) (10–106)

and

�HTE = i−ℓ

√

ε0

µ0
eikr �∇Ym

ℓ (θ, ϕ) (10–107)

For either type, the Poynting vector, �S, is given by

〈 �S 〉 = 1
2Re( �E × �H∗) = 1

2

√

ε0

µ0
|E|2r̂ = 1

2

√

µ0

ε0
|H|2r̂

= 1
2

√

ε0

µ0

∣

∣�∇Ym
ℓ (θ, ϕ)

∣

∣

2
r̂ (10–108)

The total power, P, radiated by the source may be found by integrating (10–108)
over the surface of a large enclosing sphere of radius R centered in the source:

〈P〉 =

∮

〈 �S 〉 · d�S =
1

2

√

ε0

µ0

∮

∣

∣

∣

�∇Ym
ℓ (θ, ϕ)

∣

∣

∣

2

r̂ · d�S

=
1

2

√

ε0

µ0

[∮

�∇ · (Ym∗
ℓ

�∇Ym
ℓ )dS −

∫

4π

∣

∣Ym
ℓ ∇2Ym

ℓ

∣

∣R2dΩ

]

(10–109)

The first integral vanishes because �∇Pm
ℓ (cos θ)eiϕ → Pm±1

ℓ (cos θ)eiϕ, while the
second may be simplified by ∇2Ym

ℓ = −ℓ(ℓ + 1)Ym
ℓ /R2 to yield

〈P〉 =
1

2

√

ε0

µ0
ℓ(ℓ + 1)

∫

|Ym
ℓ (θ, ϕ)|2 dΩ =

1

2

√

ε0

µ0
ℓ(ℓ + 1) (10–110)

The angular momentum transported across a spherical surface of radius r during
time dt is just the angular momentum contained in a shell of thickness c dt. In other
words, the angular momentum lost from the volume surrounded by the shell during
time dt is

d�L =

∫

shell

(�r × �P)r2cdtdΩ

= c

∫

shell

�r ×
�E × �H

c2
r2dΩdt (10–111)
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which, for sufficiently small dt, we may rewrite as

d�L =
r2

c

∫

[

�E(�r · �H) − �H(�r · �E )
]

dΩdt (10–112)

To evaluate the integral, we specialize to TM radiation (electric multipole),

although the TE results are identical. For TM radiation, �H · �r = 0 and

�E · �r = ℓ(ℓ + 1)h
(1)
ℓ (kr)Ym

ℓ (θ, ϕ)

≈ ℓ(ℓ + 1)i−ℓ+1 eikr

kr
Ym

ℓ (θ, ϕ) (10–113)

The ϕ component of �H, Hϕ, contributes nothing to �L since, using (F–32) to evalu-
ate the derivative called for in (3–68) we find

∂

∂θ
Pm

ℓ (cos θ) = 1
2Pm+1

ℓ (cos θ) − 1
2 (ℓ + m)(ℓ − m + 1)Pm−1

ℓ (cos θ) (10–114)

which, when multiplied by Ym
ℓ (θ, ϕ) in the expression for Er or Eϕ, leads to a van-

ishing integral. From (3–68) and the asymptotic form h
(1)
ℓ (kr) = (−i)ℓ+1eikr/(kr)

we have

Hθ ≈ km

µ0c sin θ
(−i)ℓ+1 eikr

kr
Ym

ℓ (θ, ϕ) (10–115)

Reverting to Cartesian coordinates,

Hz = −Hθ sin θ ≈ −m

√

ε0

µ0
i−ℓ+1 eikr

r
Ym

ℓ (θ, ϕ) (10–116)

Thus the time average loss rate of angular momentum about the z axis due to
radiation with the aid of (10–113) and (10–116) is found to be

〈

dLz

dt

〉

=
r2

c

∫

Hz(�r · �E )dΩ

=
1

2

m

kc

√

ε0

µ0
ℓ(ℓ + 1)

∫

|Ym
ℓ (θ, ϕ)|2 dΩ =

1

2

m

kc

√

ε0

µ0
ℓ(ℓ + 1) (10–117)

The ratio of radiated angular momentum to radiated power P = dW/dt is

〈dLz/dt〉
〈dW/dt〉 =

m

kc
=

m

ω
(10–118)

a relationship consistent with the requirements of quantum mechanics. According
to quantum mechanics, atoms radiate photons with energy h̄ω while changing the
z component of angular momentum by h̄. When radiating via higher moments, an-
gular momentum is radiated in multiples of h̄. (This treatment does not distinguish
between spin and orbital angular momentum, and caution in the interpretation is
advised.)
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10.2.5 Radiation from Extended Sources

When the dimensions of the radiating system are not small compared to the wave-
length of radiation, the multipole expansion of the potential is not valid and the
integrals (10–21) or (10–22) for the potential must be evaluated directly. To make
this discussion more concrete, let us consider the radiation arising from the thin,
linear, center-fed antenna illustrated in Figure 10.5. We choose the z axis to lie
along the antenna.

Figure 10.5: A center-fed linear antenna carrying symmetric current I (z ).

The antenna of length d is split by a small gap at its midpoint where each half is
supplied by current ±I0e

−iωt. To deduce the magnitude of the current on any point
of the antenna, we neglect radiation damping. The current must be symmetric about
the gap in the middle, and further, it must vanish at the ends. If the antenna were
short, we would expect the entire right side to be uniformly charged to one polarity
while the other side would be uniformly charged with the opposite polarity. For
the one-dimensional problem, the continuity equation then states ∂J/∂z = −∂ρ/∂t
= constant. Thus J would be of the form (const.) × ( 1

2d − |z|)δ(x)δ(y). For a
longer antenna, we expect the charge density, and therefore also the current, to
oscillate, still maintaining the endpoint boundary condition of J = 0 (Figure 10.6).
We therefore take

�J(�r, t) = k̂I sin
(

1
2kd − k|z|

)

δ(x)δ(y)e−iωt for |z| ≤ 1
2d (10–119)

The supply current will evidently be I0e
−iωt = Ie−iωt sin 1

2kd. The vector potential
due to an oscillating current is in general given by

�A(�r ) =
µ0

4π

∫ �J
(

�r ′, t − |�r−�r ′|
c

)

|�r − �r ′| d3r′

Figure 10.6: The figure shows a snapshot of the current and charge distri-
bution along the linear antenna. The same current runs along the antenna at
equal distances each side of center.
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Figure 10.7: The radiation pattern from a half wave (left) and full wave
(right) antenna. The dipole radiation pattern is superimposed on that for the
half wave antenna for comparison.

=
µ0

4π

∫

�J(�r ′, t)
eik|�r−�r ′|

|�r − �r ′| d3r′ (10–120)

In the radiation zone, we may approximate

eik|�r−�r ′|

|�r − �r ′| by
eikr

r
· e−ik(�r·�r ′)/r =

eikr

r
e−ikz′ cos θ (10–121)

With this approximation, the vector potential may be written

�A0(�r ) =
µ0

4π

eikr

r
k̂

∫ d/2

−d/2

I sin
(

1
2kd − k|z′|

)

e−ikz′ cos θdz′

= 2
µ0

4π

eikr

kr
k̂I

[

cos
(

1
2kd cos θ

)

− cos 1
2kd

sin2 θ

]

(10–122)

In the radiation zone,

�B = ikr̂ × �A ⇒ | �B0| = k sin θ| �A0| (10–123)

and
�E = ick(r̂ × �A) × r̂ ⇒ | �E0| = ck sin θ| �A0| (10–124)

giving an angular power distribution

dP

dΩ
=

r2

2µ0
| �E × �B∗| =

2µ0

(4π)2
I2c

∣

∣

∣

∣

∣

cos
(

1
2kd cos θ

)

− cos 1
2kd

sin θ

∣

∣

∣

∣

∣

2

(10–125)

The angular distribution evidently depends on kd. For kd ≪ π, one obtains, as
should be anticipated, the dipole radiation pattern. For the special values kd = π
(half wave) and kd = 2π (full wave) the angular distributions become

dP

dΩ
=

2µ0cI
2

(4π)2
cos2

(

1
2π cos θ

)

sin2 θ
kd = π (10–126)
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Figure 10.8: An information collecting sphere passes over the moving charge
distribution.

and
dP

dΩ
=

8µ0cI
2

(4π)2
cos4

(

1
2π cos θ

)

sin2 θ
kd = 2π (10–127)

As can be seen from Figure 10.7, the half wave pattern resembles that of a
dipole, but that of the full wave is considerably narrower.

The integrals over Ω, needed to find the total power, are most easily performed
numerically, yielding

P =
I2

2

µ0c

4π
×
{

2.438 for kd = π

6.70 for kd = 2π
(10–128)

10.3 The Liénard-Wiechert Potentials

The radiation field of a moving point charge is of particular importance because
although we have pretended that charge densities are smooth, we know that charge
is lumpy, and any real description of the world should, for instance, picture currents
as moving point charges. The fact that for a moving point charge, the position vector
�r ′ is a function of time complicates matters considerably.

To acquire a naive understanding, let us begin with the calculation of the scalar
potential arising from a moving finite-size lump of charge distribution. According
to (10–22), the potential at (�r, t) is given by

V (�r, t) =
1

4πε0

∫

ρ
(

�r ′, t − |�r−�r ′|
c

)

|�r − �r ′| d3r′ (10–129)

Imagine that situated at �r, we collect information about the field by means of
the information-collecting sphere to which we alluded earlier. For brevity we set R
= |�r − �r ′| and n̂′ = (�r − �r ′)/R. The sphere, as it passes each point �r ′ in space
at t′ = t − R/c, notes the charge density, divides by R, and sums the results as it
converges on �r at t.

Let us go through the motions of the sphere passing through a moving charge
distribution. To be definite, let us suppose that the charge distribution has radial
thickness ℓ and moves in a direction shown in Figure 10.8. If the charge has a
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component of its movement toward the observer as shown, the sphere will spend
more time passing over it than if it were stationary and hence will count it more
heavily in the final sum than if it were stationary. Because of the charge’s movement,
the sphere dwells on the charge for a time ∆t = L/c instead of the time ℓ/c it would
have if the charge did not move. The contribution to the potential would then be

V =
1

4πε0

q

R

L

ℓ
(10–130)

To compute L/ℓ we note that during the time interval ∆t during which the
shell overlaps the charge, the shell travels distance c∆t = L while the charge travels
radial distance (�v · n̂′)∆t = L − ℓ. Eliminating ∆t, we find

L

ℓ
=

1

1 − �v ′ · n̂′

c

=
1

1 − �β′ · n̂′
(10–131)

where we have defined �β′ = �v ′/c. In the limit as ℓ → 0, we can assign a unique
value to the retarded velocity �v ′ and direction n̂′. The potential we find is then

V (�r, t) =
1

4πε0

q
(

1 − �β′ · n̂′)|�r − �r ′|
(10–132)

The vector potential �A may be immediately written as a generalization of (10–
132)

�A(�r, t) =
µ0

4π

q�v ′
(

1 − �β′ · n̂′)|�r − �r ′|
(10–133)

Since (10–132) and (10–133) make no reference to the dimensions of the charge,
they must hold equally for extended and point charges (merely take the limit as
ℓ → 0).

The discerning reader may have noticed a subtle change in notation. Instead of
the prime ( ′ ) being used to denote the charge’s position or velocity, it has taken
on the meaning of the source charge’s retarded position, velocity, time, and so on.

⋆ 10.3.1 The Liénard-Wiechert Potentials Using Green’s Functions

We now turn to a somewhat more formal derivation of (10-132) and (10–133).
Consider the potential we construct from the time-dependent Green’s function (10–
27),

V (�r, t) =
1

4πε0

∫ ρ(�r ′, τ)δ

[

t −
(

τ +
|�r − �r ′|

c

)]

|�r − �r ′| d3r′ dτ (10–134)

The charge density of a moving point charge q is given by ρ(�r ′, τ) = qδ
(

�r ′ −
�rq(τ)

)

, where the charge is located at position �rq(τ) at the time τ . Then

V (�r, t) =
1

4πε0

∫ qδ [�r ′ − �rq(τ)] δ

(

t − τ − |�r − �r ′|
c

)

|�r − �r ′| d3r′ dτ (10–135)
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The integration over space is easily performed to give

V (�r, t) =
q

4πε0

∫ δ

(

t − τ − |�r − �rq(τ)|
c

)

|�r − �rq(τ)| dτ (10–136)

The δ function in the integral above may have its argument simplified by means of
the identity (C–7)

δ
(

g(τ)
)

=
∑

i

δ(τ − τi)

|dg/dτ |τ=τi

where the τi are the roots of g(τ). In our case g(τ) = t − |�r − �rq(τ)|/c − τ , giving

∣

∣

∣

∣

dg

dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

−1 − d

dτ

|�r − �rq(τ)|
c

∣

∣

∣

∣

=

∣

∣

∣

∣

−1 +
(�r − �rq)

c|�r − �rq|
· d�rq

dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

−1 +
�v(τ) · n̂(τ)

c

∣

∣

∣

∣

= 1 − �β(τ) · n̂(τ) (10–137)

Then

δ
(

t − |�r − �rq(τ)|
c

− τ
)

=
δ(τ − τi)

(1 − �β · n̂)|τ=τi

(10–138)

where τi = t − |�r − �rq(τ)|/c, is the retarded time, t′. With this help, (10–136) is
easily integrated over τ to yield

V (�r, t) =
q

4πε0

1

|�r − �rq(t′)|
[

1 − �β(t′) · n̂(t′)
] (10–139)

In identical fashion the vector potential may be obtained

�A(�r, t) =
µ0

4π

q�v(t′)

|�r − �rq(t′)|
[

1 − �β(t′) · n̂(t′)
] =

1

4πε0c

q�β′

|�r − �r ′|
(

1 − �β′ · n̂′
) (10–140)

It will be seen that (10–139) and (10–140) coincide with (10–132) and (10–133)
obtained by more elementary means.

10.3.2 The Fields of a Moving Point Charge

Computing the fields �B = �∇× �A and �E = −�∇V −∂ �A/∂t from (10–139) and (10–140)
is rather laborious because the retarded time and hence also the particle’s retarded
position coordinates depend on the field coordinates through the variable field travel
delay, |�r − �r ′|/c. For sophisticated readers, Jackson27 obtains a covariant Green’s
function and then efficiently calculates the fields as the components of a covariant
tensor. Because of the importance of the results, we will perform the indicated
differentiation of (10–139) and (10–140) by elementary means, but postpone it to

27J.D. Jackson (1998) Classical Electrodynamics, 3rd. ed. John Wiley & Sons, New York.
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Figure 10.9: The induction (non-radiative) field of a moving point charge
is detected by the observer to point to/from the position which the particle
is extrapolated to occupy at time t, not its location at the retarded time, t′,
when the field was emitted.

the end of the chapter where at least a quick look is recommended to get the flavor
of the labor. For now we merely quote the results:

�E(�r, t) =
q

4πε0

[

n̂′ − �β′

γ′2R′2ξ′3
+

−�a ′
⊥ + n̂′ × (�a ′ × �β′)

c2R′ξ′3

]

(10–141)

and �B(�r, t) =
n̂′

c
× �E(�r, t) (10–142)

where γ′2 ≡ 1/(1 − β′2), ξ′ ≡ 1 − �β′ · n̂′, and �a ′
⊥ is the component of the retarded

acceleration perpendicular to n̂′.
The fields divide fairly naturally into a 1/R′2 part, the induction field, and a

1/R′ part, the radiation field. It is interesting to note that the electric induction

field points in the direction n̂′−�β′; this vector points not from the retarded position,
but from the extrapolated present position where the charge will be at the time the
field is received if it continues undisturbed with its retarded velocity. The magnetic
induction field similarly has a direction appropriate to a moving charge at the
extrapolated current (i.e. at the time of observation) position as shown in Figure
10.9. The remainder of our effort in this chapter will be spent on the radiation fields

�ER =
q

4πε0

[

−�a ′
⊥ + n̂′ × (�a ′ × �β′)

c2R′ξ′3

]

(10–143)

and �BR =
n̂′

c
× �ER (10–144)

We initially consider only the radiation from accelerated charges whose speed is
small compared to that of light.

10.3.3 Radiation from Slowly Moving Charges

When the velocity of the charges is small compared to c, the term involving β′ will
be negligible and ξ′ = 1. The radiation fields become

�ER =
q

4πε0

−�a ′
⊥

c2R′ and �BR =
q

4πε0

n̂′ × (−�a ′
⊥)

c3R′ (10–145)
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Figure 10.10: A nonrelativistic charge radiates most strongly in a direction
at right angles to its acceleration.

yielding the Poynting vector

�S =
�E × �B

µ0
=

q2

(4πε0)2
(a ′

⊥)2n̂′

µ0c5R′2

=
q2(a ′

⊥)2n̂′

(4π)2ε0c3R′2 (10–146)

and, if n̂′ makes angle θ with �a ′, a ′
⊥ = a′ sin θ, giving

�S =
q2

(4π)2ε0

(a′)2 sin2 θ

c3R′2 n̂′ (10–147)

The angular distribution of radiation from the accelerated charge may be written

dP

dΩ
=

q2a′2 sin2 θ

(4π)2ε0c3
(10–148)

where Ω is the solid angle as seen by a stationary point at the source. The radi-
ation pattern is illustrated in Figure 10.10. The total power radiated is found by
integrating over the solid angle to be

P =
q2a′2

(4π)2ε0c3

∫ 2π

0

∫ π

0

sin2 θ sin θdθdϕ =
q2a′2

8πε0c3

∫ π

0

sin3 θdθ

=
q2a′2

6πε0c3
(10–149)

10.3.4 Thomson Scattering

Consider a free electron subjected to an oscillating field from a passing electro-
magnetic wave. The electron will accelerate and therefore radiate, but not in the
same direction as the incident (plane) wave. The scattering of coherent electromag-
netic waves by free nonrelativistic electrons is known as Thomson scattering. The
cross section for scattering, σ, the area over which the scatterer may be thought to
intercept all radiation to remove it from the incident beam, may be defined as

σ =
Power radiated

Power incident/Unit area
(10–150)
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If an incident plane wave has electric field �E, then the electron’s acceleration will
be �a = e �E/m, leading to radiated power

PR =
e2

6πε0c3

(

eE

m

)2

(10–151)

The incident power per unit area is �S = E2/µ0c (note that we have used the

instantaneous �E and �S) so that the Thomson scattering cross section σT is

σT =
µ0c

6πε0c3

e4

m2
=

e4/m2c4

6πε2
0

(10–152)

This result is usually expressed in terms of the “classical radius” of the electron
r0 ≡ e2/4πε0m0c

2 (the radius of a spherical shell of charge whose self-energy is
m0c

2). In terms of r0 (≈ 2.82×10−15 m for an electron), the Thomson cross section
is

σT =
8π

3
r2
0 = 6.67 × 10−29 m2 (10–153)

Example 10.2: The sun is a highly ionized plasma with average free electron density
about 1024cm−3. (a) Find the mean free path for electromagnetic radiation in the
sun. (b) Estimate the time required for electromagnetic radiation to diffuse from
the core of the sun to the outside (R⊙ ≈ 7 × 1010 cm).

Solution: (a) The mean free path is given by ℓ = 1/nσ = 1.50 cm.

(b) To find the diffusion time, we consider the radiation’s path as a random walk in
three dimensions. Suppose that after N steps the packet of radiation under consid-
eration is at distance DN from the center of the sun. Then, after one more step of
length ℓ at random angle θ with respect to DN , the mean square displacement will be

〈D2
N+1〉= 〈D2

N + ℓ2 + 2DN ℓ cos θ〉

= 〈D2
N 〉 + ℓ2 + 2DN ℓ〈cos θ〉

= 〈D2
N 〉 + ℓ2

(Ex 10.2.1)

The mean number of steps N required to reach R is N = R2/ℓ2. Each step requires
time ℓ/c, so that the total time required is

ℓ

c

R2

ℓ2
=

R2

ℓc
=

49 × 1020cm2

1.50cm × 3 × 1010cm/s
= 1.09 × 1011 s (Ex 10.2.2)

which is about 3500 years. This is actually an underestimate, as the density at the
center of the sun is considerably larger that the average density. In any case, it is
evident that it will take thousands of years before the luminosity of the sun reflects
any change in conditions in the core.



300 Classical Electromagnetic Theory

10.3.5 Radiation by Relativistic Charges

When the velocity of a charged particle is not much less than c, it is more convenient
to write the radiation field (10-143) as

�ER =
q

4πε0

n̂′ ×
[

(n̂′ − �β ′) × �̇β ′
]

cR′ξ′3
(10–154)

The component of the Poynting vector along n̂′ is then

�S · n̂′ =
�E × �B

µ0
· n̂′ =

(

q

4πε0

)2

∣

∣

∣n̂′ ×
[

(n̂′ − �β ′) × �̇β ′ ]
∣

∣

∣

2

µ0c3R′2ξ′6

=
q2

(4π)2ε0c

∣

∣

∣n̂′ ×
[

(n̂′ − �β ′) × �̇β ′ ]
∣

∣

∣

2

R′2ξ′6
(10–155)

a rather complicated expression. We will consider the cases of acceleration perpen-
dicular to the velocity and acceleration parallel to the velocity separately. Before
doing so, however, it’s worth pointing out that �S · n̂′ is the energy flux moving in
direction n̂′, detected by an observer at �r. The energy will generally have been
emitted during an earlier time interval ∆t′ different in duration from the interval
∆t during which it is observed, meaning that the reception rate will differ from the
emission rate. It would probably be more sensible to consider, instead of the rate
that radiation is received, the rate that the energy is emitted.

Suppose that at time t′ the charge is at distance R(t′) from the observer, while
at t′ + ∆t′ it is at distance R(t′ + ∆t′). The radiation emitted by the charge at
t ′ arrives at the observer at time t = t′ + R(t′)/c, while the radiation emitted at
t′ + ∆t′ arrives at t + ∆t = t′ + ∆t′ + R(t′ + ∆t′)/c. Calculating the time interval
during which the radiation arrives, we get

∆t = t′ + ∆t′ +
R(t′ + ∆t′)

c
− t′ − R(t′)

c

= ∆t′ +
R(t′ + ∆t′) − R(t′)

c

= ∆t′
[

1 +
1

c

R(t′ + ∆t′) − R(t′)

∆t′

]

(10–156)

In the limit of small ∆t′, this becomes simply ∆t = ∆t′(1 − �β ′ · n̂′) = ξ′∆t′.
Thus the energy received by the observer was in fact emitted at a rate ξ′ greater
than it is received. The power radiated (rather than received) per solid angle is
given by

dP(t′)

dΩ
= R′2ξ′( �S · n̂) =

q2

(4π)2ε0c

∣

∣

∣
n̂′ ×

[

(n̂′ − �β ′) × �̇β ′]
∣

∣

∣

2

(1 − n̂′ · �β ′)5
(10–157)
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Figure 10.11: The radiation pattern of a relativistic charge with v = 0.9c,
accelerated along its line of motion.

We proceed now to calculate the power emitted by charged particles accelerated
along their line of motion.

Velocity and acceleration parallel: Let n̂′ make angle θ′ with �β ′ (and �̇β ′ ) then

n̂′ · �β ′ = β ′ cos θ′ and

(n̂′−�β′)×�̇β ′ = n̂′×�̇β ′ = β̇ ′ sin θ′(n̂′× ˙̂
β ′) ⇒ |n̂′×(n̂′×�̇β ′)| = β̇′ sin θ′ (10–158)

so that (10–157) becomes

dP

dΩ
=

q2β̇ ′2 sin2 θ′

(4π)2ε0c(1 − β ′ cos θ′)5
(10–159)

For β ≪ 1, this reproduces our nonrelativistic result (10–148), but as β → 1, the
pattern elongates in the direction of motion as sketched in Figure 10.11 for β = 0.9.
The pattern can clearly be envisaged a that of Figure 10.10 with the lobes swept
forward in the direction of the particle’s motion. As β approaches unity, the angle
of maximum emission, θmax → 1/(2γ), while the peak power density is proportional
to γ8!

Acceleration Perpendicular to Velocity: We choose a coordinate system in

which, at t′, �β lies along the z axis and �̇β lies along the x axis. (For brevity,
we drop the prime on the variables). In Cartesian coordinates, when the ob-

server has angular coordinates θ and ϕ, �β = (0, 0, β), �̇β = (β̇, 0, 0) , and n̂ =
(sin θ cos ϕ, sin θ sin ϕ, cos θ) . The term in the numerator of (10–154) then becomes

n̂ ×
[

(n̂ − �β) × �̇β
]

= (n̂ · �̇β )(n̂ − �β) − [n̂ · (n̂ − �β)]�̇β

= β̇ sin θ cos ϕ(n̂ − �β ) − (1 − β cos θ)�̇β
(10–160)

which, when squared, gives

∣

∣

∣
n̂ ×

[

(n̂ − �β) × �̇β
]

∣

∣

∣

2

= (n2 − 2�β · n̂ + β2)β̇2 sin2 θ cos2 ϕ

+(1 − β cos θ)2β̇2 − 2β̇(1 − β cos θ)(n̂ − �β) · �̇β sin θ cos ϕ
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Figure 10.12: The radiation pattern from a charged particle with v = 0.9c,
accelerated perpendicular to its velocity.

= (1 − 2β cos θ + β2)β̇2 sin2 θ cos2 ϕ

+ (1 − β cos θ)2β̇2 − 2β̇2(1 − β cos θ) sin2 θ cos2 ϕ

= β̇2(1 − β cos θ)2
[

1 +
sin2 θ cos2 ϕ(1 − 2β cos θ + β2 − 2 + 2β cos θ)

(1 − β cos θ)2

]

= β̇2(1 − β cos θ)2
[

1 − sin2 θ cos2 ϕ

γ2(1 − β cos θ)2

]

(10–161)

The angular power distribution becomes

dP

dΩ
=

q2β̇2

(4π)2ε0c(1 − β cos θ)3

[

1 − sin2 θ cos2 ϕ

γ2(1 − β cos θ)2

]

(10–162)

The total power emitted may be obtained by integrating dP/dΩ or, as we will
do in the next chapter, by Lorentz transforming the instantaneous rest frame result
to yield

P(t′) =
q2β̇2γ4

6πε0c
(10–163)

In fact, for arbitrary orientations of β and �̇β, we will show (11–72) that

P =
q2γ6

6πε0c

[

(β̇)2 − | �β × �̇β |2
]

(10–164)

The radiation from a particle accelerated perpendicular to its velocity (circular
motion) has an angular distribution vaguely like that of a particle accelerated along
its velocity. It has a long narrow lobe facing forward (perpendicular to the accel-
eration), while the lobe facing against the velocity in the low speed limit is much
smaller and swept forward, as illustrated in Figure 10.12. The power per solid angle
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Figure 10.13: The qualitative time dependence of the power received from
a charged particle in relativistic circular motion. The small bumps on each
side of the main peak are due to the small, swept forward second lobe.

decreases to 0 when γ2(1−β cos θ)2 = sin2 θ cos2 ϕ. (10–62) maximizes as a function
of azimuthal angle when cos2 ϕ = 0, ie. in a direction perpendicular to the plane of
the orbit. The narrowing of the radiation lobes is referred to as the headlight effect.

10.3.6 Synchrotron Radiation

An important case of a charged particle accelerated in a direction perpendicular
to its motion is provided by particles accelerated in a large circular trajectory in a
synchrotron. Electrons or protons accelerated in a synchrotron may reach energies
of more than a thousand times their rest mass energy and are therefore extremely
relativistic. Let us, without getting embroiled in the mathematics, try to obtain a
qualitative appreciation of the spectrum of synchrotron radiation.

As β → 1, (1 − β cos θ) → 1
2 (γ−2 + θ2) and the angular power distribution

(10–162), illustrated in Figure 10.12, may be found to have an angular (full) width
∆θ = 2/γ when observed in the plane of the orbit. An observer in the plane
containing �v and �a will be illuminated by a pulse of electromagnetic radiation each
time the headlight beam sweeps over him or her. If the particle travels at close to
the speed of light, this repetition time is close to T = 2πR/c = 2π/ω0.

The pulse that eventually reaches the receiver is emitted during a time ∆t′ =
R∆θ/c = 2R/γc. For a particle moving in the direction of the observer, the observer

receives the pulse during a time ∆t = (1− �β · n̂)∆t′ = (1− β)2R/γc. When β ≈ 1,
1 − β may be approximated as 1/2γ2, giving the pulse received a width (in time)

∆t =
R

cγ3
(10–165)

Qualitatively, then, we expect a pulse F(t) of width ∼ ∆t repeated at intervals
T = 2π/ω0 = 2πR/c. The time dependence of the power received is sketched
qualitatively in Figure 10.13.

Choosing the time origin at the center of a peak, we express the power as a
Fourier series:

F(t) =
dP

dΩ
=
∑

n

An cos nω0t (10–166)
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Figure 10.14: The qualitative spectrum of synchrotron radiation.

with ω0 = c/R and An given by

An =
2

T

∫ T/2

−T/2

F(t) cos nω0t dt (10–167)

For terms with nω0 < cγ3/R, the cosine does not vary appreciably from 1 in
the region of nonzero F. The Fourier coefficients An with n < γ3 are thus all more
or less equal. As 1/nω0 becomes smaller than the duration of the pulse, the cosine
term will begin to oscillate within the pulse width, leading to rapidly decreasing
integrals. We conclude that harmonics up to n = γ3 occur in the power spectrum
with approximately equal strength, as illustrated qualitatively in Figure 10.14.

For 1 GeV electrons in a 5-m radius cyclotron, γ = 103 MeV/.5 MeV = 2× 103

and ω0/2π ≃ 107 Hz. The spectrum extends past 1017 Hz (λ = 3×10−9 m), well into
the x-ray region. In recent years, specially built synchrotrons have been fitted with
“wigglers,” or “undulators”, to increase their emission and to tune it to particular
harmonics.

The lobes on the sides of the main peak are responsible for a slight increase in
the amplitude of Fourier coefficients before the amplitude drops off again.

To obtain the exact results, the fields or potentials, rather than the power, must
be frequency analyzed giving a qualitatively similar, but not quite so flat spectrum
as the arguments above would indicate.

10.3.7 Bremstrahlung and Cherenkov radiation

We will not attempt anything but a brief qualitative discussion of bremstrahlung and
Cherenkov radiation as both of these require a detailed knowledge of the medium
through which a charged particle travels.

Bremstrahlung, German for “braking radiation” is emitted when a charged par-
ticle is brought rapidly to rest inside a material by interaction with other charged
particles in the material. Although it is tempting to ascribe the radiation to the
deceleration of the particle, a massive particle interacting with electrons in the
medium will produce far greater acceleration of the electrons than it itself under-
goes. It is the combined radiation from the medium and the incident particle that
constitutes bremstrahlung.
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Figure 10.15: Cherenkov radiation comes from emitters coherently excited
in the medium by the passage of a superluminal charged particle.

