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Preface

Millennia of astronomical observations were fully understood only when the
seminal ideas of Galileo, Kepler, and Newton were impacted by mathematics.
The subsequent theoretical elaborations of the laws of motion by d’Alembert,
Lagrange, Hamilton, Liouville, and others are at the basis of all mechanical de-
vices that affect modern life in essentially all its practical aspects. Lagrange, in
the preface to his Traité de Mécanique Analytique [101], sets his vision of me-
chanics as a branch of mathematics, building on physical principles.! Classical
mechanics stands as perhaps the most successful example of what contempo-
rary scientists call “interdisciplinary” research. The complexity of astronomy
in Newton’s day is countered today by the complexity of disciplines such as
chemistry and biology. Classical mechanics is a chief example of the scientific
method of organizing a “complex” collection of information into theoretically
rigorous unifying principles. In this sense it represents one of the highest forms
of modeling. The elegance and depth of the theoretical thinking coupled with
its ubiquitous applications make it comparable, in applied sciences, to Euclid’s
geometry. It also has a foundational value comparable to calculus, both as a
fundamental language of applied sciences and as a catalyst of new concepts
and discoveries.

This book collects my lectures in rational mechanics delivered at the School
of Engineering of the University of Rome, Tor Vergata, from 1986 to 1998. The
main vision was mathematical modeling, and the layout is theoretical. The
required background includes a working knowledge of linear algebra (vector
calculus, algebra of matrices), multivariate calculus, basic theory of ordinary

'From the Preface of [101]: . .. On ne trouvera point de Figures dans cet Ouvrage.
Les méthodes que j’y expose me demandent ni constructions, ni raisonnements
géométriques ou mécaniques, mais seulement des opérations algébriques, assujet-
ties d une marche réguliére et uniforme. Ceux qui aiment l’Analyse, verront avec
plaisir la Mécanique en devenir une nouvelle branche, . ..

Tel est le plan que j’avais taché de remplir . ..
On a conservé la notation ordinaire du Calcul différentiel, parce qu’elle répond au
systeme des infiniment petits ...”

xvii
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differential equations, and elementary physics. While the Lebesgue integral is
used, a working knowledge of it is not required. Its use is mainly intended as
a unifying feature, bridging from discrete systems whose material properties
are described by a series to weighted Dirac masses, to continuum systems. In
practice, in problems and examples only the Riemann integral is used.

The geometry of rigid motions is presented along with some of its implica-
tions to mechanical devices and the theory of Poinsot precessions. The latter is
remarkable, since it explains the phenomenon of equinoctial precessions only
by the geometrical rolling of the Poinsot cones. While Lagrange’s equations are
often assumed as a principle, here they are derived and put on a mathemati-
cal footing. Conversely, the cardinal equations, which are often passed over in
favor of the Lagrangian and Hamiltonian formalism, are shown to be the basis
of such a formalism. Classical topics, such as gyroscopes, precessions, spinning
tops, effects of rotation of Earth on gravitational motions, variational princi-
ples, n-body problem, and celestial mechanics, are revisited to underscore the
role of mathematics, without which they can be only perceived but not fully
explained. Attention is paid to the theory of small oscillations and Lyapunov’s
stability, including stability and instability of Poinsot precessions and celestial
motions. The connection between mechanics and geometrical optics is traced
to their common variational principles. The former leads to a maximum-rank
Hamiltonian system, and the latter yields a degenerate Huygens canonical
system. The degeneracy is overcome by Euler’s theorem of homogeneous func-
tions. The Hamilton variational formalism naturally leads to the symplectic
formalism and canonical transformations. These identify, among the transfor-
mations that preserve the variational and canonical nature of the Hamilton
equations, those that preserve the hidden geometry of the motion (Lie), such
as Poisson and Lagrange brackets and volumes (Liouville’s theorem). They
also transform paths in phase space into “immobile points” in the trans-
formed phase space, thereby providing an integration method of Hamiltonian
systems (Jacobi). The basic techniques of integration of the Hamilton—Jacobi
equations (complete integrals, envelopes, separability, etc), are presented in
their natural symplectic formalism. Some classical facts have been given new
proofs based on more modern mathematical language. These include the local
minimality of the stationary points of the action, the notion of envelopes, and
the Hamiltonian form of Huygens systems in geometrical optics. In the last
chapter we give a very brief introduction to continuum and fluid mechanics,
mainly to underscore the mathematical and modeling ideas needed in transi-
tioning from finite degrees of freedom to nonrigid continuum systems.

Classical mechanics has evolved from these seminal principles into
numerous fields, including statistical mechanics, relativity, ergodic theory,
symplectic geometry, and continuum mechanics including elasticity and fluid
dynamics. The methods of investigation are diverse, ranging from proba-
bility and measure theory and classical analysis to algebra, topology, and
Riemannian geometry. We have refrained from going into any of them both
because of the specialized and massive nature of each of them, and because
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of our goal of giving essentially a “calculus-type” introduction to the applied
sciences. As such, all topics are mutually interlaced, each providing the back-
ground for the indicated several directions that mechanics takes on. However,
some more mathematical parts might be omitted at a first reading. They
include the parameteric equations of fixed and moving centrodes (§11c of
Chapter 1); the theory of radial potential (§4.3c), which, while used for some
atomic potentials, in this context has mostly a theoretical value; finding the
principal axes of inertia of a planar rigid system (§5c of Chapter 4), and some
mathematical remarks on the stationary points of a functional (§§1.1¢-1.2¢
and §1.5¢ of Chapter 9).

I learned classical mechanics from Giorgio Sestini (1908-1991) at the Uni-
versity of Florence, Italy, back in the mid 1970s. Sestini’s teachings impressed
upon me the artful balance between physics and mathematics, neither being
permitted to be self-absorbing. These notes reflect those lectures, including
some exercises and problems taken from my old class notes.

I would like to extend special thanks and express my deep appreciation to
my close collaborators Fabrizio Davi, Alessandro Tiero, Luciano Teresi, Luigi
Chierchia and Vieri Mastropietro. These fine researchers helped me, over the
years and at various stages, in teaching Classical Mechanics at the Univ. of
Rome Tor Vergata. They conducted recitation sessions for the students and
assisted them in practice and problem solving sessions. They suggested a
number of ways of improving my draft notes into a usable tool and suggested
topics and problems aimed at expanding the scope and clarity of the course.
I am very much indebted to them.

I would like to thank the numerous students who, over the years, have
pointed out misprints and imprecise statements, among them Giovanni
Caruso, Roberto Cespa, Ernesto Mottola, Daniele Ludovisi, Giuseppe Vairo,
Michael O’Leary, Luca Andreassi, Alessio Lupoi, Vito Introna, Luciano
Cantone, Francesco Vivio, Sonia Marfia, and Riccardo Baudille. The help
of Daniele Andreucci needs to be singled out. He read a large part of the
manuscript, picking up imprecise statements and misprints and pointing out
unclear passages; I am much indebted to Daniele.

I am also grateful to a number of people for having examined the
manuscript at various stages and for providing suggestions and feedback on the
material and its presentation, among them Bob Glassey, Steve Davis, Franco
Maceri, Giovanni Galdi, Tinsley Oden, Morton Gurtin, David Kinderlehrer,
Ralph Showalter, Avner Friedman, Don Saari, John Ockendon, David Hoff.

I would like to extend many thanks to Robert Sekerka for his critical read-
ing of the chapter on canonical transformation and pointing unclear points.
His remarks led to a rewriting of that chapter.

Special thanks go to James Serrin for having examined in detail the final
version of the manuscript; he suggested changes in some terminology and
presentation, made me aware of further references, pointed out a more general
version of Stokes’s theorem on the friction stress tensor in fluids [139], and
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made precise some thermodynamical facts in the chapter on fluid dynamics.
I am very much grateful to James.

My special thanks go also to Franco Maceri, former dean of the School
of Engineering of the University of Rome Tor Vergata, for his support and
encouragement in writing these notes and for affording me the freedom of
experimenting with less-traditional ways of teaching classical mechanics.

Partial support of the NSF is gratefully acknowledged.

Emmanuele DiBenedetto
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GEOMETRY OF MOTION

1 Trajectories in R® and Intrinsic Triads

A triple of vectors {ej, ez, e3} is positively oriented if e; A e; = e, for every
cyclic permutation {4, j, k} of the indices. A positive triad is a Cartesian ref-
erence system {O;e, ez, e3} in R with origin in O and positively oriented
unit vectors {e1, ez, es}. A vector-valued function

(@.)3 = v(t) = 25(0)e; = 3. 2,(0e;

from an interval (a,b) C R into R? is continuous or differentiable at a point
of (a,b) or in the whole (a, b) if so are the scalar functions z;(-) for j = 1,2, 3.
The summation notation will be used throughout, that is, a monomial
expression with repeated indices is intended to be summed over those indices.
Calculus operations are effected in terms of components. If v and w are
differentiable vector-valued functions, then

(VAW) =V Aw+vAW, (v-w) =v-w+v -w.

The latter equality implies that (||v||?)’ = 2v - v'. Therefore if v has con-
stant length, then v and v’ are orthogonal. Let ¢ — P(t) be a continuously
differentiable vector-valued function defined in (a,b) and such that

|P| = /32 + 42 +42>0 in (a,b).

The set of points {P(t)}se(a,p) is a curve v in R? and the vector P’ is tangent
to v in P. The intrinsic parameter of + is its arc length

SZ/ IP'(F)ldr, € (ab).

With improper but suggestive symbolism, we denote by s — P(s) the function
s — P(s) = P(t(s)), to stress that corresponding values of the parameters ¢

E. DiBenedetto, Classical Mechanics: Theory and Mathematical Modeling, 1
Cornerstones, DOI 10.1007/978-0-8176-4648-6 _1,
(© Springer Science+Business Media, LLC 2011



2 1 GEOMETRY OF MOTION

and s identify the same geometric point P on ~. In terms of s the unit tangent
t(s) and unit normal n(s) to v in P(s) are

RN S R T

provided t'(s) # 0.

If t = 0 the normal n is not defined. Since t has constant length, t - t' = 0.
Therefore n is normal to t and in this sense is the unit normal to ~. Set

t'=rn, k=[t'], b=tAn

The quantity x(s) is the curvature of v at P(s) and it measures by how
much v deviates from t(s) by an infinitesimal variation of s. This formula also
determines the orientation of n and hence the orientation of b. The unit vector
b is the binormal to v at P. The triple of unit vectors {t,n, b} is positive and
the triad {P;t,n, b} is called the intrinsic triad to v at P. Taking derivatives
of |[b|]?> =1 and b -t = 0 with respect to the parameter s gives

b-b' =0, t-b'+b-t' =0.

These imply that db/ds is orthogonal to both b and t. Therefore b’ is parallel
to n. Thus there exists a scalar function s — A(s) such that

b'=An, Al =[]

The quantity A(s) is the torsion of v at P(s) and it measures by how much
the curve ~ deviates from the plane through P(s) and normal t(s) A n(s) by
an infinitesimal variation of the parameter s. These relations between tangent
t, normal n, and binormal b of a curve ~ are called Frenet formulas [58]. If
the parameter ¢ is time, the map ¢ — P(t) is interpreted as a point moving
along its trajectory ~. Its velocity v = P and its acceleration a = P may
be expressed in terms of a Cartesian triad {O;eq,ez,e3} or in terms of its
intrinsic triad as

P =v = (1,9, 43)" = t3,

[Pl = lIvll = /a1 + 43 + &3 = |3],

P =a=(i,iy,i3) =t + ré’n,
lall = \/ &1 + 23 + &5 = V5% + k254

Note that the acceleration a has zero component along the binormal b. If
§ = 0, the motion is uniform. If kK = 0, it is a straight-line motion. The
uniform straight-line motions are those for which x = 0 and § = 0.

Throughout we will avoid specifying the range of variation of ¢, and for
all times will mean for all times within the range of variation of t.
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2 Areolar Velocity and Central Motions

A motion is planar if its trajectory lies in a plane 7. Select a Cartesian system
{O;e1,e3,e3} with origin O € 7 and e3 L 7 and set

P—-O=pu, p=|P—-0]|, u=cosye; +sinpes, ¢=e;u,
where ¢ from e; to P—O is spanned counterclockwise. By time differentiation,
u=put, it = —p?u+ gut.

One verifies that u' = e3 A u and therefore the triple {u,u’, ez} is positive.
From this one computes the expression of velocity and acceleration in terms
of its radial (i.e., along u) and transversal (i.e., along u') components as

P=pu+pput,  P=(p—p®)u+(2pp+pp)ut. (21

For a planar motion ¢ — P(t) and a fixed point O, denote by 2A the moment
of the velocity P with respect to the pole O, i.e.,

2A = (P - O) AP =p?pun(e3 Au) = pPes. (2.2)

€2

P(t+dt)

p+dp

P(t)

€1

Fig. 2.1.

The vector A is normal to the plane of the motion, and it is called areolar
velocity. Consider the area swept out by the vector radius P—O in an elemental
time dt during which the angle ¢ undergoes a variation dy. Such an area is
given by % p?dip up to terms of higher order in dt. Formally dividing by dt gives
|A|l = $p?|¢|. This justifies the name areolar velocity given to A. A motion
t — P(t) is central if there exists a point O, called center of motion, such that

(P—O)AP=0 for all times.
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Equivalently, the motion is central if the vector radius P — O and the
acceleration P are parallel at all times. If t — P(¢) is central, then

2A = %[(P —0O)A P] =0, which implies A = const.
Therefore, apart from the case A = 0, the motion takes place in the plane
7 through O and normal to A. This implies that central motions are planar.
The vector radius P — O sweeps out equal areas in equal times and it keeps its
rotation orientation at all times. Also, there exists a constant a, > 0, called
the area constant, such that

. Go
Al =3a0,  ©=—. (2.3)
p
The second equality implies the formal operation
d o
.d  a, d (2.4)

@
In particular, the radial component of the velocity is

. G, d d1
p=——p=—ar——.
p? do oy
From the second of (2.3), by taking the time derivatives we obtain p (2pp+
p$) = 0. Therefore in view of (2.1), the transversal component of the accel-
eration is zero. To compute the radial component, observe that
ddl a2 d 1

P e e - % % - .2:
Pt a Rag, ¢

bt;o | ogw

Combining these remarks with (2.1) yields the expressions of velocity and
acceleration of a central motion in the form

d 1 ap | a? <1 d? 1)
v=—a,—-u+—ut, a=--—2(-+-—-|u (2.5)
dp p P P> \p de*p

These are known as the Binet formulas. Their interest is in that the geometric
trajectory alone determines velocity and acceleration. A motion is circular if
its trajectory is a circle. In such a case the Binet formulas take the form

1
u-, a=——-u, (2.6)

where p is the radius of the trajectory.
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3 Geometry of Rigid Motions

A set E C R? is in rigid motion if the mutual distance of any two of its points
is constant in time, that is, if

forall PLQeE t— |P(t)—O(t)| = (const), p for all ¢.

The rigid motion of F is determined by the motion of any triple { Py, P>, P3}
of noncollinear points of . Any other point Q € F is uniquely determined,
along its motion, from the three independent relations ||Q — P;|| = (const),,
i = 1,2, 3. Having fixed a triple of noncollinear points { Py, P», P3} in E, the
three equations

|17 — Pyl = (ConSt)ij7 i,j=1,2,3, 1#]

are linearly independent. Therefore of the nine coordinates
(xl(Pi)v'IQ(Pi)aIZi(Pi))v 1= 172737

only six are linearly independent. The rigid motion of E is uniquely determined
by any six, linearly independent, of these functions of ¢, and therefore a rigid
motion has at most siz degrees of freedom.

The rigid motion of E is described with respect to a triad X =
{2;e1,e2,e3} with origin at 2 and positively oriented unit vectors
{e1,e2,e2}. Such a Cartesian reference system will be called fized. Intro-
duce now a triad S = {O;uy,uz,u3}, clamped to E, with origin at O and
positively oriented unit vectors {uy,us, us}. These are uniquely determined
by O and three points Q;, j = 1,2, 3, by the formula

where ;5 is the Kronecker delta. The u; are equivalence classes, and this
formula identifies them through representatives. The points O and @); might
or not belong to E. The triad {O;uy,uz,u3} is clamped to E, in the sense
that every P € F is required to satisfy

[|P— Ol = (const), ||P— Q| = (const),, i=1,2,3.

Therefore the rigid motion of the system E coincides with the rigid motion
of the system E' = EU{O;Q1,Q2,Qs}. Thus the rigid motion of E may be
regarded as the motion of the triad S with respect to the fixed triad X'. In this
sense, the notion of rigid motion is independent of the presence of a possible
material rigid body E and is identified with the geometric positions of the
triad S with respect to the fixed triad Y, following a parameter ¢. For this
reason S is called the moving triad. For a point P denote by

P =P —0 = (x1,72,23) = z;u,,
P=P—0=(y1,92,y3) = vi€i,

its representations with respect to the moving triad S and the fixed triad X
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The first three linearly independent functions, determining the rigid
motion of S, will be chosen as the functions ¢ — y,i(t), i« = 1,2, 3, coordi-
nates of O — {2 with respect to 2. The remaining three could be, for example,
the Euler angles of S with respect to X of the three components of the
instantaneous angular velocity vector w. In the next sections we introduce
these choices and trace their connection.

4 The Euler Angles

Modulo a translation, assume that 2 = O. If e3 and uz are not parallel,
the fixed plane {e;; ez} and the moving plane {u;;us} intersect along a line
called line of the nodes. Denote by n the unit vector along the line of the
nodes oriented so that the triple {n, es, us} is positively oriented. The Euler
angles are defined as follows [54], [46, pp. 99-125].

Angle ¢ (of Precession): The angle ¢ € [0,27) between e; and n counted
from e, counterclockwise with respect to es.

Angle ¢ (of Proper Rotation): The angle ¢ € [0,27) between n and uy,
counted from n counterclockwise with respect to us.

Angle 6 (of Nutation): The angle 6 € [0, 7] between ez and ug counted
from es counterclockwise with respect to n.

€3

Fig. 4.1.

