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Preface

This book has one purpose: to help you understand vectors and tensws\smitcan use them to
solve problems. If you're like most students, you first encountereiréeehen you took a course
dealing with mechanics in high school or college. At that ley@l, almost certainly learned that
vectors are mathematical representations of quantities that have dgtitude and direction, such as
velocity and force. You may also have learned how to add vegtaphically and by using their
components in the x-, y- and z-directions.

That'’s a fine place to start, but it turns out that such treatments only scrasthftiee of the power
of vectors. You can harness that power and make it work for ygauife willing to delve a bit
deeper — to see vectors not just as objects with magnitude auatiahy but rather as objects that
behave in very predictable ways when viewed from different refefesnoes. That's because vectors
are a subset of a larger class of objects called “tensohgchwnost students encounter much later in
their academic careers, and which have been called “tteedathe Universe.” It is no exaggeration
to say that our understanding of the fundamental structure of the @nwasschanged forever when
Albert Einstein succeeded in expressing his theory of gravity in terms of tensors.

| believe, and | hope you'll agree, that tensors are far etmsienderstand if you first establish a
stronger foundation in vectors, one that can help you cross the britlgeebhethe “magnitude and
direction” level and the “facts of the Universe” level. Thaitlsy the first three chapters of this book
deal with vectors, the fourth chapter discusses coordinate tnamagions, and the last two chapters
discuss higher-order tensors and some of their applications.

One reason you may find this book helpful is that if you spend ahtews looking through the
published literature and on-line resources for vectors and temsplg/sics and engineering, you're
likely to come across statements such as these:

“A vector is a mathematical representation of a physicalyentiaracterized by magnitude and
direction.”

“A vector is an ordered sequence of values.”

“A vector is a mathematical object that transforms between coordinate systeartain ways.”

“A vector is a tensor of rank one.”

“A vector is an operator that turns a one-form into a scalar.”

You should understand that every one of these definitions is cdsutathether it's useful to you
depends on the problem you're trying to solve. And being able to seeel#i®nship between
statements like these should prove very helpful when you begin aptimstady of subjects that use
advanced vector and tensor concepts. Those subjects include Mechuttemagnetism, General
Relativity, and others.

As with most projects, a good first step is to make sure you uaddrghe terminology that will be
used to attack the problem. For that reagtimapter 1provides the basic definitions you'll need to
begin understanding vectors and tensors. And if you're ready for rdeas@ed definitions, you can
find those at the beginning Ghapter 5



You may be wondering how this book differs from other texts that déaMectors and/or tensors.
Perhaps the most important difference is that approximately equal weightriggiwector and tensor
concepts, with one entire chapt&h@pter 3 devoted to selected vector applications and another
chapter Chapter § dedicated to example tensor applications.

You'll also find the presentation to be very different from thlabther books. The explanations in
this book are written in an informal style in which mathecatigor is maintained only insofar as it
doesn’t obscure the underlying physics. If you feel you already have augdetstanding of vectors
and may need only a quick review, you should be able to skim thi©hgpters lthrough3 very
quickly. But if you're a bit unclear on some aspects of vectorshamdto apply them to problems,
you may find these early chapters quite helpful. And if you'veadlyeseen tensors but are unsure of
exactly what they are or how to apply them, tidwapters 4hrough6 may provide some insight.

As a student’s guide, this book comes with two additional resoutesgned to help you
understand and apply vectors and tensors: an interactive wemsite series of audio podcasts. On
the website, you'll find the complete solution to every problementesl in the text in interactive
format — that means you'll be able to view the entire solutioonag, or ask for a series of helpful
hints that will guide you to the final answer. So when you s&atament in the text saying that you
can learn more about something by looking at the end-of-chapter prolmamber that the full
solution to every one of those problems is available to you. And ifrggdbe kind of learner who
benefits from hearing spoken words rather than just reading bextaudio podcasts are for you.
These MP3 files walk you through each chapter of the book, pointingnpatrtant details and
providing further explanations of key concepts.

Is this book right for you? It is if you're a science or engineertngent and have encountered
vectors or tensors in one of your classes, but you're not confident in your ability to apply ther. In tha
case, you should read the book, listen to the accompanying pododstgyrk through the examples
and problems before taking additional classes or a standardizedrewduich vectors or tensors may
appear. Or perhaps you're a graduate student struggling to makensigamafrom undergraduate
courses and textbooks to the more-advanced material you're seagngdumte school — this book
may help you make that step.

And if you're neither an undergraduate nor a graduate student, but a cywioug person or a
lifelong learner who wants to know more about vectors, tensorbgworapplications in Mechanics,
Electromagnetics, and General Relativity, welcome aboard. | comyoemdnitiative, and | hope this
book helps you in your journey.
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Vectors

1.1 Definitions (basic)

There are many ways to define a vector. For starters, here’s the most basic:

A vector is the mathematical representation of a physicayehtit may be characterized by size
(or “magnitude”) and direction.

In keeping with this definition, speed (how fast an object is gasmgpt represented by a vector, but
velocity (how fast andn which directionan object is going) does qualify as a vector quantity.
Another example of a vector quantity is force, which describes gty and in what direction
something is being pushed or pulled. But temperature, which has odeghiit no direction, is not a
vector quantity.

The word “vector” comes from the Latueheremeaning “to carry;” it was first used by eighteenth-
century astronomers investigating the mechanism by which a psatestriied” around the Suhln
text, the vector nature of an object is often indicated by plaaisgnall arrow over the variable
representing the object (suchﬁ$ or by using a bold font (such &$, or by underlining (such ¢
or f ). When you begin hand-writing equations involving vectors, it's very important that you get into
the habit of denoting vectors using one of these techniques (or another ym& choosing). The
important thing is nohow you denote vectors, it's that you don’t simply write them the same way you
write non-vector guantities.

A vector is most commonly depicted graphically as a directeddegment or an arrow, as shown
in Figure 1.1(a)And as you'll see later in this section, a vector may also be representedriole et
set of N numbers, where N is the number of dimensions in the space in which the vectar resides
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Figure 1.1Graphical depiction of a vector (a) and a vector field (b).

Of course, the true value of a vector comes from knowing whapriésents. The vector Figure
1.1(a) for example, may represent the velocity of the wind at sawatibn, the acceleration of a
rocket, the force on a football, or any of the thousands of vector gesitiat you encounter in the
world every day. Whatever else you may learn about vectors,ayobecsure that every one of them
has two things: size and direction. The magnitude of a vector ilyusthcated by the length of the
arrow, and it tells you the amount of the quantity representeldebyeictor. The scale is up to you (or
whoever’s drawing the vector), but once the scale has been é¢wtdblal other vectors should be
drawn to the same scale. Once you know that scale, you camihetehe magnitude of any vector
just by finding its length. The direction of the vector is usuaMegiby indicating the angle between
the arrow and one or more specified directions (usually the “cotedaxas”), and it tells you which
way the vector is pointing.

So if vectors are characterized by their magnitude and direapes that mean that two equally
long vectors pointing in the same direction could in fact be consiteitselthe same vector? In other
words, if you were to move the vector showrfigure 1.1(afo a different location without varying
its length or its pointing direction, would it still be the sareetor? In some applications, the answer
is “yes,” and those vectors are called free vectors. You cae ia free vector anywhere you'd like as
long as you don’t change its length or direction, and it remainsathe sector. But in many physics
and engineering problems, you'll be dealing with vectors that aggygiven locationsuch vectors
are called “bound” or “anchored” vectors, and you’re not allowed ltxate bound vectors as you
can free vectors.You may see the term “sliding” vectors used for vectors tfeafrae to move along
their length but are not free to change length or direction; sudiorseare useful for problems
involving torque and angular motion.

You can understand the usefulness of bound vectors if you think aboypbraton such as
representing the velocity of the wind at various points in the atmosphere. To do that, youncoséd c
to draw a bound vector at each point of interest, and each ofwboses would show the speed and
direction of the wind at that location (most people draw the vedtbrits tail — the end without the
arrow — at the point to which the vector is bound). A collection of such vectoite aaector field;
an example is shown figure 1.1(b)

If you think about the ways in which you might represent a bound vgoimay realize that the
vector can be defined simply by specifying the start and end poiintse arrow. So in a three-
dimensional Cartesian coordinate system, you only need to know the vakigsaridz for each end
of the vector, as shown faigure 1.2(a)you can read about vector representation in non-Cartesian
coordinate systems later in this chapter).

Now consider the special case in which the vector is anchor#aetorigin of the coordinate
system (that is, the end without the arrowhead is at the painteotection of the coordinate axes, as
shown inFigure 1.2(b} Such vectors may be completely specified simply by listimg three
numbers that represent tke y-, andz-coordinates of the vector’s end point. Hence a vector anchored
to the origin and stretching five units along th@xis may be represented as (5,0,0). In this
representation, the values that represent the vector are tedlécbmponents” of the vector, and the
number of components it takes to define a vector is equal to the nofrdigrensions in the space in
which the vector exists. So in a two-dimensional space a vewgrbe represented by a pair of
numbers, and in four-dimensional spacetime vectors may appe#tsa®fl four numbers. This
explains why a horizontal list of numbers is called a “row vectord a vertical list of numbers is
called a “column vector” in computer science. The number of vatusach vectors tells you how
many dimensions there are in the space in which the vector resides.
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Figure 1.2A vector in 3-D Cartesian coordinates.

To understand how vectors are different from other entitiesayt Inelp to consider the nature of
some things that are cleanhpt vectors. Think about the temperature in the room in which you're
sitting — at each point in the room, the temperature has a, valiieh you can represent by a single
number. That value may well be different from the value at otleatibns, but at any given point the
temperature can be represented by a single number, the magnitadan&gnitude-only quantities
have been called “scalars” ever since W.R. Hamilton edetw them as “all values contained on the
one scale of progression of numbers from negative to positive inffriltiytis

A scalar is the mathematical representation of a physical éhtat may be characterized by
magnitude only.

Other examples of scalar quantities include mass, charge, energy, andisfieed és the magnitude
of the velocity vector). It is worth noting that thkangein temperature over a region of space does
have both magnitude and direction and may therefore be represerdedebtor, so it's possible to
produce vectors from groups of scalars. You can read about just such a vectotl{edlgddient” of
a scalar field) irChapter 2

Since scalars can be represented by magnitude only (single numbers) andoyetiagsitude and
direction (three numbers in three-dimensional space), you mightcsubpe there are other entities
involving magnitude and directions that are more complex than vedtas i§, requiring more
numbers than the number of spatial dimensions). Indeed there aresuemdentities are called
“tensors.® You can read about tensors in the last three chapters diotbls but for now this simple
definition will suffice:

A tensor is the mathematical representation of a physicaly eéhét may be characterized by
magnitude and multiple directions.

An example of a tensor is the inertia that relates the anggilacity of a rotating object to its angular
momentum. Since the angular velocity vector has a direction arhgfutar momentum vector has a
(potentially different) direction, the inertia tensor involves multiple directions

And just as a scalar may be represented by a single numbarvaator may be represented by a
sequence of three numbers in 3-dimensional space, a tensor mayd=emeed by an array of 3
numbers in 3-dimensional space. In this expressiBh,répresents the rank of the tensor. So in
3-dimensional space, a second-rank tensor is representéd=t8 umbers. In N-dimensional space,
scalars still require only one number, vectors require N numbers, and tensors r8auineérs.



Recognizing scalars, vectors, and tensors is easy once yae ribai a scalar can be represented
by a single number, a vector by an ordered set of numbers, andialigm@s array of numbers. So in

three-dimensional space, they look like this:

Scalar Vector

Tensor (Rank 2)

Ry X X
(x) (X1, x2,x3) or X2 X21

X3 X3

X1z
X3

X33

Note that scalars require no subscripts, vectors require a single sylasatipgnsors require two or
more subscripts — the tensor shown here is a tensor of rank 2, but yasmancounter higher-rank

tensors, as discussedGhapter 5A tensor of rank 3 may be represented by a three-dimensional array

of values.

With these basic definitions in hand, you're ready to begin consgléne ways in which vectors
can be put to use. Among the most useful of all vectors aredttestan unit vectors, which you can

read about in the next section.

1.2 Cartesian unit vectors

If you hope to use vectors to solve problems, it's essentialythatearn how to handle situations
involving more than one vector. The first step in that processusderstand the meaning of special
vectors called “unit vectors” that often serve as markergdoous directions of interest (unit vectors

may also be called “versors”).

Figure 1.3Unit vectors in 3-D Cartesian coordinates.

The first unit vectors you're likely to encounter are the unit vedo, Z (also calleci. ;. i) that

point in the direction of the-, y-, andz-axes of the three-dimensional Cartesian coordinate system, as

shown inFigure 1.3 These vectors are called unit vectors because their lengthagnmitude) is
always exactly equal to unity, which is another name for “one.” Wm&t? One of whatever units

you're using for that axis.



You should note that the Cartesian unit veci, j, i can be drawn at any location, not just at the

origin of the coordinate system. This is illustratedrigure 1.4 As long as you draw a vector of unit
length pointing in the same direction as the direction of theg@sing)x-axis, you've drawn thé
unit vector. So the Cartesian unit vectors show you the directiottseof y, andz axes,not the
location of the origin.

As you'll see inChapter 2 unit vectors can be extremely helpful when doing certain opagati
such as specifying the portion of a given vector pointing in aigetteection. That's because unit
vectors don’t have their own magnitude to throw into the mix (agiuddey do have their own
magnitude, but it is always one).

So when you see an expression such as $®u should think “5 units along the positive
x-direction.” Likewise, —g refers to 3 units along the negatiywelirection, ancE indicates one unit
along the positive-direction.

Of course, there are other coordinate systems in addition tthithe perpendicular axes of the
Cartesian system, and unit vectors exist in those coordinatemsysts well; you can see some
examples inSection 1.50ne advantage of the Cartesian unit vectors is that they pdim¢ isame
direction no matter where you go; tke y-, andz-axes run in straight lines all the way out to infinity,
and the Cartesian unit vectors are parallel to the directions of those lines everywhe
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Figure 1.4Cartesian unit vectors at an arbitrary point.

To put unit vectors such &; ; f to work, you need to understand the concept of vector

components. The next section shows you how to represent vectors usingatois and vector
components.

1.3 Vector components

The unit vectors described in the previous section are espagsaiiyl when they become part of the
“components” of a vector. And what are the components of a vecto@ySatated, they are the
pieces that can be used to make up the vector.

To understand vector components, think about the viA:tshown inFigure 1.5 This is a bound
vector, anchored at the origin and extending to the priatd,y = 3,z = 3) in a three-dimensional



Cartesian coordinate system. So if you consider the coordinateasxepresenting the corner of a
room, this vector is embedded in the back wall ythelane).

Imagine you're trying to get from the beginning of vecbto the end — the direct route would be
simply to move in the direction of the vector. But if you weonstrained to move only in the
directions of the axes, you could get from the origin to your destméaty taking three (unit) steps
along they-axis, then turning 90° to your left, and then taking three mor¢) @&teps in the direction
of the z-axis.

£
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Figure 1.5vectorA and its components.

What does this little journey have to do with the components oftar®e8imply this: the lengths
of the components of vectc;i are the distances you traveled in the directions of the axes.
Specifically, in this case the magnitude of theomponent of vectof—? (written asAy) IS just the
distance you traveled in the direction of thaxis (3 units), and the magnitude of theomponent of
vectorfi_l. (written asA ) is the distance you traveled in the direction ofzfais (also 3 units). Since
you didn't move at all in the direction of thkxeaxis, the magnitude of thecomponent of vectoﬂ
(written asA ) is zero.

A very handy and compact way of writing a vector as a combination of vector components is this:

E:AT+Aj+Aﬁ?, (1.1)
X y Z

where the magnitudes of the vector componehxt,sﬁ(/, andA ) tell you how many unit steps to take

in each directiony] j andﬁ?) to get from the beginning to the end of veﬁa‘?

When you read about vectors and vector components, you're likely to run acrossmsistgimh as
“The components of a vector are the projections of the vector ont@oheirtate axes.” As you can
see inChapter 4 exactly how those projections are made can have a significamerioé on the
nature of the components you get. But in Cartesian coordinate sy&echother “orthogonal”
systems in which the axes are perpendicular to one another)pribept of projection onto the
coordinate axes is unambiguous and may be very helpful in picturing the components of a vector.
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Figure 1.6Vector components as projections oxdandy-axes.

To understand how this works, take a look at veA:@nd the light sources and shadowsigure
1.6. As you can see iRigure 1.6(a)the direction of the light that produces the shadow ox-thes
is parallel to they-axis (actually antiparallel since it's moving in the negagigirection), which in
this case is the same as saying that the direction of the light is perpendicular&xithe

Likewise, in Figure 1.6(b) the direction of the light that produces the shadow ony{es is
antiparallel to the-axis, which is of course perpendicular to yhaxis. This may seem like a trivial
point, but when you encounter non-orthogonal coordinate systems, you’'ll findhthatirection
parallel to one axis is not necessarily perpendicular to anotiservehich gives rise to an entirely
different type of vector component. This simple fact has profound iatjgics for the behavior of
vectors and tensors for observers in different reference frames, as you'ldepiers 45, and6.

No such issues arise in the two-dimensional Cartesian coadipstiem shown iRigure 1.6 and

in this case the magnitudes of the components of vA:ame easy to determine. If the angle between
vector A and the positive-axis is6, as shown irFigure 1.6ait’s clear that the length ¢4 can be

seen as the hypotenuse of a right triangle. The sides of that drialloglg thex- andy-axes are the
component$\ andAy. Hence by simple trigonometry you can write:

A= Al cos),
_ (1.2)
A, = Alsing)

where the vertical bars on each sideAj§ignify the magnitude (length) of vectd: Notice that so
long as you measure the anglérom the positive x-axig the direction toward the positiyeaxis
(that is, counterclockwise in this case), these equationsgiwid the correct sign for the- and
y-components no matter which quadrant the vector occupies.

For example, if vectoA is a vector with a length of 7 meters pointing in a direcBb®° counter-
clockwise from the »*axis, thex- andy-components are given Iq. 1.2as



= L;E;| cosf) = 7m cos 210° = —-6.1 m,
(1.3)
[A| sin@) = 7m sin 210° = -3.5m.

As expected for a vector pointing down and to the left from the origin, both components are negative.
It's equally straightforward to find the length and directioraofector if you're given the vector’s
Cartesian components. Since the vector forms the hypotenuse of @iaigie with sides\ andAy,

the Pythagorean theorem tells you that the Iengfi ofust be

A = /A2 + 42, (1.4)

and from trigonometry
Ay
# = arctan (—‘) (1.5)
Ay

whered is measured counter-clockwise from the positive x-axis in a-hghtled coordinate system.

If you try this with the components of vecﬁrfrom Eq. 1.3and end up with a direction of 30° rather
than 210°, remember that unless you have a four-quadrant arctan fumetti@ur calculator, you
must add 180° to the angle whenever the denominator of the expréssioithis case) is negative.

Once you have a working understanding of unit vectors and vector components,rgady to do
basic vector operations. The entiretyGQifapter 2s devoted to such operations, but two of them are
needed for the remainder of this chapter. For that reason, yore@drabout vector addition and
multiplication by a scalar in the next section.

1.4 Vector addition and multiplication by a scalar

If you’ve read the previous section on vector components, you've alreadytwo vector operations
in action. Those two operations are the addition of vectors andphcalion of a vector by a scalar.
Both of these operations are used in the expansion of a vector sndkuwector components aski).
1.1from Section 1.3

A=AT+A j+Ak.
X y Z
In each of these terms, the unit vectioy,(or E) is being multiplied by a scalaA Ay, orA), and

you already know the effect of that: it produces a new vectadneigsame direction as the unit vector,
but longer than unity by the value of the component (or shorter if the mdgrf the component is
between zero and one). So multiplying a vector by any positive scalar does not changetitie orec

the vector, but only scales the length of the vector. Helfiles & vector in exactly the same direction
asA but with length flveA as shown n’Flgure 1.7(a)Likewise, multlplylngA by (1/2) produces a
vector that points in the same dlrectlorAibut is only half as long. So the vector comporghts a
vector in thd direction, but with IengtIAX units (sincé has a length of one unit).

There is a caveat that goes with the “changes length, not direatilexvhen multiplying a vector



by a scalar: if the scalar nregatlve then the vector is reversed in dlrectlon in addition to beiated
in Iength Thus multiplying vectcB by —2 produces the new vectorB 2and that vector is twice as

long asB, as shown ifrigure 1.7(b)
The other operation going on kxq. 1.1is vector addition, and you already have an idea of what

that means if you recaligure 1.5and the process of getting from the beginning of ve@tdm the
end. In that process, the quanmyj represented not only the number of steps you took, but also the

direction in which you took them. Likewise, the quanmz'].:? represented the number of steps you

took in a different directionThe fact that these two quantities include directional infoomaheans
that you cannot simply add them together algebraically; you must add them “as vectors.”

(a) (b)

Figure 1.7Multiplication of a vector by a scalar.

To accomplish vector addition graphically, you simply imagine mowng vector (without
changing its length or direction) so that its tail is at thedh#fathe other vector. The sum is then
determined by making a new vector that begins at the start of the first aadttgrminates at the end
of the second vector. You can do this graphically, dadare 1.5(b) where the tail of vectoAZ;? is

placed at the head of vecTAyrj, and the sum is the vector from the beginnin@yqﬁo the end of\,

-

k-
This graphical “head-to-tail” approach to vector addition works for antove (and any number of
vectors), not just two vectors that are perpendicular to one ar(méryj and AZE were). An

example of this is shown iRigure 1.8 To graphically add the two vectcﬁ_i.sandB in Figure 1.8(a)
you simply imagine moving one of the two vectors so that itsidadlt the position of the other
vector’s head (it doesn’t matter which vector you choose to move;gtk wall be the same). This is

illustrated inFigure 1.8(b) in which vectorB has been displaced so that its tail is at the head of
vector A. The sum of these two vectors (called the “resultant” veCter A + B) is the vector that

extends from the beginning A to the end oB.

Knowing how to add vectors graphically means you can always degethe sum of two or more
vectors simply using a ruler and a protractor; just draw theorsettead-to-tail (being careful to
maintain each vector’s length and angle), sketch the resultant from the beginning st tbettie end
of the last, and then measure the length (using the ruler) ragid @using the protractor) of the
resultant. This approach can be both tedious and inaccurate,es® dreralternative approach that

uses the components of each vector: if veCors the sum of two vectorA and B then the
magnitude of thex-component of vectoC (which is jUStCX) is the sum of the magnitudes of the

x-components of vectolA andB (that is,A_+B), and the magnitude of ttyecomponent of vector



E (calledCy) is the sum of the magnitudes of faeomponents of vectou—i; andé (that is,Ay + By).
Thus
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(a) (b)
Figure 1.8Graphical addition of vectors.
C =A +B_,
X X X
1.6
C =A +B. (1.6)
y 'y oy

The rationale for this is shown kigure 1.9
Once you have the componeﬁlxsandcy of the resultant vect(('ﬁ, you can find the magnitude and

direction of using

|[‘_"| s "rC% h C"f a.7)

and

1.8
& = arctan (%) (1.8)
‘2

To see how this works in practice, imagine that veﬁdn Figure 1.9is given byﬁ =6 +; and
vectorB is given byB = -2 + 8. To add these two vectors algebraically, you simplyHgse 1.6
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Figure 1.9Component addition of vectors.
C =A+B =6+ (-2) =4,
X X X
C=A+B =1+8=9,
y "y oy

so¢ =4 + 9j. If you wish to know the magnitude ¢, you can just plug the components i&ig.
1.7to get

Cl=,/C2+C2= a2 +92
= V16 + 81 = 9.85.

And the angle the('_ﬂ' makes with the positiveaxis is given byEq. 1.8

A
H:nmmntéq
Cx

9 i
=ammn(—):=6&ﬂﬂ
4

With the basic operations of vector addition and multiplication geetor by a scalar in hand,
you're ready to begin thinking about the more advanced uses of vectirgolBre also ready to
attack a variety of problems involving vectors, and you can fiset @f such problems at the end of
this chaptef.

1.5 Non-Cartesian unit vectors

The three straight, mutually perpendicular axes of the Cartesiamlinate system are immensely
useful for a variety of problems in physics and engineering. Some pr®bleowever, are much
easier to solve in other coordinate systems, often because the axes of thosensgsteriasely align
with the directions over which one or more of the parametensargi¢o the problem remain constant
or vary in a predictable manner. The unit vectors of such non-@artesordinate systems are the
subject of this section, and transformations between coordinate systems aredisgDsapter 4



As described earlier, it takes exactly N numbers to unambiguously nepagselocation in a space
of N dimensions, which means you have to specify three numbersgsych andz) to designate a
location in our Universe of three spatial dimensions. Howeveh@two-dimensional surface of the
Earth (ignoring height variation for the moment) it takes only two numbers (latitude and lonfptude
example) to designate a specific point. And one of the few betefitsng on a long, infinitely thin
island is that you can set up a rendezvous using only a single nundesctibe the location (“I'll be
waiting for you at 3.75 kilometers”).

Of course, numbers define locations only after you've definectdbedinate systenthat you're
using. For example, do you mean 3.75 kilometers from the east éhd land or from the west
end? In every space of 1, 2, 3, or more dimensions, you can devigendae number of coordinate
systems to specify locations in that space. In each of those coordinatessyat each location there’s
one direction in which one of the coordinates is increasing thesfasnd if you lay a vector with
length of one unit in that direction, you've defined a coordinate unibkéat that system. So in the
Cartesian coordinate system, thenit vector shows you the direction in which tkeoordinate
increases, thgunit vector shows you the direction in which {heoordinate increases, and Eeunit
vector shows you the direction in which theoordinate increases. Other coordinate systems have
their own coordinate unit vectors, as well.

Consider the two-dimensional coordinate systems showiigare 1.10 In a two-dimensional
space, you know that it takes two numbers to specify any locatointhose numbers could kand
y, defined along two straight axes that intersect at a righeampkex value tells you how far you are
to the right of the/-axis (or to the left if the value is negative), and tlyevalue tells you how far you
are above the-axis (or below if they value is negative). But you could equally well specify any
location in this two-dimensional space by noting how far and in dinettion you've moved from
the origin. In the standard version of these “polar” coordinateslistence from the origin is called
and the direction is specified by giving the angleneasured counterclockwise from the positive
X-axis.
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Figure 1.1@-D rectangular (a) and polar (b) coordinates.

It's easy enough to figure out one set of coordinates if you know thesptbe example, if you
know the values af andy, you can find andé using



r=yx2+y?

: v (1.9
= arctan (T) ]
Likewise, if you have the values pandd, you can findk andy using
X =r cosf)
y =r sin(). (1.10)

For the point shown ifigure 1.10if the values ok andy are 4 cm and 9 cm, therhas a value of
approximately 9.85 cm anlhas a value of 66.0°. Clearly, whether you wrey) = (4cm, 9cm) or

(r, 8) = (9.85 cm, 66.0°), you're referring to the same location; it'stm@tpoint that's changed, it’s
only the point’'s coordinates that are different.

And if you choose to use the polar coordinate system to represgmbittiedo unit vectors exist
that serve the same functioniaand; in Cartesian coordinates? They certainly do, and withla lit
logic you can figure out which direction they must point. Aftey ydiu know that the unit vectar
shows you the direction of increasin@nd the unit vectgi shows you the direction of increasing
but now you're using andé instead ofx andy. So it seems reasonable that the unit vertar any
location should point in the direction of increasingand the unit vectog should point in the
direction of increasing. For the point shown iRigure 1.1Qthat means thit should point up and to
the right, in the direction of increasimgf 0 is held constant. At that same poigitshould point up
and to the left, in the direction of increasd r is held constant. These polar unit vectors are shown
for one point inFigure 1.10(b)

An important consequence of this definition is that the directiorss aidé will be different at
different locations. They’ll always be perpendicular to one another, but tileyotvypoint in the same
directions as they do for the pointfigure 1.10 The dependence of the polar unit vectors on position
can be seen in the following relations:

i = cosg)i + sin@) j

4 = — sing)i + cosp) /. (1.11)
So if # = 0 (which means your location is on theaiis), therr =1 andd =j. But if = 90° (so your
location is on the y-axis), thery = andd = .

Does this dependence on position mean that these unit vectors aesaliotectors? That depends
on your definition of a real vector. If you define a vector as a gyamith magnitude and direction,
the polar unit vectors do meet your definition. But they do not meeddfirition of free vectors
described irSection 1.1since they may not be moved without changing their direction.

This means that if you express a vector in polar coordinates amdatke the derivative of that
vector, you'll have to account for the change in the unit vectorsglhsTat’s one of the advantages
offered by Cartesian coordinates — the unit vectors do not changetter where you go in the
space.

As you might expect, the situation is slightly more complicatedHree-dimensional coordinate
systems. Whether you choose to use Cartesian or non-Cartesidina®ss, you're going to need
three variables to represent all the possible locations inea-thmensional space, and each of the
coordinates is going to come with its own unit vector. The twot mosimon three-dimensional
non-Cartesian coordinate systems are cylindrical and sphericalirates, which you can see in



Figures 1.1land1.12

In cylindrical coordinates a point P is specified hyA, z, wherer (some-times calleg) is the
perpendicular distance from thexis, A is the angle measured from #axis to the projection af
onto thexy plane, and is the same as tlen Cartesian coordinates. Here’s how you find, andz
if you knowx, y, andz

— Plane of constant 7

~ ("'

&4

Cylinder of
constant r

— Plane of constant ¢

P(r.0.¢0)

M 47
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¥ Sphere of
constant r

Cone of
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constant ¢

Figure 1.12Spherical coordinates.

r=y xd 4+ v?

¢h = arctan (%) (112)
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And if you have the values of A, andz, you can find, y, andz using
X = rcos(g)

v = rsini¢g) (1.13)

Ay

A vector at the point P is specified in cylindrical coordinateterms of three mutually perpendicular
components with unit vectors perpendicular to the cylinder of radipgrpendicular to the plane
through thez-axis at angle A, and perpendicular to fiyglane at distance As in the Cartesian case,
each cylindrical coordinate unit vector points in the direction in winahgarameter is increasing, so
¥ points in the direction of increasimqu points in the direction of increasing A, ahgoints in the
direction of increasing. The unit vectorsi{ @ Z) form a right-handed set, so if you point the fingers
of your right hand along and push it int(qﬁJ with your right palm, your right thumb will show you the
direction ofz.

The following equations relate the Cartesian to the cylindrical unit vectors:

F = cos(¢p)i + sin(¢) ]
¢ = — sin(¢)i + cos() f (1.14)

4,

In spherical coordinates a point P is specified 0§, A wherer represents the distance from the
origin, @ is the angle measured from thaxis toward they plane, and A is the angle measured from
the x-axis (orxz plane) to the constant-A plane containing point P. Withztheis up,d is sometimes
called the zenith angle and A the azimuth angle. You can determispttéical coordinates 6, and
A, from x, y, andz using the following equations:

r=fx2+yt+ 2

; ) (1.15)

# = arccos (;
I+ 42,

A
¢ = arctan {T:I .
And you can find, y, andz fromr, 6, and A using:
X = rsin(@)cos(d)
v = rsin(f)sin(g) (1.16)
I =rcos(9).
In spherical coordinates, a vector at the point P is specifi¢elins of three mutually perpendicular
components with unit vectors perpendicular to the sphere of radipsrpendicular to the plane

through thez-axis at angle A, and perpendicular to the cone of ahdglée unit vectorsi| 4, q5) form
a right-handed set, and are related to the Cartesian unit vectors as follows:

7 = sin(8) cos()7 + sin(@) sin(¢p) ] + cos(8)k
6 = cos(8) cos(¢)i + cos(8) sin(p) f — sin(@)k (1.17)

@ = —sin()i + cos(gh) .



You may be asking yourself “Do | really need all these different usibvg?” Well,needmay be a
bit strong, but your life will certainly be easier if you're tryitm describe motion along a line of
constant longitude on a spherical planet glurection) or the direction of a magnetic field around a
current-carrying wire (th'q@ direction). You'll find some examples of that in the problemthatend

of this chapter.

1.6 Basis vectors

If you think about the unit vectofs;, andj; and vector components suchAg ij, andAZE, you

may realize thaany vector in our three-dimensional Cartesian coordinate systerhecarade up of
three components, each one telling you how many steps to take dlirésion of one of the
coordinate axes. Since those steps may be large or small, in the pogsitegatve direction, you can
reach any point in the space containing these vectors. Little wahe®a, that, ;, andg? are one
example of “basis vectors” in this space; combined with apprepmaignitudes, they form thmasis
of any vector in the space.

And you don’t need to use only these particular vectors to makayupeator in this space — you
can easily imagine using three vectors that are twice as long as the unit vgcéordj;, as shown in
Figure 1.13(a)Although the vector components would change if you switched to tbegerlbasis
vectors, you'd have no trouble using them to make up any vector whithispace. Specifically, if the
unit vectors were twice as long, the valuesA)ngy, andAZ would have to be only half as big to reach

a given point in space.

You might even think of using three non-orthogonal, non-unit vectors sutie agdtorsg , 2.,
andg, in Figure 1.13(bjas your basis vectors. Of course, if you were to select tioglanar vectors
(that is, vectors lying in the same plane), you’d quickly find sitaling and combining those vectors
allows you to reach any point within that plane, but all points outside the plane veoufdeachable.
But as long as one of the three vectors is not coplanar with the other two, thepriapgpiscaling and
combining will get you to any point in the space, and the vegarg., and{-;3 form a perfectly
usable basis set (mathematicans say that they “span” the vector space).
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Figure 1.13Alternative basis vectors.

You can ensure that three vectors are not coplanar by requiringdhieen‘linearly independent,”
which means that no two of the vectors may be scaled and cairibigeve the third, and no two are



colinear (that is, lying along the same line or parallel to amether). This is often stated as the
requirement that the only way to scale and combine the threersvextd get zero as the result is to
scale each of the vectors by zero. In other words, for three linearly independentgvg(ggrandgs,

the equation

A51+BFZ+C§3: 0 (1.18)

canonly be trueif A=B=C =0.

So as long as you pick three linearly independent vectors, you hasbla set of basis vectors.
And if you choose three non-coplanar veclz sz, and‘;;3 of non-unit length, it's quite simple to
form unit vectors from these vectors. Since dividing a vector by iéivygoscalar changes its length
but not its direction, you simply divide each vector by its magnitude:

€l

lé1] (1.19)
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The concepts described in this section may be used to constructnéte miimber of bases, but the
most common are the “orthonormal” bases such/asndj;. These bases are called “ortho” because
they’re orthogonal (perpendicular to one another) and “normal” becausethayrmalized to a
magnitude of one. Orthonormal bases will get you through the majoriyobfems you're likely to
face.

One last fact about basis vectors in various coordinate systems will serve yaellef you study
physics and engineering beyond the basic level, especially if yourestutlude the tensors
discussed irChapters 4hrough6. That fact is this: basis vectors that point along the axes of one
coordinate system may be described in another coordinate system pasiis derivative$.
Specifically, imagine that you’re converting from spherical totargular coordinates. The basis
vector along the original spherica) @xis can be written in the Cartesiany, andz) system as
ax . dy ., 07
— =tk
dr ar ar
=sinfcos¢ i +sinésing j + cosd k.

-

& =

Likewise, the;; ) and;; A basis vectors can be written as

. dx, dy. 87,

“=% o’ T e

=rcosfcos¢ i +rcosfsing j —rsind k,
& ax ay . a7 -
ep = c?_{,?f -+ ﬂj =+ E}qE'Jk

= —rsinfsing i + rsinf cos¢ J.

Notice that these basis vectors are not all unit vectors (betisisenagnitudes are not all equal to



one), nor do they all have the same dimensi, n$s(d|men5|onless biz andf-;A have dimensions

of length). Neither of these characteristics dlsquallfles thedmasis vectors, and you can always turn
them into unit vectors by dividing by their magnitudes (take a lotkeaproblems at the end of this
chapter and their on-line solutions if you want to see how this works).

In general, if the coordinates of the original system are c&lleq, andx3 (these were, 0, and A
in the example just discussed), and the coordinates of the ne\msyxae:alled('l, X, andx'3 (these

werex, y, andz in the example), then the basis vectors along the original comdixas can be
written in the new system as

s BBl BElas BRL,
& = —L&| + 285+ 3z,

dx dxy dxp - (1.20)
" axy ., ox5_, f“m-.f
&) = - l-:*'J —=€ 5 e,

X2 gdxz < dx7 -
- axy ., EI‘.I-._, -'J'h'_”
e 2+ h+ —¢ .3

X3 : E'i_'l.z B A !

In other words, the partial derivativeE'-i"'E.r 4% =, and #3 =, are the components of the first

e €5

gx; - 1 By - 20 doy = 3
original (unprimed) basis vector expressed in the new (primed) cotedigatem. For this reason,
you'll find that some authors define basis vectors in terms of partial derivatives.
These relationships will prove to be extremely valuable in tlhelysiof coordinate-system
transformation and tensor analysis, so file them away if your studies include those topics

1.7 Chapter 1 problems

1.1(a)lf 4§| =18 m an(§ points along the negatiweaxis, what aré andBy’?
(b) If C = -3 m/s and:y =5 m/s, find the magnitude ¢ and the angle thy~ makes with the
positivex—axis
1.2 VectorA has magnitude of 11 n/and makes an angle of 65 degrees with the posn{a»es and
vectorB has Cartesian compones=4 m/$ andB = 3m/&. If vectorC = A + B

(a) Find thex- andy-components OC,
(b) What are the magnitude and directioy ™5
1.3 Imagine that thg-axis points north and theaxis points east.
(a) If you travel a distance= 22 km in a straight line from the origin in a direction 3grdes
south of west, what is your position in Cartesigry( coordinates?
(b) If you travel 6 miles due south from the origin and then west and travel 2 miles, how far
from the origin and in what direction is your final position?
1.4 What are th& andy-components of the polar unit vect¢randd when
(a) 8 = 180 degrees?
(b) 6 = 45 degrees?
(c) 8 = 215 degrees?
1.5 Cylindrical coordinates
(a) If r = 2 meters, A = 35 degrees, ard 1 meter, what are y, andz?
(b) If (x,y, 2) = (3, 2, 4) meters, what ane A, 2)?