Cherenkov radiation is emitted when a charged particle travels through a medium
at a speed greater than the speed of light in the medium (c/n). Again it is not the
charged particle, which may be travelling at fairly constant speed, that emits the
radiation but the medium. As the particle travels through the medium electrons in
its neighborhood experience a rapidly varying electric field which elicits significant
acceleration of the electrons. As the superluminal particle proceeds through the
medium, it advances at v ≥ c/n while in its wake a disturbance spreads outward
with velocity c/n, creating a shock cone resembling the bow wave a ship. The cone
angle is readily determined from Figure 10.15. to be given by sin θ = c/(nv). The
particles on the shock front are excited coherently and therefore emit coherently in a
direction perpendicular to the shock front. It will also be noted that the responding
particles will be accelerated in a plane containing the trajectory of the impinging
particle and the responding particle. We therefore anticipate that the radiation will
be polarized along a⊥, or in the plane containing the trajectory and the observer.

Cherenkov radiation is useful in determining the speed of relativistic particles
as the cone angle, or alternatively the angle of the emitted radiation gives the speed
in terms of the medium’s refractive index.

10.4 Differentiating the Potentials

As mentioned, the differentiation of the potentials (10–132) and (10–133) to produce

the fields �B = �∇× �A and �E = −�∇V − ∂ �A/∂t is rather laborious and although not
inherently difficult, requires considerable care. Abbreviating when convenient—
�R′ = �r − �r ′, �β′ = �v ′/c, and ξ′ = 1 − �β ′ · n̂′ —we begin by finding the gradient of

V (�r, t) =
q

4πε0R′(t′)ξ′(t′)
(10–168)

The position and velocity R′ and β′ of a moving particle are functions of t′,
but the retarded time t′ depends explicitly on the field point coordinates and has a
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nonzero gradient; we write

−�∇V = −(�∇V )
∣

∣

∣

t′
− ∂V

∂t′
�∇t′ (10–169)

To evaluate this expression we compute first a number of recurring derivatives.

∂t′

∂t
: t′ = t − |�r − �r ′|

c
⇒ ∂t′

∂t
= 1 − 1

c

∂t′

∂t

d

dt′
|�r − �r ′|

= 1 +
�v ′ · n̂

c

∂t′

∂t

yielding
∂t′

∂t
=

1

1 − �β ′ · n̂ ′
=

1

ξ′
(10–170)

a result we have already encountered in (10–156).

∂n̂′

∂t′
:

∂n̂′

∂t′
=

∂

∂t′

(

�r − �r ′

|�r − �r ′|

)

=

∂ �R

∂t′

R′ −
�R′ ∂R′

∂t′

R′2

=
−�v ′

R′ +
�R′(�v ′ · n̂′)

R′2 =
1

R′ [(�v ′ · n̂′)n̂′ − �v ′]

=
n̂′ × (n̂′ × �v ′)

R′ (10–171)

∂ξ′

∂t′
:

∂ξ′

∂t′
=

∂

∂t′

(

1 − �v ′ · n̂′

c

)

= −�a ′ · n̂′

c
− �β′ · n̂′ × (n̂′ × �v ′)

R′ (10–172)

∂(R′ξ′)

∂t′
:

∂(R′ξ′)

∂t′
= −�v ′ · n̂′ξ′ − R′�a

′ · n̂′

c
− �β′ · [n̂′ × (n̂′ × �v ′)]

= −R′�a
′ · n̂′

c
− �v ′ ·

(

n̂′ − �v ′ · n̂′

c
n̂′ +

�v ′ · n̂′

c
n̂′ − �v ′

c

)

= −R′
(

�a ′ · n̂′

c

)

− �v ′ ·
(

n̂′ − �v ′

c

)

(10–173)

�∇t′ : �∇t′ = �∇
(

t − |�r − �r ′|
c

)

= −1

c

(

�∇|�r − �r ′| + ∂

∂t′
|�r − �r ′|�∇t′

)

= −1

c

�R

R
+

�v ′ · n̂′

c
�∇t′ = − n̂′

c
+ (�β′ · n̂′)�∇t′

⇒ �∇t′ =
−n̂′/c

1 − �β′ · n̂′
= − n̂′

ξ′c
(10–174)

We will also need the gradient of various quantities calculated at constant t′ (at

constant t′, the source position �r ′ and �β′, are fixed).

�∇R′
∣

∣

∣

t′
:

(

�∇|�r − �r ′|
)∣

∣

∣

t′
=

�r − �r ′

|�r − �r ′| = n̂′ (10–175)
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�∇ξ′
∣

∣

∣

t′
: �∇ξ′

∣

∣

∣

t′
= êi∂i



1 −
β′

j(x
j − xj′)

√

(xj − x′
j)(x

j − xj′)





= êi

[

−β′
jδ

j
i

R′ +
β′

j

(

xj − xj′) (xi − x′
i)

R′3

]

=
−�β′

R′ +
(�β′ · �R′)�R′

R′3 = −
�β′

R′ +
(�β′ · n̂′)n̂′

R′ (10–176)

We are now ready to continue with our evaluation of the gradient of −V . We
begin with −�∇V

∣

∣

t′
.

−�∇V
∣

∣

∣

t′
= −�∇ 1

4πε0

q

R′ξ′

∣

∣

∣

∣

t′
=

q

4πε0

(

ξ′�∇R′ + R′�∇ξ′

R′2ξ′2

)

=
q

4πε0

[

n̂′(1 − �β′ · n̂′) − �β′ + (�β′ · n̂′)n̂′

R′2ξ′2

]

=
q

4πε0

n̂′ − �β′

R′2ξ′2
(10–177)

We continue with the second term of the negative gradient:

−∂V

∂t′
= − q

4πε0

∂

∂t′
1

R′ξ′

=
q

4πε0R′2ξ′2

(

− (�a ′ · n̂′)R′

c
− �v ′ · n̂′ +

v′2

c

)

(10–178)

Combining the two terms, we compute −�∇V = −�∇V
∣

∣

∣

t′
+

n̂′

ξ′c

∂V

∂t′
:

−�∇V =
q

4πε0ξ′3R′2

[

(n̂′ − �β′)ξ′ + ξ′
n̂′

ξ′c

(

�a ′ · n̂′

c
R′ + �v ′ · n̂′ − v′2

c

)]

=
q

4πε0ξ′3

[

n̂′(1 − β′2) − �β′(1 − �β′ · n̂′)

R′2 +
n̂′(�a ′ · n̂′)

R′c2

]

(10–179)

Next we calculate −∂ �A/∂t:

−∂ �A

∂t
= −∂ �A

∂t′
∂t′

∂t
= − 1

ξ′
∂ �A

∂t′
=

−q

4πε0cξ′
∂

∂t′

( �β′

R′ξ′

)

=
q

4πε0cξ′

[

−�a ′/c

R′ξ′
+

�β′

R′2ξ′2
∂(R′ξ′)

∂t′

]

=
q

4πε0ξ′3

[

−ξ′�a′

R′c2
+ �β′−R′(�a ′ · n̂′)/c2 − �β′ · (n̂′ − �β′)

R′2

]
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=
q

4πε0ξ′3





(−�a ′ · n̂′)�β − ξ′�a ′

R′c2
+

(

β′2 − �β′ · n̂′
)

�β′

R′2



 (10–180)

We can now evaluate the electric field,

�E =
q

4πε0ξ′3

[

n̂′(1 − β ′2) − �β ′(1 − �β ′ · n̂′) + �β ′(β ′2 − �β ′ · n̂′)

R′2

+
n̂′(�a ′ · n̂′) − �a ′(1 − �β ′ · n̂′) − (�a ′ · n̂′)�β ′

R′c2

]

=
q

4πε0ξ′3

[

(n̂′ − �β ′)(1 − β ′2)

R′2 +
−�a ′

⊥ + n̂′ × (�a ′ × �β ′)

R′c2

]

(10–181)

where �a ′
⊥ = �a ′ − (�a ′ · n̂′)n̂′ is the component of the retarded acceleration perpen-

dicular to n̂′. This is the result we earlier quoted as (10–141).
The magnetic induction field of a moving point charge is found in similar fashion

from �∇× �A:

�∇× �A [�r, t′(�r )] = (�∇× �A)
∣

∣

∣

t′
− ∂ �A

∂t′
× �∇t′ (10–182)

Evaluating the first term, we get

(�∇× �A)
∣

∣

∣

t′
=

q

4πε0c
�∇×

�β ′

R′ξ′

∣

∣

∣

∣

t′
=

q

4πε0c
�∇
(

1

R′ξ′

)

× �β ′
∣

∣

∣

∣

t′

=
−q

4πε0c

n̂′ − �β′

R′2ξ′2
× �β ′ =

−q

4πε0c

n̂′ × �β ′

R′2ξ′2
(10–183)

where we have used the fact that �∇× t′ vanishes to eliminate the term in �∇× �β′.
Next we obtain −∂ �A/∂t′:

−∂ �A

∂t′
= − q

4πε0c

∂

∂t′

( �β ′

R′ξ′

)

=
−q

4πε0c

{

�a ′/c

R′ξ′
−

�β ′

R′2ξ′2

[

−R′�a
′ · n̂′

c
− �v ′ · (n̂′ − �β ′)

]}

=
q

4πε0ξ′2

[

−�a ′(1 − �β ′ · n̂′) − �β ′(�a ′ · n̂′)

R′c2
−

�β ′(�βa′ · n̂′ − β ′2)

R′2

]

(10–184)

The numerator of the first term may be expressed as −�a ′+ n̂′× (�a ′× �β′) in order to
bear greater similarity to the equivalent term in the electric field expression. Finally
we find �B.

�B =
q

4πε0ξ′2

{−n̂′ × �β ′

R′2c
+

[

−�a ′ + n̂′ × (�a′ × �β ′)

R′c2
+

�β ′(�β ′ · n̂′ − β ′2)

R′2

]

× −n̂′

ξ′c

}
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=
q

4πε0ξ′3

[

(1 − β ′2)�β ′ × n̂′

R′2c
+ n̂′ × −�a ′ + n̂′ × (�a ′ × �β ′)

R′c3

]

=
n̂′

c
× �E (10–185)

a result we stated without proof in (10–142).
It will be noted that nowhere in the foregoing derivations have we assumed any

harmonic time dependence, yet a radiation field arises, apparently due only to an
arbitrary movement of the sources and the finite speed of propagation of the fields.
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Figure 10.16: The electric quadrupole moment of problem 10-1.

Exercises and Problems

10-1 An electric quadrupole consisting
of four equal charges (Figure 10.16),
placed on the corners of a rectangle of
sides a and b, oscillates with diagonally
opposite charges in phase and contiguous
charges 180◦ out of phase. Find the ra-
diation pattern as well as the total power
emitted by the quadrupole.

10-2 The power emitted by an electric
dipole may be written

〈

dW

dt

〉

=
|p̈|2

4πε0(3c3)

Find a similar expression for the power
emitted by an oscillating magnetic dipole
and electric quadrupole. Generalize the
latter to obtain a guess for the power
emitted by gravitational radiation from
an oscillating mass quadrupole. Why
would you expect this result to be simi-
lar? What would lead to differences?

10-3 A bar magnet with magnetization
�M parallel to its long axis is rotated
about an axis perpendicular to and bi-
secting the magnet. Find the power
emitted by the magnet if ℓ ≪ c/ω.

10-4 In nuclear magnetic resonance
(NMR for short) the magnetic moments
of hydrogen nuclei in a sample rotate
about the direction of the flux density

�B0. Find the rate at which a single atom
would classically radiate energy. Why
should this result be invalid? Under
which conditions might it still be valid?

10-5 Assume that an atom emits radi-
ation at 500 nm. Estimate the rate of
emission of (a) electric dipole, (b) elec-
tric quadrupole, and (c) magnetic dipole
radiation expected on a classical basis.
What if the radiation had wavelength 50
nm?

10-6 Suppose that a hypothetical neu-
tron star (m = 2 × 1030 kg, R = 104 m)
has its neutrons aligned in a direction
perpendicular to its axis of rotation.
Find the rate that the neutron loses
energy by dipole radiation. How long
would it take for a neutron star rotating
at 300/2π Hz to lose 9/10 of its initial
rotational energy?

10-7 Find the impedance of a center-fed
half wave antenna as well as that of a full
wave antenna.

10-8 Consider a short (λ ≫ d) linear an-
tenna supplied at its center with current
I0 = Ie−iωt sin 1

2kd.

(a) Find the dipole moment of the an-
tenna, assuming that each half has a
uniform charge density.
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(b) Calculate the power radiated per
solid angle by treating the antenna as
an electric dipole.

(c) Calculate the power per solid an-
gle emitted by applying a small d ap-
proximation to eliminate the cosines in
equation (10–125).

10-9 A half wave antenna is parallel to a
large conducting sheet at a distance 1

4λ
from the sheet. Find the angular distri-
bution of the power radiated by the an-
tenna and the impedance of the antenna.

10-10 Assume that the electron in a hy-
drogen atom moves nonrelativistically in
a circular Bohr orbit of radius r. Con-
sider the circular motion as the super-
position of two linear oscillations in or-
thogonal directions, having the same fre-
quency but oscillating 1

2π out of phase.

(a) Show that the power radiated is

P =
q6

96π3ε3
0c

3m2r4

(b) If we assume that P/ω ≪ W =
q2/8πε0r, the orbit remains circular as
it decays. How long would it take
classically for the orbit to shrink from
r0 to 0? Insert the appropriate value
of r0 (for the 1S state) to obtain the
classical lifetime of the hydrogen atom.

10-11 A hypothetical two-electron Bohr
atom has its electrons counter-rotating
in the same circular orbit as shown in
Figure 2.9 (b). Find the rate of power
emission.

10-12 Redo part (a) of problem (10-10)
using the expression for radiation from a
nonrelativistic accelerated particle, (10–
149).

10–13 Calculate the energy emitted
classically by a charged particle in an el-
liptical orbit with major axis A, minor
axis B and period T.

10-14 Show that for a particle acceler-
ated in a direction parallel to its velocity,
dP/dΩ is maximum at θ = 1/2γ when β
approaches unity. (Hint: Set β = 1 − ǫ,
ǫ ≪ 1.) Show also that

dP

dΩ

∣

∣

∣

∣

θmax

→ αγ8

as β → 1, and evaluate α.

10-15 Show that for a particle acceler-
ated in a direction perpendicular to its
velocity, v ≈ c, the “headlight cone”
width tends to 2/γ. Find also how the
power emitted in a direction parallel to
the motion varies with γ.
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Chapter11

The Covariant Formulation

11.0 Covariance

Since our early use of special relativity to deduce the magnetic interaction between
two currents, we have largely disregarded the requirements of relativity. In the last
chapter there was in fact a tacit assumption that the fields travel with velocity c
independent of motion of the source or the observer. In this chapter we recast the
electromagnetic field equations in manifestly covariant form and use the four-vector
forms to deduce the Lorentz transformation laws for the potentials, the fields, the
magnetization, and polarization. We will also use relativistic covariance to find the
energy and momentum radiated by relativistic charges.

By covariant, we mean that under special relativistic transformations (one frame
moving with constant velocity with respect to another), equations of physics re-
main formally invariant. A quick review of four-tensors used in special relativity
is strongly recommended before starting this section. To avoid confusion between
the Lorentz factor 1/

√

1 − β2 for a particle in motion and that for a frame trans-
formation, we denote the former as γ, and identify the Lorentz factor for the frame
transformation as Γ. The appendix on tensors (Section B.5) illustrates the use (as
well as the utility) of this slightly nonstandard notation.

Four vectors Xµ have28 a time-like component x0 and three spatial compo-
nents x1, x2, x3 that we will frequently abbreviate as a three-vector �x, so we write
(x0, �x ). Points in space-time are also known as events and have contravariant
components (ct, x1, x2, x2). The interval between two events is given by dS2 =
√

(cdt)2 − (dx)2 − (dy)2 − (dz)2 giving metric tensor g0µ = δ0µ and gi,j = −δi,j (i,
j = 1, 2, 3) There seems to be no unanimity in the literature over the sign of the
elements of the metric tensor for special relativity. We will use the signs stated as
that gives a real positive interval between causally related events; roughly 30% of
the literature uses the signs reversed. So long as one or the other is consistently
used, no net change results. When using tensor notation in relativity, we adopt the

28 Note the ambiguity of this notation as Xµ can either represent the µ component of X or the
entire 4-vector, the context should make it clear which is intended.

—313—
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standard convention that Greek indices (superscripts and subscripts) range from 0
to 3 while Roman letter indices range from 1 to 3. The Roman letters t, x, y, and
z are of course exempt from this convention. Specific components of 3-vectors are
normally labelled by subscripts x, y and z. In this chapter, the prime is reserved
for Lorentz transformed quantities rather than source coordinates.

11.1 The Four-Potential and Coulomb’s Law

Fundamental to our discussion of electromagnetic theory has been the requirement
of conservation of charge. By this we mean in the present context that the charge
contained in an isolated volume with boundaries all observers agree on will be
independent of the volume’s velocity with respect to an observer. Experimental
evidence for this assertion is offered by the overall neutrality of atoms, independent
of the speed of their electrons. Because observers travelling at different speed deduce
different volumes contained within the boundaries, the charge density in the volume
must necessarily depend on the volume’s speed. In particular, an observer finds the
length of the volume with relative speed v shortened by the factor 1/γ in the
direction of the volume’s motion. The charge density inferred by the observer is
therefore ρ = γρ0, where ρ0 is the “proper” charge density, that observed in the
rest frame of the charge.

Motivated by the notion that currents are charges in motion, we define the four-
current density as the proper charge density ρ0 times the four-velocity V µ (it will
be recalled that a constant times a four vector remains a four vector)

Jµ = ρ0V
µ = ρ0γ(c,�v ) = (ρc, �J ) (11–1)

and the “four-potential”

Φµ =

(

V

c
, �A

)

(11–2)

That Φ is actually a four-vector (in other words it transforms like a first rank
Lorentz tensor under frame transformations) remains to be demonstrated.

From the classical formulation of the theory, each component of Φ satisfies

Φµ =
µ0

4π

∫

[Jµ]d3r

R
(11–3)

(The prime to differentiate the source coordinates from the field point coordinates
is temporarily dropped as we will need it to denote frame transformations.) To
demonstrate that the integral behaves as a four-vector, we note that the retarded
current [Jµ] lies on the light cone (in other words, the argument [Jµ] has 0 interval
from �r ) of for all coincident observers independent of their motion; therefore all
observers include the same sources into the summation (integral 11-3). It remains
to show that d3r/R is an invariant (scalar).

We assign coordinates (0, 0, 0, 0) to the observer and (ct, x, y, z) to the retarded
event for which R = −ct and d3r are to be evaluated. R is assumed to make angle
θ with the x axis. A second observer, whose frame, coincident with the first at
t′ = t = 0, moves with a Lorentz factor Γ in the x direction with respect to the
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Figure 11.1: Fields from the far end of dr3 are emitted a time dt = dR/c
earlier than those from the near end of the volume.

first observer, locates the elementary volume at R′ = −ct′. The second observer’s
distance from the source at the retarded time is

R′= −ct′ = −Γ(ct − βx)

= RΓ

(

1 +
βx

R

)

= RΓ(1 + β cos θ)

(11–4)

To get the relationship between the stationary and moving volume elements d3r
and d3r′, it is tempting but wrong to try d3r′ = Γd3r since this applies only if the
whole volume is measured at the same time. The far end of dx must in fact be
measured at a time dt = dR/c earlier than the near end (Figure 11.1). Taking d3r′

= dx′ dy′ dz′, we find that the transverse sides, dy′ and dz′ are invariant but that
dx′ = Γ(dx − βcdt). Taking the line of sight depth cdt = −dR = −dx cos θ, we
obtain dx′ = Γdx(1 + β cos θ). We find then d3r′ = Γ(1 + β cos θ)d3r, from which
we infer that d3r′/R′ = d3r/R is invariant. We conclude that [Jµ]d3r/R is a four-
vector, and since the result of adding four-tensors (even at distinct points if the
metric tensor gµν doesn’t vary) is a four-tensor, Φ is a four-vector. The covariant

form of the four-potential is Φµ = (V/c, − �A ).

It is instructive consider an alternative approach to proving (V/c, �A ) a four-

vector. Recall the wave equation for V and �A in the Lorenz gauge (3–56, 57)

∇2V − 1

c2

∂2V

∂t2
= − ρ

ε0
= −µ0ρc2 (11–5)

and

∇2 �A − 1

c2

∂2 �A

∂t2
= −µ0

�J (11–6)

We divide (11–5) by c to obtain

∇2(V/c) − 1

c2

∂2(V/c)

∂t2
= −µ0cρ (11–7)

and recognize the right hand side of (11–6) and (11–7) as the space-like and time-like
components of the four vector µ0J

ν so that we combine (11–6) and (11–7) into
(

∇2 − 1

c2

∂2

∂t2

)(

V

c
, �A

)µ

= −µ0J
µ (11–8)
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The d’Alambertian operator, ∇2 − (1/c2)∂2/∂t2, frequently abbreviated as , is

the scalar operator ∂µ∂µ, so that we can conclude that (V/c, �A )µ constitutes a
contravariant four-vector

11.2 The Electromagnetic Field Tensor

Because the vector potential is the spacelike component of the four-potential, we
would expect the magnetic induction field to be given by the four-dimensional curl
of the four-potential. Further, as we have seen, Lorentz transformations do not
change the order of a tensor, but they do transform electric to magnetic fields
and conversely, the electric field will also need to be contained within the tensor
produced by curling Φ. With this motivation, we define the electromagnetic field
tensor as

Fµν ≡ ∂

∂xµ
Φν − ∂

∂xν
Φµ = ∂µΦν − ∂νΦµ (11–9)

Performing the differentiations, we have explicitly

Fµν =





















0
Ex

c

Ey

c

Ez

c

−Ex

c
0 −Bz By

−Ey

c
Bz 0 −Bx

−Ez

c
−By Bx 0





















(11–10)

The full contravariant form of the field tensor Fµν is

Fµν = gµσgνλ Fσλ =





















0 −Ex

c
−Ey

c
−Ez

c
Ex

c
0 −Bz By

Ey

c
Bz 0 −Bx

Ez

c
−By Bx 0





















(11–11)

With the aid of the contravariant field tensor we write the manifestly covariant
equation

∂µFµν = µ0J
ν (11–12)

expressing two of Maxwell’s equations:

�∇ · �E =
ρ

ε0
and (�∇× �B) − 1

c2

∂ �E

∂t
= µ0

�J (11–13)

The remaining Maxwell equations are obtained from the somewhat less elegant
third-rank tensor equation

∂σFµν + ∂µFνσ + ∂νFσµ = 0 (11–14)
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with µ, ν, and σ any three distinct numbers from 0 to four. In terms of the fields
(11–14) translates as

�∇ · �B = 0 and �∇× �E = −∂ �B

∂t
(11–15)

Alternatively, one can construct the Dual Tensor, Gµν = 1
2ǫµνστF στ which29 pro-

duces Fστ above with �E and �B interchanged. The equations (11–15) can then be
expressed as ∂µGµν = 0 (see problem 11-5).

Under velocity changes, the components of �E and �B must transform as compo-
nents of a second-rank tensor, namely

(Fµν)′ = αµ′

σ αν′

ρ F σρ (11–16)

with αν′

ρ the coefficients of the Lorentz transformation. We take the x axis along
the direction of relative motion of the frames. The nonzero coefficients of the
transformation, αµ′

σ to a frame moving with velocity βc in the x direction are α0′

0 =
α1′

1 = Γ, α0′

1 = α1′

0 = −βΓ, and α2′

2 = α3′

3 = 1 (Appendix B.5). We have, for
example,

E′
x

c
= (F 10)′ = α1′

σ α0′

ρ F σρ = α1′

σ

(

α0′

0 F σ0 + α0′

1 F σ1
)

= α1′

σ Γ
(

F σ0 − βFσ1
)

= Γα1′

0

(

F 00 − βF 01
)

+ Γα1′

1

(

F 10 − βF 11
)

= Γ2β2F 01 + Γ2F 10 = Γ2F 10 − Γ2β2F 10

=
Ex

c
(11–17)

and
E′

y

c
= (F 20)′ = α2′

σ α0′

ρ F σρ = α2′

σ

(

α0′

0 F σ0 + α0′

1 F σ1
)

= α2′

σ

(

ΓF σ0 − ΓβF σ1
)

= ΓF 20 − ΓβF 21

= Γ

(

Ey

c
− vxBz

c

)

(11–18)

The other components follow in the same fashion. The transformations can be
conveniently written in terms of the familiar three-fields as

E′
‖ = E‖ B′

‖ = B‖

�E′
⊥ = Γ

(

�E⊥ + �v × �B⊥
)

�B′
⊥ = Γ

(

�B⊥ − �v

c2
× �E⊥

) (11–19)

29 The tensor ǫµνρσ is the four-dimensional analogue of the Levi-Cevita symbol. It is the totally
antisymmetric tensor having elements +1 when µ, ν, ρ, and σ are an even permutation of 0, 1, 2,
and 3; −1 for any odd permutation; and 0 if any two or more indices are equal.
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11.2.1 Magnetization and Polarization

Because the components of the electric and magnetic fields are the components
of a second-rank four-tensor, Fµν , we would anticipate that the components of �D

= ε0
�E + �P and �H = �B/µ0 − �M would also be the components of a second-rank

tensor, say Hµν . We construct such a tensor as Hµν = ε0c
2Fµν +Pµν , where Pµν is a

second-rank tensor containing the magnetization and polarization. The 01 element
gives

H01 = ε0cEx + P01 (11–20)

requiring P01 to be cPx. Similarly, the 13 element gives

H13 = ε0c
2By + P13 =

By

µ0
+ P13 = Hy (11–21)

which identifies P13 as −My. Continuing in the same fashion for the other elements,
we construct the tensors Hµν and Pµν as follows.



















0 cDx cDy cDz

−cDx 0 −Hz Hy

−cDy Hz 0 −Hx

−cDz −Hy Hx 0



















=
Fµν

µ0
+



















0 cPx cPy cPz

−cPx 0 Mz −My

−cPy −Mz 0 Mx

−cPz My −Mx 0



















(11–22)

Maxwell’s equations for �D and �H in a material medium may now be written in
terms of Hµν as

∂µHµν = Jν (11–23)

The transformation laws for magnetizations and polarizations of a moving medium
follow immediately.

P ′
‖ = P‖ M ′

‖ = M‖

�P ′
⊥ = Γ

(

�P⊥ − �v

c2
× �M⊥

)

�M ′
⊥ = Γ

(

�M⊥ + �v × �P⊥
)

(11–24)

Example 11.1: A dielectric sphere of radius a and permittivity ε is placed in an
initially uniform field E0k̂ and rotates about the x axis with angular velocity ω ≪
c/a. Find the magnetic induction field outside the sphere.

Solution: From (Ex 7.7.13), the electric field inside the sphere is

�E =
3ε0

ε1 + 2ε0

�E0 (Ex 11.1.1)

while the relation �D = ε0
�E + �P = ε1

�E gives �P = (ε1 − ε0) �E; hence

�P =
3ε0(ε1 − ε0)

ε1 + 2ε0

�E0 (Ex 11.1.2)
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A molecular dipole within the sphere at position �r ′ has velocity �ω × �r ′. There-
fore, according to (11-24), the magnetization of the rotating sphere is (note the
change in sign because the dipoles are moving rather than the observer)

�M ′= (�ω × �r ′) × �P

= −(�r ′ · �P )�ω + (�ω · �P )�r ′

= −3 ε0(ε1 − ε0)z
′E0ωı̂

ε1 + 2ε0
(Ex 11.1.3)

In Example 7.10 we found the scalar magnetic potential from a sphere carrying
precisely such a magnetization. Adapting that result, we have

Vm(r > a) = −3ε0(ε1 − ε0)ωE0a
5zx

5(ε1 + 2ε0)r5
(Ex 11.1.4)

The magnetic induction field is then �B(r > a) = −µ0
�∇Vm

�B(�r > a) =
3µ0ε0(ε1 − ε0)ωa5E0

5(ε1 + 2ε0)r5

(

zî + xk̂ − 5xz�r

r2

)

(Ex 11.1.5)

The interior field is equally easily found using the interior scalar potential given in
example 7.10. A solution for arbitrary ω would include a radiation field.

11.3 Invariants

A number of invariants (zero-rank tensors) are easily obtained from the four-vectors
and four-tensors so far obtained. We begin with the divergence of the four-current:

∂νJν = ∂ν∂µHµν (11–25)

The order of differentiation in the last expression may be interchanged, and µ
and ν, being dummy indices, may be exchanged. The result of these manipulations
is that ∂ν∂µHµν = ∂µ∂νHµν = ∂ν∂µHνµ. But Hµν = −Hνµ, which leads to the
conclusion that

∂νJν = 0 (11–26)

which, of course is just an expression of the continuity equation

∂ρ

∂t
+ �∇ · �J = 0

The frame independence of the divergence of the four-potential,

∂µΦµ = �∇ · �A +
1

c2

∂V

∂t
(11–27)

expresses the invariance of gauge choice. In the Lorenz gauge it is taken to be zero.
Other invariants are JµΦµ = ρV − �J · �A, the interaction energy density between

the field and the charge; FµνFµν = 2(B2 −E2/c2); and ǫµνρσFµνF ρσ = − �E · �B/c.
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The wave equation is easily obtained from Maxwell’s equation in covariant form,
as shown below.

∂µFµν = ∂µ (∂µΦν − ∂νΦµ) = µ0J
ν

= ∂µ∂µΦν − ∂ν (∂µΦµ) = µ0J
ν

(11–28)

which, after setting ∂µΦµ = 0 to obtain the Lorenz gauge, becomes

1

c2

∂2

∂t2
Φν −∇2Φν = µ0J

ν (11–29)

11.4 The Stress-Energy-Momentum Tensor

The Lorentz (3-)force per unit volume, �f = ρ �E + �J × �B, is the spacelike component
of the four-force density Kµ = FµνJν . Expressed in terms of three-vectors, this
body force is Kµ =

(

�β · �f, �f
)

. The zeroth component of K is 1/c times the power
per unit volume expended by the electromagnetic field.