By keeping {2 = O fixed, the triad X' can be moved to coincide with S by
effecting sequentially the following three rotations:
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1. Rotation of X about es of an angle ¢ to bring e; to coincide with n.
The new position of X' is the positive triad X3 = {O;n, e}, e3}, and it is
realized by the rotation matrix

cose sinp 0
A= | —singcosyp 0
0 0 1

2. Rotation of X7 about n of an angle 6 to bring es to coincide with us.
The new position of X is the positive triad XYy = {O;n, e, us}, and it is
realized by the rotation matrix

1 0 0
As = | 0 cosf siné
0 —sind cosf

3. Rotation of X5 about ug of an angle ¥ to bring n to coincide with u;. This
last rotation takes X5 into S, and it is realized by the rotation matrix

costY siny 0
A = | —sinvy cos¥ 0
0 0 1

The composition of these matrices, in the indicated order, is A = A3A5A;,

—sin cos ¢ — cos @ sin p cosy — sin 1 sin ¢ + cos O cos p cos P cos 1 sin O
sin 6 sin ¢ — sin € cos ¢ cos 6

coscosp —cosBfsinesiny  cossing + cosf cospsiny  sinpsin b
A= L (41)

The matrix A carries points y = (y1,y2,y3) in X into points & = (z1, 22, x3)
in S by the formula z = Ay. One verifies that A is unitary and that A~! = A’.
The composition A3AzA; is not commutative, since interchanging the order
of any two of these matrices does not carry X' into S.

5 Rotation Matrices and Angular Velocity

For a vector w denote by wg and wy its representations in S = {O; uy, us, us}
and ¥ = {O; ey, ez, e3}, ie.,

Wg = x1Uuy + Zous + x3u3, where 1; =w-u,,
Wy = Yy1€e1 + Ya€e2o + yses, where Yj = W - €ej.

The transformation from wg to wy is realized by the matrix (a;;) = (e; - u;).
This is unitary and (a;;)~* = («j;). Therefore

1 T T Y1
Y2 = (aij) i) and i) = (aji) Y2 . (51)
Y3 T3 T3 Y3
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If w is fixed in S and moves with it, the components x; of wg are constant in
time, whereas the components y; of wy are, in general, nonconstant functions
of the parameter ¢t. The velocity u; of the unit vector u; is a free vector in
space, representable in S and Y. Representing it in .5,

l.li’g = (ul . 11[) Uy.

The coefficient (0; - uy) is zero for £ = i. Let j, k be the values of the index £
for which ¢ # i. If the permutation {i, j, k} is even, then

l'liys = (fli . U_j)U_j + (ili . uk)uk
= (11z . uj)uk Au; — (11z . uk)uj A u;
= [—(uz . uk)uj + (l,lZ . uj)uk] A u;.
If the permutation {4, j, k} is odd, the same conclusion holds up to a sign

change on the right-hand side. Let w be the free vector whose components in
S are given by

W8 = (ul ~uj)eijk, where €ijk = (ul- A Uj) s Ug. (52)

The symbol €;;1, called Ricci alternator. It is zero if any two of the indices
1,7,k are equal and equals 41 according to the parity of the permutation
{4, 7,k} [134,135]. With this notation,

ws=wAu; for i=1,23.
If w = z;u; is fixed with S, then
Wg = xilili,s =wAz;u; =wAWwWg.

Since the exterior and scalar product of two vectors are independent of their
representation,

Ww=wAw for every vector w fixed with S. (5.3)

Although defined in terms of its components in .S, the vector w is intrinsic and
it can be equivalently represented in the coordinates of Y. The vector w is an
intrinsic characteristic of the rigid motion of S with respect to X' and, as such,
is independent of the representation of S. Indeed, let S’ = {O’;u}, ub, us} be
a new triad, clamped to S and following the same rigid motion of S. Denoting
by w’ the vector defined as in (5.2) with u; replaced with uf,

W AW =10 = (u)-uj)u; = () w)w A =wA (U] u)u) =w Aul.

From this, (w — w’) Au} = 0 for i = 1,2, 3. Therefore w — w' is parallel to
three nondegenerate mutually orthonormal vectors, and hence it must be zero.
The vector w is the angular velocity of the rigid motion of S, or the vector of
instantaneous rotation.
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The same vector calculus can be effected starting from the transformation
formulas (5.1). Given a vector w, identify wg and respectively wy with the
column vector of its components in S and Y. Let w be fixed with S. Then by
taking the time derivative of the second equality of (5.1),

(i)W + (4j) ws = 0. (5.4)
Using the first equality of (5.1),
Ws = — [(&i)(aij)] (i) ws = — [(&;:) ()] ws.

The element of position ij of the product matrix (d&;;)(a;) is computed from

. . . t
[(aji)(aij)]ij = OQpiQyp; = U, - Uy, u; = (01,1',062,1',@3,1') .
From this,
0 1.11 U2 1.11 - us
Wsz— 1'12-u1 0 112-113 Wg
f13 - Uy 113 - Ug 0

0 w3s —was
=—| —ws,s 0 w1,8 Wg = (w N W)S.
wes —wis O

One arrives at the same formula in terms of the components in X. From (5.4),
Wx = —(ay;)(dyi )W
The element of position ¢j in the product matrix is
[(cvij) (i)l = cviedrje = (ei - ug)(e; - )
= (ei-ug)le; - (ug-up)uy] = (g - up)(e; - ug)(ej - up)
= g:h(fle ~up) [(ei - ug)(e; - up) — (ei - up)(e; - )]
=wp,s(€ Aej) Uy = QpnWn, S€ijk = Wk, S€ijk-
Therefore
0 w3y —wx

wy=—| —wsx O wir |Wr=(WAW)s.
waxy —wix 0

While written in terms of the coordinates of X' or S, these formulas are in-
trinsic and are equivalent to (5.3).
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6 Velocity and Acceleration

For a moving point P denote by v(P) = P its velocity and by a(P) = P its
acceleration. If P — O is fixed to S, its derivatives are computed from (5.3) as

v(P)=v(0)+wA (P -0), (6.1)
a(P)=a(0)+wA(P-0)+wA(P-0) (6.2)
=a(0)+wA(P-0)+wA[wA(P-0)].

These are the Poisson formulas of the rigid motion of S [132]. Velocities
and accelerations are those recorded by an observer on the fixed triad X.
However, these vectors are independent of reference frames and as such, could
be represented equivalently in S or Y. All kinematic information on the motion
of any point P fixed with S are included in the two vector-valued functions
of time v(0O) and w, which are called the characteristics of the rigid motion.
Examples of rigid motions are obtained by specifying the form of these two
functions.

6.1 Translations

A rigid motion is a translation if w = 0. The degrees of freedom reduce to
three. From (6.1)—(6.2), it follows that all points in S have the same veloc-
ity and acceleration of O, and the system moves with the axes of the triad
{O;u1,u2,u3} remaining parallel. If v(O) = const, the translation occurs
along a straight line.

6.2 Precessions

A rigid motion is a precession if S has a fixed point O, called a pole of the
precession. The degrees of freedom are three, and (6.1) takes the form

v(P)=wA (P—-0) for all P € S.
Therefore at every instant ¢, all the points of the straight line
Lit)={P— 0 =Mw(t), X real parameter}

have zero velocity. Such a straight line is called the azis of instantaneous
rotation, and it varies with ¢. If the direction of w is constant, the line £ is
constant in time, and all points of S rotate about ¢ with the same angular
velocity. If the direction of w is constant, the precession is a rotation. If w is
constant, the precession is uniform. The name precession given to these rigid
motions will be justified in §1.5¢ of Chapter 7.
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6.3 Rototranslations

A rigid motion is a rototranslation if the directions of v(O) and w are constant
in time. The degrees of freedom are two. If v(O) Aw = 0, the system translates
along the axis through O and parallel to w with velocity v(O) and rotates
about the same axis with angular velocity w. If v(O) - w = 0, the system
translates along the constant direction of v(O) and rotates about the variable
axis through O and directed as w. Instantaneously, i.e., during an infinitesi-
mal variation dt of the parameter ¢, any rigid motion can be regarded as an
instantaneous translation followed by an instantaneous rotation.

7 The Axis of Motion

For a point P fixed with .S, we wish to compute the component of its velocity
v(P) along w. Assuming w # 0 and using the Poisson formula (6.1),

v<P>“=<v<P>-w>ﬁ=(v<0>-w> “ W), @

w2

where O is any point fixed in S. Therefore v(P)Il = I(w) for all P € S.
Equivalently, the velocity of every point P € S has the same component along
w. Since I(w) is independent of P € S, it is called the vectorial invariant of
the rigid motion. We decompose the velocity of a point P € S as

v(P) = v(P)l +v(P)" = I(w) + [v(P) — I(w)]
I(w)+ [v(O)" = (P-0) Aw],

where we have used the Poisson formula (6.1). The first vector is parallel to
w and is independent of P. The vector in brackets is perpendicular to w and
depends on P. Since these two vectors are orthogonal,

[V(P)|I* = [[I(@)|I* + [[v(0)* — (P - 0) Aw]|*.
For a fixed t, we seek the set of all points P € S for which
v(O)r = (P-0)Aw =0. (7.2)

Equivalently, we look for the geometric locus £(t) of those points P € S whose
velocity, at time ¢, is parallel to w(t) and has least modulus. Indeed, a point
P fixed with S satisfies (7.2) if and only if

V(P Aw=0 and  [v(P)| = it V@ (73)
Let P and P’ be any two distinct points of £(¢). Writing (7.2) for each of

them and subtracting gives (P — P') Aw = 0. Therefore the locus £(t) is a line
parallel to w(t). Such a line is denoted by p(w) and is called instantaneous
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azis of motion, or axis of Mozzi [122]. If P, is a point in £(t), the parametric
equation of u(w) is P = P,+Aw for A € R. Therefore determining the equation
p(w) reduces to finding one of its points P,. For example, P, might be the
projection on p(w) of a point O € S. To identify such a projection, write (7.2)
for such a P, and form the exterior product by w to obtain

w A v(0)

(P, - O)|w|?* =wAV(0) = P,=0+ e

, w # 0.

Therefore the parametric equation of u(w) is [22, pages 92-120],

_ w Av(0)

A 0, AeR. 7.4
fr P @70 AC (74

The axis of motion p(w) is independent of the point O. That is, if (7.4) were
written with O replaced by any other point @ € S, it would describe the same
set of points £(t). Moreover, (7.4) is written in intrinsic vectorial form and as
such is independent of any reference system. Having identified it, one could
write it alternatively in the coordinates of X or S.

The velocity of every point P € u(w) is parallel to w. If P € S has zero
velocity, then P € pu(w). The vectorial invariant I(w) vanishes if and only if
all points of the axis of motion p(w) have instantaneous zero velocity. In a
precession of pole O, the axis of motion is a line through O and direction w;
moreover, I(w) = 0. In a translation, w = 0 and the axis of motion is not
defined. More generally, p(w) is not defined for those values of the parameter
t for which w(t) = 0.

8 Relative Rigid Motions and Coriolis’s Theorem

Let S be in rigid motion with respect to X with characteristics v(O) and w.
If P is a point moving with respect to .5,

P(t) — 0 = z;(t)w, (8.1)

the velocity and acceleration of P with respect to S are vg(P) = i;u; and
ag(P) = &;u,;. Regard now P and O as a pair of points moving with respect
to X. Taking the time derivative of (8.1) and using the differentiation formula
(5.3) for vectors fixed with S gives

P=0 + z;u; + zu, = Vs(P) + [V(O) +wA (P — O)] (8.2)

By the Poisson formula (6.1), the vector in brackets is the velocity of P as if
it were fixed with S and moving following the same rigid motion of S; it is
called the transport velocity of P and is denoted by

vr(P) =v(0)+wA (P —0). (8.3)
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Combining these remarks, one obtains the expression of the velocity v (P)
with respect to X in the form

vy (P) =vg(P) + vr(P). (8.4)
From (8.1) by double differentiation,
P =0 =i, + 20 + 2.
By the differentiation formula (5.3),

=wAP-0)+wA[wA(P-0).

Therefore the acceleration ax(P) of P with respect to X' is given by

ay(P)=a(0)+wA(P-0)+wA[wA(P-0]
+a5(P)+2w/\vS(P).

By the second Poisson formula (6.2) the sum of the first three terms on the
right-hand side is the acceleration of P as if it were fixed with S and moving
following the same rigid motion of S it is called the transport acceleration of
P, and it is denoted by

ar(P)=a(0)+wA(P-0)+wA[wA(P-0)]. (8.5)
The last term is the deflection, or Coriolis acceleration, denoted by

ac (P) =2wA Vs(P). (86)

Theorem 8.1 (Coriolis [34]). The acceleration ax(P) of P with respect to
XY is the sum of the relative acceleration ag(P) of P with respect to S, the
transport acceleration ar(P) of P, regarded as instantaneously fized with S,
and the deflection acceleration ac(P), i.e.,

ap(P) = as(P) +ar(P) +ac(P). (8.7)

9 Composing Rigid Motions
Let X, S, and S’ be triads in mutual rigid motion, i.e.,
2:{9;91,62763}, S:{O;u17u27u3}7 Sl:{ol;u/huIQ?ug}a

where S is in rigid motion with respect to X' with characteristics vz (O) and
w, and S’ is in rigid motion with respect to S with characteristics vg(O’)
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and w’. By (8.4), the velocity v (P) with respect to X of a point P € S’ is
the sum of vr(P) given by (8.3) and vg(P) given by

Vs(P) = Vs(O/) + W' A (P — O/)
Therefore
ve(P) =vs(0') + [vz(0) + w A (O = O)] + (w+w') A (P —=0).

The first term vg(O’) is the velocity of O’ relative to S, whereas the vector
in brackets is the transport velocity of O, regarded as instantaneously fixed
with S. By (8.2) the sum of these first two vectors on the right-hand side is
the velocity of O’ with respect to X'. Combining these remarks yields

ve(P) = vs(0) + (w+w) A (P=0) 9.1)

for all pairs of points P,O" € S’. The motion of S’ with respect to X' results
from the composition of the motion of S with respect to X' and the motion of
S’ with respect to S.

Proposition 9.1 The triad S’ moves with rigid motion with respect to X
with characteristics vy (0') and w + w'.

Proof. Write (9.1) in the form
P-0 =W+W)A(P-0.
Taking the scalar product of this by P — O’ gives
[P — O'|| = (const) p oy  for every pair of points P,0" € S".

Therefore the motion of S” with respect to X' is rigid and has characteristics
vy (0') and w* given by (5.2) with S replaced by S" and u; replaced by u’.
Since P — O’ is fixed with S’ by the differentiation formula (5.3),

W' — (w+ A (P-0)=0
for all pairs of points P,0’ € §’. Thus w* = w + w'. ]

Proposition 9.2 Let S, = X be a fized triad and let S;,i = 1,...,n, be
triads such that S; is in rigid motion with respect to S;—1 with characteristics
vs, ,(0;) and w,;. Then the motion of S, with respect to X is rigid with
characteristics vs(0,) and w = Z?:l w;.

Therefore the composition of finitely many rigid motions is a rigid motion.
Conversely, any rigid motion can be decomposed into one or several rigid
motions. The decomposition, however, in general is not unique.

The composition of n translations is a translation. The composition of
n precessions with the same pole is a precession with the same pole. If the
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precessions are uniform, the composite precession is uniform. The composition
of two precessions of poles O; and Oy and angular characteristics w; and wq
is a rigid motion of characteristics

VE(OQ):wl/\(OQ—Ol), w = wi + wa.

This is not a precession unless vy (Oz2) = 0.

As an example consider a horizontal platform rotating about a fixed axis
with angular velocity w = wug for a scalar w. A cylinder is installed on the
platform with axis directed as ug, and at a distance d > 0 from the axis of
motion of the platform. The cylinder rotates about its axis with angular ve-
locity w’ = w’us. Determine the characteristics of the composite rigid motion,
identifying the triads X, S, and S’. Write down the expression of the velocity
of the generic point P of the cylinder with respect to the fixed triad X

9.1 Connecting the Euler Angles and w

Let X' and S be two triads with the same origin {2 = O and assume that S
moves by a precession of pole O with respect to X, with angular characteris-
tic w. Let ¢, 1, and 6 be the instantaneous Euler angles relative to the two
triads. The nodal line has direction n and is the intersection of the planes
through the pole O and normals e3 and ug respectively. The precession of .S
can be regarded as the composition of three precessions with the same pole
O as follows:

(a) Precession about ez with angular velocity w; = ¢es;
(b) Precession about n with angular velocity wy = 6n;
(c) Precession about ug with angular velocity ws = ¢us.

The rigid motion of S with respect to X' is the precession of pole O and
angular characteristic ) )
w = ges + 6n + YPus. (9.2)
From the definition of the line of the nodes we obtain
n = cosyu; — sin Yus, n = cos pe; + sin pes. (9.3)
Moreover, from the transformation matrix from S to X, introduced in (4.1),
e3 = sin ¢ sin fuy + cos v sin fuy + cos fus.

Putting this in (9.2) gives the expression of w in the coordinates of the moving
triad S in terms of the Euler angles

w = (¢sinesind + 0 cos)uy

. . 9.4
+ (¢costpsind — fsin)ug + (¢ cosf + P)us. 64
The expression of w in the coordinates of the fixed triad X is
w = (¢ sinBsinp + 0 cos p)e
(¢ @ pler 95)

— (1) sinf cos p — Osinp)es + (1 cos b + @)es.
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10 Fixed and Moving Axodes

Equation (7.4) of the axis of motion is defined for a fixed value of the

parameter t. As ¢t ranges over its domain of definition, (7.4) may be regarded

as a map

w(t) Av(O(?))
[w (@)

of the pair of parameters (¢, ). With this interpretation, (10.1) defines a
surface, which we denote by G. Since for every ¢ fixed (10.1) represents a line,
such a surface is a ruled surface, called an azode. The equation (10.1) of the
axode is intrinsic, i.e., independent of any reference system. When written in
coordinates of X' it represents a surface fixed with X' called a fixed axode and
denoted by Gy. When it is written in the coordinates of S, it represents a

(t,\) — P(t;\) = O(t) + + Aw(t) (10.1)

Gs

Fig. 10.1.

surface fixed with S and moving with it, called a mowving arode and denoted
by Gg. The surfaces Gy and Gg are geometric representations of the positions
of the axis of motion p(w) along its motion relative to the triads X and S.
Therefore u(w) = Gz N Gg. A geometric point P € u(w) can be regarded as
the instantaneous position of a point moving on Gy. As such, it has velocity

vs(P) = time derivative of the right-hand side
237 ) of (10.1) written in the coordinates of X.

