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Preface

This book has one purpose: to help you understand vectors and tensors so that you can use them to
solve problems. If you’re like most students, you first encountered vectors when you took a course
dealing with mechanics in high school or college. At that level, you almost certainly learned that
vectors are mathematical representations of quantities that have both magnitude and direction, such as
velocity and force. You may also have learned how to add vectors graphically and by using their
components in the x-, y- and z-directions.

That’s a fine place to start, but it turns out that such treatments only scratch the surface of the power
of vectors. You can harness that power and make it work for you if you’re willing to delve a bit
deeper – to see vectors not just as objects with magnitude and direction, but rather as objects that
behave in very predictable ways when viewed from different reference frames. That’s because vectors
are a subset of a larger class of objects called “tensors,” which most students encounter much later in
their academic careers, and which have been called “the facts of the Universe.” It is no exaggeration
to say that our understanding of the fundamental structure of the universe was changed forever when
Albert Einstein succeeded in expressing his theory of gravity in terms of tensors.

I believe, and I hope you’ll agree, that tensors are far easier to understand if you first establish a
stronger foundation in vectors, one that can help you cross the bridge between the “magnitude and
direction” level and the “facts of the Universe” level. That’s why the first three chapters of this book
deal with vectors, the fourth chapter discusses coordinate transformations, and the last two chapters
discuss higher-order tensors and some of their applications.

One reason you may find this book helpful is that if you spend a few hours looking through the
published literature and on-line resources for vectors and tensors in physics and engineering, you’re
likely to come across statements such as these:

“A vector is a mathematical representation of a physical entity characterized by magnitude and
direction.”

“A vector is an ordered sequence of values.”
“A vector is a mathematical object that transforms between coordinate systems in certain ways.”
“A vector is a tensor of rank one.”
“A vector is an operator that turns a one-form into a scalar.”
You should understand that every one of these definitions is correct, but whether it’s useful to you

depends on the problem you’re trying  to  solve.  And being able  to  see the relationship between
statements like these should prove very helpful when you begin an in-depth study of subjects that use
advanced vector and tensor concepts. Those subjects include Mechanics, Electromagnetism, General
Relativity, and others.

As with most projects, a good first step is to make sure you understand the terminology that will be
used to attack the problem. For that reason, Chapter 1 provides the basic definitions you’ll need to
begin understanding vectors and tensors. And if you’re ready for more-advanced definitions, you can
find those at the beginning of Chapter 5.



You may be wondering how this book differs from other texts that deal with vectors and/or tensors.
Perhaps the most important difference is that approximately equal weight is given to vector and tensor
concepts, with one entire chapter (Chapter 3) devoted to selected vector applications and another
chapter (Chapter 6) dedicated to example tensor applications.

You’ll also find the presentation to be very different from that of other books. The explanations in
this book are written in an informal style in which mathematical rigor is maintained only insofar as it
doesn’t obscure the underlying physics. If you feel you already have a good understanding of vectors
and may need only a quick review, you should be able to skim through Chapters 1 through 3 very
quickly. But if you’re a bit unclear on some aspects of vectors and how to apply them to problems,
you may find these early chapters quite helpful. And if you’ve already seen tensors but are unsure of
exactly what they are or how to apply them, then Chapters 4 through 6 may provide some insight.

As  a  student’s  guide,  this  book  comes  with  two  additional  resources  designed  to  help  you
understand and apply vectors and tensors: an interactive website and a series of audio podcasts. On
the website, you’ll find the complete solution to every problem presented in the text in interactive
format – that means you’ll be able to view the entire solution at once, or ask for a series of helpful
hints that will guide you to the final answer. So when you see a statement in the text saying that you
can learn more about something by looking at the end-of-chapter problems, remember that the full
solution to every one of those problems is available to you. And if you’re the kind of learner who
benefits from hearing spoken words rather than just reading text, the audio podcasts are for you.
These MP3 files walk you through each chapter  of  the book, pointing out important details  and
providing further explanations of key concepts.

Is this book right for you? It is if you’re a science or engineering student and have encountered
vectors or tensors in one of your classes, but you’re not confident in your ability to apply them. In that
case, you should read the book, listen to the accompanying podcasts, and work through the examples
and problems before taking additional classes or a standardized exam in which vectors or tensors may
appear. Or perhaps you’re a graduate student struggling to make the transition from undergraduate
courses and textbooks to the more-advanced material you’re seeing in graduate school – this book
may help you make that step.

And if you’re neither an undergraduate nor a graduate student, but a curious young person or a
lifelong learner who wants to know more about vectors, tensors, or their applications in Mechanics,
Electromagnetics, and General Relativity, welcome aboard. I commend your initiative, and I hope this
book helps you in your journey.
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1

Vectors

1.1 Definitions (basic)

There are many ways to define a vector. For starters, here’s the most basic:

A vector is the mathematical representation of a physical entity that may be characterized by size
(or “magnitude”) and direction.

In keeping with this definition, speed (how fast an object is going) is not represented by a vector, but
velocity  (how fast  and in  which direction an object  is  going)  does qualify  as a  vector  quantity.
Another example of a vector quantity is force, which describes how strongly and in what direction
something is being pushed or pulled. But temperature, which has magnitude but no direction, is not a
vector quantity.

The word “vector” comes from the Latin vehere meaning “to carry;” it was first used by eighteenth-
century astronomers investigating the mechanism by which a planet is “carried” around the Sun.1 In
text, the vector nature of an object is often indicated by placing a small  arrow over the variable
representing the object (such as ), or by using a bold font (such as F), or by underlining (such as 

or  ). When you begin hand-writing equations involving vectors, it’s very important that you get into

the habit of denoting vectors using one of these techniques (or another one of your choosing). The
important thing is not how you denote vectors, it’s that you don’t simply write them the same way you
write non-vector quantities.

A vector is most commonly depicted graphically as a directed line segment or an arrow, as shown
in Figure 1.1(a). And as you’ll see later in this section, a vector may also be represented by an ordered
set of N numbers, where N is the number of dimensions in the space in which the vector resides.



Figure 1.1 Graphical depiction of a vector (a) and a vector field (b).

Of course, the true value of a vector comes from knowing what it represents. The vector in Figure
1.1(a), for example, may represent the velocity of the wind at some location, the acceleration of a
rocket, the force on a football, or any of the thousands of vector quantities that you encounter in the
world every day. Whatever else you may learn about vectors, you can be sure that every one of them
has two things: size and direction. The magnitude of a vector is usually indicated by the length of the
arrow, and it tells you the amount of the quantity represented by the vector. The scale is up to you (or
whoever’s drawing the vector), but once the scale has been established, all other vectors should be
drawn to the same scale. Once you know that scale, you can determine the magnitude of any vector
just by finding its length. The direction of the vector is usually given by indicating the angle between
the arrow and one or more specified directions (usually the “coordinate axes”), and it tells you which
way the vector is pointing.

So if vectors are characterized by their magnitude and direction, does that mean that two equally
long vectors pointing in the same direction could in fact be considered to be the same vector? In other
words, if you were to move the vector shown in Figure 1.1(a) to a different location without varying
its length or its pointing direction, would it still be the same vector? In some applications, the answer
is “yes,” and those vectors are called free vectors. You can move a free vector anywhere you’d like as
long as you don’t change its length or direction, and it remains the same vector. But in many physics
and engineering problems, you’ll be dealing with vectors that apply at a given location; such vectors
are called “bound” or “anchored” vectors, and you’re not allowed to relocate bound vectors as you
can free vectors.2 You may see the term “sliding” vectors used for vectors that are free to move along
their  length but  are not  free to  change length or  direction;  such vectors  are useful  for problems
involving torque and angular motion.

You can understand the usefulness of bound vectors if  you think about an application such as
representing the velocity of the wind at various points in the atmosphere. To do that, you could choose
to draw a bound vector at each point of interest, and each of those vectors would show the speed and
direction of the wind at that location (most people draw the vector with its tail – the end without the
arrow – at the point to which the vector is bound). A collection of such vectors is called a vector field;
an example is shown in Figure 1.1(b).

If you think about the ways in which you might represent a bound vector, you may realize that the
vector can be defined simply by specifying the start and end points of  the arrow. So in a three-
dimensional Cartesian coordinate system, you only need to know the values of x, y, and z for each end
of the vector, as shown in Figure 1.2(a) (you can read about vector representation in non-Cartesian
coordinate systems later in this chapter).

Now consider the special case in which the vector is  anchored to the origin of  the coordinate
system (that is, the end without the arrowhead is at the point of intersection of the coordinate axes, as
shown in  Figure  1.2(b).3 Such vectors  may be  completely  specified  simply  by  listing  the  three
numbers that represent the x-, y-, and z-coordinates of the vector’s end point. Hence a vector anchored
to  the  origin  and  stretching  five  units  along  the  x-axis  may  be  represented  as  (5,0,0).  In  this
representation, the values that represent the vector are called the “components” of the vector, and the
number of components it takes to define a vector is equal to the number of dimensions in the space in
which the vector exists. So in a two-dimensional space a vector may be represented by a pair of
numbers,  and  in  four-dimensional  spacetime vectors  may  appear  as  lists  of  four  numbers.  This
explains why a horizontal list of numbers is called a “row vector” and a vertical list of numbers is
called a “column vector” in computer science. The number of values in such vectors tells you how
many dimensions there are in the space in which the vector resides.



Figure 1.2 A vector in 3-D Cartesian coordinates.

To understand how vectors are different from other entities, it may help to consider the nature of
some things that are clearly not vectors. Think about the temperature in the room in which you’re
sitting – at each point in the room, the temperature has a value, which you can represent by a single
number. That value may well be different from the value at other locations, but at any given point the
temperature can be represented by a single number, the magnitude. Such magnitude-only quantities
have been called “scalars” ever since W.R. Hamilton referred to them as “all values contained on the
one scale of progression of numbers from negative to positive infinity.”4 Thus

A scalar  is  the mathematical  representation of  a physical  entity  that  may be characterized by
magnitude only.

Other examples of scalar quantities include mass, charge, energy, and speed (defined as the magnitude
of the velocity vector). It is worth noting that the change in temperature over a region of space does
have both magnitude and direction and may therefore be represented by a vector, so it’s possible to
produce vectors from groups of scalars. You can read about just such a vector (called the “gradient” of
a scalar field) in Chapter 2.

Since scalars can be represented by magnitude only (single numbers) and vectors by magnitude and
direction (three numbers in three-dimensional space), you might suspect that there are other entities
involving  magnitude and directions that  are  more complex  than vectors  (that  is,  requiring  more
numbers  than the number  of  spatial  dimensions).  Indeed  there  are,  and such  entities  are  called
“tensors.”5 You can read about tensors in the last three chapters of this book, but for now this simple
definition will suffice:

A tensor  is  the mathematical  representation of  a physical  entity that  may be characterized by
magnitude and multiple directions.

An example of a tensor is the inertia that relates the angular velocity of a rotating object to its angular
momentum. Since the angular velocity vector has a direction and the angular momentum vector has a
(potentially different) direction, the inertia tensor involves multiple directions.

And just as a scalar may be represented by a single number and a vector may be represented by a
sequence of three numbers in 3-dimensional space, a tensor may be represented by an array of 3R

numbers in 3-dimensional  space. In this expression, “R”  represents the rank of the tensor.  So in
3-dimensional space, a second-rank tensor is represented by 32 = 9 numbers. In N-dimensional space,
scalars still require only one number, vectors require N numbers, and tensors require NR numbers.



Recognizing scalars, vectors, and tensors is easy once you realize that a scalar can be represented
by a single number, a vector by an ordered set of numbers, and a tensor by an array of numbers. So in
three-dimensional space, they look like this:

Note that scalars require no subscripts, vectors require a single subscript, and tensors require two or
more subscripts – the tensor shown here is a tensor of rank 2, but you may also encounter higher-rank
tensors, as discussed in Chapter 5. A tensor of rank 3 may be represented by a three-dimensional array
of values.

With these basic definitions in hand, you’re ready to begin considering the ways in which vectors
can be put to use. Among the most useful of all vectors are the Cartesian unit vectors, which you can
read about in the next section.

1.2 Cartesian unit vectors

If you hope to use vectors to solve problems, it’s essential that you learn how to handle situations
involving more than one vector. The first step in that process is to understand the meaning of special
vectors called “unit vectors” that often serve as markers for various directions of interest (unit vectors
may also be called “versors”).

Figure 1.3 Unit vectors in 3-D Cartesian coordinates.

The first unit vectors you’re likely to encounter are the unit vectors , ,  (also called ) that

point in the direction of the x-, y-, and z-axes of the three-dimensional Cartesian coordinate system, as
shown in Figure 1.3. These vectors are called unit  vectors because their length (or magnitude) is
always exactly equal to unity, which is another name for “one.” One what? One of whatever units
you’re using for that axis.



You should note that the Cartesian unit vectors  can be drawn at any location, not just at the

origin of the coordinate system. This is illustrated in Figure 1.4. As long as you draw a vector of unit
length pointing in the same direction as the direction of the (increasing) x-axis, you’ve drawn the î
unit vector. So the Cartesian unit vectors show you the directions of the x, y, and z axes, not the
location of the origin.

As you’ll see in Chapter 2, unit vectors can be extremely helpful when doing certain operations
such as specifying the portion of a given vector pointing in a certain direction. That’s because unit
vectors don’t  have their  own magnitude to throw into the mix (actually, they do have their  own
magnitude, but it is always one).

So  when  you  see  an  expression  such  as  “5î,”  you  should  think  “5  units  along  the  positive
x-direction.” Likewise, –3ĵ refers to 3 units along the negative y-direction, and  indicates one unit
along the positive z-direction.

Of course, there are other coordinate systems in addition to the three perpendicular axes of the
Cartesian system, and unit  vectors  exist  in  those coordinate systems as well;  you can see some
examples in Section 1.5. One advantage of the Cartesian unit vectors is that they point in the same
direction no matter where you go; the x-, y-, and z-axes run in straight lines all the way out to infinity,
and the Cartesian unit vectors are parallel to the directions of those lines everywhere.

Figure 1.4 Cartesian unit vectors at an arbitrary point.

To  put  unit  vectors  such  as   to  work,  you  need  to  understand  the  concept  of  vector

components.  The next section shows you how to represent vectors using unit vectors and vector
components.

1.3 Vector components

The unit vectors described in the previous section are especially useful when they become part of the
“components” of a vector. And what are the components of a vector? Simply stated, they are the
pieces that can be used to make up the vector.

To understand vector components, think about the vector  shown in Figure 1.5. This is a bound
vector, anchored at the origin and extending to the point (x = 0, y = 3, z = 3) in a three-dimensional



(1.1)

Cartesian coordinate system. So if you consider the coordinate axes as representing the corner of a
room, this vector is embedded in the back wall (the yz plane).

Imagine you’re trying to get from the beginning of vector  to the end – the direct route would be
simply to move in the direction of  the vector.  But if  you were constrained to move only in the
directions of the axes, you could get from the origin to your destination by taking three (unit) steps
along the y-axis, then turning 90° to your left, and then taking three more (unit) steps in the direction
of the z-axis.

Figure 1.5 vector  and its components.

What does this little journey have to do with the components of a vector? Simply this: the lengths

of  the  components  of  vector   are  the  distances  you  traveled  in  the  directions  of  the  axes.

Specifically, in this case the magnitude of the y-component of vector  (written as A
y
) is just the

distance you traveled in the direction of the y-axis (3 units), and the magnitude of the z-component of

vector  (written as A
z
) is the distance you traveled in the direction of the z-axis (also 3 units). Since

you didn’t move at all in the direction of the x-axis, the magnitude of the x-component of vector 
(written as A

x
) is zero.

A very handy and compact way of writing a vector as a combination of vector components is this:

 = A
x
î + A

y
 ĵ + A

z
,

where the magnitudes of the vector components (A
x
, A

y
, and A

z
) tell you how many unit steps to take

in each direction (, , and ) to get from the beginning to the end of vector .6

When you read about vectors and vector components, you’re likely to run across statements such as
“The components of a vector are the projections of the vector onto the coordinate axes.” As you can
see in Chapter 4, exactly how those projections are made can have a significant influence on the
nature of  the  components  you get.  But  in  Cartesian  coordinate systems (and other  “orthogonal”
systems in  which the axes are perpendicular  to  one another),  the concept of  projection onto the
coordinate axes is unambiguous and may be very helpful in picturing the components of a vector.



(1.2)

Figure 1.6 Vector components as projections onto x-and y-axes.

To understand how this works, take a look at vector  and the light sources and shadows in Figure
1.6. As you can see in Figure 1.6(a), the direction of the light that produces the shadow on the x-axis
is parallel to the y-axis (actually antiparallel since it’s moving in the negative y-direction), which in
this case is the same as saying that the direction of the light is perpendicular to the x-axis.

Likewise, in Figure 1.6(b), the direction of the light that produces the shadow on the y-axis is
antiparallel to the x-axis, which is of course perpendicular to the y-axis. This may seem like a trivial
point,  but  when you encounter  non-orthogonal  coordinate  systems,  you’ll  find  that  the  direction
parallel to one axis is not necessarily perpendicular to another axis, which gives rise to an entirely
different type of vector component. This simple fact has profound implications for the behavior of
vectors and tensors for observers in different reference frames, as you’ll see in Chapters 4, 5, and 6.

No such issues arise in the two-dimensional Cartesian coordinate system shown in Figure 1.6, and

in this case the magnitudes of the components of vector  are easy to determine. If the angle between

vector  and the positive x-axis is θ, as shown in Figure 1.6a, it’s clear that the length of  can be
seen as the hypotenuse of a right triangle. The sides of that triangle along the x- and y-axes are the
components A

x
 and A

y
. Hence by simple trigonometry you can write:

A
x
 = | | cos(θ),

A
y
 = | |sin(θ),

where the vertical bars on each side of  signify the magnitude (length) of vector . Notice that so
long as you measure the angle θ from the positive x-axis in the direction toward the positive y-axis
(that  is,  counterclockwise in this  case),  these equations will  give the correct  sign for the x-  and
y-components no matter which quadrant the vector occupies.

For example, if vector  is a vector with a length of 7 meters pointing in a direction 210° counter-
clockwise from the +x-axis, the x- and y-components are given by Eq. 1.2 as



(1.3)

(1.4)

(1.5)

A
x
 = | | cos(θ) = 7m cos 210° = –6.1 m,

A
y
 = | | sin(θ) = 7m sin 210° = –3.5m.

As expected for a vector pointing down and to the left from the origin, both components are negative.
It’s equally straightforward to find the length and direction of a vector if you’re given the vector’s

Cartesian components. Since the vector forms the hypotenuse of a right triangle with sides A
x
 and A

y
,

the Pythagorean theorem tells you that the length of  must be

and from trigonometry

where θ is measured counter-clockwise from the positive x-axis in a right-handed coordinate system.

If you try this with the components of vector  from Eq. 1.3 and end up with a direction of 30° rather
than 210°, remember that unless you have a four-quadrant arctan function on your calculator, you
must add 180° to the angle whenever the denominator of the expression (A

x
 in this case) is negative.

Once you have a working understanding of unit vectors and vector components, you’re ready to do
basic vector operations. The entirety of Chapter 2 is devoted to such operations, but two of them are
needed for the remainder of this chapter. For that reason, you can read about vector addition and
multiplication by a scalar in the next section.

1.4 Vector addition and multiplication by a scalar

If you’ve read the previous section on vector components, you’ve already seen two vector operations
in action. Those two operations are the addition of vectors and multiplication of a vector by a scalar.
Both of these operations are used in the expansion of a vector in terms of vector components as in Eq.
1.1 from Section 1.3:

 = A
x
î + A

y
 ĵ + A

z
.

In each of these terms, the unit vector (î, ĵ, or ) is being multiplied by a scalar (A
x
, A

y
, or A

z
), and

you already know the effect of that: it produces a new vector, in the same direction as the unit vector,
but longer than unity by the value of the component (or shorter if the magnitude of the component is
between zero and one). So multiplying a vector by any positive scalar does not change the direction of

the vector, but only scales the length of the vector. Hence, 5 is a vector in exactly the same direction

as , but with length five , as shown in Figure 1.7(a). Likewise, multiplying  by (1/2) produces a

vector that points in the same direction as  but is only half as long. So the vector component A
x
î is a

vector in the î direction, but with length A
x
 units (since î has a length of one unit).

There is a caveat that goes with the “changes length, not direction” rule when multiplying a vector



by a scalar: if the scalar is negative, then the vector is reversed in direction in addition to being scaled

in length. Thus multiplying vector  by –2 produces the new vector –2, and that vector is twice as

long as , as shown in Figure 1.7(b).
The other operation going on in Eq. 1.1 is vector addition, and you already have an idea of what

that means if you recall Figure 1.5 and the process of getting from the beginning of vector  to the
end. In that process, the quantity A

y
 ĵ represented not only the number of steps you took, but also the

direction in which you took them. Likewise, the quantity A
z

 represented the number of steps you

took in a different direction. The fact that these two quantities include directional information means
that you cannot simply add them together algebraically; you must add them “as vectors.”

Figure 1.7 Multiplication of a vector by a scalar.

To  accomplish  vector  addition  graphically,  you  simply  imagine  moving  one  vector  (without
changing its length or direction) so that its tail is at the head of the other vector. The sum is then
determined by making a new vector that begins at the start of the first vector and terminates at the end
of the second vector. You can do this graphically, as in Figure 1.5(b), where the tail of vector A

z
 is

placed at the head of vector A
y
 ĵ, and the sum is the vector from the beginning of A

y
 ĵ to the end of A

z

.
This graphical “head-to-tail” approach to vector addition works for any vectors (and any number of

vectors),  not  just  two vectors that  are perpendicular to  one another  (as A
y
 ĵ  and A

z
 were).  An

example of this is shown in Figure 1.8. To graphically add the two vectors  and  in Figure 1.8(a),
you simply imagine moving one of the two vectors so that its tail is at the position of the other
vector’s head (it doesn’t matter which vector you choose to move; the result will be the same). This is

illustrated in Figure 1.8(b), in which vector  has been displaced so that its tail is at the head of

vector . The sum of these two vectors (called the “resultant” vector  =  + ) is the vector that

extends from the beginning of  to the end of .
Knowing how to add vectors graphically means you can always determine the sum of two or more

vectors simply using a ruler and a protractor; just draw the vectors head-to-tail  (being careful to
maintain each vector’s length and angle), sketch the resultant from the beginning of the first to the end
of the last,  and then measure the length (using the ruler)  and angle (using the protractor)  of the
resultant. This approach can be both tedious and inaccurate, so here’s an alternative approach that

uses the components of  each vector:  if  vector   is  the sum of  two vectors  and ,  then the
magnitude of the x-component of vector  (which is just C

x
) is the sum of the magnitudes of the

x-components of vectors  and  (that is, A
x
 + B

x
), and the magnitude of the y-component of vector



(1.6)

(1.7)

(1.8)

 (called C
y
) is the sum of the magnitudes of the y-components of vectors  and  (that is, A

y
 + B

y
).

Thus

Figure 1.8 Graphical addition of vectors.

C
x
 = A

x
 + B

x
 ,

C
y
 = A

y
 + B

y
.

The rationale for this is shown in Figure 1.9.
Once you have the components C

x
 and C

y
 of the resultant vector , you can find the magnitude and

direction of  using

and

To see how this works in practice, imagine that vector  in Figure 1.9 is given by  = 6î + ĵ and

vector  is given by  = –2î + 8 ĵ. To add these two vectors algebraically, you simply use Eqs. 1.6:



Figure 1.9 Component addition of vectors.

C
x
 = A

x
 + B

x
 = 6 + (–2) = 4,

C
y
 = A

y
 + B

y
 = 1 + 8 = 9,

so  = 4î + 9 ĵ. If you wish to know the magnitude of , you can just plug the components into Eq.
1.7 to get

And the angle that  makes with the positive x-axis is given by Eq. 1.8:

With the basic operations of vector addition and multiplication of a vector by a scalar in hand,
you’re ready to begin thinking about the more advanced uses of vectors. But you’re also ready to
attack a variety of problems involving vectors, and you can find a set of such problems at the end of
this chapter.7

1.5 Non-Cartesian unit vectors

The three straight, mutually perpendicular axes of the Cartesian coordinate system are immensely
useful for a variety of problems in physics and engineering. Some problems, however, are much
easier to solve in other coordinate systems, often because the axes of those systems more closely align
with the directions over which one or more of the parameters relevant to the problem remain constant
or vary in a predictable manner. The unit vectors of such non-Cartesian coordinate systems are the
subject of this section, and transformations between coordinate systems are discussed in Chapter 4.



As described earlier, it takes exactly N numbers to unambiguously represent any location in a space
of N dimensions, which means you have to specify three numbers (such as x, y, and z) to designate a
location in our Universe of three spatial dimensions. However, on the two-dimensional surface of the
Earth (ignoring height variation for the moment) it takes only two numbers (latitude and longitude, for
example) to designate a specific point. And one of the few benefits to living on a long, infinitely thin
island is that you can set up a rendezvous using only a single number to describe the location (“I’ll be
waiting for you at 3.75 kilometers”).

Of course, numbers define locations only after you’ve defined the coordinate system that you’re
using. For example, do you mean 3.75 kilometers from the east end of the island or from the west
end? In every space of 1, 2, 3, or more dimensions, you can devise an infinite number of coordinate
systems to specify locations in that space. In each of those coordinate systems, at each location there’s
one direction in which one of the coordinates is increasing the fastest, and if you lay a vector with
length of one unit in that direction, you’ve defined a coordinate unit vector for that system. So in the
Cartesian coordinate system, the î  unit  vector shows you the direction in which the x-coordinate
increases, the ĵ unit vector shows you the direction in which the y-coordinate increases, and the  unit
vector shows you the direction in which the z-coordinate increases. Other coordinate systems have
their own coordinate unit vectors, as well.

Consider  the two-dimensional  coordinate systems shown in  Figure 1.10.  In  a two-dimensional
space, you know that it takes two numbers to specify any location, and those numbers could be x and
y, defined along two straight axes that intersect at a right angle. The x value tells you how far you are
to the right of the y-axis (or to the left if the x value is negative), and the y value tells you how far you
are above the x-axis (or below if the y value is negative). But you could equally well specify any
location in this two-dimensional space by noting how far and in what direction you’ve moved from
the origin. In the standard version of these “polar” coordinates, the distance from the origin is called r
and the direction is specified by giving the angle θ measured counterclockwise from the positive
x-axis.

Figure 1.10 2-D rectangular (a) and polar (b) coordinates.

It’s easy enough to figure out one set of coordinates if you know the others; for example, if you
know the values of x and y, you can find r and θ using



(1.9)

(1.10)

(1.11)

Likewise, if you have the values of r and θ, you can find x and y using

x = r cos(θ)

y = r sin(θ).

For the point shown in Figure 1.10, if the values of x and y are 4 cm and 9 cm, then r has a value of
approximately 9.85 cm and θ has a value of 66.0°. Clearly, whether you write (x, y) = (4cm, 9cm) or
(r, θ) = (9.85 cm, 66.0°), you’re referring to the same location; it’s not the point that’s changed, it’s
only the point’s coordinates that are different.

And if you choose to use the polar coordinate system to represent the point, do unit vectors exist
that serve the same function as î and ĵ in Cartesian coordinates? They certainly do, and with a little
logic you can figure out which direction they must point. After all, you know that the unit vector î
shows you the direction of increasing x and the unit vector ĵ shows you the direction of increasing y,
but now you’re using r  and θ instead of x and y. So it seems reasonable that the unit vector  at any
location should point  in  the direction of  increasing r,  and the unit  vector   should point  in  the
direction of increasing θ. For the point shown in Figure 1.10, that means that  should point up and to
the right, in the direction of increasing r  if θ is held constant. At that same point,  should point up
and to the left, in the direction of increasing θ if r is held constant. These polar unit vectors are shown
for one point in Figure 1.10(b).

An important consequence of this definition is that the directions of  and  will be different at
different locations. They’ll always be perpendicular to one another, but they will not point in the same
directions as they do for the point in Figure 1.10. The dependence of the polar unit vectors on position
can be seen in the following relations:

 = cos(θ)î + sin(θ) ĵ

 = – sin(θ)î + cos(θ) ĵ.

So if θ = 0 (which means your location is on the +x-axis), then  = î and  = ĵ. But if θ = 90° (so your
location is on the +y-axis), then  = ĵ and  = –î.

Does this dependence on position mean that these unit vectors are not “real” vectors? That depends
on your definition of a real vector. If you define a vector as a quantity with magnitude and direction,
the polar unit vectors do meet your definition. But they do not meet the definition of free vectors
described in Section 1.1, since they may not be moved without changing their direction.

This means that if you express a vector in polar coordinates and then take the derivative of that
vector, you’ll have to account for the change in the unit vectors, as well. That’s one of the advantages
offered by Cartesian coordinates – the unit vectors do not change no matter where you go in the
space.

As you might expect, the situation is slightly more complicated for three-dimensional coordinate
systems. Whether you choose to use Cartesian or non-Cartesian coordinates, you’re going to need
three variables to represent all the possible locations in a three-dimensional space, and each of the
coordinates is going to come with its own unit  vector. The two most common three-dimensional
non-Cartesian coordinate systems are cylindrical and spherical coordinates, which you can see in
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Figures 1.11 and 1.12.
In cylindrical coordinates a point P is specified by r, Á, z, where r  (some-times called ρ) is the

perpendicular distance from the z-axis, Á is the angle measured from the x-axis to the projection of r
onto the xy plane, and z is the same as the z in Cartesian coordinates. Here’s how you find r, Á, and z
if you know x, y, and z:

Figure 1.11 Cylindrical coordinates.

Figure 1.12 Spherical coordinates.



(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

And if you have the values of r, Á, and z, you can find x, y, and z using

A vector at the point P is specified in cylindrical coordinates in terms of three mutually perpendicular
components with unit vectors perpendicular to the cylinder of radius r, perpendicular to the plane
through the z-axis at angle Á, and perpendicular to the xy plane at distance z. As in the Cartesian case,
each cylindrical coordinate unit vector points in the direction in which that parameter is increasing, so
 points in the direction of increasing r,  points in the direction of increasing Á, and ẑ points in the

direction of increasing z. The unit vectors (, , ẑ) form a right-handed set, so if you point the fingers
of your right hand along  and push it into  with your right palm, your right thumb will show you the
direction of ẑ.

The following equations relate the Cartesian to the cylindrical unit vectors:

In spherical coordinates a point P is specified by r, θ, Á where r  represents the distance from the
origin, θ is the angle measured from the z-axis toward the xy plane, and Á is the angle measured from
the x-axis (or xz plane) to the constant-Á plane containing point P. With the z-axis up, θ is sometimes
called the zenith angle and Á the azimuth angle. You can determine the spherical coordinates r, θ, and
Á, from x, y, and z using the following equations:

And you can find x, y, and z from r, θ, and Á using:

In spherical coordinates, a vector at the point P is specified in terms of three mutually perpendicular
components with unit  vectors perpendicular to the sphere of radius r,  perpendicular to the plane
through the z-axis at angle Á, and perpendicular to the cone of angle θ. The unit vectors (, , ) form
a right-handed set, and are related to the Cartesian unit vectors as follows:



You may be asking yourself “Do I really need all these different unit vectors?” Well, need may be a
bit strong, but your life will certainly be easier if you’re trying to describe motion along a line of
constant longitude on a spherical planet (the  direction) or the direction of a magnetic field around a
current-carrying wire (the  direction). You’ll find some examples of that in the problems at the end
of this chapter.

1.6 Basis vectors

If you think about the unit vectors î, ĵ, and  and vector components such as A
x
î, A

y
 ĵ, and A

z
, you

may realize that any vector in our three-dimensional Cartesian coordinate system can be made up of
three components,  each one telling  you how many steps  to  take in  the direction  of  one  of  the
coordinate axes. Since those steps may be large or small, in the positive or negative direction, you can
reach any point in the space containing these vectors. Little wonder, then, that î, ĵ, and  are one
example of “basis vectors” in this space; combined with appropriate magnitudes, they form the basis
of any vector in the space.

And you don’t need to use only these particular vectors to make up any vector in this space – you
can easily imagine using three vectors that are twice as long as the unit vectors î, ĵ, and , as shown in
Figure 1.13(a). Although the vector components would change if you switched to these longer basis
vectors, you’d have no trouble using them to make up any vector within the space. Specifically, if the
unit vectors were twice as long, the values of A

x
, A

y
, and A

z
 would have to be only half as big to reach

a given point in space.
You might even think of using three non-orthogonal, non-unit vectors such as the vectors 

1
, 

2
,

and 
3
 in Figure 1.13(b) as your basis vectors. Of course, if you were to select three coplanar vectors

(that is, vectors lying in the same plane), you’d quickly find that scaling and combining those vectors
allows you to reach any point within that plane, but all points outside the plane would be unreachable.
But as long as one of the three vectors is not coplanar with the other two, then appropriate scaling and
combining will get you to any point in the space, and the vectors 

1
, 

2
, and 

3
 form a perfectly

usable basis set (mathematicans say that they “span” the vector space).