In general, we expect to be able to write the force per unit volume as the
divergence of the stress. Labelling the four-stress tensor as

↔
η, we anticipate

Kν = −∂µηµν (11–30)

To construct
↔
η we start from the Lorentz force equation Kµ = FµνJν and

replace Jν by derivatives of the fields using ∂σF σν = µ0J
ν . Thus

Kµ =
1

µ0
Fµν∂σF σν =

1

µ0

[

∂σ (FµνF σν) − Fσν∂σFµν

]

(11–31)

The first term is already of the required form. The second term can be expanded
to

F σν∂σFµν = 1
2F σν∂σFµν + 1

2F σν∂σFµν (11–32)

and, exchanging the dummy indices ν and σ on the second term, we get

F σν ∂σFµν = 1
2F σν∂σFµν + 1

2F νσ∂νFµσ

= 1
2F σν∂σFµν + 1

2F σν∂νFσµ

= 1
2F σν (∂σFµν + ∂ν Fσµ)

(11–33)

Using ∂σFµν + ∂νFσµ + ∂µFνσ = 0, we can replace the term in parentheses with
−∂µFνσ, leading to

F σν∂σFµν = − 1
2F σν∂µFνσ = 1

2F σν∂µFσν = 1
4∂µ (FσνFσν) (11–34)

Finally, replacing the dummy index σ by λ in the right hand term to avoid confusion
with the σ in ∂σ

Kµ =
1

µ0

[

∂σ (FµνF σν) − 1
4∂µ

(

FλνFλν

)]

=
1

µ0
∂σ

[

FµνF σν − 1
4δσ

µ

(

FλνFλν

)]

(11–35)
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We have succeeded in writing the four-force density in a form similar to that of
(11–30):

Kµ = −∂ση·σ
µ (11–36)

with η·σ
µ = − 1

µ0

[

FµνF σν − 1
4δσ

µ

(

FλνFλν

)]

(11–37)

Rather than immediately converting η to fully contravariant form, we use the
somewhat more symmetric expression offered by equation (11–36) to compute the
components of η explicitly in terms of the fields. The evaluation is not difficult but
is a bit lengthy, as there are 16 elements to evaluate. We begin with

FλνFλν = 2

(

B2 − E2

c2

)

(11–38)

giving

η·σ
µ = − 1

µ0

[

FµνF σν − 1
2δσ

µ

(

B2 − E2

c2

)]

(11–39)

Referring to (11–10) and (11–11), we write the components of η as

η· 0
0 = − 1

µ0

[

F0νF 0ν − 1

2

(

B2 − E2

c2

)]

= − 1

µ0

(

− E2

c2
− 1

2
B2 +

1

2

E2

c2

)

=
1

2

(

ε0E
2 +

B2

µ0

)

(11–40)

η· 1
1 = − 1

µ0

[

F1νF 1ν − 1

2

(

B2 − E2

c2

)]

= − 1

µ0

(

− E2
x

c2
+ B2

z + B2
y − B2

2
+

E2

2c2

)

=
1

µ0

[

E2
x

c2
+ B2

x − 1

2

(

B2 +
E2

c2

)]

(11–41)

Similarly,

η· 2
2 =

1

µ0

[

E2
y

c2
+ B2

y − 1

2

(

B2 +
E2

c2

)

]

(11–42)

η· 3
3 =

1

µ0

[

E2
z

c2
+ B2

z − 1

2

(

B2 +
E2

c2

)]

(11–43)

η· 0
1 = −F1νF 0ν

µ0
= − 1

µ0

(

BzEy

c
− ByEz

c

)

= − 1

µ0

( �E × �B

c

)

x

(11–44)

η· 0
2 = −F2νF 0ν

µ0
= − 1

µ0

( �E × �B

c

)

y

(11–45)

η· 0
3 = −F3νF 0ν

µ0
= − 1

µ0

( �E × �B

c

)

z

(11–46)
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η· 1
2 = −F2νF 1ν

µ0
=

1

µ0

(

ExEy

c2
+ BxBy

)

(11–47)

η· 1
3 =

1

µ0

(

ExEz

c2
+ BxBz

)

(11–48)

η· 2
3 =

1

µ0

(

EyEz

c2
+ ByBz

)

(11–49)

The remaining elements may be found by raising and lowering the indices using
the metric tensor gµν . In particular,

ηi
· 0 = giig00η

· 0
i = −η· 0

i (11–50)

and

ηi
· j = giigjjη

· j
i = η· j

i (11–51)

for i and j chosen from 1, 2, and 3.
The fully contravariant form is also easily obtained by raising the lower index:

ηij = gii η· j
i = −η· j

i η00 = η00 = η· 0
0

η0j = g00η· j
0 = η· j

0 ηj0 = gjjη· 0
j = −η· 0

j

(11–52)

The resulting tensor is explicitly

ηµν =





























ε0E
2

2
+

B2

2µ0

∣

∣

∣

∣

←−
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µ0c
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∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

−ε0E
µEν − BµBν

µ0

+ 1
2δµν

(

ε0E
2 +

B2

µ0

)





























(11–53)

The matrix has been partitioned to isolate the first row and first column. The
remaining 3× 3 matrix in the lower right hand corner is the Maxwell stress tensor,↔
TM we have previously encountered. We recognize the 00 element to be the energy
density U. As we will see, the 3-vector (η10, η20, η30) formed by the space-like

elements of the first column is the 1/c times �S, the Poynting vector. It will also
become clear the row vector (η01, η02, η03) is c times the electromagnetic momentum
density.

We pause to justify the assertions about these implications of (11–53). Let us
consider the spacelike terms of Kµ:

Kj = −∂νηνj = −∂0η
0j − ∂iT

ij = − ∂

∂t

( �E × �B

µ0c2

)j

− ∂iT
ij (11–54)
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Kj = f j is the force density (force/ volume) exerted by the fields on charged particles
and currents. Since f is in general the rate of change of momentum density of the
particles, and −∂iT

ij is the force on the particles due to the field, we conclude that
the term η0j = c( �D × �B)j is the j component of c × the momentum density of the
field. This is not, of course, a new result.

The K0 term (�f · �v/c) gives

�f · �v
c

= −∂νην0 = − ∂

c∂t

(

ε0E
2

2
+

B2

2µ0

)

− �∇ · ( �E × �B)

µ0c
(11–55)

In other words, the power absorbed by the charges is

�f · �v = − ∂

∂t

(

ε0E
2

2
+

B2

2µ0

)

− 1

µ0

�∇ · ( �E × �B) (11–56)

The first term, 1
2 (ε0E

2 + B2/µ0) [= 1
2 ( �E · �D + �B · �H)], may be identified as the

energy density of the fields and the second term is the energy flux. The K0 term
can of course also be written as K0 = JµFµ0 = �J · �E/c, giving �J · �E = �f · �v.

Although there appears to be no difference between the first row and first column
in vacuum, they do differ in a material medium. In a medium, the 0th row η0j =
c( �D × �B )j whereas the first column, ηj0 = c−1( �E × �H). The asymmetry implies
non-conservation of electromagnetic angular momentum in material media and has
led to considerable debate about the adequacy of this description.30

If the volume of interest contains only fields, with no charges or currents, then
we must have ∂µηµν = 0.

The energy and momentum of the total field may be obtained by integrating
the densities over the volume to give the contravariant momentum four-vector

Pµ =
1

c

∫

η0µ dx1 dx2dx3 (11–57)

having components

P 0 =
1

c

∫ (

ε0E
2

2
+

B2

2µ0

)

d3r =
W

c
(11–58)

and

P i =
1

c

∫

η0id3r =

∫ �E × �B

µ0c2
d3r (11–59)

P 0 is 1/c times the energy of the field and P i is the momentum of the field.

It is interesting to calculate the momentum of the field of a slowly moving point
charge, such as a nonrelativistic electron. We write the energy-stress-momentum

30see for example Analysis of the Abraham-Minkowski controversy by means of two simple
examples M.A. López-Marinõ and J.L. Jiménez, Foundations of Physics Letters, 17, Number 1,
February 2004. pp. 1-23
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tensor for the field of an electron, which for simplicity is assumed to be spherically
symmetric in the proper frame, in abbreviated form

↔
η =

(

U0 0

0
↔
TM

)

(11–60)

where U0 is the electrostatic field energy density and
↔
TM is the Maxwell stress

tensor. Transforming the elements of
↔
η to those in a slowly moving frame having

velocity −βc (β ≪ 1 ⇒ Γ ≃ 1) along the i axis, we obtain to first order in β

U ′
0 = η00′

= α0′

µ α0′

ν ηµν = α0′

µ

(

α0′

0 ηµ0 + α0′

i ηµi
)

≃ α0′

µ

(

ηµ0 + βηµi
)

= α0′

0 η00 + α0′

0 βη0i + α0′

i ηi0 + α0′

i βηii ≃ η00 = U0 (11–61)

η0i′ = α0′

µ αi′

ν ηµν = α0′

µ

(

αi′

0 ηµ0 + αi′

j ηµj
)

= α0′

µ

(

βηµ0 + ηµi
)

= α0′

0 βη00 + α0′

j ηji = β
(

U0 + ηii
)

(11–62)

(as i is not a dummy index, no summation is implied in ηii) and for j �= i

η0j′

= α0′

µ αj′

ν ηµν = α0′

µ

(

αj′

0 ηµ0 + αj′

ℓ ηµℓ
)

= α0′

µ ηµj = α0′

0 η0j + α0′

ℓ ηℓj = βηij (11–63)

The energy of the field of the moving electron is then unchanged (to first order
in v/c),

W ′ =

∫

U0d
3r = W (11–64)

and the j �= i component of momentum is

P j′

=
1

c

∫

η0j′

d3r =
v

c2

∫

ε0E
iEjd3r = 0 (11–65)

since the integral of Ej vanishes. The i component leads to a more interesting result.

P i′ =
1

c

∫

η0i′d3r =
β

c

∫

[

U0 − ε0

(

EiEi − 1
2E2

0

)]

d3r

=
β

c

[

W − ε0

∫

(

1
3E2

0 − 1
2E2

0

)

d3r

]

=
β

c

(

W + 1
3W
)

=
4

3

W

c2
vi (11–66)

More generally, the momentum associated with the field of a charged particle is

�p =
4

3

W

c2
�v (11–67)

The inertial mass of the field appears to be 4
3W/c2(!) in conflict with the normal

relativistic expectation that the inertial mass should be the energy/c2. Lest the
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reader suspect that there is a serious error in the preceding derivation, we will
obtain this result again later using quite different methods.

We now proceed to use the covariant formalism to generalize some earlier results
in radiation by an accelerated charge.

11.5 Radiation from Relativistic Particles

In the previous chapter we calculated the power radiated by an accelerated particle
in its own rest frame (β = 0) as

P =
q2a′2

6πε0c3
(11–68)

Noting that dW = Pdt and that both dW and dt are time-like components of a
four-vector, we find that P must be a scalar under Lorentz transformations. From

the general expression (10-143, 144) of the fields, P can depend only on �β and �̇β; no
higher derivatives occur. We therefore seek an invariant that is proportional to a2 at
low speeds and contains derivatives no higher than β̇. Consider the four-acceleration

Aµ ≡ d

dτ
V µ = γ

(

γ3c(�̇β · �β ), γ3(�̇β · �β)�v + γ�̇v
)

(11–69)

where we have used V µ = γ(c,�v ) and d/dτ = γd/dt. Aµ clearly depends only on

�̇β and �β, and, as β → 0, Aµ → (0, �̇v ). Thus AµAµ → −a2. We are led then, to
writing the covariant form of the radiated power as

P = − q2

6πε0c

AµAµ

c2
(11–70)

In the frame where the particle has β �= 0 we find

AµAµ

c2
= γ2

{

γ6(�̇β · �β )2 −
∣

∣

∣γ3(�̇β · �β )�β + γ �̇β
∣

∣

∣

2}

= γ6
[

(�̇β · �β)2γ2(1 − β2) − 2(�̇β · �β)2 − (1 − β2)β̇2
]

= −γ6
{

β̇2 −
[

β2β̇2 − (�β · �̇β )2
]

}

= −γ6
[

β̇2 −
∣

∣�β × �̇β
∣

∣

2
]

(11–71)

The total power radiated by a relativistic particle is then

P = − q2

6πε0c

AµAµ

c2
=

q2

6πε0c
γ6
[

β̇2 − (�β × �̇β )2
]

(11–72)

The momentum radiated by the particle is now also easily obtained from kine-
matic considerations. It should be pointed out that the rate of momentum radiation
is not the entire electromagnetic reaction force on the accelerated particle. There
will also appear an inductive reaction force rather perversely labelled the radiation
reaction.
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The four-force acting on a particle is related to its four-momentum by

dPµ

dτ
= γ

d

dt

(

W

c
, �p

)

(11–73)

where �p is the three-momentum. In the instantaneous rest frame of the particle,
d�p ′/dt′ = �F ′. Transforming to a lab frame where the particle has velocity �βc (the

lab frame then has velocity −�βc) and taking the x axis along �β for convenience, we
obtain for the 0 component in the lab frame

dP 0

dτ
=

γ

c

dW

dt
= Γ

dP 0′

dτ
+ βΓ

dP 1′

dτ

=
Γγ′

c

dW ′

dt′
+ βΓγ′ dp′x

dt′
=

Γγ′

c

dW ′

dt′
+ βΓγ′F ′

x (11–74)

The x component of force in the lab frame is likewise given by

dP 1

dτ
= γ

dpx

dt
= Γγ′ dp′x

dt′
+ β

Γγ′

c

dW ′

dt′
=

β

c
γ

dW

dt
+ (1 − β2)Γγ′F ′

x (11–75)

As the ′ variables were in the particle’s rest frame, we have γ′ = 1 and γ = Γ.
We can simplify dpx/dt to read

dpx

dt
=

β

c

dW

dt
+ (1 − β2)F ′

x (11–76)

We have at this point no means to determine F ′ because the force needed to give the
required acceleration needs to overcome not only the inertia offered by the particle’s
mass, but also the inertia of the changing fields. We postpone consideration of F ′

to the next chapter. Denoting the radiative momentum losses by the subscript rad,
we generalize the first term of (11–76) for �β in an arbitrary direction using (11–72)

d�prad

dt
=

�β

c

dW

dt
=

−q2γ6

6πε0c2
�β
[

β̇2 −
∣

∣ �β × �̇β
∣

∣

2
]

(11–77)

This part of the reaction force on an accelerated particle results in non-linear equa-
tions of motion which are generally rather intractable.

Both the radiative energy and momentum losses may be combined in the clearly
covariant equation

dPµ

dτ
=

q2

6πε0c5
(AνAν)V µ (11–78)

We can relate approximately the radiated power to the three-force d�p/dt re-
quired to accelerate the particle by neglecting the portion of the work going into
radiated momentum and expressing the power radiated (11–70) in terms of the four-
momentum rather than the four-acceleration. Thus we write m0A

µ = dPµ/dτ :

P = − q2

6πε0

c

(m0c2)2
dPµ

dτ

dPµ

dτ
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= − q2

6πε0

cγ2

(m0c2)2
dPµ

dt

dPµ

dt
(11–79)

and using Pµ = (W/c, �p ) =
(
√

m2
0c

2 + p2, �p
)

, we find that

dPµ

dt
=

(

d(W/c)

dt
,

d�p

dt

)

=

(p
d|p|
dt

W/c
,

d�p

dt

)

(11–80)

whence

dPµ

dt

dPµ

dt
=

p2

(

d|p|
dt

)2

W 2/c2
−
(

d�p

dt

)2

=
β2m2c2

m2c2

(

d|p|
dt

)2

−
(

d�p

dt

)2

= β2

(

d|p|
dt

)2

−
(

d�p

dt

)2

(11–81)

The expression for the radiated power from the accelerated charge may now be
written in terms of the accelerating forces,

P =
q2

6πε0

cγ2

(m0c2)2

[

(

d�p

dt

)2

− β2

(

d|p|
dt

)2
]

(11–82)

When the force is parallel to the momentum,

∣

∣

∣

∣

d�p

dt

∣

∣

∣

∣

=
d|p|
dt

and

P =
q2

6πε0

cγ2

(m0c2)2
(1 − β2)

∣

∣

∣

∣

dp

dt

∣

∣

∣

∣

2

=
q2c

6πε0(m0c2)2

∣

∣

∣

∣

dp

dt

∣

∣

∣

∣

2

(11–83)

When the accelerating force is perpendicular to the momentum,
d|p|
dt

= 0 , leading

to

P =
q2γ2

6πε0m2
0c

3

(

d�p

dt

)2

(11–84)

generally much larger than the previous term. We conclude that for a given accel-
erating force, perpendicular forces lead to radiation a factor γ2 larger than parallel
forces.
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Exercises and Problems

11-1 Using the fact that the phase of
a plane electromagnetic wave is inde-
pendent of an observer’s velocity, show
that the four-component quantity Kµ ≡
(ω/c, �k) is a four-vector. Use the trans-
formation properties of four-vectors to
obtain the Doppler effect formula (fre-
quency transformation) for motion (a)

parallel to the wave vector �k and (b)
perpendicular to the wave vector.

11-2 Show that AµVµ is identically zero.
Aµ is the four-acceleration dV µ/dτ .

11-3 Demonstrate that f j = F jνJν is
the Lorentz (3-)force density

11-4 Verify that Maxwell’s equations in
vacuum result from (11–12) and (11–14).

Show that Maxwell’s equations for �D
and �H result from (11-23).

11-5 The electromagnetic dual tensor
Gµν is defined by Gµν = 1

2ǫµνρσFρσ.
Find the components of this tensor, and
show that ∂µGµν = 0 is equivalent to
�∇ · �B = 0 and �∇× �E = −∂ �B/∂t.

11-6 Find the remaining components of
(Fµν)′ required to demonstrate (11-19).

11-7 Obtain the transformation laws for
the vector potential and the scalar po-
tential when the primed system moves
with velocity �v with respect to the un-
primed system.

11-8 Show that the transformations (11–
19) applied to the field of a stationary
charge give the electric field of a uni-
formly moving charge as expressed by
the non-radiative part of (10-141).

11-9 Show from elementary considera-
tions (length contraction of two sides)
that a moving rectangular current loop
acquires an dipole moment, and deter-
mine the magnitude and direction of this
electric dipole moment.

11-10 Deduce Maxwell’s equations for
fields in a moving dielectric having ρ = �J
= 0, relating �E and �B to �P and �M and
to each other. Assume that the velocity
V is sufficiently small that we may take
Γ = 1. (Note that �P and �M move along
with the dielectric.)

11-11 Find the electric field appearing
around a uniformly magnetized sphere
rotating at angular frequency ω ≪ c/a
about a central axis parallel to the mag-
netization.

11-12 Develop the Stress-Energy-
Momentum tensor for fields in a medium
using Hµν to relate the fields to the
sources.

11-13 Derive the Lorentz transfor-
mation for a frame moving in an arbi-
trary direction.

11-14 Show that if �E and �H are perpen-
dicular in one inertial frame, they will be
perpendicular in all inertial frames.

11-15 If �E is perpendicular to �B but
| �E| �= |c �B|, then there is a frame where
the field is either purely electric or purely
magnetic. Find the velocity of that
frame. What happens if | �E| = |c �B|?

11-16 Use Maxwell’s equations in a mov-
ing medium (problem 11-10) to find the
velocity of light in a moving transparent
dielectric.

11-17 The energy of an electron in a lin-
ear accelerator is increased at a rate of
1MeV/meter. Find the power radiated
by such an electron. (Note that the ra-
diated power is independent of the elec-
tron’s velocity.) Is the radiated power a
major portion of the power input?
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11-18 Find the power radiated by a
highly relativistic electron in a circular
orbit in terms of its velocity v and its
radius R. Evaluate this expression for a
10-GeV electron in a 20-m radius orbit

and find the energy loss per revolution.
Would it be easy to supply several times
this energy to obtain a net acceleration
at this velocity?
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Chapter12

Radiation Reaction—Electrodynamics

12.1 Electromagnetic Inertia

We have in the foregoing chapters synthesized a powerful, coherent, self-consistent
theory of electromagnetism, satisfying relativistic covariance naturally. In this chap-
ter we will see that this magnificent construction, when dealing with the interaction
of charged particles with their fields, presents some very uncomfortable inconsisten-
cies with the world as we understand it. In particular, the theory will be shown to
violate causality, the notion that causes precede their effects.

On our first discussion of the fields, we agreed to exclude the sensing particle’s
own field from that experienced by the particle on the grounds that the particle
cannot pull itself up by its own bootstraps. As we have seen, the radiation field
of an accelerated point particle is not generally symmetric about the particle and
appears able to exist on its own even after the particle is snuffed out.

To convince ourselves that electromagnetic fields can have an existence inde-
pendent of their sources, we might consider the radiation by positronium, the atom
formed by an electron and its antiparticle the positron. Such atoms emit radiation
in much the same manner as hydrogen, but the atom annihilates in its ground state.
It would be surprising if radiation, having escaped from the atom, suddenly ceased
to exist when the atom did. In fact it continues to spread, totally unaffected by the
atom’s disappearance. (Of course, on its annihilation the electron and positron also
emit two 512-KeV γ-rays that carry the lost mass energy.) Disappearance of these
electromagnetic fields would cause a serious violation of energy conservation.

A less contrived rationale for considering a particle’s interaction with its own
field is offered by the example of an atom emitting an electromagnetic wave that
is reflected by a mirror. It would be surprising indeed if the atom were prohibited
from interacting with the reflected wave that would surely be indistinguishable from
the wave emitted by another atom.

We are now forced to reexamine our belief that the particle cannot interact
with its own field. If the field has an existence independent of the particle and it is
asymmetric about the particle, there seems no good reason to exclude this field from
those felt by the particle. As a preliminary, we make the following observations.

—331—
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(a) When an electron is in uniform motion, its field will contribute to
the momentum since for a small change in velocity, the momentum of
both the field and the particle would change together.

(b) If an electron radiates as a result of being accelerated by an external
force, that force must supply the energy and momentum of both the
fields (induction and radiation fields) and the inertia of the “bare”
particle. If the electron is to offer a resistance to acceleration corre-
sponding to its own inertia as well as that of the fields, then the fields
must in fact produce a reaction force on the electron, diminishing the
acceleration produced by external forces.

Let us first consider the interaction of the electron with its induction field. A
change in velocity leads to a changing magnetic field, which induces an electric field
at the position of the electron. The electric field may be found from �E = −∂ �A/∂t.
A change in δ�v in the motion of the electron produces a corresponding change in
the vector potential

δ �A =
µ0

4π

q

r
δ�v (12–1)

at a distance r from the electron. Unfortunately this gives an infinite result at the
‘edge’ of a point particle. To avoid the infinity, we might, for the sake of making
some progress, postulate that the 1/r form of the vector potential breaks down at
some minimum distance r0 because of a supposed structure of the particle. As a
rough approximation, we assume that the interaction of the particle with its field
occurs entirely at this cutoff distance r0.

The reaction force on the accelerated particle due to this changing field is

�F = q �E = −q
∂ �A

∂t
= −µ0q

2

4πr0

d�v

dt
= − q2

4πε0r0c2

d�v

dt
(12–2)

The reaction is an exact analogy to the back EMF in an electrical circuit.
The form of the reaction is that of an inertial reaction

�F = −mem
d�v

dt
with mem =

q2

4πε0r0c2
(12–3)

A similar estimate of the “inertial mass” of the electron’s field is obtained by
equating 1/c2 times the energy of the field of a uniformly charged spherical shell of
radius r0 to mem (Ex 4.1.2):

W

c2
=

e2

8πε0r0c2
(12–4)

These arguments yield only estimates of the inertial mass of the electron’s field,
since r0 is entirely adjustable, depending on the model.

It is possible to establish the relationship between W and mem independently
of r0. The momentum carried by arbitrary fields in vacuum is given by

�pem =

∫ �E × �B

µ0c2
d3r (12–5)
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The magnetic induction field may be found from (11–19) to yield for low velocities

�B =
�β × �E

c
= ε0µ0�v × �E (12–6)

The momentum of the field moving with the charged particle is then

�pem =

∫

ε0
�E × (�v × �E)

c2
d3r = ε0

∫

E2�v − (�v · �E) �E

c2
d3r (12–7)

The electric field, �E, must be axially symmetric about the direction of the velocity
�v, which we take to be along the z axis. Therefore, writing �E = Ez k̂ + �Et, �Et · �v
is seen to vanish and further

∫

(Ezv) �Etdϕ vanishes so that the second term of the
integral reduces to

∫

(�v · �E) �Ed3r =

∫

E2
z�v d3r ≃ 1

3

∫

E2�v d3r (12–8)

Hence

�pem =
4�v

3c2

∫

ε0E
2

2
d3r =

4

3

W

c2
�v (12–9)

a curious result we have already encountered in the last chapter. Presumably,
because we cannot obtain an electron without its field, the empirical mass is the
sum of a “bare” mass and the inertia of its electromagnetic field. The factor of
4
3 in the electromagnetic inertia is rather difficult to accommodate in the total
mass because it conflicts with the mass energy equivalence relationship of special
relativity.

12.2 The Reaction Force Needed to Conserve Energy

Although we have considered the kinematics of radiating electrons, we have largely
ignored the dynamics of accelerated particles. In particular, it should be clear
that when an accelerated particle emits radiation it must do so at the expense
of mechanical energy. It is tempting to assume that the energy loss during any
particular time interval will be small compared to the kinetic energy change due
to acceleration of the particle, so that the radiation loss will represent only a small
perturbation to the motion. If this is indeed the case, we can account for this
radiation “drag” by a force called radiation reaction. This force however, will be
able to account for only an average effect on the motion. It is important to recognize
that this force, in spite of its name, is not responsible for the momentum carried by
the radiation field. It is in fact an interaction of the electron with its own (retarded)
induction field.

On average, the reaction force FR must act like a drag force on the charged
particle, opposing the velocity to decrease its kinetic energy. Equating the rate
that the reaction force extracts energy from the electron to feed the radiation to
the radiative loss rate, we write

�FR · �v = − q2

6πε0c3
v̇2 (12–10)
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On a small enough time scale, however, this cannot be the whole story for reasons
we detail below.

When the emitted energy is large compared to the energy gained from the ex-
ternal accelerating force, the trajectory of the particle as well as the reaction force
become rather ill defined. Let us briefly examine the energy gain and energy loss
of a particle accelerated during a short time interval ∆t. For simplicity we take the
particle initially at rest. The gain in kinetic energy is then

∆W = 1
2m(a∆t)2 (12–11)

while the loss to radiation is

∆WR =
q2a2

6πε0c3
∆t (12–12)

For times ∆t smaller than 2τ , with

τ =
q2

6πε0mc3
(12–13)

(τ ∼= 6.26 × 10−24 seconds for an electron), the radiative energy loss exceeds the
change in kinetic energy of the particle. Thus, on this time scale the radiation
reaction force becomes the dominant force, leading apparently to a particle accel-
erating itself without externally applied force. We can no longer use an average
force to determine the motion. Since light travels a distance cτ ≃ 2 × 10−15 m, the
distance scale where radiation plays a dominant role in the behavior of an electron
is 10−15 m. The fluctuations are suggestive of the perturbations introduced by the
spontaneous emission of virtual photons in the Quantum Electrodynamics picture.

In spite of the short term fluctuations we can obtain the average reaction force by
considering conservation of energy over a sufficiently long time or along a restricted
trajectory. Providing that the energy of the induction fields is the same at the
beginning and at the end of the averaging period, conservation of energy requires
that the energy lost to the radiation drag force equal the energy radiated:

∫ t2

t1

�FR · �v dt +

∫ t2

t1

q2

6πε0c3
v̇2dt = 0 (12–14)

Integrating the second term by parts gives

∫ t2

t1

(

�FR − q2�̈v

6πε0c3

)

· �v dt +
q2

6πε0c3
�v · �̇v

∣

∣

∣

∣

t2

t1

= 0 (12–15)

The integrated second term represents the short-term fluctuations we considered
earlier. For periodic motion, or for acceleration occurring within a limited time, an
appropriate choice of t2 and t1 will eliminate this term. We can then conserve the
average energy by setting

�FR =
q2

6πε0c3
�̈v (12–16)
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Figure 12. 1: The force on a small volume within the ball of charge is
calculated as the sum of forces the charge every other volume element d3r′

exercises on the charge in d3r. Then the total force on the ball is obtained
by summing the forces on each element.

as the reaction force. The radiated momentum term (11–77) is a factor of roughly
β smaller than FR and will be included in a full covariant expression. As we will
see in section 12.4, equation (12–16) leads to an unstable equation of motion whose
solution has a velocity that increases exponentially even in the absence of any
external force.

12.3 Direct Calculation of Radiation Reaction:
The Abraham-Lorentz Model

Although energy conservation certainly gives a requirement of a reaction force, it
doesn’t give much insight into how such a reaction force might arise. To gain such
insight, we will calculate the force on a rigid, spherically symmetric charged ball due
to all other parts of the ball (figure 12.1) when it is accelerated. We initially calculate
the force that a small volume element d3r experiences from all the other segments of
the sphere and then sum over all segments. (A rigid extended particle is inconsistent
with special relativity, but we ignore this.) It should be emphasized that this
calculation in no way reflects the modern Quantum Electrodynamics understanding
of radiation reaction.

The force on the element ρ(�r )d3r is, in terms of the fields at its location,

d�F (�r, t) =
[

ρ(�r ) �E(�r, t) + �J(�r ) × �B(�r, t)
]

d3r (12–17)

We may, without loss of generality, place ourselves in the instantaneous rest
frame of the particle so that the force reduces to

d�F (�r, t) = ρ(�r ) �E(�r, t)d3r (12–18)

where the electric field �E is calculated from �E = −�∇V − ∂ �A/∂t and the scalar

potential V and vector potential �A are the retarded potentials due to the rest of
the particle; that is,

V (�r, t) =
1

4πε0

∫

ρ(�r ′, t − R/c)

R
d3r′ (12–19)
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and

�A(�r, t) =
µ0

4π

∫ �J(�r ′, t − R/c)

R
d3r′ (12–20)

where R = |�r−�r ′| is the distance from the source volume element, d3r′, to the field
point �r, both inside the charged ball.

For R/c small, we expand ρ(�r, t − R/c) as a power series in R/c to obtain

ρ(�r, t − R/c) =

∞
∑

n=0

1

n!