Similarly, the same point P € p(w) can also be regarded as the instantaneous
position of a point moving in Gg, and as such it has velocity

vs(P) = time derivative of the right-hand side
ST ) of (10.1) written in the coordinates of S.

Finally, the very same P € p(w), regarded as instantaneously fixed with S,
and thus instantaneously following the rigid motion of .S, has a velocity given
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by the vectorial invariant I(w). Thus the same geometric point P € p(w) can
be interpreted in three different ways as the instantaneous position of

t — Px(\;t), motion of P(\;-) on the surface Gyx;
t — Ps(A;t), motion of P();-) on the surface Gg;
t — P(t;\), motion of P(};-) transported by S.

Theorem 10.1. The two surfaces Gx and Gg are mutually tangent at points
P € p(w) such that ve(P) Aw # 0.

Proof. By definition of the axis of motion, the transport velocity of a point
P € p(w) is the vectorial invariant I(w). From (8.4),

vy(P) —vg(P) =vy(P) = I(w).

Since vy (P) is tangent to Gy at P and p(w) is entirely contained in oy, the
tangent plane to Gy at a point P € p(w) has normal vy (P) A w. Similarly,
vg(P) is tangent to Gg at P, and the tangent plane to Gg at such a point
has normal vg(P) A w. Taking the exterior product of the previous relation
by w yields

ve(P)ANw=vg(P) Aw.

Therefore at every point of the axis of motion for which vg(P) A w # 0, the
two surfaces Gy and Gg have the same tangent plane. [ |

The surface Gg is attached to S, and as such it shares the same rigid
motion of S. Moreover, for each value of the parameter ¢ it must be tangent
to Gy along the axis of rotation. Therefore Gg rolls over Gy and slides along
p(w). The sliding velocity is I(w). If the vectorial invariant is zero, then Gg
rolls without sliding over Gx;. The relevance of these ruled surfaces is in that a
rigid motion can be realized as the motion of rolling and sliding of a ruled sur-
face Gg over another ruled surface Gy along their common generators pu(w).
This correspondence between rigid motions and mutual rolling and sliding of
two ruled surfaces with the same generators is at the foundation of the theory
of mechanical gears. If w, although variable, has constant direction, then the
axodes Gg and Gy are both cylindrical surfaces.

Using (10.1), we write down the equations of these cylindrical surfaces and
examine the case that there is a point O € S such that v(O) Aw = 0.

10.1 Precessions: Fixed and Moving Cones

In a precession of pole O and characteristic w the axodes are cones with vertex
at O, called Poinsot cones [129]. If w, although variable, forms a constant angle
0 € (0, 5) with es, then Gy is a right circular cone. In general, however, Gs,
while a cone, need not be circular. If w has constant direction, one might take
e3 = w/|lwl||. Then the fixed axode G5 degenerates into an axis through the
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es3 €3 us

7/
7

Fig. 10.2.

pole of the precession and directed like w. In this case the precession is a
rotation. The moving axode Gg is a right circular cone, possibly degenerate.
For this it suffices to show that the angle 6 between es and uj is constant.
Since ug is fixed with S, by the differentiation formula (5.3),

d

5(63'u3) = —0sinf = e;- (wAuz)=0.

Let X, S1, S5 be triads with the same origin O. Assume that Sy precesses with
respect to S1 with characteristic wous. Assume, moreover, that S precesses
with respect to X with characteristic wyes. The composition is a precession
of pole O and characteristic w = wouz + wies. If w; and wo are constant,
then the ruled surfaces Gx and Gg, relative to the resulting precession are
both right circular cones. Indeed, the parallelogram of the two vectors woug
and wjes keeps a constant configuration along the rigid motion. Therefore its
diagonal that is directed as w forms a constant angle with the axes ez and us.

11 Plane Rigid Motions

Let X = {f2;e1,e9,e3} and S = {O;u1,uz,us} be two triads and denote by
7 the coordinate plane y3 = 0 in X and by p the coordinate plane 3 = 0in S.
If S moves with rigid motion with respect to X' in such a way that 7 = p at all
times, the rigid motion of S is said to be planar. In such a case e3 = us and the
trajectory of O is in =, i.e., (2 —0)-uz = 0. Since 13 = w Auz = é3 = 0,
the vector w is always parallel to us and the plane p slides over 7 in the sense
that the trajectory of every point in p is in 7. Let P € S and denote by P,
its projection on p. By the Poisson formula (6.1),

V(P)=v(O)+wA(P-0)=v(0)+wA (P,—0) =v(B,).

Therefore the velocity of any point P € S is uniquely determined by its
projection on p. In particular, v(P) is normal to w. In this sense the plane p
is called the representative plane of the rigid motion.
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11.1 Center of Instantaneous Rotation

The axis of motion is parallel to us at all times. Its trace C' on the
representative plane p is called the center of instantaneous rotation. By
equation (7.4) of the axis of motion such a trace may be realized, with no loss
of generality, for A\ = 0. Therefore

w Av(0)

C=0+ ,
[[wl|?

provided w # 0. (11.1)

Since the vectorial invariant I(w) is zero, the velocity v(C) of the center of
instantaneous rotation is identically zero. This permits an entirely geometrical
determination of C.

Fig. 11.1.

Theorem 11.1 (Chasles [27]). If w # 0, the center C' is on the normal line
to the trajectory of any point P of the representative plane p, drawn through P.

Proof. Write the Poisson formula (6.1) for O = C, and equation (11.1) with
O replaced by the generic point P. This gives

w Av(P)

v(P)=wA (P -0C), C=P+ e

|
Chasles’s theorem implies that C' is geometrically determined by the trajec-
tories of any two points P; and P of the representative plane p. The normal
lines to these trajectories drawn through P;(t) and Ps(t) intersect at C(t).
If w(t) = 0, the center of instantaneous rotation C(¢) is not defined. If w is
identically zero, the motion is a translation and the trajectories of any two

points are parallel lines. In such a case C' might be defined as the point at
infinity of the normal bundle of such parallel lines.
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Fig. 11.2.
11.2 Centrodes

The traces of Gy and Gg on the fixed plane 7 and the representative plane p
are two curves I and I, called centrodes. Since I(w) = 0, the moving cen-
trode I, rolls without slipping over the fixed centrode I';, and their tangency
point is the center of instantaneous rotation.

Problems and Complements

2c Areolar Velocity and Central Motions

2.1c Cycloidal Trajectories

A circle of center O and radius R rolls without slipping on a line, as in
Figure 2.1c. A point P of the rolling circle traces a curve called a cycloid.
Assume that P starts from the origin 2. Denote by C the contact point of
the rolling circle with the line and by ¢ the angle formed by OC and OP,

measured counterclockwise from OC. With this notation, PC= 2C = Ry,
and the parametric equations of the cycloid are

x1 = R(p —singp), x2 = R(1 — cosp),

and the corresponding Cartesian form is

x1 = Rarccos (R;z@) —1/2Rxy — 23

Compute t(p), n(p), and the curvature k().

2.2c The Brachistochrone and Tautochrone

Consider an arc of a cycloid, inverted and translated as in Figure 2.2c.
A point “falls” from A along a curve v4p of extremities A and B, subject
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only to gravity. The time it takes the point to reach B depends on the curve
vap- The problem of the brachistochrone is that of finding the curve yap
that minimizes this time. The arc of the cycloid through A and B, as in Fig-
ure 2.2c, is the curve of least time (§1.3c of the Complements of Chapter 9).
Points starting to “fall” from A, My, M, ... # B at the same instant all reach
B simultaneously. In this sense the brachistochrone is also the tautochrone
through A and B.

g

|
0 C 2R
Fig. 2.1c.
L2
A
Yo |- — — —

N M, I
| B |
| |
| My |
1 I xq
Ty To+2TR

Fig. 2.2c.

2.3c Hypocycloidal and Epicycloidal Trajectories

A circle of center O and radius p rolls without slipping in the interior of a fixed
circle of center {2 and radius R > p (left of Figure 2.3c). A point P of the
rolling circle traces a curve called a hypocycloid. If P starts from P, = (R, 0)

and ¢ = m, the parametric equations of the hypocycloid are

1= (R~ p)cos + peos —Lp,

R
29 = (R — p)sinp — psin p<p.

For R = 4p, the Cartesian form of the hypocycloid is the astroid

L L)
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A circle of center O and radius p rolls without slipping on the exterior of a
fixed circle of center {2 and radius R (right of Figure 2.3c). A point P of the
rolling circle traces a curve called an epicycloid. If P starts from P, = (R, 0)

and ¢ = PO/Q\O, the parametric equations of the epicycloid are

R
21 = (R+ p)cos — peos =Ly,

p
®.

R
29 = (R4 p)siny — psin i

) T © €r1

Fig. 2.3c.

2.4c Kepler’s Gravitational Laws

Planets move about the Sun by Kepler’s laws ([92,93]):

1. The orbits of the planets are ellipses and the Sun occupies one of its foci.

2. The vector radius from the Sun to one of the planets sweeps equal areas
in equal intervals of time (law of areas).

3. The square of the period of revolution of a planet is proportional to the
cube of the semimajor axis of the planet’s orbit (harmonic law).

It follows that the motion of the planets is central. Assume that a planet
revolves along an ellipse of semiaxes a > b. Denote by S the focus on the
semiaxis (0,a) and by ¢ the angle between the generic position P — S of
the planet and the positive direction of the major axis of the ellipse. Using
the second of the Binet formulas (2.5), prove that a = —aa?/b?p?u. By the
harmonic law, the proportionality factor aa?/b? is the same for all planets
(§4.1 and §5 of Chapter 3).

2.5c Apsidal Points

Given a central motion ¢ — P(t) of center O, decompose P and P in their
radial and transversal components as in (2.1). A point P,, on the trajectory
of P is an apsis if the radial velocity at P, is zero. If p(P,) # 0, an apsis
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is an extremal point for the function ¢ — p(¢). A maximum is an apocenter,
whereas a minimum is a pericenter. If P, is an apsis, the line trough the center
of motion O and P, is an apsidal azis and p, = | P, — O|| is an apsidal radius.
In a circular motion all points of the trajectory are apsidal, and there is only
one apsidal radius. Assume now that the acceleration a(p) is a known function

Fig. 2.4c.

of p, and is explicitly independent of ¢. An example is the gravitational motion
of a planet about the Sun. In such a case the apocenter and pericenter are
called aphelion and perihelion respectively. Then the motion is governed by
the system of differential equations

p—pd®=alp)-u,  2pp+pp=alp)-u, (2.1¢)

complemented by some initial data that we choose at an apsis P,. Denoting
by a, the area constant and using (2.3), such initial data take the form
QAo

p0) = o= 1P~ Ol 50) =0, $(0) =%, (2.2¢)
The system (2.1¢) does not change by changing ¢ into —t. Therefore the solu-

tion of (2.1¢)—(2.2¢) is symmetric with respect to the apsidal axis through P,.

Proposition 2.1c The trajectory of a central motion whose acceleration de-
pends only on p is symmetric with respect to any of its apsidal axes. Moreover,
there exist at most two apsidal radii.

Proof. Let P, be an apsis. If there are no other apsides, the statement is trivial.
This occurs, for example, if the trajectory is a parabola (85 of Chapter 3).

If P/ is the next apsis, its symmetric P! with respect the apsidal axis
through P, is also an apsis. By symmetry, |[P, — O| = ||P) — O||. The same
argument, starting from P/, shows that the apsis next to P, must have a
distance from O equal to ||P, — O||. Tteration of the same argument shows
that || P, — Ol and ||P., — O|| are the only possible apsidal radii. [ |

2.6c Elliptic Trajectories of Some Central Motions

If a point P moves with acceleration —k(P — O), for a given positive constant
k and a fixed point O, then its trajectory is an ellipse, possibly degenerate.
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The motion is central and thus planar. In a suitable coordinate system & =
—kx and § = —ky, from which

x = acos(wt + ¢) y = bsin(wt + ), where w? =k

for nonnegative constants a, b and real constants ¢, 1. Therefore
2 2

r +‘Z—2—2—sm(¢ p) = cos® (P — ).

8c Relative Rigid Motions and Coriolis’s Theorem

A point P moves with constant velocity v along a straight line ¢, which in
turn spins about one of its points O, on a horizontal plane, with constant
angular velocity wes. Take a fixed system with origin at O and coordinate
plane y3 = 0 coincident with the horizontal plane where ¢ spins. Choose a
moving triad S = {O;uy, us, uz} with us = e3 and u; as the unit direction of
£. Then S precesses with respect to X', with characteristic w = wes. Assume
that initially u; = e; and set v = ||v||. Then

(P —0)g = vtuy, (P — O)x = vt(coswte; + sinwtes).
From these and the formulas (8.5)—(8.7) of relative kinematics one computes

vs(P) = v(coswte; + sinwtes)

vr(P) = woutes A (coswte; + sinwtes)

= wut(—sinwte; + coswtesy),

= vg(P) + vp(P) = v(coswte; + sinwtes)
+ wot(—sinwte; + coswtey) = (P — O)’s,

ar(P)=wA(P-0)+wA[wA (P—-0)]

(.L)Q’Uteg A (e3 A 111) = —wzvtul

VZ(P

~—

= —w?vt(coswte; + sinwtey),
ac(P) = 2w A vg(P) = 2wves A uy = 2vwuy
= 2wvu(— sinwte; + coswtesy),
ax(P) = (—w?vt coswt — 2wvsinwt)e;
+ (—w?vt sin wt + 2wv coswt)es = (P — O)'s.

Making use of the expression of (P — O)y, the parametric equations of the
trajectory of P with respect to X are

{ Y1 = vt coswt

Yo = vtsinwt — yi+ys =p =it

Setting 6 = [|w||t, the polar form of the trajectory is p = (||v||/||w]|) #, which
is the Archimedean spiral.
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9c Composing Rigid Motions
9.1c Connecting the Euler Angles and w

A moving point in R? is represented by its Cartesian coordinates, as functions
of time, and the Cartesian components of its velocity are the derivatives of
such coordinates. The Cartesian representation (9.5) might suggest that w
might be represented in a similar way. The issue is then whether there exist
scalar functions f;(0,¢,v), i = 1,2, 3, of the Euler angles such that setting

w = fl(ea ®, Q/J)el + f2(07 2 ¢)92 + f3(07 2 w)ei’n
one might compute w = w, i.e.,

8fi9+8fi'+%¢, i=123.

From the first component of w given by (9.5), it follows that

%:sinﬁsingp —1:COS<p.
oY ’ 00
Take the #-derivative of the first and the -derivative of the second to get
O h = cosfsin O h =0
0900 LA 1

Therefore no such functions f; exist. The vector w is said to be a nonintegrable
combination of the rotation parameters, and the components of w in (9.5) are
called pseudocoordinates.

10c Fixed and Moving Axodes

10.1c Cone with Fixed Vertex and Rolling without Slipping

The vertex O of a right circular cone of height h, opening 2c, and radius R is
fixed on a vertical axis at distance 0 < d < v/ R2 + h? from a horizontal plane
7, whereas the base of the cone rolls without slipping on 7 as in Figure 10.1c,
with instantaneous contact point C'. Let {2 be the projection of O on m, and
denote by ¢ the angle between a fixed direction on 7 and C' — 2.

Identify the axodes and write down the expression of w in terms of .

Choose a fixed triad S with origin at the vertex of the cone and us di-
rected as @ — O, and denote by 6 the angle between (C — O) and —e3. The
instantaneous velocity of C' as transported by the rigid motion of S is zero.
Therefore C' is on the axis of instantaneous rotation. Since O is fixed, it also
is on such an axis. Thus the axodes are cones with vertex at O generated by



26 1 GEOMETRY OF MOTION

€,

Fig. 10.1c.

the lines through O and C'. For every value of d, the moving axode Gg is the
cone with vertex at O and aperture 2. The fixed axode Gy is the cone with
vertex at O and aperture 26. If d = 0, the axode Gy degenerates into the
plane 7 through 2 = O, and if d = vV R? + h?, it degenerates into the vertical
axis through O.

The vector w is directed as O — C, and by (6.1), Q@ = w A (Q — O).
The trajectory of @ is the circle of radius hsin (o 4 ) on the fixed plane
y3 = d — hcos(a + ), and its angular velocity is ¢es. Therefore

Q = @h sin (05 + 9)(— sin peq + cos (pe2)
= ||w||sign{p}h sin a— sin pe; + cos pesq),
[w]| = |¢[(cos O + sin b cot ).
From these,

w = —||w|| sign{¢} [sin @(cos pe; + sin pez) — cos feg]
= —(sin @ + cos d cot «) [sin O(cos pe; + sin pez) — cos feg] .

If d =0, then 0 = %7‘( and w = —gb'g:gl. If d = VR2 + h2, then § = 0 and
w = Y cotaes.

10.2¢ Cylinder Rolling without Slipping

Consider the rigid motion of characteristics v(O) = ve; and w = (v/p)es,
where v and p are given positive constants. If initially O = (0,0, p), one has
O(t) = (vt,0,p). From (7.4), or equivalently (10.1), written in X, a point P
on the axis of motion has coordinates

(BN =vt, ya(t\) = Ag, ys(t; A) = 0.
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€3
w
0=0 e
P
€1
C
Fig. 10.2c.

Therefore u(w) is represented in X as the line through (vt,0,0), in the plane
ys = 0, and parallel to the coordinate axis y». The fixed axode Gy is the
plane y3 = 0 regarded as the union of lines parallel to es. The moving triad
is taken with origin at O and

. v
uz = e, u3 =sinwte; +coswtes, u; =uz Auz, w=—

Expressing (7.4), or equivalently (10.1), in S gives
P(t; \) = p(ea Aey) + lwey = psinwtuy + \wuy — p coswtus.

The axis p(w) is parallel to uz and goes through p(sinwt, 0, — coswt). There-
fore the moving axode Gg is the cylinder 2% + 2% = p*. For P € p(w),

vs(P) = v(coswtuy + sinwtus) = vey.

Therefore the vectorial invariant I(w) is zeroand the cylinder z3 + 23 = p?
rolls without sliding on the plane y3 = 0.

