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PREFACE

This, the seventh edition of Mathematical Methods for Physicists, maintains the tradition
set by the six previous editions and continues to have as its objective the presentation of all
the mathematical methods that aspiring scientists and engineers are likely to encounter as
students and beginning researchers. While the organization of this edition differs in some
respects from that of its predecessors, the presentation style remains the same: Proofs are
sketched for almost all the mathematical relations introduced in the book, and they are
accompanied by examples that illustrate how the mathematics applies to real-world physics
problems. Large numbers of exercises provide opportunities for the student to develop skill
in the use of the mathematical concepts and also show a wide variety of contexts in which
the mathematics is of practical use in physics.

As in the previous editions, the mathematical proofs are not what a mathematician would
consider rigorous, but they nevertheless convey the essence of the ideas involved, and also
provide some understanding of the conditions and limitations associated with the rela-
tionships under study. No attempt has been made to maximize generality or minimize the
conditions necessary to establish the mathematical formulas, but in general the reader is
warned of limitations that are likely to be relevant to use of the mathematics in physics
contexts.

TO THE STUDENT

The mathematics presented in this book is of no use if it cannot be applied with some skill,
and the development of that skill cannot be acquired passively, e.g., by simply reading the
text and understanding what is written, or even by listening attentively to presentations
by your instructor. Your passive understanding needs to be supplemented by experience
in using the concepts, in deciding how to convert expressions into useful forms, and in
developing strategies for solving problems. A considerable body of background knowledge

xi
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Preface

needs to be built up so as to have relevant mathematical tools at hand and to gain experi-
ence in their use. This can only happen through the solving of problems, and it is for this
reason that the text includes nearly 1400 exercises, many with answers (but not methods
of solution). If you are using this book for self-study, or if your instructor does not assign
a considerable number of problems, you would be well advised to work on the exercises
until you are able to solve a reasonable fraction of them.

This book can help you to learn about mathematical methods that are important in
physics, as well as serve as a reference throughout and beyond your time as a student.
It has been updated to make it relevant for many years to come.

WHAT’S NEW

This seventh edition is a substantial and detailed revision of its predecessor; every word of
the text has been examined and its appropriacy and that of its placement has been consid-
ered. The main features of the revision are: (1) An improved order of topics so as to reduce
the need to use concepts before they have been presented and discussed. (2) An introduc-
tory chapter containing material that well-prepared students might be presumed to know
and which will be relied on (without much comment) in later chapters, thereby reducing
redundancy in the text; this organizational feature also permits students with weaker back-
grounds to get themselves ready for the rest of the book. (3) A strengthened presentation of
topics whose importance and relevance has increased in recent years; in this category are
the chapters on vector spaces, Green’s functions, and angular momentum, and the inclu-
sion of the dilogarithm among the special functions treated. (4) More detailed discussion
of complex integration to enable the development of increased skill in using this extremely
important tool. (5) Improvement in the correlation of exercises with the exposition in the
text, and the addition of 271 new exercises where they were deemed needed. (6) Addition
of a few steps to derivations that students found difficult to follow. We do not subscribe
to the precept that “advanced” means “compressed” or “difficult.” Wherever the need has
been recognized, material has been rewritten to enhance clarity and ease of understanding.

In order to accommodate new and expanded features, it was necessary to remove or
reduce in emphasis some topics with significant constituencies. For the most part, the
material thereby deleted remains available to instructors and their students by virtue of
its inclusion in the on-line supplementary material for this text. On-line only are chapters
on Mathieu functions, on nonlinear methods and chaos, and a new chapter on periodic sys-
tems. These are complete and newly revised chapters, with examples and exercises, and
are fully ready for use by students and their instuctors. Because there seems to be a sig-
nificant population of instructors who wish to use material on infinite series in much the
same organizational pattern as in the sixth edition, that material (largely the same as in
the print edition, but not all in one place) has been collected into an on-line infinite series
chapter that provides this material in a single unit. The on-line material can be accessed at
www.elsevierdirect.com.
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PATHWAYS THROUGH THE MATERIAL

This book contains more material than an instructor can expect to cover, even in a
two-semester course. The material not used for instruction remains available for reference
purposes or when needed for specific projects. For use with less fully prepared students,
a typical semester course might use Chapters 1 to 3, maybe part of Chapter 4, certainly
Chapters 5 to 7, and at least part of Chapter 11. A standard graduate one-semester course
might have the material in Chapters 1 to 3 as prerequisite, would cover at least part of
Chapter 4, all of Chapters 5 through 9, Chapter 11, and as much of Chapters 12 through
16 and/or 18 as time permits. A full-year course at the graduate level might supplement
the foregoing with several additional chapters, almost certainly including Chapter 20 (and
Chapter 19 if not already familiar to the students), with the actual choice dependent on
the institution’s overall graduate curriculum. Once Chapters 1 to 3, 5 to 9, and 11 have
been covered or their contents are known to the students, most selections from the remain-
ing chapters should be reasonably accessible to students. It would be wise, however, to
include Chapters 15 and 16 if Chapter 17 is selected.
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CHAPTER 1

MATHEMATICAL
PRELIMINARIES

This introductory chapter surveys a number of mathematical techniques that are needed
throughout the book. Some of the topics (e.g., complex variables) are treated in more detail
in later chapters, and the short survey of special functions in this chapter is supplemented
by extensive later discussion of those of particular importance in physics (e.g., Bessel func-
tions). A later chapter on miscellaneous mathematical topics deals with material requiring
more background than is assumed at this point. The reader may note that the Additional
Readings at the end of this chapter include a number of general references on mathemati-
cal methods, some of which are more advanced or comprehensive than the material to be
found in this book.

1.1 INFINITE SERIES

Perhaps the most widely used technique in the physicist’s toolbox is the use of infinite
series (i.e., sums consisting formally of an infinite number of terms) to represent functions,
to bring them to forms facilitating further analysis, or even as a prelude to numerical eval-
uation. The acquisition of skill in creating and manipulating series expansions is therefore
an absolutely essential part of the training of one who seeks competence in the mathemat-
ical methods of physics, and it is therefore the first topic in this text. An important part of
this skill set is the ability to recognize the functions represented by commonly encountered
expansions, and it is also of importance to understand issues related to the convergence of
infinite series.

Mathematical Methods for Physicists.
© 2013 Elsevier Inc. All rights reserved.
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Fundamental Concepts

The usual way of assigning a meaning to the sum of an infinite number of terms is by
introducing the notion of partial sums. If we have an infinite sequence of terms u1, us, u3,
u4, us, ..., we define the ith partial sum as

i
Si= Y . (1.1)
n=1

This is a finite summation and offers no difficulties. If the partial sums s; converge to a
finite limit as i — o0,
lim s; =S, (1.2)
11— 00
the infinite series > .- ; u, is said to be convergent and to have the value S. Note that
we define the infinite series as equal to S and that a necessary condition for convergence
to a limit is that lim,_, o, u, = 0. This condition, however, is not sufficient to guarantee
convergence.

Sometimes it is convenient to apply the condition in Eq. (1.2) in a form called the
Cauchy criterion, namely that for each ¢ > 0 there is a fixed number N such that
|s; —s;| < e forall i and j greater than N. This means that the partial sums must cluster
together as we move far out in the sequence.

Some series diverge, meaning that the sequence of partial sums approaches +00; others
may have partial sums that oscillate between two values, as for example,

oo

Dup=1—141—T41—o=(=D"+-.

n=1
This series does not converge to a limit, and can be called oscillatory. Often the term
divergent is extended to include oscillatory series as well. It is important to be able to
determine whether, or under what conditions, a series we would like to use is convergent.

Example 1.1.1  THE GEOMETRIC SERIES

The geometric series, starting with ug = 1 and with a ratio of successive terms r =
Up+41/Un, has the form
Lbr4rr+
Its nth partial sum s, (that of the first n terms) is'
1—r"

= . 1.3
Sn 11— (1.3)

Restricting attention to |r| < 1, so that for large n, r" approaches zero, and s,, possesses
the limit

1
lim s, = ] , (1.4)

n— 00 —r

"Multiply and divide s, = 37—} 7" by 1 —r.
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showing that for |r| < 1, the geometric series converges. It clearly diverges (or is oscilla-
tory) for || > 1, as the individual terms do not then approach zero at large n. ]

Example 1.1.2  THE HARMONIC SERIES

As a second and more involved example, we consider the harmonic series

i1—1+1+1+1+ +1+ (1.5)
nz]n_ 2 3 4 n ' ‘

The terms approach zero for large n, i.e., lim,_, o 1/n = 0, but this is not sufficient to
guarantee convergence. If we group the terms (without changing their order) as

1+1+1+1 +1+1+1+1 +1+ +1 +
2 3 4 5 6 7 8 9 16 ’
each pair of parentheses encloses p terms of the form

1 N 1 by 1 p 1
p+1 p+2 p+p 2p 2

Forming partial sums by adding the parenthetical groups one by one, we obtain

1 3 4 5 n+1
s1=1, so==, s3> =, S4>—,..., S > ,
1 2 ) 3 ) 4 ) n )

and we are forced to the conclusion that the harmonic series diverges.

Although the harmonic series diverges, its partial sums have relevance among other
places in number theory, where H, =Y ,,_, m~! are sometimes referred to as harmonic
numbers. ]

We now turn to a more detailed study of the convergence and divergence of series,
considering here series of positive terms. Series with terms of both signs are treated later.

Comparison Test

If term by term a series of terms u,, satisfies 0 < u, < a,, where the a,, form a convergent
series, then the series ), u, is also convergent. Letting s; and s; be partial sums of the

u series, with j > i, the difference s; — s; is Zfl:i 41 Un; and this is smaller than the
corresponding quantity for the a series, thereby proving convergence. A similar argument
shows that if term by term a series of terms v, satisfies 0 < b, < v,, where the b,, form a
divergent series, then ), v, is also divergent.

For the convergent series a,, we already have the geometric series, whereas the harmonic
series will serve as the divergent comparison series b,. As other series are identified as
either convergent or divergent, they may also be used as the known series for comparison
tests.
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Example 1.1.3 A DIVERGENT SERIES

—0.999 _ ,—

Test Z;’zozl n—P, p =0.999, for convergence. Since n Uand b, = n~! forms

the divergent harmonic series, the comparison test shows that )", n=09 is divergent.
Generalizing, ), n~? is seen to be divergent for all p < 1. |
Cauchy Root Test

If (a,,)l/ " <r <1 for all sufficiently large n, with r independent of n, then ), a, is
convergent. If (an)l/ " > 1 for all sufficiently large n, then Zn ay is divergent.

The language of this test emphasizes an important point: The convergence or divergence
of a series depends entirely on what happens for large n. Relative to convergence, it is the
behavior in the large-n limit that matters.

The first part of this test is verified easily by raising (a,)'/” to the nth power. We get

a, <r" < 1.

Since r” is just the nth term in a convergent geometric series,  , a, is convergent by the
comparison test. Conversely, if (an)Y/" > 1, then a,, > 1 and the series must diverge. This
root test is particularly useful in establishing the properties of power series (Section 1.2).

D’Alembert (or Cauchy) Ratio Test

If ayt1/a, < r <1 for all sufficiently large n and r is independent of n, then ), a, is
convergent. If a,1/a, > 1 for all sufficiently large n, then Zn ay is divergent.

This test is established by direct comparison with the geometric series (1 +74r%+---).
In the second part, a,,4+1 > a, and divergence should be reasonably obvious. Although not
quite as sensitive as the Cauchy root test, this D’ Alembert ratio test is one of the easiest to

apply and is widely used. An alternate statement of the ratio test is in the form of a limit: If

<1, convergence,
. an+1
lim

n—oo a,

> 1, divergence, (1.6)
=1, indeterminate.

Because of this final indeterminate possibility, the ratio test is likely to fail at crucial points,
and more delicate, sensitive tests then become necessary. The alert reader may wonder how
this indeterminacy arose. Actually it was concealed in the first statement, a,+(/a, <r <
1. We might encounter a,41/a, < 1 for all finite n but be unable to choose an r < 1
and independent of n such that a,11/a, <r for all sufficiently large n. An example is
provided by the harmonic series, for which

an+1 n
= < 1.
a, n+1
Since
. Adnp+l
lim = =1,

n—oo  ay,

no fixed ratio r < 1 exists and the test fails.
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Example 1.1.4  D’ALEMBERT RATIO TEST

Test ), n/2" for convergence. Applying the ratio test,

a1 (n4+1/2"0 1 n+1
a, n/2n 2 0

Since

we have convergence. |

Cauchy (or Maclaurin) Integral Test

This is another sort of comparison test, in which we compare a series with an integral.
Geometrically, we compare the area of a series of unit-width rectangles with the area under
a curve.

Let f(x) be a continuous, monotonic decreasing function in which f(n) = a,. Then
Zn a, converges if f 100 f(x)dx is finite and diverges if the integral is infinite. The ith
partial sum is

si=) an=) f(n).
n=1 n=1

But, because f(x) is monotonic decreasing, see Fig. 1.1(a),

si > / fx)dx.
1

On the other hand, as shown in Fig. 1.1(b),

si—a S/f(x)dx.
1

Taking the limit as i — oo, we have

/f(x)dx52an§/f(x)dx+a1. (1.7)
1 n=1 1

Hence the infinite series converges or diverges as the corresponding integral converges or
diverges.

This integral test is particularly useful in setting upper and lower bounds on the remain-
der of a series after some number of initial terms have been summed. That is,

oo N 00
Zan=Zan+ Z a,, (1.8)
n=1

n=1 n=N+1
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A A

f(x) f(1)=ay f(x) f(1)=ay

(a) (b)

FIGURE 1.1 (a) Comparison of integral and sum-blocks leading. (b) Comparison of
integral and sum-blocks lagging.

and

o0 o0 o
/ fdx< > ap< / fx)dx +ayq. (1.9)
N+1 n=N+l N3
To free the integral test from the quite restrictive requirement that the interpolating func-

tion f(x) be positive and monotonic, we shall show that for any function f(x) with a
continuous derivative, the infinite series is exactly represented as a sum of two integrals:

N, N> N>
> fw= [ o+ [- s (1.10)
n=N1+1 N N

Here [x] is the integral part of x, i.e., the largest integer < x, so x — [x] varies sawtoothlike
between 0 and 1. Equation (1.10) is useful because if both integrals in Eq. (1.10) converge,
the infinite series also converges, while if one integral converges and the other does not,
the infinite series diverges. If both integrals diverge, the test fails unless it can be shown
whether the divergences of the integrals cancel against each other.

We need now to establish Eq. (1.10). We manipulate the contributions to the second
integral as follows:

1. Using integration by parts, we observe that

Ny N

/Xf’(X)dx =Nof(N2) = N1 f(N) — [ f(x)dx.

Ny N

2. We evaluate
N2 Nr—1 n+1 Nr—1
[irwar= Y u [ redx= Yl so+ - gon]
Ny n=N1 5 n=Ni
N
== > f) = Nif(ND) + Nof(No).
n=N1+1

Subtracting the second of these equations from the first, we arrive at Eq. (1.10).
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An alternative to Eq. (1.10) in which the second integral has its sawtooth shifted to be

symmetrical about zero (and therefore perhaps smaller) can be derived by methods similar
to those used above. The resulting formula is

n=N1+1

N, N> N>
> fw= [ sodrt [a-tx-breods
N1 N1 (111)

+ 4] rav = ran].

Because they do not use a monotonicity requirement, Eqs. (1.10) and (1.11) can be
applied to alternating series, and even those with irregular sign sequences.

Example 1.1.5  RIEMANN ZETA FUNCTION

The Riemann zeta function is defined by
o0
tpy=y n’, (1.12)
n=1

providing the series converges. We may take f(x) = x~7, and then

]

forsemf
xPdx = , p#I,
| _p+l x=1
o0
=Inx i p=1.

The integral and therefore the series are divergent for p < 1, and convergent for p > 1.
Hence Eq. (1.12) should carry the condition p > 1. This, incidentally, is an independent
proof'that the harmonic series (p = 1) diverges logarithmically. The sum of the first million

terms Y 1090000 =1 i5 only 14.392726- - - . |

While the harmonic series diverges, the combination

n
_ 1 -1 _
y = lim (Zm lnn> (1.13)

m=1

converges, approaching a limit known as the Euler-Mascheroni constant.

Example 1.1.6 A SLOWLY DIVERGING SERIES

Consider now the series
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We form the integral

o0 o0
1 00
f dx = =Inlnx ,
xInx Inx x=2
2

x=2

which diverges, indicating that S is divergent. Note that the lower limit of the integral is
in fact unimportant so long as it does not introduce any spurious singularities, as it is the
large-x behavior that determines the convergence. Because nInn > n, the divergence is
slower than that of the harmonic series. But because Inn increases more slowly than n?,
where ¢ can have an arbitrarily small positive value, we have divergence even though the
series Y, n~1+®) converges. [ |

More Sensitive Tests
Several tests more sensitive than those already examined are consequences of a theorem
by Kummer. Kummer’s theorem, which deals with two series of finite positive terms, u,,

and a,,, states:

1. The series ), u, converges if

lim (a,, n —am) >C >0, (1.14)

n—oo un+1
where C is a constant. This statement is equivalent to a simple comparison test if the
series Y, a, ! converges, and imparts new information only if that sum diverges. The
more weakly )" a, I diverges, the more powerful the Kummer test will be.

2. IfY, a;! diverges and

lim (an n —a,m) <0, (1.15)

n—o0 un+1
then ), u, diverges.
The proof of this powerful test is remarkably simple. Part 2 follows immediately from

the comparison test. To prove Part 1, write cases of Eq. (1.14) for n = N + 1 through any
larger n, in the following form:

uyy1 < (ayuy —ayyiuny1)/C,

uyy2 < (@ns1un41 —an2un+2)/C,

up < (@p—1up—1 — apu,)/C.
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Adding, we get

n
PR e (1.16)
i=N+1
aNun
. 1.17
< (1.17)

This shows that the tail of the series ) _, u, is bounded, and that series is therefore proved
convergent when Eq. (1.14) is satisfied for all sufficiently large n.

Gauss’ test is an application of Kummer’s theorem to series u, > 0 when the ratios of
successive u, approach unity and the tests previously discussed yield indeterminate results.
If for large n

(1.18)

Un+1 n n
where B(n) is bounded for n sufficiently large, then the Gauss test states that ) u, con-
verges for & > 1 and diverges for 4 < 1: There is no indeterminate case here.

The Gauss test is extremely sensitive, and will work for all troublesome series the physi-
cist is likely to encounter. To confirm it using Kummer’s theorem, we take a, = nlnn. The
series Y, a, ! is weakly divergent, as already established in Example 1.1.6.

Taking the limit on the left side of Eq. (1.14), we have

B
lim |:n1nn (1 L Bm
n

n— 00 n2

) —(n+DlInn+ 1)i|

B(n)Inn
n

lim_ [(n+1)lnn+(h—1)lnn+ —(n~|—1)ln(n~|—1):|

:nli)rgol:—(n+l)ln<n:1>+(h—1)lnn:|. (1.19)

For h < 1, both terms of Eq. (1.19) are negative, thereby signaling a divergent case of
Kummer’s theorem; for # > 1, the second term of Eq. (1.19) dominates the first and is pos-
itive, indicating convergence. At & = 1, the second term vanishes, and the first is inherently
negative, thereby indicating divergence.

Example 1.1.7  LEGENDRE SERIES

The series solution for the Legendre equation (encountered in Chapter 7) has successive
terms whose ratio under certain conditions is

@jy2 _ 2j2j+1D—2
aj  Q2j+DQj+2)
To place this in the form now being used, we define u ; = a>; and write
uj _2i+DHEj+2)
Ujt] 2j2j+ 1) —r"
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In the limit of large j, the constant A becomes negligible (in the language of the Gauss test,
it contributes to an extent B(j)/j2, where B(j) is bounded). We therefore have
uj 2j4+2  B( B
N g)=1+—+—(’) (1.20)
Ujt 2j J i

The Gauss test tells us that this series is divergent. |

Exercises

1.11

1.1.2

1.1.3

1.1.5

(a) Prove that if lim,_, oo n”u, = A < 00, p > 1, the series > - | u, converges.

(b) Prove that if lim,,_, o nu, = A > 0, the series diverges. (The test fails for A =0.)
These two tests, known as limit tests, are often convenient for establishing the
convergence of a series. They may be treated as comparison tests, comparing with

Zn_q, 1<qg<p.
n

If lim;,_ oo % = K, a constant with 0 < K < oo, show that ¥, b,, converges or diverges
with Xa,,.

b
Hint. If ¥a, converges, rescale b, to b;; = i If ¥,,a, diverges, rescale to b;,/ =

(a) Show that the series > o, w2 converges.

n (ln

(b) By direct addition ZIOO 000[n(ln n)21~1 =2.02288. Use Eq. (1.9) to make a five-
significant-figure estimate of the sum of this series.

Gauss’ test is often given in the form of a test of the ratio

Uy _n2+a1n+a0
Upt1 n?+bin+by

For what values of the parameters a; and b; is there convergence? divergence?

ANS. Convergent for aj — by > 1,
divergent fora; — b; < 1.

Test for convergence
[ee)

@ Y (nm)~! @ Y [n+ 112
= n=1

b >, n! > 1

o i © X5

© 2:: 2n(2n T
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1.1.6 Test for convergence
N | = 1
—_— d In{1+4+—
(@ Zn(n+l) @ Zn( +n)
n=1 n=1
= 1 = 1
b -
®) ,;2”1“” © ;n-nl/”

o0

© Y

n=1

1.1.7 For what values of p and g will ) - converge?

0 1
n=2 nP(Inn)

p>1, allg, p<1, allg,
ANS. Convergent for divergent for
p:l, q>1s p=1, qSl
1.1.8 Given Ziﬁ?o n~!=7.485470... set upper and lower bounds on the Euler-Mascheroni
constant.
ANS. 0.5767 <y < 0.5778.
1.1.9 (From Olbers’ paradox.) Assume a static universe in which the stars are uniformly

distributed. Divide all space into shells of constant thickness; the stars in any one shell
by themselves subtend a solid angle of wg. Allowing for the blocking out of distant
stars by nearer stars, show that the total net solid angle subtended by all stars, shells
extending to infinity, is exactly 4m. [Therefore the night sky should be ablaze with
light. For more details, see E. Harrison, Darkness at Night: A Riddle of the Universe.
Cambridge, MA: Harvard University Press (1987).]

1.1.10  Test for convergence

i 1-:3.5---(2n—1) 2_1+9+25 N
2:4-6---(2n) T4 64 256 '

n=1

Alternating Series

In previous subsections we limited ourselves to series of positive terms. Now, in contrast,
we consider infinite series in which the signs alternate. The partial cancellation due to
alternating signs makes convergence more rapid and much easier to identify. We shall
prove the Leibniz criterion, a general condition for the convergence of an alternating series.
For series with more irregular sign changes, the integral test of Eq. (1.10) is often helpful.

The Leibniz criterion applies to series of the form Y 02 | (—1)"*!a, with a, > 0, and
states that if a,, is monotonically decreasing (for sufficiently large n) and lim,,_, oo @, =0,
then the series converges. To prove this theorem, note that the remainder Ry, of the series
beyond sy, the partial sum after 2n terms, can be written in two alternate ways:

Ry = (aony1 — azny2) + (@2n43 — azpi4) + - -

= a1 — (@42 — a2n43) — (@2n44 — A2pqs5) — -+ .



12

Chapter 1 Mathematical Preliminaries

Since the a, are decreasing, the first of these equations implies Ry, > 0, while the second
implies Ry, < az,+1, SO

0 < Ry < azpy1.

Thus, Ry, is positive but bounded, and the bound can be made arbitrarily small by taking
larger values of n. This demonstration also shows that the error from truncating an alter-
nating series after ap, results in an error that is negative (the omitted terms were shown to
combine to a positive result) and bounded in magnitude by as,+1. An argument similar to
that made above for the remainder after an odd number of terms, Ry, would show that
the error from truncation after as, 4 is positive and bounded by az;,+2. Thus, it is generally
true that the error in truncating an alternating series with monotonically decreasing terms
is of the same sign as the last term kept and smaller than the first term dropped.

The Leibniz criterion depends for its applicability on the presence of strict sign
alternation. Less regular sign changes present more challenging problems for convergence
determination.

Example 1.1.8  SERIES WITH IRREGULAR SIGN CHANGES

For 0 < x < 2, the series

S=Z@=—m(2m%‘) (121

n=1

converges, having coefficients that change sign often, but not so that the Leibniz criterion
applies easily. To verify the convergence, we apply the integral test of Eq. (1.10), inserting
the explicit form for the derivative of cos(nx)/n (with respect to n) in the second integral:

S:/COS(”X)d +/(n_[n]) [—£SIH(HX)—w1| dn (122)
n n n
1

1
Using integration by parts, the first integral in Eq. (1.22) is rearranged to

[ cos(nx) in(nx)1° 1 [ sin(nx)
/cos(nx dn— [sm(nx } +_/ sm(r;x dn.
n nx 1 X n

1 1

and this integral converges because

[e¢]

o0
/‘sm(nx) /‘dn
dn < —2 =
n
1

1

Looking now at the second integral in Eq. (1.22), we note that its term cos(nx)/n? also
leads to a convergent integral, so we need only to examine the convergence of

o]

/ (n _ [n]) sin;nx) J

1
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Next, setting (n — [n]) sin(nx) = g’(n), which is equivalent to defining g(N) = f IN (n—
[n]) sin(nx) dn, we write

/ (n - [n]) sin;nx) dn :/ g ,(qn) dn = |:g§l_n)} +f %dn,
n=1
1 1 1

where the last equality was obtained using once again an integration by parts. We do not
have an explicit expression for g(n), but we do know that it is bounded because sinx
oscillates with a period incommensurate with that of the sawtooth periodicity of (n — [n]).
This boundedness enables us to determine that the second integral in Eq. (1.22) converges,
thus establishing the convergence of S. ]

Absolute and Conditional Convergence

An infinite series is absolutely convergent if the absolute values of its terms form a con-
vergent series. If it converges, but not absolutely, it is termed conditionally convergent.
An example of a conditionally convergent series is the alternating harmonic series,

00
1 1 1 -1 n—1
Z(—l)"_ln_l=1—5+—__+...+L

1.23
3 4 n + ( )

n=1

This series is convergent, based on the Leibniz criterion. It is clearly not absolutely con-
vergent; if all terms are taken with + signs, we have the harmonic series, which we already
know to be divergent. The tests described earlier in this section for series of positive terms
are, then, tests for absolute convergence.

Exercises

1.1.11  Determine whether each of these series is convergent, and if so, whether it is absolutely
convergent:
(@) In2 ln3+ln4 ln5+ln6
Yo T3 Ty T s T ’
b) 1+1 1 1+1+1 1 1+

1 2 3 4 5 6 7 8 ’

()111+1+1+1111 1+1 +1 1 1+
R A I B T R BT 15 16 21

1.1.12 Catalan’s constant 3(2) is defined by

I B
1203252

B2 =) (—Df@k+1)2=

k=0

Calculate 8(2) to six-digit accuracy.
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Hint. The rate of convergence is enhanced by pairing the terms,
16k

k-1 2—(@k+1) 2= = G 1

If you have carried enough digits in your summation, ) ", _, _ 16k/ (16k% — 1)2, addi-
tional significant figures may be obtained by setting upper and lower bounds on the tail
of the series, > po v +1- These bounds may be set by comparison with integrals, as in
the Maclaurin integral test.

ANS. B(2)=0.9159 65594177 --- .

Operations on Series

We now investigate the operations that may be performed on infinite series. In this connec-
tion the establishment of absolute convergence is important, because it can be proved that
the terms of an absolutely convergent series may be reordered according to the familiar
rules of algebra or arithmetic:

e Ifan infinite series is absolutely convergent, the series sum is independent of the order
in which the terms are added.

e An absolutely convergent series may be added termwise to, or subtracted termwise
from, or multiplied termwise with another absolutely convergent series, and the result-
ing series will also be absolutely convergent.

e The series (as a whole) may be multiplied with another absolutely convergent series.
The limit of the product will be the product of the individual series limits. The product
series, a double series, will also converge absolutely.

No such guarantees can be given for conditionally convergent series, though some of
the above properties remain true if only one of the series to be combined is conditionally
convergent.

Example 1.1.9  REARRANGEMENT OF ALTERNATING HARMONIC SERIES

Writing the alternating harmonic series as

11+1 1+ =1 b1 b1 (1.24)
2 3 4 \2 3 4 5 ’ ’

it is clear that Zzozl (=" 'n~! < 1. However, if we rearrange the order of the terms, we
can make this series converge to % We regroup the terms of Eq. (1.24), as

<1+%+é>_<;>+<l+é+1+113+115>
O el o) (o
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1.500\’\’\—‘——‘

o 1.400

£

3

w

£ 1.300

©

o

1.200 |

1.100 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of terms in sum, n

FIGURE 1.2  Alternating harmonic series. Terms are rearranged to give
convergence to 1.5.

Treating the terms grouped in parentheses as single terms for convenience, we obtain the
partial sums

s1=1.5333 s =1.0333
s3=1.5218 54 =1.2718
s5=1.5143  s¢ =1.3476
s7=1.5103 53 =1.3853
s9 = 1.5078 5190 = 1.4078.

From this tabulation of s,, and the plot of s,, versus n in Fig. 1.2, the convergence to % is
fairly clear. Our rearrangement was to take positive terms until the partial sum was equal
to or greater than % and then to add negative terms until the partial sum just fell below %
and so on. As the series extends to infinity, all original terms will eventually appear, but
the partial sums of this rearranged alternating harmonic series converge to % |

As the example shows, by a suitable rearrangement of terms, a conditionally convergent
series may be made to converge to any desired value or even to diverge. This statement is
sometimes called Riemann’s theorem.

Another example shows the danger of multiplying conditionally convergent series.

Example 1.1.10  SQUARE OF A CONDITIONALLY CONVERGENT SERIES MAY DIVERGE

. oo (=1"~! - ..
The series ), converges by the Leibniz criterion. Its square,

Jn

i N B T B S
[Z } =2 v GestEest )
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has a general term, in [. .. ], consisting of n — 1 additive terms, each of which is bigger than
S U i

NSNS so the .entlre [...] term is greater than and does not go to zero. Hence the
general term of this product series does not approach zero in the limit of large n and the
series diverges. |

These examples show that conditionally convergent series must be treated with caution.

Improvement of Convergence

This section so far has been concerned with establishing convergence as an abstract math-
ematical property. In practice, the rate of convergence may be of considerable importance.
A method for improving convergence, due to Kummer, is to form a linear combination of
our slowly converging series and one or more series whose sum is known. For the known
series the following collection is particularly useful:

1

E——
n(n+1)

S
|

1 1

“n(n+1)(n+2) —y

1 1
n(n+ D+ 2)(n+3) 18

Q
w
Il

iMe i P”ﬂ8 Avgk:

)

Z,,X:;”(”+l)~--(n+p)=ppg' (1.26)

These sums can be evaluated via partial fraction expansions, and are the subject of
Exercise 1.5.3.

The series we wish to sum and one or more known series (multiplied by coefficients)
are combined term by term. The coefficients in the linear combination are chosen to cancel
the most slowly converging terms.

Example 1.1.11  RiemanN ZETA FUNCTION £(3)

From the definition in Eq. (1.12), we identify ¢(3) as Y .o, n=3. Noting that ap of
Eq. (1.26) has a large-n dependence ~ n =3, we consider the linear combination

oo

-3 a

don +am=¢0)+ 7. (1.27)

n=1
We did not use o1 because it converges more slowly than ¢(3). Combining the two series
on the left-hand side termwise, we obtain

> 1 a il +a)+3n42
Z n3+n(n+l)(n+2) _; nBm+Dn+2)

n=1
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Table 1.1 Riemann Zeta

Function

s (s)
2 1.64493 40668
3 1.20205 69032
4 1.08232 32337
5 1.03692 77551
6 1.01734 30620
7 1.00834 92774
8 1.00407 73562
9 1.00200 83928

10 1.00099 45751

If we choose a = —1, we remove the leading term from the numerator; then, setting this

equal to the right-hand side of Eq. (1.27) and solving for ¢ (3),

3n+2
‘o= +Z P D+ (29

The resulting series may not be beautiful but it does converge as n~*, faster than n 3.
A more convenient form with even faster convergence is introduced in Exercise 1.1.16.
There, the symmetry leads to convergence as n=>. |

Sometimes it is helpful to use the Riemann zeta function in a way similar to that
illustrated for the ), in the foregoing example. That approach is practical because the
zeta function has been tabulated (see Table 1.1).

Example 1.1.12  CONVERGENCE IMPROVEMENT

The problem is to evaluate the series Y oo 1/(1 +n?). Expanding (1 +n%)~! =n=2(1 +
n=2)~! by direct division, we have

-6
(1+n2)—l=n—2 (l—n_2+n_4_ n )

(I
ZoaAt e

Therefore

1
5 =2(2)—(4) +¢(6) —;m.

n=1

The remainder series converges as n~%. Clearly, the process can be continued as desired.
You make a choice between how much algebra you will do and how much arithmetic the
computer will do. |
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Rearrangement of Double Series

An absolutely convergent double series (one whose terms are identified by two summation
indices) presents interesting rearrangement opportunities. Consider

S=>" anm. (1.29)

m=0 n=0

In addition to the obvious possibility of reversing the order of summation (i.e., doing the m
sum first), we can make rearrangements that are more innovative. One reason for doing this
is that we may be able to reduce the double sum to a single summation, or even evaluate
the entire double sum in closed form.

As an example, suppose we make the following index substitutions in our double series:
m=gq,n=p —q. Then we will cover all n > 0, m > 0 by assigning p the range (0, 00),
and g the range (0, p), so our double series can be written

oo p
S=Y"> apqq (1.30)

p=0 ¢=0

In the nm plane our region of summation is the entire quadrant m > 0, n > 0; in the pg
plane our summation is over the triangular region sketched in Fig. 1.3. This same pg region
can be covered when the summations are carried out in the reverse order, but with limits

o0 o0
S:Z Zap,q,q.

q=0 p=4q

The important thing to note here is that these schemes all have in common that, by allowing
the indices to run over their designated ranges, every a, ,, is eventually encountered, and
is encountered exactly once.

FIGURE 1.3 The pgq index space.
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Another possible index substitution is to set n = s, m =r — 2s. If we sum over s first,
its range must be (0, [r/2]), where [r/2] is the integer part of r/2, i.e., [r/2] =r/2 for r
even and (r — 1)/2 for r odd. The range of » is (0, co). This situation corresponds to

r

o
S=Y"Y agras (1.31)

r=0 s

~
]

Il
o

The sketches in Figs. 1.4 to 1.6 show the order in which the a, ,, are summed when using
the forms given in Eqgs. (1.29), (1.30), and (1.31), respectively.

If the double series introduced originally as Eq. (1.29) is absolutely convergent, then all
these rearrangements will give the same ultimate result.

306 > 0 > 0 > 0 >

) > o > 0 > 0 > o —>0—>>

10 > € —» @ —» 0 —» o —>¢—>>

0 2 4 n

FIGURE 1.4

FIGURE 1.5 Order in which terms are summed with p, g index set, Eq. (1.30).
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0
0 1 2 3 n

FIGURE 1.6 Order in which terms are summed with r, s index set, Eq. (1.31).

Exercises

1.1.13  Show how to combine ¢(2) = 302 | n~2 with &1 and @3 to obtain a series converging

asn—*.

Note. ¢ (2) has the known value 72 /6. See Eq. (12.66).
1.1.14  Give a method of computing

> 1
A(3) = —_—
) Z (2n+1)3
n=0
that converges at least as fast as n~® and obtain a result good to six decimal places.
ANS. 1(3) =1.051800.

1.1.15  Showthat (a) Y00 [¢(n) — 11=1, (b) Y02, (=D [¢(n) — 1] =4,
where ¢ (n) is the Riemann zeta function.

1.1.16  The convergence improvement of 1.1.11 may be carried out more expediently (in this
special case) by putting a2, from Eq. (1.26), into a more symmetric form: Replacing n
by n — 1, we have

s 1 _1
_r;(n—l)n(n—}-l) 4

o

N~

(a) Combine ¢(3) and o} to obtain convergence as n-.

(b) Let oy be ag with n — n — 2. Combine ¢(3), &, and c to obtain convergence
asn'.



1.2 Series of Functions 21

(c) If z(3) is to be calculated to six-decimal place accuracy (error 5 x 10~7), how
many terms are required for ¢(3) alone? combined as in part (a)? combined as in
part (b)?

Note. The error may be estimated using the corresponding integral.

o]

5 1
ANS. @) t(3)=7 - >

3(pn2 _ :
on (n 1)

1.2 SERIES OF FUNCTIONS

We extend our concept of infinite series to include the possibility that each term u,, may
be a function of some variable, u, = u,(x). The partial sums become functions of the
variable x,

Sn (%) = u1(x) +ua(x) + - +up(x), (1.32)

as does the series sum, defined as the limit of the partial sums:

D un(x) =5Sx) = lim s, (x). (1.33)

n=1

So far we have concerned ourselves with the behavior of the partial sums as a function of
n. Now we consider how the foregoing quantities depend on x. The key concept here is
that of uniform convergence.

Uniform Convergence

If for any small ¢ > 0 there exists a number N, independent of x in the interval [a, ]
(that is, a < x < b) such that

|S(x) —s,(x)| <e, forallm> N, (1.34)

then the series is said to be uniformly convergent in the interval [a, b]. This says that
for our series to be uniformly convergent, it must be possible to find a finite N so that
the absolute value of the tail of the infinite series, Z?i N1 Ui (x)|, will be less than an
arbitrary small ¢ for all x in the given interval, including the endpoints.

Example 1.2.1 NONUNIFORM CONVERGENCE

Consider on the interval [0, 1] the series

o0

S)=Y (1 —x)x".

n=0
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For 0 < x < 1, the geometric series ) _, x” is convergent, with value 1/(1 — x), so S(x) =
1 for these x values. But at x = 1, every term of the series will be zero, and therefore
S(1) =0. That s,

o0
dd-xx"=1, 0<x<l,
n=0

=0, x=1. (1.35)

So S(x) is convergent for the entire interval [0, 1], and because each term is nonnegative,
it is also absolutely convergent. If x # 0, this is a series for which the partial sum sy
is 1 — xV, as can be seen by comparison with Eq. (1.3). Since S(x) = 1, the uniform

convergence criterion is
1—(1—xN) =xN<e.

No matter what the values of N and a sufficiently small £ may be, there will be an x value
(close to 1) where this criterion is violated. The underlying problem is that x =1 is the
convergence limit of the geometric series, and it is not possible to have a convergence rate
that is bounded independently of x in a range that includes x = 1.

We note also from this example that absolute and uniform convergence are independent
concepts. The series in this example has absolute, but not uniform convergence. We will
shortly present examples of series that are uniformly, but only conditionally convergent.
And there are series that have neither or both of these properties. |

Weierstrass M (Majorant) Test

The most commonly encountered test for uniform convergence is the Weierstrass M test.
If we can construct a series of numbers Zf’il M;, in which M; > |u;(x)| for all x in the
interval [a, b] and Zﬁl M; is convergent, our series u; (x) will be uniformly convergent
in [a, b].

The proof of this Weierstrass M test is direct and simple. Since ) _; M; converges, some
number N exists such that forn + 1> N,

o0

Z M,’<8.

i=n+1

This follows from our definition of convergence. Then, with |u; (x)| < M; for all x in the
interval a <x <b,

Z ui(x) <e.
i=n+1
Hence S(x) =Y 2 | u; (x) satisfies
1S() = su) =] D uix)| <e, (1.36)

i=n+1
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we see that 2211 u; (x) is uniformly convergent in [a, b]. Since we have specified absolute
values in the statement of the Weierstrass M test, the series Y .- u;(x) is also seen to
be absolutely convergent. As we have already observed in Example 1.2.1, absolute and
uniform convergence are different concepts, and one of the limitations of the Weierstrass
M test is that it can only establish uniform convergence for series that are also absolutely
convergent.

To further underscore the difference between absolute and uniform convergence, we
provide another example.

Example 1.2.2 UNIFORMLY CONVERGENT ALTERNATING SERIES

Consider the series

o]

S(x):ZIE;—l)):;, —00 < X < 00. (1.37)

Applying the Leibniz criterion, this series is easily proven convergent for the entire inter-
val —oo < x < 00, but it is not absolutely convergent, as the absolute values of its terms
approach for large n those of the divergent harmonic series. The divergence of the absolute
value series is obvious at x = 0, where we then exactly have the harmonic series. Never-
theless, this series is uniformly convergent on —oo0 < x < 00, as its convergence is for all
x at least as fast as it is for x = 0. More formally,

1S(x) =8 ()] < lupg1 ()] = |un41(0)] .

Since u,+1(0) is independent of x, uniform convergence is confirmed. |

Abel’s Test

A somewhat more delicate test for uniform convergence has been given by Abel. If u, (x)
can be written in the form a,, f;,(x), and

1. The a, form a convergent series, Zn a, =A,

2. Forall x in [a, b] the functions f; (x) are monotonically decreasing in n, i.e., f,+1(x) <
Su(x),

3. Forall x in [a, b] all the f(n) are bounded in the range 0 < f,,(x) < M, where M is
independent of x,

then Zn uy (x) converges uniformly in [a, b].

This test is especially useful in analyzing the convergence of power series. Details of
the proof of Abel’s test and other tests for uniform convergence are given in the works
by Knopp and by Whittaker and Watson (see Additional Readings listed at the end of this
chapter).
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Properties of Uniformly Convergent Series

Uniformly convergent series have three particularly useful properties. If a series ), u, (x)
is uniformly convergent in [a, b] and the individual terms u,, (x) are continuous,

1. The series sum S(x) = ZZOII uy, (x) is also continuous.
2. The series may be integrated term by term. The sum of the integrals is equal to the
integral of the sum:

b o b
/S(x) dx:Z/un(x) dx. (1.38)
a n=l1y

3. The derivative of the series sum S(x) equals the sum of the individual-term deriva-
tives:

o]

d d
S = > T (), (1.39)

n=1
provided the following additional conditions are satisfied:
duy(x)

X

is continuous in [a, b],

e¢]

d
Z u; (x) is uniformly convergent in [a, b].
X

n=1

Term-by-term integration of a uniformly convergent series requires only continuity of
the individual terms. This condition is almost always satisfied in physical applications.
Term-by-term differentiation of a series is often not valid because more restrictive condi-
tions must be satisfied.

Exercises
1.2.1 Find the range of uniform convergence of the series
o (="' o 1
@ 1= —— b W= —
n=1 n=1
ANS. (a) 0<s <x <oo0.
b)) 1<s<x<o0.
1.2.2 For what range of x is the geometric series Y -, x" uniformly convergent?

ANS. —1<—-s<x<s<l.

1.2.3 For what range of positive values of x is Y oo 1/(1 +x™)

(a) convergent? (b) uniformly convergent?
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1.2.4 If the series of the coefficients ) a, and ) b, are absolutely convergent, show that the
Fourier series

Z(an cosnx + b, sinnx)

is uniformly convergent for —oo < x < oo.

1.2.5 The Legendre series ) u j (x) satisfies the recurrence relations

J even

GADG+D =0+ D 5
(G+20+3)

ujpo(x) = u;j(x),

in which the index j is even and / is some constant (but, in this problem, not a non-
negative odd integer). Find the range of values of x for which this Legendre series is
convergent. Test the endpoints.

ANS. —-1<x<1.

1.2.6 A series solution of the Chebyshev equation leads to successive terms having the ratio

uppa(®) _ Gkt P’
uj(e) ki +Dk+j+2)

s

with k =0 and k = 1. Test for convergence at x = £1.
ANS. Convergent.

1.2.7 A series solution for the ultraspherical (Gegenbauer) function Cj (x) leads to the
recurrence

(k+ )k +j+2a)—nn+2a)
k+j+Dk+j+2)

ajy2=a;

Investigate the convergence of each of these series at x = 41 as a function of the
parameter o.

ANS. Convergent for ¢ < 1,
divergent for o > 1.

Taylor’s Expansion

Taylor’s expansion is a powerful tool for the generation of power series representations of
functions. The derivation presented here provides not only the possibility of an expansion
into a finite number of terms plus a remainder that may or may not be easy to evaluate, but
also the possibility of the expression of a function as an infinite series of powers.
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We assume that our function f(x) has a continuous nth derivative® in the interval ¢ <
x < b. We integrate this nth derivative n times; the first three integrations yield

/ SO @dn = 10| = @ - N,

X X2 x
[dxs [ £ 0n = [ dnlro o - 10V @)

=) - @) - (x —a) f (),

X X3 X2
/dX3fdx2ff(")(x1)dxl =f(”—3)(x) _ f(n—S)(a)

N2
— a0V - L z,a) " V.

Finally, after integrating for the nth time,

X X2 _ 2
/dxn~-~/f(")(X1)dX1 =fx)— f@—(x—a)f'(a)— % (@)
a a (x—a)"_l -

e @

Note that this expression is exact. No terms have been dropped, no approximations made.
Now, solving for f(x), we have

f)=f@+x-a) fl

(x — (x—a)"!

2
+Ta)f”(a)+---+mf<"*‘>(a)+Rn, (1.40)
where the remainder, R,, is given by the n-fold integral
x x2
Rn=/dxn--~/dx1 £ (xp). (1.41)
a a

We may convert R, into a perhaps more practical form by using the mean value theorem
of integral calculus:

X

/ () dx = (x —a) g (&), (142)

a

2Taylor’s expansion may be derived under slightly less restrictive conditions; compare H. Jeffreys and B. S. Jeffreys, in the
Additional Readings, Section 1.133.



1.2 Series of Functions 27

with a < & < x. By integrating n times we get the Lagrangian form® of the remainder:

x—a)
Ry=—— Fm ). (1.43)
With Taylor’s expansion in this form there are no questions of infinite series convergence.
The series contains a finite number of terms, and the only questions concern the magnitude
of the remainder.
When the function f(x) is such that lim,_ . R, = 0, Eq. (1.40) becomes Taylor’s
series:

f(x)=f(a)+(x—a)f(a)+( ) f@+ -

= Z W o), (1.44)

Here we encounter for the first time n! with n = 0. Note that we define 0! = 1.

Our Taylor series specifies the value of a function at one point, x, in terms of the value
of the function and its derivatives at a reference point a. It is an expansion in powers of
the change in the variable, namely x — a. This idea can be emphasized by writing Taylor’s
series in an alternate form in which we replace x by x + 4 and a by x:

o
fath) = Z f<"><x> (1.45)

nO

Power Series

Taylor series are often used in situations where the reference point, a, is assigned the
value zero. In that case the expansion is referred to as a Maclaurin series, and Eq. (1.40)
becomes

o

2 n
FO) = FO +xf O+ 5 O+ =Y = fP(). (1.46)

n=0
An immediate application of the Maclaurin series is in the expansion of various transcen-
dental functions into infinite (power) series.

Example 71.2.3  EXPONENTIAL FUNCTION

Let f(x) = e”. Differentiating, then setting x = 0, we have

fMoy=1
foralln,n=1, 2, 3,.... Then, with Eq. (1.46), we have
2 3 o X"
e* —1+x+—+—+ —. (1.47)
3! n!

-1
3 An alternate form derived by Cauchy is R, = %]‘(") ).
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This is the series expansion of the exponential function. Some authors use this series to
define the exponential function.

Although this series is clearly convergent for all x, as may be verified using the
d’Alembert ratio test, it is instructive to check the remainder term, R,. By Eq. (1.43) we
have

n n
Ry="0 f0&) == e,
n! n!
where £ is between 0 and x. Irrespective of the sign of x,

|x|"e|x‘
n!

[Ry| <

No matter how large |x| may be, a sufficient increase in n will cause the denominator of
this form for R, to dominate over the numerator, and lim,,_, oo R,, = 0. Thus, the Maclaurin
expansion of e* converges absolutely over the entire range —0o0 < x < 00. ]

Now that we have an expansion for exp(x), we can return to Eq. (1.45), and rewrite that
equation in a form that focuses on its differential operator characteristics. Defining D as
the operator d/dx, we have

= h"D"
Fatm =3 ——f@) =" f). (1.48)
n=0 ’

Example 1.2.4  LoGARITHM

For a second Maclaurin expansion, let f(x) = In(1 + x). By differentiating, we obtain

o =0+x""

FP)==D""Tm-DI1+x)"" (1.49)
Equation (1.46) yields
X2 x3 x4
In(1 =x——4"——"—+4...4R
n(l+x)=x 2—1—3 4—|— + R,
n
xp
=Y (=D 4R, (1.50)
p=1 p

In this case, for x > 0 our remainder is given by

xl’l
Ri==— f"™&), 0<&=<x
n!

xn
<—, 0<&<x<l. (1.51)
n
This result shows that the remainder approaches zero as »n is increased indefinitely, pro-

viding that 0 < x < 1. For x < 0, the mean value theorem is too crude a tool to establish a
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meaningful limit for R,,. As an infinite series,

In(1+x)=Y (-1 % (1.52)

n=1

converges for —1 < x < 1. The range —1 < x < 1 is easily established by the d’ Alembert
ratio test. Convergence at x = 1 follows by the Leibniz criterion. In particular, at x = 1 we
have the conditionally convergent alternating harmonic series, to which we can now put a
value:

In2=1 1+1 1+1 —i( =t (1.53)

A T RO R " ‘
At x = —1, the expansion becomes the harmonic series, which we well know to be
divergent. |

Properties of Power Series

The power series is a special and extremely useful type of infinite series, and as illustrated
in the preceding subsection, may be constructed by the Maclaurin formula, Eq. (1.44).
However obtained, it will be of the general form

o
f(x)zao+a1x+a2x2+a3x3+~--=Za,,x", (1.54)
n=0

where the coefficients a; are constants, independent of x.
Equation (1.54) may readily be tested for convergence either by the Cauchy root test or
the d’ Alembert ratio test. If

an+1
an

lim :R_l,

n—o0

the series converges for —R < x < R. This is the interval or radius of convergence. Since
the root and ratio tests fail when x is at the limit points &R, these points require special
attention.

For instance, if a, = n~!, then R = 1 and from Section 1.1 we can conclude that the
series converges for x = —1 but diverges for x = +1. If @, = n!, then R = 0 and the series
diverges for all x # 0.

Suppose our power series has been found convergent for —R < x < R; then it will be
uniformly and absolutely convergent in any interior interval —S < x < §, where 0 < § <
R. This may be proved directly by the Weierstrass M test.

Since each of the terms u, (x) = a,x™ is a continuous function of x and f(x) =) a,x"
converges uniformly for —S < x < §, f(x) must be a continuous function in the inter-
val of uniform convergence. This behavior is to be contrasted with the strikingly different
behavior of series in trigonometric functions, which are used frequently to represent dis-
continuous functions such as sawtooth and square waves.
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With u,, (x) continuous and ) a,x" uniformly convergent, we find that term by term dif-
ferentiation or integration of a power series will yield a new power series with continuous
functions and the same radius of convergence as the original series. The new factors in-
troduced by differentiation or integration do not affect either the root or the ratio test.
Therefore our power series may be differentiated or integrated as often as desired within
the interval of uniform convergence (Exercise 1.2.16). In view of the rather severe restric-
tion placed on differentiation of infinite series in general, this is a remarkable and valuable
result.

Uniqueness Theorem

We have already used the Maclaurin series to expand ¢* and In(1 4 x) into power series.
Throughout this book, we will encounter many situations in which functions are repre-
sented, or even defined by power series. We now establish that the power-series represen-
tation is unique.

We proceed by assuming we have two expansions of the same function whose intervals
of convergence overlap in a region that includes the origin:

o0
f(x) =Zanx", —R, <x <Ry,
n=0
o0
=Y bux", —Rp<x <Ry (1.55)
n=0

What we need to prove is that a, = b, for all n.
Starting from

o0 o
Zanx”:Zb,,x", —R <x <R, (1.56)
n=0 n=0
where R is the smaller of R, and R}, we set x = 0 to eliminate all but the constant term of
each series, obtaining
ap = by.

Now, exploiting the differentiability of our power series, we differentiate Eq. (1.56),
getting

o0 o
Znanx”_1 =annx"_1. (1.57)
n=1 n=1

We again set x = 0, to isolate the new constant terms, and find
ay =b.
By repeating this process n times, we get

ay = by,



1.2 Series of Functions 31

which shows that the two series coincide. Therefore our power series representation is
unique.

This theorem will be a crucial point in our study of differential equations, in which
we develop power series solutions. The uniqueness of power series appears frequently in
theoretical physics. The establishment of perturbation theory in quantum mechanics is one
example.

Indeterminate Forms

The power-series representation of functions is often useful in evaluating indeterminate
forms, and is the basis of ’Hépital’s rule, which states that if the ratio of two differentiable
functions f(x) and g(x) becomes indeterminate, of the form 0/0, at x = xq, then

f )
lim = lim .
x—>x0 g(x) x—>x0 g'(x)
Proof of Eq. (1.58) is the subject of Exercise 1.2.12.
Sometimes it is easier just to introduce power-series expansions than to evaluate the

derivatives that enter I’Hopital’s rule. For examples of this strategy, see the following
Example and Exercise 1.2.15.

(1.58)

Example 1.2.5  ALTERNATIVE TO HOPITAL'S RULE

Evaluate
Jim L SO8X (1.59)
x—0 x2
Replacing cosx by its Maclaurin-series expansion, Exercise 1.2.8, we obtain
1 —cosx 1—(1— 24 ,x - 1 x2
x2 x2 2t a4l

Letting x — 0, we have

lim ———— =~ (1.60)

The uniqueness of power series means that the coefficients a, may be identified with the
derivatives in a Maclaurin series. From

ﬂ@—Z}m:—Zj ﬂmmx

m= 0

we have

1
an=— f"(0).
n:
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Inversion of Power Series

Suppose we are given a series

o0
y—Yo=ai(x —x0) +ar(x —x0)> -+ =Y _an (x —x0)". (1.61)
n=1

This gives (y — yg) in terms of (x — xg). However, it may be desirable to have an explicit
expression for (x — xq) in terms of (y — yp). That is, we want an expression of the form

00
X —x0=2bn (y_YO)nv (1.62)

n=1

with the b, to be determined in terms of the assumed known a,,. A brute-force approach,
which is perfectly adequate for the first few coefficients, is simply to substitute Eq. (1.61)
into Eq. (1.62). By equating coefficients of (x — x)" on both sides of Eq. (1.62), and using
the fact that the power series is unique, we find

bl =
ai
a
b2 = __37
a4

. (1.63)

by = — (Zag — alag),
a;

1

by = — <5a1a2a3 — a]2a4 — SaS), and so on.
a
1

Some of the higher coefficients are listed by Dwight.* A more general and much more
elegant approach is developed by the use of complex variables in the first and second
editions of Mathematical Methods for Physicists.

Exercises

1.2.8 Show that

' o ; y2n+1
(a) SInx = 112:(:)(—1) m,
o 2n
n X
(b) cosx = nX:(:)(—l) i

4H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed. New York: Macmillan (1961). (Compare formula
no. 50.)
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Derive a series expansion of cot x in increasing powers of x by dividing the power
series for cos x by that for sinx.

Note. The resultant series that starts with 1/x is known as a Laurent series (cotx does
not have a Taylor expansion about x = 0, although cot(x) — x~! does). Although the
two series for sin x and cos x were valid for all x, the convergence of the series for cot x
is limited by the zeros of the denominator, sinx.

Show by series expansion that

1 1
—In 10 +1 = coth™! no, Inol > 1.

2 no-—

This identity may be used to obtain a second solution for Legendre’s equation.

Show that f(x) = x!/? (a) has no Maclaurin expansion but (b) has a Taylor expansion
about any point xo # 0. Find the range of convergence of the Taylor expansion about
X = Xxg.

Prove I’Hopital’s rule, Eq. (1.58).

With n > 1, show that

(a) l—1n< " ><0, (b) l—1n(”+1)>0.
n n—1 n n

Use these inequalities to show that the limit defining the Euler-Mascheroni constant,
Eq. (1.13), is finite.

In numerical analysis it is often convenient to approximate d>v (x)/dx? by

d? 1
WW(X) ~ ﬁ[w(x +h) =29 )+ (x —h)].

Find the error in this approximation.

h2
ANS. Error = Ew(‘” (x).

Evaluate lim
x—0

sin(tan x) — tan(sin x)
x7 '
1
ANS. —.
30
A power series converges for —R < x < R. Show that the differentiated series and
the integrated series have the same interval of convergence. (Do not bother about the
endpoints x = +R.)

1.3 BINOMIAL THEOREM

An extremely important application of the Maclaurin expansion is the derivation of the
binomial theorem.
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Let f(x) = (1 + x)™, in which m may be either positive or negative and is not limited
to integral values. Direct application of Eq. (1.46) gives

m(m — 1) 2

A4+x)"=14+mx+ o + -+ R,. (1.64)
For this function the remainder is
n
Rn=x—'(l—i—é)m_”m(m—1)~~~(m—n+1), (1.65)
n!

with & between 0 and x. Restricting attention for now to x > 0, we note that for n > m,
(14 &)™ is a maximum for & = 0, so for positive x,

n

|Rn|s%|m(m—1)--~<m—n+1>|, (1.66)

with lim,, . oo R, = 0 when 0 < x < 1. Because the radius of convergence of a power series
is the same for positive and for negative x, the binomial series converges for —1 < x < 1.
Convergence at the limit points £1 is not addressed by the present analysis, and depends
onm.

Summarizing, we have established the binomial expansion,

(mz! 1) 24 m(m 13)|(m 2) 3
convergent for —1 < x < 1. It is important to note that Eq. (1.67) applies whether or not
m is integral, and for both positive and negative m. If m is a nonnegative integer, R, for
n > m vanishes for all x, corresponding to the fact that under those conditions (1 4 x)" is
a finite sum.

Because the binomial expansion is of frequent occurrence, the coefficients appearing in
it, which are called binomial coefficients, are given the special symbol

A4x0)"=1+mx+ 2 oo, (1.67)

(m)zm(m—l)-n(m—n—i—l)’ (1.68)
n n!
and the binomial expansion assumes the general form
e m
(14 x)" =Z< >x”. (1.69)
n=0 n

In evaluating Eq. (1.68), note that when n = 0, the product in its numerator is empty (start-
ing from m and descending to m + 1); in that case the convention is to assign the product
the value unity. We also remind the reader that 0! is defined to be unity.

In the special case that m is a positive integer, we may write our binomial coefficient in

terms of factorials:
my m! (1.70)
n)  nl(m—n) '

Since n! is undefined for negative integer n, the binomial expansion for positive integer
m is understood to end with the term n = m, and will correspond to the coefficients in the
polynomial resulting from the (finite) expansion of (1 4 x)™.
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For positive integer m, the (Z’) also arise in combinatorial theory, being the number
of different ways n out of m objects can be selected. That, of course, is consistent with
the coefficient set if (1 + x)™ is expanded. The term containing x” has a coefficient that
corresponds to the number of ways one can choose the “x” from n of the factors (1 + x)
and the 1 from the m — n other (1 4 x) factors.

For negative integer m, we can still use the special notation for binomial coefficients, but
their evaluation is more easily accomplished if we set m = —p, with p a positive integer,
and write

<—p) gy POAED =D D =D

n! n!(p—D!

For nonintegral m, it is convenient to use the Pochhammer symbol, defined for general
a and nonnegative integer n and given the notation (a),, as

(@o=1, (@1=a, @py1=al@+1)---(a+n), m=1). (1.72)
For both integral and nonintegral m, the binomial coefficient formula can be written
— 1
(’") _(m—n+Dn (1.73)
n n!

There is a rich literature on binomial coefficients and relationships between them and
on summations involving them. We mention here only one such formula that arises if we
evaluate 1/+4/1 4+ x, i.e., (1 + x)~ /2. The binomial coefficient

()-a(2) () (75)

1-3---2n—-1) 2n— D!
=(-1)'—=(-1)"—, 1.74
=1 2" n! =1 @) (1.74)
where the “double factorial” notation indicates products of even or odd positive integers
as follows:
1-3-5---2n—1)=2n -1
(1.75)
2-4-6---(2n) = 2n)!.
These are related to the regular factorials by
2n)!
Cn)!'=2"n! and @2n-—DH!= (2n) . (1.76)
21!

Note that these relations include the special cases 0!! = (—1)!! = 1.

Example 1.3.1 RELATIVISTIC ENERGY

The total relativistic energy of a particle of mass m and velocity v is

) L2\ 12
E=mc|1-— , 1.77)
c
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where ¢ is the velocity of light. Using Eq. (1.69) with m = —1/2 and x = —v?/c?, and
evaluating the binomial coefficients using Eq. (1.74), we have

E 2[4 1 v? n 3 2\ 5 w2\’ n
=mc e — —— - - e
2 c? 8 c2 16 c?
1 3 v? 5 12\
=m02+§mv2+§mv2 (C—2>+1—6mv2 <—C—2> +oee (1.78)
The first term, mc?, is identified as the rest-mass energy. Then
1, 302 5 w2\
Ekineticzzmv 1+Zc—2+g 2 +--- 1. (1.79)

For particle velocity v < c, the expression in the brackets reduces to unity and we see that
the kinetic portion of the total relativistic energy agrees with the classical result. |

The binomial expansion can be generalized for positive integer n to polynomials:

n!

(a1+az+--~+am)"=z ay'ay’ ---ay (1.80)

ni'na!---ny!
where the summation includes all different combinations of nonnegative integers
ni,ny, ..., ny with Y ' n; = n. This generalization finds considerable use in statisti-
cal mechanics.

In everyday analysis, the combinatorial properties of the binomial coefficients make
them appear often. For example, Leibniz’s formula for the nth derivative of a product of
two functions, u(x)v(x), can be written

d \" n di dn—i
(E) (u(x)v(x)) = (’:) ( d”;(f)) ( dxn”_(f)). (1.81)

i=0
Exercises
1.3.1 The classical Langevin theory of paramagnetism leads to an expression for the magnetic
polarization,
coshx 1
Px)=c| — -——).
sinhx x

Expand P (x) as a power series for small x (low fields, high temperature).

1.3.2 Given that

1

0

1
/ dx tan-! T
=tan" " x —,
1+x2 4
0



1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8
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expand the integrand into a series and integrate term by term obtaining”

T _, 1+1 1+1 1y 1 N
4 35 7 9 2n+1 ’

which is Leibniz’s formula for 7v. Compare the convergence of the integrand series and
the integrated series at x = 1. Leibniz’s formula converges so slowly that it is quite
useless for numerical work.

X

Expand the incomplete gamma function y(n + 1, x) = / e 't"dt in a series of powers

0
of x. What is the range of convergence of the resulting series?

X

1 X x2
ANS. “Idr = x"! -
fe SR [Ty Sy S T )
0
(=D)PxP ]
pln+p+1) '

Develop a series expansion of y = sinh ™! x (that is, sinh y = x) in powers of x by
(a) inversion of the series for sinh y,

(b) adirect Maclaurin expansion.

1 o
Show that for integral n > 0, m = Z <’::>xm_”.
m=n
) o (m +2n — 2)!!
Show that (1 —I—x)_m/ = Z(—l)n mx", form = 1, 2, 3, e
n=0

Using binomial expansions, compare the three Doppler shift formulas:
vy\—! )

@ VvV=v (1 ¥ —) moving source;
c

(b)) v

v (1 + B) moving observer;
c

; 2\ 12
() vV=v (l + —) (1 - —2> relativistic.
c c

Note. The relativistic formula agrees with the classical formulas if terms of order v?/c?
can be neglected.

In the theory of general relativity there are various ways of relating (defining) a velocity
of recession of a galaxy to its red shift, 6. Milne’s model (kinematic relativity) gives

SThe series expansion of tan—! x (upper limit 1 replaced by x) was discovered by James Gregory in 1671, 3 years before
Leibniz. See Peter Beckmann’s entertaining book, A History of Pi, 2nd ed., Boulder, CO: Golem Press (1971), and L. Berggren,
J. Borwein, and P. Borwein, Pi: A Source Book, New York: Springer (1997).
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1.3.9

1.3.10

1.3.11

(@ vi=cé (1 + %8),

(b) v2=c8<14—%8)(1+8ya,

1 +vs/e]?
1—v3/c '

©) 1+a=[

1. Show that for § <« 1 (and v3/c < 1), all three formulas reduce to v = ¢8.
2. Compare the three velocities through terms of order 62.

Note. In special relativity (with § replaced by z), the ratio of observed wavelength A to
emitted wavelength Ag is given by

The relativistic sum w of two velocities u and v in the same direction is given by
w u/c+v/c
¢ 1+uv/c?
If
LA a,
C C

where 0 <« < 1, find w/c in powers of « through terms in .

The displacement x of a particle of rest mass mg, resulting from a constant force mqog

along the x-axis, is
1/2
2 21"
x=—1|14+\|g- -1z,
g c

including relativistic effects. Find the displacement x as a power series in time f.
Compare with the classical result,

L)
= —gt".
X 5 8
By use of Dirac’s relativistic theory, the fine structure formula of atomic spectroscopy
is given by
2 —-1/2
pencfir 2T

(s +n—[k[)

where

s= (k2= yDHY? k=41,42,43, ... .

Expand in powers of y? through order y* (y2? = Ze? /4w eghic, with Z the atomic num-
ber). This expansion is useful in comparing the predictions of the Dirac electron theory
with those of a relativistic Schrodinger electron theory. Experimental results support
the Dirac theory.
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In a head-on proton-proton collision, the ratio of the kinetic energy in the center of mass
system to the incident kinetic energy is

R = [V2mc2(Ex + 2mc?) — 2mc*]/ Ey.

Find the value of this ratio of kinetic energies for

(a) Ejp < mc? (nonrelativistic),

(b)  Ex > mc? (extreme-relativistic).

ANS. (a) (b) 0. The latter answer is a sort of law of diminish-

ing returns for high-energy particle accelerators
(with stationary targets).

=

With binomial expansions
oo x 1 o
_ n _ . —n
_ZX _1_1_x—1_2x :
n=1 n=0

Adding these two series yields Y 00 x" =0.

n=—oo
Hopefully, we can agree that this is nonsense, but what has gone wrong?

(a) Planck’s theory of quantized oscillators leads to an average energy

o
Zl negexp(—neg/kT)
n=
(8) - 0 )

> exp(—neo/kT)
n=0

where g is a fixed energy. Identify the numerator and denominator as binomial
expansions and show that the ratio is

"~ exp(eo/kT) — 1"

(b) Show that the (&) of part (a) reduces to k7, the classical result, for k7T > &g.

Expand by the binomial theorem and integrate term by term to obtain the Gregory series
for y = tan~! x (note tan y = x):

—1
t 1—12 44—+ dt
o= /1+t2 /{ * o dde

2n+1
_Z(_ )”2 T —-1<x<l.
n

The Klein-Nishina formula for the scattering of photons by electrons contains a term of
the form

_(+e 2+28_1n(1+28)
fer= g2 [1+2£ & j|
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1.3.17

1.3.18

Here & = hv/mc?, the ratio of the photon energy to the electron rest mass energy. Find
lirrb f(e).
E—>

ANS.

N UJ'|-I>

The behavior of a neutron losing energy by colliding elastically with nuclei of mass
is described by a parameter &1,

(A—1)21 A-1

=1+ A n Arl
An approximation, good for large A, is
2
&= A+l

Expand & and &, in powers of A~!. Show that &, agrees with & through (A~!)2. Find
the difference in the coefficients of the (A~1)3 term.

Show that each of these two integrals equals Catalan’s constant:
: d : d
t X
tant —, (b) — [ hx——.
(a) /arcan n (b) /n)cl_l_x2
0 0

Note. The definition and numerical computation of Catalan’s constant was addressed
in Exercise 1.1.12.

1.4 MATHEMATICAL INDUCTION

We are occasionally faced with the need to establish a relation which is valid for a set of
integer values, in situations where it may not initially be obvious how to proceed. However,
it may be possible to show that if the relation is valid for an arbitrary value of some index n,
then it is also valid if n is replaced by n + 1. If we can also show that the relation is
unconditionally satisfied for some initial value ng, we may then conclude (unconditionally)
that the relation is also satisfied for ng + 1, ng + 2, .... This method of proof is known
as mathematical induction. It is ordinarily most useful when we know (or suspect) the
validity of a relation, but lack a more direct method of proof.

Example 1.4.1  SuMm OF INTEGERS

The sum of the integers from 1 through n, here denoted S(n), is given by the formula
S(n) =n(n + 1)/2. An inductive proof of this formula proceeds as follows:

1. Given the formula for S(n), we calculate

nn+1) (n+1n+2)
—5 _

Sm+D)=Sm)+(n+1)= >

+m+D=[5+1]n+n=

Thus, given S(n), we can establish the validity of S(n + 1).
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2. Itis obvious that S(1) = 1(2)/2 =1, so our formula for S(n) is valid forn = 1.
3. The formula for S(n) is therefore valid for all integers n > 1. [ ]

Exercises

n
n
1.4.1 Sh tht§ ‘= —2n+1 DGn%+3n—1).
oW aj:l] 3O(n—i— Y(n+1)(Bn~ 4+ 3n )

14.2 Prove the Leibniz formula for the repeated differentiation of a product:
d n n n d j d n—j
() Lresw] =3 (%) [(a) f(x)} [(a) g(x)]
j=0

1.5 OPERATIONS ON SERIES EXPANSIONS OF
FUNCTIONS

There are a number of manipulations (tricks) that can be used to obtain series that represent
a function or to manipulate such series to improve convergence. In addition to the proce-
dures introduced in Section 1.1, there are others that to varying degrees make use of the
fact that the expansion depends on a variable. A simple example of this is the expansion
of f(x) =1In(1 + x), which we obtained in 1.2.4 by direct use of the Maclaurin expansion
and evaluation of the derivatives of f(x). An even easier way to obtain this series would
have been to integrate the power series for 1/(1 4 x) term by term from O to x:

1

=l-x+x'-x+... =
I+x
U N SNE N A
nl+x)=x——+———+---.
2 3 4

A problem requiring somewhat more deviousness is given by the following example, in
which we use the binomial theorem on a series that represents the derivative of the function
whose expansion is sought.

Example 1.5.1  APPLICATION OF BINOMIAL EXPANSION

Sometimes the binomial expansion provides a convenient indirect route to the Maclaurin
series when direct methods are difficult. We consider here the power series expansion
S 2n—1DN x2tl X3 3%

-
= 2 1.82
S n; el an+n T et T (1.82)

Starting from sin y = x, we find dy/dx = 1/+/1 — x2, and write the integral

X
o dt
SiIn T x=y= —(l—tz)l/z'

0



42 Chapter 1 Mathematical Preliminaries

We now introduce the binomial expansion of (1 — #2)~!/? and integrate term by term. The
result is Eq. (1.82). ]

Another way of improving the convergence of a series is to multiply it by a polynomial in
the variable, choosing the polynomial’s coefficients to remove the least rapidly convergent
part of the resulting series. Here is a simple example of this.

Example 1.5.2  MuLTIPLY SERIES BY POLYNOMIAL

Returning to the series for In(1 + x), we form

ad n e n+1
(1 -i—a]x) 11’1(1 +x) = Z(—l)n_l % +a Z(_l)n—le

n=1 n=l1

as 1 ai
— _ln—l - n
x—i—r;( ) <n n—l)x

> (1—a)—1
Yy T
= nn—1)

If we take a1 = 1, the n in the numerator disappears and our combined series converges as
n~2; the resulting series for In(1 + x) is

1l’l
e (25) (- £

Another useful trick is to employ partial fraction expansions, which may convert a
seemingly difficult series into others about which more may be known.

If g(x) and h(x) are polynomials in x, with g(x) of lower degree than h(x), and & (x)
has the factorization h(x) = (x — a1)(x — a2)...(x — ay,), in the case that the factors of
h(x) are distinct (i.e., 4 has no multiple roots), then g(x)/h(x) can be written in the form

g(x) . a c2 Cn

h(x)  x—a x—a2+“.+x—an'

(1.83)

If we wish to leave one or more quadratic factors in 4 (x), perhaps to avoid the introduction
of imaginary quantities, the corresponding partial-fraction term will be of the form

ax+b
x2+px+q

If h(x) has repeated linear factors, such as (x —a;)™, the partial fraction expansion for this
power of x — a takes the form

Cl,m Cl,m—1 €11
(x—ap™  (x —apm! x—ap
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The coefficients in partial fraction expansions are usually found easily; sometimes it is
useful to express them as limits, such as

ci = lim (x —a)g(x)/h(x). (1.84)

Example 1.5.3  PARTIAL FRACTION EXPANSION

Let
k> c ax+b
TO= e~ e

We have written the form of the partial fraction expansion, but have not yet determined the
values of a, b, and c. Putting the right side of the equation over a common denominator,
we have
kK c(x* 4+ k%) +x(ax +b)
x(x24+k2) x(x2 +k2)
Expanding the right-side numerator and equating it to the left-side numerator, we get

0(x2) +0(x) + k% = (c + a)x® + bx + ck?,

which we solve by requiring the coefficient of each power of x to have the same value
on both sides of this equation. We get b =0, ¢ = 1, and then a = —1. The final result is
therefore

X

- (1.85)

1
fx)=-
X

[ |

Still more cleverness is illustrated by the following procedure, due to Euler, for changing
the expansion variable so as to improve the range over which an expansion converges.
Euler’s transformation, the proof of which (with hints) is deferred to Exercise 1.5.4, makes
the conversion:

fo)=) (=D'epx” (1.86)
n=0

_ S Gy () 1.87

_1+x,§)(_)6’"<1+x>' (1.87)

The coefficients a,, are repeated differences of the ¢,;:
ap = ¢y, ay =c) — oo, a2=C2—261+Co, a3=C3—362+3C1—Co,...;
their general formula is
an =Z(—1)1<'>cn_,~. (1.88)
j=0 J

The series to which the Euler transformation is applied need not be alternating. The coef-
ficients ¢,, can have a sign factor which cancels that in the definition.
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Example 1.5.4  EuLer TRANSFORMATION

The Maclaurin series for In(1 4 x) converges extremely slowly, with convergence only for
|x] < 1. We consider the Euler transformation on the related series

In(1 2
le_ijx__...’ (1.89)
X 2 3

s0, in Eq. (1.86), ¢, = 1/(n + 1). The first few a, are: ap =1, a1 =3 — 1 = -3, a» =
%—2(%)+1=%,a3=3—‘—3(%)+3(%)—1:—%,0ringeneral

="
T on+17

dn

The converted series is then

In(1+x) 1 Ll Y 2+
x T l4x 2\1+x 3\1+x ’

which rearranges to

In(1 + x) SRR G SRV I (1.90)
n X) = _— — — e, .
14+x 2\1+4+x 3\1+4+x
This new series converges nicely at x = 1, and in fact is convergent for all x < co. |
Exercises
1.51 Using a partial fraction expansion, show that for0 <x < 1,
/ dt 14+x
=In .
1—12 1—x
—X
1.5.2 Prove the partial fraction expansion
1

nn+1)---(n+p)

_LpyE_(ry ! P\_L (P L
_p!|:(0>n <1>n+1+<2>n+2 +( l)p(p>n+p:|’

where p is a positive integer.

Hint. Use mathematical induction. Two binomial coefficient formulas of use here are

1 B 1
L.(’?)=<”+. ) Z(—l)/‘l(“. )=1.
p+1=Jj\J J o J
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1.5.3 The formula for ), Eq. (1.26), is a summation of the form Zzozl u,(p), with
1
nn+ D (it p)

Applying a partial fraction decomposition to the first and last factors of the denominator,
ie.,

up(p) =

1 1 |:1 1 i|
nin+p) pln n+pl
n - n -1
show that u,,(p) = % and that )0 | u, (p) = ﬁ'
Hint. 1t is useful to note that u(p — 1) =1/p!.

1.5.4 Proof of Euler transformation: By substituting Eq. (1.88) into Eq. (1.87), verify that
Eq. (1.86) is recovered.

Hint. It may help to rearrange the resultant double series so that both indices are summed
on the range (0, 00). Then the summation not containing the coefficients c¢; can be
recognized as a binomial expansion.

1.5.5 Carry out the Euler transformation on the series for arctan(x):

P I L

t =X — — F — — — 4 — — ...
arctan(x) = x 3 + 5 7 + 9

Check your work by computing arctan(1) = 7 /4 and arctan(3~'/%) = /6.

1.6 SOME IMPORTANT SERIES

There are a few series that arise so often that all physicists should recognize them. Here is
a short list that is worth committing to memory.

o0 X" x2 x3 x4
exp(x):Z——l—l—x—i———i—?—}———i— —00 <X < 00, (1.91)
n:On
0 2n+1 3 5 7
. _ (—=D"*x _ X X X
SIH(X)—HZOW—X_a‘Fy_?—F’ —_0 <X <00, (192)
0 2n 2 4 6
(—D"x X X X
cos(x):X(:)Wzl—2—!+4—!—a+~~-, —00 <X <00, (1.93)
n=
- 0 x2n+l )C3 )C5 x7 Lo4
sin (x)_z_:m—x+3 +§+—+ —00 < X < 00, (1.94)
N 0 x2n .y x2 x4 x6 .
cosh(x) = Z(Z Y +E+E+5+ —00 < X < 00, (1.95)
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1 o
=Y A=l4x4x>+x +xt 4.0, —l1<x<l, (1.96)
1—x
n=0
o
(_l)n—lxn x2 x3 x4
In(1 = - =X — 4= —— 4., —1 <1, 1.97
n(l+x)=Y" - e s <x< (1.97)
n=1
o o
P (P —n+1),
1 P = "= - x" -1 1. 1.
(1+x) Z(ﬂ)x Z 0 x", <x< (1.98)
n=0 n=0
Reminder. The notation (a),, is the Pochhammer symbol: (a)g =1, (a); = a, and for inte-
gersn > 1, (@), =a(a+1)---(a+n —1). It is not required that a, or p in Eq. (1.98), be
positive or integral.
Exercises

1 3 5
1.6.1 Showthatln<1+x)=2<x+%+%+--~), lex<l.

1.7 VECTORS

In science and engineering we frequently encounter quantities that have algebraic magni-
tude only (i.e., magnitude and possibly a sign): mass, time, and temperature. These we label
scalar quantities, which remain the same no matter what coordinates we may use. In con-
trast, many interesting physical quantities have magnitude and, in addition, an associated
direction. This second group includes displacement, velocity, acceleration, force, momen-
tum, and angular momentum. Quantities with magnitude and direction are labeled vector
quantities. To distinguish vectors from scalars, we usually identify vector quantities with
boldface type, as in V or x.

This section deals only with properties of vectors that are not specific to three-
dimensional (3-D) space (thereby excluding the notion of the vector cross product and
the use of vectors to describe rotational motion). We also restrict the present discussion to
vectors that describe a physical quantity at a single point, in contrast to the situation where
a vector is defined over an extended region, with its magnitude and/or direction a function
of the position with which it is associated. Vectors defined over a region are called vector
fields; a familiar example is the electric field, which describes the direction and magnitude
of the electrical force on a test charge throughout a region of space. We return to these
important topics in a later chapter.

The key items of the present discussion are (1) geometric and algebraic descriptions of
vectors; (2) linear combinations of vectors; and (3) the dot product of two vectors and its
use in determining the angle between their directions and the decomposition of a vector
into contributions in the coordinate directions.
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Basic Properties

We define a vector in a way that makes it correspond to an arrow from a starting point to
another point in two-dimensional (2-D) or 3-D space, with vector addition identified as
the result of placing the tail (starting point) of a second vector at the head (endpoint) of the
first vector, as shown in Fig. 1.7. As seen in the figure, the result of addition is the same if
the vectors are added in either order; vector addition is a commutative operation. Vector
addition is also associative; if we add three vectors, the result is independent of the order
in which the additions take place. Formally, this means

(A+B)+C=A+ (B+C).

It is also useful to define an operation in which a vector A is multiplied by an ordinary
number k (a scalar). The result will be a vector that is still in the original direction, but
with its length multiplied by k. If k is negative, the vector’s length is multiplied by |k| but
its direction is reversed. This means we can interpret subtraction as illustrated here:

A—-B=A+(-D)B,

and we can form polynomials such as A 4+ 2B — 3C.

Up to this point we are describing our vectors as quantities that do not depend on any
coordinate system that we may wish to use, and we are focusing on their geometric prop-
erties. For example, consider the principle of mechanics that an object will remain in static
equilibrium if the vector sum of the forces on it is zero. The net force at the point O of
Fig. 1.8 will be the vector sum of the forces labeled F1, F,, and F3. The sum of the forces
at static equilibrium is illustrated in the right-hand panel of the figure.

It is also important to develop an algebraic description for vectors. We can do so by
placing a vector A so that its tail is at the origin of a Cartesian coordinate system and by
noting the coordinates of its head. Giving these coordinates (in 3-D space) the names Ay,
Ay, A;, we have a component description of A. From these components we can use the
Pythagorean theorem to compute the length or magnitude of A, denoted A or |A|, as

A=(A]+ A} +AD' (1.99)

The components Ay, ... are also useful for computing the result when vectors are added
or multiplied by scalars. From the geometry in Cartesian coordinates, it is obvious that if
C = kA + k'B, then C will have components

Cy=kA, +k'By, Cy=kA,+k'By, C.=kA,+KkB..

At this stage it is convenient to introduce vectors of unit length (called unit vectors) in
the directions of the coordinate axes. Letting €, be a unit vector in the x direction, we can

FIGURE 1.7  Addition of two vectors.
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FIGURE 1.8 Equilibrium of forces at the point O.

now identify A,€, as a vector of signed magnitude A, in the x direction, and we see that
A can be represented as the vector sum

A=Al + A8, +AG,. (1.100)

If A is itself the displacement from the origin to the point (x, y, z), we denote it by the
special symbol r (sometimes called the radius vector), and Eq. (1.100) becomes

r=ux&, + yé, + ze,. (1.101)

The unit vectors are said to span the space in which our vectors reside, or to form a
basis for the space. Either of these statements means that any vector in the space can be
constructed as a linear combination of the basis vectors. Since a vector A has specific
values of Ay, Ay, and A, this linear combination will be unique.

Sometimes a vector will be specified by its magnitude A and by the angles it makes with
the Cartesian coordinate axes. Letting o, 8, y be the respective angles our vector makes
with the x, y, and z axes, the components of A are given by

Ay =Acosa, Ay=Acosfl, A,=Acosy. (1.102)

The quantities cos«, cos 8, cos y (see Fig. 1.9) are known as the direction cosines of A.
Since we already know that A2 + Ai + A2 = A2, we see that the direction cosines are not
entirely independent, but must satisfy the relation

cos’>a +cos? B +cos’y = 1. (1.103)

While the formalism of Eq. (1.100) could be developed with complex values for the
components Ay, Ay, A;, the geometric situation being described makes it natural to restrict
these coefficients to real values; the space with all possible real values of two coordinates
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FIGURE 1.9 Cartesian components and direction cosines of A.

Axex

X

FIGURE 1.10 Projections of A on the x and y axes.

is denoted by mathematicians (and occasionally by us) R?; the complete 3-D space is
named R3.

Dot (Scalar) Product

When we write a vector in terms of its component vectors in the coordinate directions,
as in

A=A+ A6, + A8,
we can think of A€, as its projection in the x direction. Stated another way, it is the
portion of A that is in the subspace spanned by €, alone. The term projection corresponds
to the idea that it is the result of collapsing (projecting) a vector onto one of the coordinate
axes. See Fig. 1.10.