(

− R

c

)n
∂nρ(�r, t)

∂tn
(12–21)

which, inserted into the integral for the retarded potential, gives

V (�r, t) =
1

4πε0

∞
∑

n=0

(−1)n

n!cn

∫

Rn−1 ∂nρ(�r ′, t)

∂tn
d3r′ (12–22)

In identical fashion we expand the vector potential to obtain

∂ �A(�r, t)

∂t
=

∂

∂t

[

µ0

4π

∞
∑

n=0

(−1)n

n!cn

∫

Rn−1 ∂n �J(�r ′, t)

∂tn
d3r′
]

(12–23)

The force on our selected volume element using �E = −�∇V − ∂ �A/∂t, is then

d�F = −ρ(�r, t)d3r

4πε0

∞
∑

n=0

(−1)n

n!cn

∫

∂n

∂tn

[

ρ(�r ′, t)�∇Rn−1 +
Rn−1

c2

∂ �J(�r ′, t)

∂t

]

d3r′

(12–24)
We consider the first two terms arising from the scalar potential separately. The

n = 1 term vanishes identically as it involves �∇R0. The n = 0 term arising from
the scalar potential leads to a total force, which is just the electrostatic self-force.
Labelling successive terms of the force with a subscript,

�F0 =

∫

d�F0 =

∫

ρ(�r, t)

∫

ρ(�r ′, t)�R

4πε0R3
d3r′d3r

=

∫

ρ(�r, t) �ES(�r, t)d3r = 0 (12–25)

Eliminating these two terms and increasing by two the summation index on the
terms contributed by the scalar potential, we rewrite the sum as

d�F = −ρ(�r, t)d3r

4πε0

∞
∑

n=0

(−1)n

n!cn+2

∂n+1

∂tn+1

∫

[

∂ρ(�r ′, t)

∂t

�∇Rn+1

(n + 1)(n + 2)
+ Rn−1 �J(�r ′, t)

]

d3r′ (12–26)

The continuity equation may be used to replace ∂ρ/∂t by −�∇ · �J , allowing us
to write

∂ρ(�r ′, t)

∂t

�∇Rn+1

(n + 1)(n + 2)
= −Rn−1 �R

n + 2

[

�∇′ · �J(�r ′, t)
]

(12–27)
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and with the aid of the vector relation (7), the α component of (12–27) may be
rewritten as a divergence

�∇′ ·
[

RαRn−1 �J
]

= �∇′[RαRn−1
]

· �J + RαRn−1
[

�∇′ · �J
]

= −Rn−1Jα − (n − 1)RαRn−3 �R · �J +
[

Rn−1Rα(�∇′ · �J )
]

(12–28)

to integrate the first term of the integral in (12–26) by parts after replacing ∂ρ/∂t

by −�∇ · �J one component at a time. We obtain

∫

∂ρ(�r ′, t)

∂t

�∇Rn+1

(n + 1)(n + 2)
d3r′ = − 1

n + 2

∫

Rn−1

[

�J + (n − 1)
�J · �R

R2
�R

]

d3r′

(12–29)

The integral for d�F then becomes

d�F = −ρ d3r

4πε0

∞
∑

n=0

(−1)n

n!cn+2

∫

Rn−1 ∂n+1

∂tn+1

[

n + 1

n + 2
�J(�r ′, t) − n − 1

n + 2

�J · �R

R2
�R

]

d3r′

(12–30)

For a rigid body, �J(�r ′, t) = ρ(�r ′, t)�v(t); therefore �J · �R = ρ�v · �R. Furthermore,

only the component of d�F parallel to �v can survive the integration, so we write
〈 ( �J · �R)�R 〉 = ρ[(�R · �v )2/v2]�v and recast the integral as

d�F =
ρd3r

4πε0

∞
∑

0

(−1)n

n!cn+2

∂n+1

∂tn+1

∫

Rn−1ρ(�r ′, t)�v(t)

[

n + 1

n + 2
− n − 1

n + 2

(�R · �v )2

R2v2

]

d3r′

(12–31)

At low velocity, the term (�R · �v )2 may be replaced by its mean value 1
3 (R2v2),

which gives, for the bracketed term,

n + 1

n + 2
− 1

3

n − 1

n + 2
=

2

3
(12–32)

The expression for the total force on the particle becomes finally

�F = − 1

6πε0

∞
∑

n=0

(−1)n

n!cn+2

∂n+1

∂tn+1
�v

∫

d3rρ(�r, t)

∫

Rn−1ρ(�r ′, t)d3r′ (12–33)

The first two terms in the sum may be evaluated explicitly to give

�F0 = − �̇v

6πε0c2

∫ ∫

ρ(�r, t)ρ(�r ′, t)

R
d3r d3r′ = −4

3

W

c2
�̇v (12–34)

and

�F1 =
�̈v

6πε0c3

∫ ∫

ρ(�r, t)ρ(�r ′, t)d3r d3r′ =
q2

6πε0c3
�̈v (12–35)

The higher order terms’ order of magnitude may be approximated as

�Fn ∼ ±1

6πε0

bn−1q2

n!cn+2
�v (n+1) (12–36)
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where b is the radius of the ball and the �v (n) denotes the nth time derivative of �v.
Again we find an inertial component of (4

3W/c2)�a to the reaction force. This
term of the expansion obviously diverges as b → 0; somehow its inclusion in the
empirical mass will have to hide the divergence (renormalization). The second
term is independent of the size of the particle and reproduces exactly the radiation
reaction force found earlier. The higher order terms all vanish as b → 0.

For b �= 0, the successively higher order terms occur in the ratios Fn+1/Fn =
[bv(n+1)]/

[

(n + 1)cv(n)
]

= b∆
(

ln v(n)
)

/
(

(n + 1)c∆t
)

, meaning that they are signif-
icant only when significant changes in motion (the nth derivative of the velocity, to
be more specific) occur in times of order ∆t = b/c. If one takes for b the classical
radius of the electron, we find again that the significant time during which higher
order terms must be considered is τ ≈ 6 × 10−24 seconds.

12.4 The Equation of Motion

Let us consider a charged particle subject to an external force �Fext in addition to the
electromagnetic forces considered above. The equation of motion for the particle
and the associated field is

�Fext +
q2�̈v

6πε0c3
= (m∗ + mem)�̇v (12–37)

where m∗ is the particle’s “bare” mass. As the electron cannot be separated from
its electromagnetic field, we combine the bare mass and electromagnetic inertial
mass to make the empirical rest mass m0. The equation of motion is then

m0�̇v − q2�̈v

6πε0c3
= �Fext (12–38)

The homogeneous equation has solutions �̇v = 0 and �̇v = �̇v0e
t/τ with τ =

q2/6πε0m0c
3 ≃ 6.3−24 s. Such “runaway” solutions are not physically admissi-

ble. The runaway term arises of course from the fluctuation term we neglected
in (12–16). One might reasonably argue that because of these fluctuations, it is
meaningless to ask for an equation of motion on time scales smaller than 10−23

seconds.
The runaway solution may be avoided by taking a time average of (12–38). We

integrate the equation of motion over a time interval from t0 to t in order to find
an equation for the time-averaged trajectory. To effect the integration, we multiply
(12–38) by the integrating factor e−t/τ and integrate from t0 to t to obtain

∫ t

t0

�F (t′)e−t′/τ

m0
dt′ =

∫ t

t0

(�̇v − τ�̈v )e−t′/τdt′

=

∫ t

t0

d

dt′
(−τ�̇ve−t′/τ )dt′ = −τ�̇v(t)e−t/τ + τ�̇v(t0)e

−t0/τ (12–39)

which, on rearrangement, gives

�̇v(t) = e(t−t0)/τ �̇v(t0) −
1

τ

∫ t

t0

�F (t′)

m0
e−(t′−t)/τdt′ (12–40)
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Choosing t0 = ∞ avoids the runaway solution and reduces the time-averaged
equation of motion to

�̇v(t) =
1

τ

∫ ∞

t

�F (t′)

m0
e−(t′−t)/τdt′ (12–41)

The reader is urged to pause and reflect on the content of equation (12–41). This
equation, says that the acceleration of a particle at time t is determined by the time-
averaged force �F over a time of order τ = 10−23 seconds in the future(!) apparently
violating causality. Some authors suggest that as there is no test contradicting the
violation of causality on this time scale, the integro-differential equation producing
no runaway solutions should be considered the more fundamental of the equations
of motion. It should also be pointed out that classical physics must surely fail on
distance scales of 10−15 m. Its replacement, quantum electrodynamics, copes with
the infinities of the Abraham-Lorentz results by a not entirely satisfactory procedure
known as renormalization.

If one is prepared to sacrifice causality on the short time scales, then the dis-
carding of the advanced potential should be reexamined. Remarkably, inclusion
of a suitably damped advanced potential can be used to eliminate several of the
divergences.

12.5 The Covariant Equation of Motion

We wish to construct a covariant equation of motion whose i -component reduces in
the proper frame to

m0
dvi

dt
− F i

R = F i
ext (12–42)

The obvious generalization of this expression would be of the form

m0
dV µ

dτ
− Fµ

R = Fµ
ext (12–43)

where Fµ
R is the covariant generalization of �FR = q2�̈v/6πε0c

3. Such a generalization
is

Fµ
R =

q2

6πε0c3

(

d2V µ

dτ2
+ SV µ

)

(12–44)

where S is a scalar. That the second term is necessary will be demonstrated by its
determination below.

We evaluate S by considering the invariant F µ
RVµ. Evaluating this in the rest

(proper) frame, Fµ
R = (0, �FR) and Vµ = (c,�0 ), we find Fµ

R Vµ = 0, which must
remain true in any frame. Thus we evaluate S as follows,

VµSV µ = −Vµ
d2V µ

dτ2
= − d

dτ

(

Vµ
dV µ

dτ

)

+
dVµ

dτ

dV µ

dτ
(12–45)

The first term on the right-hand side vanishes (Aµ and V µ are orthogonal), and
VµV µ = c2. We conclude S = AµAµ/c2 so the equation of motion becomes

m0
dV µ

dτ
− q2

6πε0c3

(

d2V µ

dτ2
+

V µ

c2
AνAν

)

= Fµ
ext (12–46)
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The first term is just the immediate generalization of �FR while we have encoun-
tered the second term (equation 11–78) as the momentum carried by the radiation
field. This equation (12–46) is known as the Dirac radiation reaction equation. The
equation can be rewritten in a more symmetric form using βµ = V µ/c and

d2

dτ2
(βνβν) = 0 = βν d2βν

dτ2
+ βν

d2βν

dτ2
+ 2

dβν

dτ

dβν

dτ
(12–47)

to obtain

m0c
dβµ

dτ
− q2

6πε0c2
βν

(

βν
d2βµ

dτ2
− βµ d2βν

dτ2

)

= Fµ
ext (12–48)

The covariant equation retains all the problems, such as the run-away solution,
associated with the nonrelativistic equation.

12.6 Alternative Formulations

Early in the century, many workers, notably Einstein, remarking the similarity
between gravity and electromagnetism, attempted to unify these forces in much the
same way that electricity and magnetism are unified in Maxwell’s theory. Before the
advent of general relativity, Nordström proposed a theory adding a fifth dimension
to flat Minkowski four-space. In this space he introduced a five-vector field, for
which he wrote down Maxwell’s equations, including a conserved five-current. It
was possible to identify the first four components of the five-potential as the usual
electromagnetic potential, while the fifth component could be identified with the
(scalar) gravitational potential.

Kaluza, in the wake of Einstein’s general theory of gravity, extended Einstein’s
theory to a five-dimensional space with the fifth dimension curled back on itself
by the imposition of a cylindrical constraint. In this theory the electromagnetic
potentials are identified with components of the metric tensor involving the fifth
dimension. Klein related the periodicity of the fifth dimension to Planck’s constant
to obtain a primitive quantum theory of five-dimensional relativity. The resulting
theory and higher dimensional generalizations are known as Kaluza-Klein theories.
Related to these theories are the much more recent string theories, which hope to
unify all forces.

The development of quantum mechanics provided considerable impetus to de-
velop a quantum electromagnetic field theory. It was recognized as early as 1926 that
the radiation field could be quantized. The formal equivalence of the field Hamilto-
nian to that of a harmonic oscillator led to quantum operators for the creation and
annihilation of photons. In the early theory it was not the entire electromagnetic
field that was quantized, but only the radiative part.

Quantum electrodynamics reestablishes the unity of electromagnetic theory by
quantizing the entire field. The interaction of charged particles is ascribed to the
emission of a photon by one charge followed by the absorption of that photon by the
other, so that photons become the carriers of the field. The strength of electromag-
netic interactions compared to quantum interactions is given by the dimensionless
constant

e2

4πε0h̄c
=

1

137.036
(12–49)
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known as the fine structure constant. The relatively small size of this constant
allows the interaction with the field to be treated as a perturbation. The theory
has had some resounding successes, including the prediction of the g-factor of the
electron to some 12 significant figures and the Lamb shift.

Quantum electrodynamics was extended by Weinberg, Salam, and Glashow,
who succeeded in unifying the weak interactions sometimes known as Fermi cou-
pling with quantum electrodynamics in much the same sense that Maxwell unified
electricity and magnetism to produce an electro-weak theory of interactions. The
strong force theory, quantum chromodynamics, can apparently also be accommo-
dated by the theory.

Remarkably, gravity, the weakest of all forces, has largely defied successful in-
clusion in what are usually called grand unified theories.
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Exercises and Problems

12-1 Use the change of variable y =
(t′ − t)/τ to replace t′ in the integral of
equation (12–41) in order to more clearly

express the dependence of �F (t′) on t.

12-2 Use the results of problem 12-1 to
write the equation of motion of a one-
dimensional charged harmonic oscillator
subject to a force −mω2

0x. Assuming a
solution of the form x = x0e

−αt, obtain
the characteristic equation for α. Solve
the (cubic) equation when ωτ ≪ 1.

12-3 Investigate the consequences of us-
ing (12–16) to describe the damping

force on the harmonic oscillator of prob-
lem 12-2.

12-4 A point particle of mass m and
charge e initially at rest is acted on by a
force

F = m × (3 × 1023m/s2)

for a time 10−15s. Find the resulting rel-
ativistic motion as a function of time (a)
neglecting radiation damping, (b) using
the differential equation of motion, and
(c) using the integro-differential equa-
tion of motion.



AppendixA

Other Systems of Units

Throughout this book, we have used a system of units known as Système Interna-
tional (SI), or (rationalized) mksa (meter-kilogram-second-ampere). The advantage
of these units is the fact that the measure of potential difference, the volt, and the
measure of current, the ampere, are those in common use, leading to the customary
electrical units of ohms, henrys, and farads, as well as the mks units of power, force,
and energy.

Other systems—electrostatic (esu), electromagnetic (emu), and especially Gaus-
sian (in several flavors)—are also frequently used. Most theoreticians (especially
those who set c = h̄ = 1) will tell us it is trivial to convert from one system to
another. Unfortunately, the changes involved are much more subtle than those in
changing inches to centimeters or the like; the fields have different dimensions in
various systems. The result is that the student (as well as the author) is frequently
perplexed at the changes required to go from one system to another.

We comment briefly on the rationale behind each of the systems in common use.
The static theory was based entirely on two force laws: the force between two

charges is given by Coulomb’s law,

Fe = ke
qq′

R2
(A–1)

and the force per unit length between two long parallel currents which is

Fm

ℓ
= 2km

I1I2

R
(A–2)

In SI units, ke = 1/4πε0 ≃ 9× 109 N-m2/C2 and km = µ0/4π = 10−7 N/A2. Other
systems of units make different choices for these force constants. Because electrical
and magnetic forces are related by a Lorentz transformation, it is clear that these
two constants cannot be chosen arbitrarily (if the current and charge are related
by dq/dt = I ). For all but a modified Gaussian system (which poses dq/dt = cI ),
the intuitive relation between the current and charge accumulation is maintained.
Thus for SI, esu, emu, and Gaussian units we relate the two constants as follows.
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Both Fe and Fm are forces and therefore must have the same dimensions in any
system of units. Using I = q/t, we find ke/km has dimensions of (distance)2/(time)2.
The ratio is easily calculated in SI units to be 1/µ0ε0 = c2 with c = 2.9972458×108

m/s.
Whereas SI units of distance, mass, and length are mks (meters, kilograms, and

seconds), all other systems use cgs units of centimeter, gram, and second as their
basis.

A.1 ESU and EMU Systems

If one feels that Coulomb’s law is the fundamental law, then it is natural to assign
the value 1 to the constant ke, implying that km = 1/c2. The resulting force laws
are then

Fe =
qq′

R2
and

Fm

ℓ
=

2

c2

I1I2

R
(A–3)

This definition leads to the electrostatic system of units (esu).
Applying the definition, we construe that two unit charges at 1 cm from each

other exert a force of 1 dyne upon each other. Clearly this constitutes a definition
of the unit of charge. The charge so defined is the statcoulomb. The corresponding
unit of current is the statampere, and the unit of potential difference, the statvolt,
is one erg/statcoulomb. Other units are similarly defined with the prefix stat- to
distinguish them from the SI units. In practice, quantities measured in units of the
esu system are frequently specified only as esu, making dimensional analysis a bit
awkward. In this system, the magnetic induction field is defined by the Lorentz
force law �F = q( �E + �v × �B) , or equivalently �∇× �E = −∂ �B/∂t.

To relate statcoulombs to coulombs, we note that two equal charges Q exert a
force

F =
8.9874 × 109Q2N-m2/C2

R2
(A–4)

on each other. Converting to cgs units, we get

F = 8.9874 × 109N-m2/C2 × (105dyne/N) × (104cm2/m2)
Q2

R2

=
8.9874 × 1018dyne-cm2/C2Q2

R2
=

1 dyne-cm2/statcoul2Q2

R2
(A–5)

which clearly requires 1 statcoulomb ≃ 2.9979 × 109 (numerically equal to 10c in
SI units) coulombs.

If, alternatively the current law, rather than Coulomb’s law, is felt to be fun-
damental (we do in fact use this law to define the SI coulomb), then it is natural to
write

Fe =
c2qq′

R2
and

Fm

ℓ
=

2I1I2

R
(A–6)

to define the electromagnetic system of units (emu). Two equal currents of 1 abam-
pere spaced at a centimeter attract each other with a force of 2 dynes per centimeter
of length. It is easily verified using the method above that 1 abampere = 10 am-
peres. The associated charge is then 1 abcoulomb = 1 abampere-second = 10 C.
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Quantities measured in the emu system are all prefixed by ab- (for absolute). Again
the units are frequently specified only as emu rather than abfarad or the like.

A.2 Gaussian Units

The Gaussian system is an unrationalized hybrid (rationalized refers to the inclusion
of the 4π in the force law) of the emu and esu systems. Electric charge and quantities
derived from it, such as current and dipole moment are measured in esu while the
magnetic induction field is defined by the emu system. Faraday’s law, relating �E
and �B and the Lorentz force law, must be modified to account for these differing
definitions. In Gaussian units, Maxwell’s equations read

�∇ · �D = 4πρ �∇ · �B = 0

�∇× �E = −1

c

∂ �B

∂t
�∇× �H =

4π

c
�J +

1

c

∂ �D

∂t

(A–7)

with �D = �E + 4π �P and �B = �H + 4π �M . The definitions of �D and �H imply that in
vacuum, �D = �E and �H = �B in the Gaussian system. This last equality leads to
considerable confusion and misuse of �H and �B.

The Lorentz force must also be modified in order to obtain the correct force law
for moving charges. In the Gaussian system it becomes

�F = q( �E +
�v

c
× �B) (A–8)

Note that �B in the Gaussian system is a different physical quantity from that in SI
units.

For linear materials,

�D = ε �E �B = µ �H �J = σ �E �P = χe
�E �M = χm

�H (A–9)

(those who use Gaussian units uniformly use σ rather than g for the conductivity)
so that ε = 1 + 4πχe and µ = 1 + 4πχm.

The vector fields �E, �D and �P as well as �B, �H, and �M all have the same dimen-
sions. Nonetheless, the units of each field have different names. �B is measured in
gauss, �H and �M in Oersted, and the flux Φ in gauss-cm2 = Maxwell. Of course,
statvolts and statamps are retained from esu, leading to electric and displacement
fields measured in statvolt/cm.

Heaviside-Lorentz units are rationalized Gaussian units that banish the 4π from
Maxwell’s equations (but reimport it into Coulomb’s law and the Biot-Savart law).

Finally, there is a modified version of the Gaussian system where the charge is
measured in the statcoulombs of the esu system but current is measured in abamps
of emu. In this system we can no longer maintain I = dq/dt ; internal consistency
requires cI = dq/dt , or more usefully in terms of the continuity equation,

�∇ · c �J +
∂ρ

∂t
= 0 (A–10)
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It suffices to replace �J by c �J in Maxwell’s equations so that Ampère’s law becomes

�∇× �H = 4π �J +
1

c

∂ �D

∂t
(A–11)

Clearly this plethora of systems is bound to produce confusion, particularly as
it is rarely stated which version of Gaussian units is being used.

Conversion from one system of units to another requires both a conversion of the
formulas (for example, Coulomb’s law in Gaussian units becomes F = qq′/r2) and
a substitution of numerical values appropriate to the new system. Table A.1 lists
the required substitutions in the formulas involving the fields and related variables
of the SI and the Gaussian systems.

SI system Gaussian system

q, ρ, I, �J, �p, �P , · · · ↔ (4πε0)
1/2q, ρ, I, �J, �p, �P , · · ·

�E, V, ↔ (4πε0)
−1/2 �E, V

�D ↔ (ε0/4π)1/2 �D
�B, �A, �M, �m, Φ ↔ (µ0/4π)1/2 �B, �A, �M, �m, Φ
�H, Vm ↔ (4πµ0)

−1/2 �H, Vm

χe, χm ↔ 4πχe, 4πχm

(µ0ε0)
−1/2 ↔ c

L(inductance) ↔ (4πε0)
−1L

C(capacitance) ↔ (4πε0)C
g(conductivity) ↔ 4πε0g(usually denoted by σ)

Table A.1 Substitutions
required in order to con-
vert a formula from SI
units to Gaussian or the
converse.

Variable SI Gaussian

length 1 m 102 cm
mass 1 kg 103 g
force 1 N 105 dynes
energy 1 J 107 ergs
charge 1 C 3×109 statcoul
current 1 A 3×109 statamp
potential 1 V 1/300 statvolt
Electric field 1 V/m 1/3×10−4 statvolt/cm
Displacement field 1 C/m2 12π × 105 statvolt/cm
Mag. field intensity 1 A/m 4π × 10−3 oersted
Mag. induction field 1 T (=Wb/m2) 104 gauss
Magnetic flux 1 Wb 108 maxwell
Magnetization 1 A/m 10−3 oersted
Polarization 1 C/m2 3 ×105 statvolt/cm
Capacitance 1 F 9×1011 statfarad
Inductance 1 H 1/9 ×10−11 stathenry
Resistance 1 Ω 1/9 ×10−11 statohm

Table A.2 The numer-
ical correspondence be-
tween Gaussian and SI
units. Note that although
�D and �P are measured in
the same units, the con-
version for them is not the
same, differing by a fac-
tor of 4π. Similar remarks
apply to �H and �M . The
conversion factors abbre-
viated as 3 should really
be 2.99792458 and the 9’s
should be (2.9972458)2.

The magnitudes of the quantities measured in each of the systems are related
in Table A.2.
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Vectors and Tensors

B.1 Vectors

It is customary in elementary physics courses to define vectors as quantities having
both direction and magnitude, and it is tacitly assumed that these quantities obey
the same geometry as line segments. Mathematicians, on the other hand, typically
using an axiomatic approach, make little reference to geometry when speaking of
vector spaces and vectors. It is not infrequent that a student after taking a linear
algebra course concludes that the vectors of mathematics and those of physics have
little in common. In fact, there are differences in that physicists usually31 really
mean a first-rank tensor when they speak of a vector. Let us begin by considering
vectors as defined by mathematicians.

Definition: A vector space is a set V of elements called vectors, satisfying the
following axioms:

A. To every pair of vectors, �x and �y in V, there exists a vector (�x+�y ) such that

(1) �x + �y = �y + �x
(2) �x + (�y + �z ) = (�x + �y ) + �z
(3) There exists a unique vector �0 such that �x +�0 = �x
(4) There exists a unique inverse −�x for every �x in V such that �x+(−�x) = �0

B. To every pair α and �x, where α is a scalar and �x is a vector in V, there exists
a vector α�x in V called the product of α and �x, satisfying

(1) α(β�x) = (αβ)�x
(2) 1 · �x = �x
(3) (α + β)�x = α�x + β�x

It is worth noting that not every quantity characterized by magnitude and di-
rection is a vector under this definition. To qualify, the quantity must also obey
the laws of vector algebra. To illustrate, suppose a rigid body is rotated about

31This seems rather an excessive generalization; the state vectors of quantum mechanics and
similar abstract vectors that have no geometric interpretation are frequently used in physics. In
this appendix, we concern ourselves only with those vectors that behave like directed line segments.
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some arbitrary axis. The rotation can be represented by a line segment of length
proportional to the angle of rotation, directed along the axis of rotation. Directed
line segments of this kind do not add like vectors. The addition is not commutative:
a rotation about the z axis followed by one about the y axis is not the same as a
rotation about the y axis followed by one about the z axis.

B.1.1 Bases and Transformations

The N vectors �A1, �A2, �A3, . . . , �AN are called linearly independent if and only if
(frequently abbreviated by iff )

c1
�A1 + c2

�A2 + c3
�A3 + · · · + cN

�AN = 0 (B–1)

implies that each of the coefficients c1, c2, c3, . . ., cN vanishes.
Two linearly dependent vectors are collinear. If �A and �B are linearly indepen-

dent, then any vector �C that can be expressed as a linear combination of �A and �B
is said to be coplanar with �A and �B and has a unique expansion �C = s �A + t �B.

Proof: Suppose �C has another expansion, say �C = α �A + β �B. Subtracting
one from the other gives (s−α) �A+(t−β) �B = 0. Since �A and �B are linearly
independent, s−α = 0 and t−β = 0; in other words, the expansion is the
same (α = s and β = t).

This theorem is easily extended to three or more dimensions.
By a basis for a three-dimensional space we mean any set of three linearly

independent vectors �e1, �e2, and �e3 in that space. Given a basis �e1, �e2, and �e3, every
vector �A in 3-space has a unique expansion in this basis: �A = r�e1 + s�e2 + t�e3.

Figure B.1: Any three linearly independent vectors form a basis of a three
dimensional vector space.

Suppose the basis vectors �e1, �e2, and �e3 are all drawn from a common origin O,
as in Figure B.1. The triad in general gives an oblique coordinate system. Any point
(the terminus of a vector) can be specified as the set of three numbers (x1, x2, x3)
that give the expansion on the basis. When �e1, �e2, and �e3 are all orthogonal, of
unit magnitude and constant, the coordinate system is said to be Cartesian, and the
coordinates of a point may then be written (x1, x2, x3) for reasons that will become
evident. We will also write the basis as ı̂1, ı̂2, ı̂3 instead of �e1, �e2, �e3 in orthonormal
systems.
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The great merit of vectors applied to physics is the fact that equations describing
physical phenomena can be formulated without reference to any particular coordi-
nate system. However, in actually carrying out calculations needed to solve given
problems, one must usually eventually cast the problem into a form involving co-
ordinates. This can be done by introducing a suitable coordinate system and then
replacing the given vector (or tensor) equation by an equivalent system of scalar
equations involving only the components of the vectors obeying the ordinary rules
of arithmetic.

B.1.2 Transformation of Basis Vectors

Consider two distinct bases �e1, �e2, �e3 and �e ′
1, �e ′

2, �e ′
3 drawn from the same point O.

Then any of the primed basis vectors can be expanded in terms of the unprimed
basis. Let α1

i′ , α
2
i′ , and α3

i′ be the expansion coefficients of �e ′
i in the unprimed basis;

that is,
�e ′
1 = α1

1′�e1 + α2
1′�e2 + α3

1′�e3

�e ′
2 = α1

2′�e1 + α2
2′�e2 + α3

2′�e3

�e ′
3 = α1

3′�e1 + α2
3′�e2 + α3

3′�e3

(B–2)

or, more concisely,

�e ′
i =

∑

k

αk
i′�ek (B–3)

The nine numbers αk
i′ are called the coefficients of the transformation.

Similarly, we let αk′

i be the coefficients of the inverse transformation (note the
location of the prime on the transformation coefficients; if one thinks of the prime
as attached to the index of the basis vector, it becomes a bit more obvious):

�ei =
∑

αk′

i �e ′
k (B–4)

The αk
i′ and αℓ′

j are simply related, as is demonstrated below:

�e ′
i = α1

i′�e1 + α2
i′�e2 + α3

i′�e3

= α1
i′

(

α1′

1 �e ′
1 + α2′

1 �e ′
2 + α3′

1 �e ′
3

)

+ α2
i′

(

α1′

2 �e ′
1 + α2′

2 �e ′
2 + α3′

2 �e ′
3

)

+ α3
i′

(

α1′

3 �e ′
1 + α2′

3 �e ′
2 + α3′

3 �e ′
3

)

= �e ′
1

∑

ℓ

αℓ
i′α

1′

ℓ + �e ′
2

∑

ℓ

αℓ
i′α

2′

ℓ + �e ′
3

∑

ℓ

αℓ
i′α

3′

ℓ

(B–5)

Since any vector including �e ′
i has a unique expansion, we conclude that for i = 1

the first sum must equal unity, while the other two sums must vanish. Similarly for
i = 2, the second sum equals unity and the first and third vanish. In exactly the
same fashion we find

�ei = �e1

∑

ℓ

αℓ′

i α1
ℓ′ + �e2

∑

ℓ

αℓ′

i α2
ℓ′ + �e3

∑

ℓ

αℓ′

i α3
ℓ′ (B–6)
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The two sets of equations for the coefficients can be summarized by

∑

ℓ

αℓ
i ′α

j ′

ℓ = δj ′

i ′ and
∑

ℓ

αℓ′

i αj
ℓ′ = δj

i (B–7)

where the Kronecker delta δ j
i is 0 if i �= j and 1 if i = j.

B.1.3 Scalar and Vector Products

We expand the operations that we can perform on vectors beyond the addition
provided for in the axioms by defining a scalar or dot product by

�A · �B = | �A|| �B | cos( �A, �B) (B–8)

The magnitude | �A | ≡
√

A2 of a vector will be defined in B.2.1; for now we rely on
our intuitive notions of length. In addition to a scalar product we also define the
vector or cross product. The cross product has magnitude

| �A × �B | = | �A|| �B | sin( �A, �B) (B–9)

and an orientation perpendicular to the plane defined by �A and �B in the direction
that a right-hand screw advances in turning from �A to �B (through the smallest
angle).

B.1.4 Reciprocal Bases

Consider the general problem of expanding an arbitrary vector �A with respect to
three linearly independent vectors �e1, �e2, and �e3 that are neither orthogonal nor of
unit length. Let the expansion coefficients of the vector �A in this basis be A1, A2,
and A3 (the superscripts are not to be interpreted as exponents; the context should

make it clear when the superscript is an exponent) so that �A may be written

�A = A1�e1 + A2�e2 + A3�e3 (B–10)

We will consider the problem of finding the expansion coefficients. With an or-
thonormal basis the solution consists of taking the dot product of �A with each of
the basis vectors; Ai = �A · ı̂i . When the basis is not orthogonal, the resolution
of �A is less obvious. Considerable simplification is brought to the problem by the
introduction of the reciprocal basis.