1.6 (a) In cylindrical coordinates, show tlrgtoints along the-axis if A = 0.
(b) In what direction i:q@ if A = 90 degrees?

1.7 (a) In spherical coordinates, fiRdy, andzif r = 25 metersd = 35 degrees, and A= 110 degrees.
(b) Find ¢, 6, A) if (x,y, 2) = (8, 10, 15) meters.

1.8 (a) For spherical coordinates, show gpbints along the negativeaxis if & = 90 degrees.
(b) If A also equals 90 degrees, in what directionfmedq@?

1.9 As you can read i@hapter 3 the magnetic field around a long, straight wire carrying adgte
currentl is given in spherical coordinates by the expresp _ %q& Where,u0 is a constant and

R is the perpendicular distance from the wire to the observation panat an expression f8 in
Cartesian coordinates.
1101fg, =9 -3/ + 2L, g,=/—3f,andg =2 +;— 4], what are the unit vectoés, &, andé,?

! TheOxford English Dictionary2nd ed. 1989.
2 Mathematicians don’t have much use for bound vectors, since themnaditted definition of a vector deals with how it
transforms rather than where it's located.

3 The vector shown iffigure 1.2(a) can be shifted to this location by subtracting, y_.» andz,_ from the values at each

tart’
end.

4 W.R. Hamilton Phil. Mag. XXIX, 26.

° As you can learn in the later portions of this book, scalars/ecibrs also belong to the class of objects called tensors but
have lower rank, so in this section the word “tensors” refers to higher-rank tensors.

6 Some authors refer to the magnitum;,sAy, andAZ as the “components £ ,” while others consider the components to be
AT A j, andA [ Just remember th&t, A , andA are scalars, but i, A 7, andA | are vectors.
X y Z Xy z X y 2

" Remember that full solutions are available on the book’s website.
8 If you're not familiar with partial derivatives or need a refresher, you'll find onlesimext chapter.
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Vector operations

If you were tracking the main ideas®©@hapter 1you should realize that vectors are representations of
physical quantities — they’re mathematical tools that help you hzsuand describe a physical
situation. In this chapter, you can read about a variety of teayse those tools to solve problems.
You've already seen how to add vectors and how to multiply vebtpra scalar (and why such
operations are useful); this chapter contains many other “vectortiopstahrough which you can
combine and manipulate vectors. Some of these operations are amdp®me are more complex,
but each will prove useful in solving problems in physics and engmeefhe first section of this
chapter explains the simplest form of vector multiplication: the scalar product.

2.1 Scalar product

Why is it worth your time to understand the form of vector muttgilon called the scalar or “dot”
product? For one thing, forming the dot product between two vectorsyisuseful when you're
trying to find the projection of one vector onto another. And why myght want to do that? Well,
you may be interested in knowing how much work is done by a fotoeyam an object. The first
instinct of many students is to think of work as “force timesaglice” (which is a reasonable starting
point). But if you've ever taken a course that went a bit deepertligaimtroductory level, you may
remember that the definition of work as force times distappées only to the special case in which
the force points in exactly the same direction as the dispateof the object. In the more general
case in which the force acts at some angle to the direafitre displacement, you have to find the
component of the force along the displacement. That's one examplectiyy exhat the dot product
can do for you, and you'll find more in the problems at the end of this chapter.
How do you go about computing the dot product between two vectors?iWelly know the

Cartesian components of each vector (call the veAc&sdB) you can use
AoB=A,By+AyBy + A,B,. 2.9
Or if you know the anglé between the vectors,
Ao B =|A||R|cos#, (2.2

Wherel A| andl B| represent the magnitude (length) of the vec/and B.* Note that the dot product
between two vectors gives a scalar result (just a single value, no direction).



To grasp the physical significance of the dot product, consider veﬁtmm.ﬁ which differ in
direction by anglé, as shown irfrigure 2.1aFor these vectors, the pro;ectlonA'fonto the direction
of B isl Al cosg), as shown irfrigure 2.1bMultiplying this projection by the length B glvesl A|B|
cos(). Thus the dot produufi B represents the projection Afonto the direction oB multiplied
by the Iength_'oB. The scalar resuE of this operation is exactly the santlbeagesult gf finding the

projection of B onto the direction cA and then multiplying that value by the lengttAxfHence the
order of the two vectors in the dot product is irrelevy o g gives the same result g 4.

The scalar product can be particularly useful when one of the vectiies pmoduct is a unit vector.
That’s because the length of a unit vector is by definition equahéo so a scalar product such as

jgﬁ? finds the projection of vectcA onto the direction OE (the z-direction) multiplied by the
magnitude O'gz (which is one). Thus to find the component of any vector in a given direction, you can
simply form the dot product between that vector and the unit vectbeidesired direction. It's quite

likely you'll come across problems in physics and engineering inhwne have a vectold) and
you wish to know the component of that vector that’'s perpendicularspeeified surface; if you
know the unit normal vecto(z1) for the surface, the scalar prodle' o i gives you that

perpendicular component A

A R~
B — - =
4 The projection of A onto B: 1Al cos#

times the length of B: XlB1

gives the dot product AoB: |A1Bicoss
(a) (b)

Figure 2.1Two vectors and their scalar product.

The scalar product is also useful in finding the angle betweemwvéators. To understand how that
works, consider the two expressions for the dot product givEqsn2.1and2.2. Since

Ao B =|A||B|cosé = AxBx + AyBy + A:B:, (2.3)

then dividing both sides by the product of the magnitud«s—i; whdﬁ gives

AyBy+ AyBy + AB;

cos(f) = e
Al B

or

AyBy + AvBy + A-B- .
H:m'ccms( zBxt Ly By e ) (2.4)

|A||B|

So if you wish to find the angle between two vec { = 57 — 27 + 4k andg _ 3; _|_ i 4+ 7k, you
can useeq. 2.4to find



(5)(3) + (=2)(1) + (4)(7) )
VST + (=22 + @3+ (D2 + (1?2

(=)
= ACCOS | ——
45459,

e L s |
— -3 f.2%

One final note about the scalar product: any unit vector dotted taf gives a result of 1 (since,
for example,i o1 = [i||i| cos(0°) = (1)(1)(1) = 1), and the dot product between two different
orthogonal unit  vectors gives a result of zero (since, for example,
foj=I|ill7]cos(90%) = (1)(1)(0) = 0).

2.2 Cross product

Another way to multiply two vectors is to form the “cross prodbetween them. Unlike the dot
product, which gives a scalar result, the cross product reswdtsother vector. Why bother learning
this form of vector multiplication? One reason is that the goosduct is just what you need when
you're trying to find the result of certain physical processash ss applying a force at the end of a
lever arm or firing a charged particle into a magnetic field.

Computing the cross product between two vectors is only slightly owmplicated than finding
the dot product. If you know the Cartesian components of both vectors, the cross product is given by

—_

.:H; A B = ':-.-11.3: —— ..'1; B\I':'E
+ (AzBx — AxBz) ] (2.9
+ f:“-_‘l.' B_‘,l . ."dl_\l R_'[}é-.

which can be written as

o A -
AxB=| A; Ay Ap |- (2.6
By By B:

If you haven't seen determinants before and you need some helg deithnEq. 2.6to Eq. 2.5 you
can find an explanation of how this works on the book’s Website

The direction of the vector formed by the cross produA ath perpendicular to botfil andB

(that is, perpendicular to the plane containing lA»thndB) as shown irrigure 2.2.0f course, there
are two directions perpendicular to this plane, so how do you knowhwame corresponds to the

direction of A x B? The answer is provided by the “right-hand rule,” which you can inbyke
opening your right hand and making your thumb perpendicular to the directymuofingers in the

plane of your palm. Now imagine using your right palm and fingers to thesfirst vector A in this

case) into the direction of the second vecBir{ this case) through the smallest angle. As you push,
your thumb shows you the direction of the cross protluct.

A very important difference between the dot product and the cross pisdhat the order of the
vectors is irrelevant for the dot product but matters greatlyhiictoss product. You can see this by



imagining the cross produB x fi_!: in Figure 2.2.In order to push vectd into vectorfi with your
right palm, you’'d have to turn your hand upside-down (that is, with youmlb pointing down). And

since your thumb shows you the direction of the cross product, you e:ahad;B X A points in the

opposite direction fronA X B That means that since the negative of a vector is just a \ddioe
same magnitude in the opposite direction. A quick method of computingabeitude of the cross
product is to use

AxB=—BxA, 2.7)
Py AxB
B AxB
: e
r g -
A
lane containing both A and B

Figure 2.2Direction of the cross produi xB.

D The length of the cross product
| equals the area of the panl]e]-jgmm
*_/' formed by vectors Aand B

= ]
x
=N

Parallelogram

* Height is f:’_
;: [Flsings 0

L,
- - rd =4
Flane containing both A and B

Figure 2.3The cross product as area.
|A x B| = |A||B]|sin(8), (2.9

wherel 4| is the magnitude A, | B| is the magnitude ¢B, andd is the angle betweeA andB .3

One way to picture the length and direction of the cross prodilktssated inFigure 2.3.Just as
the dot product involves the projection of one vector onto another, the pmasisct also has a
geometrical interpretation. In this case, the magnitude of th&s groduct between two vectors is
proportional to the area of the parallelogram formed with thosevegtors as adjacent sides. As you
may recall, the area of a parallelogram is just its basestits height, and in this case the height of
the parallelogram ie[,§| sin@) and the length of the base |j|. That makes the area of the
parallelogram equal {, 1[3| sin(), exactly as glven iEq. 2.8

So if the angle between two vectAsand B is zero or 180° (that is, A andB are parallel or
antiparallel), the cross product between them is zero. Anlteasngle betweeA andB approaches



90° or 270°, the magnitude of the cross product increases, reachingraumaxalue o]j||;_3;| when
the vectors are perpendicular.

Using the definition of the cross product and the right-hand rule, lyowld be able to convince
yourself that the following relations are true:
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Applying these relations term-by-term to the product 4 — _qli.f+.q\.j+.4:i- and
B=BRBi+B,]+ 3:;? should help you understand whétgs. 2.6and2.5 come from (and if you
need some help making that work out, there’s a problem on this at the end of this clitdptiee, full

solution on the book’s website).
Applications of the cross product include torque problems (in wf = 7 » F) and magnetic

force problems (in whictr, — 47 x By, you can find examples of these in the chapter-end
problems.

2.3 Triple scalar product

Once you understand the dot product and cross product described in tloeigptes sections, you
may be wondering if it's possible to combine these two vector tpesa Happily, it's not only
possible, it's actuallyisefulto do so. After all, you can define all the mathematicataipms you'd
like, but unless those operations result in something that you cantagalve problems, you'd have
to leave them in the “curiosity” file. You've seen how the dot prodiumds employment when
projections of vectors onto specified directions are needed and wdrinis to be calculated, and
how the cross product can be called into action when torques agrteticaforces are at play. But
does it make sense to combine the dot and cross product operationannmer such ¢4 (B « )?
Yes it doeg. This is called the “triple scalar product” or “scalar ®igiroduct” and it has several
useful applications.
The mathematics of this operation are straightforward; you know that
B x C = (ByC; — B:Cy)i
+ (B, Cy — B,C;)j (2.10)

+ (B.C, — B,Ck,
and fromEq. 2.1you also know that

:'_1.' Q E = .'q._q_'B_r + :‘1._1,-5_1,' + ."‘l.:B-

so combining the dot and cross product gives

Ao (é x E} = Ax(ByC; — B:(y)
+ A, (B.Cy — B.C;) (2.11)

1 Ap(B2Cy— ByCs).



A handy way to write this is

Ay Ay Ay
Ao (3 x c) =| Bx By B:|. (2.12)
O B O

One geometrical mterpretatlon of the trlple scalar productbsamnderstood with the help of
Figure 2.4.n this figure, vectorA B andC represent the sides of a paralleleplped The area of the
base of this paralleleplped B }x(“| as |nF|gure 2.3 and its height is equal 1A|| cos(A), where A is
the angle betweeffi and the direction oB X C That means that the volume of the paralleleplped

(the height times the area of the base) mu<Abe(}s(A)(B x C[). Writing this asAllB x C| cos(A)
should help you see that this has the same form as the defofitibe dot product ifEqg. 2.2and is
therefore jus4 o (B » C)-

BxC Par al]e]eptped

r

~ Areaof Fkl*-w:' -
IH?X?

—5

Plane containing both B and C

Figure 2.4The triple scalar product as volume.

Hence the triple scalar prodi4 « ( B « ) may be interpreted as the volume of the parallelepiped
formed by vectorA B andC. You should note that the triple product will glve a positive result
long as the vectolA, B andC form a right-handed system (that is, pushfﬂngtto B with the palm
of your right hand glves a direction onto WthprOJects in a positive sense (likewise for pustBtg

intoC and pushing into A).

Seeing the relationship between the triple scalar product ofykmers and the volume formed by
those vectors makes it easy to understand why the triple swaldnct may be used as a test to
determine whether three vectors are coplanar (that is, whéttttare@ lie in the same plane). Just

imagine how the parallelepiped kigure 2.4would look if vector<A B andC were all in the same
plane. In that case, the height of the parallelepiped would lbeanekr the projection cA onto the

direction ofB X C would be zero, which means the triple prodJl o (B x C) would have to be
zero. Stated another way, if the prOJectlorA:)t’)nto the direction cB X C IS not zero, theA cannot

lie in the same plane B;andC. Thus

Ao(BxC)=0 (2.13)

is both a necessary and a sufficient condition for vetﬁoé, and@ to be coplanar.
Equating4 o (8 x C) to the volume of the parallelepiped formed by vecAyB, andC' should



also help you see that any cyclic permutation of the vectorb @8pg o (C x 4)O'C o (A x B))

gives the same result for the triple scalar product, since the volume of thelppiiadld is the same in
each of these cases. Some authors describe this as the tabifitgrchange the dot and the cross
without affecting the result (sinq y x B)o Cisthesame & o (4 x B))-

One application in which the triple scalar product finds usédesdetermination of reciprocal
vectors, as explained in the sections Gmapter 4 dealing with covariant and contravariant
components of vectors.

2.4 Triple vector product

The triple scalar product descrlbed in the previous section ih@anly useful way to multiply three

vectors. An operation such A>>< (B X C ) (called the “triple vector product”) comes in very handy
when you're dealing with certain problems involving angular momentum andpetak acceleration.
Unlike the triple scalar product, which produces a scalar résnlte the second operation is a dot
product), the triple vector product yields a vector result (smce dyodnations are cross products).

You should note theA x (B X C) is not the same aA(x B) x C: the location of the parentheses
matters greatly in the triple vector product. The triple vegtoduct is somewhat tedious to calculate
by brute force, but thankfully a simplified expression exists:

Ax(BxC)=EB(AoC)— C(A o B). (2.19

After all the previous discussion of the various ways in whichoveatan be multiplied, you can be
forgiven for th|nk|ng that the rlght side of this equation looks a bangle with no circle or cross

betweenB andA o C or betweerC and4 o B . Just remember thd o C andA o B are scalars,
so the expressions in parenthesekdn 2.14are S|mply scalar multipliers of vectcB> andC Does

this mean that the result of the operatA»rx (B X C) is a vector that is some linear combination of
the second and third vectors in the triple product? That's exati# it means, as you can see by
consideringrigure 2.5.

In this figure, you can see the vecBrx C pointing straight up, perpendlcular to the plane
containing vectorB andC Now |mag|ne forming the cross product of ve(A)thh vectorB X C
by pushlngA into the direction otB X C with the palm of your right hand. The result of this
operation, labelled vectcA X (B X C) is back in the plane containing vecttB: andC To
understand why this is true, consider the fact that the vectoretaits from the operatch X C
must be perpendicular to the plane contaer@ndC If you now crossA into that vector, the
resulting vector must be perpendlcular to bA hand to B X C) which puts it back in the plane
containing vectorB andC And if the vector result of the operati A\ X (B X C) is in the same

plane as vectorB andC then it must be a linear combination of those two vectors.
You can remembéeEq. 2.14as the “BAC minus CAB” rule so long as you remember toewthe

- =

members of the triple product in the correct sequeAs;dB( C) with the parentheses around the last
two vectors. To see where this comes from, you can simplyhasdefinition of the cross product
(EQ. 2.9 to write



Plane containing both B and C
{but not A)

.i}x{ﬁxa /

=
(same plane as B and C)

Ax(BxC)= Ag Ay Az - (2.15

And from Equation 2.5/ou know that

B x C = (ByC; — B;Cy)i
+ (B.Cc— B,C))j (2.16)

i

+ (B;Cy — ByCy)k.

Substituting these terms inw. 2.15gives

i j k
Ax(Bx(C)= Ay Ay Ag . (2.17)

Multiplying this out looks ugly at first:

- -+

.-'Jl w fB o E] = ["-1,(31(__‘1; - B‘.-Cij - '_I"ZITBZCI - Bi‘-ﬂzj]f
+ [Az(ByC. — B.Cy) — Ay (B, Cy — ByC)1] (2.18)
+ [A¢(B.Cy — B,C;) — Ay (B,C. — B.Cy)]k.

But a little rearranging gives

A x (B x C) = (AyCy + A:C:)(Bii) — (AyBy + A B)(Ci)
+ (A;C; + Ay Co)(Byj) — (A B; + Ax Bo)(CyJ) (2.19
+ (A Cy + AyCy) (B k) — (Ax Bx + Ay By)(Crk),

which still isn’t pretty, but it does hold some promise. That promise casdlized by adding nothing
to each row oEqg. 2.19 Nothing, that is, in the following form:



Ay By Co(1) — Ax By Cy(1) Add this to the top row;
AyByCy(j) — Ay By Cy(J) Add this to the middle row;
A B, C.( k) — A:B.C_( k) Add this to the bottom row.
These additions makeqg. 2.19a good deal more friendly:
Ax (B xC)
= (AxCx + AyCy + Az C;)(Byi) — (Ax By + Ay By + Az B;)(Cil)

+ (A;Cy + AyCy + A, C)(ByJ) — (Ag By + Ay By + A:B)(Cy 1)
+ (AxCy + AyCy + A;C)(Brk) — (Ag By + Ay By + A B )(C;k).

Or

A X (B x C) = (A;Cy + AyCy + A,C.)(Byl + Byj + Bk)
— (AxBy + AyBy + Az B;)(Cxf + Cy f + Ck).

But B,i + B, J + B:I‘? is just the vectop, ¢, i+ ¢, ]+ C:fi' is the vector('j', and the other two
terms fit the definition of dot product&q. 2.). Thus
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2.5 Partial derivatives

Once you understand the basic vector operations of dot, cross, aagtaglcts, it's a small step to
more advanced vector operations such as gradient, divergence, cuHedraplacian. But these are
differential vector operations, so before you can make that step, it's impdotayou to understand
the difference between ordinary derivatives and partial derigatiMas is worth your time and effort
because differential vector operations have many applications inseliseas of physics and
engineering.

You probably first encountered ordinary derivatives when you learnedddiwd the slope of a

line (; = 5,%] or how to determine the speed of an object given its positienfasction of time

(v, = "j,‘ ). -Happily, partial derivatives are based on the same generaepts as ordinary
derivatives, but extend those concepts to functions of multiple vagiathel you should never have
any doubt as to which kind of derivative you're dealing with, becawlraoy derivatives are written

as4_or4 and partial derivatives are written-Zsor 4.,
dr it dax ar

As you may recall, ordinary derivatives come about when you'reestent in thechangeof one
variable with respect to another. For example, you may encourgeradley which is a function of
another variabl& (which means that the value yptlepends on the value % This can be written as
y =f (X), wherey is called the “dependent variable” axds called the “independent variable.” The
ordinary derivative of with respect tx (written as:_{%) tells you how much the value ptthanges for

a small change in the variable If you make a graph witly on the vertical axis ang on the



horizontal axis, as ifigure 2.6 then the slope of the line between any two poixltwp and &, yz)

on the graph is simp ‘:—:t %'1‘ That's because the slope is defined as “the rise over the nth,” a

since the rise ig for a runx, the slope of the line between any two points mu'f—‘-:f e

But if you look closely at the expanded regior=afure 2.6 you'll notice that the graph gfversus
X has a slight curve between pointq, (yl) and k., y2), so the slope is actuallghangingin that

interval. Thus the ratic;:}:.:_f can’t represent the slope everywhere between those points. Instead,

represents the average slope over this interval, as suggesteddaghiee line between pointﬁ_,(yl)
and Q(Z, yZ) (which by the mean value theorem does equal the slope somewleteveen these two

points, but not necessarily in the middle). To represent the alopagiven point on the curve more
precisely, all you have to do is to allow the “rusiX to become very small. A&x approaches zero,
the difference between the dashed line and the curved liRgume 2.6becomes negligible. If you
write the incremental run @k and the (also incremental) risedys then the slope at any point on the
line can be written az_:‘T This is the reasoning that equates the derivative of a functithe tslope of

the graph of that function.

Now imagine that you have a varialalehat depends on two other variables, sandy, soz =f (X,
y). One way to picture such a case is to visualize a surfathree-dimensional space, ag-igure
2.7.The height of this surface above theplane isz, which gets higher and lower at different values
of x andy. And since the height may change at a different rate in different directions,nglesi
derivative will not generally be sufficient to characterizettital change in height as you move from
one point to another. You can see the hergittanging at different rates iigure 2.8;at the location
shown in the figure, the slope of the surface is quite steguifnove in the direction of increasigg
(while remaining at the same valuex)f but the slope is almost zero if you move in the direction of
increasingk (while holding your y-value constant).
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Figure 2.6Slope of the ling/ =1 (X).



Figure 2.7Surface in 3-D space €f (x, y)).

o
Slope along x-direction
/18 not very steep

" 2. Slope along y-direction
; is quite steep
| S

Figure 2.8Surface in 3-D space €1 (x, ).

X

This illustrates the usefulness mdrtial derivatives, which are derivatives formed by allowing one
independent variable (such asor y in Figure 2.8 to change while holding other independent
variables constant. So the partial derivag‘%'eepresents the slope of the surface at a given location if

you moveonly along the x-directiorfirom that location, and the partial derivati%a represents the

slope if you moveonly along the y-directionYou may find these partial derivatives Writteng% y
and.g% |, where the variables that appear in the subscript after the vertical linecho®hstant.

As you've probably already guessed, the change in the valuasoéithex or y changes is easily
found using partial derivatives. If onlyx changes,d: = %’Tm and if onlyy changes, then
dz = 2dy. And if bothx andy change, then

- -

dx dy

The process of taking a partial derivative of a given function it atraightforward; if you know
how to take ordinary derivatives, you already have the tools you'll treéake partial derivatives.
Simply treat all variables (with the exception of the one W#&iaver which the derivative is being
taken) as constants, and take the derivative as you normally wadniddisTbest explained using an
example.

Consider a function such as=f (x, y) = 6y +3x +5xy +10. The terms of this polynomial are
sufficiently complex to make its shape less than obvious, which ireveheomputational tool such as



Mathematica or MATLAB can be very handy. Writing a few liméscode will help you understand
how this function behaves, as you can se€ignire 2.9 Even a quick look at this warped little plane
makes it clear that the slope of the function is quite diffaretite x- andy-directions, and the slope

is also highly dependent on the location on the surface. In a 3Bysbtag-igure 2.9 it's always
easiest to see the slope at the edges of the plotted regitekesa look at the slope along the
x-direction for ay value of —3. Ax varies from -3 to +3 (whilg is held constant at —3), the slope
starts off positive and gets less steep as you move inxtdeection fromx = —3 towardx = 0. The
slope then becomes zero somewhere xead, then turns negative and becomes increasingly steep as
x approaches +3. Doing the same quick analysis alongdirection while holding« constant at —3
indicates that the slope is approximately constant and positiveaaes from —3 to +3.

i, Sata, T X

Figure 2.9Plot of the functiorz=f (X, y) = 6y + 3x + Bxy + 10 for -3< x < 3 and -3 x < 3.

Now that you have some idea of what to expect, you can take the partial derivativédfy + 3x
+ 5xy + 10 with respect t& simply by treating the variableas a constant:

oz
3 = ]2xy L34 3. (2.2)
X

Likewise, the partial derivative with respectyts found by holding constant:

0z o
— = Hx” 4 3x. (2.22
ﬂ'_‘}'

Before interpreting these derivative results, you may wanake s moment to make sure you
understand why the process of taking the derivative of a function invbieging down the

exponent of the relevant variable and then subtracting one from that ekgead(x*) = 2, for
dx

example). The answer is quite straightforward. Since the demvadipresents the change in the
functionz as the independent variableehanges over a very small run, the formal definition for this
derivative can be written as

dz 2(x + Ax) — z(x) (2.23)




So in the case of z Zxyou have

d(x?) i (x + Ax)? — x2 (2.24)
= lim :
dx .ﬂ.i'[—~ﬂ Ax

If you think about the term in the numerator, you'll see that thi$ 4@xAx + (Ax)? —x?, which is just
2XAX + (Ax)?, and dividing this byAx gives X + Ax. But asAx approaches zero, the term becomes
negligible, and this approaches o where did the 2 come from? It’s just the number of cerasst
(that is, terms with the product »fandAx) that result from raising«(+ Ax) to the second power. Had
you been taking the derivative wf with respect t, you would have had three such cross terms. So
you bring down the exponent because that's the number of cross termesthtafrom taking« + Ax

to that power. And why do you then subtract one from the exponent?ySiegduse when you take
the changein the functionz (that is, k + AX)> — x?), the highest-power termsg(in this case) cancel,
leaving only terms of one lower powet {n this case). It's a bit laborious, but the same analysis ca

be applied to show th:!:}r{-_‘m _ 32 and tha'% — ax"L

So that’'s why you bring down the exponent and subtract one, but what duesni when you take
derivatives and get answers suchEas. 2.21and2.22? It simply means that the slope varies with
direction and location on the surfazeSo, for example, the slope along thdirection at location
(-3,2)is 12y + 3 + 5 = 12(3)(2) + 3 + 5@) = -59, while at the same location the slope along the
y-direction is 67 + 5x = 6[(=3)?]+ 5(-3) = 39.

You can do a rough check on your calculated partial derivatiize.i2.21by inserting the value of
-3 fory to see that the slope pfat this value of/ is 12()(—3) + 3 + 5¢3) = —36< — 12. Thus as you
move in thex-direction aty = —3, the slope should vary from +96xat —3, to zero ax = -1/3, and
down to —120 ax = +3. This is consistent with the quick analysis of the slope ffjere 2.9.

Likewise,Eq. 2.22tells you that the slope afin they-direction atx = —3 is constant and positive,
also consistent with the behavior expected from a quick analysis of the shape of the function

And just as you can take “higher order” ordinary derivatives suctd  dz,_ i and

dx “dx dxl?
;[% -f’ , You can also take higher-order partial derivatives. So for jebec 4 {a = 8% tells
Y dx “ax ax?
you the change in thedirection slope oz as you move along thedirection, anc a ( Bz
dy ~dy dy=

tells you the change in tlyedirection slope as you move along thdirection.

It's important for you to realize that an expression SUCE’_l»TiS'BS the derivative of a derivative,
ax=

which isnot the samelsc%]i, which is the square of a first derivative. That’s easxyerdfy for the
example given above, in Whi(% =1y + 3 + 5. In that caseﬁ 12, Wherea< o9z 5~ =(1xy+3
. ax=

+ 5y)2. By convention the order of the derivative is always written eebtwhe d” or “0” and the
function, asd’z or 8°z, so be sure to look carefully at the location of superscnipen you're dealing
with derivatives.

You may also have occasion to use “mixed” partial derivativeb asd 9z _

ax rﬁ. did‘.
been tracking the discussion of partial derivatives as slopes of funcetisagaus directions, you can

probably guess thefﬂ_jf represents the change in thalirection slope as you move along the
‘|

. If you've

x-direction, anc_#=_ represents the change in thdirection slope as you move along §hdirection.
ti". dx

Thankfully, for well-behavetifunctions these expressions are interchangeable, so you can take the
partial derivatives in either order. You can easily verifys tfor the example given above by
comparlnc_ of Eq. 2. 21 of Eq. 2.22(the result is 12+ 5 in both cases).



There’s another widely used aspect of partial derivatives you should make surelgmtand, and
that’s the chain rule. Up to this point, we've been dealing Wwihctions such az=f (x, y) without
considering the fact that the variablkesindy may themselves be functions of other variables. It's
common to call these other variableand» and to allow botkx andy to depend on one or both wf
ando. You may encounter situations in which you know the variation amd», and you want to
know how much your functiom will change due to those changes. In such cases, the chaforrule
partial derivatives gives you the answer:

dz a7 dx dz dy .
L (2.29

du  dx du Ay du’

and

az a7 dx dz vy 2.2
_zdx a2 (2.29

v dxadv  dydv

The chain rule is a concise expression of the factzthdepends on botk andy, and since botlx
andy may change iti changes, the change zrwith respect tai is the sum of two terms. The first
term is the change xdue to the change im[g-l_j; times the change indue to that change 'm{;;%],

and the second term is the changg blue to the change im[g.f;'] times the change indue to that

change iryg%]. Adding those two terms together gives yay 2.25 and the same reasoning applied

to changes iz caused by changesirieads tcEq. 2.26

2.6 Vectors as derivatives

In many texts dealing with vectors and tensors, you'll find Yle&tors are equated to “directional
derivatives” and that partial derivatives such?;"_!_tand% are referred to as basis vectors along the

coordinate axes.

To understand this correspondence between vectors and derivativedeicangath such as that
shown inFigure 2.10.You can think of this as a path along which you’re travellintp welocity v
for simplicity imagine that this path lies in thg plane. Now imagine that you're keeping track of
time as you move, so you assign a value (such asvtileaes shown in the figure) to each point on the
curve. By marking the curve with values, you have “parameteritieel”curve (witht as your
parameter§. Note that there need not be equal distance along the curve betaweparameter
values (there definitely won'’t be if you choose time as your pasraaetl then change your speed as
you move; the reckless driver depictedrigure 2.1Chas apparently sped up in the turn).
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Figure 2.10Parameterized curve and tangent vectors.

As a final bit of visualization, imagine that this curve lies in a regiomhich the air temperature is
different at each location. So as you move along the curve, ybaxpirience the spatial change in
air temperature as a temporal change (in other words, you'll k& tabmake a graph of air
temperature vs. time). Of course, how fast the air temperature changes for y@aperild doth on the
distance between measurable changes in the temperature inett®liyou’re heading and on your
speed (how fast you're covering that distance).

With this scenario in mind, the concept of a directional devigas easy to understand. If the
functionf (x, y) describes the temperature at eacly location, the directional derivati\.;‘f:,rf] tells

you how much the value of the functibchanges as you move a small distance along the curve (in
time dt). But recall the chain rule:
df

ix af 3 dy af (2.27)
dt  dt ax  dt oy’
This equation says simply that the directional derivative of thetiumd along the curve

parameterized by (that is,f:ff;) equals the rate of change of bheoordinate{ff_-lf; as you move along

the curve times the rate of change of the temperature functibm[%; plus the rate of change of
the y-coordinaterlf_ﬂl] as you move along the curve times the rate of change of the téumpera
dat 4

function with y[*_::g\i}. But [#] IS just v, the x-component of your velocity, an-lf_f;] 5 Oy the
dy ar 4 dat /

y-component of ybur velocity. And since you know that your velocity is aovdbat is always
tangent to the path on which you're moving, you can consider the divactierivativedf to be a

dt
vector with direction tangent to the curve and with length equtide rate of change 6fwith t (that
is, the time rate of change of the air temperature).
Now here’s the important concept: sintean be any function, you can wrikgy. 2.27as an
“operator” equation (that is, an equation waiting to be fed a function on which it can operate):

d dx d g dy 8 (2.28
dt  dt ax = drdy’

The trick to seeing the connection between derivatives and vestorsiew this equation as a vector
eqguation in which

Vector =x-component x basis vector ¥-component y basis vector.



Comparing this tdeq. 2.28 you should be able to see that the directional derivative opeﬁf?ator
represents the tangent vector to the curve%—;lmd% terms represent the andy-components of
that vector, and the operatcrfT; and,f% represent the basis vectors in the direction ofxtlaady

coordinate axes.

Of course, it’s not just air temperature that can be represenfe@,by; this function can represent
anything that is spatially distributed in the region around your c@wé.(x, y) could represent the
height of the road, the quality of the scenery, or any other quamaitywaries in the vicinity of your
curve. Likewise, you could have chosen to parameterize your ptithmarkers other than time; had
you assigned a valueor 4 to each point on your path, the directional deriva%/er% would still

represent the tangent vector to the Cl‘%'@,f% would still represent the-component of that vector,
anddy org.?_' would still represent thg-component of that vector.

ds i

If you plén to proceed on to the study of tensors, you will fired tinderstanding this relationship
between basis vectors along the coordinate axes and partial derivatives is oasigwiice.

2.7 Nabla — the del operator

The partial derivatives discussed in the previous section cagoubéo use in a wide range of
problems, and when you come across such problems you may fintigitahvolve equations that
contain an inverted upper case delta wearing a vecto;yatThis symbol represents a vector
differential operator called “nabla” or “del,” and its presemsructs you to take derivatives of the
guantity on which the operator is acting. The exact form of thoseatlees depends on the symbol
following the del operator, withy;y signifying gradient,«5;o signifying divergence; v .
indicating curl, andV?() signifying the Laplacian. Each of these operations is discuisséater
sections; for now we’ll just consider what an operator is and hewdél operator can be written in
Cartesian coordinates.

Like all good mathematical operators, del is an action waiting to happen. ./ siedls you to take
the square root of anything that appears under its y»¢d,an instruction to take derivatives in three
directions. Specifically, in Cartesian coordinates

= .0 . d i i (2.29)

wheret, , and;? are the unit vectors in the direction of the Cartesian coordirateandz.

This expression may appear strange, since in this form dlsnig anything on which it can
operate. However, if you follow the del with a scalar or vetigdd, you can extract information
about how those fields change in space. In this context, “fiel&rgdb an array or collection of
values defined at various locations. A scalar field is smetiéntirely by its magnitude at these
locations: examples of scalar fields include the air temperatuaeroom and the height of terrain
above sea level. A vector field is specified by both magnitudedaedtion at various locations:
examples include electric, magnetic, and gravitational fielgeciBc examples of how the del
operator works on scalar and vector fields are given in the following sections.

2.8 Gradient



When the del operatey is followed by a scalar field, the result of the operatioraited the gradient
of the field. What does the gradient tell you about a scalar field? Tpariamt things: the magnitude
of the gradient indicates how quickly the field is changing over spau#,the direction of the
gradient indicates the direction in which the field is indrepsmost quickly with distance. So
although the gradient operates on a scalar field, the result gradesnt operation is a vector, with
both magnitude and direction. Thus, if the scalar field represemésn height, the magnitude of the
gradient at any location tells you how steeply the ground is sloped at that location, ancttioa dife
the gradient pointaphill along the steepest slope.
The definition of the gradient of the scalar figldh Cartesian coordinates is

grad(y) = Vi = 755 ‘“’ . 0 —H« (Cartesian). (2.30

cﬁ.

Thus thex-component of the gradient gfiindicates the slope of the scalar field in khairection
and the other components indicate the slope in the other directionsqiére root of the sum of the
squares of these components provides the total steepness of the slopdoaation at which the
gradient is taken.

You can see a simple example of the result of the gradient opbsatonsidering the tilted plane
in Figure 2.11(a)This plane is defined by the simple equaiigr, y) = 5x + 2y, and you can find the
gradient using the two-dimensional versiorEgf 2.30

d(3x + 2y) L0(5x 4+ 2y)
+ J , '
ax dy
=51 +2].

‘FL’I—:

So even thougly is a scalar function, its gradient is a vector; it has a conmp@heng thex-axis and
a component along theaxis. And what do these components tell you?

For one thing, the fact that thecomponent is more than twice the size of yrmomponent tells
you that the tilt of the plane is steeper in xhdirection than in thg-direction. You can also tell that
the slope in each direction is constant, because the componentst &mactions ofx or y. Both of
those conclusions are consistent vitgure 2.11(a)
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Figure 2.11Functiony = 5x + 2y and the gradient and contoursyof

And if you wish to determine the magnitude of the gradient, thredsily done. Since the
x-component of the gradient is 5 and yheomponent is 2, the magnitude of the gradient is simply (5
+ 22)Y2 = 5.39 over the entire plane. You can also find the angle tharaaéent vectors make with



the positivex-axis using arctan(2/5) = 21.8°. The gradient and contours of the geoittiain of the
functiony are shown irrigure 2.11(b)
In cylindrical and spherical coordinates, the gradient is:

|.|.-"

vy =¥ 4 gl BY o8 d (cylindrical), (2.31)

r dig

and

(spherical). (2.32)
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You'll see more gradients iBection 2.11covering the Laplacian operator, which represents the
divergence of the gradient. You can read about the divergence in the next section.