Figure 1.13 Alternative basis vectors.

You can ensure that three vectors are not coplanar by requiring them to be “linearly independent,”
which means that no two of the vectors may be scaled and combined to give the third, and no two are
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colinear (that is, lying along the same line or parallel to one another). This is often stated as the
requirement that the only way to scale and combine the three vectors and get zero as the result is to
scale each of the vectors by zero. In other words, for three linearly independent vectors 

1
, 

2
, and 

3
,

the equation

A
1
 + B

2
 + C

3
 = 0

can only be true if A = B = C = 0.
So as long as you pick three linearly independent vectors, you have a viable set of basis vectors.

And if you choose three non-coplanar vectors 
1
, 

2
, and 

3
 of non-unit length, it’s quite simple to

form unit vectors from these vectors. Since dividing a vector by a positive scalar changes its length
but not its direction, you simply divide each vector by its magnitude:

The concepts described in this section may be used to construct an infinite number of bases, but the
most common are the “orthonormal” bases such as î, ĵ, and . These bases are called “ortho” because
they’re orthogonal (perpendicular to one another) and “normal” because they are normalized to a
magnitude of one. Orthonormal bases will get you through the majority of problems you’re likely to
face.

One last fact about basis vectors in various coordinate systems will serve you very well if you study
physics  and  engineering  beyond  the  basic  level,  especially  if  your  studies  include  the  tensors
discussed in Chapters 4 through 6. That fact is this: basis vectors that point along the axes of one
coordinate  system  may  be  described  in  another  coordinate  system  using partial  derivatives.8

Specifically,  imagine that  you’re  converting from spherical  to  rectangular  coordinates.  The basis
vector along the original spherical (r) axis can be written in the Cartesian (x, y, and z) system as

Likewise, the 
θ
 and 

Á
 basis vectors can be written as

Notice that these basis vectors are not all unit vectors (because their magnitudes are not all equal to
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one), nor do they all have the same dimensions (
r
 is dimensionless, but 

θ
 and 

Á
 have dimensions

of length). Neither of these characteristics disqualifies these as basis vectors, and you can always turn
them into unit vectors by dividing by their magnitudes (take a look at the problems at the end of this
chapter and their on-line solutions if you want to see how this works).

In general, if the coordinates of the original system are called x
1
, x

2
, and x

3
 (these were r, θ, and Á

in the example just discussed), and the coordinates of the new system are called x′
1
, x′

2
, and x′

3
 (these

were x, y, and z in the example), then the basis vectors along the original coordinate axes can be
written in the new system as

In  other  words,  the  partial  derivatives   and  are  the components  of  the  first

original (unprimed) basis vector expressed in the new (primed) coordinate system. For this reason,
you’ll find that some authors define basis vectors in terms of partial derivatives.

These  relationships  will  prove  to  be  extremely  valuable  in  the  study  of  coordinate-system
transformation and tensor analysis, so file them away if your studies include those topics.

1.7 Chapter 1 problems

1.1 (a) If | | = 18 m and  points along the negative x-axis, what are B
x
 and B

y
?

(b) If C
x
 = –3 m/s and C

y
 = 5 m/s, find the magnitude of  and the angle that  makes with the

positive x-axis.

1.2 Vector  has magnitude of 11 m/s2 and makes an angle of 65 degrees with the positive x-axis, and

vector  has Cartesian components B
x
 =4 m/s2 and B

y
 = – 3m/s2. If vector  =  + ,

(a) Find the x- and y-components of ;
(b) What are the magnitude and direction of ?

1.3 Imagine that the y-axis points north and the x-axis points east.
(a) If you travel a distance r  = 22 km in a straight line from the origin in a direction 35 degrees

south of west, what is your position in Cartesian (x, y) coordinates?
(b) If you travel 6 miles due south from the origin and then turn west and travel 2 miles, how far

from the origin and in what direction is your final position?
1.4 What are the x- and y-components of the polar unit vectors  and  when

(a) θ = 180 degrees?
(b) θ = 45 degrees?
(c) θ = 215 degrees?

1.5 Cylindrical coordinates
(a) If r = 2 meters, Á = 35 degrees, and z = 1 meter, what are x, y, and z?
(b) If (x, y, z) = (3, 2, 4) meters, what are (r, Á, z)?



1.6 (a) In cylindrical coordinates, show that  points along the x-axis if Á = 0.
(b) In what direction is  if Á = 90 degrees?

1.7 (a) In spherical coordinates, find x, y, and z if r = 25 meters, θ = 35 degrees, and Á= 110 degrees.
(b) Find (r, θ, Á) if (x, y, z) = (8, 10, 15) meters.

1.8 (a) For spherical coordinates, show that  points along the negative z-axis if θ = 90 degrees.
(b) If Á also equals 90 degrees, in what direction are  and ?

1.9 As you can read in Chapter 3, the magnetic field around a long, straight wire carrying a steady
current I is given in spherical coordinates by the expression , where µ

0
 is a constant and

R is the perpendicular distance from the wire to the observation point. Find an expression for  in
Cartesian coordinates.

1.10 If 
1
 = 5î – 3 ĵ + 2 , 

2
 = ĵ – 3 , and 

3
 = 2î + ĵ – 4 , what are the unit vectors ê

1
, ê

2
, and ê

3
?

1 The Oxford English Dictionary. 2nd ed. 1989.
2 Mathematicians don’t have much use for bound vectors, since the mathematical definition of a vector deals with how it
transforms rather than where it’s located.
3 The vector shown in Figure 1.2 (a) can be shifted to this location by subtracting x

start
, y

start
, and z

start
 from the values at each

end.
4 W.R. Hamilton, Phil. Mag. XXIX, 26.
5 As you can learn in the later portions of this book, scalars and vectors also belong to the class of objects called tensors but
have lower rank, so in this section the word “tensors” refers to higher-rank tensors.
6 Some authors refer to the magnitudes A

x
, A

y
, and A

z
 as the “components of ,” while others consider the components to be

A
x
î, A

y
 ĵ, and A

z
. Just remember that A

x
, A

y
, and A

z
 are scalars, but A

x
î, A

y
 ĵ, and A

z
 are vectors.

7 Remember that full solutions are available on the book’s website.
8 If you’re not familiar with partial derivatives or need a refresher, you’ll find one in the next chapter.
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2

Vector operations

If you were tracking the main ideas of Chapter 1, you should realize that vectors are representations of
physical  quantities  –  they’re  mathematical  tools  that  help  you visualize  and describe a  physical
situation. In this chapter, you can read about a variety of ways to use those tools to solve problems.
You’ve already seen how to add vectors and how to multiply vectors by a scalar (and why such
operations are useful); this chapter contains many other “vector operations” through which you can
combine and manipulate vectors. Some of these operations are simple and some are more complex,
but each will prove useful in solving problems in physics and engineering. The first section of this
chapter explains the simplest form of vector multiplication: the scalar product.

2.1 Scalar product

Why is it worth your time to understand the form of vector multiplication called the scalar or “dot”
product? For one thing, forming the dot product between two vectors is very useful when you’re
trying to find the projection of one vector onto another. And why might you want to do that? Well,
you may be interested in knowing how much work is done by a force acting on an object. The first
instinct of many students is to think of work as “force times distance” (which is a reasonable starting
point). But if you’ve ever taken a course that went a bit deeper than the introductory level, you may
remember that the definition of work as force times distance applies only to the special case in which
the force points in exactly the same direction as the displacement of the object. In the more general
case in which the force acts at some angle to the direction of the displacement, you have to find the
component of the force along the displacement. That’s one example of exactly what the dot product
can do for you, and you’ll find more in the problems at the end of this chapter.

How do you go about computing the dot product between two vectors? Well, if  you know the

Cartesian components of each vector (call the vectors  and ), you can use

Or if you know the angle θ between the vectors,

Where  and  represent the magnitude (length) of the vectors  and .1 Note that the dot product
between two vectors gives a scalar result (just a single value, no direction).
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To grasp the physical significance of the dot product, consider vectors  and  which differ in

direction by angle θ, as shown in Figure 2.1a. For these vectors, the projection of  onto the direction

of  is  cos(θ), as shown in Figure 2.1b. Multiplying this projection by the length of  gives 

cos(θ). Thus the dot product  ◦  represents the projection of  onto the direction of  multiplied

by the length of . The scalar result of this operation is exactly the same as the result of finding the

projection of  onto the direction of  and then multiplying that value by the length of . Hence the
order of the two vectors in the dot product is irrelevant;  gives the same result as .

The scalar product can be particularly useful when one of the vectors in the product is a unit vector.
That’s because the length of a unit vector is by definition equal to one, so a scalar product such as

 finds the projection of vector  onto the direction of  (the z-direction) multiplied by the
magnitude of  (which is one). Thus to find the component of any vector in a given direction, you can
simply form the dot product between that vector and the unit vector in the desired direction. It’s quite

likely you’ll come across problems in physics and engineering in which you have a vector () and
you wish to know the component of that vector that’s perpendicular to a specified surface; if you
know  the  unit  normal  vector   for  the  surface,  the  scalar  product   gives  you  that

perpendicular component of .

Figure 2.1 Two vectors and their scalar product.

The scalar product is also useful in finding the angle between two vectors. To understand how that
works, consider the two expressions for the dot product given in Eqs. 2.1 and 2.2. Since

then dividing both sides by the product of the magnitudes of  and  gives

or

So if you wish to find the angle between two vectors  and  you

can use Eq. 2.4 to find
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One final note about the scalar product: any unit vector dotted with itself gives a result of 1 (since,
for  example,   and  the  dot  product  between  two  different
orthogonal  unit  vectors  gives  a  result  of  zero  (since,  for  example,

2.2 Cross product

Another way to multiply two vectors is to form the “cross product” between them. Unlike the dot
product, which gives a scalar result, the cross product results in another vector. Why bother learning
this form of vector multiplication? One reason is that the cross product is just what you need when
you’re trying to find the result of certain physical processes, such as applying a force at the end of a
lever arm or firing a charged particle into a magnetic field.

Computing the cross product between two vectors is only slightly more complicated than finding
the dot product. If you know the Cartesian components of both vectors, the cross product is given by

which can be written as

If you haven’t seen determinants before and you need some help getting from Eq. 2.6 to Eq. 2.5, you
can find an explanation of how this works on the book’s website.

The direction of the vector formed by the cross product of  and  perpendicular to both  and 

(that is, perpendicular to the plane containing both  and ), as shown in Figure 2.2. Of course, there
are two directions perpendicular to this plane, so how do you know which one corresponds to the

direction of  × ? The answer is provided by the “right-hand rule,”  which you can invoke by
opening your right hand and making your thumb perpendicular to the direction of your fingers in the

plane of your palm. Now imagine using your right palm and fingers to push the first vector (  in this

case) into the direction of the second vector ( in this case) through the smallest angle. As you push,
your thumb shows you the direction of the cross product.2

A very important difference between the dot product and the cross product is that the order of the
vectors is irrelevant for the dot product but matters greatly for the cross product. You can see this by
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imagining the cross product  ×  in Figure 2.2. In order to push vector  into vector  with your
right palm, you’d have to turn your hand upside-down (that is, with your thumb pointing down). And

since your thumb shows you the direction of the cross product, you can see that  ×  points in the

opposite direction from  × . That means that since the negative of a vector is just a vector of the
same magnitude in the opposite direction. A quick method of computing the magnitude of the cross
product is to use

Figure 2.2 Direction of the cross product  × .

Figure 2.3 The cross product as area.

where  is the magnitude of ,  is the magnitude of , and θ is the angle between  and .3

One way to picture the length and direction of the cross product is illustrated in Figure 2.3. Just as
the dot  product  involves the projection of one vector  onto another,  the cross product  also has a
geometrical interpretation. In this case, the magnitude of the cross product between two vectors is
proportional to the area of the parallelogram formed with those two vectors as adjacent sides. As you
may recall, the area of a parallelogram is just its base times its height, and in this case the height of
the  parallelogram  is   sin(θ)  and  the  length  of  the  base  is  .  That  makes  the  area  of  the
parallelogram equal to  sin(θ), exactly as given in Eq. 2.8.

So if the angle between two vectors  and  is zero or 180° (that is, if  and  are parallel or

antiparallel), the cross product between them is zero. And as the angle between  and  approaches
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90° or 270°, the magnitude of the cross product increases, reaching a maximum value of   when
the vectors are perpendicular.

Using the definition of the cross product and the right-hand rule, you should be able to convince
yourself that the following relations are true:

Applying  these  relations  term-by-term  to  the  product  of   and

 should help you understand where Eqs. 2.6 and 2.5 come from (and if you

need some help making that work out, there’s a problem on this at the end of this chapter, with the full
solution on the book’s website).

Applications of the cross product include torque problems (in which   and magnetic

force  problems  (in  which   you  can  find  examples  of  these  in  the  chapter-end

problems.

2.3 Triple scalar product

Once you understand the dot product and cross product described in the previous two sections, you
may be wondering if  it’s possible to combine these two vector operations.  Happily, it’s not only
possible, it’s actually useful to do so. After all, you can define all the mathematical operations you’d
like, but unless those operations result in something that you can apply to solve problems, you’d have
to leave them in  the “curiosity”  file.  You’ve seen how the dot  product  finds employment  when
projections of vectors onto specified directions are needed and when work is to be calculated, and
how the cross product can be called into action when torques and magnetic forces are at play. But
does it make sense to combine the dot and cross product operations in a manner such as ?

Yes it does.4 This is called the “triple scalar product” or “scalar triple product” and it has several
useful applications.

The mathematics of this operation are straightforward; you know that

and from Eq. 2.1 you also know that

so combining the dot and cross product gives
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A handy way to write this is

One geometrical  interpretation of  the triple scalar product  can be understood with  the help of

Figure 2.4. In this figure, vectors , , and  represent the sides of a parallelepiped. The area of the

base of this parallelepiped is | × |, as in Figure 2.3, and its height is equal to || cos(Á), where Á is

the angle between  and the direction of  × . That means that the volume of the parallelepiped

(the height times the area of the base) must be || cos(Á)(|  × |). Writing this as | ||  × | cos(Á)
should help you see that this has the same form as the definition of the dot product in Eq. 2.2 and is
therefore just .

Figure 2.4 The triple scalar product as volume.

Hence the triple scalar product  may be interpreted as the volume of the parallelepiped

formed by vectors , , and . You should note that the triple product will give a positive result so

long as the vectors , , and  form a right-handed system (that is, pushing  into  with the palm

of your right hand gives a direction onto which  projects in a positive sense (likewise for pushing 

into  and pushing  into ).
Seeing the relationship between the triple scalar product of three vectors and the volume formed by

those vectors makes it  easy to understand why the triple scalar product may be used as a test to
determine whether three vectors are coplanar (that is, whether all three lie in the same plane). Just

imagine how the parallelepiped in Figure 2.4 would look if vectors , , and  were all in the same

plane. In that case, the height of the parallelepiped would be zero and the projection of  onto the

direction of  ×  would be zero, which means the triple product  would have to be

zero. Stated another way, if the projection of  onto the direction of  ×  is not zero, then  cannot

lie in the same plane as  and . Thus

is both a necessary and a sufficient condition for vectors , , and  to be coplanar.

Equating  to the volume of the parallelepiped formed by vectors , , and  should
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also help you see that any cyclic permutation of the vectors (such as  or 

gives the same result for the triple scalar product, since the volume of the parallelepiped is the same in
each of these cases. Some authors describe this as the ability to interchange the dot and the cross
without affecting the result (since  is the same as .

One application in which the triple scalar product  finds use is the determination of reciprocal
vectors,  as  explained  in  the  sections  in  Chapter  4 dealing  with  covariant  and  contravariant
components of vectors.

2.4 Triple vector product

The triple scalar product described in the previous section is not the only useful way to multiply three

vectors. An operation such as  × (  × ) (called the “triple vector product”) comes in very handy
when you’re dealing with certain problems involving angular momentum and centripetal acceleration.
Unlike the triple scalar product, which produces a scalar result (since the second operation is a dot
product), the triple vector product yields a vector result (since both operations are cross products).

You should note that  × (  × ) is not the same as ( × ) × ; the location of the parentheses
matters greatly in the triple vector product. The triple vector product is somewhat tedious to calculate
by brute force, but thankfully a simplified expression exists:

After all the previous discussion of the various ways in which vectors can be multiplied, you can be
forgiven for thinking that the right side of this equation looks a bit strange, with no circle or cross

between  and  or between  and . Just remember that  and  are scalars,

so the expressions in parentheses in Eq. 2.14 are simply scalar multipliers of vectors  and . Does

this mean that the result of the operation  × (  × ) is a vector that is some linear combination of
the second and third vectors in the triple product? That’s exactly what it means, as you can see by
considering Figure 2.5.

In  this figure,  you can see the vector   ×  pointing straight  up, perpendicular  to the plane

containing vectors  and . Now imagine forming the cross product of vector  with vector  × 

by pushing  into the direction of  ×  with the palm of your right hand. The result  of  this

operation,  labelled  vector   ×  (  ×  ),  is  back in  the plane containing  vectors   and .  To

understand why this is true, consider the fact that the vector that results from the operation  × 

must be perpendicular to the plane containing  and . If you now cross  into that vector, the

resulting vector must be perpendicular to both  and to (  × ), which puts it back in the plane

containing vectors  and . And if the vector result of the operation  × (  × ) is in the same

plane as vectors  and , then it must be a linear combination of those two vectors.
You can remember Eq. 2.14 as the “BAC minus CAB” rule so long as you remember to write the

members of the triple product in the correct sequence (, , ) with the parentheses around the last
two vectors. To see where this comes from, you can simply use the definition of the cross product
(Eq. 2.6) to write
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Figure 2.5 Vectors involved in the triple vector product  × (  × ).

And from Equation 2.5 you know that

Substituting these terms into Eq. 2.15 gives

Multiplying this out looks ugly at first:

But a little rearranging gives

which still isn’t pretty, but it does hold some promise. That promise can be realized by adding nothing
to each row of Eq. 2.19. Nothing, that is, in the following form:



These additions make Eq. 2.19 a good deal more friendly:

Or

But  is just the vector  is the vector , and the other two

terms fit the definition of dot products (Eq. 2.1). Thus

2.5 Partial derivatives

Once you understand the basic vector operations of dot, cross, and triple products, it’s a small step to
more advanced vector operations such as gradient, divergence, curl, and the Laplacian. But these are
differential vector operations, so before you can make that step, it’s important for you to understand
the difference between ordinary derivatives and partial derivatives. This is worth your time and effort
because  differential  vector  operations  have  many  applications  in  diverse  areas  of  physics  and
engineering.

You probably first encountered ordinary derivatives when you learned how to find the slope of a
line  or how to determine the speed of an object given its position as a function of time

.  Happily,  partial  derivatives  are  based  on  the  same  general  concepts  as  ordinary

derivatives, but extend those concepts to functions of multiple variables. And you should never have
any doubt as to which kind of derivative you’re dealing with, because ordinary derivatives are written
as  or  and partial derivatives are written as  or .

As you may recall, ordinary derivatives come about when you’re interested in the change of one
variable with respect to another. For example, you may encounter a variable y which is a function of
another variable x (which means that the value of y depends on the value of x). This can be written as
y = f (x), where y is called the “dependent variable” and x is called the “independent variable.” The
ordinary derivative of y with respect to x (written as ) tells you how much the value of y changes for

a small  change in the variable x.  If  you make a graph with y on the vertical axis and x on the



horizontal axis, as in Figure 2.6, then the slope of the line between any two points (x
1
, y

1
) and (x

2
, y

2
)

on the graph is simply . That’s because the slope is defined as “the rise over the run,” and

since the rise is y for a run x, the slope of the line between any two points must be .

But if you look closely at the expanded region of Figure 2.6, you’ll notice that the graph of y versus
x has a slight curve between points (x

1
, y

1
) and (x

2
, y

2
), so the slope is actually changing in that

interval.  Thus the ratio  can’t  represent the slope everywhere between those points. Instead, it

represents the average slope over this interval, as suggested by the dashed line between points (x
1
, y

1
)

and (x
2
, y

2
) (which by the mean value theorem does equal the slope somewhere in between these two

points, but not necessarily in the middle). To represent the slope at a given point on the curve more
precisely, all you have to do is to allow the “run” ∆x to become very small. As ∆x approaches zero,
the difference between the dashed line and the curved line in Figure 2.6 becomes negligible. If you
write the incremental run as dx and the (also incremental) rise as dy, then the slope at any point on the
line can be written as . This is the reasoning that equates the derivative of a function to the slope of

the graph of that function.
Now imagine that you have a variable z that depends on two other variables, say x and y, so z = f (x,

y). One way to picture such a case is to visualize a surface in three-dimensional space, as in Figure
2.7. The height of this surface above the xy plane is z, which gets higher and lower at different values
of x and y. And since the height z may change at a different rate in different directions, a single
derivative will not generally be sufficient to characterize the total change in height as you move from
one point to another. You can see the height z changing at different rates in Figure 2.8; at the location
shown in the figure, the slope of the surface is quite steep if you move in the direction of increasing y
(while remaining at the same value of x), but the slope is almost zero if you move in the direction of
increasing x (while holding your y-value constant).

Figure 2.6 Slope of the line y = f (x).
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Figure 2.7 Surface in 3-D space (z = f (x, y)).

Figure 2.8 Surface in 3-D space (z = f (x, y)).

This illustrates the usefulness of partial derivatives, which are derivatives formed by allowing one
independent  variable  (such as  x or  y in  Figure  2.8)  to  change while  holding  other  independent
variables constant. So the partial derivative  represents the slope of the surface at a given location if

you move only along the x-direction from that location, and the partial derivative  represents the

slope if you move only along the y-direction. You may find these partial derivatives written as 

and , where the variables that appear in the subscript after the vertical line are held constant.

As you’ve probably already guessed, the change in the value of z as either x or y changes is easily
found  using  partial  derivatives.  If  only  x  changes,  ,  and  if  only  y  changes,  then

. And if both x and y change, then

The process of taking a partial derivative of a given function is quite straightforward; if you know
how to take ordinary derivatives, you already have the tools you’ll need to take partial derivatives.
Simply treat all variables (with the exception of the one variable over which the derivative is being
taken) as constants, and take the derivative as you normally would. This is best explained using an
example.

Consider a function such as z = f (x, y) = 6x2 y +3x +5xy +10. The terms of this polynomial are
sufficiently complex to make its shape less than obvious, which is where a computational tool such as
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Mathematica or MATLAB can be very handy. Writing a few lines of code will help you understand
how this function behaves, as you can see in Figure 2.9. Even a quick look at this warped little plane
makes it clear that the slope of the function is quite different in the x- and y-directions, and the slope
is also highly dependent on the location on the surface. In a 3D plot such as Figure 2.9, it’s always
easiest to see the slope at the edges of the plotted region, so take a look at  the slope along the
x-direction for a y value of –3. As x varies from –3 to +3 (while y is held constant at –3), the slope
starts off positive and gets less steep as you move in the +x-direction from x = –3 toward x = 0. The
slope then becomes zero somewhere near x = 0, then turns negative and becomes increasingly steep as
x approaches +3. Doing the same quick analysis along the y-direction while holding x constant at –3
indicates that the slope is approximately constant and positive as y varies from –3 to +3.

Figure 2.9 Plot of the function z = f (x, y) = 6x2 y + 3x + 5xy + 10 for –3 ≤ x ≤ 3 and –3 ≤ x ≤ 3.

Now that you have some idea of what to expect, you can take the partial derivative of z = 6x2 y + 3x
+ 5xy + 10 with respect to x simply by treating the variable y as a constant:

Likewise, the partial derivative with respect to y is found by holding x constant:

Before  interpreting  these derivative  results,  you  may want  to  take a  moment  to  make sure  you
understand  why  the  process  of  taking  the  derivative  of  a  function  involves bringing  down  the
exponent of the relevant variable and then subtracting one from that exponent (so  = 2x, for

example).  The answer is  quite straightforward.  Since the derivative represents the change in the
function z as the independent variable x changes over a very small run, the formal definition for this
derivative can be written as
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So in the case of z = x2, you have

If you think about the term in the numerator, you’ll see that this is x2 +2x∆x + (∆x)2 – x2, which is just
2x∆x + (∆x)2, and dividing this by ∆x gives 2x + ∆x. But as ∆x approaches zero, the ∆x term becomes
negligible, and this approaches 2x. So where did the 2 come from? It’s just the number of cross terms
(that is, terms with the product of x and ∆x) that result from raising (x + ∆x) to the second power. Had
you been taking the derivative of x3 with respect to x, you would have had three such cross terms. So
you bring down the exponent because that’s the number of cross terms that result from taking x + ∆x
to that power. And why do you then subtract one from the exponent? Simply because when you take
the change in the function z (that is, (x + ∆x)2 – x2), the highest-power terms (x2 in this case) cancel,
leaving only terms of one lower power (x1 in this case). It’s a bit laborious, but the same analysis can
be applied to show that  and that .

So that’s why you bring down the exponent and subtract one, but what does it mean when you take
derivatives and get answers such as Eqs. 2.21 and 2.22? It simply means that the slope varies with
direction and location on the surface z. So, for example, the slope along the x-direction at location
(–3,2) is 12xy + 3 + 5y = 12(–3)(2) + 3 + 5(2) = –59, while at the same location the slope along the
y-direction is 6x2 + 5x = 6[(–3)2]+ 5(–3) = 39.

You can do a rough check on your calculated partial derivative in Eq. 2.21 by inserting the value of
–3 for y to see that the slope of z at this value of y is 12(x)(–3) + 3 + 5(–3) = –36x – 12. Thus as you
move in the x-direction at y = –3, the slope should vary from +96 at x = –3, to zero at x = –1/3, and
down to –120 at x = +3. This is consistent with the quick analysis of the slope after Figure 2.9.

Likewise, Eq. 2.22 tells you that the slope of z in the y-direction at x = –3 is constant and positive,
also consistent with the behavior expected from a quick analysis of the shape of the function z.

And  just  as  you  can  take  “higher  order”  ordinary  derivatives  such  as  and

, you can also take higher-order partial derivatives. So for example  tells

you the change in the x-direction slope of z as you move along the x-direction, and 

tells you the change in the y-direction slope as you move along the y-direction.
It’s important for you to realize that an expression such as  is the derivative of a derivative,

which is not the same as , which is the square of a first derivative. That’s easy to verify for the

example given above, in which  =12xy + 3 + 5y. In that case,  = 12y, whereas  = (12xy + 3

+ 5y)2. By convention the order of the derivative is always written between the “d” or “∂” and the
function, as d2z or ∂2z, so be sure to look carefully at the location of superscripts when you’re dealing
with derivatives.

You may also have occasion to use “mixed” partial derivatives such as . If you’ve

been tracking the discussion of partial derivatives as slopes of functions in various directions, you can
probably  guess  that   represents  the  change  in  the  y-direction  slope  as  you move  along  the

x-direction, and  represents the change in the x-direction slope as you move along the y-direction.

Thankfully, for well-behaved5 functions these expressions are interchangeable, so you can take the
partial  derivatives  in  either  order.  You  can  easily  verify  this  for  the  example  given  above  by
comparing  of Eq. 2.21  of Eq. 2.22 (the result is 12x + 5 in both cases).
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There’s another widely used aspect of partial derivatives you should make sure you understand, and
that’s the chain rule. Up to this point, we’ve been dealing with functions such as z = f (x, y) without
considering the fact that the variables x and y may themselves be functions of other variables. It’s
common to call these other variables u and υ and to allow both x and y to depend on one or both of u
and υ. You may encounter situations in which you know the variation in u and υ, and you want to
know how much your function z will change due to those changes. In such cases, the chain rule for
partial derivatives gives you the answer:

and

The chain rule is a concise expression of the fact that z depends on both x and y, and since both x
and y may change if u changes, the change in z with respect to u is the sum of two terms. The first
term is the change in x due to the change in u  times the change in z due to that change in x ,

and the second term is the change in y due to the change in u  times the change in z due to that

change in y . Adding those two terms together gives you Eq. 2.25, and the same reasoning applied

to changes in z caused by changes in υ leads to Eq. 2.26.

2.6 Vectors as derivatives

In many texts dealing with vectors and tensors, you’ll find that vectors are equated to “directional
derivatives” and that partial derivatives such as  and  are referred to as basis vectors along the

coordinate axes.
To understand this correspondence between vectors and derivatives, consider a path such as that

shown in Figure 2.10. You can think of this as a path along which you’re travelling with velocity 
for simplicity imagine that this path lies in the xy plane. Now imagine that you’re keeping track of
time as you move, so you assign a value (such as the t values shown in the figure) to each point on the
curve.  By  marking  the  curve  with  values,  you  have  “parameterized”  the  curve  (with  t  as  your
parameter).6 Note that  there need not  be equal  distance along the curve between your parameter
values (there definitely won’t be if you choose time as your parameter and then change your speed as
you move; the reckless driver depicted in Figure 2.10 has apparently sped up in the turn).
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Figure 2.10 Parameterized curve and tangent vectors.

As a final bit of visualization, imagine that this curve lies in a region in which the air temperature is
different at each location. So as you move along the curve, you will experience the spatial change in
air  temperature  as  a  temporal  change  (in  other  words,  you’ll  be  able  to  make  a  graph  of  air
temperature vs. time). Of course, how fast the air temperature changes for you will depend both on the
distance between measurable changes in the temperature in the direction you’re heading and on your
speed (how fast you’re covering that distance).

With this scenario in mind, the concept of a directional derivative is easy to understand. If the
function f (x, y) describes the temperature at each x, y location, the directional derivative  tells

you how much the value of the function f changes as you move a small distance along the curve (in
time dt). But recall the chain rule:

This  equation  says  simply  that  the  directional  derivative  of  the  function  f  along  the  curve
parameterized by t (that is, ) equals the rate of change of the x-coordinate  as you move along

the curve times the rate of change of the temperature function with x  plus the rate of change of

the y-coordinate  as you move along the curve times the rate of  change of  the temperature

function with y  .  But   is  just  υ
x
,  the x-component  of  your  velocity,  and  is  υ

y
,  the

y-component of  your velocity. And since you know that  your velocity is a vector that is  always
tangent to the path on which you’re moving, you can consider the directional derivative  to be a

vector with direction tangent to the curve and with length equal to the rate of change of f with t (that
is, the time rate of change of the air temperature).

Now here’s the important  concept:  since f  can be any function,  you can write Eq. 2.27 as an
“operator” equation (that is, an equation waiting to be fed a function on which it can operate):

The trick to seeing the connection between derivatives and vectors is to view this equation as a vector
equation in which

Vector = x-component · x basis vector + y-component · y basis vector.
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Comparing this to Eq. 2.28, you should be able to see that the directional derivative operator 

represents the tangent vector to the curve, the  and  terms represent the x- and y-components of

that vector, and the operators  and  represent the basis vectors in the direction of the x and y

coordinate axes.
Of course, it’s not just air temperature that can be represented by f (x, y); this function can represent

anything that is spatially distributed in the region around your curve. So f (x, y) could represent the
height of the road, the quality of the scenery, or any other quantity that varies in the vicinity of your
curve. Likewise, you could have chosen to parameterize your path with markers other than time; had
you assigned a value s or λ to each point on your path, the directional derivative  or  would still

represent the tangent vector to the curve, or  would still represent the x-component of that vector,

and  or  would still represent the y-component of that vector.

If you plan to proceed on to the study of tensors, you will find that understanding this relationship
between basis vectors along the coordinate axes and partial derivatives is of significant value.

2.7 Nabla – the del operator

The partial  derivatives  discussed  in  the  previous  section  can  be  put  to  use  in  a  wide  range of
problems, and when you come across such problems you may find that they involve equations that
contain  an inverted upper case delta wearing a  vector  hat  .  This  symbol  represents  a  vector

differential operator called “nabla” or “del,” and its presence instructs you to take derivatives of the
quantity on which the operator is acting. The exact form of those derivatives depends on the symbol
following  the  del  operator,  with   signifying  gradient,   signifying  divergence,  

indicating curl,  and ∇2()  signifying the Laplacian. Each of  these operations is discussed in later
sections; for now we’ll just consider what an operator is and how the del operator can be written in
Cartesian coordinates.

Like all good mathematical operators, del is an action waiting to happen. Just as  tells you to take
the square root of anything that appears under its roof,  is an instruction to take derivatives in three
directions. Specifically, in Cartesian coordinates

where î, ĵ, and  are the unit vectors in the direction of the Cartesian coordinates x, y, and z.
This  expression  may appear strange,  since in  this  form it’s  lacking  anything on  which  it  can

operate. However, if you follow the del with a scalar or vector field, you can extract information
about how those fields change in space. In this context, “field” refers to an array or collection of
values defined at  various locations.  A scalar  field is  specified entirely by its  magnitude at these
locations: examples of scalar fields include the air temperature in a room and the height of terrain
above sea level. A vector field is specified by both magnitude and direction at various locations:
examples  include  electric,  magnetic,  and  gravitational  fields.  Specific  examples  of  how the  del
operator works on scalar and vector fields are given in the following sections.