It is useful to define a quantity known as the dot product, with the property that it
produces the coefficients, e.g., Ay, in projections onto the coordinate axes according to

A-¢,=A,=Acosa, A-&,=A,=Acosf, A-& =A,=Acosy, (1.104)

where cos «, cos 8, cos y are the direction cosines of A.
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We want to generalize the notion of the dot product so that it will apply to arbitrary
vectors A and B, requiring that it, like projections, be linear and obey the distributive and
associative laws

A-B+C)=A-B+A-C, (1.105)
A - (kB) = (kA)-B=kA B, (1.106)

with k a scalar. Now we can use the decomposition of B into Cartesian components as
in Eq. (1.100), B = B.&, + B, &, + B.¢&., to construct the dot product of the vectors A and
B as

A-B=A.(B.é, + B,&, + B;¢;)
=B.A-& +ByA-&,+ B:A-¢;
=B A+ ByA, + B;A;. (1.107)
This leads to the general formula

A.B:ZBiAi:ZAiBizB.A, (1.108)
i i

which is also applicable when the number of dimensions in the space is other than three.
Note that the dot product is commutative, with A- B=B - A.

An important property of the dot product is that A - A is the square of the magnitude
of A:

AA=AZ+AL+. =|AL (1.109)
Applying this observation to C = A + B, we have
IC’=C-C=(A+B)-(A+B)=A-A+B-B+2A-B,

which can be rearranged to
1
A-B= E[|C|2 —|A]> - |B|2]. (1.110)

From the geometry of the vector sum C = A + B, as shown in Fig. 1.11, and recalling
the law of cosines and its similarity to Eq. (1.110), we obtain the well-known formula

A-B=|A||B|cosf, (1.111)

FIGURE 1.11 Vector sum, C= A + B.
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where 6 is the angle between the directions of A and B. In contrast with the algebraic
formula Eq. (1.108), Eq. (1.111) is a geometric formula for the dot product, and shows
clearly that it depends only on the relative directions of A and B and is therefore indepen-
dent of the coordinate system. For that reason the dot product is sometimes also identified
as a scalar product.

Equation (1.111) also permits an interpretation in terms of the projection of a vector A
in the direction of B or the reverse. If b is a unit vector in the direction of B, the projection
of A in that direction is given by

Apb = (b-A)b=(Acosd)b, (1.112)

where 6 is the angle between A and B. Moreover, the dot product A - B can then be identi-
fied as |B| times the magnitude of the projection of A in the B direction, so A - B = A, B.
Equivalently, A - B is equal to |A| times the magnitude of the projection of B in the A
direction, so we also have A - B= B,A.

Finally, we observe that since |cos6| < 1, Eq. (1.111) leads to the inequality

|A-B| <|A| |B|. (1.113)

The equality in Eq. (1.113) holds only if A and B are collinear (in either the same or
opposite directions). This is the specialization to physical space of the Schwarz inequality,
which we will later develop in a more general context.

Orthogonality

Equation (1.111) shows that A - B becomes zero when cosd = 0, which occurs at 0 = +7/2
(i.e., at & = £90°). These values of 6 correspond to A and B being perpendicular, the
technical term for which is orthogonal. Thus,

A and B are orthogonal if and only if A-B=0.

Checking this result for two dimensions, we note that A and B are perpendicular if the
slope of B, By /By, is the negative of the reciprocal of A, /A,, or

This result expands to A, By + A, By, =0, the condition that A and B be orthogonal.

In terms of projections, A - B = 0 means that the projection of A in the B direction
vanishes (and vice versa). That is of course just another way of saying that A and B are
orthogonal.

The fact that the Cartesian unit vectors are mutually orthogonal makes it possible to
simplify many dot product computations. Because

& 8 =8y b =8y =0, & -8y =8 8 =0 & =1, (1.114)
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we can evaluate A - B as

(Aye,+A,&,+A.8,) (Byé,+Byey+B.e;)=AB.e&-e +A,Bye,-&,+A,B.¢e;-¢

+ (AxBy + A}’Bx)éx : é)’ + (AXBZ + Asz)éx ' éZ + (A)’BZ + AZB)’)éy ’ éz
= A.By + A,B, + A,B,.

See Chapter 3: Vector Analysis, Section 3.2: Vectors in 3-D Space for an introduction

of the cross product of vectors, needed early in Chapter 2.

Exercises

1.71

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

The vector A whose magnitude is 1.732 units makes equal angles with the coordinate
axes. Find A,, Ay, and A,.

A triangle is defined by the vertices of three vectors A, B and C that extend from the
origin. In terms of A, B, and C show that the vector sum of the successive sides of the
triangle (AB + BC + CA) is zero, where the side AB is from A to B, etc.

A sphere of radius a is centered at a point r.

(a) Write out the algebraic equation for the sphere.
(b) Write out a vector equation for the sphere.

ANS. (@) (x—x)’+(—yD*+ @ -z’ =d’
(b) r=r + a, where a takes on all directions
but has a fixed magnitude a.

Hubble’s law. Hubble found that distant galaxies are receding with a velocity propor-
tional to their distance from where we are on Earth. For the ith galaxy,

v; = Hor;

with us at the origin. Show that this recession of the galaxies from us does not imply
that we are at the center of the universe. Specifically, take the galaxy at r; as a new
origin and show that Hubble’s law is still obeyed.

Find the diagonal vectors of a unit cube with one corner at the origin and its three sides
lying along Cartesian coordinates axes. Show that there are four diagonals with length
V/3. Representing these as vectors, what are their components? Show that the diagonals
of the cube’s faces have length +/2 and determine their components.

The vector r, starting at the origin, terminates at and specifies the point in space (x, y, z).
Find the surface swept out by the tip of r if

(a) (r—a)-a=0. Characterize a geometrically.

(b) (r—a)-r=0. Describe the geometric role of a.

The vector a is constant (in magnitude and direction).
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1.7.8

1.7.9

1.7.10
1.7.11

1.8 Complex Numbers and Functions 53

A pipe comes diagonally down the south wall of a building, making an angle of 45° with
the horizontal. Coming into a corner, the pipe turns and continues diagonally down a
west-facing wall, still making an angle of 45° with the horizontal. What is the angle
between the south-wall and west-wall sections of the pipe?

ANS. 120°.

Find the shortest distance of an observer at the point (2, 1,3) from a rocket in free
flight with velocity (1, 2, 3) km/s. The rocket was launched at time t = 0 from (1, 1, 1).
Lengths are in kilometers.

Show that the medians of a triangle intersect in the center which is 2/3 of the median’s
length from each vertex. Construct a numerical example and plot it.

Prove the law of cosines starting from AZ=B-C)>2.
Given the three vectors,
P =3¢, +2¢, — ¢,
Q= —6e, —4e, +2¢,,
R=¢, —2¢, —¢,

find two that are perpendicular and two that are parallel or antiparallel.

1.8 COMPLEX NUMBERS AND FUNCTIONS

Complex numbers and analysis based on complex variable theory have become extremely
important and valuable tools for the mathematical analysis of physical theory. Though
the results of the measurement of physical quantities must, we firmly believe, ultimately
be described by real numbers, there is ample evidence that successful theories predicting
the results of those measurements require the use of complex numbers and analysis. In a
later chapter we explore the fundamentals of complex variable theory. Here we introduce
complex numbers and identify some of their more elementary properties.

Basic Properties

A complex number is nothing more than an ordered pair of two real numbers, (a, b). Sim-
ilarly, a complex variable is an ordered pair of two real variables,

2=, y). (1.115)

The ordering is significant. In general (a, b) is not equal to (b, a) and (x, y) is not equal
to (y,x). As usual, we continue writing a real number (x, 0) simply as x, and we call
i = (0, 1) the imaginary unit. All of complex analysis can be developed in terms of ordered
pairs of numbers, variables, and functions (u(x, y), v(x, y)).

We now define addition of complex numbers in terms of their Cartesian components as

21+ 22 = (x1, y1) + (22, y2) = (x1 + x2, y1 + ¥2). (1.116)
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Multiplication of complex numbers is defined as

z122 = (x1, ¥1) - (x2, y2) = (x1X2 — Y1y2, X1y2 + X21). (1.117)

It is obvious that multiplication is not just the multiplication of corresponding components.
Using Eq. (1.117) we verify that i2=1(0,1)-(0,1) = (—1,0) = —1, so we can also identify
i = +/—1 as usual, and further rewrite Eq. (1.115) as

2=, ) =x,04+©0,y)=x+(0,1)-(y,0) =x +iy. (1.118)

Clearly, introduction of the symbol i is not necessary here, but it is convenient, in large
part because the addition and multiplication rules for complex numbers are consistent with
those for ordinary arithmetic with the additional property that i = —1:

(01 +iyD) (2 +iy2) = x1x0 +i2y1y2 +i (X1 2+ y1x2) = (X102 — y1y2) +i (X132 + y1x2),

in agreement with Eq. (1.117). For historical reasons, i and its multiples are known as
imaginary numbers.

The space of complex numbers, sometimes denoted Z by mathematicians, has the fol-
lowing formal properties:

e It is closed under addition and multiplication, meaning that if two complex numbers
are added or multiplied, the result is also a complex number.

e It has a unique zero number, which when added to any complex number leaves it
unchanged and which, when multiplied with any complex number yields zero.

e It has aunique unit number, 1, which when multiplied with any complex number leaves
it unchanged.

e Every complex number z has an inverse under addition (known as —z), and every
nonzero z has an inverse under multiplication, denoted z~! or 1/z.

e Itis closed under exponentiation: if u and v are complex numbers u” is also a complex

number.

From a rigorous mathematical viewpoint, the last statement above is somewhat loose, as it
does not really define exponentiation, but we will find it adequate for our purposes.
Some additional definitions and properties include the following:

Complex conjugation: Like all complex numbers, i has an inverse under addition,
denoted —i, in two-component form, (0, —1). Given a complex number z = x + iy, it
is useful to define another complex number, z* = x — iy, which we call the complex con-
jugate of z.° Forming

22f = +iy)(x —iy) = x> +y?, (1.119)

we see that zz* is real; we define the absolute value of z, denoted |z|, as v/zz*.

6The complex conjugate of z is often denoted 7 in the mathematical literature.
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Division: Consider now the division of two complex numbers: z'/z. We need to manipulate
this quantity to bring it to the complex number form u + iv (with « and v real). We may
do so as follows:

/!

7 d (M 4iy)(x —iy)
7 zz* x2+y2 '
or
x4y xx4+yy  xy =Xy
= i )
X+ly x2+y2 x2+y2

(1.120)

Functions in the Complex Domain

Since the fundamental operations in the complex domain obey the same rules as those for
arithmetic in the space of real numbers, it is natural to define functions so that their real and
complex incarnations are similar, and specifically so that the complex and real definitions
agree when both are applicable. This means, among other things, that if a function is repre-
sented by a power series, we should, within the region of convergence of the power series,
be able to use such series with complex values of the expansion variable. This notion is
called permanence of the algebraic form.
Applying this concept to the exponential, we define

1 1 1
7 _ 2 3y A
e—l+z+2!z +3!z +4!z+ . (1.121)
Now, replacing z by iz, we have

) 1 1 1
iz : F )2 i3 (i)
e _1+zz+2! (iz) +3!(1z) +4! @iz)" +

1, 14 . 1 5 1 5
—[l—az +ZZ —~-~]+l[z—§z +§Z — . (1.122)
It was permissible to regroup the terms in the series of Eq. (1.122) because that series is
absolutely convergent for all z; the d’ Alembert ratio test succeeds for all z, real or complex.
If we now identify the bracketed expansions in the last line of Eq. (1.122) as cosz and sinz,
we have the extremely valuable result

e'?=cosz +isinz. (1.123)

This result is valid for all z, real, imaginary, or complex, but is particularly useful when z
is real.

Any function w(z) of a complex variable z = x + iy can in principle be divided into its
real and imaginary parts, just as we did when we added, multiplied, or divided complex
numbers. That is, we can write

w(z)=ulx,y) +iv(x,y), (1.124)

in which the separate functions u(x, y) and v(x, y) are pure real. For example, if f(z) = z2,
we have

f@) =@ +iy)?= x> —y») +ixy).
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The real part of a function f(z) will be labeled PRe f(z), whereas the imaginary part
will be labeled Jm f(z). In Eq. (1.124),

Rew(z) =ulx,y), Imw) =v(x,y).

The complex conjugate of our function w(z) is u(x, y) —iv(x, y), and depending on w,
may or may not be equal to w(z*).

Polar Representation

We may visualize complex numbers by assigning them locations on a planar graph, called
an Argand diagram or, more colloquially, the complex plane. Traditionally the real com-
ponent is plotted horizontally, on what is called the real axis, with the imaginary axis in
the vertical direction. See Fig. 1.12. An alternative to identifying points by their Cartesian
coordinates (x, y) is to use polar coordinates (r, 0), with

x=rcosf, y=rsind, or r=,/x2+y2, 6=tan"! y/x. (1.125)

The arctan function tan~!(y/x) is multiple valued; the correct location on an Argand dia-
gram needs to be consistent with the individual values of x and y.

The Cartesian and polar representations of a complex number can also be related by
writing

x +iy =r(cost +ising) =re’, (1.126)

where we have used Eq. (1.123) to introduce the complex exponential. Note that r is
also |z|, so the magnitude of z is given by its distance from the origin in an Argand di-
agram. In complex variable theory, r is also called the modulus of z and 0 is termed the
argument or the phase of z.

If we have two complex numbers, z and 7/, in polar form, their product zz’ can be written

22 = () (' e”) = (rr)e! O, (1.127)
showing that the location of the product in an Argand diagram will have argument (polar

angle) at the sum of the polar angles of the factors, and with a magnitude that is the product

Jm

FIGURE 1.12  Argand diagram, showing location of z = x 4 iy = re'?.
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*

FIGURE 1.13  Left: Relation of z and z*. Right: 7 4+ z* and z — z*.

of their magnitudes. Conversely, the quotient z/z" will have magnitude r/r’ and argument
0 — 0. These relationships should aid in getting a qualitative understanding of complex
multiplication and division. This discussion also shows that multiplication and division
are easier in the polar representation, whereas addition and subtraction have simpler forms
in Cartesian coordinates.

The plotting of complex numbers on an Argand diagram makes obvious some other
properties. Since addition on an Argand diagram is analogous to 2-D vector addition, it
can be seen that

<lz£Z| <zl + 2. (1.128)

121 - 12/

Also, since z* = re~!% has the same magnitude as z but an argument that differs only in
sign, z + z* will be real and equal to 2Re z, while z — z* will be pure imaginary and equal
to 2i Jm z. See Fig. 1.13 for an illustration of this discussion.

We can use an Argand diagram to plot values of a function w(z) as well as just z itself,
in which case we could label the axes u and v, referring to the real and imaginary parts of
w. In that case, we can think of the function w(z) as providing a mapping from the xy
plane to the uv plane, with the effect that any curve in the xy (sometimes called z) plane
is mapped into a corresponding curve in the uv (= w) plane. In addition, the statements of
the preceding paragraph can be extended to functions:

@] = '@ = 0+ /@] < wE] + '@,

M jmw(z)zw. (1.129)

Rew(z) = 3 3

Complex Numbers of Unit Magnitude

Complex numbers of the form

¢'% = cos6 +i siné, (1.130)

where we have given the variable the name 6 to emphasize the fact that we plan to restrict
it to real values, correspond on an Argand diagram to points for which x = cos#, y = sin#6,
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FIGURE 1.14 Some values of z on the unit circle.

and whose magnitude is therefore cos? 6 + sin® @ = 1. The points exp(if) therefore lie on
the unit circle, at polar angle 6. This observation makes obvious a number of relations
that could in principle also be deduced from Eq. (1.130). For example, if 6 has the special
values /2, , or 37 /2, we have the interesting relationships

ein/zzi’ eiﬂ:—l’ e3iﬂ/2:—i, (1131)
We also see that exp(i6) is periodic, with period 27, so
AT =M = =, ST =72 = etc. (1.132)

A few relevant values of z on the unit circle are illustrated in Fig. 1.14. These relation-
ships cause the real part of exp(iwt) to describe oscillation at angular frequency w, with
exp(i[wt + §]) describing an oscillation displaced from that first mentioned by a phase
difference §.

Circular and Hyperbolic Functions
The relationship encapsulated in Eq. (1.130) enables us to obtain convenient formulas for
the sine and cosine. Taking the sum and difference of exp(+i0) and exp(—if), we have
0 ,—if i0 _ ,—if
cosf= T Gnp="_—° (1.133)
2 2i

These formulas place the definitions of the hyperbolic functions in perspective:

6 —0 6 __ ,—0
cosh@:%, sinhez%. (1.134)

Comparing these two sets of equations, it is possible to establish the formulas
coshiz=-cosz, sinhiz=isinz. (1.135)

Proof is left to Exercise 1.8.5.
The fact that exp(in6) can be written in the two equivalent forms

cosnf +isinnh = (cosd + i sinH)" (1.136)
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establishes a relationship known as de Moivre’s Theorem. By expanding the right mem-
ber of Eq. (1.136), we easily obtain trigonometric multiple-angle formulas, of which the
simplest examples are the well-known results

sin(20) =2sinf cosf, cos(20) = cos? O — sin” 6.

If we solve the sinf formula of Eq. (1.133) for exp(i6), we get (choosing the plus sign

for the radical)
¢ =ising +4/1—sin’6.

Setting sinf = z and # = sin~' (z), and taking the logarithm of both sides of the above
equation, we express the inverse trigonometric function in terms of logarithms.

sin~!(z) = —iln [iz ++v1- zz] )
The set of formulas that can be generated in this way includes:
sin"!(z) = —iln [iz +v1- z2] , tan"'()= %[ In(1 —iz) —In(1 + iz)] ,

sinh~!(z) = In [z V1 +12] . tanh~l(x) = %[ In(1 +z) — In(1 — z)] . (1.137)

Powers and Roots

The polar form is very convenient for expressing powers and roots of complex numbers.
For integer powers, the result is obvious and unique:

z=re'?, "=r"e"?,

For roots (fractional powers), we also have

erel(p, Zl/n:rl/nez(p/n’

but the result is not unique. If we write z in the alternate but equivalent form

7= rei((p+2mn)

where m is an integer, we now get additional values for the root:

1/n _ rl/nei((p+2mn)/n,

z (any integer m).

If n =2 (corresponding to the square root), different choices of m will lead to two distinct
values of z!/2, both of the same modulus but differing in argument by 7. This corresponds
to the well-known result that the square root is double-valued and can be written with
either sign.

In general, z'/" is n-valued, with successive values having arguments that differ by
27 /n. Figure 1.15 illustrates the multiple values of 11/3, i1/3 and (—1)!/3.

1/n
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. 1(1+3i)
L(=1+V3i) 2 (1*
2 .
1(—B+i) 7(\B+)
1 1
1(-1-Bi) - (1-\31)
(a) (b) (©)
FIGURE 1.15  Cube roots: (a) 11/3; (b) i'/3; (c) (=1)!/3.
Logarithm

Another multivalued complex function is the logarithm, which in the polar representation
takes the form

Inz =In(re'®) =Inr +i6.
However, it is also true that

Inz=1In (rei<0+2"”>) =Inr +i(0 + 2n7), (1.138)

for any positive or negative integer n. Thus, In z has, for a given z, the infinite number of
values corresponding to all possible choices of n in Eq. (1.138).

Exercises
1.8.1 Find the reciprocal of x + iy, working in polar form but expressing the final result in
Cartesian form.
1.8.2 Show that complex numbers have square roots and that the square roots are contained

in the complex plane. What are the square roots of i ?

1.8.3 Show that
(a) cosnf =cos" 0 — (n) cos" 2@ sin’ 6 + (n) cos" *@sin*o — .-,
2 4
b) sinnd=(")cos" ' osing — (" cos" 3 0sind 0 +---.
1 3

1.8.4 Prove that

N-1
sin(Nx/2)
(a) %cosnx—m (N—l)—
sm(Nx/Z) X
(b) Z sinn smx/2 sin(N — 1)5.

These series occur in the analysis of the multiple-slit diffraction pattern.
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1.8.5 Assume that the trigonometric functions and the hyperbolic functions are defined for
complex argument by the appropriate power series. Show that

isinz =sinhiz, siniz =isinhz,

cosz =coshiz, cosiz =coshz.
1.8.6 Using the identities

el iz ] el — p~iz
cosz=———, Ssing=——,
2 2i

established from comparison of power series, show that
(a) sin(x +iy) =sinxcoshy+icosxsinhy,
cos(x +1iy) =cosxcoshy —isinxsinhy,
(b) |sinz|? =sin’x +sinh®y, |cosz|? =cos?x + sinh?y.
This demonstrates that we may have |sinz|, |cosz| > 1 in the complex plane.
1.8.7 From the identities in Exercises 1.8.5 and 1.8.6 show that

(a) sinh(x +iy) =sinhxcosy+i coshxsiny,

cosh(x +iy) =coshxcosy + i sinhxsiny,
(b) |sinhz|> = sinh? x + sin® y, |coshz|?>= cosh? x + sinzy.

1.8.8 Show that
sinhx +isiny () coth z_ sinhx —isiny

(a) tanh - _— .
2 2 coshx —cosy

coshx +cosy’

. 1—i
1.8.9 By comparing series expansions, show that tan™! x = % In ( T l‘x >
ix

1.8.10 Find the Cartesian form for all values of

(@ (=8)'7,
(b) ',
(c) e/,

1.8.11  Find the polar form for all values of

(@ (1+i)3,
(b) (=D
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1.9 DERIVATIVES AND EXTREMA

We recall the familiar limit identified as the derivative, df (x)/dx, of a function f(x) ata
point x:

df@) _ . fte) = f()

dx £=0 e

(1.139)

the derivative is only defined if the limit exists and is independent of the direction from
which e approaches zero. The variation or differential of f(x) associated with a change
dx in its independent variable from the reference value x assumes the form

df=f(x+dx)—f(x)=%dx, (1.140)

in the limit that dx is small enough that terms dependent on dx? and higher powers of dx
become negligible. The mean value theorem (based on the continuity of f) tells us that
here, df/dx is evaluated at some point & between x and x + dx, butas dx — 0, & — x.

When a quantity of interest is a function of two or more independent variables, the
generalization of Eq. (1.140) is (illustrating for the physically important three-variable
case):

df =[ fGc+de,y+dy,z+da) = f(x,y+dy, 2 +d2)
n [(f(x,y+dy,z+dz)—f(x,y,z+dz)]

+ [f(x,y,Z+dZ) —f(x,y,z)]

9 d 9
=_fdx+_fdy+_fdz7 (1.141)
ox ay 9z

where the partial derivatives indicate differentiation in which the independent variables
not being differentiated are kept fixed. The fact that df/dx is evaluated at y + dy and
z + dz instead of at y and z alters the derivative by amounts that are of order dy and
dz, and therefore the change becomes negligible in the limit of small variations. It is thus
consistent to interpret Eq. (1.141) as involving partial derivatives that are all evaluated at
the reference point x, y, z.

Further analysis of the same sort as led to Eq. (1.141) can be used to define higher
derivatives and to establish the useful result that cross derivatives (e.g., 9>/dxdy) are
independent of the order in which the differentiations are performed:

9 (of\ _ 9*f  0%f
ay \dx /)  dydx  dxdy’

Sometimes it is not clear from the context which variables other than that being dif-
ferentiated are independent, and it is then advisable to attach subscripts to the derivative

notation to avoid ambiguity. For example, if x, y, and z have been defined in a problem,
but only two of them are independent, one might write

(5), o (5)
dx ), ox ),

(1.142)

whichever is actually meant.
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For working with functions of several variables, we note two useful formulas that follow
from Eq. (1.141):

1. The chain rule,
df _of dx of dy o dz
ds 3dxds dyds 9zds’
which applies when x, y, and z are functions of another variable, s,

2. A formula obtained by setting df = 0 (here shown for the case where there are only
two independent variables and the dz term of Eq. (1.141) is absent):

(1.143)

=——. 1.144
x < aof ) ¢ )
ay /,
In Lagrangian mechanics, one occasionally encounters expressions such as’

d . aL . 3L . L
EL(x,x,t): —Xx+—X+ ,

() )

dx ax | ot

an example of use of the chain rule. Here it is necessary to distinguish between the formal
dependence of L on its three arguments and the overall dependence of L on time. Note the
use of the ordinary (d/dt) and partial (9/9¢) derivative notation.

Stationary Points

Whether or not a set of independent variables (e.g., x, y, z of our previous discussion)
represents directions in space, one can ask how a function f changes if we move in various
directions in the space of the independent variables; the answer is provided by Eq. (1.143),
where the “direction” is defined by the values of dx /ds, dy/ds, etc.

It is often desired to find the minimum of a function f of n variables x;,i =1,...,n,
and a necessary but not sufficient condition on its position is that

df

— =0 for all directions of ds.
ds

This is equivalent to requiring

af
Bxl- -

All points in the {x;} space that satisfy Eq. (1.145) are termed stationary; for a stationary
point of f to be a minimum, it is also necessary that the second derivatives d? f/ds> be
positive for all directions of s. Conversely, if the second derivatives in all directions are
negative, the stationary point is a maximum. If neither of these conditions are satisfied, the
stationary point is neither a maximum nor a minimum, and is often called a saddle point
because of the appearance of the surface of f when there are two independent variables

0, i=1,...,n. (1.145)

7Here dots indicate time derivatives.
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f(x, y)

X

FIGURE 1.16 A stationary point that is neither a maximum nor minimum

(a saddle point).

(see Fig. 1.16). It is often obvious whether a stationary point is a minimum or maximum,
but a complete discussion of the issue is nontrivial.

Exercises

1.9.1

1.9.2

Derive the following formula for the Maclaurin expansion of a function of two

variables:

fx,y)=f(0,0) +xg +y%
r3l )5 O+ O3]
[0+ (st + (o

i

where all the partial derivatives are to be evaluated at the point (0, 0).

3
3

)

30°F

ay3

[+,

The result in Exercise 1.9.1 can be generalized to larger numbers of independent vari-
ables. Prove that for an m-variable system, the Maclaurin expansion can be written in



1.10 Evaluation of Integrals 65

the symbolic form

(S m P n
f(xl,...,xm)zz% (Zaia> £0,...,0),

n=0 " \i=1

where in the right-hand side we have made the substitutions x; = o 1.

1.10 EVALUATION OF INTEGRALS

Proficiency in the evaluation of integrals involves a mixture of experience, skill in pat-
tern recognition, and a few tricks. The most familiar include the technique of integration
by parts, and the strategy of changing the variable of integration. We review here some
methods for integrals in one and multiple dimensions.

Integration by Parts

The technique of integration by parts is part of every elementary calculus course, but its
use is so frequent and ubiquitous that it bears inclusion here. It is based on the obvious
relation, for u and v arbitrary functions of x,

d(uv) =udv+vdu.

Integrating both sides of this equation over an interval (a, b), we reach

) b b
=/udv+/vdu,
¢ a a

which is usually rearranged to the well-known form

uv

b

b
/udv:uv

a
a

b
—/vdu. (1.146)

Example 71.10.1  INTEGRATION BY PARTS

Consider the integral ’ x sinx dx. We identify u = x and dv = sin x dx. Differentiating
and integrating, we ﬁn(til du =dx and v = —cos x, so Eq. (1.146) becomes
b b
/x sinxdx = (x)(— cosx)‘ z — /(— cosx)dx =acosa —bcosb +sinb —sina.
a a

The key to the effective use of this technique is to see how to partition an integrand into
u and dv in a way that makes it easy to form du and v and also to integrate [ vdu.
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Special Functions

A number of special functions have become important in physics because they arise in fre-
quently encountered situations. Identifying a one-dimensional (1-D) integral as one yield-
ing a special function is almost as good as a straight-out evaluation, in part because it
prevents the waste of time that otherwise might be spent trying to carry out the integration.
But of perhaps more importance, it connects the integral to the full body of knowledge
regarding its properties and evaluation. It is not necessary for every physicist to know
everything about all known special functions, but it is desirable to have an overview per-
mitting the recognition of special functions which can then be studied in more detail if
necessary.

It is common for a special function to be defined in terms of an integral over the range
for which that integral converges, but to have its definition extended to a larger domain

Table 1.2 Special Functions of Importance in Physics

[o¢]
Gamma function 'x)= / et gy See Chap. 13.
0
o0
Factorial (n integral) n!= f e~ dt n=Tn+1)
o0
, , 1 *=ldr
Riemann zeta function ((x)= —— / See Chaps. 1 and 12.
'(x) el —1
0
[o¢]
Exponential integrals E,(x)= /t_"e_’dt E(x) =—Ei(—x)
1
g .
t
Sine integral si(x) = 7/ % dt
X
o0
S 1
Cosine integral Ci(x) =— g dt
X
2 X
2
Error functions erf(x) = T f e~ dt erf(co) =1
T
0
2 o0
2
erfe(x) = —= [ e ""dr erfc(x) = 1 — erf(x)
=/
X
[ In(1
—1
Dilogarithm Liy(o) = — [ =0 4,

t

(=]
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by analytic continuation in the complex plane (cf. Chapter 11) or by the establishment of
suitable functional relations. We present in Table 1.2 only the most useful integral repre-
sentations of a few functions of frequent occurrence. More detail is provided by a variety of
on-line sources and in material listed under Additional Readings at the end of this chapter,
particularly the compilations by Abramowitz and Stegun and by Gradshteyn and Ryzhik.

A conspicuous omission from the list in Table 1.2 is the extensive family of Bessel func-
tions. A short table cannot suffice to summarize their numerous integral representations; a
survey of this topic is in Chapter 14. Other important functions in more than one variable
or with indices in addition to arguments have also been omitted from the table.

Other Methods

An extremely powerful method for the evaluation of definite integrals is that of contour
integration in the complex plane. This method is presented in Chapter 11 and will not be
discussed here.

Integrals can often be evaluated by methods that involve integration or differentiation
with respect to parameters, thereby obtaining relations between known integrals and those
whose values are being sought.

Example 1.10.2  DiFFeRENTIATE PARAMETER

We wish to evaluate the integral

o0 2
e—x
I = d
/ x2 +a?
0

We introduce a parameter, ¢, to facilitate further manipulations, and consider the related

integral
ooeft(szraz)
Jt)= | ————dx;
0 / P
0

we note that 7 = e“zJ(l).
We now differentiate J () with respect to ¢ and evaluate the resulting integral, which is
a scaled version of Eq. (1.148):

(0,¢] oo
dJ(t) — _/eft(x2+a2) dx = _e,,aZ/e,,XZ dx = _lﬁetaz (1 147)
dt 2V ¢ ' ’

0 0

To recover J(t) we integrate Eq. (1.147) between ¢ and oo, making use of the fact that

J (00) = 0. To carry out the integration it is convenient to make the substitution u?=d%,
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so we get
\/_ 0o 0 \/_ 00
T [e T 2
J(I)ZT/WdIZT/e du,
1 atl/?

which we now recognize as J(¢) = (7r/ 2a)erfc(at'/?). Thus, our final result is
I = Ll e’ erfc(a).
2a

Many integrals can be evaluated by first converting them into infinite series, then
manipulating the resulting series, and finally either evaluating the series or recognizing
it as a special function.

Example 1.10.3  ExpaND, THEN INTEGRATE

Consider I = fol ‘ix In (1”) . Using Eq. (1.120) for the logarithm,

1
/d 145 SR AP PP POV R
5 e '
0

Noting that
1 1 1
22 (D=m+ptat
we see that
(2) — % (2)y=1+ 312 + 512 +-
so 1 =3¢(2). [

Simply using complex numbers aids in the evaluation of some integrals. Take, for
example, the elementary integral
I / dx
) 14x%

Making a partial fraction decomposition of (1 + x2)~! and integrating, we easily get

171 1 i
o d =_[1 1—ix)—In(l +i ]
/2|:1+ix+1—ixi| ¥ = 5| Ind=ix) =In(+ix)

From Eq. (1.137), we recognize this as tan~! (x).
The complex exponential forms of the trigonometric functions provide interesting
approaches to the evaluation of certain integrals. Here is an example.
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Example 1.10.4 A TRIGONOMETRIC INTEGRAL

o0
Consider 1 =/€_m cos bt dt,
0

where a and b are real and positive. Because cos bt = Qe ¢!’ we note that
o0
I=%Re / ematit gy,
0

The integral is now just that of an exponential, and is easily evaluated, leading to

1 a+ib
= ¢ .
a—ib a’+b?

I =fRe

which yields = a/(a® + b?). As a bonus, the imaginary part of the same integral gives us
a?+ b2’

o0
/ e sinbt dr =
0

Recursive methods are often useful in obtaining formulas for a set of related integrals.

Example 1.10.5 Recursion

Consider
1
1, :/t" sinwtdt
0

for positive integer n.
Integrating I,, by parts twice, taking u = ¢" and dv = sinwt dt, we have

1 n(n-—1)
I}’l = - - —2 n—2»
T b
with starting values Ip =2/m and I} = 1/7.
There is often no practical need to obtain a general, nonrecursive formula, as repeated
application of the recursion is frequently more efficient that a closed formula, even when
one can be found. |
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Multiple Integrals

An expression that corresponds to integration in two variables, say x and y, may be written
with two integral signs, as in

X )
[ rxsrandy o [ax [y sec,
X1 yi(x)

where the right-hand form can be more specific as to the integration limits, and also gives
an explicit indication that the y integration is to be performed first, or with a single integral
sign, as in

/f(x,y)dA,
S

where S (if explicitly shown) is a 2-D integration region and d A is an element of “area”
(in Cartesian coordinates, equal to dxdy). In this form we are leaving open both the choice
of coordinate system to be used for evaluating the integral, and the order in which the
variables are to be integrated. In three dimensions, we may either use three integral signs
or a single integral with a symbol dt indicating a 3-D “volume” element in an unspecified
coordinate system.

In addition to the techniques available for integration in a single variable, multiple in-
tegrals provide further opportunities for evaluation based on changes in the order of inte-
gration and in the coordinate system used in the integral. Sometimes simply reversing the
order of integration may be helpful. If, before the reversal, the range of the inner integral
depends on the outer integration variable, care must be exercised in determining the inte-
gration ranges after reversal. It may be helpful to draw a diagram identifying the range of
integration.

Example 1.10.6  REVERSING INTEGRATION ORDER

Consider
o0 o0
e—S
/ e "dr / ds,
s
0 r

in which the inner integral can be identified as an exponential integral, suggesting diffi-
culty if the integration is approached in a straightforward manner. Suppose we proceed by
reversing the order of integration. To identify the proper coordinate ranges, we draw on
a (r,s) plane, as in Fig. 1.17, the region s > r > 0, which is covered in the original inte-
gration order as a succession of vertical strips, for each r extending from s =r to s = oo.
See the left-hand panel of the figure. If the outer integration is changed from r to s, this
same region is covered by taking, for each s, a horizontal range of r that runs from r = 0 to
r = s. See the right-hand panel of the figure. The transformed double integral then assumes
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r

r

FIGURE 1.17  2-D integration region for Example 1.10.6. Left panel: inner integration
over s; right panel: inner integration over r.

the form

o0 s S
-
f—ds/e_’ dr,
s
0 0

where the inner integral over r is now elementary, evaluating to 1 — e~*. This leaves us
with a 1-D integral,

o]

/ g(l —e Y)ds.
s

0

Introducing a power series expansion for 1 — ¢~*, this integral becomes

/-essz( )nln=z( )nlfnl—sds Z(_)nl _1)!’
0

n=1 n=1 0 n=1
where in the last step we have identified the s integral (cf. Table 1.2) as (n — 1)!. We

complete the evaluation by noting that (n — 1)!/n! = 1/n, so that the summation can be
recognized as In 2, thereby giving the final result

0 o0
e—S
/e_rdrf ds =1n?2.
s
0

r

A significant change in the form of 2-D or 3-D integrals can sometimes be accomplished
by changing between Cartesian and polar coordinate systems.
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Example 1.10.7 EVALUATION IN POLAR COORDINATES

In many calculus texts, the evaluation of fooo exp(—x?)dx is carried out by first converting
it into a 2-D integral by taking its square, which is then written and evaluated in polar
coordinates. Using the fact that dxdy = r drd¢, we have

00 o0 /2 [ee) 00

2 ) 2 I _ T
fdxexfdye}=/d(p/rdrer=§/§due”=1.
0 0 0 0 0

This yields the well-known result

J7. (1.148)

Il —

o0
2
/exdxz
0

Example 1.10.8  ATOMIC INTERACTION INTEGRAL

For study of the interaction of a small atom with an electromagnetic field, one of the in-
tegrals that arises in a simple approximate treatment using Gaussian-type orbitals is (in
dimensionless Cartesian coordinates)

2
Z 2402.,2
— I ] € et o Unts o4
1 /dr 2 y2 237 e ,

where the range of the integration is the entire 3-D physical space (IR3). Of course, this is
a problem better addressed in spherical polar coordinates (r, 6, ¢), where r is the distance
from the origin of the coordinate system, 6 is the polar angle (for the Earth, known as
colatitude), and ¢ is the azimuthal angle (longitude). The relevant conversion formulas
are: x> 4+ y2 4+ z2 =r? and z/r = cos6. The volume element is dv = r2sin6 drdfde,
and the ranges of the new coordinates are 0 <r < 00,0 <6 <mw,and 0 < ¢ < 2x. In the
spherical coordinates, our integral becomes

29 00 T 21
cos
:[dt e :/drrefrZ/dQ coszésinQ/ahp
r
0 0 0

BOC)-F

Remarks: Changes of Integration Variables

In a 1-D integration, a change in the integration variable from, say, x to y = y(x) involves
two adjustments: (1) the differential dx must be replaced by (dx/dy)dy, and (2) the in-
tegration limits must be changed from x1, x3 to y(x1), y(x2). If y(x) is not single-valued
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over the entire range (x1, x2), the process becomes more complicated and we do not con-
sider it further at this point.

For multiple integrals, the situation is considerably more complicated and demands
some discussion. Illustrating for a double integral, initially in variables x, y, but trans-
formed to an integration in variables u, v, the differential dx dy must be transformed to
J dudv, where J, called the Jacobian of the transformation and sometimes symbolically
represented as

0, y)
T o(u, v)

may depend on the variables. For example, the conversion from 2-D Cartesian coordinates
X, y to plane polar coordinates r, 6 involves the Jacobian

_ 0y
A 0)

For some coordinate transformations the Jacobian is simple and of a well-known form, as
in the foregoing example. We can confirm the value assigned to J by noticing that the
area (in xy space) enclosed by boundaries at r, r + dr, 8, and 6 4 d6 is an infinitesimally
distorted rectangle with two sides of length dr and two of length rd6. See Fig. 1.18. For
other transformations we may need general methods for obtaining Jacobians. Computation
of Jacobians will be treated in detail in Section 4.4.

Of interest here is the determination of the transformed region of integration. In prin-
ciple this issue is straightforward, but all too frequently one encounters situations (both
in other texts and in research articles) where misleading and potentially incorrect argu-
ments are presented. The confusion normally arises in cases for which at least a part of
the boundary is at infinity. We illustrate with the conversion from 2-D Cartesian to plane
polar coordinates. Figure 1.19 shows that if one integrates for 0 <6 <27 and 0 <r < a,
there are regions in the corners of a square (of side 2a) that are not included. If the integral
is to be evaluated in the limit a — oo, it is both incorrect and meaningless to advance ar-
guments about the “neglect” of contributions from these corner regions, as every point in
these corners is ultimately included as a is increased.

A similar, but slightly less obvious situation arises if we transform an integration over
Cartesian coordinates 0 < x < 00, 0 < y < 00, into one involving coordinates u = x + y,

r, so dxdy=rdrdf.

FIGURE 1.18 Element of area in plane polar coordinates.
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FIGURE 1.19 2-D integration, Cartesian and plane polar coordinates.

V=a—

V=0—

FIGURE 1.20 Integral in transformed coordinates.

v = y, with integration limits 0 < u < 00, 0 < v < u. See Fig. 1.20. Again it is incorrect
and meaningless to make arguments justifying the “neglect” of the outer triangle (labeled
B in the figure). The relevant observation here is that ultimately, as the value of u is
increased, any arbitrary point in the quarter-plane becomes included in the region being
integrated.

Exercises

1.10.1 Use a recursive method to show that, for all positive integers n, I'(n) = (n — 1)!.
Evaluate the integrals in Exercises 1.10.2 through 1.10.9.

x
sinx
1.10.2 —dx.
X
0

Hint. Multiply integrand by e~%* and take the limit a — 0.

o
dx
1.10.3 .
coshx
0

Hint. Expand the denominator is a way that converges for all relevant x.
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1.10.5

1.10.6

1.10.7

1.10.8

1.10.9
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/erf(t) dt.

0

The result can be expressed in terms of special functions in Table 1.2.

X

/El(t) dt.

1

Obtain a result in which the only special function is Ej.

]

e—X
/ dx
x+1

0

00 2
t —1
1.10.10 Showthat/(an x) dx =mln2.
X
0

1.10.11

Hint. Integrate by parts, to linearize in tan~!. Then replace tan~! x by tan~!ax and
evaluate fora = 1.

By direct integration in Cartesian coordinates, find the area of the ellipse defined by
2 2
X Y

1.10.12 A unit circle is divided into two pieces by a straight line whose distance of closest

1.11

approach to the center is 1/2 unit. By evaluating a suitable integral, find the area of
the smaller piece thereby produced. Then use simple geometric considerations to verify
your answer.

DIRAC DELTA FUNCTION

Frequently we are faced with the problem of describing a quantity that is zero everywhere
except at a single point, while at that point it is infinite in such a way that its integral over
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any interval containing that point has a finite value. For this purpose it is useful to introduce
the Dirac delta function, which is defined to have the properties

8(x)=0, x#0, (1.149)
b
f(0)=ff(x)5(x)dx, (1.150)

where f(x) is any well-behaved function and the integration includes the origin. As a
special case of Eq. (1.150),

o0

/8(x)dx=1. (1.151)

—00

From Eq. (1.150), §(x) must be an infinitely high, thin spike at x = 0, as in the description
of an impulsive force or the charge density for a point charge. The problem is that no such
function exists, in the usual sense of function. However, the crucial property in Eq. (1.150)
can be developed rigorously as the limit of a sequence of functions, a distribution. For
example, the delta function may be approximated by any of the sequences of functions,
Eqgs. (1.152) to (1.155) and Figs. 1.21 and 1.22:

0, X <—-

2n
Sa(x)=1{n, —5 <x<z (1.152)
1
0, X > 0
8, (x) = % exp(—n2x?), (1.153)
y:5n(x)

FIGURE 1.21  §-Sequence function: left, Eq. (1.152); right, Eq. (1.153).
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sin nx
X

FIGURE 1.22  §-Sequence function: left, Eq. (1.154); right, Eq. (1.155).

n 1

s = 1.154
. l n

5,(x) = X _ —/em dr. (1.155)
TX 2

—n

While all these sequences (and others) cause §(x) to have the same properties, they dif-
fer somewhat in ease of use for various purposes. Equation (1.152) is useful in providing
a simple derivation of the integral property, Eq. (1.150). Equation (1.153) is convenient to
differentiate. Its derivatives lead to the Hermite polynomials. Equation (1.155) is particu-
larly useful in Fourier analysis and in applications to quantum mechanics. In the theory of
Fourier series, Eq. (1.155) often appears (modified) as the Dirichlet kernel:

. 1
gn(x)ziw (1.156)
27 sin( %x)
In using these approximations in Eq. (1.150) and elsewhere, we assume that f(x) is well
behaved—that it offers no problems at large x.

The forms for §,(x) given in Egs. (1.152) to (1.155) all obviously peak strongly for
large n at x = 0. They must also be scaled in agreement with Eq. (1.151). For the forms
in Egs. (1.152) and (1.154), verification of the scale is the topic of Exercises 1.11.1 and
1.11.2. To check the scales of Egs. (1.153) and (1.155), we need values of the integrals

o0 o0 .
2.2 T sinnx
e " dx=_— and dx =m.
n X
—0o0

—00

These results are respectively trivial extensions of Eqs. (1.148) and (11.107) (the latter of
which we derive later).
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For most physical purposes the forms describing delta functions are quite adequate.
However, from a mathematical point of view the situation is still unsatisfactory. The limits

lim &, (x)
n—0oo

do not exist.

A way out of this difficulty is provided by the theory of distributions. Recognizing that
Eq. (1.150) is the fundamental property, we focus our attention on it rather than on §(x)
itself. Equations (1.152) to (1.155) with n = 1,2, 3... may be interpreted as sequences of
normalized functions, and we may consistently write

/S(x)f(x)dxEnlln;o/8n(x)f(x)dx. (1.157)

Thus, §(x) is labeled a distribution (not a function) and is regarded as defined by
Eq. (1.157). We might emphasize that the integral on the left-hand side of Eq. (1.157)
is not a Riemann integral.®

Properties of § (x)

e From any of Eqgs. (1.152) through (1.155) we see that Dirac’s delta function must be
evenin x, §(—x) =8(x).

o Ifa>0,
1
d(ax)=-6(x), a=>0. (1.158)
a

Equation (1.158) can be proved by making the substitution x = y/a:
T 1 T 1
/ f)d(ax)dx =~ / fO/a)d(y)dy =~ f(0).
—0oQ —0o0

Ifa <0, Eq. (1.158) becomes §(ax) =&(x)/|al.
e Shift of origin:

o]

/ S(x —x0) f(x)dx = f(x0), (1.159)

—00

which can be proved by making the substitution y = x — xo and noting that when y =0,
X = Xo.

81t can be treated as a Stieltjes integral if desired; §(x)dx is replaced by du(x), where u(x) is the Heaviside step function
(compare Exercise 1.11.9).
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e Ifthe argument of §(x) is a function g(x) with simple zeros at points a; on the real axis
(and therefore g’(a;) #0),

S(x —a;)
8 = —_— 1.160
(5) Z 1G] (1160
To prove Eq. (1.160), we write
00 ajt+e
/ fsdx = / F8((x—ang'a) dx,

where we have decomposed the original integral into a sum of integrals over small in-
tervals containing the zeros of g(x). In these intervals, we replaced g(x) by the leading
term in its Taylor series. Applying Egs. (1.158) and (1.159) to each term of the sum,
we confirm Eq. (1.160).

e Derivative of delta function:
o o0
f Fx)8 (x —x0)dx = — f F (x)8(x — x0)dx = — f'(x0). (1.161)
—00 —00

Equation (1.161) can be taken as defining the derivative §'(x); it is evaluated by per-
forming an integration by parts on any of the sequences defining the delta function.

e In three dimensions, the delta function &(r) is interpreted as 6(x)3(y)d8(z), so it de-
scribes a function localized at the origin and with unit integrated weight, irrespective
of the coordinate system in use. Thus, in spherical polar coordinates,

ﬂ F()8(ry — v)ridry sinfydbrdgy = f(r)). (1.162)

e Equation (1.155) corresponds in the limit to

o0

1
8(t —x) = — / exp(iw(l—x))da), (1.163)
2w
—0o0
with the understanding that this has meaning only when under an integral sign. In that
context it is extremely useful for the simplification of Fourier integrals (Chapter 20).

e Expansions of §(x) are addressed in Chapter 5. See Example 5.1.7.

Kronecker Delta

It is sometimes useful to have a symbol that is the discrete analog of the Dirac delta func-
tion, with the property that it is unity when the discrete variable has a certain value, and
zero otherwise. A quantity with these properties is known as the Kronecker delta, defined
for indices i and j as
I, i=},
=1 (1.164)
0, i#j.
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Frequent uses of this symbol are to select a special term from a summation, or to have one
functional form for all nonzero values of an index, but a different form when the index is
zero. Examples:

1 2m
%:fij(sijzzi:fii» C,= TTo0 L

Exercises
1.11.1 Let
1
0, X < —%,
5, (x) 1 1
= —— <x<—
" - 12n Yo
0, — .
o <X
Show that
o0
iim [ )8, 0dx = £0)
n—oo
—0o0
assuming that f(x) is continuous at x = 0.
1.11.2 For
n 1
8 = —
n(x) 7 14+ n2x2
show that
o0
/ Sn(x)dx = 1.
—00

1.11.3 Fejer’s method of summing series is associated with the function
1 [sin(nt/2)7?

2mrn | sin(t/2) |

Show that &, (¢) is a delta distribution, in the sense that

sin(nt/2) _
lim —/f()[m WZ)} dt = £(0).

S (1) =

1.11.4 Prove that
1
Sla(x —x1)] = ;8()6 —X1).

Note. If §[a(x — x1)] is considered even, relative to x1, the relation holds for negative
a and 1/a may be replaced by 1/ |a]|.
1.11.5  Show that
S[(x —x)(x —x2) ] =[8(x —x1) +8(x —x2)1/ |x1 — x2].
Hint. Try using Exercise 1.11.4.
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n large
n— e

n small

FIGURE 1.23 Heaviside unit step function.

. n  _ 22
1.11.6  Using the Gauss error curve delta sequence §, = — e~ " ¥, show that

N
d(S =4
x b0 = —5(x),

treating §(x) and its derivative as in Eq. (1.157).
1.11.7 Show that

oo

f 5'(x) £ (x) dx = — f'(0).

—0o0
Here we assume that f'(x) is continuous at x = 0.

1.11.8 Prove that
-1

d
5(f(x)) = ‘&

I 3(x — x0),

X=X(

where xq is chosen so that f(xp) =0.
Hint. Note that §(f)df = 8(x)dx.

1.11.9 (a) If we define a sequence §,(x) =n/(2 cosh® nx), show that

o
/ dp(x)dx =1, independent of n.
—0oQ
(b) Continuing this analysis, show that’

x
/ Sn(x)dx = % [1+tanhnx] = u, (x)
—OoQ0
and
lim u,(x) = {0’ * <0,
n— 00 1, x>0.

This is the Heaviside unit step function (Fig. 1.23).

9Many other symbols are used for this function. This is the AMS-55 notation (in Additional Readings, see Abramowitz and
Stegun): « for unit.
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CHAPTER 2

DETERMINANTS AND
MATRICES

2.1 DETERMINANTS

We begin the study of matrices by solving linear equations that will lead us to determi-
nants and matrices. The concept of determinant and the notation were introduced by the
renowned German mathematician and philosopher Gottfried Wilhelm von Leibniz.

Homogeneous Linear Equations

One of the major applications of determinants is in the establishment of a condition for
the existence of a nontrivial solution for a set of linear homogeneous algebraic equations.
Suppose we have three unknowns xp, x3, x3 (or n equations with n unknowns):

ai1xy +axxy +azxz3 =0,
bi1x1 + baxy + b3x3 =0, 2.1
c1x1 + cax2 4+ c3x3 =0.

The problem is to determine under what conditions there is any solution, apart from
the trivial one x; = 0, xp = 0, x3 = 0. If we use vector notation x = (x1, xp, x3) for the
solution and three rows a = (ay, a2, a3),b = (b1, ba, b3), ¢ = (c1, ¢, ¢3) of coefficients,
then the three equations, Egs. (2.1), become

a-x=0, b-x=0, c¢-x=0. (2.2)

These three vector equations have the geometrical interpretation that x is orthogonal
to a, b, and c. If the volume spanned by a, b, ¢ given by the determinant (or triple scalar
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product, see Eq. (3.12) of Section 3.2)

a az as
D3=(axb)-c=det(a,b,c)= b1 by b3 2.3)
¢ 2 3

is not zero, then there is only the trivial solution x = 0. For an introduction to the cross
product of vectors, see Chapter 3: Vector Analysis, Section 3.2: Vectors in 3-D Space.

Conversely, if the aforementioned determinant of coefficients vanishes, then one of
the row vectors is a linear combination of the other two. Let us assume that ¢ lies in the
plane spanned by a and b, that is, that the third equation is a linear combination of the
first two and not independent. Then x is orthogonal to that plane so that x ~ a x b. Since
homogeneous equations can be multiplied by arbitrary numbers, only ratios of the x; are
relevant, for which we then obtain ratios of 2 x 2 determinants

X arby — azb X arby —azb
X1 _ a2b3 32’ X2 a1bs 301 (2.4)

x3 aiby—axby  x3 aiby — axby
from the components of the cross product a x b, provided x3 ~ a;b> — axb; # 0. This is
Cramer’s rule for three homogeneous linear equations.

Inhomogeneous Linear Equations

The simplest case of two equations with two unknowns,
a1x1 +axxa =a3, bix; +baxy =b3, (2.5)

can be reduced to the previous case by imbedding it in three-dimensional (3-D) space with
a solution vector x = (x, xp, —1) and row vectors a = (ay,az,as),b = (b, by, b3). As
before, Egs. (2.5) in vector notation, a - x =0 and b - x =0, imply that x ~ a x b, so the
analog of Eq. (2.4) holds. For this to apply, though, the third component of a x b must not
be zero, that is, ajby — axb; # 0, because the third component of x is —1 # 0. This yields
the x; as

as  az

_ a3b2 — b3a2 _ b3 b2 (2 6)

l_ale—azbl e @ '

by b
a as

= aibs —asby _ by b3 . @7
arby —azby  |a1 a2
by b

The determinant in the numerator of x;(x;) is obtained from the determinant of the coef-
ar a
b1 b
inhomogeneous side of Eq. (2.5). This is Cramer’s rule for a set of two inhomogeneous
linear equations with two unknowns.

A full understanding of the above exposition requires now that we introduce a formal
definition of the determinant and show how it relates to the foregoing.

ficients by replacing the first (second) column vector by the vector <Zi> of the
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Definitions
Before defining a determinant, we need to introduce some related concepts and definitions.

e When we write two-dimensional (2-D) arrays of items, we identify the item in the nth
horizontal row and the mth vertical column by the index set n, m; note that the row
index is conventionally written first.

e Starting from a set of n objects in some reference order (e.g., the number sequence
1, 2,3, ..., n), we can make a permutation of them to some other order; the total
number of distinct permutations that are possible is n! (choose the first object n ways,
then choose the second in n — 1 ways, etc.).

e Every permutation of n objects can be reached from the reference order by a succession
of pairwise interchanges (e.g., 1234 — 4132 can be reached by the successive steps
1234 — 1432 — 4132). Although the number of pairwise interchanges needed for a
given permutation depends on the path (compare the above example with 1234 —
1243 — 1423 — 4123 — 4132), for a given permutation the number of interchanges
will always either be even or odd. Thus a permutation can be identified as having either
even or odd parity.

e [t is convenient to introduce the Levi-Civita symbol, which for an n-object system is
denoted by ¢;;..., where ¢ has n subscripts, each of which identifies one of the objects.
This Levi-Civita symbol is defined to be +1 if ij ... represents an even permutation
of the objects from a reference order; it is defined to be —1 if ij ... represents an odd
permutation of the objects, and zero if ij ... does not represent a permutation of the
objects (i.e., contains an entry duplication). Since this is an important definition, we set
it out in a display format:

gij..=-+1, 1ij... aneven permutation,
=—1, ij... an odd permutation,
= 0, ij...notapermutation. (2.8)
We now define a determinant of order n to be an n x n square array of numbers (or func-

tions), with the array conventionally written within vertical bars (not parentheses, braces,
or any other type of brackets), as follows:

ay; ap ... Aap
a)i axp ... axp

D,=\|az1 a3z ... az,|. 2.9
anpl ap2 ... dpp

The determinant D,, has a value that is obtained by

1. Forming all n! products that can be formed by choosing one entry from each row in
such a way that one entry comes from each column,

2. Assigning each product a sign that corresponds to the parity of the sequence in which
the columns were used (assuming the rows were used in an ascending sequence),

3. Adding (with the assigned signs) the products.
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More formally, the determinant in Eq. (2.9) is defined to have the value

Dn:ZSij“_aliazj"' . (2.10)
ij...

The summations in Eq. (2.10) need not be restricted to permutations, but can be assumed
to range independently from 1 through n; the presence of the Levi-Civita symbol will
cause only the index combinations corresponding to permutations to actually contribute to
the sum.

Example 2.1.1  DETERMINANTS OF ORDERS 2 AND 3

To make the definition more concrete, we illustrate first with a determinant of order 2. The
Levi-Civita symbols needed for this determinant are €1 = +1 and &3 = —1 (note that
e11 = €22 = 0), leading to

apn a2

D), =
azy a2

=¢€12a11a22 + €21a12a21 = a11a22 — A1202].

We see that this determinant expands into 2! = 2 terms. A specific example of a determi-
nant of order 2 is

ay az
=a1by — bia.
by bz‘ 102 —braz
Determinants of order 3 expand into 3! = 6 terms. The relevant Levi-Civita symbols
are €123 = €231 = €312 = +1, 213 = €331 = €132 = —1; all other index combinations have
&ijk =0, s0

ail ap  ap
Dy =|ax axn ax3|= Z £ijkA1; a2 A3k
a1 azx az| ijk

= aj1a22a33 — 411423432 — a13a2a31 — a12a21a33 + aizaxzaz; +ai3azas;.

The expression in Eq. (2.3) is the determinant of order 3

a a; as
by by bi|=abycz —aibzcy — axbicy + axbscy + azbicy — azbycy.
¢l €2 €3

Note that half of the terms in the expansion of a determinant bear negative signs. It is
quite possible that a determinant of large elements will have a very small value. Here is
one example:

8 11 7
9 11 5|=1
8 12 9
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Properties of Determinants

The symmetry properties of the Levi-Civita symbol translate into a number of symme-
tries exhibited by determinants. For simplicity, we illustrate with determinants of order 3.
The interchange of two columns of a determinant causes the Levi-Civita symbol multi-
plying each term of the expansion to change sign; the same is true if two rows are inter-
changed. Moreover, the roles of rows and columns may be interchanged; if a determinant
with elements a;; is replaced by one with elements b;; = a;;, we call the b;; determi-
nant the transpose of the a;; determinant. Both these determinants have the same value.
Summarizing:

Interchanging two rows (or two columns) changes the sign of the value of a determi-
nant. Transposition does not alter its value.

Thus,
air ap ai aip ai ai3| |ann a2 431
a1 axp ax|=-—|axn a a3|=|aj2 axn azxn|. (2.11)
az| azx  ass axp a3l asz| |a13 a3 ass

Further consequences of the definition in Eq. (2.10) are:
(1) Multiplication of all members of a single column (or a single row) by a constant k
causes the value of the determinant to be multiplied by k,

(2) If the elements of a column (or row) are actually sums of two quantities, the deter-
minant can be decomposed into a sum of two determinants.

Thus,

arl
k |ax
asi

a2
ann
asn

ai + b
az1 + by
az1 + b3

ais

kayy

ax3| = |kani

ass

a2
a2
asz

ka31

ars
azs
ass

a2
azn
asp

ar

= |a21

as]

a3
an3s
ass

a2
a2
asz

as
azs
ass

kayy
as
az

by

+ |b2
b3

These basic properties and/or the basic definition mean that

kai
a»
as

a2
a2
asz

kays
ans |,
ass

(2.12)

as
ans|.
ass

(2.13)

e Any determinant with two rows equal, or two columns equal, has the value zero. To
prove this, interchange the two identical rows or columns; the determinant both remains
the same and changes sign, and therefore must have the value zero.

e An extension of the above is that if two rows (or columns) are proportional, the deter-

minant is zero.

e The value of a determinant is unchanged if a multiple of one row is added (column
by column) to another row or if a multiple of one column is added (row by row) to
another column. Applying Eq. (2.13), the addition does not contribute to the value of

the determinant.

e Ifeach element in a row or each element in a column is zero, the determinant has the

value zero.
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Laplacian Development by Minors

The fact that a determinant of order n expands into n! terms means that it is important to
identify efficient means for determinant evaluation. One approach is to expand in terms of
minors. The minor corresponding to a;;, denoted M;;, or M;;(a) if we need to identify M
as coming from the a;;, is the determinant (of order n — 1) produced by striking out row i
and column j of the original determinant. When we expand into minors, the quantities to
be used are the cofactors of the (ij) elements, defined as (—1)'+/ M; - The expansion can
be made for any row or column of the original determinant. If, for example, we expand the
determinant of Eq. (2.9) using row i, we have

n
Dn =Za,’j(—l)i+le‘j. (214)
j=1
This expansion reduces the work involved in evaluation if the row or column selected for
the expansion contains zeros, as the corresponding minors need not be evaluated.

Example 2.1.2  ExXpANSION IN MINORS

Consider the determinant (arising in Dirac’s relativistic electron theory)

ail ap a3 au 01 0 0
p=|®21 an a3 au|_ -1 0 0 O
T lasr ax azz ax| | 0O O O If
a41 a4 a43 a4 0 0 -1 O

Expanding across the top row, only one 3 x 3 matrix survives:

-1 0 0 by b bi3
D=(-D"2apMp@=1)-1)] 0 0 1|=(=1)|by by byl
0 -1 O b3y1 b3z b33

Expanding now across the second row, we get

-1 0

D= (=1D)(=1)* by M3 (b) = ’ 0 1

-

When we finally reached a 2 x 2 determinant, it was simple to evaluate it without further
expansion. |

Linear Equation Systems
We are now ready to apply our knowledge of determinants to the solution of systems of
linear equations. Suppose we have the simultaneous equations

aix| +axxy +asxz =hy,

bix1 + baxy + b3x3 = ha,

c1X1 + caxp + ¢c3x3 = h3. (2.15)
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To use determinants to help solve this equation system, we define

a a as
D=\|by by b3|. (2.16)
1 ¢ c3

Starting from x; D, we manipulate it by (1) moving x; to multiply the entries of the first
column of D, then (2) adding to the first column x; times the second column and x3 times
the third column (neither of these operations change the value). We then reach the second
line of Eq. (2.17) by substituting the right-hand sides of Eqs. (2.15). These operations are
illustrated here:

ayxy ax as ayxy+axxy+azxz ax as
x1D=|bix1t by by|=|bixi+byxo+b3x3 by b3
c1xy €2 3 c1x1t+cex2+c3x3 ¢ 3

hi a a3
=|hy by b3l (2.17)
h3 ¢y C3

If D #0, Eq. (2.17) may now be solved for x1:

1 hy ay a3

x1=—|hy by bj3|. (2.18)
Dy

3 €2 (3

Analogous procedures starting from x» D and x3 D give the parallel results

| | h a3 | |a a2 hy
=7 hz 3, ;=4 \b b2
c1 hy 3 c1 ¢ h3

We see that the solution for x; is 1/D times a numerator obtained by replacing the ith
column of D by the right-hand-side coefficients, a result that can be generalized to an arbi-
trary number n of simultaneous equations. This scheme for the solution of linear equation
systems is known as Cramer’s rule.

If D is nonzero, the above construction of the x; is definitive and unique, so that there
will be exactly one solution to the equation set. If D # 0 and the equations are homoge-
neous (i.e., all the h; are zero), then the unique solution is that all the x; are zero.

Determinants and Linear Dependence

The preceding subsections go a long way toward identifying the role of the determi-
nant with respect to linear dependence. If n linear equations in n variables, written as
in Eq. (2.15), have coefficients that form a nonzero determinant, the variables are uniquely
determined, meaning that the forms constituting the left-hand sides of the equations must
in fact be linearly independent. However, we would still like to prove the property illus-
trated in the introduction to this chapter, namely that if a set of forms is linearly depen-
dent, the determinant of their coefficients will be zero. But this result is nearly immediate.
The existence of linear dependence means that there exists one equation whose coefficients
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are linear combinations of the coefficients of the other equations, and we may use that fact
to reduce to zero the row of the determinant corresponding to that equation.
In summary, we have therefore established the following important result:

If'the coefficients of n linear forms in n variables form a nonzero determinant, the forms
are linearly independent, if the determinant of the coefficients is zero, the forms exhibit
linear dependence.

Linearly Dependent Equations

If a set of linear forms is linearly dependent, we can distinguish three distinct situations
when we consider equation systems based on these forms. First, and of most importance
for physics, is the case in which all the equations are homogeneous, meaning that the
right-hand side quantities /; in equations of the type Eq. (2.15) are all zero. Then, one or
more of the equations in the set will be equivalent to linear combinations of others, and
we will have less than n equations in our n variables. We can then assign one (or in some
cases, more than one) variable an arbitrary value, obtaining the others as functions of the
assigned variables. We thus have a manifold (i.e., a parameterized set) of solutions to our
equation system.

Combining the above analysis with our earlier observation that if a set of homogeneous
linear equations has a nonvanishing determinant it has the unique solution that all the x;
are zero, we have the following important result:

A system of n homogeneous linear equations in n unknowns has solutions that are not
identically zero only if the determinant of its coefficients vanishes. If that determinant
vanishes, there will be one or more solutions that are not identically zero and are
arbitrary as to scale.

A second case is where we have (or combine equations so that we have) the same linear
form in two equations, but with different values of the right-hand quantities #;. In that case
the equations are mutually inconsistent, and the equation system has no solution.

A third, related case, is where we have a duplicated linear form, but with a common
value of h;. This also leads to a solution manifold.

Example 2.1.3  LINEARLY DEPENDENT HOMOGENEOUS EQUATIONS

Consider the equation set
x1+x3+x3=0,
x1+3x2+5x3=0,
x1+2x2+3x3=0.

Here
1 1 1
D=1 3 5/ =13)3)—-152)—-13)1) - 1(HB) +1(5)(1) + 1(1)(2) =0.
1 2 3
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The third equation is half the sum of the other two, so we drop it. Then,

second equation minus first: 2x2 +4x3 =0 — xp = —2x3,

(3 x first equation) minus second: 2x; —2x3 =0 — x| = x3.

Since x3 can have any value, there is an infinite number of solutions, all of the form
(x1, x2, x3) = constant x (1, —2, 1).

Our solution illustrates an important property of homogeneous linear equations, namely
that any multiple of a solution is also a solution. The solution only becomes less arbitrary
if we impose a scale condition. For example, in the present case we could require the
squares of the x; to add to unity. Even then, the solution would still be arbitrary as to
overall sign. |

Numerical Evaluation

There is extensive literature on determinant evaluation. Computer codes and many refer-
ences are given, for example, by Press et al.! We present here a straightforward method
due to Gauss that illustrates the principles involved in all the modern evaluation methods.
Gauss elimination is a versatile procedure that can be used for evaluating determinants,
for solving linear equation systems, and (as we will see later) even for matrix inversion.

Example 2.1.4  Gauss ELIMINATION

Our example, a 3 x 3 linear equation system, can easily be done in other ways, but it is used
here to provide an understanding of the Gauss elimination procedure. We wish to solve

3x+2y+z=11
2x+3y+z=13
x+y+4z=12. (2.19)

For convenience and for the optimum numerical accuracy, the equations are rearranged so
that, to the extent possible, the largest coefficients run along the main diagonal (upper left
to lower right).

The Gauss technique is to use the first equation to eliminate the first unknown, x, from
the remaining equations. Then the (new) second equation is used to eliminate y from the
last equation. In general, we work down through the set of equations, and then, with one un-
known determined, we work back up to solve for each of the other unknowns in succession.

lw. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd ed. Cambridge, UK: Cambridge
University Press (1992), Chapter 2.
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It is convenient to start by dividing each row by its initial coefficient, converting
Eq. (2.19) to

2 1 11
x+§y+§z=?
3 1 13
x+§y+§z=?
x+y+4z=12 (2.20)

Now, using the first equation, we eliminate x from the second and third equations by
subtracting the first equation from each of the others:

2 1 11
x + 5 y+ g = ?
5 1 17
6" 76" 6
1 11 25
§y+?z=?. (2.21)
Then we divide the second and third rows by their initial coefficients:
2 1 11
X+ 3 y+ 3 z= 3
117
y + g 7= ?
y+ 11z =25. (2.22)

Repeating the technique, we use the new second equation to eliminate y from the third
equation, which can then be solved for z:

2 1 11
X+ 5 y+ 3 = ?
1 17
y + g 7= ?
% :15E — =2 (2.23)
Now that z has been determined, we can return to the second equation, finding
y—i—l><2=1—7 —  y=3
5 5
and finally, continuing to the first equation,
Jc—i-%><3~|—l><2=E — x=1
3 3 3

The technique may not seem as elegant as the use of Cramer’s rule, but it is well adapted
to computers and is far faster than the time spent with determinants.

If we had not kept the right-hand sides of the equation system, the Gauss elimination
process would have simply brought the original determinant into triangular form (but note
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that our processes for making the leading coefficients unity cause corresponding changes
in the value of the determinant). In the present problem, the original determinant

3 2
D=2 3
1 1

B =

was divided by 3 and by 2 going from Eq. (2.19) to (2.20), and multiplied by 6/5 and
by 3 going from Eq. (2.21) to (2.22), so that D and the determinant represented by the
left-hand side of Eq. (2.23) are related by

2 1

1 2

3 3

5 1 1 5 54

D=03B)2)( - — —|==-—=18. 2.24
()()(6)(3)0 v L=33 (2.24)

4

0 O 5—

5

Because all the entries in the lower triangle of the determinant explicitly shown in
Eq. (2.24) are zero, the only term that contributes to it is the product of the diagonal
elements: To get a nonzero term, we must use the first element of the first row, then the
second element of the second row, etc. It is easy to verify that the final result obtained in

Eq. (2.24) agrees with the result of evaluating the original form of D. |
Exercises
2.1.1 Evaluate the following determinants:
0 3 0 0
Lol 20 1 |v3 \é_ 2 0
@ |01 0, ® (3 1 2, () — .
210 2 0 3
1 00 0 3 1
0 0 V3 0
2.1.2 Test the set of linear homogeneous equations
x+3y+3z=0, x—y+z=0, 2x+y+3z=0
to see if it possesses a nontrivial solution. In any case, find a solution to this equation
set.
2.1.3 Given the pair of equations
x+2y=3, 2x+4y=6,
(a) Show that the determinant of the coefficients vanishes.
(b) Show that the numerator determinants, see Eq. (2.18), also vanish.
(c) Find at least two solutions.
2.14 If C;; is the cofactor of element g;;, formed by striking out the ith row and jth column

and including a sign (—1)"*/, show that
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2.1.5

2.1.6

2.1.7

2.1.8
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(@) ) ;aijCij =) ;a;iCj =|A|, where |A] is the determinant with the elements «;;,
(b) >aijCix=);a;iCyi =0, j #k.

A determinant with all elements of order unity may be surprisingly small. The Hilbert
determinant H;; = (i + j — D~ i, j=1,2,...,n isnotorious for its small values.

(a) Calculate the value of the Hilbert determinants of order n for n = 1, 2, and 3.

(b) If an appropriate subroutine is available, find the Hilbert determinants of order n
forn=4,5, and 6.

ANS. Det(H,)

1.

8.33333 x 1072
4.62963 x 1074
1.65344 x 1077
3.74930 x 10~12

5.36730 x 10718,

(o) WLV, TN SNER VS I S T

Prove that the determinant consisting of the coefficients from a set of linearly dependent
forms has the value zero.

Solve the following set of linear simultaneous equations. Give the results to five decimal
places.

1.0x1 +0.9x2 +0.8x3 +0.4x4 +0.1x5 = 1.0
0.9x1 + 1.0x2 + 0.8x3 + 0.5x4 + 0.2x5 + 0.1x¢ =0.9
0.8x1 +0.8x2 + 1.0x3 + 0.7x4 + 0.4x5 4+ 0.2x¢ = 0.8
0.4x; +0.5x2 +0.7x3 + 1.0x4 + 0.6x5 + 0.3x5 = 0.7
0.1x1 +0.2x2 4+ 0.4x3 4+ 0.6x4 4+ 1.0x5 4+ 0.5x¢ = 0.6

0.1x3 +0.2x3 + 0.3x4 + 0.5x5 4+ 1.0x¢ = 0.5.

Note. These equations may also be solved by matrix inversion, as discussed in
Section 2.2.

Show that (in 3-D space)
(@) Z 8ii =3,
i
(b) Z&j&jk =0,
ij
(c) Zeipqequ = 25;j,

Pq
(d) Zgijkgijk =6.

ijk



2.2 Matrices 95

Note. The symbol §;; is the Kronecker delta, defined in Eq. (1.164), and &;j; is the
Levi-Civita symbol, Eq. (2.8).

2.1.9 Show that (in 3-D space)

Z €ijkEpgk = Sip8jq — 8iqdjp-
k

Note. See Exercise 2.1.8 for definitions of §;; and &;j.

2.2 MATRICES

Matrices are 2-D arrays of numbers or functions that obey the laws that define matrix
algebra. The subject is important for physics because it facilitates the description of
linear transformations such as changes of coordinate systems, provides a useful formu-
lation of quantum mechanics, and facilitates a variety of analyses in classical and rel-
ativistic mechanics, particle theory, and other areas. Note also that the development of
a mathematics of two-dimensionally ordered arrays is a natural and logical extension of
concepts involving ordered pairs of numbers (complex numbers) or ordinary vectors (one-
dimensional arrays).

The most distinctive feature of matrix algebra is the rule for the multiplication of
matrices. As we will see in more detail later, the algebra is defined so that a set of lin-
ear equations such as

aixy +axxy =h
bix1 +byxa=hy
can be written as a single matrix equation of the form
G 3 ()-()
by b)) \x2) \h)’

In order for this equation to be valid, the multiplication indicated by writing the two
matrices next to each other on the left-hand side has to produce the result

ajx1 +axx;
bix1 + byxs
and the statement of equality in the equation has to mean element-by-element agreement of

its left-hand and right-hand sides. Let’s move now to a more formal and precise description
of matrix algebra.

Basic Definitions

A matrix is a set of numbers or functions in a 2-D square or rectangular array. There are
no inherent limitations on the number of rows or columns. A matrix with m (horizontal)
rows and n (vertical) columns is known as an m x n matrix, and the element of a matrix A
in row i and column j is known as its i, j element, often labeled a;;. As already observed
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‘1‘2 6 7 0 0 1
_oi 1 4 3 1 o) (an an)

FIGURE 2.1  From left to right, matrices of dimension 4 x 1 (column vector),
3x2,2x3,2x 2 (square), 1 x 2 (row vector).

uj
u

)

u
Uy

W

when we introduced determinants, when row and column indices or dimensions are men-
tioned together, it is customary to write the row indicator first. Note also that order matters,
in general the i, j and j, i elements of a matrix are different, and (if m # n) n x m and
m x n matrices even have different shapes. A matrix for which n = m is termed square;
one consisting of a single column (an m x 1 matrix) is often called a column vector, while
a matrix with only one row (therefore 1 x n) is a row vector. We will find that identi-
fying these matrices as vectors is consistent with the properties identified for vectors in
Section 1.7.

The arrays constituting matrices are conventionally enclosed in parentheses (not vertical
lines, which indicate determinants, or square brackets). A few examples of matrices are
shown in Fig. 2.1. We will usually write the symbols denoting matrices as upper-case
letters in a sans-serif font (as we did when introducing A); when a matrix is known to be a
column vector we often denote it by a lower-case boldface letter in a Roman font (e.g., x).

Perhaps the most important fact to note is that the elements of a matrix are not combined
with one another. A matrix is not a determinant. It is an ordered array of numbers, not a
single number. To refer to the determinant whose elements are those of a square matrix A
(more simply, “the determinant of A”), we can write det(A).

Matrices, so far just arrays of numbers, have the properties we assign to them. These
properties must be specified to complete the definition of matrix algebra.

Equality

If A and B are matrices, A =B only if a;; = b;; for all values of i and j. A necessary but
not sufficient condition for equality is that both matrices have the same dimensions.

Addition, Subtraction

Addition and subtraction are defined only for matrices A and B of the same dimensions, in
which case A+ B = C, with ¢;; = a;; &=b;; for all values of i and j, the elements combining
according to the law of ordinary algebra (or arithmetic if they are simple numbers). This
means that C will be a matrix of the same dimensions as A and B. Moreover, we see that
addition is commutative: A + B = B + A. It is also associative, meaning that (A + B) +
C =A+ (B + C). A matrix with all elements zero, called a null matrix or zero matrix,
can either be written as O or as a simple zero, with its matrix character and dimensions
determined from the context. Thus, for all A,

A+0=0+A=A. (2.25)
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Multiplication (by a Scalar)

Here what we mean by a scalar is an ordinary number or function (not another matrix).
The multiplication of matrix A by the scalar quantity o produces B = aA, with b;; = o a;;
for all values of i and j. This operation is commutative, with « A = Ac.

Note that the definition of multiplication by a scalar causes each element of matrix A to
be multiplied by the scalar factor. This is in striking contrast to the behavior of determinants
in which « det(A) is a determinant in which the factor « multiplies only one column or
one row of det(A) and not every element of the entire determinant. If A is an n X n square
matrix, then

det(aA) = o det(A).

Matrix Multiplication (Inner Product)

Matrix multiplication is not an element-by-element operation like addition or multiplica-
tion by a scalar. Instead, it is a more complicated operation in which each element of the
product is formed by combining elements of a row of the first operand with correspond-
ing elements of a column of the second operand. This mode of combination proves to be
that which is needed for many purposes, and gives matrix algebra its power for solving
important problems. This inner product of matrices A and B is defined as

AB=C, with c¢;j=> aixbsj. (2.26)
k

This definition causes the ij element of C to be formed from the entire ith row of A and
the entire jth column of B. Obviously this definition requires that A have the same number
of columns (n) as B has rows. Note that the product will have the same number of rows
as A and the same number of columns as B. Matrix multiplication is defined only if these
conditions are met. The summation in Eq. (2.26) is over the range of k£ from 1 to n, and,
more explicitly, corresponds to

cij =aitbij+aipbyj+ -+ ainby;.

This combination rule is of a form similar to that of the dot product of the vectors
(ai1,ai2,...,aiy) and (b1, byj, ..., byj). Because the roles of the two operands in a matrix
multiplication are different (the first is processed by rows, the second by columns), the
operation is in general not commutative, that is, AB # BA. In fact, AB may even have a
different shape than BA. If A and B are square, it is useful to define the commutator of
A and B,

[A,B] =AB — BA, (2.27)

which, as stated above, will in many cases be nonzero.
Matrix multiplication is associative, meaning that (AB)C = A(BC). Proof of this state-
ment is the topic of Exercise 2.2.26.
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Example 2.2.1  MuLTIPLICATION, PAULI MATRICES

These three 2 x 2 matrices, which occurred in early work in quantum mechanics by Pauli,
are encountered frequently in physics contexts, so a familiarity with them is highly advis-

able. They are
0 1 0 —i 1 0
o] = (1 0), o) = (i 0), 03 = <0 _1>. (2.28)

Let’s form o10%2. The 1, 1 element of the product involves the first row of o and the first
column of o,; these are shaded and lead to the indicated computation:

<(1) é) (? _()i> — 00) +1() =1i.

Continuing, we have

(0O +1G) O(=)+1O)\ _ (i O
0162—(1(0)+0(i) 1(—i)+0(0))—<0 —i)' (2.29)

In a similar fashion, we can compute

— (? _é> <(1) é) = (‘é (l)) (2.30)

It is clear that o and 0 do not commute. We can construct their commutator:

o100l —o1on —omor = (1 O)_ (O

1 0 .
=2i (0 _1) =2io3. (2.31)
Note that not only have we verified that o1 and o> do not commute, we have even evaluated
and simplified their commutator. |

Example 2.2.2  MuLTipLICATION, Row AND COLUMN MATRICES

As a second example, consider

1
A=[2]. B=(4 5 o).
3
Let us form AB and BA:
4 5 6
AB=| 8 10 12|, BA=(4x14+5%x24+6x3)=(32).
12 15 18

The results speak for themselves. Often when a matrix operation leads to a 1 x 1 ma-
trix, the parentheses are dropped and the result is treated as an ordinary number or
function. |
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Unit Matrix

By direct matrix multiplication, it is possible to show that a square matrix with elements
of value unity on its principal diagonal (the elements (i, j) with i = j), and zeros every-
where else, will leave unchanged any matrix with which it can be multiplied. For example,
the 3 x 3 unit matrix has the form

1 0
0 1
0 0

— O O

note that it is not a matrix all of whose elements are unity. Giving such a matrix the name 1,
1A=A1=A. (2.32)

In interpreting this equation, we must keep in mind that unit matrices, which are square
and therefore of dimensions n x n, exist for all n; the n values for use in Eq. (2.32) must
be those consistent with the applicable dimension of A. So if A is m X n, the unit matrix in
1A must be m x m, while that in A1 must be n x n.

The previously introduced null matrices have only zero elements, so it is also obvious
that for all A,

OA=AO0=0. (2.33)

Diagonal Matrices

If a matrix D has nonzero elements d;; only for i = j, it is said to be diagonal; a 3 x 3
example is

1 00
D=0 2 0
0 0 3

The rules of matrix multiplication cause all diagonal matrices (of the same size) to com-
mute with each other. However, unless proportional to a unit matrix, diagonal matrices
will not commute with nondiagonal matrices containing arbitrary elements.

Matrix Inverse

It will often be the case that given a square matrix A, there will be a square matrix B such
that AB = BA = 1. A matrix B with this property is called the inverse of A and is given
the name A~!. If A~! exists, it must be unique. The proof of this statement is simple: If B
and C are both inverses of A, then

AB=BA=AC=CA=1.
We now look at
CAB=(CAB=B, butalso CAB=C(AB)=C.
This shows that B = C.
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Every nonzero real (or complex) number « has a nonzero multiplicative inverse, often
written 1/«. But the corresponding property does not hold for matrices; there exist nonzero
matrices that do not have inverses. To demonstrate this, consider the following:

1 1 1 0 00
A=<O 0), B:(_l 0), SO AB=<0 0).

If A has an inverse, we can multiply the equation AB = O on the left by A~!, thereby
obtaining

AB=0 — A'AB=A"'0 — B=0.

Since we started with a matrix B that was nonzero, this is an inconsistency, and we are
forced to conclude that A~! does not exist. A matrix without an inverse is said to be singu-
lar, so our conclusion is that A is singular. Note that in our derivation, we had to be careful
to multiply both members of AB = O from the left, because multiplication is noncommu-
tative. Alternatively, assuming B! to exist, we could multiply this equation on the right
by B!, obtaining

AB=0 — ABB!=o0B"! — A=0.

This is inconsistent with the nonzero A with which we started; we conclude that B is also
singular. Summarizing, there are nonzero matrices that do not have inverses and are iden-
tified as singular.

The algebraic properties of real and complex numbers (including the existence of
inverses for all nonzero numbers) define what mathematicians call a field. The properties
we have identified for matrices are different; they form what is called a ring.

The numerical inversion of matrices is another topic that has been given much attention,
and computer programs for matrix inversion are widely available. A closed, but cumber-
some formula for the inverse of a matrix exists; it expresses the elements of A~! in terms of
the determinants that are the minors of det(A); recall that minors were defined in the para-
graph immediately before Eq. (2.14). That formula, the derivation of which is in several of
the Additional Readings, is

(=D Mji
det(A)

We describe here a well-known method that is computationally more efficient than
Eq. (2.34), namely the Gauss-Jordan procedure.

AN = (2.34)

Example 2.2.3  GaussJoRDAN MATRIX INVERSION

The Gauss-Jordan method is based on the fact that there exist matrices My, such that the
product Mz A will leave an arbitrary matrix A unchanged, except with

(a) one row multiplied by a constant, or
(b) one row replaced by the original row minus a multiple of another row, or

(c) the interchange of two rows.