2.9 Divergence

When dealing with vector fields, you may encounter the del opefallorved by a dotiy,),

signifying the divergence of a vector field. The concept of divergenea aftises in the areas of
physics and engineering that deal with the spatial variation dbivdéelds, because divergence
describes the tendency of vectors to “flow” into or out of a poiritefest’ Electrostatic fields, for
example, may be represented by vectors that point radially away from points apasitore electric
charge exists, just as the flow vectors of a fluid point awasnfa source (such as an underwater
spring). Likewise, electrostatic field vectors point towardatmms at which negative charge is
present, analogous to fluid flowing toward a sink or drain. It thasbrilliant Scottish mathematical
physicist James Clerk Maxwell who coined the term “convergefurethe mathematical operation
which measures the rate of vector “flow” toward a given locatin modern usage we consider the
opposite behavior (vectors flowing away from a point), and outward fowonsidered positive
divergence. In the case of fluid flow, the divergence at any poimtmeasure of the tendency of the
flow vectors to diverge from that point (that is, to carry moederial away from it than toward it).
Thus points of positive divergence mark the location of sources, pdiités of negative divergence
show you where the sinks are located.

To understand how this works, take a look at the vector fields shoftigures 2.12and2.13.To
find the locations of positive divergence in each of these fiébd&, for points at which the flow
vectors either spread out or are larger pointing away from tlaéidocand shorter pointing toward it.
Some authors suggest that you imagine sprinkling sawdust on flowingtovaigsess the divergence;
if the sawdust is dispersed, you have selected a point of positivgeatee, while if it becomes more
concentrated, you've picked a location of negative divergence.

Using such tests, it’'s clear that locations such as 1 and=RBjure 2.12and locations 4 and 5 in
Figure 2.13(ajpre points of positive divergence (flow away from these points dgdemv toward),
while the divergence is negative at point Figure 2.1flow toward exceeds flow away).

The divergence at various pointskigure 2.13(b)s less obvious. Location 6 is obviously a point
of positive divergence, but what about locations 7 and 8? The flowdneeslearly spreading out at
those locations, as they do at location F-igure 2.13(g)but they're also getting shorter pointing
away. Does the spreading out compensate for the slowing down of the flow?
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Figure 2.13Radial vector fields with varying amplitudes.

Answering that question requires a useful mathematical formhefdtvergence as well as a
description of how the vector field varies from place to plaCiee differential form of the

mathematical operation of divergence or “del ¢ Vo) on a vectoA in Cartesian coordinates is

S 8 TR e eniBN Hd o s el 2.33
Vo. =(e,‘ + i+ k= )o(r.{r+;m-+m;). (239
dx dy e Jrd i
and, sinc§ o = jo j=kok = 1,thisis
& 3 (H.Jl_r a dA, : ;}‘-1:) (2.34)
‘ dx ay az |’

Thus the divergence A is simply the change in itscomponent along theaxis plus the change in
its y-component along thg-axis plus the change in ilsscomponent along theaxis. Notice that the
divergence of a vector field is a scalar quantity; it has magnitude but no direction.

You can now apply this to the vector fieldRigure 2.121n Figure 2.12 assume that the magnitude

of the vector field varies sinusoidally along thaxis asA = sing x)i while remaining constant in the
y- andz-directions. Thus,

- = a4,
VoA= i—xl = 7T cos(mT x), (2.35)
.
sinceAy andAZ are zero. This expression is positive for 8 < 1/2, 0 atx = 1/2, and negative for 1/2

<X < 3/2, just as a visual inspection suggests.
Now considerFigure 2.13(a)which represents a slice through a spherically symmetriongeld



with amplitude increasing as the square of the distance frowritjie. Thusﬁ =27, Sincer? = S

+y? +7) and

xt+vyj;+ 7k
r = —_—_——
NESE
this means
S 2, xi 4+ vj+ 7k
A=rr=| —I—n-l— o —— -
v X<+ ys+ 24
= (x2 + vy + 2HY 20 + v+ 2h),
and
EF‘{I 2l 3l 2l J 7 . ] . 2l 7 2l : _l P ;
e b il o U T Bt T - = rfeyrsb ) T2
ox ' vy '

Doing likewise for the/- andz-components and adding yields

3 % 5l
(242 +2%) . & i
- =4(* +y  + A =ar.
'\. i.& _I_ III-L -.L

Vod=3x2+y +5)1V2 +

Thus the divergence in the vector fieldFigure 2.13(ajs increasing linearly with distance from the
origin.

Finally, consider the vector field iRigure 2.13(b)which is similar to the previous case but with
the amplitude of the vector fieldecreasingas the square of the distance from the origin. The flow
lines are spreading out as they werd~igure 2.13(g)but in this case you mlght suspect that the

decreasing amplitude of the vector field will affect the value of the divergence. Aun (1/12)*'

7 1 xi+yJ+zk xi+yj+zk

¢ B S VST R o o S
and

A, l = b e 2 A

_ = — . sk — KT A Y ) X

ax s ol i R 2 '

Adding in they- andz-derivatives gives

L 3 x4 y2 42
VoAd=— ]
X2+ 32+ 22)32  (xZ 4 y2 4 )32

This validates the suspicion that the reduced amplitude of the Jegltbiwith distance from the
origin may compensate for the spreading out of the flow lines. tNatehis is true only for the case
in which the amplitude of the vector field falls off @s*Xand only for points away from the origih).
Therefore, you must consider two key factors in determining trexgknce at any point: tlspacing
and therelative amplitudeof the field lines at that point. These factors both contributie total



flow of field lines into or out of an infinitesimally small wohe around the point. If the outward flow
exceeds the inward flow, the divergence is positive at that pbitte loutward flow is less than the
inward flow, the divergence is negative, and if the outward androhflows are equal the divergence
is zero at that point.

So far the divergence has been calculated for the Cartesian coordinate $yg depending on the
symmetries of the problem, it might be solved more easily usingCaotesian systems. The
divergence may be calculated in cylindrical and spherical coordinate systems using

5 = 18 1 8A dA, o _
VoA=—-——I(rA,;)+ - LA —,  (cylindrical) (2.36)
rodr r ao az
and
TR O B 1 @ o 1 8A . _
Vod=—S5—(r'A;) + ———(Agsmb) + ———-— ? (spherical) (2.37)
r=ar rsmne of rsme do

If you doubt the efficacy of choosing the proper coordinate system, you should rehevdaiktttwo
examples in this section using spherical coordinates.

2.10 Curl

The del operator followed by a crg v «) signifies the differential operation of curl. The curl of a

vector field is a measure of the field’s tendency to cireuddtout a point, much like the divergence is
a measure of the tendency of the field to flow away from a pBuit unlike the divergence, which
produces a scalar result, the curl produces a vector. The magnitude of the curbvyacpoitional to
the amount of circulation of the field around the point of integesd, the direction of the curl vector
is perpendicular to the plane in which the field’s circulation is a maximum.

The curl at a point in a vector field can be understood by consgd#dre vector fields shown in
Figure 2.14.To find the locations of large curl in each of these fieloisk for points at which the
flow vectors on one side of the point are significantly different (in magnitudsstidin, or both) from
the flow vectors on the opposite side of the point. Once again a thoxggtineent is helpful:
imagine holding a tiny paddlewheel at each point in the flow. If the flow would caupadid&wheel
to rotate, the center of the wheel marks a point of non-zeroTheldirection of the curl is along the
axis of the paddlewheel. By convention, the positive-curl directiaeisrmined by the right-hand
rule: if you curl the fingers of your right hand along the circulation direction, yaoumb points in the
direction of positive curl.



(a) (b} ()
Figure 2.14/ector fields with various values of curl.

Using the paddlewheel test, you can see that points 1, 2, an&iguire 2.14(a)and point 5 in
Figure 2.14(b)re high-curl locations, and some curl also exists at point 4uiifem flow around
point 6 and the diverging flow lines around Point 7Higure 2.14(c)would not cause a tiny
paddlewheel to rotate, meaning that these are points of low or zero curl.

To make this quantitative, you can use the differential form of the curl bcroes

in Cartesian coordinates:

(V %) operator

T G W (R . . - 2.38
?xx—‘l=(:_ G i oty 1,7 )x(:r’l_r-i-,f.-‘ly-l-kri;). ( )
. JX v a1, -
Recall that the vector cross-product may be written as a determinant:
¢ 7k (2.39)
& . A 8 3 8
Ay Ay A

which expands to

i (e.'m: s}.si_\.')ﬂ+('sm_r :‘H:) ﬁ+(ea_-1_\. u,q_i.') .
T ey 3z ) "\ " ax/}’ ax ay ) (2.40)

Notice that each component of the curldindicates the tendency of the field to rotate in one of
the coordinate planes. If the curl of the field has a largemponent, it means that the field has
significant circulation about that point in tlge plane. The overall direction of the curl represents the
axis about which the rotation is greatest, with the sense of the rotation given by the rightidand r

If you're wondering how the terms in this equation measure rotatmmsider the vector fields
shown inFigure 2.15Look first at the field inFigure 2.15(apnd thex-component of the curl in the
equation: this term involves the changeNanith y and the change iAy with z. Proceeding in the

positivey-direction from the left side of the point of interest to thym,iAz Is clearly increasing (it's

pointing in the negative-direction on the left side of the point of interest and the pesitdirection
on the right side), so the tel% must be positive. Looking now A‘g/, you can see that it is positive

below the point of interest and negative above, so it is decreading jiositivez-direction. Thus?4y

az

is negative, which means that it increases the value of thevber it is subtracted frm%. Thus



the curl has a large value at the point of interest, as expedightiof the circulation oA about this
point.
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Figure 2.15ffect of 24 “’*1 and z on the value of the curl.

The situation inFigure 2.15(b)is quite different. In this case, bc?4r and 4z "A are positive, and

az

subtractlng*i“*_.1 from ¢ ”* 94: gives a small result. The value of teomponent of the curl is therefore

small in this case. Vector fields with zero curl at all points are calleatdironal.”
Here are expressions for the curl in cylindrical and spherical coordinates:

B 4 (15?.4: EHQ)A (Mr E}A:‘) A 1(5}[&%] s.u,-)ﬂ (cylindrical) (2.41)
vx :.-t == T . r . B . '{:}—i__ . T N l:l
rodig a7 a7 ar... r ar dgh
S . 1 dAssind) dAgy. 14 1 8A WrAg)\ - spherical) (2.42
- ( psing) 9)}, _(__ r_uqs)ﬁ (spherical) (2.42)
Fsm#e a4 g FoAsme do ar

1 (d(rAg) dA; Y\ -
g Wi . Bl &0
ryor e

A common misconception is that the curl of a vector field is noo-z#ierever the field appears to
curve. However, just as the divergence depended both on the spreading out and the changofg length
field lines, the curl depends not only on the curvature of the linesldmbn the strength of the field.
Consider a curving field that points in t@edirection and decreases ds 1

s ko
A=—g.
B
Finding the curl of this field is particularly straightforward in cylindrical cocxtis:
e ( 194, @ a¢) 7 (Mr {m:') ik 1 (’:‘af;-ﬂﬂﬁ} B u_#r‘) s
r dg dz 0z ar | r\ or g

SinceAr andAZ are both zero, this is

b
3A 1 fa(rAs)\ . qk/rdy . 1 falrk/r)\ .
( i :,‘: _( J'. b )::(_i _'U)J"-F_(Ir-—.)‘::ﬂ
t?"_ ! ar Az r\ ar

v




To understand the physical basis for this result, consider agaiftuiti¢dlow and paddlewheel
analogy. Imagine the forces on the paddlewheel placed in thesheln inFigure 2.16(a) The
center of curvature is well below the bottom of the figure, andgheirsg of the arrows indicates that
the field is getting weaker with distance from the centdrfilst glance, it may seem that this
paddlewheel would rotate clockwise due to the curvature of the fiel& giadlow lines are pointing
slightly upward at the left paddle and slightly downward at tketriBut consider the effect of the
weakening of the field above the axis of the paddlewheel: the top paddiees a weaker push from
the field than the bottom paddle, as showfigure 2.16(b) The stronger force on the bottom paddle
will attempt to cause the paddlewheel to rotate counter-cloekwisus the downward curvature of
the field is offset by the weakening of the field with diseaffom the center of curvature. And if the
field diminishes as /t, the upward-downward push on the left and right paddles is exactly
compensated by the weaker-stronger push on the top and bottom paldlekckwise and counter-
clockwise forces balance, and the paddlewheel does not turn — thet this location is zero, even
though the field lines are curved. For this fleld, the curl is zero everywhere except at the center of
curvature (where a singularity exists and must be handled using the delta function).
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to the night
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"‘it.:k-.d fiell® Upward push Drvovovmovard push
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field " Ty field
Stronger field Stronger push
tor the right
ial ki

Figure 2.160ffsetting components of the curl Ef.

2.11 Laplacian

Once you know that the gradient operates on a scalar function and w@dwueetor and that the
divergence operates on a vector and produces a scalar, it's rtatwahder whether these two
operations can be combined in a meaningful way. As it turns outlitbegence of the gradient of a
scalar function A, written ay [ﬁqﬁ), Is one of the most useful mathematical operations in physics

and engineering. This operation, usually written & (but sometimes afA), is called the
“Laplacian” in honor of Pierre-Simon Laplace, the great French mathematiciastesnbaner.

Before trying to understand why the Laplacian operator is so blelugou should begin by
recalling the operations of gradient and divergence in Cartesian coordinates:

Gradient:

A

= iy (2.43)

i :
+=f —qb + K—.
dx dy oz

Divergence:

f.'?..-i_l. i eara}. 5 HF_{:. (2.44)
ix ay oz

Vod=

Since thex-component of the gradient of A;_*i" they-component of the gradient of A% and



thez-component of the gradient of At"r" the divergence of the vector produced by the gradient is

. . 52 a3 A (2.49
i b . b " i

ax2 | oay? | oazt

Just as the gradie v, divergencgy ), and curly .y represent differential operators, so too the

Laplacian ¥?) is an operator waiting to be fed a function. As you mayllrete gradient operator
tells you the direction of greatest increase of the function (ewl steep the increase is), the
divergence tells you how strongly a vector function “flows” away from a poirtogeard that point if
the divergence is negative), and the curl tells you how stronglytarviemction tends to circulate
around a point. So what does the Laplacian, the dlvergence of the gradient, tell you?

If you write the Laplacian operator 572 — 4° 4 + 2 & , it should help you see that this
dﬁ.-

operator finds thehange in the changef the funct|on (|f you make a graph, the change in the slope)
in all directions from the point of interest. That may not sgerg interesting, until you consider that
acceleration is the change in the change of position with tm#)at the maxima and minima of
functions (peaks and valleys) are regions in which the slope chaggégantly, or that one way to
find blobs and edges in a digital image is to look for points attwtiie gradient of the brightness
suddenly changes.

To understand why the Laplacian performs such a diverse setfaf tasks, it helps to understand
that at each point in space, the Laplacian of a function mmpiethe difference between the value of
the function at that point and the average of the values at surroundimg. pdow does it do that?
Consider the region around the point labeled (0, 0, B)gare 2.17 The function A exists in all three
dimensions around this region, and the cube is shown only to illusti@tecation of six points
around the central point (0, 0, 0), where the value of the functitsnAg‘ iNotice that there are points

in front of and behind the central point (along thaxis), points to the left and right (along the
y-axis), and points above and below (alongzfais). To see how the change in the change in A is
related to % consider for now the points along tkkaxis, as shown irigure 2.18 Notice that the

value of A at the point in back of the central point is Iabelggjck/hnd the value of A in front of the
central point is labeled A If each of these points is located a distanca gffrom (0, 0, 0), then
the partial derivative of A at point B can be approximated Qy—(A\BaCQIAx. Likewise, the partial
derivative of A at point A can be approximated b)%ﬁ— AO)/AX.
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Figure 2.18Change in A along-axis.

But the Laplacian involves not just the change in A, butctienge in the changef A. For that,
you can write

o (E) _ (@From = 90)/Ax — (¢o — Ppack) /A

ax \ ax Ax * (2.46)
i?zf,fl _ $Front + @ Back — 2¢0
ax? Ax? '

And although this might not look very helpful, good things happen when you combine this expression
with the expression for the two points to the right and left of (0, 0, 0):



3¢ PRright + PLest — 200 (2.47)
ay? Ay? ‘

and the equation for the points on top and on the bottom of (0, 0, 0):

a°¢ _ @Top + @ Bottom — 240 (2.48)
9z Azl '

If you pick your locations symmetrically so thax = Ay = Az, then these three equations together
give you the following:

E}‘zqﬂ.l H‘z{;‘; iFE-:,-‘;

r i + r ) r

dx< = Bys  9z° (2.49)
. @Front + ®Back + PRight 1 PLeft + PTaop + ¢ Bottom — 6o
B Ax? '

Using the del-squared notation for the Laplacian and a little rearranging makes this

1 —b l
Vo = Al |:¢|JCI = E{'{f"’Fr-::-.'z.‘ + dpack + PRight + PLefr + PTop + ﬁbﬁ'o.’mm}}
: -*ﬁ (2.50
e (¢0 — Pavg),

where the average value of the function A over the six surrounding pdsits
Ef-‘:u'g = %fﬁf:’FrmH + ¢ Back + Q‘i‘R.‘ghr + Q‘i‘L:’_.r'.f + 'ff'J?To,n + ¢Botrom ).

Equation 2.50tells you that the Laplacian of a function A at any point is ptapual to the
difference between the value of A at that point and the average 98/ at the surrounding points.
The negative sign in this equation tells you that the Laplasiaegative if the value of the function
at the point of interest is greater than the average of the function’s valuesatrthending points, and
the Laplacian is positive if the value at the point of intesesmaller than the average of the value at
the surrounding points.

And how does the difference between a function’s value at a pointhendverage value at
neighboring points relate to the divergence of the gradient of thatdnfictio understand that, think
about a point at which the function’s value is greater than the surnguasierage — such a point
represents a local maximum of the function. Likewise, a pointhathathe function’s value is less
than the surrounding average represents a local minimum. This iedaken you may find the
Laplacian described as a “concavity detector” or a “peak finderfirdis points at which the value of
the function sticks above or falls below the values at the surrounding points.

To better understand how peaks and valleys relate to the divermgetieegradient of a function,
recall that the gradient points in direction of steepest in¢bnalecline if the gradient is negative),
and divergence measures the “flow” of a vector field out of aone@or into the region if the
divergence is negative). Now consider the peak of the function showigume 2.19(a)and the
gradient of the function in the vicinity of that peak, showrigure 2.19(b) Near the peak, the
gradient vectors “flow” toward the peak from all directions.t@edields that converge upon a point
have negative divergence, so this means that the divergence of thengnadhe vicinity of a peak
will be a large negative number. This is consistent with the gsioel that the Laplacian is negative
near a function’s maximum point.
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Figure 2.19Function A (varying as 1/r) and the gradient and contours of A near the peak.
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Figure 2.20Function A (varying as —1/r) and the gradient and contours of A near the bottom of
the valley.

The alternative case is shown kiigures 2.20(ajand 2.20(b). Near the bottom of a valley, the
gradient “flows” outward in all directions, so the divergence of tlagignt is a large positive number
in this case (again consistent with the conclusion that theatiapl of a minimum point is positive).
And what is the value of the Laplacian of a function away frgmeak or valley? The answer to that
guestion depends on the shape of the function in the vicinity of theipajoestion. As described in
Section 2.9the value of the divergence depends on how strongly the function “flowesy from a
small volume surrounding the point of interest. Since the Laplaniasivies the divergence of the
gradient, the question is whether the gradient vectors “flow” towaalvay from the point (in other
words, whether the gradient vectors tend to concentrate towardparsk away from that point). If
the inward flow of gradient vectors equals the outward flow, then the Laplatithe function is zero
at that point. But if the length and direction of the gradient vectmmspire to make the outward flow
greater than the inward flow at some point, then the Laplacian is positive at that point.

For example, if you're climbing out of a circularly symmetricleyalwith constant slope, the
gradient vectors are spreading apart without changing in length, wtaahs the divergence of the
gradient (and hence the Laplacian) will have a positive value at that poirnt.aBiifferent valley has
walls for which the slope gets less steep (so the gradietdrsaget shorter) as you move away from
the bottom of the valley, it's possible for the reduced strengtthefgradient vectors to exactly
compensate for the spreading apart of those vectors, in which case the Laplaciazevdl be



To see how this works mathematically, consider a three-dimehdiometion A whose value
decreases in inverse proportion to the distarfcem the origin. This function may be written as A =
k/r, wherek is just a constant of proportionality amds the distance from the origin. Thus=
0+ +2) Y2 and A =k/(x2 + y? + Z)Y2. You can find the value of the Laplacian for this case uging
2.45 the first step is to find the partial derivative of A with respeat to
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The same approach for the second-order partials with respeahtiz gives
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Now it’s just a matter of adding all three second-order partials:
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So for a three-dimensional function wittir-tlependence, the Laplacian of the function is zero
everywhere away from the origin. What about at the origin its€lat point requires special
treatment, since the/rtdependence of the function becomes problematic at0. That special
treatment involves the Dirac delta function and integral rather than differedmdiques.

You may occasionally have need to calculate the LaplaciammCartesian coordinates. For
functiony, the Laplacian in cylindrical and spherical coordinates is given by:

Cylindrical

18 i 1 a2y 5%y 2.51
V2 ——— r-‘.—t*)+—,,ﬁ+“_ .4 (2:50)
For dr Feodghe i

Spherical



n 1 a 2 0 | i il I a2y (2.52)
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2.12 Chapter 2 problems

-

2.1 For vectorA = 3 + 2/ -k andB=j+4 k, find the scalar producd © B and the angle
betweerA andB.

2.2 Ifvectorj =21 —j + 51{ andg =3+ 2f +]{ find the vectoi;, that equals the cross prodij-k
k- Also show thay is perpendicular to boLn and tog:.

2.3 Show thad o B =AB+A B +AB = [AHB/ cosg) and tha A ><A| [AHﬁ/ sin().

2.4 Using the vectors of the previous two problems, find the tri|mjeiqcm:-*‘r o (A x B). Compare
your answer t¢ j « A) o B-

2.5 Using the vectors of Problems 1 and 2, find the triple veodnmiuptaF X (j; X é). Compare your

answer t0aF X ;3;) X ﬁ and toé X (f X #—1.)
2.6 For the functiofi(x, ) =x% + 3% + 2y + 3 + 5, find 2L anddr

2.7 If A =x* +y? what isyA at the positionx, y) =(3 cm, —2 cm)?
2.8 Find the divergence of the vector field giverc — syyi — 35 j + 572k
2.9 What is the curl of the vector field given in the previous problem?
2.10 Find the Laplacian of the function given in Problem 2.6.
2.11 In mechanics, the work (W) done by a foui—'; @cting over a displacemel,) is defined as the

scalar product between the force and the displacemew — F o . How much work is done
by the vertically downward force of Earth’s gravitjf[|= mg, whereg is the acceleration of
gravity) on a car with a mass of 1200 kg as the car moves Hswwn a hill whose surface
makes an angle of 20 degrees below the horizontal?

2.12 Imagine trying to turn the head of a bolt by pushing on the handlevuzfnch The vector torque

exerted by the force you applFI is given by the equatldh—’ X F where’ is a vector from the
point of rotation to the point of application of the force. If you postthe handle of the wrench
with a force of 25 N at a distance of 12 cm from the point aitiat, in what direction should you
push to maximize the torque on the bolt head? If you push in thatioirehow much torque will
you exert on the bolt head?

! The equivalence betwe&muations 2.5and2.2 is demonstrated in the problems at the end of this chapter.

2 Some people find it easier to imagine aligning the fingers of youn)ajzht hand with the direction of the first vector, and
then curling your fingers toward the second vector. Or you can pointightiindex finger in the direction of the first vector
and your right middle finger in the direction of the second vector. Whether ydbeupashing, curling, or pointing approach,
your right thumb shows you the direction of the cross product.

3 The equivalence dfq. 2.8and the magnitude of the expressiofEin 2.5is demonstrated in the problems at the end of this
chapter.

4 But {_,J_T[ 5 f:_-'} « (' makes no sense, sin(y , B) gives a scalar, and you can't cross that scalai‘to

> What exactly is a “well-behaved” function? Typically this meang function that is continuous and has continuous
derivatives over the region of interest.

% Some authors are careful to distinguish between a “path” &ndnee,” using “curve” only when a parameter has been
assigned to each point on a path.

" In many instances, nothing in the vector field is actuatiwifig; the word “flow” is used only as an analogy in which the



arrows pointing in the direction of the field are imagined to represent the physical flow of an incompressible fluid.
8 At the origin, where = 0, a (1f%)-vector field experiences a singularity, and the Dirac deltatibmenust be employed to
determine the divergence.



3

Vector applications

The real value of understanding vectors and how to manipulate themdseclear when you realize
that your knowledge allows you to solve a variety of problems that wmilchuch more difficult
without vectors. In this chapter, you'll find detailed explanationdoof such problems: a mass
sliding down an inclined plane, an object moving along a curved path, a chargdd padicelectric
field, and a charged patrticle in a magnetic field. To sdheséa problems, you'll need many of the
vector concepts and operations describedhapters land2.

3.1 Mass on an inclined plane

Consider the delivery woman pushing a heavy box up the ramp to hargétuck, as illustrated in
Figure 3.1 In this situation, there are a number of forces acting orbtixe so if you want to
determine how the box will move, you need to know how to work wittovecSpecifically, to solve
problems such as this, you can use vector addition to find tHédnta acting on the box, and then
you can use Newton’s Second Law to relate that total force to the acceleration of the box.

To understand how this works, imagine that the delivery woman afipbe side of the ramp,
leaving the box free to slide down the ramp under the influenceawitgrFor starters, pretend that
the ramp is so slippery that friction between the bottom obthxeand the ramp surface is negligible
(so the coefficient of friction is effectively zero). How fastlhe box be moving when it reaches the
bottom of the ramp? Perhaps more importantly, on what does that speed depend?

Whenever you approach a problem like this, it's a good idea to beginalyng a diagram that
shows all the forces acting on the box. Such a “free-body” diagidrhelp you determine the total
force acting on the object, from which you can easily deterrtieeobject’s acceleration using
Newton’s Second Lawa(= zli—'/m).1 And once you know the acceleration, it's an easy mattentb fi

the velocity. An example of the free-body diagram for this (frictionless) caBewssnFigure 3.2



Figure 3.1The delivery-truck problem.

Figure 3.2Free-body diagram for mass on frictionless ramp.

By removing the delivery woman and friction from the problem,ahly remaining forces acting
on the box are the force of gravﬁ'g, which points vertically downwardand the normal forcj:'n,

which is perpendicular (or “normal”) to the surface of the raim@ origin of these forces is easy to
understand; the gravitational force is produced by the mass of the Bad the normal force is

produced by the ramp as a reaction to the force produced by tlom blo& ramp (if the ramp weren’t

pushing upward on the box, gravity would cause the box to accelerate straight downward).

B
\Fn

Figure 3.3Free-body diagram with coordinate axes.

Do these two forces really act only at a single point somewhere inside the box, ad bypigure
3.2? Clearly not, since every particle in the box is being pul®gnward by the Earth’s gravity, and
the force of the ramp on the box occurs along the entire underside bbx. But to determine the
acceleration of the box in this problem, you don’'t need to worry aheuctual point of application
of the forces, because you can treat the box @ertecle that exists at a single location. That's not
always the case; in problems involving torque and angular acceterédr example, the point of
application of the force may be critically important. But the othis problem is sliding, not rolling,



down the ramp, and you're perfectly justified in treating the &®x single particle and drawing the
forces as though they all act at the same point. Furthermoregyless likely to make a mistake
about the angles of the forces if you draw them &3gare 3.2 This approach can be justified using
the concept of center of mass (CM), since for a rigid objechagsm you can consider the entire
object as a single point and Wrz.,, = Fry/m.-

Before doing the vector addition of the two forces acting on the box to determine the tataitor
a good idea to draw a set of coordinate axes onto your free-body diagrarfjgure 3.3 Of course,
you're free to draw the axes in any direction you choose, but whereyfaged with a problem of a
mass on an inclined plane, there are certain benefits vandydhe x-axis pointing down the ramp
(and parallel to the ramp surface) and yhaxis pointing upward (and perpendicular to the ramp
surface). This approach has the advantage that the normal fereatiiely along the positiweaxis,
and the motion of the block sliding down the ramp is entirely in the pogiiuection (as long as the
box stays on the ramp). To pay for that advantage, you'll have ta bisef geometry to find the-

and y-components of the gravitational force, since the veﬁgrpoints straight downward and is

therefore aligned with neither the down-plard fior the perpendicular-to-plang ) axis?

Parallel to ramp
surface (and to
X-axis)

1-\.

(a) ()

Figure 3.4Geometry to find the angle ﬁg.

The key to finding thex—componentﬁg X) and they—componentﬁg ) of the gravitational force (
fg) is to realize that the angk between the ramp surface and the horizontal is also the angle
betweer;r'g and the negative-axis, as shown ifigure 3.4(a)

If you're uncertain why the two angles showrgaa Figure 3.4(amust be the same, take a look at
Figure 3.4(b) Completing the two triangles shownkigure 3.4(b)should help you see that the angle
betweenﬁg and the negativg-axis is indeed) (you may also be able to see this by imagining the

case in whicl® = 0° oré = 90°).
Once you're convinced that the angle betwej:'g and the negative/-axis is 6, it's quite

straightforward to determirjiﬂ'g XandﬁgI ¥ thex- andy-components of the gravitational force vector
ﬁg. As you can see iRigure 3.5 the components (ﬁg are given by

x = | Fylsind(0),
y = |Fglcos6(—7), (3.1)

s e

where the minus sign before the@ccounts for the fact that this component points in the negative



y-direction.

Figure 3.5x-andy-components oﬁg.
A note about notation: as mentioneddhapter 1it’'s customary to writ&gs. 3.1as

Fy x = | Fylsin®,
Foy= —|.|’?_g|c't'f.':;f-.". (3.2)

that is, as scalars rather than vectors. That's becaus#réotion of vector components should be
clear from the subscript: thecomponent is always in thelirection (or +direction if it's negative),
and they-component is always in thiairection (or +direction if it's negative). So you can write the
components of a vector as scalars or vectors, as long as youbentbat each component points in
a specific direction, which means you cannot simply add&-tlady-components algebraically, even
if they’re written as scalars. You must add them as vectors.

Whether you write the components as vectors or scalars, havirgahdy-components 01,1':'g in

hand and knowing that the normal force of the plane on the box isleititbe positivey-direction,
you’re now in a position to use vector addition to find the totaldfacting on the box. Writing the
magnitude of the sum of the forces in ¥adirection, you have

|SFy| = | Fylsing, (3.3)
and in they-direction
|Z Fy| = (|Fy| — | Fylcos8). (3.4)

Alternatively, instead of writing separate equations forxtrendy-components of the total force, you
can write a vector equation incorporating both:

S F = (|Fplsind)i + (| Fn| — | Fglcos)], (3.5)

which contains exactly the same informatiorEgs. 3.3and3.4.
Getting from the total force to the acceleration of the baxssmple step thanks to Isaac Newton,
whose Second Law tells you that the magnitudes of-taady-components of the acceleration are

ay = |ZFel/m = (|Fglsind/m), (3.6)



and
ay = |SFy|/m = [(| | — Ifglra:.st?];'n:]. (3.7)
or, in full vector form,
d=XF/m=/(Fglsind/m)i + [(|Fy| — |Fglcos6)/m]]. (3.8)

Whether you realize it or not, you almost certainly know twosfétzat will allow you to simplify
these equations considerably. The first is that the magnitude fairtieeof gravity 13‘:’g|) on an object

of mass t" is simply equal tang where 4 is the magnitude of the acceleration of gravity (9.8°m/s
at the Earth’s surfac)So wherever you have the facilf'g |, you can substitute the expressiog

The second simplification is produced by the realization th&drasas the box stays on the ramp
and doesn't fly off into the air or break through to the groundyibemponent of the acceleration
(ay) must remain zero (remember that {haxis is perpendicular to the surface of the ramp). Using

the fact thatli—'g| =mgand tha*ay = 0 turnsEgs. 3.6and3.7 into the following:
a =mgsind/m=gsing (3.9)
and
a, = (F |-mgcoso)/m=0. (3.10)

When you’re working a physics problem, it's a good idea to stepfbatkyour calculations once in
a while to look at your intermediate results to see if thetyjneg to tell you something — and that’s
certainly the case at this poiltquation 3.%lready has an important result for you: in the absence of
the upward-pushing delivery woman and with no friction, the boxastklerate down the ramp (that
is, in the &-direction) with an acceleration that depends on only two things: which plendelivery
truck is on (that is, the value off") and the angle that the ramp makes with the horizoéjalr{ this
case, just as for a freely falling object, the mass of the box does not affect liksaitze

Since the sine of the ramp angle can never be greater tham@ng,9also tells you that the
magnitude of the acceleration of the objersin ) can never be greater thgnthe accleration of
gravity. It can, of course, be equalgaf sin § = 1. But this would mean thatwould have to be 90°
(since sin 90° = 1), in which case the ramp would be exaettycal. In such cases, you no longer
have an object sliding down a ramp, you have an object falling next to a wall.

There’s also good information lurking ig. 3.10Q but you have to think a bit to see it. According to
this equation, the/-component of the box’s acceleration is equal to the differenceebetuhe
magnitude of the normal forceﬁ“) and they-component of the gravitational forcend cosé). But

since you know that in this problem the box remains on the ramphareatceleration is therefore
zero, you can useq. 3.10to determine the magnitude of the normal force.
Since

a = (F l=mgcosf)/m=0,
then

|| =mgcoso. (3.11)



So the normal force depends on the weight of the oljpegt &nd the cosine of the ramp angh. (
Understanding this will help you avoid a common pitfall for studesks know that the normal force
is the reaction force produced on the object by the ramp, andhehantistakenly conclude that the
normal force must always equal the weight of the objag.(That line of reasoning only works for
horizontal surfaces, because for any inclined surface, it's only the compohé¢he object’s weight
that’'s perpendicular to the surface that produces the reactiom \iceccall the normal force. That
perpendicular component of the object’'s weight is showiignre 3.5to bemg cosé, which spans
the range froomg (when@d = 0°, meaning the ramp is horizontal and bears the full weigtheof
object) to zero (whefl = 90°, meaning the ramp is vertical and bears none of the oljeztjgt). In
all other cases, the magnitude of the normal force will have a value betweem@ and

If you're wondering why you should bother findili—')n if you're only interested in the.component

of the acceleration, the answer is that you may not care fpt{br the frictionless case (unless
you're worried about your ramp breaking), but you'll definitely nJEBnthen friction exists between

the ramp surface and the bottom of the box.
With the magnitude of the down-ramp component of the acceleraxl))a\(ailable fromEg. 3.9

all that remains is for you to find the speed of the box abdi®m of the ramp. Finding speed from
acceleration turns out to be quite straightforward, especid&gnwhe acceleration is constant (as it is
in this case), provided that you're in possession of either ongoopieces of information: the time
the box takes to reach the bottom of the ramp, or (more likbly)distance from the box’s starting
point to the bottom of the ramp. You'll also need the initial spediich you can generally discern
from the initial conditions, and which you can take to be zerthisrcase. As you may remember
from kinematics, the final speed of an object moving inxugrection with initial speed/X‘ itial
undergoing constant accleratianover timet is given by

V. final = Vi, initial T & b (3.12)
or, if you knowd, the distance in the positixedirection over which the acceleration occurs,
(v, final)2 =, initial)2 + 2 d. (3.13)
Using the expression for acceleration freop 3.9 this becomes
(V g = (0¥ +2@sin6) d
or
U, final = v/ 2 (g sinB) d. (3.14)

So, for example, a box sliding down a 2 m ramp with an angd@vfo the horizontal on the surface
of the Earth will be moving at a speed of

Ux, final = H.-"'E [f 9.8 [11_.-*'&2] sin '_%{F'] 2Zm=4.4m/s (3.15)

when it reaches the bottom of the ramp. If you're curious about how lorkg# tlae box to travel the
2 m down the ramp under these conditions, you can plug this valugef@inal speed int&qg. 3.12
and solve fot, which turns out to be about 0.9 s in this case.



Stripping away effects such as friction is often a good tedgarn the fundamentals of a problem,
but if you've ever encountered a ramp outside of physics texts, tlaegesd chance you had to deal
with friction. Happily, once you understand how to use vectors, imgjuffiction in the “box on a
ramp” problem becomes a simple matter of adding another forcéhmtmix before solving for the
acceleration.

As you may recall, friction operates in two regimes: “stdfiiction determines how hard you have
to push on a stationary object to get it moving, but once the objetdving, the frictional force that
opposes the motion is produced by “kinetic” friction. So although boths tgbdriction oppose
motion, the magnitude of the force produced by static friction dependkeoapplied force (the
harder you push, the stronger the opposing force of static friction,ttdbject “breaks free” and
begins moving), while the magnitude of the kinetic-friction force depenfison the normal force
and the coefficient of kinetic friction between the object dmdsurfacé. To determine the effect of
kinetic friction on the speed of the box at the bottom of the rgmyp,can modify your free-body
diagram to include the frictional forcﬁp, as shown ifrigure 3.6

Notice that the direction of the frictional force is chosems®o oppose the motion, and since the
box is moving down the ramp in this case, the force of kinetitidn points up the ramp (in the
negativex-direction).

To determine the effect of friction on the acceleration of the boxglidown the ramp, you simply
have to include the frictional forcf:’p in your equation for the sum of the forces in xhdirection

(Eqg. 3.3, which becomes
|Z Fy| = | Felsin® — |Fg|. (3.16)
This makes the acceleration
ax =LFy/m= (|F:_g|.'yf'nf3' - |!:'_,r|) jm. (3.17)

Clearly, to determine the magnitude of the acceleraéignyou'll need to find an expression f<j:'f||,
just as you usenhgsiné for |Fg X| inEq. 3.9

Figure 3.6Free-body diagram for object on ramp with friction.