2.8 Gradient
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When the del operator  is followed by a scalar field, the result of the operation is called the gradient
of the field. What does the gradient tell you about a scalar field? Two important things: the magnitude
of  the gradient  indicates how quickly the field is  changing over  space, and the direction of  the
gradient  indicates  the  direction  in  which  the  field  is  increasing  most  quickly  with  distance.  So
although the gradient operates on a scalar field, the result of the gradient operation is a vector, with
both magnitude and direction. Thus, if the scalar field represents terrain height, the magnitude of the
gradient at any location tells you how steeply the ground is sloped at that location, and the direction of
the gradient points uphill along the steepest slope.

The definition of the gradient of the scalar field ψ in Cartesian coordinates is

Thus the x-component of the gradient of ψ indicates the slope of the scalar field in the x-direction
and the other components indicate the slope in the other directions. The square root of the sum of the
squares of these components provides the total steepness of the slope at the location at which the
gradient is taken.

You can see a simple example of the result of the gradient operator by considering the tilted plane
in Figure 2.11(a). This plane is defined by the simple equation ψ(x, y) = 5x + 2y, and you can find the
gradient using the two-dimensional version of Eq. 2.30:

So even though ψ is a scalar function, its gradient is a vector; it has a component along the x-axis and
a component along the y-axis. And what do these components tell you?

For one thing, the fact that the x-component is more than twice the size of the y-component tells
you that the tilt of the plane is steeper in the x-direction than in the y-direction. You can also tell that
the slope in each direction is constant, because the components are not functions of x or y. Both of
those conclusions are consistent with Figure 2.11(a).

Figure 2.11 Function ψ = 5x + 2y and the gradient and contours of ψ.

And  if  you  wish  to  determine  the  magnitude  of  the  gradient,  that’s  easily  done.  Since  the
x-component of the gradient is 5 and the y-component is 2, the magnitude of the gradient is simply (52

+ 22)1/2 = 5.39 over the entire plane. You can also find the angle that the gradient vectors make with
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the positive x-axis using arctan(2/5) = 21.8°. The gradient and contours of the central portion of the
function ψ are shown in Figure 2.11(b).

In cylindrical and spherical coordinates, the gradient is:

and

You’ll see more gradients in Section 2.11 covering the Laplacian operator, which represents the
divergence of the gradient. You can read about the divergence in the next section.

2.9 Divergence

When dealing  with  vector  fields,  you  may  encounter  the  del  operator  followed by  a  dot  ,

signifying the divergence of a vector field. The concept of divergence often arises in the areas of
physics and engineering  that  deal  with  the spatial  variation of  vector  fields,  because divergence
describes the tendency of vectors to “flow” into or out of a point of interest.7 Electrostatic fields, for
example, may be represented by vectors that point radially away from points at which positive electric
charge exists, just as the flow vectors of a fluid point away from a source (such as an underwater
spring).  Likewise,  electrostatic  field  vectors  point  toward  locations  at  which  negative  charge  is
present, analogous to fluid flowing toward a sink or drain. It was the brilliant Scottish mathematical
physicist James Clerk Maxwell who coined the term “convergence” for the mathematical operation
which measures the rate of vector “flow” toward a given location. In modern usage we consider the
opposite behavior  (vectors flowing away from a point),  and outward flow is considered positive
divergence. In the case of fluid flow, the divergence at any point is a measure of the tendency of the
flow vectors to diverge from that point (that is, to carry more material away from it than toward it).
Thus points of positive divergence mark the location of sources, while points of negative divergence
show you where the sinks are located.

To understand how this works, take a look at the vector fields shown in Figures 2.12 and 2.13. To
find the locations of positive divergence in each of these fields, look for points at which the flow
vectors either spread out or are larger pointing away from the location and shorter pointing toward it.
Some authors suggest that you imagine sprinkling sawdust on flowing water to assess the divergence;
if the sawdust is dispersed, you have selected a point of positive divergence, while if it becomes more
concentrated, you’ve picked a location of negative divergence.

Using such tests, it’s clear that locations such as 1 and 2 in Figure 2.12 and locations 4 and 5 in
Figure 2.13(a) are points of positive divergence (flow away from these points exceeds flow toward),
while the divergence is negative at point 3 in Figure 2.12 (flow toward exceeds flow away).

The divergence at various points in Figure 2.13(b) is less obvious. Location 6 is obviously a point
of positive divergence, but what about locations 7 and 8? The flow lines are clearly spreading out at
those locations, as they do at location 5 in Figure 2.13(a), but they’re also getting shorter pointing
away. Does the spreading out compensate for the slowing down of the flow?
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Figure 2.12 Parallel vector field with varying amplitude.

Figure 2.13 Radial vector fields with varying amplitudes.

Answering  that  question  requires  a  useful  mathematical  form of  the  divergence  as  well  as  a
description  of  how  the  vector  field  varies  from  place  to  place.  The  differential  form  of  the

mathematical operation of divergence or “del dot”  on a vector  in Cartesian coordinates is

and, since  this is

Thus the divergence of  is simply the change in its x-component along the x-axis plus the change in
its y-component along the y-axis plus the change in its z-component along the z-axis. Notice that the
divergence of a vector field is a scalar quantity; it has magnitude but no direction.

You can now apply this to the vector field in Figure 2.12. In Figure 2.12, assume that the magnitude

of the vector field varies sinusoidally along the x-axis as  = sin(π x)î while remaining constant in the
y- and z-directions. Thus,

since A
y
 and A

z
 are zero. This expression is positive for 0 < x < 1/2, 0 at x = 1/2, and negative for 1/2

< x < 3/2, just as a visual inspection suggests.
Now consider Figure 2.13(a), which represents a slice through a spherically symmetric vector field



with amplitude increasing as the square of the distance from the origin. Thus  = r2 . Since r2 = (x2

+ y2 + z2) and

this means

and

Doing likewise for the y- and z-components and adding yields

Thus the divergence in the vector field in Figure 2.13(a) is increasing linearly with distance from the
origin.

Finally, consider the vector field in Figure 2.13(b), which is similar to the previous case but with
the amplitude of the vector field decreasing as the square of the distance from the origin. The flow
lines are spreading out as they were in Figure 2.13(a), but in this case you might suspect that the

decreasing amplitude of the vector field will affect the value of the divergence. Since  = (1/r2) ,

and

Adding in the y- and z-derivatives gives

This validates the suspicion that the reduced amplitude of the vector field with distance from the
origin may compensate for the spreading out of the flow lines. Note that this is true only for the case
in which the amplitude of the vector field falls off as 1/r2 (and only for points away from the origin).8

Therefore, you must consider two key factors in determining the divergence at any point: the spacing
and the relative amplitudes of the field lines at that point. These factors both contribute to the total
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flow of field lines into or out of an infinitesimally small volume around the point. If the outward flow
exceeds the inward flow, the divergence is positive at that point. If the outward flow is less than the
inward flow, the divergence is negative, and if the outward and inward flows are equal the divergence
is zero at that point.

So far the divergence has been calculated for the Cartesian coordinate system, but depending on the
symmetries  of  the  problem,  it  might  be  solved  more  easily  using  non-Cartesian  systems.  The
divergence may be calculated in cylindrical and spherical coordinate systems using

and

If you doubt the efficacy of choosing the proper coordinate system, you should re-work the last two
examples in this section using spherical coordinates.

2.10 Curl

The del operator followed by a cross  signifies the differential operation of curl. The curl of a

vector field is a measure of the field’s tendency to circulate about a point, much like the divergence is
a measure of the tendency of the field to flow away from a point. But unlike the divergence, which
produces a scalar result, the curl produces a vector. The magnitude of the curl vector is proportional to
the amount of circulation of the field around the point of interest, and the direction of the curl vector
is perpendicular to the plane in which the field’s circulation is a maximum.

The curl at a point in a vector field can be understood by considering the vector fields shown in
Figure 2.14. To find the locations of large curl in each of these fields, look for points at which the
flow vectors on one side of the point are significantly different (in magnitude, direction, or both) from
the flow vectors  on the opposite side of  the point.  Once again a thought  experiment is  helpful:
imagine holding a tiny paddlewheel at each point in the flow. If the flow would cause the paddlewheel
to rotate, the center of the wheel marks a point of non-zero curl. The direction of the curl is along the
axis of the paddlewheel. By convention, the positive-curl direction is determined by the right-hand
rule: if you curl the fingers of your right hand along the circulation direction, your thumb points in the
direction of positive curl.
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Figure 2.14 Vector fields with various values of curl.

Using the paddlewheel test, you can see that points 1, 2, and 3 in Figure 2.14(a) and point 5 in
Figure 2.14(b) are high-curl locations, and some curl also exists at point 4. The uniform flow around
point  6  and  the  diverging  flow  lines  around  Point  7  in  Figure  2.14(c) would  not  cause  a  tiny
paddlewheel to rotate, meaning that these are points of low or zero curl.

To make this quantitative, you can use the differential form of the curl or “del cross”  operator

in Cartesian coordinates:

Recall that the vector cross-product may be written as a determinant:

which expands to

Notice that each component of the curl of  indicates the tendency of the field to rotate in one of
the coordinate planes. If the curl of the field has a large x-component, it means that the field has
significant circulation about that point in the yz plane. The overall direction of the curl represents the
axis about which the rotation is greatest, with the sense of the rotation given by the right-hand rule.

If you’re wondering how the terms in this equation measure rotation, consider the vector fields
shown in Figure 2.15. Look first at the field in Figure 2.15(a) and the x-component of the curl in the
equation: this term involves the change in A

z
 with y and the change in A

y
 with z. Proceeding in the

positive y-direction from the left side of the point of interest to the right, A
z
 is clearly increasing (it’s

pointing in the negative z-direction on the left side of the point of interest and the positive z-direction
on the right side), so the term  must be positive. Looking now at A

y
, you can see that it is positive

below the point of interest and negative above, so it is decreasing in the positive z-direction. Thus 

is negative, which means that it increases the value of the curl when it is subtracted from . Thus



(cylindrical) (2.41)

(spherical) (2.42)

the curl has a large value at the point of interest, as expected in light of the circulation of  about this
point.

Figure 2.15 Effect of  and  on the value of the curl.

The situation in Figure 2.15(b) is quite different. In this case, both  and  are positive, and

subtracting  from  gives a small result. The value of the x-component of the curl is therefore

small in this case. Vector fields with zero curl at all points are called “irrotational.”
Here are expressions for the curl in cylindrical and spherical coordinates:

A common misconception is that the curl of a vector field is non-zero wherever the field appears to
curve. However, just as the divergence depended both on the spreading out and the changing length of
field lines, the curl depends not only on the curvature of the lines but also on the strength of the field.
Consider a curving field that points in the  direction and decreases as 1/r:

Finding the curl of this field is particularly straightforward in cylindrical coordinates:

Since A
r
 and A

z
 are both zero, this is
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To understand the physical basis for this result,  consider again the fluid-flow and paddlewheel
analogy. Imagine the forces on the paddlewheel placed in the field shown in Figure 2.16(a). The
center of curvature is well below the bottom of the figure, and the spacing of the arrows indicates that
the field  is  getting weaker with  distance from the center.  At  first  glance,  it  may seem that  this
paddlewheel would rotate clockwise due to the curvature of the field, since the flow lines are pointing
slightly upward at the left paddle and slightly downward at the right. But consider the effect of the
weakening of the field above the axis of the paddlewheel: the top paddle receives a weaker push from
the field than the bottom paddle, as shown in Figure 2.16(b). The stronger force on the bottom paddle
will attempt to cause the paddlewheel to rotate counter-clockwise. Thus the downward curvature of
the field is offset by the weakening of the field with distance from the center of curvature. And if the
field  diminishes  as  1/r,  the  upward-downward  push  on  the  left  and  right  paddles  is  exactly
compensated by the weaker-stronger push on the top and bottom paddles. The clockwise and counter-
clockwise forces balance, and the paddlewheel does not turn – the curl at this location is zero, even
though the field lines are curved. For this 1/r field, the curl is zero everywhere except at the center of
curvature (where a singularity exists and must be handled using the delta function).

Figure 2.16 Offsetting components of the curl of .

2.11 Laplacian

Once you know that the gradient operates on a scalar function and produces a vector and that the
divergence operates on a vector  and produces a scalar,  it’s  natural to wonder whether these two
operations can be combined in a meaningful way. As it turns out, the divergence of the gradient of a
scalar function Á, written as ), is one of the most useful mathematical operations in physics

and  engineering.  This  operation,  usually  written  as  ∇
2Á (but  sometimes  as  ∆Á),  is  called  the

“Laplacian” in honor of Pierre-Simon Laplace, the great French mathematician and astronomer.
Before  trying  to  understand why the Laplacian  operator  is  so  valuable,  you  should  begin  by

recalling the operations of gradient and divergence in Cartesian coordinates:

Gradient:

Divergence:

Since the x-component of the gradient of Á is , the y-component of the gradient of Á is , and
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the z-component of the gradient of Á is , the divergence of the vector produced by the gradient is

Just as the gradient , divergence , and curl  represent differential operators, so too the

Laplacian (∇2) is an operator waiting to be fed a function. As you may recall, the gradient operator
tells  you  the direction  of  greatest  increase  of  the  function  (and how steep the  increase  is),  the
divergence tells you how strongly a vector function “flows” away from a point (or toward that point if
the divergence is negative), and the curl tells you how strongly a vector function tends to circulate
around a point. So what does the Laplacian, the divergence of the gradient, tell you?

If you write the Laplacian operator as , it should help you see that this

operator finds the change in the change of the function (if you make a graph, the change in the slope)
in all directions from the point of interest. That may not seem very interesting, until you consider that
acceleration is the change in the change of position with time, or that the maxima and minima of
functions (peaks and valleys) are regions in which the slope changes significantly, or that one way to
find blobs and edges in a digital image is to look for points at which the gradient of the brightness
suddenly changes.

To understand why the Laplacian performs such a diverse set of useful tasks, it helps to understand
that at each point in space, the Laplacian of a function represents the difference between the value of
the function at that point and the average of the values at surrounding points. How does it do that?
Consider the region around the point labeled (0, 0, 0) in Figure 2.17. The function Á exists in all three
dimensions around this region, and the cube is shown only to illustrate the location of six points
around the central point (0, 0, 0), where the value of the function Á is Á

0
. Notice that there are points

in front of and behind the central point (along the x-axis), points to the left  and right (along the
y-axis), and points above and below (along the z-axis). To see how the change in the change in Á is
related to Á

0
, consider for now the points along the x-axis, as shown in Figure 2.18. Notice that the

value of Á at the point in back of the central point is labeled Á
Back

 and the value of Á in front of the

central point is labeled Á
Front

. If each of these points is located a distance of ∆ x from (0, 0, 0), then

the partial derivative of Á at point B can be approximated by (Á
0
 – Á

Back
)/∆x. Likewise, the partial

derivative of Á at point A can be approximated by (Á
Front

 – Á
0
)/∆x.
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Figure 2.17 Points surrounding (0,0,0) at which Á = Á
0
.

Figure 2.18 Change in Á along x-axis.

But the Laplacian involves not just the change in Á, but the change in the change of Á. For that,
you can write

And although this might not look very helpful, good things happen when you combine this expression
with the expression for the two points to the right and left of (0, 0, 0):
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and the equation for the points on top and on the bottom of (0, 0, 0):

If you pick your locations symmetrically so that ∆x = ∆y = ∆z, then these three equations together
give you the following:

Using the del-squared notation for the Laplacian and a little rearranging makes this

where  the  average  value  of  the  function  Á  over  the  six  surrounding  points  is

Equation 2.50 tells  you that  the Laplacian of a function Á at  any point  is  proportional  to the
difference between the value of Á at that point and the average value of Á at the surrounding points.
The negative sign in this equation tells you that the Laplacian is negative if the value of the function
at the point of interest is greater than the average of the function’s value at the surrounding points, and
the Laplacian is positive if the value at the point of interest is smaller than the average of the value at
the surrounding points.

And how does  the difference between a  function’s  value at  a  point  and the average value at
neighboring points relate to the divergence of the gradient of that function? To understand that, think
about a point at which the function’s value is greater than the surrounding average – such a point
represents a local maximum of the function. Likewise, a point at which the function’s value is less
than the surrounding average represents  a  local  minimum. This  is  the reason you may find the
Laplacian described as a “concavity detector” or a “peak finder” – it finds points at which the value of
the function sticks above or falls below the values at the surrounding points.

To better understand how peaks and valleys relate to the divergence of the gradient of a function,
recall that the gradient points in direction of steepest incline (or decline if the gradient is negative),
and divergence measures the “flow”  of  a  vector  field  out  of  a  region (or  into  the region if  the
divergence is negative).  Now consider the peak of the function shown in Figure 2.19(a) and the
gradient of the function in the vicinity of that peak, shown in Figure 2.19(b). Near the peak, the
gradient vectors “flow” toward the peak from all directions. Vector fields that converge upon a point
have negative divergence, so this means that the divergence of the gradient in the vicinity of a peak
will be a large negative number. This is consistent with the conclusion that the Laplacian is negative
near a function’s maximum point.



Figure 2.19 Function Á (varying as 1/r) and the gradient and contours of Á near the peak.

Figure 2.20 Function Á (varying as –1/r) and the gradient and contours of Á near the bottom of
the valley.

The alternative case is shown in Figures 2.20(a) and 2.20(b). Near the bottom of a valley, the
gradient “flows” outward in all directions, so the divergence of the gradient is a large positive number
in this case (again consistent with the conclusion that the Laplacian of a minimum point is positive).
And what is the value of the Laplacian of a function away from a peak or valley? The answer to that
question depends on the shape of the function in the vicinity of the point in question. As described in
Section 2.9, the value of the divergence depends on how strongly the function “flows” away from a
small volume surrounding the point of interest. Since the Laplacian involves the divergence of the
gradient, the question is whether the gradient vectors “flow” toward or away from the point (in other
words, whether the gradient vectors tend to concentrate toward or disperse away from that point). If
the inward flow of gradient vectors equals the outward flow, then the Laplacian of the function is zero
at that point. But if the length and direction of the gradient vectors conspire to make the outward flow
greater than the inward flow at some point, then the Laplacian is positive at that point.

For example,  if  you’re climbing out  of  a circularly symmetric valley with  constant  slope, the
gradient vectors are spreading apart without changing in length, which means the divergence of the
gradient (and hence the Laplacian) will have a positive value at that point. But if a different valley has
walls for which the slope gets less steep (so the gradient vectors get shorter) as you move away from
the bottom of the valley,  it’s  possible for the reduced strength of the gradient vectors to exactly
compensate for the spreading apart of those vectors, in which case the Laplacian will be zero.
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To see  how this  works  mathematically,  consider  a  three-dimensional  function  Á  whose value
decreases in inverse proportion to the distance r from the origin. This function may be written as Á =
k/r,  where k is just a constant of  proportionality and r  is the distance from the origin. Thus r  =
(x2+y2+z2)1/2 and Á = k/(x2 + y2 + z2)1/2. You can find the value of the Laplacian for this case using Eq.
2.45; the first step is to find the partial derivative of Á with respect to x

after which you take another partial with respect to x:

The same approach for the second-order partials with respect to y and z gives

and

Now it’s just a matter of adding all three second-order partials:

So for  a  three-dimensional  function  with  1/r-dependence,  the  Laplacian  of  the  function  is  zero
everywhere  away  from  the  origin.  What  about  at  the  origin  itself?  That  point  requires  special
treatment,  since the 1/r-dependence of  the  function becomes problematic  at  r  =  0.  That  special
treatment involves the Dirac delta function and integral rather than differential techniques.

You may occasionally  have need to  calculate  the Laplacian in  non-Cartesian  coordinates.  For
function ψ, the Laplacian in cylindrical and spherical coordinates is given by:

Cylindrical

Spherical
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2.12 Chapter 2 problems

2.1 For vectors  = 3î + 2 ĵ –  and  = ĵ + 4 , find the scalar product  and the angle

between  and .
2.2 If vector  = 2î – ĵ + 5  and  = 3î + 2 ĵ + , find the vector  that equals the cross product  ×

. Also show that  is perpendicular to both  and to .

2.3 Show that  = A
x
 B

x
 + A

y
 B

y
 + A

z
 B

z
 = | || / cos(θ) and that  × | = | || / sin(θ).

2.4 Using the vectors of the previous two problems, find the triple product  Compare
your answer to .

2.5 Using the vectors of Problems 1 and 2, find the triple vector product  × (  × ). Compare your

answer to (  × ) ×  and to  × (  × ).
2.6 For the function f (x, y) = x2 + 3y2 + 2xy + 3x + 5, find  and .

2.7 If Á = x2 + y2, what is Á at the position (x, y) =(3 cm, –2 cm)?
2.8 Find the divergence of the vector field given by .

2.9 What is the curl of the vector field given in the previous problem?
2.10 Find the Laplacian of the function given in Problem 2.6.
2.11 In mechanics, the work (W) done by a force () acting over a displacement () is defined as the

scalar product between the force and the displacement, so . How much work is done
by the vertically downward force of Earth’s gravity (||  = mg,  where g is  the acceleration of

gravity) on a car with a mass of 1200 kg as the car moves 50 meters down a hill whose surface
makes an angle of 20 degrees below the horizontal?

2.12 Imagine trying to turn the head of a bolt by pushing on the handle of a wrench. The vector torque

exerted by the force you apply () is given by the equation  =  × , where  is a vector from the
point of rotation to the point of application of the force. If you push on the handle of the wrench
with a force of 25 N at a distance of 12 cm from the point of rotation, in what direction should you
push to maximize the torque on the bolt head? If you push in that direction, how much torque will
you exert on the bolt head?

1 The equivalence between Equations 2.1 and 2.2 is demonstrated in the problems at the end of this chapter.
2 Some people find it easier to imagine aligning the fingers of your (open) right hand with the direction of the first vector, and
then curling your fingers toward the second vector. Or you can point your right index finger in the direction of the first vector
and your right middle finger in the direction of the second vector. Whether you use the pushing, curling, or pointing approach,
your right thumb shows you the direction of the cross product.
3 The equivalence of Eq. 2.8 and the magnitude of the expression in Eq. 2.5 is demonstrated in the problems at the end of this
chapter.
4 But  makes no sense, since ( ) gives a scalar, and you can’t cross that scalar into .
5 What  exactly  is  a “well-behaved” function? Typically  this  means any function that is  continuous and has continuous
derivatives over the region of interest.
6 Some authors are careful to distinguish between a “path” and a “curve,” using “curve” only when a parameter has been
assigned to each point on a path.
7 In many instances, nothing in the vector field is actually flowing; the word “flow” is used only as an analogy in which the



arrows pointing in the direction of the field are imagined to represent the physical flow of an incompressible fluid.
8 At the origin, where r  = 0, a (1/r2)-vector field experiences a singularity, and the Dirac delta function must be employed to
determine the divergence.
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Vector applications

The real value of understanding vectors and how to manipulate them becomes clear when you realize
that your knowledge allows you to solve a variety of problems that would be much more difficult
without vectors.  In this chapter,  you’ll  find detailed explanations of four such problems: a mass
sliding down an inclined plane, an object moving along a curved path, a charged particle in an electric
field, and a charged particle in a magnetic field. To solve these problems, you’ll need many of the
vector concepts and operations described in Chapters 1 and 2.

3.1 Mass on an inclined plane

Consider the delivery woman pushing a heavy box up the ramp to her delivery truck, as illustrated in
Figure 3.1.  In this situation,  there are a number of  forces acting on the box, so if  you want  to
determine how the box will move, you need to know how to work with vectors. Specifically, to solve
problems such as this, you can use vector addition to find the total force acting on the box, and then
you can use Newton’s Second Law to relate that total force to the acceleration of the box.

To understand how this works, imagine that the delivery woman slips off the side of the ramp,
leaving the box free to slide down the ramp under the influence of gravity. For starters, pretend that
the ramp is so slippery that friction between the bottom of the box and the ramp surface is negligible
(so the coefficient of friction is effectively zero). How fast will the box be moving when it reaches the
bottom of the ramp? Perhaps more importantly, on what does that speed depend?

Whenever you approach a problem like this, it’s a good idea to begin by drawing a diagram that
shows all the forces acting on the box. Such a “free-body” diagram will help you determine the total
force acting  on the object,  from which you can easily  determine the object’s  acceleration using
Newton’s Second Law ( = ∑ /m).1 And once you know the acceleration, it’s an easy matter to find

the velocity. An example of the free-body diagram for this (frictionless) case is shown in Figure 3.2.



Figure 3.1 The delivery-truck problem.

Figure 3.2 Free-body diagram for mass on frictionless ramp.

By removing the delivery woman and friction from the problem, the only remaining forces acting
on the box are the force of gravity 

g
, which points vertically downward,2 and the normal force 

n
,

which is perpendicular (or “normal”) to the surface of the ramp. The origin of these forces is easy to
understand; the gravitational force is produced by the mass of the Earth, and the normal force is
produced by the ramp as a reaction to the force produced by the box on the ramp (if the ramp weren’t
pushing upward on the box, gravity would cause the box to accelerate straight downward).

Figure 3.3 Free-body diagram with coordinate axes.

Do these two forces really act only at a single point somewhere inside the box, as implied by Figure
3.2? Clearly not, since every particle in the box is being pulled downward by the Earth’s gravity, and
the force of the ramp on the box occurs along the entire underside of the box. But to determine the
acceleration of the box in this problem, you don’t need to worry about the actual point of application
of the forces, because you can treat the box as a particle that exists at a single location. That’s not
always the case; in problems involving torque and angular acceleration, for example, the point of
application of the force may be critically important. But the box in this problem is sliding, not rolling,
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down the ramp, and you’re perfectly justified in treating the box as a single particle and drawing the
forces as though they all act at the same point. Furthermore, you’re less likely to make a mistake
about the angles of the forces if you draw them as in Figure 3.2. This approach can be justified using
the concept of center of mass (CM), since for a rigid object of mass m you can consider the entire
object as a single point and write .

Before doing the vector addition of the two forces acting on the box to determine the total force, it’s
a good idea to draw a set of coordinate axes onto your free-body diagram, as in Figure 3.3. Of course,
you’re free to draw the axes in any direction you choose, but when you’re faced with a problem of a
mass on an inclined plane, there are certain benefits to drawing the x-axis pointing down the ramp
(and parallel to the ramp surface) and the y-axis pointing upward (and perpendicular to the ramp
surface). This approach has the advantage that the normal force lies entirely along the positive y-axis,
and the motion of the block sliding down the ramp is entirely in the positive x-direction (as long as the
box stays on the ramp). To pay for that advantage, you’ll have to use a bit of geometry to find the x-
and y-components of the gravitational force, since the vector 

g
 points straight downward and is

therefore aligned with neither the down-plane (x-) nor the perpendicular-to-plane (y-) axis.3

Figure 3.4 Geometry to find the angle of 
g
.

The key to finding the x-component (
g, x

) and the y-component (
g, y

) of the gravitational force (

g
)  is  to realize that  the angle θ  between the ramp surface and the horizontal  is  also the angle

between 
g
 and the negative y-axis, as shown in Figure 3.4(a).

If you’re uncertain why the two angles shown as θ in Figure 3.4(a) must be the same, take a look at
Figure 3.4(b). Completing the two triangles shown in Figure 3.4(b) should help you see that the angle
between 

g
 and the negative y-axis is indeed θ (you may also be able to see this by imagining the

case in which θ = 0° or θ = 90°).
Once  you’re  convinced  that  the  angle  between  

g
 and  the  negative  y-axis  is  θ,  it’s  quite

straightforward to determine 
g, x

 and 
g, y

, the x- and y-components of the gravitational force vector

g
. As you can see in Figure 3.5, the components of 

g
 are given by

where the minus sign before the ĵ accounts for the fact that this component points in the negative
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(3.5)
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y-direction.

Figure 3.5 x-and y-components of 
g
.

A note about notation: as mentioned in Chapter 1, it’s customary to write Eqs. 3.1 as

that is, as scalars rather than vectors. That’s because the direction of vector components should be
clear from the subscript: the x-component is always in the î direction (or –î direction if it’s negative),
and the y-component is always in the ĵ direction (or –ĵ direction if it’s negative). So you can write the
components of a vector as scalars or vectors, as long as you remember that each component points in
a specific direction, which means you cannot simply add the x- and y-components algebraically, even
if they’re written as scalars. You must add them as vectors.

Whether you write the components as vectors or scalars, having the x- and y-components of 
g
 in

hand and knowing that the normal force of the plane on the box is entirely in the positive y-direction,
you’re now in a position to use vector addition to find the total force acting on the box. Writing the
magnitude of the sum of the forces in the x-direction, you have

and in the y-direction

Alternatively, instead of writing separate equations for the x- and y-components of the total force, you
can write a vector equation incorporating both:

which contains exactly the same information as Eqs. 3.3 and 3.4.
Getting from the total force to the acceleration of the box is a simple step thanks to Isaac Newton,

whose Second Law tells you that the magnitudes of the x- and y-components of the acceleration are
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(3.8)

(3.9)

(3.10)
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and

or, in full vector form,

Whether you realize it or not, you almost certainly know two facts that will allow you to simplify
these equations considerably. The first is that the magnitude of the force of gravity (|

g
|) on an object

of mass “m” is simply equal to mg, where “g” is the magnitude of the acceleration of gravity (9.8 m/s2

at the Earth’s surface).4 So wherever you have the factor |
g
|, you can substitute the expression mg.

The second simplification is produced by the realization that as long as the box stays on the ramp
and doesn’t fly off into the air or break through to the ground, the y-component of the acceleration
(a

y
) must remain zero (remember that the y-axis is perpendicular to the surface of the ramp). Using

the fact that |
g
| = mg and that a

y
 = 0 turns Eqs. 3.6 and 3.7 into the following:

a
x
 = mg sin θ/m = g sin θ

and

a
y
 = (|

n
|– mg cos θ)/m = 0.

When you’re working a physics problem, it’s a good idea to step back from your calculations once in
a while to look at your intermediate results to see if they’re trying to tell you something – and that’s
certainly the case at this point. Equation 3.9 already has an important result for you: in the absence of
the upward-pushing delivery woman and with no friction, the box will accelerate down the ramp (that
is, in the +x-direction) with an acceleration that depends on only two things: which planet the delivery
truck is on (that is, the value of “g”) and the angle that the ramp makes with the horizontal (θ). In this
case, just as for a freely falling object, the mass of the box does not affect its acceleration.5

Since the sine of the ramp angle can never be greater than one, Eq. 3.9 also tells you that the
magnitude of the acceleration of the object (g sin θ) can never be greater than g, the accleration of
gravity. It can, of course, be equal to g if sin θ = 1. But this would mean that θ would have to be 90°
(since sin 90° = 1), in which case the ramp would be exactly vertical. In such cases, you no longer
have an object sliding down a ramp, you have an object falling next to a wall.

There’s also good information lurking in Eq. 3.10, but you have to think a bit to see it. According to
this  equation,  the  y-component  of  the  box’s  acceleration  is  equal  to  the  difference  between  the
magnitude of the normal force (|

n
|) and the y-component of the gravitational force (mg cos θ). But

since you know that in this problem the box remains on the ramp and the y-acceleration is therefore
zero, you can use Eq. 3.10 to determine the magnitude of the normal force.
Since

a
y
 = (|

n
|– mg cos θ)/m = 0,

then

|
n
| = mg cos θ.
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(3.13)

(3.14)
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So the normal force depends on the weight of the object (mg) and the cosine of the ramp angle (θ).
Understanding this will help you avoid a common pitfall for students who know that the normal force
is the reaction force produced on the object by the ramp, and who then mistakenly conclude that the
normal force must always equal the weight of the object (mg). That line of reasoning only works for
horizontal surfaces, because for any inclined surface, it’s only the component of the object’s weight
that’s perpendicular to the surface that produces the reaction force we call the normal force. That
perpendicular component of the object’s weight is shown in Figure 3.5 to be mg cos θ, which spans
the range from mg (when θ = 0°, meaning the ramp is horizontal and bears the full weight of the
object) to zero (when θ = 90°, meaning the ramp is vertical and bears none of the object’s weight). In
all other cases, the magnitude of the normal force will have a value between 0 and mg.