The actual matrices M, that carry out these transformations are the subject of Exercise 2.2.21.
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By using these transformations, the rows of a matrix can be altered (by matrix multipli-
cation) in the same ways we were able to change the elements of determinants, so we can
proceed in ways similar to those employed for the reduction of determinants by Gauss elim-
ination. If A is nonsingular, the application of a succession of My, i.e., M= (... M/M| M),
can reduce A to a unit matrix:

MA=1, or M=A"l

Thus, what we need to do is apply successive transformations to A until these transforma-
tions have reduced A to 1, keeping track of the product of these transformations. The way
in which we keep track is to successively apply the transformations to a unit matrix.

Here is a concrete example. We want to invert the matrix

b
I
—_ N W
—_ W N
A=

Our strategy will be to write, side by side, the matrix A and a unit matrix of the same size,
and to perform the same operations on each until A has been converted to a unit matrix,
which means that the unit matrix will have been changed to A~!. We start with

and

—_ N W
—_— W N
Bo= =
SO =
oS = O
— O O

We multiply the rows as necessary to set to unity all elements of the first column of the left
matrix:

2 1 1
1 = = - 0 0
3 3 3
3 1 1
1__ando_0
2 2 2
1 1 4 0 0 1

Subtracting the first row from the second and third rows, we obtain

2 1 1

1 - = - 00
3 3 3

Oéland —110
6 6 3 2
1 11 1

0 - — —— 0 1
3 3 3
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Then we divide the second row (of both matrices) by % and subtract % times it from the
first row and % times it from the third row. The results for both matrices are

101 320
5 5 5
1 2 3
0 1 =] and —-— =0
5 5 5
18 1 1
00 — — -1
5 5 5

We divide the third row (of both matrices) by 15—8. Then as the last step, % times the third
row is subtracted from each of the first two rows (of both matrices). Our final pair is

11 7 1

5E

010 and A7l=]|_-_ -

0 0 1 18 18 18

1 1 5

18 18 18
We can check our work by multiplying the original A by the calculated A~! to see if we
really do get the unit matrix 1. |

Derivatives of Determinants

The formula giving the inverse of a matrix in terms of its minors enables us to write a
compact formula for the derivative of a determinant det(A) where the matrix A has ele-
ments that depend on some variable x. To carry out the differentiation with respect to the
x dependence of its element a;;, we write det(A) as its expansion in minors M;; about the
elements of row i, as in Eq. (2.14), so, appealing also to Eq. (2.34), we have

3 det(A)

= (=D M;j = (A1) ji det(A),
aaij

Applying now the chain rule to allow for the x dependence of all elements of A, we get
d det(A)
dx

da,-j

=det(A) Y (A7) ;i —. (2.35)
ij

dx

Systems of Linear Equations

Using the matrix inverse, we can write down formal solutions to linear equation systems.
To start, we note that if A is a n X n square matrix, and x and h are n x 1 column vectors,
the matrix equation Ax = h is, by the rule for matrix multiplication,

aynxi +apxy+---+apx, hy
axnxy +axnxy+ -+ amx,

an1X1 + ap2x2 + -+ - + apnXp hn
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which is entirely equivalent to a system of n linear equations with the elements of A as
coefficients. If A is nonsingular, we can multiply Ax = h on the left by A~!, obtaining the
result x =A"'h.

This result tells us two things: (1) that if we can evaluate A~!, we can compute the
solution x; and (2) that the existence of A~! means that this equation system has a
unique solution. In our study of determinants we found that a linear equation system had a
unique solution if and only if the determinant of its coefficients was nonzero. We therefore
see that the condition that A~! exists, i.e., that A is nonsingular, is the same as the condi-
tion that the determinant of A, which we write det(A), be nonzero. This result is important
enough to be emphasized:

A square matrix A is singular if and only if det(A) = 0. (2.36)

Determinant Product Theorem

The connection between matrices and their determinants can be made deeper by estab-
lishing a product theorem which states that the determinant of a product of two n x n
matrices A and B is equal to the products of the determinants of the individual matrices:

det(AB) = det(A) det(B). (2.37)

As an initial step toward proving this theorem, let us look at det(A B) with the elements of
the matrix product written out. Showing the first two columns explicitly, we have

anbi +aba + - +aiubyr  anbiz +azbyn + -+ aipbp

az1b1 +anby + - - +aguby1  azibia +axnbyp + -+ axbno
det(AB) =

an1b11 + an2boy + -+ appbp1  anib12 +ap2bo + -+ appbp2

Introducing the notation

(l]j
a; = azj , thisbecomes det(AB) = Zajlbjl,l Zajzbjza s,
n,j Ji 2
where the summations over ji, ja, ..., j, run independently from 1 though n. Now, calling

upon Egs. (2.12) and (2.13), we can move the summations and the factors b outside the
determinant, reaching

det(AB) = Z Z ‘.- th’lb/’z’z ~--bj, ndet(ajaj, ---aj,). (2.38)
Ui Jn

The determinant on the right-hand side of Eq. (2.38) will vanish if any of the indices j,
are equal; if all are unequal, that determinant will be 4 det(A), with the sign corresponding
to the parity of the column permutation needed to put the a; in numerical order. Both
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of these conditions are met by writing det(aj a;, --- a;,) = ¢}, j, det(A), where ¢ is the
Levi-Civita symbol defined in Eq. (2.8). The above manipulations bring us to

det(AB) =det(A) > &j.j,bji1bj2- - bj, n =det(A) det(B),
J1-eJn

where the final step was to invoke the definition of the determinant, Eq. (2.10). This result
proves the determinant product theorem.
From the determinant product theorem, we can gain additional insight regarding singular
matrices. Noting first that a special case of the theorem is that
det(AA™") =det(1) = 1 = det(A) det(A™ 1),

we see that

det(A™!) =

IR (2.39)

It is now obvious that if det(A) = 0, then det(A™!) cannot exist, meaning that A~! cannot
exist either. This is a direct proof that a matrix is singular if and only if it has a vanishing
determinant.

Rank of a Matrix

The concept of matrix singularity can be refined by introducing the notion of the rank
of a matrix. If the elements of a matrix are viewed as the coefficients of a set of linear
forms, as in Eq. (2.1) and its generalization to n variables, a square matrix is assigned a
rank equal to the number of linearly independent forms that its elements describe. Thus, a
nonsingular n x n matrix will have rank n, while a n x n singular matrix will have a rank
r less than n. The rank provides a measure of the extent of the singularity; if r =n — 1,
the matrix describes one linear form that is dependent on the others; r = n — 2 describes
a situation in which there are two forms that are linearly dependent on the others, etc. We
will in Chapter 6 take up methods for systematically determining the rank of a matrix.

Transpose, Adjoint, Trace

In addition to the operations we have already discussed, there are further operations that
depend on the fact that matrices are arrays. One such operation is transposition. The
transpose of a matrix is the matrix that results from interchanging its row and column
indices. This operation corresponds to subjecting the array to reflection about its principal
diagonal. If a matrix is not square, its transpose will not even have the same shape as the
original matrix. The transpose of A, denoted A or sometimes A’ , thus has elements

Aij=aj;. (2.40)
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Note that transposition will convert a column vector into a row vector, so

X1
. X -
if x= 2 , then X=(x1x2 ... xp).

Xn

A matrix that is unchanged by transposition (i.e., A = A) is called symmetric.

For matrices that may have complex elements, the complex conjugate of a matrix is
defined as the matrix resulting if all elements of the original matrix are complex conju-
gated. Note that this does not change the shape or move any elements to new positions.
The notation for the complex conjugate of A is A*.

The adjoint of a matrix A, denoted AT, is obtained by both complex conjugating and
transposing it (the same result is obtained if these operations are performed in either order).
Thus,

(A =a;. (2.41)

The trace, a quantity defined for square matrices, is the sum of the elements on the
principal diagonal. Thus, for an n x n matrix A,

trace(A) = Z aji. (2.42)

i=1
From the rule for matrix addition, is is obvious that
trace(A + B) = trace(A) + trace(B). (2.43)

Another property of the trace is that its value for a product of two matrices A and B is
independent of the order of multiplication:

trace(AB) = Z(AB)ii = Z Za,’jbﬁ = Z ijiaij
i i J J i
= Z(BA)fj = trace(BA). (2.44)
J

This holds even if AB # BA. Equation (2.44) means that the trace of any commutator
[A,B] = AB — BA is zero. Considering now the trace of the matrix product ABC, if we
group the factors as A(BC), we easily see that

trace(ABC) = trace(BCA).
Repeating this process, we also find trace(ABC) = trace(CAB). Note, however, that we

cannot equate any of these quantities to trace(CBA) or to the trace of any other noncyclic
permutation of these matrices.
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Operations on Matrix Products

We have already seen that the determinant and the trace satisfy the relations
det(AB) = det(A) det(B) = det(BA), trace(AB) = trace(BA),

whether or not A and B commute. We also found that trace(A + B) = trace(A) + trace(B)
and can easily show that trace(aeA) = « trace(A), establishing that the trace is a linear
operator (as defined in Chapter 5). Since similar relations do not exist for the determinant,
it is not a linear operator.

We consider now the effect of other operations on matrix products. The transpose of a
product, (AB)7, can be shown to satisfy

(AB)T =BA, (2.45)

showing that a product is transposed by taking, in reverse order, the transposes of its fac-
tors. Note that if the respective dimensions of A and B are such as to make AB defined, it
will also be true that BA is defined.

Since complex conjugation of a product simply amounts to conjugation of its individual
factors, the formula for the adjoint of a matrix product follows a rule similar to Eq. (2.45):

(AB)" =B'AT. (2.46)

Finally, consider (AB)~'. In order for AB to be nonsingular, neither A nor B can be
singular (to see this, consider their determinants). Assuming this nonsingularity, we have

AB)~' =B~ 1AL (2.47)

The validity of Eq. (2.47) can be demonstrated by substituting it into the obvious equation
(AB)(AB)~! =1.

Matrix Representation of Vectors

The reader may have already noted that the operations of addition and multiplication by a
scalar are defined in identical ways for vectors (Section 1.7) and the matrices we are calling
column vectors. We can also use the matrix formalism to generate scalar products, but in
order to do so we must convert one of the column vectors into a row vector. The operation
of transposition provides a way to do this. Thus, letting a and b stand for vectors in R>,

by
a-b — (a1 a2 a3) | by | =a1b) + arby + aszbs.
b3

If in a matrix context we regard a and b as column vectors, the above equation assumes
the form

a-b — a’b. (2.48)

This notation does not really lead to significant ambiguity if we note that when dealing with
matrices, we are using lower-case boldface symbols to denote column vectors. Note also
that because a’ b is a 1 x 1 matrix, it is synonymous with its transpose, which is b a. The
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matrix notation preserves the symmetry of the dot product. As in Section 1.7, the square of
the magnitude of the vector corresponding to a will be a’ a.

If the elements of our column vectors a and b are real, then an alternate way of writing
a’'b is a'b. But these quantities are not equal if the vectors have complex elements, as will
be the case in some situations in which the column vectors do not represent displacements
in physical space. In that situation, the dagger notation is the more useful because then a'a
will be real and can play the role of a magnitude squared.

Orthogonal Matrices

A real matrix (one whose elements are real) is termed orthogonal if its transpose is equal
to its inverse. Thus, if S is orthogonal, we may write

s !'=s", or ss” =1 (S orthogonal). (2.49)
Since, for S orthogonal, det(SST) = det(S) det(ST) = [det(S)]> = 1, we see that
det(S) =+1 (S orthogonal). (2.50)

It is easy to prove that if S and S’ are each orthogonal, then so also are SS’ and S'S.

Unitary Matrices

Another important class of matrices consists of matrices U with the property that UT =
U~ i.e., matrices for which the adjoint is also the inverse. Such matrices are identified as
unitary. One way of expressing this relationship is

Uu'=u'u=1 (U unitary). (2.51)

If all the elements of a unitary matrix are real, the matrix is also orthogonal.
Since for any matrix det(AT) = det(A), and therefore det(AT) = det(A)*, application of
the determinant product theorem to a unitary matrix U leads to

det(U) det(U") = | det(U)|> =1, (2.52)

showing that det(U) is a possibly complex number of magnitude unity. Since such numbers
can be written in the form exp(if), with @ real, the determinants of U and U" will, for
some 0, satisfy

det(U) =¢'?, det(U") =¢7.

Part of the significance of the term unitary is associated with the fact that the determinant
has unit magnitude. A special case of this relationship is our earlier observation that if U is
real, and therefore also an orthogonal matrix, its determinant must be either +1 or —1.

Finally, we observe that if U and V are both unitary, then UV and VU will be unitary as
well. This is a generalization of our earlier result that the matrix product of two orthogonal
matrices is also orthogonal.
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Hermitian Matrices

There are additional classes of matrices with useful characteristics. A matrix is identified as
Hermitian, or, synonymously, self-adjoint, if it is equal to its adjoint. To be self-adjoint,
a matrix H must be square, and in addition, its elements must satisfy

(HDij = (H);;
This condition means that the array of elements in a self-adjoint matrix exhibits a reflection
symmetry about the principal diagonal: elements whose positions are connected by reflec-
tion must be complex conjugates. As a corollary to this observation, or by direct reference
to Eq. (2.53), we see that the diagonal elements of a self-adjoint matrix must be real.

If all the elements of a self-adjoint matrix are real, then the condition of self-adjointness
will cause the matrix also to be symmetric, so all real, symmetric matrices are self-adjoint
(Hermitian).

Note that if two matrices A and B are Hermitian, it is not necessarily true that AB or BA

is Hermitian; however, AB + BA, if nonzero, will be Hermitian, and AB — BA, if nonzero,
will be anti-Hermitian, meaning that (AB — BA)" = —(AB — BA).

Extraction of a Row or Column

It is useful to define column vectors €; which are zero except for the (i, 1) element, which
is unity; examples are

O =
—_

etc. (2.54)

o>
I

© o
o>
[ )
Il

0 0
One use of these vectors is to extract a single column from a matrix. For example, if A is a
3 x 3 matrix, then

an aix aiz\ (0 an
Aer =|ax1 axp ax 1l=\ax
az1 azyp azz) \0 azn

The row vector él-T can be used in a similar fashion to extract a row from an arbitrary
matrix, as in

AT
€ A= (a1 a2 a;3).

These unit vectors will also have many uses in other contexts.

Direct Product

A second procedure for multiplying matrices, known as the direct tensor or Kronecker
product, combines a m x n matrix A and a m’ x n’ matrix B to make the direct product
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matrix C = A ® B, which is of dimension mm’ x nn’ and has elements
Cup = AijBu, (2.55)

with =m’(i — 1) +k, B =n'(j — 1) + L. The direct product matrix uses the indices of
the first factor as major and those of the second factor as minor; it is therefore a noncom-
mutative process. It is, however, associative.

Example 2.2.4  DIRecT PRODUCTS

We give some specific examples. If A and B are both 2 x 2 matrices, we may write, first in
a somewhat symbolic and then in a completely expanded form,

aitbyy  anbiy  anbiy  anbn
ay1B alzB)_ anbar  anby  apby  apbn
aB a»B) | anbii axbia anbi axbin |
aziby1  axibyn  axby  axnbxn

A®B:<

Another example is the direct product of two two-element column vectors, x and y.
Again writing first in symbolic, and then expanded form,

X1y

(xl) ® (Y1) _ <x1)’) _ | *)n2
X2 Y2 X2y X2¥1
X2Y2

A third example is the quantity AB from Example 2.2.2. It is an instance of the special
case (column vector times row vector) in which the direct and inner products coincide:
AB=A®B. |

If C and C’ are direct products of the respective forms
C=A®B and C'=A'®B, (2.56)

and these matrices are of dimensions such that the matrix inner products AA” and BB’ are
defined, then

CC' = (AA") ® (BB). (2.57)
Moreover, if matrices A and B are of the same dimensions, then

C®(A+B)=C®A+C®B and (A+B)®C=A®QC+B®C. (2.58)

Example 2.2.5  DIRAC MATRICES

In the original, nonrelativistic formulation of quantum mechanics, agreement between
theory and experiment for electronic systems required the introduction of the concept of
electron spin (intrinsic angular momentum), both to provide a doubling in the number of
available states and to explain phenomena involving the electron’s magnetic moment. The
concept was introduced in a relatively ad hoc fashion; the electron needed to be given
spin quantum number 1/2, and that could be done by assigning it a two-component wave
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function, with the spin-related properties described using the Pauli matrices, which were
introduced in Example 2.2.1:

(01 (0 —i (1 0
=1 o) 22=\i o) 2=\0o -1)

Of relevance here is the fact that these matrices anticommute and have squares that are unit
matrices:

‘71'2:127 and ojo; +0j0; =0, i#j. (2.59)

In 1927, P. A. M. Dirac developed a relativistic formulation of quantum mechanics
applicable to spin-1/2 particles. To do this it was necessary to place the spatial and time
variables on an equal footing, and Dirac proceeded by converting the relativistic expression
for the kinetic energy to an expression that was first order in both the energy and the
momentum (parallel quantities in relativistic mechanics). He started from the relativistic
equation for the energy of a free particle,

E? = (p} + p} + pc? + m*c* = p*c? + m*ct, (2.60)

where p; are the components of the momentum in the coordinate directions, m is the
particle mass, and c is the velocity of light. In the passage to quantum mechanics, the
quantities p; are to be replaced by the differential operators —i%id/dx;, and the entire
equation is applied to a wave function.

It was desirable to have a formulation that would yield a two-component wave function
in the nonrelativistic limit and therefore might be expected to contain the o;. Dirac made
the observation that a key to the solution of his problem was to exploit the fact that the
Pauli matrices, taken together as a vector

0 =01€] + 028 + 03€3, (2.61)
could be combined with the vector p to yield the identity
(0 -p)?=p*ly, (2.62)

where 1, denotes a 2 x 2 unit matrix. The importance of Eq. (2.62) is that, at the price of
going to 2 x 2 matrices, we can linearize the quadratic occurrences of E and p in Eq. (2.60)
as follows. We first write

E’15 — X0 - p)? = m?c*,. (2.63)

We then factor the left-hand side of Eq. (2.63) and apply both sides of the resulting equation
(which is a 2 x 2 matrix equation) to a two-component wave function that we will call v :

(Ely+co -p)(Ely—co -p)y =m>cHy. (2.64)
The meaning of this equation becomes clearer if we make the additional definition

(Ely —co - p)¥i =mcyo. (2.65)
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Substituting Eq. (2.65) into Eq. (2.64), we can then write the modified Eq. (2.64) and the
(unchanged) Eq. (2.65) as the equation set

(Ely +co -p)Yn = mc*yy,
(2.66)
(Ely —co -p)¥1 =mci;

both these equations will need to be satisfied simultaneously.

To bring Egs. (2.66) to the form actually used by Dirac, we now make the substitution
Y1 =v%a+ Vg, Yo =v¥a — ¥p, and then add and subtract the two equations from each
other, reaching a set of coupled equations in ¥4 and {p:

EYa —co -pyg =mc*a,
co -pYa — EYp =mc*yp.

In anticipation of what we will do next, we write these equations in the matrix form

E1l 0 0 co-p v ¥
(5 fn) - Ceop ) ()=m2 () e

We can now use the direct product notation to condense Eq. (2.67) into the simpler form
(03 ® )E —y ® c(o - PIW =mc*V, (2.68)

where W is the four-component wave function built from the two-component wave

functions:
Ya )
= ,
(WB

and the terms on the left-hand side have the indicated structure because

1 0 0 1
(732(0 _1) and we define y:(_l 0). (2.69)

It has become customary to identify the matrices in Eq. (2.68) as y* and to refer to them
as Dirac matrices, with

(2.70)

1 0
)/0203@12:(02 _12>=

S = O O

0
0
0
—1

S o o~
SO = O

The matrices resulting from the individual components of o in Eq. (2.68) are (for
i=1,2,3)

i (0 o
y —y®ol—<_al_ o) 2.71)
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Expanding Eq. (2.71), we have

0 0 0 1 0 0 0 —i
. o o 1 o0 > oo i o
=1 0 =1t o o) Y= lo i o ol

1 0 0 0 i 0 0 0
0 0 1 0
s Lo o o -1

Z1-1 0 o0 o0 (2.72)

0 1 0 0

Now that the y* have been defined, we can rewrite Eq. (2.68), expanding o - p into
components:

[VOE —c('pr4+vip;+ 7/3193)] W =mc?.

To put this matrix equation into the specific form known as the Dirac equation we multiply
both sides of it (on the left) by y°. Noting that (y°)?> =1 and giving ¥°y the new name
o, we reach

[1ome + (1 py + aaps +oapy) | W = EW. (2.73)

Equation (2.73) is in the notation used by Dirac with the exception that he used 8 as the
name for the matrix here called y°.

The Dirac gamma matrices have an algebra that is a generalization of that exhibited
by the Pauli matrices, where we found that the aiz =1 and that if i # j, then o; and
o; anticommute. Either by further analysis or by direct evaluation, it is found that, for
nw=0,1,2,3andi =1,2,3,

¥H%=1, )H=-1, (2.74)
Yy Yyt =0, i (2.75)

In the nonrelativistic limit, the four-component Dirac equation for an electron reduces
to a two-component equation in which each component satisfies the Schrodinger equation,
with the Pauli and Dirac matrices having completely disappeared. See Exercise 2.2.48.
In this limit, the Pauli matrices reappear if we add to the Schrédinger equation an addi-
tional term arising from the intrinsic magnetic moment of the electron. The passage to
the nonrelativistic limit provides justification for the seemingly arbitrary introduction of a
two-component wavefunction and use of the Pauli matrices for discussions of spin angular
momentum.

The Pauli matrices (and the unit matrix 15) form what is known as a Clifford algebra,’
with the properties shown in Eq. (2.59). Since the algebra is based on 2 x 2 matrices, it
can have only four members (the number of linearly independent such matrices), and is
said to be of dimension 4. The Dirac matrices are members of a Clifford algebra of dimen-
sion 16. A complete basis for this Clifford algebra with convenient Lorentz transformation

2D. Hestenes, Am. J. Phys. 39: 1013 (1971); and J. Math. Phys. 16: 556 (1975).
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properties consists of the 16 matrices

. 0 1
Ly, y5=zy°y1y2y3=<12 02>, Y (u=0,12.3),

Yoyt (u=0,1,2,3), o =ipty’ O<p<v<3). (2.76)

Functions of Matrices

Polynomials with one or more matrix arguments are well defined and occur often. Power
series of a matrix may also be defined, provided the series converges for each matrix ele-
ment. For example, if A is any n x n matrix, then the power series

exp(A) =) .l,Af : (2.77)
=07
: - (=D i
sin(A) = Z — AN (2.78)
= 2j+ D!
cos(A) = Z (;—1): AZJ (2.79)
= @t

are well-defined n x n matrices. For the Pauli matrices o, the Euler identity for real 6
andk=1, 2, or3,

exp(ioxf) =13 cos6 +iog sinf, (2.80)

follows from collecting all even and odd powers of 8 in separate series using 0k2 = 1. For
the 4 x 4 Dirac matrices o*¥, defined in Eq. (2.76), we have for | < u <v <3,

exp(ioc"’0) =14cos0 +ic"Vsin, (2.81)
while
c Ok .\ - Ok -
exp(ioc™"¢) =14cosh¢ +ic™" sinh¢ (2.82)

holds for real ¢ because (ic%)% =1 fork =1, 2, or 3.
Hermitian and unitary matrices are related in that U, given as

U =exp(iH), (2.83)

is unitary if H is Hermitian. To see this, just take the adjoint: UT = exp(—iHT) =
exp(—iH) = [exp(iH)]"! = U~
Another result which is important to identify here is that any Hermitian matrix H satisfies
a relation known as the trace formula,
det (exp(H)) = exp (trace(H)). (2.84)

This formula is derived at Eq. (6.27).



114 Chapter 2 Determinants and Matrices

Finally, we note that the multiplication of two diagonal matrices produces a matrix that
is also diagonal, with elements that are the products of the corresponding elements of the
multiplicands. This result implies that an arbitrary function of a diagonal matrix will also
be diagonal, with diagonal elements that are that function of the diagonal elements of the
original matrix.

Example 2.2.6  EXPONENTIAL OF A DIAGONAL MATRIX

If a matrix A is diagonal, then its nth power is also diagonal, with the original diagonal
matrix elements raised to the nth power. For example, given

(10
=0 —1)

@ =5 ()

then

We can now compute

% = n=0 " — e 0
| \0 et
!

o
0 Zn
n=0

A final and important result is the Baker-Hausdorff formula, which, among other
places is used in the coupled-cluster expansions that yield highly accurate electronic struc-
ture calculations on atoms and molecules®:

exp(—TAexp(T) =A+[AT]+ % [[AT],T]+ % [([[ATLTLTIA+---. (2.85)

Exercises

2.2.1 Show that matrix multiplication is associative, (AB)C = A(BC).
222 Show that
(A+B)(A—B)=A>—B’
if and only if A and B commute,

[A, B] =0.

3F. E. Harris, H. J. Monkhorst, and D. L. Freeman, Algebraic and Diagrammatic Methods in Many-Fermion Theory. New York:
Oxford University Press (1992).
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(a) Complex numbers, a + ib, with a and b real, may be represented by (or are iso-
morphic with) 2 x 2 matrices:

a+ib <— (a b).
—b a

Show that this matrix representation is valid for (i) addition and (ii) multiplication.

(b) Find the matrix corresponding to (a +ib)~!.

If Ais an n x n matrix, show that
det(—A) = (—1)" detA.

(a) The matrix equation A> = 0 does not imply A = 0. Show that the most general
2 x 2 matrix whose square is zero may be written as

ab  b?
—a*> —ab)’
where a and b are real or complex numbers.
(b) IfC=A+B,in general

detC # detA + detB.

Construct a specific numerical example to illustrate this inequality.

Given
0 0 i
K=|—i 0],
0 -1 0
show that

K" =KKK- - - (n factors) = 1

(with the proper choice of n, n # 0).
Verify the Jacobi identity,

[A,[B, Cl] =B, [A, C]] - [C, [A, BI]].

Show that the matrices

010 0 00 0 0 1
A=|0 0 0], B={0 0 1], C=|0 0 O
0 0 0 0 0 0 0 0 0

satisfy the commutation relations

[A,B]=C, [A,C]=0, and [B,C]=0.
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229

2.2.10

2.2.11

2.2.12

Let
01 00 00 0 —1
-1 0 ool . [oo0o -1 o0
=1 o0 o 1] '“lo1 o ol
00 —1 0 10 0 0
and
0 0 —1 0
|0 0 o1
=1 o o0 o0
0 -1 0 0
Show that

(a) i#=j*=k?=—1, where 1 is the unit matrix.

(b) ij=—ji=k,
k=—k=i,
ki = —ik =

These three matrices (i, j, and k) plus the unit matrix 1 form a basis for quaternions. An
alternate basis is provided by the four 2 x 2 matrices, ioy, 02, —io3, and 1, where the
o; are the Pauli spin matrices of Example 2.2.1.

A matrix with elements a;; = 0 for j < i may be called upper right triangular. The
elements in the lower left (below and to the left of the main diagonal) vanish. Show that
the product of two upper right triangular matrices is an upper right triangular matrix.

The three Pauli spin matrices are
(0 1 (0 —i d (1 0
a=\y o) 2=\; o) awd o=, _|)

@@ (o) =1s,
(b) ojoj=ioy, (i, j, k) = (1,2, 3) or a cyclic permutation thereof,

Show that

(c) oioj+0jo; =26;12; 17 is the 2 x 2 unit matrix.

One description of spin-1 particles uses the matrices

L {010 L (0 =i 0
Mo=— (1 0 1}, my=—|[i o —il.
v2\o 1 0 V2o i o
and
10 0
M.=[0o 0 o
00 —1
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2.2.20
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Show that

(@) [My,My]=iM,, and so on (cyclic permutation of indices). Using the Levi-Civita
symbol, we may write

[M;,M;]=i Zé‘ijkMk-
k
(b) M?=M2 + M2 + M2 =2 13, where 13 is the 3 x 3 unit matrix.

(©) [M? M;]=0,
M, L] =L,
(L, L7]=2M,,
where LT =M, +iMy and L™ =M, —iM,.

Repeat Exercise 2.2.12, using the matrices for a spin of 3/2,

0 /3 0 0 0 -3 0 0
Moolfv3 0o 2 o L _i|v3 o0 -2 0
210 2 o V3 Y721 0 2 0 V3

0 0 V3 0 0 0 V3 0

and
30 0 0
1flo 1 0 0
M=31o o -1 o

0 O 0 -3

If A is a diagonal matrix, with all diagonal elements different, and A and B commute,
show that B is diagonal.

If A and B are diagonal, show that A and B commute.
Show that trace(ABC) = trace(CBA) if any two of the three matrices commute.
Angular momentum matrices satisfy a commutation relation
[M;,M]=iM;, j,k,I cyclic.
Show that the trace of each angular momentum matrix vanishes.

A and B anticommute: AB = —BA. Also, A2 = 1, B2 = 1. Show that trace(A) =
trace(B) = 0.

Note. The Pauli and Dirac matrices are specific examples.

(a) If two nonsingular matrices anticommute, show that the trace of each one is zero.

(Nonsingular means that the determinant of the matrix is nonzero.)

(b) For the conditions of part (a) to hold, A and B must be n x n matrices with n even.
Show that if n is odd, a contradiction results.

If A~! has elements
—1y. _n_ Cii
(A )z;—aij = |A|’
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2.2.21

2.2.22

2.2.23

2.2.24
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where C; is the jith cofactor of |A|, show that
AlA=1.

Hence A~! is the inverse of A (if |A| # 0).

Find the matrices My such that the product My A will be A but with:

(a) The ith row multiplied by a constant k (a;; — ka;j, j =1,2,3,...);

(b) The ith row replaced by the original ith row minus a multiple of the mth row
(aij — djj — Kamj, i = 1, 2, 3, .. .);

(c) The ith and mth rows interchanged (a;; — amj, amj — aij, j=1,2,3,...).

Find the matrices Mg such that the product AMg will be A but with:
(a) The ith column multiplied by a constant k (a;; — kaj;, j =1,2,3,...);

(b) The ith column replaced by the original ith column minus a multiple of the mth
column (a;; — aji —kajm, j=1,2,3,...);

(c) The ith and mth columns interchanged (aj; — ajm, ajm — aji, j=1,2,3,...).

Find the inverse of

A=

— N W
— NN
N

Matrices are far too useful to remain the exclusive property of physicists. They may
appear wherever there are linear relations. For instance, in a study of population move-
ment the initial fraction of a fixed population in each of n areas (or industries or
religions, etc.) is represented by an n-component column vector P. The movement of
people from one area to another in a given time is described by an n x n (stochastic)
matrix T. Here T;; is the fraction of the population in the jth area that moves to the ith
area. (Those not moving are covered by i = j.) With P describing the initial population
distribution, the final population distribution is given by the matrix equation TP = Q.
From its definition, > ;_, P, = 1.

(a) Show that conservation of people requires that

n
dYTy=1, j=12...n
i=1

(b) Prove that

continues the conservation of people.
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2.2.26
2.2.27
2.2.28
2.2.29

2.2.30

2.2.31

2.2.32
2.2.33

2.2.34

2.2.35

2.2.36
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Given a 6 x 6 matrix A with elements a;; = 0.511=J1 i, j=0,1,2,...,5, find AL

4 -2 0 O
-2 5 =2 0
0 -2 5 =2
o o0 -2 5 -
0o o0 0 =2
o o0 0 0 -

1
ANS. A1 =2
3

DL O OO
DO O OO

Show that the product of two orthogonal matrices is orthogonal.
If A is orthogonal, show that its determinant = +1.
Show that the trace of the product of a symmetric and an antisymmetric matrix is zero.

A s 2 x 2 and orthogonal. Find the most general form of
a b
(1)

det(A*) = (detA)* = det(A").

Show that

Three angular momentum matrices satisfy the basic commutation relation
[, dyl=id;

(and cyclic permutation of indices). If two of the matrices have real elements, show that
the elements of the third must be pure imaginary.

Show that (AB)" = BYAT.

A matrix C = S'S. Show that the trace is positive definite unless S is the null matrix, in
which case trace (C) = 0.

If A and B are Hermitian matrices, show that (AB + BA) and i (AB — BA) are also Her-
mitian.

The matrix C is not Hermitian. Show that then C 4+ C' and i (C — CT) are Hermitian.
This means that a non-Hermitian matrix may be resolved into two Hermitian parts,

1 ¥ 1 .

C=-(C+C"Y4+ —i(C—-C").

2 2i
This decomposition of a matrix into two Hermitian matrix parts parallels the decompo-
sition of a complex number z into x + iy, where x = (z + z*)/2 and y = (z — z*)/2i.
A and B are two noncommuting Hermitian matrices:

AB —BA=iC.

Prove that C is Hermitian.

Two matrices A and B are each Hermitian. Find a necessary and sufficient condition for
their product AB to be Hermitian.

ANS. [A,B]=0.
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2.2.38
2.2.39
2.2.40

2.2.41

2.2.42
2.2.43

2.2.44

2.2.45
2.2.46

2.2.47

2.2.48

Show that the reciprocal (that is, inverse) of a unitary matrix is unitary.
Prove that the direct product of two unitary matrices is unitary.

If o is the vector with the o; as components given in Eq. (2.61), and p is an ordinary
vector, show that

(0 -p)?=p’ly,
where 15 is a 2 x 2 unit matrix.

Use the equations for the properties of direct products, Egs. (2.57) and (2.58), to show
that the four matrices y#, u =0, 1, 2, 3, satisfy the conditions listed in Egs. (2.74) and
(2.75).

Show that y>, Eq. (2.76), anticommutes with all four y*.

In this problem, the summations are over u = 0, 1,2, 3. Define g,, = g"” by the
relations

go=1 gu=-1, k=1,2,3; guw=0, un#v;

and define y,, as ) g, v". Using these definitions, show that

@ yuyiyt=-2y"

®) X yurtyivt =45,

© LwuryPyiyt==2y"yPy*

IfM= %(1 + 2), where p? is given in Eq. (2.76), show that
M? = M.

Note that this equation is still satisfied if p is replaced by any other Dirac matrix listed
in Eq. (2.76).

Prove that the 16 Dirac matrices form a linearly independent set.

If we assume that a given 4 x 4 matrix A (with constant elements) can be written as a
linear combination of the 16 Dirac matrices (which we denote here as I';)

16
A= Z Ci Fi s
i=1
show that
c; ~ trace(Al';).

The matrix C = iy2y° is sometimes called the charge conjugation matrix. Show that
cyrcl=—M.

(a) Show that, by substitution of the definitions of the y* matrices from Egs. (2.70)
and (2.72), that the Dirac equation, Eq. (2.73), takes the following form when
written as 2 x 2 blocks (with ¥ and ¥¢ column vectors of dimension 2). Here
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L and S stand, respectively, for “large” and “small” because of their relative size
in the nonrelativistic limit):

mc* — E cl@pr+op2+o3pa)\ (VL) _,
2 =0.
—c(o1p1 +02p2 4 03p3) —mc? — E Vs

(b) To reach the nonrelativistic limit, make the substitution E = mc?* + ¢ and approx-
imate —2mc* — & by —2mc?. Then write the matrix equation as two simultaneous
two-component equations and show that they can be rearranged to yield

1 2 2 2) _
m (P1+P2+P3 YL =¢evL,

which is just the Schrédinger equation for a free particle.

(¢) Explain why is it reasonable to call i, and g “large” and “small.”

2.2.49 Show that it is consistent with the requirements that they must satisfy to take the Dirac
gamma matrices to be (in 2 x 2 block form)
0 0 1, ; 0 o ;
= = =1,2,3).
y (12 0), 2 <—Ui 0)’ (i=1,2,3)
This choice for the gamma matrices is called the Weyl representation.

2.2.50  Show that the Dirac equation separates into independent 2 x 2 blocks in the Weyl rep-
resentation (see Exercise 2.2.49) in the limit that the mass m approaches zero. This
observation is important in the ultra relativistic regime where the rest mass is inconse-
quential, or for particles of negligible mass (e.g., neutrinos).

22,51 (a) Given r' = Ur, with U a unitary matrix and r a (column) vector with complex

elements, show that the magnitude of r is invariant under this operation.
(b) The matrix U transforms any column vector r with complex elements into 1/,
leaving the magnitude invariant: r'r = r''r’. Show that U is unitary.
Additional Readings

Aitken, A. C., Determinants and Matrices. New Y ork: Interscience (1956), reprinted, Greenwood (1983). A read-
able introduction to determinants and matrices.

Barnett, S., Matrices: Methods and Applications. Oxford: Clarendon Press (1990).
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CHAPTER 3

VECTOR ANALYSIS

The introductory section on vectors, Section 1.7, identified some basic properties that are
universal, in the sense that they occur in a similar fashion in spaces of different dimension.
In summary, these properties are (1) vectors can be represented as linear forms, with oper-
ations that include addition and multiplication by a scalar, (2) vectors have a commutative
and distributive dot product operation that associates a scalar with a pair of vectors and
depends on their relative orientations and hence is independent of the coordinate system,
and (3) vectors can be decomposed into components that can be identified as projections
onto the coordinate directions. In Section 2.2 we found that the components of vectors
could be identified as the elements of a column vector and that the scalar product of two
vectors corresponded to the matrix multiplication of the transpose of one (the transposition
makes it a row vector) with the column vector of the other.

The current chapter builds on these ideas, mainly in ways that are specific to three-
dimensional (3-D) physical space, by (1) introducing a quantity called a vector cross
product to permit the use of vectors to represent rotational phenomena and volumes in 3-D
space, (2) studying the transformational properties of vectors when the coordinate system
used to describe them is rotated or subjected to a reflection operation, (3) developing math-
ematical methods for treating vectors that are defined over a spatial region (vector fields),
with particular attention to quantities that depend on the spatial variation of the vector field,
including vector differential operators and integrals of vector quantities, and (4) extending
vector concepts to curvilinear coordinate systems, which are very useful when the sym-
metry of the coordinate system corresponds to a symmetry of the problem under study (an
example is the use of spherical polar coordinates for systems with spherical symmetry).

A key idea of the present chapter is that a quantity that is properly called a vector
must have the transformation properties that preserve its essential features under coordinate
transformation; there exist quantities with direction and magnitude that do not transform
appropriately and hence are not vectors. This study of transformation properties will, in a
subsequent chapter, ultimately enable us to generalize to related quantities such as tensors.

123

Mathematical Methods for Physicists.
© 2013 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/B978-0-12-384654-9.00003-7

124 Chapter 3 Vector Analysis

Finally, we note that the methods developed in this chapter have direct application in

electromagnetic theory as well as in mechanics, and these connections are explored through
the study of examples.

3.1 REVIEW OF BASIC PROPERTIES

In Section 1.7 we established the following properties of vectors:

1.

Vectors satisfy an addition law that corresponds to successive displacements that can
be represented by arrows in the underlying space. Vector addition is commutative
and associative: A+ B=B+Aand A+B)+C=A+ B+ C).

A vector A can be multiplied by a scalar k; if £ > 0 the result will be a vector in the
direction of A but with its length multiplied by k; if k < O the result will be in the
direction opposite to A but with its length mutiplied by |k]|.

The vector A — B is interpreted as A 4 (—1)B, so vector polynomials, e.g., A — 2B +
3C, are well-defined.

A vector of unit length in the coordinate direction x; is denoted €;. An arbitrary vector
A can be written as a sum of vectors along the coordinate directions, as

A=A+ Arer+---.

The A; are called the components of A, and the operations in Properties 1 to 3 cor-
respond to the component formulas

G=A-2B+3C = G;=A; —2B;+3C;, (eachi).

The magnitude or length of a vector A, denoted |A| or A, is given in terms of its
components as

Al = (A} + A +--)" 2

The dot product of two vectors is given by the formula
A-B=ABi+ABy+---;
consequences are
JAP=A-A, A-B=|A|[B|cos#,

where 6 is the angle between A and B.
If two vectors are perpendicular to each other, their dot product vanishes and they are
termed orthogonal. The unit vectors of a Cartesian coordinate system are orthogonal:

& - & =4ij, (3.1

where §;; is the Kronecker delta, Eq. (1.164).

The projection of a vector in any direction has an algebraic magnitude given by its
dot product with a unit vector in that direction. In particular, the projection of A on
the €; direction is A;€;, with

A =8 - A.
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The components of A in R? are related to its direction cosines (cosines of the angles
that A makes with the coordinate axes) by the formulas

Ay =Acosa, Ay=Acosf, A,=Acosy,

and cos® o 4 cos? B + cos? y = 1.

In Section 2.2 we noted that matrices consisting of a single column could be used to

represent vectors. In particular, we found, illustrating for the 3-D space R?, the following
properties.

10.

11.

12.

13.

A vector A can be represented by a single-column matrix a whose elements are the
components of A, as in

Ay
A = a=|A
Aj

The rows (i.e., individual elements A;) of a are the coefficients of the individual
members of the basis used to represent A, so the element A; is associated with the
basis unit vector €;.

The vector operations of addition and multiplication by a scalar correspond exactly
to the operations of the same names applied to the single-column matrices represent-
ing the vectors, as illustrated here:

G Ay B Ci
G=A-2B+3C — Gol=1A]|-2|B]|+3]|C
G3 Az B3 C3
A1 —2B1 +3Cy
=|Ay—2B,+3C> |, or g=a—2b+3c.
A3 —2B3+3C3

It is therefore appropriate to call these single-column matrices column vectors.
The transpose of the matrix representing a vector A is a single-row matrix, called a
row vector:

al =(A; Ay A3).

The operations illustrated in Property 11 also apply to row vectors.
The dot product A - B can be evaluated as a’ b, or alternatively, because a and b are
real, as a’b. Moreover, a’b = b7 a.

B
A~B=aTb=(A1 Ay A3)| Bo | =A1B1+ AyBy + A3Bs.
B3
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3.2 VECTORS IN 3-D SPACE

We now proceed to develop additional properties for vectors, most of which are applicable
only for vectors in 3-D space.

Vector or Cross Product

A number of quantities in physics are related to angular motion or the torque required to
cause angular acceleration. For example, angular momentum about a point is defined as
having a magnitude equal to the distance » from the point times the component of the
linear momentum p perpendicular to r—the component of p causing angular motion (see
Fig. 3.1). The direction assigned to the angular momentum is that perpendicular to both
r and p, and corresponds to the axis about which angular motion is taking place. The
mathematical construction needed to describe angular momentum is the cross product,
defined as

C=A x B=(ABsin0)é,. (3.2)

Note that C, the result of the cross product, is stated to be a vector, with a magnitude that
is the product of the magnitudes of A, B and the sine of the angle 6 < 7 between A and B.
The direction of C, i.e., that of €, is perpendicular to the plane of A and B, such that A, B,
and C form a right-handed system.! This causes C to be aligned with the rotational axis,
with a sign that indicates the sense of the rotation.

From Fig. 3.2, we also see that A x B has a magnitude equal to the area of the parallel-
ogram formed by A and B, and with a direction normal to the parallelogram.

Other places the cross product is encountered include the formulas

v=wxr and Fy =gvxB.

The first of these equations is the relation between linear velocity v and and angular veloc-
ity @, and the second equation gives the force Fy; on a particle of charge ¢ and velocity v
in the magnetic induction field B (in SI units).

FIGURE 3.1 Angular momentum about the origin, L=r x p.
L has magnitude rp sinf and is directed out of the plane of the paper.

I The inherent ambiguity in this statement can be resolved by the following anthropomorphic prescription: Point the right hand
in the direction A, and then bend the fingers through the smaller of the two angles that can cause the fingers to point in the
direction B; the thumb will then point in the direction of C.
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Bsin6

A

FIGURE 3.2 Parallelogram of A x B.

We can get our right hands out of the analysis by compiling some algebraic properties of
the cross product. If the roles of A and B are reversed, the cross product changes sign, so

B xA=—A xB (anticommutation). (3.3)
The cross product also obeys the distributive laws
AxB+C)=AxB+AxC, k(AxB)=(kA) xB, 34

and when applied to unit vectors in the coordinate directions, we get
€ X éj = Zsijkék- (3.5
k

Here ¢&;jy is the Levi-Civita symbol defined in Eq. (2.8); Eq (3.5) therefore indicates, for
example, that &, x &, =0, &, x &, =&, but &, x &, = —e,.
Using Eq. (3.5) and writing A and B in component form, we can expand A x B to obtain

C=AxB= (A& +A,& +A&) x (Biéy + B,&, + B.&,)
= (AyBy — AyB) (& X &) + (A B, — A, B,) (& x &)
+(AyB, — A B)) (@, x &)
= (A:By — AyB)é + (A B, — A B,)(—&,) + (AyB, — A_B))é,.  (3.6)

The components of C are important enough to be displayed prominently:
C,=A,B,—A;B,, Cy,=A;B,—A:B,, C,=A:B,—A,B,, 3.7

equivalent to

C; ZZS,‘jkAjBk. (3.8)
ik
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Yet another way of expressing the cross product is to write it as a determinant. It is
straightforward to verify that Eqs. (3.7) are reproduced by the determinantal equation

e &, ¢
C=|A, A, Al (3.9)
B, B, B,

when the determinant is expanded in minors of its top row. The anticommutation of the
cross product now clearly follows if the rows for the components of A and B are inter-
changed.

We need to reconcile the geometric form of the cross product, Eq. (3.2), with the alge-
braic form in Eq. (3.6). We can confirm the magnitude of A x B by evaluating (from the
component form of C)

(AxB) - (AxB)=A’B?>— (A-B)>=A’B> — A>B?cos’0
= A’B?sin’6. (3.10)

The first step in Eq. (3.10) can be verified by expanding its left-hand side in component
form, then collecting the result into the terms constituting the central member of the first
line of the equation.

To confirm the direction of C = A x B, we can check that A - C =B - C =0, showing
that C (in component form) is perpendicular to both A and B. We illustrate for A - C:

A-C=A(AyB, — A B)) + Ay(A;By — A B,) + A, (A,By — AyB,) =0. (3.11)

To verify the sign of C, it suffices to check special cases (e.g., A=¢&,, B=¢&,, or Ay =
By =1, all other components zero).

Next, we observe that it is obvious from Eq. (3.2) that if C = A x B in a given coordinate
system, then that equation will also be satisfied if we rotate the coordinates, even though
the individual components of all three vectors will thereby be changed. In other words, the
cross product, like the dot product, is a rotationally invariant relationship.

Finally, note that the cross product is a quantity specifically defined for 3-D space. It is
possible to make analogous definitions for spaces of other dimensionality, but they do not
share the interpretation or utility of the cross product in R>.

Scalar Triple Product

While the various vector operations can be combined in many ways, there are two combi-
nations involving three operands that are of particular importance. We call attention first
to the scalar triple product, of the form A - (B x C). Taking (B x C) in the determinantal
form, Eq. (3.9), one can see that taking the dot product with A will cause the unit vector &,
to be replaced by A, with corresponding replacements to &, and e;. The overall result is

Ay Ay A,
A-BxC)=|B, B, B (3.12)
c. C, C.

We can draw a number of conclusions from this highly symmetric determinantal form.
To start, we see that the determinant contains no vector quantities, so it must evaluate
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BxC

FIGURE 3.3 A - (B x C) parallelepiped.

to an ordinary number. Because the left-hand side of Eq. (3.12) is a rotational invariant,
the number represented by the determinant must also be rotationally invariant, and can
therefore be identified as a scalar. Since we can permute the rows of the determinant (with
a sign change for an odd permutation, and with no sign change for an even permutation),
we can permute the vectors A, B, and C to obtain

A-BxC=B-CxA=C-AxB=—-A-CxB, etc. (3.13)

Here we have followed common practice and dropped the parentheses surrounding the
cross product, on the basis that they must be understood to be present in order for the
expressions to have meaning. Finally, noting that B x C has a magnitude equal to the area
of the BC parallelog ram and a direction perpendicular to it, and that the dot product with
A will multiply that area by the projection of A on B x C, we see that the scalar triple
product gives us (&) the volume of the parallelepiped defined by A, B, and C; see Fig. 3.3.

Example 3.2.1  RECIPROCAL LATTICE

Let a, b, and ¢ (not necessarily mutually perpendicular) represent the vectors that define a
crystal lattice. The displacements from one lattice point to another may then be written

R=nsa+npb+ncc, (3.14)
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with n,, np, and n. taking integral values. In the band theory of solids,” it is useful to
introduce what is called a reciprocal lattice a’, b’, ¢/ such that
a-a’=b-b=c-¢=1, (3.15)
and with
a-b=a-¢=b-a’=b-¢’=c-a’=c-b'=0. (3.16)

The reciprocal-lattice vectors are easily constructed by calling on the fact that for any u
and v, u x v is perpendicular to both u and v; we have

, bxc , cxa , axb
a=—-, =, C=—. (317)
a-bxec a-bxe a-bxe
The scalar triple product causes these expressions to satisfy the scale condition of
Eq. (3.15). |
Vector Triple Product

The other triple product of importance is the vector triple product, of the form A x
(B x C). Here the parentheses are essential since, for example, (&, x €) x &, =0, while
e, x (€& x &) =@, x &, = —e,. Our interest is in reducing this triple product to a simpler
form; the result we seek is

Ax(BxC)=B(A-C)—-C(A-B). (3.18)

Equation (3.18), which for convenience we will sometimes refer to as the BAC—CAB rule,
can be proved by inserting components for all vectors and evaluating all the products, but it
is instructive to proceed in a more elegant fashion. Using the formula for the cross product
in terms of the Levi-Civita symbol, Eq. (3.8), we write

Ax(BxC) = Zéi ZeijkAj (ngququ>
pPq

i jk
=Y "> &A;B,Cy Y eijkekpy- (3.19)
ij rq k
The summation over k of the product of Levi-Civita symbols reduces, as shown in
Exercise 2.1.9,t0 8;,8 j4 — 8i¢8p; we are left with

Ax(BxC)=Y &A;(BC;—B;C)=) & B Y A;C;i—C;Y A;B; |,
ij i j j

which is equivalent to Eq. (3.18).

21t is often chosen to require a - a’, etc., to be 27 rather than unity, because when Bloch states for a crystal (labeled by k) are
set up, a constituent atomic function in cell R enters with coefficient exp(ik - R), and if k is changed by a reciprocal lattice step
(in, say, the a’ direction), the coefficient becomes exp(i[k + a’] - R), which reduces to exp(2mwing) exp(ik - R) and therefore,
because exp(2wing) = 1, to its original value. Thus, the reciprocal lattice identifies the periodicity in k. The unit cell of the k
vectors is called the Brillouin zone
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Exercises

3.21 IfP=¢,P, +¢&,Pyand Q =&, 0, + &, 0, are any two nonparallel (also nonantiparal-
lel) vectors in the xy-plane, show that P x Q is in the z-direction.
3.2.2 Prove that (A x B) - (A x B) = (AB)? — (A - B)2.
3.23 Using the vectors
P =¢,cosf +¢&,sinb,
Q=¢é,cosp —e&,sing,
R =¢,cosp+¢&,sing,
prove the familiar trigonometric identities
sin(@ 4 ¢) = sinf cos ¢ + cosf sin g,
cos(6 + ¢) = cosO cos ¢ — sinb sin .
3.24 (a) Find a vector A that is perpendicular to
U=2¢,+¢, —e,
V=¢ —¢, +e,.

(b) What is A if, in addition to this requirement, we demand that it have unit
magnitude?

3.2.5 If four vectors a, b, ¢, and d all lie in the same plane, show that
(axb)x (cxd)=0.
Hint. Consider the directions of the cross-product vectors.
3.2.6 Derive the law of sines (see Fig. 3.4):

sing  sinf8  siny

Al B [C|’
3.2.7 The magnetic induction B is defined by the Lorentz force equation,
F=¢q(vxB).

FIGURE 3.4 Plane triangle.
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Carrying out three experiments, we find that if

From the results of these three separate experiments calculate the magnetic induction B.

You are given the three vectors A, B, and C,

A=¢ +é,,
B=e¢, + ¢,
C=4¢ —é,.

(a) Compute the scalar triple product, A - B x C. Noting that A = B 4+ C, give a
geometric interpretation of your result for the scalar triple product.

(b) Compute A x (B x C).

Prove Jacobi’s identity for vector products:

ax(bxe)+bx(exa)+cx(axb)=0.

3.2.10 A vector A is decomposed into a radial vector A, and a tangential vector A;. If F is a

unit vector in the radial direction, show that

(a) A,=r(A-r)and
(b) Ar=—Fx (F x A).

3.2.11  Prove that a necessary and sufficient condition for the three (nonvanishing) vectors A,

B, and C to be coplanar is the vanishing of the scalar triple product

A-BxC=0.

3.2.12 Three vectors A, B, and C are given by

A =38, —2¢, +2z,
B =68, +4¢, — 2z,
C=-3¢, —2¢, —4z
Compute the values of A-B x Cand A x (B x C),C x (A x B) and B x (C x A).

3.2.13  Show that

(AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C).

3.2.14 Show that

(AxB)x (CxD)=(A-BxD)C—(A-BxC)D.
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3.2.15  An electric charge ¢g; moving with velocity v; produces a magnetic induction B
given by
Ho V] XF
B=—qg ——
a2
where T is a unit vector that points from ¢; to the point at which B is measured (Biot
and Savart law).

(mks units),

(a) Show that the magnetic force exerted by g1 on a second charge g, velocity va, is
given by the vector triple product

Mo 9192

4 r2

(b) Write out the corresponding magnetic force F that gy exerts on ¢;. Define your
unit radial vector. How do F; and F, compare?

F, = Vo X (V1 X f').

(c) Calculate F and F; for the case of ¢; and g moving along parallel trajectories
side by side.

ANS.

Hno 49192 N
b) Fi=———-vy x(va XT).
(b) Fy y——— (v2 x F)

In general, there is no simple relation between
F; and F,. Specifically, Newton’s third law,

F{ = —F,, does not hold.

Mo 4192 oA

¢) Fj=——-vr
© T 4w r?

Mutual attraction.

=—F,.

3.3 COORDINATE TRANSFORMATIONS

As indicated in the chapter introduction, an object classified as a vector must have specific
transformation properties under rotation of the coordinate system; in particular, the com-
ponents of a vector must transform in a way that describes the same object in the rotated
system.

Rotations

Considering initially IR?, and a rotation of the coordinate axes as shown in Fig. 3.5, we
wish to find how the components A, and A, of a vector A in the unrotated system are
related to A’ and A’ its components in the rotated coordinate system. Perhaps the easiest
way to answer this question is by first asking how the unit vectors €, and &, are represented
in the new coordinates, after which we can perform vector addition on the new incarnations
of Ae, and Ae,.

From the right-hand part of Fig. 3.5, we see that

& =cospe, —singe,, and &, =sing& +cosye), (3.20)
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FIGURE 3.5 Left: Rotation of two-dimensional (2-D) coordinate axes through angle ¢.
Center and right: Decomposition of & and €, into their components in the rotated system.

so the unchanged vector A now takes the changed form
A=A8 +Ayey = A, (cosp&, —singe) + A, (sin p&, + cos &)
= (Aycosg + Aysing)&, + (—Aysing + Ay cos )& (3.21)
If we write the vector A in the rotated (primed) coordinate system as
A=AR + AL,
we then have
Ay =Aycosp+ Aysing, A =—A,sing+ Aycosg, (3.22)

which is equivalent to the matrix equation

, (AL _ [ cosg sing) (A
A_<A;, “ \—sing cosg/\A, ) (3.23)

Suppose now that we start from A as given by its components in the rotated system,
(AL, A’y), and rotate the coordinate system back to its original orientation. This will entail
a rotaton in the amount —¢, and corresponds to the matrix equation

A\ _ [ cos(—p) sin(—¢)\ (AL _ [(cosep —sing) (A} (3.24)

Ay) T \=sin(—g) cos(—¢)) \A}) " \sing cosp)\A}) ’
Assigning the 2 x 2 matrices in Eqgs. (3.23) and (3.24) the respective names S and S, we
see that these two equations are equivalent to A’ = SA and A = S’A’, with

s=< cosg mnw) and s/=<C°S¢’ —Sm*") (3.25)

—sing cos¢ sing  cos¢g

Now, applying S to A and then S’ to SA (corresponding to first rotating the coordinate
system an amount +¢ and then an amount —¢), we recover A, or

A =SSA.

Since this result must be valid for any A, we conclude that S’ = S~!. We also see that
S’ =ST. We can check that SS’ = 1 by matrix multiplication:

A sing\ fcosgp —singp) (1 O
" \—sing cosgp/\sing cosp/)  \O 1)
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Since S is real, the fact that S~! = ST means that it is orthogonal. In summary, we have
found that the transformation connecting A and A’ (the same vector, but represented in the
rotated coordinate system) is

A =SA, (3.26)

with S an orthogonal matrix.

Orthogonal Transformations

It was no accident that the transformation describing a rotation in R? was orthogonal, by
which we mean that the matrix effecting the transformation was an orthogonal matrix.
An instructive way of writing the transformation S is, returning to Eq. (3.20), to rewrite
those equations as
& = (€ -&)& + (é/y -ey)e

v 8y = (& &), + (&) - &))e. (3.27)

This corresponds to writing €, and €, as the sum of their projections on the orthogonal
vectors €, and &). Now we can rewrite S as

U
e -e e -e
s:(g il Ay>. (3.28)
e, & € e

This means that each row of S contains the components (in the unprimed coordinates) of
a unit vector (either &, or €}) that is orthogonal to the vector whose components are in the
other row. In turn, this means that the dot products of different row vectors will be zero,
while the dot product of any row vector with itself (because it is a unit vector) will be unity.
That is the deeper significance of an orthogonal matrix S; the v element of SS” is the
dot product formed from the yth row of S and the vth column of S” (which is the same as
the vth row of S). Since these row vectors are orthogonal, we will get zero if u # v, and
because they are unit vectors, we will get unity if i = v. In other words, SS” will be a unit
matrix.

Before leaving Eq. (3.28), note that its columns also have a simple interpretation: Each
contains the components (in the primed coordinates) of one of the unit vectors of the
unprimed set. Thus the dot product formed from two different columns of S will van-
ish, while the dot product of any column with itself will be unity. This corresponds to the
fact that, for an orthogonal matrix, we also have S”S =1.

Summarizing part of the above,

The transformation from one orthogonal Cartesian coordinate system to another Carte-
sian system is described by an orthogonal matrix.

In Chapter 2 we found that an orthogonal matrix must have a determinant that is real
and of magnitude unity, i.e., =1. However, for rotations in ordinary space the value of the
determinant will always be +1. One way to understand this is to consider the fact that any
rotation can be built up from a large number of small rotations, and that the determinant
must vary continuously as the amount of rotation is changed. The identity rotation (i.e.,
no rotation at all) has determinant +1. Since no value close to +1 except +1 itself is a
permitted value for the determinant, rotations cannot change the value of the determinant.
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Reflections

Another possibility for changing a coordinate system is to subject it to a reflection
operation. For simplicity, consider first the inversion operation, in which the sign of each
coordinate is reversed. In R3, the transformation matrix S will be the 3 x 3 analog of
Eq. (3.28), and the transformation under discussion is to set é;L = —e,, with u =x, y,
and z. This will lead to

-1 0 0
S=| 0 -1 01,
0 0 -1
which clearly results in detS = —1. The change in sign of the determinant corresponds

to the change from a right-handed to a left-handed coordinate system (which obviously
cannot be accomplished by a rotation). Reflection about a plane (as in the image produced
by a plane mirror) also changes the sign of the determinant and the handedness of the
coordinate system; for example, reflection in the xy-plane changes the sign of €,, leaving
the other two unit vectors unchanged; the transformation matrix S for this transformation is

1 0 O
S=10 1 0
0 0 -1

Its determinant is also —1.

The formulas for vector addition, multiplication by a scalar, and the dot product are
unaffected by a reflection transformation of the coordinates, but this is not true of the cross
product. To see this, look at the formula for any one of the components of A x B, and how
it would change under inversion (where the same, unchanged vectors in physical space
now have sign changes to all their components):

C.: AyB,—A,B, —> (—A,))(—B,)—(—A,)(—B,)=A,B, —A_B,.

Note that this formula says that the sign of C should not change, even though it must in
order to describe the unchanged physical situation. The conclusion is that our transforma-
tion law fails for the result of a cross-product operation. However, the mathematics can
be salvaged if we classify B x C as a different type of quantity than B and C. Many texts
on vector analysis call vectors whose components change sign under coordinate reflec-
tion polar vectors, and those whose components do not then change sign axial vectors.
The term axial doubtless arises from the fact that cross products frequently describe phe-
nomena associated with rotation about the axis defined by the axial vector. Nowadays, it
is becoming more usual to call polar vectors just vectors, because we want that term to
describe objects that obey for all S the transformation law

A’ =SA (vectors), (3.29)

(and specifically without a restriction to S whose determinants are +1). Axial vectors, for
which the vector transformation law fails for coordinate reflections, are then referred to
as pseudovectors, and their transformation law can be expressed in the somewhat more
complicated form

C' =det(S)SC (pseudovectors). (3.30)
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FIGURE 3.6 Inversion (right) of original coordinates (left) and the effect
on a vector A and a pseudovector B.

The effect of an inversion operation on a coordinate system and on a vector and a pseu-
dovector are shown in Fig. 3.6.

Since vectors and pseudovectors have different transformation laws, it is in general with-
out physical meaning to add them together.” It is also usually meaningless to equate quan-
tities of different transformational properties: in A = B, both quantities must be either
vectors or pseudovectors.

Pseudovectors, of course, enter into more complicated expressions, of which an example
is the scalar triple product A - B x C. Under coordinate reflection, the components of B x C
do not change (as observed earlier), but those of A are reversed, with the result that
A - B x C changes sign. We therefore need to reclassify it as a pseudoscalar. On the
other hand, the vector triple product, A x (B x C), which contains two cross products,
evaluates, as shown in Eq. (3.18), to an expression containing only legitimate scalars and
(polar) vectors. It is therefore proper to identify A x (B x C) as a vector. These cases
illustrate the general principle that a product with an odd number of pseudo quantities is
“pseudo,” while those with even numbers of pseudo quantities are not.

Successive Operations
One can carry out a succession of coordinate rotations and/or reflections by applying the
relevant orthogonal transformations. In fact, we already did this in our introductory discus-

sion for R? where we applied a rotation and then its inverse. In general, if R and R’ refer to
such operations, the application to A of R followed by the application of R’ corresponds to

A’ =S(R)S(R)A, (3.31)

and the overall result of the two transformations can be identified as a single transformation
whose matrix S(R’R) is the matrix product S(R’)S(R).

3The big exception to this is in beta-decay weak interactions. Here the universe distinguishes between right- and left-handed
systems, and we add polar and axial vector interactions.
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Exercises

331

33.2

333

3.3.4

335

Two points should be noted:

The operations take place in right-to-left order: The rightmost operator is the one
applied to the original A; that to its left then applies to the result of the first opera-
tion, etc.

The combined operation R'R is a transformation between two orthogonal coordinate
systems and therefore can be described by an orthogonal matrix: The product of two
orthogonal matrices is orthogonal.

A rotation ¢ + o about the z-axis is carried out as two successive rotations ¢; and
@2, each about the z-axis. Use the matrix representation of the rotations to derive the
trigonometric identities

cos(@1 4 @2) = cos @1 cos 3 — singj sin gy,
sin(¢ + @2) = sin ¢ cos @2 + cos @1 Sin ;.

A corner reflector is formed by three mutually perpendicular reflecting surfaces. Show
that a ray of light incident upon the corner reflector (striking all three surfaces) is
reflected back along a line parallel to the line of incidence.

Hint. Consider the effect of a reflection on the components of a vector describing the
direction of the light ray.

Let x and y be column vectors. Under an orthogonal transformation S, they become
x' = Sx and y’ = Sy. Show that (x')7y’ = x"y, a result equivalent to the invariance of
the dot product under a rotational transformation.

Given the orthogonal transformation matrix S and vectors a and b,

0.80 0.60 0.00 1 0
S=1-048 064 060], a=[0], b=| 2],
036 —-048 0.80 1 —1

(a) Calculate det(S).

(b) Verify that a - b is invariant under application of S to a and b.

(c) Determine what happens to a x b under application of S to a and b. Is this what
is expected?

Using a and b as defined in Exercise 3.3.4, but with

0.60 0.00 0.80
S=1-0.64 —-0.60 0.48 and c¢=|1],
—048 0.80 0.36

(a) Calculate det(S).
Apply S to a, b, and ¢, and determine what happens to
(b) axb,
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(c) (axb)-c,

(d ax((xec).

(e) Classify the expressions in (b) through (d) as scalar, vector, pseudovector, or pseu-
doscalar.

3.4 ROTATIONS IN R3

Because of its practical importance, we discuss now in some detail the treatment of
rotations in IR3. An obvious starting point, based on our experience in R?, would be to
write the 3 x 3 matrix S of Eq. (3.28), with rows that describe the orientations of a rotated
(primed) set of unit vectors in terms of the original (unprimed) unit vectors:

e -¢ e -e e -¢&
S=|¢&-& ¢&-& & & (3.32)
e, -8 &-& @& -&
We have switched the coordinate labels from x, y, z to 1, 2, 3 for convenience in some of
the formulas that use Eq. (3.32). It is useful to make one observation about the elements
of S, namely s, = é;L - €y. This dot product is the projection of é;L onto the €, direction,
and is therefore the change in x,, that is produced by a unit change in xL. Since the relation
between the coordinates is linear, we can identify é;L -€,as dx,/ Bxl’u so our transformation
matrix S can be written in the alternate form
dx1/0x] Ox2/dx] 9x3/0x]
S=|0x1/0x) dx2/dx) dx3/0x} |. (3.33)
dx1/0x5 dx2/dx; 0x3/0x5
The argument we made to evaluate &), - €, could as easily have been made with the roles

of the two unit vectors reversed, yielding instead of dx, / 8fo the derivative ax; /0x,. We
then have what at first may seem to be a surprising result:

Xy _ Bxl/L (3.34)
dx;,  Ax, ' '

A superficial look at this equation suggests that its two sides would be reciprocals. The
problem is that we have not been notationally careful enough to avoid ambiguity: the
derivative on the left-hand side is to be taken with the other x” coordinates fixed, while that
on the right-hand side is with the other unprimed coordinates fixed. In fact, the equality in
Eq. (3.34) is needed to make S an orthogonal matrix.

We note in passing that the observation that the coordinates are related linearly restricts
the current discussion to Cartesian coordinate systems. Curvilinear coordinates are treated
later.

Neither Eq. (3.32) nor Eq. (3.33) makes obvious the possibility of relations among the
elements of S. In R?, we found that all the elements of S depended on a single variable,
the rotation angle. In R?, the number of independent variables needed to specify a general
rotation is three: Two parameters (usually angles) are needed to specify the direction of
€/; then one angle is needed to specify the direction of &) in the plane perpendicular to &;;
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at this point the orientation of €} is completely determined. Therefore, of the nine elements
of S, only three are in fact independent. The usual parameters used to specify R? rotations
are the Euler angles.” It is useful to have S given explicitly in terms of them, as the
Lagrangian formulation of mechanics requires the use of a set of independent variables.

The Euler angles describe an R? rotation in three steps, the first two of which have
the effect of fixing the orientation of the new €3 axis (the polar direction in spherical
coordinates), while the third Euler angle indicates the amount of subsequent rotation about
that axis. The first two steps do more than identify a new polar direction; they describe
rotations that cause the realignment. As a result, we can obtain the matrix representations
of these (and the third rotation), and apply them sequentially (i.e., as a matrix product) to
obtain the overall effect of the rotation.

The three steps describing rotation of the coordinate axes are the following (also illus-
trated in Fig. 3.7):

1. The coordinates are rotated about the €3 axis counterclockwise (as viewed from posi-
tive €3) through an angle « in the range 0 < o < 277, into new axes denoted &}, &, €.
(The polar direction is not changed; the &3 and €/ axes coincide.)

2. The coordinates are rotated about the €, axis counterclockwise (as viewed from posi-
tive &) through an angle 8 in the range 0 < 8 < &, into new axes denoted &/, €7, €.
(This tilts the polar direction toward the €| direction, but leaves &, unchanged.)

3. The coordinates are now rotated about the & axis counterclockwise (as viewed from
positive &) through an angle y in the range 0 < y < 2, into the final axes, denoted

e/’, &), &' (This rotation leaves the polar direction, &5, unchanged.)

In terms of the usual spherical polar coordinates (r, 8, ¢), the final polar axis is at the
orientation 6 = B, ¢ = «. The final orientations of the other axes depend on all three Euler
angles.

We now need the transformation matrices. The first rotation causes €, and &, to
remain in the xy-plane, and has in its first two rows and columns exactly the same form

X5 = X4

(@) (b) (c)

FIGURE 3.7  Euler angle rotations: (a) about &3 through angle «; (b) about &, through
angle B; (c) about & through angle y.

4There are almost as many definitions of the Euler angles as there are authors. Here we follow the choice generally made by
workers in the area of group theory and the quantum theory of angular momentum.
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as S in Eq. (3.25):

cosa sina 0
Si(x) =| —sina¢ cosa O]. (3.35)
0 0 1

The third row and column of S; indicate that this rotation leaves unchanged the €3 com-
ponent of any vector on which it operates. The second rotation (applied to the coordinate
system as it exists after the first rotation) is in the €;€| plane; note that the signs of sin 8
have to be consistent with a cyclic permutation of the axis numbering:

cosf 0 —sinp
S28=| 0 1 0
sinB 0 cospB

The third rotation is like the first, but with rotation amount y:

cosy siny O

S3(y)=| —siny cosy O
0 0 1
The total rotation is described by the triple matrix product
S(a, B, y) =S3(y)S2(B)S1 (). (3.36)
Note the order: S;(«) operates first, then Sy(8), and finally S3(y). Direct multiplication
gives
S(a.B.y) =
cosy cos S cosa — siny sina cosycosfsina +sinycosae  —cosy sinf
—siny cos fcosa —cosy sinae  —siny cos Bsina +cosy cosa  siny sin 8
sin B coso sin B sino cos f
(3.37)

In case they are wanted, note that the elements s;; in Eq. (3.37) give the explicit forms of
the dot products &” - €; (and therefore also the partial derivatives dx; / 8x}’ N.
Note that each of Sy, Sy, and S3 are orthogonal, with determinant +1, so that the overall

S will also be orthogonal with determinant +1.

Example 3.4.1 AN R3 ROTATION

Consider a vector originally with components (2, —1,3). We want its components in
a coordinate system reached by Euler angle rotations « = 8 = y = & /2. Evaluating

S(. B.y):
-1.0 0
S@B )= 0 01
01 0

A partial check on this value of S is obtained by verifying that det(S) = +1.
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Then, in the new coordinates, our vector has components

-1 0 0 2 -2
0 0 1 —1|= 3
010 3 —1

The reader should check this result by visualizing the rotations involved. |

Exercises

341

34.2

343

344

345

Another set of Euler rotations in common use is

(1) arotation about the x3-axis through an angle ¢, counterclockwise,
(2) arotation about the x|-axis through an angle 6, counterclockwise,
(3) arotation about the x5-axis through an angle v, counterclockwise.

If

a=¢p—m/2 o=
B=0 or 0=8
y=vy+m/2 v=y

show that the final systems are identical.

Suppose the Earth is moved (rotated) so that the north pole goes to 30° north, 20° west
(original latitude and longitude system) and the 10° west meridian points due south
(also in the original system).

(a) What are the Euler angles describing this rotation?
(b) Find the corresponding direction cosines.

0.9551 —-0.2552 —-0.1504
ANS. (b) S=10.0052 05221 —-0.8529
0.2962  0.8138 0.5000

Verify that the Euler angle rotation matrix, Eq. (3.37), is invariant under the transfor-
mation

o—a+n, B——B, y—o>y—m.

Show that the Euler angle rotation matrix S(«, 8, y) satisfies the following relations:

(@ S Ha B.y)=S(B.7),
(b) S_l(aa ﬁv V)ZS(—)/,_ﬂ, _O{)'

The coordinate system (x, y, z) is rotated through an angle ® counterclockwise about an
axis defined by the unit vector i into system (x’, y’, z’). In terms of the new coordinates
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the radius vector becomes

r =rcos®+r xnsin® +ndh-r)(1 —cos ®).

(a) Derive this expression from geometric considerations.

(b) Show that it reduces as expected for i = €,. The answer, in matrix form, appears
in Eq. (3.35).
(c) Verify that > = r2.

3.5 DIFFERENTIAL VECTOR OPERATORS

We move now to the important situation in which a vector is associated with each point
in space, and therefore has a value (its set of components) that depends on the coordinates
specifying its position. A typical example in physics is the electric field E(x, y, z), which
describes the direction and magnitude of the electric force if a unit “test charge” was placed
at x, y, z. The term field refers to a quantity that has values at all points of a region; if the
quantity is a vector, its distribution is described as a vector field. While we already have
a standard name for a simple algebraic quantity which is assigned a value at all points of
a spatial region (it is called a function), in physics contexts it may also be referred to as a
scalar field.

Physicists need to be able to characterize the rate at which the values of vectors (and also
scalars) change with position, and this is most effectively done by introducing differential
vector operator concepts. It turns out that there are a large number of relations between
these differential operators, and it is our current objective to identify such relations and
learn how to use them.

Gradient, V

Our first differential operator is that known as the gradient, which characterizes the change
of a scalar quantity, here ¢, with position. Working in R?, and labeling the coordinates x1,
X2, X3, we write ¢(r) as the value of ¢ at the point r = x1€; + x2€, + x3€3, and consider
the effect of small changes dx;, dx,, dx3, respectively, in x1, x2, and x3. This situation
corresponds to that discussed in Section 1.9, where we introduced partial derivatives to
describe how a function of several variables (there x, y, and z) changes its value when these
variables are changed by respective amounts dx, dy, and dz. The equation governing this
process is Eq. (1.141).
To first order in the differentials dx;, ¢ in our present problem changes by an amount

ad d a
dop =22 ) dx; + (22 ) dar + [ 22 ) ds, (3.38)
0x1 dx2 0x3
which is of the form corresponding to the dot product of
dp/0x] dx;

Vo=10¢/0x2 and dr=|dx;
3¢ /0x3 dx;
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These quantities can also be written

Vo= (%) &+ (5—)‘2) &+ (;7*‘;) &, (3.39)
dr =dx1€] + dx2€; + dx3é€3, (3.40)

in terms of which we have
dgp = (Vo) -dr. (3.41)

We have given the 3 x 1 matrix of derivatives the name V¢ (often referred to in speech as
“del phi” or “grad phi”); we give the differential of position its customary name dr.

The notation of Eqgs. (3.39) and (3.41) is really only appropriate if Vg is actually a
vector, because the utility of the present approach depends on our ability to use it in coor-
dinate systems of arbitrary orientation. To prove that V¢ is a vector, we must show that it
transforms under rotation of the coordinate system according to

(Vo) =S (Vo). (3.42)

Taking S in the form given in Eq. (3.33), we examine S(V¢). We have

dx1/0x]  Ox2/dx] 9x3/0x] dp/dx
S(Vo) = | dx1/0x) 0dx2/dx), 0x3/0x5 | | 9¢/dx2

dx1/0xy  xp/dxy dx3/dxy ) \9¢/dx3

23: dx, 0@

= dx| 9xy

3

dx, 0
DIy § (3.43)

= dx; dxy

ZS: dx, 0@

— dxy dx,

Each of the elements in the final expression in Eq. (3.43) is a chain-rule expression for
dp/ 3)‘;/u w=1,2,3, showing that the transformation did produce (V¢)’, the representa-
tion of Vg in the rotated coordinates.

Having now established the legitimacy of the form V¢, we proceed to give V a life of
its own. We therefore define (calling the coordinates x, y, z)

V=e 0 yo, L 1o 0 3.44
_exax+eyay+ezaz. (3.44)
We note that V is a vector differential operator, capable of operating on a scalar (such
as @) to produce a vector as the result of the operation. Because a differential operator
only operates on what is to its right, we have to be careful to maintain the correct order in
expressions involving V, and we have to use parentheses when necessary to avoid ambi-
guity as to what is to be differentiated.
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The gradient of a scalar is extremely important in physics and engineering, as it
expresses the relation between a force field F(r) experienced by an object at r and the
related potential V (r),

F(r)=-VV(r). (3.45)

The minus sign in Eq. (3.45) is important; it causes the force exerted by the field to be in
a direction that lowers the potential. We consider later (in Section 3.9) the conditions that
must be satisfied if a potential corresponding to a given force can exit.

The gradient has a simple geometric interpretation. From Eq. (3.41), we see that, if
dr is constrained to have a fixed magnitude, the direction of dr that maximizes d¢ will
be when Vg and dr are collinear. So, the direction of most rapid increase in ¢ is the
gradient direction, and the magnitude of the gradient is the directional derivative of ¢ in
that direction. We now see that —V'V, in Eq. (3.45), is the direction of most rapid decrease
in V, and is the direction of the force associated with the potential V.

Example 3.5.1 GrabpiENTOF /"

As a first step toward computation of Vr”, let’s look at the even simpler Vr. We begin by
writing r = (x% + y? 4 z)!/2, from which we get

ar X X ar y ar z
T AL LR g 3 T (3.46)
ax  (X2Hy24+zH2 7 ¥y r 3z r
From these formulas we construct
X. Y. o Z. I . R n r
Vr=—¢ + =€, +-e,=—(xe +ye, +z€;)=—. (3.47)
r r r r r
The result is a unit vector in the direction of r, denoted r. For future reference, we note
that
P=Te + 28, + e (3.48)
r r r
and that Eq. (3.47) takes the form
Vr=r. (3.49)

The geometry of r and F is illustrated in Fig. 3.8.

fj/y/r

FIGURE 3.8 Unit vector r (in xy-plane).
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Continuing now to Vr”, we have

a n
—— ﬂ,
ax dax
with corresponding results for the y and z derivatives. We get
Vit =nr"'Vr =0 g (3.50)

Example 3.5.2 cCouLoms’s Law

In electrostatics, it is well known that a point charge produces a potential proportional
to 1/r, where r is the distance from the charge. To check that this is consistent with the
Coulomb force law, we compute
1
F=-V|-).
r

This is a case of Eq. (3.50) with n = —1, and we get the expected result

1.

F=—r.
72

Example 3.5.3  GENERAL RADIAL POTENTIAL

Another situation of frequent occurrence is that the potential may be a function only of the
radial distance from the origin, i.e., ¢ = f(r). We then calculate

dp df(r)or

— = —, etc,

ox dr 0x
which leads, invoking Eq. (3.49), to

_df(

Dyp= Y05

\% 3.51
¢ dr dr (3-51)
This result is in accord with intuition; the direction of maximum increase in ¢ must be
radial, and numerically equal to d¢/dr. |
Divergence, V-
The divergence of a vector A is defined as the operation
A 0A A
V. A= 2 J z (3.52)

+ 24+ ==
ax ay 0z
The above formula is exactly what one might expect given both the vector and differential-
operator character of V.

After looking at some examples of the calculation of the divergence, we will discuss its
physical significance.
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Example 3.5.4  DivERGENCE OF COORDINATE VECTOR

Calculate V - r:

Vor— (éxi 1o, +ézi) (@ex 4 &y +8:2)
ox dy 0z
_ox by i
dx dy 9z’
which reducesto V - r = 3. ]

Example 3.5.5  DIVERGENCE OF CENTRAL FORCE FIELD
Consider next V - f (r)r. Using Eq. (3.48), we write

V- f(rr= (éxi +éyi +é 9 ) . <xf(r)éx + yf(r)éy + Zf(r)éz>.
ox dy r r

‘9z r

_ D (OB (20N, D (0
-5 (5) 5 ()5 ()

Using
d (xf(r\ f@r) xf@r)dr xdf(r)or ) 1 x*]  x2df(r)
_— = — —_— —_ —_ = r _— _
ox r r r2 9x r dr ox roor r2 dr
and corresponding formulas for the y and z derivatives, we obtain after simplification
d
V. =2l L IO (3.53)
r dr
In the special case f(r) =r", Eq. (3.53) reduces to
V.r"t=m+2)r" " (3.54)
For n = 1, this reduces to the result of Example 3.5.4. For n = —2, corresponding to the
Coulomb field, the divergence vanishes, except at r = 0, where the differentiations we
performed are not defined. ]

If a vector field represents the flow of some quantity that is distributed in space, its
divergence provides information as to the accumulation or depletion of that quantity at the
point at which the divergence is evaluated. To gain a clearer picture of the concept, let us
suppose that a vector field v(r) represents the velocity of a fluid® at the spatial points r,
and that p(r) represents the fluid density at r at a given time ¢. Then the direction and
magnitude of the flow rate at any point will be given by the product p (r)v(r).

Our objective is to calculate the net rate of change of the fluid density in a volume
element at the point r. To do so, we set up a parallelepiped of dimensions dx, dy, dz
centered at r and with sides parallel to the xy, xz, and yz planes. See Fig. 3.9. To first
order (infinitesimal dr and dt), the density of fluid exiting the parallelepiped per unit time

STt may be helpful to think of the fluid as a collection of molecules, so the number per unit volume (the density) at any point is
affected by the flow in and out of a volume element at the point.
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- - +pvy | X+ dx/2

—-pv, | x-dx/2
dz dy N \

- Y —

FIGURE 3.9 Outward flow of pv from a volume element in the +x directions. The
quantities +pv, must be multiplied by dy dz to represent the total flux through the
bounding surfaces at x &+ dx /2.

through the yz face located at x — (dx/2) will be

dx
Flow out, face at x — - T (pvy) (r—dr /2y dydz.

Note that only the velocity component vy is relevant here. The other components of v
will not cause motion through a yz face of the parallelepiped. Also, note the following:
dy dz is the area of the yz face; the average of pv, over the face is to first order its value at
(x —dx/2, v, z),asindicated, and the amount of fluid leaving per unit time can be identified
as that in a column of area dy dz and height v,. Finally, keep in mind that outward flow
corresponds to that in the —x direction, explaining the presence of the minus sign.

We next compute the outward flow through the yz planar face at x 4+ dx /2. The result is

d
Flow out, face at x + 7)(: + (pvy) dydz.

(x+dx/2,y,2)

Combining these, we have for both yz faces

d(pvyx)
(—(,ovx) x+dx/2>dydz—( o )dxdydz.

Note that in combining terms at x — dx/2 and x + dx/2 we used the partial derivative
notation, because all the quantities appearing here are also functions of y and z. Finally,
adding corresponding contributions from the other four faces of the parallelepiped, we
reach

x—dx/2 + (pUX)

Net flow out _ | 9 9 9
per unit time = [a(pvx) + 5(:0%) + 3_1(va) dxdydz
=V . (pv)dxdydz. (3.55)

We now see that the name divergence is aptly chosen. As shown in Eq. (3.55), the
divergence of the vector pv represents the net outflow per unit volume, per unit time. If
the physical problem being described is one in which fluid (molecules) are neither created
or destroyed, we will also have an equation of continuity, of the form

ap

ot

This equation quantifies the obvious statement that a net outflow from a volume element
results in a smaller density inside the volume.

When a vector quantity is divergenceless (has zero divergence) in a spatial region, we

can interpret it as describing a steady-state “fluid-conserving” flow (flux) within that region

+V - (pv) =0. (3.56)
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(a) (b)

FIGURE 3.10 Flow diagrams: (a) with source and sink; (b) solenoidal. The divergence
vanishes at volume elements A and C, but is negative at B.