11c Plane Rigid Motions

11.1c Parametric Equations of Fixed and Moving Centrodes

The triad S = {O;uy,ug, us} moves with plane rigid motion with respect to
X = {Q;el,e;,eg} with es = uz. Denote by 6 the angle between e; and uy
and set w = fes. Then

u; = cosfe; + sinfe,, e, = cosfu; — sinfuo,

u; = —sinfe; + cosfes, ey = sin fu; + cos fus.
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Denote by
O =yo1€1+ Yoz2e2, V(0)=yo1€1~+ Yo2€2,
the positions and velocity of O in X. Writing (11.1) in X' yields
1, . .
C = (Yo,1,Yo0,2) + 5(—3/0,27%,1)- (11.1c)
These are the time-parametric equations of the fixed centrode I';. If the tra-

jectory of O is known in terms of 6, i.e., 8 — (1,1(0),70,2(9)), then

1d

éamwmmm:%wmwm@>

Substituting these in (11.1¢) gives the equations of I'; in terms of 6:

m1.(0) = 16,1(0) — 15, 2(6),

(11.2¢)
72(0) = 10,2(8) + 77(/),1(9)'
For the equation of the moving centrode I, compute
0= Yo,1(cosBuy — sinfuz) + 9o 2(sin fu; + cosbuy).
Writing (11.1) in S and taking into account that O = 0 in S, one gets
C = %(y’o,l sin @ — g2 cosf)uy + %(yo,l cos 8 + y,,28in0)us. (11.3¢)

These are the time-parametric equations of the moving centrode. If the trajec-
tory of the origin of S is known as a function of the parameter 6, one obtains
from (11.3c) the parametric equations of I}, in terms of 6 only:

&1(0) = Sin9?7£,1(9) - 6089?72,2(9),
§2(0) = cos 01, 1 (0) + sin 17, (0).

Thus if the trajectory of O is known in X' as a function of 6, then fixed and
moving centrodes can be regarded as geometric curves independent of motion.

(11.4c)
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11.2c Centrodes for Hypocycloidal Motions

A right circular cylinder of center O and radius p rolls without slipping in the
cavity of a right circular cylinder of center {2 and radius R > 2p. A normal
cross section is as in Figure 11.1c. Denote by P a point fixed on the moving
circle, by P, a point fixed on the fixed circle, and by C the contact point
between the two circles. Set also ¢ = m and § = COP. Find a relation
between ¢ and 6 and write down the parametric equations of fixed and moving
centrodes in terms of ¢ and in terms of §. Compute the acceleration of P.

For a hypocycloidal motion, compute geometrically and analytically fixed
and moving centrodes.

11.3c The Cardano Device

A rigid rod of length 2p moves with its extremities A and B constrained on
the axes of a Cartesian system with origin in {2, as in Figure 11.2c. Compute
fixed and moving centrodes, geometrically and analytically.

The trajectories of A and B are the coordinate axes yo = 0 and y; = 0.
Therefore by Chasles’s theorem, the center C is at the intersections of the
normals to the coordinate axes through A and B. The angle ACB is a right
angle and the triangle ABC' can be inscribed in a semicircumference of radius
p. It follows that the moving centrode is the circle of diameter AB. Moreover,
the distance 2C equals 2p for all positions of C. Thus the fixed centrode is
the circle centered at (2 and radius 2p.

Introduce fixed and moving triads X' and S as in Figure 11.2c. Then

No,1 = 2psinb, No,2 = 0.
Therefore from (11.2¢), the parametric equations of I'; in terms of 6 are

m = 2psind, 12 = 2pcosf.
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From (11.4c) one obtains the parametric equations of the moving centrode I,
in terms of 6,
& = 2psinf cos b, & =2pcos® ),
whose Cartesian form is
&+ (& —p)?=r
By construction, the circle of radius p, fixed with S, rolls without slipping in

the interior of the fixed circle centered at (2 and of radius 2p. Therefore the
Cardano device generates and is generated by a hypocycloidal motion.

Y2
x2 T
KT - N.C
-7
P I
P | 0

|

Q A=0 u,
Fig. 11.2c.

Theorem 11.1c (Cardano [18,19]). Every point of the moving centrode
traces a diameter of the fixed centrode.

Proof. The velocity of a point P on the moving centrode is by Chasles’s
theorem normal to P — C'. Since the triangle 2PC is inscribed in a semicir-
cle, the direction of the velocity of P goes through (2 at all times. Thus
the trajectory of P is a curve whose tangent at each of its points goes
through f2. [ ]

11.4c More on the Cardano Device

Every hypocycloidal motion can be realized as the motion of a rigid rod with
extremities constrained on two intersecting, not necessarily orthogonal, guides.
As an example consider a rigid rod of length 2p moving with its extremities A
and B constrained on two axes forming an angle o € (0, 17]. Prove, geomet-
rically and analytically, that (a) the moving centrode is the circle through (2,
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A, and B, and radius ¢/2sin«; (b) the fixed centrode is the circle of center (2

and radius £/ sinq; (c) every point of the moving centrode traces a diameter

of the fixed centrode (see also §3.4.1c of the Complements of Chapter 5).
For the Cardano device (a = %w) prove that every point of the rod traces

an ellipse, possibly degenerate. Prove that the same conclusion holds for a €
(0, 57)-
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CONSTRAINTS AND LAGRANGIAN
COORDINATES

1 Constrained Trajectories

Constraints are limitations imposed on the geometrical or kinematic
configuration of a mechanical system. For example, in a rigid motion any
two points are required to be at constant mutual distance. This is a rigidity
constraint. A system with one of its points constrained on a surface is an
example of a constrained mechanical system. Assume that a point P moves,
being constrained to a surface S C R3. Such a surface can be represented,
at least locally, as the level set of a regular function f defined in a domain
G C R?, ie.,

S={P|[f(P)=0] and |[Vf(P)| >0}, PeG. (1.1)

By the implicit function theorem, one of the coordinates, say for example x3,

Fig. 1.1.

may be represented explicitly in terms of the remaining two. This provides a
local parameterization of S in terms of (x1,x2). Such a parameterization is
not unique. Indeed, choosing any pair of parameters ¢ = (¢1,¢2), the surface
S can be represented, at least locally, by

xr1 = 961(%7(12)7
S =1z =2x2(q1,q2), provided  det (g((xl—wz))) #0.
T3 = T3 (Il(Q)a@(Q))’ e

E. DiBenedetto, Classical Mechanics: Theory and Mathematical Modeling, 33
Cornerstones, DOI 10.1007/978-0-8176-4648-6 _2,
(© Springer Science+Business Media, LLC 2011
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If P moves on &, the Cartesian representation of its motion is determined by
the function of time ¢ — ¢(t) = (q1(¢), g2(t)), through the composition

P(q) = (21(q), 2(q), z3(q)).

Conversely, the Cartesian representation ¢ — P(t) of the motion of P permits
one, by inversion, to determine ¢ — ¢(t). The velocity of P is given by

The parameters ¢ = (q1,q2) are the Lagrangian coordinates, whereas ¢ =
(G1, ¢2) are the Lagrangian velocities of P [101]. The system has two degrees
of freedom. Assume now that P is constrained on a regular curve v C R3.

Fig. 1.2.

Such a curve can be represented, at least locally, as the intersection of the
level sets of two smooth functions f; and f» defined in a domain G C R3, i.e.,

Pl[fi(P)=0]N[f2(P)=0
' { | [(vliﬁ,)wz)] of[rzu(ak)Q ]}» PedG. (1.2)

Then, at least locally, two of the coordinate variables, say for example xs
and x3, can be represented explicitly in terms of x;7. This provides a local
parametric representation of y in terms of the parameter x1. At times it might
be more convenient to introduce directly a parameter g and parameterize
as ¢ — P(q). Such a parameterization can be recast, at least locally, in terms
of z1, or any other parameter, provided ||P’(g)|| > 0, which we assume. The
geometric trajectory of P is -y, and the motion is determined by the function
of time t — ¢(t). The velocity is P = (dP/dq)g. The parameter ¢ is the
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Lagrangian coordinate of P, whereas ¢ is its Lagrangian velocity. A moving
point P constrained on v has one degree of freedom.

The choice of the Lagrangian coordinates is not unique. In the applica-
tions it often occurs that one may introduce them directly, as suggested by
the mechanical problem at hand, with no reference to the Cartesian repre-
sentations of the constraints. The constraints in (1.1)—(1.2) are independent
of time and are called fized or workless. It is conceivable that P might move
on a surface, or a curve, itself depending on time. As an example consider a
point P moving in a horizontal plane x3 = 0 and constrained by

1 sinwt — x9 coswt = 0, w € R.

This is a time-dependent restriction on the configurations of P. For a fixed ¢,
the constraint is a straight line. As ¢ changes, the constraint contributes to the
determination of the geometric trajectory and the time-law of motion. Taking
q = ||P — O] as Lagrangian coordinate, we have

P(g;t) = (g coswt, gsinwt).
Therefore the position of P depends on ¢, and explicitly also on time. By
differentiation,

ot

The first of these vectors is the velocity of P on the constraint as if the
constraint were independent of time. The second is the transport velocity due
to the movement of the constraint. Constraints of this kind are mowving.

2 Constrained Mechanical Systems

Consider n points Py = (z¢1,%¢,2,Te,3), £ = 1,...,n, subject to m constraints
fJ(P177Pn7t):Ov .]:177m7 (21)

where f; are m smooth functions of their arguments. They are defined in
G x I, where G is an open subset of R3” and I is an interval of R. We assume
that

S(t) =

j
and that for all P € S(t), the Jacobian matrix

<8fj(P;t) afi(Pit) 3fj(P;t)) (2.2)

8:&3)1 (Q).CL'@)Q (9;6573

[fj( t)=0]#0 forall tel

13

has maximum rank for all ¢ € I. For example, if m < 3n, such a matrix has
rank m and the system has 3n — m degrees of freedom. This defines, at least
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locally, a (3n — m)-dimensional moving manifold S(¢). Such a manifold can
be parameterized, for all ¢ € I, in terms of 3n — m Lagrangian coordinates
g ER™ e,

or,

S(t) > Pp = Py(g;t) rank of ( 94

) =3n—m Vtel.
If the points P, move on their constraints, their motion is determined by the
3n — m functions ¢t — ¢(t). Their velocity is

The first is the instantaneous velocity of P, as moving on S(t), as if this
surface were instantaneously fixed. The second is the velocity of transport of
the constraint S(t). The constraints in (2.1) are in general moving constraints.
If they do not depend on time, they are fixed, or workless. In such a case &
and its parameterization, in terms of Lagrangian coordinates, are independent
of t. The points P, = Py(q) are represented only in terms of ¢ and have no
explicit dependence on time. Therefore
oF, oF, .

5 = 0 and P = a—qhqh (fixed constraints).

2.1 Actual and Virtual Displacements
An elemental displacement of the n points P,
(Pl,...,Pn;t) — (P1 —|—dP1,,Pn—|—dPn,t—|—dt),

is said to be actual or admissible if it is compatible with the constraints in
(2.1) along their time evolutions, i.e.,

fJ(P177PTL7t>:07 .
j=1...,m.
fj(Pl—FdPl,,Pn+dpn,t—|—dt):0,
From these we obtain
_0f; ofj .. _ L
df]_andP£+ 9 dt =0, ji=1,...,m. (2.3)

An elemental displacement of the n points P, of the form
(Pl,...,Pn;t> — (Pl +6Py,..., P, +5Pn;t>

is said to be wvirtual if it is compatible with the constraints (2.1) regarded as
fixed at time t, i.e.,

f](P177Pn7t):Oa .
_0 j=1...,m.

fJ(Pl—F(SPl,,Pn—F(SPn,t)
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These imply
5
0P,

where the symbol § denotes an elemental virtual differential. If the constraints
in (2.1) are fixed, then virtual and actual displacements coincide.

'5Pz:szfj'5Pg:0, j=1...,m, (2.4)

2.2 Holonomic Constraints

A constraint, fixed or moving, is holonomic if it imposes restrictions only on
the geometrical configuration of the points P, and imposes no restriction
on their time variations Py, P, etc. The constraints in (2.1) are holonomic.
Consider two configurations & = (Py,..., Py;t) and & = (P/,...,P;t') of
the n points Pp. These are compatible with the constraints (2.1) if they both
satisfy the equations of the constraints. However, no restriction is placed on
the displacements of the system needed to move £ into £’. For this reason,
constraints of the type of (2.1), moving or fixed, are called also configura-
tional constraints. A constraint that would impose restrictions on how & has
to move into &’ is not holonomic. For example, a constraint that would im-
pose restrictions of the curvature of the trajectories of the points P, is not
holonomic.

2.3 Unilateral Constraints

A point P = (1,22, x3) subject to the limitation 23 > 27 + 3 is constrained
to move within a paraboloid, possibly up to its boundary. Similarly, the con-
straint | P|| < 1 forces P to move within the unit ball about the origin of R,
possibly up to its boundary.

Let f € CYG) be such that |[Vf|| > 0 in G. A point P is said to be
subject to a wunilateral constraint if it is required to satisfy f(P) < 0. If P
is in the open set [f < 0], its elemental displacements 6P, starting at P,
are unrestricted. Suppose now that P € [f = 0] and undergoes an elemental
displacement § P, starting from this configuration. Since V f(P) points outside
the set [f < 0], the displacement P will be compatible with the constraint
only if the angle between V f and §P is right or obtuse. Therefore elemental
displacements §P from boundary configurations P € [f = 0] are admissible
only if Vf(P)-dP < 0. It follows that elemental displacements of a point P
subject to a unilateral constraint are, in general, not reversible.

A system of n points P, is subject to a unilateral constraint if

(Pi,...,P.} € fjl [f;<0], feCHGxI).

It is assumed that such an intersection is not empty and that (2.2) is in force.
If a point P, is in the interior of its constraint then its elemental displacements
0P, are unrestricted. If P, belongs to one of the surfaces [f; = 0], its virtual
displacements 6 P, must satisfy V f; - 6P, < 0.
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3 Intrinsic Metrics and First Fundamental Form

A surface S C R? is the image of a smooth vector-valued function
G 3 (u,v) — P(u,v) = (21(u,v), z2(u, v), z3(u, v)),

defined in a connected open set G C R?, such that the matrix

or O, Oy Oy
ou ou Ou Ou
or Oy Oy O
ov ov Ov Ov

has maximum rank. Set

oP oP 0P 3. [ Ox;
A= (8_u) ou ou 1; ( ) ’
3P oP Z Ox; 0x;
T ou (% = Ou ov’

_[(aP\* oP 3Pf§: dz\?
“\ow/)  ow v FZ\ow)’
and consider the quadratic form

(en) (g g) (f}) — A€+ 2BEy + O

) (3.1)
= 7 [(A&+ Bn)® + (AC = B*)n?]

where (£,7) € R? is arbitrary. By the Cauchy inequality, AC — B2 > 0.
Therefore the quadratic form in (3.1) is positive definite. It is called the first
fundamental form of the surface S. An elemental variation (du,dv) of the
parameters (u, v) induces an infinitesimal variation dP on S, whose modulus is

(ds)? = dP-dP = (g—Pd + Z—Pdv)

= A(du)? + 2Bdudv + C(dv)?.

(3.2)

This is the intrinsic metric on S. It is intrinsic, since it depends only on
the geometry of S, and it is independent of its parameterization (see §3c
of the Complements). To a regular curve v C G, parameterized by ¢, there
corresponds a curve I, C S by the correspondence

y={t— (u(t),v(t)} <= Iy={t—P(ul),v)}. (3.3)
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If the elemental variation (du, dv) occurs along v, (3.2) gives an elemental arc
length on the corresponding I7,. If v is parameterized by v or respectively by
u, the elemental arc length of I is computed from (3.2) as

Zg

zy

Fig. 3.1.

ds = \/A(du)? + 2Bdudv + C(dv)?
du\? du
dv dv\ 2

4 Geodesics

Consider now those curves in G for which one of the two parameters is fixed:

Yu = {u — (u,v,), vo =const} <= Iy, ={u— P(u,v,)},
Yo = {v = (Uo,v), up =const} <<= I, ={v— P(uev)}.

The vector OP/du is tangent to I, and dP/Jv is tangent to I,. These two
vectors are linearly independent, since the matrix (0P/du, dP/0v) has maxi-
mum rank. They permit one to compute the elemental area do on S and its
normal unit vector v by the formulas

8P/\8P

_|or  oF _ _Ou' dv
da—Hau/\av du dv, V= 8_P/\8_P
ou  Ov

A curve Iy C S is a geodesic if its normal n is parallel to v at any of its
points, i.e., if n A v = 0. This occurs if

oP oP
n-— =0 and n =

au e v
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If Iy is parameterized as in (3.3), set
A = AW® + 2Biv + Cv* = §2.

Then the unit tangent t and the unit normal n to I’y are

t—i 8_P+8_P n—i L 8_P'+8P dt
“VA\a " Tawt) T a va\edt T o) s

Imposing now that n be normal to P/0u and discarding the factor dt/ds

gives
y_oPd [ (o, 0P,
dudt | VA\au" " o’

_ AL (0PN, 0POP.\ 1 (0P, 0P\ dOP
~dt [vVA \ou Ou v VA \ Ou v ) dt du
A1 o gl 1 (OPOP ., PO

L (oP &P . 0P PP,
A\ Ou udv"" " By dudw
d 3 1 3A oB .. 0C ,
d 8
dt@u\/___\/_

Proposition 4.1 A curve I, C S parameterized as in (3.3) is a geodesic
if and only if the functions t — u(t),v(t) are solutions of the system of second-
order differential equations

- = 0, - = =0. 4.1
dt 6u\/_ \/_ dt ov \/_ \/_ (41)
These may be rewritten in terms of u or v taken as local parameters. For
example, taking u as local parameter, one may express locally v = v(u) as a
function of u. Then the second equality of (4.1) takes the form

d o B
d—u%m_%m:o. (4.2)

Remark 4.1 The same equations arise by regarding the geodesics as the
curves of least path on & between any two of its points (§1.4c of Chapter 9).
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5 Examples of Geodesics

5.1 Geodesics in a Plane

Let S be the plane of equation a;z; = b. Assuming as # 0, we may take
u = x1 and v = x2 and compute

a% + a% aias a% + a%
A= —, B=—", C = 5
a a a
3 3 3

In view of (4.2), the problem reduces to solving
d Cv' +B B
du /A +2Bv + Cv'?

which implies v”" = 0. Therefore the geodesics in a plane are line segments.