Fortunately, that’s easy to do, because the magnitude of thedbideetic friction is simply the
product of the magnitude of the normal for(j:'n() and the coefficient of kinetic frictiom,():

ARt (3.18)



You also know fronEq. 3.11that r- | =mgcosé, so

a = (mgsinf -y, mgcosd) /m (3.19)
= (g sind —p, g coso).

Comparing this expression for the acceleration of the box tocttedesmation in the frictionless case
(Eq. 3.9, you'll be happy to note that the term due to gravitysiq 6) is exactly the same in both
cases, and the term due to friction § cos6) is subtractedrrom the gravity term. This means that the

acceleration of the box will be made smaller by the frictidoate. So in the case considered
previously of a box sliding down a 2m ramp that makes an angle o#i80the horizontal, if the
coefficient of kinetic friction between the box and the ram.4s the speed of the box at the bottom
of the ramp will be reduced to

Uy, final = 4/ 2 [(9.8m/s%) sin30° — (0.4)(9.8m/s%) cos 30°] 2m

= 2.5m/s. (3.20)

There is one aspect &f. 3.19%that may worry you: what if the second term is larger than t&e fi
For any angle between 0° and 45°, the cosine is bigger than theifd¢he coefficient of kinetic
friction (,uk) Is sufficiently large, this equation predicts that the are#ibn will be in thenegative

x-direction, meaning the box will acclerate up the ramp evan ne is pushing on it. As physicists
like to say, “That’s not physical,” meaning that this result @mhts other well-established laws of
physics (conservation of energy comes to mind in this casejh8ce have we gone wrong in our
analysis? We haven't, really, you just need to think carefltiyut the initial assumptions. One of
those assumptions was that the box is travetiognthe ramp, which is why we drew the frictional
force pointing up the ramp in our free-body diagréigre 3.9. But if the ramp isn’t very steep and
the coefficient of friction between the box and the ramp idicgently large, the down-ramp
component of the force of gravity will not be strong enough to overconfedtienal force, and the
box will not slide down the rampSo there’s nothing wrong withqg. 3.19 it's just that it only applies
to the situation in which the box is moving down the ramp undeinthence of gravity, in which
case the force of kinetic friction points up the ramp.

So there you have it. You've used vectors to represent the fofcgsavity and friction, and
knowing how to find vector components and how to perform vector additioalloaged you to find
the acceleration and speed of the box under various conditions. Arab¥ sliding straight down a
ramp is a bit too mundane for your taste, you may want to tébekaat the next three application
examples. In them, you’ll see how vectors can be helpful in anglymbtion on a curved path and
how vector operations can be used to understand the behavior of electric and magnetic fields.

3.2 Curvilinear motion

In everyday language, the word “acceleration” is used as a synamyfimdéreasing speed.” Hence
the “accelerator” in an automobile usually refers to thepgial. But in physics and engineering,
acceleration is defined as any change in velocity, and veligitg vector quantity with both

magnitude and direction. So changing theection of the velocity is also a form of acceleration,
meaning that most cars have three accelerators: the gas thedalake, and the steering wheel.
“Stepping on the gas” produces an acceleration in the saméatiraes the velocity vector (causing



the speed to increase), pressing on the brake produces anraieldirectly opposite to the
direction of the velocity vector (causing the speed to decreasd) turning the steering wheel
produces an acceleration perpendicular to the velocity vectorir{gatle car’s direction to change
but not affecting the speel)Acceleration in the direction parallel (or antiparall@)the velocity
vector is called “tangential” and acceleration perpendicular to tloeitsels called “radial.” Any time
an object experiences radial acceleration, it does not movstmight line, and its motion is called
“curvilinear.” An example of curvilinear motion is shown kigure 3.7 in which a car is going
around a curve.

Note that at any instant, the velocity vector points directly along tihetipa car is following. For a
curving path, that means the instantaneous velocity vector is tangéetpath, as you can see when
the car is at position B iRigure 3.7 If you wish to determine the acceleration at points sudk &
and C along the car’s path, it's not enough to know the velocityosetpoints; you have to know
how the velocity ixhangingwith time at those locations.

Velocity
vector is tangent
to path -

Figure 3.7Velocity vectors for a car following a curved path.

A good way to visualize the acceleration vector is to graphicallgsept the velocity vector at the
instants of time just before and just after the car is atiposiA, B, and C. This is illustrated in
Figure 3.8for the following case: the car is slowing down at PositioasAit approaches the turn,
maintaining constant speed while turning at Position B, and {esdsg up as it exits the turn at
Position C.

You can get a sense of the acceleration just by examinindnéimge in the velocity vectors at each
position. Comparing the velocity vectors just before and just Bfteition A, you can see that the
magnitude (length) of the vector is getting smaller but the direction rerhaissune. This means that
the speed of the car is decreasing but the car is not yet tuNomglook at the velocity vectors just
before and after Position B: the direction of the vector is chagnigiit its length is not, so the car is
turning while maintaining constant speed. Finally, by examining tleeitae vectors before and after
Position C, you can see that the length is increasing, med@ngat is speeding up after leaving the
turn.

The direction of the acceleration is easily found by rememgedhat the average acceleration is



given by the equatioﬁ = Ab/At, whereAb is the change in velocity over timd. That change in

velocity is justFfinal N which you can determine by subtracting the earlier velocitjovdrom

the later one at each positionkigure 3.8 To make that easier, the vectors are reproducédyime
3.9
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Figure 3.9Velocity vectors before and after Positions A, B, and C.
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Note that the vectors shown kigure 3.9include not onI)t andt itial® but also the negative of

That’'s because you'll need to knovz o o compute the change in velocity, sict = ve

) Remember that to add two vectors graphically you

|n|t|al

=V which is the same cI¥ + (-0 initial

simply move the tail of one to the head of the other and thentbmwesultant from the start of the
first to the end of the second vector. The results of adding SEFttr%T and —v.__._are shown in

initial
Figure 3.10

In Figure 3.10the velocity vectors I itial andFfinal for Positions A and C are shown slightly offset

since they would overlay one another if they were drawn truly head-to-tail. If you look atettigodi

of the vector representing the change in velodii) @t each position, you'll see that while the car is
slowing down at Position A, the change in velocity is in the oppalrection from the velocity at
this point. Since the acceleratica) (s defined as the vector change in velocityi§ divided by the



scalar time periodAt) over which that change occurs, the directiora ahust be the same as the
direction of At. Hence the acceleration direction at Position A is oppositidhe direction of the
velocity vector, as you'd expect when the car is slowing down. iBhsn example of negative
tangential acceleration.
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Vfinal - e Viinal
—Vinitial Vinal
: o —
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Figure 3.10Change in velocity vectors at Positions A, B, and C.

Now consider the direction of the vector change in velakitat Position B, where the car is going
around the turn at constant speed. In this case, subtr;F%'ﬂ'ngfrom Fﬁnal gives a vectoAr that is

perpendicularto the velocity vector. This shows that the acceleration véotoan object moving

along a curve at constant speed points toward the center of cur¢taturelp you visualize this
direction, theAr vectors are shown on the car’s patlirigure 3.1). At position B, this is an example
of radial acceleratiof.

Finally, as the car speeds up at Position C, you can sethéhdirection of the vector change in
velocity At is the same as the direction of the velocity vector, meaning that tleeagiced in this case
is parallel to the velocity. Hence this is an example of positive tangentiadeataet.

For Position B, a careful analysis of the length of the vectongghan velocity reveals that the
magnitude of the radial acceleration depends on the square of the speed amadingha curvature
of the path. Before getting into that, it's worth a few minubésyour time to make sure you
understand the terminology commonly used to describe acceleratdiorae in curvilinear motion.
Acceleration toward the center of curvature (such as thdeaatien at Position B ifrigure 3.1} is
called “centripetal” (for “center-seeking”) acceleration, dhd force producing that acceleration is
often called centripetal force. It's important for you to underd that a centripetal force is not a new
kind of force that is somehow different from mechanical, eladtrmagnetic, or other kinds of force.
The word “centripetal” simply describes tb&ection of the force, but the force itself is provided by
the same old kinds of forces to which you’re accustomed. So éar going around a curve, the
centripetal force is simply the frictional force of the tires ongtaind. If you tie a rock to a rope and
twirl the rope in a circle, the centripetal force on the rnggsroduced by the tension of the rope. And
if you fill a bucket with water and swing it over your head, the centripetal force dutket (and via
the bucket on the water) comes from the muscles in your arrtheSeentripetal force is whatever
force is producing the centripetal acceleration that causes the object to folloved path.
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Figure 3.11Acceleration vectors at Positions A, B, and C.

As footnoted earlier, it's conventional to consider radial acced:ere{ﬁir) as positive outwardcagvay
from the center of curvature), and since centripetal acdelm(ﬁtc) is defined as positiveoward the
center of curvature, you may run across an equation SLﬁ:rrFasﬁC. This is simply a statement that

the radial acceleration and centripetal accelerationcarenonly defined to have the same magnitude
but opposite directions.
You should note that in the case of the car on the curving roachdkéeing twirled in a circle on
a rope, and the bucket of water being swung over your head, the cahigesleration (and hence
the centripetal force) is toward the center of curvature, ek tis no acceleration (and no force)
pointing radially outward. But what about the “centrifugal” force tie occupants of the car feel
toward theoutsideof the curve (that is, toward the left door if the car is hgrb the right)? What
they’re feeling is the force of the left door on their bodies as theygitt® obey Newton’s First Law
and continue moving in a straight line while the car is acdelgréo the right. So centrifugal force is
the apparent force experienced by observers in the reference tinamis rotating with the object
(physicists refer to acclerating reference frames suthiagas “non-inertial”). Hence if you're riding
in a right-turning car, as you slide across the seat and upsadhe left door, in your (rotating)
reference frame you'’re accelerating to your left, which cayee to conclude that there’s a force in
that direction (outward from the center of curvature). But forahafsus not riding in the car, we
don’t see any such force; we simply observe the centripetdeeaiien of the car as the friction of
the tires on the road provides a centripetal (rightward) force.

The concept of centripetal and centrifugal force can be understoadnsydering an Olympic
hammer-thrower as she spins a heavy mass on the end of calllesteged from above ifrigure
3.12 For the thrower, it feels like the object is pulling directitward (away from her). Once again,
in the non-rotating reference frame of the stadium, that'9prstuse the object is attempting to obey
Newton’s First Law and continue moving in a straight line. 8mfour vantage point in the viewing
stand, we see that the hammer-thrower is having to produce gpetht(radially inward) force to
make the object follow a curved path.

So is the hammer-thrower wrong in her assessment? Absolutely rinar reference frame, which
is rotating along with the mass, her conclusion that a radmaitward (centrifugal) force exists is
perfectly valid. After all, she knows that she has to exedrg strong inward force on the cable to
keep the mass at the same distance from her (because iaférence frame the mass has zero



acceleration until she releases it). Hence she is camreoincluding that in her reference frame there
must be a force in the radially outward direction to balanceniweard pull. So if you hear someone
say that the centrifugal force is “fictitious,” they generatigan that centrifugal force is an apparent
force to an observer in a rotating (non-inertial) reference frame.
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Figure 3.12Top view of hammer-thrower.

Once you understand the concepts of centripetal acceleration aadifgsrreasonable to ask how
strong the centripetal force must be to cause an object dovfallgiven path. It's simple to determine
the centripetal force using Newton’s Second L‘JEv:( ma) if you know the object’s mass and have

some way of finding the centripetal acceleration. Happily, #émripetal acceleration turns out to
depend only on the object's speed and the radius of curvature of theasayou can see by
consideringrigures 3.13and3.14

In Figure 3.13you can see the velocity vectors at two locations for an oilsjaotiform circular
motion (meaning that the object’s speed and the radius of cunatuteoth constant over the time
period under consideration). Note that the two positions are sepdmatengleAd at the center of
curvature, which makes the arc length between the initialinatidositions equal toAd, wherer is
the radius of curvature anlg is in radians. Since the speed of the object is constant oger thi
distance, you know thai.|.. | must equal| | (in other words, the direction but not the length of
the velocity vector has changed). You can thereforeiset | = .| = |, wherei]| is the speed of
the object at both positions. Since the average speed of the ghjisfined as the distance covered
divided by the time taken to cover that distance, you can write

Figure 3.13Geometry of changing direction of velocity.
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5] = r':’_"ufﬂ.". (3.21)
At
which means that
Sl |1-|:~.r. (3.22)

F

The reason that an expression suck@s3.22for A@ is valuable is that this angle change is directly
related to the magnitude of the vector change in velocity, whiclmged to know if you want to find
the centripetal acceleration. To see that, consider what haipgeunsform the vectoAr by addingy

final 1O —Finmal, as inFigure 3.14 The first thing you should note is that the angle between thersect
Fﬁnal and —Fimtial is equal taAd (if you don’t see why that’s true, go backRmure 3.13and imagine

extending both vecto@inal and -v until they cross). Also note that the veciiris drawn at the

initial
location mid-way between the original Iocationﬁ%ll‘tial and the original location (F:ﬁnal, since that’s

the location at which you’re finding the centripetal accelerafitve final thing to note in this figure
is that bot}‘Ffinal and —Finmal have length equal tv|| which makes the arc length shown in the figure

equal toy|A6.

Now imagine what will happen if you allow the anglé to shrink toward zero. As the angle
decreases, the arc lencu\p will get closer and closer to the lengthAir. Plugging in the value for
A6 from Eq. 3.22 you have in the small-angle limit

g s s DIEGE (3.23)
|AT| = |T|AB = |T|
E
|52 At
T r

which means that the magnitude of the instantaneous centripetal acceleration is

» |AT|  |D)PAr (3.24)
|az] = =
Mi rid
_BP
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So there you have it: the centripetal acceleration at any gigen is simply the square of the
speed divided by the radius of curvature of the path at that pointeHBoubling your speed means
that your centripetal accelerationf@ir times larger, which means that the centripetal force must be



four times stronger.

If you're concerned thaEq. 3.24may apply only in the case of uniform circular motion, remember
that by allowingAé to become arbitrarily small you've ensured that neither the speed nor the radius of
curvature has changed during the time period under consideration.

What doesEq. 3.24tell you about the amount of force needed to cause an objectldw fal
specified curving path? Consider the hammer-thrower discussed aiwbsbawvn inFigure 3.12 and
assume that she intends to launch a 4 kg mass at the end ofmacal#le with a speed of 20 m/s.
Assuming she achieves her maximum speed just before letting the afable, at that point the
centripetal accleration will be

1112 (20m/s)*
r [.2m
— 333.3m/s2,

|{_|+’¢| —

which means that the thrower must provide a centripetal force of

= - |————— b
|Fo| = mla.| =4kg (33_1._" mfs“)
= 1333.3N

which is almost 300 pounds of force (and this doesn't include the mass of the cable).
With Eq. 3.24to help you find the magnitude of the centripetal acceleratrmhkaowing that the
tangential acceleration is just the change in speed overﬁ;gr]lg% Av/AY), the total acceleration can

be found through vector addition, as shownFHigure 3.15 Thus the magnitude of the total
acceleration is

Figure 3.15Total acceleration as the vector sum of centripetal and tangential adoelerat

laTotall = \r-':”ﬁf”z sk f|a.":.'."1,,-'-;|]‘2
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You'll find an example of combined tangential and centripetallea#n in the problems at the
end of this chapter.

(3.25)

3.3 The electric field



If the previous two sections convinced you that vectors are veryuhelpfsolving mechanics
problems, the next two sections should help you understand why vesabsolutely essential in
problems involving electric and magnetic fields and their efiactharged particles. You'll also see
how the vector operations of divergence, curl, gradient, and Lapka@arsed in electrostatics. Even
if you've never taken an E&M course (and never hope to), the examptlesse sections should be
sufficiently self-contained to allow you to understand how ve@atsvector operations can be used
in E&M.

The natural way to begin a discussion of electric and madimtis is to provide a clear, concise
definition that states exactly what an electric or magnetic ief8luch a definition would appear right
here if | had one. But almost two centuries after Michaeddry first used the words “field of force”
to describe the region around electric charges, we still dov& Aatandard way of saying what such
a field is. The Oxford English Dictionary provides definitions field” that include an “area or
space” under the influence of an agent, a “state or situationhioh force is exerted, and the
“action” of a force. According to James Clerk Maxwell, “Télectric field is the portion of space in
the neighbourhood of electrified bodies.” In Halliday, Resnick, and Walker you aemnttedefine the
electric field by placing a small positive test chaag(at some point and measuring the electrostatic

force pg on that test charg®; the electric fieldf is then defined ap = p. lg,. In Griffiths’

Introduction to Electrodynamicsie states that.!. physically, E’(P) is the force per unit charge that
would be exerted on a test charge placd®"athe words “would be” in that definition are important,
because it imot necessary for the test charge to be present in order for the field to exist.

The common thread running through all these definitions is thigisfiahd forces are closely
related. So we’ll take the following as our definition of the electric 'E-;Id

Py (3.26)

whereE is the vector electric fieldqO is a small test charge, aj:'iE Is the electric force produced on

the test charge by the electric field. Defining the eledieid through this equation should help you
remember tha}:.-' is a vector quantity with magnitude directly proportional to f@ued with direction
given by the direction of the force on a positive test charge (becaq&s'e iiegative, there would be a

minus sign on one side of the equation, which would mean that \Eotmuld be in the opposite
direction from vecto ).

This definition should also help you see tfathas dimensions of force divided by charge, for
which the standard (SI) units are newtons per coulomb (N/C) eTlnats are equivalent to volts per
meter (V/m), since volts have dimensions of force times distdinaded by charge (units of newtons
times meters/coulombs). So you'll find the units of electetdfigiven as N/C in some texts and V/m
in others, and you can rest assured that these mean exactly the same thing.

There is, however, something important to be noticed in the unttseeadlectric field vector: the
dimension of length (units of meters in this case) appear® shehominatorof the dimensions of the
electric field. And that means that the vector that represmmtslectric field has a fundamental
difference from the vectors that represent quantities such ampdgihich has dimension of length),
velocity (dimension of length over time), or acceleration (dinoensf length over time squared). As
you can read itChapter 4 that's because vectors whose dimensions contain length in theatoimer
transform oppositely to vectors whose dimensions have length in the idat@mvhen you perform
certain coordinate-system changes. If this seems unclear arbydylan to venture into the tensor
portion of this book, do not panic; none of this will prevent you from udegcbncepts and



operations described @hapters land2 to solve problems involving vectors of this kind, exactly as
you're about to do in the remainder of this section. But if you've auaross objects called
“one-forms” or “covectors” (of which the electric field is amample) and you're wondering how
those objects are different from the things you've been calling vedierappearance of length in the
denominator of the dimension is the beginning of the answer (you'll fieddst of the answer in
Chapter 4f you're interested).

You should also make sure you understand that if you know the er?e&jnlig at a given location,
placing any amount of charggat that location will result in an electric forli:'zE given by

Fp = qE. (3.27)

So whileEqg. 3.26uses the electric force on a positive test chargetioethe electric fieldeq. 3.27
is a generally useful expression for finding the electric forceany amount of charge at the location
for which the electric field is known.

Defining an electric field is useful, but exactly how would you go apmducingan electric field?
One way is to gather up some electric charge, because evefycharge produces an electric field,
just as every bit of mass produces a gravitational field. kefiglds can also be produced by
changing magnetic fields, but it is the “electrostatic” fipidduced by stationary electric charge that
will be used to demonstrate the application of vectors in this section.

It's often helpful to be able to visualize the electricdial the vicinity of a charged object. The
most common approaches to constructing a visual representatiorelgfcsnic field are to use either
arrows or “field lines” which point in the direction of thelfieat each point in space. In the arrow
approach, the strength of the field is indicated by the lengtihheofatrow, while in the field-line
approach, it's the density of the lines that tells you the f&length, with closer lines signifying a
stronger field. When you look at a drawing of electric fietebdi or arrows, be sure to remember that
the field exists between the lines as well.

The electric fields produced by positive and negative point chargeshawn using the arrow
approach inFigure 3.16and using the field-line approach kigure 3.17 When you look at electric
field lines such as these, don't forget that the field arrows and lines always pbmiinection of the
electric force on gositive test charge, and that electrostatic field lines alwaysnbegi positive
charge and end on negative charge. And since the field lines Baalireéction of the electric field at
any given point, it's impossible for two fields lines to cragsce that would indicate that the electric
field is pointing in more than one direction at the point of ieetien (if two electric fields are
superimposed at a given point, they simply add as vectors tohgivtettl electric field at that point,
and that total field can only point in a single direction).

(a) (b

Figure 3.16The electric field of positive and negative point charges drawn using arrows.
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Figure 3.17The electric field of positive and negative point charges drawn using field lines.

At this point, you should make sure that you understand that electric fields cdrelwtiducedy
electric charge as well gsoducea force on another electric charge. So you're likely to face problems
in which you first have to determine the total electricdfiptoduced by charge at a certain location
and then figure out the effect of that field on a completeliemdiht charge (not one of the charges
producing the field). But doesn’t the charge that's being affedets ¢all that one the “subject
charge”) also produce its own electric field? Yes it doesabubng as the electric field produced by
the subject charge isn't strong enough to cause the other chamesdcaround, you can approach
problems like this by finding the total electric field producedabiythe other charges and then using
that field to determine the force on the subject charge. Tpsoach is very much like finding the
Earth’s gravitational field at some point in space and then usgiag field to figure out the
gravitational force on an object of known mass at that locaticdhputi considering what effect the
mass of the object might have on the Earth.

Problems like this are especially straightforward if thetale field is being produced by one or
more discrete point charges. That’s because the electri(E:iefch point charge is simply

B T (3.28)

.qr"
e

wherek_is the Coulomb constant (8.99 x°IRm?/C?), r is the distance in meters from the point

charge to the location at which the electric field is belatermined, an# is a unit vector pointing
radially outward from the point charge.

Thus a single proton (electric charge of 1.6 <*1@) at a distance of one meter produces an
electric field given by

= s o TOLAE 100 T
E = (8.99 x 10° Nm2/C2) (;"]—) P
mj=

— 1.45 x 107 (N/C) 7.

Note that the direction of that field is radialiyvay from the proton, since the unit vecipalways
points radially outward from the origin. An electron, having negativerge, produces an electric
field of the same magnitude as that of the proton, but the electlatsic field pointsoward the
electron. To see that, note that when you plug in a negative chamgmfaq. 3.28 you have



E = (8.99 x 10° Nm~/C~) ¥

(1m)?
— —1.45 x 107 (N/C)# = 1.45 x 10~2(N/C) (—7),

where the minus sign tells you that the direction of the elestrartctric field is in theegativer
direction, which istoward the source charge (sinreis always radially outwardninus# is always
radially inward). This is consistent with electric fieldds beginning on positive charge and ending
on negative charge.

To understand how to add the vector electric fields, considesitition shown irFigure 3.18
Note thatql IS positive, so its electric field must point radially outsv&rom the location otll, while

a, and q, are negative, so their electric fields must point radialyard toward their locations. To

find the total electric field at the position of the electranmay help you to picture the fields
produced b3q1, d,, anqu as shown irrigure 3.19

= — -‘i —
g1=+3 nC g, =-8nC
. -~
(5, +4)cm L]
electron (+7.+2) em
o (0 cm
q,=—06nC
[ ]
(—5,—4) cm

Figure 3.18Example values for charges near an electron.
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Figure 3.19The electric fields produced by chargﬁsqz, anqu.

If you read the discussion of field lines earlier in thistis&, you should realize that the electric
field existsbetweerthe lines as well as at the locations of the lines themsdbuggust to help you
visualize the direction of the fields from each of the threegdasa the field lines ifrigure 3.1%have
been drawn on a tilt so that they are directly in line with the location ahwhbic're trying to find the
total field (the origin in this case). You should also rerpenthat just because the lines have grown



too small to see does not mean that the field has gone taHasrce the electric field produced t)y
points down and to the right at the location of the electron, e fliom a, points down and to the
left, and the field fromq3 points up and to the right. It is these three vector fields that ybhavié to

add together to determine the total electric field at the point of interest.
UsingEq. 3.28 the electric fields due to the three point chacqeqz, andq3 may be written as
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Of course, you know fronfrigure 3.19that these three electric fields do not point in the same
direction. That’s because the unit vecf'leoints radially outward from the location of chacqeand

F'Z and F-3 point radially outward from;12 and d, respectively. This means you can't add the three

electric fields algebraically; to find the total field yowsh use vector addition. You'll find an
example of the vector addition of electric fields in the problamthe end of this chapter and the
on-line solutions.

As you might suspect, it's not just the simple operations of vedtlitian and multiplication by a
scalar that find use in electrostatics. If you followed diseussion of the divergence operation in
Chapter 2you may be wondering about the divergence of the electrostatis pebduced by a point
charge Figures 3.16and3.17). In fact, one of the fundamental laws of electrostaticSagss’s Law
for electric fields, the differential form of which is

VoE= ol€n, (3.30)

where p represents the volume electric charge density (coulombs per cetbér) rnnda»:0 is the

vacuum permittivity of free space (8.85 x 1Nm?/C?).

Gauss’s Law for electric fields tells you that electr&d lines diverge from any location at which
positive charge exists (positipy¢ and converge upon any location at which negative charge is present
(negativep). This explains the analogy between the “flow” of electrostatic field lindslze flow of a
fluid. In this analogy, positive charge acts as the “source”estrestatic field lines in the same sense
as a faucet acts as the source of fluid, and negative chasgasaat‘sink” of electrostatic field lines
just as a drain does for fluid.

Note what happens when you take the divergence of the electric field of @lpaigé (this is most
easily done in spherical coordinates):

VoE= %_E_}‘[FEE,-} = L,,i (r";"{f—ﬁ)

|
—,,_—[A'LJ{_J":I = ().
rear

This is consistent with the worked exampleChapter 2showing that the divergence of any radial
vector field is zero if the amplitude of the field falls aff 1/>. Zero, that is, at all locations except
wherer = 0, the location of the source of the field. Thus Gauss’s e#svytou that electrostatic field



lines diverge only from those locations at which positive electrarge exists, and converge only on
those locations at which negative charge exists.

You can gain additional understanding of the behavior of the elecicdsttd by considering the
curl ofE' for a point charge. Sindg, andEA are both zero, the curl in spherical coordinates becomes

- - 1 1 9E,~ 1 dEr\ -
VX E=—"———80+4+—|—F7|¢
rsmnd o r df
1 1 & fkagy-~ 1 d fk.g\]| -
= —— i—( rl)b"-l-— —L—( rl) @
rsing dg \ o, r e ro
= 0.

This is not a surprising result in light of the radial nature of the electrosttmfia point charge.

As mentioned irChapter 2 vector fields with zero curl are called irrotational, andh fields have
several important properties. One of those properties arisegtieofact that the curl of a gradient is
always zero: an irrotational vector field may always be written as the gradiestafar field.

In the case of electrostatic fields, the electric figldy be written as the gradient of the scalar
electric potential (usually written as A o). By convention, the electric field is written as the
negative gradient of the scalar potential, so you're likely to see this relationstignvas

whereV is the scalar electric potential with units of Nm/C (equivalent to joules pesrbudr volts).

Since the electric field is the negative of the change inrggaotential with distance, moving
along an electric field line in the direction it’s pointinggams that you're moving toward a region of
lower electric potential. Likewise, moving in the opposite dioec{opposite to the direction of the
field) takes you into a region of higher potential, and moving perpendiculae feetd lines results in
no change in potential. Hence the “equipotential’ surfaces am@yalwerpendicular to the electric
field lines.

Another differential vector operation useful in electrostascthe Laplacianvz). Recall that the
Laplacian involves the second spatial derivative, specificadydivergence of the gradient. Since the
electrostatic fieIcE' may be written as the negative of the gradient of the scalar pb¥nti#king the
divergence of the electric field gives:

VoE=Vo(=VV)=-VV. (3.32)

Since Gauss’s Law says that the divergence of the electrostatic field mdsﬂe&]uhis means

ViV = —p/eq. (3.33)

This is known as Poisson’s Equation. Since the Laplacian finds peakwvalleys of a function
(locations at which the value of the function differs from the ayewvalue at surrounding locations),
Poisson’s Equation tells you that the electric potential can lnma maxima and minima only at
locations at which charge is present (that is, wipere0). And if you recall that the Laplacian is
negative at peaks and positive at valleys, you can see that pokitinge produces a peak in electric
potential while negative charge produces a valley. This is one rd@satihme electric field is taken as
the negative gradient of the electric potential.

In regions in which the electric charge densityié zero, Poisson’s Equation becomes Laplace’s
Equation:



viv =0, (3.34)

so there are no maxima or minima in electric potential for locations with zegedatansity.

3.4 The magnetic field

In this section, you can read about the behavior of the magnédi¢B¥and the magnetic force on a
moving charged particle. You'll also find a discussion of the epptin of the vector operations of
divergence and curl to the magnetostatic field.

Unlike electrostatic field lines, which diverge from positivealge and converge on negative
charge, magnetic field lines form circles around the eleatirieent (flowing charge) that is producing
the magnetic field. And just as stationary source charges prodecteostatic fields, stationary
currents (in which the charge flow is constant) produce magnetidsfithat are called
“magnetostatic.” An example of such a field is showfigure 3.20 The direction of those field lines
is determined using the right-hand rule: if you put the thumb of yght hand along the direction of
current flow and curl your fingers (like you're grabbing the curreh®,nmhagnetic field points in the
direction of your curled fingers. So if you were to reversedinection of that current flow, the
magnetic field lines would still form circles around the catrdut the magnetic field lines would
point in the opposite direction (as you can tell by observing thetidireof your curled fingers when
your thumb points in the opposite direction).

Current-carrying ?
straight wire

g ==>>P

- T

B B
(out of page (into page
on this side) on this side)

Figure 3.20Magnetic field of a long, straight wire.

You can tell by the spacing of the field linesHigure 3.20that the strength of the magnetic field is
decreasing as the distance from the current increases. am wite of infinite length carrying
currentl, the vector magnetic field is given by the equation

ol - (3.35)

2rr

B=

Wherey0 is a constant called the magnetic permeability of free spasthe distance from the wire to

the point at which the magnetic field is being determined,q@uimi the cylindrical-coordinate unit
vector that points in the direction circulating around the wihe Jtandard (SI) unit of magnetic field
is the tesla (T).

Comparing the magnetic field lines around an electric cureerthe vector fields with various
values of divergence and curl discusseirapter 2 you may have already guessed that magnetic
fields fit into the “low divergence, high curl” category. Redalht electric field lines originate on



positive charge and terminate on negative charge, and it is otilg &ication of those charges that
the divergence of the electrostatic field is non-zero. And since made#t lines circulate back onto
themselves rather than diverging from and converging upon specifitoltgait’'s reasonable to
expect small values for the divergence of the magnetic fieldadiy the divergence of the magnetic

field (B) is exactly zero, as indicated by Gauss’s Law for magnetic fields:

VoB=0. (3.36)

You can verify this for the magnetic field of a long, straightevioy taking the divergence of the field
in Eq. 3.35

iy 1 4a& 1 il Lol
VoB=— 05¢ _ = L (ﬁ 0 )
Feme g Fsmé dg \2mr

= 0.

As you might expect from the discussion of curldhapter 2 the magnetic field around a current-
carrying wire has zero curl:

As in the case of the divergence of the electric field, wha$ha non-zero value only at locations at
which charge exists, the only locations at which the curl of thgnetic field is non-zero are
locations at which current exists (that is, at the singularity pcird).

Other uses of vectors and vector operations come about when you consider trﬁgpmeduced

by a magnetic fieldB) on a moving electric chargg)( This force is given by the vector equation
Fp=gqi x B, (3.37)

wheret is the velocity of the charged particle with respect to the magnetic field. Thetmagof the
force is readily found using the definition of the magnitude of the veatss @roduct 4 x B| = A||
B| sin6):

|Fg| = ¢|7||B|siné, (3.38)

whered is the angle between veciband vectoB.
Examined carefullyEgs. 3.37and3.38 can tell you a great deal about how magnetic fields affect
charged particles. Compare these equatioﬁsqtcB.Z?(JEE = qE'), and note that there are similarities

and differences between electric and magnetic forces:

 Similarity: Both are directly proportional to the amount of chagye (

 Similarity: Both are directly proportional to the field stren£1c(r B;
« Difference: The velocity)) of the particle appears in the magnetic equation;
» Difference: The magnetic force depends on the angle between the velocity and the rialghetic



* Difference: The magnetic force is perpendicular to both the velocity and the magphetic f

The similarities seem reasonable: both electric and magioeties are stronger if the fields are
stronger and if the amount of charge is greater. Also, chargbsogposite signs feel forces in
opposite directions. The first listed difference (the fact that thgnetic force depends on thelocity
of the particle) has the interesting consequence that a chargesflepair rest with respect to the
magnetic field § = 0) feels no force whatsoever from that field. And for particles moving esbect
to the magnetic field, the faster the particle moves, the stronger the magnetiocdoomes.

The presence of the vector cross product in the magnetic forceosgakstd has some important
consequences. One of those consequences is that charged particlesimawviigection parallel or
antiparallel to the magnetic field feel zero magnetic fofdet’'s because in both the parall@H 0°)
and antiparallel{ = 180°) cases, the sine termEq. 3.38is zero. So the closer the anglbetweeri

andB is to 90°, the stronger the magnetic force.
Another consequence of the vector cross produéigin3.37is that the magnetic forc1j:'g) can

never point in the direction of the magnetic field, since the veetuilt of the cross product is by

definition perpendicular to both vectors forming the prodicarfd B in this case). For this same
reason, the magnetic force can never point in the direction gfattiele’s velocity vector, and must
in fact be perpendicular to that vector. So if you imagine eitepfane formed by the velocity vector
and the magnetic field, you can be sure that the magnetic fbarg/) must be perpendicular to that
plane.
If you've read the discussion of radial and tangential accederati Section 3.2 you should

understand that this means that magnetic fields can provide bbatiiaever tangential acceleration to
a charged particle (since tangential acceleration requcemponent of force that’s either parallel or

antiparallel to the velocity vector). And sint:ex B always points perpendicular ip magnetic fields
can provide only radial acceleration. Thus magnetic fields maggehthe direction but never the
speed of charged particles.

An example of the geometry involved in magnetic force is shoviangare 3.21 In this figure, the
direction of the magnetic field is into the page, as indichtethe crosses inside circlEsand the
charged particle (g) is moving to the right.
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Figure 3.21Charged particle moving to right; magnetic field into page.
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Figure 3.22Magnetic force for positive and negative charges.

To determine the direction of the magnetic force in this case simply have to imagine forming
the vector cross produF‘tx § using the right-hand rule, as showrFHigure 3.22 Once you know the
direction oftr x B it's very important to remember (but easy to forget) thatrpast then reverse the
direction if the charge q is negative (sinceHuy 3.37 F =qu x B meaning that the magnetic force

is oppositeto the direction oftr x B if q is negative). This explains why two directions for the
magnetic forceﬁB are shown irrigure 3.22upward if q is positive and downward if q is negative.

Once you understand the direction of the magnetic force relatittleetoelocity of the charged
particle, it should help explain why you may have heard or rbadtacharged particles “circling
around magnetic field lines” or perhaps “spiralling along the magfield.” Consider the positively
charged particle q ifrigure 3.23 If this particle is initially at the leftmost position the figure,

travelling with velocity? straight up the page, and the magnetic fBlIgoints directlyout of the

page, the direction of the magnetic fogzx B is initally to the right (as you can determine using the
right-hand rule). This force causes the patrticle to traveherdashed path to the topmost position in
the figure. At that point, the magnetic fo'ﬁ’e points straight down the page. Just as at the previous

position, since q is positively charged, the magnetic force poiriteeisame direction @sx B. This
now-downward force causes the particle to travel to the rightmost position, atpeimtihe velocity
is straight down the page and the magnetic ffgqooints directly to the left. This force causes the

particle to reach the bottom positionkigure 3.23 at which point the velocity is to the left and the
magnetic force points straight up the page. Under the influence dbthes the particle will travel
back to the starting (leftmost) position, and the entire cyallerepeat. So this positively charged
particle makes a clockwise circle around the outward-pointing magnetic field.
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Figure 3.23Magnetic force on positive charge.

Applying the same reasoning to a negatively charged particle hgaddsbe able to determine that
it will make counter-clockwise circles around the same outwangkipgi magnetic field. And if the

field direction is reversed, so thB points into the page rather than outward, the sense of the
particle’s rotation will be reversed (so that a positivéigrged particle will circle counter-clockwise
and a negatively charged particle will circle in the clockwise direction).

The particles in these examples retrace the same pathraervar, so what makes some particles
“spiral around” the lines of the magnetic field? Simply this: plagticle’s velocity must have a
component parallel (or antiparallel) to the direction of the magnekit fiwte that the particle shown
in Figure 3.23is moving entirely in the plane of the page, and the magnelicisigperpendicular to
the page. Hence the particle’s velocity vector has no componenttammgagnetic field (into or out
of the page). If such a component were present, the particle Wwaudda component of its motion
along the field lines while also circling around them. In tede, the circular path shownhkigure
3.23 would move into or out of the paper over time, and the circle wbetbme a spiral. The
magnetic field has no effect on the velocity componelptqarallel or antiparallel to the field (since

there’s no magnetic force in that direction), so the speed with \iligcparticle moves along the field
line is constant as long as no other forces are acting.

3.5 Chapter 3 problems

3.1 Solve the box-on-a-ramp problem (that is, find the accelemattittre box) for the frictionless case
using a Cartesian coordinate system for whichytgis points vertically upward and tkeaxis
points horizontally to the right.

3.2 The maximum force of static friction/jgﬁn, wherey_ is the coefficient of static friction ar;'?n IS

the normal force. How big must the coefficient of static ity be to prevent a box of mass

from sliding down a ramp inclined 20 degrees from the horizontal?
3.3 If a delivery woman pushes a box of masgp a 2 m ramp with a force of 10 N, how fast is the



box moving at the top of the ramp if the ramp angle to the horizant2 degrees and the
coefficient of kinetic friction is 0.33?