(even if the vector field does not represent material that is moving). This is a situation that
arises frequently in physics, applying in general to the magnetic field, and, in charge-free
regions, also to the electric field. If we draw a diagram with lines that follow the flow paths,
the lines (depending on the context) may be called stream lines or lines of force. Within a
region of zero divergence, these lines must exit any volume element they enter; they cannot
terminate there. However, lines will begin at points of positive divergence (sources) and
end at points where the divergence is negative (sinks). Possible patterns for a vector field
are shown in Fig. 3.10.

If the divergence of a vector field is zero everywhere, its lines of force will consist
entirely of closed loops, as in Fig. 3.10(b); such vector fields are termed solenoidal. For
emphasis, we write

V-B=0 everywhere — B is solenoidal. (3.57)

Curl, V x

Another possible operation with the vector operator V is to take its cross product with a
vector. Using the established formula for the cross product, and being careful to write the
derivatives to the left of the vector on which they are to act, we obtain

VxVeé, (ivz _ ivy> s (ivx - ivz> +é. (ivy _ ivx>
ay 9z 0z ax ax dy
e, &, &
=|d/dx d/dy 9/9z|. (3.58)
Ve V, V;

This vector operation is called the curl of V. Note that when the determinant in Eq. (3.58)
is evaluated, it must be expanded in a way that causes the derivatives in the second row to
be applied to the functions in the third row (and not to anything in the top row); we will
encounter this situation repeatedly, and will identify the evaluation as being from the top
down.

Example 3.5.6  CuRrLOF A CENTRAL FORCE FIELD

Calculate V x [ f(r)r]. Writing
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and remembering that dr/dy = y/r and dr/dz = z/r, the x-component of the result is
found to be

9 2f() D yf()
dy r az r

_ d f(r) E)r_ d f(r)\ or
(g ()
_Z<if(r)>z_ (if(ﬂ)g_o
“Y\dr r N\ )T

By symmetry, the other components are also zero, yielding the final result

[V x L], =

V x [£(r)§] =0. (3.59)

Example 3.5.7 A NoNzero CURL

Calculate F = V x (—yeé, + xé,), which is of the form V x b, where b, = —y, b, =x,

b; =0. We have
ab, b ab a ab ab
x:—z——y:O’ y: x—ﬁzo’ FZ:—y— x:’
ay 9z 9z ox ax ay
so F=2¢,. [ |

The results of these two examples can be better understood from a geometric interpreta-
tion of the curl operator. We proceed as follows: Given a vector field B, consider the line
integral ¢ B - ds for a small closed path. The circle through the integral sign is a signal
that the path is closed. For simplicity in the computations, we take a rectangular path in
the xy-plane, centered at a point (xg, y), of dimensions Ax x Ay, as shown in Fig. 3.11.
We will traverse this path in the counterclockwise direction, passing through the four seg-
ments labeled 1 through 4 in the figure. Since everywhere in this discussion z = 0, we do
not show it explicitly.

y
Xo=AX, Yo+Ay. Xo+AX, yot+Ay
2 2 3 2 2
4 3 2
1
X=X, yo=2y Xo+AX, yo-Ay
2 2 2 2
X

FIGURE 3.11 Path for computing circulation at (xg, yg).
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Segment 1 of the path contributes to the integral
x0+Ax/2
Segment 1 = / B.(x. yo — Ay/2)dx ~ By(xo. 3o — Ay/2) Ax,
xo—Ax/2

where the approximation, replacing By by its value at the middle of the segment, is good
to first order. In a similar fashion, we have

Yo+Ay/2
Segment 2 = / By (xo+ Ax/2,y)dy = By(xo + Ax /2, yo) Ay,
Yo—Ay/2
x0—Ax/2
Segment 3 = / By (x, yo + Ay/2)dx =~ — By (x9, yo + Ay/2)Ax,
xo+Ax/2
yo—Ay/2
Segment 4 = / By(xo — Ax/2,y)dy ~ —By(xo — Ax /2, y0) Ay.
yo+Ay/2
Note that because the paths of segments 3 and 4 are in the direction of decrease in the value

of the integration variable, we obtain minus signs in the contributions of these segments.
Combining the contributions of Segments 1 and 3, and those of Segments 2 and 4, we have

B
Segments 1 + 3 = (B (x0, Yo — Ay/2) — By(x0, yo + Ay/2)) Ax ~ —a—xAyAx,
y

0B
Segments 2 + 4 = (By(xo + Ax/2, yo) — By(xo — Ax/2, yo)) Ay ~ —i—a—yAx Ay.
X

Combining these contributions to obtain the value of the entire line integral, we have

0By 0By
B-ds=|—— AxAy =~ [V x B];AxAy. (3.60)
ax ay

The thing to note is that a nonzero closed-loop line integral of B corresponds to a nonzero
value of the component of V x B normal to the loop. In the limit of a small loop, the line
integral will have a value proportional to the loop area; the value of the line integral per
unit area is called the circulation (in fluid dynamics, it is also known as the vorticity).
A nonzero circulation corresponds to a pattern of stream lines that form closed loops.
Obviously, to form a closed loop, a stream line must curl; hence the name of the V x
operator.

Returning now to Example 3.5.6, we have a situation in which the lines of force must
be entirely radial; there is no possibility to form closed loops. Accordingly, we found this
example to have a zero curl. But, looking next at Example 3.5.7, we have a situation in
which the stream lines of —yé, + xé, form counterclockwise circles about the origin, and
the curl is nonzero.
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Exercises

3.5.1

3.5.2

353

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

Chapter 3 Vector Analysis

We close the discussion by noting that a vector whose curl is zero everywhere is termed

irrotational. This property is in a sense the opposite of solenoidal, and deserves a parallel
degree of emphasis:

V x B=0 everywhere — B is irrotational. (3.61)

IfS(x,y,2) = (x2 4 y2 +22) " find

(a) VS atthe point (1, 2, 3),
(b) the magnitude of the gradient of S, [V S| at (1, 2, 3), and
(c) the direction cosines of VS at (1, 2, 3).
(a) Find a unit vector perpendicular to the surface
x4 y2 +72=3
at the point (1, 1, 1).
(b) Derive the equation of the plane tangent to the surface at (1, 1, 1).
ANS. (a) (& +8&,+&)/v3, (b) x+y+z=3.

Given a vector rip = &x(x; —x2) +@&,(y1 — y2) +€;(z1 — z2), show that Vr2 (gradient
with respect to x, y1, and z; of the magnitude r{7) is a unit vector in the direction of
rio.

If a vector function F depends on both space coordinates (x, y, z) and time ¢, show that
oF
dF = (dr-V)F+ Edt'
Show that V(uv) = vVu + uVv, where u and v are differentiable scalar functions of
x,y, and z.

For a particle moving in a circular orbit r = &,r cos wt + &,r sinwt:

(a) Evaluater x r, with F =dr/dt =v.
(b) Show that ¥ 4+ w?r = 0 with ¥ = dv/dt.

Hint. The radius r and the angular velocity w are constant.
ANS. (a) &.wr’.

Vector A satisfies the vector transformation law, Eq. (3.26). Show directly that its time
derivative dA/dt also satisfies Eq. (3.26) and is therefore a vector.

Show, by differentiating components, that

(a) d (A-B) A B+ A dB
a —_— . [ —— - —_
dt dt dt
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3.5.11
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d dA dB
b) —(AxB)=—xB+Ax—,
®) dt( xB) dtx + th

just like the derivative of the product of two algebraic functions.

Prove V.-(axb)=b-(V xa)—a-(V xDb).
Hint. Treat as a scalar triple product.

Classically, orbital angular momentum is given by L = r x p, where p is the lin-
ear momentum. To go from classical mechanics to quantum mechanics, p is replaced
(in units with = 1) by the operator —i V. Show that the quantum mechanical angular
momentum operator has Cartesian components

} d d
Ly=—i ya—z—z$ ,

Using the angular momentum operators previously given, show that they satisfy com-
mutation relations of the form

[Ly, Ly] = LxLy - Lny =ilL,
and hence
L xL=iL.

These commutation relations will be taken later as the defining relations of an angular
momentum operator.

With the aid of the results of Exercise 3.5.11, show that if two vectors a and b commute
with each other and with L, that is, [a, b] =[a, L] = [b, L] = 0, show that

[a-L,b-L]=i(axb)-L.

Prove that the stream lines of b in of Example 3.5.7 are counterclockwise circles.

3.6 DIFFERENTIAL VECTOR OPERATORS: FURTHER

PROPERTIES

Successive Applications of V

Interesting results are obtained when we operate with V on the differential vector operator
forms we have already introduced. The possible results include the following:

(@) V-V (b)V x Vg (©) V(V-V)
V- (VxV)  (e)Vx(VxV).
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All five of these expressions involve second derivatives, and all five appear in the

second-order differential equations of mathematical physics, particularly in electromag-
netic theory.

Laplacian

The first of these expressions, V - Vg, the divergence of the gradient, is named the
Laplacian of ¢. We have

V.V A8+A8+A8 A8¢+A8¢+Aa¢
. =(ex,—+e,—+e,— |- (e&x—+e,— +€&,—
¢ T ox y8y ‘oz T ox yay ‘oz

82<p 82<p 82g0

=—+—+—. 3.62
ax2  3y? 972 (3:62)
When ¢ is the electrostatic potential, we have
V.-Vp=0 (3.63)

at points where the charge density vanishes, which is Laplace’s equation of electrostatics.
Often the combination V - V is written V2, or A in the older European literature.

Example 3.6.1  LaPLACIAN OF A CENTRAL FIELD POTENTIAL

Calculate V2¢(r). Using Eq. (3.51) to evaluate V¢ and then Eq. (3.53) for the divergence,
we have

de(r) _2de(r)  d’o(r)

dr r o dr dr? -

We get a term in addition to d?¢/dr? because &, has a direction that depends on r.
In the special case ¢(r) = r", this reduces to

V2" =n(n + D)r" 2.

This vanishes for n = 0 (¢ =constant) and for n = —1 (Coulomb potential). For n = —1,
our derivation fails for r = 0, where the derivatives are undefined.

Vi(r)=V Vo) =V

Irrotational and Solenoidal Vector Fields

Expression (b), the second of our five forms involving two V operators, may be written as
a determinant:

€ ey €, €, e, €,
VxVep=|0d/0x 09/dy d/dz|=19/0x d/dy 0/9z|¢ =0.
dp/ox d¢@/dy 0¢/oz d/ox 0/dy 9/0z
Because the determinant is to be evaluated from the top down, it is meaningful to move

¢ outside and to its right, leaving a determinant with two identical rows and yielding the
indicated value of zero. We are thereby actually assuming that the order of the partial
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differentiations can be reversed, which is true so long as these second derivatives of ¢ are
continuous.
Expression (d) is a scalar triple product that may be written

d/d0x 0/dy 0/0z
V- (VxV)=|d/ox d/dy d/dz|=0.
Vi Vy V.
This determinant also has two identical rows and yields zero if V has sufficient continuity.
These two vanishing results tell us that any gradient has a vanishing curl and is therefore

irrotational, and that any curl has a vanishing divergence, and is therefore solenoidal.
These properties are of such importance that we set them out here in display form:

VxVp=0, allg, (3.64)
V. (VxV)=0, allV. (3.65)

Maxwell’s Equations

The unification of electric and magnetic phenomena that is encapsulated in Maxwell’s
equations provides an excellent example of the use of differential vector operators. In SI
units, these equations take the form

V-B=0, (3.66)
v.E=2, (3.67)
€0
oE
V x B=80M0§ + nod, (3.68)
B
VXE=——. (3.69)
ot

Here E is the electric field, B is the magnetic induction field, p is the charge density, J is
the current density, &g is the electric permittivity, and wg is the magnetic permeability, so
gopo = 1/c?, where c is the velocity of light.

Vector Laplacian

Expressions (c) and (e) in the list at the beginning of this section satisfy the relation
Vx(VxV)=V(V-V)—-V.VV., (3.70)

The term V - VV, which is called the vector Laplacian and sometimes written V2V, has
prior to this point not been defined; Eq. (3.70) (solved for VZV) can be taken to be its
definition. In Cartesian coordinates, V2V is a vector whose i component is V2V;, and that
fact can be confirmed either by direct component expansion or by applying the BAC-CAB
rule, Eq. (3.18), with care always to place V so that the differential operators act on it.
While Eq. (3.70) is general, V2V separates into Laplacians for the components of V only
in Cartesian coordinates.
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Example 3.6.2 ELECTROMAGNETIC WAVE EQUATION
Even in vacuum, Maxwell’s equations can describe electromagnetic waves. To derive an

electromagnetic wave equation, we start by taking the time derivative of Eq. (3.68) for the
case J = 0, and the curl of Eq. (3.69). We then have

3V X B:eouoaz—E

ot 012’
Vx(VxE)= —iV xB= —eouoaz—E.
ot 92

We now have an equation that involves only E; it can be brought to a more convenient
form by applying Eq. (3.70), dropping the first term on the right of that equation because,
in vacuum, V - E = 0. The result is the vector electromagnetic wave equation for E,

V2E=eou032—E=iaz—E. (3.71)

a2 2 ar?
Equation (3.71) separates into three scalar wave equations, each involving the (scalar)
Laplacian. There is a separate equation for each Cartesian component of E. |

Miscellaneous Vector Identities

Our introduction of differential vector operators is now formally complete, but we present
two further examples to illustrate how the relationships between these operators can be
manipulated to obtain useful vector identities.

Example 3.6.3  DIVERGENCE AND CURL OF A PRODUCT

First, simplify V - (fV), where f and V are, respectively, scalar and vector functions.
Working with the components,

0 0 d
V- (fV)= a(fo) + 5(ny) + 3—2(sz)

of oV, of vy of oV,
ox X+f8x+8y )+f8y+82 Z+f3z

=(Vf)-V+[fV-V. (3.72)

Now simplify V x (f V). Consider the x-component:

v, v, af afv]
P vy

0 0

—(fV.)= —(fV,)=f| = -2 2L

ay(f 2) az(f y) f[ay az}+[8y Sy
This is the x-component of f(V x V) + (V f) x V, so we have

Vx(fV)=f(VxV)+(Vf)xV. (3.73)
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Example 3.6.4  GRADIENT OF A DOT PRODUCT

Verify that
VA-B)=B-V)A+(A-V)B+B x (V xA)+ A x(V xB). (3.74)

This problem is easier to solve if we recognize that V(A - B) is a type of term that appears
in the BAC-CAB expansion of a vector triple product, Eq. (3.18). From that equation,
we have

Ax(VxB)=Vg(A-B)—(A-V)B,

where we placed B at the end of the final term because V must act on it. We write Vg to
indicate an operation our notation is not really equipped to handle. In this term, V acts only
on B, because A appeared to its left on the left-hand side of the equation. Interchanging
the roles of A and B, we also have

Bx (VxA)=Vi(A-B)—(B-V)A,

where V4 acts only on A. Adding these two equations together, noting that Vp + V4 is

simply an unrestricted V, we recover Eq. (3.74). |
Exercises
3.6.1 Show that u x v is solenoidal if u and v are each irrotational.
3.6.2 If A is irrotational, show that A x r is solenoidal.
3.6.3 A rigid body is rotating with constant angular velocity . Show that the linear velocity
v is solenoidal.
3.6.4 If a vector function V(x, y, z) is not irrotational, show that if there exists a scalar func-
tion g(x, v, z) such that gV is irrotational, then
V-VxV=0.
3.6.5 Verify the vector identity
Vx(AxB)=B-V)A—(A-V)B—B(V-A)+A(V-B).
3.6.6 As an alternative to the vector identity of Example 3.6.4 show that
VA-B)=(AxV)xB+BxV)xA+A(V-B)+B(V-A).
3.6.7 Verify the identity
1
Ax(VxA)= EV(AZ) —(A-V)A.
3.6.8 If A and B are constant vectors, show that

V(A-Bxr)=A xB.
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3.6.9 Verify Eq. (3.70),
Vx(VxV)=V(V.V)-V.VV,
by direct expansion in Cartesian coordinates.
3.6.10 Provethat V x (¢V¢) =0.

3.6.11  You are given that the curl of F equals the curl of G. Show that F and G may differ by
(a) aconstant and (b) a gradient of a scalar function.

3.6.12  The Navier-Stokes equation of hydrodynamics contains a nonlinear term of the form
(v - V)v. Show that the curl of this term may be written as —V x [v x (V x v)].

3.6.13 Prove that (Vu) x (Vv) is solenoidal, where u and v are differentiable scalar functions.

3.6.14  The function ¢ is a scalar satisfying Laplace’s equation, V2¢ = 0. Show that V¢ is
both solenoidal and irrotational.

3.6.15  Show that any solution of the equation
Vx(VxA) —k*A=0
automatically satisfies the vector Helmholtz equation
VIA+K*A=0
and the solenoidal condition
V-A=0.
Hint. Let V - operate on the first equation.
3.6.16  The theory of heat conduction leads to an equation
VW =k |VD|?,

where ® is a potential satisfying Laplace’s equation: V>® = 0. Show that a
solution of this equation is W = k®? /2.

3.6.17 Given the three matrices

0O 0 O 0 0 i
My={0 0 —i], My=| 0 0 0],
0O i O —i 0 0
and
0 —i 0
M,=i 0 0],
0O 00

show that the matrix-vector equation

19
M-V4+13—-— )¢y =0
< + BCBI)VI
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reproduces Maxwell’s equations in vacuum. Here ¥ is a column vector with compo-
nents ¥, = Bj —iEj/c, j =x,y,z. Note that goso = 1/c? and that 13 is the 3 x 3 unit
matrix.

3.6.18  Using the Pauli matrices o; of Eq. (2.28), show that
(0-a)(o-b)=(a-b)ly+io-(axb).
Here
oc=¢80+¢&0,+¢.03,

a and b are ordinary vectors, and 1, is the 2 x 2 unit matrix.

3.7 VECTOR INTEGRATION

In physics, vectors occur in line, surface, and volume integrals. At least in principle, these
integrals can be decomposed into scalar integrals involving the vector components; there
are some useful general observations to make at this time.

Line Integrals

Possible forms for line integrals include the following:

/godr, /F-dr, /V x dr. (3.75)

C C C

In each of these the integral is over some path C that may be open (with starting and
endpoints distinct) or closed (forming a loop). Inserting the form of dr, the first of these
integrals reduces immediately to

/godrzéx/w(X,y,Z)dx+éyf¢(X,y,Z)dY+éz/‘P(x,y72)dZ~ (3.76)

C C C C

The unit vectors need not remain within the integral beause they are constant in both mag-
nitude and direction.

The integrals in Eq. (3.76) are one-dimensional scalar integrals. Note, however, that
the integral over x cannot be evaluated unless y and z are known in terms of x; similar
observations apply for the integrals over y and z. This means that the path C must be
specified. Unless ¢ has special properties, the value of the integral will depend on the path.

The other integrals in Eq. (3.75) can be handled similarly. For the second integral, which
is of common occurrence, being that which evaluates the work associated with displace-
ment on the path C, we have:

W=/F~dr=fFx(x,y,z)dx+/Fy(x,y,z)dy+/Fz(x,y,z)dz. (3.77)

C C C C
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Example 3.7.1  LINE INTEGRALS

We consider two integrals in 2-D space:

Ic = /go(x, y)dr, withe(x,y)=1,
C

Jo= /F(x, y)-dr, with F(x, y) = —ye, + xé,.
c

We perform integrations in the xy-plane from (0,0) to (1,1) by the two different paths
shown in Fig. 3.12:

Path Cy is (0,0) — (1,0) — (1, 1),
Path C; is the straight line (0,0) — (1, 1).

For the first segment of Cy, x ranges from 0 to 1 while y is fixed at zero. For the second
segment, y ranges from 0 to 1 while x = 1. Thus,

1 1 1 1
Ic, =éx/dx(p(x,0)+éy/dy(p(1,y)=éx/dx+éy/dy:éx+éy,
0 0 0
1 1 1 1

1
Je, =/dxe(x,O)+/dyFy(1,y)=/=/dx(0)+/dy(1)=1.
0 0 0 0 0

On Path 2, both dx and dy range from 0 to 1, with x = y at all points of the path. Thus,
1 1
ICZ:éx/dx¢(x’x)+éy/dy(ﬂ()77y)zéx +éy,
0 0
1 1 1 1

1 1
ch=/dxe(x,X)+/dyFy(y,y)=/dX(—X)+/dy(y)=——+—=0-

2 2
0 0 0 0

We see that integral / is independent of the path from (0,0) to (1,1), a nearly trivial special
case, while the integral J is not. |

y

]| A

C, c,
Cy

FIGURE 3.12 Line integration paths.
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FIGURE 3.13  Positive normal directions: left, disk; right, spherical surface with hole.

Surface Integrals

Surface integrals appear in the same forms as line integrals, the element of area being a
vector, do, normal to the surface:

fwda, /V-da, /dea.

Often do is written fidA, where 1 is a unit vector indicating the normal direction. There are
two conventions for choosing the positive direction. First, if the surface is closed (has no
boundary), we agree to take the outward normal as positive. Second, for an open surface,
the positive normal depends on the direction in which the perimeter of the surface is tra-
versed. Starting from an arbitrary point on the perimeter, we define a vector u to be in the
direction of travel along the perimeter, and define a second vector v at our perimeter point
but tangent to and lying on the surface. We then take u x v as the positive normal direction.
This corresponds to a right-hand rule, and is illustrated in Fig. 3.13. It is necessary to define
the orientation carefully so as to deal with cases such as that of Fig. 3.13, right.

The dot-product form is by far the most commonly encountered surface integral, as it
corresponds to a flow or flux through the given surface.

Example 3.7.2 A SURFACE INTEGRAL

Consider a surface integral of the form / = | ¢B - do over the surface of a tetrahe-
dron whose vertices are at the origin and at the points (1,0,0), (0,1,0), and (0,0,1), with
B=(x + 1)&, + yé, — zé,. See Fig. 3.14.

The surface consists of four triangles, which can be identified and their contributions
evaluated, as follows:

1. On the xy-plane (z = 0), vertices at (x, y) = (0,0), (1,0), and (0,1); direction of out-
ward normal is —€;, so do = —€,d A (d A = element of area on this triangle). Here,
B = (x + 1)&, + yéy, and B - do = 0. So there is no contribution to /.

2. On the xz plane (y = 0), vertices at (x, z) = (0,0), (1,0), and (0,1); direction of out-
ward normal is —&y, so do = —e,d A. On this triangle, B = (x 4 1)é, — z&;, Again,
B - do = 0. There is no contribution to 1.

3. On the yz plane (x = 0), vertices at (y,z) = (0,0), (1,0), and (0,1); direction
of outward normal is —&, so do = —&,dA. Here, B = &, + yeé, — zé,, and
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FIGURE 3.14 Tetrahedron, and detail of the oblique face.

B-do = (—1)dA; the contribution to / is —1 times the area of the triangle (=1/2),
or [z =—1/2.

4. Obliquely oriented, vertices at (x, y, z) = (1,0,0), (0,1,0), (0,0,1); direction of out-
ward normal is fi = (&, + &, + é.)/+/3, and do = ndA. Using also B = (x 4 1)&, +
y€, — z&., this contribution to / becomes

x+1+y—z /2(1—Z)
— “dA=
V3 V3

Ay Ay
where we have used the fact that on this triangle, x +y +z=1.
To complete the evaluation, we note that the geometry of the triangle is as shown
in Fig. 3.14, that the width of the triangle at height z is +/2 (1 — z), and a change dz in
z produces a displacement 4/3/2dz on the triangle. I4 therefore can be written

Iy = dA,

1

5 2
Iy = 2(1—Z)dZ=§
0

Combining the nonzero contributions /3 and 14, we obtain the final result
1 2 1

2+3_6

Volume Integrals

Volume integrals are somewhat simpler, because the volume element dt is a scalar
quantity. Sometimes dt is written d°r, or d3x when the coordinates were designated
(x1, x2, x3). In the literature, the form dr is frequently encountered, but in contexts that
usually reveal that it is a synonym for dt, and not a vector quantity. The volume integrals
under consideration here are of the form

/th:éx/det—I—éy/Vydt—l—éZ/VZdr.

The integral reduces to a vector sum of scalar integrals.
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Some volume integrals contain vector quantities in combinations that are actually scalar.
Often these can be rearranged by applying techniques such as integration by parts.

Example 3.7.3  INTEGRATION BY PARTS

Consider an integral over all space of the form [A(r)V - f(r)d 3r in the frequently occur-
ring special case in which either f or A vanish sufficiently strongly at infinity. Expanding
the integrand into components,

[ aw-vrwar=[faya: [Axf|j°=_oo - e dx] o

d

Z_J‘fffaaix dxdydz—ff f%dXdde_jfffaaA;dXdde

=—/f(r)v A()d’r. (3.78)
ikz g

For example, if A = ¢"**p describes a photon with a constant polarization vector in the
direction p and v (r) is a bound-state wave function (so it vanishes at infinity), then

d

ikz
[eisz)-Vlﬂ(l’)d3i’:—(f)'éz)[1//(r) 2 d3r:—ik(f)-éz)/llf(r)eikzd3r.
z

Only the z-component of the gradient contributes to the integral.
Analogous rearrangements (assuming the integrated terms vanish at infinity) include

/ OV -A@d’r=— / A(r) -V f(n)d°r, (3.79)

/ Cr)- (Vx A(r)d’r = / A@) - (V x C(r))d>r. (3.80)

In the cross-product example, the sign change from the integration by parts combines with
the signs from the cross product to give the result shown. ]

Exercises

3.71

3.7.2

The origin and the three vectors A, B, and C (all of which start at the origin) define a
tetrahedron. Taking the outward direction as positive, calculate the total vector area of
the four tetrahedral surfaces.

Find the work ¢ F - dr done moving on a unit circle in the xy-plane, doing work against
a force field given by

_ —€yy éyx
_x2+y2 x2+y2 '

(a) Counterclockwise from O to 7,
(b) Clockwise from 0 to —r.

Note that the work done depends on the path.



164 Chapter 3 Vector Analysis

3.7.3 Calculate the work you do in going from point (1, 1) to point (3, 3). The force you exert
is given by

F=¢(x —y)+ey(x+y).
Specify clearly the path you choose. Note that this force field is nonconservative.

3.7.4 Evaluate § r - dr for a closed path of your choosing.

3.7.5 Evaluate
! f r-d
— . o"
3

S

over the unit cube defined by the point (0, 0, 0) and the unit intercepts on the positive
x-, y-, and z-axes. Note that r - do is zero for three of the surfaces and that each of the
three remaining surfaces contributes the same amount to the integral.

3.8 INTEGRAL THEOREMS

The formulas in this section relate a volume integration to a surface integral on its boundary
(Gauss’ theorem), or relate a surface integral to the line defining its perimeter (Stokes’
theorem). These formulas are important tools in vector analysis, particularly when the
functions involved are known to vanish on the boundary surface or perimeter.

Gauss’ Theorem

Here we derive a useful relation between a surface integral of a vector and the volume
integral of the divergence of that vector. Let us assume that a vector A and its first deriva-
tives are continuous over a simply connected region of R (regions that contain holes,
like a donut, are not simply connected). Then Gauss’ theorem states that

%A-dc:[V-Adr. (3.81)
av v

Here the notations V and dV respectively denote a volume of interest and the closed sur-
face that bounds it. The circle on the surface integral is an additional indication that the
surface is closed.

To prove the theorem, consider the volume V to be subdivided into an arbitrary large
number of tiny (differential) parallelepipeds, and look at the behavior of V - A for each. See
Fig. 3.15. For any given parallelepiped, this quantity is a measure of the net outward flow
(of whatever A describes) through its boundary. If that boundary is interior (i.e., is shared
by another parallelepiped), outflow from one parallelepiped is inflow to its neighbor; in a
summation of all the outflows, all the contributions of interior boundaries cancel. Thus, the
sum of all the outflows in the volume will just be the sum of those through the exterior
boundary. In the limit of infinite subdivision, these sums become integrals: The left-hand
side of Eq. (3.81) becomes the total outflow to the exterior, while its right-hand side is the
sum of the outflows of the differential elements (the parallelepipeds).
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|

FIGURE 3.15 Subdivision for Gauss’ theorem.

A simple alternate explanation of Gauss’ theorem is that the volume integral sums the
outflows V - A from all elements of the volume; the surface integral computes the same
thing, by directly summing the flow through all elements of the boundary.

If the region of interest is the complete R3, and the volume integral converges, the
surface integral in Eq. (3.81) must vanish, giving the useful result

/ V.Adt =0, integration over R? and convergent. (3.82)

Example 3.8.1  TETRAHEDRON

We check Gauss’ theorem for a vector B = (x + 1)&, + yé, — zé,, comparing

/V-Bdr VS. fB~da,

Vv A%

where V is the tetrahedron of Example 3.7.2. In that example we computed the surface
integral needed here, obtaining the value 1/6. For the integral over V, we take the diver-
gence, obtaining V - B = 1. The volume integral therefore reduces to the volume of the
tetrahedron that, with base of area 1/2 and height 1, has volume 1/3 x 1/2 x 1=1/6.
This instance of Gauss’ theorem is confirmed. ]

Green’s Theorem

A frequently useful corollary of Gauss’ theorem is a relation known as Green’s theorem.
If u and v are two scalar functions, we have the identities

V- @Vv) =uVZv+ (Vu) - (Vv), (3.83)
V- @Vv) =uV*v+ (Vu) - (V). (3.84)
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Subtracting Eq. (3.84) from Eq. (3.83), integrating over a volume V on which u, v, and
their derivatives are continuous, and applying Gauss’ theorem, Eq. (3.81), we obtain

f(uV2v —vV2u)dt = f(uw —vVu) -do. (3.85)
14 v
This is Green’s theorem. An alternate form of Green’s theorem, obtained from Eq. (3.83)
alone, is
fuw. do = / uvVivdr + / Vv, - Vuvdr. (3.86)
3V 14 14

While the results already obtained are by far the most important forms of Gauss’ theo-
rem, volume integrals involving the gradient or the curl may also appear. To derive these,
we consider a vector of the form

B(x,y,z) = B(x,y,z)a, (3.87)

in which a is a vector with constant magnitude and constant but arbitrary direction. Then
Eq. (3.81) becomes, applying Eq. (3.72),

a~§£Bda=/V-(Ba)dt=a/VBdt.
v 1% v

This may be rewritten

a- dea—fVBdr =0. (3.88)

% %

Since the direction of a is arbitrary, Eq. (3.88) cannot always be satisfied unless the quan-
tity in the square brackets evaluates to zero.® The result is

dea :/VBdt. (3.89)

A% Vv

In a similar manner, using B =a x P in which a is a constant vector, we may show

fda xP:/V x Pdr. (3.90)

A% Vv

These last two forms of Gauss’ theorem are used in the vector form of Kirchoff diffraction
theory.

6This exploitation of the arbitrary nature of a part of a problem is a valuable and widely used technique.
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Stokes’ Theorem

Stokes’ theorem is the analog of Gauss’ theorem that relates a surface integral of a deriva-
tive of a function to the line integral of the function, with the path of integration being the
perimeter bounding the surface.

Let us take the surface and subdivide it into a network of arbitrarily small rectangles.
In Eq. (3.60) we saw that the circulation of a vector B about such a differential rectan-
gles (in the xy-plane) is V x B|ZéZ dx dy. Identifying dx dy €, as the element of area do,
Eq. (3.60) generalizes to

> B-dr=V xB-do. (3.91)

four sides

We now sum over all the little rectangles; the surface contributions, from the right-hand
side of Eq. (3.91), are added together. The line integrals (left-hand side) of all interior
line segments cancel identically. See Fig. 3.16. Only the line integral around the perimeter
survives. Taking the limit as the number of rectangles approaches infinity, we have

fB~dr:/VxB~da. (3.92)
3s S
Here 0S is the perimeter of S. This is Stokes’ theorem. Note that both the sign of the
line integral and the direction of do depend on the direction the perimeter is traversed,
so consistent results will always be obtained. For the area and the line-integral direction
shown in Fig. 3.16, the direction of ¢ for the shaded rectangle will be out of the plane of
the paper.
Finally, consider what happens if we apply Stokes’ theorem to a closed surface. Since it
has no perimeter, the line integral vanishes, so

/V X B-do =0, forS aclosed surface. (3.93)
s

As with Gauss’ theorem, we can derive additional relations connecting surface integrals
with line integrals on their perimeter. Using the arbitrary-vector technique employed to

2
i

FIGURE 3.16 Direction of normal for the shaded rectangle when perimeter of the surface
is traversed as indicated.
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reach Egs. (3.89) and (3.90), we can obtain

/do x Vo :%(pdr, (3.94)
S s
/(daxV)xP:%drxP. (3.95)
s

Example 3.8.2  OERSTED’S AND FARADAY’S LAWS

Consider the magnetic field generated by a long wire that carries a time-independent cur-
rent I (meaning that 0E/dt = dB/dt = 0). The relevant Maxwell equation, Eq. (3.68),
then takes the form V x B = poJ. Integrating this equation over a disk S perpendicular to
and surrounding the wire (see Fig. 3.17), we have

1
I=/J-d0=—/(VxB)~d0.
MOS

S

Now we apply Stokes’ theorem, obtaining the result I = (1/uo) §,(B - dr, which is
Oersted’s law.

Similarly, we can integrate Maxwell’s equation for V x E, Eq. (3.69). Imagine moving
a closed loop (9.5) of wire (of area S) across a magnetic induction field B. We have

f(VxE) da_——/B da_——,

where @ is the magnetic flux through the area S. By Stokes’ theorem, we have

dd
/ E.ar=-22

dt
S

This is Faraday’s law. The line integral represents the voltage induced in the wire loop; it is
equal in magnitude to the rate of change of the magnetic flux through the loop. There is no
sign ambiguity; if the direction of 9§ is reversed, that causes a reversal of the direction of
do and thereby of ®. [ |

g
N

FIGURE 3.17 Direction of B given by Oersted’s law.
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Using Gauss’ theorem, prove that

do =0

Va&e\

if § =9V is a closed surface.

Show that

frdozv,

N

W | =

where V is the volume enclosed by the closed surface S =aV.
Note. This is a generalization of Exercise 3.7.5.

%B-dc:O

S

IfB=V x A, show that

for any closed surface S.

From Eq. (3.72), with V the electric field E and f the electrostatic potential ¢, show
that, for integration over all space,

/pgodr:sO/EZdr.

This corresponds to a 3-D integration by parts.
Hint. E=—V¢,V -E = p/ey. You may assume that ¢ vanishes at large r at least as

fastas r 1.

A particular steady-state electric current distribution is localized in space. Choosing a
bounding surface far enough out so that the current density J is zero everywhere on the
surface, show that

/ Jdr =0.

Hint. Take one component of J at a time. With V - J =0, show that J; =V - (x;J) and
apply Gauss’ theorem.

Given a vector t = —&yy + &yx, show, with the help of Stokes’ theorem, that the integral
of t around a continuous closed curve in the xy-plane satisfies

1 1
Eygtd}»:z%(xdy—ydx):A,

where A is the area enclosed by the curve.
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3.8.7 The calculation of the magnetic moment of a current loop leads to the line integral

%rxdr.

(a) Integrate around the perimeter of a current loop (in the xy-plane) and show that
the scalar magnitude of this line integral is twice the area of the enclosed surface.

(b) The perimeter of an ellipse is described by r = éxa cos 6 4 €yb sin6. From part (a)
show that the area of the ellipse is wab.

3.8.8 Evaluate § r x dr by using the alternate form of Stokes’ theorem given by Eq. (3.95):

/(daxV)xP:%dle.

S

Take the loop to be entirely in the xy-plane.

‘(ﬁqud)»:—vau-dl.

%qu-dl:/(Vu) x (Vv) -do.
s

3.8.9 Prove that

3.8.10 Prove that

3.8.11 Prove that

fdaxP:/Vdet.

av 1%
3.8.12 Prove that
/dango:%cpdr.
S s
3.8.13  Prove that
f(da xV)xP:?ﬁdrxP.
S s

3.9 POTENTIAL THEORY

Much of physics, particularly electromagnetic theory, can be treated more simply by intro-
ducing potentials from which forces can be derived. This section deals with the definition
and use of such potentials.
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Scalar Potential

If, over a given simply connected region of space (one with no holes), a force can be
expressed as the negative gradient of a scalar function ¢,

F=-Vo, (3.96)

we call ¢ a scalar potential, and we benefit from the feature that the force can be described
in terms of one function instead of three. Since the force is a derivative of the scalar poten-
tial, the potential is only determined up to an additive constant, which can be used to adjust
its value at infinity (usually zero) or at some other reference point. We want to know what
conditions F must satisfy in order for a scalar potential to exist.

First, consider the result of computing the work done against a force given by —Vg
when an object subject to the force is moved from a point A to a point B. This is a line
integral of the form

B

B
—/F-dr:/Vgo~dr. 3.97)
A

A

But, as pointed out in Eq. (3.41), Vg - dr = dg, so the integral is in fact independent of the
path, depending only on the endpoints A and B. So we have

B

- / F-dr=o(rs) — o(ra), (3.98)
A

which also means that if A and B are the same point, forming a closed loop,

fF-dr:O. (3.99)

We conclude that a force (on an object) described by a scalar potential is a conservative
force, meaning that the work needed to move the object between any two points is inde-
pendent of the path taken, and that ¢(r) is the work needed to move to the point r from a
reference point where the potential has been assigned the value zero.

Another property of a force given by a scalar potential is that

VxF=-V xVgp=0 (3.100)

as prescribed by Eq. (3.64). This observation is consistent with the notion that the lines of
force of a conservative F cannot form closed loops.

The three conditions, Egs. (3.96), (3.99), and (3.100), are all equivalent. If we take
Eq. (3.99) for a differential loop, its left side and that of Eq. (3.100) must, according
to Stokes’ theorem, be equal. We already showed both these equations followed from
Eq. (3.96). To complete the establishment of full equivalence, we need only to derive
Eq. (3.96) from Eq. (3.99). Going backward to Eq. (3.97), we rewrite it as

B
/(F+V<p)~dr:0,
A
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which must be satisfied for all A and B. This means its integrand must be identically zero,
thereby recovering Eq. (3.96).

Example 3. 9. 1 GRAVITATIONAL POTENTIAL

We have previously, in Example 3.5.2, illustrated the generation of a force from a scalar
potential. To perform the reverse process, we must integrate. Let us find the scalar potential
for the gravitational force

Gmimar kr

Fg= =-—,
2 2

radially inward. Setting the zero of scalar potential at infinity, we obtain by integrating
(radially) from infinity to position r,

r o0

¢G(r)—</)c(00)=—/FG'dr=+ch'dr.

o r

The minus sign in the central member of this equation arises because we are calculating
the work done against the gravitational force. Evaluating the integral,

o0
kdr k Gmimy

o= [ 5 =—"=-T""2
v
The final negative sign corresponds to the fact that gravity is an attractive force. |
Vector Potential

In some branches of physics, especially electrodynamics, it is convenient to introduce a
vector potential A such that a (force) field B is given by

B=V x A. (3.101)

An obvious reason for introducing A is that it causes B to be solenoidal; if B is the mag-
netic induction field, this property is required by Maxwell’s equations. Here we want to
develop a converse, namely to show that when B is solenoidal, a vector potential A exists.
We demonstrate the existence of A by actually writing it.

Our construction is

x y X
A:éy/BZ(x,y,z)dx+éz /Bx(xo,y,z)dy—fo(x,y,z)dx . (3.102)

X0 Yo X0
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Checking the y- and z-components of V x A first, noting that A, =0,

X
A, 3
(VxA)y=-— ox =+£ By(x,y,z)dx = By,
X0
X
A, d
(VXA =+—-==— | B:(x,y,2)dx =B;.
0x 0x
X0

The x-component of V x A is a bit more complicated. We have

dA, DA,
(VxA)y=———2
ay 0z

2| T r 9 [

=% /Bx(xo,y,z)dy_/By(x,y,z)dx —£/Bz(x,y,z)dx
Yo X0 X0
X
0By(x, v,z 0B, (x,vy,z
=&mmm—/[y;y)+ Ay)}m
y 0z

X0

To go further, we must use the fact that B is solenoidal, which means V - B = 0. We can
therefore make the replacement

8By(x’y»z) aBZ(-xvy?Z) 8Bx(xsyvz)
+ =- ,
ay 9z ax

after which the x integration becomes trivial, yielding

Y 0By(x, v,z
b [BED - B0,
Yo dax

leading to the desired final result (V x A), = By.

While we have shown that there exists a vector potential A such that V x A = B subject
only to the condition that B be solenoidal, we have in no way established that A is unique.
In fact, A is far from unique, as we can add to it not only an arbitrary constant, but also the
gradient of any scalar function, V¢, without affecting B at all. Moreover, our verification
of A was independent of the values of xo and yp, so these can be assigned arbitrarily
without affecting B. In addition, we can derive another formula for A in which the roles of
x and y are interchanged:

X

y
A:—éx/Bz(x,y,z)dy—éz /By(x,yo,z)dx—/Bx(x,y,z)dy . (3.103)

Yo X0 Yo
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Example 3.9.2 MAGNETIC VECTOR POTENTIAL

We consider the construction of the vector potential for a constant magnetic induction field
B =B.¢,. (3.104)
Using Eq. (3.102), we have (choosing the arbitrary value of x¢ to be zero)

X
Azéy/BZ dx =¢&,xB;. (3.105)
0
Alternatively, we could use Eq. (3.103) for A, leading to

A= —&,yB.. (3.106)

Neither of these is the form for A found in many elementary texts, which for B from
Eq. (3.104) is

1 B
A = 3 Bxr)= ?Z (x&y — y&y). (3.107)

These disparate forms can be reconciled if we use the freedom to add to A any expression
of the form V. Taking ¢ = Cxy, the quantity that can be added to A will be of the form

Vo =C(yé, + xe&).

We now see that
B . AN A/ B . AN A
A— T(yex +xey)=A+ T(yex +xey) =A",

showing that all these formulas predict the same value of B. |

Example 3. 9.3 POTENTIALS IN ELECTROMAGNETISM

If we introduce suitably defined scalar and vector potentials ¢ and A into Maxwell’s
equations, we can obtain equations giving these potentials in terms of the sources of the
electromagnetic field (charges and currents). We start with B =V x A, thereby assuring
satisfaction of the Maxwell’s equation V - B = 0. Substitution into the equation for V x E
yields

0A 0A
VXE=-Vx— — Vx|E+—|=0,
ot ot

showing that E 4+ 0A/dt is a gradient and can be written as —V ¢, thereby defining ¢. This
preserves the notion of an electrostatic potential in the absence of time dependence, and
means that A and ¢ have now been defined to give

IA
B=VxA E=-Vy-— (3.108)

At this point A is still arbitrary to the extent of adding any gradient, which is equivalent to
making an arbitrary choice of V - A. A convenient choice is to require

1 dp
— —+V.-A=0. 3.109
cZ ot + ( )
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This gauge condition is called the Lorentz gauge, and transformations of A and ¢ to
satisfy it or any other legitimate gauge condition are called gauge transformations. The
invariance of electromagnetic theory under gauge transformation is an important precursor
of contemporary directions in fundamental physical theory.
From Maxwell’s equation for V - E and the Lorentz gauge condition, we get
P VB VE_Lv.ac_viq LY (3.110)
0 - ot STV T 252 '
showing that the Lorentz gauge permitted us to decouple A and ¢ to the extent that we
have an equation for ¢ in terms only of the charge density p; neither A nor the current
density J enters this equation.
Finally, from the equation for V x B, we obtain

L O*A V2A = pod (3.111)
c2 92 - Mot '
Proof of this formula is the subject of Exercise 3.9.11. |

Gauss’ Law

Consider a point charge ¢ at the origin of our coordinate system. It produces an electric
field E, given by

qr

=—. 3.112
47T80r2 ( )

Gauss’ law states that for an arbitrary volume V,

4 if 3V encloses ¢,
%E-da: €0 (3.113)

v 0 if 3V does not enclose g.

The case that 3V does not enclose ¢ is easily handled. From Eq. (3.54), the r~2 central
force E is divergenceless everywhere except at » = 0, and for this case, throughout the
entire volume V. Thus, we have, invoking Gauss’ theorem, Eq. (3.81),

/V~E=0 —> E-do=0.
Vv

If g is within the volume V, we must be more devious. We surround r = 0 by a small
spherical hole (of radius §), with a surface we designate S, and connect the hole with the
boundary of V via a small tube, thereby creating a simply connected region V' to which
Gauss’ theorem will apply. See Fig. 3.18. We now consider § E - do on the surface of
this modified volume. The contribution from the connecting tube will become negligible
in the limit that it shrinks toward zero cross section, as E is finite everywhere on the
tube’s surface. The integral over the modified 9V will thus be that of the original 9V (over
the outer boundary, which we designate S), plus that of the inner spherical surface (S’).
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FIGURE 3.18 Making a multiply connected region simply connected.

But note that the “outward” direction for S’ is toward smaller r, so do’ = —rd A. Because
the modified volume contains no charge, we have

—
fE-dasz-do+ 9 fr 7 —o, (3.114)

4meg 82
av’ S s

where we have inserted the explicit form of E in the S’ integral. Because S’ is a sphere of
radius §, this integral can be evaluated. Writing d<2 as the element of solid angle, so dA =

§2d,
e )
%ra—z"zfsiz-(—fazdszh—/dsz:—w,

s/

independent of the value of §. Returning now to Eq. (3.114), it can be rearranged into

f]gE'da =1 (4my=11,
4meg £0
S

the result needed to confirm the second case of Gauss’ law, Eq. (3.113).

Because the equations of electrostatics are linear, Gauss’ law can be extended to collec-
tions of charges, or even to continuous charge distributions. In that case, g can be replaced
by [, pdt, and Gauss’ law becomes

/E~d0= Ly (3.115)
&0
A%

If we apply Gauss’ theorem to the left side of Eq. (3.115), we have

/V~Edr:/£dt.
€0
\%4

v
Since our volume is completely arbitrary, the integrands of this equation must be equal, so
v.E=L. (3.116)

€0

We thus see that Gauss’ law is the integral form of one of Maxwell’s equations.
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Poisson’s Equation

If we return to Eq. (3.116) and, assuming a situation independent of time, write E = —V ¢,
we obtain
v2p=_L (3.117)
&0

This equation, applicable to electrostatics,’ is called Poisson’s equation. If, in addition,
p =0, we have an even more famous equation,

V2 =0, (3.118)

Laplace’s equation.

To make Poisson’s equation apply to a point charge ¢, we need to replace p by a con-
centration of charge that is localized at a point and adds up to ¢g. The Dirac delta function
is what we need for this purpose. Thus, for a point charge g at the origin, we write

V2= —81 8(r),  (chargeqatr=0). (3.119)
0

If we rewrite this equation, inserting the point-charge potential for ¢, we have

1
12 (—) =—Lsw),
dmeg r £0

which reduces to

1

v? (-) = —47 8(r). (3.120)
r

This equation circumvents the problem that the derivatives of 1/r do not exist at r = 0,

and gives appropriate and correct results for systems containing point charges. Like the

definition of the delta function itself, Eq. (3.120) is only meaningful when inserted into an

integral. It is an important result that is used repeatedly in physics, often in the form

1
Vi — ) =—478@ —r). (3.121)
r2

Here r1» = |r| — 1|, and the subscript in V| indicates that the derivatives apply to ry.

Helmholtz’s Theorem

We now turn to two theorems that are of great formal importance, in that they establish
conditions for the existence and uniqueness of solutions to time-independent problems in
electromagnetic theory. The first of these theorems is:

A vector field is uniquely specified by giving its divergence and its curl within a simply
connected region and its normal component on the boundary.

TFor general time dependence, see Eq. (3.110).



178

Chapter 3 Vector Analysis

Note that both for this theorem and the next (Helmholtz’s theorem), even if there are points
in the simply connected region where the divergence or the curl is only defined in terms of
delta functions, these points are not to be removed from the region.

Let P be a vector field satisfying the conditions

V.P=s, VxP=c, (3.122)

where s may be interpreted as a given source (charge) density and ¢ as a given circulation
(current) density. Assuming that the normal component P, on the boundary is also given,
we want to show that P is unique.

We proceed by assuming the existence of a second vector, P’, which satisfies Eq. (3.122)
and has the same value of P,. We form Q =P — P/, which must have V - Q, V x Q, and
Q,, all identically zero. Because Q is irrotational, there must exist a potential ¢ such that
Q = —Vy, and because V - Q =0, we also have

V29 =0.

Now we draw on Green’s theorem in the form given in Eq. (3.86), letting u and v each
equal ¢. Because 0, = 0 on the boundary, Green’s theorem reduces to

f(V(p)~(Vg0)dtz/Q-th:0.
v 1%

This equation can only be satisfied if Q is identically zero, showing that P’ = P, thereby
proving the theorem.
The second theorem we shall prove, Helmholtz’s theorem, is

A vector P with both source and circulation densities vanishing at infinity may be writ-
ten as the sum of two parts, one of which is irrotational, the other of which is solenoidal.

Helmbholtz’s theorem will clearly be satisfied if P can be written in the form
P=—-Vp+VxA, (3.123)

since —V g is irrotational, while V x A is solenoidal. Because P is known, so are also s
and ¢, defined as

s=V.P, ¢=VxP.

We proceed by exhibiting expressions for ¢ and A that enable the recovery of s and c.
Because the region here under study is simply connected and the vector involved vanishes
at infinity (so that the first theorem of this subsection applies), having the correct s and ¢
guarantees that we have properly reproduced P.

The formulas proposed for ¢ and A are the following, written in terms of the spatial
variable ry:

(p(rl):L/S(“)dQ, (3.124)

4 ri2

Ar) = / 2 o, (3.125)
47 ri2

Here rip = |r1 — ra|.
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If Eq. (3.123) is to be satisfied with the proposed values of ¢ and A, it is necessary that
V- P=-V.Vp+V.(VxA)=-Vip=s,
VXP=-V xVp+Vx(VXA)=Vx(VxA)=c

To check that —V2¢p = s, we examine

1 1
~Vip@r) = pr / Vi (E) s(ra)d

1
=—7 [—478(r1 —r2)]s(r))d = s(r1). (3.126)

We have written V| to make clear that it operates on r; and not r», and we have used the
delta-function property given in Eq. (3.121). So s has been recovered.

We now check that V x (V x A) = ¢. We start by using Eq. (3.70) to convert this
condition to a more easily utilized form:

Vx(VxA)=V(V-A)—V?A=c.

Taking r; as the free variable, we look first at

1
Vi(Vi-AmD) = Vi [ V1 (“r”) dv,

r2

= LV1 /C(rz) -V <L> dry
47 r12
1 1
=—V /c(l‘z) . [—Vz <—>] do.
4 r2

To reach the second line of this equation, we used Eq. (3.72) for the special case that the
vector in that equation is not a function of the variable being differentiated. Then, to obtain
the third line, we note that because the V| within the integral acts on a function of r| — 12,
we can change V| into V, and introduce a sign change.

Now we integrate by parts, as in Example 3.7.3, reaching

1 1
Vi[Vi-A(r)] = EVI f (V2-e(r2) (E) dry.

At last we have the result we need: V; - ¢(rp) vanishes, because ¢ is a curl, so the entire
V(V - A) term is zero and may be dropped. This reduces the condition we are checking to
~-VA=c.

The quantity —V2A is a vector Laplacian and we may individually evaluate its Cartesian
components. For component j,

2 1 2 1
“VEA ) == [ VP (- )dn

1
= _E/cj(rz)[—4n6(r1 —r)]dny =cj(ry).

This completes the proof of Helmholtz’s theorem.
Helmholtz’s theorem legitimizes the division of the quantities appearing in electromag-
netic theory into an irrotational vector field E and a solenoidal vector field B, together
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with their respective representations using scalar and vector potentials. As we have seen

in numerous examples, the source s is identified as the charge density (divided by &¢) and
the circulation ¢ is the current density (multiplied by o).

Exercises

3.9.1 If a force F is given by
F=(+ )2+ 29" @x + &y +&2),

find
(a) V.F.
(b) V xF.

(c) A scalar potential ¢(x, y, z) sothat F=—Vo.
(d) For what value of the exponent n does the scalar potential diverge at both the
origin and infinity?

ANS. (a) Qn+3)r™" () 0
() —rt2/2n+2),n#—-1 d) n=-1, g=—Inr.
3.9.2 A sphere of radius a is uniformly charged (throughout its volume). Construct the elec-

trostatic potential ¢(r) for 0 <r < oco.

3.9.3 The origin of the Cartesian coordinates is at the Earth’s center. The moon is on the
z-axis, a fixed distance R away (center-to-center distance). The tidal force exerted by
the moon on a particle at the Earth’s surface (point x, y, z) is given by

X y Z
FX:—GMmﬁ, Fy:—GMmF, FZ:—I—ZGMmE

Find the potential that yields this tidal force.

GMm 1 |
ANS. — 2o X222
R3 (Z 2t 7Y

394 A long, straight wire carrying a current / produces a magnetic induction B with com-
ponents

_ ol <_L o 0)
27\ x24y2 x24+y2 )
Find a magnetic vector potential A.
ANS. A = —z(uol /47) In(x? + y2). (This solution is not unique.)
3.9.5 If
find a vector A such that V x A =B.

€,z eyxz

ANS. One possible solution is A = — .
b ! D TR
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Show that the pair of equations
1
A:E(er), B=V xA,

is satisfied by any constant magnetic induction B.

Vector B is formed by the product of two gradients
B=(Vu) x (Vv),
where u and v are scalar functions.

(a) Show that B is solenoidal.
(b) Show that

1
A:E(qu—vVu)

is a vector potential for B, in that

B=V x A.

The magnetic induction B is related to the magnetic vector potential A by B=V x A.

By Stokes’ theorem
/B-da:v(fA-dr.

Show that each side of this equation is invariant under the gauge transformation, A —
A+Vo.
Note. Take the function ¢ to be single-valued.

Show that the value of the electrostatic potential ¢ at any point P is equal to the average
of the potential over any spherical surface centered on P, provided that there are no
electric charges on or within the sphere.

Hint. Use Green’s theorem, Eq. (3.85), with u = r~!, the distance from P, and v = ¢.
Equation (3.120) will also be useful.

Using Maxwell’s equations, show that for a system (steady current) the magnetic vector
potential A satisfies a vector Poisson equation,

V2A =—pd,

provided we require V - A = 0.

Derive, assuming the Lorentz gauge, Eq. (3.109):

13?4 _,

Hint. Eq. (3.70) will be helpful.
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3.9.12

3.10

Prove that an arbitrary solenoidal vector B can be described as B=V x A, with

y X
A:—éx/Bz(x,y,z)dy—éz [By(x,yo,z)dx—/Bx(x,y,Z)dy
Yo X0 Yo

CURVILINEAR COORDINATES

Up to this point we have treated vectors essentially entirely in Cartesian coordinates; when
r or a function of it was encountered, we wrote r as v/x2 + y2 + z2, so that Cartesian
coordinates could continue to be used. Such an approach ignores the simplifications that
can result if one uses a coordinate system that is appropriate to the symmetry of a problem.
Central force problems are frequently easiest to deal with in spherical polar coordinates.
Problems involving geometrical elements such as straight wires may be best handled in
cylindrical coordinates. Yet other coordinate systems (of use too infrequent to be described
here) may be appropriate for other problems.

Naturally, there is a price that must be paid for the use of a non-Cartesian coordinate sys-
tem. Vector operators become different in form, and their specific forms may be position-
dependent. We proceed here to examine these questions and derive the necessary formulas.

Orthogonal Coordinates in R’

In Cartesian coordinates the point (xg, o, zo) can be identified as the intersection of three
planes: (1) the plane x = x¢ (a surface of constant x), (2) the plane y = yg (constant y), and
(3) the plane z = zg (constant z). A change in x corresponds to a displacement normal to
the surface of constant x; similar remarks apply to changes in y or z. The planes of constant
coordinate value are mutually perpendicular, and have the obvious feature that the normal to
any given one of them is in the same direction, no matter where on the plane it is constructed
(a plane of constant x has a normal that is, of course, everywhere in the direction of €, ).
Consider now, as an example of a curvilinear coordinate system, spherical polar coor-
dinates (see Fig. 3.19). A point r is identified by r (distance from the origin), 6 (angle of
r relative to the polar axis, which is conventionally in the z direction), and ¢ (dihedral
angle between the zx plane and the plane containing €; and r). The point r is therefore at
the intersection of (1) a sphere of radius r, (2) a cone of opening angle 6, and (3) a half-
plane through equatorial angle ¢. This example provides several observations: (1) general

X

FIGURE 3.19  Spherical polar coordinates.
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ke,

FIGURE 3.20 Effect of a “large” displacement in the direction ég. Note that r’ # r.

coordinates need not be lengths, (2) a surface of constant coordinate value may have a
normal whose direction depends on position, (3) surfaces with different constant values of
the same coordinate need not be parallel, and therefore also (4) changes in the value of a
coordinate may move r in both an amount and a direction that depends on position.

It is convenient to define unit vectors €,, &, €, in the directions of the normals to the
surfaces, respectively, of constant r, 6, and ¢. The spherical polar coordinate system has
the feature that these unit vectors are mutually perpendicular, meaning that, for example, €g
will be tangent to both the constant-r and constant-¢ surfaces, so that a small displacement
in the €y direction will not change the values of either the r or the ¢ coordinate. The
reason for the restriction to “small” displacements is that the directions of the normals
are position-dependent; a “large” displacement in the €y direction would change r (see
Fig. 3.20). If the coordinate unit vectors are mutually perpendicular, the coordinate system
is said to be orthogonal.

If we have a vector field V (so we associate a value of V with each point in a region of
R3 ), we can write V(r) in terms of the orthogonal set of unit vectors that are defined for
the point r; symbolically, the result is

V() =V, & + Vg &g + Vy &.

It is important to realize that the unit vectors €; have directions that depend on the value
of r. If we have another vector field W(r) for the same point r, we can perform algebraic
processes® on V and W by the same rules as for Cartesian coordinates. For example, at the
point r,

VW=V, W, + VoWp + Vi, W,

However, if V and W are not associated with the same r, we cannot carry out such opera-
tions in this way, and it is important to realize that

r #ré, + 608 + pé,.

Summarizing, the component formulas for V or W describe component decompositions
applicable to the point at which the vector is specified; an attempt to decompose r as
illustrated above is incorrect because it uses fixed unit-vector orientations where they do
not apply.

Dealing for the moment with an arbitrary curvilinear system, with coordinates labeled
(91,92, q3), we consider how changes in the g; are related to changes in the Cartesian

coordinates. Since x can be thought of as a function of the q,- ,namely x(q1, g2, g3), we have
ax
dx = —dq —|— dqz —|— — dqg, (3.127)
aq1 ol7p) g3

with similar formulas for dy and dz.

8 Addition, multiplication by a scalar, dot and cross products (but not application of differential or integral operators).
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We next form a measure of the differential displacement, dr, associated with changes
dg;. We actually examine

(dr)? = (dx)* + (dy)’ + (d2)*.
Taking the square of Eq. (3.127), we get

2 dx 0x
(dx) Z——dq, a

and similar expressions for (dy)? and (dz)z. Combining these and collecting terms with
the same dq; dq j, we reach the result

(dr)2=2gijdqz‘dqj', (3.128)
ij
where

dx ox ay By dz 0z
8ij(q1,q2,q3) = — +— +— (3.129)
& dqi dq; ' dqi dq; = 9qi 9q;

Spaces with a measure of distance given by Eq. (3.128) are called metric or Riemannian.

Equation (3.129) can be interpreted as the dot product of a vector in the dg; direction, of
components (dx/dg;, dy/dq;, 9z/9q;), with a similar vector in the dq; direction. If the
gi coordinates are perpendicular, the coefficients g;; will vanish when i # j.

Since it is our objective to discuss orthogonal coordinate systems, we specialize
Egs. (3.128) and (3.129) to

(dr)* = (h1dq))* + (h2dg2)* + (h3dg3)?, (3.130)

9 9 9
K2 = (%) n (%) n <%) . (3.131)

If we consider Eq. (3.130) for a case dgy = dg3 = 0, we see that we can identify h1dq
as dry, meaning that the element of displacement in the g direction is 41dq;. Thus, in
general,

or

d”i =hid%’, or —Zhi éi. (3132)
9gi
Here ¢; is a unit vector in the g; direction, and the overall dr takes the form
dr=hdq €| + hadq; & + hidgs é;. (3.133)

Note that #; may be position-dependent and must have the dimension needed to cause
h;dg; to be a length.

Integrals in Curvilinear Coordinates

Given the scale factors /; for a set of coordinates, either because they have been tabulated
or because we have evaluated them via Eq. (3.131), we can use them to set up formulas for
integration in the curvilinear coordinates. Line integrals will take the form

/V-dr:Z/Vih,-dq,-. (3.134)
c i c



3.10 Curvilinear Coordinates 185

Surface integrals take the same form as in Cartesian coordinates, with the exception that
instead of expressions like dx dy we have (h1dq1)(hadqa) = h1hy dq dgs etc. This means
that

/V~d0=/V1h2h3dq2dq3+/V2h3h1dQ3dQ1+/V3h1h2dq1dq2. (3.135)
S S S S

The element of volume in orthogonal curvilinear coordinates is
dt :h1h2h3dq1dq2dq3, (3.136)

so volume integrals take the form

/(ﬂ(fh, 92, q3)h1h2h3dqidgardgs, (3.137)
\%4

or the analogous expression with ¢ replaced by a vector V(q1, g2, ¢3).

Differential Operators in Curvilinear Coordinates
We continue with a restriction to orthogonal coordinate systems.

Gradient—Because our curvilinear coordinates are orthogonal, the gradient takes the
same form as for Cartesian coordinates, providing we use the differential displacements
dr; = h; dg; in the formula. Thus, we have

dp . 1 d¢ . 1 9¢

1
Vo(qi,q2,q3) =€— — +&— — +é3— —, 3.138
vl 2.4 hy 9q; hy 9g2 h3 g3 ( )

this corresponds to writing V as

4o 1 o n 1 o
6— — + 63— —.
h1 9qi ha 9g2 h3 g3

~

(3.139)

Divergence—This operator must have the same meaning as in Cartesian coordinates,
so V - V must give the net outward flux of V per unit volume at the point of evaluation.
The key difference from the Cartesian case is that an element of volume will no longer be
a parallelepiped, as the scale factors &; are in general functions of position. See Fig. 3.21.
To compute the net outflow of V in the ¢ direction from a volume element defined by

hadaq,
-B1hydgoh3dqsl g, ag.2 a‘ +B1h2dqzh3003] 4.+ dgy/2
™

hzdqs

FIGURE 3.21 Outflow of Bj in the g direction from a curvilinear volume element.
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dq1, dqa, dgz and centered at (q1, q2, q3), we must form
Net g outflow = —Vihyh3dgadgs + Vihah3dgadqs .
91—dq1/2.92.93 q1+dq1/2.92.93

(3.140)

Note that not only Vi, but also k3 must be evaluated at the displaced values of ¢y; this
product may have different values at ¢; +dgq1/2 and g1 — dq1/2. Rewriting Eq. (3.140) in
terms of a derivative with respect to g1, we have

d
Net g1 outflow = a—(V1h2h3)d611d612dQ3-
q1

Combining this with the ¢» and g3 outflows and dividing by the differential volume
h1hahs dqidqrdgs, we get the formula

d 0 d
V-V(@qi,92,93) = [%(Vlhﬂ%) + a—qz(Vzhﬂll) + @(VShth)] (3.141)

1
hihohs

Laplacian—From the formulas for the gradient and divergence, we can form the Laplacian
in curvilinear coordinates:

VZ‘P(QI,C]27Q3)=V~V¢:
1 9 (hahz 9 d (h3h 9 d (hihy 9
_[_(g_‘ﬂ)jL_(L_‘/))JF_( i 2_(0)] .
hihahz [ 9q1 \ hi 9qi g2 \ hy 3q 93 \ 3 dqs

Note that the Laplacian contains no cross derivatives, such as 9%/dg19¢2. They do not
appear because the coordinate system is orthogonal.

Curl—In the same spirit as our treatment of the divergence, we calculate the circulation
around an element of area in the g;q> plane, and therefore associated with a vector in
the g3 direction. Referring to Fig. 3.22, the line integral § B - dr consists of four segment

_pahdalan 92

Bohydqal g, g2
-Boh2daslg,—dq.2

+B1h1da1|¢,-dgyi2

FIGURE 3.22 Circulation f B - dr around curvilinear element of area on
a surface of constant g3.
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contributions, which to first order are

Segment 1 = (h; By)

q1,92—dq2/2,q3

Segment 2 = (h2B>)

q1+dq1/2,92.93

Segment 3 = —(h]B])) dqy,
q1,92+dq2/2,q3

Segment 4 = —(thz))
q91—dq1/2,92,93

Keeping in mind that the h; are functions of position, and that the loop has area

h1hydqidqs, these contributions combine into a circulation per unit area

1 d d
(VxB);=-— |:—_(hlBl) + —(thz)}-
by | 992 dq1
The generalization of this result to arbitrary orientation of the circulation loop can be
brought to the determinantal form

€th  &hy  e3h3

0 a 0

- hihohs 9q1 9g2 ag3 |

hiBy hyBy, h3Bj3
Just as for Cartesian coordinates, this determinant is to be evaluated from the top down, so
that the derivatives will act on its bottom row.

V xB (3.143)

Circular Cylindrical Coordinates

Although there are at least 11 coordinate systems that are appropriate for use in solving
physics problems, the evolution of computers and efficient programming techniques have
greatly reduced the need for most of these coordinate systems, with the result that the dis-
cussion in this book is limited to (1) Cartesian coordinates, (2) spherical polar coordinates
(treated in the next subsection), and (3) circular cylindrical coordinates, which we discuss
here. Specifications and details of other coordinate systems will be found in the first two
editions of this work and in Additional Readings at the end of this chapter (Morse and
Feshbach, Margenau and Murphy).

In the circular cylindrical coordinate system the three curvilinear coordinates are labeled
(p, ¢, 2). We use p for the perpendicular distance from the z-axis because we reserve r for
the distance from the origin. The ranges of p, ¢, and z are

O<p<oo, 0<¢p<2m, -—-00<z<OO.
For p =0, ¢ is not well defined. The coordinate surfaces, shown in Fig. 3.23, follow:

1. Right circular cylinders having the z-axis as a common axis,

1/2
p= <x2 + y2> = constant.
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FIGURE 3.23  Cylindrical coordinates p, ¢, z.

2. Half-planes through the z-axis, at an angle ¢ measured from the x direction,
Q= tan~! (X) = constant.
X

The arctangent is double valued on the range of ¢, and the correct value of ¢ must be
determined by the individual signs of x and y.
3. Planes parallel to the xy-plane, as in the Cartesian system,

Z = constant.
Inverting the preceding equations, we can obtain
X=pcosp, y=psing, z=2z. (3.144)

This is essentially a 2-D curvilinear system with a Cartesian z-axis added on to form
a 3-D system.

The coordinate vector r and a general vector V are expressed as
r=pé,+z¢&, V=V,&,+V,e,+ V..
From Eq. (3.131), the scale factors for these coordinates are

hy=1, hy=p, h =1, (3.145)
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so the elements of displacement, area, and volume are

dr=¢,dp+peéy,dy+e.dz,
do=pé,dodz+e,dpdz+peé;dpdy, (3.146)
dt =pdpdedz.

It is perhaps worth emphasizing that the unit vectors €, and €, have directions that vary
with ¢; if expressions containing these unit vectors are differentiated with respect to ¢, the
derivatives of these unit vectors must be included in the computations.

Example 3.710.1  KepPLER’S AREA LAW FOR PLANETARY MOTION

One of Kepler’s laws states that the radius vector of a planet, relative to an origin at the
sun, sweeps out equal areas in equal time. It is instructive to derive this relationship using
cylindrical coordinates. For simplicity we consider a planet of unit mass and motion in the
plane z = 0.

The gravitational force F is of the form f(r)€,, and hence the torque about the origin,
r x F, vanishes, so angular momentum L =r x dr/dt is conserved. To evaluate dr/dt,
we start from dr as given in Eq. (3.146), writing

dr . g
—=e €,00,
dr o P 0 PP
where we have used the dot notation (invented by Newton) to indicate time derivatives.
We now form
L=08&, x (8,0 +&,09) = p*¢8..
We conclude that p2 ¢ is constant. Making the identification p? ¢ = 2dA/dt, where A is
the area swept out, we confirm Kepler’s law. ]

Continuing now to the vector differential operators, using Eqs. (3.138), (3.141), (3.142),
and (3.143), we have

ALV 1

VY (p,¢,2)=6,— - &, —, 3.147
Yo, 9, 2) pabp ¢p8¢+ zaz ( )
1d 19V, 9V
V.V=——(V,)+ -2+ 2=, 3.148
pap(p o) 20 T s ( )
19 [ d 1 92 92
v = L2 (20 Lo oY (3.149)
pdp \" dp 0% 0?0972
&, pé, &
yxy—1/2 29 (3.150)
XV=—|—— —| .
0| 0p dp 0z

V, pV, V,
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Finally, for problems such as circular wave guides and cylindrical cavity resonators, one
needs the vector Laplacian V2V. From Eq. (3.70), its components in cylindrical coordi-
nates can be shown to be

I 2 9V,
VIV =V, - v, - S
P P p- 3¢
1 2 9V,
VIV =V, - v+ (3.151)
@ P p= 0
ViV| =V3V..
Z

Example 3.10.2 A NAVIER-STOKES TERM

The Navier-Stokes equations of hydrodynamics contain a nonlinear term
V x [VX(VXV)],
where v is the fluid velocity. For fluid flowing through a cylindrical pipe in the z direction,
v=2¢,v(p).
From Eq. (3.150),

&, pe, &

0 . ov
Vxv=—|— — — |=—€—,
plop Od¢ 0z ap
0 0 v
e, & e
. av
vx (Vxv)= 0 0 v =e,v(p) —.
av 0
0 —=
ap
Finally,
e, pe, e
1 a a a
VX(VX(VXV)):— 8)0 8(ﬂ 0z =0.
P
dv
U —
dp
For this particular case, the nonlinear term vanishes. ]

Spherical Polar Coordinates

Spherical polar coordinates were introduced as an initial example of a curvilinear coordi-
nate system, and were illustrated in Fig. 3.19. We reiterate: The coordinates are labeled
(r, 6, ¢). Their ranges are

0<r<oo, 0<6<m O0=<¢p<2m.
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For r = 0, neither 6 nor ¢ is well defined. Additionally, ¢ is ill-defined for 8 = 0 and
6 = m. The coordinate surfaces follow:

1. Concentric spheres centered at the origin,

1/2
r= (x2 + y2 + 22) = constant.

2. Right circular cones centered on the z (polar) axis with vertices at the origin,
z
6 = arccos — = constant.
r
3. Half-planes through the z (polar) axis, at an angle ¢ measured from the x direction,

@ = arctan Y — constant.
X

The arctangent is double valued on the range of ¢, and the correct value of ¢ must be
determined by the individual signs of x and y.
Inverting the preceding equations, we can obtain

x=rsinfcosg, y=rsinfsing, z=r cosb. (3.152)
The coordinate vector r and a general vector V are expressed as
r=reé, V=V, & +Voyg+V,e,.
From Eq. (3.131), the scale factors for these coordinates are
hy=1, ho=r, hy=rsinb, (3.153)
so the elements of displacement, area, and volume are
dr=2¢.dr+reégdf +rsinfé,do,
do =r*sin6é,d0dg +r sind & dr dy +ré, dr dé, (3.154)
dt =r’sinfdpdbde.

Frequently one encounters a need to perform a surface integration over the angles, in which
case the angular dependence of do reduces to

dQ =sin0do dg, (3.155)

where d€2 is called an element of solid angle, and has the property that its integral over all
angles has the value
/ dQ=4m.

Note that for spherical polar coordinates, all three of the unit vectors have directions that
depend on position, and this fact must be taken into account when expressions containing
the unit vectors are differentiated.
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The vector differential operators may now be evaluated, using Egs. (3.138), (3.141),
(3.142), and (3.143):

W lay . 1 oy

VU6, 0) =6 - 4+ 8g— — . 3.156
V0. @)= Tt e S0 T Tine bp (3.156)
9, ' 2V,
V.Vzm[an 5(r Vr)—{-r%(sme Vg)—i—rw] (3.157)
1 R IV 3 (. oy 1 0%y
Vi =——|sind— (222 )+ = (sind = | + — 2|, (3.158
V= 2me [Sm or (r 8r)+89 (Sm 89)+sino9 o2 |° G199
e, reég rsinfeé,
R 9
VxV= (3.159)

P2 sing |or 96 3y
v, rVo rsinfV,

Finally, again using Eq. (3.70), the components of the vector Laplacian V2V in spherical
polar coordinates can be shown to be

vV =VV,— =V, ——=cotVp — - — — —— ——,
r r2 r2 r?2 960 r’sinf ¢
2 9V, 2cosf dV,
VWV =V V- ——— V> — - — ¢ 3.160
0 r2sin% 0 r2 390 y2sin%0 ¢ ( )
vyl —v2y 1 Vo 2 9V n 2cos0 9V,
0 Y r2sin20 ¥ rZsind d¢ - 2sin?0 d¢

Example 3.10.3 v, V., Vx FOR A CENTRAL FORCE

We can now easily derive some of the results previously obtained more laboriously in
Cartesian coordinates:
From Eq. (3.156),

L
Vf(”)—erﬁ,

Specializing to the Coulomb potential of a point charge at the origin, V = Ze/(4meor), so
the electric field has the expected value E= —VV = (Ze /4neor2)ér.
Taking next the divergence of a radial function, we have from Eq. (3.157),

2 d
V(@) =250+

Specializing the above to the Coulomb force (n = —2), we have (except for r = 0)
V - r~2 =0, which is consistent with Gauss’ law.

Continuing now to the Laplacian, from Eq. (3.158) we have
2df d*f
rdr  dr?’

in contrast to the ordinary second derivative of r” involving n — 1.

Vi =enr" . (3.161)

V@ r"=n+2)r"" (3.162)

Vif(r) = V2" =n(n + 1)r'" 2, (3.163)
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Finally, from Eq. (3.159),
V x (érf(r)) =0, (3.164)

which confirms that central forces are irrotational. |

Example 3.10.4  MAGNETIC VECTOR POTENTIAL

A single current loop in the xy-plane has a vector potential A that is a function only of r
and 6, is entirely in the €, direction and is related to the current density J by the equation

pod =V xB=V x [V x &,A,(r,0)].

In spherical polar coordinates this reduces to

e, rég rsinf e,
J_v 1 d d 0
= X — | — — R
Ho 72sind |or 96 99
0 rsinfA,
v ! _Aa('GA) Aa('GA)
=V X 5——|&—(rsin —rég—(rsin .
r2sind | 86 oy ¢
Taking the curl a second time, we obtain
e, rég rsinf €,
1 0 0 0
J= ar 90 90
M0 2 sind or a0 g
i (sinfAy) L0 (rAy) 0
—(sin e (2
rsing 90 e Y
Expanding this determinant from the top down, we reach
A, 20A 19 dA 1
J=—¢& e —(sin6—2 ) - ———A4,|  (3.165
Ho “’[ 02 T r or | Zsing 39( 06 ) " ramtee] G109
Note that we get, in addition to V2A¢,, one more term: —A(/,/r2 sin® 6. ]

Example 3.70.5  STOKES THEOREM

As a final example, let’s compute ¢ B - dr for a closed loop, comparing the result with
integrals [(V x B) - do for two different surfaces having the same perimeter. We use
spherical polar coordinates, taking B =e¢7"€,.

The loop will be a unit circle about the origin in the xy-plane; the line integral about
it will be taken in a counterclockwise sense as viewed from positive z, so the normal to
the surfaces it bounds will pass through the xy-plane in the direction of positive z. The
surfaces we consider are (1) a circular disk bounded by the loop, and (3) a hemisphere
bounded by the loop, with its surface in the region z < 0. See Fig. 3.24.
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FIGURE 3.24 Surfaces for Example 3.10.5: (left) Sy, disk; (right) S>, hemisphere.

For the line integral, dr = r sin6 &, d¢, which reduces to dr = &, d¢ since 6 = /2 and
r = 1 on the entire loop. We then have

2

2
ygB-drz / e*1é¢~é¢d<p=—n.
e

=0

For the surface integrals, we need V x B:

V xB ! 8('9")A 3(’9")A

X = —(rSind e e —r—I(rsinde (¢

7Zsind | 90 "y 0
e "cosO ,

=——¢ —(1—r)e " &.
rsinf

Taking first the disk, at all points of which 6 = 7 /2, with integration range 0 <r <1,
and 0 < ¢ < 27, we note that do = —e&g r sin@ dr dp = —eg r dr d¢. The minus sign arises
because the positive normal is in the direction of decreasing 0. Then,

2 1
2
/—(VxB)-égrdrdgo:/dgo/dr(l—r)e”:—n.
N} 0 0

e

For the hemisphere, defined by r =1, 7/2 <6 < m, and 0 < ¢ < 27, we have do =

—&,r?sinf df dgp = —e, sin@ dO dy (the normal is in the direction of decreasing r), and
Ed 2
N . —1 2
—(VxB)-& sinfdddp=— | dfe "cosO | dp=—.
e
$ /2 0

The results for both surfaces agree with that from the line integral of their common
perimeter. Because V x B is solenoidal, all the flux that passes through the disk in the
xy-plane must continue through the hemispherical surface, and for that matter, through
any surface with the same perimeter. That is why Stokes’ theorem is indifferent to features
of the surface other than its perimeter. |
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Rotation and Reflection in Spherical Coordinates

It is infrequent that rotational coordinate transformations need be applied in curvilinear
coordinate systems, and they usually arise only in contexts that are compatible with the
symmetry of the coordinate system. We limit the current discussion to rotations (and
reflections) in spherical polar coordinates.

Rotation—Suppose a coordinate rotation identified by Euler angles («, 8, y) converts the
coordinates of a point from (r, 0, @) to (r,6’, ¢’). It is obvious that r retains its original
value. Two questions arise: (1) How are 0’ and ¢’ related to 6 and ¢? and (2) How do the
components of a vector A, namely (A,, Ag, Ayp), transform?

It is simplest to proceed, as we did for Cartesian coordinates, by analyzing the three
consecutive rotations implied by the Euler angles. The first rotation, by an angle « about
the z-axis, leaves € unchanged, and converts ¢ into ¢ — «. However, it causes no change
in any of the components of A.

The second rotation, which inclines the polar direction by an angle 8 toward the (new)
x-axis, does change the values of both 6 and ¢ and, in addition, changes the directions
of €y and &,. Referring to Fig. 3.25, we see that these two unit vectors are subjected to
a rotation y in the plane tangent to the sphere of constant r, thereby yielding new unit
vectors €, and €, such that

& =cos x & —sinx &,, &, =sinyx & +cos x &,.
This transformation corresponds to
< cosy sin X)
S) = . .
—siny cosy
Carrying out the spherical trigonometry corresponding to Fig. 3.25, we have the new
coordinates

cos B cosf’ — cosh

cos8’ = cosBcosh + sinBsinfcos(p — ), cos¢’ = . (3.166)

sin § sin 6’

FIGURE 3.25 Rotation and unit vectors in spherical polar coordinates, shown on a sphere
of radius r. The original polar direction is marked z; it is moved to the direction z’, at an
inclination given by the Euler angle 8. The unit vectors &y and &, at the point P are
thereby rotated through the angle x.
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and
cos B —cosf cos b’

cos x = (3.167)

sin@ sin 6’
The third rotation, by an angle y about the new z-axis, leaves the components of A
unchanged but requires the replacement of ¢’ by ¢’ — y.
Summarizing,

Al 1 0 0 A,
A:e =10 cos x sin x Ag |. (3.168)
A, 0 —siny cosy Ay

This equation specifies the components of A in the rotated coordinates at the point
(r,0’, ¢’ — y) in terms of the original components at the same physical point, (r, 8, ¢).

Reflection—Inversion of the coordinate system reverses the sign of each Cartesian coor-
dinate. Taking the angle ¢ as that which moves the new +x coordinate toward the new +y
coordinate, the system (which was originally right-handed) now becomes left-handed. The
coordinates (r, 8, ¢) of a (fixed) point become, in the new system, (r, 7 — 0, 7w + ¢). The
unit vectors &, and &, are invariant under inversion, but & changes sign, so

Al A,
Ay | =|—-A4s |, coordinate inversion. (3.169)
A, Ay

Exercises

3.10.1

3.10.2

The u-, v-, z-coordinate system frequently used in electrostatics and in hydrodynamics
is defined by

xy=u, xz—y =v, z=2.
This u-, v-, z-system is orthogonal.

(a) In words, describe briefly the nature of each of the three families of coordinate
surfaces.

(b) Sketch the system in the xy-plane showing the intersections of surfaces of constant
u and surfaces of constant v with the xy-plane.

(¢) Indicate the directions of the unit vectors €, and €, in all four quadrants.

(d) Finally, is this u-, v-, z-system right-handed (&, x €, = +¢€;) or left-handed (€, x
€, =—¢,)?

The elliptic cylindrical coordinate system consists of three families of surfaces:

x2 y2 x2 y2

-1 Q@ -
a2cosh’u  a?sinh®u ’ a?cos?v  q2sin®v

(M

=1; 3) z==z.

Sketch the coordinate surfaces # = constant and v = constant as they intersect the first
quadrant of the xy-plane. Show the unit vectors €, and €,. The range of u is 0 < u < oc.
The range of vis 0 < v < 2m.



3.10.3

3.10.4

3.10.5

3.10.6

3.10.7

3.10.8
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Develop arguments to show that dot and cross products (not involving V) in orthogonal
curvilinear coordinates in R3 proceed, as in Cartesian coordinates, with no involvement
of scale factors.

With €; a unit vector in the direction of increasing g1, show that

1 d(hah
@ V-& = (hah3)
hihahs  dqi
1 1 0h 1 doh
(b) V xé = |:éz——1—é3——1:|.
hy L h dgs hy 3q2

Note that even though €; is a unit vector, its divergence and curl do not necessarily
vanish.

Show that a set of orthogonal unit vectors €; may be defined by

R 1 or
6 =——.
hi 9q;

In particular, show that €; - ¢, = 1 leads to an expression for /; in agreement with
Eq. (3.131).
The above equation for €; may be taken as a starting point for deriving

and

Resolve the circular cylindrical unit vectors into their Cartesian components (see
Fig. 3.23).

ANS. ép =&, cosg + éy sin¢,
e(,) = —&,sing + &, cos ¢,
eZ - eZ

Resolve the Cartesian unit vectors into their circular cylindrical components (see
Fig. 3.23).
ANS. &, =@,cosp — &,sing,
e, =¢&,sing + &, cosy,
e, =¢€,.
From the results of Exercise 3.10.6, show that
de R 2é R
P _a " Y _ _& )
dp ap
and that all other first derivatives of the circular cylindrical unit vectors with respect to
the circular cylindrical coordinates vanish.
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3.10.9

3.10.10

3.10.11

3.10.12

3.10.13

3.10.14

Compare V -V as given for cylindrical coordinates in Eq. (3.148) with the result of its
computation by applying to V the operator

V¢ 0 I 10 L 0
=e¢,— e,—— e, —
P ap Y dp ‘oz
Note that V acts both on the unit vectors and on the components of V.
(a) Showthatr=e¢,p + &,z.
(b) Working entirely in circular cylindrical coordinates, show that
V.r=3 and Vxr=0.