Two bases �e1, �e2, �e3 and �e 1, �e 2, �e 3 are said to be reciprocal if they satisfy
�ei · �e k = δk

i . To construct the reciprocal basis from the ordinary one, we note that
�e 1 must be perpendicular to �e2 and �e3. We therefore set �e 1 = m(�e2 × �e3). The
requirement that �e1 · �e 1 = 1 implies that

m�e1 · (�e2 × �e3) = 1 (B–11)

leading to

�e 1 =
�e2 × �e3

�e1 · (�e2 × �e3)
(B–12)
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The other two reciprocal basis vectors are found by cyclically permuting the indices:

�e 2 =
�e3 × �e1

�e1 · (�e2 × �e3)
and �e 3 =

�e1 × �e2

�e1 · (�e2 × �e3)
(B–13)

An orthonormal basis is its own reciprocal basis: ı̂1 = ı̂1, ı̂2 = ı̂2, and ı̂3 = ı̂3.
To return to the problem of finding the expansion coefficients of �A, we exploit

the orthogonality of the basis with its reciprocal basis. Taking the dot product of
�A with �e i, we find �A · �e i = Ai so that generally

�A = ( �A · �e 1)�e1 + ( �A · �e 2)�e 2 + ( �A · �e 3)�e3 (B–14)

Example B.1: An oblique coordinate system has basis �e1 = 2ı̂+3̂+ k̂, �e2 = ı̂− ̂+ k̂,
and �e3 = ̂ + k̂. Find the expansion of the vector �A = 5ı̂ + 6̂ + 7k̂ in this basis.

Solution: We first generate the reciprocal basis by the prescription above to obtain
�e 1 = 1

6 (2ı̂ + ̂ − k̂), �e 2 = 1
6 (2ı̂ − 2̂ + 2k̂) and �e 3 = 1

6 (−4ı̂ + ̂ + 5k̂) so that the

components of �A in this basis (�ei) are

A1 = ( �A · �e 1) = 1.5

A2 = ( �A · �e 2) = 2

A3 = ( �A · �e 3) = 3.5

(Ex B.1.1)

It is readily verified that
∑

i Ai�ei = �A.

B.1.5 The Summation Convention

We will henceforth make free use of the following convention, used universally in
contemporary physical and mathematical literature.

(1) Every index appearing once in an expression can take on the values 1, 2,
and 3 (0, 1, 2, and 3 in special relativity). Thus Ai denotes any member of
the set {A1, A2, A3}; Aik of the set {A11, A12, A13, A21, A22, A23, A31, A32,
A33}; and so on.

(2) If a free index appears twice in a term, once as superscript and once as
subscript, summation over that index, allowing the index to take all its
possible values, is implied. For example

Ai
i ≡ A1

1 + A2
2 + A3

3

AiB
i ≡ A1B

1 + A2B
2 + A3B

3

AiB
kCi ≡ Bk(A1C

1 + A2C
2 + A3C

3)
(B–15)

With this convention, �e ′
i = αk

i′�ek and �ei = αk′

i �e ′
k. Clearly an expression such as

AiB
i is independent of the letter chosen for summation index; for this reason such

an index is often called a dummy index.
The summation is occasionally extended to repeated indices irrespective of their

position. As we will see, this makes sense only for entities expressed in an orthonor-
mal basis.
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B.1.6 Covariant and Contravariant Components of a Vector

The vector �A = Ai�ei could equally well be expanded in the reciprocal basis as
�A = Ai�e

i. The numbers Ai are called the contravariant components of �A, while
the numbers Ai are its covariant components. These designations arise from the
fact that under transformations of the coordinate system, the covariant components
in the ‘primed’ system are obtained from the unprimed components by the same
transformation that takes �ei → �e ′

k whereas the contravariant components in the
primed system are obtained by the inverse transformation that takes �e ′

i → �ek. To

confirm this assertion, let �A = Ai�e
i = Ai�ei in the basis defined by {�ei}, while

�A = A′
i �e

i′ = Ai ′

�e ′
i in the basis defined by {�ei

′}. First we note that

�e ′
i · �e k = αk

i′ and �ei · �e k′

= αk′

i (B–16)

Using the above equations, we convert between the primed and unprimed system

A′
i = �A · �e ′

i = Ak�e
k · �e ′

i = αk
i′Ak (B–17)

Similarly
Ai′ = �A · �e i′ = Ak�ek · �e i′ = αi′

k Ak (B–18)

Comparing these transformation coefficients to those for the basis (B–3, 4),
�e ′

i = αk
i′�ek and �ei = αk′

i �e ′
k, confirms our assertion.

B.1.7 The Metric Tensor

Converting between covariant and contravariant components of a vector is easily
done by means of the metric tensor, also known as the raising and lowering operator.

Consider the vector �A = Ai�ei. Taking the dot product of �A with �ej , we obtain

( �A · �ej) = Ai�ei · �ej (B–19)

so that
Aj = gijA

i (B–20)

where gij ≡ �ei · �ej is known as the metric tensor. This name comes from the fact
that g relates physical displacements to changes in the coordinates. In analogous
fashion, setting gij = �e i ·�e j lets us write Aj = gijAi. The definition of the reciprocal
basis requires gj

i = �ei · �e j = δ j
i . It is also evident that gij = gji. For orthonormal

systems, gij = δij .
The contravariant components gik of the metric tensor may also be expressed in

terms of the covariant basis:

giℓ = �e i · �e ℓ =
(�ej × �ek) · (�em × �en)

| (�e1 × �e2) · �e3 |2
(B–21)

where the triplets i, j, k and ℓ, m, n are each in cyclic order. We abbreviate the
denominator as V 2, with V the volume of the parallelepiped spanned by the basis.
With this abbreviation and the aid of (4),

giℓ =
1

V 2

∣

∣

∣

∣

∣

∣

�ej · �em �ej · �en

�ek · �em �ek · �en

∣

∣

∣

∣

∣

∣

=
1

V 2

∣

∣

∣

∣

∣

∣

gjm gjn

gkm gkn

∣

∣

∣

∣

∣

∣

(B–22)
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Alternatively, Aℓ = giℓA
i can be written it as Ai =

∑

ℓ(g
−1)iℓAℓ. The i, ℓ

element of the inverse to a nonsingular matrix g is generally given by

(g−1)iℓ =
Giℓ

G
(B–23)

where G is the determinant of the metric coefficient matrix (G = det giℓ) and Giℓ

is the cofactor of giℓ. The cofactor Giℓ may be written as the determinant of gij

with the i -th row and ℓ-th column removed and multiplied by (−1)i+ℓ.

Giℓ = (−1)i+ℓ

∣

∣

∣

∣

gjm gjn

gkm gkn

∣

∣

∣

∣

(B–24)

Thus, returning to our expression for Ai above,

Ai =
Giℓ

G
Aℓ ⇒ giℓ =

Giℓ

G
(B–25)

Comparison of the two expressions (B–22) and B–25) for giℓ leads to the conclusion
that G = V 2.

B.2 Tensors

Recall that a scalar is a quantity whose specification requires only one number. On
the other hand, a vector requires three numbers; its components with respect to
some basis. Scalars and vectors are both special cases of a more general object
called a tensor of order n, whose specification in any three-dimensional coordinate
system requires 3n numbers called its components.

Of course, a tensor is more than just a collection of 3n numbers (recall that not
any set of three numbers constitute a vector). The key property of a tensor is the
transformation law of its components under a change of coordinate system. The
precise form of this transformation law is a consequence of the physical or geometric
meaning of the tensor.

Suppose we have a law of physics involving components a, b, c, . . . of the various
physical quantities. It is an empirical fact that the law has the same form when
written in terms of the components a′, b′, c′, . . . of the same quantities with respect
to a coordinate system shifted and rotated with respect to the first. In other words,
a properly formulated physical law is invariant in form under displacements and
rotations of the coordinate system. The operations under which we expect the laws
of physics to be invariant correspond to the symmetries of space such as the iso-
tropy and homogeneity of space. Under many conditions we also expect the laws
to be invariant under reflection of the coordinate system, and special relativity also
requires the laws to be invariant under velocity transformations of the reference
frame.

B.2.1 Zero-Rank Tensor (Scalars)

We begin by refining our definition of scalars. By a scalar (zero-rank tensor) we
will mean a quantity uniquely specified by a single number independent of the
coordinate system and invariant under changes of the coordinate system.
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Example B.2: Let A and B be two points with coordinates xA
i and xB

i in one reference
frame Σ and coordinates x′

i
Aand x′

i
B in another system Σ′. Let ∆S be the distance

from A to B. We will show that ∆S is a scalar; in other words, that the value of
∆S′ equals that of ∆S. This intuitively obvious fact may be verified algebraically.
Pythagoras’ theorem expressed in terms of tensors is

(∆S′)2 = ∆xi′∆xi′ (Ex B.2.1)

Writing the primed coordinates in terms of the unprimed gives

∆xi′ = αk
i′∆xk and ∆xi′ = αi′

ℓ ∆xℓ (Ex B.2.2)

Then
(∆S′)2 = αk

i′α
i′

ℓ ∆xk∆xℓ = δk
ℓ ∆xk∆xℓ = ∆xℓ∆xℓ (Ex B.2.3)

which is just Pythagoras’ theorem in unprimed coordinates. Note that this result
holds not only in Cartesian systems, but also in arbitrary constant-basis systems.

B.2.2 First-Rank Tensors

As already noted, three numbers are required to specify a vector in three-space.
But a vector is more than three numbers—the numbers cannot be scalars—because
a vector such as displacement has components that transform in a very definite
way under transformations of the coordinate system. As an example of a three-
“component” quantity that is not a vector we offer the following. The state of a
gas can be specified by three numbers (pressure, density, and temperature) but the
triad (P, ρ, T ) does not constitute a first-rank tensor.

The transformation law obeyed by a vector like displacement is

∆xi′ = αi′

k ∆xk (B–26)

If the change in coordinates were, for example, a rotation, the coefficients of the
transformation would be αi′

k = cos(�ek, �e ′
i ). More generally,

αi′

k =
∂xi′

∂xk
and αk

i′ =
∂xk

∂xi′
(B–27)

Every first-rank tensor �A shares this transformation law:

Ai′ = αi′

k Ak and A′
i = αk

i′Ak (B–28)

This transformation property (B–28) constitutes the definition of a first-rank tensor
(or a physical vector).

Example B.3: Suppose the coordinates xi of a point in system Σ are a function of
time: xi = xi(t). Show that the vi = dxi/dt are the components of a first rank
tensor.

Solution: The velocity of the point in Σ′ is given by

vi′ =
dxi′

dt′
= lim

∆t′→0

xi′(t′ + ∆t′) − xi′(t′)

∆t′
(Ex B.3.1)
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In nonrelativistic physics, t = t′ and ∆t′ = ∆t. Thus

vi′ = lim
∆t→0

xi′(t + ∆t) − xi′(t)

∆t
= lim

∆t→0

αi′

k xk(t + ∆t) − αi′

k xk(t)

∆t
(Ex B.3.2)

which, for αi′

k independent of t, becomes

vi′ = αi′

k lim
∆t→0

xk(t + ∆t) − xk(t)

∆t
= αi′

k vk (Ex B.3.3)

We conclude that �v is a first-rank tensor.

In general, any vector differentiated with respect to a scalar yields a vector.
Thus the acceleration �a is also a vector, and if mass is a scalar, then �F = m�a
requires that �F also be a vector in order that the equation hold in all coordinate
systems.

Differentiation of scalars with respect to the components of a vector also leads
to a vector, as we will demonstrate.

For V a scalar function, the derivative of V with respect to xi′ , Ti′ ≡ ∂V/∂xi′ , can
be rewritten using the chain rule as

Ti′ =
∂V

∂xj
· ∂xj

∂xi′
= αj

i′
∂V

∂xj
= αj

i′ Tj (B–29)

It is apparent that the three-component quantity obtained by differentiating V
with respect to each of the coordinates transforms like a covariant tensor. For this
reason, the notation ∂V/∂xj = ∂jV is frequently used. It is interesting to note that
an equation like

−∂jV = m
d2xj

dt2
(B–30)

cannot be generally correct because the contravariant right-hand side and the co-
variant left-hand side behave differently under coordinate transformations.

B.2.3 Second-Rank Tensors

Second-rank tensors are defined in any coordinate system by their nine (in three
dimensions) components, which must transform according to

A′
ik = αℓ

i′α
j
k′Aℓj or (Aik)′ = αi′

j αk′

mAjm or (A· k
i )′ = αm

i′ αk′

j A· j
m (B–31)

Second rank tensors are often written in matrix form,

Aik =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 (B–32)

They occur as covariant, Aij , contravariant, Aij , and mixed, A· j
i or Aj

· i tensors.
The dot is a place holder indicating in which order the sub- and/or superscripts
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are to be read if Aij �= Aji. In particular a quantity like gijA
· j
k = Aki whereas

gijA
j
· k = Aik.

Example B.4: Given two vectors, �A and �B, show that the nine products of the
components T ij = AiBj form a second-rank tensor.

Solution: In the transformed coordinate system

T ij′

= Ai′Bj′

= (αi′

ℓ Aℓ)(αj′

k Bk) = αi′

ℓ αj′

k AℓBk = αi′

ℓ αj′

k T ℓk (Ex B.4.1)

clearly it transforms as a second-rank contravariant tensor as shown in the second
equality of (B–31).

Example B.5: Show that the coefficients ai
k of a linear transformation between the

vector Ak and Bi, Bi = ai
kAk, form a second-rank mixed tensor.

Solution: We multiply both sides of the relation above by αm′

i (and perform the
implied summation) to obtain

αm′

i Bi = αm′

i ai
kAk (Ex B.5.1)

or
Bm′

= αm′

i ai
kAk = αm′

i ai
kαk

j′Aj′

(Ex B.5.2)

In Σ′, the linear transformation takes the form Bm′

=
(

am
j

)′
Aj′

. Comparing the
two expressions we find

(

am
j

)′
= αm′

i αk
j′ai

k (Ex B.5.3)

which is precisely the transformation required of a second-rank mixed tensor.

Example B.6: The Kronecker delta, δj
i , is a second-rank tensor. Clearly the definition

of δ does not change with a change in coordinate system. Using the identity (B–7),

(

δ j
i

)′
= αk

i′α
j′

k = αk
i′α

j′

mδm
k (Ex B.6.1)

showing that δ j
i is indeed a second-rank tensor. It has the same form in all coordi-

nate systems and is therefore called isotropic.

Other examples of second-rank tensors include the moment of inertia tensor, the
stress tensor, the quadrupole moment tensor, and many others.

B.2.4 Differentiation of Tensors

(a) Differentiation of a tensor with respect to a scalar produces another tensor
of the same rank and type.

(b) Differentiation of a tensor with respect to the coordinates xi produces
a new tensor whose covariant order is increased by 1 (similar to taking
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a gradient) provided that the basis does not depend on the coordinates.
Thus ∂iA

kℓm = B·kℓm
i and ∂iAjkℓ = Bijkℓ are tensors of the type and

rank indicated by the indices.

The Fundamental Theorem: The product of two tensors (including con-
traction as indicated by the indices) forms a tensor of the rank and type
indicated by the indices.

Quotient Rule: When two of the three entities in an expression such as
Ai = CijBj are tensors, then the third is also a tensor of the type and
rank indicated by the indices.

B.2.5 Pseudotensors

In general we expect physical laws to be invariant not only under rotations, trans-
lations, and stretching of the coordinate system, but also under inversion of the
coordinates. In fact, a normal (polar) vector’s components change sign under in-
version, but those of axial vectors (produced as cross products) do not change sign.
The components of an axial vector do not transform like those of an arrow. For this
reason, the axial vector is called a pseudotensor of rank one. Extending this notion
to tensors of rank r, one finds that the components of an rth rank tensor satisfy
P ′

iℓm...s = (−1)rP ′
iℓm...s under inversion. By contrast, rth rank pseudo tensors have

parity (−1)r+1.

Examples:

(a) ( �A× �B) · �C is a pseudoscalar. This particular pseudoscalar may be identified
with the volume of a parallelepiped with edges of length A, B, and C.

(b) �A × �B is a pseudovector.

(c) Dij = ( �A × �B)iCj is a second-rank pseudotensor.

(d) The entity with components ǫijk = (�ei×�ej)·�ek, called a Levi-Cevita symbol, is
pseudotensor of third-rank of particular importance. The vector i component
of the cross-product �C = �A× �B is the contraction of ǫijk with the second-rank
tensor AjBk. This is easily shown by expanding

�A × �B = (Aj�ej) × (Bk�ek) = AjBk�ej × �ek (B–33)

The covariant i component of the cross product is found by taking the dot
product with �ei

( �A × �B)i = ( �A × �B) · �ei = AjBk(�ej × �ek) · �ei = (�ei × �ej) · �ekAjBk

= ǫijkAjBk
(B–34)

In Cartesian coordinates,

ǫijk =







1 for i, j, k a cyclic permutation of 1, 2, and 3
0 for any two indices equal

−1 for i, j, k anticyclic
(B–35)
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An important identity for ǫijk, easily proved from the definition, is ǫijkǫℓmk

= δℓ
i δ

m
j − δm

i δℓ
j . This identity may be used to great advantage in proving

vector identities, as we will demonstrate in the following section.

B.3 Vector Identities

In the following list we derive the vector identities (1) to (13) found on the end
pages of this book. When using Cartesian coordinates, no distinction need be made
between covariant and contravariant components of a vector.

(1)
[

�A × ( �B × �C)
]i

= ǫijkAj

(

�B × �C
)

k

= ǫijkAjǫkℓm BℓCm

= ǫijkǫℓmkAjB
ℓCm

=
(

δi
ℓδ

j
m − δi

mδ j
ℓ

)

AjB
ℓCm

= AjC
jBi − AjB

jCi = ( �A · �C)Bi − ( �A · �B)Ci

(2)
[

( �A × �B) × �C
]i

= ǫijk( �A × �B)jCk

= ǫijkǫjmℓA
mBℓCk

= ǫjkiǫjmℓA
mBℓCk

=
(

δk
mδi

ℓ − δk
ℓ δi

m

)

AmBℓCk

= BiAkCk − AiBkCk = Bi( �A · �C) − Ai( �B · �C)

(3) �A · ( �B × �C) = Ak
(

�B × �C
)

k
= AkǫkℓmBℓCm

= ǫmkℓA
kBℓCm = CmǫmkℓA

kBℓ

= Cm
(

�A × �B
)

m
= ( �A × �B) · �C

(4) ( �A × �B) · (�C × �D) = ( �A × �B)i(�C × �D)i

= ǫijkAjBkǫiℓmCℓDm

=
(

δℓ
jδ

m
k − δ j

mδℓ
k

)

AjBkCℓDm

= AjCjB
kDk − AjDjB

kCk

= ( �A · �C)( �B · �D) − ( �A · �D)( �B · �C)

(5)
[

�∇(ψξ)
]

i
= ∂i(ψξ) = ξ∂iψ + ψ∂iξ

(6)
[

�∇× (ψ �A )
]i

= ǫijk∂j(ψAk)

= ǫijk(∂jψ)Ak + ψǫijk∂jAk

=
[

(�∇ψ) × �A
]i

+ ψ
(

�∇× �A
)i

Although the identities are generally valid, the derivation of the following two
identities involving a divergence is, strictly speaking, valid only in orthonormal
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coordinates as the general covariant divergence operators will not be discussed until
section B.4.2.

(7) �∇ · (ψ �A) = ∂i(ψAi) = (∂iψ)Ai + ψ∂iA
i

= �∇ψ · �A + ψ�∇ · �A

(8) �∇ · ( �A × �B) = ∂i( �A × �B)i = ∂iǫ
ijkAjBk

= ǫijk
(

∂iAj

)

Bk + ǫijk
(

∂iBk

)

Aj

= ǫkij
(

∂iAj

)

Bk − ǫjik
(

∂iBk

)

Aj

=
(

�∇× �A
)k

Bk −
(

�∇× �B
)j

Aj =
(

�∇× �A
)

· �B −
(

�∇× �B
)

· �A

(9)
[

�∇( �A · �B)
]

i
= ∂i(AjB

j) = Bj∂iAj + Aj∂iBj

= Bj
(

∂iAj − ∂jAi

)

+ Aj
(

∂iBj − ∂jBi

)

+ Bj∂jAi + Aj∂jBi

where we have used Bj∂iA
j = Bj∂iAj and added and subtracted the two rightmost

terms. The first two terms vaguely resemble a curl; in fact, expanding

[

�A × (�∇× �B)
]

i
= ǫijkAj(ǫkℓm∂ℓBm)

= ǫkijǫ
kℓmAj∂ℓBm

=
(

δℓ
i δ

m
j − δm

i δℓ
j

)

Aj∂ℓBm

= Aj∂iBj − Aj∂jBi

we have the second term of the expansion of
[

�∇( �A · �B)
]

i
above. Similarly,

[

�B × (�∇× �A)
]

i
= Bj∂iAj − Bj∂jAi

Making these replacements, we find

[

�∇( �A · �B)
]

i
= [ �B × (�∇× �A) ]i + [ �A × (�∇× �B)]i + ( �B · �∇)Ai + ( �A · �∇)Bi

(10)
[

�∇× ( �A × �B )
]i

= ǫijk∂j( �A × �B )k = ǫijk∂jǫkℓmAℓ Bm

= ǫkijǫkℓm

(

Bm∂jA
ℓ + Aℓ∂jB

m
)

=
(

δi
ℓδ

j
m − δi

mδ j
ℓ

)

(

Bm∂jA
ℓ + Aℓ∂jB

m
)

= ( �B · �∇)Ai − Bi(�∇ · �A) + Ai(�∇ · �B) − ( �A · �∇)Bi

(11) �∇ · (�∇× �A ) = ∂i(�∇× �A )i

= ∂iǫ
ijk∂jAk = ǫjik∂j∂iAk

= −ǫijk∂j∂iAk = −∂iǫ
ijk∂jAk = −�∇ · (�∇× �A )
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where we have relabelled dummy indices i and j as j and i respectively in the sec-
ond line and exchanged the order of differentiation in the third. We conclude that
�∇ · (�∇× �A ) ≡ 0. We prove �∇× (�∇V ) = 0 in the same fashion:

(12)
[

�∇× (�∇V )
]i

= ǫijk∂j(�∇V )k

= ǫijk∂j∂kV = ǫikj∂k∂jV

= −ǫijk∂j∂kV = −
[

�∇× (�∇V )
]i

We conclude that �∇× (�∇V ) ≡ 0.

(13)
[

�∇× (�∇× �A )
]i

= ǫijk∂j(�∇× �A)k = ǫijk∂jǫkℓm∂ℓAm

= ǫkijǫklm∂j∂
ℓAm

= (δi
ℓδ

j
m − δi

mδ j
ℓ )∂j∂

ℓAm

= ∂i(∂jA
j) − ∂ℓ ∂ℓAi = ∂i(�∇ · �A) −∇2Ai

B.4 Curvilinear Coordinates

Any three numbers q1, q2, q3 uniquely specifying the position of a point in space
are called the coordinates of the point in space. To illustrate, in cylindrical polar
coordinates q1 = r =

√

x2
1 + x2

2, q2 = ϕ = tan−1 x2/x1, and q3 = z = x3, where
x1, x2, and x3 are the Cartesian coordinates of the point.

The surfaces described when one of the coordinates is held constant while the
others vary over their complete range are called coordinate surfaces. In the example
above, the coordinate surfaces are

r = a cylinder of radius a

z = b plane parallel to the xy plane

ϕ = ϕ0 half-infinite plane containing the z axis

The curves obtained when two of the coordinates are fixed (the intersection
of two coordinate planes) are called coordinate curves. The coordinate curves for
cylindrical coordinates are

r = a ϕ = b straight line parallel to the z axis

ϕ = a z = b straight line pointing radially outward at z = b

r = a z = b circle of radius a at z = b

B.4.1 Bases and Coordinate Axes

By a basis of a “generalized” coordinate system q1, q2, q3 we mean any set of three
vectors �e1, �e2, �e3 of (locally) fixed length, pointing tangent to the positive direction
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of the coordinate curve. Thus �e1 is tangent to the coordinate curve of q1 (q2 and q3

fixed). The basis is said to be local, since it varies from point to point. In general,
the basis vectors are neither of unit length nor mutually perpendicular. Coordinate
systems whose basis vectors intersect at right angles are said to be orthogonal.

Over small distances the separation between two points can be found from (dS)2

= gikdqidqk, where gik is the local metric tensor. The element of arc length along
a coordinate curve qi is

(dS)i = |�ei|dqi =
√

gii dqi (no summation) (B–36)

while the element of area, dσ1, on the coordinate surface q1 = constant (this surface
has normal proportional to �e1) is

dσ1 = |�e2 × �e3| dq2dq3

=
√

(�e2 × �e3) · (�e2 × �e3)dq2dq3

=
√

(�e2 · �e2)(�e3 · �e3) − (�e2 · �e3)(�e2 · �e3)dq2dq3

=
√

g22g33 − (g23)2 dq2dq3

(B–37)

Similarly,

dσ2 =
√

g11g33 − (g13)2 dq1dq3 and dσ3 =
√

g11g22 − (g12)2 dq1dq2 (B–38)

In terms of the coordinates, the differential volume element is given by �e1 · (�e2 ×
�e3)dq1dq2dq3 =

√
G dq1dq2dq3, where G = det(gik) is the determinant of the metric

tensor. In orthogonal systems, the only nonzero elements of gij are g11, g22, and
g33.

Suppose that the relationship between a system of generalized coordinates q1,
q2, q3 and an underlying system of Cartesian coordinates x1, x2, x3 is given by the
formulas

q1 = q1(x1, x2, x3) q2 = q2(x1, x2, x3) q3 = q3(x1, x2, x3) (B–39)

and

x1 = x1(q
1, q2, q3) x2 = x2(q

1, q2, q3) x3 = x3(q
1, q2, q3) (B–40)

where the Jacobians

J = det

(

∂qi

∂xk

)

and J−1 = det

(

∂xi

∂qk

)

are nonzero (J = 1/r for cylindrical coordinates and J = 1/(r sin θ) for spherical
polars). We can write the position vector of an arbitrary point as �r = �r (q1, q2, q3)
= x1 ı̂1 + x2 ı̂2 + x3 ı̂3. Then

d�r =
∂�r

∂q1
dq1 +

∂�r

∂q2
dq2 +

∂�r

∂q3
dq3 =

∂�r

∂qi
dqi (B–41)
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It follows that

(dS)2 = d�r · d�r =
∂�r

∂qi
· ∂�r

∂qj
dqidqj (B–42)

We therefore choose the vectors of the local basis as

�ei =
∂�r

∂qi
(B–43)

and the metric tensor in this basis is gij =
∂�r

∂qi
· ∂�r

∂qj
.

Example B.7: Find the local basis and metric tensor for spherical polar coordinates
defined by

x1 = r sin θ cos ϕ x2 = r sin θ sin ϕ x3 = r cos θ

Solution: The basis expressed in terms of the Cartesian basis is

�er =
∂�r

∂r
= ı̂1 sin θ cos ϕ + ı̂2 sin θ sinϕ + ı̂3 cos θ

�eθ =
∂�r

∂θ
= ı̂1r cos θ cos ϕ + ı̂2r cos θ sin ϕ − ı̂3r sin θ

�eϕ =
∂�r

∂ϕ
= ı̂1r sin θ sinϕ + ı̂2r sin θ cos ϕ

(Ex B.7.1)

leading to a diagonal metric tensor with elements

grr = �er · �er = sin2 θ cos2 ϕ + sin2 θ sin2 ϕ + cos2 θ = 1

gθθ = �eθ · �eθ = r2(cos2 θ cos2 ϕ + cos2 θ sin2 ϕ + sin2 θ) = r2

gϕϕ = �eϕ · �eϕ = r2(sin2 θ sin2 ϕ + sin2 θ cos2 ϕ) = r2 sin2 θ

(Ex B.7.2)

B.4.2 Differentiation of Tensors in Curvilinear Coordinates

We have already shown that ∂V/∂qi = Fi are the covariant components of a vector

we call �∇V . When the basis varies with position in space, the entity obtained by
differentiating the components of a tensor with respect to the coordinates is not
generally a tensor. To be specific, let us consider the result of differentiating a
vector with respect to the components.

The change in a vector field �A in moving from {qi} to {qi + dqi} is in general
given by

d �A =
∂ �A

∂qk
dqk (B–44)

When �A is expressed in terms of the local basis, the components of �A at the new
position must express not only the change in �A but also the change in the basis
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resulting from the displacement to the new position. Algebraically, for �A = Ai�ei,
the partial derivative of �A with respect to the coordinate qk is

∂ �A

∂qk
=

∂Ai

∂qk
�ei + Ai ∂�ei

∂qk
(B–45)

The components of this partial derivative of �A, conventionally denoted Ai
, k, are

the components of a second-rank tensor called the covariant derivative of A (the
partial derivatives of the components are not, however, components of a tensor).
The components of the covariant derivative are readily obtained by taking the dot
product of ∂ �A/∂qk with a local basis vector or its reciprocal. Thus

∂ �A

∂qk
· �ei ≡ Ai,k (B–46)

are the covariant components of the covariant derivative of the vector �A. We repeat
that the comma preceding the k in the subscript conventionally indicates covariant
differentiation with respect to qk. The mixed components of the covariant derivative
are similarly obtained:

∂ �A

∂qk
· �e i ≡ Ai

,k (B–47)

Expanding the components we have

Aj
,k =

∂ �A

∂qk
· �e j =

∂Ai

∂qk
�ei · �e j + Ai ∂�ei

∂qk
· �e j

=
∂Aj

∂qk
+ Ai

(

∂�ei

∂qk
· �e j

) (B–48)

The term in parentheses is called a Christoffel symbol of the second kind32 and is
usually denoted by

{

j
i k

}

≡ ∂�ei

∂qk
· �e j = �e j · ∂k�ei (B–49)

so that we write

Aj
,k =

∂Aj

∂qk
+ Ai

{

j
i k

}

= ∂kAj + Ai

{

j
i k

}

(B–50)

The fully covariant form of the covariant derivative can be found in the same
fashion:

Aj,k = ∂k(Ai�e
i) · �ej = (�e i · �ej)∂kAi + Ai�ej · ∂k�e

i

= ∂kAj + Ai�ej · ∂k�e
i (B–51)

32Christoffel symbols of the first kind, [i, jk] ≡ �ei · (∂�ej/∂qk), are also frequently encountered.
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With the aid of ∂k(g j
i ) = 0 ⇒ ej · ∂k�e

i = −�e i · ∂k�ej , we rearrange the second term
to obtain

Aj,k =
∂Aj

∂qk
−
{

i
j k

}

Ai (B–52)

That the Christoffel symbol is invariant under exchange of the two lower indices
is seen from

∂�ei

∂qk
=

∂

∂qk

∂�r

∂qi
=

∂

∂qi

∂�r

∂qk
=

∂�ek

∂qi
(B–53)

The foregoing is easily extended to the covariant differentiation of higher order
tensors. Differentiating a second rank tensor gives the following three possible forms:

F ik
,ℓ =

∂F ik

∂qℓ
+

{

i
m ℓ

}

Fmk +

{

k
m ℓ

}

F im (B–54)

Fik,ℓ =
∂Fik

∂qℓ
−
{

m
i ℓ

}

Fmk −
{

m
k ℓ

}

Fim (B–55)

F i
· k,ℓ =

∂F i
· k

∂qℓ
+

{

i
m ℓ

}

Fm
· k −

{

m
k ℓ

}

F i
·m (B–56)

The Cristoffel symbols are not themselves tensors; nevertheless, the summation
convention for repeated indices is used.