3.4 If the hammer-thrower shown on the cover of this book wishesiteh a hammer of mass 7.26
kg on a cable of length 1.22 m with a speed of 22 m/s, whatisnagnitude of the centripetal
force he must supply?

3.5 Imagine a Formula 1 car going around a curve with radius of @Bil@ slowing from a speed of
180 mph to 120 mph in 2 s. What are the magnitude and directibie chr’'s acceleration at the
instant the car’s speed is 150 mph?

3.6 If three electric chargeﬁ, d,, andq3 have the values and locations showikigure 3.18find the

electric field they produce at the origixZ£ 0,y = 0), then use your value of the field to determine
the electric force on an electron at that location.

3.7 If the vector electric fieIdE’ in some region is given in spherical coordinates by
27+ 2sin6 cos g6 — Lsind cos ¢ ¢ (N/C), What is the volume charge densitin that region?

3.8 If the scalar electric potentidlin some region is given in cylindrical coordinates\br, A, 2) =
r’sinA &% what is the electric fiel £ in that region?

3.9 For the scalar electric potentialof Problem 3.8, use Poisson’s Equation to find volume charge
densityp in that region.

3.10 Find the magnitude and direction of the magnetic force on a dhaagcle with charge —4 nC

n

and velocityi = 2.5 x 147 + 1.1 x 1dj(m/s) if the magnetic field in the region is given By=
1.2 x10%1+ 5.6 x 10°/ - 3.2 x 10° |} (T).

! You may be more accustomed to seeing th fasmg, but the form shown above is meant to remind you that itsuhe
of the forceghat produces acceleration, and the primary job of all massasistacceleration (which is why mass lives in the
denominator — if the same force is applied to a large mass and a small mass,|tassn@kperiences greater acceleration).
2 This ignores local gravitational anomalies, which is a very reasonable thing to do for grobtéis type.

3 You may, of course, choose your axes to point exactly horizontallyeatidally, in which casffg would point entirely in

the negative-direction. In that case, the normal vecfvnrwould have botkx-andy-components. But since other forces (such

as friction and the delivery woman’s push) generally palomg the ramp surface, tilting your coordinate axes may well save
you time later.

* Remember that mass is a measure of the amount of matedject contains and weight is the force of gravity on that
mass. So mass is a scalar (magnitude only) and weight is a vector (magmitgdad direction = straight down). Should you
travel in space, your weight will change as you leave the Earth’s gravity behind, but your messaiil the same.

° But doesn’t the Earth pull harder on a more-massive object dess, but a more-massive object atssists acceleration
more than a less-massive object. Since gravitational massh(@etermines how strongly gravity pulls on an object) has the
same value as inertial mass (which determines how stronglybfbet resists acceleration), the result is that all obfedits
freely (or slide freely down frictionless ramps) with an acceleration thatraetepend on their mass.

% You can read more about this in introductory physics texts such as Serway & JeweitlayHésnick, 0026; Walker.

"You can determine whether the box will move by comparing the maximum static fridGoreafwhich is just the product of
the coefficient of static friction and the normal force) to the sum of-ttemponents of all the other forces.

8 In reality, turning the steering wheel produces frictional dsrthat also slow the car down, but it's the perpendicular
component of the acceleration that causes the car to turn.

° As described later in this section, most texts define theiymslirection for radial acceleration to be outward from the
center of curvature, in which case the acceleration at Point B would be consideredenagél acceleration.

19Why do physics and engineering texts always referstoalltest charge? For two reasons: firstly, the amount of charge on
the test charge must be small so that the electric field produced by the tesicheagiigible when compared to the electric
field that you're trying to determine using the test charge. Secondly, the test charde piogsically small because you're
using it to determine the field at a specific position, so you don’t want your test chargentb@sdea large region of space.

1 This is common notation in physics and engineering; you can remember it by thinking of a huntersdeatrow. Seen

from the back, you can see the back edges of the feathers, so it looks lilge Big:seen from the front, you can see the
arrow’s point, so it looks like thig?.



4

Covariant and contravariant vector components

The vector concepts and techniques described in the previous chaptenpatant for two reasons:
they allow you to solve a wide range of problems in physics and engmeand they provide a
foundation on which you can build an understanding of tensors (thes ‘¢ddhe universe”). To
achieve that understanding, you’ll have to move beyond the simple defioftiectors as objects
with magnitude and direction. Instead, you'll have to think of vectors astsehji@h components that
transform between coordinate systems in specific and predietagie It's also important for you to
realize that vectors can have more than one kind of component, dnithdba different types of
component are defined by their behavior under coordinate transformations.

So this chapter is largely about the different types of vector comparea those components will
be a lot easier to understand if you have a solid foundation imaltigematics of coordinate-system
transformation.

4.1 Coordinate-system transformations

In taking the step from vectors to tensors, a good place to setpnconsider this question: “What
happens to a vector when you change the coordinate system in which gepresenting that
vector?” The short answer is that nothing at all happens to therviself, but the vector's
components may be different in the new coordinate system. The purpbse s#ction is to help you
understand how those components change.

Before getting to that, you should spend a few minutes considérngtatement that the vector
itself doesn’t change if you change the coordinate system. This @eay sbvious in the case of
scalars — after all, whether you measure temperaturelgiu€®r Fahrenheit doesn’'t make a room
feel hotter or colder. Now remember that vectors are mathematicaleefatgsns of physical entities,
and those entities don’'t change just because you change the coordinate isysthich you're
representing them. Think about it: does the size of a room chagge tflt your head to one side?
Clearly not. But if you use your tilted head to define up and ddlwem the points you designate as
the top and bottom of the room may change, and this will change whatajlotne “height” and
“width” of the room. The important idea is that the room itself ddedrénge (it “remains invariant”)
under such a change of coordinate system. And if you define the oégtair head to be the origin
of your coordinate system, then walking toward one wall will “offset” the r(tbat is, thex, y, andz
values of locations within the room may change), but once again the itselnis unchanged.
Likewise, specifying dimensions of the room in inches rather treterswill allow you to put larger
numbers in the real-estate ad, but that doesn’t mean your room will hold a bigger sofa.



So if coordinate-system transformations such as rotation, tiansland scaling leave physical
guantities unchanged, what exactly does happen to a vector when ydartnaosordinates? To
understand that, consider the simple rotation of the two-dimensiar&sian coordinate system
shown inFigure 4.1.In this transformation, the location of the origin has not changedhdbiutthex-
andy-axis have been tilted counter-clockwise by an afigléne rotated axes are labebédndy and
are drawn using dashed lines to distinguish them from the original axes.

What impact does this rotation have on a vector in this spade?aléook at vectoA and its
components ifrigure 4.2(aand (b). Note that the rotation has no effect on the lengthrexstidin of

A (at first glance A may look a bit different irFigure 4.2(ajand4.2(b), but you can verify using a
ruler and protractor that the vector itself is exactly thee3aBut the rotation has clearly caused the

components oA to changeA’X (thex’-component of A in the tilted coordinate system) is longer than
A, andA’ is shorter tharA If you were to continue rotating your axes in the same directarig

eventually reach an angle at wh fihlles entirely along the'saxis, at which p0|nt thg component
of A would vanish (that is%' = 0) and the-component would equal the IengthAf(A’ [A|).

v VoA

Figure 4.1Rotation of 2-D coordinate system.
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() ()
Figure 4.2Change in vector components due to rotation of coordinate system.

Finding the change in the components of a vector due to rotation of the coordinate axes can be done
both graphically using simple geometry and analytically using thepdmduct. You'll find the
graphical approach in this section; the analytical approach sutiect of one of the problems at the
end of this chapter.

If you think about the changes A9 andAy in Figure 4.2 you might come to realize that the vector

componentA’, in the rotated coordinate system cannot depend entirely on the carhporie the



original system. After allA contains some but not all of the information about veAtathe rest is in
Ay. And as the axes rotate, the axis that had pointed exclusiviitgx-direction now points partially
in the (former)y-direction. So it seems reasonable that the porticA tifat had previously pointed in
the originaly-direction (and so contributed only Ag/) now points partially in the’-direction, and

hence contributes to théécomponent as well as tiyecomponent.
You can see how this works Figure 4.3.The (a) portion of this figure shows how the vector
componenf_in the original (non-rotated) coordinate system contribut@sxtm the rotated system,

and the (b) portion shows how the vector compoﬁgm the original system contributesAQ( in the

rotated system.
As you can see in both portions of the figtAtg,can be considered to be made up of two segments,

{’1 andfz. So

AL =11 417, (4.1)
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Figure 4.3Dependence A&’ x on A andAy.

and to determine how these segments depend amd Ay, consider the right triangles shown in
Figure 4.3.In the (a) portion of the figure, you can see thats the hypotenuse of a right triangle
formed by drawing a perpendicular from the endofo thex-axis. Call the angle between thexis
and thex'-axis a, (the reason for using double subscripts will become clear whatiord are
written in matrix notation). Then the Iength{qf(the projection oA onto thex-axis) isA cosg
Hence

ll)'

£1 = Ax cos(ayy). (4.2)



To find the length ofz, consider the right triangle shownkigure 4.3(b) In this case, the triangle
is formed by slidingﬁdX upward along thg'-axis and then drawing a perpendicular from the tiA’)(()f
to thex-axis. From this triangle, you should be able to see that

£2 = Ay cos{a)2), (4.3)

whereoc12 is the angle formed by the tipstx andAy (which is also the angle between v@axis and

they-axis, as you can see from the parallelografigure 4.3(b)
Adding the expressions fé[ andfz, you can WriteD\'X as

A} = Ay cos(ayy) + Ay cos(ay), (4.4)

X

whereAX andAy are the components of vecﬁrin the non-rotated coordinate systexH,is the angle
between the’-axis and the:-axis, ancbc12 is the angle between thkeaxis and theg-axis. You should
note that the new componerA’X() is a weighted linear combination of the original componefts (
and Ay). “Weighted” because the cosine factors determine how heavilp ehcthe original
components contributes to the new one, “linear” because the originpboents appear to the first
power only, and “combination” because bAg(hamdAy contribute oA .

A similar analysis foA’y, they-component of vectcA in the rotated coordinate system, gives
A;. = Ay cos(o21) + Ay cos{a2z), (4.5)

Whereoc21 is the angle between tlytaxis and thes-axis, ancbc22 is the angle between tlytaxis and
they-axis.

The relationship between the components of veA:dn the rotated and non-rotated systems is
conveniently expressed using vector/matrix notatam

(. ’“H _ cos (wy1) cos(wy2) ( Ay (4.6)
. ~\ cos (21)  cos(o) ; .f-‘l}. '

¥

This is called a “transformation equation” for the components of vA;tand the two-column matrix
is called a “transformation matrix.” The elements of thatrixare called the “direction cosines.”
Note that for a rigid rotation of the Cartesian axes through ahglee angleszc11 andoc22 are both

equal tod, while a,= 90° -0 andoc21 = 90° +6. The transformation matrix in this case is

cos (7) cos (90° —4) ) B ( cos () sin(H) 4.7
cos (90° + 8) cos (6) ~\ —sin(#) cos(g) /'’
since cos(90° ¥) = sin@) and cos(90° ¥) = — sinf).
To understand how this works in practice, consider veAtgiven as
A=50+3] (4.8)

in a two-dimensional Cartesian coordinate system. Now imagirtetibax- and y-axes of that
coordinate system are rotated counter-clockwise by 150°, as shéuguie 4.4.



Before jumping to the equations to find the componem)gsand A’y in the rotated coordinate

system, it's worth a few minutes to take a look at the dimagi@a estimate what the effect of the
rotation on the components will be. Frdfigure 4.4(b) it's pretty clear that both thA’X and A’y

components will be negative, and tlt\ey component appears to be somewhat larger thanA")[(he
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Figure 4.42-D Cartesian axes rotated by 150°.
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Figure 4.5Angles between original and rotated axes.

Now that you have an idea of what to expect, you can insertltheane values intdcq. 4.6 You
know thatAX =5 andAy = 3, and using the angles showrFigure 4.5 you should be able to see that

a,, =150%a ,=60°%a,, = 240° andJc22 =150°.

So you have
Al ) ) (4.9)
AL '

cos (150°)  cos (60°) Ay
cos (240°)  cos (1507) A

[
Y

or



A = 5¢os(150%) + 3cos(60%) = —2.8, (4.10)

X

and

A, = 5c0s(240°) 4+ 3 cos(150°) = —5.1. (4.11)

2
As a quick visual analysis suggested, both components are negatiieeaidamponent is larger
than thexX-component in the rotated system.

It is very important for you to understand that the transformattpration (4.6)Jdoes not rotate or
change the vectcA in any way; it determines the values of the components of vAsiara new
coordinate system. This distinction is important because you majerbpted to apply this
transformation matrix to basis vectors such &%, 0) andj (O, 1), which for a counter-clockwise
150°rotation gives for

(' cos (150°)  cos (60°) )( | ) B ( | cos (150°) + 0 cos (607) )
cos(240°) cos(150°) /\ 0 J  \ 1cos(240°)+ Ocos(150°)

(4.12)
_{ —0.866
-\ 05 )
and fory
(mﬂmﬂ mﬂﬂﬂ)(ﬂ)_(nm“mm+mmmm )
cos (240°) cos(150°) 1 /  \ Ocos(240°)+ 1cos(150°) (4.13)

SO -

_(4m%)'
There’s nothing inherently wrong with doing this, as long as you mdraee what the results mean:
these are the components of the original unit vedt@sd; (that is, the ones in the non-rotated
coordinate system) expressed in terms of the rotated coordieseas you can see ligure 4.6
These areot the unit vector$ and;” which point in the direction of theé andy’-axes (remember that
in the primed coordinate system, the unit vectoand;’, pointing along the rotated coordinate axes,
must have components (1, 0) and (0O, 1), respectively).

Rigid rotation of Cartesian axes is only one type of the mymaddinate transformations that can
change the components of a vector. But as long as the new componebésveatten as weighted
sums of the original components, the transformation is linear amdeaepresented by a matrix
equation. For reasons that will become clear when you $sadion 4.30f this chapter, such
transformations of vector components are called “inverse” or {pga'ssansformations, which means
the matrix equation of such a transformation will look like this:
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Figure 4.6Components df and; in rotated coordinate system.

Components of Inverse Components of
same vector = | transformation vector in . (4.14)
in new system matrix original system

At this point, you may be wondering how you might go about transformingriiheectors of the
original (non-rotated) system (that isand)) into the unit vectors of the primed (rotated) systém (
and;"). That's a different question, because you're no longer asking, “Gheercomponents of a
vector in one coordinate system, how do | find the components of tim&t wactor in a different
coordinate system?” Instead, you're asking, “How do | change a givéor @t this case, a unit
vector in one coordinate system) into a different vector (the usibvén a different coordinate
system)?” That question is addressed in the next section.

4.2 Basis-vector transformations

The previous section illustrated what happens to the components ofctar wehen the
two-dimensional Cartesian axes are rotated, and the resailt®@asurprising: the components of the
vector referenced to the new (rotated) axes are different fh@mcomponents referenced to the
original (non-rotated) axes. More specifically, the new componeeata/@ighted linear combinations
of the original components.

Now here’s a very important point: as your studies carry you along the pathdobons to tensors,
you will undoubtedly run across discussions of “covariant” and “cont@anvector components.
In those discussions, you may see words to the effect that covariant componentsiranigfersame
way as basis vectors (“ce” “with”), and contravariant components transform in the oppositetavay
basis vectors (“contra® “against”). As you’ll see later in this chapter, there’snpeof truth in that
description, but there’s also a major pitfall. That's becahse“transformation” of basis vectors
usually refers to the conversion of the basis vectors in thenariffion-rotated) coordinate system to
the different basis vectors which point along the coordinate axhs imew (rotated) system, whereas
the “transformation” of vector components refers to the change icothponents of the same vector
referred to two different sets of coordinate axes. The pokdotiaonfusion here is sufficiently great



to cause Schutz to write that “the reason that ‘co’ and ‘abhaive been abandoned is that they mix
up two very different things™ Schutz wrote that in 1983, and for better or worse, the
“covariant/contravariant” terminology is still with us — that’s whythis book you'll find those words
as well as more modern terminology.

Why did the “covariant/contravariant” terminology take hold in thst fplace? Probably because
the process of changing a vector into a different vector has muctmmon with the process of
transforming the components of a vector from one coordinate systemotteea This section shows
you how to make a new vector using rotation (specifically, how to rotate basis vectors).

To understand the process of rotating a vector, consider \ActorFigure 4.7(a) The rotation
shown inFigure 4.7(b)causes vectcA to point in a different direction, which means it is no longer

the same vector (which is why it's labelAl after the rotation). The relationship between the
components of the original (non-rotated) vector and the new (rotatedy et be found rather
easily through geometric constructions such as those shO\Engume 4.8.In this example, the

rotation angle i&. Thex- andy-components of vectoA andA' are

'-Il'.'l.' = |-E|CL-':¥|:'H':|.. -II,'r — | -_'l' | L__L-'S['HFJ'
Ay = |A|sin(@), A5 =|A"|sin(f).
Butfd =g + 0, so the Componengx andA’y are
AL = |A"|cos(a + ) = | A'| [cos(e) cos(B) — sin(a) sin(8)]

- =

Al = |A'| sin(ee + 8) = |A'| [sin(e) cos(8) + cosic) sin(8)] .

v

Since the length oﬂ must be the same as the Iengtrﬁjf(the vector rotated but did not change
length), you can write4| = A’|, which means that

Vo v A

=
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Figure 4.7Rotation of a vector.
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Figure 4.8Angles involved in the rotation of a vector.

A |A"| [cos(a) cos(8) — sin(a) sin(8)]
|-

|
A\, = |A'|[sin(a) cos(8) + cos(a) sin(#)]

!
X

b=l

cos(a) cos(8) — |.-_f| sinfce) sin(@),

= | A| sin{a) cos(8) + |;—_f| cos(ce) sin(#).
But [ﬁ| cosg) is justA and {i_l:| sin@) is Ay, SO you can write

Ay = Agx cos(a) — Ay sin(a),

A, = Ay sin(a) + Ay cos(a),

or, as a matrix equation,

( AL )
£JI|;.;\. F

which tells you how to find the componems, and A’y of the new vectorzi_i") in the original

cos(@) —sinfu) )( Ay ) (4.19

sinfee) cos(e) Ay |

|
ey

coordinate system.
To see how this works in practice, consider a rotation su¢heasne shown ifrigure 4.7 but

through a larger rotation angle @f 150°. If the original vector is given l;fi_j" = AXT +ij =5+ 3,
then

Al ) B ( cos(150°) —sin(150°) )( 5 ) _ 588 ) (4.16)

( AL )\ sin(150°)  cos(150°) S\ 3 ) ( —0.10 )’

so the new vectcﬁ’ = —5.83i — 0.10;. This means that by rotating vecﬁrthrough 150°, you've
produced a new vector that lies almost entirely along the nega#i¥is (you can see this by noting
that thex-component is negative and much larger tharytbemponent). Remember that this is a new

vector expressed using the same basasd;) and is not the same vector expressed using a new basis
(because in this case you rotated the vector, not the coordinate system).
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Figure 4.9Components of and;’ in original (unrotated) coordinate system.

You can, of course, rotate the basis veci@sd; using this same approach. This can be helpful if
you're faced with a problem involving a rotated coordinate systenyamavish to express the basis
vectors pointing along the axes of the rotated system in terrtteedbasis vectors in the original
(non-rotated) system. For example, to rotatd that vector by 150° counter-clockwise, you can use

(' i )_( cos(150°)  —sin(1507) )( l )_( —0.866 ) (4.17)
) \Usin(150°)  cos(150°) ok 0.5 !

WhereT’X represents thecomponent of the 150°-rotatédector and’y represents thgcomponent of
the rotated vector, as shown iRigure 4.9(a) You can also rotate thiaunit vector by the same angle

using
(’ j )_( cos(150°) —sin(150°) )( 0 )_( —0.5 ) (4.18)
_Jy J \Usin(150°)  cos(150°) 1)\ —0866 )

Wherej’X represents thecomponent of the 150°-rotatg¢dector ang"’y represents thgcomponent of

the rotated vector, as shown iRigure 4.9(b)

Just as irEq. 4.15 the new components of thiieand;’ vectors are expressed in the same coordinate
system as the originaland;. As pointed out in the previous section, the componeritsaat;’ in the
rotated coordinate system must be (1, 0) and (0O, 1).

So if you wish to transform a set of basis vectors into nesis heectors (pointing along different
coordinate axes), you use a “direct” or “active” transformatiatriy and the matrix equation looks
like this:

Direct (4.19

3 : Original basis
= | transformation :

(' New basis )
. vectors
matrix

veclors

Comparing this td=q. 4.14should help you understand that transformation matrices can be used for
two different but related operations: finding the components of tine s&ctor in a new coordinate
system or finding the components of a different vector (such as d&as® vector) in the original
coordinate system. The next section presents a comparison oftweedgpes of transformation
matrix.

4.3 Basis-vector vs. component transformations

SinceEq. 4.14andEq. 4.19both involve transformation matrices, it's natural to wonder Hoved
transformation matrices might be related. You can find a tubat relationship by comparing the
transformation matrix ireq. 4.7 (pertaining to component change due to a coordinate-axis rotation
through angle) with that ofEq. 4.15(pertaining to basis-vector rotation through ar®jleExtracting

the transformation matrix from each of those equations gives:

FromEq. 4.7



(' cos(f)  sin(f) )
~ —sin(#) cos(d)

~

Transformation matrix for finding compo-
nents of same vector as coordinate system

is rotated through angle &

FromEqg. 4.15

( cos(f) —sin(A) )
~sin(#)  cos(d)

~

Transformation matrix for finding new
basis vectors by rotating original basis vec-

tors through angle #

Multiplying these two matrices reveals the nature of the relationship between them

" cos(F)  sin(@) \ [ cos(f) —sin(A) .

(_ —sin{f) cos(f) ) ( sin(f)  cos(@) ) N ( 0 1 ) :
This means that in this case the component-transformation nsthe inverse of the basis-vector
transformation matrix (since multiplying a matrix by its irseemproduces the identity matrix). The
fact that in this case the transpose of the transformatiomxmsatqual to its inverse means that this
transformation matrix is “orthogonal” (converting from one Cartesiaordinate system into a
different one).

In light of the inverse relationship between the basis-vectosfsamation matrix and the vector-
component transformation matrix, you might say that in this dssedéctor components transform
inversely to or “against” the manner in which the basis vedi@ssform (provided that you
remember that by “components transform” you mean finding the compaofetits same vector in
the new coordinate system, and by “basis vectors transform” yon roting the basis vectors to
point along different coordinate axes).

You should also remember that rotation of Cartesian coordixat® ia only one among many
possible forms of transformation. In general, any time you chooswitoh from one set of basis
vectors to another, you must consider the effect of your choice of hasig vectors on the
components of the vectors in your system. How the matrix that eoramsfthe original basis vectors
into the new ones relates to the matrix that converts the veatoponents depends on the type of
component you're using to represent the vector.

If you're surprised to learn that there can be more than oneofypemponent for a given vector,
you should consider a coordinate system in which the axes are natgeuter to one another. You
can learn about such “non-orthogonal” coordinate systems in the next section.



4.4 Non-orthogonal coordinate systems

In Cartesian coordinate systems, there’s no chance for ambwglaéy you consider the process of
“projection” of a vector onto a coordinate axis. Using the light source addwshepproach described

in Chapter 1you simply imagine a source of light shining on the vector andhmeosv produced by
that vector on one of the coordinate axes, dsgare 1.6.In two-dimensional Cartesian coordinates,
the direction of the light may be specified in one of two equntalays: parallel to one of the axes
(actually antiparallel since the light shines back toward tlygndr or perpendicular to the other axis.
For example, irFigure 1.6(a)you’re saying exactly the same thing if you describe the light as shining
“antiparallel to they-axis” or “perpendicular to the-axis.”

Light rays
Shadow cast

parallel =
to y-axis by “j':‘ft‘f”l" A ~_ Lightrays
& on y-axis Y7 parallel
/Av I\ to x-axis
L
— —_— X \ X i

Shadow u:a_.}*st
— by vector A on
xX-axis

Figure 4.10Projections using light sources parallektandy-axes.

Now imagine a two-dimensional coordinate system in which xheand y-axes are not
perpendicular to one anottein such cases, the process of projecting a vector onto one of the
coordinate axes takes on an additional complication. Should the liglsesahine (anti-) parallel to
the coordinate axes, askigure 4.10or perpendicular to the axes, asigure 4.12

In each case, a “projection” of the vector is formed onto ongmefcoordinate axes, but those
projections may have quite different lengths, as you can see by woglhe lengths of the
“shadows” cast irrigure 4.1(to those irFigure 4.11.

You may certainly be forgiven for thinking “So what?” when confrdntgth these differing
projections. Does it really matter that there are two wayproject a vector onto an axis in
non-orthogonal coordinate systems?

One indication that the type of projection does matter comes abgat ittempt to use vector

addition to form vectoA from the projection components using the rules of vector addition. As you
can see irFigure 4.12that process works perfectly if you use the parallel-projectionponents but
fails miserably when you attempt to use the perpendicular-projection components.
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Figure 4.12Vector addition of components formed by parallel and perpendicular projection.

This may cause you to wonder why the perpendicular-projection components are called “casiipone
at all.

Another way to appreciate the significance of the difference destwparallel and perpendicular
projections is to consider how the components formed by these two df/peesjection transform
between coordinate systems. As you'll see later in this chapecptmponents formed by projections
perpendicular to the coordinate axes transform between coordinaEmsysising the direct
transformation matrix that is also used to form the newsbaesitors in the new coordinate system,
while the components formed by projections parallel to the coordareds transform between
coordinate systems using the inverse transformation matrix. Thavioe has caused the
perpendicular-projection components to traditionally be called tbgaf@ant” components of the
vector, while the parallel-projection components are called ¢batfavariant” components of the
vector. Of course, for orthogonal coordinate systems, the directiafighbdo one of the coordinate
axes is exactly the same as the direction perpendicular toateerso in that case the covariant and
contravariant components of a vector are identical, and no distinction is needed.

To learn why the covariant values are called “components,” andh mere importantly, to
understand why covariant and contravariant components are meaningfuliegiamniit how they may
be used to write physical laws that do not depend on the refdramoe of the observer, you should
first understand the concept of dual basis vectors. You can bead such basis vectors in the next



section.

4.5 Dual basis vectors

For non-orthogonal coordinate systems, it's clear from geometric cossites such as those
illustrated inFigure 4.12hat the perpendicular projections of a vector onto the coordinate axes do not
form “components” in the way that parallel projections do; the perpeadiptbjections simply don't

add up as vectors to give the original vector. But to truly undetstiae process of “adding up”
components as vectors, you have to think about the role of the basissvadhat addition. To see
how that works for parallel projections, take a look at the bastensz, andg,, pointing along the

(non-orthogonal) coordinate axesAigure 4.13and the projections of vectA onto those directions.
In this case, vectcA may be written as

A= Ate| + AYé,, (4.20

whereA* andA’ represent the parallel-projection (contravariant) componetAs°of
The same approach doesn’t work for the perpendicular-projection (am)anbmponentAX and

Ay, as you can tell by looking at the lengths of the projectiorisgare 4.12(b)it’'s clear that those

two “components” multiplied by the basis vects and éo do not add up to giv«ﬁ. So it’s

reasonable to wonder if there are alternative basis vectorswithat allow the perpendicular-
projection components to form a vector in a manner analogoksg.td.20 Happily, there are, and
those alternative basis vectors are called “reciprocal” or “dual” basisrsect
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Figure 4.13Parallel-projection components and basis vectors.

Dual basis vectors have two defining characteristics. The igrsthat each one must be
perpendicular to all original basis vectors with different indices. $ouifcall the dual basis vectcgs

* andz? to distinguish them from the original basis vectzfsandz,, you can be sure thg" is
2

perpendicular tog, (and thus perpendicular to theaxis in this case). Likewisez“ must be



perpendicular e, (and thus perpendicular to tkexis in this case). The directions of the dual basis

vectorsg* andz? are shown irFigure 4.14.

The second defining characteristic for dual basis vectors ishdatot product between each dual
basis vector and the original basis vector with the same indetxequal one (s¢ ! o ey =1and
£% 0 &, = 1). This means that you can find the lengths of the dual badirves long as you know
the lengths of the original basis vectors and the angle betweendeatlbasis vector and the
corresponding original basis vectoSo to find the length o;';l, you simply have to multiply the

length of the original basis vectgr by the cosine of the angle betwe;_;?nandgl and then take the

inverse of the result. Likewise, to find the Iengtrgé,f multiply the length of the original basis vector
2o by the cosine of the angle betweg?nandgz and take the inverse of that result. Thus: Whﬁfrie

the angle betweez andz, and, is the angle betweef andg.,

ol | (4.21)
|€1| cos(6)’
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Figure 4.14Perpendicular-projection components and dual basis vectors.
and
I (4.22)

.,
le”| =

|€2| cos(62)’

With the concept of dual basis vectors in hand, you're in a positionnterstand why the
perpendicular-projection (covariant) componeh;sandAy may rightfully be called “components.”
The key is that the projections must be made onto the directidre afual basis vectors rather than
onto the directions of the original basis vectors. If you do tha, te covariant componerts and
Ay can be multiplied by the relevant basis vectors and added tthgiveiginal vectoA in the same

way as can be done using the parallel-projection (contravariant) compahantA’. The covariant-
component equivalent ©q. 4.20is thus

A= A8 +4,8% (4.23



As you may have guessed, the use of superscripts to denote the tuabbmss:? and{-;2 IS not

accidental; when these basis vectors are transformed to acoesdinate system, the inverse
transformation matrix is used, as it is for the contravariant vector compdiertdA’.

Note that in a two-dimensional coordinate system with orthonorma testors such asandj,
the dual basis vectors are identical to the original basis veabong the coordinate axes. That's
easily understood, because the direction of each of the dual basisveast be perpendicular to the
direction of one of the original basis vectors (and hence must poimg &hex- andy-axes). And
since the length of the dual basis vectors must equal the invetse [@ngth of the original basis
vectors times co8] (which is 1/[1 cos(0°)] in this case), the dual basis vediare the same length
as well as the same directioniaand;. So the differences between original and dual basis vectors
disappear for orthonormal coordinate systems, just as the distindietmseen covariant and
contravariant components disappear for such systems.

The concept of dual basis vectors can be readily extended todihteasions, and in that case
determination of the length and direction of the dual basis vestonest easily done using the dot

and cross product between vectors. Specifically, the three-dimendialdiasis vectonf-;l, ;;2 andgz

3 can be found from the original basis Vecirsg ., and‘;;3 using the following relations:

€7 X €3

e 2 St

€] ciftz X €3) (4.24)
g3 x e

é — '—l.

€] o (€1 ¥ £3)

¢l =

3 €1 X €3

€1 o (€2 x €3)

Each denominator is the triple scalar product of the original kastsrs, which you may recall from
Section 2.3s the volume of the parallelepiped formed by those vectors.

In these equations, the cross products in the numerators ensuteethiegt characteristic of dual
basis vectors is met (for example, t;-;étis perpendicular tz, and to;;S). The triple scalar products

in the denominators ensure that the second characteristic is met (for examp ! o e;=1).

The computation of dual basis vectors may seem like a long drekake simply to have an
alternative way of writing vectors, but there’s a great ttatbe found by comparinggs. 4.20and
4.23.Since these equations describe the same vector, you may combine them to write

A=A + A6 = A + A,E2 (4.25)

which serves to emphasize an important fact. If you sedkftoe a quantity (such as vecA}) that
remains invariant under a transformation of coordinates, you have eechmiu can combine
superscripted (contravariant) components with subscripted (covabasi3 vectors, or you can
combine subscripted (covariant) components with superscripted (corgrdydasis vectors. That
should seem reasonable to you, because covariant quantities transiiogna direct transformation
matrix, while contravariant quantities use an inverse transfamanatrix. Multiplying such
guantities guarantees that the result is unaffected by the transformation.

You can see an example of how dual basis vectors and covariactranavariant components are
determined in the next section.



4.6 Finding covariant and contravariant components

Once you grasp the concept of dual basis vectors in non-orthonormal caosyisi&ms, finding the
covariant and contravariant components of a vector is straightforiaran example, take a look at

vectorA in Figure 4.15with non-orthogonal basis vectegs andgz.

Finding the contravariant componertsandA? is simply a matter of parallel-projecting vecAr

onto the directions of the original basis veciﬂaandgz, as shown irFigure 4.16 A quick visual
inspection suggests that componAHg_:ll should be about 2/3 the length of original basis veg:for
and componerm2|§2| should be about 1.5 times the length of original basis vggtdfhe values of

Al andA? can be found by writing the vector equation
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Figure 4.15Non-orthogonal basis vectors.
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Figure 4.16Parallel projections onto original basis vectors.
A= Ale + A%, (4.29

which can be written as two equations for the componerAs of

Ay = ‘-111:’1._1- + A%ea yx,
Ay =Ale, + A%y .

These two simultaneous equations may readily be solvedfand A% using the elimination or
substitution method (both of which are demonstrated in the ondinéans to the problems at the
end of this chapter). Another approach is the matrix method asmtheCs Rule (described in the
matrix-algebra review on the book’s website). Using this approachbggin by substituting the



known values for vectcA as well asg, andg_:z:

(1)-2(2)+(2),

which may also be written as

(2)=(s 0 )(ﬁ:;)- (4.28)

7 4 ‘ 1 7 ‘ (4.29)
2 0 8 | ;L% 3| e
Al = — = 0.667, A= - = 1,583,
| 4 —12 ‘ 1 4 ‘ —12
3 0 3 0

These values are consistent with the visual estimatesHrgune 4.16.
To use the same process to find the perpendicular-projection (covariant) com;ﬂqrwnis\z, you

must first determine the length and direction of the dual basterge You know that the direction of
'_:._:1 must be perpendicular to thatf;:g, and the direction c';;:2 must be perpendicular to thatl_:._:»f.As

for the lengths, first find the lengths E'I andgz:

181 = V(1)2 + (3)2 = 3.16, [é2] = v/ (4)? + (0)2 = 4.00. (4.30)

Then you can use Egs. 4.21 and 4.22 to @'Jrﬁ 4gnd ;';2|, but first you have to figure out the angle

betweerf-_;1 andf;:l (which is@l) and the angle betweg} andf—?:2 (which isez). If you look atFigure

4.17, you should be able to determine tﬂf\t 0,= arctan(1/3) = 18.43°, so you have

¥ Y
Jr
i Hﬂh‘"“"—»h
ﬁhh“‘“—-.. {7
Ayl ~
£,

=3

el A

It (4, 0}

(a)

I - L a3,

le1] u:c]rsftq] _ﬂ.]ﬁmﬁ;j 18.432) (4.31)
e =—— = = 0.264.

|e2] cos(B2) 400 cos(158.432)




You can see the (very short) dual basis veczirsand 3% in Figure 4.17 Note thatgz' is
perpendicular te, and tha';;?:2 is perpendicular tz . and their lengths are given gy. 4.31

Once you have the dual basis vectors in hand, you're in a positiandtdhie perpendicular-
projection (covariant) components, and A,. You can do this geometrically by continuing the

perpendicular-projection lines beyond the direction Iineg;lcafndgz and onto the direction lines ;f

! andf-_;z, as shown ifrigure 4.17 The magnitude of vectui is
Al = V(D2 + )2 =17.28, (4.32)

and the angle betweu?!_.u and thex-axis is arctar"‘i"r‘J = 15.94°. Using this value artt] from above,

you can determine that the angle betwﬁeandgl is 55.62° and the angle betweii_!:qandf-_;2 IS
15.94°. So the length 9511 in Figure 4.17(a)s

t; = |A|cos(55.62°) = 4.11, (4.33)
and
. ¢
AT . B, (4.34)
cos( 18.43°)

SOA, =4.33/0.333 = 13.0.
Using the same approach to fiAgfrom Figure 4.17(bpives

{; = |A]cos(15.94°) = 7.00, (4.35)
and
- €7
Ay|é°| = ———— =138 (4.36)
cos(18.43%)

SOA, =7.38/0.264 = 28.0.

These results serve as a reminder that when you use non-norntel&edsectors (that is, basis
vectors with magnitude not equal to one), you cannot equate the lengties pbjections onto the
coordinate axes with the value of a vector's components. That’s leettaase projections are the
products of the components with the magnitudes of the basis vectors.

If you prefer the algebraic approach to findigandA,, you can do that by proceeding as you did

for Al andA?, although in this case you begin with
A=AE! + 4582, (4.37)

and then substitute the known values for ve Aoas well as the- andy- components of the dual
basis vectorz* andz*

el =|8!|cos(90°) = 0.000, e2 = |¢2|cos(360° — 18.43%) = 0.250,
el = |¢!|sin(90°) = 0.333, eI =|¢2|sin(360° — 18.43°) = —0.083.



So

(

As before, this may be written as

( ) - ( Gﬂﬂ —1;12:}; )( :l ) 39

Again using Cramer’s Rule to solve f@{ andA2 gives

‘)_ ; ( 0 ‘)+ P ( 0.25 ) (4.38)
F 0 L aasah T ER) segipeg, P

(RS N |

| R |

‘ 7 0.25
2 —0.083 —1.081
A= = = 13.0, (4.40)
‘ 0 0.25 ‘ —0.083
0.333 —0.0R83
| 0 7
0.333 2 —2.331
0 0.25 —0.083
‘ 0333 —0.083 ‘

as expected from the geometric approach.