(a) Show that the parity operation (reflection through the origin) on a point (p, ¢, z)
relative to fixed x-, y-, z-axes consists of the transformation

p—>p, ¢o—extm, 27— —2Z.

(b) Show that €, and &, have odd parity (reversal of direction) and that &, has even
parity.
Note. The Cartesian unit vectors €,, €,, and €, remain constant.

A rigid body is rotating about a fixed axis with a constant angular velocity . Take ®
to lie along the z-axis. Express the position vector r in circular cylindrical coordinates
and using circular cylindrical coordinates,

(a) calculatev=w X,
(b) calculate V x v.

ANS. (a) v=eywp
b)) Vxv=2w.

Find the circular cylindrical components of the velocity and acceleration of a moving
particle,

vo=p, a,=p—pg’,

Vo = PP, ap=pP+209,

v, =2, a, =7%.
Hint. r(r) =e,()p(t) + &,z(1)

=[excosg(r) + &, sing(t)]p(r) + €,z(1).
Note. p =dp/dt, p =d*p/dt*, and so on.
In right circular cylindrical coordinates, a particular vector function is given by
Vo, 0) =&,V,(p.9) +&Vy(p, 9).

Show that V x V has only a z-component. Note that this result will hold for any vector
confined to a surface g3 = constant as long as the products #;V) and h,V, are each
independent of g3.



3.10.15

3.10.16

3.10.17

3.10.18

3.10.19

3.10.20

3.10.21

3.10.22
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A conducting wire along the z-axis carries a current /. The resulting magnetic vector
potential is given by
Ny 1
A=¢, H n (—) .
2 0

Show that the magnetic induction B is given by

I
B=¢,——.
2mp
A force is described by
A y A X

_exxz_’_y2 +eyx2+y2.

F=

(a) Express F in circular cylindrical coordinates.
Operating entirely in circular cylindrical coordinates for (b) and (c),
(b) Calculate the curl of F and
(c) Calculate the work done by F in encircling the unit circle once counter-clockwise.
(d) How do you reconcile the results of (b) and (c¢)?

A calculation of the magnetohydrodynamic pinch effect involves the evaluation of

(B - V)B. If the magnetic induction B is taken to be B = &, B, (p), show that
(B-V)B=—¢&,B,/p.

Express the spherical polar unit vectors in terms of Cartesian unit vectors.

ANS. &, = e sinfcos¢g + &, sinf sing + €;cosb,
€y =&, cosf cosg + &, cosfsing — e;sinb,
€y = —€x SInY + €y, Cos .

Resolve the Cartesian unit vectors into their spherical polar components:

€x

€, sinf cos @ + €y cos 6 cosp — &, sing,
e, =&, sinf sing + & cosf sing + &, cos ¢,
€, =€, cosf — ey sinb.

(a) Explain why it is not possible to relate a column vector r (with components x,
¥, z) to another column vector r’ (with components r, 6, ¢), via a matrix equation
of the form r’ = Br.

(b) One can write a matrix equation relating the Cartesian components of a vector to
its components in spherical polar coordinates. Find the transformation matrix and
determine whether it is orthogonal.

Find the transformation matrix that converts the components of a vector in spherical
polar coordinates into its components in circular cylindrical coordinates. Then find the
matrix of the inverse transformation.

(a) From the results of Exercise 3.10.18, calculate the partial derivatives of &, &y, and
&, with respect to r, 6, and ¢.
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3.10.23

3.10.24

3.10.25

3.10.26

3.10.27

(b) With V given by
. 0 4o 10 n 1 9
& —+e——+¢€ —
Tor 0 90 " “rsind dg

(greatest space rate of change), use the results of part (a) to calculate V - V. This
is an alternate derivation of the Laplacian.

A

Note. The derivatives of the left-hand V operate on the unit vectors of the right-hand V
before the dot product is evaluated.

A rigid body is rotating about a fixed axis with a constant angular velocity @. Take @ to

be along the z-axis. Using spherical polar coordinates,

(a) calculatev=w xr.
(b) calculate V x v.

ANS. (a) v=_g@ywrsinb.
(b)) Vxv=2w.

A certain vector V has no radial component. Its curl has no tangential components.
What does this imply about the radial dependence of the tangential components of V?

Modern physics lays great stress on the property of parity (whether a quantity remains
invariant or changes sign under an inversion of the coordinate system). In Cartesian
coordinates this means x — —x, y - —y, and z > —z.

(a) Show that the inversion (reflection through the origin) of a point (r, 8, ¢) relative
to fixed x-, y-, z-axes consists of the transformation
r—>r, 6—>m—-0, ¢—>¢xm.
(b) Show that &, and &, have odd parity (reversal of direction) and that & has even
parity.
With A any vector,
A-Vr=A.

(a) Verify this result in Cartesian coordinates.
(b) Verify this result using spherical polar coordinates. Equation (3.156) provides V.

Find the spherical coordinate components of the velocity and acceleration of a moving
particle:

v =7, a, =¥ —r6% — rsin 0>,
Vg :ré, ag :r§+2fé—rsin90059¢2,

vy =rsinf¢, ay,=rsinf¢ + 27 sinf¢ + 2r cos00¢.



3.10.28

3.10.29

3.10.30

3.10.31
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Hint. r(t)=¢,.()r(t)
= [€, sin&(r) cos ¢ (t) + &, sin b (¢) sin(r) + &, cos O (t)]r (¢).
Note. The dot in 7, é, ¢ means time derivative: r = dr/dt, 6= de/dt,
¢ =dg/dt.
Express d/dx, 0/dy, d/0dz in spherical polar coordinates.

a d 19 sing 0

ANS. =sin0¢osg08— +cosfcosgp—— —
r

ax r 30  rsind g’
d 0 si 8+ 0,18+cos¢)8

— =sinfsing — + cosf sinp— — —,
dy Yor Y796 " rsind g

0 0 .

— =cosf— —sinf——.

0z ar r a0

Hint. Equate V,,; and V,g,.

Using results from Exercise 3.10.28, show that

This is the quantum mechanical operator corresponding to the z-component of orbital
angular momentum.

With the quantum mechanical orbital angular momentum operator defined as L =
—i(r x V), show that

; a d
(@) Ly+iL,=e¢"? (— +icot9—>,
%
; a ad
(b) Ly—iLy=—e"? (— —icot@—).
®

Verify that L x L = iL in spherical polar coordinates. L = —i(r x V), the quantum
mechanical orbital angular momentum operator.
Written in component form, this relation is

LyL,—L,Ly=iL,, L,Ly—L,L;=-Ly, LyLy—LyL,=iL,.

Using the commutator notation, [A, B] = AB — BA, and the definition of the Levi-
Civita symbol ¢;, the above can also be written

[Li, Lj]=ieéiji Li,

where i, j, k are x, y, z in any order.
Hint. Use spherical polar coordinates for L but Cartesian components for the cross
product.
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3.10.32

3.10.33

3.10.34

3.10.35

3.10.36

(a)

(b)

(©)

Using Eq. (3.156) show that
L=—i(rxV)=i <é9#i —é(pi).
sinf d¢ a6
Resolving €y and €, into Cartesian components, determine L., Ly, and L in
terms of 0, ¢, and their derivatives.
From L% = L)zc + L% + L? show that

5 1 a8 /. @ 1 9?
LZ—_—— sing — YY)
20 sin“ 6 ¢

3 3
" a) (r E >

With L = —ir x V, verify the operator identities

(@)

(b)

Voo 0 rxL
=8 — —1i ,
"or r2

9
er—V<1+ra—)=iVxL.
r

Show that the following three forms (spherical coordinates) of V24 (r) are equivalent:

(a)

1d [ ,dy(r)] 1 d? , >y (r) | 2dy(r)
’725[7 ar :|, (b) ;ﬁ[“ﬁ(”)], () P +; dr

The second form is particularly convenient in establishing a correspondence between
spherical polar and Cartesian descriptions of a problem.

A certain force field is given in spherical polar coordinates by

(a)
(b)

(©)
(a)
(b)

(©)

2Pcos6 . P .
—+e9731n0, r>PJ/2.
e

Examine V X F to see if a potential exists.

Calculate § F - dr for a unit circle in the plane 6 = /2. What does this indicate
about the force being conservative or nonconservative?

If you believe that F may be described by F = —V, find ¢ . Otherwise simply
state that no acceptable potential exists.

Show that A = —&, cotf/r is a solution of V x A =&, /r?.
Show that this spherical polar coordinate solution agrees with the solution given
for Exercise 3.9.5:

n yz R Xz
=&y —ey .

r(x2+y2)  ra24+y?)

Note that the solution diverges for 6 =0, 7 corresponding to x, y = 0.
Finally, show that A = —&y¢ sin6/r is a solution. Note that although this solution
does not diverge (r # 0), it is no longer single-valued for all possible azimuth
angles.

A
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An electric dipole of moment p is located at the origin. The dipole creates an electric
potential at r given by
p .
r) =
v 4 egr3

Find the electric field, E= -V atr.

Additional Readings
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Davis, H. F., and A. D. Snider, Introduction to Vector Analysis, 7th ed. Boston: Allyn & Bacon (1995).

Kellogg, O. D., Foundations of Potential Theory. Berlin: Springer (1929), reprinted, Dover (1953). The classic
text on potential theory.

Lewis, P. E., and J. P. Ward, Vector Analysis for Engineers and Scientists. Reading, MA: Addison-Wesley (1989).
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using left-handed coordinate systems even for Cartesian coordinates. Elsewhere in this excellent (and diffi-
cult) book there are many examples of the use of the various coordinate systems in solving physical problems.
Eleven additional fascinating but seldom-encountered orthogonal coordinate systems are discussed in the sec-
ond (1970) edition of Mathematical Methods for Physicists.

Spiegel, M. R., Vector Analysis. New York: McGraw-Hill (1989).

Tai, C.-T., Generalized Vector and Dyadic Analysis. Oxford: Oxford University Press (1966).

Wrede, R. C., Introduction to Vector and Tensor Analysis. New York: Wiley (1963), reprinting, Dover (1972).
Fine historical introduction. Excellent discussion of differentiation of vectors and applications to mechanics.



CHAPTER 4

TENSORS AND
DIFFERENTIAL FORMS

4.1 TENSOR ANALYSIS

Introduction, Properties

Tensors are important in many areas of physics, ranging from topics such as general relativ-
ity and electrodynamics to descriptions of the properties of bulk matter such as stress (the
pattern of force applied to a sample) and strain (its response to the force), or the moment
of inertia (the relation between a torsional force applied to an object and its resultant angu-
lar acceleration). Tensors constitute a generalization of quantities previously introduced:
scalars and vectors. We identified a scalar as an quantity that remained invariant under
rotations of the coordinate system and which could be specified by the value of a sin-
gle real number. Vectors were identified as quantities that had a number of real compo-
nents equal to the dimension of the coordinate system, with the components transforming
like the coordinates of a fixed point when a coordinate system is rotated. Calling scalars
tensors of rank 0 and vectors tensors of rank 1, we identify a tensor of rank n in a
d-dimensional space as an object with the following properties:

e Ithas components labeled by n indices, with each index assigned values from 1 through
d, and therefore having a total of d" components;

e The components transform in a specified manner under coordinate transformations.

The behavior under coordinate transformation is of central importance for tensor anal-
ysis and conforms both with the way in which mathematicians define linear spaces and
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with the physicist’s notion that physical observables must not depend on the choice of
coordinate frames.

Covariant and Contravariant Tensors

In Chapter 3, we considered the rotational transformation of a vector A = A €] + A&, +
Ase3 from the Cartesian system defined by €; (i = 1, 2, 3) into a rotated coordinate system
defined by &}, with the same vector A then represented as A’ = A’ &] + A,&, + Ale}. The
components of A and A’ are related by

Aj=) @ -4y, @1
J

where the coefficients (€] - ;) are the projections of € in the &; directions. Because the &;
and the &; are linearly related, we can also write

a =Sy 42)
! n 8x j I '
J

The formula of Eq. (4.2) corresponds to the application of the chain rule to convert the set
Aj into the set A}, and is valid for A; and A’ of arbitrary magnitude because both vectors
depend linearly on their components.

We have also previously noted that the gradient of a scalar ¢ has in the unrotated Carte-
sian coordinates the components (V) ; = (d¢/dx;)€;, meaning that in a rotated system
we would have

ap ax; 0@
Vo)=L =) <L~ 43
Vol =5 ;Bxi’ o (4.3)

showing that the gradient has a transformation law that differs from that of Eq. (4.2) in
that 9x//0x; has been replaced by dx;/dx/. Remembering that these two expressions, if
written in detail, correspond, respectively, to (8xlf /0x;j)x, and (dx;/ 8x{ ) X where k runs
over the index values other than that already in the denominator, and also noting that (in
Cartesian coordinates) they are two different ways of computing the same quantity (the
magnitude and sign of the projection of one of these unit vectors upon the other), we see
that it was legitimate to identify both A and V¢ as vectors, as we did in Chapter 3.
However, as the alert reader may note from the repeated insertion of the word
“Cartesian,” the partial derivatives in Eqs. (4.2) and (4.3) are only guaranteed to be equal
in Cartesian coordinate systems, and since there is sometimes a need to use non-Cartesian
systems it becomes necessary to distinguish these two different transformation rules. Quan-
tities transforming according to Eq. (4.2) are called contravariant vectors, while those
transforming according to Eq. (4.3) are termed covariant. When non-Cartesian systems
may be in play, it is therefore customary to distinguish these transformation properties by
writing the index of a contravariant vector as a superscript and that of a covariant vector as
a subscript. This means, among other things, that the components of the position vector r,
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which is contravariant, must now be written (x', x2, x3). Thus, summarizing,

. 9 Ay} . .
A = Z ;%j) A’ A, a contravariant vector, (4.4)
j
ax/
A= Z FTeoy Aj A, acovariant vector. (4.5)
J

It is useful to note that the occurrence of subscripts and superscripts is systematic; the
free (i.e., unsummed) index i occurs as a superscript on both sides of Eq. (4.4), while it
appears as a subscript on both sides of Eq. (4.5), if we interpret an upper index in the
denominator as equivalent to a lower index. The summed index occurs once as upper
and once as lower (again treating an upper index in the denominator as a lower index).
A frequently used shorthand (the Einstein convention) is to omit the summation sign in
formulas like Eqs. (4.4) and (4.5) and to understand that when the same symbol occurs
both as an upper and a lower index in the same expression, it is to be summed. We will
gradually back into the use of the Einstein convention, giving the reader warnings as we
start to do so.

Tensors of Rank 2

Now we proceed to define contravariant, mixed, and covariant tensors of rank 2 by the
following equations for their components under coordinate transformations:

ayi = 3 LAY

m axk  9x! ’

. axHt axt
B, =Y ————Bf, 4.6
(B — oxk o)/ (46)

axk  ax!
Chij=Y —————Cu.
( )lj ;a(x/)l d(x')) kl

Clearly, the rank goes as the number of partial derivatives (or direction cosines) in the
definition: O for a scalar, 1 for a vector, 2 for a second-rank tensor, and so on. Each index
(subscript or superscript) ranges over the number of dimensions of the space. The number
of indices (equal to the rank of tensor) is not limited by the dimensionality of the space. We
see that AX! is contravariant with respect to both indices, Cy; is covariant with respect to
both indices, and Blk transforms contravariantly with respect to the index k but covariantly
with respect to the index /. Once again, if we are using Cartesian coordinates, all three
forms of the tensors of second rank, contravariant, mixed, and covariant are the same.

As with the components of a vector, the transformation laws for the components of a
tensor, Eq. (4.6), cause its physically relevant properties to be independent of the choice
of reference frame. This is what makes tensor analysis important in physics. The inde-
pendence relative to reference frame (invariance) is ideal for expressing and investigating
universal physical laws.
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The second-rank tensor A (with components A¥) may be conveniently represented by
writing out its components in a square array (3 x 3 if we are in three-dimensional (3-D)
space):

All A12 A13
A= | A2 A22 4B |, 4.7)
A3l A32 A33

This does not mean that any square array of numbers or functions forms a tensor. The
essential condition is that the components transform according to Eq. (4.6).
We can view each of Eq. (4.6) as a matrix equation. For A, it takes the form

(AT =Sy AM (ST or A =8AST, (4.8)
kl

a construction that is known as a similarity transformation and is discussed in
Section 5.6.

In summary, tensors are systems of components organized by one or more indices that
transform according to specific rules under a set of transformations. The number of
indices is called the rank of the tensor.

Addition and Subtraction of Tensors

The addition and subtraction of tensors is defined in terms of the individual elements, just
as for vectors. If

A+B=C, (4.9)
then, taking as an example A, B, and C to be contravariant tensors of rank 2,
Al 4 B = C, (4.10)
In general, of course, A and B must be tensors of the same rank (of both contra- and
co-variance) and in the same space.

Symmetry
The order in which the indices appear in our description of a tensor is important. In general,
A™" is independent of A™", but there are some cases of special interest. If, for all m and n,
A" = A" Ais symmetric. (4.11)
If, on the other hand,
A" = —A" " Ais antisymmetric. (4.12)

Clearly, every (second-rank) tensor can be resolved into symmetric and antisymmetric
parts by the identity

1 1

the first term on the right being a symmetric tensor, the second, an antisymmetric tensor.
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To illustrate some of the techniques of tensor analysis, let us show that the now-familiar
Kronecker delta, &, is really a mixed tensor of rank 2, 8," .I The question is: Does Slk trans-
form according to Eq. (4.6)? This is our criterion for calling it a tensor. If Slk is the mixed
tensor corresponding to this notation, it must satisfy (using the summation convention,
meaning that the indices k and / are to be summed)

a(x) ox! o) oxk
axk a(x) LT axk axnyd’
where we have performed the / sum and used the definition of the Kronecker delta. Next,
I axk )
axk a(x — a(xi’
where we have identified the k¢ summation on the left-hand side as an instance of the
chain rule for differentiation. However, (x")' and (x")/ are independent coordinates, and

therefore the variation of one with respect to the other must be zero if they are different,
unity if they coincide; that is,

¢ =

N
m =(6 )j. (4.14)
Hence
ni 0Dt axl

showing that the 811‘ are indeed the components of a mixed second-rank tensor. Note that
this result is independent of the number of dimensions of our space.

The Kronecker delta has one further interesting property. It has the same components in
all of our rotated coordinate systems and is therefore called isotropic. In Section 4.2 and
Exercise 4.2.4 we shall meet a third-rank isotropic tensor and three fourth-rank isotropic
tensors. No isotropic first-rank tensor (vector) exists.

Contraction

When dealing with vectors, we formed a scalar product by summing products of corre-
sponding components:

A-B= E A;B;.
i
The generalization of this expression in tensor analysis is a process known as contraction.

Two indices, one covariant and the other contravariant, are set equal to each other, and then
(as implied by the summation convention) we sum over this repeated index. For example,

1t is common practice to refer to a tensor A by specifying a typical component, such as A;;, thereby also conveying information

as to its covariant vs. contravariant nature. As long as you refrain from writing nonsense such as A= A;;, no harm is done.
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let us contract the second-rank mixed tensor B;'. by setting j to i, then summing over i. To

see what happens, let’s look at the transformation formula that converts B into B’. Using
the summation convention,

' !
a(x")' ax k_ ax!
axk () ! T axk
where we recognized the i summation as an instance of the chain rule for differentiation.
Then, because the x' are independent, we may use Eq. (4.14) to reach

(B"); = 8B = B}. (4.16)

(B = Bf,

Remembering that the repeated index (i or k) is summed, we see that the contracted B
is invariant under transformation and is therefore a scalar.” In general, the operation of
contraction reduces the rank of a tensor by 2.

Direct Product

The components of two tensors (of any ranks and covariant/contravariant characters) can
be multiplied, component by component, to make an object with all the indices of both
factors. The new quantity, termed the direct product of the two tensors, can be shown to be
a tensor whose rank is the sum of the ranks of the factors, and with covariant/contravariant
character that is the sum of those of the factors. We illustrate:

j
Cklm = Al B Fkl = A’ sz

Im>

Note that the index order in the direct product can be defined as desired, but the covari-
ance/contravariance of the factors must be maintained in the direct product.

Example 4.1.1  DirecT PRODUCT OF TWO VECTORS

Let’s form the direct product of a covariant vector a; (rank-1 tensor) and a contravariant
vector b/ (also a rank-1 tensor) to form a mixed tensor of rank 2, with components C l] =

a;b’ . To verify that C l] is a tensor, we consider what happens to it under transformation:
axk ! axk a(x)l

Y = @)@y = =
(€ =@y = 5y b= s S
confirming that C lj is the mixed tensor indicated by its notation.

If we now form the contraction Cf (remember that i is summed), we obtain the scalar
product a;b'. From Eq. (4.17) it is easy to see that ¢;b' = (a’); (b')’, indicating the invari-
ance required of a scalar product. |

cl, (4.17)

Note that the direct product concept gives a meaning to quantities such as VE, which
was not defined within the framework of vector analysis. However, this and other tensor-
like quantities involving differential operators must be used with caution, because their

2In matrix analysis this scalar is the trace of the matrix whose elements are the B;
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transformation rules are simple only in Cartesian coordinate systems. In non-Cartesian
systems, operators d/dx’ act also on the partial derivatives in the transformation expres-
sions and alter the tensor transformation rules.

We summarize the key idea of this subsection:

The direct product is a technique for creating new, higher-rank tensors.

Inverse Transformation

If we have a contravariant vector A’, which must have the transformation rule (using sum-
mation convention)

d(x")

~_ Al
Ax! ’

(A =
the inverse transformation (which can be obtained simply by interchanging the roles of the
primed and unprimed quantities) is

ax!

i_ nNJ
Al = TR (A", (4.18)

as may also be verified by applying 8(x")¥/dx? (and summing i) to A’ as given by
Eq. (4.18):
3(x)* AP = Ik ox!
axi T axt a(x)i

(A = 5’; (A") = (A, (4.19)

We see that (A")* is recovered. Incidentally, note that
o [awy -
(x")J dxt ’

as we have previously pointed out, these derivatives have different other variables held

fixed. The cancellation in Eq. (4.19) only occurs because the product of derivatives is
summed. In Cartesian systems, we do have

oxt o(x)/
A~ axi

’

both equal to the direction cosine connecting the x’ and (x)/ axes, but this equality does
not extend to non-Cartesian systems.

Quotient Rule

If, for example, A;; and By, are tensors, we have already observed that their direct product,
AjjBy, is also a tensor. Here we are concerned with the inverse problem, illustrated by
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equations such as

K;A' =B,
K!Aj=B;,
K! Aji = Bu, (4.20)
KijuAY = By,
K Ak = Biik,

In each of these expressions A and B are known tensors of ranks indicated by the number
of indices, A is arbitrary, and the summation convention is in use. In each case K is an
unknown quantity. We wish to establish the transformation properties of K. The quotient
rule asserts:

If the equation of interest holds in all transformed coordinate systems, then K is a tensor
of the indicated rank and covariant/contravariant character.

Part of the importance of this rule in physical theory is that it can establish the tensor
nature of quantities. For example, the equation giving the dipole moment m induced in an
anisotropic medium by an electric field E is

m; = P,'jEj.

Since presumably we know that m and E are vectors, the general validity of this equation
tells us that the polarization matrix P is a tensor of rank 2.

Let’s prove the quotient rule for a typical case, which we choose to be the second of
Eqgs. (4.20). If we apply a transformation to that equation, we have

K/Aj=B — (K)/A,=B, (4.21)

We now evaluate B, reaching the last member of the equation below by using Eq. (4.18)
to convert A; into components of A’ (note that this is the inverse of the transformation to
the primed quantities):
; ax™ )"
B;: - By, = _ K}, ji= - r]n()A;l
A(x’) a(x) a(x) ax/

It may lessen possible confusion if we rename the dummy indices in Eq. (4.22), so we
interchange n and j, causing that equation to then read

B — axm ax .
Pt axn MmUY

ax™ ax™
m

(4.22)

(4.23)

It has now become clear that if we subtract the expression for B/ in Eq. (4.23) from that in
Eq. (4.21) we will get

i ™ () ] P
[(K ), T Al =0. (4.24)

Since A’ is arbitrary, the coefficient of A/j in Eq. (4.24) must vanish, showing that K has
the transformation properties of the tensor corresponding to its index configuration.
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Other cases may be treated similarly. One minor pitfall should be noted: The quotient
rule does not necessarily apply if B is zero. The transformation properties of zero are
indeterminate.

Example 4.1.2  EQUATIONS OF MOTION AND FIELD EQUATIONS

In classical mechanics, Newton’s equations of motion mv = F tell us on the basis of the
quotient rule that, if the mass is a scalar and the force a vector, then the acceleration a=v
is a vector. In other words, the vector character of the force as the driving term imposes its
vector character on the acceleration, provided the scale factor m is scalar.

The wave equation of electrodynamics can be written in relativistic four-vector form as

1 82
B
C

where J" is the external charge/current density (a four-vector) and A" is the four-
component vector potential. The second-derivative expression in square brackets can be

shown to be a scalar. From the quotient rule, we may then infer that A* must be a tensor
of rank 1, i.e., also a four-vector. |

The quotient rule is a substitute for the illegal division of tensors.

Spinors

It was once thought that the system of scalars, vectors, tensors (second-rank), and so on
formed a complete mathematical system, one that is adequate for describing a physics
independent of the choice of reference frame. But the universe and mathematical physics
are not that simple. In the realm of elementary particles, for example, spin-zero particles’
(w mesons, « particles) may be described with scalars, spin 1 particles (deuterons) by
vectors, and spin 2 particles (gravitons) by tensors. This listing omits the most common
particles: electrons, protons, and neutrons, all with spin % These particles are properly
described by spinors. A spinor does not have the properties under rotation consistent with
being a scalar, vector, or tensor of any rank. A brief introduction to spinors in the context

of group theory appears in Chapter 17.

Exercises

4.1.1

Show that if all the components of any tensor of any rank vanish in one particular
coordinate system, they vanish in all coordinate systems.

Note. This point takes on special importance in the four-dimensional (4-D) curved space
of general relativity. If a quantity, expressed as a tensor, exists in one coordinate sys-
tem, it exists in all coordinate systems and is not just a consequence of a choice of a
coordinate system (as are centrifugal and Coriolis forces in Newtonian mechanics).

3The particle spin is intrinsic angular momentum (in units of 7). It is distinct from classical (often called orbital) angular
momentum that arises from the motion of the particle.
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4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9
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The components of tensor A are equal to the corresponding components of tensor B in
one particular coordinate system denoted, by the superscript O; that is,

0 0
A; = B; i
Show that tensor A is equal to tensor B, A;; = B;;, in all coordinate systems.

The last three components of a 4-D vector vanish in each of two reference frames. If the
second reference frame is not merely a rotation of the first about the xg axis, meaning
that at least one of the coefficients 8(x") /x° (i = 1,2,3) is nonzero, show that the
zeroth component vanishes in all reference frames. Translated into relativistic mechan-
ics, this means that if momentum is conserved in two Lorentz frames, then energy is
conserved in all Lorentz frames.

From an analysis of the behavior of a general second-rank tensor under 90° and 180°
rotations about the coordinate axes, show that an isotropic second-rank tensor in 3-D
space must be a multiple of 83..

The 4-D fourth-rank Riemann-Christoffel curvature tensor of general relativity, R;xim,
satisfies the symmetry relations

Rikim = —Rikmi = — Reiim-

With the indices running from 0 to 3, show that the number of independent components
is reduced from 256 to 36 and that the condition

Rikim = Rimik

further reduces the number of independent components to 21. Finally, if the components
satisfy an identity Rjx;m + Riimk + Rimki = 0, show that the number of independent
components is reduced to 20.

Note. The final three-term identity furnishes new information only if all four indices are
different.

Tikim 1s antisymmetric with respect to all pairs of indices. How many independent com-
ponents has it (in 3-D space)?

If T _; is a tensor of rank n, show that BTH_,‘/ij is a tensor of rank n + 1 (Cartesian
coordinates).

Note. In non-Cartesian coordinate systems the coefficients g;; are, in general, functions
of the coordinates, and the derivatives the components of a tensor of rank n do not
form a tensor except in the special case n = 0. In this case the derivative does yield a
covariant vector (tensor of rank 1).

If Tjjx... is a tensor of rank n, show that Zj 8T,‘jk_“/8xj is a tensor of rank n — 1
(Cartesian coordinates).

The operator

»_ 192
c2 3r?
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may be written as
>
P— 0x;

using x4 = ict. This is the 4-D Laplacian, sometimes called the d’Alembertian and
denoted by [12. Show that it is a scalar operator, that is, invariant under Lorentz trans-
formations, i.e., under rotations in the space of vectors (x!, x2, x3, x*).

4.1.10  The double summation K; in B/ is invariant for any two vectors A’ and B/. Prove that
K;; is a second-rank tensor.

Note. In the form ds? (invariant) = g; j dx" dx/, this result shows that the matrix g; j 1is
a tensor.

4.1.11  The equation K;; ATk = B{‘ holds for all orientations of the coordinate system. If A and
B are arbitrary second-rank tensors, show that K is a second-rank tensor also.

4.2 PSEUDOTENSORS, DUAL TENSORS

The topics of this section will be treated for tensors restricted for practical reasons to Carte-
sian coordinate systems. This restriction is not conceptually necessary but simplifies the
discussion and makes the essential points easy to identify.

Pseudotensors

So far the coordinate transformations in this chapter have been restricted to passive rota-
tions, by which we mean rotation of the coordinate system, keeping vectors and tensors at
fixed orientations. We now consider the effect of reflections or inversions of the coordinate
system (sometimes also called improper rotations).

In Section 3.3, where attention was restricted to orthogonal systems of Cartesian coor-
dinates, we saw that the effect of a coordinate rotation on a fixed vector could be described
by a transformation of its components according to the formula

A =SA, (4.25)

where S was an orthogonal matrix with determinant +1. If the coordinate transformation
included a reflection (or inversion), the transformation matrix was still orthogonal, but
had determinant —1. While the transformation rule of Eq. (4.25) was obeyed by vectors
describing quantities such as position in space or velocity, it produced the wrong sign
when vectors describing angular velocity, torque, and angular momentum were subject to
improper rotations. These quantities, called axial vectors, or nowadays pseudovectors,
obeyed the transformation rule

A’ =det(S)SA (pseudovector). (4.26)

The extension of this concept to tensors is straightforward. We insist that the designation
tensor refer to objects that transform as in Eq. (4.6) and its generalization to arbitrary
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rank, but we also accommodate the possibility of having, at arbitrary rank, objects whose
transformation requires an additional sign factor to adjust for the effect associated with
improper rotations. These objects are called pseudotensors, and constitute a generalization
of the objects already identified as pseudoscalars and pseudovectors.

If we form a tensor or pseudotensor as a direct product or identify one via the quotient
rule, we can determine its pseudo status by what amounts to a sign rule. Letting T be a
tensor and P a pseudotensor, then, symbolically,

T®T=P®P=T, TQP=P®T=P. (4.27)

Example 4.2.1 LEVI-CIVITA SYMBOL

The three-index version of the Levi-Civita symbol, introduced in Eq. (2.8), has the values

€123 = €231 = &312 = +1,
g1z =813 =¢831=—1, (4.28)
all other ¢;j; = 0.

Suppose now that we have a rank-3 pseudotensor 7z, which in one particular Cartesian
coordinate system is equal to &; . Then, letting A stand for the matrix of coefficients in an
orthogonal transformation of R3, we have in the transformed coordinate system

nl{jk =det(A) Z AipQjqQkr€pqr, (429)
rqr

by definition of pseudotensor. All terms of the pgr sum will vanish except those where
pqr is a permutation of 123, and when pgr is such a permutation the sum will correspond
to the determinant of A except that its rows will have been permuted from 123 to i jk. This
means that the pgr sum will have the value ¢; jx det(A), and

0 = eijk [detW) P = e, (4.30)

where the final result depends on the fact that | det(A)| = 1. If the reader is uncomfortable
with the above analysis, the result can be checked by enumeration of the contributions of
the six permutations that correspond to nonzero values of #; e

Equation (4.30) not only shows that ¢ is a rank-3 pseudotensor, but that it is also
isotropic. In other words, it has the same components in all rotated Cartesian coordinate
systems, and —1 times those component values in all Cartesian systems that are reached
by improper rotations. ]

Dual Tensors

With any antisymmetric second-rank tensor C (in 3-D space) we may associate a pseu-
dovector C with components defined by

C,':%é‘ijkcjk. 4.31)



4.2 Pseudsotensors, Dual Tensors 217

In matrix form the antisymmetric C may be written

0 C12 _C31
c=|-c? o c* | (4.32)
C31 _C23 0

We know that C; must transform as a vector under rotations because it was obtained from
the double contraction of ¢;;; C/ k_but that it is really a pseudovector because of the pseudo
nature of ¢;¢. Specifically, the components of C are given by

(C1, C2, C3) = (C3, 3, ). (4.33)

Note the cyclic order of the indices that comes from the cyclic order of the components
of Eijk-

We identify the pseudovector of Eq. (4.33) and the antisymmetric tensor of Eq. (4.32)
as dual tensors; they are simply different representations of the same information. Which
of the dual pair we choose to use is a matter of convenience.

Here is another example of duality. If we take three vectors A, B, and C, we may define
the direct product

vik=A'BICk. (4.34)
Viik is evidently a rank-3 tensor. The dual quantity
V=g Vik (4.35)
is clearly a pseudoscalar. By expansion it is seen that
Al B! C!
V =|A? B2 C? (4.36)
A3 B3 C3

is our familiar scalar triple product.

Exercises

4.2.1

4.2.2

An antisymmetric square array is given by
0 C3 —C 0o c?cb
-C3 0 C |=|-c? 0o c*?|,
C, —Ci 0 -cB3-c® o

where (C1, C2, C3) form a pseudovector. Assuming that the relation
1 .
C,’ = 5 SijkC'/k

holds in all coordinate systems, prove that C/* is a tensor. (This is another form of the
quotient theorem.)

Show that the vector product is unique to 3-D space, that is, only in three dimensions can
we establish a one-to-one correspondence between the components of an antisymmetric
tensor (second-rank) and the components of a vector.
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4.2.4

4.2.5

4.2.6

4.2.7
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Write V-V x A and V x Vg in tensor (index) notation in IR so that it becomes obvious
that each expression vanishes.

ad
oxi

k

?
ANS. V-V xA=cgijps oA

a 0
(vaw)z—gl]ka Jaxk(p

Verify that each of the following fourth-rank tensors is isotropic, that is, that it has the
same form independent of any rotation of the coordinate systems.

(a) A’k 8 3f,

(b) Bl =sis] +8i5],

) Cg =85l -3,

Show that the two-index Levi-Civita symbol &;; is a second-rank pseudotensor (in two-
dimensional [2-D] space). Does this contradict the uniqueness of 3} (Exercise 4.1.4)?

Represent ¢;; by a 2 x 2 matrix, and using the 2 x 2 rotation matrix of Eq. (3.23), show
that ¢;; is invariant under orthogonal similarity transformations.

Given A, = %sijkB"j with B = —BJI, antisymmetric, show that

B — SmnkAk.

4.3 TENSORS IN GENERAL COORDINATES

Metric Tensor

The distinction between contravariant and covariant transformations was established in
Section 4.1, where we also observed that it only became meaningful when working with
coordinate systems that are not Cartesian. We now want to examine relationships that can
systematize the use of more general metric spaces (also called Riemannian spaces). Our
initial illustrations will be for spaces with three dimensions.

Letting ¢’ denote coordinates in a general coordinate system, writing the index as a
superscript to reflect the fact that coordinates transform contravariantly, we define covari-
ant basis vectors &; that describe the displacement (in Euclidean space) per unit change
in ¢', keeping the other ¢/ constant. For the situations of interest here, both the direction
and magnitude of &; may be functions of position, so it is defined as the derivative

ox ay . 0z 6
€l‘:a—qiex+aq ey+8 7 Z'
An arbitrary vector A can now be formed as a linear combination of the basis vectors,
multiplied by coefficients:

(4.37)

A=Ale; + A%er+ Ades. (4.38)
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At this point we have a linguistic ambiguity: A is a fixed object (usually called a vector)
that may be described in various coordinate systems. But it is also customary to call the
collection of coefficients A’ a vector (more specifically, a contravariant vector), while
we have already called e; a covariant basis vector. The important thing to observe here is
that A is a fixed object that is not changed by our transformations, while its representation
(the A") and the basis used for the representation (the &;) change in mutually inverse ways
(as the coordinate system is changed) so as to keep A fixed.

Given our basis vectors, we can compute the displacement (change in position) associ-
ated with changes in the ¢’ . Because the basis vectors depend on position, our computation
needs to be for small (infinitesimal) displacements ds. We have

(ds)* =) (eidq') - (e;dq),
ij
which, using the summation convention, can be written
(ds)* =gijdq'dq’, (4.39)
with
gij=¢i-€j. (4.40)

Since (ds)? is an invariant under rotational (and reflection) transformations, it is a scalar,
and the quotient rule permits us to identify g;; as a covariant tensor. Because of its role in
defining displacement, g;; is called the covariant metric tensor.

Note that the basis vectors can be defined by their Cartesian components, but they are, in
general, neither unit vectors nor mutually orthogonal. Because they are often not unit vec-
tors we have identified them by the symbol &, not €. The lack of both a normalization and
an orthogonality requirement means that g;;, though manifestly symmetric, is not required
to be diagonal, and its elements (including those on the diagonal) may be of either sign.

It is convenient to define a contravariant metric tensor that satisfies

g e =gug" =4, (4.41)
and is therefore the inverse of the covariant metric tensor. We will use g;; and g" to make
conversions between contravariant and covariant vectors that we then regard as related.
Thus, we write

gijF/=F and g'F;=F" (4.42)
Returning now to Eq. (4.38), we can manipulate it as follows:

A=Alei=Aster = (A'gy) (s7er) = Aj e, (4.43)

showing that the same vector can be represented either by contravariant or covariant com-
ponents, with the two sets of components related by the transformation in Eq. (4.42).
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Covariant and Contravariant Bases

We now define the contravariant basis vectors
—— €, (4.44)

giving them this name in anticipation of the fact that we can prove them to be the con-
travariant versions of the &;. Our first step in this direction is to verify that

i

gt d gt 9 g’ 9 4
ee—ix+i_y+i_z L

=2 2 . i, 4.45
77 9x 9g) 3y dq) 08z gl Y (4.45)

a consequence of the chain rule and the fact that ¢’ and ¢/ are independent variables.
We next note that

(e -&)(e; ex) =8, (4.46)

also proved using the chain rule; the terms can be collected so that groups of them corre-
spond to the identities in Eq. (4.45). Equation (4.46) shows that

gl =¢l ¢, (4.47)

Multiplying both sides of Eq. (4.47) on the right by &; and performing the implied sum-
mation, the left-hand side of that equation, g'/ € ;, becomes the formula for &', while the
right-hand side simplifies to the expression in Eq. (4.44), thereby proving that the con-
travariant vector in that equation was appropriately named.

We illustrate now some typical metric tensors and basis vectors in both covariant and
contravariant form.

Example 4.3.1  SoME METRIC TENSORS

In spherical polar coordinates, (¢!, g%, ¢°) = (r, 0, ¢), and x = rsinf cos @, y = r sinf sin ¢,
z =r cos@. The covariant basis vectors are

e, =sinf cosg e, + sinfsing &, + cosb e,
g9 =rcosfcospe, +rcosfsinge, —rsinf e,
&y, =—rsinfsing e, +rsinf cosg ey,

and the contravariant basis vectors, which can be obtained in many ways, one of which is
to start from r2 = x2 + y*> 4 72, cos# = z/r, tang = y/x, are

e =sinf cosg €y +sinfsingp ey, + cosf &,

e’ =r~'cosfcospé, +r'cosd sing €, — r~'sinfé,,

sing cosQ .
e — —

. €y . €
rsinf rsing



4.3 Tensors in General Coordinates 221

leading to
g ==¢&r-& =1,
_ _ 2
822 =E€p-&p=T",
833 =6y & :rzsinze;

all other g;; vanish. Combining these to make g;; and taking the inverse (to make g, we
have

1 0 0 ) 1 0 0
(gj)=|0 r? 0 |. @hH=[0 r? 0
0 0 r2sin%6 0 0 (rsing)2

We can check that we have inverted g;; correctly by comparing the expression given for
g" from that built directly from &’ - &/. This check is left for the reader.
The Minkowski metric of special relativity has the form

1 o 0 O
i 0 -1 0 o

) — (ol) —
0o 0 0 -1

The motivation for including it in this example is to emphasize that for some met-
rics important in physics, distances ds> need not be positive (meaning that ds can be
imaginary). ]

The relation between the covariant and contravariant basis vectors is useful for writing
relationships between vectors. Let A and B be vectors with contravariant representations
(A") and (B'). We may convert the representation of B to B; = g; i BJ, after which the
scalar product A - B takes the form

A-B=(A'¢;) (Bje/)=A'Bj(e; -e/) = A'B;. (4.48)

Another application is in writing the gradient in general coordinates. If a function i is
given in a general coordinate system (q'), its gradient Vi is a vector with Cartesian com-
ponents

Yy g’
V)i = — —. 4.49
V) =57 5 (4.49)
In vector notation, Eq. (4.49) becomes
o
V=i (4.50)
aq!

showing that the covariant representation of V1 is the set of derivatives dv//dq". If we
have reason to use a contravariant representation of the gradient, we can convert its com-
ponents using Eq. (4.42).
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Covariant Derivatives

Moving on to the derivatives of a vector, we find that the situation is much more compli-
cated because the basis vectors &; are in general not constant, and the derivative will not
be a tensor whose components are the derivatives of the vector components.
Starting from the transformation rule for a contravariant vector,
- ax!
(V) = — V¥,
Gk
and differentiating with respect to ¢/, we get (for each i)
AVHE axt avk 9%
dg’  dqx 9q)  3q'dq
which appears to differ from the transformation law for a second-rank tensor because it
contains a second derivative.
To see what to do next, let’s write Eq. (4.51) as a single vector equation in the x; coor-
dinates, which we take to be Cartesian. The result is
v’ vk v ek
- = —— & —+ vt —.
dq’  dq’ dq’

(4.52)

We now recognize that de;/dg/ must be some vector in the space spanned by the set of
all &; and we therefore write

—=Th e, (4.53)

The quantities ' « are known as Christoffel symbols of the second kind (those of the first
kind will be encountered shortly). Using the orthogonality property of the e, Eq. (4.45),
we can solve Eq. (4.53) by taking its dot product with any &™, reaching
&y
mo_ gm - —_—
IM=¢ o (4.54)
Moreover, we note that F,’(’} = F;."k, which can be demonstrated by writing out the compo-

nents of dex/dg-.
Returning now to Eq. (4.52) and inserting Eq. (4.53), we initially get

=— g+ VK e (4.55)

Interchanging the dummy indices k and p in the last term of Eq. (4.55), we get the final
result

v’ [avk
4 yHrk
qu_<3qf +V Fm)sk. (4.56)
The parenthesized quantity in Eq. (4.56) is known as the covariant derivative of V, and
it has (unfortunately) become standard to identify it by the awkward notation
vk v’
vk : 5= vk ep. (4.57)
q ;
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If we rewrite Eq. (4.56) in the form
av' = Vhdq'| e,

and take note that dg/ is a contravariant vector, while & is covariant, we see that the
covariant derivative, V_’; is a mixed second-rank tensor.* However, it is important to realize

that although they bristle with indices, neither 3V*/34/ nor Fk.v have individually the
correct transformation properties to be tensors. It is only the combination in Eq. (4.57) that
has the requisite transformational attributes.

It can be shown (see Exercise 4.3.6) that the covariant derivative of a covariant vector
Vi is given by

Viij=— — ViIk. (4.58)

Like V,’j, V;.; is a second-rank tensor.

The physical importance of the covariant derivative is that it includes the changes in the
basis vectors pursuant to a general dg', and is therefore more appropriate for describing
physical phenomena than a formulation that considers only the changes in the coefficients
multiplying the basis vectors.

Evaluating Christoffel Symbols

It may be more convenient to evaluate the Christoffel symbols by relating them to the
metric tensor than simply to use Eq. (4.54). As an initial step in this direction, we define
the Christoffel symbol of the first kind [ij, k] by

from which the symmetry [ij, k] = [ji, k] follows. Again, this [ij, k] is not a third-rank
tensor. Inserting Eq. (4.54) and applying the index-lowering transformation, Eq. (4.42),

we have
86‘,’
i k] = m, 2L
ij, k]l =gmk € oq)
8 .
—ep - 25 (4.60)
aq’

Next, we write g;; = €; - €; as in Eq. (4.40) and differentiate it, identifying the result with
the aid of Eq. (4.60):

ag,-,- 0€; 3€j
W:_'ej—‘rel"_

=[ik, j1+ [jk,il.

4V’ does not contribute to the covariant/contravariant character of the equation as its implicit index labels the Cartesian coordi-
nates, as is also the case for &j.
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We then note that we can combine three of these derivatives with different index sets, with
a result that simplifies to give

1[0dg; g agij
S|SB SR S8 i), (4.61)
2| aq/ aq’ aq

We now return to Eq. (4.59), which we solve for F;’}. by multiplying both sides by
g"k summing over k, and using the fact that (g,,) and (g"") are mutually inverse, see
Eq. (4.41):

7= g"lij. kl. (4.62)
k

Finally, substituting for [ij, k] from Eq. (4.61), and once again using the summation con-
vention, we get:

agl ' g agk

The apparatus of this subsection becomes unnecessary in Cartesian coordinates, because
the basis vectors have vanishing derivatives, and the covariant and ordinary partial deriva-
tives then coincide.

(4.63)

F?j=g"k[ij,k]=§g"k[—g”‘ o g”]

Tensor Derivative Operators

With covariant differentiation now available, we are ready to derive the vector differential
operators in general tensor form.

Gradient—We have already discussed it, with the result from Eq. (4.50):
oy

Vo =g (4.64)

Divergence—A vector V whose contravariant representation is V'&; has divergence

- a(Vie - (Vi : V! :

v.ovoe 207Dy (OV L i) e = — + VT, (4.65)
dq/ dq’ ! dq' ’

Note that the covariant derivative has appeared here. Expressing ka by Eq. (4.63), we

have

1 im gim 08km 98ik :l im 98im (466)
agk ~ aq"  dg™ .

F;k = 5 8 ) 8 aq %’
where we have recognized that the last two terms in the bracket will cancel because by
changing the names of their dummy indices they can be identified as identical except in
sign.

Because (g'™) is the matrix inverse to (gi,), we note that the combination of matrix
elements on the right-hand side of Eq. (4.66) is similar to those in the formula for the
derivative of a determinant, Eq. (2.35); remember that g is symmetric: g/ = g"’. In the
present notation, the relevant formula is

ddet(g)
dgk

8gim
gk’

=det(g) g™ (4.67)
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where det(g) is the determinant of the covariant metric tensor (g,.). Using Eq. (4.67),
Eq. (4.66) becomes

b L ddee) 1 a[det(g)]”z.
k7 2det(g) dgk [det(g)]'/2 9g*

(4.68)

Combining the result in Eq. (4.68) with Eq. (4.65), we obtain a maximally compact formula
for the divergence of a contravariant vector V:

_yi__ L 9 12
V-V_V;l._[det(g)]l/zaqk<[det(g)] V). (4.69)

To compare this result with that for an orthogonal coordinate system, Eq. (3.141), note that
det(g) = (h1hyh3)? and that the k component of the vector represented by V in Eq. (3.141)
is, in the present notation, equal to V¥|e;| = h; V¥ (no summation).

Laplacian—We can form the Laplacian V2 by inserting an expression for the gradi-
ent Vi into the formula for the divergence, Eq. (4.69). However, that equation uses the
contravariant coefficients V¥, so we must describe the gradient in its contravariant rep-
resentation. Since Eq. (4.64) shows that the covariant coefficients of the gradient are the
derivatives dv//dq’, its contravariant coefficients have to be

w OV
aql’
Insertion into Eq. (4.69) then yields
1 0 ;oY
V3 = —— —([det(g)]"/?g" — ). 4.70
14 [det(g)] /2 qu<[ et(g)]7g aq,) (4.70)

For orthogonal systems the metric tensor is diagonal and the contravariant g = (h;)~?
(no summation). Equation (4.70) then reduces to

V.Vy = 1 0 [ hihohsz 0y
"~ hihahs 3q! h? g’ )

in agreement with Eq. (3.142).

Curl—The difference of derivatives that appears in the curl has components that can be
written

av; av; 9V, ¢ 0V; K 471

b g ag U g TV = Vi = Vi *7h
where we used the symmetry of the Christoffel symbols to obtain a cancellation. The rea-
son for the manipulation in Eq. (4.71) is to bring all the terms on its right-hand side to
tensor form. In using Eq. (4.71), it is necessary to remember that the quantities V; are coef-
ficients of the possibly nonunit &' and are therefore not components of V in the orthonor-
mal basis €;.



226 Chapter 4 Tensors and Differential Forms

Exercises

4.3.1

4.3.2

43.3
434
4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

4.3.10
4.3.11

4.3.12

For the special case of 3-D space (¢, €2, €3 defining a right-handed coordinate system,
not necessarily orthogonal), show that

: € X &
el_ J

=———— 1,j,k=1,2,3 and cyclic permutations.
€j X € &

Note. These contravariant basis vectors &' define the reciprocal lattice space of
Example 3.2.1.

If the covariant vectors &; are orthogonal, show that
(a) gij is diagonal,
(b) &' =1/gi; (no summation),

© Ie']=1/leil.

Prove that (¢' - €/)(g; - &) = 5.
Show that FTk = FZ}.

Derive the covariant and contravariant metric tensors for circular cylindrical coordi-
nates.

Show that the covariant derivative of a covariant vector is given by

Hint. Differentiate

Verify that V;,; = gix V'} by showing that
Vi k 8Vk mk
97 Vil = gik [W + VI

From the circular cylindrical metric tensor g;;, calculate the Ff‘j for circular cylindrical
coordinates.

Note. There are only three nonvanishing I".

Using the Ff‘/ from Exercise 4.3.8, write out the covariant derivatives V,"j of a vector V
in circular cylindrical coordinates.

Show that for the metric tensor g;;.x = g’i =0.

Starting with the divergence in tensor notation, Eq. (4.70), develop the divergence of a
vector in spherical polar coordinates, Eq. (3.157).

The covariant vector A; is the gradient of a scalar. Show that the difference of covariant
derivatives A;,; — A;.; vanishes.
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4.4 JACOBIANS

In the preceding chapters we have considered the use of curvilinear coordinates, but have
not placed much focus on transformations between coordinate systems, and in particular
on the way in which multidimensional integrals must transform when the coordinate sys-
tem is changed. To provide formulas that will be useful in spaces with arbitrary numbers
of dimensions, and with transformations involving coordinate systems that are not orthog-
onal, we now return to the notion of the Jacobian, introduced but not fully developed in
Chapter 1.

As already mentioned in Chapter 1, changes of variables in multiple integrations, say
from variables x|, x2,...touy, us, ... requires that we replace the differential dxdx;. ..
with Jduidu; ..., where J, called the Jacobian, is the quantity (usually dependent on
the variables) needed to make these expressions mutually consistent. More specifically,
we identify dt = J du1du, ... as the “volume” of a region of width du; in u;, dujy in
usz, ..., where the “volume” is to be computed in the x1, x», ... space, treated as Cartesian
coordinates.

To obtain a formula for J we start by identifying the displacement (in the Cartesian
system defined by the x;) that corresponds to a change in each variable u;. Letting ds(u;)
be that displacement (which is a vector), we can decompose it into Cartesian components

as follows:

M/ 0x1\ . ax2\ . T

ds(uy) = el e+ 72 e+ .- |duy,
L\ 0uy oup
- /8 9 ) -

ds(uz) = (ﬂ) (ﬁ) T 472)
| \ duz

8)62

ouy
o ) _
ds(uz) = (8—1> 1+(—)e2+~-- dus,
|\ 0u3 ous

o>
+

1

o>

The partial derivatives (dx;/0u ;) in Eq. (4.72) must be understood to be evaluated with
the other u; held constant. It would clutter the formula an unreasonable amount to indicate
this explicitly.

If we had only two variables, u; and u,, the differential area would simply be |ds(u1)|
times the component of ds(u,) that is perpendicular to ds(u1). If there were a third vari-
able, u3, we would further multiply by the component of ds(u3) that was perpendicular to
both ds(u1) and ds(u»). Extension to arbitrary numbers of dimensions is obvious.

What is less obvious is an explicit formula for the “volume” for an arbitrary number of
dimensions. Let’s start by writing Eq. (4.72) in matrix form:

ds(uy) dx; dxp 0x3

Tduy ouy duy quy | .

ds(uy) dx; 9xy dx3 %

duy | = 0wz 9wz 9w Z . (4.73)
ds(us) dx1 0x2 0x3

Cduz dus dus duz
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We now proceed to make changes to the second and succeeding rows of the square matrix
in Eq. (4.73) that may destroy the relation to the ds(u;)/du;, but which will leave the
“volume” unchanged. In particular, we subtract from the second row of the derivative
matrix that multiple of the first row which will cause the first element of the modified
second row to vanish. This will not change the “volume” because it modifies ds(u2)/dus
by adding or subtracting a vector in the ds(u1)/du; direction, and therefore does not affect
the component of ds(u2)/dus perpendicular to ds(u1)/du;. See Fig. 4.1.

The alert reader will recall that this modification of the second row of our matrix is an
operation that was used when evaluating determinants, and was there justified because it
did not change the value of the determinant. We have a similar situation here; the operation
will not change the value of the differential “volume” because we are changing only the
component of ds(uy)/du; that is in the ds(uy)/du; direction. In a similar fashion, we
can carry out further operations of the same kind that will lead to a matrix in which all
the elements below the principal diagonal have been reduced to zero. The situation at this
point is indicated schematically for an 4-D space as the transition from the first to the
second matrix in Fig. 4.2. These modified ds(u;)/du; will lead to the same differential
volume as the original ds(u;)/du;. This modified matrix will no longer provide a faithful
representation of the differential region in the u; space, but that is irrelevant since our only
objective is to evaluate the differential “volume.”

We next take the final (nth) row of our modified matrix, which will be entirely zero
except for its last element, and subtract a suitable multiple of it from all the other rows
to introduce zeros in the last element of every row above the principal diagonal. These
operations correspond to changes in which we modify only the components of the other
ds(u;)/du; that are in the direction of ds(u,,), and therefore will not change the differential
“volume.” Then, using the next-to-last row (which now has only a diagonal element), we
can in a similar fashion introduce zeros in the next-to-last column of all the preceding
rows. Continuing this process, we will ultimately have a set of modified ds(u;)/du; that
will have the structure shown as the last matrix in Fig. 4.2. Because our modified matrix is
diagonal, with each nonzero element associated with a single different &;, the “volume” is

-

Uy

FIGURE 4.1 Area remains unchanged when vector proportional to u; is added to u5.

ajy ap a3 ay ajyy ap a3 ay apy 0 0 O

a; ax a3 axy 0 by bz b 0 b 0 O
— —

a1 azx az axy 0 0 D33z by 0 0 b33 O

a4l a4 a43 Q44 0 0 0 by 0 0 0 by

FIGURE 4.2 Manipulation of Jacobian matrix. Here a;; = (dx;/0u;), and b;; are formed
by combining rows (see text).



4.4 Jacobians 229

then easily computed as the product of the diagonal elements. This product of the diagonal
elements of a diagonal matrix is an evaluation of its determinant.

Reviewing what we have done, we see that we have identified the differential “volume”
as a quantity which is equal to the determinant of the original derivative set. This must be
so, because we obtained our final result by carrying out operations each of which leaves a
determinant unchanged. The final result can be expressed as the well-known formula for
the Jacobian:

dx1 0xp 9dx3

ouyp oup ouy

9x1 0% 9x3 1 5 )
dv=Jduiduy..., J=|0uy duy duy Em- (4.74)
dx1 0xpy 9dx3 b

ouz duz dus

The standard notation for the Jacobian, shown as the last member of Eq. (4.74), is a conve-
nient reminder of the way in which the partial derivatives appear in it. Note also that when
the standard notation for J is inserted in the expression for dt, the overall expression has
du1dus ... in the numerator, while d(u1, us, ...) appears in the denominator. This feature
can help the user to make a proper identification of the Jacobian.

A few words about nomenclature: The matrix in Eq. (4.73) is sometimes called the
Jacobian matrix, with the determinant in Eq. (4.74) then distinguished by calling it
the Jacobian determinant. Unless within a discussion in which both these quantities
appear and need to be separately identified, most authors simply call J, the determinant in
Eq. (4.74), the Jacobian. That is the usage we follow in this book.

We close with one final observation. Since J is a determinant, it will have a sign that
depends on the order in which the x; and u; are specified. This ambiguity corresponds
to our freedom to choose either right- or left-handed coordinates. In typical applications
involving a Jacobian, it is usual to take its absolute value and to choose the ranges of the
individual u; integrals in a way that gives the correct sign for the overall integral.

Example 4.4.1  2-D and 3-D Jacosians

In two dimensions, with Cartesian coordinates x, y and transformed coordinates u, v, the
element of area d A has, following Eq. (4.74), the form

anzanae(50) (5) - () (8]

This is the expected result, as the quantity in square brackets is the formula for the z
component of the cross product of the two vectors

ax\ . v\ . ax\ . 0y \
<£> €, + <£> €, and <%> €, + <a—v> €y,

and it is well known that the magnitude of the cross product of two vectors is a measure of
the area of the parallelogram with sides formed by the vectors.
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In three dimensions, the determinant in the Jacobian corresponds exactly with the for-
mula for the scalar triple product, Eq. (3.12). Letting Ay, Ay, A; in that formula refer to the
derivatives (dx/du), (0y/du), (3z/0u), with the components of B and C similarly related
to derivatives with respect to v and w, we recover the formula for the volume within the
parallelepiped defined by three vectors. |

Inverse of Jacobian

Since the x; and the u; are arbitrary sets of coordinates, we could have carried out the
entire analysis of the preceding subsection regarding the u; as the fundamental coordinate
system, with the x; as coordinates reached by a change of variables. In that case, our
Jacobian (which we choose to label J~!), would be

o(ui,u, ...
R ACILAIND ) (4.75)
d(x1,x2,...)
It is clear that if dx1dxy ... = Jduidu, ..., then it must also be true that dudu; ... =

(1/J)dxydx; . ... Let’s verify that the quantity we have called J ! is in fact 1/J.
Let’s represent the two Jacobian matrices involved here as

0x1 0xp 9x3 oui dupy duj

0x1 0xp 9dx3 duy oup ouj
A= duz duz duy | B=| dxy dx2 dxp

0x1 0xp 90x3 oui dup duj

We then have J = det(A) and J~! = det(B). We would like to show that JJ~! =
det(A) det(B) = 1. The proof is fairly simple if we use the determinant product theorem.
Thus, we write

det(A) det(B) = det(AB),

and now all we need show is that the matrix product AB is a unit matrix. Carrying out the
matrix multiplication, we find, as a result of the chain rule,

0 ou ; ou ;
(AB);; = Z (8—):;) (a—zli) = (8—2{!5) =4ij, (4.76)

k

verifying that AB is indeed a unit matrix.

The relation between the Jacobian and its inverse is of practical interest. It may turn out
that the derivatives du; /0x; are easier to compute than dx;/du ;, making it convenient to
obtain J by first constructing and evaluating the determinant for J 1.
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Example 4.4.2  DiRecT AND INVERSE APPROACHES TO JACOBIAN
a(r,0,p)

a(x,y,2)
r, 8, ¢ are spherical polar coordinates. Using Eq. (4.74) and the relations

r=Jx2+y2+22, f=cos | [——— )., p=tan” (X>,
V N :

we find after significant effort (letting p> = x2 + y?),

Suppose we need the Jacobian , where x, y, and z are Cartesian coordinates and

x oy z
F o
_nb,p) | KXy P 1]
T Ay, | P 2T rp T P2sing’
_X 2
p? p?

It is much less effort to use the relations

x=rsinfcosep, y=rsinfsing, z=rcosH,

and then to evaluate (easily),

sinfcosep sinfsing cosf

a(x,y, . . .
J = % = | rcosfcose rcosfsing —rsinf | = r?siné.
(.0, ) —rsin@sing rsinfcosg 0
We finish by writing J = 1/J 7! = 1/r?sin6. [ |
Exercises
4.4.1 Assuming the functions u and v to be differentiable,

(a) Show that a necessary and sufficient condition that u(x, y, z) and v(x, y, z) are
related by some function f(u, v) =0 is that (Vu) x (Vv) =0;
(b) Ifu=u(x,y)and v=ruv(x,y), show that the condition (Vi) x (Vv) =0 leads to

the 2-D Jacobian
ou ou

PEEICRV ax dy
- a(x,y) T lov 9w
dx dy

4.4.2 A 2-D orthogonal system is described by the coordinates ¢; and g>. Show that the
Jacobian J satisfies the equation

T 0(q1.92) 991992 g2 g1
Hint. It’s easier to work with the square of each side of this equation.
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4.4.3 For the transformation u = x + y, v = x/y, with x > 0 and y > 0, find the Jacobian
a(x, y)
d(u, v)

(a) By direct computation,

(b) By first computing J .

4.5 DIFFERENTIAL FORMS

Our study of tensors has indicated that significant complications arise when we leave Carte-
sian coordinate systems, even in traditional contexts such as the introduction of spherical
or cylindrical coordinates. Much of the difficulty arises from the fact that the metric (as
expressed in a coordinate system) becomes position-dependent, and that the lines or sur-
faces of constant coordinate values become curved. Many of the most vexing problems can
be avoided if we work in a geometry that deals with infinitesimal displacements, because
the situations of most importance in physics then become locally similar to the simpler and
more familiar conditions based on Cartesian coordinates.

The calculus of differential forms, of which the leading developer was Elie Cartan, has
become recognized as a natural and very powerful tool for the treatment of curved coordi-
nates, both in classical settings and in contemporary studies of curved space-time. Cartan’s
calculus leads to a remarkable unification of concepts and theorems of vector analysis that
is worth pursuing, with the result that in differential geometry and in theoretical physics
the use of differential forms is now widespread.

Differential forms provide an important entry to the role of geometry in physics, and the
connectivity of the spaces under discussion (technically, referred to as their topology) has
physical implications. Illustrations are provided already by situations as simple as the fact
that a coordinate defined on a circle cannot be single-valued and continuous at all angles.
More sophisticated consequences of topology in physics, largely beyond the scope of the
present text, include gauge transformations, flux quantization, the Bohm-Aharanov effect,
emerging theories of elementary particles, and phenomena of general relativity.

Introduction

For simplicity we begin our discussion of differential forms in a notation appropriate for
ordinary 3-D space, though the real power of the methods under study is that they are
not limited either by the dimensionality of the space or by its metric properties (and are
therefore also relevant to the curved space-time of general relativity). The basic quantities
under consideration are the differentials dx, dy, dz (identified with linearly independent
directions in the space), linear combinations thereof, and more complicated quantities built
from these by combination rules we will shortly discuss in detail. Taking for example dx,
it is essential to understand that in our current context it is not just an infinitesimal number
describing a change in the x coordinate, but is to be viewed as a mathematical object with
certain operational properties (which, admittedly, may include its eventual use in contexts
such as the evaluation of line, surface, or volume integrals). The rules by which dx and
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related quantities can be manipulated have been designed to permit expressions such as
w=A(x,y,z)dx + B(x,y,z)dy + C(x,y,z)dz, 4.77)

which are called 1-forms, to be related to quantities that occur as the integrands of line
integrals, to permit expressions of the type

w=Fx,y,2)dx ANdy+G(x,y,z2)dx ANdz+ H(x,y,z2)dy Ndz, (4.78)

which are called 2-forms, to be related to the integrands of surface integrals, and to permit
expressions like

o=K(x,y,2)dx Andy Adz, 4.79)

known as 3-forms, to be related to the integrands of volume integrals.

The A symbol (called “wedge”) indicates that the individual differentials are to be com-
bined to form more complicated objects using the rules of exterior algebra (sometimes
called Grassmann algebra), so more is being implied by Eqs. (4.77) to (4.79) than the
somewhat similar formulas that might appear in the conventional notation for various kinds
of integrals. To maintain contact with other presentations on differential forms, we note
that some authors omit the wedge symbol, thereby assuming that the reader knows that
the differentials are to be combined according to the rules of exterior algebra. In order
to minimize potential confusion, we will continue to write the wedge symbol for these
combinations of differentials (which are called exterior, or wedge products).

To write differential forms in ways that do not presuppose the dimension of the under-
lying space, we sometimes write the differentials as dx;, designating a form as a p-form
if it contains p factors dx;. Ordinary functions (containing no dx;) can be identified as
0-forms.

The mathematics of differential forms was developed with the aim of systematizing the
application of calculus to differentiable manifolds, loosely defined as sets of points that
can be identified by coordinates that locally vary “smoothly” (meaning that they are differ-
entiable to whatever degree is needed for analysis).” We are presently focusing attention
on the differentials that appear in the forms; one could also consider the behavior of the
coefficients. For example, when we write the 1-form

w=Aydx+Aydy+ A;dz,

Ay, Ay, A, will behave under a coordinate transformation like the components of a vec-
tor, and in the older differential-forms literature the differentials and the coefficients were
referred to as contravariant and covariant vector components, since these two sets of quan-
tities must transform in mutually inverse ways under rotations of the coordinate system.
What is relevant for us at this point is that relationships we develop for differential forms
can be translated into related relationships for their vector coefficients, yielding not only
various well-known formulas of vector analysis but also showing how they can be gener-
alized to spaces of higher dimension.

5 A manifold defined on a circle or sphere must have a coordinate that cannot be globally smooth (in the usual coordinate systems
it will jump somewhere by 27). This and related issues connect topology and physics, and are for the most part outside the scope
of this text.
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Exterior Algebra

The central idea in exterior algebra is that the operations are designed to create permuta-
tional antisymmetry. Assuming the basis 1-forms are dx;, that w; are arbitrary p-forms
(of respective orders p;), and that a and b are ordinary numbers or functions, the wedge
product is defined to have the properties

(aw) + b)) Nz =awi N3 +bwy Aw3  (p1 = p2),
(Wi Aan) Aoz =wi A(wr Aw3), alw) Awy) = (awi) A wy, (4.80)
dx; /\d)Cj = —de Adx;.

We thus have the usual associative and distributive laws, and each term of an arbitrary
differential form can be reduced to a coefficient multiplying a dx; or a wedge product of
the generic form

dxi Ndxj N+ Ndxp.

Moreover, the properties in Eq. (4.80) permit all the coefficient functions to be collected at
the beginning of a form. For example,

adxiy ANbdxy =—a(bdxy ANdxy) = —ab(dxy Adxy) =ab(dx) A dx»).

We therefore generally do not need parentheses to indicate the order in which products are
to be carried out.

We can use the last of Egs. (4.80) to bring the index set into any desired order. If any two
of the dx; are the same, the expression will vanish because dx; A dx; = —dx; Adx; =0;
otherwise, the ordered-index form will have a sign determined by the parity of the index
permutation needed to obtain the ordering. It is not a coincidence that this is the sign rule
for the terms of a determinant, compare Eq. (2.10). Letting ep stand for the Levi-Civita
symbol for the permutation to ascending index order, an arbitrary wedge product of dx;
can, for example, be brought to the form

8dehl/\dXh2/\~-~/\dth, 1<hi<hy<--<hyp.

If any of the dx; in a differential form is linearly dependent on the others, then its
expansion into linearly independent terms will produce a duplicated dx; and cause the
form to vanish. Since the number of linearly independent dx; cannot be larger than the
dimension of the underlying space, we see that in a space of dimension d we only need to
consider p-forms with p <d. Thus, in 3-D space, only up through 3-forms are relevant;
for Minkowski space (ct, x, y, z), we will also have 4-forms.

Example 4.5.1  SIMPLIFYING DIFFERENTIAL FORMS

Consider the wedge product

w=@dx+4dy —dz) A(dx —dy +2dz) =3dx Ndx —3dx Ndy+6dx Ndz
+4dyAndx —4dyndy +8dyndz—dzAdx+dzAdy —2dz ndz.
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The terms with duplicate differentials, e.g., dx A dx, vanish, and products that differ only
in the order of the 1-forms can be combined, changing the sign of the product when we
interchange its factors. We get

w=-Tdx ANdy+Tdx Ndz+Tdyndz=T(dy Ndz —dzNdx —dx Ndy).

We will shortly see that in three dimensions there are some advantages to bringing the
1-forms into cyclic order (rather than ascending or descending order) in the wedge prod-
ucts, and we did so in the final simplification of w. ]

The antisymmetry built into the exterior algebra has an important purpose: It causes
p-forms to depend on the differentials in ways appropriate (in three dimensions) for
the description of elements of length, area, and volume, in part because the fact that
dx; N dx; = 0 prevents the appearance of duplicated differentials. In particular, 1-forms
can be associated with elements of length, 2-forms with area, and 3-forms with volume.
This feature carries forward to spaces of arbitrary dimensionality, thereby resolving poten-
tially difficult questions that would otherwise have to be handled on a case-by-case basis.
In fact, one of the virtues of the differential-forms approach is that there now exists a con-
siderable body of general mathematical results that is pretty much completely absent from
tensor analysis. For example, we will shortly find that the rules for differentiation in the
exterior algebra cause the derivative of a p-form to be a (p + 1)-form, thereby avoiding
a pitfall that arises in tensor calculus: When the transformation coefficients are position-
dependent, simply differentiating the coefficients representing a tensor of rank p does not
yield another tensor. As we have seen, this dilemma is resolved in tensor analysis by intro-
ducing the notion of covariant derivative. Another consequence of the antisymmetry is
that lengths, areas, volumes, and (at higher dimensionality) hypervolumes are oriented
(meaning that they have signs that depend on the way the p-forms defining them are writ-
ten), and the orientation must be taken into account when making computations based on
differential forms.

Complementary Differential Forms

Associated with each differential form is a complementary (or dual) form that contains the
differentials not included in the original form. Thus, if our underlying space has dimension
d, the form dual to a p-form will be a (d — p)-form. In three dimensions, the complement
to a 1-form will be a 2-form (and vice versa), while the complement to a 3-form will be
a 0-form (a scalar). It is useful to work with these complementary forms, and this is done
by introducing an operator known as the Hodge operator; it is usually designated nota-
tionally as an asterisk (preceding the quantity to which it is applied, not as a superscript),
and is therefore also referred to either as the Hodge star operator or simply as the star
operator. Formally, its definition requires the introduction of a metric and the selection
of an orientation (chosen by specifying the standard order of the differentials comprising
the 1-form basis), and if the 1-form basis is not orthogonal there result complications we
shall not discuss. For orthogonal bases, the dual forms depend on the index positions of
the factors and on the metric tensor.

61n the current discussion, restricted to Euclidean and Minkowski metrics, the metric tensor is diagonal, with diagonal elements
=+1, and the relevant quantities are the signs of the diagonal elements.
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To find *w, where w is a p-form, we start by writing the wedge product @’ of all mem-
bers of the 1-form basis not represented in w, with the sign corresponding to the permuta-
tion that is needed to bring the index set

(indices of w) followed by (indices of @)

to standard order. Then *w consists of «’ (with the sign we just found), but also multi-
plied by (—1)*, where p is the number of differentials in " whose metric-tensor diagonal
element is —1. For R, ordinary 3-D space, the metric tensor is a unit matrix, so this final
multiplication can be omitted, but it becomes relevant for our other case of current interest,
the Minkowski metric.

For Euclidean 3-D space, we have

1 =dxy Adxy Ndxs,

*dx1 =dxy Ndx3, *dxp)=dx3 ANdxi, xdx3=dxi ANdxo, (4 g )
.81
*(dxy ANdxp) =dx3, *x(dx3 ANdxy) =dxp, *(dxo Adx3)=dxy,

*(dX1 Adxy /\d)C3) =1.

Cases not shown above are linearly dependent on those that were shown and can be
obtained by permuting the differentials in the above formulas and taking the resulting sign
changes into account.

At this point, two observations are in order. First, note that by writing the indices 1, 2, 3
in cyclic order, we have caused all the starred quantities to have positive signs. This
choice makes the symmetry more evident. Second, it can be seen that all the formulas
in Eq. (4.81) are consistent with *(xw) = w. However, this is not universally true; com-
pare with the formulas for Minkowski space, which are in the example we next consider.
See also Exercise 4.5.1.

Example 4.5.2 HODGE OPERATOR IN MINKOWSKI SPACE

Taking the oriented 1-form basis (dt, dx;, dx3, dx3), and the metric tensor

1 0O 0 O
0 -1 0 o
0O 0 -1 o)y
0O 0 0 -1

let’s determine the effect of the Hodge operator on the various possible differential forms.
Consider initially *1, for which the complementary form contains dt A dx| A dxy A dx3.
Since we took these differentials in the basis order, they are assigned a plus sign. Since w =
1 contains no differentials, its number u of negative metric-tensor diagonal elements is
zero, so (—1)* = (—1)? = 1 and there is no sign change arising from the metric. Therefore,

1 =dt ANdxy ANdxy A dxs.

Next, take *(dt A dx; A dxa A dx3). The complementary form is just unity, with no
sign change due to the index ordering, as the differentials are already in standard order.
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However, this time we have three entries in the quantity being starred with negative metric-
tensor diagonal elements; this generates (—1)3 = —1, so
*(dt ANdxy ANdxy Adxz) =—1.

Moving next to *dx1, the complementary form is df A dxy A dx3, and the index order-
ing (based on dxy, dt, dx,, dx3) requires one pair interchange to reach the standard order
(thereby yielding a minus sign). But the quantity being starred contains one differential
that generates a minus sign, namely dx1, so

*dx) =dt Ndxy ANdxs.

Looking explicitly at one more case, consider *(dt A dx;), for which the complementary
form is dxy A dx3. This time the indices are in standard order, but the dx; being starred
generates a minus sign, so

*(dt Ndx1) = —dxy Ndx3.

Development of the remaining possibilities is left to Exercise 4.5.1; the results are summa-
rized below, where i, j, k denotes any cyclic permutation of 1,2,3.

1 =dt Adx; ANdxy Adxs,
xdx; =dt Adxj Ndxy, *dt =dx; ANdxa Ndxs,
*(dxj Ndxp) =dt Ndx;,  *(dt Adx;) =—dx; Ndxy, (4.82)
*(dxy Ndxy Adx3) =dt,  x(dt Adx; ANdxj) =dxyg,
*(dt ANdxy ANdxy Adxz) =—1.

Note that all the starred forms in Eq. (4.82) with an even number of differentials have
the property that *(x®) = —w, confirming our earlier statement that complementing twice
does not always restore the original form with its original sign. |

We now consider some examples illustrating the utility of the star operator.

Example 4.5.3  MisCELLANEOUS DIFFERENTIAL FORMS

In the Euclidean space R?, consider the wedge product A A B of the two 1-forms A =
Acvdx +Aydy+ A;dz and B = By dx + B, dy + B, dz. Simplifying using the rules for
exterior products,

AANB=(AyB,—A;By)dyrndz+ (A;B, — A,B;)dzAdx+ (AxBy — AyBy)dx Ady.
If we now apply the star operator and use the formulas in Eq. (4.81) we get
*(AAB)=(A,B, — A,By)dx + (AB, — A, B,)dy + (A, By — A, B,)dz,

showing that in R, %x(A A B) forms an expression that is analogous to the cross product
A x B of vectors A e, + Aye, + A €; and B, €, + B,&, + B:e;. In fact, we can write

% (AAB)=(AxB),dx + (A x B), dy + (A x B), dz. (4.83)
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Note that the sign of %*(A A B) is determined by our implicit choice that the standard
ordering of the basis differentials is (dx, dy, dz).

Next, consider the exterior product A A B A C, where C is a 1-form with coefficients
C,, Cy, C;. Applying the evaluation rules, we find that every surviving term in the product
is proportional to dx A dy A dz, and we obtain

AANBAC=(AByC,—AB;,Cy —A,B,C,
+ AyB,Cy + A.B,Cy — A,B,C,) dx Ady Adz,
which we recognize can be written in the form
Ar Ay A,
AANBANC=|B; By B;| dx ndy NdZz.
C, CyC,
Applying now the star operator, we reach
A Ay A,
*(ANBAC)=|B, By B,|=A-BxO). (4.84)
C, CyC,

Not only were the results in Eqs. (4.83) and (4.84) easily obtained, they also generalize
nicely to spaces of arbitrary dimension and metric, while the traditional vector notation,
which uses the cross product, is applicable only to R3. |

Exercises
4.5.1 Using the rules for the application of the Hodge star operator, verify the results given in
Eq. (4.82) for its application to all linearly independent differential forms in Minkowski
space.
4.5.2 If the force field is constant and moving a particle from the origin to (3, 0, 0) requires a

units of work, from (—1, —1,0) to (—1, 1, 0) takes b units of work, and from (0, 0, 4)
to (0,0, 5) ¢ units of work, find the 1-form of the work.

4.6 DIFFERENTIATING FORMS

Exterior Derivatives

Having introduced differential forms and their exterior algebra, we next develop their prop-
erties under differentiation. To accomplish this, we define the exterior derivative, which
we consider to be an operator identified by the traditional symbol d. We have, in fact,
already introduced that operator when we wrote dx;, stating at the time that we intended
to interpret dx; as a mathematical object with specified properties and not just as a small
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change in x;. We are now refining that statement to interpret dx; as the result of applying
the operator d to the quantity x;. We complete our definition of the operator d by requir-
ing it to have the following properties, where w is a p-form, ’ is a p’-form, and f is an
ordinary function (a 0-form):

dw+o)=do+do (p=p),
d(fo)=df) N+ fdo,

dwrd)y=dord + (=P o Ado, (4.85)
d(dw) =0,

where the sum over j spans the underlying space. The formula for the derivative of the
wedge product is sometime called by mathematicians an antiderivation, referring to the
fact that when applied to the right-hand factor an antisymmetry-motivated minus sign
appears.

Example 4.6.1 EXTERIOR DERIVATIVE

Equations (4.85) are axioms, so they are not subject to proof, though they are required
to be consistent. It is of interest to verify that the sign for the derivative of the second
term in a wedge product is needed. Taking w and «’ to be monomials, we first bring their
coefficients to the left and then apply the differentiation operator (which, irrespective of
the choice of sign, gives zero when applied to any of the differentials). Thus,

do A o) = d(AB)[dxl A /\dxp] A [dxl A A dxp/]

0B
_ZI:WB—I-A(? :|dxu/\[dx1/\~~/\dxp]/\[dx1/\~~/\dxp/].
W X

On expanding the sum, the first term is clearly dw A '; to make the second term look like
w Adw', it is necessary to permute dx,, through the p differentials in w, yielding the sign
factor (—1)”. Extension to general polynomial forms is trivial.

One might also ask whether the fourth of the above axioms, d(dw) = 0, sometimes
referred to as Poincaré’s lemma, is necessary or consistent with the others. First, it pro-
vides new information, as otherwise we have no way of reducing d(dx;). Next, to see why
the axiom set is consistent, we illustrate by examining (in R?)

a ad
daf =2 ge 4 gy,
ax dy
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from which we form

d(df):i % d)c/\dx-i—i % dy Ndx
dx \ 0x dy \ dx

a [of a [of
dx A ndy+—|—)dyndy=0.
+8x(8> XA +a (8y> yAdy

We obtain the zero result because of the antisymmetry of the wedge product and because
the mixed second derivatives are equal. We see that the central reason for the validity of
Poincaré’s lemma is that the mixed derivatives of a sufficiently differentiable function are
invariant with respect to the order in which the differentiations are carried out. |

To catalog the possibilities for the action of the d operator in ordinary 3-D space, we
first note that the derivative of an ordinary function (a 0-form) is

dfzﬂd +g_fd +%dz_(Vf)xdx+(Vf)ydy+(Vf)de (4.86)

We next differentiate the 1-form w = Ay dx + A dy + A, dz. After simplification,

0A, 04, A, 0A 0A, DA
do = dy "dz + | — — —= |dz ndx 4+ | — dx Ady.
8y 9z 9z ax ox ay

We recognize this as

d(Axdx+Aydy+ A dz)=
(V x A)ydy Adz+ (V x A)ydz Adx + (V x A),dx Ady, (4.87)

which is equivalent to
xd (Aydx + Aydy+ A.dz) =(V x A)ydx +(V x A)ydy+ (V x A),dz. (4.88)

Finally we differentiate the 2-form B, dy A dz + Bydz Adx + B,dx A dy, obtaining
the three-form

0B 0B B
A B —Z]dxAdyAdZ,

d(Bxdy/\dz+Bydz/\dx+Bzdx/\dy)=|:ax W o

equivalent to
d(Bxdy/\dz+B},dZ/\dx+Bzdx /\dy) =(V-B)dx Ady ndz (4.89)

and

*d(Bxdy/\dz—f-Bydz/\dx—i-Bzdx/\dy):V-B. (4.90)

We see that application of the d operator directly generates all the differential operators of
traditional vector analysis.
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If now we return to Eq. (4.87) and take the 1-form on its left-hand side to be df, so that
A = Vi, we have, inserting Eq. (4.86),

d(df) = (V x (Vf))xdy/\dz+ (V x (Vf))ydz/\dx+ (V x (Vf))zdx/\dyzo.
4.91)

We have invoked Poincaré’s lemma to set this expression to zero. The result is equivalent
to the well-known identity V x (V) =0.

Another identity is obtained if we start from Eq. (4.89) and take the 2-form on its left-
hand side to be d(Ay dx + Ay dy + A, dz). Then, with the aid of Eq. (4.88), we have

d(d(Ax dx+ Aydy+ A, dz)) — V. (V xA)dx Ady Adz =0, (4.92)

where once again the zero result follows from Poincaré’s lemma and we have established
the well-known formula V - (V x A) = 0. Part of the importance of the derivation of these
formulas using differential-forms methods is that these are merely the first members of
hierarchies of identities that can be derived for spaces with higher numbers of dimensions
and with different metric properties.

Example 4.6.2  MAXWELLS EQUATIONS

Maxwell’s equations of electromagnetic theory can be written in an extremely compact and
elegant way using differential forms notation. In that notation, the independent elements of
the electromagnetic field tensor can be written as the coefficients of a 2-form in Minkowski
space with oriented basis (dt, dx, dy, dz):

F=—E.dt Ndx — Eydt Ndy — E;dt Ndz
+ Bydy Adz+ Bydz Adx + B;dx Ndy. (4.93)

Here E and B are respectively the electric field and the magnetic induction. The sources of
the field, namely the charge density p and the components of the current density J, become
the coefficients of the 3-form

J=pdx ANdyNdz— Jydt Ndy Ndz— Jydt AdzAdx — J dt Adx Ady.  (4.94)

For simplicity we work in units with the permitivity, magnetic permeability, and velocity
of light all set to unity (¢ = u = ¢ = 1). Note that it is natural that the charge and current
densities occur in a 3-form; although they have together the number of components needed
to constitute a four-vector, they are of dimension inverse volume. Note also that some of
the signs in the formulas of this example depend on the details of the metric, and are chosen
to be correct for the Minkowski metric as given in Example 4.5.2. This Minkowski metric
has signature (1,3), meaning that it has one positive and three negative diagonal elements.
Some workers define the Minkowski metric to have signature (3,1), reversing all its signs.
Either choice will give correct results to problems of physics if used consistently; trouble
only arises if material from inconsistent sources is combined.