If you’re wondering why you should bother finding 
n
 if you’re only interested in the x-component

of the acceleration, the answer is that you may not care about 
n
 for the frictionless case (unless

you’re worried about your ramp breaking), but you’ll definitely need 
n
 when friction exists between

the ramp surface and the bottom of the box.
With the magnitude of the down-ramp component of the acceleration (a

x
) available from Eq. 3.9,

all that remains is for you to find the speed of the box at the bottom of the ramp. Finding speed from
acceleration turns out to be quite straightforward, especially when the acceleration is constant (as it is
in this case), provided that you’re in possession of either one of two pieces of information: the time
the box takes to reach the bottom of the ramp, or (more likely), the distance from the box’s starting
point to the bottom of the ramp. You’ll also need the initial speed, which you can generally discern
from the initial conditions, and which you can take to be zero in this case. As you may remember
from kinematics, the final speed of an object moving in the x-direction with initial speed v

x,  initial

undergoing constant accleration a
x
 over time t is given by

v
x, final

 = v
x, initial

 + a
x
 t,

or, if you know d, the distance in the positive x-direction over which the acceleration occurs,

(v
x, final

)2 = (v
x, initial

)2 + 2a
x
 d.

Using the expression for acceleration from Eq. 3.9, this becomes

(v
x, final

)2 = (0)2 + 2 (g sin θ) d

or

So, for example, a box sliding down a 2 m ramp with an angle of 30° to the horizontal on the surface
of the Earth will be moving at a speed of

when it reaches the bottom of the ramp. If you’re curious about how long it takes the box to travel the
2 m down the ramp under these conditions, you can plug this value for the final speed into Eq. 3.12
and solve for t, which turns out to be about 0.9 s in this case.
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Stripping away effects such as friction is often a good way to learn the fundamentals of a problem,
but if you’ve ever encountered a ramp outside of physics texts, there’s a good chance you had to deal
with friction. Happily, once you understand how to use vectors, including friction in the “box on a
ramp” problem becomes a simple matter of adding another force into the mix before solving for the
acceleration.

As you may recall, friction operates in two regimes: “static” friction determines how hard you have
to push on a stationary object to get it moving, but once the object is moving, the frictional force that
opposes the motion is  produced by “kinetic”  friction.  So although both types of  friction oppose
motion, the magnitude of the force produced by static friction depends on the applied force (the
harder you push, the stronger the opposing force of static friction, until the object “breaks free” and
begins moving), while the magnitude of the kinetic-friction force depends only on the normal force
and the coefficient of kinetic friction between the object and the surface.6 To determine the effect of
kinetic friction on the speed of the box at the bottom of the ramp, you can modify your free-body
diagram to include the frictional force (

f
), as shown in Figure 3.6.

Notice that the direction of the frictional force is chosen so as to oppose the motion, and since the
box is moving down the ramp in this case, the force of kinetic friction points up the ramp (in the
negative x-direction).

To determine the effect of friction on the acceleration of the box sliding down the ramp, you simply
have to include the frictional force (

f
) in your equation for the sum of the forces in the x-direction

(Eq. 3.3), which becomes

This makes the acceleration

Clearly, to determine the magnitude of the acceleration (a
x
), you’ll need to find an expression for |

f
 |,

just as you used mg sin θ for |F
g, x

 | in Eq. 3.9.

Figure 3.6 Free-body diagram for object on ramp with friction.

Fortunately, that’s easy to do, because the magnitude of the force of kinetic friction is simply the
product of the magnitude of the normal force (|

n
|) and the coefficient of kinetic friction (µ

k
):

|
f
 | = µ

k
|

n
|.
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You also know from Eq. 3.11 that |
n
| = mg cos θ, so

a
x
 = (mg sin θ – µ

k
 mg cos θ) /m

= (g sin θ – µ
k
 g cos θ).               

Comparing this expression for the acceleration of the box to the acceleration in the frictionless case
(Eq. 3.9), you’ll be happy to note that the term due to gravity (g sin θ) is exactly the same in both
cases, and the term due to friction (µ

k
 g cos θ) is subtracted from the gravity term. This means that the

acceleration  of  the  box  will  be  made smaller  by the frictional force.  So in  the case considered
previously of a box sliding down a 2m ramp that makes an angle of 30° with the horizontal, if the
coefficient of kinetic friction between the box and the ramp is 0.4, the speed of the box at the bottom
of the ramp will be reduced to

There is one aspect of Eq. 3.19 that may worry you: what if the second term is larger than the first?
For any angle between 0° and 45°, the cosine is bigger than the sine, so if the coefficient of kinetic
friction (µ

k
) is sufficiently large, this equation predicts that the acceleration will be in the negative

x-direction, meaning the box will acclerate up the ramp even if no one is pushing on it. As physicists
like to say, “That’s not physical,” meaning that this result contradicts other well-established laws of
physics (conservation of energy comes to mind in this case). So where have we gone wrong in our
analysis? We haven’t, really, you just need to think carefully about the initial assumptions. One of
those assumptions was that the box is travelling down the ramp, which is why we drew the frictional
force pointing up the ramp in our free-body diagram (Figure 3.6). But if the ramp isn’t very steep and
the  coefficient  of  friction  between  the  box  and  the  ramp  is  sufficiently  large,  the  down-ramp
component of the force of gravity will not be strong enough to overcome the frictional force, and the
box will not slide down the ramp.7 So there’s nothing wrong with Eq. 3.19, it’s just that it only applies
to the situation in which the box is moving down the ramp under the influence of gravity, in which
case the force of kinetic friction points up the ramp.

So there you have it.  You’ve used vectors to  represent the forces of  gravity  and friction,  and
knowing how to find vector components and how to perform vector addition has allowed you to find
the acceleration and speed of the box under various conditions. And if a box sliding straight down a
ramp is a bit too mundane for your taste, you may want to take a look at the next three application
examples. In them, you’ll see how vectors can be helpful in analyzing motion on a curved path and
how vector operations can be used to understand the behavior of electric and magnetic fields.

3.2 Curvilinear motion

In everyday language, the word “acceleration” is used as a synonym for “increasing speed.” Hence
the “accelerator” in an automobile usually refers to the gas pedal. But in physics and engineering,
acceleration  is  defined  as  any  change  in  velocity,  and  velocity is  a  vector  quantity  with  both
magnitude and direction. So changing the direction of the velocity is also a form of acceleration,
meaning that most cars have three accelerators: the gas pedal, the brake, and the steering wheel.
“Stepping on the gas” produces an acceleration in the same direction as the velocity vector (causing



the  speed  to  increase),  pressing  on  the  brake  produces  an  acceleration  directly  opposite  to  the
direction  of  the  velocity  vector  (causing  the  speed to  decrease),  and turning  the steering  wheel
produces an acceleration perpendicular to the velocity vector (causing the car’s direction to change
but not affecting the speed).8 Acceleration in the direction parallel (or antiparallel) to the velocity
vector is called “tangential” and acceleration perpendicular to the velocity is called “radial.” Any time
an object experiences radial acceleration, it does not move in a straight line, and its motion is called
“curvilinear.”  An example of curvilinear motion is shown in Figure 3.7,  in which a car is going
around a curve.

Note that at any instant, the velocity vector points directly along the path the car is following. For a
curving path, that means the instantaneous velocity vector is tangent to the path, as you can see when
the car is at position B in Figure 3.7. If you wish to determine the acceleration at points such as A, B,
and C along the car’s path, it’s not enough to know the velocity at those points; you have to know
how the velocity is changing with time at those locations.

Figure 3.7 Velocity vectors for a car following a curved path.

A good way to visualize the acceleration vector is to graphically represent the velocity vector at the
instants of time just before and just after the car is at positions A, B, and C. This is illustrated in
Figure 3.8 for the following case: the car is slowing down at Position A as it approaches the turn,
maintaining constant speed while turning at Position B, and then speeding up as it exits the turn at
Position C.

You can get a sense of the acceleration just by examining the change in the velocity vectors at each
position. Comparing the velocity vectors just before and just after Position A, you can see that the
magnitude (length) of the vector is getting smaller but the direction remains the same. This means that
the speed of the car is decreasing but the car is not yet turning. Now look at the velocity vectors just
before and after Position B: the direction of the vector is changing but its length is not, so the car is
turning while maintaining constant speed. Finally, by examining the velocity vectors before and after
Position C, you can see that the length is increasing, meaning the car is speeding up after leaving the
turn.

The direction of the acceleration is easily found by remembering that the average acceleration is



given by the equation  = ∆ /∆t, where ∆  is the change in velocity over time ∆t. That change in
velocity is just 

final
 – 

initial
, which you can determine by subtracting the earlier velocity vector from

the later one at each position in Figure 3.8. To make that easier, the vectors are reproduced in Figure
3.9.

Figure 3.8 Change in car’s velocity vectors at Positions A, B, and C.

Figure 3.9 Velocity vectors before and after Positions A, B, and C.

Note that the vectors shown in Figure 3.9 include not only 
final

 and 
initial

, but also the negative of

initial
. That’s because you’ll need to know – 

initial
 to compute the change in velocity, since ∆  = 

final

– 
initial

, which is the same as 
final

 + (– 
initial

). Remember that to add two vectors graphically you

simply move the tail of one to the head of the other and then draw the resultant from the start of the
first to the end of the second vector. The results of adding vectors 

final
 and – 

initial
 are shown in

Figure 3.10.
In Figure 3.10, the velocity vectors – 

initial
 and 

final
 for Positions A and C are shown slightly offset

since they would overlay one another if they were drawn truly head-to-tail. If you look at the direction
of the vector representing the change in velocity (∆ ) at each position, you’ll see that while the car is
slowing down at Position A, the change in velocity is in the opposite direction from the velocity at
this point. Since the acceleration () is defined as the vector change in velocity (∆ ) divided by the



scalar time period (∆t) over which that change occurs, the direction of  must be the same as the
direction of ∆ .  Hence the acceleration direction at Position A is opposite to the direction of the
velocity  vector,  as you’d expect  when the car  is  slowing down.  This  is  an example of  negative
tangential acceleration.

Figure 3.10 Change in velocity vectors at Positions A, B, and C.

Now consider the direction of the vector change in velocity ∆  at Position B, where the car is going
around the turn at constant speed. In this case, subtracting 

initial
 from 

final
 gives a vector ∆  that is

perpendicular to the velocity vector. This shows that the acceleration vector for an object moving
along a curve at constant speed points toward the center of  curvature (to help you visualize this
direction, the ∆  vectors are shown on the car’s path in Figure 3.11). At position B, this is an example
of radial acceleration.9

Finally, as the car speeds up at Position C, you can see that the direction of the vector change in
velocity ∆  is the same as the direction of the velocity vector, meaning that the accleration in this case
is parallel to the velocity. Hence this is an example of positive tangential acceleration.

For Position B, a careful analysis of the length of the vector change in velocity reveals that the
magnitude of the radial acceleration depends on the square of the speed and on the radius of curvature
of  the  path.  Before  getting  into  that,  it’s  worth  a  few minutes of  your  time  to  make sure  you
understand the terminology commonly used to describe acceleration and force in curvilinear motion.
Acceleration toward the center of curvature (such as the acceleration at Position B in Figure 3.11) is
called “centripetal” (for “center-seeking”) acceleration, and the force producing that acceleration is
often called centripetal force. It’s important for you to understand that a centripetal force is not a new
kind of force that is somehow different from mechanical, electrical, magnetic, or other kinds of force.
The word “centripetal” simply describes the direction of the force, but the force itself is provided by
the same old kinds of forces to which you’re accustomed. So for a car going around a curve, the
centripetal force is simply the frictional force of the tires on the ground. If you tie a rock to a rope and
twirl the rope in a circle, the centripetal force on the rock is produced by the tension of the rope. And
if you fill a bucket with water and swing it over your head, the centripetal force on the bucket (and via
the bucket on the water) comes from the muscles in your arm. So the centripetal force is whatever
force is producing the centripetal acceleration that causes the object to follow a curved path.



Figure 3.11 Acceleration vectors at Positions A, B, and C.

As footnoted earlier, it’s conventional to consider radial acceleration (
r
) as positive outward (away

from the center of curvature), and since centripetal acceleration (
c
) is defined as positive toward the

center of curvature, you may run across an equation such as 
r
 = – 

c
. This is simply a statement that

the radial acceleration and centripetal acceleration are commonly defined to have the same magnitude
but opposite directions.

You should note that in the case of the car on the curving road, the rock being twirled in a circle on
a rope, and the bucket of water being swung over your head, the centripetal acceleration (and hence
the centripetal force) is toward the center of curvature, and there is no acceleration (and no force)
pointing radially outward. But what about the “centrifugal” force that the occupants of the car feel
toward the outside of the curve (that is, toward the left door if the car is turning to the right)? What
they’re feeling is the force of the left door on their bodies as they attempt to obey Newton’s First Law
and continue moving in a straight line while the car is accelerating to the right. So centrifugal force is
the apparent force experienced by observers in the reference frame that is rotating with the object
(physicists refer to acclerating reference frames such as this as “non-inertial”). Hence if you’re riding
in a right-turning car, as you slide across the seat and up against the left door, in your (rotating)
reference frame you’re accelerating to your left, which causes you to conclude that there’s a force in
that direction (outward from the center of curvature). But for those of us not riding in the car, we
don’t see any such force; we simply observe the centripetal acceleration of the car as the friction of
the tires on the road provides a centripetal (rightward) force.

The concept of centripetal and centrifugal force can be understood by considering an Olympic
hammer-thrower as she spins a heavy mass on the end of cable, as illustrated from above in Figure
3.12. For the thrower, it feels like the object is pulling directly outward (away from her). Once again,
in the non-rotating reference frame of the stadium, that’s just because the object is attempting to obey
Newton’s First Law and continue moving in a straight line. So from our vantage point in the viewing
stand, we see that the hammer-thrower is having to produce a centripetal (radially inward) force to
make the object follow a curved path.

So is the hammer-thrower wrong in her assessment? Absolutely not. In her reference frame, which
is rotating along with the mass, her conclusion that a radially outward (centrifugal) force exists is
perfectly valid. After all, she knows that she has to exert a very strong inward force on the cable to
keep the mass at the same distance from her (because in her reference frame the mass has zero



acceleration until she releases it). Hence she is correct in concluding that in her reference frame there
must be a force in the radially outward direction to balance her inward pull. So if you hear someone
say that the centrifugal force is “fictitious,” they generally mean that centrifugal force is an apparent
force to an observer in a rotating (non-inertial) reference frame.

Figure 3.12 Top view of hammer-thrower.

Once you understand the concepts of centripetal acceleration and force, it’s reasonable to ask how
strong the centripetal force must be to cause an object to follow a given path. It’s simple to determine
the centripetal force using Newton’s Second Law ( = m ) if you know the object’s mass and have

some way of finding the centripetal acceleration. Happily, the centripetal acceleration turns out to
depend only  on  the  object’s  speed and  the  radius  of  curvature  of  the  path,  as  you can see  by
considering Figures 3.13 and 3.14.

In Figure 3.13 you can see the velocity vectors at two locations for an object in uniform circular
motion (meaning that the object’s speed and the radius of curvature are both constant over the time
period under consideration). Note that the two positions are separated by angle ∆θ at the center of
curvature, which makes the arc length between the initial and final positions equal to r∆θ, where r is
the radius of curvature and ∆θ  is  in radians. Since the speed of the object  is  constant  over this
distance, you know that |

initial
| must equal |

final
| (in other words, the direction but not the length of

the velocity vector has changed). You can therefore set |
initial

| = |
final

| = | |, where || is the speed of

the object at both positions. Since the average speed of the object is defined as the distance covered
divided by the time taken to cover that distance, you can write

Figure 3.13 Geometry of changing direction of velocity.
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Figure 3.14 Geometry for determining length of ∆ .

which means that

The reason that an expression such as Eq. 3.22 for ∆θ is valuable is that this angle change is directly
related to the magnitude of the vector change in velocity, which you need to know if you want to find
the centripetal acceleration. To see that, consider what happens if you form the vector ∆  by adding 

final
 to – 

initial
, as in Figure 3.14. The first thing you should note is that the angle between the vectors

final
 and – 

initial
 is equal to ∆θ (if you don’t see why that’s true, go back to Figure 3.13 and imagine

extending both vectors 
final

 and – 
initial

 until they cross). Also note that the vector ∆  is drawn at the

location mid-way between the original location of 
initial

 and the original location of 
final

, since that’s

the location at which you’re finding the centripetal acceleration. The final thing to note in this figure
is that both 

final
 and – 

initial
 have length equal to ||, which makes the arc length shown in the figure

equal to ||∆θ.
Now imagine what will  happen if  you allow the angle ∆θ  to shrink toward zero. As the angle

decreases, the arc length ||∆θ will get closer and closer to the length of ∆ . Plugging in the value for
∆θ from Eq. 3.22, you have in the small-angle limit

which means that the magnitude of the instantaneous centripetal acceleration is

So there you have it: the centripetal acceleration at any given point is simply the square of the
speed divided by the radius of curvature of the path at that point. Hence doubling your speed means
that your centripetal acceleration is four times larger, which means that the centripetal force must be
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four times stronger.
If you’re concerned that Eq. 3.24 may apply only in the case of uniform circular motion, remember

that by allowing ∆θ to become arbitrarily small you’ve ensured that neither the speed nor the radius of
curvature has changed during the time period under consideration.

What does Eq. 3.24 tell you about the amount of force needed to cause an object to follow a
specified curving path? Consider the hammer-thrower discussed above and shown in Figure 3.12, and
assume that she intends to launch a 4 kg mass at the end of a 1.2 m cable with a speed of 20 m/s.
Assuming she achieves her maximum speed just before letting go of the cable,  at that point the
centripetal accleration will be

which means that the thrower must provide a centripetal force of

which is almost 300 pounds of force (and this doesn’t include the mass of the cable).
With Eq. 3.24 to help you find the magnitude of the centripetal acceleration, and knowing that the

tangential acceleration is just the change in speed over time (
tang

 = ∆ /∆t), the total acceleration can

be  found  through  vector  addition,  as  shown  in  Figure  3.15.  Thus  the  magnitude  of  the  total
acceleration is

Figure 3.15 Total acceleration as the vector sum of centripetal and tangential acceleration.

You’ll find an example of combined tangential and centripetal acceleration in the problems at the
end of this chapter.

3.3 The electric field
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If  the  previous  two  sections  convinced  you  that  vectors  are  very  helpful  in  solving  mechanics
problems, the next two sections should help you understand why vectors are absolutely essential in
problems involving electric and magnetic fields and their effect on charged particles. You’ll also see
how the vector operations of divergence, curl, gradient, and Laplacian are used in electrostatics. Even
if you’ve never taken an E&M course (and never hope to), the examples in these sections should be
sufficiently self-contained to allow you to understand how vectors and vector operations can be used
in E&M.

The natural way to begin a discussion of electric and magnetic fields is to provide a clear, concise
definition that states exactly what an electric or magnetic field is. Such a definition would appear right
here if I had one. But almost two centuries after Michael Faraday first used the words “field of force”
to describe the region around electric charges, we still don’t have a standard way of saying what such
a field is. The Oxford English Dictionary provides definitions for “field” that include an “area or
space” under the influence of an agent,  a “state or  situation”  in which force is exerted, and the
“action” of a force. According to James Clerk Maxwell, “The electric field is the portion of space in
the neighbourhood of electrified bodies.” In Halliday, Resnick, and Walker you can learn to define the
electric field by placing a small positive test charge q

0
 at some point and measuring the electrostatic

force 
E
 on that  test charge;10 the electric field  is  then defined as  = 

E
 /q

0
.  In Griffiths’

Introduction to Electrodynamics, he states that “… physically, (P) is the force per unit charge that
would be exerted on a test charge placed at P.” The words “would be” in that definition are important,
because it is not necessary for the test charge to be present in order for the field to exist.

The common thread running through all  these definitions is this: fields and forces are closely
related. So we’ll take the following as our definition of the electric field :

where  is the vector electric field, q
0
 is a small test charge, and 

E
 is the electric force produced on

the test charge by the electric field. Defining the electric field through this equation should help you
remember that  is a vector quantity with magnitude directly proportional to force and with direction
given by the direction of the force on a positive test charge (because if q

0
 is negative, there would be a

minus sign on one side of the equation, which would mean that vector  would be in the opposite
direction from vector 

E
).

This definition should also help you see that  has dimensions of force divided by charge, for
which the standard (SI) units are newtons per coulomb (N/C). These units are equivalent to volts per
meter (V/m), since volts have dimensions of force times distance divided by charge (units of newtons
times meters/coulombs). So you’ll find the units of electric field given as N/C in some texts and V/m
in others, and you can rest assured that these mean exactly the same thing.

There is, however, something important to be noticed in the units of the electric field vector: the
dimension of length (units of meters in this case) appears in the denominator of the dimensions of the
electric  field.  And that  means that  the vector  that  represents an electric  field has a fundamental
difference from the vectors that represent quantities such as position (which has dimension of length),
velocity (dimension of length over time), or acceleration (dimension of length over time squared). As
you can read in Chapter 4, that’s because vectors whose dimensions contain length in the numerator
transform oppositely to vectors whose dimensions have length in the denominator when you perform
certain coordinate-system changes. If this seems unclear and you don’t plan to venture into the tensor
portion  of  this  book,  do  not  panic;  none of  this  will  prevent  you from using  the concepts  and
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operations described in Chapters 1 and 2 to solve problems involving vectors of this kind, exactly as
you’re  about  to  do  in  the  remainder  of  this  section.  But  if  you’ve  run  across  objects  called
“one-forms” or “covectors” (of which the electric field is an example) and you’re wondering how
those objects are different from the things you’ve been calling vectors, the appearance of length in the
denominator of the dimension is the beginning of the answer (you’ll find the rest of the answer in
Chapter 4 if you’re interested).

You should also make sure you understand that if you know the electric field  at a given location,
placing any amount of charge q at that location will result in an electric force 

E
 given by

So while Eq. 3.26 uses the electric force on a positive test charge to define the electric field, Eq. 3.27
is a generally useful expression for finding the electric force on any amount of charge at the location
for which the electric field is known.

Defining an electric field is useful, but exactly how would you go about producing an electric field?
One way is to gather up some electric charge, because every bit of charge produces an electric field,
just  as every bit  of  mass produces a gravitational  field.  Electric  fields can also be produced by
changing magnetic fields, but it is the “electrostatic” field produced by stationary electric charge that
will be used to demonstrate the application of vectors in this section.

It’s often helpful to be able to visualize the electric field in the vicinity of a charged object. The
most common approaches to constructing a visual representation of an electric field are to use either
arrows or “field lines” which point in the direction of the field at each point in space. In the arrow
approach, the strength of the field is indicated by the length of the arrow, while in the field-line
approach, it’s the density of the lines that tells you the field strength, with closer lines signifying a
stronger field. When you look at a drawing of electric field lines or arrows, be sure to remember that
the field exists between the lines as well.

The electric fields produced by positive and negative point charges are shown using the arrow
approach in Figure 3.16 and using the field-line approach in Figure 3.17. When you look at electric
field lines such as these, don’t forget that the field arrows and lines always point in the direction of the
electric force on a positive test charge, and that electrostatic field lines always begin on positive
charge and end on negative charge. And since the field lines show the direction of the electric field at
any given point, it’s impossible for two fields lines to cross, since that would indicate that the electric
field is pointing in more than one direction at the point of intersection (if  two electric fields are
superimposed at a given point, they simply add as vectors to give the total electric field at that point,
and that total field can only point in a single direction).

Figure 3.16 The electric field of positive and negative point charges drawn using arrows.
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Figure 3.17 The electric field of positive and negative point charges drawn using field lines.

At this point, you should make sure that you understand that electric fields can both be produced by
electric charge as well as produce a force on another electric charge. So you’re likely to face problems
in which you first have to determine the total electric field produced by charge at a certain location
and then figure out the effect of that field on a completely different charge (not one of the charges
producing the field).  But doesn’t  the charge that’s being affected (let’s call  that one the “subject
charge”) also produce its own electric field? Yes it does, but as long as the electric field produced by
the subject charge isn’t strong enough to cause the other charges to move around, you can approach
problems like this by finding the total electric field produced by all the other charges and then using
that field to determine the force on the subject charge. This approach is very much like finding the
Earth’s  gravitational  field  at  some  point  in  space  and  then  using that  field  to  figure  out  the
gravitational force on an object of known mass at that location, without considering what effect the
mass of the object might have on the Earth.

Problems like this are especially straightforward if the electric field is being produced by one or
more discrete point charges. That’s because the electric field  of a point charge q is simply

where k
e
 is the Coulomb constant (8.99 × 109 Nm2/C2), r  is the distance in meters from the point

charge to the location at which the electric field is being determined, and  is a unit vector pointing
radially outward from the point charge.

Thus a single proton (electric charge of 1.6 × 10–19 C) at a distance of one meter produces an
electric field given by

Note that the direction of that field is radially away from the proton, since the unit vector  always
points radially outward from the origin. An electron, having negative charge, produces an electric
field of the same magnitude as that of the proton, but the electron’s electric field points toward the
electron. To see that, note that when you plug in a negative charge for q in Eq. 3.28, you have



where the minus sign tells you that the direction of the electron’s electric field is in the negative 
direction, which is toward the source charge (since  is always radially outward, minus  is always
radially inward). This is consistent with electric field lines beginning on positive charge and ending
on negative charge.

To understand how to add the vector electric fields, consider the situation shown in Figure 3.18.
Note that q

1
 is positive, so its electric field must point radially outward from the location of q

1
, while

q
2
 and q

3
 are negative, so their electric fields must point radially inward toward their locations. To

find the total  electric  field  at  the  position of  the electron, it  may help you to  picture the fields
produced by q

1
, q

2
, and q

3
 as shown in Figure 3.19.

Figure 3.18 Example values for charges near an electron.

Figure 3.19 The electric fields produced by charges q
1
, q

2
, and q

3
.

If you read the discussion of field lines earlier in this section, you should realize that the electric
field exists between the lines as well as at the locations of the lines themselves. But just to help you
visualize the direction of the fields from each of the three charges, the field lines in Figure 3.19 have
been drawn on a tilt so that they are directly in line with the location at which you’re trying to find the
total field (the origin in this case). You should also remember that just because the lines have grown
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too small to see does not mean that the field has gone to zero. Hence the electric field produced by q
1

points down and to the right at the location of the electron, the field from q
2
 points down and to the

left, and the field from q
3
 points up and to the right. It is these three vector fields that you will have to

add together to determine the total electric field at the point of interest.
Using Eq. 3.28, the electric fields due to the three point charges q

1
, q

2
, and q

3
 may be written as

Of course, you know from Figure 3.19 that these three electric fields do not point in the same
direction. That’s because the unit vector 

1
 points radially outward from the location of charge q

1
, and

2
 and 

3
 point radially outward from q

2
 and q

3
, respectively. This means you can’t add the three

electric  fields  algebraically;  to  find  the total  field  you must  use vector  addition.  You’ll  find  an
example of the vector addition of electric fields in the problems at the end of this chapter and the
on-line solutions.

As you might suspect, it’s not just the simple operations of vector addition and multiplication by a
scalar that find use in electrostatics. If you followed the discussion of the divergence operation in
Chapter 2, you may be wondering about the divergence of the electrostatic fields produced by a point
charge (Figures 3.16 and 3.17). In fact, one of the fundamental laws of electrostatics is Gauss’s Law
for electric fields, the differential form of which is

where ρ  represents  the volume electric  charge density (coulombs per  cubic meter)  and ε
0
 is  the

vacuum permittivity of free space (8.85 × 10–12 Nm2/C2).
Gauss’s Law for electric fields tells you that electric field lines diverge from any location at which

positive charge exists (positive ρ) and converge upon any location at which negative charge is present
(negative ρ). This explains the analogy between the “flow” of electrostatic field lines and the flow of a
fluid. In this analogy, positive charge acts as the “source” of electrostatic field lines in the same sense
as a faucet acts as the source of fluid, and negative charge acts as a “sink” of electrostatic field lines
just as a drain does for fluid.

Note what happens when you take the divergence of the electric field of a point charge (this is most
easily done in spherical coordinates):

This is consistent with the worked example in Chapter 2 showing that the divergence of any radial
vector field is zero if the amplitude of the field falls off as 1/r2. Zero, that is, at all locations except
where r = 0, the location of the source of the field. Thus Gauss’s Law tells you that electrostatic field



(3.31)

(3.32)

(3.33)

lines diverge only from those locations at which positive electric charge exists, and converge only on
those locations at which negative charge exists.

You can gain additional understanding of the behavior of the electrostatic field by considering the
curl of  for a point charge. Since E

θ
 and E

Á
 are both zero, the curl in spherical coordinates becomes

This is not a surprising result in light of the radial nature of the electrostatic field of a point charge.
As mentioned in Chapter 2, vector fields with zero curl are called irrotational, and such fields have

several important properties. One of those properties arises from the fact that the curl of a gradient is
always zero: an irrotational vector field may always be written as the gradient of a scalar field.

In the case of electrostatic fields, the electric field may be written as the gradient of the scalar
electric  potential  (usually  written as Á or  V).  By convention,  the electric  field  is  written as the
negative gradient of the scalar potential, so you’re likely to see this relationship written as

where V is the scalar electric potential with units of Nm/C (equivalent to joules per coulomb or volts).
Since the electric field is the negative of the change in electric potential with distance, moving

along an electric field line in the direction it’s pointing means that you’re moving toward a region of
lower electric potential. Likewise, moving in the opposite direction (opposite to the direction of the
field) takes you into a region of higher potential, and moving perpendicular to the field lines results in
no change in potential. Hence the “equipotential” surfaces are always perpendicular to the electric
field lines.

Another differential vector operation useful in electrostatics is the Laplacian ( 2). Recall that the
Laplacian involves the second spatial derivative, specifically the divergence of the gradient. Since the
electrostatic field  may be written as the negative of the gradient of the scalar potential V, taking the
divergence of the electric field gives:

Since Gauss’s Law says that the divergence of the electrostatic field must equal ρ/є
0
, this means

This is known as Poisson’s Equation.  Since the Laplacian finds peaks and valleys of  a function
(locations at which the value of the function differs from the average value at surrounding locations),
Poisson’s Equation tells you that the electric potential can have local maxima and minima only at
locations at which charge is present (that is, where ρ ≠ 0). And if you recall that the Laplacian is
negative at peaks and positive at valleys, you can see that positive charge produces a peak in electric
potential while negative charge produces a valley. This is one reason that the electric field is taken as
the negative gradient of the electric potential.

In regions in which the electric charge density (ρ) is zero, Poisson’s Equation becomes Laplace’s
Equation:
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so there are no maxima or minima in electric potential for locations with zero charge density.

3.4 The magnetic field

In this section, you can read about the behavior of the magnetic field ( ) and the magnetic force on a
moving charged particle. You’ll also find a discussion of the application of the vector operations of
divergence and curl to the magnetostatic field.

Unlike  electrostatic  field  lines,  which  diverge from positive  charge and converge on  negative
charge, magnetic field lines form circles around the electric current (flowing charge) that is producing
the  magnetic  field.  And  just  as  stationary  source  charges  produce  electrostatic  fields,  stationary
currents  (in  which  the  charge  flow  is  constant)  produce  magnetic  fields  that  are  called
“magnetostatic.” An example of such a field is shown in Figure 3.20. The direction of those field lines
is determined using the right-hand rule: if you put the thumb of your right hand along the direction of
current flow and curl your fingers (like you’re grabbing the current), the magnetic field points in the
direction of your curled fingers. So if  you were to reverse the direction of that current flow, the
magnetic field lines would still form circles around the current, but the magnetic field lines would
point in the opposite direction (as you can tell by observing the direction of your curled fingers when
your thumb points in the opposite direction).

Figure 3.20 Magnetic field of a long, straight wire.

You can tell by the spacing of the field lines in Figure 3.20 that the strength of the magnetic field is
decreasing as the distance from the current  increases. For  a thin wire of  infinite  length carrying
current I, the vector magnetic field is given by the equation

where µ
0
 is a constant called the magnetic permeability of free space, r is the distance from the wire to

the point at which the magnetic field is being determined, and  is the cylindrical-coordinate unit
vector that points in the direction circulating around the wire. The standard (SI) unit of magnetic field
is the tesla (T).

Comparing the magnetic field lines around an electric current to the vector fields with various
values of divergence and curl discussed in Chapter 2, you may have already guessed that magnetic
fields fit into the “low divergence, high curl” category. Recall that electric field lines originate on
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positive charge and terminate on negative charge, and it is only at the location of those charges that
the divergence of the electrostatic field is non-zero. And since magnetic field lines circulate back onto
themselves rather  than diverging from and converging upon specific  locations,  it’s  reasonable to
expect small values for the divergence of the magnetic field. In fact, the divergence of the magnetic

field ( ) is exactly zero, as indicated by Gauss’s Law for magnetic fields:

You can verify this for the magnetic field of a long, straight wire by taking the divergence of the field
in Eq. 3.35:

As you might expect from the discussion of curl in Chapter 2, the magnetic field around a current-
carrying wire has zero curl:

As in the case of the divergence of the electric field, which has a non-zero value only at locations at
which  charge exists,  the  only  locations  at  which  the curl  of  the  magnetic  field  is  non-zero  are
locations at which current exists (that is, at the singularity point r = 0).