A simpler approach to finding the contravariant and covariant compootts/ector once you
have both the original and dual basis vectors in hand is to use these relations:

Al =Aod = Acer; + Ayely Az = Aoéy= Axerx + Ayer y, (4.41)
and
Al =A08l = Azel + Ayel A= 4082 = Ael + Ayel. (4.42)
In the current example, this approach gives the covariant components as
Ay =(7,2)e(l,3)=(7)1)+(2)(3) = 13,
A2 =1(7,2) 0 (4,0) = (T)(4) + (2)(0) = 28,

and

Al = (7.2) 0 (0. 0.333) = (7)(0) + (2)(0.333) = 0.666.,
A2 = (7,2) 0 (0.250, —0.083) = (7)(0.250) + (2)(—0.083) = 1.58,

in agreement with the geometric and matrix-algebra approaches taken above.
It's important for you to realize that what you've just found ahe fparallel-projection

(contravariant) and perpendicular-projection (covariant) components i A:avith respect to the
original basis vectorg andt;:2 and the dual basis vectcg% andgz. So does that mean trAtis a

covariant vector or a contravariant vector?
The answer is neither (or both, if you prefer); it's not the veitsalf that is contravariant or



covariant, it's the set of components that you form through its phallperpendicular projections.
As you read the literature on tensors, you re very likely to into expressions such as “the

contravariant vectcA r “the covariant vectoB and what the author generally means is that the
contravariant components of vecArand the covariant components of vecBJare belng used for

the problem (perhaps because they’re simpler). But you can behsatidge all vectorsA andB
both have contravariant and covariant components, and you can find timegthes techniques
described in this sectich.

And if you're wondering why you might want to go through the effort of finding those components,
rest assured that the payoff is worth the effort. To appeetiat value of that payoff, you'll have to
begin thinking of vectors not just as arrows with a certain leagthpointing in a specified direction,
but rather as members of a class of objects called tensdrbaba very predictable (and useful)
properties under transformation of coordinates. In that view, thHergegou’ve been dealing with up
to this point have all been tensors of rank one. Seeing them lasasut understanding what that
means, will be made a great deal easier through the use oft@matled “index notation” and a
convention known as the “Einstein summation convention.” You can tead andex notation and
the summation convention in the next section.

4.7 Index notation

You've seen the first glimmerings of index notation in the eadéxtion of this chapter describing
coordinate transformations. As you may recall, the angles betweenransformed (rotated)
coordinate axes and the original (non-rotated) axes of a two-dimenswmo@inate system were

caIIedall, Oy Oy andazz. These angles could just as well have been designated., g %0 and

the like, but there are several good reasons to use the index ndmPeend 3 rather than the letters
X, ¥, andz to refer to coordinate axes and vector components. One of theamsea that many
problems in physics and engineering involve a number of dimensions dgreaie8, and although
everyone agrees that “4” comes after “3,” a consensus hasn't lzedredeon what comes after “z
Another reason is that index notation enables the great convenigheesoinmation convention that
you can read about later in this section.

Using index notation, the coordinates of a point in three-dimensional space ae wsrixg, X0 x3)

or (x', 3%, X°) rather thanx, y, 3, and the components of a vector are writtenAasA, A,) or (A%, A%,

A3 rather than/(\x, Ay, AZ) or (A, A, AY). This system is easily extended to N-dimensional space, in
which the coordinates become,(x,,..., X) or ', ..., X") and the vector components becormg (
A, A)or AL A A,

Applying this notation to the equation for the transformation of ceatrant vector components
produced by a rotation of two-dimensional axes, 4.6becomes

Al _{ cos(cr) cos(aiz) ) Al ) (4.43)
A7 | 7\ cos(ay) cos(ap) )\ A% )T

In three dimensions, this is



Al cos(cryy) cos(orpa)  ©os (ag3) Al (4.49

2 = cos(az) cos(oz) cos(wzs) Al
3 cos (e3])  cos(a3z)  cos(@33) A3
Designating the elements of the transformation ma&rlixalz, a and so forth allows you to write
Eq. 4.44as
Al = {'Ijlﬂl + fiu.-'lz + {313‘-13.
i ={'Iglf'll +(Igg.—'lz+{+’23:13. (4.49
¥ g {'{31:‘-‘11 7 (i_zg.—'tz 5 {1’_3'._1:-1.3.
or

3

.ﬂl:l — e '.—'l’l..
; 1 (4.46)
3
AJE = Zﬁgj.-‘l"...
j=1
3
.433 — Zﬁ}.j.—'ﬂf.
j=1

Allowing “i” to stand for any of the indices 1, 2, or 3 makes this:

e ws : (4.47)
AV =) aiAl.  i=1,23
j=

As a final simplification, whenever an index appears twickénsame term, once as a superscript
and once as a subscript (g5 does inEq. 4.47, you can omit the summation symbol and write
simply

A ] (4.49

in which the reader knows to sum over the repeated indextiis case). Such repeated indices are
often called “dummy” indices, since any letter may be usedhfatrindex and the result will be the
same® It was Albert Einstein who first suggested this summationvention, which he jokingly
called his “great discovery in mathematiés/Vhatever you call it, this idea certainly has saved a lot
of ink and time since Einstein proposed it in 1916.

Before moving on, you should take a careful lookat 4.48and make sure you understand that
these few symbols mean exactly the same thing as the mamg itethe three separate equations of
Eq. 4.45 They tell you that each component in the primed coordinate systamveighted linear
combination of the components in the original (unprimed) coordinate systdnthe transformation
matrix elementsa(j) providing the weighting factors for each term.

And if you want to know the exact meaning of each of those faatotise transformation of
covariant and contravariant vector components, the next section will help with that.



4.8 Quantities that transform contravariantly

With the convenience of index notation and the summation convention atligposal, you should
be ready to take the next step in the transition from thinkingectors as quantities with magnitude
and direction to understanding why vectors belong to the class atokj@wn as tensors. That step
begins by asking the question of how a differential element of ledsjthransforms from one
coordinate system to another.

In general, the equations relating the coordinates in one systiros® in another do not involve
simple linear combinations of coordinate values. For example,risftraning from spherical ,A)
to Cartesiany, y, 2 coordinates, it's not possible to write equations suck a8, +a 0+ alfx,

because depends on the productofith the sine of and the cosine of A. Anglandz have similar
non-linear relationships to the spherical coordinates.

If, however, you ask how the differentials xfy, andz (that is,dx, dy, andd2 depend on the
differentials ofr, 8, and A (that isdr, dd, anddA), you'll find that on this infinitesimally small scale,
dx does depend linearly afr, dd, anddA (as dody anddz). So you are able to write

dx = ayndr + aypdf + ayada, (4.49)

and likewise fody anddz
For any two coordinate systems in which a linear relationskigisebetween differential length

elements, writing the equations which transform between themsgst straightforward. If you call

the differentials of one coordinate systdr dy, anddz and the other coordinate system, dy, and

dz, the transformation equations from the unprimed to the primednsgstome directly from the

rules of partial differentiation, as shown in the left column below:

1

ax’ oax’ ox’ ' ax’ ax! ., ax 3

dx' = —dx + —dy + —di=dx’ = — Hxlp =i - —dx,
dx dy az dx dx - dx- (4.50
i o " - i - 5 i 3

" ay’ ay’ ay’ |t ax < dx « 3 dx <« . 4

dy = —dx + —dy +——d7 = dx " = - la'_r + —Zdx" + ——dx",
ax ay az dx dx- ax-
r i r 'r i ¥ i _"2 " 4 " _.-a
dg dg 07 13 O0x7 ax 5o RS o

d7f' = —dx + —dv+ —dz = dx " = - i dxl + ——dx~* + —dx”.
dx dy dz dx dx< dx-

Using the index-notation approach of substitubthg@, andx for x, y, andz results in the column
shown on the right® Putting this into matrix notation gives

(a.'}_rrl ax'l ax!

ax!  ax?  ax’

(4.5

dx dx

5]

R

i P
dx = dx~ dx

ax!  ax?  axd 3

(1".1.'! 3 dx-

ax? ax? ax?

k ax!  ax?  fxd /

or, using individual equations with summation symbols




3 .0 3 3

” ax b i ax' ' 1a a5 &

dx* = E =¥ty AE = E : dxf, dx3 = E i x! .
— gxl — Axld — Ax]

_,T=J J|= J|=

If you now allow the letter to represent each of the numerical values of the index (1, B)atids
can be written as

3 ax'i (4.52)

dx' = Z [ijh

o

Since thg index is repeated, a final simplification results from tlestin summation convention,
allowing you to write

7 -'-I'i (453
dx' = ——dx/
axJ

So index notation has allowed the expressiokdn4.50 consisting of three equations with three
terms in each, to be written as this single equation. Mopertantly, the form of this equation will
help you understand why differential length elementg) (are considered to be contravariant
guantities.

To gain that understanding, it's useful to re&ajl 4.48from the previous section:

fa

."l : = C:{I!JI. .'q."r...

which tells you that the components of a vector in the primed (tnanetl) coordinate system are the
weighted linear combination of the components of that same vecttireirunprimed (original)
coordinate system. And the weighting facta”rﬁre the elements of the transformation matrix.

Now compareEq. 4.53to Eq. 4.48 On the left side of both equations, a primed quantixy’ (or
A") with free indexi appears. On the right side, both equations contain the product ctbeaath
free indexi and dummy index (-:I a" or a) with the left-side quantity unprimed and with dummy

index j (dx’' or Al). And you know that the factai in Eq. 4.48represents the elements of a

transformation matrix for contravariant vector components betwaerunprimed and the primed

coordinate systems. So it seems reasonable to conclude tiax" tieems inEq. 4.53can be seen as
dxd
the elements of the transformation matrix for the differential length elements
So instead of looking d&q. 4.53as simply the index-notation version of the chain rule, you should

see it as a transformation equation that takes differeetigitth elements from the unprimed to the

primed coordinate system (justB&g. 4.48does for the contravariant components of veAjpr
And here’s the important insight: tiax" terms are not only the elements of a transformation matrix
dxt
from the unprimed to the primed coordinate system, they’re lésodmponents of the basis vectors
tangent to the original (unprimed) coordinate axes, expressed in te(pnened) coordinate
system!

Furthermore, you know that basis vectors tangent to the original coerdixes are the covariant
basis vectors described earlier. And since contravariant veatoponents combine with covariant
basis vectors to produce invariant quantities, differential lendggmesnts must transform as
contravariant vector components. This is the reason that the irdecesitten as superscripts Hus.
4.51 through 4.53 the differential length element is the “prototype” of contravdrigector



components.

Using index notation and representing the components of the basis\asax', you should now
HES
understand why the transformation equation for contravariant components ofAdstoften written
as

axs (4.54)

e A7,

T oaxi’

Many authors present this as the definition of contravariant components.

To see how this notation works in practice, consider the tranafmrmfrom polar  6) to
two-dimensional Cartesia,(y) coordinates. In this case® = x, x2 =y, x* =r, andx® = 6, and you
know thatx =r cosf) andy =r sin(). So what are the weighting factors (that is, the elenddritse
transformation matrix) in this case? Taking the appropriate derivatives, you find that

ax'l  ax ax? ey (4.55)
a1 = ao = cos(8), —1 = o = sin(8),
ax ar ax ar
ax'] dx . dx - ay (4.56)
— = — = —rsin(f), — = — = rcos(?).
dx < dd = il

Are these really the components of the tangent vectors to the bfigiflacoordinate axes (that is,
are they pointing along those axes)? You can see that they angtihg these terms as components
in the primed coordinate system (Cartesian in this case):

B R e - (4.57)
€1 :ﬁlﬂ-ﬁj = cos(& ) + simnld) g,
dx ax
. o o (4.58)
£q = —1 — = —rsmi{f ) + rcos(f);].

The first of these expressions is a vector pointing radially odt@ong ther-direction in polar
coordinates) and the second is a vector pointing perpendicular tadiaé direction (along thg
-direction)’® This demonstrates that the partial derivativesEig. 4.53 do indeed represent
components of the original (unprimed) covariant basis vectors expreassgt inew (primed)
coordinate system.

4.9 Quantities that transform covariantly

If the differential length element of the previous section seagethe “prototype” for quantities that
transform as contravariant vector components, you may be wondefimagefsta similar “prototype”

for covariant quantities. You can answer that question by consideedogntity such as the change in
temperature with distance (degrees per meter) over some rediah you may recognize from
Chapter 2as the gradient of that quantity. Unlike the differential lengdgment, which has
dimensions directly related to the coordinate dimensions, quansitiels as the gradient have
dimensions that include theverseof the coordinate dimensions (per unit length rather than length in
the case of spatial coordinates). This dimensional considerationsssigig@t the gradient may be a



good candidate for the prototype of quantities that transform as coveeetor components. And

index notation makes this easy to see.

Imagine a scalar quantity such as temperature or density whiogeatasarious positions is given
by the functionf (x, y, 3; the rate of change of that quantitygi;; in the x—direction,_g% in the

y-direction, and?f in the z-direction. It's reasonable to ask how these rates of chan'geifvﬂrrg

coordinate system is changed. To answer that question, you can pasogedlid for the differential
length element, using the chain rule for partial derivativesthad employing index notation as

follows:
af of ax af ay  of oz
ax' dxax’ ' dyox = Az dx’

F af _ af ax! | af ax?  af ax
ax'l  axlaxl " ax2ax'l * ax3 ax'l
af af ax af ay af az
ay’  axay  dyay  dz dy'
af af ax! af ax*  af oaxd

= = - bt
ax'?  axlax? ' ax?ax'?

5

ax3 ax'2’

3

T L gy gy’

af of ox of 8y of 9z
az'  dx o8z  dyady  ag g
R af  af axt  af ax*  af ax?
ax’3  axlax? ' axZax'?  axdax'd’
As before, you can write this as a matrix equation
[ Bf ( ax!  ax? ax? \ s of
ax'l ax'1  ax'l ax'l axl
af | | ax!  ax?  ax? af
ox'2 ax'?  ax? ax'? ox?
K af ax!  ax?  ax? af
TEN \ 5x3 ax3 ax3 ) \0x3 )/
or as individual equations using the summation symbol:
3 ; 3 i
af Z ax? af af Z ax’t af af
ax'l 4 1 ax"1 gxi’ x4 . ax'2 axi’  Bx’3
i= j=

Once again employinigas the free index gives
; c I
l'.lil_‘f Z l'_}_-l-"l l'.\ll_‘f

ax't L gx'i gxd’

j=1

(4.59)

(4.60)



and the Einstein summation convention simplifies this to

af  axl af (4.61)

ax't - ax'i axJ’

Comparing this to the equivalent expression for the differentigtieelementEq. 4.53 suggests
that once again the vector components in the primed coordinate systethe weighted linear
combination of the components in the original coordinate system. Bukinase the elements of the

transformation matrix 9x’) are theinverseof those in the transformation of the differential length

T

dxi
elements (which aras"). And just as in that case tas" terms represent the components of vectors
dxd did )
that point along the original coordinate axes, in this cas 3x/,¢germs represent the components of
:1_'[' i
vectors that are perpendicular to the original coordinate surfeleege in this case the weighting
factors are the components of the (contravariant) dual basis vectors, whiththetahe components
of the gradient vector transform as covariant components. Of coorserthonormal coordinate
systems the lengths and directions of the original and dual baswsvace exactly the same, and
there is no difference between the covariant and contravariant vector cortgpdmeéon-orthonormal
coordinate systems, this distinction is critically important.
/. au probably won't find

Again using index notation and representing the dual basis vect x:

dxi
it surprising that many authors define the covariant components of \Act® components that
transform according to the equation

axt 4.62
Al (4.62)

’ ax'i-

At this point you should be convinced that vectors are more tharntjlesafrows with magnitude
and direction; they're quantities that transform in certain whgsveen coordinate systems.
Specifically, every vector has both contravariant and covariantp@oeemts that transform in
predictable ways. The contravariant components vary in the opposite miantie basis vectors
pointing along the original coordinate axes, and the covariant componenta agysame manner as
those basis vectors. Most importantly, by combining the vector'sas@rtant components with the
original basis vectors, or by combining the vector’s covariant compowéhtthe dual basis vectors,
the resulting quantity (the vector itself) remains invariant uatleroordinate transformations. It is
this characteristic that qualifies vectors to join the ranks of tensors.

Understanding the distinction between contravariant and covariaor wechponents is extremely
helpful in understanding tensors, because veeat@tensors. Specifically, since all the components of
a vector can be delineated using only a single index, vectoremsers of rank one. Under this
definition, scalars are tensors of rank zero, since scalarsirggle numbers and require no index at
all. And of what use are tensors of rank two and higher? You'll encounter thGkepter 5

4.10Chapter 4 problems

4.1 Write the inverse transformation matrix for a 70° rotation oRtlbeCartesian coordinate axes and
the indirect transformation matrix for the rotation of a vettwough an angle of 70° degrees.
Show that the product of these two transformation matrices is the identity matrix.

4.2 Use the inverse transformation matrix from Problem 4.1 tati@domponents of vectA = 2 +



5.5j in the rotated coordinate system.
4.3 Use the direct transformation matrix from Problem 4.1 tateothe original coordinate basis
vectorsi andj by 70°, so they point along the rotated axes.

4.4 Use a direct transformation matrix to rotate veAdrom Problem 4.2 through an angle of —70°,
and compare the- andy-components of the rotated vector (in the original coordinate system)
thex’- andy’-components of the unrotated vector in the rotated coordinate system.

4.5 Use the dot product of the original vecAmith the rotated basis vectold ¢ i" andA o j') to
find the components A in the rotated coordinate system.

4.6 For vectolA = -5 + G and basis vectorg, = +2 j and e, = -2 —J, find the contravariant
component A and A2,

4.7 Find the dual basis vectzSand? for the basis vectoiz; andg,, of Problem 4.6.

4.8 Find the covariant componeu% and;i;2 for vectorj; of Problem 4.6.

4.9 Use the subsitution method and the elimination method to $wvievb simultaneous equations
that result from vectdeq. 4.26
4.10 Show that the elements of the Cartesian-to-polar transfornrmasiix are the components of the
basis vectors tangent to the original (Cartesian) coordinate axes.

! Remember, there’s a review of matrix notation and algebra on the book’s website.

2 These components are identical in the Cartesian coordinate systems considered so fa

3 Schutz, B.A First Course in General Relativitp. 64. See further reading.

4 This is not just an academic exercise; non-orthogonal coordinatéuanas quite naturally in problems in relativity, fluid
dynamics, and other areas.

® The use of superscripts for th¢&nd"y” in the contravariant componem andA’ is deliberate and is the standard notation
for distinguishing these contravariant components from the covariant compegandsAy.

% Recall fromChapter ZhatA © B = ! |}B| cosd, whered is the angle betwee andB.

" In Chapter 5you can learn to move between contravariant and covariant components using the metric tensor.

8 Unlike the repeated “dummy” indices which indicate summatiencalled a “free” index and no summation is implied.

° Pais, A. 1983Subtle Is the Lord: The Science and the Life of Albert Eingdeiford University Press, Oxford.

10 Superscripts are used for the indices because differential length elenmesftenaas contravariant quantities, as described
later in this section.

11 1f you're wondering how partial derivatives can represent basis vectors, you should$eeigwm 2.60f Chapter 2

12 These basis vectors can be understood in terms of the non-Cartesian unit vectorsidisSessien 1.5f Chapter 1
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Higher-rank tensors

The previous chapter contains several ideas that are importaftltaaderstanding of tensors. The
first is that any vector may be represented by componentsahatdrm between coordinate systems
in one of two ways. “Covariant” components transform in the samener as the original basis
vectors pointing along the coordinate axes, and “contravariant” compdreergform in the inverse
manner of those basis vector§he second main idea is that coordinate basis vectors are tamgent
the coordinate axes, and that there also exist reciprocal obasialvectors that are perpendicular to
the coordinate axes; these dual basis vectors transform invergaly ¢oordinate basis vectors. The
third idea is that combining contravariant components with originak bestors and combining
covariant components with dual basis vectors produces a result tinagignt under coordinate
transformation. That result is the vector itself, and the vestthre same no matter which coordinate
system you use for its components.

This chapter extends the concepts of covariance and contravariance begtmrd and makes it
clear that scalars and vectors are members of the class of objects ealéeds't’

5.1 Definitions (advanced)

In the basic definitions oChapter 1 scalars, vectors, and tensors were defined by the number of
directions involved: zero for scalars, one for vectors, and more than onegorsteNow that you've
seen the concepts of components, basis vectors, and the transfionpnagerties of each, you're in a
position to understand the more-advanced definitions of scalars, vectors, and tensorsal§pecif

A scalar is a single value with no directional indicator tbatesents a quantity that does not viary
as the coordinate system is changed.

So for a scalar with value A in one coordinate system and ¥dlireanother coordinate system, you
can be certain that the quantity represented by A (combinadhetrelevant unit) and’Acombined
with its unit) is the same no matter which system you useepicesent it. Thus 1 inch and 2.54
centimeters represent the same quantity of length.

A vector is an array of three values (in 3-D space) célledtor components” that combine with
directional indicators (“basis vectors”) to form a quantity tlaés not vary as the coordinate
system is changed.




So vectorA represents the same entity whether it is expressed using\ciant component&' or
covariant components, :

A=Alg = A,

whereg. represents a covariant basis vector ;;fmdepresents a contravariant basis vector.

In transforming between coordinate systems, a vector with caniaat component®y in the
original (unprimed) coordinate system and contravariant comporEhti;y the new (primed)
coordinate system transforms as

o oAxt
:Jl e (_ .'q"r 5
dxd

where thea:? terms represent the components in the new coordinate system lodistisevectors
ax7
tangent to the original axes.
Likewise, for a vector with covariant componeAJts'n the original (unprimed) coordinate system

and covariant componenis in the new (primed) coordinate system, the transformation equation is
. axd
'Il.l, == 'q. Ty

axit !

where thedx’ terms represent the components in the new coordinate system (@utip basis
axt

vectors perpendicular to the original axes.

A tensor of rankn is an array of Bvalues (in 3-D space) called “tensor components” that combine
with multiple directional indicators (basis vectors) to fornguantity that does not vary as the
coordinate system is changed.

From this definition, you can see that a second-rank tensor has 93components in three-

dimensional space. Note that a tensor of rank 0 is a scalar and a tensor of rank 1 is a vector.
There is no standard notation for tensors; you may see a tepsesented with double overhead

arrows (such a—i;l) or with a tilde or two-directional arrow above or below (sucfa‘? orL).

Many authors don’t bother with arrows or tildes and represent teasopdy by writing the letter
signifying the tensor with “placeholder” indices to indicate the contravaaizhtovariant rank of the
tensor (such &g or T%).

5.2 Covariant, contravariant, and mixed tensors

You should by this point understand that the expression

i aEE (5.1)
Al=_—"—AJ
dx!

presents the contravariant components of veA:dn the transformed (primed) coordinate system



(A") as a weighted sum of the componenté_l.dh the original (unprimed) coordinate systei).(The

weighting factors{ai"] are simply the elements of the transformation matrix from the unprimed to the
dxJ

primed coordinate-systems, and those elements represent the compdrikeatbasis vectors tangent
to the original coordinate axes. With that understanding, a tensor expression such as

{.'_,r = dx* IEU."': : El (52)
axk gx!

should have some recognizable elements. As you can probably stumtise expressiod” are the
contravariant tensor components in the new coordinate sy#{énare the contravariant tensor
components in the original coordinate system, a:’| as well asaxz’ are elements of the

ax axl

transformation matrix between the original and new coordinateragstAnd just as iikq. 5.1 the
elements of the direct transformation matrix also repre$enbasis vectors tangent to the original
coordinate axes. But in the vector expres&ign5.1each component pertains to a single basis vector,
whereas the components in the tensor expredsiprb.2 pertain to two basis vectors. This should
seem reasonable to you, since the basic definitior@@hapter 1state that vectors involve a single
direction while higher-rank tensors involve two or more directions.

The vectorEq. 5.1involves contravariant components (as indicated by the use of supidcri
indices inA" andA)), but you know that an equivalent expression exists for the covariant components:

_axd (5.3

axit

In this equation, the covariant components of veA:dn the transformed (primed) coordinate system
(A’i) are expressed as a weighted sum of the covariant componeAtsahe original (unprimed)

coordinate systemAp. In this case, the weighting factc[Lf;",] are the elements of the inverse
axt/

transformation matrix from the unprimed to the primed coordisgdems, and those elements

represent the dual basis vectors perpendicular to the original coordinate axes.

Extending this to a second-rank tensor gives a transformation equation such as this:

axk ax! (5.4)

| = o F el

A= — Ay
o axi axi

P

In this expressioné\’ij are the covariant tensor components in the new coordinate systearg the

' ras well a<éx’_are elements of
axl ax7'

the transformation matrix between the original and new coordayatems. And much as k. 5.3
the elements of the transformation matrix represent the dual basis yEsfoeadicular to the original
coordinate axes.

As you may have anticipated, another possibility exists for second-rank tensors:

covariant tensor components in the original coordinate systenax*

yoooaxt ax! (5.5)
i k

I axk axit !

in which the tensojl‘ is represented by one contravariant and one covariant index; eackhese
transformation matrix appropriate for its type.



5.3 Tensor addition and subtraction

As you may recall fronSection 1.4 two or more vectors can be added simply by adding their
corresponding components. Hence a single vector equation such as

C=A+B,

actually consists of three equations (in three-dimensional spsineg each component of {Ee
resultant vectof must be the sum of the corresponding components of V(AtamdB

C_r = Az + B.r-u
Cy = Ay + By, (5.7)

Higher-order tensors can be added using the same process, providad thasors to be added have
the same structure (that is, they are the same order and have the sameoheoaiant indices and
the same number of contravariant indices). The result of tensoroadditalso a tensor, and the
resultant tensor has the same structure as each of the tensors that are added:

C'_.r = .'dl.,;-ll' + .Bjj.
CcY = AY 4+ BY, (5.8)
C}- = '1; + JE-‘Jr

Note that each of these expressions represents more than oneredbatexact number depends on
the number of values that each index may take on. Note also thatapoadd tensors with any
number of covariant and contravariant indices, as long as the tdresogs added have the same
number of each type of index.

To see that the result of adding two tensors fits the definitiantensor, consider how the tensor
components\ij andBij transform to another coordinate system:

-'.H (“_.f
Atk Y 0T g
S (5.9)
w  dxkax]
By = B e T
I axt ooxl' 4
Hence
Ak 4 gk ax'* oxi Al 4 ax * axi E
| : “'Yl‘ Bx axt gyt d
-':H. (F'l..-r
= — (45 + B)).

axi ax'l

If you compare this last expression to the expression for theforanation of the tensor components
C'j to the primed coordinate system



et oxl
axt ax't 4’

—

you'll see that the addition oﬁkij and Bij does produce an objedj that meets the transformation

requirements for a tensor.

Subtraction of tensors is equally straightforward; you simply scibtthe corresponding
components rather than adding them:

Clj = d'd||;_||. — Bjj.
CY = AY — BY, (5.10)
~i __ a4l pi

and the result of tensor subtraction is also a tensor, as yoseean the problems at the end of this
chapter.

5.4 Tensor multiplication

As described inChapter 2 there are several different ways to multiply vectors —sitedar (dot)
product and vector (cross) product both take two vectors as inputsaha@ra result that depends
on the magnitudes and directions of those two vectors. Not mentlnrtbatlchapter was another

form of vector product called the “outer” product between a columtmlv(A) and a row vectorB)
which operates like this:

o Al ArBr AtBr ALBs
A®B=| Ay |(Bi1B2B3)=| A3B; AxBy AxB;
Az AsBy AzB2 AaxB;

Note that the outer product of two rank-1 tensors (vectors) isika2rdensor, formed simply by

multiplying the individual components of the two vectors. The outer produntlicated with thes
symbol in some texts; others just write the two vectors or temsoit to one another, suchAld =
C.

The outer-product operation may also be performed on higher-order tensors:

-ik
JI' B’m C jlm:

In this case, the outer product of a rank-2 tensor and a rankeB tersrank-5 tensor. This illustrates
the fact that the covariant rank of the outer-product tensor isutheo$ the covariant ranks of the
input tensors, and the contravariant rank of the outer-product tengar ssim of the contravariant
ranks of the input tensors.

The result of the outer-product operation is easily shown to éesartby considering how tensors
B’ and = transform from the unprimed to the primed coordinate systemtrahsform of tensors

and is glven by

.'I‘--ll.'l‘--ll
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) ¢ r | =
p _ 90X P ax axm '
axk ax'a gx'r ™

Multiplying these expressions gives

ax " gxi ; ax P oax! axm

axi gy’ 7 axk gx'a ax'r im
'!r.}.".'lril E]'_'I,'-'r H.H.'.IF H_rfl -:r]'_'l.'m i

axi ax'e axk ax'e ax'r’ jrime

‘np'P _
ADBg =

So if A igk — ik and A ”B*” = C.™ then

im Jl.’ﬁ"i' ‘agrs
np ax™ axd ax'? ax! ax™ ik (5.1)
'f-oq: .

axi axr'e axk ax'e py'r i

and the result of the outer product operation does indeed meetrsi@inaation requirements for a
tensor.

Another way to multiply tensors is called the “inner product,” Whyou can think of as a
generalization of the scalar or dot product discussétkation 2.1 As described in that section, the
dot product between two vectors produces a scalar result, so ghi exipect the inner product
between two tensors to produce a tensor of lower rank. That'lyekgbt, but to understand how it
happens, you first need to understand the process of tensor contraction.

To contract a tensor, simply set one contravariant index eqaatovariant index (or vice versa)
and then sum over the repeated index. This leads to a tensa raittk that is two less than the rank
of the tensor with which you started.

To see how this works in practice, consider the rank-4 tECiJ;orTo contract this tensor in the

second and third indices, set the in#leequal to the indej resulting in
Lﬂ:t +Ci2 4+ Ci3 = b,

assuming that the indicgsandk run from 1 to 3. Note that the rank is reduced by two becguse
made one index the same as another (reducing the rank by one) apdufsemmed over that index
(reducing the rank by one more). Note also that contraction produno#iser tensor only when the
two indices that are made equal are in different positions (one superscript and oriptsubscr

The reason for this becomes clear if you consider the contragftithre tensor that resulted from
the outer-product operation iag. 5.11 Contracting this tensor in the first and fourth indices by
settingqg equal ton gives

cne ax ™ ox) ax P Ix' 9x™ cik
onr = e g e
axt ax'e axk 3. X" gx'" Zn

m

~ik

! -:j.’l." -'J'!a,-I (il'|' dx
axi ax'm ax'e axt ax'r " jim
avl avd ax’P g™
o “Jmf”*ﬁH

i gy'e axk ax'r jlm"




But the derivativef‘_-r'r'_ involves only coordinates in the same (unprimed) system, and coosdinate
dx

within the same system must be independent of one another. Henderihagive must equal zero
unlessl =i, in which case it must equal one. This is most easily expdessing the Kronecker Delta

function, defined by

o I fi=j
5'_[{r L

L
o |

[T

Thus

. Ax 3x'P 9x™ .,
N 2 T “ d i
I I:!_'I.. i I:F_'I.J‘ I:“_'I.. r _,r.r?.

~'np
Conr =

axd ax'P axm

ax'o axk px'r Jim

~1k

which is a tensor of rank 3, as expected. But note that this reddicim 5 to 3 in rank required that
two of the partial derivatives combine to produce the delta functdnch then invoked the
summation process. That derivative combination only works if one otdh&acted indices is a
superscript and the other a subscript.

In this last example, the contraction was performed on a tehabwas the result of an outer
product. That two-step process (outer-product multiplication follolaseaontraction) is called the
“inner product” of two tensors. So if you start with two vectiensors of rank 1), form their outer
product (producing a tensor of rank 2), and then contract the resukngoup with a tensor of rank
zero — a scalar. This illustrates why the inner-product processecaonsidered to be a generalization
of the dot product between two vectors.

5.5 Metric tensor

As you think about contravariant and covariant components of vectors reswsteyou should not

lose sight of the fact that these components exist only when youaateskh coordinate system. And
why do you need a coordinate system? Because coordinate systinmsetize” space — that is, they
give you a way of applying the rules of arithmetic to objectsekest in the space in which you're
working. That space may be the three-dimension space of everydayagpedr the four-dimension

spacetime of Einstein, or any other space you can imagine. Théiradersystem you apply may
have straight axes that intersect at right angles, or the axes may be curvadraedtiat any angle of
your choosing.

However you choose to arithmetize a space, there is one tensoalltves you to define
fundamental quantities such as lengths and angles in a consisterdrmaa different locations. That
tensor, the one that “provides the metric” for a given coordinaterayst the space of interest, is
called the fundamental or metric tensor. The lower-case lgftéra’s become the standard symbol for
the metric tensor, which you may see written :—;as)r g. The metric tensor has contravariant

componentsg)’ and covariant componerys .

To understand the role of the metric tensor, consider two poiperaged by an infinitesimal
distanceds If the vectordr extends from one point to the other, then the square of the difédrenti
length element may be written 452 — 47 o (7. The vectordr may be written using contravariant



components and coordinate basis vecizs&s
dr = -f_;id)d’
or using covariant components and dual basis vegorag
= _ i
dr =2 dXI.

Sinceds’ involves the dot product alr with itself, you have the option of using the contravariant
componentsixX on both sides of the dot:

] — — - y — 1
ds“=drodr =¢€;dx" o c’Jr-ci".I'j
= (& o €j)dx"dx]

= g;;dx'dx/,

wheregij represents the covariant components of the metric tensor. Alltelpayou may use the
covariant component:bcI on both sides of the dot:

il - p— -7 =7 4
ds“ =drodr =e"dx; o ("‘rfe'.i'_l.'
= (e’ oel)dx;dx;
= _‘2" 1 il'l_.'l.'j-f!.i-_ll' A

where ¢’ represents contravariant components of the metric tensor. A dbiidn is to use
contravariant components on one side of the dot and covariant components on the other:

2 e y =7 4
ds® = é;dx' o€’ldx i
= (& o E‘j}(:'.rfd.rj

— f!_f . (!I..i- Ia
J

Note that in this case no metric tensor is needed, since theidafwii dual basis vectors ensures that
; o &/ equals one if =j and zero if # j. _
Whetherds’ is written agy, dX dX, g’ dx dx j ordx dx j you can be sure of one thing: the distance

between two points must be the same no matter which coordysaéemsyou employ, whether you
use contravariant, covariant, or mixed components. Hence it mubke jebt of the metric tenS(E;'

and its componentg’ and 9; to turn the product of incremental coordinate changes expressed in

either contravariant or covariant components into the invariant diststegen points. This is the
rationale behind the statement that the metric tensor “provides the geometry$péatiee
The geometry of vectors entails use of lengths and angles, ssefsl to understand the role of

the metric tensor in defining the length of a vector sucA @nd the angle between two vectAs
andB Just as the incremental distamsean be found by dotting the separation vedfonto itself,
the length of vectcA can be found frorA o A.. And there’s more than one way to do that.

One option is to use only the contravariant componeréL of
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= /(@ 0E))ATAl = [gijAl Al

Another option is to use only covariant components:

1\‘."'. .{."-E“. oA Jl-(_“:-'r

e w,"ll::{_;‘f & E-r':l_“ga_‘_ll - 1*."..‘_!._3':-""_1& ;qj.

—_

Al=vVAoA=

And the final option is to use mixed components:

:'_ll: — \-"I.I.:Iln' 0 'El' = I"‘l i Ej oA |i'._|':'-'r
" J

— 1|.I-'II [-fl.'. o] E_,f ':'c'll-! A Jl' = |||r,"I .'q.! A _||.'

As in the case af’’, the metric tensor ensures that the length of viAtisrinvariant.
To understand the role of the metric tensor in providing a conséinition of angles, consider
the dot produc g , g. Once again, there are alternative ways of writing this produact,this means

that the angle betweed andB can be written in the following equivalent ways:
_ R
| Al B
8ijA" B!

cosH

\l.-" 8ij Al AT \r Bij BiBij

A; B/

1.._-".. .'ll i .-{ i 1\_-"-. B i B i
g A;B;

"-"III‘EI:j A A j .1* l{‘i"..-'. B;B |

This explains why you're likely to run into the statement that rttedric tensor “provides a dot

product” for a space — if you know how to find the dot product, you can define lengths and angles.
To see the tensor nature of the metric tensor, consider théotraagon of the contravariant

components of the incremental separation vedror

jur  HEE
dx' = —dx’.
dxd

This means that the square of the incremental lenigthl{ecomes:
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+ ax? gxl + ax? axl + ax? ax! axrdy (5.12
i Bx L axt 5 iz ax” & ax P axd |
ax dx”
ax! ax3  ax! ax?  ax! axd
i dxlaxt . gxtax? + A axs P
X ax
ax? axt o oax? ax! o axd axd
i ax'! ax'l 3 ax' 2 ax'? i ax3ax3| .. 2
dx-ax-
ax? axd o ax? ax? o ax? ax?
ax'lax! ax?ax? axPax?| ..,
+ ax? ax? + ax? ax? + axd ax?l ol

This daunting expression becomes far more tractable if you eetilez each bracketed term
involves the sum of the partial derivatives of each of the transfbrroordinatesx(, x2, andx”)
taken with respect to two of the original coordinates X%, andx®). More specifically, each of the
three terms within each bracket is a product of the componenke dfaisis vectors tangent to the

original axes (recall thas:'' a:2 andax? are the components in the transformed coordinate system
ax7 * Bxf’ axl

of the basis vector tangent to ihié original axis).
If you assign the bracketed terms to the varigpleith two subscripts denoting the axes with
respect to which the derivatives are taken, you will have
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£33 = 7 7 — i L

g ax? ax? o ax? ax? 0 ax? ax?
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12 = | = P . - . .

2 ax! ax? ax! ax? ax! ax?
ax ! ax'! N axZax? axdax?