The two homogeneous Maxwell equations are obtained from the simple formula
dF = 0. This equation is not a mathematical requirement on F; it is a statement of the
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physical properties of electric and magnetic fields. To relate our new formula to the more
usual vector equations, we simply apply the d operator to F:

[OE, IE, JIE, JIE,
dF = — dy + dz|ANdt Ndx — | —dx+ —=dz | Adt Ady

| dy 9z ax 0z
[0E oE [0B JdB

— | —dx+ —dy|Adtndz+ | —dt + —=dx | Ady Adz
| Ox ay | Ot ox
[ 9B, B, (9B, 9B,

+|—dt+ —dy|AdzAndx+ | —dt + dz|Andx Andy=0. (4.95)
Bl ay | ot 0z

Equation (4.95) is easily simplified to
JF — IE. 0Ey n 0 By

ay az ot
[aEy 0E, 0B,

[0E, OE, 0B,

| 0z 0x ot

i|dt/\dy/\dz+ i|dt/\dz/\dx

9B, 9B, 9B;
ox + dy + 9z

+

— dt Ndx Nd
ax  dy 8t:| * y+[

]dx/\dy/\dZZO.
(4.96)
Since the coefficient of each 3-form monomial must individually vanish, we obtain from
Eq. (4.96) the vector equations
oB
v ><E+¥=0 and V-B=0.

We now go on to obtain the two inhomogeneous Maxwell equations from the almost
equally simple formula d(xF') = J. To verify this, we first form *F, evaluating the starred
quantities using the formulas in Eqgs. (4.82):

*F=E,dyndz+ EydzANdx + E;dx ANdy + Bydt ANdx + Bydt ndy + B, dt Andz.

We now apply the d operator, reaching after steps similar to those taken while obtaining
Eq. (4.96):

oE
d(*F):V.de/\dy/\dz—i-[ atx —(V XBx]thdyAdz

dE, E,
+ W—(VXB), dt Ndz ANdx + 5 —(VxB,|dt Adx Ady. (4.97)

Setting d («xF') from Eq. (4.97) equal to J as given in Eq. (4.94), we obtain the remaining
Maxwell equations

oE
V-E=p and VXB—EzJ.

We close this example by applying the d operator to J. The result must vanish because
dJ =d(d(xF)). We get, starting from Eq. (4.94),

dp dJy dJ, dJ;
dl] =|— — + —
[Bt + ax ay + 0z

}dt/\dx/\dy/\dzzo,
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showing that

3
a—‘;+V~J=0. (4.98)

Summarizing, the differential-forms approach has reduced Maxwell’s equations to the
two simple formulas

dF =0 and d(F)=J, (4.99)

and we have also shown that J must satisfy an equation of continuity. ]

Exercises

4.6.1 Given the two 1-forms w; = xdy + ydx and wy = x dy — ydx, calculate

(@) dow,
(b) dws.

(¢c) For each of your answers to (a) or (b) that is nonzero, apply the operator d a second
time and verify that d(dw;) = 0.

4.6.2 Apply the operator d twice to w3 = xydz + xzdy — yzdx. Verify that the second
application of d yields a zero result.

4.6.3 For w; and w3 the 1-forms with these names in Exercises 4.6.1 and 4.6.2, evaluate
d(wry A w3):

(a) By forming the exterior product and then differentiating, and

(b) Using the formula for differentiating a product of two forms.

Verify that both approaches give the same result.

4.7 INTEGRATING FORMS

It is natural to define the integrals of differential forms in a way that preserves our usual
notions of integration. The integrals with which we are concerned are over regions of the
manifolds on which our differential forms are defined; this fact and the antisymmetry of
the wedge product need to be taken into account in developing definitions and properties
of integrals. For convenience, we illustrate in two or three dimensions; the notions extend
to spaces of arbitrary dimensionality.

Consider first the integral of a 1-form w in 2-D space, integrated over a curve C from a
start-point P to an endpoint Q:

/w:/[Axdx—i-Aydy].
C C

We interpret the integration as a conventional line integral. If the curve is described para-
metrically by x (), y(¢) as ¢ increases monotonically from #p to t¢, our integral takes the
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elementary form

g

_ dx dy
/a)_/[Ax(t) o AWD dt]dt’

C tp

and (at least in principle) the integral can be evaluated by the usual methods.

Sometimes the integral will have a value that will be independent of the path from P to
Q; in physics this situation arises when a 1-form with coefficients A = (A, Ay) describes
what is known as a conservative force (i.e., one that can be written as the gradient of a
potential). In our present language, we then call w exact, meaning that there exists some
function f such that

w=df(x,y) (4.100)
for a region that includes the points P, Q, and all other points through which the path may
pass.

To check the significance of Eq. (4.100), note that it implies
a 0
w= —f dx + —f dy,
ox ay

showing that w has as coefficients the components of the gradient of f. Given Eq. (4.100),
we also see that

0
if w=df, /w:f(Q)—f(P). (4.101)
P

This admittedly obvious result is independent of the dimension of the space, and is of
importance to the remainder of this section.
Looking next at 2-forms, we have (in 2-D space) integrals such as

/w:/B(x,y)dx/\dy. (4.102)
S S

We interpret dx A dy as the element of area corresponding to displacements dx and dy
in mutually orthogonal directions, so in the usual notation of integral calculus we would
write dx dy.

Let’s now return to the wedge product notation and consider what happens if we make
a change of variables from x, y to u, v, with x =au + bv, y = eu + fv. Then dx =
adu+bdv,dy=edu+ fdv,and

dx ndy=(adu+bdv) A (edu+ fdv)=(af —be)du Adv. (4.103)

We note that the coefficient of du A dv is just the Jacobian of the transformation from x, y
to u, v, which becomes clear if we write a = dx/du, etc., after which we have

dx dox
du Jv ab
—be = = . 4.104
af —be by By e f ( )

du Jv
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We now see a fundamental reason why the wedge product has been introduced; it has the
algebraic properties needed to generate in a natural fashion the relations between elements
of area (or its higher-dimension analogs) in different coordinate systems. To emphasize
that observation, note that the Jacobian occurred as a natural consequence of the transfor-
mation; we did not have to take additional steps to insert it, and it was generated simply
by evaluating the relevant differential forms. In addition, the present formulation has one
new feature: because dx A dy and dy A dx are opposite in sign, areas must be assigned
algebraic signs, and it is necessary to retain the sign of the Jacobian if we make a change
of variables. We therefore take as the element of area corresponding to dx A dy the ordi-
nary product £dxdy, with a choice of sign known as the orientation of the area. Then,
Eq. (4.102) becomes

/w:/B(x,y)(:i:dxdy), (4.105)

N S

and if elsewhere in the same computation we had dy A dx, we must convert it to dxdy
using the sign opposite to that used for dx A dy.

For p-forms with p > 2, a corresponding analysis applies: If we transform from
(x,y,...)to (u,v,...), the wedge product dx Ady A --- becomes J du Adv A---, where
J is the (signed) Jacobian of the transformation. Since the p-space volumes are oriented,
the sign of the Jacobian is relevant and must be retained. Exercise 4.7.1 shows that the
change of variables from the 3-form dx A dy Adz to du A dv A dw yields the determinant
which is the (signed) Jacobian of the transformation.

Stokes’ Theorem

A key result regarding the integration of differential forms is a formula known as Stokes’
theorem, a restricted form of which we encountered in our study of vector analysis in
Chapter 3. Stokes’ theorem, in its simplest form, states that if

e R is a simply-connected region (i.e., one with no holes) of a p-dimensional differen-
tiable manifold in a n-dimensional space (n > p);
e R has a boundary denoted d R, of dimension p — 1;

e wisa (p— 1)-form defined on R and its boundary, with derivative dw;

/dwz/w, (4.106)
R

oR

then

This is the generalization, to p dimensions, of Eq. (4.101). Note that because dw results
from applying the d operator to w, the differentials in dw consist of all those in w, in
the same order, but preceded by that produced by the differentiation. This observation is
relevant for identifying the signs to be associated with the integrations.
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A rigorous proof of Stokes’ theorem is somewhat complicated, but an indication of its
validity is not too involved. It is sufficient to consider the case that w is a monomial:

w=AX1,...,xp)dxa A---dxp, do= g—jldxl ANdxp---dxp. (4.107)
We start by approximating the portion of R adjacent to the boundary by a set of small
p-dimensional parallelepipeds whose thickness in the x| direction is §, with § having for
each parallelepiped the sign that makes x| — x| — § in the interior of R. For each such
parallepiped (symbolically denoted A, with faces of constant x| denoted d A), we integrate
dw in x1 from x| — § to x1 and over the full range of the other x;, obtaining

[ /94
do = a dxi ANdxy A ---dxp
A

3Ax1—8
=/A(x1,x2,...)dx2/\~-~dxp—fA(xl—8,x2,...)dx2/\-~~dxp. (4.108)
A A

Equation (4.108) indicates the validity of Stokes’ theorem for a laminar region whose
exterior boundary is d R; if we perform the same process repeatedly, we can collapse the
inner boundary to a region of zero volume, thereby reaching Eq. (4.106).

Stokes’ theorem applies for manifolds of any dimension; different cases of this single
theorem in two and three dimensions correspond to results originally identified as distinct
theorems. Some examples follow.

Example 4.7.1  GREEN'S THEOREM IN THE PLANE

Consider in a 2-D space the 1-form w and its derivative:

w=Px,y)dx+ Q(x,y)dy, (4.109)

IP 9 90 P
do="L gy nax+ L ax nay=22 P\ 4x nay, (4.110)
dy ox ax ay

where we have without comment discarded terms containing dx A dx or dy Ady.
We apply Stokes’ theorem for this w to a region S with boundary C, obtaining

/[a—Q—a—P]dx/\dy:/(de—i-Qdy)-
0x dy
S c

With orientation such that dx A dy = dS (ordinary element of area), we have the formula
usually identified as Green'’s theorem in the plane:

f(de+Qdy) =/[%—Z—Iy)]d& 4.111)
C S
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Some cases of this theorem: taking P =0, Q = x, we have the well-known formula

/xdy:/dS:A,
c S

where A is the area enclosed by C with the line integral evaluated in the mathematically
positive (counterclockwise) direction.
If we take P =y, Q =0, we get instead another familiar formula:

/ydx = /(—l)dS =—A.
S

c
|

When working Example 4.7.1, we assumed (without comment) that the line integral on
the closed curve C was to be evaluated for travel in the counterclockwise direction, and
we also related area to the conversion from dx A dy to +dxdy. These are choices that
were not dictated by the theory of differential forms but by our intention to make its results
correspond to computation in the usual system of planar Cartesian coordinates. What is
certainly true is that the differential forms calculus gives a different sign for the integral
of ydx than it gave for the integral of x dy; the user of the calculus has the responsibility
to make definitions corresponding to the situation for which the results are claimed to be
relevant.

Example 4.7.2  STokEs’ THEOREM (USUAL 3-D CASE)

Let the vector potential A be represented by the differential form w, with it and its deriva-
tive of the forms

w=Aydx+A,dy+ A.dz, (4.112)
04, 0A, dA, 04, 0A, 0A,
do=|————=|dyAdz+ ——|dzndx+ | —=— —|dx Ady
ay 9z 0z ox ox dy
=(VxA,dyndz+(VxAydzndx+(VxA),dx Ady. (4.113)

Applying Stokes’ theorem to a region S with boundary C and noting that if the standard
order for orienting the differentials is dx, dy,dz, then dy Adz — do,, dz ANdz — doy,
dx Ndy — do,, and Stokes’ theorem takes the familiar form

f(Axdx+Aydy+Azdz)=/A~dr=/(VxA)-da. (4.114)
C C S
(]

Once again we have results whose interpretation depends on how we have chosen to
define the quantities involved. The differential forms calculus does not know whether we
intend to use a right-handed coordinate system, and that choice is implicit in our identifi-
cation of the elements of area do;. In fact, the mathematics does not even tell us that the
quantities we identified as components of V x A actually correspond to anything physical
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in their indicated directions. So, once again, we emphasize that the mathematics of differ-
ential forms provides a structure appropriate to the physics to which we apply it, but part
of what the physicist brings to the table is the correlation between mathematical objects
and the physical quantities they represent.

Example 4.7.3  Gauss THEOREM
As a final example, consider a 3-D region V with boundary 9V, containing an electric field
given on 9V as the 2-form w, with
w=Eydy ndz+ Eydz Adz + E,dx Ady, (4.115)

doo— 0E, O0E, OE;
ox ay 0z

i|dx/\dy/\dz=(V~E)dx/\dy/\dz. (4.116)

For this case, Stokes’ theorem is

/da):/(V~E)dx/\dy/\dz=/(V~E)dt:/E-d0, (4.117)
1% 14 14 v
where dx A dy Adz — dt and, just as in Example 4.7.2, dy A dz — do ., etc. We have
recovered Gauss’ theorem. [ |
Exercises
4.7.1 Use differential-forms relations to transform the integral A(x,y,z)dx A dy A dz to

the equivalent expression in du A dv A dw, where u, v, w is a linear transformation of
X, ¥, z, and thereby find the determinant that can be identified as the Jacobian of the
transformation.

4.7.2 Write Oersted’s law,

/H-dr:foH~da~I,

as S
in differential form notation.

dA 9B
4.7.3 A 1-form Adx + Bdy is defined as closed if T ar It is called exact if there is a
y X

0 0
function f such that a—f = A and a—f = B. Determine which of the following 1-forms
X Yy

are closed, or exact, and find the corresponding functions f for those that are exact:

dx +xd X
ydx +xdy, ﬁ [In(xy) + 1+~ dy,
ydx xdy

2t f(@)dzwithz=x +1iy.
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CHAPTER 5

VECTOR SPACES

A large body of physical theory can be cast within the mathematical framework of vector
spaces. Vector spaces are far more general than vectors in ordinary space, and the analogy
may to the uninitiated seem somewhat strained. Basically, this subject deals with quantities
that can be represented by expansions in a series of functions, and includes the methods by
which such expansions can be generated and used for various purposes. A key aspect of
the subject is the notion that a more or less arbitrary function can be represented by such
an expansion, and that the coefficients in these expansions have transformation properties
similar to those exhibited by vector components in ordinary space. Moreover, operators
can be introduced to describe the application of various processes to a function, thereby
converting it (and also the coefficients defining it) into other functions within our vector
space. The concepts presented in this chapter are crucial to an understanding of quan-
tum mechanics, to classical systems involving oscillatory motion, transport of material or
energy, even to fundamental particle theory. Indeed, it is not excessive to claim that vector
spaces are one of the most fundamental mathematical structures in physical theory.

5.1 VECTORS IN FUNCTION SPACES

We now seek to extend the concepts of classical vector analysis (from Chapter 3) to more
general situations. Suppose that we have a two-dimensional (2-D) space in which the two
coordinates, which are real (or in the most general case, complex) numbers that we will
call a; and ay, are, respectively, associated with the two functions ¢ (s) and ¢(s). It is
important at the outset to understand that our new 2-D space has nothing whatsoever to do
with the physical xy space. It is a space in which the coordinate point (a1, a2) corresponds
to the function

f(s) =a11(s) + azpa(s). (5.1
The analogy with a physical 2-D vector space with vectors A = A1€; + A€ is that ¢; (s)

corresponds to €;, while a; «<— A;, and f(s) <— A. In other words, the coordinate
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values are the coefficients of the ¢; (s), so each point in the space identifies a different
function f(s). Both f and ¢ are shown above as dependent on an independent variable we
call s. We choose the name s to emphasize the fact that the formulation is not restricted
to the spatial variables x, y, z, but can be whatever variable, or set of variables, is needed
for the problem at hand. Note further that the variable s is not a continuous analog of the
discrete variables x; of an ordinary vector space. It is a parameter reminding the reader that
the ¢; that correspond to the dimensions of our vector space are usually not just numbers,
but are functions of one or more variables. The variable(s) denoted by s may sometimes
correspond to physical displacements, but that is not always the case. What should be clear
is that s has nothing to do with the coordinates in our vector space; that is the role of the a;.

Equation (5.1) defines a set of functions (a function space) that can be built from the
basis ¢, ¢y; we call this space a linear vector space because its members are linear com-
binations of the basis functions and the addition of its members corresponds to component
(coefficient) addition. If f(s) is given by Eq. (5.1) and g(s) is given by another linear
combination of the same basis functions,

g(s) =b191(s) + baa(s),
with by and b; the coefficients defining g(s), then

h(s) = f(s)+g(s) = (a1 +b1)e1(s) + (a2 + b2)pa(s) (5.2)

defines K (s), the member of our space (i.e., the function), which is the sum of the members
f(s) and g(s). In order for our vector space to be useful, we consider only spaces in which
the sum of any two members of the space is also a member.

In addition, the notion of linearity includes the requirement that if f(s) is a member
of our vector space, then u(s) = k f(s), where k is a real or complex number, is also a
member, and we can write

u(s) =k f(s) =karpi(s) + kazpz(s). (53)

Vector spaces for which addition of two members or multiplication of a member by scalar
always produces a result that is also a member are termed closed under these operations.

We can summarize our findings up to this point as follows: addition of two members
of our vector space causes the coefficients of the sum, /(s) in Eq. (5.2), to be the sum
of the coefficients of the addends, namely f(s) and g(s); multiplication of f(s) by a
ordinary number k (which, by analogy with ordinary vectors, we call a scalar), results
in the multiplication of the coefficients by k. These are exactly the operations we would
carry out to form the sum of two ordinary vectors, A + B, or the multiplication of a vector
by a scalar, as in kA. However, here we have the coefficients a; and b;, which combine
under vector addition and multiplication by a scalar in exactly the same way that we would
combine the ordinary vector components A; and B;.

The functions that form the basis of our vector space can be ordinary functions, and may
be as simple as powers of s, or more complicated, as for example ¢; = (1 4 3s + 3s2)¢",
@2 = (1 — 3s + 35%)e™%, or compound quantities such as the Pauli matrices o;, or even
completely abstract quantities that are defined only by certain properties they may possess.
The number of basis functions (i.e., the dimension of our basis) may be a small number
such as 2 or 3, a larger but finite integer, or even denumerably infinite (as would arise in an
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untruncated power series). The main universal restriction on the form of a basis is that the
basis members be linearly independent, so that any function (member) of our vector space
will be described by a unique linear combination of the basis functions. We illustrate the
possibilities with some simple examples.

Example 5.1.1  SOME VECTOR SPACES

1.

We consider first a vector space of dimension 3, which is spanned by (meaning that it
has a basis that consists of) the three functions Py(s) = 1, Pi(s) =s, P2(s) = %sz — %

Some members of this vector space include the functions
1 2
s+3=3Py(s) + Pi(s), s*= 3 Po(s) + 3 Pr(s), 4—3s=4Py(s) —3Pi(s).

In fact, because we can write 1, s, and s in terms of our basis, we can see that any
quadratic form in s will be a member of our vector space, and that our space includes
only functions of s that can be written in the form co + c1s + 282,

To illustrate our vector-space operations, we can form

) 1 2
s°=2(s+3)= [5 Py(s) + 3 Pz(S)i| - 2[3P0(S) + P (S)]

1 2
- <§ - 6) Py(s) — 2Py (s) + ng(S)'

This calculation involves only operations on the coefficients; we do not need to refer
to the definitions of the P, to carry it out.

Note that we are free to define our basis any way we want, so long as its members

are linearly independent. We could have chosen as our basis for this same vector space
9o =1, p1 =s, g2 = 52, but we chose not to do so.
The set of functions ¢, (s) =s" (n =0,1,2,...) is a basis for a vector space whose
members consist of functions that can be represented by a Maclaurin series. To avoid
difficulties with this infinite-dimensional basis, we will usually need to restrict consid-
eration to functions and ranges of s for which the Maclaurin series converges. Conver-
gence and related issues are of great interest in pure mathematics; in physics problems
we usually proceed in ways such that convergence is assured.

The members of our vector space will have representations

o0
f(S)=ao+a1s+a2S2+"':Z“"s”’

n=0

and we can (at least in principle) use the rules for making power series expansions to
find the coefficients that correspond to a given f(s).

The spin space of an electron is spanned by a basis that consists of a linearly indepen-
dent set of possible spin states. It is well known that an electron can have two linearly
independent spin states, and they are often denoted by the symbols & and . One pos-
sible spin state is f = aja + az 8, and another is g = b1 + b2 8. We do not even need
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to know what & and B really stand for to discuss the 2-D vector space spanned by
these functions, nor do we need to know the role of any parametric variable such as
s. We can, however, state that the particular spin state corresponding to f + ig must
have the form

fHig=(a1+ibpa+ (a2 +iby)B.

Scalar Product

To make the vector space concept useful and parallel to that of vector algebra in ordinary
space, we need to introduce the concept of a scalar product in our function space. We shall
write the scalar product of two members of our vector space, f and g, as (f|g). This is the
notation that is almost universally used in physics; various other notations can be found in
the mathematics literature; examples include [ f, g] and (f, g).

The scalar product has two main features, the full meaning of which may only become
clear as we proceed. They are:

1. The scalar product of a member with itself, e.g., (f|f), must evaluate to a numeri-
cal value (not a function) that plays the role of the square of the magnitude of that
member, corresponding to the dot product of an ordinary vector with itself, and

2. The scalar product must be linear in each of the two members.'

There exists an extremely wide range of possibilities for defining scalar products that
meet these criteria. The situation that arises most often in physics is that the members
of our vector space are ordinary functions of the variable s (as in the first vector space
of Example 5.1.1), and the scalar product of the two members f(s) and g(s) is computed
as an integral of the type

b
(flg) = / FH()g(s) w(s) ds. (5.4)

with the choice of a, b, and w(s) dependent on the particular definition we wish to adopt
for our scalar product. In the special case (f|f), the scalar product is to be interpreted as
the square of a “length,” and this scalar product must therefore be positive for any f that is
not itself identically zero. Since the integrand in the scalar product is then f*(s) f (s)w(s)
and f*(s)f(s) >0 for all s (even if f(s) is complex), we can see that w(s) must be
positive over the entire range [a, b] except possibly for zeros at isolated points.

Let’s review some of the implications of Eq. (5.4). It is not appropriate to interpret that
equation as a continuum analog of the ordinary dot product, with the variable s thought
of as the continuum limit of an index labeling vector components. The integral actually
arises pursuant to a decision to compute a “squared length” as a possibly weighted average
over the range of values of the parameter s. We can illustrate this point by considering the

U1f the members of the vector space are complex, this statement will need adjustment; see the formal definitions in the next

subsection.
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other situation that arises occasionally in physics, and illustrated by the third vector space
in Example 5.1.1. Here we simply define the scalar products of the individual & and B to
have values

(la) = (BIB) =1, (a|B)=(Bla) =0,
and then, taking the simple one-electron functions
f=aa+ap, g=bia+bp,
and assuming a; and b; to be real, we expand ( f|g) (using its linearity property) to reach
(flg) = aibi(a|er) + aibr(a|B) + arbi(Bla) + arba(BIB) = aiby +azbs.  (5.5)

These equations show that the introduction of an integral is not an indispensible step toward
generalization of the scalar product; they also show that the final formula in Eq. (5.5),
which is analogous to ordinary vector algebra, arises from the expansion of (f|g) in a
basis whose two members, & and 8, are orthogonal (i.e., have a zero scalar product). Thus,
the analogy to ordinary vector algebra is that the “unit vectors” of this spin system define
an orthogonal “coordinate system” and that the “dot product” then has the expected form.

Vector spaces that are closed under addition and multiplication by a scalar and which
have a scalar product that exists for all pairs of its members are termed Hilbert spaces;
these are the vector spaces of primary importance in physics.

Hilbert Space

Proceeding now somewhat more formally (but still without complete rigor), and includ-
ing the possibility that our function space may require more than two basis functions, we
identify a Hilbert space H as having the following properties:

e Elements (members) f, g, or & of H are subject to two operations, addition, and
multiplication by a scalar (here &, k1, or k2). These operations produce quantities that
are also members of the space.

e Addition is commutative and associative:

F)+g(s)=g()+ f(s), [f(s)+g@®)]+h(s)=f(s)+[g(s) +h(s)].

e Multiplication by a scalar is commutative, associative, and distributive:

kf@s)=f(s)k, kLf(s)+g)]=kf(s)+kg(s),
(k1 +k2) f(s) =k f(s) + ko f(s),  kilka f(s)]=kika f(s).

e H is spanned by a set of basis functions ¢;, where for the purposes of this book the
number of such basis functions (the range of i) can either be finite or denumerably infi-
nite (like the positive integers). This means that every function in H can be represented
by the linear form f(s) =), an@x(s). This property is also known as completeness.
We require that the basis functions be linearly independent, so that each function in the
space will be a unique linear combination of the basis functions.
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e For all functions f(s) and g(s) in H, there exists a scalar product, denoted as (f|g),
which evaluates to a finite real or complex numerical value (i.e., does not contain s)
and which has the properties that

1. (f|f) =0, with the equality holding only if f is identically zero.” The quantity
(f1£)1/2 is called the norm of f and is written || f||.

2. @A) =(fg), (flg +h) =(flg) + (flh), and (flkg) =k(f|g).

Consequences of these properties are that (flkig + kah) = k1{(f|g) + k2(f|h), but
(kflg) =k*(flg) and (ki f + kaglh) = ki (f|h) + k5 (gl|h).

Example 5.1.2  SOME SCALAR PRODUCTS

Continuing with the first vector space of Example 5.1.1, let’s assume that our scalar product
of any two functions f(s) and g(s) takes the form

1
(flg) = / F1(5) g(s)ds, 5.6)
e

i.e., the formula given as Eq. (5.4) witha = —1, b =1, and w(s) = 1. Since all the mem-
bers of this vector space are quadratic forms and the integral in Eq. (5.6) is over the finite
range from —1 to +1, the scalar product will always exist and our three basis functions
indeed define a Hilbert space. Before we make a few sample computations, let’s note that
the brackets in the left member of Eq. (5.6) do not show the detailed form of the scalar
product, thereby concealing information about the integration limits, the number of vari-
ables (here we have only one, ), the nature of the space involved, the presence or absence
of a weight factor w(s), and even the exact operation that forms the product. All these
features must be inferred from the context or by a previously provided definition.
Now let’s evaluate two scalar products:

1

1 S3 1 5
(P0|52>:/PJ(S)SzdSZ/(l)(sz)dx: [?} _Z
-1

-1 el

1 1

3 1 353 1
Py|P,) = (1)[—2——}1:[————] =0. 5.7
(Pol P») / 2 | =157 758 » (5.7

Looking further at the scalar product definition of the present example, we note that it
is consistent with the general requirements for a scalar product, as (1) (f|f) is formed as
the integral of an inherently nonnegative integrand, and will be positive for all nonzero

2Tobe rigorous, the phrase “identically zero” needs to be replaced by “zero except on a set of measure zero,” and other conditions
need to be more tightly specified. These are niceties that are important for a precise formulation of the mathematics but are not
often of practical importance to the working physicist. We note, however, that discontinuous functions do arise in applications
of Fourier series, with consequences that are discussed in Chapter 19.
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f; and (2) the placement of the complex-conjugate asterisk makes it obvious that

(glf)*=(rlg). u

Schwarz Inequality

Any scalar product that meets the Hilbert space conditions will satisfy the Schwarz
inequality, which can be stated as

FIg)* < (f1f)glg). (5.8)

Here there is equality only if f and g are proportional. In ordinary vector space, the equiv-
alent result is, referring to Eq. (1.113),

(A-B)? = |A]*|B|? cos?0 < |A[*|BJ?, (5.9)

where 6 is the angle between the directions of A and B. As observed previously, the equal-
ity only holds if A and B are collinear. If we also require A to be of unit length, we have the
intuitively obvious result that the projection of B onto a noncollinear A direction will have
a magnitude less than that of B. The Schwarz inequality extends this property to functions;
their norms shrink on nontrivial projection.

The Schwarz inequality can be proved by considering

I=(f—-xglf —2g) =0, (5.10)

where A is an as yet undetermined constant. Treating A and A* as linearly independent,® we
differentiate I with respect to A* (remember that the left member of the product is complex
conjugated) and set the result to zero, to find the A value for which 7 is a minimum:

(glf)
—(glf—rg)=0 = r=-—>"",
(g18)
Substituting this A value into Eq. (5.10), we get (using properties of the scalar product)
(f1g)(glf)
(fIfy ——F—7—=0
(g1g)

Noting that (g|g) must be positive, and rewriting (g| f) as { f|g)*, we confirm the Schwarz
inequality, Eq. (5.8).

Orthogonal Expansions

With now a well-behaved scalar product in hand, we can make the definition that two func-
tions f and g are orthogonal if ( f|g) = 0, which means that (g|f) will also vanish. An
example of two functions that are orthogonal under the then-applicable definition of the
scalar product are Py(s) and P»(s), where the scalar product is that defined in Eq. (5.6)
and Py, P, are the functions from Example 5.1.1; the orthogonality is shown by Eq. (5.7).
We further define a function f as normalized if the scalar product (| f) = 1; this is the

3 1t is not obvious that one can do this, but consider A = u +iv, A* = u — iv, with u and v real. Then % [0/ +id/dv] is
equivalent to taking 9/01* keeping A constant.
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function-space equivalent of a unit vector. We will find that great convenience results if
the basis functions for our function space are normalized and mutually orthogonal, cor-
responding to the description of a 2-D or three-dimensional (3-D) physical vector space
based on orthogonal unit vectors. A set of functions that is both normalized and mutually
orthogonal is called an orthonormal set. If a member f of an orthogonal set is not nor-
malized, it can be made so without disturbing the orthogonality: we simply rescale it to
F = f/{f1f)'/?, so any orthogonal set can easily be made orthonormal if desired.

If our basis is orthonormal, the coefficients for the expansion of an arbitrary function in
that basis take a simple form. We return to our 2-D example, with the assumption that the
@; are orthonormal, and consider the result of taking the scalar product of f(s), as given
by Eq. (5.1), with ¢ (s):

(11 f) = {@1l(a191 +a2¢2)) = ar{p1le1) + az{p1le2). (5.11)

The orthonormality of the ¢ now comes into play; the scalar product multiplying a; is
unity, while that multiplying a» is zero, so we have the simple and useful result (¢1|f) =
ay. Thus, we have a rather mechanical means of identifying the components of f. The
general result corresponding to Eq. (5.11) follows:

n
If (pilp;)=8;j and f=>) aigi. then a; = (gl f). (5.12)

i=1

Here the Kronecker delta, §;;, is unity if i = j and zero otherwise. Looking once again
at Eq. (5.11), we consider what happens if the ¢; are orthogonal but not normalized. Then
instead of Eq. (5.12) we would have:

n
If the ¢; are orthogonal and f = Za,wp,-, then q; = (ilF) . (5.13)

— (vilei)

This form of the expansion will be convenient when normalization of the basis introduces
unpleasant factors.

Example 5.1.3  ExpANSION IN ORTHONORMAL FUNCTIONS

Consider the set of functions y,(x) = sinnx, for n =1,2,..., to be used for x in the
interval 0 < x < s with scalar product

(flg) = / FH0g0)dx. (5.14)
0

We wish to use these functions for the expansion of the function x> (77 — x).
First, we check that they are orthogonal:

b/ b/

Spm = / Xor () X, (X)dx :/sinnx sinmx dx.
0 0
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For n # m this integral can be shown to vanish, either by symmetry considerations or by
consulting a table of integrals. To determine normalization, we need Sj,,;; from symmetry
considerations, the integrand, sin? nx = %(1 — cos2nx), can be seen to have average value

1/2 over the range (0, ), leading to S,, = 7 /2 for all integer n. This means the y,, are not
normalized, but can be made so if we multiply by 4/2/7. So our orthonormal basis will be

1/2
gon(x)=<—> sinnx, n=1,2,3,.... (5.15)
b4

To expand x2( — x), we apply Eq. (5.2), which requires the evaluation of
2\ 12 T
an = (gp|x* (T — x)) = (—) /(sinnx) x2(r —x) dx, (5.16)
" 0
for use in the expansion

I\ 1/2
xX(r —x) = (—) > aysinnx. (5.17)
T n=0

Evaluating cases of Eq. (5.16) by hand or using a computer for symbolic computation, we
have for the first few a,: a; = 5.0132, ap = —1.8300, az = 0.1857, ag = —0.2350. The
convergence is not very fast. ]

Example 5.1.4  spinSeace

A system of four spin—% particles in a triplet state has the following three linearly indepen-
dent spin functions:

X1 =afaa — Baaa, x,=aoaf —acfa, x3=aaof +aafa —afac — Baaa.

The four symbols in each term of these expressions refer to the spin assignments of the
four particles, in numerical order.
The scalar product in the spin space has the form, for monomials,

(abcd|wxyz) = 84wdpxBeydaz,

meaning that the scalar product is unity if the two monomials are identical, and is zero if
they are not. Scalar products involving polynomials can be evaluated by expanding them
into sums of monomial products. It is easy to confirm that this definition meets the require-
ments for a valid scalar product.

Our mission will be (1) verify that the y; are orthogonal; (2) convert them, if neces-
sary, to normalized form to make an orthonormal basis for the spin space; and (3) expand
the following triplet spin function as a linear combination of the orthonormal spin basis
functions:

Xo = aafa — afaa.

The functions x, and x, are orthogonal, as they have no terms in common. Although x,
and x5 have two terms in common, they occur in sign combinations leading to a vanishing
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scalar product. The same observation applies to {x,|x3). However, none of the x; are nor-
malized. We find {x;|x;) = (X,1x,) =2, {(x3]x3) =4, so an orthonormal basis would be

_ _ 1
o1 =272, =272y, 3= 75 X3:

Finally, we obtain the coefficients for the expansion of x, by forming a; = (¢11x,) =
—1/V2, a0 = (o2lxg) = =—1/+/2,and a3 = (@31xo) = 1. Thus, the desired expansion is

1 1
Xo=—ﬁ¢1—ﬁwz+¢3-

Expansions and Scalar Products

If we have found the expansions of two functions,
f= Zau‘/’u and g= vawv,
I v
then their scalar product can be written

(flg) = Za by (@ lon).

If the ¢ set is orthonormal, the above reduces to

(flg) Za b. (5.18)

In the special case g = f, this reduces to

(f1fy= Zlaﬂl (5.19)

consistent with the requirement that (f|f) > 0, with equality only if f is zero “almost
everywhere.”

If we regard the set of expansion coefficients a,, as the elements of a column vector
a representing f, with column vector b similarly representing g, Egs. (5.18) and (5.19)
correspond to the matrix equations

(flg)=a'b, (flf)=a'a. (5.20)

Note that by taking the adjoint of a, we both complex conjugate it and convert it into a row
vector, so that the matrix products in Eq. (5.20) collapse to scalars, as required.
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Example 5.1.5  Coerricient VECTORS

A set of functions that is orthonormal on 0 < x < is

2 —6no
on(x) = cosnx, n=0,1,2,....
T

First, let us expand in terms of this basis the two functions

1/f1=cos3x+sin2x+cosx+1 and 1//2=COSZ)C—COS)C.

We write the expansions as vectors a; and ap with components n =0, ..., 3:
{@ol¥r1) {®olv¥r2)
N R _ | terlva)
(@2l¥1) (@2]¥2)
(p3l¥1) (@31¥2)

261

All components beyond n = 3 vanish and need not be shown. It is straightforward to
evaluate these scalar products. Alternatively, we can rewrite the ¥; using trigonometric

identities, reaching the forms

" cos3x  cos2x n 7 " 3 " cos2x n 1
— _ — COS X -, = —— — COSx —.
=y 2 4 2 T 2

These expressions are now easily recognized as equivalent to

S B S TR Ve w_\/i e V2
VN R 2 ) V2T a\ T T

SO
3V2/2 V2/2
U /7Y I
V2 -2 BTV 12
1/4 0

We see from the above that the general formula for finding the coefficients in an orthonor-
mal expansion, Eq. (5.12), is a systematic way of doing what sometimes can be carried out

in other ways.

We can now evaluate the scalar products (; [y;). Identifying these first as matrix prod-

ucts that we then evaluate,

637
16’

T

Wily1) =ala; =

7
(Wilvn) =ajm =7,  (Woly2) =ajar = ?”
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Bessel’s Inequality

Given a set of basis functions and the definition of a space, it is not necessarily assured that
the basis functions span the space (a property sometimes referred to as completeness). For
example, we might have a space defined to be that containing all functions possessing a
scalar product of a given definition, while the basis functions have been specified by giving
their functional form. This issue is of some importance, because we need to know whether
an attempt to expand a function in a given basis can be guaranteed to converge to the correct
result. Totally general criteria are not available, but useful results have been obtained if
the function being expanded has, at worst, a finite number of finite discontinuities, and
results are accepted as “accurate” if deviations from the correct value occur only at isolated
points. Power series and trigonometric series have been proved complete for the expansion
of square integrable functions f (those for which (f|f) as defined in Eq. (5.7) exists;
mathematicians identify such spaces by the designation £2). Also proved complete are the
orthonormal sets of functions that arise as the solutions to Hermitian eigenvalue problems.*

A not too practical test for completeness is provided by Bessel’s inequality, which states
that if a function f has been expanded in an orthonormal basis as ) _, a,¢,, then

(F1£) =) lanl, (5.21)

with the inequality occurring if the expansion of f is incomplete. The impracticality of
this as a completeness test is that one needs to apply it for all f before using it to claim
completeness of the space.

We establish Bessel’s inequality by considering

1=<f—zai<ﬂi

f—Za;¢j>20, (5.22)
F

where I = 0 represents what is termed convergence in the mean, a criterion that per-
mits the integrand to deviate from zero at isolated points. Expanding the scalar product,
and eliminating terms that vanish because the ¢ are orthonormal, we arrive at Eq. (5.21),
with equality only resulting if the expansion converges to f. We note in passing that con-
vergence in the mean is a less stringent requirement than uniform convergence, but is
adequate for almost all physical applications of basis-set expansions.

Example 5.1.6  ExpANSION OF A DISCONTINUOUS FUNCTION

The functions cosnx (n =0,1,2,...) and sinnx (n = 1,2,...) have (together) been
shown to form a complete set on the interval —mw < x < . Since this determination is
obtained subject to convergence in the mean, there is the possibility of deviation at iso-
lated points, thereby permitting the description of functions with isolated discontinuities.

4See R. Courant and D. Hilbert, Methods of Mathematical Physics (English translation), Vol. 1, New York: Interscience (1953),
reprinting, Wiley (1989), chapter 6, section 3.
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We illustrate with the square-wave function
h

-, O<x<m
f=12, (5.23)

-, - 0.
3 T<Xx<

The functions cos nx and sinnx are orthogonal on the expansion interval (with unit weight
in the scalar product), and the expansion of f(x) takes the form

o
fx)=ap+ Z(an cosnx + b, sinnx).

n=1

Because f(x) is an odd function of x, all the a,, vanish, and we only need to compute

T
1
b, =— / f(t)sinnt dt.
g
-7
The factor 1/ preceding the integral arises because the expansion functions are not
normalized.

Upon substitution of 4 /2 for f(¢), we find

h 0, n even,
b,=—{ —cosnmt)=14 24
"Tnm —, nodd.
nw
Thus, the expansion of the square wave is
2h < sin(2n + Dx
=— . 5.24
=2y e 529

To give an idea of the rate at which the series in Eq. (5.24) converges, some of its partial
sums are plotted in Fig. 5.1.
|

Expansions of Dirac Delta Function

Orthogonal expansions provide opportunities to develop additional representations of the
Dirac delta function. In fact, such a representation can be built from any complete set of
functions ¢, (x). For simplicity we assume the ¢, to be orthonormal with unit weight on
the interval (a, b), and consider the expansion

Sx—1) =Y calt) pu(x), (5.25)

n=0
where, as indicated, the coefficients must be functions of 7. From the rule for determining
the coefficients, we have, for ¢ also in the interval (a, b),
b
cn(t) = / Or(x)8(x —1)dx =g (1), (5.26)

a
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FIGURE 5.1 Expansion of square wave. Computed using Eq. (5.24) with summation
terminated after n =4, 8, 12, and 20. Curves are at different vertical scales to
enhance visibility.

where the evaluation has used the defining property of the delta function. Substituting this
result back into Eq. (5.25), we have

§x —1) =Y @r(t) palx). (5.27)

n=0

This result is clearly not uniformly convergent at x = ¢. However, remember that it is not
to be used by itself, but has meaning only when it appears as part of an integrand. Note
also that Eq. (5.27) is only valid when x and ¢ are within the range (a, b).

Equation (5.27) is called the closure relation for the Dirac delta function (with respect
to the ¢,) and obviously depends on the completeness of the ¢ set. If we apply Eq. (5.27)
to an arbitrary function F(¢) that we assume to have the expansion F(¢) =) »Cp¥p (1),
we have

b b

/F(t)&(x—t)dtz/ dtchgop(t)Z¢Z(t)¢n(X)
p a p=0 n=0
= Zcp @p(x) = F(x), (5.28)
p=0

which is the expected result. However, if we replace the integration limits (a, b) by (¢, t2)
such that a <t <t < b, we get a more general result that reflects the fact that our
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FIGURE 5.2 Approximation at N = 80 to §(t — x), Eq. (5.30), for r =0.4.
representation of §(x — ¢) is negligible except when x ~ ¢:

% F(x), t1 <x<t,
(5.29)

/F(z)&(x —ndt =

: 0, X <1 orx>f.
1

Example 5. 1.7 DELTA FUNCTION REPRESENTATION

To illustrate an expansion of the Dirac delta function in an orthonormal basis, take ¢, (x) =
/2 sin nmx, which are orthonormal and complete on x = (0, 1) forn = 1,2, .. .. Then the
Dirac delta function has representation, valid forO <x < 1,0 <t < 1,

N
S(x —1) =N1£n0022sinnmsinnnx. (5.30)
n=

Plotting this with N = 80 for r = 0.4 and 0 < x < 1 gives the result shown in Fig. 5.2. W

Dirac Notation

Much of what we have discussed can be brought to a form that promotes clarity and
suggests possibilities for additional analysis by using a notational device invented by
P. A. M. Dirac. Dirac suggested that instead of just writing a function f, it be written
enclosed in the right half of an angle-bracket pair, which he named a ket. Thus f — | f),
@i — |@i), etc. Then he suggested that the complex conjugates of functions be enclosed
in left half-brackets, which he named bras. An example of a bra is ¢ — (¢;|. Finally, he
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suggested that when the sequence (bra followed by ket = bra+ket ~ bracket) is encoun-
tered, the pair should be interpreted as a scalar product (with the dropping of one of the two
adjacent vertical lines). As an initial example of the use of this notation, take Eq. (5.12),
which we now write as

1)Y= ajle)) =Y _leeilf)=| D lej el | 1f). (5.31)
J J J

This notational rearrangement shows that we can view the expansion in the ¢ basis as the
insertion of a set of basis members in a way which, in sum, has no effect. If the sum is over
a complete set of ¢;, the ket-bra sum in Eq. (5.31) will have no net effect when inserted
before any ket in the space, and therefore we can view the sum as a resolution of the
identity. To emphasize this, we write

1= "lo;)e;l. (532)
J

Many expressions involving expansions in orthonormal sets can be derived by the insertion
of resolutions of the identity.

Dirac notation can also be applied to expressions involving vectors and matrices, where
it illuminates the parallelism between physical vector spaces and the function spaces here
under study. If a and b are column vectors and M is a matrix, then we can write |b) as a
synonym for b, we can write (a| to mean a’, and then (a|b) is interpreted as equivalent to
a'b, which (when the vectors are real) is matrix notation for the (scalar) dot product a - b.
Other examples are expressions such as

a=Mb < |a)=|Mb)=M|b) or a'Mb=M'a)'b < (a]Mb) = (M'a|b).

Exercises

5.1.1

5.1.2

A function f(x) is expanded in a series of orthonormal functions

fO) =) angpn(x).

n=0

Show that the series expansion is unique for a given set of ¢, (x). The functions ¢, (x)
are being taken here as the basis vectors in an infinite-dimensional Hilbert space.

A function f(x) is represented by a finite set of basis functions ¢; (x),

N
f) =) cigix).

i=1
Show that the components ¢; are unique, that no different set c] exists.

Note. Your basis functions are automatically linearly independent. They are not neces-
sarily orthogonal.
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A function f(x) is approximated by a power series er'l:_ol c;x' over the interval [0, 1].
Show that minimizing the mean square error leads to a set of linear equations

Ac=Db,

where
1

L 1
Aij=/X’+’dX=+, i,j=0,1,2,....,n—1
i+j+1
0
and
1
bi=fxif(X)dx, i=0,1,2,...,n—1.
0

Note. The A;; are the elements of the Hilbert matrix of order n. The determinant of this
Hilbert matrix is a rapidly decreasing function of n. For n =5, detA = 3.7 x 107! and
the set of equations Ac = b is becoming ill-conditioned and unstable.

In place of the expansion of a function F(x) given by

F(x) =) angn(x),

n=0
with
b
an = / F0)gn(r)w(x) dx,
a

take the finite series approximation

F(x) %) cagn(x).

n=0
Show that the mean square error
b m 2
/ |:F(x) - ch(p,, (x):| w(x)dx
p n=0
is minimized by taking ¢, = a,.
Note. The values of the coefficients are independent of the number of terms in the finite

series. This independence is a consequence of orthogonality and would not hold for a
least-squares fit using powers of x.

From Example 5.1.6,

-, O<x<m

£y = Z sin(2n + l)x.

_2
T 2n+1

——, —mw<x<0 n=0
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(a) Show that

b1 )
f [f(x)] 2 dx = %hz = % Y @n+172
“r n=0

For a finite upper limit this would be Bessel’s inequality. For the upper limit oo,
this is Parseval’s identity.

(b) Verify that

T, 4h & L

by evaluating the series.

Hint. The series can be expressed in terms of the Riemann zeta function ¢ (2) = 72/6.
5.1.6 Derive the Schwarz inequality from the identity

2 b

b
/f(x)g(x)dx =/[f(x)]2dx/[[g(X)]2dx

a

1 2
-3 / dx / ay[ Fg ) = Fz)]

f- Za] ¢,>

derive Bessel’s mequahty, (f1f) = Z lan|?.

5.1.7 Starting from I = <f Za, O

5.1.8 Expand the function sinwx in a series of functions ¢; that are orthogonal (but not nor-
malized) on the range 0 < x < 1 when the scalar product has definition

(flg)= / fH)g(x)dx.
0

Keep the first four terms of the expansion. The first four ¢; are:
=1, @oi=2x—1, @g=6x>—6x+1, ¢3=20x>—30x>+12x—1.
Note. The integrals that are needed are the subject of Example 1.10.5.

5.1.9 Expand the function e~ in Laguerre polynomials L, (x), which are orthonormal on the
range 0 < x < oo with scalar product

(flg) = / Fr(0)g (e dx
0
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Keep the first four terms of the expansion. The first four L, (x) are

2 2_ .3
Lo=1. Li=1-_x. L2:2—4x+x ’ L3=6—18x+9x —x
2 6
5.1.10  The explicit form of a function f is not known, but the coefficients a, of its expan-
sion in the orthonormal set ¢, are available. Assuming that the ¢, and the members of
another orthonormal set, x,,, are available, use Dirac notation to obtain a formula for
the coefficients for the expansion of f in the x,, set.

5.1.11  Using conventional vector notation, evaluate Z |€;)(€;j]a), where a is an arbitrary vec-

J
tor in the space spanned by the €;.

5.1.12  Letting a =a1@; + a2&, and b = bj&; + h2&; be vectors in R?, for what values of k, if
any, is

(alb) =a1by —a1by — axby + kaz by

a valid definition of a scalar product?

5.2 GRAM-SCHMIDT ORTHOGONALIZATION

Crucial to carrying out the expansions and transformations under discussion is the avail-
ability of useful orthonormal sets of functions. We therefore proceed to the description of
a process whereby a set of functions that is neither orthogonal or normalized can be used
to construct an orthonormal set that spans the same function space. There are many ways
to accomplish this task. We present here the method called the Gram-Schmidt orthogo-
nalization process.

The Gram-Schmidt process assumes the availability of a set of functions x, and an
appropriately defined scalar product ( f|g). We orthonormalize sequentially to form the
orthonormal functions ¢,, meaning we make the first orthonormal function, ¢o, from y,
the next, ¢, from x,, and x, etc. If, for example, the X,, are powers x*, the orthonormal
function ¢, will be a polynomial of degree v in x. Because the Gram-Schmidt process is
often applied to powers, we have chosen to number both the x and the ¢ sets starting from
zero (rather than 1).

Thus, our first orthonormal function will simply be a normalized version of .
Specifically,

po=—20__. (5.33)
<X0|X0> /
To check that Eq. (5.33) is correct, we form

Xo
<X0|X0>1/2

{(®oleo) =<

o)y,
<X0|Xo>1/2

Next, starting from ¢ and y, we form a function that is orthogonal to ¢o. We use ¢ rather
than x,, to be consistent with what we will do in later steps of the process. Thus, we write

Y1 = x; — ai1,090. (5.34)
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What we are doing here is the removal from y, of its projection onto ¢, leaving a remain-
der that will be orthogonal to ¢y. Remembering that ¢g is normalized (of “unit length”),
that projection is identified as {(go|x;)¢o, so that

ar,o = {polx)- (5.35)

In case Eq. (5.35) is not intuitively obvious, we can confirm it by writing the requirement
that v be orthogonal to ¢p:

(olunn) = go| (1 — a1.000)) = (golxy) — an0(00le0) =0,

which, because ¢g is normalized, reduces to Eq. (5.35). The function v is not in general
normalized. To normalize it and thereby obtain ¢, we form

o= — (5.36)

(Yily)1/2
To continue further, we need to make, from g, ¢1, and x,, a function that is orthogonal
to both g and ¢;. It will have the form

Yo = Xy — 40,200 — A1,201. (5.37)

The last two terms of Eq. (5.37), respectively, remove from y,, its projections on ¢g and ¢1;
these projections are independent because g and ¢; are orthogonal. Thus, either from our
knowledge of projections or by setting to zero the scalar products (@;|¥») (i =0 and 1),
we establish

ao2 = {polxp), ai2={p1lxa). (5.38)

Finally, we make @2 = ¥2/(Y2|y2) /2.

The generalization for which the above is the first few terms is that, given the prior
formation of ¢;, i =0, ..., n — 1, the orthonormal function ¢, is obtained from yx, by the
following two steps:

n—1
1/jn = Xn - Z(gp,u'Xn)gouv
n=0
Yn
= —. 5.39
o Wl 2 -39

Reviewing the above process, we note that different results would have been obtained if
we used the same set of ;, but simply took them in a different order. For example, if we
had started with yx;, one of our orthonormal functions would have been a multiple of x5,
while the set we constructed yielded ¢3 as a linear combination of x w = 0,1,2,3.

Example 5.2.1  LEGENDRE POLYNOMIALS

Let us form an orthonormal set, taking the x,, as x/, and making the definition

1
(flg) = / F*(0)g()dx. (5.40)
el
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This scalar product definition will cause the members of our set to be orthogonal, with
unit weight, on the range (—1, 1). Moreover, since the x,, are real, the complex conjugate
asterisk has no operational significance here.

The first orthonormal function, ¢y, is

wo(x) =

1 1
2o V2
dx
—1
To obtain ¢;, we first obtain | by evaluating
Yi(x) =x — (polx)po(x) =x,

where the scalar product vanishes because ¢g is an even function of x, whereas x is odd,
and the range of integration is even. We then find

_x _\/3
(Pl(x)— = E)C.

: 12
|:f xzdx:|

—1
The next step is less trivial. We form
1 1 1
_ .2 2 _ 2 S R L e AN S W S
Y200 =57 = (ol () — (11371 (6) = x <ﬁ\x >(ﬁ> -

where we have used symmetry to set (¢;|x2) to zero and evaluated the scalar product

()= f o=

2 1
_ o3 _ 53,2 1
w0 =0 _\/;<2x 2)

Then,

_T(5 5 3
o3(x) = 5(—x ——x).

Reference to Chapter 15 will show that

2n+1
2
where P, (x) is the nth degree Legendre polynomial. Our Gram-Schmidt process provides

a possible but very cumbersome method of generating the Legendre polynomials; other,
more efficient approaches exist. |

n(x) = Py (x), (5.41)
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Table 5.1 Orthogonal Polynomials Generated by Gram-Schmidt Orthogonalization of
uy(x)=x",n=0,1, 2,....

Polynomials Scalar Products Table
1
Legendre / Pp(x) Py (x)dx =28n/(2n+ 1) Table 15.1
-1
1
Shifted Legendre / P (x) Py (x)dx = Smn/(2n + 1) Table 15.2
0
1
Chebyshev [ f Ty () T () (1 = x2) ™2 dx = 8pun/ (2 = 840) Table 18.4
—1
1
Shifted Chebyshev I f T T ) x (1 — x)] 7V 2dx = 8nm/ (2 — 8,0) Table 18.5
0
1
Chebyshev IT / Un () U (x) (1 = %) dx = 82 Table 18.4
-1
o0
Laguerre /Ln(x)Lm(x)e_xdx =8mn Table 18.2
0
o0
Associated Laguerre / Llfl (x)Lﬁl (x)e Ydx =8pn(n+k)!/n! Table 18.3
0
o0
Hermite / Hy (6) Hyp (x)e ™ dx = 2" 8y /2! Table 18.1
—00

The intervals, weights, and conventional normalization can be deduced from the forms of the scalar products.
Tables of explicit formulas for the first few polynomials of each type are included in the indicated tables
appearing in Chapters 15 and 18 of this book.

The Legendre polynomials are, except for sign and scale, uniquely defined by the Gram-
Schmidt process, the use of successive powers of x, and the definition adopted for the
scalar product. By changing the scalar product definition (different weight or range), we
can generate other useful sets of orthogonal polynomials. A number of these are presented
in Table 5.1. For various reasons most of these polynomial sets are not normalized to
unity. The scalar product formulas in the table give the conventional normalizations, and
are those of the explicit formulas referenced in the table.

Orthonormalizing Physical Vectors

The Gram-Schmidt process also works for ordinary vectors that are simply given by their
components, it being understood that the scalar product is just the ordinary dot product.
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Example 5.2.2  ORTHONORMALIZING A 2-D MANIFOLD

A 2-D manifold (subspace) in 3-D space is defined by the two vectors a; = €| + €, — 2¢€3
and a; = € + 2€; — 3€3. In Dirac notation, these vectors (written as column matrices) are

1 1
lag)=| 1], la)=| 2
-2 -3

Our task is to span this manifold with an orthonormal basis.
We proceed exactly as for functions: Our first orthonormal basis vector, which we call
b, will be a normalized version of aj, and therefore formed as

bi) — aj 1 _
| 1>—W—m|al)—m

An unnormalized version of a second orthonormal function will have the form

~1/2
|b5) = |az) — (bi]az)[by) =|az) — G2 [by)=1| 1/2
0
Normalizing, we reach
b, (!

)= ——2 = —
(by[b5)172 2

Exercises

For the Gram-Schmidt constructions in Exercises 5.2.1 through 5.2.6, use a scalar prod-
uct of the form given in Eq. (5.7) with the specified interval and weight.

5.2.1 Following the Gram-Schmidt procedure, construct a set of polynomials P (x) orthog-
onal (unit weighting factor) over the range [0, 1] from the set [1, x, x%, ...]. Scale so
that P*(1) = 1.

ANS.  Pi(x)=1,

Pi(x)=2x —1,

Py (x)=6x> —6x + 1,

Py (x) =20x> —30x% + 12x — 1.
These are the first four shifted Legendre polynomials.
Note. The “*” is the standard notation for “shifted”: [0, 1] instead of [—1, 1]. It does not
mean complex conjugate.

5.2.2 Apply the Gram-Schmidt procedure to form the first three Laguerre polynomials:

u,(x)=x", n=0,1,2,..., 0<x<oo, wx)=e .
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The conventional normalization is

o0
/ L ()L ()™ dx = Sy,
0
2 — 4y 4+ x2
ANS. Lo=1, Li=(l—x), L2=++x,

You are given
(a) asetof functions u,(x) =x",n=0,1,2,...,
(b) aninterval (0, 00),

(c) aweighting function w(x) = xe™* Use the Gram-Schmidt procedure to construct
the first three orthonormal functions from the set «,, (x) for this interval and this
weighting function.

ANS. @o(x) =1, @1(x)=(x—=2)/v2, ¢2(x) = (x> —6x +6)/2/3.

Using the Gram-Schmidt orthogonalization procedure, construct the lowest three

Hermite polynomials:
u,(x)=x", n=0,1,2,..., —o0o<x <o00, w(x):e_"2

For this set of polynomials the usual normalization is

o0
/ Hyp (%) Hy ()w(x) dx = 8pp2"m! /2.

—00

ANS. Ho=1, Hy=2x, H,=4x>-2.
Use the Gram-Schmidt orthogonalization scheme to construct the first three Chebyshev
polynomials (type I):
up(x)=x", n=0,1,2,..., —l<x<1, wkx) =0-x>)""2
Take the normalization

1 7, m=n=0,

[ Tato T @dx = b0 {
—, m=n>1.
2 2
Hint. The needed integrals are given in Exercise 13.3.2.
ANS. To=1, Ti=x, Th=2x*—1, (T3=4x>—3x).
Use the Gram-Schmidt orthogonalization scheme to construct the first three Chebyshev
polynomials (type II):
up(x)=x", n=0,1,2,..., —l<x<1, wk) =0-x>)T"2
Take the normalization to be
1

/ U (X)Up (x)w (x) dx =5mng.
-1
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Hint.

1
/(1—x2)1/2x2"dx=fx 1-3:5--Gn=b 05
27468 --(2n+2)
4

ANS. Up=1, U =2x, Upy=4x%>—1.

5.2.7 As a modification of Exercise 5.2.5, apply the Gram-Schmidt orthogonalization proce-
dure to the set u,(x) =x",n=0,1,2,..., 0 <x < oc0. Take w(x) to be exp(—xz).
Find the first two nonvanishing polynomials. Normalize so that the coefficient of the
highest power of x is unity. In Exercise 5.2.5, the interval (—oo, co) led to the Hermite
polynomials. The functions found here are certainly not the Hermite polynomials.

ANS. @o=1, ¢r=x—n"12

5.2.8 Form a set of three orthonormal vectors by the Gram-Schmidt process using these input
vectors in the order given:

1 1 1
ci=|1}), =1}, c&3=1{0
1 2

5.3 OPERATORS

An operator is a mapping between functions in its domain (those to which it can be
applied) and functions in its range (those it can produce). While the domain and the range
need not be in the same space, our concern here is for operators whose domain and range
are both in all or part of the same Hilbert space. To make this discussion more concrete,
here are a few examples of operators:

e Multiplication by 2: Converts f into 2 f;

e For a space containing algebraic functions of a variable x, d/dx: Converts f(x) into
df/dx;

e Anintegral operator A defined by A f(x) = [ G(x,x') f(x")dx’: A special case of this
is a projection operator |¢;){¢;|, which converts f into (¢;|f)e;.

In addition to the abovementioned restriction on domain and range, we also for our present
purposes restrict attention to operators that are linear, meaning that if A and B are linear
operators, f and g functions, and k a constant, then

(A+B)f=Af+Bf, A(f+g) =Af+Ag, Ak=KA.

For both electromagnetic theory and quantum mechanics, an important class of operators
are differential operators, those that include differentiation of the functions to which they
are applied. These operators arise when differential equations are written in operator form;
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for example, the operator

d? d
2x

£()C)=(l —xz)ﬁ— E

enables us to write Legendre’s differential equation,

d>y | dy
1 —x?)—% —2x—= 4 Ay =0,
(1-x )dx2 Y dx Ay
in the form £(y)y = —Ay. When no confusion thereby results, this can be shortened to

Ly=—Ay.

Commutation of Operators

Because differential operators act on the function(s) to their right, they do not necessarily
commute with other operators containing the same independent variable. This fact makes
it useful to consider the commutator of operators A and B,

[A,B]=AB — BA. (5.42)

We can often reduce AB — BA to a simpler operator expression. When we write an
operator equation, its meaning is that the operator on the left-hand side of the equation
produces the same effect on every function in its domain as is produced by the opera-
tor on the right-hand side. Let’s illustrate this point by evaluating the commutator [x, p],
where p = —id/dx. The imaginary unit i and the name p appear because this operator
is that corresponding in quantum mechanics to momentum (in a system of units such that
h =h/2m =1). The operator x stands for multiplication by x.

To carry out the evaluation, we apply [x, p] to an arbitrary function f(x). Inserting the
explicit form of p, we have

_ _ @ (. d
[, PIf () = (xp = p) f(x) = —ix == — (—%) (xr@)

= —ixf' @ +i( f@) +xf ™) =i @),
indicating that

[x, pl =i. (5.43)

As indicated before, this means [x, p] f(x) =i f(x) for all f.
We can carry out various algebraic manipulations on commutators. In general, if A, B,
C are operators and k is a constant,

[A,Bl=—[B,Al, [A,B+Cl=I[A,B]+[A,C], k[A, B]=[kA, B]=I[A,kB].
(5.44)
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Example 5.3.1  OPERATOR MANIPULATION

Given [x, p], we can simplify the commutator [x, pz]. We write, being careful about the
operator ordering and using Eq. (5.43),

[x, p* = xp® — pxp + pxp — p>x =[x, plp + plx, p =2i p, (5.45)

a result also obtainable from

d? d? o 54
x (—ﬁ> fx) = <—ﬁ> xf(x)=2f(x)=2i <_’E) J ).
However, note that Eq. (5.45) follows solely from the validity of Eq. (5.43), and will apply
to any quantities x and p that satisfy that commutation relation, whether or not we are
operating with ordinary functions and their derivatives. Put another way, if x and p are
operators in some abstract Hilbert space and all we know about them is Eq. (5.43), we may
still conclude that Eq. (5.45) is also valid. |

Identity, Inverse, Adjoint

An operator that is generally available is the identity operator, namely one that leaves
functions unchanged. Depending on the context, this operator will be denoted either / or
simply 1. Some, but not all operators will have an inverse, namely an operator that will
“undo” its effect. Letting A~! denote the inverse of A, if A~! exists, it will have the
property

ATlA=AA"1=1. (5.46)

Associated with many operators will be another operator, called its adjoint and denoted
AT, which will be such that for all functions f and g in the Hilbert space,

(flAg) = (AT flg). (5.47)

Thus, we see that AT is an operator that, applied to the left member of any scalar product,
produces the same result as is obtained if A is applied to the right member of the same
scalar product. Equation (5.47) is, in essence, the defining equation for A,

Depending on the specific operator A, and the definitions in use of the Hilbert space
and the scalar product, A" may or may not be equal to A. If A = A", A is referred to as
self-adjoint, or equivalently, Hermitian. If A" = —A, A is called anti-Hermitian. This
definition is worth emphasis:

If H'=H, H isHermitian. (5.48)

Another situation of frequent occurrence is that the adjoint of an operator is equal to
its inverse, in which case the operator is called unitary. A unitary operator U is therefore
defined by the following statement:

If Ur=u"', Uis unitary. (5.49)

In the special case that U is both real and unitary, it is called orthogonal.
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The reader will doubtless note that the nomenclature for operators is similar to that

previously introduced for matrices. This is not accidental; we shall shortly develop corre-
spondences between operator and matrix expressions.

Example 5.3.2  FINDING THE ADJOINT

Consider an operator A = x(d/dx) whose domain is the Hilbert space whose members f
have a finite value of ( f|f) when the scalar product has definition

(flg)= / FH(x)g(x)dx.

This space is often referred to as L2 on (—00, 00). Starting from ( f|A g), we integrate by
parts as needed to move the operator out of the right half of the scalar product. Because f
and g must vanish at +00, the integrated terms vanish, and we get

_°° « 48 _OO wdg ood(xf*)
(flAg)—/fxadx_/(xf)adx__f 5 o

)

We see from the above that A" = —(d/dx)x, from which we can find AT = —A — 1.
This A is clearly neither Hermitian nor unitary (with the specified definition of the scalar
product). |

Example 5.3.3  ADJOINT DEPENDS ON SCALAR PRODUCT

For the Hilbert space and scalar product of Example 5.3.2, an integration by parts easily
establishes that an operator A = —i(d/dx) is self-adjoint, i.e., AT = A. But now let’s
consider the same operator A, but for the £ space with —1 < x < 1 (and with a scalar
product of the same form, but with integration limits £1). In this space, the integrated
terms from the integration by parts do not vanish, but we can incorporate them into an
operator on the left half of the scalar product by adding delta-function terms:

1
1 A\
—1+/<_ld_x) gdx
1

d
[t

1

=f ([i(S(x—1)—i8(x+1)—ii]f(x)) g(x)dx.
dx

-1

In this truncated space the operator A is not self-adjoint. |



5.3 Operators 279
Basis Expansions of Operators

Because we are dealing only with linear operators, we can write the effect of an operator on
an arbitrary function if we know the result of its action on all members of a basis spanning
our Hilbert space. In particular, assume that the action of an operator A on member ¢,, of
an orthonormal basis has the result, also expanded in that basis,

Ag, = Zawgov. (5.50)
v

Assuming this form for the result of operation with A is not a major restriction; all it says
is that the result is in our Hilbert space. Formally, the coefficients a,, can be obtained by
taking scalar products:

avy = (v Apy) = {pu]Algy). (5.51)

Following common usage, we have inserted an optional (operationally meaningless) verti-
cal line between A and ¢,,. This notation has the aesthetic effect of separating the operator
from the two functions entering the scalar product, and also emphasizes the possibility
that instead of evaluating the scalar product as written, we can without changing its value
evaluate it using the adjoint of A, as (AT, ).

We now apply Eq. (5.50) to a function i whose expansion in the ¢ basis is

V= s Cu=Igult). (5.52)
y

The result is

AY =) cuAgu= cu) aupp=7 (Zaw) . (5.53)
u u v v\ p
If we think of Ay as a function x in our Hilbert space, with expansion

X=)_bup, (5.54)
1%

we then see from Eq. (5.53) that the coefficients b, are related to ¢, and a,, in a way
corresponding to matrix multiplication. To make this more concrete,

e Define ¢ as a column vector with elements c;, representing the function r,

e Define b as a column vector with elements b;, representing the function y,

e Define A as a matrix with elements q;;, representing the operator A,

e The operator equation y = Ay then corresponds to the matrix equation b = Ac.

In other words, the expansion of the result of applying A to any function i can be com-
puted (by matrix multiplication) from the expansions of A and . In effect, that means that

the operator A can be thought of as completely defined by its matrix elements, while v
and x = Ay are completely characterized by their coefficients.
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We obtain an interesting expression if we introduce Dirac notation for all the quantities
entering Eq. (5.53). We then have, moving the ket representing ¢, to the left,

AY =" lou) (@l Alg) (@), (5.55)

Vi

which leads us to identify A as

A= 1) ol Algu) (@l (5.56)
i
which we note is nothing other than A, multiplied on each side by a resolution of the
identity, of the form given in Eq. (5.32).
Another interesting observation results if we reintroduce into Eq. (5.56) the coefficient
ayy, bringing us to

A= Z lov)avu(@pl. (5.57)
i

Here we have the general form for an operator A, with a specific behavior that is deter-
mined entirely by the set of coefficients a,,. The special case A =1 has already been seen
to be of the form of Eq. (5.57) with a,,, = 8,,.

Example 5.3.4  MATRIX ELEMENTS OF AN OPERATOR

Consider the expansion of the operator x in a basis consisting of functions ¢, (x) =
C,H, (x)e’xz/ 2 n=0,1,..., where the H, are Hermite polynomials, with scalar product

(flg) = / F*(0)g(x) dx.

From Table 5.1, we can see that the ¢, are orthogonal and that they will also be normalized
if C, = (2”n!ﬁ)_l/ 2 The matrix elements of x, which we denote Xy, and are written
collectively as a matrix denoted x, are given by

00
2
xvuz<¢v|x|§0u>zcvcu / Hv(x)XHu(x)e “dx.
—00

The integral leading to x,, can be evaluated in general by using the properties of the
Hermite polynomials, but our present purposes are adequately served by a straightfor-
ward case-by-case computation. From the table of Hermite polynomials in Table 18.1, we
identify

Ho=1, H;=2x, Hy=4x>—-2, H3;=8x>—12x, ...,

and we take note of the integration formula

oo
2n — H!!
In:/x2nex2dx:w.

—00
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Making use of the parity (even/odd symmetry) of the H, and the fact that the matrix x
is symmetric, we note that many matrix elements are either zero or equal to others. We
illustrate with the explicit computation of one matrix element, x15:

x o
x12=C1C> / (2x)x(4x> — 2)e7’62 dx =C1C; / (8x4 — 4x2)efx2 dx
—00 —00

=C1Co[8n—4n] =1.
Evaluating other matrix elements, we find that x, the matrix of x, has the form

0 V22 0 0
V2720 1 0

x=| 0 1 0 62 -] (5.58)
0 0 6/2 0

Basis Expansion of Adjoint

We now look at the adjoint of our operator A as an expansion in the same basis. Our
starting point is the definition of the adjoint. For arbitrary functions v and yx,

(WlAlx) = (ATylx) = (x|AT|y)*¥,

where we reached the last member of the equation by using the complex conjugation prop-
erty of the scalar product. This is equivalent to

(XIATIY) = (W1AIx)* = {(W (memwm) Ix)]

Vi

=Y (Wlov)ah, (ulx)*
Vi

=Y (xloas, (@l), (5.59)

m

where in the last line we have again used the scalar product complex conjugation property
and have reordered the factors in the sum.
We are now in a position to note that Eq. (5.59) corresponds to

AT =" Npu)ak, (@l (5.60)

Vi
In writing Eq. (5.60) we have changed the dummy indices to make the formula as similar
as possible to Eq. (5.57). It is important to note the differences: The coefficient a,,, of

Eq. (5.57) has been replaced by a,,,,, so we see that the index order has been reversed and
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the complex conjugate taken. This is the general recipe for forming the basis set expansion
of the adjoint of an operator. The relation between the matrix elements of A and of AT
is exactly that which relates a matrix A to its adjoint AT, showing that the similarity in
nomenclature is purposeful. We thus have the important and general result:

e If Ais the matrix representing an operator A, then the operator A", the adjoint of A, is
represented by the matrix AT

Example 5.3.5  ADJOINT OF SPIN OPERATOR

Consider a spin space spanned by functions we call « and 8, with a scalar product com-
pletely defined by the equations (x|a) = (B8|8) = 1, (@|8) = 0. An operator B is such
that

Ba=0, BfB=q.
Taking all possible linearly independent scalar products, this means that
(¢|Ba) =0, (B|Ba)=0, («|BB)=1, (BIBB)=0.
It is therefore necessary that
(Blala) =0, (B'Bla)=0, (B'alp)=1, (B'BIB)=0,
which means that BT is an operator such that
B'a=p, Bip=0.

The above equations correspond to the matrices

01 . (00
B—(o o)’ B_<1 0)'

We see that BT is the adjoint of B, as required. |

Functions of Operators

Our ability to represent operators by matrices also implies that the observations made in
Chapter 3 regarding functions of matrices also apply to linear operators. Thus, we have
definite meanings for quantities such as exp(A), sin(A), or cos(A), and can also apply to
operators various identities involving matrix commutators. Important examples include the
Jacobi identity (Exercise 2.2.7), and the Baker-Hausdorff formula, Eq. (2.85).

Exercises

531 Show (without introducing matrix representations) that the adjoint of the adjoint of an
operator restores the original operator, i.e., that (AT)" = A.
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5.3.2 U and V are two arbitrary operators. Without introducing matrix representations of
these operators, show that

wv) =viut.
Note the resemblance to adjoint matrices.

5.3.3 Consider a Hilbert space spanned by the three functions ¢; = x1, ¢2 = x2, ¢3 = x3, and
a scalar product defined by (x,[x;) = 8.

(a) Form the 3 x 3 matrix of each of the following operators:

3
0 0 0
Al = i — ), A= — ) = — .
! ;x'(ax,) 2 X1(3x2> x2<8x1>

(b) Form the column vector representing ¢ = x; — 2x2 + 3x3.

(¢) Form the matrix equation corresponding to x = (A| — Az)¥ and verify that the
matrix equation reproduces the result obtained by direct application of A1 — Az

to .

5.3.4 (a) Obtain the matrix representation of A = x(d/dx) in a basis of Legendre polyno-
mials, keeping terms through P3. Use the orthonormal forms of these polynomials
as given in 5.2.1 and the scalar product defined there.

(b) Expand x> in the orthonormal Legendre polynomial basis.

(c) Verify that Ax? is given correctly by its matrix representation.

5.4 SELF-ADJOINT OPERATORS

Operators that are self-adjoint (Hermitian) are of particular importance in quantum
mechanics because observable quantities are associated with Hermitian operators. In
particular, the average value of an observable A in a quantum mechanical state described
by any normalized wave function i is given by the expectation value of A, defined as

(A) = (VIAlY). (5.61)

This, of course, only makes sense if it can be assured that (A) is real, even if y and/or
A is complex. Using the fact that A is postulated to be Hermitian, we take the complex
conjugate of (A):

(A) = (YIAlY)" = (Ayy),

which reduces to (A) because A is self-adjoint.

We have already seen that if A and AT are expanded in a basis, the matrix A" must be
the matrix adjoint of the matrix A. This means that the coefficients in its expansion must
satisfy

*  (coefficients of self-adjoint A). (5.62)

vy =ay,
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Thus, we have the nearly self-evident result: A matrix representing a Hermitian operator
is a Hermitian matrix. It is also obvious from Eq. (5.62) that the diagonal elements of a
Hermitian matrix (which are expectation values for the basis functions) are real.

We can easily verify from basis expansions that (A) must be real. Letting ¢ be the vector
of expansion coefficients of v in the basis for which a,,, are the matrix elements of A, then

Zcm> =Y cHoulAlpu)ey
0 v

A

(A) = (Y|Aly) = <Zcu¢v

= E crayuc, =c'Ac,
viL

which reduces, as it must, to a scalar. Because A is a self-adjoint matrix, ¢' Ac is easily seen
to be a self-adjoint 1 x 1 matrix, i.e., a real scalar (use the facts that (BAC)" = C'A"BT and
that AT = A).

Example 5.4.1  SOME SELF-ADJOINT OPERATORS

Consider the operators x and p introduced earlier, with a scalar product of definition
o
(flg)= / frg)dx, (5.63)
—00

where our Hilbert space is the set of all functions f for which ( f|f) exists (i.e., (f|f) is
finite). This is the £ space on the interval (—oo, 00). To test whether x is self-adjoint, we
compare (f|xg) and (xf|g). Writing these out as integrals, we consider

o o
/ frx gx)dx  vs. / [xf (O)T* g(x)dx.
—00 —00
Because the order of ordinary functions (including x) can be changed without affecting the

value of an integral, and because x is inherently real, these two expressions are equal and
x is self-adjoint.

Turning next to p = —i(d/dx), the comparison we must make is
i d (7oA
/ o0 | =i g s, / YO . (5.64)
dx dx
s =

We can bring these expressions into better correspondence if we integrate the first by parts,
differentiating f*(x) and integrating dg(x)/dx. Doing so, the first expression above be-
comes

(0.¢] o %
/ fr@) [—idg(x)] dx=—if*gw| - / [df(x)] [ —igo)]dx.
dx —00 dx
—00

—00
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The boundary terms to be evaluated at 00 must vanish because ( f| f) and (g|g) are finite,
which assures also (from the Schwarz inequality) that ( f|g) is finite as well. Upon moving
i within the complex conjugate in the remaining integral, we verify agreement with the
second expression in Eq. (5.64). Thus both x and p are self-adjoint. Note that if p had not
contained the factor i, it would not have been self-adjoint, as we obtained a needed sign
change when i was moved within the scope of the complex conjugate. ]

Example 5.4.2  ExpectaTioN VALUE OF p

Because p, though Hermitian, is also imaginary, consider what happens when we compute
its expectation value for a wave function of the form v (x) = ¢/ f(x), where f(x) is a
real £2 wave function and 6 is a real phase angle. Using the scalar product as defined in
Eq. (5.63), and remembering that p = —i(d/dx), we have

()= —i / £ ’;ff) dx=—1 f < [r)] ax

—%[f(Jroo)z ~ f(=00] =0.

As shown, this integral vanishes because f(x) = 0 at £oo0 (this is fortunate because expec-
tation values must be real). This result corresponds to the well-known property that wave
functions that describe time-dependent phenomena (nonzero momentum) cannot either be
real or real except for a constant (complex) phase factor. |

The relations between operators and their adjoints provide opportunities for rearrange-
ments of operator expressions that may facilitate their evaluation. Some examples follow.

Example 5.4.3  OPERATOR EXPRESSIONS

(a) Suppose we wish to evaluate ((x*> + p2)¥|@), with ¥ of a complicated functional

form that might be unpleasant to differentiate (as required to apply p2), whereas ¢ is

simple. Because x is self-adjoint, so also is x:

(*Ylp) = (¥ |xe) = (Y |x’p).
The same is true of p2, so (x2 4+ pH)Y|e) = (Y|(x2 + p?)e).

(b) Look next at ((x +ip)¥|(x + ip)y), which is the expression to be evaluated if we
want the norm of (x 4+ ip)yr. Note that x + ip is not self-adjoint, but has adjoint
x — ip. Our norm rearranges to

((x+ip¥l(x +ip)y) = (Yl(x —ip)(x +ip)¥)
= (Y|x*+ p* +i(xp — px)I¥)
= (YIxX2+ P +iD)IY) = (Ylx> + p* — 1|y).
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Exercises

541

54.2

543

544

54.5

To reach the last line of the above equation, we recognized the commutator [x, p] =i,
as established in Eq. (5.43).

Suppose that A and B are self-adjoint. What can we say about the self-adjointness of
AB? Consider

(VIAB|p) = (AY|Blp) = (BAY|¢).

Note that because we moved A to the left first (with no dagger needed because it is
self-adjoint), it is part of what the subsequently moved B must operate on. So we see
that the adjoint of AB is BA. We conclude that AB is only self-adjoint if A and B
commute (so that BA = AB). Note that if A and B were not individually self-adjoint,

their commutation would not be sufficient to make A B self-adjoint.
[ |

(a) A is a non-Hermitian operator. Show that the operators A + AT and i (A — AT) are
Hermitian.

(b) Using the preceding result, show that every non-Hermitian operator may be
written as a linear combination of two Hermitian operators.

Prove that the product of two Hermitian operators is Hermitian if and only if the two
operators commute.

A and B are noncommuting quantum mechanical operators, and C is given by the
formula

AB— BA=iC.
Show that C is Hermitian. Assume that appropriate boundary conditions are satisfied.

The operator £ is Hermitian. Show that (£2) > 0, meaning that for all ¥ in the space in
which £ is defined, (v |£2|y) > 0.

Consider a Hilbert space whose members are functions defined on the surface of the
unit sphere, with a scalar product of the form

(flg) =fdsz e

where d<2 is the element of solid angle. Note that the total solid angle of the sphere is
47 . We work here with the three functions ¢; = Cx/r, o2 =Cy/r, o3 = Cz/r, with C
assigned a value that makes the ¢; normalized.

(a) Find C, and show that the ¢; are also mutually orthogonal.

(b) Form the 3 x 3 matrices of the angular momentum operators

Y O T WY S B
=—ilyy; zay, y=—ilagr=r )

I . ] a
=—i(lx——y—.
¢ dy yax
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(c) Verify that the matrix representations of the components of L satisfy the angular
momentum commutator [Ly, Ly] =iL,.

5.5 UNITARY OPERATORS

One of the reasons unitary operators are important in physics is that they can be used to
describe transformations between orthonormal bases. This property is the generalization
to the complex domain of the rotational transformations of ordinary (physical) vectors that
we analyzed in Chapter 3.

Unitary Transformations

Suppose we have a function ¢ that has been expanded in the orthonormal basis ¢:

Y= cupu= (Z |¢M><¢ﬂ|> ¥). (5.65)
2 Iz

We now wish to convert this expansion to a different orthonormal basis, with functions
@!,. A possible starting point is to recognize that each of the original basis functions can be
expanded in the primed basis. We can obtain the expansion by inserting a resolution of the
identity in the primed basis:

Ou= Y U, = (Z |¢;><¢;|> lou) =D (@l lou)el. (5.66)

v
Comparing the second and fourth members of this equation, we identify u,,, as the ele-
ments of a matrix U:
Uppy = <‘p\/)|§0p,)- (5.67)

Note how the use of resolutions of the identity makes these formulas obvious, and that
Egs. (5.65) to (5.67) are only valid because the ¢, and the ¢, are complete orthonormal
sets.

Inserting the expansion for ¢,, from Eq. (5.66) into Eq. (5.65), we reach

¥ = ZC“ Zu‘,#(p; = Z (Z umc#) @, =cL@,, (5.68)
m

v v m

where the coefficients ¢, of the expansion in the primed basis form a column vector ¢’ that
is related to the coefficient vector ¢ in the unprimed basis by the matrix equation

¢ =Uc, (5.69)

with U the matrix whose elements are given in Eq. (5.67).
If we now consider the reverse transformation, from an expansion in the primed basis
to one in the unprimed basis, starting from

0= Vouby =Y _(@ulg])eu. (5.70)
v v
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we see that V, the matrix of the transformation inverse to U, has elements
Vo = (pulg) = (U = (U (5.71)
In other words,
v=u' (5.72)

If we now transform the expansion of v, given in the unprimed basis by the coefficient
vector ¢, first to the primed basis and then back to the original unprimed basis, the coeffi-
cients will transform, first to ¢’ and then back to ¢, according to

c=VUc=UUc. (5.73)

In order for Eq. (5.73) to be consistent it is necessary that UTU be a unit matrix, meaning
that U must be unitary. We thus have the important following result:

The transformation that converts the expansion of a vector ¢ in any orthonormal basis
{ou} to its expansion ¢ in any other orthonormal basis {¢})} is described by the
matrix equation ¢ = Uc, where the transformation matrix U is unitary and has ele-
ments iy, = (@), |¢yu). A transformation between orthonormal bases is called a unitary
transformation.

Equation (5.69) is a direct generalization of the ordinary 2-D vector rotational transfor-
mation equation, Eq. (3.26),

A’ =SA.

For further emphasis, we compare the transformation matrix U introduced here (at right,
below) with the matrix S (at left) from Eq. (3.28), for rotations in ordinary 2-D space:

&8 &8 (¢il<p1> (wilfpz)
S= P U= | (ple1) (@;le2)
€€ €€

The resemblance becomes even more striking if we recognize that in Dirac notation, the
quantities €; - €; assume the form (&}[€;).

As for ordinary vectors (except that the quantities involved here are complex), the ith
row of U contains the (complex conjugated) components (a.k.a. coefficients) of ¢! in terms
of the unprimed basis; the orthonormality of the primed ¢ is consistent with the fact that
UUT is a unit matrix. The columns of U contain the components of the ¢ ; in terms of the
primed basis; that also is analogous to our earlier observations. The matrix S is orthogonal;
U is unitary, which is the generalization to a complex space of the orthogonality condition.

Summarizing, we see that unitary transformations are analogous, in vector spaces, to the
orthogonal transformations that describe rotations (or reflections) in ordinary space.