)

5.2 Geodesics on a Sphere

From the parameterization of the sphere of radius R in terms of polar coor-
dinates, we have

A=R?sin®v, B=0, C=R?% A= R?(sin®v+07?).
Therefore, by (4.2), the geodesics v = v(u) on a sphere are solutions of

d v’ sinwv coswv

du \/sin2v+v’2 \/sin2v+v’2
Multiplying by v" and performing elementary manipulations yields
d 12
— v——\/sin2v+v’2 =0.
du \ \/sin? v + v2

It follows that for a constant ¢ € (0, 1),

dv 1 dv
u(v) =c = — = [ =3
Vsin® v — ¢2sin® v sin ’U,/(#) _cotu
C
c _

= —arcsin | ———=cotv | +¢.
(\/1—62 )

This finally implies

c
sin¢)Rsinvcosu — (cos¢)Rsinvsinu = ——=~R cosv.
bine) (cos) e

Therefore the geodesics are the intersection of the sphere with the planes

through the origin,

c

—23.

V1-—1¢c2

The meridians on a sphere are geodesics, whereas none of the parallels, except

the equator, is a geodesic.

(sin¢)xy — (cosé)xg =
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5.3 Geodesics on Surfaces of Revolution

If S is a surface of revolution, after a possible rotation and relabeling of the
coordinate axes, it can be parameterized as

x1 =ucosv, 3 =usinv, xz3= f(u). (5.1)

Here f is a smooth function of the variable u, and S is interpreted as a surface
obtained by rotating the graph of x3 = f(z1) about the x3 axis. From such a

T3

pa)

Fig. 5.1.

parametric representation, we compute
A=1+f2w), B=0, C=u’  A=1+f%u)+u’"™

If Iy C S is a geodesic parameterized by u, then by (4.2),

UQU

d
/2 29012 — =0
\/ +f —|—’LL du \/1_|_f/2 —|—U2 2

du o'
Therefore, for a constant ¢ € R and u > ¢,

1+ f(u)

utv? =2 [1 + f’2( )+ uzv/Q] = v = +¢ .
uvuZ — c2

From these one finds the implicit equation of the geodesics in the form

_i/W

v — v,

Recalling the geometric meaning of A, we obtain

du 1
ds \/1_|_f‘/2 —|—U2 2’
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where ds is the elemental arc length on the geodesic. With this symbolism,
the previous differential equations of a geodesic can be rewritten in the form

d [ 5dv dv 1+ f2(u) du
L (22 = Wy T 2
ds <u ds) 0, ds ¢ uvu? — 2 ds (5-2)

If ¢ = 0, then dv/ds = 0 and therefore the curves v = const are geodesics.
These are the meridians traced on §. The parallels, i.e., the curves u = const
on S, in general are not geodesics. From (5.2) it follows that for a parallel to
be a geodesic, we must have dv/ds = const # 0, and moreover,

Cd_u_:t uvu? — 2 d_v
ds 1+ f2(u) ds’

Geometrically, a parallel P C S is a geodesic if S is tangent along P to a right
circular cylinder with vertical axis. Thus for a sphere, only the equatorial
parallel is a geodesic. For a cylinder the geodesics are curves normal to a
generator at each of their points.

e, f?(u)=occ.

Problems and Complements

1c Constrained Trajectories

A class of Lagrangian coordinates arises by a change of variables in R? as
indicated by the following examples.

1.1c Elliptic Coordinates
Let £ be a fixed positive parameter and define

x1 = fsinhucospsingd, ueRT,
xo = £sinhusinpsind, ¢ € 0,27), (1.1c)
xg = £coshucosb, 6 € [0,7].

From these we obtain

x%—i—x% x§ —1 x% x%—l—x%_l
. - .
2sinh®u (2 cosh®u

2cos20  (2sin%0

Therefore the surfaces u = const > 0 are ellipsoids of revolution about the
ro-axis. The semiaxes are a1 = ag = £sinhu and a3 = £ coshu. The surfaces
6 = const are hyperboloids of two sheets. They are of revolution about the
x3-axis. Determine the “coordinate planes” ¢ = const.
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The velocity of a moving point P expressed in elliptic coordinates is

) u cosh u cos psin @ — ¢ sinh u sin ¢ sin 6 + ésinhucosgocos&
P =/ 4coshusingsinf + ¢ sinhu cos psin @ + @ sinh usin pcos @ | ,
@ sinh u cos @ — 6 cosh usin 6

and its modulus squared is
|P||? = ¢%(4? + 6%) (sinh® u + sin® ) + 2¢%¢? sinh® u sin? 6.

If w = const > 0, one obtains from these the expressions of the velocity and
its modulus for a point constrained on an ellipsoid of revolution about the
r3-axis. Set

A(u, 8) = sinh® u + sin” 0

and compute from (1.1c)

coshu cos psin sinh u cos ¢ cos 0

p= ORLCRSND g, = SIROENT
s 0 A(u, 0) : 0 A(u, 0)
- coshu sin ¢ sin 6 0. — sinh u sin ¢ cos 6
2 L A(,0) 2 L A(,0)
sinh u cos 6 p — coshusin @
Urs = 7 o\ s T3 T T a7 N
P LA, 0) ? £ A(u, 0)
_ —sinp - Cos ¢ -0
¥21 = Usinhusing’ P22 = Ysinhusing’ Yoz = U

From these, the Jacobian of the transformation from Cartesian coordinates
into elliptic coordinates is

Jart—ell = 3 A(u, 0) sinh u sin 0.
Let  — f(x) be a smooth function in a domain G' C R®. Set
F(u,¢,0) = f(¢sinhucos psin, £ sinhusinpsin 6, £ coshu cos )
and verify that

F2 F? F?2
vz 2 — u 0 ® .
1V £l 2 A(u,0) * 2 A(u,0) N 2 sinh? u sin® A

1.2c¢ Parabolic Coordinates

Set
1 = Vuvcosp, u,v >0,
xo = Vuvsing, @ € [0,27), (1.2¢)
u—v
T3 =

2
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For u > 0 fixed, compute v from the first two equalities and put it in the last

to get
uc = [ 5 9
r3 = R r=4/x7] + 5.
3 2 1 2

For u = const > 0 these are paraboloids with vertex at (0,0, %u) Analogously,
keeping v constant, a similar calculation gives the paraboloids

r2 _ g2

v
Therefore the generalized coordinate surfaces u = const or v = const are
paraboloids. For this reason the variables (u,v, ) are called parabolic coordi-
nates. Describe the surfaces ¢ = const.

The velocity of a point P in terms of parabolic coordinates is

1 1
=1 g cosp + =V ¢ Cos Y — Y/ uvsin g
2 U 2 v

- 1 1
P=1 24 Esinngr—i; Esin<p+<,27\/uvcosgp )
2 U 2 v
1

S —2)

T3 = v > 0.

and its modulus squared is

R w4+ v (02 2
1P| = (

1 o + —) + Q*uv.

v
From the first two equalities of (1.2c) we have uv = r2. From this and the
third equality of (1.2¢),

2x; 2x; .
Ug; = - ) Vg, = : ) 221727
U+ v u—+v
2u —2v
Ugo = Ve =
S u+tv’ P ou+’
_ X2 2 1 2
Ppy = ——5 COS” P, Py, = — COS” .
Ty I

From these the Jacobian of the transformation from Cartesian coordinates to
parabolic coordinates is

JCart—)parab = i(u + U>.
Let x — f(x) be a smooth function in a domain G C R3. Set

F(u,v,¢) = f(v/uvcos p, Vuvsin g, suv)
and verify that

4 1
2 2 2 2
Ve = —(F°u+ F + —F=.
IVa £l u—l—v( “ ”v) uv ¥
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1.3c Spherical Coordinates
Compute the velocity of a point P € R? in terms of spherical coordinates

x1 = pcospsinf, p>0,
xo = psinpsind, ¢ € [0,2n), (1.3¢)
x3 = pcosb, 0 € [0,7].

Verify that

pcos psin @ — ¢psin @ sin @ + 0p cos ¢ cos O
P = | psingsin® + ¢pcospsinb + Gpsin ¢ cos
pcosf — Opsin 6

and . .
|P||? = p* + @?p? sin 0 + 62 p?.

Compute the expressions of the velocity of a point constrained to move in the
cavity of a sphere (spherical pendulum).

1.4c Cylindrical Coordinates

Compute the velocity of a moving point P € R? in terms of cylindrical coor-
dinates
1 =rcosp, >0,
xe =rsing, ¢ € [0,2m), (1.4c)
T3 = 23, y3 € R.

Verify that
. 7 COS @ — prsinp .
P=| rsinp+¢rcosep |, | P||? = 7% 4+ ¢*r? + 23.

T3

Compute the expression of the velocity of a point moving on a right circular
cylinder with vertical axis.

2c Constrained Mechanical Systems

2.1c Holonomic and Nonholonomic Constraints

Let a mechanical system be described by N independent Lagrangian param-
eters ¢ = (q1,...,qn). A holonomic constraint on the system is of the form
f(g;t) = const, or by taking derivatives in ¢,

fanGn + fr =0 along the motion.
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On the other hand, a constraint of the type
An(g; t)gn + Ao(g;t) =0

is in general not holonomic, since it imposes limitations on the Lagrangian
configurations ¢ and the Lagrangian velocities ¢. However, if there exists a
smooth function f(g;t) such that

An(gst) = fa(@st), i=1,...,N, A(q:t) = fe(q:t),

then such a constraint can be rewritten as f(g;t) = 0 or f(g;t) = const and is
therefore holonomic. As an example consider a point P constrained by P =nu,
where u is a fixed vector. Such a constraint is holonomic, since it requires only
that the trajectory be a straight line.

The constraint || P|| = ¢, where ¢ is a given positive constant, restricts the
modulus of the velocity, and it cannot be reduced to a holonomic constraint by
integration. Notice that, in contrast to the previous example, such a constraint
does not restrict the configurations of P. In particular, P might go from P;
to P, along an arbitrary path, provided the motion occurs at constant speed.

€2
0 O
R
Y1
Q €1 c
Fig. 2.1c.

2.2c Disk Rolling without Slipping on a Line

A disk of center O and radius R is constrained to move on a linear horizontal
guide while remaining in a fixed vertical plane, as in Figure 2.1c. The system
has two degrees of freedom, and we may choose as Lagrangian coordinates the
angle ¢ between C'— O and a fixed radius. Requiring that the disk roll without
slipping means to impose on the contact point C', regarded as part of the rigid
motion of the disk, to have zero velocity,

C=0-¢esA(C—0)=0.
This can be written in the form ¢; — Ry = 0, which is equivalent to
y1 — Ry = const.

Therefore for a disk on a guide, the constraint of “rolling without slipping” is
holonomic. Assume that the disk moves on a parabola, an ellipse, or a cycloid,
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remaining on a fixed vertical plane. Write down the analytical expression of
the constraint “rolling without slipping” and conclude that in all cases, the
constraint is holonomic.

2.3c Sphere Rolling without Slipping in a Plane

A sphere of center O and radius R is required to roll without slipping in
a horizontal plane, as in Figure 2.2c. As Lagrangian coordinates take the
Cartesian coordinates y;,y2 of the center O and the Euler angles o, 1,0,
formed by a moving triad S with origin O and fixed with the sphere, with a
fixed triad Y. The constraint of “rolling without slipping” translates into

C’:yle1+ygez+w/\(0—0)20.

Using the expression of the vector w in terms of the Euler angles (formula

Y3

Y2

N

Fig. 2.2c.

Y1

(9.5) of Chapter 1), this can be rewritten as
U1+ R(¢sinfcosp — fsing) =0,
2 + R(¢psinfsin g + 0 cos @) = 0.
Such a constraint cannot be integrated, that is, cannot be expressed as
f(yhyg, 0,p,; t) = const
for some smooth function f. If such an f were to exist, it would have to satisfy
Foniin + fyaz + fob + fop o+ futh + fr = 0. (+)
Put into this the previous expressions of ; and g2 to get

—fle(Q/.) sin @ cos ¢ — O sin ) — fy2R(1/') sin @ sin ¢ + 6 cos p)
+ fob + fop + fuh + fo = 0.
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Taking the derivative with respect to ¢ gives 9f/0¢p = 0. Therefore f is
independent of . Taking now the derivative with respect to ¢, and keeping
in mind that f is independent of ¢, yields

Sin0(f,, sin g — f, o5 Q)+ (fy 08 + f, sin )6 = 0.

Since the displacements df and dp are arbitrary, this generates the algebraic
homogeneous linear system

fyl Sin(p— fy2 COS Y = O,
Sy cos + fy, sinp =0,

in the unknowns f,,. The system admits only the trivial solution f,, = 0,
1 =1, 2. Therefore f is independent of y; and y,. The independence of ¢, y1, Y2
permits one to rewrite (*) as

fob + fy + fr = 0.

Taking now the derivative with respect to 9 gives fo = 0, and analogously
we also have fy, = 0. Therefore f is independent of § and . Finally, it
is also independent of ¢. The contradiction implies that no such f exists.
Therefore for a sphere moving in a plane, the constraint of “rolling without
slipping” is not holonomic. The nonexistence of f means that the Lagrangian
parameters (y1, Y2, 0, , 1) are not restricted, i.e., the sphere might take any
configuration in the plane. Thus the constraints must act by limiting the
Lagrangian velocities.

2.4c Rigid Rod with Constrained Extremities

The extremities A and B of a rigid rod of length h are constrained to move in
two orthogonal planes 7m; and 73 as in Figure 2.3c. One of the extremities,
say B, is connected to a point C' € my through a rigid rod BC of length ¢. The
other extremity, A, is connected to a point O € m Nmy by a rigid rod OA, of
length ¢. The point C is at distance ¢ from 7 N wy. Take a Cartesian system
with origin in O, and z-axis as m N 72, oriented so that C' = (—£,0, ().

(a). Determine the number of degrees of freedom of the system. Write down
the equations of the constraints and form their Jacobian matrix.

(b). Compute the determinant of all minors of maximum rank and find con-
ditions on h and ¢ for the Jacobian matrix to have maximum rank.

The system has one degree of freedom and the constraints are

2a=0, yp=0, 24 +yi=0 (ep+0>+ (25— 0> =1,
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T2

.

A ™

Fig. 2.3c.

and in addition, |B — A| = h. Using the third and fourth equations of the
constraints, this can be rewritten as

2ea2p + 20 (xp — z5) + h? = 0.
From these one computes the Jacobian matrix

0 01/2 0 0 0

0 0 O 0 1/2 0
J=]zaya O 0 0 0

0 0 0 zp+4£4 0 zp—V/¢

zg 0 0 zo4+¢ O —L

The minors of order 5 with nonzero determinant must contain the third and
fifth columns. Therefore the problem reduces to extracting the nontrivial non
minors of order three out of the last three rows. These are

zaya O zaya O
D1: 0 0 .’L'A—f—f y D2: 0 0 ZB—E s

zg 0 x4+ /4 zg 0 —/

XA 0 0 ya 0 0
D3s=| 0 zp+Lzg—1 ], Dy=\| 0 zp+Lzg—/

xpaxa+l —4 0 za+¢ —4

By direct calculation,

det D1 = yaxp(zp + £),
det Do = yaxp(zp — £),
det D3 = —zal(xp + 00+ (25 — €)(za + 0)],
det Dy = —ya[(xp + )0+ (2B — €)(za + )]

For J to have maximum rank we must have Z?:l det?D; > 0. Using the last
two equations of the constraints, we obtain

4
S det’D; = y2 230 + (x5 + 00+ (25 — ) (za + )] 2.
=1
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Therefore J is not of maximum rank if
yarp=0 and (zp+0)f=—(2p—L)(xa+¥L). (%)

Ifrp =0,thenzg =¢=0and h? = 202. If xp # 0 and y4 = 0, then x4 = £L.
If 4 = —¢, then also 25 = —¢ and h? = 2¢2. Examine the remaining cases.

3¢ Intrinsic Metrics and First Fundamental Form

A new parameterization of S is a smooth invertible transformation

&5 () {u—u(u’,v’) v—v(u’,v’)}’ W) e

v = (u,v) v =0'(u,v)

from G into a domain G’ C R2. The matrix is invertible if the Jacobian
determinant is nonzero, i.e., if

ou Ou

o' o'
J= , det J # 0.
ov Ov

ou' o'
The surface may be then parameterized by
G > W,v) — QW v)=Pul, v),v{,v)),

and one computes (du, dv) = (du’, dv’)J*. From these,

2 AB dU _ / / t AB du/
ds* = (du, dv) (BC’ o = (du',dv")J BC J dv'

oY ’
= (du/7dv/) (g/ g/) (ZZ/) = d/SI27

where A’, B’, C' are the coefficients of the first fundamental form, relative to
the new parameterization of S.

3.1c A Parameterization of the Torus

A torus is the surface obtained by a rigid revolution about the zs-axis of a
circumference of center (z,,0,0) and radius R € (0,z,). A parameterization
of the torus is

z1(u,v) = (z, + Rcosu) cosv, u € [0,27],
z2(u,v) = (z, + Rcosu)sinv, v € [0,27],
x3(u,v) = Rsinu.

Prove that the surface is nondegenerate, i.e., its first fundamental form is
positive definite at each of its points.
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4c¢ Geodesics

Let Iy, C S be as in (3.3). The condition for I’, to be a geodesic may be
expressed using the intrinsic parameterization in terms of the arc length.
Denoting by  the curvature of I, we have

(_dP_0Pdu 0Py
ds Ouds Ovds’
PP 9P (du\® 0P dudv 9P (dv\®
R (d_> Judv ds ds | * (I)
OP d*u  OP d*v
Juds® " dvds?
Imposing the condition that I', be a geodesic yields the differential system

K1l

ds

—_ — [ — B— =
2 Ou Ov ds ds + Ou Ov? \ ds + 0,

10A (du\?® 0O0Adudv OPO>P [dv\> d*u d2v
ds? ds?

P O°P (du\’ OAdudv  10C (dv 2 Pu P
Ov Ou? \ ds Oudsds 2 0v \ds ds? ds?2
Observing that

oPOP 0B _15C  9PO*P _0B 104
ou w2 v 20u’ ov u2  ou 2 0v’
this system can be rewritten as

Au" + Bv" = —1[A 0 + 24,0V + (2B, — C, v,

4.1c
Bu" + Cv" = —=3[(2Bu — Ay)u? 4+ 24,0V + C,v"). (4.1c)
Solving it, we arrive at the system in normal form:
u" = — (cfyu’ + 2c,u/v + c3pv'?) (4.2)
v = — ( 2 + 2¢3 /v + c%zv'z) .