B.4.3 Differential Operators

The values of the differential operators, gradient, and curl (also sometimes called
“rot”) are frequently best expressed in terms of unit vectors in order that magni-
tudes can be computed from components. If the divergence and curl are to have
physical meaning they will need to be made covariant. We define the “del” (or
nabla) operator by

�∇ ≡ �e i ∂

∂qi
≡ �e i∂i (B–57)

The gradient of a scalar in terms of a unit basis is then

�∇V = �e i∂iV =
êi

√
gii

∂V

∂qi
(B–58)

where êi is a unit vector along �ei (êi = �ei/|�ei| and êi = �e i/|�e i | = �e i|�ei|). We already
know the components ∂iV to be components of a contravariant first rank tensor
so no modification is required in non-cartesian frames. We denote the unit basis
components of a vector with a superscript * so that F ∗i = (�∇V )∗i =

√

gii∂V/∂qi.

The divergence of a vector field �A is the contracted covariant derivative of �A;
that is,

div �A ≡ Ai
, i = ∂iA

i +

{

i
i j

}

Aj (B–59)

The sum
{

i
i j

}

= �e i · ∂�ei

∂qj
(B–60)
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may with some effort be shown to equal 1√
G

∂
√

G
∂qj where G is the determinant of the

metric tensor gij so that

�∇ · �A =
∂Aj

∂qj
+

Aj

√
G

∂

∂qj

(
√

G
)

=
1√
G

∂

∂qj

(

Aj
√

G
)

(B–61)

To express this result in terms of the components of �A in a unit basis it suffices to
replace Aj in (B–61) by A∗j =

√

gjjAj , so that we may write

�∇ · �A =
1√
G

∂

∂qj

(

A∗j
√

gjjG
)

(B–62)

The curl of a vector field �A is

�∇× �A = �e j∂j × �A = �e j × ∂j
�A = �e j × �e kAk,j (B–63)

The cross product

�e j×�e k =
1√
G
×







�ei if i, j, k is a cyclic permutation of 1, 2, 3
−�ei if i, j, k is an anticyclic permutation of 1, 2, 3

0 if two of the indices coincide
(B–64)

Making use of this we write the i component of the curl as

(

�∇× �A
)i

=
1√
G

(Ak,ℓ − Aℓ,k) (B–65)

where the indices i , k , and ℓ are taken in cyclic order. Writing

Ak,ℓ =
∂Ak

∂qℓ
−
{

m
k ℓ

}

Am (B–66)

and

Aℓ,k =
∂Aℓ

∂qk
−
{

m
ℓ k

}

Am (B–67)

we find the Christoffel symbols cancel in the difference so that

(

�∇× �A
)i

=
1√
G

(

∂Ak

∂qℓ
− ∂Aℓ

∂qk

)

≡ ǫiℓk∂ℓAk

(B–68)

As we can see, the expression for the curl remains unchanged from that used in
Cartesian coordinates. Again we may express these results in terms of the compo-
nents with respect to a unit basis resulting in

(

�∇× �A
)∗i

=

√
gii√
G

(

∂(
√

gkkA∗
k)

∂qℓ
− ∂(

√
gℓℓA

∗
ℓ )

∂qk

)

(B–69)
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The Laplacian ∇2 of a scalar field V is defined as the divergence of the gradient
of V. Combining the expressions for div and grad, we find that

∇2V =
1√
G

∂i

[√
G(�∇V )i

]

=
1√
G

∂i

(√
Ggik∂kV

) (B–70)

Example B.8: To solidify some of these notions let us construct the local basis, the
metric tensor, and the Laplacian in toroidal coordinates.

Solution: The toroidal coordinates α, β, ϕ are related to the Cartesian coordinates
as follows:

x =
c sinhα cos ϕ

cosh α − cos β
y =

c sinh α sin ϕ

cosh α − cos β
z =

c sin β

cosh α − cos β
(Ex B.8.1)

with 0 ≤ α ≤ ∞, 0 ≤ β ≤ 2π, and 0 ≤ ϕ ≤ 2π.
In terms of cylindrical coordinates, r =

√

x2 + y2, z, and ϕc = tan−1 y/x, the
relations may also be expressed as

r =
c sinhα

cosh α − cos β
z =

c sin β

cosh α − cos β
ϕc = ϕ (Ex B.8.2)

The coordinate surfaces are a torus for α = constant, two over-lapping spheres
for β = constant, and a vertical plane for ϕ = constant, as will be shown below.

The ratio z/r = sinβ/ sinh α may be used to eliminate either α or β in the
equations for r or z.

α constant: To eliminate cos β from the equation for r, we note that sin2 β =
(z2/r2) sinh2 α. Then

r2 cos2 β = r2(1 − sin2 β) = r2 − z2 sinh2 α (Ex B.8.3)

Using the relation between r and the toroidal coordinates, r cosh α − r cos β =
c sinhα, we replace r2 cos2 β in (Ex B.8.3) to obtain

(r cosh α − c sinhα)2 = r2 − z2 sinh2 α (Ex B.8.4)

On expansion this becomes

r2
(

cosh2 α − 1
)

− 2r cosh α sinhα + z2 sinh2 α = −c2 sinh2 α (Ex B.8.5)

which, upon being divided by sinh2 α, gives

r2 − 2rc
cosh α

sinh α
+ z2 = −c2 (Ex B.8.6)

We complete the square for terms in r in (Ex B.8.6) to obtain,

(

r2 − 2rc coth α + c2 coth2 α
)

+ z2 = c2(coth2 α − 1) (Ex B.8.7)



Appendix B - Vector and Tensors 367

or

(r − c coth α)2 + z2 =
c2

sinh2 α
(Ex B.8.8)

the equation of a circle centered at r = c coth α, having a radius c/ sinh α. This
same circle is produced for any value of the azimuthal angle ϕ. In other words, as
we rotate r about the z axis, a torus centered on the z axis is swept out.

β constant: When β is constant we eliminate coshα from the z equation. We
again use the relation sinh2 α = (r2/z2) sin2 β to write

cosh2 α = 1 + sinh2 α =
r2

z2
sin2 β + 1 (Ex B.8.9)

or
z2 cosh2 α = r2 sin2 β + z2 (Ex B.8.10)

Then, returning to (Ex B.8.1), z cosh α = z cos β + c sin β may used to eliminate
z2 cosh2 α from (Ex B.8.10) and we obtain

r2 sin2 β + z2 = z2 cos2 β + 2zc sin β cos β + c2 sin2 β (Ex B.8.11)

We gather the terms in z and divide by sin2 β to get

z2 − z2 cos2 β − 2zc cos β sin β + r2 sin2 β

sin2 β
= z2 − 2zc cot β + r2 = c2 (Ex B.8.12)

and complete the square to obtain

(

z2 − 2zc cot β + c2 cot2 β
)

+ r2 = c2(1 + cot2 β) (Ex B.8.13)

(z − c cot β)2 + r2 =
c2

sin2 β
(Ex B.8.14)

the equation of a circle in the z-r plane centered at z = c cot β, and of radius
c/ sin β. Rotation about the z axis sweeps out a sphere centered at positive z for
β ∈ (−π/2, π/2) and negative z for remaining values of β.

To obtain the metric tensor, we first construct the local basis:

�eϕ =
d�r

dϕ
=

d

dϕ
(xı̂ + ŷ + zk̂) =

(

c sinhα

cosh α − cos β

)

(− sin ϕı̂ + cos ϕ̂) (Ex B.8.15)

�eα =

[

c cosh α

(cosh α − cos β)
− c sinh2 α

(cosh α − cos β)2

]

(cos ϕî + sin ϕ̂) − c sin β sinhαk̂

(cosh α − cos β)2

(Ex B.8.16)

�eβ =
−c sinhα sinβ(cos ϕı̂ + sin ϕ̂)

(cosh α − cos β)2
+

[

c cos β

cosh α − cos β
− c sin2 β

(cosh α − cos β)2

]

k̂

(Ex B.8.17)
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The orthogonality of the basis is readily verified and the metric tensor now follows
in straightforward fashion. The ϕϕ element may be written immediately, as

gϕϕ =
c2 sinh2 α

(cosh α − cos β)2

while gαα may be computed as

gαα =

[

c cosh α

(cosh α − cos β)
− c sinh2 α

(cosh α − cos β)2

]2

+
c2 sin2 β sinh2 α

(cosh α − cos β)4

=
c2

(cosh α − cos β)2

{

cosh2 α + sinh2 α

×
[

sinh2 α − 2 cosh α(cosh α − cos β) + sin2 β

(cosh α − cos β)2

]}

=
c2

(cosh α − cos β)2
(cosh2 α − sinh2 α) =

c2

(cosh α − cos β)2
(Ex B.8.18)

In an equally laborious fashion, it can be shown that

gββ =
c2

(cosh α − cos β)2
(Ex B.8.19)

while all the nondiagonal terms vanish.
The squared element of arc length is thus

(dS)2 =
c2

(cosh α − cos β)2
[

(dα)2 + (dβ)2 + sinh2 α (dϕ)2
]

(Ex B.8.20)

and the Laplacian ∇2f becomes

(cosh α − cos β)3

c2 sinhα

{

∂

∂α

[

sinhα

(cosh α − cos β)

∂f

∂α

]

+
∂

∂β

[

sinhα

(cosh α − cos β)

∂f

∂β

]

+
1

(coshα − cos β) sinh α

∂2f

∂ϕ2

}

(Ex B.8.21)

Although not strictly a part of this discussion, we complete our consideration of
toroidal coordinates by effecting the separation of variables required for the solution
of Laplace’s equation. The equation cannot be separated directly, but if we make
the substitution f =

√
cosh α − cos β v, Laplace’s equation becomes

∂2v

∂α2
+

∂2v

∂β2
+ coth α

∂v

∂α
+

v

4
+

1

sinh2 α

∂2v

∂ϕ2
= 0 (Ex B.8.22)

which is separable. In fact, setting v = A(α)B(β)Φ(ϕ), one obtains the equations

d2Φ

dϕ2
+ µ2Φ = 0

d2B

dβ2
+ ν2B = 0 (Ex B.8.23)
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and

1

sinhα

d

dα

(

sinhα
dA

dα

)

−
(

ν2 − 1
4 +

µ2

sinh2 α

)

A = 0 ( Ex B.8.24)

having solutions for the original function f(α, β, ϕ)

f(α, β, ϕ) =
√

cosh α − cos β

{

Pµ

ν− 1
2

(cosh α)

Qµ

ν− 1
2

(cosh α)

}{

cos νβ
sin νβ

}{

cos µϕ
sin µϕ

}

(Ex B.8.25)

Physical problems will usually impose periodic boundary conditions on Φ and
B, leading to integral values for µ and ν.

B.5 Four-Tensors in Special Relativity

According to the tenets of special relativity the equations of physics should be in-
variant not only under changes in orientation or translation of the coordinate system
but also under the changes in the velocity of the coordinate system. In particular,
scalars must remain invariant under all such transformations. One important such
scalar is c, the velocity of light, whose invariance requires including t, or more
conveniently ct , as one of the coordinates of a space-time point.

If the components of a four-vector �X = (x0, x1, x2, x3) are (ct, x, y, z), then in
going from a frame Σ to another frame Σ′, moving with velocity βc along the x
axis, the vector �X has contravariant components Xµ′

= αµ′

ν Xν with

α0′

0 = Γ = 1/
√

1 − β2, α1′

1 = Γ, α0′

1 = α1′

0 = −βΓ, α2′

2 = α3′

3 = 1 (B–71)

while all other transformation coefficients are zero. (The inverse transformations
are found be reversing the sign of β.) All other 4-vectors, of course, obey the same
transformation between inertial frames.

The metric defined by this basis (t̂, ı̂, ̂, k̂) has nonzero elements g11 = g22 =
g33 = −1 and g00 = +1. (A diminishing number of authors of relativity texts favor
the opposite signs for the elements of g ; so long as one is consistent, it makes no
difference.) This metric gives, as fundamental measure, the interval between two
space-time points (known as events), the scalar

(dS)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 (B–72)

We use this scalar to define proper time τ (from the French propre meaning own),
by dτ = dS/c. Then the relation between a moving particle’s proper time and that
of a “stationary” observer is given by

dτ =

√

(dt)2 − 1

c2

[

(dx)2 + (dy)2 + (dz)2
]

= dt

√

1 − 1

c2

[(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2]
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= dt

√

1 − v2

c2
=

dt

γ
(B–73)

For a particle at rest, τ coincides with t.
As a simple example of how the tensor properties of the four-vector may be

exploited, we calculate the transformation law for the four-velocity, V µ = dXµ/dτ .
To begin, we express the four-velocity in terms of the familiar three-velocity:

V µ =
dXµ

dτ
= γ

dXµ

dt
= γ(c, vx, vy, vz) ≡ γ(c,�v ) (B–74)

V µVµ should be invariant, a fact that is easily verified:

V µVµ = V µgµνV ν = γ2(c2 − v2) =
c2 − v2

(√

1 − v2/c2
) 2 = c2 (B–75)

The transformation law for three-velocities is now easily obtained from

V µ′

= αµ′

ν V ν (B–76)

Focusing our attention first on the 0-component, we find

V 0′

= α0′

0 V 0 + α0′

1 V 1

= Γ(γc) − βΓ(γvx) = γ′c
(B–77)

which we solve for γ′ to obtain the Lorentz factor for the moving body in Σ′:

γ′ = Γγ − βΓγ
vx

c
= γΓ

(

1 − βvx

c

)

(B–78)

The transverse components of velocity follow immediately from γ′v′
y = γvy and

γ′v′
z = γvz, while the parallel (x ) component follows from the transformation law

for V 1

γ′v′
x = Γ(γvx) − βΓ(γc) (B–79)

The resulting expressions for the components of the three-velocity in the Σ′ system
are

v′
x =

Γγvx − Γγβc

Γγ(1 − βvx/c)
=

vx − βc

1 − βvx/c
(B–80)

v′y =
γvy

Γγ(1 − βvx/c)
=

vy

Γ(1 − βvx/c)
(B–81)

and
v′

z =
γvz

Γγ(1 − βvx/c)
=

vz

Γ(1 − βvx/c)
(B–82)

Other frequently encountered four-vectors in relativity include the four-momentum,
Pµ = m0V

µ = (W/c, �p ), where W is the total energy of a particle including m0c
2,

and the four-force, Kµ = γ(�f · �v/c, �f ), with �f the conventional three-force.



Appendix B - Vector and Tensors 371

As a second example we show that the four-force has the form above and find the
transformation law for the three-force we use in Chapter 1 to relate the magnetic
and electric fields.

We define the four-force acting on a particle as the proper time derivative of its
four-momentum, leading to

Kµ =
dPµ

dτ
=

d

dτ
(m0V

µ)

= γ
d

dt
(γm0c, γm0�v )

= γ
d

dt
(cm, �p ) = γ(c

dm

dt
, �f ) (B–83)

The orthogonality of the four-velocity and four-force (or, alternatively, the four-
acceleration) allows a simple determination of the dm/dt term:

KµVµ = γ2(c2 dm

dt
− �f · �v ) = 0 (B–84)

leading to

c
dm

dt
=

�f · �v
c

(B–85)

(The expression (B–85) is more recognizable as d(mc2)/dt = �f · �v.) The transfor-
mation law for the three-force now follows easily:

γ′f ′
x = K1′

= α1′

0 K0 + α1′

1 K1

= Γγ

(

− βvxfx

c
+ fx

) (B–86)

Substituting the expression for γ′ found in (B–78) now gives f ′
x = fx. The transverse

components are even more easily found from γ′f ′
y = γfy, yielding

f ′
y =

γ

γ′ fy =
fy

Γ

(

1 − βvx

c

) (B–87)

The remaining component of the three-force, fz, is found in exactly the same
fashion from γ′f ′

z = γfz.
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Exercises and Problems

B.1 Prove Bj∂iA
j = Bj∂iAj .

B.2 Demonstrate that the last line of
(Ex B.8.18) follows from the line before
it.

B.3 Obtain the relativistic transforma-
tion law for a particle’s momentum.

B.4 Show that gikGik = G (no summa-
tion over i).

B.5 Find the form of the squared ele-
ment of arc length, (dS)2, in spherical
polar coordinates.

B.6 Prove that metric tensor gik is a sec-
ond rank covariant tensor.

B.7 Find the covariant components of �A
in the oblique coordinate system of ex-
ample B.1.

B.8 Find the metric tensor to the basis
in example B.1. Use this to show that
(∆S)2 = gij(∆Ai)(∆Aj) comparing it
to the (∆S)2 found from the Cartesian
form.

B.9 The angular momentum �L with re-
spect to the origin of a system on n par-
ticles is �L =

∑n
j=1 m(j)(�r(j) × �v(j) ). If

all the particles rotate as a rigid body,
�v(j) = �ω × �r(j). The angular momentum

can then be expressed as Li = Iikωk.
Obtain the moment of inertia tensor Iik

and show it is a second rank symmetric
tensor.

B.10 The Strain tensor for an object
whose points are displaced by �U(�r ) is
given by U ij = 1

2

(

∂U i/∂xj + ∂U j/∂xi

)

.

Show that
↔
U is a second rank tensor.

B.11 Hyperbolic cylindrical coordinates
(u, v, z) may be defined in terms of carte-
sian coordinates by

x =
√

ρ + v, y =
√

ρ − v, z = z

with ρ =
√

u2 + v2. Find the basis, the
metric tensor, and the Laplacian in hy-
perbolic cylindrical coordinates.

B.12 Bispherical coordinates (η, θ, φ)
are defined by

x =
a sin θ cos φ

cosh η − cos θ

y =
a sin θ sin φ

cosh η − cos θ

x =
a sinh η

cosh η − cos θ

Show that the surface generated by hold-
ing η constant are spheres centered at
z = ±a coth η. Find the metric tensor
and obtain the Laplacian in bispherical
coordinates.
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The Dirac Delta Function

C.1 The Dirac Delta Function

The Dirac δ-function answers the need to describe quantities that exist only at a
point, along a line, or on a sheet; in other words, quantities that do not extend over
all dimensions. They are also frequently useful as approximations of real physical
situations where quantities are non-vanishing in only a very thin layer or thin rod.
Intuitively, the δ function in one dimension may be visualized as a function that
is zero everywhere except the point where its argument vanishes. At this point
the δ function is infinite, constrained only by the requirement that the area under
the spike be unity. The δ function may also be taken as the zero-width limit of a
normalized Gaussian, a normalized triangle, or even a normalized step function:

δ(x) = lim
a→0











1

|a| if x ∈ (−a/2, a/2)

0 if x �∈ (−a/2, a/2)
(C–1)

We will denote the step function of which we take the limit by ua(x). The rep-
resentation of the δ function as the zero-width limit of well-behaved functions is
particularly useful in deducing its properties.

The fundamental, defining property of the δ function is

∫ b

a

f(x)δ(x − c)dx =

{

f(c) if c ∈ (a, b)
0 if c �∈ (a, b)

(C–2)

A number of properties of the δ function follow immediately from this definition.
Letting f (x ) = 1, we have

∫ b

a

δ(x − c)dx =

{

1 if c ∈ (a, b)
0 if c �∈ (a, b)

(C–3)

With the aid of the step function representation ua(x), we see immediately that
if the argument x is replaced by cx, the rectangle narrows in width from a to

—373—
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a/|c| so that we expect the area under the spike to decrease by a factor |c|. More
analytically, assuming that the region of integration includes the zero of the delta
function argument, say b, we find that

∫

f(x)δ[c(x − b)]dx = lim
a→0

∫

f(x)ua(cx − cb)dx

= lim
a→0

∫ b+a/2c

b−a/2c

f(x)
1

|a|dx

= lim
a→0

f(x)a

|ac| =
f(b)

|c|

(C–4)

where we have restricted the range of integration to the interval where ua does not
vanish and used the mean value theorem to evaluate the integral. As a tends to
zero, the mean value f of f over the interval of integration tends to f(b), leading to
the conclusion that

δ[c(x − b)] =
δ(x − b)

|c| (C–5)

We may generalize this result to the case when the argument of the δ function
is itself a function, say g(x). It is clear the δ[g(x)] has a nonzero value only when
g(x) vanishes, so that

δ[g(x)] = δ[g(x ≈ r1)] + δ[g(x ≈ r2)] + δ[g(x ≈ r3)] + · · · (C–6)

where r1, r2, r3, . . . are the roots of g.
In the neighborhood of one of these roots, say ri, we may approximate g(x) by

g(ri)+g′(ri)(x− ri) so that δ(g(x ≈ ri) = δ[g(ri)+g′(ri)(x− ri)] = δ[g′(ri)(x− ri)]

δ[g(x)] = δ[g′(r1)(x − r1)] + δ[g′(r2)(x − r2)] + δ[g′(r3)(x − r3)] + · · ·

=
δ(x − r1)

|g′(r1)|
+

δ(x − r2)

|g′(r2)|
+

δ(x − r3)

|g′(r3)|
+ · · · (C–7)

Example C.1: Expand δ(x2 − a2).

Solution: The roots of x2 − a2 are x = ±a and g′(a) = 2a and g′(−a) = −2a. We
therefore conclude that

δ(x2 − a2) =
δ(x − a)

2|a| +
δ(x + a)

2|a| (Ex C.1.1)

In Cartesian coordinates, the two- and three-dimensional δ functions are merely
products of one-dimensional δ functions, but in non-Cartesian systems, some care is
required. In spherical polars, for instance, the element of volume is r2drd(cos θ)dϕ,
meaning that δ(�r − �a ) must take the form r−2δ(r − a)δ(cos θ − cos θa)δ(ϕ − ϕa).
More generally, the δ function δ(�r − �r ′) may be written in terms of coordinates
(η1, η2, η3)

δ(�r − �r ′) =
1

|J(xi, ηi)|
δ(η1 − η′

1)δ(η2 − η′
2)δ(η3 − η′

3) (C–8)
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where J(xi, ηi) is the Jacobian of the transformation relating the ηi to xi. (Jij ≡
∂xi/∂ηj).

The charge density ρ(�r ) of point charges qi located at �ri is easily written in
terms of the δ function

ρ(�r ) =
∑

qiδ(�r − �ri) (C–9)

Integrating ρ over any small volume containing �ri (it is assumed that only one
of the charges’ position vector lies in the volume) gives qi, while a vanishing integral
results when none of the ri is contained.

Uniform line charges, say along the z axis, may similarly be represented in
Cartesian coordinates by ρ = λδ(x)δ(y) with λ = q/L, the charge per unit length.
This same line charge in spherical polar coordinates has the form

ρ(r, θ, ϕ) =
λ

2πr2
δ(cos θ − 1) +

λ

2πr2
δ(cos θ + 1) (C–10)

Integrating to obtain the charge contained in a spherical shell extending from a to
b with a, b ∈ (0, 1

2L), we find
∫

ρd3r =

∫

λ

2πr2
[δ(cos θ − 1) + δ(cos θ + 1)] r2drd(cos θ)dϕ

=
4πλ

2π

∫ b

a

dr = 2λ(b − a) (C–11)

as we would expect for the two segments.
An important identity involving δ functions is (26) on the inside back cover

∇2 1

|�r − �r ′| = −4πδ(�r − �r ′) (C–12)

To prove this identity, let us consider
∫

τ

f(�r )∇2 1

|�r − �r ′|d
3r (C–13)

If �r ′ is not in the region τ over which we are integrating, it is easily confirmed that
∇21/|�r − �r ′| vanishes identically. Any region τ that contains �r may be subdivided
into a small sphere of radius ρ centered on �r ′ surrounded by surface Γ and the
remaining volume where ∇2|�r−�r ′|−1 vanishes. Abbreviating R = |�r−�r ′| , we have

∫

τ

f(�r )∇2 1

R
d3r =

∫

sphere

f(�r )�∇ ·
(

�∇ 1

R

)

d3r

=

∫

sphere

f(�r )�∇ ·
(−�R

R3

)

d3r (C–14)

The mean value theorem allows us to replace f(�r ) in the integral by f(�ξ ) where
�ξ is some point in the sphere. Taking f(�ξ ) outside the integral and applying the
divergence theorem (20) to the remaining integral, we obtain

∫

τ

f(�r )∇2 1

R
d3r = f(�ξ )

∫

Γ

−�R · d�S

R3
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= −f(�ξ )

∫

ρ2dΩ

ρ2
= −f(�ξ )

∫

dΩ

= −4πf(�ξ ) (C–15)

As ρ tends to 0, �ξ must approach �r ′, so that

∫

f(�r )∇2 1

R
d3r = −4πf(�r ′) (C–16)

Comparing this result with the definition (C–2) of the δ function, we conclude that

∇2 1

|�r − �r ′| = −4πδ(�r − �r ′) (C–17)
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Orthogonal Function Expansions

D.1 Orthogonal Functions

Throughout this course it is frequently useful to express solutions of problems in
terms of well-studied familiar functions. A power series expansion of some function
might be offered as a typical example were it not for the fact that the coefficients
of the truncated series will change as more terms are included. This defect is due
to the lack of orthogonality of the monomials.

Consider a set of functions {Un(x)} defined for x in the range (a, b). Two of
these function Ui(x) and Uj(x) are said to be orthogonal over (a, b) if (and only if):

∫ b

a

U∗
i (x)Uj(x) dx = 0 for i �= j (D–1)

where U∗ is the complex conjugate of U. The whole set is orthogonal over (a, b) if
each function Un(x) is orthogonal to every other function Um(x) over this interval.

Example D.1: Show that the set of function {Un(x)} = {einx} with m and n integers
is orthogonal over the interval (−π, π).

Solution: We compute the integral of (D–1)
∫ π

−π

e−inxeimxdx =

∫ π

−π

ei(m−n)xdx

=

∫ π

−π

cos(n − m)x + i sin(m − n)xdx

=
sin(m − n)x

(m − n)

∣

∣

∣

∣

π

−π

− i
cos(m − n)x

(m − n)

∣

∣

∣

∣

π

−π

(Ex D.1.1)

As cos(rπ) = cos(−rπ) for all r, the second term vanishes. The first term vanishes
for all non-zero (m− n) since sin(rπ) = 0. The (m − n) = 0 term is best evaluated
from the initial integral:

∫ π

−π

e0e0dx = 2π (Ex D.1.2)
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We conclude then that
∫ π

−π

U∗
n(x)Um(x)dx =

{

0 m �= n
2π m = n

(Ex D.1.3)

proving the orthogonality of the set.

In general,
∫ b

a
|Ui(x)|2dx = νi; νi is called the normalization of the function. If

νi = 1 for all i, the orthogonal set is said to be orthonormal.

Example D.2: Show that the set {Un(x)} = {sinnπx} with n = 1, 2, 3 . . . is orthonor-
mal over (−1, 1)

Solution: Substituting the form of U above into (D–1) we get

∫ 1

−1

sin(nπx) sin(mπx)dx = δmn (Ex D.2.1)

We shall also meet functions that are orthogonal over an interval only with a
weighting factor w(x). In other words, if fi(x) and fj(x) are orthogonal over (a, b)
with weight factor w(x) they satisfy

∫ b

a

f∗
i (x)fj(x)w(x)dx = 0 for i �= j (D–2)

Such solution tend to occur, for example, in problems with cylindrical symmetry,
where the weighting factor w conveniently changes the dr to r dr, the appropriate
factor for integrating over a cross-sectional surface. Other coordinate systems will
similarly give rise to weighted orthogonal solutions.

Orthogonal functions occur in the analysis of many physical problems in nor-
mal mode vibrations, quantum mechanics, heat flow and eigenfunction problems in
general.

D.1.1 Expansion of Functions in terms of an Orthogonal Set

Let us attempt to approximate the function f(x) defined over (a, b) by a linear
superposition of orthogonal functions (with unit weight factor), ie.

f(x) ≈
N
∑

n=1

anUn(x) (D–3)

The expansion coefficients may be evaluated as follows: Multiply both sides of the
near equality (D–3) by U∗

m(x) and integrate the product from a to b.

∫ b

a

f(x)U∗
m(x)dx ≈

N
∑

n=1

an

∫ b

a

Un(x)U∗
m(x)dx
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= a1

∫ b

a

U1U
∗
mdx + a2

∫ b

a

U2U
∗
mdx + a3

∫ b

a

U3U
∗
mdx + · · ·

+ am

∫ b

a

UmU∗
mdx + · · · + aN

∫ b

a

UNU∗
mdx

= am

∫ b

a

UmU∗
mdx = amνm (D–4)

Thus,

am ≈ 1

νm

∫ b

a

f(x)U∗
m(x)dx (D–5)

It is not clear that the am found above necessarily provides the best choice to
approximate f(x) (The coefficients of a truncated Taylor series are not the best fit,
for example.) We define the “square-error” of the approximation as

MN ≡
∫ b

a

∣

∣

∣
f(x) −

N
∑

n=0

anUn(x)
∣

∣

∣

2

dx (D–6)

Restricting ourselves to real functions Un(x) for the moment, we produce the
“least-square-error” by choosing an to minimize the square-error. To this end, we
set ∂Mn/∂an = 0 for every value of n. Differentiating (D–6) with respect to an we
get, exploiting the linear independence of the Un,

∫ b

a

(

−2Un(x)f(x) + 2an

∣

∣Un(x)
∣

∣

2)
dx = 0 (D–7)

∫

2an|Un(x)|2dx = 2anνn, so that we may solve for an to get

an =
1

νn

∫ b

a

Un(x)f(x)dx (D–8)

precisely the result in (D–5). A somewhat more laborious repetition of the above
when Un and an are complex yields with an = pn + iqn, ∂MN/∂pn = 0 and
∂MN/∂qn = 0

pn = Re
1

νn

∫ b

a

f(x)U∗
n(x)dx (D–9)

and

qn = Im
1

νn

∫ b

a

f(x)U∗
n(x)dx (D–10)

or, combining these results,

an =
1

νn

∫ b

a

f(x)U∗
n(x)dx (D–11)

In other words, the choice of coefficients made in (D–5) minimizes the integrated
square error.
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Example D.3: Approximate f(x) = x3 by a second degree polynomial using a Legen-
dre polynomial series.