5.5 Unitary Operators 289
Example 5.5.17 A UNITARY TRANSFORMATION

A Hilbert space is spanned by five functions defined on the surface of a unit sphere and
expressed in spherical polar coordinates 6, ¢:

[ 15 [ 15
X = P sinf cosfcosg, x,= P sinf cos @ sin g,
/15 24 /15 26( ),
X3 = y sin“@singcosg, x,= Ton sin” 6(cos” ¢ — sin® ¢
Ny > (3cos?6 — 1)
=,/— (Bcos“ 0 —1).
s 167

These are orthonormal when the scalar product is defined as

b4 2

<fm>=/kmed9/d¢fﬂawxﬂa¢»

0 0

This Hilbert space can alternatively be spanned by the orthonormal set of functions

15 : 15 .
X{=—,/g sinf cos 6 e'?, Xéz,/gsiHOCOSQE_W,
15 15 ;
X3 =1 —=— Ty sin 9 e%'?, X4 ,/E sin% @ e %,

X5 X5-

The matrix U describing the transformation from the unprimed to the primed basis has
elements u,, = (x,|x w)- Working out a representative matrix element,

2

b
/ m@d@fd(p sin? 0 cos? 6 e ¢ sing
0

Uz = <X2|X2

15 bd 2 i ip
= /sin3ecos29d9/dgoe+"“’l
42 ; , 2i

15 (4)—271_ i
a2 \15) 2 /2
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We obtained this result by using the formula fozn e"' dp = 21 8,0 and by looking up a
tabulated value for the 6 integral. We evaluate explicitly one more matrix element:
5 b4 2 ip ip
/ . 3 2 +ip € te
Uy = = sin” 6 cos QdQ/d et ———
(xalx1) e @ >
0 0
15 < 4 ) 2r 1
4n2 \15) 2 2
Evaluating the remaining elements of U, we reach
—1/V2 —i/V2 0 0 0
/N2 —i/V2 0 0 0
U= 0 0 i/V2 142 0
0 0 —i/vV2 142 0
0 0 0 0 1
As a check, note that the ith column of U should yield the components of x; in the primed
basis. For the first column, we have
/15,9 9 1 /15,9 9i¢+1 /15,0 9 o—i?
— sinfcosfcosp = ——— | —/ = sinfcosbe — |4/ = sinfcosbe ,
4 ¢ V2 87 V2 \V 87
which simplifies easily to an identity. Further checks are left as Exercise 5.5.1. |
Successive Transformations
It is possible to make two or more successive unitary transformations, each of which will
convert an input orthonormal basis to an output basis that is also orthonormal. Just as for
ordinary vectors, the successive transformations are applied in right-to-left order, and the
product of the transformations can be viewed as a resultant unitary transformation.
Exercises
5.5.1 Show that the matrix U of Example 5.5.1 correctly transforms the vector f (6, ¢) =
3x, +2ix, — x5 + x5 to the {x/} basis by
(a) (1) Making a column vector ¢ that represents f (0, ¢) in the {);} basis,
(2) forming ¢’ = U¢, and
(3) comparing the expansion ) _; ¢} x/ (6, ¢) with f (6, ¢);
(b) Verifying that U is unitary.
5.5.2 (a) Given (in R?) the basis ¢; = x, ¢» = v, @3 = z, consider the basis transformation

x— 2z, y— Yy, z— —x. Find the 3 x 3 matrix U for this transformation.
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(b) This transformation corresponds to a rotation of the coordinate axes. Identify
the rotation and reconcile your transformation matrix with an appropriate matrix
S(«, B, y) of the form given in Eq. (3.37).

(¢) Form the column vector ¢ representing (in the original basis) f =2x — 3y + z,
find the result of applying U to ¢, and show that this is consistent with the basis
transformation of part (a).

Note. You do not need to be able to form scalar products to handle this exercise; a
knowledge of the linear relationship between the original and transformed functions is
sufficient.

Construct the matrix representing the inverse of the transformation in Exercise 5.5.2,
and show that this matrix and the transformation matrix of that exercise are matrix
inverses of each other.

The unitary transformation U that converts an orthonormal basis {¢; } into the basis {golf }
and the unitary transformation V' that converts the basis {¢/} into the basis {x;} have
matrix representations

isinf cos6 O 1 0 0
U=|—cosf isinf 0}, V=0 cosf isinf
0 0 1 0 cosf® —isind

Given the function f(x) =3¢ (x) — @2(x) — 2¢3(x),

(a) By applying U, form the vector representing f (x) in the {¢!} basis and then by
applying V form the vector representing f(x) in the {x;} basis. Use this result to
write f(x) as a linear combination of the ;.

(b) Form the matrix products UV and VU and then apply each to the vector represent-
ing f(x) in the {¢;} basis. Verify that the results of these applications differ and
that only one of them gives the result corresponding to part (a).

Three functions which are orthogonal with unit weight on the range —1 < x <1 are
Py=1, Pi=x,and P, = %xz — % Another set of functions that are orthogonal and
span the same space are F = x2, Fy=x, F, =5x2-3. Although much of this exercise
can be done by inspection, write down and evaluate all the integrals that lead to the
results when they are obtained in terms of scalar products.

(a) Normalize each of the P; and F;.

(b) Find the unitary matrix U that transforms from the normalized P; basis to the
normalized F; basis.

(c) Find the unitary matrix V that transforms from the normalized F; basis to the
normalized P; basis.

(d) Show that U and V are unitary, and that V= U~",

(e) Expand f(x) =5x? — 3x + 1 in terms of the normalized versions of both bases,
and verify that the transformation matrix U converts the P-basis expansion of
f(x) into its F-basis expansion.
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5.6 TRANSFORMATIONS OF OPERATORS

We have seen how unitary transformations can be used to transform the expansion of a
function from one orthonormal basis set to another. We now consider the corresponding
transformation for operators. Given an operator A, which when expanded in the ¢ basis
has the form

A= lpudau(eul,
Ay

we convert it to the ¢’ basis by the simple expedient of inserting resolutions of the identity
(written in terms of the primed basis) on both sides of the above expression. This is an
excellent example of the benefits of using Dirac notation. Remembering that this does not
change A (but of course does change its appearance), we get

A=) o) (@) o) aum (onle)) oy,

Hvot

which we simplify by identifying (¢ |¢,) = us ., as defined in Eq. (5.67), and (¢, |¢}) =
u},. Thus,

A= oL o paus, (@r| = o))y (@, (5.74)

ot oT

where a, , is the ot matrix element of A in the primed basis, related to the unprimed

values by

a,, = Zuauawuiv. (5.75)
v

If we now note that u¥, = (U"),¢, we can write Eq. (5.75) as the matrix equation
AN =UAUT=UAU!, (5.76)

where in the final member of the equation we used the fact that U is unitary.

Another way of getting at Eq. (5.76) is to consider the operator equation Ay = y, where
initially A, ¥, and y are all regarded as expanded in the orthonormal set ¢, with A having
matrix elements a,,,, and with ¥ and x having the forms =) ¢, ¢, and x = by ¢,.
This state of affairs corresponds to the matrix equation

Ac=b.

Now we simply insert U™'U between A and ¢, and multiply both sides of the equation on
the left by U. The result is

(UAu—l)(Uc)=Ub s A=V, (5.77)

showing that the operator and the functions are properly related when the functions have
been transformed by applying U and the operator has been transformed as required by
Eq. (5.76). Since this relationship is valid for any choice of ¢ and U, it confirms the trans-
formation equation for A.
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Nonunitary Transformations

It is possible to consider transformations similar to that illustrated by Eq. (5.77), but using
a transformation matrix G that must be nonsingular, but is not required to be unitary. Such
more general transformations occasionally appear in physics applications, are called simi-
larity transformations, and lead to an equation deceptively similar to Eq. (5.77):

(GAG—‘) (Gc) — Gb. (5.78)

There is one important difference: Although a general similarity transformation preserves
the original operator equation, corresponding items do not describe the same quantity in a
different basis. Instead, they describe quantities that have been systematically (but consis-
tently) altered by the transformation.

Sometimes we encounter a need for transformations that are not even similarity trans-
formations. For example, we may have an operator whose matrix elements are given in a
nonorthogonal basis, and we consider the transformation to an orthonormal basis generated
by use of the Gram-Schmidt procedure.

Example 5.6.1  GRAM-SCHMIDT TRANSFORMATION

The Gram-Schmidt process describes the transformation from an initial function set x; to
an orthonormal set ¢,, according to equations that can be brought to the form

nw
‘PMZZIWX;'» nw=12....
i=1

Because the Gram-Schmidt process only generates coefficients #;, with i < wu, the transfor-
mation matrix T can be described as upper triangular, i.e., a square matrix with nonzero
elements #;,, only on and above its principal diagonal. Defining S as a matrix with elements
sij = {x;1x j) (often called an overlap matrix), the orthonormality of the ¢, is evidenced
by the equation

(Pulon) =D (tinxiltivx;) = Y15, 061Xty = (TTST) oy = 80 (5.79)

ij ij
Note that because T is upper triangular, T" must be lower triangular. In writing Eq. (5.79)
we did not have to restrict the i and j summations, as the coefficients outside the contribut-

ing ranges of i and j are present, but set to zero.
From Eq. (5.79) we can obtain a representation of S:

S=mH 7t = rhH) 1 (5.80)

Moreover, if we replace S from Eq. (5.79) by the matrix of a general operator A (in the y;
basis), we find that in the orthonormal ¢ basis its representation A’ is

A =TIAT. (5.81)

In general, T" will not be equal to T~!, so this equation does not define a similarity trans-
formation. ]
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Exercises

5.6.1 (a) Using the two spin functions ¢; = « and ¢, = B as an orthonormal basis (so
(ala) = (B|B) =1, {«|B) =0), and the relations

1 1 1 1 1 1
SXOlZE,B, Sxﬂzzol, SyOlZEiIB, Syﬂ:—zi()l, SZOIZEC(, Szﬂ:—zﬂ,

construct the 2 x 2 matrices of Sy, Sy, and ;.
(b) Taking now the basis ¢ = C(x + B), ¢, = C(a — B):
(i) Verify that ¢} and ¢} are orthogonal,
(i) Assign C a value that makes ¢| and ¢}, normalized,

(iii)  Find the unitary matrix for the transformation {¢;} — {q); }.
(c) Find the matrices of Sy, Sy, and S in the {¢;} basis.
5.6.2 For the basis g1 = Cxe™, ¢» = Cye™, ¢3 = Cze™", where r? = x% + y% + 22,

with the scalar product defined as an unweighted integral over R? and with C chosen
to make the ¢; normalized:

E

d 0
(a) Find the 3 x 3 matrix of L, = —i (y — =2z —) ;

0z ay
1 0 0
(b) Using the transformation matrix U= |0 1/+/2 —i/+/2|, find the trans-
0 1/vV2 i/v2

formed matrix of L,;

(c) Find the new basis functions ¢; defined by the transformation U, and write explic-
itly (in terms of x, y, and z) the functional forms of L, ¢!, i =1, 2, 3.

2 2 .
Hint. Use [ e~ d3r =732, [x%e™" d3r = 37%/%; the integrals are over R>.

5.6.3 The Gram-Schmidt process for converting an arbitrary basis x, into an orthonormal
set ¢, is described in Section 5.2 in a way that introduces coefficients of the form
—(@ulx,). For bases consisting of three functions, convert the formulation so that ¢,
is expressed entirely in terms of the x,,, thereby obtaining an expression for the upper-
triangular matrix T appearing in Eq. (5.81).

5.7 INVARIANTS

Just as coordinate rotations leave invariant the essential properties of physical vectors,
we can expect unitary transformations to preserve essential features of our vector spaces.
These invariances are most directly observed in the basis-set expansions of operators
and functions.

Consider first a matrix equation of the form b = Ac, where all quantities have been
evaluated using a particular orthonormal basis ¢;. Now suppose that we wish to use a
basis x; which can be reached from the original basis by applying a unitary transformation
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such that
¢=Uc and b'=Ub.

In the new basis, the matrix A becomes A’ = UAU™!, and the invariance we seek corre-
sponds to b’ = A’¢’. In other words, all the quantities must change coherently so that their
relationship is unaltered. It is easy to verify that this is the case. Substituting for the primed
quantities,

Ub=(UAU H)(Ue) — Ub=UAec,

from which we can recover b = Ac by multiplying from the left by U~!.

Scalar quantities should remain invariant under unitary transformation; the prime
example here is the scalar product. If f and g are represented in some orthonormal basis,
respectively, by a and b, their scalar product is given by a’b. Under a unitary transfor-
mation whose matrix representation is U, a becomes a’ = Ua and b becomes b’ = Ub,
and

(flg) =@V =Ua)'(Ub)=(@'U")(Ub) =a'b. (5.82)

The fact that UT = U~! enables us to confirm the invariance.
Another scalar that should remain invariant under basis transformation is the expectation
value of an operator.

Example 5. 7. 1 EXPECTATION VALUE IN TRANSFORMED BASIS

Suppose that Y = Z ci@i, and that we wish to compute the expectation value of A for

i
this v, where A, the matrix corresponding to A, has elements a,, = (¢, |Al@,). We have
(A)=(ylAly) — clAc
If we now choose to use a basis obtained from the ¢; by a unitary transformation U, the
expression for (A) becomes
Ue)f(UAU Y (Ue) =c'UTuAU U,

which, because U is unitary and therefore UT = U1, reduces, as it must, to the previously
obtained value of (A). |

Vector spaces have additional useful matrix invariants. The trace of a matrix is invariant
under unitary transformation. If A’ = UAU™!, then

trace(A’) = Z(UAU_I)W = Zuvuaur(u_l)w = Z (Z(U_l)rvuvu> aur

VUT T v

=Y Sur@ur =Y ay, = trace(A). (5.83)
MUt M

Here we simply used the property U™'U = 1.

Another matrix invariant is the determinant. From the determinant product theorem,
det(UAU™!") = det(U~'UA) = det(A). Further invariants will be identified when we study
matrix eigenvalue problems in Chapter 6.
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Exercises

5.7.1

5.7.2

573

Using the formal properties of unitary transformations, show that the commutator
[x, p] =i is invariant under unitary transformation of the matrices representing x and p.

The Pauli matrices

(01 (0 —i (1 0
1=\t o) 27\ o) T\o -1)

have commutator [0, 02] = 2i0'3. Show that this relationship continues to be valid if
these matrices are transformed by

cosf sinf
U= .
—sinf cos6
(a) The operator Ly is defined as

. ad d
Lx:—l ya—z—Zg .

Verify that the basis ¢ = Cxe”z, = Cye”z, 03 = Cze’rz, where r2 = x2 +
y? + 22 forms a closed set under the operation of L, meaning that when L, is
applied to any member of this basis the result is a function within the basis space,
and construct the 3 x 3 matrix of L, in this basis from the result of the application
of L, to each basis function.

(b) Verify that L, [(x + iy)e"z] = —ze_’z, and note that this result, using the {¢;}
basis, can be written L, (@1 +i¢@2) = —¢3.

(c) Express the equation of part (b) in matrix form, and write the matrix equation that
results when each of the quantities is transformed using the transformation matrix

1 0 0
u=\|0 1/V2 —i/v2]{.
0 1/V/2 i/V2

(d) Regarding the transformation U as producing a new basis {¢/}, find the explicit
form (in x, y, z) of the ¢..

(e) Using the operator form of L, and the explicit forms of the ¢;, verify the validity
of the transformed equation found in part (c).
Hint. The results of Exercise 5.6.2 may be useful.

5.8 SUMMARY—VECTOR SPACE NOTATION

It may be useful to summarize some of the relationships found in this chapter, highlighting
the essentially complete mathematical parallelism between the properties of vectors and
those of basis expansions in vector spaces. We do so here, using Dirac notation wherever
appropriate.
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1. Scalar product:
b
(ply) = /go*(t)lp(t)w(t) dt < (ulv) =u'v=u*-v. (5.84)

The result of the scalar product operation is a scalar (i.e., a real or complex number).
Here u'v represents the product of a row and a column vector; it is equivalent to the
dot-product notation also shown.

2. Expectation value:

b
(p|Alp) :/(p*(t)Ago(t)w(t) dt <= (u|AJu) = u'Au. (5.85)
3. Adjoint:
(@lAIY) = (ATp|Y) <= (u|Alv) = (ATulv) = [ATu]'v = u'Av. (5.86)

Note that the simplification of [ATu]’v shows that the matrix A" has the property
expected of an operator adjoint.
4. Unitary transformation:

¥ =Ap — Uy = (UAU ) (Ugp) &> w=Av — Uw = (UAU" 1) (Uv). (5.87)
5. Resolution of identity:

1= leipil == 1= e @il, (5.88)
i i
where the ¢; are orthonormal and the €; are orthogonal unit vectors. Applying
Eq. (5.88) to a function (or vector):

Y=Y leeilv) =) agi = w=D @) Ew) = wié, (589
where a; = (@;|¥) and w; = (€;|w) =¢; - W.
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CHAPTER 6

EIGENVALUE PROBLEMS

6.1 FEIGENVALUE EQUATIONS

Many important problems in physics can be cast as equations of the generic form

AY =1y, (6.1)

where A is a linear operator whose domain and range is a Hilbert space, i is a function in
the space, and X is a constant. The operator A is known, but both ¥y and XA are unknown,
and the task at hand is to solve Eq. (6.1). Because the solutions to an equation of this
type yield functions i that are unchanged by the operator (except for multiplication by a
scale factor 1), they are termed eigenvalue equations: Eigen is German for “[its] own.” A
function ¥ that solves an eigenvalue equation is called an eigenfunction, and the value of
A that goes with an eigenfunction is called an eigenvalue.

The formal definition of an eigenvalue equation may not make its essential content
totally apparent. The requirement that the operator A leaves v unchanged except for a
scale factor constitutes a severe restriction upon . The possibility that Eq. (6.1) has any
solutions at all is in many cases not intuitively obvious.

To see why eigenvalue equations are common in physics, let’s cite a few examples:

1. The resonant standing waves of a vibrating string will be those in which the restor-
ing force on the elements of the string (represented by Ay) are proportional to their
displacements v from equilibrium.

2. The angular momentum L and the angular velocity @ of a rigid body are three-
dimensional (3-D) vectors that are related by the equation

L=lw,

where | is the 3 x 3 moment of inertia matrix. Here the direction of @ defines the axis
of rotation, while the direction of L defines the axis about which angular momentum is
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generated. The condition that these two axes be in the same direction (thereby defin-
ing what are known as the principal axes of inertia) is that L = A@, where A is a
proportionality constant. Combining with the formula for L, we obtain

lw=\w,

which is an eigenvalue equation in which the operator is the matrix | and the eigen-
function (then usually called an eigenvector) is the vector @.

3. The time-independent Schrodinger equation in quantum mechanics is an eigenvalue
equation, with A the Hamiltonian operator H, v a wave function and A = E the
energy of the state represented by .

Basis Expansions

A powerful approach to eigenvalue problems is to express them in terms of an orthonormal
basis whose members we designate ¢;, using the formulas developed in Chapter 5. Then
the operator A and the function ¥ are represented by a matrix A and a vector ¢ whose
elements are obtained, according to Egs. (5.51) and (5.52), as the scalar products

aij = (gilAlpj), ci={gil¥).
Our original eigenvalue equation has now been reduced to a matrix equation:
Ac = Ac. (6.2)

When an eigenvalue equation is presented in this form, we can call it a matrix eigenvalue
equation and call the vectors ¢ that solve it eigenvectors. As we shall see in later sections
of this chapter, there is a well-developed technology for the solution of matrix eigenvalue
equations, so a route always available for solving eigenvalue equations is to cast them
in matrix form. Once a matrix eigenvalue problem has been solved, we can recover the
eigenfunctions of the original problem from their expansion:

V=Y cioi

Sometimes, as in the moment of inertia example mentioned above, our eigenvalue prob-
lem originates as a matrix problem. Then, of course, we do not have to begin its solution
process by introducing a basis and converting it into matrix form, and our solutions will be
vectors that do not need to be interpreted as expansions in a basis.

Equivalence of Operator and Matrix Forms

It is important to note that we are dealing with eigenvalue equations in which the operator
involved is linear and that it operates on elements of a Hilbert space. Once these conditions
are met, the operator and function involved can always be expanded in a basis, leading to
a matrix eigenvalue equation that is totally equivalent to our original problem. Among
other things, this means that any theorems about properties of eigenvectors or eigenvalues
that are developed from basis-set expansions of an eigenvalue problem must apply also to
the original problem, and that solution of the matrix eigenvalue equation provides also a
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solution to the original problem. These facts, plus the practical observation that we know
how to solve matrix eigenvalue problems, strongly suggest that the detailed investigation
of the matrix problems should be on our agenda.

When we explore matrix eigenvalue problems, we will find that certain properties of the
matrix influence the nature of the solutions, and that in particular significant simplifications
become available when the matrix is Hermitian. Many eigenvalue equations of interest in
physics involve differential operators, so it is of importance to understand whether (or
under what conditions) these operators are Hermitian. That issue is taken up in Chapter 8.

Finally, we note that the introduction of a basis-set expansion is not the only possibility
for solving an eigenvalue equation. Eigenvalue equations involving differential operators
can also be approached by the general methods for solving differential equations. That
topic is also discussed in Chapter 8.

6.2 MATRIX EIGENVALUE PROBLEMS

While in principle the notion of an eigenvalue problem is already fully defined, we open
this section with a simple example that may help to make it clearer how such problems are
set up and solved.

A Preliminary Example

We consider here a simple problem of two-dimensional (2-D) motion in which a particle
slides frictionlessly in an ellipsoidal basin (see Fig. 6.1). If we release the particle (initially
at rest) at an arbitrary point in the basin, it will start to move downhill in the (negative)
gradient direction, which in general will not aim directly at the potential minimum at the
bottom of the basin. The particle’s overall trajectory will then be a complicated path, as
sketched in the bottom panel of Fig. 6.1. Our objective is to find the positions, if any,
from which the trajectories will aim at the potential minimum, and will therefore represent
simple one-dimensional oscillatory motion.

This problem is sufficiently elementary that we can analyze it without great difficulty.
We take a potential of the form

Vix,y) =ax® + bxy +cy2,

with parameters a, b, ¢ in ranges that describe an ellipsoidal basin with a minimum in V
at x = y = 0. We then calculate the x and y components of the force on our particle when
at (x,y):
A% av
F,=——=-2ax—by, F,=——=—bx—2cy.
x ax y y dy Y
It is pretty clear that, for most values of x and y, Fx/F, # x/y, so the force will not be
directed toward the minimum at x =y = 0.
To search for directions in which the force is directed toward x = y = 0, we begin by
writing the equations for the force in matrix form:

F,\ _ (—2a —b X _
(5)=(5 Z)C) o rome
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FIGURE 6.1 Top: Contour lines of basin potential V = x2 — /5xy + 3y2. Bottom:
Trajectory of sliding particle of unit mass starting from rest at (8.0, —1.92).

where f, H, and r are defined as indicated. Now the condition Fy/F) = x/y is equivalent
to the statement that f and r are proportional, and therefore we can write

Hr = Ar, (6.3)

where, as already suggested, H is a known matrix, while A and r are to be determined. This
is an eigenvalue equation, and the column vectors r that are its solutions are its eigenvec-
tors, while the corresponding values of X are its eigenvalues.

Equation (6.3) is a homogeneous linear equation system, as becomes more obvious if
written as

(H=ADr=0, (6.4)

and we know from Chapter 2 that it will have the unique solution r = 0 unless det(H —
A1) = 0. However, the value of X is at our disposal, so we can search for values of A that
cause this determinant to vanish. Proceeding symbolically, we look for A such that

hipr—A hi2

detH—an= "1 % T2

=0.

Expanding the determinant, which is sometimes called a secular determinant (the name
arising from early applications in celestial mechanics), we have an algebraic equation, the
secular equation,

(h11 —A)(hao — &) — hioho =0, (6.5)
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which can be solved for A. The left hand side of Eq. (6.5) is also called the characteristic
polynomial (in A) of H, and Eq. (6.5) is for that reason also known as the characteristic
equation of H.

Once a value of X that solves Eq. (6.5) has been obtained, we can return to the homo-
geneous equation system, Eq. (6.4), and solve it for the vector r. This can be repeated for
all A that are solutions to the secular equation, thereby giving a set of eigenvalues and the
associated eigenvectors.

Example 6.2.1  2-D ELLIPSOIDAL BASIN

Let’s continue with our ellipsoidal basin example, with the specific parameter valuesa = 1,
b = —+/5, ¢ = 3. Then our matrix H has the form

(5 %)

and the secular equation takes the form

—2-1 45

det(H — A1) = =22 4+8147=0.
et( ) ‘ S 6 /\‘ + 81+
Since A2 4 81 4+ 7 = (A + 1)(A + 7), we see that the secular equation has as solutions the
eigenvalues A = —1 and A = —7.
To get the eigenvector corresponding to A = —1, we return to Eq. (6.4), which, written

in great detail, is

o= ()0 D0

which expands into a linearly dependent pair of equations:
—x+/5y=0
V5x—5 y=0.

This is, of course, the intention associated with the secular equation, because if these equa-
tions were linearly independent they would inexorably lead to the solution x = y = 0.
Instead, from either equation, we have x = v/5 y, so we have the eigenvalue/eigenvector

pair
A =-1, 1‘1=C<®,

where C is a constant that can assume any value. Thus, there is an infinite number of x, y
pairs that define a direction in the 2-D space, with the magnitude of the displacement in
that direction arbitrary. The arbitrariness of scale is a natural consequence of the fact that
the equation system was homogeneous; any multiple of a solution of a linear homogeneous
equation set will also be a solution. This eigenvector corresponds to trajectories that start
from the particle at rest anywhere on the line defined by rj. A trajectory of this sort is
illustrated in the top panel of Fig. 6.2.



304 Chapter 6 Eigenvalue Problems

5]
y 0
5
-10 0 10
X
5
y 0
5
-10 0 10
X

FIGURE 6.2 Trajectories starting at rest. Top: At a point on the line x = y+/5.
Bottom: At a point on the line y = —x+/5.

We have not yet considered the possibility that A = —7. This leads to a different eigen-
vector, obtained by solving

R [OREA IO

corresponding to y = —x /5. This defines the eigenvalue/eigenvector pair

-1
rMm==7, 1rn=C (ﬁ)

A trajectory of this sort is shown in the bottom panel of Fig. 6.2.

We thus have two directions in which the force is directed toward the minimum, and
they are mutually perpendicular: the first direction has dy/dx = 1/+/5; for the second,
dy/dx = —/5.

We can easily check our eigenvectors and eigenvalues. For A and ry,

-3 (L) -e()-(E) o

It is often useful to normalize eigenvectors, which we can do by choosing the constant
(C or C’) to make r of magnitude unity. In the present example,

V576 —J1/6
(JW)’ (J%)

(6.6)
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Each of these normalized eigenvectors is still arbitrary as to overall sign (or if we accept
complex coefficients, as to an arbitrary complex factor of magnitude unity).

Before leaving this example, we make three further observations: (1) the number of
eigenvalues was equal to the dimension of the matrix H. This is a consequence of the
fundamental theorem of algebra, namely that an equation of degree n will have n roots;
(2) although the secular equation was of degree 2 and quadratic equations can have com-
plex roots, our eigenvalues were real; and (3) our two eigenvectors are orthogonal. ]

Our 2-D example is easily understood physically. The directions in which the displace-
ment and the force are collinear are the symmetry directions of the elliptical potential field,
and they are associated with different eigenvalues (the proportionality constant between
position and force) because the ellipses have axes of different lengths. We have, in fact,
identified the principal axes of our basin. With the parameters of Example 6.2.1, the poten-
tial could have been written (using the normalized eigenvectors)

1 (\/gx+y>2 7 (x—\/gy

2\ v ) "2\ e

S 2
which shows that V divides into two quadratic terms, each dependent on a parenthesized
quantity (a new coordinate) proportional to one of our eigenvectors. The new coordinates
are related to the original x, y by a rotation with unitary transformation U:

o= (- () -0)

Finally, we note that when we calculate the force in the primed coordinate system, we get

Fo=—x', Fy=-Ty,

2
) =10+ 10N

corresponding to the eigenvalues we found.

Another Eigenproblem

Example 6.2.1 is not complicated enough to provide a full illustration of the matrix eigen-
value problem. Consider next the following example.

Example 6.2.2  BLOCK-DIAGONAL MATRIX

Find the eigenvalues and eigenvectors of

010
H=11 0 0]). (6.7)
0 0 2
Writing the secular equation and expanding in minors using the third row, we have
—X 1 0
—X 1 >
1 —A 0 |=2-2) 1 s =Q2-MNAR"—-1=0. (6.8)
0 0 2—-A

We see that the eigenvalues are 2, +1, and —1.
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To obtain the eigenvector corresponding to A = 2, we examine the equation set
[H—-2(1)]e=0:

—2c1+ ¢ =0,
c1 —2c =0,
0=0.

The first two equations of this set lead to ¢; = ¢, = 0. The third obviously conveys no
information, and we are led to the conclusion that c3 is arbitrary. Thus, at this point we
have

0
rM=2, ¢ =|01]. (6.9)
C

Taking next A = 41, our matrix equation is [H — 1(1)] ¢ = 0, which is equivalent to the
ordinary equations

—c1+c2 =0,
c1 —cy=0,
c3=0.

We clearly have c¢; = ¢; and ¢3 =0, so

C
Mm=+1, co=|C]. (6.10)
0
Similar operations for A = —1 yield
C
rm=-1, e=|-C|. (6.11)
0

Collecting our results, and normalizing the eigenvectors (often useful, but not in general
necessary), we have

0 2—1/2 9—172
rm=2, ¢ =|0], =1, c=|2712], Mm=—1, c=|-2"2
1 0 0

Note that because H was block-diagonal, with an upper-left 2 x 2 block and a lower-
right 1 x 1 block, the secular equation separated into a product of the determinants for the
two blocks, and its solutions corresponded to those of an individual block, with coeffi-
cients of value zero for the other block(s). Thus, A = 2 was a solution for the 1 x 1 block
in row/column 3, and its eigenvector involved only the coefficient ¢3. The A values +1
came from the 2 x 2 block in rows/columns 1 and 2, with eigenvectors involving only
coefficients ¢ and c¢». [ |

In the case of a 1 x 1 block in row/column i, we saw, for i = 3 in Example 6.2.2, that its
only element was the eigenvalue, and that the corresponding eigenvector is proportional
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to €; (a unit vector whose only nonzero element is ¢; = 1). A generalization of this obser-

vation is that if a matrix H is diagonal, its diagonal elements #;; will be the eigenvalues A;,
and that the eigenvectors ¢; will be the unit vectors €;.

Degeneracy

If the secular equation has a multiple root, the eigensystem is said to be degenerate or to
exhibit degeneracy. Here is an example.

Example 6.2.3  DEGENERATE EIGENPROBLEM

Let’s find the eigenvalues and eigenvectors of

0 0 1
H=10 1 0 (6.12)
1 00
The secular equation for this problem is
—A 0 1
0 1—2 0/=220-1)—->1=-1)=Q>=DA=-1=0 (6.13)
1 0 —A
with the three roots +1, +1, and —1. Let’s consider first . = —1. Then we have
c1+c3=0,
2C2 = 0,
c1 +c¢3=0.
Thus,
1
rm=—-1, ¢ =C 0]. (6.14)
-1
For the double root A = +1,
—c1+c3=0,
0=0,
ci1—c3=0.

Note that of the three equations, only one is now linearly independent; the double root sig-
nals two linear dependencies, and we have solutions for any values of ¢1 and ¢, with only
the condition that c3 = c;. The eigenvectors for A = +1 thus span a 2-D manifold (= sub-
space), in contrast to the trivial one-dimensional manifold characteristic of nondegenerate
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solutions. The general form for these eigenvectors is

c
A=+1, c=]|C]. (6.15)
c

It is convenient to describe the degenerate eigenspace for A = 1 by identifying two mutu-
ally orthogonal vectors that span it. We can pick the first vector by choosing arbitrary val-
ues of C and C’ (an obvious choice is to set one of these, say C’, to zero). Then, using the
Gram-Schmidt process (or in this case by simple inspection), we find a second eigenvector
orthogonal to the first. Here, this leads to

1
M=Mm=+4+1, e=C|0], =C'|1]. (6.16)
1

Normalizing, our eigenvalues and eigenvectors become
9—1/2 2—1/2 0

rM=-1, ¢ = 0 , M=A=1, c= 0 , =11
_o-1/2 y-1/2

The eigenvalue problems we have used as examples all led to secular equations with
simple solutions; realistic applications frequently involve matrices of large dimension and
secular equations of high degree. The solution of matrix eigenvalue problems has been
an active field in numerical analysis and very sophisticated computer programs for this
purpose are now available. Discussion of the details of such programs is outside the scope
of this book, but the ability to use such programs should be part of the technology available
to the working physicist.

Exercises

6.2.1

6.2.2

6.2.3

Find the eigenvalues and corresponding normalized eigenvectors of the matrices in
Exercises 6.2.1 through 6.2.14. Orthogonalize any degenerate eigenvectors.

A=

— O =
S = O
—_—O =

ANS. A=0,1,2.

ANS. A=-1,0,2.

>
I
S = =
—_ O —
_— O

ANS. rA=-1,1,2.



6.2.4

6.2.5

6.2.6

6.2.7

6.2.8

6.2.9

6.2.10

6.2.11

6.2.12

6.2.13

o &
S5

S O =
—_—= O

—
(=)

SN
- O

—_—

A=|1 O
11
1
A=|-1
—1
1
A=|1 1
11
5
A=1]0 1
2
11
A=|1 1

—_——= O

S =

—1
1
—1

SN

o o

—1
-1
1
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ANS. A=-3,1,5.

ANS. A=0,1,2.

ANS. r=-1,1,2.

ANS. A =—+/2,0,2.

ANS. A =0,2,2.

ANS. A=-1,-1,2.

ANS. A=-1,2,2.

ANS. A =0,0,3.

ANS. A=1,1,6.

ANS. 1 =0,0,2.
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6.2.14

6.2.15

3
0

3

5
A=| 0
V3

S W o

ANS. A =2,3,6.
Describe the geometric properties of the surface
x2+2xy+2y2+2yz+z2: 1.

How is it oriented in 3-D space? Is it a conic section? If so, which kind?

6.3 HERMITIAN EIGENVALUE PROBLEMS

All the illustrative problems we have thus far examined have turned out to have real eigen-
values; this was also true of all the exercises at the end of Section 6.2. We also found,
whenever we bothered to check, that the eigenvectors corresponding to different eigenval-
ues were orthogonal. The purpose of the present section is to show that these properties
are consequences of the fact that all the eigenvalue problems we have considered were for
Hermitian matrices.

We remind the reader that the check for Hermiticity is simple: We simply verify that H
is equal to its adjoint, H'; if a matrix is real, this condition is simply that it be symmetric.
All the matrices to which we referred are clearly Hermitian.

We now proceed to characterize the eigenvalues and eigenvectors of Hermitian matri-
ces. Let H be a Hermitian matrix, with ¢; and ¢; two of its eigenvectors corresponding,
respectively, to the eigenvalues A; and A ;. Then, using Dirac notation,

Hic;) = Ailei), Hlej) =Ajlc;). (6.17)

Multiplying on the left the first of these by cj, which in Dirac notation is (¢;|, and the
second by (c¢; |,

(cjlHle;) = Ai{ejle;),  (e;lHIe;) = A {eile;). (6.18)

We next take the complex conjugate of the second of these equations, noting that (¢;|c;)* =
(cjlc;), that we must complex conjugate the occurrence of A ;, and that

(ci|Hle;)* = (Hejle;) = (cj[Hle;). (6.19)

Note that the first member of Eq. (6.19) contains the scalar product of ¢; with He ;. Com-
plex conjugating this scalar product yields the second member of that equation. The final
member of the equation follows because H is Hermitian.

The complex conjugation therefore converts Egs. (6.18) into

(cjlHle;) = Ai{ejle;),  (ejlHler) = A% {ejles). (6.20)

Equations (6.20) permit us to obtain two important results: First, if i = j, the scalar product
(cj|c;) becomes (c;|c;), which is an inherently positive quantity. This means that the two
equations are only consistent if A; = A}, meaning that A; must be real. Thus,

The eigenvalues of a Hermitian matrix are real.
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Next, if i # j, combining the two equations of Eq. (6.20), and remembering that the A;
are real,

(Ai —Aj)(cjle;) =0, (6.21)

so that either A; = A ; or (c;|c;) = 0. This tells us that

Eigenvectors of a Hermitian matrix corresponding to different eigenvalues are
orthogonal.

Note, however, that if A; = A ;, which will occur if i and j refer to two degenerate eigen-
vectors, we know nothing about their orthogonality. In fact, in Example 6.2.3 we examined
a pair of degenerate eigenvectors, noting that they spanned a two-dimensional manifold
and were not required to be orthogonal. However, we also noted in that context that we
could choose them to be orthogonal. Sometimes (as in Example 6.2.3), it is obvious how
to choose orthogonal degenerate eigenvectors. When it is not obvious, we can start from
any linearly independent set of degenerate eigenvectors and orthonormalize them by the
Gram-Schmidt process.

Since the total number of eigenvectors of a Hermitian matrix is equal to its dimension,
and since (whether or not there is degeneracy) we can make from them an orthonormal set
of eigenvectors, we have the following important result:

It is possible to choose the eigenvectors of a Hermitian matrix in such a way that they
form an orthonormal set that spans the space of the matrix basis. This situation is often
referred to by the statement, “The eigenvectors of a Hermitian matrix form a complete
set. ” This means that if the matrix is of order n, any vector of dimension n can be written
as a linear combination of the orthonormal eigenvectors, with coefficients determined
by the rules for orthogonal expansions.

We close this section by reminding the reader that theorems which have been established
for an arbitrary basis-set expansion of a Hermitian eigenvalue equation apply also to that
eigenvalue equation in its original form. Therefore, this section has also shown that:

If H is a linear Hermitian operator on an arbitrary Hilbert space,

1. The eigenvalues of H are real.
Eigenfunctions corresponding to different eigenvalues of H are orthogonal.

3. 1t is possible to choose the eigenfunctions of H in a way such that they form a
orthonormal basis for the Hilbert space. In general, the eigenfunctions of a Her-
mitian operator form a complete set (i.e., a complete basis for the Hilbert space).

6.4 HERMITIAN MATRIX DIAGONALIZATION
In Section 6.2 we observed that if a matrix is diagonal, the diagonal elements are its eigen-

values. This observation opens an alternative approach to the matrix eigenvalue problem.
Given the matrix eigenvalue equation

He = Ac, (6.22)
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where H is a Hermitian matrix, consider what happens if we insert unity between H and c,
as follows, with U a unitary matrix, and then left-multiply the resulting equation by U:

HU 'Ue=xe — UHU'(Uc) =2 (Ue). (6.23)

Equation (6.23) shows that our original eigenvalue equation has been converted into one
in which H has been replaced by its unitary transformation (by U) and the eigenvector ¢
has also been transformed by U, but the value of A remains unchanged. We thus have the
important result:

The eigenvalues of a matrix remain unchanged when the matrix is subjected to a unitary
transformation.

Next, suppose that we choose U in such a way that the transformed matrix UHU™! is
in the eigenvector basis. While we may or may not know how to construct this U, we
know that such a unitary matrix exists because the eigenvectors form a complete orthog-
onal set, and can be specified to be normalized. If we transform with the chosen U, the
matrix UHU™! will be diagonal, with the eigenvalues as diagonal elements. Moreover, the
eigenvector Ue of UHU™! corresponding to the eigenvalue A; = (UHU™!);; is &; (a column
vector with all elements zero except for unity in the ith row). We may find the eigenvector
¢; of Eq. (6.22) by solving the equation Uc; = &;, obtaining ¢; = U~'¢;.

These observations correspond to the following:

For any Hermitian matrix H, there exists a unitary transformation U that will cause
UHU! 10 be diagonal, with the eigenvalues of H as its diagonal elements.

This is an extremely important result. Another way of stating it is:

A Hermitian matrix can be diagonalized by a unitary transformation, with its eigenval-
ues as the diagonal elements.

Looking next at the ith eigenvector U~'é;, we have

U™Hn .. W hy o Uh\ [0 Uy
U™y oo Uhy o Who | ] (U™hy;
1] = . (6.24)
U™ oo W Hy o U/ \o (U

We see that the columns of U™! are the eigenvectors of H, normalized because U~! is
a unitary matrix. It is also clear from Eq. (6.24) that U~! is not entirely unique; if its
columns are permuted, all that will happen is that the order of the eigenvectors are changed,
with a corresponding permutation of the diagonal elements of the diagonal matrix UHU™!.
Summarizing,

If a unitary matrix U is such that, for a Hermitian matrix H, UHUL s diagonal, the
normalized eigenvector of H corresponding to the eigenvalue (UHU™Y);; will be the
ith column of U™ L.

If H is not degenerate, U~! (and also U) will be unique except for a possible permutation
of the columns of U~! (and a corresponding permutation of the rows of U). However, if H is
degenerate (has a repeated eigenvalue), then the columns of U~! corresponding to the same
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eigenvalue can be transformed among themselves, thereby giving additional flexibility to
Uand U~

Finally, calling on the fact that both the determinant and the trace of a matrix are
unchanged when the matrix is subjected to a unitary transformation (shown in Section 5.7),
we see that the determinant of a Hermitian matrix can be identified as the product of its
eigenvalues, and its trace will be their sum. Apart from the individual eigenvalues them-
selves, these are the most useful of the invariants that a matrix has with respect to unitary
transformation.

We illustrate the ideas thus far introduced in this section in the next example.

Example 6.4. 1 TRANSFORMING A MATRIX TO DIAGONAL FORM

We return to the matrix H of Example 6.2.2:

010
H=11 0 O
0 0 2

We note that it is Hermitian, so there exists a unitary transformation U that will diagonalize
it. Since we already know the eigenvectors of H, we can use them to construct U. Noting
that we need normalized eigenvectors, and consulting Egs. (6.9) to (6.11), we have

0 1/3/2 1/32
r=2, 10]; A=1, [1/v2]; r=-1, | -1/V2].
1 0 0
Combining these as columns into U~!,
0 1/vV2 1/V2
u'=1o 1v2 -1/42
1 0 0
Since U= (U™ HT, we easily form
0 0 1 2 0 0
U=|1/¥/2 1/¥/2 0| and UHU'=|0 1 0
1/v/2 —1/42 0 0 0 -1
The trace of H is 2, as is the sum of the eigenvalues; det(H) is —2, equal to 2x 1x(—1).

Finding a Diagonalizing Transformation

As Example 6.4.1 shows, a knowledge of the eigenvectors of a Hermitian matrix H enables
the direct construction of a unitary matrix U that transforms H into diagonal form. But we
are interested in diagonalizing matrices for the purpose of finding their eigenvectors and
eigenvalues, so the construction illustrated in Example 6.4.1 does not meet our present
needs. Applied mathematicians (and even theoretical chemists!) have over many years
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given attention to numerical methods for diagonalizing matrices of order large enough that
direct, exact solution of the secular equation is not possible, and computer programs for
carrying out these methods have reached a high degree of sophistication and efficiency.
In varying ways, such programs involve processes that approach diagonalization via suc-
cessive approximations. That is to be expected, since explicit formulas for the solution of
high-degree algebraic equations (including, of course, secular equations) do not exist. To
give the reader a sense of the level that has been reached in matrix diagonalization technol-
ogy, we identify a computation' that determined some of the eigenvalues and eigenvectors
of a matrix whose dimension exceeded 10°.

One of the older techniques for diagonalizing a matrix is due to Jacobi. It has now been
supplanted by more efficient (but less transparent) methods, but we discuss it briefly here
to illustrate the ideas involved. The essence of the Jacobi method is that if a Hermitian
matrix H has a nonzero value of some off-diagonal #;; (and thus also 4;;), a unitary trans-
formation that alters only rows/columns i and j can reduce h;; and hj; to zero. While
this transformation may cause other, previously zeroed elements to become nonzero, it can
be shown that the resulting matrix is closer to being diagonal (meaning that the sum of
the squared magnitudes of its off-diagonal elements has been reduced). One may therefore
apply Jacobi-type transformations repeatedly to reduce individual off-diagonal elements to
zero, continuing until there is no off-diagonal element larger than an acceptable tolerance.
If one constructs the unitary matrix that is the product of the individual transformations,
one obtains thereby the overall diagonalizing transformation. Alternatively, one can use
the Jacobi method only for retrieval of the eigenvalues, after which the method presented
previously can be used to obtain the eigenvectors.

Simultaneous Diagonalization

It is of interest to know whether two Hermitian matrices A and B can have a common set
of eigenvectors. It turns out that this is possible if and only if they commute. The proof is
simple if the eigenvectors of either A or B are nondegenerate.

Assume that ¢; are a set of eigenvectors of both A and B with respective eigenvalues g;
and b;. Then form, for any i,

BAc¢; = Ba;c; = b;a;c;,
ABc; = Ab;¢; = a;b;c;.

These equations show that BAc; = ABc¢; for every ¢;. Since any vector v can be written as
a linear combination of the ¢;, we find that (BA — AB)v = 0 for all v, which means that
BA = AB. We have found that the existence of a common set of eigenvectors implies com-
mutation. It remains to prove the converse, namely that commutation permits construction
of a common set of eigenvectors.

For the converse, we assume that A and B commute, that ¢; is an eigenvector of A with
eigenvalue ¢;, and that this eigenvector of A is nondegenerate. Then we form

ABc; = BAc¢j =Ba;c;, or A(Bc;) =a;(Bg;).

11, Olsen, P. Jorgensen, and J. Simons, Passing the one-billion limit in full configuration-interaction calculations, Chem. Phys.
Lett. 169: 463 (1990).
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This equation shows that Be; is also an eigenvector of A with eigenvalue a;. Since the
eigenvector of A was assumed nondegenerate, Be; must be proportional to ¢;, meaning
that ¢; is also an eigenvector of B. This completes the proof that if A and B commute, they
have common eigenvectors.

The proof of this theorem can be extended to include the case in which both opera-
tors have degenerate eigenvectors. Including that extension, we summarize by stating the
general result:

Hermitian matrices have a complete set of eigenvectors in common if and only if they
commute.

It may happen that we have three matrices A, B, and C, and that [A,B] =0 and [A,C] =
0, but [B, C] # 0. In that case, which is actually quite common in atomic physics, we
have a choice. We can insist upon a set of ¢; that are simultaneous eigenvectors of A and
B, in which case not all the ¢; can be eigenvectors of C, or we can have simultaneous
eigenvectors of A and C, but not B. In atomic physics these choices typically correspond
to descriptions in which different angular momenta are required to have definite values.

Spectral Decomposition

Once the eigenvalues and eigenvectors of a Hermitian matrix H have been found, we
can express H in terms of these quantities. Since mathematicians call the set of eigen-
values of H its spectrum, the expression we now derive for H is referred to as its spectral
decomposition.

As previously noted, in the orthonormal eigenvector basis the matrix H will be diagonal.
Then, instead of the general form for the basis expansion of an operator, H will be of the
diagonal form

H= Z le)Au(eyl, eachc, satisfies He, = A ¢, and (¢, lc,) = 1. (6.25)
%

This result, the spectral decomposition of H, is easily checked by applying it to any eigen-
vector c¢,,.

Another result related to the spectral decomposition of H can be obtained if we multiply
both sides of the equation He,, = A, ¢,, on the left by H, reaching

Hzcu = (/\M)zcug

further applications of H show that all positive powers of H have the same eigenvectors
as H, so if f(H) is any function of H that has a power-series expansion, it has spectral
decomposition

FH =Y lew) £ el (6.26)
"

Equation (6.26) can be extended to include negative powers if H is nonsingular; to do so,
multiply He,, = A,.¢,, on the left by H™! and rearrange, to obtain

showing that negative powers of H also have the same eigenvectors as H.
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Finally, we can now easily prove the trace formula, Eq. (2.84). In the eigenvector basis,

det ( exp(A)) = l_[ eM = exp <Z AM> =exp (trace(A)) . (6.27)
I Iz

Since the determinant and trace are basis-independent, this proves the trace formula.

Expectation Values

The expectation value of a Hermitian operator H associated with the normalized function
Y was defined in Eq. (5.61) as

(H) = (Y |H|Y), (6.28)

where it was shown that if an orthonormal basis was introduced, with H then represented
by a matrix H and ¢ represented by a vector a, this expectation value assumed the form

(H) = a'Ha = (a|H|a) = Za Ropay,. (6.29)

If these quantities are expressed in the orthonormal eigenvector basis, Eq. (6.29) becomes

(H) =) antuan = lau*hu, (6.30)
" Iz

where a,, is the coefficient of the eigenvector ¢, (with eigenvalue A,) in the expansion
of Y. We note that the expectation value is a weighted sum of the eigenvalues, with the
weights nonnegative, and adding to unity because

(a]a) = Za ap=Y lay*=1. 6.31)

m

An obvious implication of Eq. (6.30) is that the expectation value (H) cannot be
smaller than the smallest eigenvalue nor larger than the largest eigenvalue. The quantum-
mechanical interpretation of this observation is that if H corresponds to a physical quantity,
measurements of that quantity will yield the values A, with relative probabilities given by
lay |2, and hence with an average value corresponding to the weighted sum, which is the
expectation value.

Hermitian operators arising in physical problems often have finite smallest eigenvalues.
This, in turn, means that the expectation value of the physical quantity associated with the
operator has a finite lower bound. We thus have the frequently useful relation

If the algebraically smallest eigenvalue of H is finite, then, for any v, (Y |H |yr) will
be greater than or equal to this eigenvalue, with the equality occurring only if \ is an
eigenfunction corresponding to the smallest eigenvalue.
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Positive Definite and Singular Operators

If all the eigenvalues of an operator A are positive, it is termed positive definite. If and
only if A is positive definite, its expectation value for any nonzero ¥, namely (¥ |A|yr),
will also be positive, since (when i is normalized) it must be equal to or larger than the
smallest eigenvalue.

Example 6.4.2  OVERLAP MATRIX

Let S be an overlap matrix of elements s,,, = (xu|xu), where the x, are members of a
linearly independent, but nonorthogonal basis. If we assume an arbitrary nonzero function
¥ to be expanded in terms of the x,, according to ¥ = Y b, x, the scalar product (y|y/)
will be given by

(Wly) = bisvuby,
i

which is of the form of an expectation value for the matrix S. Since (Y |¢) is an inherently
positive quantity, we conclude that S is positive definite. ]

If, on the other hand, the rows (or the columns) of a square matrix represent linearly
dependent forms, either as coefficients in a basis-set expansion or as the coefficients of
a linear expression in a set of variables, the matrix will be singular, and that fact will be
signaled by the presence of eigenvalues that are zero. The number of zero eigenvalues
provides an indication of the extent of the linear dependence; if an n x n matrix has m zero
eigenvalues, its rank will be n — m.

Exercises

6.4.1

6.4.2

Show that the eigenvalues of a matrix are unaltered if the matrix is transformed by a
similarity transformation—a transformation that need not be unitary, but of the form
given in Eq. (5.78).

This property is not limited to symmetric or Hermitian matrices. It holds for any
matrix satisfying an eigenvalue equation of the type Ax = Ax. If our matrix can be
brought into diagonal form by a similarity transformation, then two immediate conse-
quences are that:

1. The trace (sum of eigenvalues) is invariant under a similarity transformation.

2. The determinant (product of eigenvalues) is invariant under a similarity
transformation.

Note. The invariance of the trace and determinant are often demonstrated by using the
Cayley-Hamilton theorem, which states that a matrix satisfies its own characteristic
(secular) equation.

As a converse of the theorem that Hermitian matrices have real eigenvalues and that
eigenvectors corresponding to distinct eigenvalues are orthogonal, show that if
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6.4.3

6.4.4

6.4.5

6.4.6

6.4.7

6.4.8

6.4.9
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(a) the eigenvalues of a matrix are real and

. . +
(b) the eigenvectors satisfy x; X; = §;;,

then the matrix is Hermitian.

Show that a real matrix that is not symmetric cannot be diagonalized by an orthogonal
or unitary transformation.

Hint. Assume that the nonsymmetric real matrix can be diagonalized and develop a
contradiction.

The matrices representing the angular momentum components Ly, Ly, and L, are all
Hermitian. Show that the eigenvalues of L2, where L2 = LJZC + Li + L%, are real and
nonnegative.

A has eigenvalues ; and corresponding eigenvectors |x;). Show that A~! has the same
eigenvectors but with eigenvalues ){].

A square matrix with zero determinant is labeled singular.

(a) If Ais singular, show that there is at least one nonzero column vector v such that
Alv) =0.

(b) If there is a nonzero vector |v) such that
Alv) =0,

show that A is a singular matrix. This means that if a matrix (or operator) has
zero as an eigenvalue, the matrix (or operator) has no inverse and its determinant
is zero.

Two Hermitian matrices A and B have the same eigenvalues. Show that A and B are
related by a unitary transformation.

Find the eigenvalues and an orthonormal set of eigenvectors for each of the matrices of
Exercise 2.2.12.

The unit process in the iterative matrix diagonalization procedure known as the Jacobi
method is a unitary transformation that operates on rows/columns i and j of a real
symmetric matrix A to make a;; = a;; = 0. If this transformation (from basis functions
@i and @; to @] and <p;.) is written

¢; =@picost —g;sind, ¢ =g;sinf +¢;cosb,

. . 2a;;

(a) Show that g;; is transformed to zero if tan20 = ———,

' ajj — dii
(b) Show that a,,, remains unchanged if neither u nor v is i or j,

(c) Finda;, and a} ; and show that the trace of A is not changed by the transformation,

(d) Findaj, and a} .. (Where /1 is neither 7 nor j) and show that the sum of the squares
of the off-diagonal elements of A is reduced by the amount 2al.2/..
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6.5 NORMAL MATRICES

Thus far the discussion has been centered on Hermitian eigenvalue problems, which we
showed to have real eigenvalues and orthogonal eigenvectors, and therefore capable of
being diagonalized by a unitary transformation. However, the class of matrices which can
be diagonalized by a unitary transformation contains, in addition to Hermitian matrices, all
other matrices that commute with their adjoints; a matrix A with this property, namely

[A,AT]=0,

is termed normal.” Clearly Hermitian matrices are normal, as H' = H. Unitary matrices
are also normal, as U commutes with its inverse. Anti-Hermitian matrices (with AT = —A)
are also normal. And there exist normal matrices that are not in any of these categories.

To show that normal matrices can be diagonalized by a unitary transformation, it suf-
fices to prove that their eigenvectors can form an orthonormal set, which reduces to the
requirement that eigenvectors of different eigenvalues be orthogonal. The proof proceeds
in two steps, of which the first is to demonstrate that a normal matrix A and its adjoint have
the same eigenvectors.

Assuming |x) to be an eigenvector of A with eigenvalue A, we have the equation

(A—21)|x) =0.
Multiplying this equation on its left by (x|(AT — A*1), we have
(x|(AT = A 1)(A = AD)[x) = 0,

after which we use the normal property to interchange the two parenthesized quantities,
bringing us to

x|(A = AD (AT — A*1)|x) = 0.
Moving the first parenthesized quantity into the left half-bracket, we have
(AT — 2 Dx|(AT — A*1)|x) =0,

which we identify as a scalar product of the form (f|f). The only way this scalar product
can vanish is if

(AT —A*D)|x) =0,

showing that |x) is an eigenvector of A’ in addition to being an eigenvector of A. However,
the eigenvalues of A and AT are complex conjugates; for general normal matrices A need
not be real.

A demonstration that the eigenvectors are orthogonal proceeds along the same lines are
for Hermitian matrices. Letting |x;) and |x;) be two eigenvectors (of both A and A", we
form

(X IAX) =2 (x;1x;), (i |AT|x;) = A (xilx;). (6.32)

2Normal matrices are the largest class of matrices that can be diagonalized by unitary transformations. For an extensive discus-
sion of normal matrices, see P. A. Macklin, Normal matrices for physicists, Am. J. Phys. 52: 513 (1984).
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We now take the complex conjugate of the second of these equations, noting that
(xi|x;)* = (x;|x;). To form the complex conjugate of (xi|AT|xj), we convert it first to
(Ax;|x;) and then interchange the two half-brackets. Equations (6.32) then become

(XjlAX) = A {xjIx), (XA = A (X;x;). (6.33)

These equations indicate that if A; # A;, we must have (x;|x;) = 0, thus proving
orthogonality.

The fact that the eigenvalues of a normal matrix A" are complex conjugates of the eigen-
values of A enables us to conclude that

e the eigenvalues of an anti-Hermitian matrix are pure imaginary (because A" = —A,
A*=—21), and

e the eigenvalues of a unitary matrix are of unit magnitude (because A* = 1/, equivalent
to A*A =1).

Example 6.5.1 A NORMAL EIGENSYSTEM

Consider the unitary matrix

—_ o O
(=l

This matrix describes a rotational transformation in which z — x, x — y, and y — z.
Because it is unitary, it is also normal, and we may find its eigenvalues from the secular
equation

% 0 1
detU—A)=| 1 -1 0/l==A3+1=0,
0 1 —x

which has solutions A = 1, w, and w*, where w = ¢**/3. (Note that > = 1, so w* =
1/w = w?.) Because U is real, unitary and describes a rotation, its eigenvalues must fall on
the unit circle, their sum (the trace) must be real, and their product (the determinant) must
be +1. This means that one of the eigenvalues must be +1, and the remaining two may be
real (both +1 or both —1) or form a complex conjugate pair. We see that the eigenvalues
we have found satisfy these criteria. The trace of U is zero, as is the sum 1 + @ + »* (this
may be verified graphically; see Fig. 6.3).
Proceeding to the eigenvectors, substitution into the equation

(U=—Al)e=0
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FIGURE 6.3 Eigenvalues of the matrix U, Example 6.5.1.

yields (in unnormalized form)

1 1 1
=1 =11, M=o, co=|o*], i3 =a)2, ag=|w
1 w w*

The interpretation of this result is interesting. The eigenvector ¢; is unchanged by U
(application of U multiplies it by unity), so it must lie in the direction of the axis of the
rotation described by U. The other two eigenvectors are complex linear combinations of
the coordinates that are invariant in “direction,” but not in phase under application of U. We
write “direction” in quotes, since the complex coefficients in the eigenvectors cause them
not to identify directions in physical space. Nevertheless, they do form quantities that are
invariant except for multiplication by the eigenvalue (which we identify as a phase, since
it is of magnitude unity). The argument of w, 27 /3, identifies the amount of the rotation
about the ¢; axis. Coming back to physical reality, we note that we have found that U
corresponds to a rotation of amount 277 /3 about an axis in the (1,1,1) direction; the reader
can verify that this indeed takes x into y, y into z, and z into x.

Because U is normal, its eigenvectors must be orthogonal. Since we now have complex
quantities, in order to check this we must compute the scalar product of two vectors a and
b from the formula a’b. Our eigenvectors pass this test.

Finally, let’s verify that U and U" have the same eigenvectors, and that corresponding
eigenvalues are complex conjugates. Taking the adjoint of U, we have

Ut =

—_ o O

1 0
0 1
0 0

Using the eigenvectors we have already found to form UT¢;, the verification is easily estab-
lished. We illustrate with ¢;:

01 0 1 w* 1
0 0 1 o l=lo | =0 o],
1 0 O w 1 w

as required. |
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Nonnormal Matrices

Matrices that are not even normal sometimes enter problems of importance in physics.
Such a matrix, A, still has the property that the eigenvalues of A" are the complex conju-
gates of the eigenvalues of A, because det(A") = [det(A)]*, so

detA—A1)=0 — det(AT —21*1)=0,

for the same A, but it is no longer true that the eigenvectors are orthogonal or that A and A
have common eigenvectors.

Here is an example arising from the analysis of vibrations in mechanical systems. We
consider the vibrations of a classical model of the CO, molecule. Even though the model is
classical, it is a good representation of the actual quantum-mechanical system, as to good
approximation the nuclei execute small (classical) oscillations in the Hooke’s-law potential
generated by the electron distribution. This problem is an illustration of the application of
matrix techniques to a problem that does not start as a matrix problem. It also provides an
example of the eigenvalues and eigenvectors of an asymmetric real matrix.

Example 6.5.2  NORMAL MODES

Consider three masses on the x-axis joined by springs as shown in Fig. 6.4. The spring
forces are assumed to be linear in the displacements from equilibrium (small displace-
ments, Hooke’s law), and the masses are constrained to stay on the x-axis.

Using a different coordinate for the displacement of each mass from its equilibrium
position, Newton’s second law yields the set of equations

k
X1 = M (x1 —x2)

. k k
Yo=—— (2 —x1) — — (x2 —x3) (6.34)
m m
X £ ( )
X3 =—— (x3 — x2),
3 (3%

where ¥ stands for d?x /d 2. We seek the frequencies, w, such that all the masses vibrate
at the same frequency. These are called the normal modes of vibration,? and are solutions
to Egs. (6.34) with

xi(t)=x;sinwt, i=1, 2, 3.

|—>X1 |—>X2 |—>X3

FIGURE 6.4 The three-mass spring system representing the CO, molecule.

3For detailed discussion of normal modes of vibration, see E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular
Vibrations—The Theory of Infrared and Raman Vibrational Spectra. New York: Dover (1980).
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Substituting this solution set into Egs. (6.34), these equations, after cancellation of the
common factor sin wt, become equivalent to the matrix equation

k k
= = 0
M M X1 )
k 2k k
a=|-X 22 K =10t [ n). (6.35)
M M

k 2 k
— —w —— 0
M M
ko a kI, (6.36)
m m m
k k
0 - — —?
M M
which expands to
w? i—a)2 a)z—%—i =
M m M
The eigenvalues are
) k kK 2k
w°=0, —, —4+—.
M M m

For w? = 0, substitution back into Eq. (6.35) yields
x1—x2=0, —x1+2x—x3=0, —x+x3=0,

which corresponds to x| = xp = x3. This describes pure translation with no relative motion
of the masses and no vibration.
For w? = k/M, Eq. (6.35) yields

x1=—x3, xp=0.

The two outer masses are moving in opposite directions. The central mass is stationary. In
COy, this is called the symmetric stretching mode.
Finally, for w?> = k/M + 2k/m, the eigenvector components are

X1 =X3, X2=——X].
m

In this antisymmetric stretching mode, the two outer masses are moving, together, in a
direction opposite to that of the central mass, so one CO bond stretches while the other
contracts the same amount. In both of these stretching modes, the net momentum of the
motion is zero.

Any displacement of the three masses along the x-axis can be described as a linear
combination of these three types of motion: translation plus two forms of vibration.
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The matrix A of Eq. (6.35) is not normal; the reader can check that AAT £ ATA. As a
result, the eigenvectors we have found are not orthogonal, as is obvious by examination of
the unnormalized eigenvectors:
1 1
k kK 2k
a)2=0, x=1|1], a)2=—, X = 01, a)zz——i——, x=|-2M/m
M M
-1 1
Using the same A values, we can solve the simultaneous equations
(AT - ,\*1) y=0.
The resulting eigenvectors are
1 1 1
k k 2k
a)2:O, x=|m/M|, a)2:—, x=10], a)2:—+—, x=|-2
M M m
1 1 1
These vectors are neither orthogonal nor the same as the eigenvectors of A. |
Defective Matrices
If a matrix is not normal, it may not even have a full complement of eigenvectors. Such
matrices are termed defective. By the fundamental theorem of algebra, a matrix of dimen-
sion N will have N eigenvalues (when their multiplicity is taken into account). It can also
be shown that any matrix will have at least one eigenvector corresponding to each of its
distinct eigenvalues. But it is not always true that that an eigenvalue of multiplicity & > 1
will have k eigenvectors. We give as a simple example a matrix with the doubly degenerate
eigenvalue A = 1:
11 . . 1
0 1 has only the single eigenvector Yk
Exercises
6.5.1 Find the eigenvalues and corresponding eigenvectors for
2 4
1 2)
Note that the eigenvectors are not orthogonal.
ANS. 11 =0, ¢; =(2,-1);
M=4 =2, 1.
6.5.2 If A is a 2 x 2 matrix, show that its eigenvalues A satisfy the secular equation
2% — A trace(A) + det(A) = 0.
6.5.3 Assuming a unitary matrix U to satisfy an eigenvalue equation Ue = A¢, show that the

eigenvalues of the unitary matrix have unit magnitude. This same result holds for real
orthogonal matrices.
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Since an orthogonal matrix describing a rotation in real 3-D space is a special case
of a unitary matrix, such an orthogonal matrix can be diagonalized by a unitary
transformation.

(a) Show that the sum of the three eigenvalues is 1 + 2 cos ¢, where ¢ is the net angle
of rotation about a single fixed axis.

(b) Given that one eigenvalue is 1, show that the other two eigenvalues must be e'¢
and e7'%.

Our orthogonal rotation matrix (real elements) has complex eigenvalues.

A is an nth-order Hermitian matrix with orthonormal eigenvectors |x;) and real eigen-
values A; <Ay < A3 <--- <A,. Show that for a unit magnitude vector |y),

A=< <Y|A|y> <.
A particular matrix is both Hermitian and unitary. Show that its eigenvalues are all £1.
Note. The Pauli and Dirac matrices are specific examples.

For his relativistic electron theory Dirac required a set of four anticommuting matrices.
Assume that these matrices are to be Hermitian and unitary. If these are n x n matrices,
show that n must be even. With 2 x 2 matrices inadequate (why?), this demonstrates
that the smallest possible matrices forming a set of four anticommuting, Hermitian,
unitary matrices are 4 x 4.

A is a normal matrix with eigenvalues X, and orthonormal eigenvectors |x,). Show that
A may be written as

A= hnlxn) (.

Hint. Show that both this eigenvector form of A and the original A give the same result
acting on an arbitrary vector |y).

A has eigenvalues 1 and —1 and corresponding eigenvectors (é) and (?)

1 0
ws as(l9)

A non-Hermitian matrix A has eigenvalues A; and corresponding eigenvectors |u;). The
adjoint matrix A’ has the same set of eigenvalues but different corresponding eigen-
vectors, |v;). Show that the eigenvectors form a biorthogonal set in the sense that

(viluj)=0 for A #2;.

Construct A.

You are given a pair of equations:
Alfy) = Anlgn)
Algn) = Anlf,)  with Areal.
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(a) Prove that |f,) is an eigenvector of (AA) with eigenvalue A,%.
(b) Prove that |g,) is an eigenvector of (AA) with eigenvalue Aﬁ.
(c) State how you know that

(1) The |f,;,) form an orthogonal set.
(2) The |g,) form an orthogonal set.
(3) A2 is real.

6.5.12  Prove that A of the preceding exercise may be written as

A= ulgn)(fal.
n

with the |g,,) and (f,,| normalized to unity.

Hint. Expand an arbitrary vector as a linear combination of |f},).

6.5.13 Given
1 /2 2
A—ﬁ(l )

(a) Construct the transpose A and the symmetric forms AA and AA.

(b) From AA|g,,) = )\3 |gn), find A, and |g,). Normalize the |g,).

(c) From AA|f,) = k,% |g.), find A, [same as (b)] and |f,,). Normalize the |f},).
(d) Verify that Alf,) = A,,|g,) and Alg,,) = A, |f,).

(¢) Verify that A=Y, Alga)(f.

6.5.14  Given the eigenvalues A = 1, A, = —1 and the corresponding eigenvectors

1
=) 181=75(1) m=(7). ano

m=%(h,

(a) construct A;
(b) verify that Alf,) = A,18,);
(c) verify that A|gn) = Ay lfn).

ANS. A=

6.5.15  Two matrices U and H are related by

with a real.
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(a) IfH is Hermitian, show that U is unitary.

(b) IfU is unitary, show that H is Hermitian. (H is independent of a.)
(¢c) Iftrace H=0, show that detU = +1.

(d) IfdetU=+1, show that trace H=0.

Hint. H may be diagonalized by a similarity transformation. Then U is also diagonal.
The corresponding eigenvalues are given by u; = exp(iah;).

An n x n matrix A has n eigenvalues A;. [f B= eA, show that B has the same eigen-
vectors as A with the corresponding eigenvalues B; given by B; = exp(4;).

A matrix P is a projection operator satisfying the condition
P2 =P.
Show that the corresponding eigenvalues (p2); and p; satisfy the relation
(0Hx = (02)* = pi.
This means that the eigenvalues of P are 0 and 1.
In the matrix eigenvector-eigenvalue equation
AlX;) = Ailxi),

A is an n x n Hermitian matrix. For simplicity assume that its n real eigenvalues are
distinct, 1| being the largest. If |x) is an approximation to |xp),

n
X)=x1)+ Y dilxi),
i=2

show that
AN
(x]x)

and that the error in A, is of the order |§;|2. Take |8;| << 1.
Hint. The n vectors |x;) form a complete orthogonal set spanning the n-dimensional

(complex) space.

Two equal masses are connected to each other and to walls by springs as shown in
Fig. 6.5. The masses are constrained to stay on a horizontal line.

(a) Set up the Newtonian acceleration equation for each mass.
(b) Solve the secular equation for the eigenvectors.

(c) Determine the eigenvectors and thus the normal modes of motion.

Given a normal matrix A with eigenvalues A, show that AT has eigenvalues )Ljf, its

real part (A + AT)/2 has eigenvalues e(A;), and its imaginary part (A — AT)/2i has
eigenvalues Im (X ;).
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Chapter 6 Eigenvalue Problems

FIGURE 6.5 Triple oscillator.

Consider a rotation given by Euler angles « = /4, 8 =n/2,y =57 /4.

(a) Using the formula of Eq. (3.37), construct the matrix U representing this rotation.

(b) Find the eigenvalues and eigenvectors of U, and from them describe this rotation
by specifying a single rotation axis and an angle of rotation about that axis.

Note. This technique provides a representation of rotations alternative to the Euler
angles.
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CHAPTER 7

ORDINARY DIFFERENTIAL
EQUATIONS

Much of theoretical physics is originally formulated in terms of differential equations in the
three-dimensional physical space (and sometimes also time). These variables (e.g., x, y, z,
t) are usually referred to as independent variables, while the function or functions being
differentiated are referred to as dependent variable(s). A differential equation involving
more than one independent variable is called a partial differential equation, often abbre-
viated PDE. The simpler situation considered in the present chapter is that of an equation
in a single independent variable, known as an ordinary differential equation, abbreviated
ODE. As we shall see in a later chapter, some of the most frequently used methods for solv-
ing PDEs involve their expression in terms of the solutions to ODEs, so it is appropriate to
begin our study of differential equations with ODEs.

7.1 INTRODUCTION
To start, we note that the taking of a derivative is a linear operation, meaning that

d dyr
- (a¢<x)+bw(x>)_ad—+bE

and the derivative operation can be viewed as defining a linear operator: £ = d/dx. Higher
derivatives are also linear operators, as for example

d? d*¢  d*y
(a0 + by () =a—= +b——.
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Note that the linearity under discussion is that of the operator. For example, if we define

d
L= p(X)E +q(x),

it is identified as linear because
do dy
L(ap(x) + by (x)) =a (p(X)a + q(X)w) +b (p(X)E + q(X)w)

=aly+bLy.

We see that the linearity of £ imposes no requirement that either p(x) or g(x) be a linear
function of x. Linear differential operators therefore include those of the form

n dv
L= E pu(x)< v)’
= dx

where the functions p, (x) are arbitrary.

An ODE is termed homogeneous if the dependent variable (here ¢) occurs to the same
power in all its terms, and inhomogeneous otherwise; it is termed linear if it can be written
in the form

Lo(x) = F(x), (7.1)

where L is a linear differential operator and F(x) is an algebraic function of x (i.e., not
a differential operator). An important class of ODEs are those that are both linear and
homogeneous, and thereby of the form Lo = 0.

The solutions to ODEs are in general not unique, and if there are multiple solutions it
is useful to identify those that are linearly independent (linear dependence is discussed in
Section 2.1). Homogeneous linear ODEs have the general property that any multiple of a
solution is also a solution, and that if there are multiple linearly independent solutions, any
linear combination of those solutions will also solve the ODE. This statement is equivalent
to noting that if £ is linear, then, for all a and b,

Lo=0 and LYy =0 — Lap+by)=0.

The Schrodinger equation of quantum mechanics is a homogeneous linear ODE (or if in
more than one dimension, a homogeneous linear PDE), and the property that any linear
combination of its solutions is also a solution is the conceptual basis for the well-known
superposition principle in electrodynamics, wave optics and quantum theory.

Notationally, it is often convenient to use the symbols x and y to refer, respectively,
to independent and dependent variables, and a typical linear ODE then takes the form
Ly = F(x). It is also customary to use primes to indicate derivatives: y’ = dy/dx. In
terms of this notation, the superposition property of solutions y; and y, of a homogeneous
linear ODE tells us that the ODE also has as solutions ¢y, ¢2y2, and ¢1y; + ¢2y2, with
the ¢; arbitrary constants.

Some physically important problems (particularly in fluid mechanics and in chaos the-
ory) give rise to nonlinear differential equations. A well-studied example is the Bernoulli
equation

Y =p@)y+qx)y", n#0,1,

which cannot be written in terms of a linear operator applied to y.
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Further terms used to classify ODEs include their order (highest derivative appear-
ing therein), and degree (power to which the highest derivative appears after the ODE is
rationalized if that is necessary). For many applications, the concept of linearity is more
relevant than that of degree.

7.2 FIRST-ORDER EQUATIONS

Physics involves some first-order differential equations. For completeness it seems desir-
able to touch upon them briefly. We consider the general form

d P(x,y)

y— —_ T
E_f(xsy)_ Q(x,y)

While there is no systematic way to solve the most general first-order ODE, there are
a number of techniques that are often useful. After reviewing some of these techniques,
we proceed to a more detailed treatment of linear first-order ODEs, for which systematic
procedures are available.

(7.2)

Separable Equations

Frequently Eq. (7.2) will have the special form
4 __Pw) (7.3)
dx o)’ '

Then it may be rewritten as
P(x)dx + Q(y)dy =0.
Integrating from (xg, yo) to (x, y) yields

X y
[P(x)dx—i—/Q(y)dy:O.
X0 Yo

Since the lower limits, x¢ and yg, contribute constants, we may ignore them and simply add
a constant of integration. Note that this separation of variables technique does not require
that the differential equation be linear.

Example 7.2.1 PARACHUTIST

We want to find the velocity of a falling parachutist as a function of time and are partic-
ularly interested in the constant limiting velocity, vg, that comes about by air drag, taken
to be quadratic, —bv?, and opposing the force of the gravitational attraction, mg, of the
Earth on the parachutist. We choose a coordinate system in which the positive direction
is downward so that the gravitational force is positive. For simplicity we assume that the
parachute opens immediately, that is, at time ¢ = 0, where v(¢) = 0, our initial condition.
Newton’s law applied to the falling parachutist gives

mv =mg — bv>, (7.4)

where m includes the mass of the parachute.
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The terminal velocity, vg, can be found from the equation of motion as t — co; when
there is no acceleration, v = 0, and

bv% =mg, or vy= %.
b
It simplifies further work to rewrite Eq. (7.4) as
%i} = v% —%
This equation is separable, and we write it in the form
d b
2 (1.5)

2_ 2
vg— v m

Using partial fractions to write

AR I
v%—v2_2vo v+vy v—uvy /)’

it is straightforward to integrate both sides of Eq. (7.5) (the left-hand side from v =0 to v,
the right-hand side from ¢ = 0 to 7), yielding

1 v+v b
—1In = —1.
200 vy—v m

Solving for the velocity, we have

/T sinh(¢/T) -
v= V) ="V = vgtanh —,
27T 1107 Ocosh(r/T) 0T

where T = /m/gb is the time constant governing the asymptotic approach of the velocity
to its limiting value, vg.

Inserting numerical values, g = 9.8 m/s?, and taking b = 700 kg/m, m = 70 kg, gives
v = +/9.8/10 ~ 1 m/s ~ 3.6 km/h ~ 2.234 mi/h, the walking speed of a pedestrian at
landing, and T = /m/bg = 1/4/10-9.8 ~ 0.1 s. Thus, the constant speed vy is reached
within a second. Finally, because it is always important to check the solution, we verify
that our solution satisfies the original differential equation:

. cosh(t/T)vy sinh®>(t/T)vg wvo  v? b ,
V= - = —=——-—=g—- —V".
cosh(t/TY T cosh2(t/TYT T  Twy ° m

A more realistic case, where the parachutist is in free fall with an initial speed v(0) > 0
before the parachute opens, is addressed in Exercise 7.2.16. |
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Exact Differentials

Again we rewrite Eq. (7.2) as
P(x,y)dx + Q(x, y)dy =0. (7.6)

This equation is said to be exact if we can match the left-hand side of it to a differential
dg, and thereby reach

a d
do="2ax+%ay=o. 1.7)
ox ay
Exactness therefore implies that there exists a function ¢(x, y) such that
d¢ %
— =P(x,y) and — =Q0(x,y), (7.8)
ax ay

because then our ODE corresponds to an instance of Eq. (7.7), and its solution will be
¢(x,y) = constant.

Before seeking to find a function ¢ satisfying Eq. (7.8), it is useful to determine whether
such a function exists. Taking the two formulas from Eq. (7.8), differentiating the first with
respect to y and the second with respect to x, we find

¢ _0Px.y) . e _90x.y)
ayox ady dxdy ax
and these are consistent if and only if
IP(x,y) _ 90, y)
ay dx
We therefore conclude that Eq. (7.6) is exact only if Eq. (7.9) is satisfied. Once exactness
has been verified, we can integrate Eqgs. (7.8) to obtain ¢ and therewith a solution to the

ODE.
The solution takes the form

)

(7.9)

X

y
ox,y)= / P(x,y)dx + / Q(xg, y)dy = constant. (7.10)

X0 Yo

Proof of Eq. (7.10) is left to Exercise 7.2.7.
We note that separability and exactness are independent attributes. All separable ODEs
are automatically exact, but not all exact ODEs are separable.

Example 7.2.2 A NONSEPARABLE EXACT ODE
Consider the ODE
Y+ (1 + X) —0.
x
Multiplying by x dx, this ODE becomes
(x+y)dx+xdy=0,
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which is of the form
P(x,y)dx + Q(x,y)dy =0,

with P(x,y) =x 4+ y and Q(x, y) = x. The equation is not separable. To check if it is
exact, we compute

8P_8(x+y)_1 BQ_ax_l
ay 9y

©oax ax
These partial derivatives are equal; the equation is exact, and can be written in the form
dp=Pdx+ Qdy=0.

The solution to the ODE will be ¢ = C, with ¢ computed according to Eq. (7.10):

r [ +2 32
<p=/(x+y)dx+/mdy= — +xy— — —x0y | + (xoy — X0Y0)
X0

2 2
Yo
%2
= 7 + xy + constant terms.
Thus, the solution is

2
X
— +xy=C,

7

which if desired can be solved to give y as a function of x. We can also check to make sure
that our solution actually solves the ODE. |

It may well turn out that Eq. (7.6) is not exact and that Eq. (7.9) is not satisfied. However,
there always exists at least one and perhaps an infinity of integrating factors «(x, y) such
that

a(x, y)P(x, y)dx +a(x,y)Qx, y)dy =0

is exact. Unfortunately, an integrating factor is not always obvious or easy to find. A sys-
tematic way to develop an integrating factor is known only when a first-order ODE is
linear; this will be discussed in the subsection on linear first-order ODEs.

Equations Homogeneous in x and y

An ODE is said to be homogeneous (of order n) in x and y if the combined powers of
x and y add to n in all the terms of P(x, y) and Q(x, y) when the ODE is written as in
Eq. (7.6). Note that this use of the term “homogeneous” has a different meaning than when
it was used to describe a linear ODE as given in Eq. (7.1) with the term F (x) equal to zero,
because it now applies to the combined power of x and y.

A first-order ODE, which is homogeneous of order n in the present sense (and not nec-
essarily linear), can be made separable by the substitution y = xv, with dy = x dv + vdx.
This substitution causes the x dependence of all the terms of the equation containing dv to
be x"*!, with all the terms containing dx having x-dependence x”. The variables x and v
can then be separated.
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Example 7.2.3 AN ODE HOMOGENEOUS IN x AND y

Consider the ODE
2x +y)dx +xdy =0,

which is homogeneous in x and y. Making the substitution y = xv, withdy = x dv+vdx,
the ODE becomes

Qv +2)dx +xdv=0,
which is separable, with solution In x + % In(v+ 1) = C, which is equivalent to 2w+1)=

C. Forming y = xv, the solution can be rearranged into

y=——x.
x

Isobaric Equations

A generalization of the preceding subsection is to modify the definition of homogeneity by
assigning different weights to x and y (note that corresponding weights must then also be
assigned to dx and dy). If assigning unit weight to each instance of x or dx and a weight
m to each instance of y or dy makes the ODE homogeneous as defined here, then the
substitution y = x”v will make the equation separable. We illustrate with an example.

Example 7.2.4 AN IsoBARIC ODE

Here is an isobaric ODE:
(x* = y)dx +xdy =0.

Assigning x weight 1, and y weight m, the term x2dx has weight 3; the other two terms
have weight 1 4 m. Setting 3 = 1 + m, we find that all terms can be assigned equal weight
if we take m = 2. This means that we should make the substitution y= x?v. Doing so,
we get

(1 —=v)dx +xdv=0,
which separates into

dx dv
— +
X v+1

=0 — Inx+In(v+1)=InC, or x(v+1)=C.

C
From this, we get v = — — 1. Since y = x2v, the ODE has solution y = Cx — x2. |
X
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Linear First-Order ODEs

While nonlinear first-order ODEs can often (but not always) be solved using the strategies
already presented, the situation is different for the linear first-order ODE because proce-
dures exist for solving the most general equation of this type, which we write in the form

d
d—y +p()y =q(x). (7.11)
X

If our linear first-order ODE is exact, its solution is straightforward. If it is not exact, we
make it exact by introducing an integrating factor @ (x), so that the ODE becomes

d
a(x)ﬁ +a()p(x)y = a(x)qx). (7.12)

The reason for multiplication by «(x) is to cause the left-hand side of Eq. (7.12) to become
a perfect differential, so we require that o (x) be such that

d dy
—[a@)y] =a@)—= +a()px)y. (7.13)
dx dx
Expanding the left-hand side of Eq. (7.13), that equation becomes
W2+ %y 0@ +awp)
alx)—+ oy =a@) - +a)p@)y,
so o must satisfy
do
T a(x)p(x). (7.14)
X

This is a separable equation and therefore soluble. Separating the variables and integrat-

ing, we obtain
o d X
/ @ _ / px)dx.
o

We need not consider the lower limits of these integrals because they combine to yield a
constant that does not affect the performance of the integrating factor and can be set to
zero. Completing the evaluation, we reach

X

a(x) =exp /p(x)dx . (7.15)

With o now known we proceed to integrate Eq. (7.12), which, because of Eq. (7.13),
assumes the form

d
T le@y@)]=alngx),
X

which can be integrated (and divided through by «) to yield

X

1
y(x)=—— /Ot(X)q(X)dx +C | = y2(%) + y1(x). (7.16)
o (x)
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The two terms of Eq. (7.16) have an interesting interpretation. The term y; = C/a(x)
is the general solution of the homogeneous equation obtained by replacing ¢ (x) with zero.
To see this, write the homogeneous equation as

d
2 podx,
y

which integrates to

X

lny:—fp(x)dx+C=—lnot+C.