Other uses of vectors and vector operations come about when you consider the force (
B
) produced

by a magnetic field ( ) on a moving electric charge (q). This force is given by the vector equation

where  is the velocity of the charged particle with respect to the magnetic field. The magnitude of the

force is readily found using the definition of the magnitude of the vector cross product (|  × | = | ||

| sin θ):

where θ is the angle between vector  and vector .
Examined carefully, Eqs. 3.37 and 3.38 can tell you a great deal about how magnetic fields affect

charged particles. Compare these equations to Eq. 3.27 (
E
 = q ), and note that there are similarities

and differences between electric and magnetic forces:

• Similarity: Both are directly proportional to the amount of charge (q);

• Similarity: Both are directly proportional to the field strength ( or );
• Difference: The velocity () of the particle appears in the magnetic equation;
• Difference: The magnetic force depends on the angle between the velocity and the magnetic field;



• Difference: The magnetic force is perpendicular to both the velocity and the magnetic field.

The similarities seem reasonable: both electric and magnetic forces are stronger if the fields are
stronger and if  the amount of  charge is greater.  Also,  charges with opposite signs feel  forces in
opposite directions. The first listed difference (the fact that the magnetic force depends on the velocity
of the particle) has the interesting consequence that a charged particle at rest with respect to the
magnetic field ( = 0) feels no force whatsoever from that field. And for particles moving with respect
to the magnetic field, the faster the particle moves, the stronger the magnetic force becomes.

The presence of the vector cross product in the magnetic force equation also has some important
consequences. One of those consequences is that charged particles moving in a direction parallel or
antiparallel to the magnetic field feel zero magnetic force. That’s because in both the parallel (θ = 0°)
and antiparallel (θ = 180°) cases, the sine term in Eq. 3.38 is zero. So the closer the angle θ between 

and  is to 90°, the stronger the magnetic force.
Another consequence of the vector cross product in Eq. 3.37 is that the magnetic force (

B
) can

never point in the direction of the magnetic field, since the vector result of the cross product is by

definition perpendicular to both vectors forming the product ( and  in this case). For this same
reason, the magnetic force can never point in the direction of the particle’s velocity vector, and must
in fact be perpendicular to that vector. So if you imagine the flat plane formed by the velocity vector
and the magnetic field, you can be sure that the magnetic force (if any) must be perpendicular to that
plane.

If  you’ve read the discussion of  radial  and tangential  acceleration in  Section  3.2,  you should
understand that this means that magnetic fields can provide radial but never tangential acceleration to
a charged particle (since tangential acceleration requires a component of force that’s either parallel or

antiparallel to the velocity vector). And since  ×  always points perpendicular to , magnetic fields
can provide only radial acceleration. Thus magnetic fields may change the direction but never the
speed of charged particles.

An example of the geometry involved in magnetic force is shown in Figure 3.21. In this figure, the
direction of the magnetic field is into the page, as indicated by the crosses inside circles,11 and the
charged particle (q) is moving to the right.

Figure 3.21 Charged particle moving to right; magnetic field into page.



Figure 3.22 Magnetic force for positive and negative charges.

To determine the direction of the magnetic force in this case, you simply have to imagine forming

the vector cross product  ×  using the right-hand rule, as shown in Figure 3.22. Once you know the

direction of  × , it’s very important to remember (but easy to forget) that you must then reverse the

direction if the charge q is negative (since by Eq. 3.37, 
B
 = q  × , meaning that the magnetic force

is opposite to the direction of  ×  if  q is  negative). This explains why two directions for the
magnetic force 

B
 are shown in Figure 3.22: upward if q is positive and downward if q is negative.

Once you understand the direction of the magnetic force relative to the velocity of the charged
particle, it should help explain why you may have heard or read about charged particles “circling
around magnetic field lines” or perhaps “spiralling along the magnetic field.” Consider the positively
charged particle q in Figure 3.23. If  this particle is initially at the leftmost position in the figure,

travelling with velocity  straight up the page, and the magnetic field  points directly out of the

page, the direction of the magnetic force q  ×  is initally to the right (as you can determine using the
right-hand rule). This force causes the particle to travel on the dashed path to the topmost position in
the figure. At that point, the magnetic force 

B
 points straight down the page. Just as at the previous

position, since q is positively charged, the magnetic force points in the same direction as  × . This
now-downward force causes the particle to travel to the rightmost position, at which point the velocity
is straight down the page and the magnetic force 

B
 points directly to the left. This force causes the

particle to reach the bottom position in Figure 3.23, at which point the velocity is to the left and the
magnetic force points straight up the page. Under the influence of this force, the particle will travel
back to the starting (leftmost) position, and the entire cycle will repeat. So this positively charged
particle makes a clockwise circle around the outward-pointing magnetic field.



Figure 3.23 Magnetic force on positive charge.

Applying the same reasoning to a negatively charged particle, you should be able to determine that
it will make counter-clockwise circles around the same outward-pointing magnetic field. And if the

field  direction is  reversed,  so that   points  into  the page rather  than outward,  the sense of  the
particle’s rotation will be reversed (so that a positively charged particle will circle counter-clockwise
and a negatively charged particle will circle in the clockwise direction).

The particles in these examples retrace the same path over and over, so what makes some particles
“spiral  around” the lines of  the  magnetic  field? Simply  this:  the particle’s  velocity  must have a
component parallel (or antiparallel) to the direction of the magnetic field. Note that the particle shown
in Figure 3.23 is moving entirely in the plane of the page, and the magnetic field is perpendicular to
the page. Hence the particle’s velocity vector has no component along the magnetic field (into or out
of the page). If such a component were present, the particle would have a component of its motion
along the field lines while also circling around them. In that case, the circular path shown in Figure
3.23 would move into or out of  the paper over time, and the circle would become a spiral.  The
magnetic field has no effect on the velocity component (υ

||
) parallel or antiparallel to the field (since

there’s no magnetic force in that direction), so the speed with which the particle moves along the field
line is constant as long as no other forces are acting.

3.5 Chapter 3 problems

3.1 Solve the box-on-a-ramp problem (that is, find the acceleration of the box) for the frictionless case
using a Cartesian coordinate system for which the y-axis points vertically upward and the x-axis
points horizontally to the right.

3.2 The maximum force of static friction is µ
s n

, where µ
s
 is the coefficient of static friction and 

n
 is

the normal force. How big must the coefficient of static friction µ
s
 be to prevent a box of mass m

from sliding down a ramp inclined 20 degrees from the horizontal?
3.3 If a delivery woman pushes a box of mass m up a 2 m ramp with a force of 10 N, how fast is the



box moving at the top of the ramp if  the ramp angle to the horizontal is  25 degrees and the
coefficient of kinetic friction is 0.33?

3.4 If the hammer-thrower shown on the cover of this book wishes to launch a hammer of mass 7.26
kg on a cable of length 1.22 m with a speed of 22 m/s, what is the magnitude of the centripetal
force he must supply?

3.5 Imagine a Formula 1 car going around a curve with radius of 10 m while slowing from a speed of
180 mph to 120 mph in 2 s. What are the magnitude and direction of the car’s acceleration at the
instant the car’s speed is 150 mph?

3.6 If three electric charges q
1
, q

2
, and q

3
 have the values and locations shown in Figure 3.18, find the

electric field they produce at the origin (x = 0, y = 0), then use your value of the field to determine
the electric force on an electron at that location.

3.7  If  the  vector  electric  field   in  some  region  is  given  in  spherical  coordinates  by
 what is the volume charge density ρ in that region?

3.8 If the scalar electric potential V in some region is given in cylindrical coordinates by V (r, Á, z) =
r2sinÁ e–3/z, what is the electric field  in that region?

3.9 For the scalar electric potential V of Problem 3.8, use Poisson’s Equation to find volume charge
density ρ in that region.

3.10 Find the magnitude and direction of the magnetic force on a charged particle with charge –4 nC

and velocity  = 2.5 × 104 î + 1.1 × 104 ĵ(m/s) if the magnetic field in the region is given by  =
1.2 × 10–3 î + 5.6 × 10–3 ĵ – 3.2 × 10–3  (T).

1 You may be more accustomed to seeing this as  = m , but the form shown above is meant to remind you that it’s the sum
of the forces that produces acceleration, and the primary job of all mass is to resist acceleration (which is why mass lives in the
denominator – if the same force is applied to a large mass and a small mass, the small mass experiences greater acceleration).
2 This ignores local gravitational anomalies, which is a very reasonable thing to do for problems of this type.
3 You may, of course, choose your axes to point exactly horizontally and vertically, in which case 

g
 would point entirely in

the negative y-direction. In that case, the normal vector 
n
 would have both x-and y-components. But since other forces (such

as friction and the delivery woman’s push) generally point along the ramp surface, tilting your coordinate axes may well save
you time later.
4 Remember that mass is a measure of the amount of material an object contains and weight is the force of gravity on that
mass. So mass is a scalar (magnitude only) and weight is a vector (magnitude = mg and direction = straight down). Should you
travel in space, your weight will change as you leave the Earth’s gravity behind, but your mass will remain the same.
5 But doesn’t the Earth pull harder on a more-massive object? Yes it does, but a more-massive object also resists acceleration
more than a less-massive object. Since gravitational mass (which determines how strongly gravity pulls on an object) has the
same value as inertial mass (which determines how strongly the object resists acceleration), the result is that all objects fall
freely (or slide freely down frictionless ramps) with an acceleration that does not depend on their mass.
6 You can read more about this in introductory physics texts such as Serway & Jewett or Halliday, Resnick, 0026; Walker.
7 You can determine whether the box will move by comparing the maximum static frictional force (which is just the product of
the coefficient of static friction and the normal force) to the sum of the x-components of all the other forces.
8 In reality, turning the steering wheel produces frictional forces that also slow the car down, but it’s  the perpendicular
component of the acceleration that causes the car to turn.
9 As described later in this section, most texts define the positive direction for radial acceleration to be outward from the
center of curvature, in which case the acceleration at Point B would be considered negative radial acceleration.

10 Why do physics and engineering texts always refer to a small test charge? For two reasons: firstly, the amount of charge on
the test charge must be small so that the electric field produced by the test charge is negligible when compared to the electric
field that you’re trying to determine using the test charge. Secondly, the test charge must be physically small because you’re
using it to determine the field at a specific position, so you don’t want your test charge to extend over a large region of space.
11 This is common notation in physics and engineering; you can remember it by thinking of a hunter’s feathered arrow. Seen
from the back, you can see the back edges of the feathers, so it looks like this: ⊗. But seen from the front, you can see the
arrow’s point, so it looks like this: ☉.
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Covariant and contravariant vector components

The vector concepts and techniques described in the previous chapters are important for two reasons:
they allow you to solve a wide range of problems in physics and engineering, and they provide a
foundation on which you can build an understanding of tensors (the “facts of  the universe”). To
achieve that understanding, you’ll have to move beyond the simple definition of vectors as objects
with magnitude and direction. Instead, you’ll have to think of vectors as objects with components that
transform between coordinate systems in specific and predictable ways. It’s also important for you to
realize that vectors can have more than one kind of component, and that those different types of
component are defined by their behavior under coordinate transformations.

So this chapter is largely about the different types of vector component, and those components will
be a lot easier to understand if you have a solid foundation in the mathematics of coordinate-system
transformation.

4.1 Coordinate-system transformations

In taking the step from vectors to tensors, a good place to begin is to consider this question: “What
happens  to  a  vector  when you change  the  coordinate  system in  which  you’re representing  that
vector?”  The  short  answer  is  that  nothing  at  all  happens  to  the  vector  itself,  but  the  vector’s
components may be different in the new coordinate system. The purpose of this section is to help you
understand how those components change.

Before getting to that, you should spend a few minutes considering the statement that the vector
itself doesn’t change if  you change the coordinate system. This may seem obvious in the case of
scalars – after all, whether you measure temperature in Celsius or Fahrenheit doesn’t make a room
feel hotter or colder. Now remember that vectors are mathematical representations of physical entities,
and those entities  don’t  change just  because you change the coordinate system in  which you’re
representing them. Think about it: does the size of a room change if you tilt your head to one side?
Clearly not. But if you use your tilted head to define up and down, then the points you designate as
the top and bottom of the room may change, and this will change what you call the “height” and
“width” of the room. The important idea is that the room itself doesn’t change (it “remains invariant”)
under such a change of coordinate system. And if you define the center of your head to be the origin
of your coordinate system, then walking toward one wall will “offset” the room (that is, the x, y, and z
values of  locations within  the room may change),  but  once again the room itself  is  unchanged.
Likewise, specifying dimensions of the room in inches rather than meters will allow you to put larger
numbers in the real-estate ad, but that doesn’t mean your room will hold a bigger sofa.



So if coordinate-system transformations such as rotation, translation, and scaling leave physical
quantities unchanged, what exactly does happen to a vector when you transform coordinates? To
understand that, consider the simple rotation of the two-dimensional  Cartesian coordinate system
shown in Figure 4.1. In this transformation, the location of the origin has not changed, but both the x-
and y-axis have been tilted counter-clockwise by an angle θ. The rotated axes are labeled x′ and y′ and
are drawn using dashed lines to distinguish them from the original axes.

What impact does this rotation have on a vector in this space? Take a look at vector  and its
components in Figure 4.2(a) and (b). Note that the rotation has no effect on the length or direction of

 (at first glance,  may look a bit different in Figure 4.2(a) and 4.2(b), but you can verify using a
ruler and protractor that the vector itself is exactly the same). But the rotation has clearly caused the

components of  to change: A′
x
 (the x′-component of A in the tilted coordinate system) is longer than

A
x
, and A′

y
 is shorter than A

y
. If you were to continue rotating your axes in the same direction, you’d

eventually reach an angle at which  lies entirely along the x′-axis, at which point the y -component

of  would vanish (that is, A′
y
 = 0) and the x′-component would equal the length of  (A′

x
 = | |).

Figure 4.1 Rotation of 2-D coordinate system.

Figure 4.2 Change in vector components due to rotation of coordinate system.

Finding the change in the components of a vector due to rotation of the coordinate axes can be done
both  graphically  using  simple  geometry  and  analytically  using  the  dot product.  You’ll  find  the
graphical approach in this section; the analytical approach is the subject of one of the problems at the
end of this chapter.

If you think about the changes to A
x
 and A

y
 in Figure 4.2, you might come to realize that the vector

component A′
x
 in the rotated coordinate system cannot depend entirely on the component A

x
 in the
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original system. After all, A
x
 contains some but not all of the information about vector ; the rest is in

A
y
. And as the axes rotate, the axis that had pointed exclusively in the x-direction now points partially

in the (former) y-direction. So it seems reasonable that the portion of  that had previously pointed in
the original y-direction (and so contributed only to A

y
) now points partially in the x′-direction, and

hence contributes to the x′-component as well as the y′-component.
You can see how this works in Figure 4.3. The (a) portion of this figure shows how the vector

component A
x
 in the original (non-rotated) coordinate system contributes to A′

x
 in the rotated system,

and the (b) portion shows how the vector component A
y
 in the original system contributes to A′

x
 in the

rotated system.
As you can see in both portions of the figure, A′

x
 can be considered to be made up of two segments,

ℓ
1
 and ℓ

2
. So
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Figure 4.3 Dependence of A′ x on A
x
 and A

y
.

and to determine how these segments depend on A
x
 and A

y
, consider the right triangles shown in

Figure 4.3. In the (a) portion of the figure, you can see that A
x
 is the hypotenuse of a right triangle

formed by drawing a perpendicular from the end of A
x
 to the x′-axis. Call the angle between the x-axis

and the x′-axis α
11

 (the reason for  using double subscripts will  become clear when rotations are

written in matrix notation). Then the length of ℓ
1
 (the projection of A

x
 onto the x′-axis) is A

x
 cos(α

11
).

Hence
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(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

To find the length of ℓ
2
, consider the right triangle shown in Figure 4.3(b). In this case, the triangle

is formed by sliding A′
x
 upward along the y′-axis and then drawing a perpendicular from the tip of A′

x

to the x-axis. From this triangle, you should be able to see that

where α
12

 is the angle formed by the tips of A′
x
 and A

y
 (which is also the angle between the x′-axis and

the y-axis, as you can see from the parallelogram in Figure 4.3(b).
Adding the expressions for ℓ

1
 and ℓ

2
, you can write A′

x
 as

where A
x
 and A

y
 are the components of vector  in the non-rotated coordinate system, α

11
 is the angle

between the x′-axis and the x-axis, and α
12

 is the angle between the x′-axis and the y-axis. You should

note that the new component (A′
x
) is a weighted linear combination of the original components (A

x

and  A
y
).  “Weighted”  because  the  cosine  factors  determine  how  heavily  each  of  the  original

components contributes to the new one, “linear” because the original components appear to the first
power only, and “combination” because both A

x
 and A

y
 contribute to A′

x
 .

A similar analysis for A′
y
, the y-component of vector  in the rotated coordinate system, gives

where α
21

 is the angle between the y′-axis and the x-axis, and α
22

 is the angle between the y′-axis and

the y-axis.

The relationship between the components of vector  in the rotated and non-rotated systems is
conveniently expressed using vector/matrix notation1 as

This is called a “transformation equation” for the components of vector , and the two-column matrix
is called a “transformation matrix.” The elements of that matrix are called the “direction cosines.”
Note that for a rigid rotation of the Cartesian axes through angle θ, the angles α

11
 and α

22
 are both

equal to θ, while α
12

 = 90° – θ and α
21

 = 90° + θ. The transformation matrix in this case is

since cos(90° – θ) = sin(θ) and cos(90° + θ) = – sin(θ).

To understand how this works in practice, consider vector  given as

in  a  two-dimensional  Cartesian  coordinate  system.  Now imagine  that  the  x-  and y-axes  of  that
coordinate system are rotated counter-clockwise by 150°, as shown in Figure 4.4.
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Before jumping to  the equations to  find the components A′
x
 and A′

y
 in  the rotated coordinate

system, it’s worth a few minutes to take a look at the diagram to estimate what the effect of the
rotation on the components will  be. From Figure 4.4(b), it’s pretty clear that both the A′

x
 and A′

y

components will  be negative, and the A′
y
 component appears to be somewhat larger than the A′

x

component.

Figure 4.4 2-D Cartesian axes rotated by 150°.

Figure 4.5 Angles between original and rotated axes.

Now that you have an idea of what to expect, you can insert the relevant values into Eq. 4.6. You
know that A

x
 = 5 and A

y
 = 3, and using the angles shown in Figure 4.5, you should be able to see that

α
11

 = 150°, α
12

 = 60°, α
21

 = 240°, and α
22

 = 150°.

So you have

or



(4.10)

(4.11)

(4.12)

(4.13)

and

As a quick visual analysis suggested, both components are negative and the y′-component is larger
than the x′-component in the rotated system.

It is very important for you to understand that the transformation equation (4.6) does not rotate or

change the vector  in any way; it determines the values of the components of vector  in a new
coordinate  system.  This  distinction  is  important  because  you  may  be  tempted  to  apply  this
transformation matrix to basis vectors such as î (1, 0) and ĵ (0, 1), which for a counter-clockwise
150°rotation gives for î

and for ĵ

There’s nothing inherently wrong with doing this, as long as you remember what the results mean:
these are the components of the original unit vectors î  and ĵ  (that is, the ones in the non-rotated
coordinate system) expressed in terms of the rotated coordinate axes, as you can see in Figure 4.6.
These are not the unit vectors î′ and ĵ′ which point in the direction of the x′ and y′-axes (remember that
in the primed coordinate system, the unit vectors î′ and ĵ′, pointing along the rotated coordinate axes,
must have components (1, 0) and (0, 1), respectively).

Rigid rotation of Cartesian axes is only one type of the myriad coordinate transformations that can
change the components of a vector. But as long as the new components can be written as weighted
sums of the original components, the transformation is linear and can be represented by a matrix
equation.  For  reasons  that  will  become  clear  when  you  read  Section  4.3 of  this  chapter,  such
transformations of vector components are called “inverse” or “passive” transformations, which means
the matrix equation of such a transformation will look like this:
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Figure 4.6 Components of î and ĵ in rotated coordinate system.

At this point, you may be wondering how you might go about transforming the unit vectors of the
original (non-rotated) system (that is, î and ĵ) into the unit vectors of the primed (rotated) system (î′
and ĵ′). That’s a different question, because you’re no longer asking, “Given the components of a
vector in one coordinate system, how do I find the components of that same vector in a different
coordinate system?” Instead, you’re asking, “How do I change a given vector (in this case, a unit
vector in one coordinate system) into a different  vector (the unit  vector in a different  coordinate
system)?” That question is addressed in the next section.

4.2 Basis-vector transformations

The  previous  section  illustrated  what  happens  to  the  components  of  a  vector  when  the
two-dimensional Cartesian axes are rotated, and the results are not surprising: the components of the
vector  referenced to  the new (rotated)  axes are different  from the components  referenced to  the
original (non-rotated) axes. More specifically, the new components are weighted linear combinations
of the original components.

Now here’s a very important point: as your studies carry you along the path from vectors to tensors,
you will undoubtedly run across discussions of “covariant” and “contravariant” vector components.2

In those discussions, you may see words to the effect that covariant components transform in the same
way as basis vectors (“co” ≈ “with”), and contravariant components transform in the opposite way to
basis vectors (“contra” ≈ “against”). As you’ll see later in this chapter, there’s plenty of truth in that
description,  but  there’s  also a major  pitfall.  That’s because the “transformation”  of  basis  vectors
usually refers to the conversion of the basis vectors in the original (non-rotated) coordinate system to
the different basis vectors which point along the coordinate axes in the new (rotated) system, whereas
the “transformation” of vector components refers to the change in the components of the same vector
referred to two different sets of coordinate axes. The potential for confusion here is sufficiently great



to cause Schutz to write that “the reason that ‘co’ and ‘contra’ have been abandoned is that they mix
up  two  very  different  things.”3  Schutz  wrote  that  in  1983,  and  for  better  or  worse,  the
“covariant/contravariant” terminology is still with us – that’s why in this book you’ll find those words
as well as more modern terminology.

Why did the “covariant/contravariant” terminology take hold in the first place? Probably because
the process of changing a vector into a different vector has much in common with the process of
transforming the components of a vector from one coordinate system to another. This section shows
you how to make a new vector using rotation (specifically, how to rotate basis vectors).

To understand the process of rotating a vector, consider vector  in Figure 4.7(a). The rotation

shown in Figure 4.7(b) causes vector  to point in a different direction, which means it is no longer

the same vector  (which  is  why  it’s  labeled  ′  after  the  rotation).  The  relationship  between the
components of the original (non-rotated) vector and the new (rotated) vector can be found rather
easily  through geometric  constructions such as those shown in  Figure  4.8. In  this  example,  the

rotation angle is α. The x- and y-components of vectors  and ′ are

But θ′ = α + θ, so the components A′
x
 and A′

y
 are

Since the length of  must be the same as the length of ′ (the vector rotated but did not change

length), you can write || = | ′|, which means that

Figure 4.7 Rotation of a vector.
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Figure 4.8 Angles involved in the rotation of a vector.

But | | cos(α) is just A
x
 and | | sin(θ) is A

y
, so you can write

or, as a matrix equation,

which tells  you how to find the components  A′
x
 and A′

y
 of  the new vector  ( ′)  in  the  original

coordinate system.
To see how this works in practice, consider a rotation such as the one shown in Figure 4.7, but

through a larger rotation angle of α = 150°. If the original vector is given by  = A
x
î + A

y
 ĵ = 5î + 3 ĵ,

then

so the new vector ′ = –5.83 î – 0.10 ĵ. This means that by rotating vector  through 150°, you’ve
produced a new vector that lies almost entirely along the negative x-axis (you can see this by noting
that the x-component is negative and much larger than the y-component). Remember that this is a new
vector expressed using the same basis (î and ĵ) and is not the same vector expressed using a new basis
(because in this case you rotated the vector, not the coordinate system).
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Figure 4.9 Components of î′ and ĵ′ in original (unrotated) coordinate system.

You can, of course, rotate the basis vectors î and ĵ using this same approach. This can be helpful if
you’re faced with a problem involving a rotated coordinate system and you wish to express the basis
vectors pointing along the axes of the rotated system in terms of the basis vectors in the original
(non-rotated) system. For example, to rotate the î unit vector by 150° counter-clockwise, you can use

where î′
x
 represents the x-component of the 150°-rotated î vector and î′

y
 represents the y-component of

the rotated î vector, as shown in Figure 4.9(a). You can also rotate the ĵ unit vector by the same angle
using

where ĵ′
x
 represents the x-component of the 150°-rotated ĵ vector and ĵ′

y
 represents the y-component of

the rotated ĵ vector, as shown in Figure 4.9(b).
Just as in Eq. 4.15, the new components of the î′ and ĵ′ vectors are expressed in the same coordinate

system as the original î and ĵ. As pointed out in the previous section, the components of î′ and ĵ′ in the
rotated coordinate system must be (1, 0) and (0, 1).

So if you wish to transform a set of basis vectors into new basis vectors (pointing along different
coordinate axes), you use a “direct” or “active” transformation matrix, and the matrix equation looks
like this:

Comparing this to Eq. 4.14 should help you understand that transformation matrices can be used for
two different but related operations: finding the components of the same vector in a new coordinate
system or finding the components of a different vector (such as a new basis vector) in the original
coordinate system. The next  section presents a comparison of  these two types of  transformation
matrix.

4.3 Basis-vector vs. component transformations

Since Eq. 4.14 and Eq. 4.19 both involve transformation matrices, it’s natural to wonder how those
transformation matrices might be related. You can find a clue to that relationship by comparing the
transformation matrix in Eq. 4.7 (pertaining to component change due to a coordinate-axis rotation
through angle θ) with that of Eq. 4.15 (pertaining to basis-vector rotation through angle θ). Extracting
the transformation matrix from each of those equations gives:

From Eq. 4.7:



From Eq. 4.15:

Multiplying these two matrices reveals the nature of the relationship between them:

This means that in this case the component-transformation matrix is the inverse of the basis-vector
transformation matrix (since multiplying a matrix by its inverse produces the identity matrix). The
fact that in this case the transpose of the transformation matrix is equal to its inverse means that this
transformation  matrix  is  “orthogonal”  (converting  from  one  Cartesian  coordinate  system  into  a
different one).

In light of the inverse relationship between the basis-vector transformation matrix and the vector-
component transformation matrix, you might say that in this case the vector components transform
inversely  to  or  “against”  the  manner  in  which  the  basis  vectors  transform  (provided  that  you
remember that by “components transform” you mean finding the components of the same vector in
the new coordinate system, and by “basis vectors transform” you mean rotating the basis vectors to
point along different coordinate axes).

You should also remember that rotation of Cartesian coordinate axes is only one among many
possible forms of transformation. In general, any time you choose to switch from one set of basis
vectors  to  another,  you  must  consider  the  effect  of  your  choice  of  new  basis  vectors  on  the
components of the vectors in your system. How the matrix that transforms the original basis vectors
into the new ones relates to the matrix that converts the vector components depends on the type of
component you’re using to represent the vector.

If you’re surprised to learn that there can be more than one type of component for a given vector,
you should consider a coordinate system in which the axes are not perpendicular to one another. You
can learn about such “non-orthogonal” coordinate systems in the next section.



4.4 Non-orthogonal coordinate systems

In Cartesian coordinate systems, there’s no chance for ambiguity when you consider the process of
“projection” of a vector onto a coordinate axis. Using the light source and shadow approach described
in Chapter 1, you simply imagine a source of light shining on the vector and the shadow produced by
that vector on one of the coordinate axes, as in Figure 1.6. In two-dimensional Cartesian coordinates,
the direction of the light may be specified in one of two equivalent ways: parallel to one of the axes
(actually antiparallel since the light shines back toward the origin), or perpendicular to the other axis.
For example, in Figure 1.6(a), you’re saying exactly the same thing if you describe the light as shining
“antiparallel to the y-axis” or “perpendicular to the x-axis.”

Figure 4.10 Projections using light sources parallel to x-and y-axes.

Now  imagine  a  two-dimensional  coordinate  system  in  which  the  x-  and  y-axes  are  not
perpendicular  to one another.4 In  such cases, the process of  projecting a vector  onto one of  the
coordinate axes takes on an additional complication. Should the light sources shine (anti-) parallel to
the coordinate axes, as in Figure 4.10, or perpendicular to the axes, as in Figure 4.11?

In each case, a “projection” of the vector is formed onto one of the coordinate axes, but those
projections  may  have  quite  different  lengths,  as  you  can  see  by  comparing  the  lengths  of  the
“shadows” cast in Figure 4.10 to those in Figure 4.11.

You may certainly  be forgiven for  thinking “So what?”  when confronted  with  these differing
projections.  Does  it  really  matter  that  there  are  two  ways  to  project  a  vector  onto  an  axis  in
non-orthogonal coordinate systems?

One indication that the type of projection does matter comes about if you attempt to use vector

addition to form vector  from the projection components using the rules of vector addition. As you
can see in Figure 4.12, that process works perfectly if you use the parallel-projection components but
fails miserably when you attempt to use the perpendicular-projection components.



Figure 4.11 Projections using light sources perpendicular to x-and y-axes.

Figure 4.12 Vector addition of components formed by parallel and perpendicular projection.

This may cause you to wonder why the perpendicular-projection components are called “components”
at all.

Another way to appreciate the significance of the difference between parallel and perpendicular
projections is to consider how the components formed by these two types of projection transform
between coordinate systems. As you’ll see later in this chapter, the components formed by projections
perpendicular  to  the  coordinate  axes  transform  between  coordinate  systems  using  the  direct
transformation matrix that is also used to form the new basis vectors in the new coordinate system,
while  the  components  formed  by  projections  parallel  to  the  coordinate  axes  transform between
coordinate  systems  using  the  inverse  transformation  matrix.  This  behavior  has  caused  the
perpendicular-projection components to  traditionally  be called the “covariant”  components of the
vector, while the parallel-projection components are called the “contravariant”  components of the
vector. Of course, for orthogonal coordinate systems, the direction parallel to one of the coordinate
axes is exactly the same as the direction perpendicular to other axes, so in that case the covariant and
contravariant components of a vector are identical, and no distinction is needed.

To  learn  why  the  covariant  values  are  called  “components,”  and,  much  more  importantly,  to
understand why covariant and contravariant components are meaningful quantities and how they may
be used to write physical laws that do not depend on the reference frame of the observer, you should
first understand the concept of dual basis vectors. You can read about such basis vectors in the next
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section.

4.5 Dual basis vectors

For  non-orthogonal  coordinate  systems,  it’s  clear  from  geometric  considerations  such  as  those
illustrated in Figure 4.12 that the perpendicular projections of a vector onto the coordinate axes do not
form “components” in the way that parallel projections do; the perpendicular projections simply don’t
add up as vectors to give the original vector. But to truly understand the process of “adding up”
components as vectors, you have to think about the role of the basis vectors in that addition. To see
how that works for parallel projections, take a look at the basis vectors 

1
 and 

2
 pointing along the

(non-orthogonal) coordinate axes in Figure 4.13 and the projections of vector  onto those directions.

In this case, vector  may be written as

where Ax and Ay represent the parallel-projection (contravariant) components of .5

The same approach doesn’t work for the perpendicular-projection (covariant) components A
x
 and

A
y
, as you can tell by looking at the lengths of the projections in Figure 4.12(b); it’s clear that those

two “components”  multiplied by the basis  vectors  
1
 and  

2
 do  not  add up to  give  .  So it’s

reasonable  to  wonder  if  there  are  alternative  basis  vectors  that would  allow  the  perpendicular-
projection components to form a vector in a manner analogous to Eq. 4.20. Happily, there are, and
those alternative basis vectors are called “reciprocal” or “dual” basis vectors.

Figure 4.13 Parallel-projection components and basis vectors.

Dual  basis  vectors  have  two  defining  characteristics.  The  first  is  that  each  one  must  be
perpendicular to all original basis vectors with different indices. So if you call the dual basis vectors 
1 and 2 to distinguish them from the original basis vectors 

1
 and 

2
, you can be sure that 1 is

perpendicular  to  
2
 (and  thus  perpendicular  to  the  y-axis  in  this  case).  Likewise,  2  must  be
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perpendicular to 
1
 (and thus perpendicular to the x-axis in this case). The directions of the dual basis

vectors 1 and 2 are shown in Figure 4.14.

The second defining characteristic for dual basis vectors is that the dot product between each dual
basis vector and the original basis vector with the same index must equal one (so  = 1 and

 = 1). This means that you can find the lengths of the dual basis vectors as long as you know
the  lengths  of  the  original  basis  vectors  and the angle  between each dual  basis  vector  and the
corresponding original basis vector.6 So to find the length of 1, you simply have to multiply the

length of the original basis vector 
1
 by the cosine of the angle between 1 and 

1
 and then take the

inverse of the result. Likewise, to find the length of 2, multiply the length of the original basis vector

2
 by the cosine of the angle between 2 and 

2
 and take the inverse of that result. Thus: where θ

1
 is

the angle between 1 and 
1
 and θ

2
 is the angle between 2 and 

2
.