The coefficients cfj, 1,7,k = 1,2, are called the Christoffel symbols, and can
be computed explicitly from (4.1¢).

Prove that (4.1c) is equivalent to (4.1). Compute the Christoffel symbols
in the case that S is a plane, a sphere, or a surface of revolution.

5c Examples of (Geodesics

5.1c The Clairaut Theorem [29]

Assume that the constant ¢ in (5.2) is not zero, thereby excluding that the
geodesic is a meridian. From the parametric representation (5.1) it follows
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that the unit vector tangent to a parallel (v = const) is u = (—sinwv, cos v, 0).
Given now a geodesic that is not a meridian, compute its unit tangent at the
generic point of curvilinear coordinate s. From (5.1), written in terms of the
parameter s,

circular section
of radius ¢,

meridian geodesic
0
T /
Fig. 5.1c.

t= cosvd—u —usinvd—v sinvd—u —l—ucosvd—v f’(u)d—u
B ds ds’ ds ds’ ds )’

Let 0(s) be the angle formed by the geodesic at s, with the meridian passing
through the same point. From the expression of u and t,

d
u-t:sinezu—v.

ds
Combining this with the first equality of (5.2) gives the Clairaut theorem [29]

u sin @ = const,

along geodesics that are not meridians. Give a geometric interpretation of this
fact in the particular case when f(u) /" 0o as u \ 0.
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DYNAMICS OF A POINT MASS

1 Newton’s Laws and Inertial Systems

A point mass { P; m} is in a uniform mechanical state if its velocity is constant.
Departures from a uniform state occur only by variations of velocity caused by
solicitations external to {P;m} and acting on it. Such external solicitations
are called forces. The vector equation

F = ma, m € RT, (1.1)

encompasses the first and second Newton’s laws and it describes how an ex-
ternal force causes its variation from a uniform mechanical state [123]. The
first law asserts that in absence of external solicitations (F = 0), a uniform
mechanical state remains uniform (a = 0).! The second law asserts that vari-
ations from a uniform mechanical state (a # 0) are proportional to the acting
solicitation (F # 0).2 The proportionality factor m in (1.1) is the inertial

'Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter
in directum nisi quatenus illud a viribus impressis cogitur statum suum mutare, [123,
8§13, page 54]. The first law was perceived by Leonardo da Vinci although in a non-
mathematical formalism: “...ogni moto attende al suo mantenimento, ovvero ogni
corpo mosso sempre si muove, in mentre che la potenzia del motore in lui si rin-
serra, . ..ogni corpo sequira tanto la via del suo corso per linea retta quanto durera
in esso la natura della violenza fatta...” Codex Atlanticus (1478-1518). A physical
notion of the first law appears in G. Galilei [61] ... Una nave che vadia movendosi
per la bonaccia del mare . .. é disposta, quando le fusser rimossi tutti gli ostacoli ac-
cidentarii ed esterni, a muoversi, con l'inpulso concepito una volta, incessabilmente
e uniformemente... .

2Lex II: Mutationem motus proportionalem esse vi motrici impressae et fieri se-
cundum lineam rectam qua vis illa imprimitur..., [123, §13, page 54]. ... Vis impressa
est actio in corpus exercita, ad mutandum ejus statum vel quiescendi vel movendi
uniformiter in directum..., [123, §2, page 40]; this is one of the Definitiones preced-
ing the Aziomata, (Def. III). The vis impress is also called by Newton vis motriz in
Def. VIII, book I of [123], page 44.

E. DiBenedetto, Classical Mechanics: Theory and Mathematical Modeling, 55
Cornerstones, DOI 10.1007/978-0-8176-4648-6 _3,
(© Springer Science+Business Media, LLC 2011
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mass of P, and it is positive, since it expresses that accelerations resulting
from external forces are directed as such acting forces.? These laws and their
mathematical formulation in (1.1) are formulated with respect to a reference
system, termed inertial, whose existence is postulated.* We define as inertial
any system X within which (1.1) holds.

Let S be a triad in rigid motion with respect to X, with characteristics
vy (0) and w. If S translates with respect to X' with vx(0) = const (e.g.,
w = 0 and vx(0) = 0), by the Coriolis theorem, an observer in S detects
the same acceleration as an observer in X, and (1.1) continues to hold in
S. Therefore, if X' is inertial, along with X' are inertial those and only those
systems in uniform, straight-line translation with respect to Y. More generally,
multiplying (8.7) of Chapter 1 by m and using (1.1) gives

maS(P) =F+Fr+Fe, (12)

where
Fr = —mar(P) and F¢=—-mac(P)

are the forces due to transport and Coriolis acceleration respectively. Thus
the inertial law (1.1) continues to hold in S, provided that in the account of
the external forces one includes the forces due to transport of S and the ones
due to the Coriolis acceleration.

The third law asserts that if a point mass {P;;m;} exerts a force F on
another point mass {Pa; ms}, then the latter exerts a force —F on the former,
so that the applied system of vectors {(F;P;), (—F; P2)} forms a couple of
zero moment.”

For the third law to hold it is not required that the two point mass be in
contact. Actions and reactions are postulated to occur simultaneously even
at distance. This is equivalent to postulating that mechanical effects between
material points propagate at infinite speed.

A further assumption in these laws is the existence of an absolute time,
independent of any reference system.® The infinite speed of propagation of
mechanical effects is a consequence of the postulate of an absolute time.

3Materiae vis insita et potentia resistendi qua corporis unumquodque, quantum
in se est, perserverat in statu suo vel quiescendi vel movendi uniformiter in directum.
Hanc autem quantitatem (materiae) sub nomine corporis vel massae in sequentibus
passim intelligo... [123, §1, page 39].

4Newton set such an inertial system in the fized stars, e.g., those stars whose
relative position and configuration had not significantly changed up to the eighteenth
century since the astronomical observations of Ptolemy, about 130 CE.

5Lex III: Actioni contrariam semper et aequalem esse reactionem: sive corporum
duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi,
[123, §14, page 55].

5Tempus absolutum, verum, et mathematicum, in se et natura sua, sine relatione
ad esternum quodvis aequabiliter fluit, alioque nomine dicitur duratio. . ., [123, §11,
page 52].
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2 Mathematical Formulations of (1.1)—(1.2)

A force F acting on {P;m} is given through a smooth vector-valued function
(P, P;t) — F(P, P;t) = (Fi(x, &;1), Fa(x, &; 1), F3(x, ;1))

defined in a region of R” with values in R3. With this symbolism, (1.1) is a
vector differential equation of the second order, or equivalently a system of
three scalar differential equations, e.g.,

mP = F(P, P;t) or mi; = Fj(x,;t), j=1,2,3. (2.1)

Either one of these describes the evolution of ¢ — P(t) starting from some
position P, and velocity P, at some prescribed time t,. The typical problem
of the dynamics of a point mass {P;m} consists in integrating the system
(2.1) starting from such “initial data.” The system (2.1) may be rewritten as
a system of six differential equations of the first order:

mQ = F(P,Q;t), or my; = Fj(z,y;1),
P=Q, T =y;, J=12.3.

If P moves on a constraint one has to add the equation of the constraint,
yielding a problem in the dynamics of a constrained point mass. If the trajec-
tory of P is known, one might write (2.1) in terms of its intrinsic triad, e.g.,

Fi(s, §;t) = mé, Fu(s, 8;t) = mrs?, Fy(s,5t) =0, (2.2)

where t(s), n(s), and b(s) are respectively the tangent, normal, and binormal
unit vectors to the trajectory for the value s of the parameter. The third
of these further signifies the parallelism of external solicitation and resulting
acceleration. In particular, the acting force is always on the osculating plane
to the trajectory.

3 General Theorems of Point-Mass Dynamics

The elemental work done by F for an elemental displacement dP is dL =
F - dP. The work done by F in displacing {P;m} along a smooth curve

vy={t— P(t), t € [to,t1]}, P(to) =F,, P(t1)= P, (3.1)

is given by

t1 .
Lz/F-sz F-Pdt
¥

to
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One defines momentum Q and kinetic energy T of {P;m} as’

Q =mP, T:%mPQ.

From these and (1.1), by taking derivatives, we obtain Q=Fand T =F.P.
Therefore

T(t1) —T(t,) = L, or in differential form, dl' = dL. (3.2)

Theorem 3.1. (i) The time derivative of the momentum of {P;m} equals
the external force acting on it.
(ii) In the absence of external solicitations, the momentum remains constant.®

(iii) The variation of kinetic energy in some time interval equals the work
done by the external forces in the same time interval.

3.1 Positional and Central Forces

Forces P — F(P) dependent only on P and independent of P and ¢, are
positional. If F(-) is defined in a region G C R3, the pair {G;F} defines a
positional field. A field is uniform if F is constant; an example is the gravi-
tational field F(P) = —mges.” A positional field is central if there exists a
point O, called the center of the field, such that

(P-—O)AF(P)=0 VP e G.
An example is the gravitational field generated by a point mass {O;m,}. Any
other material point {P;m} in the field is subject to the force!?
mms, P-0
~P=ofF P-of
Elastic forces provide a further example of central fields. A spring of fixed

endpoint O and mobile endpoint P is extended from its position of rest P = O.
Then P is acted on by a force given by Hooke’s law,

F(P)=—k(P—0), wherek > 0 is Hooke’s constant. (3.4)

F(P) =

(3.3)

A more general example of a central field is
F(P) = f(P)(P - 0), O € R? fixed, (3.5)
where f is a smooth function defined in G.

"The original terminology for momentum was quantitas motus, literally quantity
of motion [123, Liber I, Def. II, page 40]. The kinetic energy was initially called wvis
viva, i.e., “living force,” by G. W. Leibniz, in his Theoria Motus Abstracti. Leibniz
conceived an elemental motion as an instantaneous elemental insurgence of the vis
mortua into vis viva.

8Observed first by Newton in [123, Corollarium ITI, § IT, page 59].

9At sea level g = 9.8066 m/s>. It is, however, a function of altitude [76, F-158].

YHere v = 6.7 - 107 m® Kg/s? is the gravitational constant [76, F-87).
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3.2 Conservative Forces

A positional force F(P) defined in G is conservative if there exists a function
U € CYG), called a potential, uniquely determined up to a constant, such
that

F(P)=VU(P) forall PegG.

Denote by dP an elemental displacement of P along a curve « as in (3.1) and
contained in G. If F is conservative, then

dU =VU - -dP =F -dP =dL.

By integration,

/VF-dP:/VdL:/PldU:U(Pl)—U(PO)

o

for every curve v C G with endpoints P, and P;. Therefore the work done by
F in displacing {P; m} from P, to Py, within G, is independent of . By (3.2),

d(T —U)=mP-dP —VU -dP =F -dP — dU = 0, (3.6)
or in integral form,
T(t)—U(P(t)) = T(t,) — U(P,). (3.7)

The quantity —U(P) is the potential energy of {P;m}, whereas E = T(P) —
U(P), sum of the kinetic and potential energies, is the energy of {P;m}. The
previous relations assert that F is constant along the motion. The conservation
of energy expressed formally by (3.6) or equivalently by (3.7) is called the
enerqy integral of the motion.!

For k € R consider the level sets

U=kl ={PeG|UP) =k, |VUP)| > 0}.

By the implicit function theorem these sets, if nonempty, are at least locally
smooth surfaces; they are called equipotential surfaces and have unit normal

vU

n= W pointing in the direction of increasing U.

If P, and P are in [U = k|, the work done by F in displacing {P,;m} into
{P;m}, along any path v lying or not on such an equipotential surface, is zero.
From this, T (P,) = T'(P1). Therefore equipotential surfaces are also surfaces
of constant kinetic energy. Uniform fields F = u are conservative, and their

potential is
U(P) = (P —O)-u+ const in R3.

A formal notion of integral of motion, is in §6.1 of Chapter 6.
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The gravitational force in (3.3) is conservative, and its potential is

_mm, .
U(P) = 'y—HP o + const, in R®—{O}.

The elastic force in (3.4) is conservative, and its potential is
U(P) = —3k| P — O|]* + const, in R3.

The central force in (3.5) is conservative if f is radial. Indeed,

[IP=O]
F(P)=f(P-0O]) = F(P)=V / rF(r)dr.

The next proposition characterizes all fields of the form (3.5) that are also
conservative.

Proposition 3.1 The field (3.5) is conservative if and only if f is radial.

Proof. If F is conservative with potential U, then

VU =pf(P)Vp where p=|P—-0]|. [ |

4 The Two-Body Problem

Assimilate the Sun to a point mass {O; m, } and Earth to a point mass { P; m}.
With respect to an inertial system X', Earth is acted upon by the gravitational
force F given by (3.3), which imparts to it an acceleration ax (P). By Newton’s
third law, the Sun is acted upon by the force —F, which imparts to it an
acceleration ax (0). By Newton’s first law,

axp(P) = ¥ and ax(0)= —i.

m My

Choose a triad S with origin in the Sun and axes kept at all times parallel to
those of the inertial triad X' so that S translates with respect to X' with some
velocity v(O). Since ax(O) # 0, the translation velocity v(O) is not constant,
e.g., the motion of S with respect to X' is not a uniform straight-line motion.
Therefore S is not inertial.

The two-body problem consists in describing the motion of Earth with
respect to the Sun, i.e., the motion of {P;m} with respect to the triad S. By
Coriolis’s theorem, since w = 0,

m + me

as(P) = aE(P) — aE(O) =—F.

mm,
Therefore
mm,

mgag(P)=F, where mg=——— Iisthe reduced mass. (4.1)
m 4+ mg
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Proposition 4.1 FEarth moves with respect to the Sun as a point mass with
reduced mass mg, acted upon by the gravitational force F in (3.3), as if S
were inertial.

The same arguments continue to hold for the motion of any planet about
the Sun, regarded as an isolated system. More generally, one might consider
two material bodies, assimilated to point masses {O;m,} and {P;m} and ask
to describe the motion of one relative to the other. The terminology two-body
problem originates from such a more general setting.

4.1 Gravitational Trajectories

The first equality of (4.1) with the gravitational force F given by (3.3) takes

the form

m(m+m,) P—0O
[P—0J2 [P—0]

It follows that the motion is central and thus planar. Setting |P — O| = p,
the second of the Binet formulas in (2.5) of Chapter 1 implies

mag(P) = —y (4.2)

ﬁl 1 y(m+m,)

pop a2
where a, is the area constant and the angle ¢ is measured from a fixed di-
rection in S to P — O. The general integral of this differential equation with

respect to the variable 1/p is

% = Asin (¢ + a) +7%gm07
where A and « are arbitrary constants. Choosing . = %w and setting
aj
Po = m, e = Ap,, (4.3)

gives the polar equation of the trajectory in the form

Po
=—"2 4.4
P 1+ ecosyp (44)

This is the polar equation of a conic with one of its focii in O, parameter p,,

and eccentricity e. If e < 1, the conic is an ellipse; if e = 1, it is a parabola;
and if e > 1, it is a hyperbola.'?

120n a plane 7 fix a line £ and a point O not in £. A conic is the geometric locus
of all points in 7 such that the ratio of their distance to O and to ¢ is constant. The
constant value of such ratios is denoted by e and is called the eccentricity of the
conic. The point O is a focus and the line £ is the directriz. The elliptic, parabolic,
or hyperbolic nature of these orbits was observed by Newton in [123, Liber I, De
Motu Corporum §66, page 134].
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The force on the right-hand side of (4.2) is conservative and has potential

m(m + my)

U=y———.
p
Therefore by the energy integral,
1 o
Lmv - 7@ _ g (4.5)

where F is the total energy of the system, which remains constant along
an arbitrary but fixed trajectory. From the first of Binet’s formulas (2.5) of

Chapter 1, we compute
d1\> a2
2 _ 2f &1 %o
Ve T <d¢p> W
Combining this with (4.3)—(4.5) gives

21
E = azme

2p2
It follows that if the total energy of the system is negative, then the trajectory
is an ellipse. In the limiting case e = 0, the trajectory is a circle of radius p,,
as expressed by (4.4). From the second equality of (4.3) it follows that this
occurs only if A =0. In such a case,

azm r 5

= — == ——mVS,
2p2 2

so that the total energy equals the kinetic energy with opposite sign.
The cases E > 0 are characterized similarly.

5 Newton’s and Kepler’s Laws and Inertial Systems

The discussion of the previous section assumes that the gravitational force F
has the form (3.3) stipulated by Newton. The conclusion is that the motion
of the planets about the Sun is planar and their trajectories are ellipses.'?
Moreover, the areolar velocity is constant and the vector radius P — O sweeps
equal areas in equal times. These conclusions are precisely the first two laws
of Kepler. Let now a and b be the major and minor semiaxes of a planetary
orbit, and let T be the corresponding period of revolution. From the definition
of the area constant and the geometric properties of ellipses,
_ 9 ab B b2
Ao = W?, Po = ;
3Theoretically they could be ellipses, parabolas, or hyperbolas. Astronomical

observations confirm that they are ellipses. Parabolic and hyperbolic orbits are ob-
served in the motion of comets [49, 28-104], [50, 105-251], [52].
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Therefore
a®  y(m+m,)

T2~ 472
The same formula holds for any other planet of mass m’ orbiting along an
ellipse of major semiaxis a’ with period T”, e.g.,

T2 472 m 4+ me 472

a?®  y(m' +me)  m 4 m,y(m 4 m,) ) m —m)\ a°
m4+m, /) T?

Since the mass of a planet is negligible with respect to the mass of the Sun,'*

m —m a’ a®

1+m+m0~1 — 72~ T2
This is Kepler’s third law. Thus Newton’s gravitational law validates, although
approximately, Kepler’s third law. Conversely, Kepler’s laws validate Newton’s
gravitational law.

Having then accepted these laws one as a mutual validation of the other,
it follows that the plane of the motion of a planet is fixed with respect to
the inertial system X', whose existence has been postulated. In this sense the
orbital planes of the planets are inertial.

It must be stressed, however, that these conclusions follow from having
assumed the system Sun-planet to be isolated. In reality, the gravitational
contribution of the other celestial bodies is nonzero, and as a consequence,
the orbital planes are only approximately inertial.'®

In what follows, in describing mechanical phenomena on Earth, we will
assume that the orbital plane of Earth is inertial, within the indicated ap-
proximations. To be specific, we will take to coincide with the coordinate
plane of {e1, ez} of the inertial system X = {{2;e;1,e2,e3}.