813 = | .- p . . p

2 axl ax3 axl gx3 axl ax3
ax'1ax'1 P ax'? ax'e 2 ax'? ax’3

En=| 77 p . : p
axl gx3 ax? gx3 ax? ax3

and since the order of multiplication is irreleveg}tl, =0, %5, =9 andg32 =0,y Substituting these

into Eq. 5.12 the expression fats” becomes

ds’ =g, dxdx" +g, dxdx’ +g, dXCdx +g _dx'dx +g, ddx +g, dxdx’ +g, dxdx +g, dxdx +
g, AXdX,

This can be further simplified using index notation and the summation convention:

ds’ =g, dX dx .

(5.13

Thegij term in this equation meets all the requirements of a secondenasde, but it's not just any

tensor. Because it relates the coordinate differentials iusardirections to a quantity that is
invariant across all coordinate transformations, it's no wonderthimtensor is called the metric or

fundamental tensor.

To understand what's so fundamental about this tensor, recalhéhpartial derivatives that make
up the elements ogij also represent the components of the basis vectors tangent tagihal or

coordinate axes:

i

ox -

5 ax'! ax'2
el = | - . ;
ax! " ax!

dx!
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ax 3
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L

a ax dx =
fn = L <

- ax?’ ax?
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'l 3y'2

- ox X

£3=1 - e T
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And since

)

(5.14)



ax!ax! sxZax? ax?ax? (5.19
axt dxl axi fxd axi axJt |’

gij =

another way to represent the metric tenscg;; = ¢; o €; (the inner product of the basis vectors
tangent to the coordinate axes). Since the inner product involves thetiprof one vector onto the
direction of another and scales as the length of those two vettierglements ogij specify the
relationships between the coordinate axes. Those relationshipstam@ided by the shape of the
coordinate space.

The nature of the metric tensor can be readily understood by congidetransformation from
spherical polarr( 8, A) to Cartesianx| y, z) coordinates. In this case

X' 1 =x = rsin(d)cogA) = x'sin(x¢)cos(X), (5.16
X' 2 =y =rsin(@)sin(A) = x'sin(¥)sin(x),
X' 3 =z =rcos() = x'cos(%),

and the partial derivatives appearing in the elements of the metric tensor are

—— = §iH L‘L‘EJL‘{'J.S'U.'S‘J = sin(f)cosig),

ax , .
i .1.'1[‘{'.'.5'{ X hcas(x”) = rcos(8)cos(g),

— 3r‘n|.',1'2)5:‘.u{_r3} = sin(6)sin(g).

ax - R 1Y ;
= ,1'1:‘;151{_1"}3ml.r' ) = reos(B)sin(g),

= c‘t}j‘lf.l‘zﬁ = cos(9),

ix . 9 .
— = —X Sin(x") = —rsin(d),

and

-Li'fTI. . 3. . . 3 e
253 = —,1'15:,-:{_1""‘.13rm.r'] = —rsin(B)sinid),
ox-

z "
ax -

ax3

= _1'lsfm_r}‘}c'n.a'l.'.r::] = ryin(@icos(d),

a M
ax -
ax?

= 0.

Inserting these values into the expressiorgigdlEq. 5.15 gives the diagonal ternfs:
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Thus the metric tensor for spherical polar coordinates is

g g12 g3 1 0 0 (5.179
gij=| gn gn gn |=|0 r 0
231 £12 1 0 0 risin%(#)

A careful look at the metric tensor can tell you something abeutoordinate system you'’re dealing
with. For example, the fact that all off-diagonal elementsare in this case tells you that spherical
polar coordinate axes, while curved, are orthogonal (that is, the din@reasingr, 6, and A
intersect at right angles). Furthermore, by inserting these valugsgnt13 you’ll have

ds® = dr? + r?d6? + rsinf0dA?, (5.18)

This expression makes it clear that the elements of the cntemsor tell you how to turn an
incremental change in 6, or A into a change in distance. For example, the factor ofrofrerit of
thedr? term means that a changeriis already a distance. But a change in zenith afylm(st be
multiplied by a factor of to turn it into a distance. And the distance correspondinghaage in the
azimuthal angle A depends on both the zenith angle (hencgin@® term in 933) as well as the

distance from the origin (hence théerm ingga).

Other coordinate systems require other factors to convert eangechraa coordinate value to a
distance, and those factors always appear in the metric téorsdhat system. For orthogonal
coordinate systems, the square roots of the diagonal elements oéttietemsor /211, +/£22. and

/233)) are called the “scale factorsfil( h2, anth) of the coordinate system. Thus the scale factors

for spherical polar coordinates ¢t1 = /211 = 1. h2 = /g2 = r.andh3 = /g33 = rsiné.

Once you're familiar with the metric tensor and scale factgou can easily find the differential
operators gradient, divergence, curl, and Laplacian in any orthogoor@imate system (curvilinear
or rectangular). For example, the gradient is given by
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and the divergence may be written as

- - l b b b
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The curl is given by
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The Laplacian can be found as

- 1 & fhahz g a (hihz d¢ & fhihy g
o (B2 (5220 (28]
! hyhahs L_r] Ry dx! axZ \ hp oax? ax3 \ hy ax3

If you'd like to see some examples of how these expressions asellecheck out the problems at
the end of this chapter and the on-line solutfons.

5.6 Index raising and lowering

One of the many useful functions of the metric tensor is to cometvteen the covariant and
contravariant components of other tensors. Imagine that you're givemrilr@wariant components
and original basis vectors of a tensor and you wish to deterimnedvariant components. One
approach is to use the techniques describechapter 4(finding the dual basis vectors, performing
parallel and perpendicular projections, and the like), but withmégic tensor, you have another
option. You can use relations such as

g, A=A (5.19)

to convert a contravariant index to a covariant one (thus “loweringhdex). Furthermore, if you
wish to convert a covariant index to a contravariant index, you can usevénsd ogij (which is just

g') to perform operations like this:
¢'B=8.

5.20
And this same process works for higher-order tensors: ( )
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5.7 Tensor derivatives and Christoffel symbols

In many applications, it's important to know how a vector fieldnges as you move from one
location to another. For vectors expressed using Cartesian cdesditeking the derivative of a
vector is quite straightforward: you simply take the derivativeaoheof the vector's components.
You can do that because the Cartesian basis ved:t(jr&a(ld;?) are everywhere constant in both
magnitude and direction. That means you don’'t need to worry about tivatides of the basis
vectors. But as you've seen for spherical polar coordinates, the \sdors 7, 4, anqu) point in
different directions as you move around the space, which meansviiesit you take a spatial
derivative of a vector expressed in these coordinates, you mastaisider the derivatives of the

basis vectors.
Thus if you have a vectid expressed in general coordinattsé, x° with covariant basis vectors
&y &y andg;as

A=Atz

2 . 3.
f?1+A f“2+A

EJ‘ 3!

the derivative oA with respect to coordinaté is

3A (Ale] + A2éy + Alé)
ax! dx!
(A&}
ax!
oAl _ 06

=il
aox! dx!

It's the second term in this equation that complicates the gsamfetaking a derivative in coordinate
systems in which the magnitude and/or direction of the basis vettange as you move around the

space. And as you might expect, similar terms appear when you take théwderiotA with respect
to the other coordinates. So if you want to evaluate the changesciar fields expressed in
non-orthonormal coordinates, you have to account for possible changes isitheelotors. Properly
accounting for those changes means that the result of the deffemamimcess will retain the tensor
characteristics of the original object.

Fortunately, there’s a way to account for any change in the basiers and to ensure that the
derivative of a tensor is another tensor. That process, callédavariant derivative,” is described in
the next section of this chapter. But the process of covariant differemtigtl make a lot more sense
to you if you've first learned the meaning of the Christoffel symbols described in th@nsect

To understand Christoffel symbols, you should begin by realizingthieatlerivative of a basis
vector will be another vector. Like any vector, that vector candé&cribed as the weighted
combination of the basis vectors at the point under consideration (Baistoffel symbol, written as



an uppercase Greek gamnig,(simply represents the weighting coefficient for one of thesbasi
vectors. Hence the defining relationship for Christoffel synttisls

= Jé; (5.22
BN e

in which the index specifies the basis vector for which the derivative is beikgntathe index
denotes the coordinate being varied to induce this change ithtliiasis vector, and the indéx
identifies the direction in which this component of the derivative points, as shdviguire 5.1

This Christoffel symbol gives Tells you which basis vector
you the magnitude of one points in the direction of this

component of the component of the derivative
derivative vector \ vector

Tells you which basis
vector's change is
being considered

Tells you which coordinate
is being varied to cause a
change in the basis vector

Figure 5.1Explanation of Christoffel symbol indices.

in the ‘_;r fl[l the i’.r,l
direction direction
| - q_
f'rrﬂ_ﬂ ‘ﬁ r:ﬁ = g

has zero varies mve:'sely
Thi change magnitude :[hf; change with distance
iné, n €,
caused by a caused by a
change in & change in 8

Figure 5.2Example of Christoffel symbol indices.

Hence if you find two Christoffel symbols suchr;g = 0 and rf‘tJ = % you know that

dé,

ae

g ol
:ﬂ{’r‘l';f?ﬁ'-.

which is further explained iRigure 5.2

As this example illustrates, Christoffel symbols are reglijte simple to understand once you
know the code of their indices. Best of all, the values of thedal synbols are easy to determine if
you know the elements of the metric tensor for the coordinate system inywelich working. It will
take a bit of algebra to get to the relationship between Gfiekssymbols and the metric tensor, but
the result makes the trip worthwhile.

A good way to start is to form the dot product of the basis vr_"stmith both sides oEq. 5.22
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Remembering thég, o ¢! = 5£_. this becomes
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which seems rather pointless until you add nothing to it. Nothing, that is, in the following form:
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Note that the terms in parentheses on each line add tospeyou haven’t changed the quantity on
the right side of the equation by adding these terms. It may ikekhings are getting worse, but the
situation will become more clear once you've accomplished a few more bits of maaipulaie first
bit is to realize thaz' =g z,, so the Christoffel symbol becomes
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Now it's just a matter pulling out the common facto%df and grouping the terms by their sign:
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which may be further simplified if you recognize that
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But you know from the definition of the elements of the metric tetisatre; o ¢ = g;; and that
¢; o €; = g;j., Which means you can write
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(5.23

With this expression, finding the Christoffel symbols for any coordirsgistem for which you
know the metric tensor is quite straightforward. And why is thatiwdoing? Simply because using
the Christoffel symbols, you can take a derivative of vectorsemsbts that accounts for changes in
the basis vectors as well as changes in the components. Thiv@gsabe most important property of
a tensor: invariance across coordinate systems. Such covariaatides are the subject of the next
section, but before getting to that, you might want to considexampme of the Christoffel symbols
for a familiar coordinate system.

Consider the cylindrical coordinates, @A, andz) described inSection 1.5 In this system, the
square of the differential length element is related to doedinate differentials bys? = dr? + r’dA?

+ dZ. Hence the covariant metric tensor may be represented by

211 g1z 813 1 0 0

:
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which suggests that most of the Christoffel symbols will be rethis case. You can verify that by
taking the derivatives indicated kq. 5.23 beginning with = 1,i = 1, and = 1 (and don't forget that
the summation convention means that you must sumkpver
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and then using the relatiors=r, x* = A, andx® = z
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OK, that one was pretty boring, as are most of the others inabés But have a go at the Christoffel
symbol forl = 1,i = 2, and = 2:
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Now you're getting somewhere. And exactly where is that? Jusemder the meaning of a
Christoffel symbol, and you'll see that this result means that the changeciovéirganiy, basis vector
as you move in the A direction has a component in tlFedirection that increases directly with
distance from the origin.

A similar analysis shows thar{z = Ffl = 1/r, which are the only other non-zero Christoffel

symbols for the cylindrical coordinate systérfi.you don’t see how to get that result, take a look at
the problems at the end of this chapter and the on-line solutions.

5.8 Covariant differentiation

With Christoffel symbols in hand, you have a way of differentiaingector or higher-order tensor
that includes the effect of changes (if any) in the magnitude aectidim of the basis vectors used to
expand that vector or tensor. This type of derivative is calletcthariant” derivative, and it finds
application not only in the Euclidean space in which many engimeamnd physics problems are
worked, but also in the curved Riemanian space of General Relativity.

In Euclidean space, two vectors at different locations magob®ared and combined by dragging
one of the vectors to the location of the other without changing imitnde or its direction. If the
vector is expanded using Cartesian coordinates, such “paratepurt” is accomplished simply by
keeping each of its components the same (because the Cartesimrnvdiors have the same
magnitude and direction everywhere). But if the vector is expressesh-Cartesian coordinates, the
length and direction of the basis vectors may be different atwtbdocations. In such cases, the
covariant derivative provides a means of parallel-transporting ome efttors to the location of the
other.

The situation is more complicated for curved spaces. You indnttie details of the use of the



covariant derivative in curved spacesGhapter ¢ but for now you can understand the role of the
covariant derivative by considering a two-dimensional spherical surégcbedded in a three-
dimensional Euclidean space. Imagine a series of tangent plahdsucising the sphere at each
location, and picture a vector lying in one of those tangent plandkatifvector is moved to a
different location on the sphere while holding its direction cong@sviewed in the larger three-
dimensional space), it will not lie in the tangent plane at theloeation (you can think of the vector
as “sticking out” of the two-dimensional space of the sphereudh sases, the covariant derivative
serves to project the derivative of the vector into the tangent space of the sphere.

You should also note that the covariant differentiation process pr®ducesult that retains the
properties of a tensor, which means that the result transformvedye coordinate systems according
to the rules of tensor transformation.

To understand how the process of covariant differentiation works, dewnghe vector
A = Alé + 4ld 4+ A3g and its derivatives

BA  B(AlE + A2 + Alé)
axd ax’
a(Ale;)
axd
aAl

}I

. IE“.;:i

axl ' T axi’

Now replace the partial derivative in the second term withChestoffel-symbol definition Eq.
5.22:

-

aA  dA' g
e — —¢; + AT er).
dxl axl i

Since the indicesandk in the second term are both dummy indices by the summatioryaulesan
switch them and then extract the common factor that is now the basisf-;'iector

A 8A' - i
- = __‘-_:I:- ¥ I. n__f_«"l; J
oaxlJ dxd kj

The covariant derivative is defined as the combination of the émmst inside the parentheses.
Common notation for the covariant derivative is to use a semigglan front of the index with
respect to which the covariant derivative is being takem this case). Thus you're likely to see the
components of the covariant derivative defined as

A similar analysis leads to the covariant derivative of a veetquranded using covariant
coefficients:

g dnl  genb
A ‘{i-rl,j.



Note that the term involving Christoffel symbols is subtracted in this case.
To make the meaning of Eqs. 5.24 and 5.25 more explicit, consideovhgant derivativ% 25)

of vectorA with respect to A in cylindrical coordinates (go=r, x> = A, andx® = 2). Settingj
= 2inEq. 5.24(since we're interested in the covariant derivative with respect to A),

: aA" , ; e
Ay = ey + A r;e,-‘: + .ﬁ."f’]":m +AT,
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i D
= + 04+ AY(—r)+0,

which says that a change in theomponent of vectcxi_!: caused by a change in A is caused both by a

change inA” with A and by a change in the basis vectors which causes iarpoftA that was
originally in the A-direction to now point in the-direction. Likewise, for the change Af* as the
value of A is changed,
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The process of covariant differentiation can also be appliéter-order tensors. As you might
expect, this simply requires the addition of a Christoffel-syméhtfor each contravariant index,
and the subtraction of a Christoffel-symbol term for each covariant index. Hence
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5.9 Vectors and one-forms

If you look up the subject of tensors in recently published physits, especially those dealing with
General Relativity, you may be surprised to find little rr@ntof contravariant and covariant
components in favor of terms such as “covectors” and “one-forms/é iau wasted your time
struggling to understand complicated concepts and terminology thatbavéecome obsolete? |
obviously don't think so, or | wouldn’t have devoted so many pages to théopments of the last
two chapters. Instead, | believe there’s value in seeingtthditional” presentation as well as the
“modern” approach, because the differences arise from perspective ratheothdnefrcore concepts.



But those different perspectives do lead to very differentiteogy, and the purpose of this section
is to provide a short introduction to that terminology.

The first thing to understand is that the traditional approach temdeeat contravariant and
covariant components as representations of the same object, wiheteasodern approach objects
are classified either as “vectors” or as “one-forms” (atstled “covectors”). In the modern
terminology, vectors transform as contravariant quantities, andooms-ftransform as covariant
guantities. Quantities with dimension of length in the numeratach( as velocity, with units that
include “meters per”) fit naturally into the vector category; qgiti@stwith dimension of length in
denominator (such as the gradient of a scalar field, with dmatsinclude “per meter”) fit naturally
into the one-form category.

In illustrations involving vectors and one-forms, vectors are repted as arrows and one-forms
are represented as small sections of surfaces, as shdvgune 5.3 As indicated in the figure, for
vectors the angle of the arrow shows direction and the length afrihv shows the magnitude. For
one-forms, surfaces are aligned normal to the direction angpteeng between surfaces is inversely
proportional to the magnitude. This means that vectors with grestgnitude are represented by
longer arrows, while one-forms of greater magnitude are represented by closer.spacing

One-form with
small magnitude

One-form with
large magnitude

_ Vector with
Vector with small magnitude
large magnitude -

¥ g

X

Figure 5.3Representation of vectors as arrows and one-forms as surfaces.

As in the traditional approach, vectors (which utilize contramar@omponents) expand using
original basis vectors, while one-forms (which utilize covariamhgonents) expand using basis
one-forms, which are equivalent to dual basis vectors in the traditional approach. Tésiamuience
means that the product of a vector and a one-form is an invariacal@), just as the multiplication
of a contravariant and a covariant quantity produces a scalar widguiting the metric tensor. One
very nice graphical interpretation of such products is that thdtires scalar is represented by the
number of one-form surfaces through which the arrow of a vector passes.

Authors using the modern approach often place strong emphasis onsvaatbione-forms as
operators (or rules), so you're likely to encounter statementsvdwors “take” one-forms and
produce scalars, just as one-forms “take” vectors and producess¢ak@wise, a higher-order tensor
takes multiple vectors and/or one-forms and produces a scalar. thi®rmperspective, the metric
tensor is an operator that takes two vectors or two one-formpraddces their dot product, and the
components of the metric tensor may be found by feeding it basis vectors or one-forms.



5.10 Chapter 5 problems

5.1 Show that the process of subtracting one tensor from another resalltpiantity that is also a
tensor.

5.2 Find the elements of the metric tensor for spherical coordibgteorming the dot products of the
relevant basis vectors.

5.3 Show how the derivatives given afteg. 5.16lead to the elements of the metric tensor for
spherical polar coordinateBq. 5.17.

5.4 Use the scale factors for spherical polar coordinates ty #eei expressions given @hapter 2
for the gradient, divergence, curl, and Laplacian in spherical coordinates.

5.5 Show that for cylindrical coordinates 4, 2) the Christoffel symbol§?  andI?, are equal to

1fr.

5.6 Findg', the inverse of the spherical metric tengor

5.7 Useg' to raise the indices of the vectr= (1, rsing, sirf).

5.8 On the two-dimensional surface of a sphere of rajuse square of the differential length
element is given bys’ = R?d#? + R’sinf6dA2. Find the metric tens@; and its inverse for this

case.
5.9 What are the Christoffel symbols for the 2-D spherical surface of Problem 5.8?
5.10 Show that the covariant derivative of the metric tensor equals zero.

! The prototype of a vector expressed in contravariant componentsdisplecement vector, and the prototype of a vector
expressed in covariant components is the gradient vector.
2 Note that specifying one direction in 3-dimensional space requires two angles.
3 If you don't see how to get these results, you can find more detail in the problemsrat di¢hés chapter and in the on-line
solutions.
* You can find the derivation of these extremely handy equatioBsas’ Mathematical Methods in the Physical Sciences
John Wiley and Sons, 2006.
® The Christoffel symbols written zl—{c. are Christoffel symbols of the second kind; another form of Ches$te§inbol (the

i

“first kind”) is described in most General Relativity texts.
% Note that the symmetry of the metric tensor means that 6ffeissymbols of this type are symmetric in the two lower
indices.



6

Tensor applications

This chapter provides examples of how to apply the tensor conceptanedniaChapters 4and5,
just asChapter Jprovided examples of how to apply the vector concepts presen@ddhpters land
2. As in Chapter 3the intent for this chapter is to include more detail about @l stamber of
selected applications than can be included in the chapters in which tensor concestispresdinted.
The examples in this chapter come from the fields of Mechallesiromagnetics, and General
Relativity. Of course, there’s no way to comprehensively camgrsignificant portion of those fields
in one chapter; these examples were chosen only to serve asergptives of the types of tensor
application you're likely to encounter in those fields.

6.1 The inertia tensor

A very useful way to think of mass is this: mass is the characterisnatér that resists acceleration.
This means that it takes a force to change the velocity of amgtolsjth mass. You may find it
helpful to think of moment of inertia as the rotational analog of mass. §;irmbment of inertia is the
characteristic of matter that resists angular acceleragiont takes a torque to change the angular
velocity of an object.

Many students find that rotational motion is easier to underdtgnkieeping the relationships
between translational and rotational quantities in mind. So winanslational motion dealt with
position &), velocity ), and acceleratiora], rotational motion has the analogous quantities of angle
(0), angular velocity ), and angular acceleratio ). There are rotational analogs for many other
guantities; the translational quantities of forﬁe),(mass 1f), and momentump) have the rotational
equivalents of torquer}, moment of inertial§, and angular momentur ).

As you may also recall, several of the equations relatingwstranslational quantities have direct
parallels in rotational motion. So the rotational equivalent of thew Second Law
(F = mi)isT = Ia." And whereas translational momentum is related to mass &ouityéy j = m
v, you probably learned that angular momentum is related to momerdroé and angular velocity
byL, =1 w.

When first presenting these relationships, most texts refftiecimotion to planar rotation of a
single particle to keep things simple. So when you think of tkeigrship between linear and
angular velocity, you may think of something like= wr. And if L, =mvr, then L, = mrw. Taking

mr® as the moment of inertid) (of a single particle, this becomlazs: | . But thev and thew in
those equations can't really be velocities, since they’re wrédtescalars rather than vectors, and that



z subscript on the angular momentum seems to be trying to tell you something.

It is. It's telling you that you're using an equation for one component of the angular momentum (the
z-component in this case), and this pertains to a single pamicieng about the origin in they
plane. So these equations aren’'t wrong, they just have limiteccapmh. Specifically, they apply to
cases of planar motion about thaxis.

The more-general relationship between the vectors that repnesenity, angular velocity, and
position is this:

U= X r, (6.1)

in which the cross represents the vector cross product desaniliglaapter 2 And the equations
relating angular momentum to linear momentum, linear velocity, and mass are

* % p (6.2

=r x (mv)

1

L=

£

=mr x 1.

Before delving more deeply into these equations, you should considempheations of the

(planar-motion) equation that says that the moment of inertiaiofke particle islparticIe =mr. One

important idea in this equation is that the moment of inertia of a patéplends not only on its mass,
but also on the location of that mass — specifically, theamlist () of the mass from the axis of
rotation. Thus the moment of inertia of an extended object made mjarof particles must depend
not only on the object’s mass, but on the distribution of that rm&sd’s true in the case of general
motion as well as planar rotation.

If you think of the rotational analog to the translational equépiehmu, you may be tempted to
write an equation such i3 = l¢g). But that equation would indicate that the angular momeijum

must be in the same direction as the angular velgyjtgince multiplication by a scalar can change
the length but not the direction of a vector (unless the scalar is negatiigich case the direction of
the vector is reversed). For general motion, the situation is coonplex, as you can see by applying
Eq. 6.2to a single particle circling about the axis showfigure 6.1.In this figure, the particle “m”

is circling around the-axis, so the angular velocitg)) points straight up, parallel to thlreaxis. In
this view, you're looking down the-axis toward the origin of the coordinate system, which is well
below the plane of the particle’s path. The particle is injtiatithe position shown on the left side of
the figure, and its velocity vector is coming out of the page. Simeerector angular momentum is
given by ; =mr x b, you can find the direction of the angular momentum at this limiséant by

using your right hand to form the cross product betvr2andt, as described iBection 2.21f you
do this properly, you should see tlainitially points up and to the right, as shown E%ﬁal in the

figure. At a later time, after the particle has complet@@-half revolution about the-axis, its
velocity vector is into the page, as shown in the right portiomefiigure. At that later instant, the
cross product betweerrandv means that the direction of the angular momentum vi; >terup and

to the left, as shown ky, .
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Figure 6.1Single point mass moving around an axis.

So not only is the angular-momentum ve(jonot parallel to the angular velocia, the direction
of the J is changing as the particle moves around the axis, while theialired ) remains fixed

along thez-axis.
Under these circumstances, you clearly cannot use a scalafatalbe moment of inertia to relate
the angular momentum to the angular velocity through an equation sjch kp. A scalar moment

of inertia simply isn’t capable of relating a vector in onedion to a different vector in another
direction. But if you've followed the developmentsGiiapters 4and5, you're already familiar with a
type of object that is capable of taking in a vector (suc;)aand producing another vector (such as
1) that points in a different direction. That object is a tenSoralthough you may have initially

learned about the moment of inertia as a scalar value in seeofglanar motion about the origin,
you should now understand why more-general problems require a more-paapgnfoach, and that
involves the representation of inertia as a tensor rather than a scalar.

You may be thinking that simply by adding another particle of equas mtaithe same distance on
the other side of theaxis, you could produce an additional bit of angular momentum that wddld a
to the angular momentum of the original mass. In that case, the total angular momentum wedld inde
point straight up the-axis, in exactly the same direction as the angular vel@ityyou may suspect
that the relationship between the angular momentum and the angular velndityefice the nature of
the inertia tensor) depends on the symmetry of the object. Thatisasf@ correct, as you'll see
when you examine the components of the inertia tensor.

You can begin to understand the components of the inertia tensorsbywfiting the tensor
equation relating angular momentum to angular velocity:

1

7= (6.3)

Py

W,

and then using the definition of angular momentum:
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=Frxp

= F x (mv)
=mrxuv
=mr x (@ xr).

The triple vector product in this expression can be simplifiedgutie “BAC minus CAB” rule
described irSection 2.4giving

L=m[@(FoF)—F(F od)]

This is a usable expression for the angular momentum of a singldgyand you can modify it
for use with multiple masses simply by summing (or for a continoebject by integrating) over all
the masses. Thus the expression you’ll most often encounter will probably look something:like this

[ ng[cﬁfﬁ or)—ri(rfi o w)], (6.4)

where the index denotes each element of mass of the object.

To see the moment of inertia in this expression, first expand pibstion vector as
i = xii + vi] +z:k and the angular velocity vector i = w.i + w,j+w.k (note that the
angular velocity is the same for every mass element in a rigid body, smdt necessary to write
;). Thus the expression for angular momentum is

L=>)Y mldi+y]+zik) o (il + yi ]+ zik)

et o 38 L :I:f:": o (wyl + m_t.j + m:;::-}].
and performing the dot products gives

L= Z m;[w [-".? + uz i :?‘.I — ri(xjw; + yiwy + zj0;)]

;
Since thex-component oy is o, and thex-component O'Fi is x, the x-component of the angular
momentum can be written

2l 7 2l
Ly = E Mmilwe (X + ¥+ 2;7) — xi(Xiwx + ¥i Wy + Zitg ]
2 2 2 2
= E Milwe X + @y Vi + @y I — Xy — X Viwy — X;Zjw,]
7 8l
= E L [l‘.'l]_'l' f_"ff + ::—':' — Xi _TLI. EI'.J:,' — Xidj EU:].

They- andz-components come out as
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These three equations for the components of angular mome jumriften as a single matrix
equation:

i ) ]
1z Sumi(yS+2) =Y mixiVi = MiXiZi Wy (6.9
Ly | = —Ximiyixi LimiGt+zD) — X miyiz; Wy
F — D MNTiXi = X MZivi p; mil a‘ + _vjl‘: (-

The elements of the center matrix represent the components ioiettia tensor I:)' Note that the

dimensions of each element are mass times distance squiteit$®f kg nf), just as in the case of
scalar moment of inertia.
In some texts, you'll find the elements of the inertia tensor written as something like

Iab = Mi(Babti — Fal'b),

which are the same elements as shownBgn6.5

The diagonal elements of the inertia tensor are called “monoénitertia” and the off-diagonal
elements are called “products of inertia.” To understand the m@hysieaning of each of these
elements, recall that the moment of inertia characterire®bgect's tendency to resist angular
acceleration. That resistance depends not only on the object’s lmhsn the distribution of that
mass relative to the axis of rotation.

Each terml , tells you how much angular momentum in thdirection is produced by rotation

about theb-axis. Sol , =1 tells you how much angular momentum the object produces in the
x-direction due to rotation about tleaxis. Andl23 = IyZ tells you how much angular momentum the

object produces in thedirection due to rotation about thexis.
How those off-diagonal terms come about is explained below, but you should first take ath@ok at
diagonal terms. In the expression for, for each element of mass], the element's mass is

multiplied by the square of the distance fromtkeis (y2i + zzi). So this is just the three-dimensional

version of the equation you may have learned for planar rotatiosapatthat the moment of inertia
of a particle id = mr?, wherer is the particle’s distance from the axis of rotation. Looking dtiven
diagonal of the inertia tensor, you see the contribution ta-ttenponent of angular momentum due
to rotation about the-axis, the contribution to thecomponent of angular momentum due to rotation
about they-axis, and the contribution to tzecomponent of angular momentum due to rotation about
thez-axis. The bottom line is that distributions of mass that are gtriaxabout each axis contribute
to the diagonal terms of the moment of inertia matrix.

The off-diagonal elements of the inertia tensor are somewhaltediﬁdnlyz, for each element of

mass ), the element’s mass is multiplied by the product of the elemerdisdz-coordinatesy z).

As explained above, this determines the contribution tg-teemponent of angular momentum due to
rotation about the-axis. And when does rotation about thaxis produce §-component of angular
momentum? When there’s an asymmetric distribution of mass disaribkis, for example as shown
with the single particle irFigure 6.1.Likewise, thelXy term determines the contribution to the



x-component of angular momentum due to rotation abouy-te@s. Such contributions come from
mass distributions that are asymmetric about yexis. Hence distributions of mass that are
asymmetric about a given axis contribute to the off-diagonal terms of the moment afnmarii.

To see how this works, consider the five point masses on the corners and top of a pysdrowina
in Figure 6.2.To determine the inertia tensor for this configuration of masses, you simply have to plug
the mass and coordinates of each of the masse&uation 6.5If the mass of each of the five
masses is the same and equahtd dnd the height of the pyramid is equal to the length of each of the
bottom sides (with a value o&zs shown irFigure 6.3, thel  term is simply

Iex = mi(yE 4 23) + ma(y3 + 23) + ma(y? 4+ 23) + ma(yi + 23)
-l—m_qf_vf —|—:§h
=my(a® + 0*) + ma(a® +0%) + mju[l'—r:':‘a2 + 1}‘2] + my[(—a LR E 1)‘2]
+ m;;ﬂ]-‘2 + (2a)?)

= 8r¢ae‘;2~
’ ms (0,0, 2a)
Y
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Figure 6.2Five point masses arrayed as a pyramid.
and you should obtain the same result for the other diagonal eleryywmsilzz. Moving on to the
off-diagonal elements, th% term is
Iyy = —mX1¥] — M2X2¥2 — M3X3V3 — M4X4V4 — M5X5V5
= —milava) —mz(—a)ia) —mz{—al(—a) — mala)i—a) — ms(0)(0)
s ﬁ - ﬁ %
=—m(2a° —2a") =0,

which is the same as all other off-diagonal elements. Thus df@xmepresenting the inertia tensor
for the configuration shown iRigure 6.2is



Sma® 0 0
0 Sma* 0
] ] Sma’

~
Il

There’s a great deal of information in the components of thisianeghsor. The fact that the
off-diagonal elements are all zero means that the selgctgd andz-axes are “principal axes” for
this object and choice of origin, and the moments of inertia amecipal moments” of the object.
When an object rotates about one of the principal axes, the angulanmiomvector and the angular
velocity vector are parallel. This is an indication of the object’s synyniatthis case, the fact that all
three principal moments are equal means that this object quakfi@sspherical top” (in Mechanics,
“top” refers to any rigid rotating object). And for a spheritgd, any three mutually orthogonal axes
are principal axes.

If the height of mass, above the plane of the other four masses is increased toitsvargginal

height (so that itg-coordinate becomesa4nstead of 3), the greater distance from theandy-axes
increases the moment of inertia about those axes, so that the inertia tensor becomes

i 20ma? 0 0
I= 0 20ma* 0
0 0 8ma’

Of course, the distance nrf5 from thez-axis remains zero irrespective of its height, so this mass is not
contributing to the componeh, in either case, and that component remains the same. Noanthat

two of the principal moments of inertia are equal, the objenobisonger a spherical top, and has
become a “symmetric top” (and if all three principal momentsevdifferent, the object is called an
“asymmetric top”). One final bit of terminology: if one of the prpadimoments of an object is zero
and the other two are equal to one another, the object is called a “rotor.”

Another way to change the inertia tensor of this object is toefidith the masses of the particles.
If, for example, you double the massmsffrom its original value omto 2m, while leaving the other

four masses the same, the inertia tensor becomes

& 12ma* 0 0
I = 0 12ma? 0
0 1] 8ma’

As expected, there’s no change in Itzge:omponent sincm5 doesn’t contribute to that moment.

Now consider what will happen to the inertia tensor if you rdtaecoordinate axes. Remember,
the inertia tensor is determined for a given location of the rolgid a given orientation of the
coordinate axes, so it seems reasonable to expect a changeamihenents if the coordinate axes
are rotated.

To test this, imagine rotating the coordinate axes counter-clogkatisut thex-axis, as shown in
Figure 6.3.In this figure, you're looking down the-axis toward the origin, so thg andz-axes
appear tilted (they’re labelgdandz to distinguish them from the origingl andz-axes). In this case,
the rotation angle is approximately 3®igure 6.3(a)shows that the axes have rotated while the
masses remained in their original positions, whilgure 6.3(b)shows the view you would get if you
tilted your head to make tlzeaxis vertical ang’-axis horizontal.

What effect might this have on the inertia tensor? To deterthiae you'll need to know the



coordinates of each of the masses in the new (rotated) coordinate systes) ythaneed to know/,

y', andz for each mass). Fortunatetyhapter 4should have given you some idea of how to do that by
using a rotation matrix to convert between the original andemtabordinates. In this case, that
rotation matrix is given by

&

(a) (b)

Figure 6.3Coordinate axes rotated 30° anti-clockwise aroungis.

x’ | 0 0 X (6.6)
y ]=] 0 cosé siné v
ol 0 —sinf cosé Z

If you go back to the original masses (all five masses equalassm) and original height on‘n5

(which is 2a above thy plane) and then apply this rotation, you should find the following values for
the components of the matrix representing the inertia tensor:

i gma* 0 0
I = 0 Sma- 0
0 0 Sma*

If you're suprised to find that there’s no change from the origimatia tensor (the one without the
rotation), remember that the symmetry of this object makespharical top, which means that any
set of three orthogonal axes will be principal axes. So tiltingakes should not have caused any
change in the inertia tensor.

That sounds reasonable enough, but if you compare the location of the md&sgeare 6.3to the
single-mass case shownhigure 6.1 doesn't it also seem reasonable to expecntgmill produce a

component of angular momentum in thedirection (as the single mass didHigure 6.)?
Yes, it does. And, in fact, masg does indeed produce a component of angular momentum in the

—-y-direction. To demonstrate that, just set the other four masseotargkcalculate the inertia tensor
for m, alone (don't forget that the coordinate axes are rotated). You should get

n
& dma< 0 0
¥ ) 2 ] 2
I = 0 3Ima- —1.73ma“
X b b
0 —1.73ma~ ma“



So there it isjyZ (which represents thgcomponent of angular momentum produced by rotation

around thez-axis) is clearly not zero. But why did you get zero for all the atydnal elements when
you first calculated the inertia tensor for the pyramid witbd coordinate axes? The answer is that
the other four masses also have something to say about the tieiestia To isolate their contribution
to Iyz, try setting the mass cuﬁ5 to zero and leaving the other four masses equal. tdhe inertia

tensor should then be

n
% dma= 0 0
= . = 5]
I = 0 Sma- 1.73ma~
- b ]
0 1.73ma~ Tma“
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Figure 6.4Angular momentum vectors for masses in plane of page.

And there’s the answer: the other four masses contribute exactly asamydar momentum in the
positive y-direction asm, contributes to the negatiwedirection, as illustrated ifrigure 6.4.And

remember fronChapter Shat you can add tensors by adding their components. So when ydweadd t
inertia tensor fom5 to the inertia tensor for the other four masses, you get the (nicely diagonal) inertia

tensor for the five-mass pyramid.
To demonstrate the balance betwegnand the other four masses, you may find it interesting to

again movem, up thez-axis to twice its original height and then perform the 30 degreeawtatithe
coordinate axes. In this case, you should find the inertia tensor to be

7 L ]
e 20ma< 0 0
E = _ 3
[ = ] 1 7ma“ —5.2ma~
e ] 2
] —53.2ma- 1 lma~

and clearly thetyZ terms frorrm5 and the other four masses no longer cancel.
You can determine the inertia tensor for any orientation of the coordinate axes by applyiogsrota



about multiple axes. If you wish, for example, to rotate fitgiud thex-axis by angle91 and then
about they-axis by angle92, you can combine the rotation matrices as

x cosfy 0 sinés l 0 0 x
N 0 I 0 0 cost  sind) y (6.7)
z' —sinfd2 0 coséh 0 —sin#] cos#H Z

which in the case of two 30 degree rotations (first about-ieds and then about theaxis) gives a
combined rotation matrix of

X: 0.866 —0.25 4.33 X
}'r — 0 0.866 0.5 v (6.8)
% —0.5 —=0433 0.75 Z

If you Ieavem5 at height 4 and then apply this rotation to the coordinates, the inertiartens

becomes
- ] . o e
5 17.8ma~  2.6ma- 3.9ma-
= . 7 e il - !
= 2.bma- 1 Tma~ —4. 5ma* . (6.9)
y 3 fud ) s % "
39ma-  —4.5ma-  13.3ma*

You can perform a quick check on your calculation by verifying tt@tcoordinate-axis rotation has
changed neither the trace nor the determinant of the natrix.