Figure 4.14 Perpendicular-projection components and dual basis vectors.

and

With  the  concept  of  dual  basis  vectors  in  hand,  you’re  in  a  position  to  understand  why  the
perpendicular-projection (covariant) components A

x
 and A

y
 may rightfully be called “components.”

The key is that the projections must be made onto the direction of the dual basis vectors rather than
onto the directions of the original basis vectors. If you do that, then the covariant components A

x
 and

A
y
 can be multiplied by the relevant basis vectors and added to give the original vector  in the same

way as can be done using the parallel-projection (contravariant) components Ax and Ay. The covariant-
component equivalent to Eq. 4.20 is thus
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As you may have guessed, the use of superscripts to denote the dual basis vectors 1 and 2 is not

accidental;  when  these  basis  vectors  are  transformed  to  a  new coordinate  system,  the  inverse
transformation matrix is used, as it is for the contravariant vector components Ax and Ay.

Note that in a two-dimensional coordinate system with orthonormal basis vectors such as î and ĵ,
the dual basis vectors are identical to the original basis vectors along the coordinate axes. That’s
easily understood, because the direction of each of the dual basis vectors must be perpendicular to the
direction of one of the original basis vectors (and hence must point along the x- and y-axes). And
since the length of the dual basis vectors must equal the inverse of the length of the original basis
vectors times cos(θ) (which is 1/[1 cos(0°)] in this case), the dual basis vectors have the same length
as well as the same direction as î and ĵ. So the differences between original and dual basis vectors
disappear  for  orthonormal  coordinate  systems,  just  as  the  distinctions  between  covariant  and
contravariant components disappear for such systems.

The concept of dual basis vectors can be readily extended to three dimensions, and in that case
determination of the length and direction of the dual basis vectors is most easily done using the dot
and cross product between vectors. Specifically, the three-dimensional dual basis vectors 1, 2 and 
3 can be found from the original basis vectors 

1
, 

2
, and 

3
 using the following relations:

Each denominator is the triple scalar product of the original basis vectors, which you may recall from
Section 2.3 is the volume of the parallelepiped formed by those vectors.

In these equations, the cross products in the numerators ensure that the first characteristic of dual
basis vectors is met (for example, that 1 is perpendicular to 

2
 and to 

3
). The triple scalar products

in the denominators ensure that the second characteristic is met (for example, that  = 1).
The computation of dual  basis vectors may seem like a long trek to make simply to have an

alternative way of writing vectors, but there’s a great truth to be found by comparing Eqs. 4.20 and
4.23. Since these equations describe the same vector, you may combine them to write

which serves to emphasize an important fact. If you seek to define a quantity (such as vector ) that
remains  invariant  under  a  transformation  of  coordinates,  you  have  a  choice:  you  can  combine
superscripted  (contravariant)  components  with  subscripted  (covariant) basis  vectors,  or  you  can
combine subscripted (covariant) components with superscripted (contravariant) basis vectors. That
should seem reasonable to you, because covariant quantities transform using a direct transformation
matrix,  while  contravariant  quantities  use  an  inverse  transformation  matrix.  Multiplying  such
quantities guarantees that the result is unaffected by the transformation.

You can see an example of how dual basis vectors and covariant and contravariant components are
determined in the next section.
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4.6 Finding covariant and contravariant components

Once you grasp the concept of dual basis vectors in non-orthonormal coordinate systems, finding the
covariant and contravariant components of a vector is straightforward. As an example, take a look at

vector  in Figure 4.15, with non-orthogonal basis vectors 
1
 and 

2
.

Finding the contravariant components A1 and A2 is simply a matter of parallel-projecting vector 
onto the directions of the original basis vectors 

1
 and 

2
, as shown in Figure 4.16. A quick visual

inspection suggests that component A1|
1
| should be about 2/3 the length of original basis vector 

1
,

and component A2|
2
| should be about 1.5 times the length of original basis vector 

2
. The values of

A1 and A2 can be found by writing the vector equation

Figure 4.15 Non-orthogonal basis vectors.

Figure 4.16 Parallel projections onto original basis vectors.

which can be written as two equations for the components of :

These two simultaneous equations may readily be solved for A1 and A2 using the elimination or
substitution method (both of which are demonstrated in the on-line solutions to the problems at the
end of this chapter). Another approach is the matrix method and Cramer’s Rule (described in the
matrix-algebra review on the book’s website). Using this approach, you begin by substituting the
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known values for vector  as well as 
1
 and 

2
:

which may also be written as

Now use Cramer’s Rule to find A1 and A2:

These values are consistent with the visual estimates from Figure 4.16.
To use the same process to find the perpendicular-projection (covariant) components A

1
 and A

2
, you

must first determine the length and direction of the dual basis vectors. You know that the direction of
1 must be perpendicular to that of 

2
, and the direction of 2 must be perpendicular to that of 

1
.As

for the lengths, first find the lengths of 
1
 and 

2
:

Then you can use Eqs. 4.21 and 4.22 to find |1| and | 2|, but first you have to figure out the angle

between 
1
 and 1 (which is θ

1
) and the angle between 

2
 and 2 (which is θ

2
). If you look at Figure

4.17, you should be able to determine that θ
1
 = θ

2
 = arctan(1/3) = 18.43°, so you have

Figure 4.17 Perpendicular projections onto dual basis vectors.
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You  can  see  the  (very  short)  dual  basis  vectors  1  and  2  in  Figure  4.17.  Note  that  1  is

perpendicular to 
2
 and that 2 is perpendicular to 

1
, and their lengths are given by Eq. 4.31.

Once you have the dual  basis vectors in hand, you’re in a position to find the perpendicular-
projection  (covariant)  components  A

1
 and  A

2
.  You  can  do  this  geometrically  by  continuing  the

perpendicular-projection lines beyond the direction lines of 
1
 and 

2
 and onto the direction lines of 

1 and 2, as shown in Figure 4.17. The magnitude of vector  is

and the angle between  and the x-axis is arctan  = 15.94°. Using this value and θ
1
 from above,

you can determine that the angle between  and 
1
 is 55.62° and the angle between  and 

2
 is

15.94°. So the length of ℓ
1
 in Figure 4.17(a) is

and

so A
1
 = 4.33/0.333 = 13.0.

Using the same approach to find A
2
 from Figure 4.17(b) gives

and

so A
2
 = 7.38/0.264 = 28.0.

These results serve as a reminder that when you use non-normalized basis vectors (that is, basis
vectors with magnitude not equal to one), you cannot equate the lengths of the projections onto the
coordinate axes with the value of a vector’s components. That’s because those projections are the
products of the components with the magnitudes of the basis vectors.

If you prefer the algebraic approach to finding A
1
 and A

2
, you can do that by proceeding as you did

for A1 and A2, although in this case you begin with

and then substitute the known values for vector  as well as the x- and y- components of the dual
basis vectors 1 and 2:
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So

As before, this may be written as

Again using Cramer’s Rule to solve for A
1
 and A

2
 gives

as expected from the geometric approach.
A simpler approach to finding the contravariant and covariant components of a vector once you

have both the original and dual basis vectors in hand is to use these relations:

and

In the current example, this approach gives the covariant components as

and

in agreement with the geometric and matrix-algebra approaches taken above.
It’s  important  for  you  to  realize  that  what  you’ve  just  found  are  the  parallel-projection

(contravariant) and perpendicular-projection (covariant) components of vector  with respect to the

original basis vectors 
1
 and 

2
 and the dual basis vectors 1 and 2. So does that mean that  is a

covariant vector or a contravariant vector?
The answer is neither (or both, if  you prefer);  it’s not the vector itself that is  contravariant or
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covariant, it’s the set of components that you form through its parallel or perpendicular projections.
As  you  read  the  literature  on  tensors,  you’re  very  likely  to  run into  expressions  such  as  “the

contravariant vector ” or “the covariant vector ,” and what the author generally means is that the

contravariant components of vector  and the covariant components of vector  are being used for

the problem (perhaps because they’re simpler). But you can be sure that like all vectors,  and 
both have contravariant  and covariant  components,  and you can find them using the techniques
described in this section.7

And if you’re wondering why you might want to go through the effort of finding those components,
rest assured that the payoff is worth the effort. To appreciate the value of that payoff, you’ll have to
begin thinking of vectors not just as arrows with a certain length and pointing in a specified direction,
but rather as members of a class of objects called tensors that have very predictable (and useful)
properties under transformation of coordinates. In that view, the vectors you’ve been dealing with up
to this point have all been tensors of rank one. Seeing them as such, and understanding what that
means, will be made a great deal easier through the use of a notation called “index notation” and a
convention known as the “Einstein summation convention.” You can read about index notation and
the summation convention in the next section.

4.7 Index notation

You’ve seen the first glimmerings of index notation in the earlier section of this chapter describing
coordinate  transformations.  As  you  may  recall,  the  angles  between the  transformed  (rotated)
coordinate axes and the original (non-rotated) axes of a two-dimensional coordinate system were
called α

11
, α

12
, α

21
, and α

22
. These angles could just as well have been designated α

x' x
, α

x' y
, α

y' x
, and

the like, but there are several good reasons to use the index numbers 1, 2, and 3 rather than the letters
x, y, and z to refer to coordinate axes and vector components. One of those reasons is that many
problems in physics and engineering involve a number of dimensions greater than 3, and although
everyone agrees that “4” comes after “3,” a consensus hasn’t been reached on what comes after “z.”
Another reason is that index notation enables the great convenience of the summation convention that
you can read about later in this section.

Using index notation, the coordinates of a point in three-dimensional space are written as (x
1
, x

2
, x

3
)

or (x1, x2, x3) rather than (x, y, z), and the components of a vector are written as (A
1
, A

2
, A

3
) or (A1, A2,

A3) rather than (A
x
, A

y
, A

z
) or (Ax, Ay, Az). This system is easily extended to N-dimensional space, in

which the coordinates become (x
1
, x

2
,…, x

N
) or (x1, x2,…, xN) and the vector components become (A

1
,

A
2
,…, A

N
) or (A1, A2,…, AN).

Applying this notation to the equation for the transformation of contravariant vector components
produced by a rotation of two-dimensional axes, Eq. 4.6 becomes

In three dimensions, this is
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(4.45)

(4.46)

(4.47)

(4.48)

Designating the elements of the transformation matrix a
11

, a
12

, a
13

, and so forth allows you to write

Eq. 4.44 as

or

Allowing “ i” to stand for any of the indices 1, 2, or 3 makes this:

As a final simplification, whenever an index appears twice in the same term, once as a superscript
and once as a subscript (as “j” does in Eq. 4.47), you can omit the summation symbol and write
simply

in which the reader knows to sum over the repeated index (j  in this case). Such repeated indices are
often called “dummy” indices, since any letter may be used for that index and the result will be the
same.8 It  was Albert Einstein who first suggested this summation convention,  which he jokingly
called his “great discovery in mathematics.”9 Whatever you call it, this idea certainly has saved a lot
of ink and time since Einstein proposed it in 1916.

Before moving on, you should take a careful look at Eq. 4.48 and make sure you understand that
these few symbols mean exactly the same thing as the many terms in the three separate equations of
Eq. 4.45. They tell you that each component in the primed coordinate system is a weighted linear
combination of the components in the original (unprimed) coordinate system, with the transformation
matrix elements (a

ij
) providing the weighting factors for each term.

And if  you want to know the exact  meaning of each of those factors in the transformation of
covariant and contravariant vector components, the next section will help with that.
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(4.50)
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4.8 Quantities that transform contravariantly

With the convenience of index notation and the summation convention at your disposal, you should
be ready to take the next step in the transition from thinking of vectors as quantities with magnitude
and direction to understanding why vectors belong to the class of objects known as tensors. That step
begins  by  asking  the  question  of  how a differential  element  of  length   transforms from one
coordinate system to another.

In general, the equations relating the coordinates in one system to those in another do not involve
simple linear combinations of coordinate values. For example, in transforming from spherical (r,θ,Á)
to Cartesian (x, y, z) coordinates, it’s not possible to write equations such as x = a

11
r  + a

12
θ + a

13
Á,

because x depends on the product of r with the sine of θ and the cosine of Á. And y and z have similar
non-linear relationships to the spherical coordinates.

If, however, you ask how the differentials of x, y, and z (that is, dx, dy, and dz) depend on the
differentials of r, θ, and Á (that is, dr, dθ, and dÁ), you’ll find that on this infinitesimally small scale,
dx does depend linearly on dr, dθ, and dÁ (as do dy and dz). So you are able to write

and likewise for dy and dz.
For any two coordinate systems in which a linear relationship exists between differential length

elements, writing the equations which transform between the systems is straightforward. If you call
the differentials of one coordinate system dx, dy, and dz and the other coordinate system dx′, dy′, and
dz′, the transformation equations from the unprimed to the primed systems come directly from the
rules of partial differentiation, as shown in the left column below:

Using the index-notation approach of substituting x1, x2, and x3 for x, y, and z results in the column
shown on the right.10 Putting this into matrix notation gives

or, using individual equations with summation symbols
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If you now allow the letter i to represent each of the numerical values of the index (1, 2, and 3), this
can be written as

Since the j  index is repeated, a final simplification results from the Einstein summation convention,
allowing you to write

So index notation has allowed the expression in Eq. 4.50, consisting of three equations with three
terms in each, to be written as this single equation. More importantly, the form of this equation will
help  you  understand  why  differential  length  elements  (dxi)  are  considered  to  be  contravariant
quantities.

To gain that understanding, it’s useful to recall Eq. 4.48 from the previous section:

which tells you that the components of a vector in the primed (transformed) coordinate system are the
weighted  linear  combination  of  the  components  of  that  same  vector  in  the  unprimed  (original)
coordinate system. And the weighting factors a

ij
 are the elements of the transformation matrix.

Now compare Eq. 4.53 to Eq. 4.48. On the left side of both equations, a primed quantity (dx ′i  or
A′i) with free index i  appears. On the right side, both equations contain the product of a factor with
free index i  and dummy index j  (  or a

ij
) with the left-side quantity unprimed and with dummy

index j  (dx j  or  A j).  And you know that  the factor a
ij
 in Eq. 4.48 represents  the elements of a

transformation matrix for contravariant vector components between the unprimed and the primed
coordinate systems. So it seems reasonable to conclude that the  terms in Eq. 4.53 can be seen as

the elements of the transformation matrix for the differential length elements.
So instead of looking at Eq. 4.53 as simply the index-notation version of the chain rule, you should

see it as a transformation equation that takes differential length elements from the unprimed to the

primed coordinate system (just as Eq. 4.48 does for the contravariant components of vector ).
And here’s the important insight: the  terms are not only the elements of a transformation matrix

from the unprimed to the primed coordinate system, they’re also the components of the basis vectors
tangent  to  the  original  (unprimed)  coordinate  axes,  expressed  in  the  new  (primed)  coordinate
system.11

Furthermore, you know that basis vectors tangent to the original coordinate axes are the covariant
basis vectors described earlier. And since contravariant vector components combine with covariant
basis  vectors  to  produce  invariant  quantities,  differential  length  elements  must  transform  as
contravariant vector components. This is the reason that the indices are written as superscripts in Eqs.
4.51 through  4.53;  the  differential  length  element  is  the  “prototype”  of  contravariant  vector
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(4.55)

(4.56)

(4.57)
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components.
Using index notation and representing the components of the basis vectors as , you should now

understand why the transformation equation for contravariant components of vector  is often written
as

Many authors present this as the definition of contravariant components.
To  see  how this  notation  works  in  practice,  consider  the  transformation  from polar  (r,  θ)  to

two-dimensional Cartesian (x, y) coordinates. In this case, x′1 = x, x′2 = y, x1 = r, and x2 = θ, and you
know that x = r cos(θ) and y = r sin(θ). So what are the weighting factors (that is, the elements of the
transformation matrix) in this case? Taking the appropriate derivatives, you find that

Are these really the components of the tangent vectors to the original (r, θ) coordinate axes (that is,
are they pointing along those axes)? You can see that they are by writing these terms as components
in the primed coordinate system (Cartesian in this case):

The first of these expressions is a vector pointing radially outward (along the -direction in polar
coordinates) and the second is a vector pointing perpendicular to the radial direction (along the 
-direction).12  This  demonstrates  that  the  partial  derivatives  in  Eq.  4.53 do  indeed  represent
components  of  the  original  (unprimed)  covariant  basis  vectors  expressed  in  the  new  (primed)
coordinate system.

4.9 Quantities that transform covariantly

If the differential length element of the previous section serves as the “prototype” for quantities that
transform as contravariant vector components, you may be wondering if there’s a similar “prototype”
for covariant quantities. You can answer that question by considering a quantity such as the change in
temperature with distance (degrees per meter) over some region, which you may recognize from
Chapter  2 as  the  gradient  of  that  quantity.  Unlike  the  differential  length  element,  which  has
dimensions  directly  related  to  the  coordinate  dimensions,  quantities such  as  the  gradient  have
dimensions that include the inverse of the coordinate dimensions (per unit length rather than length in
the case of spatial coordinates). This dimensional consideration suggests that the gradient may be a
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good candidate for the prototype of quantities that transform as covariant vector components. And
index notation makes this easy to see.

Imagine a scalar quantity such as temperature or density whose value at various positions is given
by the function f  (x, y,  z);  the rate of change of that  quantity is  in the x-direction,   in the

y-direction, and  in the z-direction. It’s reasonable to ask how these rates of change vary if the

coordinate system is changed. To answer that question, you can proceed as we did for the differential
length element, using the chain rule for partial  derivatives and then employing index notation as
follows:

As before, you can write this as a matrix equation

or as individual equations using the summation symbol:

Once again employing i as the free index gives
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and the Einstein summation convention simplifies this to

Comparing this to the equivalent expression for the differential length element (Eq. 4.53) suggests
that  once again the vector  components  in  the primed coordinate  system are  the weighted linear
combination of the components in the original coordinate system. But in this case the elements of the
transformation matrix ( ) are the inverse of those in the transformation of the differential length

elements (which are ). And just as in that case the  terms represent the components of vectors

that point along the original coordinate axes, in this case the  terms represent the components of

vectors that are perpendicular to the original coordinate surfaces. Hence in this case the weighting
factors are the components of the (contravariant) dual basis vectors, which means that the components
of the gradient  vector transform as covariant  components.  Of course, for  orthonormal coordinate
systems the lengths and directions of the original and dual basis vectors are exactly the same, and
there is no difference between the covariant and contravariant vector components. In non-orthonormal
coordinate systems, this distinction is critically important.

Again using index notation and representing the dual basis vectors as , you probably won’t find

it  surprising that  many authors define the covariant  components of vector  as components that
transform according to the equation

At this point you should be convinced that vectors are more than just little arrows with magnitude
and  direction;  they’re  quantities  that  transform  in  certain  ways between  coordinate  systems.
Specifically,  every  vector  has  both  contravariant  and  covariant  components  that  transform  in
predictable ways. The contravariant components vary in the opposite manner to the basis vectors
pointing along the original coordinate axes, and the covariant components vary in the same manner as
those basis vectors. Most importantly, by combining the vector’s contravariant components with the
original basis vectors, or by combining the vector’s covariant components with the dual basis vectors,
the resulting quantity (the vector itself) remains invariant under all coordinate transformations. It is
this characteristic that qualifies vectors to join the ranks of tensors.

Understanding the distinction between contravariant and covariant vector components is extremely
helpful in understanding tensors, because vectors are tensors. Specifically, since all the components of
a vector can be delineated using only a single index, vectors are tensors of rank one. Under this
definition, scalars are tensors of rank zero, since scalars are single numbers and require no index at
all. And of what use are tensors of rank two and higher? You’ll encounter those in Chapter 5.

4.10 Chapter 4 problems

4.1 Write the inverse transformation matrix for a 70° rotation of the 2-D Cartesian coordinate axes and
the indirect transformation matrix for the rotation of a vector through an angle of 70° degrees.
Show that the product of these two transformation matrices is the identity matrix.

4.2 Use the inverse transformation matrix from Problem 4.1 to find the components of vector  = 2î +



5.5 ĵ in the rotated coordinate system.
4.3 Use the direct transformation matrix from Problem 4.1 to rotate the original  coordinate basis

vectors î and ĵ by 70°, so they point along the rotated axes.

4.4 Use a direct transformation matrix to rotate vector  from Problem 4.2 through an angle of –70°,
and compare the x- and y-components of the rotated vector (in the original coordinate system) to
the x′- and y′-components of the unrotated vector in the rotated coordinate system.

4.5 Use the dot product of the original vector  with the rotated basis vectors (  and ) to

find the components of  in the rotated coordinate system.

4.6 For vector  = –5î + 6ĵ and basis vectors 
1
 = î+2 ĵ and 

2
 = –2î – ĵ, find the contravariant

components 1 and 2.
4.7 Find the dual basis vectors 1 and 2 for the basis vectors 

1
 and 

2
 of Problem 4.6.

4.8 Find the covariant components 
1
 and 

2
 for vector  of Problem 4.6.

4.9 Use the subsitution method and the elimination method to solve the two simultaneous equations
that result from vector Eq. 4.26.

4.10 Show that the elements of the Cartesian-to-polar transformation matrix are the components of the
basis vectors tangent to the original (Cartesian) coordinate axes.

1 Remember, there’s a review of matrix notation and algebra on the book’s website.
2 These components are identical in the Cartesian coordinate systems considered so far.
3 Schutz, B., A First Course in General Relativity, p. 64. See further reading.
4 This is not just an academic exercise; non-orthogonal coordinate axes turn up quite naturally in problems in relativity, fluid
dynamics, and other areas.
5 The use of superscripts for the “x”and”y” in the contravariant components Ax and Ay is deliberate and is the standard notation
for distinguishing these contravariant components from the covariant components A

x
 and A

y
.

6 Recall from Chapter 2 that  = | || | cos θ, where θ is the angle between  and .
7 In Chapter 5, you can learn to move between contravariant and covariant components using the metric tensor.
8 Unlike the repeated “dummy” indices which indicate summation, i is called a “free” index and no summation is implied.
9 Pais, A. 1983, Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford University Press, Oxford.

10 Superscripts are used for the indices because differential length elements transform as contravariant quantities, as described
later in this section.
11 If you’re wondering how partial derivatives can represent basis vectors, you should review Section 2.6 of Chapter 2.
12 These basis vectors can be understood in terms of the non-Cartesian unit vectors discussed in Section 1.5 of Chapter 1.
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Higher-rank tensors

The previous chapter contains several ideas that are important to a full understanding of tensors. The
first is that any vector may be represented by components that transform between coordinate systems
in one of two ways. “Covariant” components transform in the same manner as the original basis
vectors pointing along the coordinate axes, and “contravariant” components transform in the inverse
manner of those basis vectors.1 The second main idea is that coordinate basis vectors are tangent to
the coordinate axes, and that there also exist reciprocal or dual basis vectors that are perpendicular to
the coordinate axes; these dual basis vectors transform inversely to the coordinate basis vectors. The
third idea is that  combining contravariant  components with original  basis vectors and combining
covariant components with dual basis vectors produces a result  that is invariant under coordinate
transformation. That result is the vector itself, and the vector is the same no matter which coordinate
system you use for its components.

This chapter extends the concepts of covariance and contravariance beyond vectors and makes it
clear that scalars and vectors are members of the class of objects called “tensors.”

5.1 Definitions (advanced)

In the basic definitions of Chapter 1, scalars, vectors, and tensors were defined by the number of
directions involved: zero for scalars, one for vectors, and more than one for tensors.2 Now that you’ve
seen the concepts of components, basis vectors, and the transformation properties of each, you’re in a
position to understand the more-advanced definitions of scalars, vectors, and tensors. Specifically:

A scalar is a single value with no directional indicator that represents a quantity that does not vary
as the coordinate system is changed.

So for a scalar with value Á in one coordinate system and value Á′ in another coordinate system, you
can be certain that the quantity represented by Á (combined with the relevant unit) and Á′ (combined
with its unit) is the same no matter which system you use to represent it.  Thus 1 inch and 2.54
centimeters represent the same quantity of length.

A vector is an array of three values (in 3-D space) called “vector components” that combine with
directional indicators (“basis vectors”)  to form a quantity that  does not vary as the coordinate
system is changed.



(5.1)

So vector  represents the same entity whether it is expressed using contravariant components Ai or
covariant components A

i
 :

where 
i
 represents a covariant basis vector and i represents a contravariant basis vector.

In transforming between coordinate systems, a vector with contravariant components Aj  in the
original  (unprimed)  coordinate  system  and  contravariant  components  A′i  in  the  new  (primed)
coordinate system transforms as

where the  terms represent the components in the new coordinate system of the basis vectors

tangent to the original axes.
Likewise, for a vector with covariant components A

j
 in the original (unprimed) coordinate system

and covariant components A′
i
 in the new (primed) coordinate system, the transformation equation is

where the  terms represent the components in the new coordinate system of the (dual)  basis

vectors perpendicular to the original axes.

A tensor of rank n is an array of 3n values (in 3-D space) called “tensor components” that combine
with multiple directional indicators (basis vectors) to form a quantity that does not vary as the
coordinate system is changed.

From  this  definition,  you  can  see  that  a  second-rank  tensor  has  32 =  9  components  in  three-
dimensional space. Note that a tensor of rank 0 is a scalar and a tensor of rank 1 is a vector.

There is no standard notation for tensors; you may see a tensor represented with double overhead
arrows (such as ) or with a tilde or two-directional arrow above or below (such as ,  or ).

Many authors don’t bother with arrows or tildes and represent tensors simply by writing the letter
signifying the tensor with “placeholder” indices to indicate the contravariant and covariant rank of the
tensor (such as Tij or Ta

b
).

5.2 Covariant, contravariant, and mixed tensors

You should by this point understand that the expression

presents the contravariant components of vector  in the transformed (primed) coordinate system



(5.2)

(5.3)

(5.4)

(5.5)

(A′i) as a weighted sum of the components of  in the original (unprimed) coordinate system (Aj). The
weighting factors  are simply the elements of the transformation matrix from the unprimed to the

primed coordinate systems, and those elements represent the components of the basis vectors tangent
to the original coordinate axes. With that understanding, a tensor expression such as

should have some recognizable elements. As you can probably surmise, in this expression A′ij  are the
contravariant  tensor  components  in  the  new  coordinate  system,  Akl  are  the  contravariant  tensor
components  in  the  original  coordinate  system,  and   as  well  as   are  elements  of  the

transformation matrix between the original and new coordinate systems. And just as in Eq. 5.1, the
elements of the direct transformation matrix also represent the basis vectors tangent to the original
coordinate axes. But in the vector expression Eq. 5.1 each component pertains to a single basis vector,
whereas the components in the tensor expression Eq. 5.2 pertain to two basis vectors. This should
seem reasonable to you, since the basic definitions in Chapter 1 state that vectors involve a single
direction while higher-rank tensors involve two or more directions.

The vector Eq. 5.1 involves contravariant components (as indicated by the use of superscripted
indices in A′i and Aj), but you know that an equivalent expression exists for the covariant components:

In this equation, the covariant components of vector  in the transformed (primed) coordinate system

(A′
i
) are expressed as a weighted sum of the covariant components of  in the original (unprimed)

coordinate system (A
j
).  In this case, the weighting factors  are the elements of the inverse

transformation  matrix  from the  unprimed to  the primed coordinate  systems,  and those elements
represent the dual basis vectors perpendicular to the original coordinate axes.

Extending this to a second-rank tensor gives a transformation equation such as this:

In this expression, A′
ij
 are the covariant tensor components in the new coordinate system, A

kl
 are the

covariant tensor components in the original coordinate system, and  as well as  are elements of

the transformation matrix between the original and new coordinate systems. And much as in Eq. 5.3,
the elements of the transformation matrix represent the dual basis vectors perpendicular to the original
coordinate axes.

As you may have anticipated, another possibility exists for second-rank tensors:

in which the tensor  is represented by one contravariant and one covariant index; each uses the

transformation matrix appropriate for its type.
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(5.7)

(5.8)

(5.9)

5.3 Tensor addition and subtraction

As you may recall  from Section 1.4,  two or  more vectors can be added simply by adding their
corresponding components. Hence a single vector equation such as

actually consists of three equations (in three-dimensional space), since each component of the

resultant vector  must be the sum of the corresponding components of vectors  and :

Higher-order tensors can be added using the same process, provided that the tensors to be added have
the same structure (that is, they are the same order and have the same number of covariant indices and
the same number of contravariant indices). The result of tensor addition is also a tensor, and the
resultant tensor has the same structure as each of the tensors that are added:

Note that each of these expressions represents more than one equation; the exact number depends on
the number of values that each index may take on. Note also that you can add tensors with any
number of covariant and contravariant indices, as long as the tensors being added have the same
number of each type of index.

To see that the result of adding two tensors fits the definition of a tensor, consider how the tensor
components Ai

j
 and Bi

j
 transform to another coordinate system:

Hence

If you compare this last expression to the expression for the transformation of the tensor components
Ci

j
 to the primed coordinate system
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you’ll see that the addition of Ai
j
 and Bi

j
 does produce an object Ci

j
 that meets the transformation

requirements for a tensor.
Subtraction  of  tensors  is  equally  straightforward;  you  simply  subtract  the  corresponding

components rather than adding them:

and the result of tensor subtraction is also a tensor, as you can see in the problems at the end of this
chapter.

5.4 Tensor multiplication

As described in Chapter 2, there are several different ways to multiply vectors – the scalar (dot)
product and vector (cross) product both take two vectors as inputs and produce a result that depends
on the magnitudes and directions of those two vectors. Not mentioned in that chapter was another

form of vector product called the “outer” product between a column vector ( ) and a row vector (),
which operates like this:

Note that the outer product of  two rank-1 tensors (vectors) is a rank-2 tensor, formed simply by
multiplying the individual components of the two vectors. The outer product is indicated with the ⊗
symbol in some texts; others just write the two vectors or tensors next to one another, such as Ai Bj =
Cij .

The outer-product operation may also be performed on higher-order tensors:

In this case, the outer product of a rank-2 tensor and a rank-3 tensor is a rank-5 tensor. This illustrates
the fact that the covariant rank of the outer-product tensor is the sum of the covariant ranks of the
input tensors, and the contravariant rank of the outer-product tensor is the sum of the contravariant
ranks of the input tensors.

The result of the outer-product operation is easily shown to be a tensor by considering how tensors
, , and  transform from the unprimed to the primed coordinate system. The transform of tensors

 and  is given by
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Multiplying these expressions gives

and the result of the outer product operation does indeed meet the transformation requirements for a
tensor.

Another  way  to  multiply  tensors  is  called  the  “inner  product,”  which  you can think  of  as  a
generalization of the scalar or dot product discussed in Section 2.1. As described in that section, the
dot product between two vectors produces a scalar result,  so you might expect the inner product
between two tensors to produce a tensor of lower rank. That’s exactly right, but to understand how it
happens, you first need to understand the process of tensor contraction.

To contract a tensor, simply set one contravariant index equal to a covariant index (or vice versa)
and then sum over the repeated index. This leads to a tensor with a rank that is two less than the rank
of the tensor with which you started.

To see how this works in practice, consider the rank-4 tensor . To contract this tensor in the

second and third indices, set the index k equal to the index j, resulting in

assuming that the indices j  and k run from 1 to 3. Note that the rank is reduced by two because you
made one index the same as another (reducing the rank by one) and then you summed over that index
(reducing the rank by one more). Note also that contraction produces another tensor only when the
two indices that are made equal are in different positions (one superscript and one subscript).

The reason for this becomes clear if you consider the contraction of the tensor that resulted from
the outer-product operation in Eq. 5.11. Contracting this tensor in the first and fourth indices by
setting q equal to n gives



But the derivative  involves only coordinates in the same (unprimed) system, and coordinates

within the same system must be independent of one another. Hence this derivative must equal zero
unless l = i, in which case it must equal one. This is most easily expressed using the Kronecker Delta
function, defined by

Thus

which is a tensor of rank 3, as expected. But note that this reduction from 5 to 3 in rank required that
two  of  the  partial  derivatives  combine  to  produce  the  delta  function,  which  then  invoked  the
summation process. That derivative combination only works if  one of the contracted indices is a
superscript and the other a subscript.

In this last example, the contraction was performed on a tensor that was the result of an outer
product. That two-step process (outer-product multiplication followed by contraction) is called the
“inner product” of two tensors. So if you start with two vectors (tensors of rank 1), form their outer
product (producing a tensor of rank 2), and then contract the result, you end up with a tensor of rank
zero – a scalar. This illustrates why the inner-product process can be considered to be a generalization
of the dot product between two vectors.