Since the mass of Earth is negligible with respect to the mass of the Sun,
from the definition of reduced mass in (4.1)16 we obtain

Mo m
mS:m _— =m 1—— ~ M.
<m+mo> < m—i—mo)

"Tet mp be the mass of Earth. The mass my of Jupiter, the planet of largest
mass in the solar system, is m; = 318 mg. The mass mas of Mercury, the planet
of smallest mass in the solar system, is may = .05mpg. The mass of the Sun is
me = 331950 mg. For these values,

mJj —mm
mm + Mo
The numerical data are taken from [76, F-145 and F-165].

15Gee for example the formulation of the n-body problem in §4.5¢ of the Comple-
ments. Newton was well aware of such a mutual gravitational interaction ... Coelos
nostros infra coelos firarum in orbem revolvi volunt, et planetas secum deferre; sin-
guale coelorum partes et planetae qui relative quidem in coelis suis prorimis quies-
cunt, moventur vere. ..; Newton [123], §11, page 52.

From the previous numerical data, ms = m 0.99999699.

~ 0.958 - 107>,
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This, along with Proposition 4.1, is a further validation that the system cen-
tered in the Sun and congruent to X' = {{2; ey, e2, e3} may be assumed to be
inertial with respect to gravitational phenomena occurring on Earth.'”

6 Dynamics of a Point Mass Subject to Gravity [133]

Let X = {£2;e;1,e3,e3} be an inertial triad with origin in the Sun and such
that the plane of {e1,e2} coincides with the orbital plane of Earth. We also
assume, still approximately, that the axis of rotation of Earth is normal to
its orbital plane and therefore is directed as es. Let also S = {O;u;,us,us}
be a triad fixed with Earth, with origin on its center O, and with uz = eg
oriented from south to north. The triad S is in rigid rototranslation with
respect to X with characteristics w = wug and vy (0O), which we assume
given.!® Assume also that the acceleration ax(O) of the center of Earth
with respect to X is negligible.!® Therefore the transport acceleration ar(P)
of a point P transported by the rigid motion of S is (formula (8.5) of
Chapter 1)

ar(P)=ax(0)+wA(P-0)+wA (wA(P-0))
—wAfwA (P—O0) = (P Q)

"Newton elaborates on the approximate nature of such an inertial system and
on the conceptual difficulty of identifying an inertial system other than as math-
ematical postulate: ... Motus quidem wveros corporum singulorum cognoscere et ab
apparentibus actu discriminare difficillium est; propterea quod partes spatii illius im-
mobilis in quo corpora vere moventur, non incurrunt in sensus, [123, §11, page 52].
Despite Newton’s attempt to ground mechanics on a purely rationalistic basis, me-
chanical phenomena are based on observations that are true only within some order
of approximation. This interplay between rational mechanics and experimental me-
chanics was clear in Galileo’s thinking: . .. Prendiamo per ora questo come postulato,
la verita assoluta del quale ci verra poi stabilita dal vedere altre conclusioni, fabbri-
cate sopra questa ipotesi, rispondere e puntualmente confrontarsi con l’esperienza. . .
[61].

'8The average speed of the center of Earth about the Sun is 29.8 km/s, or
2.98 - 10%cm/s [76, F-145). Therefore |[v=(O)|| ~ 3 - 10°cm/s. The direction
of vz (0) is determined by the trajectory of O according to Kepler’s first law.
Since Earth completes a self-revolution about us in one sidereal day, e.g., 86,164 s
[76, F-103-105; F-146], one computes w = 27/86,164s~ ' = 7.292 - 107 °s~ ",

9This is the centripetal acceleration of O directed as 2 — O. Let R denote the
average distance from Earth to the Sun. Its numerical value is R = 149, 5-10° km, or
1,495-10" cm [76, F-145]. Therefore, assuming that the trajectory is approximately
circular, by (2.6) of Chapter 1, |Jas(O)|| = ||[v=(0)||>/R = 0.6 cm/s?. This value is
less than one-thousandth of the mean acceleration of gravity g = 9.83225 m/s2 [76,
F-147-143].
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Fig. 6.1.

where () is the projection of P on the coordinate axis of us. It follows, by
Coriolis’s theorem, that the acceleration of P relative to S is

as(P) = ag(P) +w?*(P - Q) — 2w Avs(P).

If {P;m} is a moving point mass, multiplying this expression by m and taking
into account (1.2) gives

mag(P) = Fx +mw?(P — Q) — 2mw A vs(P). (6.1)

6.1 On the Notion of Weight, Vertical Axis, and Gravity

The point mass {P;m} moves by gravity if the only force Fyx detected by
the inertial system X' is the gravitational force (3.3), where m,, is the mass of
Earth regarded as concentrated in its center O. Therefore

ymm, P —0
[P =0l [P -0

mag(P) = — +mw?(P — Q) — 2mw Avs(P). (6.2)

Weight is measured at rest, e.g., with the point mass {P;m} on the surface
of Earth and vg(P) = 0. On {P;m} act the gravitational force (3.3) and the
centrifugal force mw?(P — Q). What one measures as weight is

mme P-0

P02 |P-0| +mw?(P - Q). (6.3)

—-mgk =

The unit vector k, referred to as wvertical, does not coincide with the unit
vector normal to the surface of Earth, unless P is at one of the poles or at the
equator. Assume, without loss of generality, that P is in the plane {us, uz} as
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in Figure 6.1. The angle 1 formed by P — O with the horizontal unit vector
u, is called the geocentric latitude, whereas the angle A formed by the vertical
unit vector k with us is the astronomical latitude.

If one were to take into account the transport acceleration ax(O) of the
center of Earth with respect to the Sun, this would have to be added to the
right-hand side of (6.3). In such a case the unit vector k would not lie in
the plane {uz,us}. We estimate the deflection of k from such a plane and
conclude that it is negligible.

6.2 Gravitational Motion near the Surface of Earth

To describe the motion of {P;m} with respect to an observer on the surface
of Earth, choose a triad S, = {P,;1,j,k}, with origin at the initial position
of P, with k vertical as in (6.3), the unit vector j from west to east and i
chosen so that S, is positive. Measures of weight leading to (6.3) are carried

k . .
axis of weight / axis of gravity
north
west i
% J
/ east
/I
/i / south
Fig. 6.2.

on a fixed position P, on the surface of Earth. If P departs from P,, vertically
or longitudinally, both the constant g and the vertical unit vector k change.
We will assume that the motion of {P;m} takes place in a sufficiently small
region about P, where both g and k might be taken as constants. This occurs,
for example, if along the motion, ||P — P,|| is negligible with respect to the
radius of Earth.?° From (6.1)—(6.3),

ag(P) = —gk — 2wus A vg(P),
and by integration,
vg(P) = —gtk — 2wus A (P — P,) + v,,

where v, is the initial velocity of P. Denote by (x,y,z) the coordinates of
P in S,. Moreover, ug = — cos Ai + sin Ak. Therefore the previous expression
of vg(P) written in the coordinates of S, generates the system of first-order
differential equations

2OFor a range of values of ¢ from the equator to the poles in terms of latitude, as
well as in terms of altitude from sea level, see [76, F-133, F-151, F-158].
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T = 2wysin A\ + o,
¥ =—2w(zcos X+ xsin ) + 9o, (6.4)
2= —gt+ 2wycos A+ Z,,

with initial conditions P(0) = P,. Taking the derivative of the second equation
and putting, in the expression so obtained, & and Z given by the first and third
equations, we obtain

. A =2wgcos A

— A2 _ g )
j=—4wy+ At — B, where {B:2w(;éocos)\—l—a'coSin/\)7
whose general integral is

At — B
4w?

y = Csin (2wt + a) + (6.5)
The first term is the general integral of the associated homogeneous equation,

and it depends on two arbitrary parameters C' and «. In the case of freefall
from rest, v, = 0 and B = o = 0 and C' = —A/8w>. Therefore

_ gcosA

= " 2wt — sin (2wt)). (6.6)

Put now y(¢) in the first and third equations of (6.4) and integrate. This gives

in 2\
x = gzm2 [w?t? — sin® wt], (6.7)
w
1 gcos® A .
z= _59t2 o [w?t? — sin® wt]. (6.8)

If in (6.6)—(6.8) we let w — 0, we recover the classical laws of freefall of
a material body. If w # 0, then (6.6) detects an eastward deflection that
is zero at the poles (A = =£7/2) and largest at the equator. The z(t) in
(6.7) is a deflection along a meridian. Such a deflection is toward the south
in the northern hemisphere (A > 0) and toward the north in the southern
hemisphere. An estimate of such deflections is in §6¢ of the Complements.

7 Motion of a Constrained Point Mass

If {P;m} is subject to a single constraint [f(P;t) = 0], then (2.1) are aug-
mented by the equation of the constraint and become

mP = F(P, P;t) + R(P, P;t),
f(P;t) =0, (7.1)
P(t,) = P,, P(t,) = P,,
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where P, and PO are given vectors. The force R is the reaction due to the
constraint. The level sets [f(-;t) = 0] are smooth surfaces in R3, which might
be regarded as moving following the parameter t. At each instant ¢ the point
P lies on one of them. If f is independent of time, the constraint is fixed, and
P moves on the fixed surface [f = 0].

If P is subject to a double constraint, the equations of motions are

mP = F(P, P;t) + R(P, P;t),
fi(Pit) =0, j=12, (7.2)
P(t,) = P,, P(t,) = P,.

The point P(t) lies at the intersection of the level sets [f;(:;¢) = 0], j = 1,2.
If both functions f; are independent of ¢, e.g., if the constraints are fixed,
their intersection «y is the trajectory of P. The reaction R, while not a priori

Fig. 7.1.

known, must be included in the account of all external forces, since it arises
from enforcing the constraints, which are external to { P; m}. The system (7.1)
consists of four scalar equations, whereas the system (7.2) consists of five scalar
equations. In either case the unknowns are the three scalar functions making
up t — P(t) and the three components of R. Therefore the problem of motion
of a constrained point mass is underdetermined, and its solvability hinges upon
the availability of further information on the nature of the constraints.

7.1 Smooth Constraints and Relative Energy

Assume first that {P;m} is subject to a single constraint [f(-;¢) = 0]. Such a
constraint is smooth or frictionless if at each time ¢, it only generates reactions
normal to the surface [f(-;¢) = 0], equivalently if there exists a function
t — A(t) € R such that

R(P, P;t) = AN(t)V f(P;t).
In such a case (7.1) becomes

mP = F(P, P;t) + A\Vf(P;t),
f(Pit) =0, (7.3)
P(t,) = P,, P(t,) = P,.



7 Motion of a Constrained Point Mass 69

This is a system of four equations in the four scalar unknown functions of time
{P, A} and therefore, at least in principle, well posed. For fixed constraint, the
fixed surface [f = 0] is smooth or frictionless if it does not oppose the sliding
of P on it, and offers a reaction only to motions that would let P leave the
surface. Let 0 P be an elemental virtual displacement and denote by d Lg the
elemental virtual work done by R for such a virtual displacement. Then

SLr =R 6P = A(t)Vf(P;t) - 6P =0.

Therefore the virtual work done by the reaction offered by the frictionless
constraint [f(-;¢) = 0] is zero. For an actual displacement dP, one has df =0
and Vf-dP + fidt = 0. Therefore the reaction due to the constraint does the
actual elemental work

dLr =R -dP = —\(t) fi(P;¢t) - dt.
Multiplying the first equation of (7.3) by P gives
T(t) =F-P—At)fr,

or in differential form,

d(T — Lp) = —\fydt,

where dLg is the elemental work done by the external forces F applied to
{P;m}. This relation shows how variations of kinetic energy are affected by
the motion of the constraint. For a fixed constraint one has d (T — L) = 0.
A double constraint [f;(-;t) = 0], j = 1,2, is smooth or frictionless if there

Fig. 7.2.

exist two scalar functions ¢t — A;(¢) for j = 1,2 such that

R(P, P;t) = \;j(t)Vf;(P;t).
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In such a case (7.2) takes the form

mP = F(P, P;t) + \;V f;(P; 1),
[i(Pit) =0, j=1,2, (7.4)
P(t,) = P,, P(t,) = P,.

This is a system of five scalar equations in the five scalar unknown functions
{P, A1, A2}, which, at least in principle, is well posed. For fixed constraints, the
trajectory of P is determined by the constraints. Such a trajectory is smooth
or frictionless if it does not oppose the sliding of P on it and resists only
motions that would let P abandon its trajectory. By energetic considerations
analogous to that for single constraints,

SLg =R-6P =0,
dLg =R -dP = — ), f; ,dt,
d(T — Lg) = —\; f;4dt.

For fixed constraints, the last of these reduces to (iii) of Theorem 3.1.

B = arctan <—ﬁ—““§ “D

n

[f=0]

cone of friction

Fig. 7.3.

7.2 Rough Constraints and Relative Energy
A single constraint [f = 0] acting on {P;m} generates a reaction

P \i

R:Rt+R s t= _—_, n = s
" || IV

where Rt and R, denote the components of R along t and n. The constraint
is rough if there exists a positive constant v > 0 such that

[Re[l = I Rnl|- (7.5)
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The constant v, called the dynamic friction coefficient, depends on the na-
ture of the contact and is determined experimentally. In the case of smooth
constraints information was provided on the components of the reaction, nor-
mal, and tangent to the constraint. Formula (7.5), called Coulomb’s law, has
the same role for rough constraints. Similar considerations hold in the case
of rough double constraints, modulo the obvious changes in the meaning of
t and n. The mechanical problems (7.1)—(7.2) augmented by (7.5) are well
posed.

The component Ry opposes the motion of P, so that R - dP < 0. This in
turn implies d(T — Lg) < 0. Therefore rough constraints dissipate energy.

B = arctan <ﬁ%>

[fl = ()]ﬂ [fz = 0]

cone of friction

Fig. 7.4.

7.3 Remarks on Fixed Constraints

Assume that {P;m} is subject to a single fixed constraint [f = 0], smooth or
rough, and rewrite (7.1) in the components

may, = Fy(P, P;t) + Ry,
i (7.6)
mag = Ft(P,P,t) + Rt.
By the constraint, f (P) = 0 along the motion, so that by differentiation,
P -V f = 0. Differentiating this once again gives
a-Vf=—P (fmT%)P, a=P.
Therefore if ||V f|| > 0, as we have assumed, then

an—a. Y _ P'(faiw,) P

TN T VAl

Thus a, can be expressed as an explicit function of P and P. But then, by
virtue of (7.6), also Ry can be expressed as an explicit function of P and P.
If a relation is known between Rt and Ry, such as for example (7.5), also Ry
can be expressed as an explicit function of P and P. This implies that the
right-hand side of the second equation of (7.6) is a known explicit function of
P and P, and therefore the integration can be effected.
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In the case of a double fixed constraint, the geometric trajectory - is
known, but not its temporal parameterization. Parameterizing it by its arc
length s and introducing its intrinsic triad {t,n, b}, the system (7.2) can be
rewritten as

mks® =F-n+ Ry, (7.7)
0=F-b+ Ry,

with given s(t,) = s, and $(t,) = v,. If the constraint is smooth, then Ry =
Ry = 0 and the first equation of (7.7) can be integrated to resolve the motion
t — s(t). The remaining two equations permit one to compute the reaction
A;V f; in terms of the two functions ¢t — \;(t), j =1,2.

If the constraints are rough, the second equation of (7.7) implies that R,
is an explicit function of (s, $;t), and in view of (7.5), the same is true of
R¢. Therefore the right-hand side of the first equation of (7.7) is an explicit
function of (s, $;t). Thus the integration can be effected to resolve the motion
t — s(t).

7.4 Remarks on the Case of F Conservative

For smooth fixed constraints, § P = dP and the reactions are workless. An el-
emental variation of kinetic energy is balanced only by the elemental work
dLg = F-dP done by the the forces F applied to { P;m}. If F is conservative,
then by the integral of the energy,

T-UP)=T,-U(P,), VU=F.

As a particular case consider the motion of { P;m} subject to gravity —mgus,
and constrained to move on a smooth and fixed surface or curve. Irrespective
of the constraint, the integral of the energy can be given the form

IP|* = 2g(a — ), (7.8)

where a is the level at which P has zero velocity. The constraint might keep
P from reaching such a level; however, (7.8) continues to hold.

8 The Mathematical Pendulum

A point mass {P;m} is constrained to move on a vertical, smooth, fixed
circumference C = {2% + 22 = (2}, subject to gravity —mgk. The point P
is kept on C by a rigid, weightless rod of length ¢, called the length of the
pendulum, with one of its extremities hinged on the center of C. The system
has one degree of freedom, and as Lagrangian coordinate one might take the
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angle ¢ between A — O and P — O spanned counterclockwise starting from
A — O. The trajectory is known and has intrinsic tangent and normal

t = cos ¢i + sin pk, n = —sin i + cos k.
Therefore
—mgk = —mg(cospn +sinpt),
and (7.2) written with respect to the intrinsic triad as in (7.7) becomes
-2

m§ = —mgsin @, m% = —mgcosy + R, (8.1)

where R is the reaction due to the constraint acting only along n, since C is
smooth. By the energy integral (7.8),

2mg (e 2 ?) = —mgcosy + R.

From this one computes the reaction R in terms of the level z of P and the
level @ where P =0, e.g.,!

(2a — 3z)

R=mg 7

(since z = —{ cos ). (8.2)
Putting this in the second equation of (8.1) gives §2 = 2g(a — z). Therefore
if a > £, the point P never stops and revolves indefinitely on C. If a < ¢, the
point P comes to a stop at some @ € C, at level zg < ¢, and then swings
to Q' € C, which is symmetric to @ with respect to the coordinate vertical

2Such a level might or might not be attainable. See (7.8) and the related remarks.
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axis. It then continues to perform periodic oscillations between @ and Q' with
some period T. Assume a < ¢, set s = £y and a = —{cos o, and rewrite the
energy integral in the form

2 4
O = 79 (cosp — cosa) = Zg (sin® o — sin® o) .