Solution: The Legendre polynomials Pn(x) are orthogonal over (−1, 1) with

∫ 1

−1

Pm(x)Pn(x)dx =
2

2n + 1
δmn (Ex D.3.1)

and the first four polynomials are P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1),

P3(x) = 1
2 (5x3 − 3x). Let us consider the expansion

x3 ≈
2
∑

0

anPn(x) (Ex D.3.2)

The expansion coefficients are readily computed:

a0 = 1
2

∫ 1

−1

x3P0(x)dx = 0 a1 = 3
2

∫ 1

−1

x3P1(x)dx = 3
5

a2 = 5
2

∫ 1

−1

x3P2(x)dx = 0 a3 = 7
2

∫ 1

−1

x3P3(x)dx = 2
5

(Ex D.3.3)

Including only terms up to P2 we find x3 ≈ 3
5x. For comparison, the Taylor expan-

sion, f(x) = f(0)+f ′(0)x+ 1
2f ′′(0)x2 . . . truncates to x3 ≈ 0+3x2

∣

∣

0
x+ 1

26x
∣

∣

0
x2 = 0.

Figure C.1: The curve y = x3 and the best-fit “quadratic”.

Had we carried our expansion to include terms up to P3 we would have obtained
x3 ≈ 3

5x + 2
5 · 1

2 (5x3 − 3x) = x3 for an exact fit.

If any reasonably behaved (continuous, single valued, square integrable) function
can be written as the limit of a sequence

f(x) = lim
N→∞

SN (x) with SN =

N
∑

n=1

anUn(x) (D–12)
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the set {Un} is said to be complete. (Merely being infinite does not guarantee a
set’s completeness. For example {sinnπx, n = 1, 2 . . .∞} is not complete as all
the Un vanish at x = 0 and no function with f(0) �= 0 can be constructed from a
superposition.) If the set is complete over (a, b),

f(x) =

∞
∑

n=1

anUn(x)

=

∞
∑

n=1

[

1

νn

∫ b

a

f(x′)U∗
n(x′)dx′

]

Un(x)

=

∫ b

a

[ ∞
∑

n=1

1

νn
Un(x)U∗

n(x′)

]

f(x′)dx′ (D–13)

Comparing this to the definition of the Dirac δ function (C–2)

f(x) =

∫ b

a

δ(x − x′)f(x′)dx′ x ∈ (a, b)

we obtain the completeness relation

∞
∑

n=1

1

νn
Un(x)U∗

n(x′) = δ(x − x′) (D–14)

Example D.4: Express the Dirac δ-function, δ(x− x′), in terms of the set of complex
exponentials {einkx;n ∈ (−∞,∞)} orthogonal (and complete) over the interval
(a, a + L) with k = 2π/L.

Solution: The normalization of the functions above is easily obtained

νm =

∫ a+L

a

eimkxe−imkxdx =

∫ a+L

a

dx = L (Ex D.4.1)

Then, with the help of (D–14) we get

δ(x − x′) =
1

L

∞
∑

m=−∞
eimk(x−x′) =

k

2π

∞
∑

m=−∞
eimk(x−x′) (Ex D.4.2)

For the case that the functions are orthogonal only with a weighting function
w(x), retracing the steps leading to (D–14) leads to

∑ w(x)

νn
Un(x)U∗

n(x′) = δ(x − x′) (D–15)

It can be shown under fairly general conditions that the eigenvalue equation for
the variable y(x)32

d

dx

(

f(x)
dy

dx

)

− g(x)y = −λw(x)y (D–16)

32The problem is known as the Sturm-Liouville Problem. See for example S.M. Lea Mathematics
for Physicists, Brookes/Cole (2004), Belmont, CA, USA
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subject to vanishing Dirichlet or Neumann (or even a linear combination of these)
boundary conditions has a complete set of eigenfunctions orthogonal with weight
function w(x) and real eigenvalues. Since most physical involving the Laplacian
can be fit into form (D–16), we anticipate that the sets of eigenfunction will be
orthogonal and complete.



AppendixE

Bessel Functions

E.1 Properties of Bessel Functions

Bessel functions occur frequently in the solutions of Laplace’s equation in polar
or cylindrical coordinates. They also occur in the context of integrals of cosines
with trigonometric arguments. In this appendix we give some of the principal
properties of Bessel functions as well as the related modified Bessel functions, Hankel
functions, and spherical Bessel functions. The properties listed here are by no means
exhaustive; for further properties as well as tables of values we refer the reader to
Handbook of Mathematical Functions , edited by M. Abramowitz and I. Stegun and
published by Dover Publications Inc., New York.

E.1.1 Differential Equation

The Bessel function (of the first kind), Jν(x), and Neumann function, Nν(x) [also
frequently denoted Yν(x) (we avoid this label as it would lead to confusion with the
spherical harmonics) and called a Bessel function of the second kind], are solutions
of the differential equation

x2f ′′ + xf ′ + (x2 − ν2)f = 0 (E–1)

where ν is a constant. In most physical systems, ν is required to be an integer
by the azimuthal periodicity of the solution. The Neumann function, Nν , diverges
at the origin and is therefore frequently eliminated from the solution of boundary
value problems.

The Bessel function may be found as a power series solution using recursion
relations between the coefficients. The solution will be so obtained in section E.3
and may be written

Jn(z) =
∞
∑

λ=0

(−1)λ

λ!(n + λ)!

(

z

2

)n+2λ

(E–2)

when n is an integer, or as

Jν(z) =

∞
∑

λ=0

(−1)λ

λ!Γ(ν + λ + 1)

(

z

2

)ν+2λ

(E–3)
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Figure E.1: The first few Bessel functions of integer order are plotted for
arguments ranging from 0 to 10.

when ν is not an integer. The Neumann function may be generated from the Bessel
function (of the first kind) by

Nν(z) =
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
(E–4)

The series solution is normalized so that J0(0) = 1. The first few integer-order
Bessel function are plotted in Figure E.1. As the order increases Jn remains near
zero for increasing intervals; J10, for example, takes on significant values only when
its argument exceeds 10.

E.1.2 Asymptotic Values: As z → ∞, Jν and Nν tend asymptotically to 45◦ phase-
shifted sines and cosines, with amplitude decreasing inversely as the square root of
the argument:

Jν(z) →
√

2

πz
cos

(

z − νπ

2
− π

4

)

and Nν(z) →
√

2

πz
sin

(

z − νπ

2
− π

4

)

(E–5)

as z → ∞. Conversely, as the argument tends to zero,

Jn(z) → 1

n!

(

z

2

)n

and











Nν(z) → −Γ(ν)

π

(

2

z

)ν

ν �= 0

N0(z) → 2

π
ln z

(E–6)

where the gamma function Γ(ν + 1) is the generalization of ν! for non-integral
ν detailed following (E–45). As is evident from the power series solution (E–2),
Jn(0) = 0 when n �= 0 and J0(0) = 0. The Jn(x) are bounded by ±1.
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E.1.3 Integral Forms

The Bessel functions of the first kind have the following integral representations:

Jn(z) =
1

π

∫ π

0

cos(z sin θ − nθ)dθ (E–7)

for integral n and

Jν(z) =
( 1
2z)ν

√
π Γ(ν + 1

2 )

∫ 1

−1

(1 − t2)ν− 1
2 cos zt dt (E–8)

for Re(ν) > −1
2 .

E.1.4 Explicit Forms:

J−n(z) = (−1)nJn(z) N−n(z) − (−1)nNn(z)

J 1
2
(z) =

√

2

πz
sin z J− 1

2
(z) =

√

2

πz
cos z

J′0(z) = −J1(z) N′
0(z) = −N1(z)

(E–9)

where ′ denotes differentiation with respect to the argument.

E.1.5 Recursion Relations

The following relations hold for J or N or any linear combination:

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z) (E–10)

Jν−1(z) − Jν+1(z) = 2J′ν(z) (E–11)

d

dz

[

zν Jν(z)
]

= zνJν−1(z)
d

dz

[

z−νJν(z)
]

= −z−νJν+1(z) (E–12)

E.1.6 Generating Function and Associated Series:

e
1
2 z(t−1/t) =

∞
∑

k=−∞
Jk(z)tk (t �= 0) (E–13)

If we take t = eiθ, this becomes

eiz sin θ =

∞
∑

k=−∞
Jk(z)eikθ (E–14)

whose real and imaginary parts may equated separately to obtain

cos(z sin θ) = J0(z) + 2

∞
∑

k=0

J2k(z) cos(2kθ) (E–15)
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and sin(z sin θ) = 2

∞
∑

k=0

J2k+1(z) sin(2k + 1)θ (E–16)

When θ is π/2, these series become

cos z = J0(z) − 2J2(z) + 2J4(z) − 2J6(z) + · · · (E–17)

sin z = 2J1(z) − 2J3(z) + 2J5(z) − 2J7(z) + · · · (E–18)

E.1.7 Addition Theorem

Jn(z1 + z2) =

∞
∑

m=−∞
Jm(z1)Jn−m(z2) (E–19)

E.1.8 Orthogonality
∫ 1

0

Jν(ρνmr)Jν(ρνnr)rdr = 1
2 [Jν+1(ρνm)]

2
δnm (E–20)

where ρνm is the mth root of Jν

∫ 1

0

Jν(ρ′νmr)Jν(ρ′νnr)rdr = 1
2

(

1 − ν2

ρ′2νn

)

[Jν(ρ′νn)]
2
δmn (E–21)

with ρ′νn the nth root of J′ν .

E.1.9 Completeness:

∫ ∞

0

Jν(kx)Jν(k′x)xdx =
1

k
δ(k − k′) (E–22)

for k and k′ ≥ 0.

E.1.10 Roots

The first few roots of J0, J1, J2, and J3 are tabulated in Table E.1, and those of the
corresponding J′ are listed in Table E.2.

n 1 2 3 4
ρ0n 2.40483 5.52008 8.65373 11.79153
ρ1n 3.83171 7.01559 10.17347 13.32369
ρ2n 5.13562 8.41724 11.61984 14.79595
ρ3n 6.38016 9.76102 13.01520 16.22347

Table E.1 The nth root ρin of Bessel functions, Ji.

n 1 2 3 4
ρ′0n 0.00000 3.38171 7.01559 10.17347
ρ′1n 1.84118 5.33144 8.53632 11.70600
ρ′2n 3.05424 6.70613 9.96947 13.17037
ρ′3n 4.20119 8.01524 11.34592 14.58585

Table E.2 The nth root ρ′in of Bessel function derivative, J′i.
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Figure E.2: The modified Bessel functions K and I diverge at 0 and ∞
respectively.

E.2 Related Functions

E.2.1 Hankel Functions

Hankel functions are the complex linear combinations of J and N:

H(1)
ν (z) = Jν(z) + iNν(z) H(2)

ν (z) = Jν(z) − iNν(z) (E–23)

The asymptotic expansion of each is easily obtained from (E–5).

E.2.2 Modified Bessel Functions:

In and Kn are the solutions of the differential equation

x2f ′′ + xf ′ − (x2 + n2)f = 0 (E–24)

and are related to Bessel functions by

In(x) = −inJn(ix) and Kn(x) =
πin+1

2
H(1)

n (ix) (E–25)

Both these functions diverge: Kn diverges at 0 where K0(z) → − ln z and
Kν(z) ∼ 1

2Γ(ν)(2/z)ν whereas Iν(z) diverges roughly exponentially as z → ∞
as could have been predicted from the Jn(ix) form above. As z → 0, Iν(z) ≈
(1
2z)ν/Γ(ν + 1) for (ν �= −1,−2,−3, . . .). The derivatives of the modified Bessel

functions satisfy K′
0(z) = −K1(z) and I′0(z) = I1(z).
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E.2.3 Spherical Bessel Functions

Spherical Bessel functions occur primarily as the radial functions in spherical bound-
ary condition problems. They may be defined in terms of the Bessel functions of
half-integral order:

jℓ(z) =

√

π

2z
Jℓ+ 1

2
(z) and nℓ(z) =

√

π

2z
Nℓ+ 1

2
(z) (E–26)

Each has an asymptotic 1 over z envelope. Spherical Bessel functions are the solu-
tions of

1

z2

d

dz

(

z2 d

dz

)

y +

[

1 − ℓ(ℓ + 1)

z2

]

y = 0 (E–27)

Related to the spherical Bessel functions are the spherical Hankel functions, h
(1)
ℓ ≡

jℓ + inℓ and h
(2)
ℓ ≡ jℓ − inℓ. The first few spherical Bessel functions are explicitly

j0(z) =
sin z

z
j−1(z) =

cos z

z
n0(z) = −cos z

z
(E–28)

j1(z) =
sin z

z2
− cos z

z
n1(z) = −cos z

z2
− sin z

z
(E–29)

j2(z) =

(

3

z3
− 1

z

)

sin z − 3

z2
cos z n2(z) = −

(

3

z3
− 1

z

)

cos z − 3

z2
sin z (E–30)

E.3 Solution of Bessel’s Equation

We will find a power series solution to Bessel’s equation (E–1),

x2y′′ + xy′ + (x2 − ν2)y = 0

where ν is an arbitrary constant. We try a solution of the form

y = xs
∞
∑

n=0

cnxn with c0 �= 0 (E–31)

Substituting this, (E–31) into the equation (E–1) we calculate first the derivatives

y′ =

∞
∑

n=0

cn(n + s)xn+s−1 (E–32)

y′′ =
∞
∑

n=0

cn(n + s)(n + s − 1)xn+s−2 (E–33)

which turn Bessel’s equation into the algebraic equation

∞
∑

n=0

[

cn(n + s)(n + s − 1)xn+s + (n + s)cnxn+s + cnxn+s+2 − ν2xn+s
]

= 0 (E–34)
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Gathering terms and factoring xs from (E–34) we get

xs
∞
∑

n=0

{

[

(n + s)2 − ν2
]

cnxn + cnxn+2
}

= 0 (E–35)

The xk are linearly independent functions, the vanishing of the sum requires the
coefficient of each xk, k = 0, 1, 2, . . . to vanish. For x0 we obtain

c0(s
2 − ν2)x0 = 0 ⇒ s = ±ν (E–36)

as we required that c0 �= 0. For x1 (E–35) gives

c1

[

(s + 1)2 − ν2
]

x1 = 0 (E–37)

which is compatible with s = ±ν only if c1 = 0 or s = − 1
2 . The remaining coef-

ficients satisfy
{

cn

[

(n + s)2 − ν2
]

+ cn−2

}

xn = 0 (E–38)

or cn = − cn−2

(n + s)2 − ν2
. Assuming for the moment that s �= − 1

2 ,

cn

cn−2
= − 1

(n + s − ν)(n + s + ν)
= − 1

n(n + 2s)
with s = ±ν (E–39)

This recursion relation allows us to write each coefficient in terms of that preceding
it by two, so that

c2

c0
= − 1

2(2 + 2s)
=

−1

4(s + 1)
(E–40)

c4

c0
=

c4

c2

c2

c0
=

−1

4(4 + 2s)

−1

4(s + 1)
=

1

4 · 8(s + 2)(s + 1)
(E–41)

c6

c0
=

c6

c4

c4

c0
=

−1

6(6 + 2s)

1

4 · 8(s + 1)(s + 2)
=

−1

4 · 8 · 12(s + 1)(s + 2)(s + 3)
(E–42)

We write the solution in terms of c0 as

y = c0x
s

[

1 − x2

4(s + 1)
+

x4

4 · 8(s + 1)(s + 2)
− x6

4 · 8 · 12(s + 1)(s + 2)(s + 3)
+ · · ·

]

(E–43)

=

{

y1 if s = +|ν|
y2 if s = −|ν|

Thus we obtain two linearly independent solutions. Unfortunately when ν is an
integer, the second solution, y2 has a term with coefficient 1/(s + |s|), which for
negative s leads to a divergent sum. We will find a second solution by alternate
means, but first we consider the excluded case of ν2 = 1

4 , s = − 1
2 . In this case c1

need not be zero and the recursion relations give

y = c0x
− 1

2

(

1 − x2

2
+

x4

4!
− · · ·

)

+ c1x
− 1

2

(

x − x3

3!
+

x5

5!
· · ·
)
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=
c0√
x

cos x +
c1√
x

sin x (E–44)

Returning to the s �= − 1
2 , s = +|ν| case, we define Jν(z), the Bessel function of

the first kind by

Jν(z) =
1

Γ(ν + 1)

(z

2

)ν
[

1 − 1

ν + 1

(z

2

)2

+
1

(ν + 1)(ν + 2)2!

(z

2

)4

− · · ·
]

=

∞
∑

r=0

(−1)r

r!Γ(ν + r + 1)

(z

2

)ν+2r

(E–45)

where Γ(z + 1) ≡
∫∞
0

tze−tdt, is the gamma function, a generalization of the facto-
rial, z! to non integral z. It is readily shown that Γ(z + 1) = zΓ(z).

If ν = 0, 1, 2, 3 . . . the Jn are Bessel functions of integer order.

E.3.1 The Second Solution

When ν is an integer, the second solution with s = −ν diverges. For nonintegral ν
we define the Neumann function

Nν(z) ≡ Jν(z) cos νπ − J−ν(z)

sin νπ
(E–46)

The Wronskian

W (Jν ,Nν) =

∣

∣

∣

∣

Jν Nν

J′ν N′
ν

∣

∣

∣

∣

=
2

πz
�= 0 (E–47)

which implies that Nν and Jν are linearly independent functions. Moreover, as Nν

is a linear combination of Jν and J−ν , it solves Bessel’s equation. Taking the limit
Nn(z) = limν→n Nν(z), we find it indeterminate, 0/0. However, using L’Hôpital’s
rule,

∂

∂ν

[

Jν(z) cos νπ − J−ν(z)
]

=
∂Jν

∂ν
cos νπ − π sin νπJν − ∂J−ν

∂ν
(E–48)

and
∂

∂ν
(sin νπ) = π cos νπ (E–49)

together give

Nn(z) = lim
ν→n

Nν(z) =
1

π

(

∂Jν

∂ν
− (−1)n ∂J−ν

∂ν

)

ν=n

(E–50)

The limiting forms of the Neumann functions as z → 0 are

N0 =
2

π
ln z Nν(z) =

1

πΓ(ν)

(2

z

)ν

(E–51)

whereas the limit as z → ∞ is

Nν(z) →
√

2

πz
sin

(

z − (ν + 1
2 )π

2

)

(E–52)
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E.3.2 Derivation of the Generating Function

The generating function for integer order Bessel functions is

e(z/2)(t−1/t) =

∞
∑

n=−∞
Jn(z)tn (E–53)

The proof of this equality follows. We first expand the exponential as a power series

e(z/2)(t−1/t) =

∞
∑

µ=0

1

µ!

(z

2

)µ(

t − 1

t

)µ

(E–54)

and then use the binomial theorem to expand (t − 1/t)µ

(

t − 1

t

)µ

=

∞
∑

λ=0

(

µ

λ

)

tµ−λ
(−1

t

)λ

with

(

µ

λ

)

≡ µ!

(µ − λ)!λ!
(E–55)

Thus

e(z/2)(t−1/t) =
∞
∑

µ=0

∞
∑

λ=0

1

µ!

µ!

(µ − λ)!λ!

(z

2

)µ

tµ−λ(−1)λt−λ

=

∞
∑

µ=0

∞
∑

λ=0

(−1)λ

(µ − λ)!λ!

(z

2

)µ

tµ−2λ (E–56)

We substitute n = µ − 2λ as the summation variable for the first sum. For any
value of µ as λ ranges from 0 to ∞, n varies from −∞ to µ, thus as µ ranges to ∞
n varies from ∞ to −∞.

e(z/2)(t−1/t) =

∞
∑

n=−∞

[ ∞
∑

λ=0

(−1)λ

(n + λ)!λ!

(z

2

)n+2λ
]

tn (E–57)

Comparing the sum in square brackets with the sum (E–45) we conclude that this
is the defining sum for Jn(z), hence

e(z/2)(t−1/t) =

∞
∑

n=−∞
Jn(z) tn (E–58)

which completes the proof. We continue with a simple application of the generating
function.

Example E.1: Use the generating function to generate the addition theorem (E–19).

Solution: Consider

e
1
2 (z1+z2)(t−1/t) =

∞
∑

n=−∞
Jn(z1 + z2)t

n ( Ex E.1.1)
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We can equally write the left hand side as a product of two exponentials

e
1
2 z1(t−1/t)e

1
2 z2(t−1/t) =

[ ∞
∑

m=−∞
Jm(z1)t

m

][ ∞
∑

ℓ=−∞
Jℓ(z2)t

ℓ

]

(Ex E.1.2)

and writing m + ℓ = n while replacing ℓ by n in the summation to get

∞
∑

n=−∞
Jn(z1 + z2)t

n =

∞
∑

n=−∞

[ ∞
∑

m=−∞
Jm(z1)Jn−m(z2)

]

tn (Ex E.1.3)

Equating coefficients of tn produces the desired result.

E.3.3 Spherical Bessel Functions

To solve the spherical Bessel equation (E–27) or equivalently,

d

dz

(

z2 dy

dz

)

+
[

z2 − ℓ(ℓ + 1)
]

y = 0 (E–59)

we could start afresh on a power series solution but the substitution of y = z−
1
2 f

converts the equation to Bessel’s equation

z2f ′′ + zf ′ +
[

z2 − (ℓ + 1
2 )

2
]

f = 0 (E–60)

leading to the conclusion that the solutions of (E–59) must be of the form y =
z−1/2(c1Jℓ+ 1

2
+ c2Nℓ+ 1

2
). The customary normalization,

jn(z) =

√

π

2z
Jn+ 1

2
(z) and nm(z) =

√

π

2z
Nm+ 1

2
(z) (E–61)

gives the trigonometric forms (E–28) etc. Generally, jn, nn, h
(1)
n or h

(2)
n may be

found from the zeroth and first order functions using the recursion relation

fn+1(z) = (2n + 1)z−1fn(z) − fn−1(z) (E–62)

where fn is any one of the four functions above. The derivatives may be evaluated
from

nfn−1(z) + (n + 1)fn+1(z) = (2n + 1)
d

dz
fn(z) (E–63)
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Legendre Polynomials and Spherical Harmonics

F.1 Legendre Functions

Legendre functions appear as solutions of the angular portion of Laplace’s or Pois-
son’s equation in spherical polar coordinates. Generally the argument of the func-
tions will be cos θ meaning, if the argument is x, it is restricted to lie in the range
x ∈ (−1, 1). The solution of the Legendre equation will be postponed to the end of
this appendix, leaving the earlier part as a quick reference.

F.1.1 Differential Equation: The Legendre functions Pµ
ν (z) and Qµ

ν (z) of degree ν
and order µ satisfy

(1 − z2)
d2f

dz2
− 2z

df

dz
+

[

ν(ν + 1) − µ2

1 − z2

]

f(z) = 0 (F–1)

This equation is more often encountered as

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ ν (ν + 1) − µ2

sin2 θ

]

f(θ) = 0 (F–2)

having solutions f(θ) = aPµ
ν (cos θ) + bQµ

ν (cos θ).
Qµ

ν (z) is badly behaved at z = ±1, while Pµ
ν (z) is badly behaved at z = ± 1

unless ν is an integer. For most physical applications µ is also an integer (because
of the azimuthal periodicity of 2π). For µ = 0, P0

ℓ (z) ≡ Pℓ(z ), a polynomial of
degree ℓ and parity (−1)ℓ. The Legendre polynomial has the expansion

Pℓ(z) =

[ 12 ℓ ]
∑

r=0

(− 1)r(2ℓ − 2r)! zℓ−2r

2ℓ(ℓ − r)! (ℓ − 2r)! r!
=

1

2ℓℓ!

dℓ

dzℓ
(z2 − 1)ℓ (F–3)

where [ 12ℓ] means the largest integer less than (or equal to) 1
2ℓ. The (associated)

Legendre functions of nonzero integral order m may be obtained from the Legendre
polynomial using

Pm
ℓ (z) = (z2 − 1)m/2 dm

dzm
Pℓ (z) Qm

ℓ (z) = (z2 − 1)m/2 dm

dzm
Qℓ (F–4)
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F.1.2 Some Values:

|Pℓ(x)| ≤ 1 (F–5)

Pℓ (−x) = (−1)ℓ Pℓ(x) (F–7)

Pℓ(1) = 1 (F–6)

P−(ℓ+1)(x) = Pℓ(x) (F–8)

Pℓ (0) =











0 if ℓ is odd

(− 1)ℓ/2 ℓ !

2ℓ (ℓ/2)! (ℓ/2)!
if ℓ is even

(F–9)

F.1.3 Explicit Forms

P0(z) = 1 (F–10)

P1(z) = z (F–12)

P2(z) = 1
2 (3z2 − 1) (F–14)

P3(z) = 1
2 (5z3 − 3z) (F–16)

P4(z) = 1
8 (35z4 − 30z2 + 3) (F–18)

P5(z) = 1
8 (63z5 − 70z3 + 15z) (F–19)

Q0(z) = 1
2 ln

z + 1

z − 1
(F–11)

Q1(z) =
z

2
ln

z + 1

z − 1
− 1 (F–13)

Q2 (z) =
3z2 − 1

4
ln

1 + z

1 − z
− 3z

2
(F–15)

Qℓ(z) = 1
2Pℓ(z) ln

z + 1

z − 1
+ fℓ(z) (F–17)

where fℓz) is a polynomial of degree ℓ−1. In the expressions for Qℓ, the sign of the
argument of the logarithm may be changed, as this generally adds ± 1

2 iπ Pℓ(z ) to
the solution. Since Pℓ satisfies the same equation as Qℓ, the new form with (1 − z)
replacing (z − 1) in the logarithm is an equally good solution.

Explicit expressions for the associated Legendre functions in terms of the argu-
ment x = cos θ follow below:

P0(x) = 1 (F–20)

P1
1(x) = −(1 − x2)1/2 = − sin θ (F–21)

P1
2(x) = −3x (1 − x2)1/2 = −3 cos θ sin θ (F–22)

P2
2(x) = 3 (1 − x3) = 3 sin2 θ (F–23)

P1
3(x) = −3

2 (5x2 − 1) (1 − x2)1/2 = − 3
2 (5 cos2 θ − 1) sin θ (F–24)

P2
3(x) = 15x (1 − x2) = 15 cos θ sin2 θ (F–25)

P3
3(x) = −15 (1 − x2)3/2 = −15 sin3 θ (F–26)
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Figure F.1: The first few Legendre Polynomials as a function of cos θ.

The negative order Legendre functions may be obtained from those with positive
order using

P−m
ℓ (z) = (−1)m (ℓ − m)!

(ℓ + m)!
Pm

ℓ (z) (F–27)

F.1.4 Recursion Relations:

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (F–28)

(n + 1)Pn(x) =
d

dx
Pn−1(x) − x

d

dx
Pn(x) (F–29)

(2n + 1)Pn(x) =
d

dx
Pn+1(x) − d

dx
Pn−1(x) (F–30)

√
1 − x2 Pm+1

ℓ (x) = (ℓ − m)xPm
ℓ (x) − (m + ℓ)Pm

ℓ−1(x) (F–31)

√
1 − x2

d

dx
Pm

ℓ (x) = 1
2 (ℓ + m)(ℓ − m + 1)Pm−1

ℓ (x) − 1
2 Pm+1

ℓ (x) (F–32)

(ℓ − m + 1)Pm
ℓ+1(x) = (2ℓ + 1)xPm

ℓ (x) − (m + ℓ )Pm
ℓ−1(x) (F–33)

F.1.5 Generating Function

The generating function for Legendre polynomials:

(1 − 2xt + t2)− 1/2 =

∞
∑

n=0

Pn(x)tn |x| ≤ 1 (F–34)

gives rise to the useful result

1

|�r − �r ′| =
1

r >

∞
∑

n=0

(

r<

r>

)n

Pn(cos θ) (F–35)
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F.1.6 Orthogonality
∫ 1

− 1

Pm
ℓ (x)Pm

k (x) dx =
2

2ℓ + 1

(ℓ + m)!

(ℓ − m)!
δkℓ (F–36)

∫ 1

− 1

Pm
ℓ (x) Pn

ℓ (x)

1 − x2
dx =

(ℓ + m)!

m(ℓ − m)!
δmn (F–37)

F.2 Spherical Harmonics

The spherical harmonics defined by

Ym
ℓ (θ, ϕ) ≡

√

(2ℓ + 1) (ℓ − m)!

4π(ℓ + m)!
Pm

ℓ (cos θ) eimϕ |m| ≤ ℓ (F–38)

are the well-behaved solutions to
{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+

[

ℓ (ℓ + 1) +
m2

sin2 θ

∂2

∂ϕ 2

]}

f(θ, ϕ) = 0 (F–39)

F.2.1 Values and Relations:

Y∗m
ℓ (θ, ϕ) = (−1)m Y−m

ℓ (θ, ϕ) (F–40)

Yℓ
ℓ (θ, ϕ) = (−1)ℓ

√

(2ℓ)!

2ℓℓ !

√

2ℓ + 1

4π
sinℓ θ eiℓϕ (F–41)

Defining the operator

L± ≡ ±e± iϕ

(

∂

∂θ
± i cot θ

∂

∂ϕ

)

(F–42)

we have L±Ym
ℓ =

√

(ℓ ∓ m)(ℓ ± m + 1)Ym±1
ℓ (F–43)

F.2.2 Explicit Forms

Y0
0 =

√

1
4π

Y0
1 =

√

3
4π cos θ Y±1

1 = ∓
√

3
8π sin θe±iϕ (F–44)

Y0
2 =

√

5
16π (3 cos2 θ − 1) Y±1

2 = ∓
√

15
8π sin θ cos θe±iϕ Y±2

2 =
√

15
32π sin2 θe±2iϕ

F.2.3 Orthogonality

2π
∫

0

π
∫

0

Ym
ℓ (θ, ϕ) Y∗m′

ℓ′ (θ, ϕ) sin θ dθ dϕ = δl l′ δm m′ (F–45)
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F.2.4 Completeness:

∞
∑

l=0

ℓ
∑

m=−l

Y∗m
ℓ (θ′, ϕ′)Ym

ℓ (θ, ϕ) = δ(ϕ − ϕ′) δ(cos θ − cos θ′) (F–46)

F.2.5 Addition Theorem

4π

(2ℓ + 1)

ℓ
∑

m=− ℓ

Y∗m
ℓ (θ′, ϕ′)Ym

ℓ (θ, ϕ) = Pℓ (cos γ) (F–47)

where γ is the angle between (θ′, ϕ′) and (θ, ϕ).