Instead of finding the new coordinates of each mass in thedagstem, an alternative approach
allows you to find the inertia tensor for rotated coordinatescitijreThat approach is to apply a
“similarity transform” to the original inertia tensor. Hexdiow that works: the angular momentum is
related to the inertia tensor and angular velocity in the original (unrotated) coorgstate as

L=1Tmw,

and you rotate the coordinates by applying a rotation mBtfixhich may be the product of several
rotation matrices). You can therefore write

—

I' = RI = R(

—_

).

=1l

And since the product of any matrix and its inverse is justdietity matrix, you can insert the term
RIRin front of &):

L'=RL=RI(RIR&

= (RT R"YHRS.

But Ry is justi’, so

'=(RI R 1Hd'.

gl

Thus the expressio relates angular momentum to angular velocity in the rotated

(RT R~



coordinate system, which means that this expression is theitensior in that system. So instead of
calculating the new coordinates for each mass and plugging therthéntequation for the inertia
tensor, you can instead simply apply the rotation matrix anidiverse to the matrix representing the
inertia tensor directly (but remember that the sequence maittkenn you're doing matrix
multiplication).

Using this approach, the process looks like this:

2 0.866 —0.25 4.33 20ma* 0 0
If= 0 0.866 0.5 0 20ma? 0
—0.5 —0433 0.75 0 0 Sma*

0.866 —0.25 4.33
5 0 0.866 0.5
—05 -—-0433 0.75

. 2 2 : 2
[ 7. 8ma“ 2.6ma* 3.9ma-
3 it 5] o 5]
= 2.6ma“ | 7Tma- —4 5Sma“
- el _ ) - ]
3.9mac —4.5ma~  13.3ma“

which is identical to the result obtained by inserting the rotated coordinates into tizete@reor.

If you've studied matrix algebra, you may be wondering about the pdysibil finding the
principal axes and principal moments by manipulating the matrix repirggémé inertia tensor into a
diagonal form. That is certainly possible, and you can read abmg tlmt using eigenvectors and
eigenvalues on this book’s website.

And if you're able by visual inspection to determine the anglestafion needed to align the axes
with the symmetries of the object, you can use the similénatysform approach to diagonalize the
inertia matrix. You can see how that works by looking at the prabkanthe end of this chapter and
the on-line solutions.

6.2 The electromagnetic field tensor

One of the defining characteristics of our modern world is thelainay of broadband
communication channels which allow near-instantaneous transferoaietion over great distances
without the need for physical connection. The technology used in this waication descends
directly from the equations synthesized by Scotsman James \@¢ekell in the 1860s, now called
“Maxwell's Equations.” In view of the impact of electromagnegtetommunications on our lives,
it's not surprising that in 2004 the readersRifysics Worldvoted Maxwell’s Equations to be the
“greatest equations” ever developed.

The four vector equations that have come to be called Maxwell'stibgqsiaare Gauss'’s Law for
electric fields, Gauss’s Law for magnetic fields, Faradbagi®, and the Ampere—Maxwell Law, each
of which may be written in integral or differential form. Timegral forms describe the behavior of
electric and magnetic fields over surfaces or around paths, Wilalifferential forms apply to
specific locations. The differential forms are most relevanthie vector and tensor operations
discussed in this book, involving the scalar product, divergence, curl, and partialivesideéscussed
in Chapter 2 They're also closely related to the subject of this sectihe electromagnetic field-
strength tensor.

The differential forms of Maxwell’'s Equations are usually written as



Gauss’s Law for electric fieldg | 7 —

]

€0
Gauss’s Law for magnetic fieldy o g = 0.

Faraday's Law_  _ 9B
i at
i

Ampere—Maxwell Law _  _ i aE
VxB=pugJ+ .ia{gr’:'n?.

In order to understand the electromagnetic tensor, you may fihdlptul to briefly review the
meaning of each of these equatidns.

VoE=2

Gauss's Law for electric fields states that the divergey 2 ¢f the electric fieIdE) at any location

is proportional to the electric charge densitydt that location. That's because electrostatic field lines
begin on positive charge and end on negative charge (hence thenésltehd to diverge away from
locations of positive charge and converge toward locations of negative charge).

%c:ué:{l

Gauss’s Law for magnetic fields tells you that the diverge.’%pa 6f the magnetic fieldR) at any
location must be zero. This is true because there is appanentdplated “magnetic charge” in the
universe, so magnetic field lines neither diverge nor converge.

=<1

OV

Faraday’'s Law indicates that the cLy ) of the electric field E’) at any location is equal to the
negative of the time rate of change of the magnetic field atdbation. That's because a changing
magnetic field produces a circulating electric field.

VxB= J[:!QE-I-HQED%I,E

Ampere’s Law, as modified by Maxwell, tells you that the ¢¥.x) of the magnetic fieldR) at any
location is proportional to the electric current denssy glus the time rate of change of the electric
field at that location. This is the case because a cirnglatiagnetic field is produced both by an
electric current and by a changing electric field.

Note that Maxwell’s Equations relate the spatial behavior afidiéb the sources of those fields.
Those sources are electric charge (with depgigppearing in Gauss’s Law for electric fields, electric
current (with densityy) appearing in the Ampere—Maxwell Law, changing magnetic figith(time
derivative HE_J?) appearing in Faraday’s Law, and changing electric fieldh(wme derivativegf;)

appearing in the Ampere—Maxwell Law.
One additional equation is needed to fully characterize eleagoetic interactions. That equation



is called the “continuity equation,” usually written like this:

ap
il

=-Vol,

wherep is the density of electric charge €jids the current density.
The continuity equation tells you that the time rate of change afdhsity of electric charg[%g.

equals the negative of the divergence of the electric current dl[%ofj. That’s because negative

divergence means convergence, and if the convergence of the current jflesgibsitive at a point,
then more positive charge must be arriving at that location théeing carried away. If that's
happening, then the density of positive charge at that point must edreaaning tha_f’,g will be

positive in this case).
As valuable as Maxwell's Equations are individually, the real paf¢nhese equations is realized
by combining them together to produce the wave equation. Taking the camtho$ides of Faraday’s

Law and inserting the curl B from the Ampere—Maxwell Law results in the equation

a2E (6.10

are’

VE = LLOED

where v2(y = ¥ ¢ V() is the vector form of the Laplacian operdtoFhis equation applies to
regions in which the charge density &nd the current densit ;) are both zero.

You can find a similar equation for the magnetic field by rtgkine curl of both sides of the
Ampere—Maxwell Law and then inserting the cur E’)from Faraday’'s Law. This gives

a’B (6.10)

L

V2B = LLpEp

i
It's instructive to compar&qgs. 6.10and6.11to the general equation for a propagating wave:

s 1824 (6.12)
VA= —

v? grt’
wherev is the speed of propagation of the wave. Note t¥fetdrm, which leads to the conclusion that
the velocity of an electromagnetic wave depends only on the elpemnittivity (eO) and magnetic

permeability () of free space (specifically, ¢, = 1% or v = Li/Hof0 = 3 x 16 m/s). Most

importantly, that velocity is completely independent of the motioth@fobserver. It was this feature
of electromagnetic waves that put Albert Einstein onto the pathetventually led to the Theory of
Special Relativity.

To arrive at the Theory of Special Relativity, Einstein Hakt to two postulates. Those postulates
are:

1) The laws of physics must be the same in all inertial (that is, non-accelefi@img$ of reference.
2) The speed of light in a vacuum is constant and does not depend mottbe of the source or
observer.

Steadfast faithfulness to these postulates even in the faceuofer-intuitive conclusions allowed
Einstein to see that distances in space and intervals oatengot absolute but depend on the relative
motion of the observer. Additionally, space and time are not deplua are linked together into



four-dimensional spacetime, and it is the four-dimensional spaeatit@rval that is invariant across
all inertial reference frames.

To understand Einstein’s approach, consider the two Carteseneneé frames shown Fgure
6.5. As indicated by the arrow in the figure, the primed referdrazae is moving with velocity in
the positivex-direction. Using the traditional Galilean approach, the coordixate andz) and time
(t) values for a point measured in both the unprimed and primed cderdystems are related by
these equations:

=l

r

X

Figure 6.5Primed reference frame moving alorgxis with velocityv.

t'=t,
X =X—-W,

Y=Y,

Z=1z

since the primed frame is moving only in thdirection?

Einstein realized that the second postulate of Special Relativityqtistancy of the speed of light)
is inconsistent with the Galilean transform shown above, anadmsistent results are obtained only
when a different transform is used between the unprimed andegrenordinate systems. That
transform must hold the space—time interval invariant acrosdainegterence frames. But what
exactly is the space—time interval (that is, how should you conmb@epace terms and the time
term)?

The answer to that question can be understood by imagining a puiget sadiating spherically
outward from a certain location. Calling the speed of Iglen observer in the unprimed coordinate
system will find the square of the distance covered by a waveffahe light wave in time to bex?
+y? + Z = ct®. Likewise, an observer in the primed coordinate system will writea#h$ +y? + z° =
ct?. But by the second postulate of special relativity, the spedifjtuf must be the same for all
observers. So



By -7 = o —x?—y? -7,

which indicates that the sign of the time term must be oppasiteetsign of the spatial terms if the
speed of light is to be the same for all observers. Of cotmsaegative sign could equally well be
attached to the time term (as long as the spatial telems mvade positive), and you'll find some texts
using that convention.

The combination of one time and three spatial coordinates intagée sifour-vector” is best
expressed using index notation:

X, = Ct,
X, =%
X, =Y,
X, =2,

in which the speed of lightc) is used in the time term to ensure that all four coordinbtes
dimensions of length.

Using this notation, the space—time intends) €an be written as
(d9* = (@x)? - (dx')* - [@x)* - [@%)*

This interval is the space—time equivalent of distamt £ dx® +dy? +dZ) in three-dimensional
space.

Transformations that preserve the invariance of the space—tinmeainéeross inertial reference
frames are called “Lorentz transforms” after the Dutch miistsHendrik Lorentz. For motion in
+x-direction with speed, the Lorentz transformation is

Xp = ¥ (x0 — Bx1),
x; = y(x1 — Bxo),

Xh = X3,

where

and

¥ = —

2 J1-87
I'\"I o2 Y Jﬁ

This form of the space—time interval can be written using the metric tgal;}sor

(d9)? = gaﬂd%d%,



in which the tensogaﬂ corresponds to the Minkowski metric for flat space-time. Itriméorm, that

metric is
l ] 0 0
=_ o -1 0o o
=710 0 -1 0
0o 0 0 -1

As you may recall if you've studied modern physics, the invarianchenfspace—time interval
under Lorentz tranformation leads to several interesting reBultebservers in different inertial
reference frames. Those results include:

(1) Length contraction: An observer in a given reference frareasares lengths in a moving
reference frame to be contracted along the direction of motion.

(2) Time dilation: An observer in a given reference framesmess time in a moving reference frame
to run more slowly.

(3) Relativity of simultaneity: An observer in a given refeeeframe will not agree with an observer
in a moving reference frame as to whether two events are simultaneous.

Writing physical laws in a form that clearly fits withihet framework of Special Relativity has
several benefits: such “manifestly covariant” laws have theedarm in all inertial reference frames,
and the quantities involved transform between reference framgedictable ways. Any covariant
theory of electromagnetism must incorporate the experimentdhtactjuantity of charge is a scalar
(invariant between reference frames), and that Maxwell’'s Equations andrérg4_force law are true
in all inertial reference frames. This requires a tensmive of the electromagnetic field equations
and a four-vector version of the Lorentz force law, which camdo®mplished by expressing the
electric charge densigyand current densiiy as a four-vector called the “four-current”:

F=3,3,9).

With the four-current in hand, a tensor version of Maxwell's Equatican be achieved by
combining the components of the electric and magnetic field intelantromagnetic field tensor.”
The matrix representing the contravariant version of this terfsor is

{:. " E.'l.' __-'II[" — E}-In"l-{x — E: If'.-{.l
: Ex/fc 0 —B- By
FQ'H — X = '1' a 6 1
E,/c B, 0 —H. ©.13
.E:_.-"II'.' e .By B_'l' r.}

The covariant version of this tensor can be found by lowering theemdising the metric tensor.
The result is

0 Ex/c Eyfc Ez/c
—-E./c 0 —B. By
—Ey/c B 0 —B;
—E;fc —By By 0

Fos = (6.14)

Another useful tensor is the dual contravariant electromagnetic field tensor



r.} . B.l‘ T, B}I — B;
~af _ By 0 E;fc —Eyfc (6.195
- B, —E.jc 0 E.fc |’

B: .E1,' _,-"I [ s .E_'l' ;‘.- C 0

One benefit of these tensor expressions is that all of Maxvilgtions may now be expressed
using just two tensor equations. Those two equations are:

9 FeP

= goJ?.
o e i (6.16)
and
3P . (6.17)
axe =

Where are Maxwell’s Equations in these expressions? WelhddZauss’s Law for electric fields,
takeff = 0inEqQ. 6.16

Inserting the values from the electromagnetic field-strengtlotesfdq. 6.13and summing over the
dummy indexx gives
d(0) d(Ey/c) d(Eyfc) 8(E;/c)
- - -+ — o —
dict) ax dy a7

= Holcp).

Thus

d(E;) d(Ey) 8(E;)
7 o

.
= pplc™p),
dx day az 4

and, sinc&” = 1/ 1),

ax dy iz €nfio
or
i — i)
VoE="L,
£0

which is Gauss’s Law for electric fields.
To get the Ampere—Maxwell Law, look at the equations that résuft settings equal to 1, 2, and
3inEqQ. 6.16



g el

_ 1
axe = HoJ",
g Fe? 2
Axe = HoJ"
b Fes ;
axe =k

As above, just insert the values from the electromagnetic fiddegh tensor oEq. 6.13and sum
over the dummy index:

d(—Ey/c) + (0) g d(B:) + d(—By)

. = glJy),
a(cr) dx ay a2 s
d(—E,fc) d(—B;) . (0)  8(Bx)
2 B T TR o),
dlet) ax GAY az ;
d(—E;/c) o(By) d(—By) a8(0)
P - 2 = uplJ.).
dicr) ix L dy ¥ HoNCE)
Hence
i B:) d(By) I M Ex)
- — - = gl J, + —=—
ay 5z Ut a5
3(Bg) 8(By) | B(E,)
— - — = uo(y) + 5 —2
oz ax : cs at
di{ By d{ By 1 9(E:)
|'... _1-- _[ X :ﬁtl:ll:'j:}—k_q[ :....
i ay 2 ot

Recognizing the partial derivatives of the magnetic field as the components of theﬁ:uﬂhbfis

o 2 E
Fw B = upd + ppsg—.

0 0€0—
the Ampere—Maxwell Law.

The other two Maxwell Equations (Gauss’s Law for magnetic fialt Faraday's Law) may be
obtained in a similar fashion using the dual electromagnetid-steength tensorEHg. 6.15. For
example, to find Gauss’s Law for magnetic fields, {éke0 inEq. 6.17

ooy
axd

Inserting the values from the dual electromagnetic field-strength tehEgr 6.15and summing over
the dummy index: gives

3(0) d( B, d( By) HB.)
R 20 L )
dict) ax ay iz

which is

i
]
u T
Il
=



Gauss’s Law for magnetic fields.

And to get Faraday’s Law, look at the equations that result from sgtéggal to 1, 2, and 3 IAq.

6.17

5 %a 1
dx =
{-}3&2
TC
ag*?

ax®

0,

ﬂ-.

0.

As before, just insert the values from the dual electromagnelizstrength tensor dtq. 6.15and

sum over the dummy index

H=Bx)  30)  A=FE/c) dEy/o) .
a(ct) ax ay oz
d(ct) dx ay az
d(—B,) d(—Eyfc) dE. /ey 30)
C z . y/C) " ..1. . s
dict) o X dy dz
So

d(Ey)  B(E;) _ 9(By)

az ay ot

3(E;) 8(Ex) _ d(By)

ax az a8t

9(Ex) O(Ey) _ 8(B;)

ay ax a1

Recognizing the partial derivatives of the electric field hees components of the curl E’ this is

Faraday’'s Law:

VxE=-—

dB
ot

So the use of tensors allows you to write Maxwell’s Equationa simpler form. But the real
power of tensors is to help you understand the behavior of elestrimagnetic fields when viewed
from different reference frames. Specifically, by transiognto a moving reference frame, it
becomes clear that electric and magnetic fields depend on the state of motion ofrirer.obse

To see how that comes about, imagine an observer in a reférameemoving along the positive
x-axis at a constant speedYou can investigate the behavior of electric and magnetutsfigb seen
by this observer by transforming the electromagnetic field tensor to the obsenareacefframe.

Recall the Lorentz transform matrix for motion alongtrexis with speed:



y —y8 0 0
-y8 vy 0 0
i 6.18
& 0 0 1 0 (6.18)
0 g 4

which is

:].f —]-’ﬁ D D D —E-._J-"[ —E.v_,-'lll —E;."'( \

;, — B ¥ 0 0 E. fc 0 —B. B,

0 0 1 0 Ey/fc B- 0 — B,
0 0 0 1 E./c —B, B, 0 )
y -y 0O D\

y -8 v 00
0 0 1 0|
0 0 0 ])

Multiplying the center matrix by the right matrix gives

(—E,/c)(—yB) (—E,/c)(y) —E,/c —E,/c
(Ex/c)(y) (Ex/c)—ypB) —B: By
(Ey/c)y)+ (B (—yB) (Ey/cH—yB)+ (B)(y) 0 —B;

(E;/c)(¥) + (=By)(—yB) (E;/c)(=yB) + (By)(—y) By 0
which, when multiplied by the left array, gives

(Ex/c)y2B — (Exjc)y*B —(Ex/c)y? + (Ex/c)yip?

(Eyjc)y? — (Exfo)y?p? 0
(Ey/c)y —(Bz)yp —(Ey/c)yB + (Bz)y
fE;,-";{L]:V + [BL]:VJS _fE;,-";(L}:VJB i va]V

—(Ey/c)y + (B)yp —(Ezfc)y — (By)yp
(Ey/c)yf — (Br)y  (E;/c)yB +(By)y
0 —Bx
B, 0

Thus



0 —E;/c
E, /e 0
y(Ey/c—BB;) yv(B;— BEy/c)
yv(Ez/c+ BBy) —y(By+ BE;/c)

'}‘)[E.pl.":lf‘ P, JSB:':' _:l"rl:-.E:_,-'ll[l‘ + JblB_",'.l

T
I

—y(B; — BEy/c)  y(By+ BE;/c)
0 —By
B, 0

Comparing this td=q. 6.13 the components of the electric field in the new (primed) coaelina
system can be related to the components of the electricifiglte original (unprimed) coordinate
system by

E_Ir. - .E_;_'u
E} = cy(Ey/c — BBy). (6.19
E: - {‘:IJ{E:‘ _."ll[‘l + ﬁB}']ﬁ

and the magnetic field components in the new (primed) system are

B, = By,

X
R.: — }"[-B\l + Jbl.E:I.";{L]. (62@
B! = y(B. — BE,/c).

This is a profound result, since it indicates that the existefcglectric and magnetic fields
depends on the motion of the observer.
To understand the implications of these results, consider thencaséch E = Ey =E, =0 but one

or more components (B are non-zero (this occurs, for example, when a long, straig@toairies a
steady electric current). This means that an observer iuipemed coordinate system sees a
magnetic field but no electric field. However, transforming to the primediocwie systent.qgs. 6.19
and6.20 tell you that an observer in the primed coordinate systembsglselectric and magnetic
fields (since in this cask] = —cyfB. andE: = <vPBy). So does the magnetic field exist or not?
The answer depends on the motion of the observer.

Now consider a case in whi@) = By =B, = 0 but one or more components@fare non-zero in

the unprimed system (for example, an electric charge at rest in thenadmsystem). For this case, an
observer in the primed system does see a magnetic field amithponents®y = ¥#E:/c and
B, = —yPEy/c (this makes sense, since the observer in the primed sysesmas@oving electric
charge, which is an electric current, and electric currprdduce magnetic fields). Cases such as
these explain the reasoning behind the statement that elentticmagnetic fields “have no
independent existence.”

The problems at the end of this chapter will give you an idea afethBve magnitudes of fields
seen by an observer at rest and a second observer moving at a significant fraction of thelighéed of

6.3 The Riemann curvature tensor



In the decade after publishing his Theory of Special Relatimit$905, Albert Einstein turned his
attention to what he called a “deficiency” in classicakhamics: the lack of an explanation for the
precise equality of inertial and gravitational mass. An olgengrtial mass determines its resistance
to acceleration, and its gravitational mass determines fismes to a gravitational field. The equality
of these differently defined masses cannot be explained by calassechanics, and Einstein’s
scientific instincts told him that the resolution of this defidy could be achieved by “an extension
of the principle of relativity to spaces of reference whiah r@ot in uniform motion relative to one
another.” He applied the word “General” to this extension of his theorglativity because this new
theory would not be restricted to the non-accelerating reference frames of Sedaimity.

Early in his work on the General Theory, Einstein construat&edanken-experiment (that is, a
mental exercise) in which he imagined a group of objects witbrdift mass far away from the Earth
and from all other masses — you can think of this as a bunch of roakd farspace. The behavior of
these objects is observed from two reference systems, one o whicalled system K and is
“inertial” or non-accelerating with respect to the rocks. Bliger system, called systeni, Ks in
uniform acceleration with respect to the first. For an olesein the K system, the objects all
accelerate in the same direction (opposite to the directitimeadicceleration of the'lsystem) and at
the same rate (equal to the rate of acceleration of tgdtem). Seeing all objects accelerating in the
same direction and at the same rate, that observer wouldibayejuistified in concluding that the
acceleration of the objects is produced by an external gravithfieltahand that the Ksystem is at
rest. Einstein realized that both the K and theystems are valid frames of reference, and he termed
the complete equivalence of such systems the “principle of equivalence.”

Einstein’s next step was to overlay #@xis of K system with the-axis of the K system and then
to allow the K system to rotate about tlzeaxis with uniform angular speed (recall that a rotating
object experiences centripetal acceleration, so rotation nkdlas accelerated system). If systern K
were not rotating, the size of objects and rate of time flow measutkd K and Ksystems would be
the same. But when systemiK rotating, objects at rest irnf #ill be moving when measured in the K
system and will therefore experience length contraction and dilaéion, and the amount of
contraction and dilation will depend on the location of the objestee objects farther from the
rotation axis will have higher velocity). Since the principle of edamee demands that an
accelerated system and a system at rest in a gravitatieldahre equivalent, Einstein was forced to
conclude that length contraction and time dilation could also be prdduc gravity, or as he put it
“the gravitational field influences and even determines the icakttaws of the space-time
continuum.”

Those metrical laws are expressed using tensors, so theaG&heory of Relativity relies on
tensor formulation of physical laws and on concepts describedliaredapters, such as the metric
tensor, Christoffel symbols, and covariant derivatives. The mopbriant tensor in General
Relativity is the Riemann curvature tensor, sometimes ctile®Riemann—Christoffel tensor after the
nineteenth-century German mathematicians Bernhard Riemann laid Bruno Christoffel. The
importance of this tensor stems from the fact that non-zero comgarenthe hallmark of curvature;
the vanishing of the Riemann tensor is both a necessary andcestiffondition for Euclidean (flat)
space.

Most texts use one of two ways to derive the Riemann curvatuserteparallel transport or the
commutator of the covariant derivative. To understand the panraiegort approach, you should
first understand that “parallel transport” refers to a mettfoehoving a vector around a space while
keeping the length and direction of the vector the same. Indzartflat space, making sure the
vector’s magnitude and direction don’t change is straightforward t-njese the vector around
without allowing thex-, y-, or z components to change. If the components don’t change, then the
length and the direction of the vector don’t change, and this satigfe requirements of parallel



transport.

In curved spaced, the situation is more complex. For one thing, ‘mpimithe same direction”
becomes more difficult to define. Consider the two-dimensional gpatés the surface of the Earth
(and pretend for the moment that it's perfectly smooth). Imagine a vector thaityiait the equator
(say a bit north of Quito, Ecuador) and is pointing due north, dirattlyg the meridian line. Now
imagine transporting that vector toward the north pole, all theewhdking sure it remains pointed
exactly along the meridian line. Remember, the entire sgate isurface of the Earth, so the vector
must remain tangent to the surface (that is, locally hori2oasayou move it. If you continue moving
your vector along the meridian line and pass over the North Polthanddown” the other side of
the Earth, you will eventually reach the equator again somewlearethe middle of Indonesia. Your
vector will still be pointing along the meridian, but now it will peinting south. So although you've
kept your vector pointing “in the same direction” (that is, alongrkedian) over the entire trip, it's
gone from pointing north to pointing south.

Now imagine making another trip, also starting with a north-pointiecior at the equator near
Quito, but this time moving along the equator instead of over the Nhai#n Once again, as you
move you make sure that your vector continues to point north (along thenkeadian). After a long
journey, you arrive in the middle of Indonesia, but this time you fivad your vector is pointing
north. Hence the direction of the vector at the end of the journeyndeman the path taken, even
though you used parallel transport in each case. And whenevegstlle of parallel transport is a
change in the direction of a vector, you can be sure you're dealing with a curved space.

This raises a larger issue: it's not possible to add, subtnadtiply, or in any way compare vectors
at different locations — you have to transport one of the vectoh® ttocation of the other before you
can perform such operations. That's no problem in flat spacausecou can parallel-transport a
vector to any other location simply by keeping its coefficiemtsstant (ensuring that the vector’s
length is constant and that it remains pointed in the samaidimedBut while “pointed in the same
direction” is easily defined at different locations in flglase, you've just seen that this phrase is
problematic in curved space. Hence a more-general definition of parallel trassgegpired.

In that definition, “parallel transport” is defined as transportwhich the covariant derivative is
zero. Remember that the covariant derivative is the combinatiorodetwms, the first of which is the
usual partial derivative, and the second of which involves a Chliels®fmbol. As described in
Section 5.7in Chapter 5 the purpose of that second term is to account for changes in gise ba
vectors. Holding the covariant derivative at zero while transpodingctor around a small loop is
one way to derive the Riemann tenSor.

The Riemann curvature tensor falls naturally out of the commuaatbe covariant derivative of a
vector. In this usage, “commutator” refers to the differerta tresults from performing two
operations first in one order and then in the reverse ordef. @ ioperator is denoted by A and
another operator by B, the commutator is defined as [AB] = AB-BWAs if the sequence of the two
operations has no impact on the result, the commutator has a value of zero.

To get to the Riemann tensor, the operation of choice is covdifeerentiation. That's because in
a flat space the order of covariant differentiation makes nerdifte, so the commutator must yield
zero. Any non-zero result of applying the commutator to covariargrdiffiation can therefore be
attributed to the curvature of the space.

To begin this process, take the covariant derivative of v&tatﬁrst with respect to”:

) iV ] 6.2
Va;g = ﬁ = l"gﬁ; Vo (6.2

Now call this result/aﬁ and take another covariant derivative (this time with respeg}:to



P d 1’,_1-','_5; 5 I (622)
Vo= P Cay Via — Ty, Vo
Substituting the expression frdag. 6.21into this equation gives
av are, Vv,
1."':2.#"-.}‘,. — ca i 1"2; rgﬁi_c
! axvaxB  ax? axv (6.23

. aV;
—Tay | 538 — T%
VW
] '5 ooy
~ Ty (:H" 1",:,”10) '

It's not easy to see the physical significance in this exmmesbut remember how you got here:
first by finding the incremental change ¥ as you take a small step in thé-direction, and then

finding the change in that quantity as you take a small step i tbd&ection. And now you’re going
to compare the result of these two operations with the resulggbuwhen you take the steps in
reverse order — from the same starting point, you'll first findrbeemental change M as you take

a small step in the’ -direction, after which you’ll find the change in that quantityas take a small
step in the<’-direction.
To take the covariant derivatives in the opposite order, differentiate first wghateta}’ :

Ve Ty, (6.29

oy ax¥ oy

Call this result\/ay and take another covariant derivative (this time with respecdto

; d Vay R Wit (6.25)
Voy:p = axP FopVey = TypVen.
As before, you can substitute the expression fEgm6.24into this equation to get
v atv,. arg, v _po Ve
VBT axBaxy  axB ° Y ox# (6.26

aV
T g oopr
~ lap (Ei,rlf' ~ILey LU)

N (w G5y )

".}!l'" o (,r.

In flat space, the order of covariant differentiation should make no differengeg, $a26should be
identical toEq. 6.23 Any differences between these equations can therefore bmutetdr to the
curvature of the space. Examining these two equations term by term, the first teagaalr

a2V, atv,

axvaxP — axfaxv’

(these terms are equal because the order of normal partialtdlesvdoes not matter). Hence these
terms cancel in the commutator. Now comparing the second terms,



N T [ or
L!ruﬁ 'F’ = -'_.I'ra-:‘_.
ax¥ ° 7  gxhP

so these terms do not cancel one another. Comparing the thirdft&uon 6.23to the fourth term of
Eq. 6.26 they’re found to be equal:

. BVy )

wpayy T aPgxr’

because the symbols used for dummy indieeandz) are irrelevant. The fourth term &q. 6.23
equals the third term d&q. 6.26

r Ve, Vs
“Y ax8 ay axh’

for the same reason. The fifth terms are not equal:
1";}, ;’ﬁ Wi F;ﬁ]";’},_ |
But the sixth terms are equal:

n #Va g Ve

By Sxh - i AxW '

because Christoffel symbols are symmetric in their lower isditke seventh terms are equal for the
same reason:

B =S T,

So when the commutator AB—BA is formed, most of the terms tantebut the second and fifth
terms remain after subtraction. Those terms are

v v Wap,, , ey § i sl ,
atiy = Vayip = =7 Vo + g Vo + Tay g Vo = TopTey Ve (6.27)

g, Ty £ Y,

= ':.-]'.i-ﬁ - .:_I'_ + r T,B r&ﬁ rr}, 1.-"0.

The terms within the parentheses define the Riemann curvature tensor:
ary E?F (6.28)
cr _ oy & . o
R lﬁ:‘ﬁ}»‘ = “}5.-'6 - .'_J-k.-"' +r T,ﬁ —rmgrr},.

If you're wondering why the curvature tensor involves the derivative ofstoffel symbols,
consider this: in any space, you can always define a coordindgemsysr which the Christoffel
symbols are all zero at some point. But unless the spacd, ith#aChristoffel symbols will not be
zero at all other locations, which means that the partiatateres of the Christoffel symbols will not
be zero. So a necessary and sufficient condition for flat space is that

RS, = 0. (6.29)



Another tensor related to the Riemann curvature tensor is tloe tBinsor, which you can find by
contracting the Riemann tensor alongédtendg indices. In four dimensions, this is

Ruyy= RS =R +R +Ry +RS (6.30)

ooy L7t'-'|-]r"'

If you contract the Ricci tensor by raising one index and setting it equal to the other, this thsul
Ricci scalar. Again in four dimensions, this is

R=g""Rayy =R, =R+ R+ R} + Rj. (6.31)

Finally, the tensor known as the “Einstein tensor” can beemritts a combination of the Ricci
tensor, the Ricci scalar, and the metric:

- I 6.32
(—"'II]" - RIJ'_}" — ;RR’D’}"" ( )

This is the tensor that appears in Einstein’s field equation for General Rglatiten written as

B
Guy + Ty = T—.Tw“ (6.33)

where Tﬂv is the energy-momentum tensor afidis the “cosmological constant” introduced by

Einstein to maintain a static Universe. It is this equatt@t gives rise to the first half of the concise
statement of General Relativity: “Matter tells spacetimw to curve, and spacetime tells matter how
to move.”

To appreciate the full content of the Riemann tensor, considen-ditnensional space that is the
surface of a sphere. The metric for such a space is

ds? = a?d6? + a? sinf(6)dA?,
from which the components of the metric tensor may be found to be
8o = a’,

8op = 8¢e = 0, (6.34)

L B | 3
Lop = A sin" ().

Inserting these values into the equation for Christoffel symbols gives

B P dp Ig:
rf, = —g¥ 8ik | °8jk _ O i- .
N 2 dad o x! ax

Even in two dimensions, writing out all the terms of the Cbiffisk symbols can be something of a
chore:
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But given the metric tensor components showikdn 6.34 all the partial derivatives except those
involving E‘%ﬁ are zero, as are any terms involvigg\ or gy, That leaves only three non-zero

Christoffel symbols, which are

b L\ o0 88o¢
Fos = (_)*’3 a6
1 1 v L ~ cosi(d) ;
== )| ————1I[2a"sin(f)cos(f)] = —— = cot(f),
20 a=sin<(8) sIn(E)
d ] @@E}?qﬁqﬁ
= ()5
= cot{f),
I dge
f g Y5dd
g
=% A y . ) .
= — (5) — [2a“ sin(F) cos(#)] = — sin(F) cos(F).
2] a°

With the Christoffel symbols for the spherical surface in hahd, domponents of the Riemann
curvature tensor may be found using

o i?l_'g}, -i?l_' . z
R sy = 3P ax’ +rm’ 1 Fﬁ]"

As in most tensor equations, the full content of this tensor canbenfppreciated by writing out the
components. Not only must you allow each of the indices 8, andy to represent both and A, you
must also allow the dummy indexto represent both and A and then sum those terms. Hence in
two-dimensional space, the last two terms of the Riemann tewga@tion (those involving the
products of the Christoffel symbols) become four terms, making baiotax terms for each set of
indices. The first eight components of the Riemann tensor can be ligusettings equal tod and



letting the other indices represent bétand A:

arg., org
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Inserting the Christoffel symbols found above, you can see that the non-zero components are

:_}l"m.,

& @ e
. Jrﬂ
Riyge = ——22 + TgeTgy.
And since
l'.”_'lSl " ]
Lok = sin“(8) — cos“ (&),
and

i 20
1" ]"M = —cos°(0),
this means the surviving terms from the 6 group are

R%a@ = [sin?(8) — cos?(8)] — [— cos?(8)] = sin®(8),

REME = —[sin%(8) — cos?(8)] 4 [— cos(A)] = —sin?(8).

Now allowinge to equal A, the other eight terms are
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Again inserting the Christoffel symbols, the non-zero terms are found to be

" Mo . &
Rggy = 20 T aalpa
o el
i
¢ “log ¢
And since
B¢ sin(e)  cos<(6) o
— = = = — = —[1+4 cot™{P)],
ls) sl e SI<(E)
and

]";.?‘;_l“gtg — cot®(8),
the surviving terms are
R4 = —[1 +cot2(0)] + cot?(@) = —1,
R0 = [1 + co?(8)] — cot?(8) = 1.

As expected, a two-dimensional space with the metric of a sfd#re a’dd” + a’ sirf(6)dA?) has
non-zero components of the Riemann curvature tensor, confirming that this space is nomufzuclide

You can see how to use these results to find the Ricci temsbthe Ricci scalar in the on-line
solutions to the problems at the end of this chapter.



6.4 Chapter 6 problems

6.1 Find the inertia tensor for a cubical arrangement of eight edéntiasses with the origin of
coordinates at one of the corners and the coordinate axes along the edges of the cube.

6.2 How would the moment of inertia tensor of Problem 6.1 change if otfee afight masses is
removed?

6.3 Find the moment of inertia tensor for the arrangement of maks§¥sblem 6.2 if the coordinate
system is rotated by 20 degrees about one of the coordinate axiss (o finding the locations
of the masses in the rotated coordinate system).

6.4 Use the similarity-transform approach to verify the momemeastia tensor you found in Problem
6.3.

6.5 Show how the vector wave equation results from taking the curl lofsies of Faraday’s Law
and inserting the curl of the magnetic field from the Ampere—Maxwell Law.

6.6 If an observer in one coordinate system measures an efedttiof 5 volts per meter in the
z-direction and zero magnetic field, what electric and magrietids would be measured by a
second observer moving at 1/4 the speed of light along dxes?

6.7 If an observer in one coordinate system measures a maggldtiofflL.5 teslainthe-direction and
zero electric field, what electric and magnetic fields Wooé measured by a second observer
moving at 1/4 the speed of light along thaxis?

6.8 Show thaf g is invariant under Lorentz transformation.

6.9 The differential line element in 2-D Euclidean space magxbeessed in polar coordinatesdas
= dr? + r’d¢®. Show that the Riemann curvature tensor equals zero in teisasi must for any
flat space.

6.10 Find the Ricci tensor and scalar for the 2-sphegediion 6.3

L Or, if you prefer the more-general form of Newton's Second (;L: __dp), the analogous rotational relationship is
T odt

- ir -

T=ar

2 The matrix review on the book’s website explains how to do these calculations.

3 Complete descriptions may be found in any introductory electromagnetics text.

“If you'd like to see the details of the derivation of the etenagnetic-wave equation, you'll find them in the on-line
solutions to the problems at the end of this chapter.

® These equations assume that the origins of the two coordinate systems coincide=adtime

® You should be aware that there are almost as many versionis ofidtrix as there are authors; this book’s website has an
explanation of the reasons for the differences between the versions found in severaktg@cgular

" A. Einstein,The Meaning of Relativity

8 You can find the details in Schutx First Course in General Relativitfambridge University Press, 2009.
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