Separating the variables yields

\/> / \/sm 50— sm2 %9

This is an implicit resolution of the motion ¢ — ¢(¢) in terms of the Lagrangian
parameter ¢. Choosing the initial datum ¢(0) = 0, the point P will reach
Q, for ¢ =, after a time equal to one-fourth of the period of oscillations.

Therefore
_ f [ |
\/ sin? —a sm2 %9

To compute this integral, introduce the change of variables

sin %6‘ .
n=-—, k =sin
sin 5

sin® Lo — sin® 20 = k*(1 — ),
kdn = 5 cos 30df = 1/1 — k*ndf.

Therefore the period T is computed from the elliptic integral

N —
9 Jo \/1—772\/1—]6‘27’]2

Expand the integrand in a Taylor series with respect to the parameter k& and
integrate term by term to get

‘ 1, [13\° , .
T—QW\/;[IJer +<ﬂ) E* 4], k = sin %a.

For small oscillations, e.g., a = 0, one recovers Galileo’s approximate formula
T = 2m\/¢/g. Such a formula can be arrived at directly by setting sin = ¢
n (8.1). The approximate equation of motion would then be

o+ %gp =0, which implies @ = Acos <\/%t + B)

for two real constants A and B. This describes an oscillatory motion of period
T =2m+/{/g.

1
2

Q,
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Problems and Complements

3c General Theorems of Point-Mass Dynamics

3.1c Elastic Forces

Let {P;m} be subject to (3.4) starting from the initial position P, # O with
initial velocity P,, which will be assumed to be parallel to P, —O. The motion
is central, and it takes place in the plane through O and normal (P, —O) A B,.
On such a plane introduce Cartesian axes x1, x2, with origin at O and the
x1-axis oriented as P, — O. Then (3.4) yields the system

k
B +wlr; =0, j=1,2 w’= — (3.1¢)

whose general integral is
zj =Ajsin(wt+aj), Aj, o €R, j=1,2.

Compute the constants A; and «; in terms of the initial data. The system ad-
mits the energy integral; moreover, the areolar velocity is constant. Therefore

| P||> + w?||P — O||® = consty, P A (P —0O) = consts. (3.2¢)

Compute these constants in terms of the initial data and show that (3.1¢) and
(3.2c) are equivalent.

3.2c Point Mass Moving in a Fluid

The fluid opposes the motion of {P;m} with a resistance R = —f(||P|) P,
where f is a smooth, nonnegative function whose form is determined from
experiments. For sufficiently slow motions, f(||[P|) = const (in the air
|P|| <2m/s). In such a case the motion is said to be in wviscous regime.
If {P;m} is assimilated to a ball of sufficiently small radius p, then

f(IPI) = 6mpup for ||P|| <1 (viscous regime),

where 11 is the kinematic viscosity of the fluid.?? For larger speeds, f(||P||) is
proportional to || P|| and the motion is said to be in hydraulic regime (in the air

22The dynamic viscosity is a measure of a resistance offered by a fluid when forced
to change its shape. It is a sort of internal friction measured as the resistance elicited
by two ideal parallel planes immersed in the fluid when forced into a mutual sliding
motion. The unit of measure is the poise, after J.L.M. Poiseuille. It is measured
in dyne/s per cm? and is the force distributed tangentially on a planar surface of
1em?, needed to cause a variation of velocity of 1cm/s between two ideal parallel
planes immersed in the fluid and separated by a distance of 1 cm. For water at 20°C,
the dynamic viscosity is 0.01002 poise. The kinematic viscosity is the ratio of the
dynamic viscosity to the density of the fluid. The c.g.s. unit of kinematic viscosity
is the stoke, after G.G. Stokes. Numerical values of dynamic and kinematic viscosity
for several fluids are in [76, F-36-45.].
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2m/s< || P|| <200m/s). For a point mass assimilated to a ball of sufficiently
small radius p,

FUIPI) = 5mpp?|| P|| (hydraulic regime).

3.3c Elastic Motions in Viscous Media

A point mass {P;m}, assimilated to a ball of radius p < 1, is attracted to a
fixed point O by a spring of elastic constant k. Assume that P, — O is parallel
to P,, so that the motion takes place along the line through O and direction
P,. Assume, moreover, that || P|| < 1, so that the motion is in viscous regime.
Denoting by = the coordinate varlable along the trajectory of P, the only
nontrivial equation of motion is

F42i+wir =0, wl=—, 2 =62, (3.3¢)
m
whose general integral is
r=e° (Cleﬁt + CQB_Bt) , B =+e?—w?

where Cj, j = 1,2, are real or complex arbitrary constants. If €2 > w?, the
general integral is

= e ' (Asinh 8t + Bcosh ft),

where A and B are real constants to be determined from the initial data. If,
for example, 2(0) = 0 and 4(0) = 1, one computes B =0 and A =1/, and

1 2 e/B
x=—e sinhft, Tmax = — w ,  limz=0.
I6) w\e+p t—o0

If 2 = w?, the general integral is
x = (At + B)e °.

If 2(0) = 0 and £(0) = 1, the solution increases from zero to its maximum
value 1/(eg), and goes to zero as t — oo. If €2 < w?, the general integral is

r = Ae 'sin (Bt + ), B = Vw? —e2.
These are damped oscillations (¢ > 0), of period T}, = 27/vw? — 2. Moreover,
z(t+nT.) = e " x(t), VneN,

so that the amplitude of the damped oscillations decays exponentially to zero.
If e = 0, the oscillations are free and have period T' = 27 /w. Thus the presence
of the fluid (¢ > 0) lengthens the period of the free oscillations.
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Fig. 3.1c.

3.4c Forced Oscillation

On the previous system impose an external forcing term, periodic with period
27r/0, acting on the same line of the trajectory. Then (3.3c) is modified into

&+ 26t + w?r = Asin6t, (3.4c)

where A and 6 are given constants. The general integral of (3.4c) is given by
the general integral xp,(-) of the associated homogeneous equation (3.3c), e.g.,
one of the previous cases, augmented by a particular integral z,(-), which will
be sought of the form

xp = Bsin (0t — v) = B(sin 0t cosy — cos 0t siny).
Employing to this to solve (3.4¢) yields
2¢e0

w2_92’

tan~y = B(w? — 6?) cosy + 2Befsiny = A.

From these we compute

%, b= \/(wz — 62)? + 4¢262,
w2 —

2¢0 w? — 62 A
siny = —, cosy= , B=—. (3.5¢)
¢ ¢ ¢
The general integral of (3.4c) is then & = xj, + x,, which is interpreted as the
superposition of the damped oscillations x;, and the forced harmonic oscilla-
tion z;.

1+ tan?y =

3.5c Phase Delay

The phase of the forced oscillation is 8¢ — -y, whereas the phase of the external
forcing term is 6¢. Therefore x, exhibits a phase delay of v with respect to
the external forcing term, given by

_ 2e6
7(0) = tan ! (m)
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If 0 increases from zero to w, the phase delay 7 increases from zero to /2.
If 6 increases from w to +oco, then 7 increases from 7/2 to m. If the forcing
term Asin 6t has the same frequency w/2m of the free oscillations, then the
phase delay is always /2, e.g., the forced vibrations are in quadrature of
phase with respect to the external forcing term. If § = 0, the oscillations are
in concurrence of phase with the forcing term.

3.6c Amplitude of Forced Oscillations

The amplitude B of the forced oscillations is given by the third equation of
(3.5¢). Tts behavior with respect to 6 hinges on the behavior of the function
0 — ¢(0). By taking the derivative of ¢ with respect to 6, we get

204" =46 [6> — (w® —2¢%)].

Assume first w? — 2¢2 > 0. If 6 increases from zero to vw? — 22, then ¢
decreases, and the amplitude of the forced oscillations increases from A/w? to
its maximum 4

2evw? — 2’
When such a maximum is reached, the external forcing term and the resulting
forced oscillations are in resonance. When 6 increases from vw? — 22 to oo,
then ¢ increases and the amplitude B(f) decreases to zero. If w? — 2¢% < 0,
then B(6) decreases for all values of 6, and tends to zero as 6 — co.

Thus in an oscillating mechanical system, forced by an external vibration

of frequency /2w, for small forcing frequencies the forced vibrations reach a
maximum for § = v/w? — 2¢2 and tend to disappear as § — co.

Bmax =

4c The Two-Body Problem

4.1c Resolving Kepler’s Motions

Write the energy integral (4.5) in polar coordinates p and ¢:

1 . . m(m + m,
3m (p*+p°¢%) —U =E, U-y%.
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Taking into account that p?¢ = a,, these can be rewritten as

L —Ug = B, U= U — 2% (4.1¢)
—mp“ —Usg = F, off = - —m—. .1c
5P ff f i

The function Usg is called effective potential. This relation provides a time

resolution of Kepler’s motion in the implicit form

(4.2¢)

m/p dr
DY L " —
2 Po VE + Ueff<'f')

4.2¢ Stable Circular Orbits

These relations may be interpreted as the energy integral of a mechanical
system with one degree of freedom and subject to the potential Ueg. The only
equation of motion of such a system is

mp = %Ucﬁ (4.3¢)
with some given initial data. Formula (4.2¢) is the implicit time resolution of
the motion generated by (4.3c). The energy E in (4.1c) depends on the initial
data, e.g., E, = E(po, po). In what follows, rather than prescribing p, and p,,
we will prescribe equivalently p, and E,. By (4.1¢)—(4.3¢) the orbit of P is
circular if and only if p, and E, are solutions of

[ ym(m+m,)  ma?
ol — +
p=p
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e.g.,
¢ a? 1 a?
po = ——0 E,= m-2. (4.4c)
v(m +mo) 2 p;

In the trivial case that the area constant a, is zero, the circular orbit degen-
erates to a point. If a, > 0, then

d2
_QUCH' = _lS(m + mo) <0,
dp P=Po p

so that Ueg has a maximum at p, and the corresponding potential energy
Vet has a minimum at p,. Physically, a point mass {P;m} tends to take a
configuration that minimizes its potential energy, e.g., small variations from
that position tend, roughly speaking, to be damped so that P can resume the
position of minimum potential energy. In this sense p = p, is a configuration
of stable equilibrium.?

In the context of the systems Earth—Sun, if Earth were in the position
po with energy F, given by (4.4c), it would move along a stable, circular
trajectory about the Sun. If a, = 0, equation (4.3c), irrespective of the initial
data, forces P to be attracted by O. Thus if Earth did not rotate with respect
to the Sun (i.e., a, = 0), then irrespective of its initial position p, and its
initial speed p,, it would ultimately fall into the Sun.

4.3c Radial Potentials

The analysis of the two-body problem is independent of the particular form
of the gravitational potential. An energy integral similar to (4.5) would con-
tinue to hold starting from a potential that would ensure that the motion is
central and thus planar. Potentials that generate central motions are radial
(Proposition 3.1). Therefore (4.1c)—(4.2c) continue to hold for any smooth
radial function p — U(p) defined in (0, 00). As an example consider the case

U=np and  Uegt = 7p” — ;m—,
2 p
where v and « are given real constants. For v > 0 and o = —1 this is the

gravitational potential; for v > 0 and o = 2 this is the elastic potential. Other
values of v and « occur in atomic potentials [14, Chap. IX, §67].

Denote by {P,,m,} a fixed point and by {P;m} a point mass in relative
motion with respect to {P,;m,}. One might then ask whether the motion
generated by (4.3c), with these potentials, admits circular orbits and whether
such orbits, if any, are stable. One might also investigate whether { P; m} will

28We are referring here to an intuitive notion of stability. A mathematical notion
is in §1.1 of Chapter 8. By this notion, maxima for the potential correspond to
configurations of stable equilibrium (Dirichlet stability criterion, §4 of Chapter 8).
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ultimately fall onto {P,;m,}, or whether the two points move apart indefi-
nitely. Circular orbits p = p, are possible if and only if the initial data p, and
E, satisfy

d +2 2

Vet | ,_, = = (yap* ™ +mag) | =0,

dp r=r p=po

2
l%——GW—-m§>
2 P P=Po
These orbits, if they exist, are stable if
ﬁU i 1 [ya(a —1)p*T? — 3ma?] <0
2 e - A o :

dp p=po P p=po

These orbits are unstable if this condition is violated. That is, the sole ab-
sence of maximality for the potential suffices for one to conclude that the
configuration is unstable (Corollary 6.1 of Chapter 8).

4.3.1c Circular Orbits

Prove that circular orbits are possible only if ya < 0. Moreover, if ya > 0,
then regardless of the initial data, ||P— P,|| — oo as t — co. Finally, if ya < 0
and the area constant a, is zero, then P falls onto P,.

Assume next that ya < 0 and that a, > 0. Prove that if « # —2 then
circular orbits are admissible and

2 2
— 2
otz o Mo B, = 1% & t (4.5¢)
oL Py 2a
Moreover, for these values,
d? ma?
WUCH(;)) =— i (a+2). (4.6¢)

P=Po

Therefore, these possible circular trajectories are stable for &« > —2 and un-
stable for a < —2.

4.3.2c The Case -2 < a<0

This includes the gravitational potentials for v > 0 and o = —1. Prove that
regardless of initial data (p«, Ex), P never falls onto P,, e.g., there exists some
R, > 0, determined by (p., E.), such that p(t) > R, for all ¢ > 0. Moreover,
if E, > 0, then |P — P,|| — 00 as t — oo, whatever the initial radius p..
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4.3.3c The Case a > 0

This includes the elastic potentials for v < 0 and o = 2. Prove that regardless
of initial data (p«, E.) however fixed, P never falls onto P,, nor will it be arbi-
trarily far from it, e.g., there exist two positive numbers R, < R, determined
in terms of (p«, F\), such that R, < p(t) < Ry, for all times.

4.3.4c The Case a < —2

Let (po, E,) be the initial data given by (4.5¢)—(4.6¢) characterizing possible
circular orbits. Prove that if F, > E,, then regardless of the initial datum p,,
the point P will ultimately fall onto P,. Moreover,

E.<E, and p,>p, — tlim |P(t) — P,|| = oo,
E.<E, and p.<p, = [lim [P(t) =Pl =0

4.3.5¢ The Case a = —2

Prove that if 2y # ma?2, circular orbits are not admissible. Moreover, if 2y >
ma?, then P ultimately falls onto P,, and if 2y < ma2, then |P— P,|| — oo as
t — oo. Finally, if 2y = ma?, the only orbits that are solutions of (4.1c)—(4.2¢)
are circular.

4.4c Closed Orbits

Return now to (4.1c), where U(-) is any any smooth radial function defined
in (0,00). Regarding p as a function of ¢ and using the formal differentiation
formula (2.4) of Chapter 1, (4.1c) can be rewritten as

1 a2 [(dp 2

-m=2—) =E+U, .

2" (cﬁp) + Uerrle)

Integrating this by separation of variables gives the polar equation p = p(p)
of the trajectory, in the implicit form

m /” dr
O — Qs =Faoy /= —_—
2 J,, 12/ E + Ueg(r)

Assume now that the trajectory is confined between two limiting circles cen-
tered at P, with radii 0 < R, < Ry, for example as in the case a > 0. Choosing
v« = 0 as the angle for which p(p.) = R,, the previous formula takes the form

P dr m
=c, —_— Co = Qop[| =
4 Ry T2/ E + Ues (1) 2
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An orbit generated by (4.1c) for such a choice of initial data is closed if after
¢ having spanned the unit circle an integer number of times, the point P
returns to its initial position. One then asks whether (4.1c) generates orbits
that although not necessarily circular or elliptic, are closed.

Prove that closed orbits are possible if and only if there exist positive
integers m and n such that

R dr
2rm = nc, _—

Ry T2\ E + Ue(r) '

Such an occurrence is rather special and, in general, will depend on the nature
of the potential U(p) or the initial data (p., E.), or both. The following the-
orem underscores the importance of the gravitational and elastic potentials.

Theorem 4.1c (Bertrand [9]). The gravitational and elastic potentials are
the only ones for which (4.1c) generates closed orbits for any choice of initial
data (p«, Ex).

4.4.1c More on the Polar Equation of the Trajectory

The polar equation p = p(p) of the trajectory could be derived from (4.3c)
by the formal differentiation formula (2.4) of Chapter 1. Thus

a, d (a, d d
—— | =—p ) = —Uesr(p).
2 dp <p2 dcpp> dp (p)
For gravitational potentials this formula was derived by Clairaut in [30].

4.5¢ The n-Body Problem

Given n material points {P;;m;}, i =0,1,...,n — 1, subject to their mutual
gravitational attraction, one would like to describe their motion with respect
to one of them, say for example {P,;m,}. Let X be an inertial system and
let S be a triad centered at P, whose axes, along the motion of {P,;m,},
are parallel to those of X'. Thus S is in rigid motion with respect to X, with
characteristics vy (P,) and w = 0. It follows from Coriolis’s theorem that

aS(P’L):aE(P’L)_aZ(PO)v 120,1,,7’1—1 (47C)
Moreover, by (1.1), for all i =0,1,...,n—1,

m;m; Pj — Pz

n—1
ax(P;) = .
miaz(F) ZWHPj—PiHQHPj—PiH

j=0
J#i




84 3 DYNAMICS OF A POINT MASS
For 7 = 0 this gives

n=l mMoem; Pj — PO

meax(P,) = .
=(F) = 2 T R E B, Bl

Multiplying the ith equation (4.7c) by m; gives

m;m; Pj — P, n—1 mim; Pj — P,

n—1
mias(P;) = > v -2
|P; — Bill? |P; — Pill =1 1P — Poll? | P — Pl

j=0
J#i

mi(mi +m,) P — P,
-
1P = Poll* [|Pi = B

( Pi-P PP, )
1Py = PRill® 1P = Poll®)

n—1
+ D0 ymm;
J

=1
i£i

For n = 1 this reduces to the two-body problem. While the two-body problem
is solvable, as indicated in §4, the n-body problem is, in general, still open
(see [121]). A further discussion on the n-body problem is in §§8-12 of Chap-
ter 6. The three-body problem, with the further assumption that the motion
is planar, was solved by Lagrange and Euler (§§11-12 of Chapter 6).

6¢c Dynamics of a Point Mass Subject to Gravity [133]

Expand (6.6)—(6.8) in a Maclaurin series in ¢ and discard the terms of order
higher than four to obtain

T = 11—2gw2sin2/\t4—|—~~~ ,
Y= %gwcos)\t?’ + -
= —%gt2 + %gw2 cos? \th 4+ ...

For t <« 1, disca