F.3 Solution of the Legendre Equation

A subset of the solutions of Legendre’s equation (F–1) may be found by setting µ
equal to zero so that the equation becomes

(1 − x2)
d2f

dx2
− 2x

df

dx
+ ν(ν + 1)f = 0 (F–48)

which can be solved with a power series solution. Setting

f(x) =
∞
∑

n=0

cnxn (F–49)

we evaluate the terms to get

ν(ν + 1)f =

∞
∑

n=0

ν(ν + 1)cnxn, −2x
df

dx
= −

∞
∑

n=1

2ncnxn (F–50)

(1 − x2)
d2f

dx2
=

∞
∑

n=2

cnn(n − 1)xn−2 −
∞
∑

n=2

cnn(n − 1)xn (F–51)

Collecting the terms, we obtain

∞
∑

n=2

cnn(n−1)xn−2−
∞
∑

n=2

cnn(n−1)xn−
∞
∑

n=1

2ncnxn+ν(ν+1)
∞
∑

n=0

cnxn = 0 (F–52)

As the xn are linearly independent functions, the coefficient of each power of x must
vanish. Thus for x0,

c2 · 2 · 1 + ν(ν + 1)c0 = 0 ⇒ c2 =
−ν(ν + 1)

2
c0 (F–53)

For x1,

c3 ·3 ·2−2c1 +ν(ν+1)c1 = 0 ⇒ c3 =
2 − ν(ν + 1)

3 · 2 =
(2 + ν)(1 − ν)

3 · 2 c1 (F–54)
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and for xn(n ≥ 2),

(n + 2)(n + 1)cn+2 − n(n − 1)cn − 2ncn + ν(ν + 1)cn = 0

⇒ cn+2 =
n(n + 1) − ν(ν + 1)

(n + 2)(n + 1)
cn =

(n + 1 + ν)(n − ν)

(n + 1)(n + 2)
cn (F–55)

We evaluate all the even coefficients in terms of c0 to get

c1

c0
= −ν(ν + 1)

2
,

c4

c0
=

ν(ν + 1)

2

(ν + 3)(ν − 2)

3 · 4 ,

c6

c0
= −ν(ν + 1)

2

(ν + 3)(ν − 2)

3 · 4
(ν + 5)(ν − 4)

5 · 6 , etc. (F–56)

Similarly we find for the odd coefficients

c3

c1
= − (ν + 2)(ν − 1)

2 · 3 ,
c5

c1
=

(ν + 2)(ν − 1)

2 · 3
(ν + 4)(ν − 3)

4 · 5 , etc. (F–57)

so that our solution may be written

f = c0

[

1 − ν(ν + 1)

2
x2 +

(ν + 1)(ν + 3)ν(ν − 2)

4!
x4

− (ν + 1)(ν + 3)(ν + 5)ν(ν − 2)(ν − 4)

6!
x6 + · · ·

]

+ c1

[

x − (ν + 2)(ν − 1)

3!
x3 +

(ν + 2)(ν + 4)(ν − 1)|(ν − 3)

5!
x5 − · · ·

]

(F–58)

If ν is an integer, then we conclude from (F–55) that cν+2 = 0, implying cν+4 =
cν+6 = . . . = 0. Thus, for an even integer ν the even series becomes a polynomial
of degree ν, whereas for odd ν the odd series becomes a polynomial of degree ν.
Whichever of the two series terminates, it is after appropriate normalization defined
to be the Legendre polynomial Pν(x) while the remaining series is the associated
Legendre function Qν(x).

The behavior of the infinite series at x = ±1 is worth investigating. The ratio
of successive terms,

cn+2

cn
=

(n + ν + 1)(n − ν)

(n + 1)(n + 2)
→ −

(

1 − ν2

n2

)

(F–59)

as n → ∞. Thus, the infinite series will not converge at x = ±1, leading to the
exclusion of Qν , whether ν is an integer or not, as well as Pν for non-integral ν,
from the solution of physical problems that include x = 1 in the domain. For the
usual application where x = cos θ this means that whenever the points at θ = 0 or
θ = π are included only the Legendre polynomials will be included in the solution.

Including its normalization, the Legendre Polynomial is defined by

Pℓ(x) =

[ 12 ℓ ]
∑

r=0

(−1)r

2ℓr!

(2ℓ − 2r)!xℓ−2r

(ℓ − r)!(ℓ − 2r)!
(F–60)
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where [ 12ℓ ] = 1
2ℓ when ℓ is even and [ 12ℓ ] = 1

2 (ℓ − 1) when ℓ is odd. To verify the
equivalence of this series to the one above, we need merely verify that the ratio
cn+2/cn satisfies (F–55). Abbreviating the series to

Pℓ(x) =

[ 12 ℓ ]
∑

r=0

cℓ−2rx
ℓ−2r (F–61)

We note that if cn = cℓ−2r, then cn+2 = cℓ−2(r−1), hence
cn+2

cn
=

cℓ−2(r−1)

cℓ−2r
, or

cn+2

cn
=

(−1)r−1

2ℓ(r − 1)!

(2ℓ − 2r + 2)!

(ℓ − r + 1)! (ℓ − 2r + 2)!
· 2ℓ(ℓ − r)! r!

(−1)r(2ℓ − 2r)!

= − (2ℓ − 2r + 2)(2ℓ − 2r + 1)r

(ℓ − r + 1)(ℓ − 2r + 2)(ℓ − 2r + 1)
=

(−2r)(2ℓ − 2r + 1)

(ℓ − 2r + 2)(ℓ − 2r + 1)
(F–62)

Finally we replace −2r by (n − ℓ) to obtain (F–55).

F.3.1 Derivation of the Generating Function

Throughout this book we make considerable use of the generating function for
Legendre polynomials. In this section we will demonstrate that

(1 − xt + t2)−1/2 =

∞
∑

n=0

Pn(x)tn |x ≤ 1 (F–63)

To begin, we expand F(x, t) = (1− 2xt+ t2)−1/2 with |x| ≤ 1, | t | ≤ 1 using the
binomial theorem

(1 + ǫ)α = 1 + αǫ +
α(α + 1)ǫ2

2!
+

α(α + 1)(α + 2)ǫ3

3!
+ · · ·

and specialize to α = − 1
2 to obtain

(1 − ǫ)−1/2 = 1 +
1

2
ǫ +

1

2!

1

2

3

2
ǫ2 +

1

3!

1

2

3

2

5

2
ǫ3 + · · ·

=
∞
∑

n=0

1

2n

(2n − 1)!!

n!
ǫn =

∞
∑

n=0

(2n)!

2nn!(2n)!!
ǫn

=

∞
∑

n=0

(2n)!ǫn

2nn!2n(2n − 2)(2n − 4)(2n − 6) · · · =
∞
∑

n=0

(2n)!ǫn

22n(n!)2
(F–64)

Applying this, we write F as

[1 − t(2x − t)]−1/2 =

∞
∑

n=0

(2n)! tn(2x − t)n

22n(n!)2
(F–65)
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Figure F.2: The array of elements may be summed horizontally, vertically
or along several different diagonals as indicated by the solid and dotted lines.

We expand (2x − t)n in turn using the binomial theorem

(2x − t)n =

n
∑

k=0

(−1)kn! (2x)n−ktk

k! (n − k)!
(F–66)

the expression in (F–65) may then be written

(1 − 2xt + t2)−1/2 =

∞
∑

n=0

n
∑

k=0

(−1)k(2n)! (2x)n−ktn+k

22nn! k! (n − k)!
(F–67)

This convergent series may be summed with its terms grouped in a number of
different orders. Consider the sum of elements ak,n of a rectangular array. The
sum, written as the sum of diagonal elements connected by solid lines in Figure F.2

∞
∑

n=0

n
∑

k=0

ak,n−k = a0,0 + (a0,1 + a1,0) + (a0,2 + a1,1 + a2,0) + · · · (F–68)

may equally well be written as the sum

∞
∑

n=0

[ 12 n]
∑

k=0

ak,n−2k = a0,0 + a0,1 + (a0,2 + a1,0) + (a0,3 + a1,1)

+(a0,4 + a1,2 + a2,0) + (a0,5 + a1,3 + a2,1) · · · (F–69)

as indicated buy the dotted lines in the diagram. We rearrange the sum in (F–67)
in the same manner. Identifying the terms of (F–67) by

ak,n−k =
(−1)k(2n)! (2x)n−ktn+k

22nk!n! (n − k)!
(F–70)

we obtain ak,n−2k on replacing n by n − k in (F–67), so that we find

(1 − 2xt + t2)−1/2 =

∞
∑

n=0

[ [ 12 n]
∑

k=0

(−1)k(2n − 2k)!xn−2k

2nk! (n − k)! (n − 2k)!

]

tn
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=

∞
∑

n=0

Pn(x)tn (F–71)

In addition to giving the very useful expansion for 1/|�r−�r ′| the generating function
may be used to generate most of the recursion relations for the Legendre polynomials

Example F.1: Differentiate the generating function with respect to t to find the
recursion formula relating Pn+1 to Pn and Pn−1.

Solution: Differentiating F = (1 − 2xt + t2)−1/2 with respect to t as instructed

∂F

∂t
=

x − t

(1 − 2xt + t2)3/2
=

x − t

1 − 2xt + t2
F(x, t) (Ex F.1.1)

In other words,

(x − t)F(x, t) = (1 − 2xt + t2)
∂F

∂t
(Ex F.1.2)

We replace F by its generating function expansion (F–71) to get

(x − t)

∞
∑

n=0

Pn(x)tn = (1 − 2xt + t2)

∞
∑

n=1

Pn(x)ntn−1 (Ex F.1.3)

and equate the coefficients of tn to obtain

xPn(x) − Pn−1(x) = (n + 1)Pn+1(x) − 2nxPn(x) + (n − 1)Pn−1(x) (Ex F.1.4)

which, after collecting terms, becomes

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (Ex F.1.5)

Using the result above, (Ex F.1.5), we can generate all the Legendre polynomials
starting from P0 and P1, for example,

2P2(x) = 3xP1(x) − P0(x) ⇒ P2(x) = 1
2 (3x2 − 1) (F–72)

Had we differentiated F with respect to x instead of t, we would have obtained
a relation between the Legendre Polynomials and their derivatives.

F.3.2 Associated Legendre Functions

Recall that we started out to solve

(1 − x2)
d2P

dx2
− 2x

dP

dx
+

[

n(n + 1) − m2

1 − x2

]

P = 0 (F–73)

but postponed the m �= 0 case. With some effort it may be shown by induction
that

Pm
n (x) = (−1)m(1 − x2)m/2 dmPn(x)

dxm
(F–74)
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solves the complete (m �= 0) equation. The Pm
n (x) are called associated Legendre

functions. The associated Legendre functions are nearly always encountered with
the argument cos θ instead of x. In terms of x = cos θ (F–74) reads

Pm
n (cos θ) = (−1)m sinm θ

(

dm

dxm
Pn(x)

)

x=cos θ

(F–75)

The differential equation also accommodates negative m, but (F–74) or (F–75)
can not yield the solution. The negative m solutions are defined by

P−m
ℓ (x) ≡ (−1)m (ℓ − m)!

(ℓ + m)!
Pm

ℓ (x) (F–76)

As the functions Pm
ℓ (cos θ) and eimϕ nearly always occur together, the properly

normalized product
Cm

n Pm
n (cos θ)eimϕ ≡ Ym

n (θ, ϕ) (F–77)

is more useful that the individual functions. The Spherical Harmonics, Ym
n (θ, ϕ)

are normalized so that
∫

4π

Y∗m
ℓ (θ, ϕ)Yn

k (θ, ϕ)dΩ = δℓkδmn (F–78)

The constant is readily evaluated when m = 0.

1 =

∫ 2π

0

∫ 1

−1

∣

∣Y0
ℓ (θ, ϕ)

∣

∣

2
d(cos θ)dϕ = 2π

(

C0
ℓ

)2
∫ 1

−1

∣

∣Pℓ

∣

∣

2
dx =

4π

2ℓ + 1

(

C0
ℓ

)2
(F–79)

leading us to conclude C0
ℓ = ±

√

(2ℓ + 1)/4π. A similar calculation for non-zero m
yields

Cm
ℓ = ±

√

(2ℓ + 1)(ℓ − m)!

4π(ℓ + m)!
(F–80)



AppendixG

Table of Symbols

�A vector potential

A area

Aµ four-acceleration

�a acceleration

α polarizability
�B magnetic induction field
�β velocity relative to light (�v/c)

C capacitance

Cij coefficient of induction
�D electric displacement field

d3r element of volume

δ(x) Dirac delta function

δij Kronecker delta

∂i ≡ ∂/∂xi

δ differential operator

δ skin depth
�E electric field

E electromotive force (EMF)

e charge of proton (≈1.6×10−19 coul)

ε permittivity

ǫijk Levi-Cevita symbol

f (x ) arbitrary function of x

f force density
�F force

Fµν electromagnetic field tensor

Φ magnetic flux

Φ four-potential

ϕ azimuthal angle

G Green’s function

g conductivity

Γ boundary to volume or surface

Γ frame Lorentz factor

γ Lorentz factor (1 − v2/c2)−1/2

�∇ gradient operator
�H magnetic field intensity

h̄ Planck’s constant/2π

H
(1)
ℓ ,H

(2)
ℓ Hankel function

h
(1)
ℓ ,h

(2)
ℓ spherical Hankel function

ηµν stress-energy-momentum tensor

Iℓ modified Bessel function
I current
�J current density

Jℓ Bessel function

jℓ spherical Bessel function
�j surface current density

Kℓ modified Bessel function

Kµ four-force
�k wave vector

—403—
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κ dielectric constant
L inductance
�L angular momentum
ℓ length, counting number
�L angular momentum density

λ line charge density

λ wavelength
m mass
�m magnetic moment
�M magnetization

µ magnetic permeability

Nℓ Neumann function

nℓ spherical Neumann function

n̂ normal

ν frequency

O(h) terms of order h

P power
�P polarization

Pm
ℓ Legendre function

Pij coefficient of potential

�p dipole moment

�p momentum
�P momentum density

℘ pressure

q, Q charge
↔
Q quadrupole moment tensor

Qij i, j component of the quadrupole
moment

R resistance

ℜ reluctance

�r position vector
ρ charge density
ρ cylindrical polar radius
�S surface
S entropy
�S Poynting vector
σ surface charge density
σ Stefan Boltzmann constant
↔
T Maxwell stress tensor

T temperature
τ volume
U energy density
V electric potential
Vm magnetic scalar potential
V µ four-velocity

�v velocity

W energy

Ω solid angle, ohm
ω angular frequency
χ electric susceptibility

χm magnetic susceptibility

Ym
ℓ spherical harmonic

Z impedance



Index

A

Abraham-Lorentz 335–338
absorption 240
accelerated charge 54, 179 230, 296–306,
333–339
action at a distance 7, 15, 19
adiabatic 220, 242
advanced potential 272, 339
Ampère 14
Ampère’s law 19–20,54, 56, 58
analytic 115, 116
angular momentum 87–88, 289

of electromagnetic wave 289–291
anisotropic media 185, 217, 224, 231
antenna 262, 292–293
argument of complex number 121
associated Legendre function 131, 292,
393, 399, 401
attenuation 255–258, 266
axial vector 357

B

�B (magnetic induction field) 15–22, 171,
316

in spherical shield 188
of bar magnet 173, 174
of dipole 39, 277
of Helmholtz coil 31, 111
of magnetized sphere 195
of moving charge 333
of loop 17, 18, 28, 77, 109, 110
of rotating sphere 29, 36, 112, 126, 318
of solenoid 21, 29, 132

of torus 22, 202
of wave 64, 66
of wire 16, 20

bare mass 333, 338
basis 348, 360
Bessel function 129, 383–392
betatron 67
biaxial 234
binomial 34, 109–111, 391, 399
Biot 14
Biot-Savart law 16
blackbody radiation 219
Bohm-Aharanov 23
Boltzmann 175, 221
bound charge 167, 212, 219
bound current 171
boundary conditions 93–138, 181–106,
213–216, 248
bounded waves 243
Bouwkamp 286
bremstrahlung 304

C

canonical momentum 59
capacitance 73, 124–127, 151
capacitor 73, 120, 126, 170
Cartesian moment 35
Cartesian coordinates 96–98,
Casimir 286
Cauchy-Riemann equations 116, 125
causality 272, 339
cavity 187, 219, 253
Cherenkov radiation 304
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Christoffel symbol 363
circular loop 17, 24, 28, 110-111
circular disk 6, 12, 31, 137, 157
Clausius-Mosotti 177
coaxial

waveguide 249
cones 139
cylinders 100

coefficient
of capacitance 73
of induction 73
of potential 72–73

coercive force 205
complete 95, 381
complex variable 115–127
concentric

spheres 95, 187
ring 158
disk 157
cylinders 30, 100

conduction 180, 201, 235
conductivity 180, 239
conformal mappings 115–127
conjugate harmonic 116
conservation

of charge 13, 14, 213, 314
of energy 74, 333-335
of magnetic flux 203
of momentum 82–87

continuity equation 13, 89, 201, 213, 276,
283, 319,336
contravariance 352
convective derivative 59
Coulomb gauge 60
Coulomb’s law 2, 316, 343
covariance 313–327, 339, 352
crystalline 178
curl 363
current 13, 89, 245, 314
current density 13, 181

bound 171
surface 172, 174, 184, 244, 254, 256

current loop 17, 18, 27, 28, 40, 108–110
curvilinear coordinates 360

bi-spherical 140, 372
cylindrical 95, 128, 360

oblate ellipsoidal 136
plane polar 98
prolate ellipsoidal 140
spherical polar 65, 95, 106, 362
toroidal 366–369

Curie point 179
cutoff 245, 251, 262, 265
cyclotron 53
cylinder 9, 30, 91, 99–106, 130, 149, 176,
199

with azimuthal current 103–104
concentric 101
dielectric 191
magnetized 173, 197
polarized 168
in uniform field 99

cylindrical wave guide 246–252
cylindrical optical fiber 250

D

�D (displacement field) 169, 318
Debye potential 65, 286
dense media, polarization of 177
diamagnetic 175, 179
dielectric 168, 175

anisotropic 169, 185, 231
constant 170
cylinder 168, 191
non-polar 176
plane 184, 190
polar 175
sphere 185, 318

differential operators 364
diffusion 181, 299
dipole 33

electric 33, 36, 276
magnetic 39, 281

Dirac 88, 340
Dirac δ function 3, 160, 372–376, 381
Dirichlet condition 93–94, 155
disk 6, 12, 136, 157
dispersion 238
dispersion relation 224, 230, 235, 244,
251, 261
displacement current 54–57
displacement field 169
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dissipation 255
divergence 11, 13, 364
Doppler effect 330
dual tensor 317
duality transformation 89

E

Einstein 340
�E (Electric field) 5–8, 316
of accelerated point charge 297, 308
of charged cylinder 9
of charged sphere 8
of constant potential disk 136–138
of polarized dielectric 165–168
of dipole 34
of line charge 4
of oblate ellipsoid 136–138
of uniformly charged disk 6

eddy currents 255
electret 169
electric field 5
electromagnetic dual tensor 317
electromagnetic field tensor 316
electromagnetic units 344
electromotive force 49–53
electrostatic units 342
ellipsoid 37, 136—138
emu 344
energy

of charge distribution 69–71
of current distribution 76–77
of field 69–71, 217, 323
of magnet 206
of multipole 46
of parallel wires 79

energy density 81, 217, 323
energy flux 80, 82, 87, 234, 279, 323
entropy 220
equipotential 118, 125
esu 342
evanescent wave 229
extraordinary ray 232

F

far zone 274, 283, 293
Faraday’s law 54

ferroelectric 169, 179
ferromagnetic 175, 180
fiber, optical 259–265
field

electric 5–11, 316
displacement 169, 318
fringing 119
magnetic, induction 15–23, 316
magnetic, intensity 174, 318

flux density 15, 51, 318
force 2–4, 14, 59, 75, 83, 322, 371

Coulomb 2–4, 343
on dipoles 43
electromotive 49, 205
Lorentz 15, 59, 320
magnetomotive 203
and stress 84, 218, 322
and virtual work 74

force density 85, 320
four-acceleration 325, 339, 371
four-current 314
four-force 320, 339, 371
four-potential 314
four-velocity 314, 370
Fourier analysis 101–103, 270, 303
Fresnel’s equations 227
fringing field 127
full wave antenna 293

G

gauge transformations 60
Gauss’ law 7–11
Gaussian units 343
generating function 40, 391, 399
Glashow 341
gradient 364
grand unified theory 88, 341
Green’s function 145, 152–162, 273, 295
Green’s first identity 153
Green’s second identity 154
group velocity 64, 224, 245
gyromagnetic ratio 47

H

�H (magnetic field intensity) 174, 318
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in gap 202
in magnet 198, 204–207

half wave antenna 293
Hankel functions 387
harmonic oscillator 176, 237
HE mode radiation 262–265
headlight effect 303
Heaviside-Lorentz 345
Helmholtz coil 111
Helmholtz equation 271
holomorphic 115
hysteresis 205, 206

I

I current 13
image charges 144–152, 190–194
image dipole

electric 148
magnetic 200

image plane 115
impedance 266, 311
inductance 76–79
induction zone 275
inertia of field 324, 333, 338
information-collecting sphere 272, 294
inhomogeneous wave equation 269–274
intensity, magnetic field 174, 318
interaction, field–multipole 42–46
intermediate zone 275
invariants 315, 319, 353
irradiance 82

K

�k wave (propagation) vector 64, 224, 230,
233, 235, 236, 239, 245
Kaluza 341
Klein 340
Kronecker δ 350, 356

L

Landé g-factor 48
Lagrangian 60, 67
Langevin-Debye 175–176
Laplace equation 13, 93

Cartesian coordinates 95, 96–98
and conformal mappings 116

bispherical coordinates 141, 372
cylindrical coordinates 128–132
ellipsoidal coordinates 136, 140
plane polar coordinates 98–106
spherical polar coordinates 132–136
with axial symmetry 106–115
toroidal coordinates 366

Laplacian 63, 366
Legendre equation 107, 393
Legendre functions 107, 393–402
Legendre polynomial 40, 107, 133, 393
Lenz’ law 179
Levi-Cevita symbol 86, 357
Liénard-Wiechert potential 294
line charge 4, 14, 149, 191
linear independence 348
linear quadrupole 284
longitudinal current 61
loop 17, 18, 28, 39 108–111
Lorentz factor Γ, γ 14, 313, 369
Lorentz force 15, 59, 175, 320
Lorentz transformation 14, 317, 325, 369
Lorenz gauge 60, 62, 222, 269, 315, 319

M

magnet 173, 197, 204–206
magnetic circuits 202–205
magnetic dipole 39, 44, 282
magnetic flip coil 67
magnetic field intensity 174, 318

in homogeneous matter 174
in magnet 198, 204
in magnetic circuit 204

magnetic forces 14
magnetic induction 49
magnetic induction field 15, 316

of dipole 39
magnetic moment 17, 39
magnetic monopoles 88
magnetic poles 14, 88, 194, 199
magnetic scalar potential 26–29, 39, 194

of circular loop 28
of current loop 28, 108, 110
of dipole 39
of Helmholtz coil 111
of magnetized cylinder 197
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of magnetized sphere 195, 198
of rotating dielectric sphere 318
of solenoid 29, 139

magnetic shielding 188
magnetic vector potential 23, 314
magnetization 171, 318
magnetomotive force 203
magnetron 208
mapping 115–124
mass, electromagnetic 324, 332
mass, bare 338
Maxwell’s equations

in vacuum 58, 90, 212, 316
in continuous media 181, 212, 318
in moving media 328

Maxwell stress tensor 85–87, 218, 322
metric tensor 137, 352, 362, 369
mixed tensor 355
mixing angle 90
mobility 181
momentum 59, 82–87, 216, 320, 326
monomode 262
monopole, magnetic 88–90, 199
motional EMF 50–52
multipole moment 33–42

Cartesian 35
spherical 40
interaction with field 42

multipole radiation fields 66, 286

N

near zone 274
Neumann condition 93–94, 155
Neumann functions 129, 384
Newton 58
Nordström 340
normalization 378
Nova 51
numerical 127

O

oblate ellipsoidal 136
ohmic 181
optical fiber 259
ordinary ray 233

oscillating fields 238
oscillating source 274

P

p-polarization 226
parallel wires 77, 151
paramagnetic 174, 179
permanent magnets 173, 197, 204, 206
permeability 174
permittivity 2, 170, 217, 230, 237
phase velocity 64, 224, 236, 245, 265
piezoelectric 169, 178
pillbox 10, 112, 215
plane, conducting 144
plane, dielectric 190
plane waves 63, 223
plasma drift velocity 31
plasma frequency 230
plate with hole 3, 7
plates 10, 75, 119, 125, 170
Poisson’s equation 13, 143
polar molecules 175
polar vector 357
polarizability 169
polarization

of medium 165, 318
of transverse wave 65, 226, 233

poles, magnetic 14, 88, 198
potential

advanced 272, 339
Debye 65, 286
electric 11
four- 314
magnetic scalar 26–29, 39, 108–115
magnetic vector 23, 39, 60, 275, 322
retarded 272–274

potential energy 45, 69–80
power 92, 239, 254, 272, 290, 284, 290,
294, 301, 325

law 1
series 33, 108, 110

Poynting’s theorem 80
Poynting vector 81, 218, 236, 280, 322
pressure 83, 220
principal axis 84, 232
Proca 1
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prolate ellipsoidal 140
propagation vector 64, 246
proper time 369
pseudotensor 357
pyroelectric 169, 178

Q

Q quality 259
quadrupole 36–39, 42, 46, 281
quadrupole radiation 282–285
quantum electrodynamics 5, 62, 334,
339, 340
quotient rule 357

R

radiation 269–309, 325
electric dipole 276–281
electric quadrupole 281–285
field 286, 299, 308
magnetic dipole 281–282
multipole 286–291
reaction 326, 333–338
zone 274, 279

reciprocal basis 350
reflection 224, 228, 240
reflection coefficient 226, 240
refraction 224
refractive index 225, 240
regular 115
relativistic charges 3012–305, 325
reluctance 203
remanence 205
resonant cavities 253
retarded

field 297, 308
position 297
potential 272
solution 272

ring 47, 158
Rowland’s ring 205
rotating sphere 39, 112, 318
runaway 338–339

S

s-polarization 226
Salaam 341

Savart 14, 16
Scalar magnetic potential 23, 26–29, 39,
187, 194–199
scalar product 350
scalars 353
scattering cross section 298
Schumann resonance 266
Schwarz-Christoffel 120–124
self-energy 72
self-field 5
self-inductance 76
shielding 188
skin depth 235, 255
Snell’s law 224
solenoid 21, 29, 139
solenoidal 61, 288
special relativity 14, 313, 369–371
sphere 8, 42, 56, 71, 132–136, 146, 148

cavity in dielectric 187
concentric 95, 149, 159, 188
conducting in field 107
dielectric in field 185, 318
information collecting 272, 294
magnetized 195, 198
with disk 157
with ring 158
rotating 39, 112, 318

spherical Bessel functions 65, 276, 388
spherical Hankel function 276, 386
spherical harmonics 41, 65, 133, 155,
275, 396
spherical Neumann functions 65, 388,
392 Stefan-Boltzmann 221
stress-energy-momentum tensor 320
stress tensor 82–88, 218, 320
summation convention 351
sun 299
surface current 172, 183, 214, 250, 256
susceptibility

dielectric 169, 176, 177, 231, 239
magnetic 174, 179

synchrotron radiation 303

T

TE mode 243, 250–260
TE wave 65, 289
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tensor derivative 362–364
Thomson scattering 298
TM mode 250–260, 264
TM wave 65, 289
toroidal coordinates 366–369
torque

and virtual work 76, 92
on electric dipole 43
on magnetic dipole 45

torus 22, 202, 205, 366
total internal reflection 228–229
trace 36
transformation 349
transformer 206
transmission coefficient 226, 227
transverse 61, 65, 243–265, 286

U

uniaxial 234
uniform field (vector potential) 26
uniqueness theorem 94
units 343

V

Van de Graaff generator 56
vector identities 358–360, front cover
vector potential 23–26, 38, 58, 171, 326
vector product 350, 357

vectors 347, 354
velocity addition 370
virtual work 74

W

wave
equation 62, 222, 223, 269
plane 63, 222–237
spherical 65, 286–291

waves in conducting media 235
wave guides 243–265
wavelength 236, 245
wave vector 224, 230, 233, 235
(see also propagation vector)
Weinberg 341
wire(s)

magnetic field of 16, 21
vector potential of 25, 77
capacitance of 151
inductance of 77

X

x-rays 304

Y

yoke 204, 205, 208
Yukawa 1
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83. T. Hakioǧlu and A.S. Shumovsky (eds.): Quantum Optics and the Spectroscopy of Solids.

Concepts and Advances. 1997 ISBN 0-7923-4414-6
84. A. Sitenko and V. Tartakovskii: Theory of Nucleus. Nuclear Structure and Nuclear Interaction.

1997 ISBN 0-7923-4423-5
85. G. Esposito, A.Yu. Kamenshchik and G. Pollifrone: Euclidean Quantum Gravity on Manifolds

with Boundary. 1997 ISBN 0-7923-4472-3
86. R.S. Ingarden, A. Kossakowski and M. Ohya: Information Dynamics and Open Systems.

Classical and Quantum Approach. 1997 ISBN 0-7923-4473-1
87. K. Nakamura: Quantum versus Chaos. Questions Emerging from Mesoscopic Cosmos. 1997

ISBN 0-7923-4557-6
88. B.R. Iyer and C.V. Vishveshwara (eds.): Geometry, Fields and Cosmology. Techniques and

Applications. 1997 ISBN 0-7923-4725-0
89. G.A. Martynov: Classical Statistical Mechanics. 1997 ISBN 0-7923-4774-9
90. M.W. Evans, J.-P. Vigier, S. Roy and G. Hunter (eds.): The Enigmatic Photon. Volume 4: New

Directions. 1998 ISBN 0-7923-4826-5
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