5.5 Metric tensor

As you think about contravariant and covariant components of vectors and tensors, you should not
lose sight of the fact that these components exist only when you’ve selected a coordinate system. And
why do you need a coordinate system? Because coordinate systems “arithmetize” space – that is, they
give you a way of applying the rules of arithmetic to objects that exist in the space in which you’re
working. That space may be the three-dimension space of everyday experience, or the four-dimension
spacetime of Einstein, or any other space you can imagine. The coordinate system you apply may
have straight axes that intersect at right angles, or the axes may be curved and intersect at any angle of
your choosing.

However  you  choose  to  arithmetize  a  space,  there  is  one  tensor  that  allows  you  to  define
fundamental quantities such as lengths and angles in a consistent manner at different locations. That
tensor, the one that “provides the metric” for a given coordinate system in the space of interest, is
called the fundamental or metric tensor. The lower-case letter “g” has become the standard symbol for
the  metric  tensor,  which  you  may  see  written  as   or  g.  The  metric  tensor  has  contravariant

components gij and covariant components g
ij
 .

To understand the role of  the metric  tensor,  consider  two points separated by an infinitesimal
distance ds. If the vector d  extends from one point to the other, then the square of the differential
length element may be written as . The vector d  may be written using contravariant



components and coordinate basis vectors (
i
) as

d  = 
i
dxi,

or using covariant components and dual basis vectors (
i
) as

d  = idx
i
.

Since ds2 involves the dot product of d  with itself, you have the option of using the contravariant
components dxi on both sides of the dot:

where g
ij
 represents the covariant components of the metric tensor. Alternatively, you may use the

covariant components dx
i
 on both sides of the dot:

where  gij  represents  contravariant  components  of  the  metric  tensor.  A  third  option  is  to  use
contravariant components on one side of the dot and covariant components on the other:

Note that in this case no metric tensor is needed, since the definition of dual basis vectors ensures that
 equals one if i = j and zero if i  j.

Whether ds2 is written as g
ij
 dxi dxj, gij  dx

i
 dx j, or dxi dx j, you can be sure of one thing: the distance

between two points must be the same no matter which coordinate system you employ, whether you
use contravariant, covariant, or mixed components. Hence it must be the job of the metric tensor 

and its components gij  and g
ij
 to turn the product of incremental coordinate changes expressed in

either contravariant or covariant components into the invariant distance between points. This is the
rationale behind the statement that the metric tensor “provides the geometry” of the space.

The geometry of vectors entails use of lengths and angles, so it’s useful to understand the role of

the metric tensor in defining the length of a vector such as  and the angle between two vectors 

and . Just as the incremental distance ds can be found by dotting the separation vector d  into itself,

the length of vector  can be found from . And there’s more than one way to do that.

One option is to use only the contravariant components of :



Another option is to use only covariant components:

And the final option is to use mixed components:

As in the case of d , the metric tensor ensures that the length of vector  is invariant.
To understand the role of the metric tensor in providing a consistent definition of angles, consider

the dot product . Once again, there are alternative ways of writing this product, and this means

that the angle between  and  can be written in the following equivalent ways:

This explains why you’re likely to run into the statement that  the metric tensor  “provides a dot
product” for a space – if you know how to find the dot product, you can define lengths and angles.

To see the tensor nature of the metric  tensor,  consider  the transformation of  the contravariant
components of the incremental separation vector d :

This means that the square of the incremental length (ds2) becomes:



(5.12)

This  daunting  expression  becomes far  more  tractable  if  you  realize  that  each bracketed  term
involves the sum of the partial derivatives of each of the transformed coordinates (x′1, x′2, and x′3)
taken with respect to two of the original coordinates (x1, x2, and x3). More specifically, each of the
three terms within each bracket is a product of the components of the basis vectors tangent to the
original axes (recall that  and  are the components in the transformed coordinate system

of the basis vector tangent to the i th original axis).
If  you assign the bracketed terms to the variable g with two subscripts denoting the axes with

respect to which the derivatives are taken, you will have



(5.13)

(5.14)

and since the order of multiplication is irrelevant, g
21

 = g
12

, g
31

 = g
13

, and g
32

 = g
23

. Substituting these

into Eq. 5.12, the expression for ds2 becomes

ds2 = g
11

dx1dx1 + g
22

dx2dx2 + g
33

dx3dx3 + g
12

dx1dx2 + g
21

dx2dx1 + g
13

dx1dx3 + g
31

dx3dx1 + g
23

dx2dx3 +

g
32

dx3dx2.

This can be further simplified using index notation and the summation convention:

ds2 = g
ij
 dxi dxj .

The g
ij
 term in this equation meets all the requirements of a second-rank tensor, but it’s not just any

tensor.  Because  it  relates  the  coordinate  differentials  in  various  directions  to  a  quantity  that  is
invariant across all coordinate transformations, it’s no wonder that this tensor is called the metric or
fundamental tensor.

To understand what’s so fundamental about this tensor, recall that the partial derivatives that make
up the elements of g

ij
 also represent the components of  the basis vectors tangent to the original

coordinate axes:

And since
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(5.16)

another way to represent the metric tensor is  (the inner product of the basis vectors
tangent to the coordinate axes). Since the inner product involves the projection of one vector onto the
direction of another and scales as the length of those two vectors, the elements of g

ij
 specify the

relationships between the coordinate axes. Those relationships are determined by the shape of the
coordinate space.

The nature of the metric tensor can be readily understood by considering a transformation from
spherical polar (r, θ, Á) to Cartesian (x, y, z) coordinates. In this case

x′ 1 = x = rsin(θ)cos(Á) = x1sin(x2)cos(x3),
x′ 2 = y = rsin(θ)sin(Á) = x1sin(x2)sin(x3),
x′ 3 = z = rcos(θ) = x1cos(x2),

and the partial derivatives appearing in the elements of the metric tensor are

and

Inserting these values into the expression for g
ij
 (Eq. 5.15) gives the diagonal terms:3
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(5.18)

The off-diagonal terms are

Thus the metric tensor for spherical polar coordinates is

A careful look at the metric tensor can tell you something about the coordinate system you’re dealing
with. For example, the fact that all off-diagonal elements are zero in this case tells you that spherical
polar  coordinate axes,  while curved,  are orthogonal  (that  is,  the  lines of  increasing  r,  θ,  and  Á
intersect at right angles). Furthermore, by inserting these values into Eq. 5.13, you’ll have

ds2 = dr2 + r2dθ2 + r2sin2θdÁ2.

This  expression  makes  it  clear  that  the  elements  of  the  metric  tensor  tell  you  how to  turn  an
incremental change in r, θ, or Á into a change in distance. For example, the factor of one in front of
the dr2 term means that a change in r  is already a distance. But a change in zenith angle (θ) must be
multiplied by a factor of r to turn it into a distance. And the distance corresponding to a change in the
azimuthal angle Á depends on both the zenith angle (hence the sin(θ) term in g

33
) as well as the

distance from the origin (hence the r term in g
33

).

Other coordinate systems require other factors to convert each change in a coordinate value to a
distance,  and  those  factors  always  appear  in  the  metric  tensor  for  that  system.  For  orthogonal
coordinate systems, the square roots of the diagonal elements of the metric tensor (  and

) are called the “scale factors” (h
1
, h

2
, and h

3
) of the coordinate system. Thus the scale factors

for spherical polar coordinates are  and 
Once you’re familiar with the metric tensor and scale factors, you can easily find the differential

operators gradient, divergence, curl, and Laplacian in any orthogonal coordinate system (curvilinear
or rectangular). For example, the gradient is given by
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(5.20)

and the divergence may be written as

The curl is given by

which expands to

The Laplacian can be found as

If you’d like to see some examples of how these expressions can be used, check out the problems at
the end of this chapter and the on-line solutions.4

5.6 Index raising and lowering

One of  the many useful  functions of  the  metric  tensor  is  to  convert  between the covariant  and
contravariant components of other tensors. Imagine that you’re given the contravariant components
and original basis vectors of a tensor and you wish to determine the covariant components. One
approach is to use the techniques described in Chapter 4 (finding the dual basis vectors, performing
parallel and perpendicular projections, and the like), but with the metric tensor, you have another
option. You can use relations such as

g
ij
 Aj = A

i

to convert a contravariant index to a covariant one (thus “lowering” an index). Furthermore, if you
wish to convert a covariant index to a contravariant index, you can use the inverse of g

ij
 (which is just

gij) to perform operations like this:

gij B
i
 = Bj .

And this same process works for higher-order tensors:
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5.7 Tensor derivatives and Christoffel symbols

In many applications,  it’s  important to know how a vector field changes as you move from one
location to another.  For vectors expressed using Cartesian coordinates,  taking the derivative of a
vector is quite straightforward: you simply take the derivative of each of the vector’s components.
You can do that because the Cartesian basis vectors (î, ĵ, and ) are everywhere constant in both
magnitude and direction.  That means you don’t  need to worry about the derivatives of the basis
vectors. But as you’ve seen for spherical polar coordinates, the basis vectors (, , and ) point in
different  directions  as  you  move  around  the  space,  which  means  that  when  you  take  a  spatial
derivative of a vector expressed in these coordinates, you must also consider the derivatives of the
basis vectors.

Thus if you have a vector  expressed in general coordinates x1, x2, x3 with covariant basis vectors

1
, 

2
, and 

3
 as

 = A1 
1
 + A2 

2
 + A3 

3
,

the derivative of  with respect to coordinate x1 is

It’s the second term in this equation that complicates the process of taking a derivative in coordinate
systems in which the magnitude and/or direction of the basis vectors change as you move around the

space. And as you might expect, similar terms appear when you take the derivatives of  with respect
to  the  other  coordinates.  So  if  you  want  to  evaluate  the  changes  in vector  fields  expressed  in
non-orthonormal coordinates, you have to account for possible changes in the basis vectors. Properly
accounting for those changes means that the result of the defferentiation process will retain the tensor
characteristics of the original object.

Fortunately, there’s a way to account for any change in the basis vectors and to ensure that the
derivative of a tensor is another tensor. That process, called the “covariant derivative,” is described in
the next section of this chapter. But the process of covariant differentiation will make a lot more sense
to you if you’ve first learned the meaning of the Christoffel symbols described in this section.

To understand Christoffel symbols, you should begin by realizing that the derivative of a basis
vector  will  be  another  vector.  Like  any  vector,  that  vector  can  be  described  as  the  weighted
combination of the basis vectors at the point under consideration. Each Christoffel symbol, written as
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an uppercase Greek gamma (Γ),  simply represents the weighting coefficient  for one of the basis
vectors. Hence the defining relationship for Christoffel symbols5 is

in which the index i  specifies the basis vector for which the derivative is being taken, the index j
denotes the coordinate being varied to induce this change in the ith basis vector, and the index k
identifies the direction in which this component of the derivative points, as shown in Figure 5.1.

Figure 5.1 Explanation of Christoffel symbol indices.

Figure 5.2 Example of Christoffel symbol indices.

Hence if you find two Christoffel symbols such as  you know that

which is further explained in Figure 5.2.
As this example illustrates, Christoffel  symbols are really quite simple to understand once you

know the code of their indices. Best of all, the values of these useful symbols are easy to determine if
you know the elements of the metric tensor for the coordinate system in which you’re working. It will
take a bit of algebra to get to the relationship between Christoffel symbols and the metric tensor, but
the result makes the trip worthwhile.

A good way to start is to form the dot product of the basis vector l with both sides of Eq. 5.22:



Remembering that  this becomes

Since the term  is the same as , this may be written as

which seems rather pointless until you add nothing to it. Nothing, that is, in the following form:

Note that the terms in parentheses on each line add to zero, so you haven’t changed the quantity on
the right side of the equation by adding these terms. It may look like things are getting worse, but the
situation will become more clear once you’ve accomplished a few more bits of manipulation. The first
bit is to realize that l = gkl 

k
, so the Christoffel symbol becomes

Now it’s just a matter pulling out the common factor of gkl and grouping the terms by their sign:

which may be further simplified if you recognize that
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So

But you know from the definition of the elements of the metric tensor that  and that
, which means you can write

With this expression, finding the Christoffel  symbols for any coordinate system for which you
know the metric tensor is quite straightforward. And why is that worth doing? Simply because using
the Christoffel symbols, you can take a derivative of vectors and tensors that accounts for changes in
the basis vectors as well as changes in the components. This preserves the most important property of
a tensor: invariance across coordinate systems. Such covariant derivatives are the subject of the next
section, but before getting to that, you might want to consider an example of the Christoffel symbols
for a familiar coordinate system.

Consider the cylindrical coordinates (r,  Á, and z)  described in Section 1.5. In this system, the
square of the differential length element is related to the coordinate differentials by ds2 = dr2 + r2dÁ2

+ dz2. Hence the covariant metric tensor may be represented by

which suggests that most of the Christoffel symbols will be zero in this case. You can verify that by
taking the derivatives indicated in Eq. 5.23, beginning with l = 1, i = 1, and j = 1 (and don’t forget that
the summation convention means that you must sum over k):

and then using the relations x1 = r, x2 = Á, and x3 = z:

OK, that one was pretty boring, as are most of the others in this case. But have a go at the Christoffel
symbol for l = 1, i = 2, and j = 2:



which is:

or

Now  you’re  getting  somewhere.  And  exactly  where  is  that?  Just  remember  the  meaning  of  a
Christoffel symbol, and you’ll see that this result means that the change in the covariant  basis vector
as you move in the Á direction has a component in the –  direction that increases directly with
distance from the origin.

A similar analysis shows that  which are the only other non-zero Christoffel

symbols for the cylindrical coordinate system.6 If you don’t see how to get that result, take a look at
the problems at the end of this chapter and the on-line solutions.

5.8 Covariant differentiation

With Christoffel symbols in hand, you have a way of differentiating a vector or higher-order tensor
that includes the effect of changes (if any) in the magnitude and direction of the basis vectors used to
expand that vector or tensor. This type of derivative is called the “covariant” derivative, and it finds
application not only in the Euclidean space in which many engineering and physics problems are
worked, but also in the curved Riemanian space of General Relativity.

In Euclidean space, two vectors at different locations may be compared and combined by dragging
one of the vectors to the location of the other without changing its magnitude or its direction. If the
vector is expanded using Cartesian coordinates, such “parallel transport” is accomplished simply by
keeping  each  of  its  components  the  same  (because  the  Cartesian  basis  vectors  have  the  same
magnitude and direction everywhere). But if the vector is expressed in non-Cartesian coordinates, the
length and direction of the basis vectors may be different at the two locations. In such cases, the
covariant derivative provides a means of parallel-transporting one of the vectors to the location of the
other.

The situation is more complicated for curved spaces. You can find the details of the use of the
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covariant derivative in curved spaces in Chapter 6, but for now you can understand the role of the
covariant  derivative  by  considering  a  two-dimensional  spherical  surface  embedded  in  a  three-
dimensional Euclidean space. Imagine a series of tangent planes just touching the sphere at each
location,  and picture a vector lying in  one of those tangent planes. If that  vector  is  moved to a
different location on the sphere while holding its direction constant (as viewed in the larger three-
dimensional space), it will not lie in the tangent plane at the new location (you can think of the vector
as “sticking out” of the two-dimensional space of the sphere). In such cases, the covariant derivative
serves to project the derivative of the vector into the tangent space of the sphere.

You should also note that the covariant differentiation process produces a result that retains the
properties of a tensor, which means that the result transforms between coordinate systems according
to the rules of tensor transformation.

To  understand  how  the  process  of  covariant  differentiation  works,  consider  the  vector
 and its derivatives

Now replace the partial derivative in the second term with the Christoffel-symbol definition (Eq.
5.22):

Since the indices i and k in the second term are both dummy indices by the summation rule, you can
switch them and then extract the common factor that is now the basis vector 

i
 :

The covariant  derivative  is  defined as the combination of  the  two terms inside the parentheses.
Common notation for the covariant derivative is to use a semicolon (;) in front of the index with
respect to which the covariant derivative is being taken (j  in this case). Thus you’re likely to see the
components of the covariant derivative defined as

A  similar  analysis  leads  to  the  covariant  derivative  of  a  vector expanded  using  covariant
coefficients:
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Note that the term involving Christoffel symbols is subtracted in this case.
To make the meaning of Eqs. 5.24 and 5.25 more explicit, consider the covariant derivative

of vector  with respect to Á in cylindrical coordinates (so x1 = r, x2 = Á, and x3 = z). Setting j
= 2 in Eq. 5.24 (since we’re interested in the covariant derivative with respect to Á),

which says that a change in the r-component of vector  caused by a change in Á is caused both by a

change in Ar  with Á and by a change in the basis vectors which causes a portion of  that was
originally in the Á-direction to now point in the –r-direction. Likewise, for the change in AÁ as the
value of Á is changed,

Thus

The process of covariant differentiation can also be applied to higher-order tensors. As you might
expect, this simply requires the addition of a Christoffel-symbol term for each contravariant index,
and the subtraction of a Christoffel-symbol term for each covariant index. Hence

5.9 Vectors and one-forms

If you look up the subject of tensors in recently published physics texts, especially those dealing with
General  Relativity,  you  may  be  surprised  to  find  little  mention  of  contravariant  and  covariant
components in favor of  terms such as “covectors” and “one-forms.” Have you wasted your time
struggling to understand complicated concepts and terminology that have now become obsolete? I
obviously don’t think so, or I wouldn’t have devoted so many pages to the developments of the last
two chapters. Instead, I believe there’s value in seeing the “traditional” presentation as well as the
“modern” approach, because the differences arise from perspective rather than from the core concepts.



But those different perspectives do lead to very different terminology, and the purpose of this section
is to provide a short introduction to that terminology.

The  first  thing  to  understand is  that  the  traditional  approach  tends to  treat  contravariant  and
covariant components as representations of the same object, whereas in the modern approach objects
are  classified  either  as  “vectors”  or  as  “one-forms”  (also called  “covectors”).  In  the  modern
terminology,  vectors  transform as  contravariant  quantities,  and one-forms transform as  covariant
quantities. Quantities with dimension of length in the numerator (such as velocity, with units that
include “meters per”) fit naturally into the vector category; quantities with dimension of length in
denominator (such as the gradient of a scalar field, with units that include “per meter”) fit naturally
into the one-form category.

In illustrations involving vectors and one-forms, vectors are represented as arrows and one-forms
are represented as small sections of surfaces, as shown in Figure 5.3. As indicated in the figure, for
vectors the angle of the arrow shows direction and the length of the arrow shows the magnitude. For
one-forms, surfaces are aligned normal to the direction and the spacing between surfaces is inversely
proportional to the magnitude. This means that vectors with greater magnitude are represented by
longer arrows, while one-forms of greater magnitude are represented by closer spacing.

Figure 5.3 Representation of vectors as arrows and one-forms as surfaces.

As in  the traditional  approach,  vectors  (which utilize contravariant  components)  expand using
original  basis  vectors,  while  one-forms (which utilize  covariant  components)  expand using basis
one-forms, which are equivalent to dual basis vectors in the traditional approach. That correspondence
means that the product of a vector and a one-form is an invariant (a scalar), just as the multiplication
of a contravariant and a covariant quantity produces a scalar without requiring the metric tensor. One
very nice graphical interpretation of such products is that the resulting scalar is represented by the
number of one-form surfaces through which the arrow of a vector passes.

Authors using the modern approach often place strong emphasis  on vectors and one-forms as
operators  (or  rules),  so  you’re  likely  to  encounter  statements that  vectors  “take”  one-forms and
produce scalars, just as one-forms “take” vectors and produce scalars. Likewise, a higher-order tensor
takes multiple vectors and/or one-forms and produces a scalar.  From this perspective, the metric
tensor is an operator that takes two vectors or two one-forms and produces their dot product, and the
components of the metric tensor may be found by feeding it basis vectors or one-forms.



5.10 Chapter 5 problems

5.1 Show that the process of subtracting one tensor from another results in a quantity that is also a
tensor.

5.2 Find the elements of the metric tensor for spherical coordinates by forming the dot products of the
relevant basis vectors.

5.3 Show how the derivatives given after Eq.  5.16 lead to the elements of the metric  tensor  for
spherical polar coordinates (Eq. 5.17).

5.4 Use the scale factors for spherical polar coordinates to verify the expressions given in Chapter 2
for the gradient, divergence, curl, and Laplacian in spherical coordinates.

5.5 Show that for cylindrical coordinates (r, Á, z) the Christoffel symbols Γ2
12

 and Γ2
21

 are equal to

1/r.
5.6 Find gij, the inverse of the spherical metric tensor g

ij
 .

5.7 Use gij to raise the indices of the vector A
i
 = (1, r2sinθ, sin2θ).

5.8 On the two-dimensional  surface of a sphere of radius R,  the square of the differential  length
element is given by ds2 = R2dθ2 + R2sin2θdÁ2. Find the metric tensor g

ij
 and its inverse gij  for this

case.
5.9 What are the Christoffel symbols for the 2-D spherical surface of Problem 5.8?

5.10 Show that the covariant derivative of the metric tensor equals zero.

1 The prototype of a vector expressed in contravariant components is the displacement vector, and the prototype of a vector
expressed in covariant components is the gradient vector.
2 Note that specifying one direction in 3-dimensional space requires two angles.
3 If you don’t see how to get these results, you can find more detail in the problems at the end of this chapter and in the on-line
solutions.
4 You can find the derivation of these extremely handy equations in Boas’ Mathematical Methods in the Physical Sciences,
John Wiley and Sons, 2006.
5 The Christoffel symbols written as  are Christoffel symbols of the second kind; another form of Christoffel symbol (the

“first kind”) is described in most General Relativity texts.
6 Note that the symmetry of the metric tensor means that Christoffel symbols of this type are symmetric in the two lower
indices.



6

Tensor applications

This chapter provides examples of how to apply the tensor concepts contained in Chapters 4 and 5,
just as Chapter 3 provided examples of how to apply the vector concepts presented in Chapters 1 and
2. As in Chapter 3, the intent for this chapter is to include more detail  about a small number of
selected applications than can be included in the chapters in which tensor concepts are first presented.

The examples in this chapter come from the fields of Mechanics, Electromagnetics, and General
Relativity. Of course, there’s no way to comprehensively cover any significant portion of those fields
in one chapter; these examples were chosen only to serve as representatives of the types of tensor
application you’re likely to encounter in those fields.

6.1 The inertia tensor

A very useful way to think of mass is this: mass is the characteristic of matter that resists acceleration.
This means that it takes a force to change the velocity of any object with mass. You may find it
helpful to think of moment of inertia as the rotational analog of mass. That is, moment of inertia is the
characteristic of matter that resists angular acceleration, so it takes a torque to change the angular
velocity of an object.

Many students find that  rotational  motion is  easier to understand by keeping the relationships
between translational  and rotational  quantities in mind.  So where translational  motion dealt  with
position (x), velocity ( ), and acceleration (), rotational motion has the analogous quantities of angle
(θ), angular velocity ( ), and angular acceleration (). There are rotational analogs for many other
quantities; the translational quantities of force (), mass (m), and momentum () have the rotational

equivalents of torque (), moment of inertia (I), and angular momentum ().

As you may also recall, several of the equations relating various translational quantities have direct
parallels  in  rotational  motion.  So  the  rotational  equivalent  of  Newton’s  Second  Law

.1 And whereas translational momentum is related to mass and velocity by  = m
, you probably learned that angular momentum is related to moment of inertia and angular velocity

by L
z
 = I ω.

When first presenting these relationships, most texts restrict the motion to planar rotation of a
single particle to keep things simple.  So when you think of  the relationship between linear  and
angular velocity, you may think of something like υ = ωr. And if L

z
 = mvr, then L

z
 = mr2ω. Taking

mr2 as the moment of inertia (I) of a single particle, this becomes L
z
 = I ω. But the υ and the ω in

those equations can’t really be velocities, since they’re written as scalars rather than vectors, and that



(6.1)
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z subscript on the angular momentum seems to be trying to tell you something.
It is. It’s telling you that you’re using an equation for one component of the angular momentum (the

z-component in this case), and this pertains to a single particle moving about the origin in the xy
plane. So these equations aren’t wrong, they just have limited application. Specifically, they apply to
cases of planar motion about the z-axis.

The more-general relationship between the vectors that represent velocity, angular velocity, and
position is this:

in which the cross represents the vector cross product described in Chapter 2. And the equations
relating angular momentum to linear momentum, linear velocity, and mass are

Before delving more deeply into  these equations,  you should consider  the implications of  the
(planar-motion) equation that says that the moment of inertia of a single particle is I

particle
 = mr2. One

important idea in this equation is that the moment of inertia of a particle depends not only on its mass,
but also on the location of that mass – specifically, the distance (r) of the mass from the axis of
rotation. Thus the moment of inertia of an extended object made up of many particles must depend
not only on the object’s mass, but on the distribution of that mass. That’s true in the case of general
motion as well as planar rotation.

If you think of the rotational analog to the translational equation  = m , you may be tempted to
write an equation such as  = I . But that equation would indicate that the angular momentum 

must be in the same direction as the angular velocity , since multiplication by a scalar can change
the length but not the direction of a vector (unless the scalar is negative, in which case the direction of
the vector is reversed). For general motion, the situation is more complex, as you can see by applying
Eq. 6.2 to a single particle circling about the axis shown in Figure 6.1. In this figure, the particle “m”
is circling around the z-axis, so the angular velocity () points straight up, parallel to the z-axis. In
this view, you’re looking down the x-axis toward the origin of the coordinate system, which is well
below the plane of the particle’s path. The particle is initially at the position shown on the left side of
the figure, and its velocity vector is coming out of the page. Since the vector angular momentum is
given by  = m  × , you can find the direction of the angular momentum at this initial instant by

using your right hand to form the cross product between  and , as described in Section 2.2. If you
do this properly, you should see that  initially points up and to the right, as shown by 

initial
 in the

figure.  At  a  later  time,  after  the  particle  has  completed  one-half  revolution about  the  z-axis,  its
velocity vector is into the page, as shown in the right portion of the figure. At that later instant, the
cross product between  and  means that the direction of the angular momentum vector  is up and

to the left, as shown by 
later

.
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Figure 6.1 Single point mass moving around an axis.

So not only is the angular-momentum vector  not parallel to the angular velocity , the direction

of the  is changing as the particle moves around the axis, while the direction of  remains fixed

along the z-axis.
Under these circumstances, you clearly cannot use a scalar value for the moment of inertia to relate

the angular momentum to the angular velocity through an equation such as  = I . A scalar moment

of inertia simply isn’t capable of relating a vector in one direction to a different vector in another
direction. But if you’ve followed the developments of Chapters 4 and 5, you’re already familiar with a
type of object that is capable of taking in a vector (such as ) and producing another vector (such as

) that points in a different direction. That object is a tensor. So although you may have initially

learned about the moment of inertia as a scalar value in the case of planar motion about the origin,
you should now understand why more-general problems require a more-powerful approach, and that
involves the representation of inertia as a tensor rather than a scalar.

You may be thinking that simply by adding another particle of equal mass at the same distance on
the other side of the z-axis, you could produce an additional bit of angular momentum that would add
to the angular momentum of the original mass. In that case, the total angular momentum would indeed
point straight up the z-axis, in exactly the same direction as the angular velocity. So you may suspect
that the relationship between the angular momentum and the angular velocity (and hence the nature of
the inertia tensor) depends on the symmetry of the object. That suspicion is correct, as you’ll see
when you examine the components of the inertia tensor.

You can begin  to  understand the components  of  the  inertia  tensor  by  first  writing  the  tensor
equation relating angular momentum to angular velocity:

and then using the definition of angular momentum:



(6.4)

The triple vector product in this expression can be simplified using the “BAC minus CAB” rule
described in Section 2.4, giving

This is a usable expression for the angular momentum of a single particle, and you can modify it
for use with multiple masses simply by summing (or for a continuous object by integrating) over all
the masses. Thus the expression you’ll most often encounter will probably look something like this:

where the index i denotes each element of mass of the object.
To  see  the  moment  of  inertia  in  this  expression,  first  expand  the position  vector  as

 and  the  angular  velocity  vector  as    (note  that  the

angular velocity  is the same for every mass element in a rigid body, so it’s not necessary to write
). Thus the expression for angular momentum is

and performing the dot products gives

Since the x-component of  is ω
x
 and the x-component of 

i
 is x

i
, the x-component of the angular

momentum can be written

The y- and z-components come out as



(6.5)

These three equations for  the  components  of  angular  momentum ()  written as a  single matrix

equation:

The elements of the center matrix represent the components of the inertia tensor (). Note that the

dimensions of each element are mass times distance squared (SI units of kg m2), just as in the case of
scalar moment of inertia.

In some texts, you’ll find the elements of the inertia tensor written as something like

which are the same elements as shown in Eq. 6.5.
The diagonal elements of the inertia tensor are called “moments of inertia” and the off-diagonal

elements  are  called  “products  of  inertia.”  To  understand the physical  meaning  of  each of  these
elements,  recall  that  the  moment  of  inertia  characterizes  an  object’s  tendency  to  resist  angular
acceleration. That resistance depends not only on the object’s mass, but on the distribution of that
mass relative to the axis of rotation.

Each term I
ab

 tells you how much angular momentum in the a-direction is produced by rotation

about the b-axis. So I
11

 = I
xx

 tells you how much angular momentum the object produces in the

x-direction due to rotation about the x-axis. And I
23

 = I
yz

 tells you how much angular momentum the

object produces in the y-direction due to rotation about the z-axis.
How those off-diagonal terms come about is explained below, but you should first take a look at the

diagonal  terms.  In  the  expression for  I
xx

,  for  each element  of  mass  (m
i
),  the  element’s  mass  is

multiplied by the square of the distance from the x-axis (y2
i
 + z2

i
). So this is just the three-dimensional

version of the equation you may have learned for planar rotation that says that the moment of inertia
of a particle is I = mr2, where r is the particle’s distance from the axis of rotation. Looking down the
diagonal of the inertia tensor, you see the contribution to the x-component of angular momentum due
to rotation about the x-axis, the contribution to the y-component of angular momentum due to rotation
about the y-axis, and the contribution to the z-component of angular momentum due to rotation about
the z-axis. The bottom line is that distributions of mass that are symmetric about each axis contribute
to the diagonal terms of the moment of inertia matrix.

The off-diagonal elements of the inertia tensor are somewhat different. In I
yz

, for each element of

mass (m
i
), the element’s mass is multiplied by the product of the element’s y- and z-coordinates (y

i
 z

i
).

As explained above, this determines the contribution to the y-component of angular momentum due to
rotation about the z-axis. And when does rotation about the z-axis produce a y-component of angular
momentum? When there’s an asymmetric distribution of mass about the z-axis, for example as shown
with  the single  particle  in  Figure  6.1. Likewise,  the  I

xy
 term determines  the contribution  to  the



x-component of angular momentum due to rotation about the y-axis. Such contributions come from
mass  distributions  that  are  asymmetric  about  the  y-axis.  Hence  distributions  of  mass  that  are
asymmetric about a given axis contribute to the off-diagonal terms of the moment of inertia matrix.

To see how this works, consider the five point masses on the corners and top of a pyramid as shown
in Figure 6.2. To determine the inertia tensor for this configuration of masses, you simply have to plug
the mass and coordinates of each of the masses into Equation 6.5. If the mass of each of the five
masses is the same and equal to “m” and the height of the pyramid is equal to the length of each of the
bottom sides (with a value of 2a as shown in Figure 6.2), the I

xx
 term is simply

Figure 6.2 Five point masses arrayed as a pyramid.

and you should obtain the same result for the other diagonal elements I
yy

 and I
zz
. Moving on to the

off-diagonal elements, the I
xy

 term is

which is the same as all other off-diagonal elements. Thus the matrix representing the inertia tensor
for the configuration shown in Figure 6.2 is



There’s a great  deal  of  information in the components  of this inertia  tensor.  The fact  that  the
off-diagonal elements are all zero means that the selected x-, y-, and z-axes are “principal axes” for
this object and choice of origin, and the moments of inertia are “principal moments” of the object.
When an object rotates about one of the principal axes, the angular momentum vector and the angular
velocity vector are parallel. This is an indication of the object’s symmetry. In this case, the fact that all
three principal moments are equal means that this object qualifies as a “spherical top” (in Mechanics,
“top” refers to any rigid rotating object). And for a spherical top, any three mutually orthogonal axes
are principal axes.

If the height of mass m
5
 above the plane of the other four masses is increased to twice its original

height (so that its z-coordinate becomes 4a instead of 2a), the greater distance from the x- and y-axes
increases the moment of inertia about those axes, so that the inertia tensor becomes

Of course, the distance of m
5
 from the z-axis remains zero irrespective of its height, so this mass is not

contributing to the component I
zz

 in either case, and that component remains the same. Now that only

two of the principal moments of inertia are equal, the object is no longer a spherical top, and has
become a “symmetric top” (and if all three principal moments were different, the object is called an
“asymmetric top”). One final bit of terminology: if one of the principal moments of an object is zero
and the other two are equal to one another, the object is called a “rotor.”

Another way to change the inertia tensor of this object is to fiddle with the masses of the particles.
If, for example, you double the mass of m

5
 from its original value of m to 2m, while leaving the other

four masses the same, the inertia tensor becomes

As expected, there’s no change in the I
zz
 component since m

5
 doesn’t contribute to that moment.

Now consider what will happen to the inertia tensor if you rotate the coordinate axes. Remember,
the inertia tensor  is  determined for a given location of  the origin and a given orientation of the
coordinate axes, so it seems reasonable to expect a change in the components if the coordinate axes
are rotated.

To test this, imagine rotating the coordinate axes counter-clockwise about the x-axis, as shown in
Figure 6.3. In this figure, you’re looking down the x-axis toward the origin, so the y- and z-axes
appear tilted (they’re labeled y′ and z′ to distinguish them from the original y- and z-axes). In this case,
the rotation angle is approximately 30°. Figure 6.3(a) shows that the axes have rotated while the
masses remained in their original positions, while Figure 6.3(b) shows the view you would get if you
tilted your head to make the z′-axis vertical and y′-axis horizontal.

What effect might this have on the inertia tensor? To determine that, you’ll  need to know the
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coordinates of each of the masses in the new (rotated) coordinate system (that is, you need to know x′,
y′, and z′ for each mass). Fortunately, Chapter 4 should have given you some idea of how to do that by
using a rotation matrix to convert between the original and rotated coordinates. In this case, that
rotation matrix is given by

Figure 6.3 Coordinate axes rotated 30° anti-clockwise around x-axis.

If you go back to the original masses (all five masses equal to mass m) and original height of m
5

(which is 2a above the xy plane) and then apply this rotation, you should find the following values for
the components of the matrix representing the inertia tensor:

If you’re suprised to find that there’s no change from the original inertia tensor (the one without the
rotation), remember that the symmetry of this object makes it a spherical top, which means that any
set of three orthogonal axes will be principal axes. So tilting the axes should not have caused any
change in the inertia tensor.

That sounds reasonable enough, but if you compare the location of the masses in Figure 6.3 to the
single-mass case shown in Figure 6.1, doesn’t it also seem reasonable to expect that m

5
 will produce a

component of angular momentum in the –y-direction (as the single mass did in Figure 6.1)?
Yes, it does. And, in fact, mass m

5
 does indeed produce a component of angular momentum in the

–y-direction. To demonstrate that, just set the other four masses to zero and calculate the inertia tensor
for m

5
 alone (don’t forget that the coordinate axes are rotated). You should get



So there it is: I
yz

 (which represents the y-component of angular momentum produced by rotation

around the z-axis) is clearly not zero. But why did you get zero for all the off-diagonal elements when
you first calculated the inertia tensor for the pyramid with tilted coordinate axes? The answer is that
the other four masses also have something to say about the inertia tensor. To isolate their contribution
to I

yz
, try setting the mass of m

5
 to zero and leaving the other four masses equal to m. The inertia

tensor should then be

Figure 6.4 Angular momentum vectors for masses in plane of page.

And there’s the answer: the other four masses contribute exactly as much angular momentum in the
positive y-direction as m

5
 contributes to the negative y-direction, as illustrated in Figure 6.4. And

remember from Chapter 5 that you can add tensors by adding their components. So when you add the
inertia tensor for m

5
 to the inertia tensor for the other four masses, you get the (nicely diagonal) inertia

tensor for the five-mass pyramid.
To demonstrate the balance between m

5
 and the other four masses, you may find it interesting to

again move m
5
 up the z-axis to twice its original height and then perform the 30 degree rotation of the

coordinate axes. In this case, you should find the inertia tensor to be

and clearly the I
yz

 terms from m
5
 and the other four masses no longer cancel.

You can determine the inertia tensor for any orientation of the coordinate axes by applying rotations



(6.7)

(6.8)

(6.9)

about multiple axes. If you wish, for example, to rotate first about the x-axis by angle θ
1
 and then

about the y-axis by angle θ
2
, you can combine the rotation matrices as

which in the case of two 30 degree rotations (first about the x-axis and then about the y-axis) gives a
combined rotation matrix of

If  you leave m
5
 at height 4a and then apply this rotation to the coordinates, the inertia tensor

becomes

You can perform a quick check on your calculation by verifying that the coordinate-axis rotation has
changed neither the trace nor the determinant of the matrix.2

Instead of finding the new coordinates of each mass in the rotated system, an alternative approach
allows you to find the inertia tensor for rotated coordinates directly. That approach is to apply a
“similarity transform” to the original inertia tensor. Here’s how that works: the angular momentum is
related to the inertia tensor and angular velocity in the original (unrotated) coordinate system as

and you rotate the coordinates by applying a rotation matrix R (which may be the product of several
rotation matrices). You can therefore write

And since the product of any matrix and its inverse is just the identity matrix, you can insert the term
R–1 R in front of :

But R  is just , so

Thus  the  expression   relates  angular  momentum  to  angular  velocity  in  the  rotated



coordinate system, which means that this expression is the inertia tensor in that system. So instead of
calculating the new coordinates for each mass and plugging them into the equation for the inertia
tensor, you can instead simply apply the rotation matrix and its inverse to the matrix representing the
inertia  tensor  directly  (but  remember  that  the  sequence  matters when  you’re  doing  matrix
multiplication).

Using this approach, the process looks like this:

which is identical to the result obtained by inserting the rotated coordinates into the inertia tensor.
If  you’ve  studied  matrix  algebra,  you  may be wondering  about  the  possibility  of  finding  the

principal axes and principal moments by manipulating the matrix representing the inertia tensor into a
diagonal form. That is certainly possible, and you can read about doing that using eigenvectors and
eigenvalues on this book’s website.

And if you’re able by visual inspection to determine the angles of rotation needed to align the axes
with the symmetries of the object, you can use the similarity transform approach to diagonalize the
inertia matrix. You can see how that works by looking at the problems at the end of this chapter and
the on-line solutions.

6.2 The electromagnetic field tensor

One  of  the  defining  characteristics  of  our  modern  world  is  the  availability  of  broadband
communication channels which allow near-instantaneous transfer of information over great distances
without  the  need for  physical  connection.  The technology  used in  this  communication descends
directly from the equations synthesized by Scotsman James Clerk Maxwell in the 1860s, now called
“Maxwell’s Equations.” In view of the impact of electromagnetic telecommunications on our lives,
it’s not surprising that in 2004 the readers of Physics World voted Maxwell’s Equations to be the
“greatest equations” ever developed.

The four vector equations that have come to be called Maxwell’s Equations are Gauss’s Law for
electric fields, Gauss’s Law for magnetic fields, Faraday’s Law, and the Ampere–Maxwell Law, each
of which may be written in integral or differential form. The integral forms describe the behavior of
electric  and magnetic  fields over  surfaces or  around paths,  while the differential  forms apply to
specific  locations.  The  differential  forms  are  most  relevant  to  the  vector  and  tensor  operations
discussed in this book, involving the scalar product, divergence, curl, and partial derivatives discussed
in Chapter 2. They’re also closely related to the subject of this section, the electromagnetic field-
strength tensor.

The differential forms of Maxwell’s Equations are usually written as



Gauss’s Law for electric fields: 

Gauss’s Law for magnetic fields: 

Faraday’s Law: 

Ampere–Maxwell Law: 

In  order  to  understand the electromagnetic  tensor,  you may find it helpful  to  briefly  review the
meaning of each of these equations.3

Gauss’s Law for electric fields states that the divergence () of the electric field ( ) at any location
is proportional to the electric charge density (ρ) at that location. That’s because electrostatic field lines
begin on positive charge and end on negative charge (hence the field lines tend to diverge away from
locations of positive charge and converge toward locations of negative charge).

Gauss’s Law for magnetic fields tells you that the divergence () of the magnetic field ( ) at any
location must be zero. This is true because there is apparently no isolated “magnetic charge” in the
universe, so magnetic field lines neither diverge nor converge.

Faraday’s Law indicates that the curl () of the electric field ( ) at any location is equal to the
negative of the time rate of change of the magnetic field at that location. That’s because a changing
magnetic field produces a circulating electric field.

Ampere’s Law, as modified by Maxwell, tells you that the curl ( ) of the magnetic field ( ) at any
location is proportional to the electric current density () plus the time rate of change of the electric
field at that location. This is the case because a circulating magnetic field is produced both by an
electric current and by a changing electric field.

Note that Maxwell’s Equations relate the spatial behavior of fields to the sources of those fields.
Those sources are electric charge (with density ρ) appearing in Gauss’s Law for electric fields, electric
current (with density ) appearing in the Ampere–Maxwell Law, changing magnetic field (with time
derivative )  appearing in Faraday’s Law, and changing electric  field (with time derivative )

appearing in the Ampere–Maxwell Law.
One additional equation is needed to fully characterize electromagnetic interactions. That equation
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(6.11)

(6.12)

is called the “continuity equation,” usually written like this:

where ρ is the density of electric charge and  is the current density.
The continuity equation tells you that the time rate of change of the density of electric charge 

equals the negative of the divergence of the electric current density . That’s because negative

divergence means convergence, and if the convergence of the current density  is positive at a point,
then more positive charge must be arriving at  that  location than is  being carried away.  If  that’s
happening, then the density of positive charge at that point must increase (meaning that  will be

positive in this case).
As valuable as Maxwell’s Equations are individually, the real power of these equations is realized

by combining them together to produce the wave equation. Taking the curl of both sides of Faraday’s

Law and inserting the curl of  from the Ampere–Maxwell Law results in the equation

where  is  the  vector  form of  the  Laplacian operator.4 This  equation  applies  to
regions in which the charge density (ρ) and the current density () are both zero.

You can find a similar equation for the magnetic field by taking the curl  of  both sides of the
Ampere–Maxwell Law and then inserting the curl of  from Faraday’s Law. This gives

It’s instructive to compare Eqs. 6.10 and 6.11 to the general equation for a propagating wave:

where υ is the speed of propagation of the wave. Note the 1/v2 term, which leads to the conclusion that
the velocity of an electromagnetic wave depends only on the electric permittivity (є

0
) and magnetic

permeability (µ
0
)  of  free space (specifically,  µ

0
є

0
 = 1/υ2,  or υ  = 1/  = 3 × 108 m/s).  Most

importantly, that velocity is completely independent of the motion of the observer. It was this feature
of electromagnetic waves that put Albert Einstein onto the path that eventually led to the Theory of
Special Relativity.

To arrive at the Theory of Special Relativity, Einstein held fast to two postulates. Those postulates
are:

1) The laws of physics must be the same in all inertial (that is, non-accelerating) frames of reference.
2) The speed of light in a vacuum is constant and does not depend on the motion of the source or

observer.

Steadfast faithfulness to these postulates even in the face of counter-intuitive conclusions allowed
Einstein to see that distances in space and intervals of time are not absolute but depend on the relative
motion of the observer. Additionally, space and time are not separate but are linked together into



four-dimensional spacetime, and it is the four-dimensional spacetime interval that is invariant across
all inertial reference frames.

To understand Einstein’s approach, consider the two Cartesian reference frames shown in Figure
6.5. As indicated by the arrow in the figure, the primed reference frame is moving with velocity  in
the positive x-direction. Using the traditional Galilean approach, the coordinate (x, y, and z) and time
(t) values for a point measured in both the unprimed and primed coordinate systems are related by
these equations:

Figure 6.5 Primed reference frame moving along x-axis with velocity .

t′ = t,

x′ = x – vt,

y′ = y,

z′ = z,

since the primed frame is moving only in the x-direction.5

Einstein realized that the second postulate of Special Relativity (the constancy of the speed of light)
is inconsistent with the Galilean transform shown above, and that consistent results are obtained only
when a  different  transform is  used between the  unprimed  and  primed coordinate  systems.  That
transform must  hold the space–time interval  invariant  across inertial  reference frames.  But  what
exactly is the space–time interval (that is, how should you combine the space terms and the time
term)?

The answer to that question can be understood by imagining a pulse of light radiating spherically
outward from a certain location. Calling the speed of light c, an observer in the unprimed coordinate
system will find the square of the distance covered by a wavefront of the light wave in time t to be x2

+ y2 + z2 = ct2. Likewise, an observer in the primed coordinate system will write this as x′2 + y′2 + z′2 =
ct′2.  But by the second postulate of special relativity, the speed of light must be the same for all
observers. So



ct2 – x2 – y2 – z2 = ct′2 – x′2 – y′2 – z′2,

which indicates that the sign of the time term must be opposite to the sign of the spatial terms if the
speed of light is to be the same for all observers. Of course, the negative sign could equally well be
attached to the time term (as long as the spatial terms were made positive), and you’ll find some texts
using that convention.

The combination  of  one time and three spatial  coordinates into  a  single  “four-vector”  is  best
expressed using index notation:

x
0
 = ct,

x
1
 = x,

x
2
 = y,

x
3
 = z,

in which the speed of light  (c) is used in the time term to ensure that all  four coordinates have
dimensions of length.

Using this notation, the space–time interval (ds) can be written as

(ds)2 = (dx0)2 – (dx1)2 – (dx2)2 – (dx3)2.

This interval is the space–time equivalent of  distance (ds2 = dx2 +dy2 +dz2) in three-dimensional
space.

Transformations that preserve the invariance of the space–time interval across inertial reference
frames are called “Lorentz transforms” after the Dutch physicist Hendrik Lorentz.  For motion in
+x-direction with speed υ, the Lorentz transformation is

where

and

This form of the space–time interval can be written using the metric tensor g
αβ

:

(ds)2 = g
αβ

dxαdxβ,
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(6.14)

in which the tensor g
αβ

 corresponds to the Minkowski metric for flat space-time. In matrix form, that

metric is

As you may recall  if  you’ve studied modern physics, the invariance of the space–time interval
under Lorentz tranformation leads to  several  interesting results for  observers  in  different  inertial
reference frames. Those results include:

(1)  Length  contraction:  An  observer  in  a  given  reference  frame  measures  lengths  in  a  moving
reference frame to be contracted along the direction of motion.

(2) Time dilation: An observer in a given reference frame measures time in a moving reference frame
to run more slowly.

(3) Relativity of simultaneity: An observer in a given reference frame will not agree with an observer
in a moving reference frame as to whether two events are simultaneous.

Writing physical laws in a form that clearly fits within the framework of Special Relativity has
several benefits: such “manifestly covariant” laws have the same form in all inertial reference frames,
and the quantities involved transform between reference frames in predictable ways. Any covariant
theory of electromagnetism must incorporate the experimental fact that quantity of charge is a scalar
(invariant between reference frames), and that Maxwell’s Equations and the Lorentz force law are true
in all inertial reference frames. This requires a tensor version of the electromagnetic field equations
and a four-vector version of the Lorentz force law, which can be accomplished by expressing the
electric charge density ρ and current density  as a four-vector called the “four-current”:

 = (cρ, J
x
, J

y
, J

z
).

With  the  four-current  in  hand,  a  tensor  version  of  Maxwell’s  Equations  can  be  achieved  by
combining the components of the electric and magnetic field into an “electromagnetic field tensor.”
The matrix representing the contravariant version of this tensor is6

The covariant version of this tensor can be found by lowering the indices using the metric tensor.
The result is

Another useful tensor is the dual contravariant electromagnetic field tensor



(6.15)

(6.16)

(6.17)

One benefit of these tensor expressions is that all of Maxwell’s Equations may now be expressed
using just two tensor equations. Those two equations are:

and

Where are Maxwell’s Equations in these expressions? Well, to find Gauss’s Law for electric fields,
take β = 0 in Eq. 6.16:

Inserting the values from the electromagnetic field-strength tensor of Eq. 6.13 and summing over the
dummy index α gives

Thus

and, since c2 = 1/(є
0
µ

0
),

or

which is Gauss’s Law for electric fields.
To get the Ampere–Maxwell Law, look at the equations that result from setting β equal to 1, 2, and

3 in Eq. 6.16:



As above, just insert the values from the electromagnetic field-strength tensor of Eq. 6.13 and sum
over the dummy index α:

Hence

Recognizing the partial derivatives of the magnetic field as the components of the curl of , this is

the Ampere–Maxwell Law.
The other two Maxwell Equations (Gauss’s Law for magnetic fields and Faraday’s Law) may be

obtained in a similar  fashion using the dual  electromagnetic field-strength tensor (Eq.  6.15).  For
example, to find Gauss’s Law for magnetic fields, take β = 0 in Eq. 6.17:

Inserting the values from the dual electromagnetic field-strength tensor of Eq. 6.15 and summing over
the dummy index α gives

which is



Gauss’s Law for magnetic fields.
And to get Faraday’s Law, look at the equations that result from setting β equal to 1, 2, and 3 in Eq.

6.17:

As before, just insert the values from the dual electromagnetic field-strength tensor of Eq. 6.15 and
sum over the dummy index α:

So

Recognizing the partial derivatives of the electric field as the components of the curl of , this is
Faraday’s Law:

So the use of tensors allows you to write Maxwell’s Equations in a simpler form. But the real
power of tensors is to help you understand the behavior of electric and magnetic fields when viewed
from  different  reference  frames.  Specifically,  by  transforming  to  a  moving  reference  frame,  it
becomes clear that electric and magnetic fields depend on the state of motion of the observer.

To see how that comes about, imagine an observer in a reference frame moving along the positive
x-axis at a constant speed υ. You can investigate the behavior of electric and magnetic fields as seen
by this observer by transforming the electromagnetic field tensor to the observer’s reference frame.

Recall the Lorentz transform matrix for motion along the x-axis with speed υ:



(6.18)

So to transform to the primed coordinate system, use

which is

Multiplying the center matrix by the right matrix gives

which, when multiplied by the left array, gives

Thus



(6.19)

(6.20)

Comparing this to Eq. 6.13, the components of the electric field in the new (primed) coordinate
system can be related to the components of the electric field in the original (unprimed) coordinate
system by

and the magnetic field components in the new (primed) system are

This  is  a  profound result,  since it  indicates  that  the  existence of  electric  and magnetic  fields
depends on the motion of the observer.

To understand the implications of these results, consider the case in which E
x
 = E

y
 = E

z
 = 0 but one

or more components of  are non-zero (this occurs, for example, when a long, straight wire carries a
steady  electric  current).  This  means  that  an  observer  in  the  unprimed coordinate  system sees  a
magnetic field but no electric field. However, transforming to the primed coordinate system, Eqs. 6.19
and 6.20 tell you that an observer in the primed coordinate system sees both electric and magnetic
fields (since in this case  and ). So does the magnetic field exist or not?

The answer depends on the motion of the observer.
Now consider a case in which B

x
 = B

y
 = B

z
 = 0 but one or more components of  are non-zero in

the unprimed system (for example, an electric charge at rest in the unprimed system). For this case, an
observer  in  the  primed  system  does  see  a  magnetic  field  with  components   and

 (this makes sense, since the observer in the primed system sees a moving electric
charge, which is an electric current, and electric currents produce magnetic fields). Cases such as
these  explain  the  reasoning  behind  the  statement  that  electric  and  magnetic  fields  “have  no
independent existence.”

The problems at the end of this chapter will give you an idea of the relative magnitudes of fields
seen by an observer at rest and a second observer moving at a significant fraction of the speed of light.

6.3 The Riemann curvature tensor



In the decade after publishing his Theory of Special Relativity in 1905, Albert Einstein turned his
attention to what he called a “deficiency” in classical mechanics: the lack of an explanation for the
precise equality of inertial and gravitational mass. An object’s inertial mass determines its resistance
to acceleration, and its gravitational mass determines its response to a gravitational field. The equality
of  these  differently  defined  masses  cannot  be  explained  by  classical  mechanics,  and  Einstein’s
scientific instincts told him that the resolution of this deficiency could be achieved by “an extension
of the principle of relativity to spaces of reference which are not in uniform motion relative to one
another.”7 He applied the word “General” to this extension of his theory of relativity because this new
theory would not be restricted to the non-accelerating reference frames of Special Relativity.

Early in his work on the General Theory, Einstein constructed a Gedanken-experiment (that is, a
mental exercise) in which he imagined a group of objects with different mass far away from the Earth
and from all other masses – you can think of this as a bunch of rocks far out in space. The behavior of
these  objects  is  observed from two reference  systems,  one of  which  is  called  system K  and is
“inertial” or non-accelerating with respect to the rocks. The other system, called system K′,  is in
uniform acceleration  with  respect  to  the first.  For  an observer  in  the K′  system, the objects  all
accelerate in the same direction (opposite to the direction of the acceleration of the K′ system) and at
the same rate (equal to the rate of acceleration of the K′ system). Seeing all objects accelerating in the
same direction and at the same rate, that observer would be entirely justified in concluding that the
acceleration of the objects is produced by an external gravitational field and that the K′ system is at
rest. Einstein realized that both the K and the K′ systems are valid frames of reference, and he termed
the complete equivalence of such systems the “principle of equivalence.”

Einstein’s next step was to overlay the z′-axis of K′ system with the z-axis of the K system and then
to allow the K′ system to rotate about the z′-axis with uniform angular speed (recall that a rotating
object experiences centripetal acceleration, so rotation makes K′ an accelerated system). If system K′
were not rotating, the size of objects and rate of time flow measured in the K and K′systems would be
the same. But when system K′ is rotating, objects at rest in K′ will be moving when measured in the K
system  and  will  therefore  experience  length  contraction  and  time dilation,  and  the  amount  of
contraction and dilation will  depend on the location of the objects (since objects farther from the
rotation  axis  will  have  higher  velocity).  Since  the  principle  of  equivalence  demands  that  an
accelerated system and a system at rest in a gravitational field are equivalent, Einstein was forced to
conclude that length contraction and time dilation could also be produced by gravity, or as he put it
“the  gravitational  field  influences  and  even  determines  the  metrical  laws  of  the  space–time
continuum.”

Those metrical laws are expressed using tensors, so the General Theory of Relativity relies on
tensor formulation of physical laws and on concepts described in earlier chapters, such as the metric
tensor,  Christoffel  symbols,  and  covariant  derivatives.  The  most  important  tensor  in  General
Relativity is the Riemann curvature tensor, sometimes called the Riemann–Christoffel tensor after the
nineteenth-century  German mathematicians Bernhard Riemann and Elwin Bruno Christoffel.  The
importance of this tensor stems from the fact that non-zero components are the hallmark of curvature;
the vanishing of the Riemann tensor is both a necessary and a sufficient condition for Euclidean (flat)
space.

Most texts use one of two ways to derive the Riemann curvature tensor: parallel transport or the
commutator of the covariant derivative. To understand the parallel-transport approach, you should
first understand that “parallel transport” refers to a method of moving a vector around a space while
keeping the length and direction of the vector the same. In Cartesian flat space, making sure the
vector’s  magnitude and direction  don’t  change is  straightforward  – just  move the vector  around
without allowing the x-, y-, or -z components to change. If the components don’t change, then the
length and the direction of the vector don’t change, and this satisfies the requirements of parallel
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transport.
In curved spaced, the situation is more complex. For one thing, “pointing in the same direction”

becomes more difficult to define. Consider the two-dimensional space that is the surface of the Earth
(and pretend for the moment that it’s perfectly smooth). Imagine a vector that is initially at the equator
(say a bit north of Quito, Ecuador) and is pointing due north, directly along the meridian line. Now
imagine transporting that vector toward the north pole, all the while making sure it remains pointed
exactly along the meridian line. Remember, the entire space is the surface of the Earth, so the vector
must remain tangent to the surface (that is, locally horizontal) as you move it. If you continue moving
your vector along the meridian line and pass over the North Pole and then “down” the other side of
the Earth, you will eventually reach the equator again somewhere near the middle of Indonesia. Your
vector will still be pointing along the meridian, but now it will be pointing south. So although you’ve
kept your vector pointing “in the same direction” (that is, along the meridian) over the entire trip, it’s
gone from pointing north to pointing south.

Now imagine making another trip, also starting with a north-pointing vector at the equator near
Quito, but this time moving along the equator instead of over the North Pole. Once again, as you
move you make sure that your vector continues to point north (along the local meridian). After a long
journey, you arrive in the middle of Indonesia, but this time you find that your vector is pointing
north. Hence the direction of the vector at the end of the journey depends on the path taken, even
though you used parallel transport in each case. And whenever the result of parallel transport is a
change in the direction of a vector, you can be sure you’re dealing with a curved space.

This raises a larger issue: it’s not possible to add, subtract, multiply, or in any way compare vectors
at different locations – you have to transport one of the vectors to the location of the other before you
can perform such operations. That’s no problem in flat space, because you can parallel-transport a
vector to any other location simply by keeping its coefficients constant (ensuring that the vector’s
length is constant and that it remains pointed in the same direction). But while “pointed in the same
direction” is easily defined at different locations in flat space, you’ve just seen that this phrase is
problematic in curved space. Hence a more-general definition of parallel transport is required.

In that definition, “parallel transport” is defined as transport for which the covariant derivative is
zero. Remember that the covariant derivative is the combination of two terms, the first of which is the
usual  partial  derivative,  and the second of which involves a Christoffel  symbol.  As described in
Section 5.7 in Chapter 5, the purpose of that second term is to account for changes in the basis
vectors. Holding the covariant derivative at zero while transporting a vector around a small loop is
one way to derive the Riemann tensor.8

The Riemann curvature tensor falls naturally out of the commutator of the covariant derivative of a
vector.  In  this  usage,  “commutator”  refers  to  the  difference  that  results  from  performing  two
operations first in one order and then in the reverse order. So if one operator is denoted by A and
another operator by B, the commutator is defined as [AB] = AB–BA. Thus if the sequence of the two
operations has no impact on the result, the commutator has a value of zero.

To get to the Riemann tensor, the operation of choice is covariant differentiation. That’s because in
a flat space the order of covariant differentiation makes no difference, so the commutator must yield
zero. Any non-zero result of applying the commutator to covariant differentiation can therefore be
attributed to the curvature of the space.

To begin this process, take the covariant derivative of vector V
α
 first with respect to x β:

Now call this result V
αβ

 and take another covariant derivative (this time with respect to xγ):
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Substituting the expression from Eq. 6.21 into this equation gives

It’s not easy to see the physical significance in this expression, but remember how you got here:
first by finding the incremental change in V

α
 as you take a small step in the x β-direction, and then

finding the change in that quantity as you take a small step in the xγ -direction. And now you’re going
to compare the result of these two operations with the result you get when you take the steps in
reverse order – from the same starting point, you’ll first find the incremental change in V

α
 as you take

a small step in the xγ -direction, after which you’ll find the change in that quantity as you take a small
step in the x β-direction.

To take the covariant derivatives in the opposite order, differentiate first with respect to xγ :

Call this result V
αγ

 and take another covariant derivative (this time with respect to x β):

As before, you can substitute the expression from Eq. 6.24 into this equation to get

In flat space, the order of covariant differentiation should make no difference, so Eq. 6.26 should be
identical to Eq. 6.23. Any differences between these equations can therefore be attributed to the
curvature of the space. Examining these two equations term by term, the first terms are equal:

(these terms are equal because the order of normal partial derivatives does not matter). Hence these
terms cancel in the commutator. Now comparing the second terms,
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so these terms do not cancel one another. Comparing the third term of Eq. 6.23 to the fourth term of
Eq. 6.26, they’re found to be equal:

because the symbols used for dummy indices (σ and τ) are irrelevant. The fourth term of Eq. 6.23
equals the third term of Eq. 6.26:

for the same reason. The fifth terms are not equal:

But the sixth terms are equal:

because Christoffel symbols are symmetric in their lower indices. The seventh terms are equal for the
same reason:

So when the commutator AB–BA is formed, most of the terms cancel out, but the second and fifth
terms remain after subtraction. Those terms are

The terms within the parentheses define the Riemann curvature tensor:

If  you’re  wondering  why the  curvature  tensor  involves  the  derivative  of  Christoffel  symbols,
consider this: in any space, you can always define a coordinate system for which the Christoffel
symbols are all zero at some point. But unless the space is flat, the Christoffel symbols will not be
zero at all other locations, which means that the partial derivatives of the Christoffel symbols will not
be zero. So a necessary and sufficient condition for flat space is that
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(6.33)

(6.34)

Another tensor related to the Riemann curvature tensor is the Ricci tensor, which you can find by
contracting the Riemann tensor along the σ and β indices. In four dimensions, this is

If you contract the Ricci tensor by raising one index and setting it equal to the other, the result is the
Ricci scalar. Again in four dimensions, this is

Finally, the tensor known as the “Einstein tensor” can be written as a combination of the Ricci
tensor, the Ricci scalar, and the metric:

This is the tensor that appears in Einstein’s field equation for General Relativity, often written as

where  T
µν

 is  the  energy-momentum tensor  and  Γ  is  the  “cosmological  constant”  introduced  by

Einstein to maintain a static Universe. It is this equation that gives rise to the first half of the concise
statement of General Relativity: “Matter tells spacetime how to curve, and spacetime tells matter how
to move.”

To appreciate the full content of the Riemann tensor, consider a two-dimensional space that is the
surface of a sphere. The metric for such a space is

ds2 = a2dθ2 + a2 sin2(θ)dÁ2,

from which the components of the metric tensor may be found to be

Inserting these values into the equation for Christoffel symbols gives

Even in two dimensions, writing out all the terms of the Christoffel symbols can be something of a
chore:



But given the metric tensor components shown in Eq. 6.34, all the partial derivatives except those
involving  are zero,  as are any terms involving g

θÁ
 or g

Áθ
.  That leaves only three non-zero

Christoffel symbols, which are

With the Christoffel  symbols  for  the spherical  surface in  hand,  the components  of  the Riemann
curvature tensor may be found using

As in most tensor equations, the full content of this tensor can only be appreciated by writing out the
components. Not only must you allow each of the indices σ, α, β, and γ to represent both θ and Á, you
must also allow the dummy index τ to represent both θ and Á and then sum those terms. Hence in
two-dimensional  space,  the  last  two terms of  the  Riemann tensor equation  (those  involving  the
products of the Christoffel symbols) become four terms, making a total of six terms for each set of
indices. The first eight components of the Riemann tensor can be found by setting σ equal to θ and



letting the other indices represent both θ and Á:

Inserting the Christoffel symbols found above, you can see that the non-zero components are

And since

and

this means the surviving terms from the σ = θ group are

Now allowing σ to equal Á, the other eight terms are



Again inserting the Christoffel symbols, the non-zero terms are found to be

And since

and

the surviving terms are

As expected, a two-dimensional space with the metric of a sphere (ds2 = a2dθ2 + a2 sin2(θ)dÁ2) has
non-zero components of the Riemann curvature tensor, confirming that this space is non-Euclidean.

You can see how to use these results to find the Ricci tensor and the Ricci scalar in the on-line
solutions to the problems at the end of this chapter.



6.4 Chapter 6 problems

6.1 Find the inertia tensor  for a cubical  arrangement of  eight  identical masses with the origin of
coordinates at one of the corners and the coordinate axes along the edges of the cube.

6.2 How would the moment of inertia tensor of Problem 6.1 change if  one of the eight masses is
removed?

6.3 Find the moment of inertia tensor for the arrangement of masses of Problem 6.2 if the coordinate
system is rotated by 20 degrees about one of the coordinate axes (do this by finding the locations
of the masses in the rotated coordinate system).

6.4 Use the similarity-transform approach to verify the moment of inertia tensor you found in Problem
6.3.

6.5 Show how the vector wave equation results from taking the curl of both sides of Faraday’s Law
and inserting the curl of the magnetic field from the Ampere–Maxwell Law.

6.6 If  an observer in one coordinate system measures an electric field of 5 volts per meter in the
z-direction and zero magnetic field, what electric and magnetic fields would be measured by a
second observer moving at 1/4 the speed of light along the x-axis?

6.7 If an observer in one coordinate system measures a magnetic field of 1.5 teslainthe z-direction and
zero electric field, what electric and magnetic fields would be measured by a second observer
moving at 1/4 the speed of light along the x-axis?

6.8 Show that  is invariant under Lorentz transformation.
6.9 The differential line element in 2-D Euclidean space may be expressed in polar coordinates as ds2

= dr2 + r2dθ2. Show that the Riemann curvature tensor equals zero in this case, as it must for any
flat space.

6.10 Find the Ricci tensor and scalar for the 2-sphere of Section 6.3.

1 Or, if  you prefer the more-general  form of Newton’s Second Law ( ), the analogous rotational relationship is

.

2 The matrix review on the book’s website explains how to do these calculations.
3 Complete descriptions may be found in any introductory electromagnetics text.
4 If you’d like to see the details of the derivation of the electromagnetic-wave equation, you’ll  find them in the on-line
solutions to the problems at the end of this chapter.
5 These equations assume that the origins of the two coordinate systems coincide at time t = 0.
6 You should be aware that there are almost as many versions of this matrix as there are authors; this book’s website has an
explanation of the reasons for the differences between the versions found in several popular texts.
7 A. Einstein, The Meaning of Relativity.
8 You can find the details in Schutz, A First Course in General Relativity, Cambridge University Press, 2009.
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