Taking the exponential of both sides and renaming ¢€ as C, we get just y = C/a(x). The
other term of Eq. (7.16),

1 X
= —/a(x)q(x)dx (7.17)
o (x)

corresponds to the right-hand side (source) term ¢ (x), and is a solution of the original
inhomogeneous equation (as is obvious because C can be set to zero). We thus have the
general solution to the inhomogeneous equation presented as a particular solution (or,
in ODE parlance, a particular integral) plus the general solution to the corresponding
homogeneous equation.

The above observations illustrate the following theorem:

The solution of an inhomogeneous first-order linear ODE is unique except for an arbi-
trary multiple of the solution of the corresponding homogeneous ODE.

To show this, suppose y; and y, both solve the inhomogeneous ODE, Eq. (7.11). Then,
subtracting the equation for y, from that for y;, we have

i — Y5+ p@)(y1 —y2)=0.

This shows that y; — y; is (at some scale) a solution of the homogeneous ODE. Remember
that any solution of the homogeneous ODE remains a solution when multiplied by an
arbitrary constant.

We also have the theorem:

A first-order linear homogeneous ODE has only one linearly independent solution.

Two functions yj(x) and y>(x) are linearly dependent if there exist two constants @ and
b, both nonzero, that cause ay; + by, to vanish for all x. In the present situation, this is
equivalent to the statement that y; and y; are linearly dependent if they are proportional to
each other.

To prove the theorem, assume that the homogeneous ODE has the linearly independent
solutions y; and y,. Then, from the homogeneous ODE, we have

!/ /
y Y
=—plo =2
V1 Y2
Integrating the first and last members of this equation, we obtain

Iny; =lny, + C, equivalentto y; =Cyy,

contradicting our assumption that y; and y; are linearly independent.
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Example 7.2.5  RL Circurr

For a resistance-inductance circuit Kirchoff’s law leads to
dl(t
LY i =),

where I (¢) is the current, L and R are, respectively, constant values of the inductance and
the resistance, and V (¢) is the time-dependent input voltage.
From Eq. (7.15), our integrating factor «(z) is

t

R
a(t) = exp/ Zdt =eRI/L,

Then, by Eq. (7.16),
t

Vit
1(t) =e RU/L /eR’/L%dt—l—C ,

with the constant C to be determined by an initial condition.
For the special case V () = Vj, a constant,

_ Vo L Vo _
1) = Rt/L - = Rt/L cl=2-2 C Rl/L'
(t)y=e T Re + R + Ce
If the initial condition is 7 (0) =0, then C = —Vj;/R and
\%
I(t):FO[l—e_R’/L].

We close this section by pointing out that the inhomogeneous linear first-order ODE can
also be solved by a method called variation of the constant, or alternatively variation of
parameters, as follows. First, we solve the homogeneous ODE y’ + py = 0 by separation
of variables as before, giving

, X X
y; =—p, Iny= —/p(X)dX +InC, yx)=Cexp —/p(X)dX

Next we allow the integration constant to become x-dependent, that is, C — C(x). This is
the reason the method is called “variation of the constant.” To prepare for substitution into
the inhomogeneous ODE, we calculate y’:

X X

Y =exp —/p(X)dX [-PC(x) + C'(x)] = —py(x) + C"(x) exp —/P(X)dX

Making the substitution for y’ into the inhomogeneous ODE y’ + py = ¢, some cancella-
tion occurs, and we are left with

X

C'(x)exp —/p(X)dX =q,
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which is a separable ODE for C(x) that integrates to yield
X X X

C(x):/exp /p(Y)dY q(X)dX and y=C(x)exp —/p(X)dX

This particular solution of the inhomogeneous ODE is in agreement with that called y, in

Eq. (7.17).
Exercises
7.2.1 From Kirchhoff’s law the current / in an RC (resistance-capacitance) circuit (Fig. 7.1)
obeys the equation
Rdl + ! I1=0
et Cc

(a) Find I(2).
(b) For a capacitance of 10,000 wF charged to 100 V and discharging through a resis-
tance of 1 M2, find the current I for t = 0 and for r = 100 seconds.
Note. The initial voltage is IpR or Q/C, where Q = fooo I(t)dt.
7.2.2 The Laplace transform of Bessel’s equation (n = 0) leads to

s>+ 1D f'(s)+sf(s) =0.

Solve for f(s).
7.2.3 The decay of a population by catastrophic two-body collisions is described by
dN
— = —kN>.
dt

This is a first-order, nonlinear differential equation. Derive the solution

-1
70

where 19 = (kNp)~!. This implies an infinite population at t = —1.

[ o

|||+

FIGURE 7.1 RC circuit.
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The rate of a particular chemical reaction A + B — C is proportional to the concentra-
tions of the reactants A and B:

dC(t)
dt
(a) Find C(z) for A(0) # B(0).
(b) Find C(¢) for A(0) = B(0).

=a[A(0) - C(OH][BO) —C@)].

The initial condition is that C(0) = 0.

A boat, coasting through the water, experiences a resisting force proportional to v", v
being the boat’s instantaneous velocity. Newton’s second law leads to
dv
m-— =
dt
With v(t = 0) = vy, x(t =0) =0, integrate to find v as a function of time and v as a
function of distance.

—kv".

In the first-order differential equation dy/dx = f(x, y), the function f(x, y) is a func-
tion of the ratio y/x:
d

Yy _
a—g()’/x)-

Show that the substitution of u = y/x leads to a separable equation in # and x.
The differential equation
P(x,y)dx + Q(x, y)dy =0

is exact. Show that its solution is of the form

X y
ox,y) = / P(x,y)dx ~|—/ 0O (xp, y)dy = constant.
X0 Yo

The differential equation
P(x,y)dx + Q(x,y)dy =0

is exact. If

x y
o0 = [ Peyax+ [ 0w ay.
X0 Yo
show that
F=PG. =06,
Hence, ¢(x, y) = constant is a solution of the original differential equation.

Prove that Eq. (7.12) is exact in the sense of Eq. (7.9), provided that «(x) satisfies
Eq. (7.14).
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7.2.12

7.2.13

7.2.14
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A certain differential equation has the form

fx)dx +g(x)h(y)dy =0,

with none of the functions f(x), g(x), h(y) identically zero. Show that a necessary and
sufficient condition for this equation to be exact is that g(x) = constant.

Show that

X X s

y(x) =exp —fp(t)dt /exp /p(t)dt q(s)yds +C

is a solution of
dy
Iy TPEyE)=4q(x)
X
by differentiating the expression for y(x) and substituting into the differential equation.

The motion of a body falling in a resisting medium may be described by

dv
m— =mg — bv
dt &
when the retarding force is proportional to the velocity, v. Find the velocity. Evaluate

the constant of integration by demanding that v(0) = 0.

Radioactive nuclei decay according to the law
dN
=

N being the concentration of a given nuclide and A, the particular decay constant. In

a radioactive series of two different nuclides, with concentrations Ny (¢) and N, (¢), we
have

—AN,

dNy

—— =—A Ny,

dt

dN,

—= = ANy — A2 N>,
dt

Find N, (¢) for the conditions N{(0) = Ny and N,(0) = 0.

The rate of evaporation from a particular spherical drop of liquid (constant density) is
proportional to its surface area. Assuming this to be the sole mechanism of mass loss,
find the radius of the drop as a function of time.

In the linear homogeneous differential equation
dv
o=

the variables are separable. When the variables are separated, the equation is exact.

Solve this differential equation subject to v(0) = vy by the following three methods:

—av

(a) Separating variables and integrating.

(b) Treating the separated variable equation as exact.
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7.2.16

7.2.17

7.2.18

(c) Using the result for a linear homogeneous differential equation.

ANS.  v(t) = vge .

(a) Solve Example 7.2.1, assuming that the parachute opens when the parachutist’s
velocity has reached v; = 60 mi/h (regard this time as r = 0). Find v(¢).

(b) For a skydiver in free fall use the friction coefficient » = 0.25 kg/m and mass
m =70 kg. What is the limiting velocity in this case?

Solve the ODE
(xy? — y)dx +xdy =0.
Solve the ODE
(x2 = y2e¥Mydx + (x* + xy)e*Fdy = 0.

Hint. Note that the quantity y/x in the exponents is of combined degree zero and does
not affect the determination of homogeneity.

7.3 ODES WITH CONSTANT COEFFICIENTS

Before addressing second-order ODEs, the main topic of this chapter, we discuss a special-
ized, but frequently occurring class of ODEs that are not constrained to be of specific order,
namely those that are linear and whose homogeneous terms have constant coefficients. The
generic equation of this type is

dny dn—ly dy
dx" +a"71dxn—1 +"'+ala +aoy = F(x). (7.18)

The homogeneous equation corresponding to Eq. (7.18) has solutions of the form y = "%,
where m is a solution of the algebraic equation

m" +ap_im" '+ +aym+ag =0,

as may be verified by substitution of the assumed form of the solution.

In the case that the m equation has a multiple root, the above prescription will not yield
the full set of n linearly independent solutions for the original » th order ODE. If one then
considers the limiting process in which two roots approach each other, it is possible to
conclude that if ¢™* is a solution, then so is d ¥ /dm = xe™*. A triple root would have
solutions €™, xe™*, x2e™¥ etc.

Example 7.3.1 HOOKE’S LAW SPRING

A mass M attached to a Hooke’s Law spring (of spring constant k) is in oscillatory motion.
Letting y be the displacement of the mass from its equilibrium position, Newton’s law of
motion takes the form

d?y

M_
dr?

= —ky’
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which is an ODE of the form y” + agy = 0, with ay = +k/M . The general solution to this
ODE is of the form C1e™' + Ce™?', where m| and m; are the solutions of the algebraic
equation m? + ag = 0.

The values of m and m, are +iw, where w = \/k/M, so the ODE has solution

y(t) — Cle+iw[ + Cze_iwt.

Since the ODE is homogeneous, we may alternatively describe its general solution using
arbitrary linear combinations of the above two terms. This permits us to combine them to
obtain forms that are real and therefore appropriate to the current problem. Noting that
eiwl + e*iwl eiwt _ e*ia)t
——=coswt and ——— =sinwt,
2 2i

a convenient alternate form is
y(t) = Cicoswt + Cysinwt.

The solution to a specific oscillation problem will now involve fitting the coefficients
C1 and C; to the initial conditions, as for example y(0) and y’(0). |

Exercises

7.3.1
7.3.2
7.3.3
7.3.4

Find the general solutions to the following ODEs. Write the solutions in forms that are
entirely real (i.e., that contain no complex quantities).

y'=2y"—y' +2y=0.
y'=2y"+y —2y=0.
y" =3y +2y=0.
vy +2y +2y=0.

7.4 SECOND-ORDER LINEAR ODES

We now turn to the main topic of this chapter, second-order linear ODEs. These are of
particular importance because they arise in the most frequently used methods for solving
PDEs in quantum mechanics, electromagnetic theory, and other areas in physics. Unlike
the first-order linear ODE, we do not have a universally applicable closed-form solution,
and in general it is found advisable to use methods that produce solutions in the form of
power series. As a precursor to the general discussion of series-solution methods, we begin
by examining the notion of singularity as applied to ODEs.

Singular Points

The concept of singularity of an ODE is important to us for two reasons: (1) it is useful
for classifying ODEs and identifying those that can be transformed into common forms
(discussed later in this subsection), and (2) it bears on the feasibility of finding series
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solutions to the ODE. This feasibility is the topic of Fuchs’ theorem (to be discussed
shortly).
When a linear homogeneous second-order ODE is written in the form

Y'+PX)Y + 0x)y=0, (7.19)

points xo for which P(x) and Q(x) are finite are termed ordinary points of the ODE.
However, if either P (x) or Q(x) diverge as x — xo, the point x is called a singular point.
Singular points are further classified as regular or irregular (the latter also sometimes
called essential singularities):

e A singular point xg is regular if either P(x) or Q(x) diverges there, but (x — x9) P (x)
and (x — x0)% Q(x) remain finite.

e A singular point xg is irregular if P(x) diverges faster than 1/(x — x¢) so that (x —
x0) P(x) goes to infinity as x — xp, or if Q(x) diverges faster than 1/(x — x0)? so that
(x — xo)zQ(x) goes to infinity as x — xp.

These definitions hold for all finite values of x¢. To analyze the behavior at x — oo, we
set x = 1/z, substitute into the differential equation, and examine the behavior in the limit
z — 0. The ODE, originally in the dependent variable y(x), will now be written in terms
of w(z), defined as w(z) = y(z~'). Converting the derivatives,

dy(x) dy(z"")dz dw(z) 1 2
i _ az _ )= 2w, 7.20
Y dx dz dx dz x2 ©v 720
dy' dz d
" 2 2./ 4 1 3.7
e dx (Z)dz[ Zw'| ="+ 220w (7.21)

Using Eqgs. (7.20) and (7.21), we transform Eq. (7.19) into
Fw'+ 22 = 2P H]w' + 0@ Hw =0. (7.22)

Dividing through by z* to place the ODE in standard form, we see that the possibility of a
singularity at z = 0 depends on the behavior of

27— Pz hH
2

Q(z”)_

and
4

Z
If these two expressions remain finite at z = 0, the point x = oo is an ordinary point. If
they diverge no more rapidly than 1/z and 1/z2, respectively, x = oo is a regular singular
point; otherwise it is an irregular singular point (an essential singularity).

Example 7.4.1 BESSEL’S EQUATION

Bessel’s equation is

x2y// +xy/ + (x2 _ n2)y =0.
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Comparing it with Eq. (7.19), we have

1 n?
P(x)=—, Q(x):l——2,
X X

which shows that the point x = 0 is a regular singularity. By inspection we see that there
are no other singularities in the finite range. As x — oo (z — 0), from Eq. (7.22) we have
the coefficients

27—z d 1—n2z2
2 and  ———

Z Z

Since the latter expression diverges as 1/z%, the point x = oo is an irregular, or essential,
singularity. ]

Table 7.1 lists the singular points of a number of ODEs of importance in physics. It
will be seen that the first three equations in Table 7.1, the hypergeometric, Legendre, and
Chebyshev, all have three regular singular points. The hypergeometric equation, with reg-
ular singularities at 0, 1, and oo, is taken as the standard, the canonical form. The solutions
of the other two may then be expressed in terms of its solutions, the hypergeometric func-
tions. This is done in Chapter 18.

In a similar manner, the confluent hypergeometric equation is taken as the canonical
form of a linear second-order differential equation with one regular and one irregular sin-
gular point.

Table 7.1 Singularities of Some Important ODEs.

Equation Regular Irregular
Singularity Singularity
X = X =
1. Hypergeometric 0,1,00
x(x =Dy +[(A+a+b)x+cly +aby=0
2. Legendre® —1,1,00
(1—=x2)y" —2xy' +1+1)y=0
3. Chebyshev —1,1,00

(1=x2)y —xy' +n%y=0

4. Confluent hypergeometric 0 00
xy" 4+ (c—x)y —ay=0

5. Bessel 0 00
x2y" +xy' + (2 = n?)y =0

6. Laguerre” 0 00
xy'+A=-x)y +ay=0

7. Simple harmonic oscillator e 00
V' @’y =0
8. Hermite .. 00

vy —2xy +2ay =0

“9The associated equations have the same singular points.
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Exercises
7.4.1 Show that Legendre’s equation has regular singularities at x = —1, 1, and oo.
7.4.2 Show that Laguerre’s equation, like the Bessel equation, has a regular singularity at
x =0 and an irregular singularity at x = oo.
7.4.3 Show that Chebyshev’s equation, like the Legendre equation, has regular singularities
atx =—1, 1, and oo.
7.4.4 Show that Hermite’s equation has no singularity other than an irregular singularity at
X = o0.
7.4.5 Show that the substitution

1—x
>
converts the hypergeometric equation into Legendre’s equation.

X — a=-—1, b=I[l+1, c=1

7.5 SERIES SOLUTIONS—FROBENIUS’ METHOD

In this section we develop a method of obtaining solution(s) of the linear, second-order,
homogeneous ODE. For the moment, we develop the mechanics of the method. After
studying examples, we return to discuss the conditions under which we can expect these
series solutions to exist.
Consider a linear, second-order, homogeneous ODE, in the form

d*y dy

m+P(x)E+Q(x)y_0. (7.23)
In this section we develop (at least) one solution of Eq. (7.23) by expansion about the point
x = 0. In the next section we develop the second, independent solution and prove that
no third, independent solution exists. Therefore the most general solution of Eq. (7.23)
may be written in terms of the two independent solutions as

y(x) = c1yi(x) + c2y2(x). (7.24)
Our physical problem may lead to a nonhomogeneous, linear, second-order ODE,
d? d
2 P+ 0wy = F). (7.25)
dx dx

The function on the right, F'(x), typically represents a source (such as electrostatic charge)
or a driving force (as in a driven oscillator). Methods for solving this inhomogeneous
ODE are also discussed later in this chapter and, using Laplace transform techniques, in
Chapter 20. Assuming a single particular integral (i.e., specific solution), y,, of the in-
homogeneous ODE to be available, we may add to it any solution of the corresponding
homogeneous equation, Eq. (7.23), and write the most general solution of Eq. (7.25) as

y(@x) =c1y1(x) + c2y2(x) + yp(x). (7.26)

In many problems, the constants ¢ and ¢, will be fixed by boundary conditions.
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For the present, we assume that F'(x) = 0, and that therefore our differential equation is
homogeneous. We shall attempt to develop a solution of our linear, second-order, homoge-
neous differential equation, Eq. (7.23), by substituting into it a power series with undeter-
mined coefficients. Also available as a parameter is the power of the lowest nonvanishing
term of the series. To illustrate, we apply the method to two important differential equa-
tions.

First Example—Linear Oscillator

Consider the linear (classical) oscillator equation

@y

dx?
which we have already solved by another method in Example 7.3.1. The solutions we
found there were y = sinwx and cos wx.

We try

+wly=0, (7.27)

y(x) = x*(ag + a1x + arx® +azx> + )
ad .
=Y ajx". ag#0, (7.28)
j=0

with the exponent s and all the coefficients a; still undetermined. Note that s need not be
an integer. By differentiating twice, we obtain

o0
d_y = Za-(s —i—j)x”j_],
dx — J

A’y = .
T =0 ajs N+ - D
j=0

By substituting into Eq. (7.27), we have

o o
D ajs+ s +j - D24 0? Y ajxtt =0 (7.29)
Jj=0 Jj=0
From our analysis of the uniqueness of power series (Chapter 1), we know that the coef-
ficient of each power of x on the left-hand side of Eq. (7.29) must vanish individually, x*
being an overall factor.
The lowest power of x appearing in Eq. (7.29) is x*~2, occurring only for j =0 in the
first summation. The requirement that this coefficient vanish yields

aps(s —1)=0.

Recall that we chose ag as the coefficient of the lowest nonvanishing term of the series in
Eq. (7.28), so that, by definition, ag # 0. Therefore we have

s(s—1)=0. (7.30)
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This equation, coming from the coefficient of the lowest power of x, is called the indicial
equation. The indicial equation and its roots are of critical importance to our analysis.
Clearly, in this example it informs us that either s = 0 or s = 1, so that our series solution
must start either with an x? or an x! term.

Looking further at Eq. (7.29), we see that the next lowest power of x, namely x*~!, also
occurs uniquely (for j = 1 in the first summation). Setting the coefficient of x*~! to zero,
we have

ai(s +1)s=0.

This shows that if s = 1, we must have a; = 0. However, if s = 0, this equation imposes
no requirement on the coefficient set.

Before considering further the two possibilities for s, we return to Eq. (7.29) and demand
that the remaining net coefficients vanish. The contributions to the coefficient of x$¥/,
(j = 0), come from the term containing a; > in the first summation and from that with a;
in the second. Because we have already dealt with j =0 and j = 1 in the first summation,
when we have used all j > 0, we will have used all the terms of both series. For each value
of j, the vanishing of the net coefficient of x**/ results in

ajpa(s+j+2)(s+j+ 1) +w’a; =0,

equivalent to

a)2

UGt )G+

ajia= (7.31)

This is a two-term recurrence relation.' In the present problem, given aj, Eq. (7.31)
permits us to compute a1 and then a4, aj46, and so on, continuing as far as desired.
Thus, if we start with ag, we can make the even coefficients a, aq, ..., but we obtain no
information about the odd coefficients ay, a3, as, .... But because a; is arbitrary if s =0
and necessarily zero if s = 1, let us set it equal to zero, and then, by Eq. (7.31),

aa=as=ar=---=0;

the result is that all the odd-numbered coefficients vanish.
Returning now to Eq. (7.30), our indicial equation, we first try the solution s = 0. The
recurrence relation, Eq. (7.31), becomes

a)2

UGG+ 732

aj+2 =

11n some problems, the recurrence relation may involve more than two terms; its exact form will depend on the functions P (x)
and Q(x) of the ODE.
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which leads to

w? w?
az = —IZOE = —2—!610,
w? ot
a4 =—ar— = +Ia0’
w? w®
ag = —a4ﬁ = —aao, and so on.
By inspection (and mathematical induction, see Section 1.4),
2n
an = (1" G5, (7.33)

and our solution is

_@0)? @0t (en)f

Y(®)s=0=do [1 2! 41 6!

+:| = @) COS WX. (7.34)

If we choose the indicial equation root s = 1 from Eq. (7.30), the recurrence relation of
Eq. (7.31) becomes

w?

UGG 1)

Evaluating this successively for j =0, 2, 4, ..., we obtain

aj+2 = (7.35)

w? w?

a)=—ay—— = ——-Aaop,
2.3 3!
w? +a)4
as = —ay——- = +—-qo,
4.5 5!
w? ®
ag = —d4—— = ———agp, and so on.
6-7 7!

Again, by inspection and mathematical induction,

2n

ax, = (—l)"mao.

(7.36)

For this choice, s = 1, we obtain

(@x)?  (ox)*  (0x)°
3 s T +]

ao (@x)}  (0x)°  (wx)’
:Z[(m)_ R T +}

y(x)s=1 = apx [1 -

= Lsinwx. (7.37)
w
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| Il I v

agk(k—1) | xK72+ | ay(k+1)k | xk* 1+ | agk+2)(k+1) |x*+| az(k+3)(k+2) x’(+1+---_0
+| ag x*+| aja? kg =

L o L . -

FIGURE 7.2 Schematics of series solution.

For future reference we note that the ODE solution from the indicial equation root s = 0
consisted only of even powers of x, while the solution from the root s = 1 contained only
odd powers.

To summarize this approach, we may write Eq. (7.29) schematically as shown in
Fig. 7.2. From the uniqueness of power series (Section 1.2), the total coefficient of
each power of x must vanish—all by itself. The requirement that the first coefficient
vanish (1) leads to the indicial equation, Eq. (7.30). The second coefficient is han-
dled by setting a1 =0 (I). The vanishing of the coefficients of x* (and higher pow-
ers, taken one at a time) is ensured by imposing the recurrence relation, Eq. (7.31),

a1, (Iv).

This expansion in power series, known as Frobenius’ method, has given us two series
solutions of the linear oscillator equation. However, there are two points about such series
solutions that must be strongly emphasized:

1. The series solution should always be substituted back into the differential equation, to
see if it works, as a precaution against algebraic and logical errors. If it works, it is a
solution.

2. The acceptability of a series solution depends on its convergence (including asymp-
totic convergence). It is quite possible for Frobenius’ method to give a series solution
that satisfies the original differential equation when substituted in the equation but
that does not converge over the region of interest. Legendre’s differential equation
(examined in Section 8.3) illustrates this situation.

Expansion about x

Equation (7.28) is an expansion about the origin, xo = 0. It is perfectly possible to replace
Eq. (7.28) with

Y =Y ajx—x0)'t, ag#0. (7.38)
j=0

Indeed, for the Legendre, Chebyshev, and hypergeometric equations, the choice xog = 1
has some advantages. The point xp should not be chosen at an essential singularity, or
Frobenius’ method will probably fail. The resultant series (xp an ordinary point or regular
singular point) will be valid where it converges. You can expect a divergence of some sort
when |x — xo| = |21 — x0[, where z; is the ODE’s closest singularity to xo (in the complex
plane).
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Symmetry of Solutions

Let us note that for the classical oscillator problem we obtained one solution of even sym-
metry, y;(x) = y;(—x), and one of odd symmetry, y»(x) = —y2(—x). This is not just an
accident but a direct consequence of the form of the ODE. Writing a general homogeneous
ODE as

L(x)y(x) =0, (7.39)

in which £(x) is the differential operator, we see that for the linear oscillator equation,
Eq. (7.27), L(x) is even under parity; that is,

L(x)=L(—x).

Whenever the differential operator has a specific parity or symmetry, either even or odd,
we may interchange +x and —x, and Eq. (7.39) becomes

+L(x)y(—x)=0.

Clearly, if y(x) is a solution of the differential equation, y(—x) is also a solution. Then,
either y(x) and y(—x) are linearly dependent (i.e., proportional), meaning that y is either
even or odd, or they are linearly independent solutions that can be combined into a pair of
solutions, one even, and one odd, by forming

Yeven = Y(X) + y(=x),  Yodd = y(x) — y(=x).

For the classical oscillator example, we obtained two solutions; our method for finding
them caused one to be even, the other odd.

If we refer back to Section 7.4 we can see that Legendre, Chebyshev, Bessel, simple har-
monic oscillator, and Hermite equations are all based on differential operators with even
parity; that is, their P(x) in Eq. (7.19) is odd and Q(x) even. Solutions of all of them
may be presented as series of even powers of x or separate series of odd powers of x.
The Laguerre differential operator has neither even nor odd symmetry; hence its solutions
cannot be expected to exhibit even or odd parity. Our emphasis on parity stems primarily
from the importance of parity in quantum mechanics. We find that in many problems wave
functions are either even or odd, meaning that they have a definite parity. Most interac-
tions (beta decay is the big exception) are also even or odd, and the result is that parity is
conserved.

A Second Example—Bessel’s Equation

This attack on the linear oscillator was perhaps a bit too easy. By substituting the power
series, Eq. (7.28), into the differential equation, Eq. (7.27), we obtained two independent
solutions with no trouble at all.

To get some idea of other things that can happen, we try to solve Bessel’s equation,

22y +xy + @2 —n?)y=0. (7.40)
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Again, assuming a solution of the form

oo
Y =) ajxt,
j=0
we differentiate and substitute into Eq. (7.40). The result is

o0 o
Y ajs+ ) +j— D+ apis+ jxtt
Jj=0 j=0

o o0
+ Zajx“r”z — Zajnzxsﬂ =0. (7.41)
j=0 Jj=0

By setting j = 0, we get the coefficient of x*, the lowest power of x appearing on the
left-hand side,

ao[s(s = 1) +s —n*] =0, (7.42)
and again ag # 0 by definition. Equation (7.42) therefore yields the indicial equation
s2—n*=0, (7.43)

with solutions s = +n.
We need also to examine the coefficient of x5!, Here we obtain

alls+Ds+s+1—n*1=0,
or
ais+1—n)(s+1+n)=0. (7.44)

For s = &n, neither s + 1 — n nor s 4+ 1 + n vanishes and we must require a; = 0.

Proceeding to the coefficient of x**/ for s = n, we see that it is the term containing a;
in the first, second, and fourth terms of Eq. (7.41), but is that containing a;_» in the third
term. By requiring the overall coefficient of x**/ to vanish, we obtain

ajln+ Hn+j—1D+ 0+ j)—n*l+aj_2=0.
When j is replaced by j + 2, this can be rewritten for j > 0 as
1
_aj . . )
G+2)2n+j+2)

which is the desired recurrence relation. Repeated application of this recurrence relation
leads to

aji= (7.45)

1 apn!
a) = —a =— s
2 2020 +2) " 221+ 1)

1 agn!
as = —az = ,

42n+4) 2%2!(n+2)!

1 aon!

ag = and so on,

TN ant6) | 231t 3)
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and in general,

aon!

ST (7.46)

azp = (=1
Inserting these coefficients in our assumed series solution, we have

nlx n nlx* (7.47)
221'n+1)!  2%21(n +2)! ' '

2

y(x) = agx" |:1 -

In summation form,

00 ,
ey
= —1 j—
ye) ao;( 211!
n+2j
=ap2"n! 1)/ . 7.48
=ao nZ( ) '(n+J)'<) (7.48)
In Chapter 14 the final summation (with ag = 1/2"n!) is identified as the Bessel function
Jn(x):
n+2j
Y

ACE ]ZO( ) ,(nﬂ), 5) (7.49)

Note that this solution, J,(x), has either even or odd symmetry,”> as might be expected
from the form of Bessel’s equation.

When s = —n and n is not an integer, we may generate a second distinct series, to be
labeled J_, (x). However, when —n is a negative integer, trouble develops. The recurrence
relation for the coefficients a; is still given by Eq. (7.45), but with 2n replaced by —2n.
Then, when j + 2 =2n or j =2(n — 1), the coefficient a; > blows up and Frobenius’
method does not produce a solution consistent with our assumption that the series starts
with x ™",

By substituting in an infinite series, we have obtained two solutions for the linear oscil-
lator equation and one for Bessel’s equation (two if n is not an integer). To the questions
“Can we always do this? Will this method always work?” the answer is “No, we cannot
always do this. This method of series solution will not always work.”

Regular and Irregular Singularities

The success of the series substitution method depends on the roots of the indicial equation
and the degree of singularity of the coefficients in the differential equation. To understand
better the effect of the equation coefficients on this naive series substitution approach,

2],1 (x) is an even function if n is an even integer, and an odd function if n is an odd integer. For nonintegral n, J,; has no such
simple symmetry.
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consider four simple equations:

6
y'——=y=0, (7.50)
X
6
Y'==y=0, (7.51)
X
1 b?
'+ =y - —y =0, (7.52)
X X
4 1 / b2
y+ =y ——=y=0 (7.53)
X x
The reader may show easily that for Eq. (7.50) the indicial equation is
s2—5s—6= 0,
giving s =3 and s = —2. Since the equation is homogeneous in x (counting d?/dx> as

x72), there is no recurrence relation. However, we are left with two perfectly good solu-
tions, x> and x 2.

Equation (7.51) differs from Eq. (7.50) by only one power of x, but this sends the indicial
equation to

—6ay =0,

with no solution at all, for we have agreed that ag # 0. Our series substitution worked for
Eq. (7.50), which had only a regular singularity, but broke down at Eq. (7.51), which has
an irregular singular point at the origin.

Continuing with Eq. (7.52), we have added a term y’/x. The indicial equation is

s2—b> =0,

but again, there is no recurrence relation. The solutions are y = x” and x %, both perfectly
acceptable one-term series.

When we change the power of x in the coefficient of y’ from —1 to —2, in Eq. (7.53),
there is a drastic change in the solution. The indicial equation (with only the y’ term con-
tributing) becomes

s =0.
There is a recurrence relation,

PP—jG-1

aj+1=+a;j e

Unless the parameter b is selected to make the series terminate, we have

. lajm . JG+D
lim |—| = lim ———
j—oo| aj jooo j+1

7
= lim — =o0.
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Hence our series solution diverges for all x # 0. Again, our method worked for
Eq. (7.52) with a regular singularity but failed when we had the irregular singularity of
Eq. (7.53).

Fuchs’ Theorem

The answer to the basic question as to when the method of series substitution can be
expected to work is given by Fuchs’ theorem, which asserts that we can always obtain
at least one power-series solution, provided that we are expanding about a point which is
an ordinary point or at worst a regular singular point.

If we attempt an expansion about an irregular or essential singularity, our method may
fail as it did for Egs. (7.51) and (7.53). Fortunately, the more important equations of mathe-
matical physics, listed in Section 7.4, have no irregular singularities in the finite plane.
Further discussion of Fuchs’ theorem appears in Section 7.6.

From Table 7.1, Section 7.4, infinity is seen to be a singular point for all the equations
considered. As a further illustration of Fuchs’ theorem, Legendre’s equation (with infinity
as a regular singularity) has a convergent series solution in negative powers of the argu-
ment (Section 15.6). In contrast, Bessel’s equation (with an irregular singularity at infinity)
yields asymptotic series (Sections 12.6 and 14.6). Although only asymptotic, these solu-
tions are nevertheless extremely useful.

Summary

If we are expanding about an ordinary point or at worst about a regular singularity, the
series substitution approach will yield at least one solution (Fuchs’ theorem).

Whether we get one or two distinct solutions depends on the roots of the indicial
equation.

1. If the two roots of the indicial equation are equal, we can obtain only one solution by
this series substitution method.

2. If the two roots differ by a nonintegral number, two independent solutions may be
obtained.

3. Ifthe two roots differ by an integer, the larger of the two will yield a solution, while the
smaller may or may not give a solution, depending on the behavior of the coefficients.

The usefulness of a series solution for numerical work depends on the rapidity of con-
vergence of the series and the availability of the coefficients. Many ODEs will not yield
nice, simple recurrence relations for the coefficients. In general, the available series will
probably be useful for very small |x| (or |x — xg|). Computers can be used to determine
additional series coefficients using a symbolic language, such as Mathematica® or Maple.*
Often, however, for numerical work a direct numerical integration will be preferred.

3S. Wolfram, Mathematica: A System for Doing Mathematics by Computer. Reading, MA. Addison Wesley (1991).
4 A. Heck, Introduction to Maple. New York: Springer (1993).
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Exercises

7.5.1

7.5.2

7.5.3

7.54

7.5.5

7.5.6

7.5.7

Uniqueness theorem. The function y(x) satisfies a second-order, linear, homogeneous
differential equation. At x = xo, y(x) = yo and dy/dx = y,. Show that y(x) is unique,
in that no other solution of this differential equation passes through the points (xq, yo)
with a slope of y,).

Hint. Assume a second solution satisfying these conditions and compare the Taylor
series expansions.

A series solution of Eq. (7.23) is attempted, expanding about the point x = xq. If xg is
an ordinary point, show that the indicial equation has roots s =0, 1.

In the development of a series solution of the simple harmonic oscillator (SHO) equa-
tion, the second series coefficient a; was neglected except to set it equal to zero. From
the coefficient of the next-to-the-lowest power of x, xs’l, develop a second-indicial
type equation.

(a) (SHO equation with s = 0). Show that a;, may be assigned any finite value
(including zero).
(b) (SHO equation with s = 1). Show that a; must be set equal to zero.

Analyze the series solutions of the following differential equations to see when a; may
be set equal to zero without irrevocably losing anything and when a; must be set equal
to zero.

(a) Legendre, (b) Chebyshev, (c) Bessel, (d) Hermite.

ANS. (a) Legendre, (b) Chebyshev,and (d) Hermite: Fors =0, a;
may be set equal to zero; for s = 1, a; must be set equal to zero.
(c) Bessel: a; must be set equal to zero (except for s = £n = —%).

Obtain a series solution of the hypergeometric equation
x(x =Dy +[(1+a+bx —cly +aby=0.
Test your solution for convergence.
Obtain two series solutions of the confluent hypergeometric equation
xy" +(c—x)y —ay=0.
Test your solutions for convergence.

A quantum mechanical analysis of the Stark effect (parabolic coordinates) leads to the
differential equation

d ([ du 1 m> 1,

Here « is a constant, E is the total energy, and F is a constant such that Fz is the
potential energy added to the system by the introduction of an electric field.
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7.5.9

7.5.10
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Using the larger root of the indicial equation, develop a power-series solution about
& = 0. Evaluate the first three coefficients in terms of a,.

ANS. Indicial equation 52— mTz =0,

_gem2 | +|: o? __E :|2+
u(8) = aos { mils T 2miDmt2 ami2]° }

Note that the perturbation F' does not appear until a3 is included.

For the special case of no azimuthal dependence, the quantum mechanical analysis of
the hydrogen molecular ion leads to the equation

-y ot priu=0
—_ — —_ ou u=»=u.
dn 1 dn 1

Develop a power-series solution for u(n). Evaluate the first three nonvanishing coeffi-
cients in terms of ay.

ANS. Indicial equation s(s — 1) =0,

uk:lzaon{l+2_an2+[w 'B}n4+.,_}_

6 120 20
To a good approximation, the interaction of two nucleons may be described by a

mesonic potential

attractive for A negative. Show that the resultant Schrodinger wave equation

h2 d2¢
——— 4+ (E-V)Y¥ =0
sz T W

has the following series solution through the first three nonvanishing coefficients:

1 1[1
1//=a0{x+§A/.X2+6|:§A/2—E/—aA/i|x3+...}’

where the prime indicates multiplication by 2m /A

If the parameter b2 in Eq. (7.53) is equal to 2, Eq. (7.53) becomes

+ : 2= 0
yray - a2y=y
From the indicial equation and the recurrence relation, derive a solution y =1 + 2x +
2x2. Verify that this is indeed a solution by substituting back into the differential
equation.
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7.5.11 The modified Bessel function I(x) satisfies the differential equation

2

xzd—l (x)—i—xil (x) = x2Ip(x)=0
dx2'° dx ° o) =2

Given that the leading term in an asymptotic expansion is known to be

X

V2w x '

Io(x) ~

assume a series of the form

X

V2w x

Determine the coefficients b; and bj.

To(x) ~

{1+b1x*1+b2x*2+---}.

ANS. b=}, by=1x.

7.5.12  The even power-series solution of Legendre’s equation is given by Exercise 8.3.1. Take
ap = 1 and n not an even integer, say n = 0.5. Calculate the partial sums of the series
through x200, x40 x600 " = 2000 for x =0.95(0.01)1.00. Also, write out the individ-
ual term corresponding to each of these powers.

Note. This calculation does not constitute proof of convergence at x = 0.99 or diver-
gence at x = 1.00, but perhaps you can see the difference in the behavior of the sequence
of partial sums for these two values of x.

7.5.13 (a) The odd power-series solution of Hermite’s equation is given by Exercise 8.3.3.
Take ap = 1. Evaluate this series for « = 0, x = 1, 2, 3. Cut off your calculation
after the last term calculated has dropped below the maximum term by a factor of
10° or more. Set an upper bound to the error made in ignoring the remaining terms
in the infinite series.

(b) Asacheck on the calculation of part (a), show that the Hermite series yod4q(c = 0)
corresponds to fox exp(x?)dx.

(c) Calculate this integral for x =1, 2, 3.

7.6 OTHER SOLUTIONS

In Section 7.5 a solution of a second-order homogeneous ODE was developed by substi-
tuting in a power series. By Fuchs’ theorem this is possible, provided the power series is
an expansion about an ordinary point or a nonessential singularity.’ There is no guarantee
that this approach will yield the two independent solutions we expect from a linear second-
order ODE. In fact, we shall prove that such an ODE has at most two linearly independent
solutions. Indeed, the technique gave only one solution for Bessel’s equation (n an integer).
In this section we also develop two methods of obtaining a second independent solution:
an integral method and a power series containing a logarithmic term. First, however, we
consider the question of independence of a set of functions.

SThis is why the classification of singularities in Section 7.4 is of vital importance.
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Linear Independence of Solutions

In Chapter 2 we introduced the concept of linear dependence for forms of the type ajx; +
arxy + ..., and identified a set of such forms as linearly dependent if any one of the forms
could be written as a linear combination of others. We need now to extend the concept to
a set of functions ¢;, . The criterion for linear dependence of a set of functions of a variable
x is the existence of a relation of the form

> kapa(x) =0, (7.54)
A

in which not all the coefficients k; are zero. The interpretation we attach to Eq. (7.54) is that
it indicates linear dependence if it is satisfied for all relevant values of x. Isolated points or
partial ranges of satisfaction of Eq. (7.54) do not suffice to indicate linear dependence. The
essential idea being conveyed here is that if there is linear dependence, the function space
spanned by the ¢, (x) can be spanned using less than all of them. On the other hand, if the
only global solution of Eq. (7.54) is k; = 0 for all A, the set of functions ¢, (x) is said to
be linearly independent.

If the members of a set of functions are mutually orthogonal, then they are automatically
linearly independent. To establish this, consider the evaluation of

for a set of orthonormal ¢; and with arbitrary values of the coefficients k; . Because of the
orthonormality, S evaluates to ) _, |k |2, and will be nonzero (showing that ) ", ky@y # 0)
unless all the k; vanish.

We now proceed to consider the ramifications of linear dependence for solutions of
ODEs, and for that purpose it is appropriate to assume that the functions ¢, (x) are differ-
entiable as needed. Then, differentiating Eq. (7.54) repeatedly, with the assumption that it
is valid for all x, we generate a set of equations

> kg (x) =0,
A

> kg (x) =0,
A

continuing until we have generated as many equations as the number of A values. This
gives us a set of homogeneous linear equations in which k; are the unknown quantities.
By Section 2.1 there is a solution other than all k; = O only if the determinant of the
coefficients of the k; vanishes. This means that the linear dependence we have assumed by
accepting Eq. (7.54) implies that

¥1 ¢2 cee On
(p/ (p/ L (p/
! 2 " =o. (7.55)

-1 -1 -1
N S
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This determinant is called the Wronskian, and the analysis leading to Eq. (7.55) shows
that:

1. Ifthe Wronskian is not equal to zero, then Eq. (7.54) has no solution other than k; = 0.
The set of functions ¢, is therefore linearly independent.
2. Ifthe Wronskian vanishes at isolated values of the argument, this does not prove linear

dependence. However, if the Wronskian is zero over the entire range of the variable,
the functions ¢, are linearly dependent over this range.’

Example 7.6.1  LiNEAR INDEPENDENCE

The solutions of the linear oscillator equation, Eq. (7.27), are ¢; = sinwx, ¢ = coswx.
The Wronskian becomes
sin wx COS WX
. =—w#0.
WwCoSwx —wsinwx
These two solutions, ¢; and ¢,, are therefore linearly independent. For just two functions
this means that one is not a multiple of the other, which is obviously true here.
Incidentally, you know that
sinwx = £(1 — cos? a)x)l/z,

but this is not a linear relation, of the form of Eq. (7.54). |

Example 7.6.2 LINEAR DEPENDENCE

For an illustration of linear dependence, consider the solutions of the ODE

d’p(x)
pr @ (x).
This equation has solutions ¢; = ¢* and g = ¢™*, and we add @3 = cosh x, also a solution.
The Wronskian is
er e coshx
e* —e™* sinhx|=0.
e* e ™ coshx

The determinant vanishes for all x because the first and third rows are identical. Hence
e*, e7*, and coshx are linearly dependent, and, indeed, we have a relation of the form of
Eq. (7.54):

e +e* —2coshx =0 with £, #0.
|

6Compare H. Lass, Elements of Pure and Applied Mathematics, New York: McGraw-Hill (1957), p. 187, for proof of this
assertion. It is assumed that the functions have continuous derivatives and that at least one of the minors of the bottom row of
Eq. (7.55) (Laplace expansion) does not vanish in [a, b], the interval under consideration.
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Number of Solutions

Now we are ready to prove the theorem that a second-order homogeneous ODE has two
linearly independent solutions.

Suppose yi, y2, y3 are three solutions of the homogeneous ODE, Eq. (7.23). Then we
form the Wronskian Wz = y;y; — y} vk of any pair y;, yr of them and note also that

Wik =y + 3590 — O e+ Y590
=Yjye — Yk (7.56)
Next we divide the ODE by y and move Q(x) to its right-hand side (where it becomes
—Q(x)), so, for solutions y; and y:

it Yj ! /
Joppa =) =% 4 P2k
j Yk Yk

Yj Yj

Taking now the first and third members of this equation, multiplying by y;yx and rearrang-
ing, we find that

VjyE = Y7y + Py — Yiv) =0,
which simplifies for any pair of solutions to
Wi =—P@)Wjg. (7.57)

Finally, we evaluate the Wronskian of all three solutions, expanding it by minors along the
second row and identifying each term as containing a W/ ; as given by Eq. (7.56):

yroy2 y3
W=y ¥y Y|==2Wy+nWs—yW,.

oy
We now use Eq. (7.57) to replace each Wi/j by — P (x)W;; and then reassemble the minors
into a 3 x 3 determinant, which vanishes because it contains two identical rows:

yro Y2 )3
W=Px) (yiWaz — s Wiz + ysWi2) = —Px) [y, ¥, ¥5|=0.
iy o)

We therefore have W = 0, which is just the condition for linear dependence of the solutions
v;. Thus, we have proved the following:

A linear second-order homogeneous ODE has at most two linearly independent solu-
tions. Generalizing, a linear homogeneous nth-order ODE has at most n linearly inde-
pendent solutions yj, and its general solution will be of the form y(x) = Z;Ll cjyjx).
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Finding a Second Solution

Returning to our linear, second-order, homogeneous ODE of the general form
'+ Px)y' + Q@x)y =0, (7.58)
let y; and y, be two independent solutions. Then the Wronskian, by definition, is
W =y1y; = y1y2. (7.59)
By differentiating the Wronskian, we obtain, as already demonstrated in Eq. (7.57),
W =—-Px)W. (7.60)
In the special case that P(x) =0, that is,
Y+ 0(x)y =0, (7.61)
the Wronskian
W = y1y5 — y|y2 = constant. (7.62)

Since our original differential equation is homogeneous, we may multiply the solutions y;
and y, by whatever constants we wish and arrange to have the Wronskian equal to unity
(or —1). This case, P(x) = 0, appears more frequently than might be expected. Recall that
V2(y/r) in spherical polar coordinates contains no first radial derivative. Finally, every
linear second-order differential equation can be transformed into an equation of the form
of Eq. (7.61) (compare Exercise 7.6.12).

For the general case, let us now assume that we have one solution of Eq. (7.58) by a
series substitution (or by guessing). We now proceed to develop a second, independent
solution for which W # 0. Rewriting Eq. (7.60) as

dw
— = —Pdx,
w
we integrate over the variable x, from a to x, to obtain
wew
X
=— | P(x1)dx,
n W@ / (x1)dx)
a
or’
X
W(x)=W(a)exp| — / P(x1)dx; |. (7.63)

a

71f P(x) remains finite in the domain of interest, W (x) # 0 unless W (a) = 0. That is, the Wronskian of our two solutions is
either identically zero or never zero. However, if P(x) does not remain finite in our interval, then W (x) can have isolated zeros
in that domain and one must be careful to choose a so that W(a) # 0.
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Now we make the observation that

d (y
W(x) =y1y§—yiyz=y12£ <£> (7.64)

and, by combining Egs. (7.63) and (7.64), we have

d exp[— [ P(x1)d
< (2) b d Ccodal (7.65)
dx \» n
Finally, by integrating Eq. (7.65) from x; = b to x, = x we get
X X2
exp|— P(x1)dx;
»2(x)= yl(x)W(a)/ =L 5 ] (7.66)
) [y1(x2)]

Here a and b are arbitrary constants and a term yj(x)y2(b)/y1(b) has been dropped,
because it is a multiple of the previously found first solution y;. Since W (a), the Wronskian
evaluated at x = a, is a constant and our solutions for the homogeneous differential equa-
tion always contain an arbitrary normalizing factor, we set W (a) = 1 and write

exp[— [ P(x1)dxi]
[y1(x2)]?

y2(x) = yl(X)/ (7.67)

Note that the lower limits x; = a and xp = b have been omitted. If they are retained,
they simply make a contribution equal to a constant times the known first solution, y; (x),
and hence add nothing new. If we have the important special case P(x) =0, Eq. (7.67)
reduces to

r dx;
= e 7.68
=0 [ — (7.68)

This means that by using either Eq. (7.67) or Eq. (7.68) we can take one known solution and
by integrating can generate a second, independent solution of Eq. (7.58). This technique is
used in Section 15.6 to generate a second solution of Legendre’s differential equation.

EXﬂmPIe 7. 6.3 A SECOND SOLUTION FOR THE LINEAR OSCILLATOR EQUATION

From d?y/dx*> + y = 0 with P(x) = 0 let one solution be y; = sinx. By applying
Eq. (7.68), we obtain

X

ya(x) = sinx/

X2 .
5 = sinx(—cotx) = —cos x,
sin“ xp

which is clearly independent (not a linear multiple) of sinx. ]
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Series Form of the Second Solution

Further insight into the nature of the second solution of our differential equation may be
obtained by the following sequence of operations.

1. Express P(x) and Q(x) in Eq. (7.58) as

P =) pixs Q)= ) q;x’ (7.69)

i=—1 j==2

The leading terms of the summations are selected to create the strongest possible
regular singularity (at the origin). These conditions just satisfy Fuchs’ theorem and
thus help us gain a better understanding of that theorem.

Develop the first few terms of a power-series solution, as in Section 7.5.
3. Using this solution as yj, obtain a second series-type solution, y», from Eq. (7.67), by

integrating it term by term.
Proceeding with Step 1, we have
YA (pax T potprx4)y +(qax P+ gaxT 4)y=0,  (7.70)

where x = 0 is at worst a regular singular point. If p_; =¢g_1 = g_» =0, it reduces to an
ordinary point. Substituting

o0
=0

(Step 2), we obtain

oo 00 00
D+ A= D24 3 pixd Y (s + Mapxt !
»=0 i=—1 =0

o0 o0
+ 3 g Y axttr =0 (7.71)
j==2 A=0

Assuming that p_; # 0, our indicial equation is
s(s=D+p_1k+g-2=0,
which sets the net coefficient of x*~2 equal to zero. This reduces to
s+ (p_1 — s +q_2 =0. (7.72)

We denote the two roots of this indicial equation by s = « and s = o« — n, where n is zero
or a positive integer. (If # is not an integer, we expect two independent series solutions by
the methods of Section 7.5 and we are done.) Then

(s—a)(s—a+n)=0, (7.73)
or

s2+(n—2a)s+ot(a—n):0,
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and equating coefficients of s in Egs. (7.72) and (7.73), we have
p—1—1=n-2a. (7.74)

The known series solution corresponding to the larger root s = o« may be written as

o0
vy =x* Zaxxl.
=0

Substituting this series solution into Eq. (7.67) (Step 3), we are faced with

X2 ; d
2 (x) = yl(x)/< f Zl__lpxz xl))dxz, (7.75)
(Zx:oakxz)

where the solutions y; and y; have been normalized so that the Wronskian W(a) = 1.
Tackling the exponential factor first, we have

XZOO

Z plxldxl P— 11nx2+2 pk k+] + f(a), (7.76)

a i=—1

with f(a) an integration constant that may depend on a. Hence,

X2 o
' ~p- Pk
exp —/Zpixidxl = exp[— f (a)]x, P~ exp (_ mx§+l)
i

k=0

2
_ 1 (0.¢]
_ P o Pk k+1
=exp[—f(a)]x, — E k+1 Xy !<—k k+1x2 ) 4+ ). (777

This final series expansion of the exponential is certainly convergent if the original expan-
sion of the coefficient P (x) was uniformly convergent.
The denominator in Eq. (7.75) may be handled by writing

-1

[e's] 2 oo -2 00
2o (Zaxx)‘> =x; (Za x)‘> =x; Zb x} (7.78)
2 2 A2 2 AAD - :
A=0 A=0 1=0

Neglecting constant factors, which will be picked up anyway by the requirement that
W(a) = 1, we obtain

y2(x) =y (x)/xz_‘"‘l_za <Z cpc%‘) dx;. (7.79)
r=0

Applying Eq. (7.74),

Xy P = (7.80)
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and we have assumed here that n is an integer. Substituting this result into Eq. (7.79), we
obtain

X
»2(x) =y (x)/ (coxz_"_l +exy" ey ey 4 ~~)dxz. (7.81)

The integration indicated in Eq. (7.81) leads to a coefficient of y;(x) consisting of two
parts:

1. A power series starting with x ™",

2. A logarithm term from the integration of x ~! (when A = n). This term always appears
when 7 is an integer, unless ¢, fortuitously happens to vanish.®

n

If we choose to combine y; and the power series starting with x ", our second solution

will assume the form

») =y Injx|+ Y djxlte (7.82)

j=n

EXGmPIe 7. 6.4 A SECOND SOLUTION OF BESSEL’S EQUATION

From Bessel’s equation, Eq. (7.40), divided by x? to agree with Eq. (7.59), we have
P(x)=x"" Q(x)=1 forthecase n=0.

Hence p_1 =1, qo = 1; all other p; and ¢; vanish. The Bessel indicial equation, Eq. (7.43)
withn =0, is
s2=0.
Hence we verify Egs. (7.72) to (7.74) with n and « set to zero.
Our first solution is available from Eq. (7.49). It is’
2 4
X X
=Jo(x)=1—-"+——0@x". 7.83
yi(x) = Jo(x) T & (x”) (7.83)

Now, substituting all this into Eq. (7.67), we have the specific case corresponding to
Eq. (7.75):

exp [— IS xl_ldxl]

y2(x) = Jo(x) 3
RS
IR

dx. (7.84)

8For parity considerations, In x is taken to be In |x|, even.
9The capital O (order of) as written here means terms proportional to x0 and possibly higher powers of x.
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From the numerator of the integrand,

X2
dxq

X1

1
exp | — =exp[—Inxy] = —.
X2

This corresponds to the x, P=1'in Eq. (7.77). From the denominator of the integrand, using
a binomial expansion, we obtain

-2
2 4 2 4
X X X 5x
1—22 422 —1+22 42
|: + :| +2+32+

Corresponding to Eq. (7.79), we have

()—J()jl P R S
Y2 =000 | 2 T3y T

Joto x4+ 5 4 250 (7.85)
=Jox){Inx+—+ —+---¢. .
0 4 128
Let us check this result. From Eq. (14.62), which gives the standard form of the second
solution, which is called a Neumann function and designated Yy,
2 2 (x2 3x*
Y, =—[lnx —In2 Ji — =t
0(x) n[ nx —In2+y] o) + — { T Im T }
Two points arise: (1) Since Bessel’s equation is homogeneous, we may multiply y(x) by
any constant. To match Yy(x), we multiply our y>(x) by 2/7. (2) To our second solution,
(2/m)y2(x), we may add any constant multiple of the first solution. Again, to match Yy(x)
we add

(7.86)

z[—1nz+y]10(x),
T

where y is the Euler-Mascheroni constant, defined in Eq. (1.13).!° Our new, modified
second solution is

7.87
4 128 (7.87)

Now the comparison with Yp(x) requires only a simple multiplication of the series for
Jo(x) from Eq. (7.83) and the curly bracket of Eq. (7.87). The multiplication checks,
through terms of order x> and x*, which is all we carried. Our second solution from
Egs. (7.67) and (7.75) agrees with the standard second solution, the Neumann function
Yo (x). |

2 2 2 syt
Y (x) = ;[lnx —ln2+y]Jo(x)+ ;Jo(x) {x_ +i+...}‘

The analysis that indicated the second solution of Eq. (7.58) to have the form given in
Eq. (7.82) suggests the possibility of just substituting Eq. (7.82) into the original differen-
tial equation and determining the coefficients d;. However, the process has some features
different from that of Section 7.5, and is illustrated by the following example.

10The Neumann function Yy is defined as it is in order to achieve convenient asymptotic properties; see Sections 14.3 and 14.6.
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Example 7.6.5  MORE NEUMANN FUNCTIONS

We consider here second solutions to Bessel’s ODE of integer orders n > 0, using the
expansion given in Eq. (7.82). The first solution, designated J,, and presented in Eq. (7.49),
arises from the value « = n from the indicial equation, while the quantity called n in
Eq. (7.82), the separation of the two roots of the indicial equation, has in the current context
the value 2n. Thus, Eq. (7.82) takes the form

o0
»0) =@ hix|+ Y djxit, (7.88)
j=—2n

where y, must, apart from scale and a possible multiple of J,,, be the second solution
Y, of the Bessel equation. Substituting this form into Bessel’s equation, carrying out the
indicated differentiations and using the fact that J,(x) is a solution of our ODE, we get
after combining similar terms

X 4 xyy 4+ =y =
Ay + Y G H2dpx T Y dix T =, (7.89)

Jj=—2n j>—2n
We next insert the power-series expansion
2y (x) =Y ajxitn, (7.90)
j=0
where the coefficients can be obtained by differentiation of the expansion of J,, see
Eq. (7.49), and have the values (for j > 0)

=D @m+2))
2T i T

azj+1 =0. (7.91)
This, and a redefinition of the index j in the last term, bring Eq. (7.89) to the form
a4 Y G4 2mdix T Y dj /T =0 (7.92)
Jj=0 Jj=—2n j=—2n+2
Considering first the coefficient of x %! (corresponding to j = —2n + 1), we note that

its vanishing requires that d_j, 1 vanish, as the only contribution comes from the middle
summation. Since all @; of odd j vanish, the vanishing of d_, | implies that all other d;
of odd j must also vanish. We therefore only need to give further consideration to even j.

We next note that the coefficient dy is arbitrary, and may without loss of generality
be set to zero. This is true because we may bring dy to any value by adding to y» an
appropriate multiple of the solution J,,, whose expansion has an x” leading term. We have
then exhausted all freedom in specifying y;; its scale is determined by our choice of its
logarithmic term.

Now, taking the coefficient of x” (terms with j = 0), and remembering that dy = 0, we
have

d_» = —ao,
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and we may recur downward in steps of 2, using formulas based on the coefficients of
X2 nt corresponding to

djo=—j@n+j)d;, j=-2,—-4,...,—2n+2.
To obtain d; with positive j, we recur upward, obtaining from the coefficient of X"t

dj="9 52 24 ..,
j@2n 4+ j)
again remembering that dy = 0.
Proceeding to n = 1 as a specific example, we have from Eq. (7.91) ag = 1, ap = —3/8,
and a4 =5/192, so

a, 3 —a4 —dy 7
d7 :—1’ d ==, d = = — 5
2 27T T e ™ 24 2304

thus

1 3 7
=7 1 —— XX,
y2(x) 1(x) In |x| P + a* " ;301" +
in agreement (except for a multiple of J; and a scale factor) with the standard form of the

Neumann function Y;:

3 3

T 5y (7.93)
e ' '

v 2 |2 1, 27 1
1(x)—;|:n’§)+y——] 1(x)+;|:—;+64

2
]

As shown in the examples, the second solution will usually diverge at the origin because
of the logarithmic factor and the negative powers of x in the series. For this reason y,(x) is
often referred to as the irregular solution. The first series solution, y;(x), which usually
converges at the origin, is called the regular solution. The question of behavior at the
origin is discussed in more detail in Chapters 14 and 15, in which we take up Bessel
functions, modified Bessel functions, and Legendre functions.

Summary

The two solutions of both sections (together with the exercises) provide a complete solu-
tion of our linear, homogeneous, second-order ODE, assuming that the point of expansion
is no worse than a regular singularity. At least one solution can always be obtained by
series substitution (Section 7.5). A second, linearly independent solution can be con-
structed by the Wronskian double integral, Eq. (7.67). This is all there are: No third,
linearly independent solution exists (compare Exercise 7.6.10).

The inhomogeneous, linear, second-order ODE will have a general solution formed by
adding a particular solution to the complete inhomogeneous equation to the general solu-
tion of the corresponding homogeneous ODE. Techniques for finding particular solutions
of linear but inhomogeneous ODEs are the topic of the next section.
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Exercises

7.6.1

7.6.2

7.6.3

7.6.4

7.6.5

7.6.6

7.6.7

7.6.8

7.6.9

You know that the three unit vectors &y, €,, and €, are mutually perpendicular
(orthogonal). Show that e, &,, and e, are linearly independent. Specifically, show that
no relation of the form of Eq. (7.54) exists for &, €,, and ..

The criterion for the linear independence of three vectors A, B, and C is that the
equation

aA+bB+cC=0,
analogous to Eq. (7.54), has no solution other than the trivial a = b = ¢ = 0. Using
components A = (A, A, A3), and so on, set up the determinant criterion for the exis-

tence or nonexistence of a nontrivial solution for the coefficients a, b, and ¢. Show that
your criterion is equivalent to the scalar triple product A - B x C # 0.

Using the Wronskian determinant, show that the set of functions

n
{1,’L(n=1,2,...,N)}
n!

is linearly independent.

If the Wronskian of two functions y; and y; is identically zero, show by direct integra-
tion that

y1=¢y2,

that is, that y; and y; are linearly dependent. Assume the functions have continuous
derivatives and that at least one of the functions does not vanish in the interval under
consideration.

The Wronskian of two functions is found to be zero at xo — & < x < xo+ ¢ for arbitrarily
small ¢ > 0. Show that this Wronskian vanishes for all x and that the functions are
linearly dependent.

The three functions sin x, e*, and e~ are linearly independent. No one function can be
written as a linear combination of the other two. Show that the Wronskian of sin x, e,
and e™* vanishes but only at isolated points.

ANS. W =4sinux,
W=0forx=+xnnr, n=0,12,....

Consider two functions ¢ = x and ¢ = |x|. Since ¢] = 1 and ¢} = x/|x|, W (¢1, ¢2) =
0 for any interval, including [—1, +1]. Does the vanishing of the Wronskian over
[—1, +1] prove that ¢; and ¢; are linearly dependent? Clearly, they are not. What is
wrong?

Explain that linear independence does not mean the absence of any dependence. Illus-
trate your argument with coshx and e*.

Legendre’s differential equation

A =x%y"=2xy +n(n+1)y=0
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7.6.11

7.6.12

7.6.13
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has a regular solution P, (x) and an irregular solution Q, (x). Show that the Wronskian
of P, and Q, is given by

An
Py (x) Q5 (x) = Py(x) Qu(x) = T-.2

with A, independent of x.

Show, by means of the Wronskian, that a linear, second-order, homogeneous ODE of
the form

Y/ 4+ Px)y (x) + Q(x)y(x) =0
cannot have three independent solutions.
Hint. Assume a third solution and show that the Wronskian vanishes for all x.
Show the following when the linear second-order differential equation py” +qy’ +ry =
0 is expressed in self-adjoint form:

(a) The Wronskian is equal to a constant divided by p:

W)= —.
0 p(x)

(b) A second solution y,(x) is obtained from a first solution y;(x) as

; dt
=C _—
) =Cy l(x)/ POD1 O

Transform our linear, second-order ODE

Y+ POy +0x)y=0
by the substitution

X

1
y =zexp —EfP(t)dt

and show that the resulting differential equation for z is
" +q(0)z=0,

where
1 ’ 1 2
g(x)=0(x) — ;P (x) — - P7(x).
2 4
Note. This substitution can be derived by the technique of Exercise 7.6.25.

Use the result of Exercise 7.6.12 to show that the replacement of ¢ (r) by r¢(r) may be
expected to eliminate the first derivative from the Laplacian in spherical polar coordi-
nates. See also Exercise 3.10.34.
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7.6.14

7.6.15

7.6.16

7.6.17

7.6.18

By direct differentiation and substitution show that

B [ expl— [* P(r)dt]
»x) = yl(X)/ T hoR

satisfies, like y; (x), the ODE

3 (%) + P(x)y3(x) + Q(x)y2(x) = 0.
Note. The Leibniz formula for the derivative of an integral is

h(a)

d 3
d—/f(x,oodx / fix, “)d + flh(), ]L—f[ @), 0182,
o do

gla) g(a)

In the equation

exp[— [* P(t)dt]d
[y1(s)]?

’

y2(x) = y1 (X)/

y1(x) satisfies
Y+ Py + 0y =

The function y,(x) is a linearly independent second solution of the same equation.
Show that the inclusion of lower limits on the two integrals leads to nothing new, that
is, that it generates only an overall constant factor and a constant multiple of the known
solution yi (x).

Given that one solution of

1 2
R'+-R-""Rr=0
r r2

is R =r™, show that Eq. (7.67) predicts a second solution, R =r~",

Using
oo
(=D" g
yix)= Z mx
n=0

as a solution of the linear oscillator equation, follow the analysis that proceeds through
Eq. (7.81) and show that in that equation ¢, = 0, so that in this case the second solution
does not contain a logarithmic term.

Show that when 7 is not an integer in Bessel’s ODE, Eq. (7.40), the second solution of
Bessel’s equation, obtained from Eq. (7.67), does not contain a logarithmic term.
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7.6.20

7.6.21

7.6.22

7.6.23
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(a) One solution of Hermite’s differential equation
Yy —2xy +2ay=0

for o =0 is y;(x) = 1. Find a second solution, y,(x), using Eq. (7.67). Show that
your second solution is equivalent to y,qq (Exercise 8.3.3).

(b) Find a second solution for & = 1, where yj(x) = x, using Eq. (7.67). Show that
your second solution is equivalent to yeven (Exercise 8.3.3).

One solution of Laguerre’s differential equation
xy"+A=x)y +ny=0

for n =0 is y;(x) = 1. Using Eq. (7.67), develop a second, linearly independent solu-
tion. Exhibit the logarithmic term explicitly.

For Laguerre’s equation with n =0,
- s
e
y(x) = / ?ds.

(a) Write y(x) as a logarithm plus a power series.

(b) Verify that the integral form of y,(x), previously given, is a solution of Laguerre’s
equation (n = 0) by direct differentiation of the integral and substitution into the
differential equation.

(c) Verify that the series form of y>(x), part (a), is a solution by differentiating the
series and substituting back into Laguerre’s equation.
One solution of the Chebyshev equation
(1=x%)y" —xy' +n°y =0

forn=0is y; = 1.

(a) Using Eq. (7.67), develop a second, linearly independent solution.
(b) Find a second solution by direct integration of the Chebyshev equation.

Hint. Let v = y’ and integrate. Compare your result with the second solution given in
Section 18.4.

ANS. (a) y»=sin"lx.
(b) The second solution, V,,(x), is not defined for n = 0.

One solution of the Chebyshev equation
(1=xh)y" —xy' +n’y =0

for n =1 is y;(x) = x. Set up the Wronskian double integral solution and derive a
second solution, y»(x).

ANS.  yp=—(1 —x2)1/2,
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7.6.24  The radial Schrodinger wave equation for a spherically symmetric potential can be writ-
ten in the form

R 42 h?
[—%ﬁ +1(1+ 1)2mr2 + V(r)} y(r) = Ey(r).

The potential energy V (r) may be expanded about the origin as
b_i
V(F)=T+b0+blr+ .

(a) Show that there is one (regular) solution yj (r) starting with any

(b) From Eq. (7.69) show that the irregular solution y»(r) diverges at the origin as r .

7.6.25 Show that if a second solution, y;, is assumed to be related to the first solution, yq,
according to y2(x) = y1(x) f (x), substitution back into the original equation

Vs + P(x)y;+ Q(x)y2 =0

leads to

[ expl— [* P(1)dt]
_ 2 N
) / )P

’

in agreement with Eq. (7.67).
7.6.26  (a) Show that

Y+ :ng y=0
has two solutions:

y1(x) = agx "2,

ya(x) = agx170/2,

(b) For a =0 the two linearly independent solutions of part (a) reduce to the single
solution y;» = agx'/?. Using Eq. (7.68) derive a second solution,

1/2

yo(x) =apx '“Inx.

Verify that y, is indeed a solution.

(¢) Show that the second solution from part (b) may be obtained as a limiting case
from the two solutions of part (a):

yo(x) = lim (u)
a—0

o
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7.7 INHOMOGENEOUS LINEAR ODES

We frame the discussion in terms of second-order ODEs, although the methods can be
extended to equations of higher order. We thus consider ODEs of the general form

Y+ P@)y + Q(x)y=F(x), (7.94)

and proceed under the assumption that the corresponding homogeneous equation, with
F(x) =0, has been solved, thereby obtaining two independent solutions designated y; (x)
and y2(x).

Variation of Parameters

The method of variation of parameters (variation of the constant) starts by writing a par-
ticular solution of the inhomogeneous ODE, Eq. (7.94), in the form

Y(x) = u1(x)y1(x) +uz(x)y2(x). (7.95)

We have specifically written u(x) and u;(x) to emphasize that these are functions of the
independent variable, and not constant coefficients. This, of course, means that Eq. (7.95)
does not constitute a restriction to the functional form of y(x). For clarity and compactness,
we will usually write these functions just as 1 and u;.

In preparation for inserting y(x), from Eq. (7.95), into the inhomogeneous ODE, we
compute its derivative:

Y =ury +uzys + (yiu| + yauh),

and take advantage of the redundancy in the form assumed for y by choosing #] and u; in
such a way that

yiup + yaus =0, (7.96)

where Eq. (7.96) is assumed to be an identity (i.e., to apply for all x). We will shortly show
that requiring Eq. (7.96) does not lead to an inconsistency.
After applying Eq. (7.96), y/, and its derivative y”, are found to be

Y =u1y) +u2y;,
Y = ury] +uzyy +ulyi +upys,
and substitution into Eq. (7.94) yields
(1Y) +uayy +uly +usyy) + Px)(uryy +uzys) + Q) (iyr +uzy2) = F(x),
which, because y; and y; are solutions of the homogeneous equation, reduces to
uyyy +usyy = F(x). (7.97)

Equations (7.96) and (7.97) are, for each value of x, a set of two simultaneous algebraic
equations in the variables | and u); to emphasize this point we repeat them here:
yiuy + yaus =0,

’or ’ot (7'98)
yiu] + yuy = F(x).
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The determinant of the coefficients of these equations is

yro»
Y Vs

’

which we recognize as the Wronskian of the linearly independent solutions to the homo-
geneous equation. That means this determinant is nonzero, so there will, for each x, be
a unique solution to Egs. (7.98), i.e., unique functions u) and u),. We conclude that the
restriction implied by Eq. (7.96) is permissible.

Once u} and u), have been identified, each can be integrated, respectively yielding u
and uy, and, via Eq. (7.95), a particular solution of our inhomogeneous ODE.

Example 7.7.1 AN INHOMOGENEOUS ODE

Consider the ODE
A —x)y"+xy —y=(1-x)> (7.99)

The corresponding homogeneous ODE has solutions y; = x and y, = e*. Thus, y| =1,
y5 = €%, and the simultaneous equations for «| and u), are

xuj+e‘uy =0,
P (7.100)
uy +e‘uy = F(x).

Here F(x) is the inhomogeneous term when the ODE has been written in the standard
form, Eq. (7.94). This means that we must divide Eq. (7.99) through by 1 — x (the coeffi-
cient of y”), after which we see that F(x) =1 — x.

With the above choice of F(x), we solve Egs. (7.100), obtaining

up=1, up=—xe ",
which integrate to
up=x, upr=(x-+1e> .
Now forming a particular solution to the inhomogeneous ODE, we have

yp(X) =uryr +uzyr =x(x) + ((x + De ™) " =x* +x + 1.

Because x is a solution to the homogeneous equation, we may remove it from the above
expression, leaving the more compact formula y, = X241
The general solution to our ODE therefore takes the final form

y(x) =Cix 4+ Cre* +x2 + 1.
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Exercises
7.7.1 If our linear, second-order ODE is inhomogeneous, that is, of the form of Eq. (7.94),
the most general solution is
y(x) = y1(x) + y2(x) + yp(x),
where y; and y; are independent solutions of the homogeneous equation.
Show that
V) F(s)ds _n)F(s)ds
yp(x) = y2(x) yi(x)
W), 2} W{yi(s), 209}
with W{y1(x), y2(x)} the Wronskian of y; (s) and y2(s).
Find the general solutions to the following inhomogeneous ODEs:
7.7.2 y +y=1.
7.7.3 v +4y=e".
7.7.4 y’ =3y +2y=sinx.
7.5 xy" = (1 4+x)y +y=x>

7.8 NONLINEAR DIFFERENTIAL EQUATIONS

The main outlines of large parts of physical theory have been developed using mathe-
matics in which the objects of concern possessed some sort of linearity property. As a
result, linear algebra (matrix theory) and solution methods for linear differential equations
were appropriate mathematical tools, and the development of these mathematical topics
has progressed in the directions illustrated by most of this book. However, there is some
physics that requires the use of nonlinear differential equations (NDEs). The hydrodynam-
ics of viscous, compressible media is described by the Navier-Stokes equations, which are
nonlinear. The nonlinearity evidences itself in phenomena such as turbulent flow, which
cannot be described using linear equations. Nonlinear equations are also at the heart of
the description of behavior known as chaotic, in which the evolution of a system is so
sensitive to its initial conditions that it effectively becomes unpredictable.

The mathematics of nonlinear ODEs is both more difficult and less developed than that
of linear ODEs, and accordingly we provide here only an extremely brief survey. Much of
the recent progress in this area has been in the development of computational methods for
nonlinear problems; that is also outside the scope of this text.

In this final section of the present chapter we discuss briefly some specific NDEs, the
classical Bernoulli and Riccati equations.
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Bernoulli and Riccati Equations

Bernoulli equations are nonlinear, having the form

Y () =px)yx) +q@)[yx)]", (7.101)

where p and g are real functions and n # 0, 1 to exclude first-order linear ODEs. However,
if we substitute

u(x) = [y,

then Eq. (7.101) becomes a first-order linear ODE,

W'=1=my™y =1 -m[pEux)+qx)], (7.102)

which we can solve (using an integrating factor) as described in Section 7.2.
Riccati equations are quadratic in y(x):

Y = p)y? +qx)y +r(x), (7.103)

where we require p # 0 to exclude linear ODEs and r # 0 to exclude Bernoulli equations.
There is no known general method for solving Riccati equations. However, when a special
solution yg(x) of Eq. (7.103) is known by a guess or inspection, then one can write the
general solution in the form y = yg + u, with u satisfying the Bernoulli equation

u' = pu® 4+ 2pyo + q)u, (7.104)

because substitution of y = yp + u into Eq. (7.103) removes r(x) from the resulting
equation.

There are no general methods for obtaining exact solutions of most nonlinear ODEs.
This fact makes it more important to develop methods for finding the qualitative behavior
of solutions. In Section 7.5 of this chapter we mentioned that power-series solutions of
ODEs exist except (possibly) at essential singularities of the ODE. The coefficients in
the power-series expansions provide us with the asymptotic behavior of the solutions. By
making expansions of solutions to NDEs and retaining only the linear terms, it will often
be possible to understand the qualitative behavior of the solutions in the neighborhood of
the expansion point.

Fixed and Movable Singularities, Special Solutions

A first step in analyzing the solutions of NDEs is to identify their singularity structures.
Solutions of NDEs may have singular points that are independent of the initial or bound-
ary conditions; these are called fixed singularities. But in addition they may have spon-
taneous, or movable, singularities that vary with the initial or boundary conditions. This
feature complicates the asymptotic analysis of NDEs.
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Example 7.8.1  MOVEABLE SINGULARITY

Compare the linear ODE

Y+ 2 =0,
x—1
(which has an obvious regular singularity at x = 1), with the NDE y’ = y2. Both have the
same solution with initial condition y(0) = 1, namely y(x) = 1/(1 — x). But for y(0) = 2,
the linear ODE has solution y =1 + 1/(1 — x), while the NDE now has solution y(x) =
2/(1 — 2x). The singularity in the solution of the NDE has moved to x = 1/2. |

For a linear second-order ODE we have a complete description of its solutions and their
asymptotic behavior when two linearly independent solutions are known. But for NDEs
there may still be special solutions whose asymptotic behavior is not obtainable from two
independent solutions. This is another characteristic property of NDEs, which we illustrate
again by an example.

Example 7.8.2 SPECIAL SOLUTION

The NDE y” = yy’/x has two linearly independent solutions that define the two-parameter
family of curves

y(x) =2citan(ciInx +c2) — 1, (7.105)

where the ¢; are integration constants. However, this NDE also has the special solution y =
c3 = constant, which cannot be obtained from Eq. (7.105) by any choice of the parameters
C1, C2.

The “general solution” in Eq. (7.105) can be obtained by making the substitution x = &/,
and then defining Y (t) = y(e') so that x(dy/dx) = dY/dt, thereby obtaining the ODE
Y” =Y'(Y + 1). This ODE can be integrated once to give ¥’ = %Yz + Y 4+ c with ¢ =
2(0% + 1/4) an integration constant. The equation for Y’ is separable and can be integrated

again to yield Eq. (7.105). |
Exercises
7.8.1 Consider the Riccati equation y’ = y> — y — 2. A particular solution to this equation is
y = 2. Find a more general solution.
7.8.2 A particular solution to y’ = y2/x3 — y/x + 2x is y = x*. Find a more general solution.
7.8.3 Solve the Bernoulli equation y’ 4+ xy = xy>.
7.8.4 ODEs of the form y = xy’ + f(y’) are known as Clairaut equations. The first step in

solving an equation of this type is to differentiate it, yielding
y/ — y/ +xy// + f/(y/)y//, or y//(x + f/(y/)) — O.

Solutions may therefore be obtained both from y” = 0 and from f’(y’) = —x. The
so-called general solution comes from y” = 0.
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For f(y') = ()%,

(a) Obtain the general solution (note that it contains a single constant).
(b) Obtain the so-called singular solution from f’(y’) = —x. By substituting back into
the original ODE show that this singular solution contains no adjustable constants.

Note. The singular solution is the envelope of the general solutions.
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CHAPTER 8

STURM-LIOUVILLE THEORY

8.1 INTRODUCTION

Chapter 7 examined methods for solving ordinary differential equations (ODEs), with
emphasis on techniques that can generate the solutions. In the present chapter we shift
the focus to the general properties that solutions must have to be appropriate for specific
physics problems, and to discuss the solutions using the notions of vector spaces and eigen-
value problems that were developed in Chapters 5 and 6.

A typical physics problem controlled by an ODE has two important properties: (1) Its
solution must satisfy boundary conditions, and (2) It contains a parameter whose value
must be set in a way that satisfies the boundary conditions. From a vector-space perspec-
tive, the boundary conditions (plus continuity and differentiability requirements) define the
Hilbert space of our problem, while the parameter normally occurs in a way that permits
the ODE to be written as an eigenvalue equation within that Hilbert space.

These ideas can be made clearer by examining a specific example. The standing waves
of a vibrating string clamped at its ends are governed by the ODE

2

Py,

dx?
where ¥ (x) is the amplitude of the transverse displacement at the point x along the string,
and k is a parameter. This ODE has solutions for any value of k, but the solutions of
relevance to the string problem must have ¥ (x) = 0 for the values of x at the ends of the
string.

The boundary conditions of this problem can be interpreted as defining a Hilbert space

whose members are differentiable functions with zeros at the boundary values of x; the
ODE itself can be written as the eigenvalue equation

Ky =0, (8.1)

d?

2

= L= ) 2
Ly =k, o2 (8.2)
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For practical reasons the eigenvalue is given the name k2. It is required to find functions
¥ (x) that solve Eq. (8.2) subject to the boundary conditions, i.e., to find members i (x) of
our Hilbert space that solve the eigenvalue equation.

We could now follow the procedures developed in Chapter 5, namely (1) choose a basis
for our Hilbert space (a set of functions with zeros at the boundary values of x), (2) define
a scalar product for our space, (3) expand £ and ¥ in terms of our basis, and (4) solve the
resulting matrix equation. However, that procedure makes no use of any specific features
of the current ODE, and in particular ignores the fact that it is easily solved.

Instead, we continue with the example defined by Eq. (8.1), using our ability to solve
the ODE involved.

Example 8.1.1  STANDING WAVES, VIBRATING STRING

We consider a string clamped at x = 0 and x =/ and undergoing transverse vibrations.
As already indicated, its standing wave amplitudes ¥ (x) are solutions of the differential
equation

d*y (x)

dx?

where k is not initially known and v (x) is subject to the boundary conditions that the ends
of the string be fixed in position: ¥ (0) = ¥ (/) = 0. This is the eigenvalue problem defined
in Eq. (8.2).

The general solution to this differential equation is ¥ (x) = Asinkx + Bcoskx, and in
the absence of the boundary conditions solutions would exist for all values of k, A, and
B. However, the boundary condition at x = 0 requires us to set B = 0, leaving ¥ (x) =
Asinkx. We have yet to satisfy the boundary condition at x = /. The fact that A is as yet
unspecified is not helpful for this purpose, as A = 0 leaves us with only the trivial solution
¥ = 0. We must, instead, require sinkl/ = 0, which is accomplished by setting kI = n,
where n is a nonzero integer, leading to

+ k2 (x) =0, (8.3)

n’m?

¢n(x)=Asin(g>, =" n=l2 (8.4)

Because Eq. (8.3) is homogeneous, it will have solutions of arbitrary scale, so A can have
any value. Since our purpose is usually to identify linearly independent solutions, we disre-
gard changes in the sign or magnitude of A. In the vibrating string problem, these quantities
control the amplitude and phase of the standing waves. Since changing the sign of n sim-
ply changes the sign of ¥, +r and —n in Eq. (8.4) are regarded here as equivalent, so we
restricted n to positive values. The first few y,, are shown in Fig. 8.1. Note that the number
of nodes increases with n: ¥, has n 4+ 1 nodes (including the two nodes at the ends of the
string).

The fact that our problem has solutions only for discrete values of & is typical of eigen-
value problems, and in this problem the discreteness in k can be traced directly to the
presence of the boundary conditions. Figure 8.2 shows what happens when k is varied
in either direction from the acceptable value 7 /!, with the boundary condition at x = 0
maintained for all k. It is obvious that the eigenvalues (here k2) lie at separated points, and
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FIGURE 8.1 Standing wave patterns of a vibrating string.

FIGURE 8.2 Solutions to Eq. (8.3) on the range 0 < x </ for: (a) k =0.97/1,
b k=n/l,(c)k=12x/l,(d) k=157/1,(e) k=197/1.

that the boundary condition at x =/ cannot be satisfied for k < 7 /l. Moreover, the first
acceptable k value larger than /[ is clearly larger than 1.9z /1 (it is actually 2 /).

As already noted, the solution to this eigenvalue problem is undetermined as to scale
because the underlying equation (together with its boundary conditions) is homogeneous.
However, if we introduce a scalar product of definition

l
(flg)= / [ (x)g(x)dx, (8.5)
0

we can define solutions that are normalized; requiring (¥, |,,) = 1, we have, with arbitrary

sign,
2 . /nmx
wn(x)=\/;sm(—l ) (8.6)

Although we did not solve Eq. (8.2) by an expansion technique, the solutions (the eigen-
functions) will still have properties that depend on whether the operator £ is Hermitian. As
we saw in Chapter 5, the Hermitian property depends both on £ and the definition of the
scalar product, and a topic for discussion in the present chapter is the identification of con-
ditions making an operator Hermitian. This issue is important because Hermiticity implies
real eigenvalues as well as orthogonality and completeness of the eigenfunctions. |
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Summarizing, the matters of interest here, and the subject matter of the current chapter,
include:

1. The conditions under which an ODE can be written as an eigenvalue equation with a
self-adjoint (Hermitian) operator,

2. Methods for the solution of ODEs subject to boundary conditions, and

3. The properties of the solutions to ODE eigenvalue equations.

8.2 HERMITIAN OPERATORS

Characterization of the general features of eigenproblems arising from second-order dif-
ferential equations is known as Sturm-Liouville theory. It therefore deals with eigenvalue
problems of the form

Ly (x) = Apr (x), (8.7
where L is a linear second-order differential operator, of the general form
d2
Lx) = Po(X) > T (X)— + p2(x). (8.8)

The key matter at issue here is to 1dent1fy the conditions under which £ is a Hermitian
operator.

Self-Adjoint ODEs

L is known in differential equation theory as self-adjoint if

po(x) = p1(x). (8.9)

This feature enables £(x) to be written

d
Lx)= |:P0(x)—:| + p2(x), (8.10)

and the operation of £ on a function u(x) then takes the form
Lu = (pou') + pau. (8.11)

Inserting Eq. (8.11) into an integral of the form |, ab v*(x)Lu(x)dx, we proceed by applying
an integration by parts to the pg term (assuming that py is real):

b b

f v¥*(x)Lu(x)dx = / [v* (pou/)/ + v*pzu] dx

a a

b
v pou +/ [—™) pou’ + v* pou]dx.
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Another integration by parts leads to

b b
b /
/ V() Lu(x)dx = [v*pou/ - (v*)’pou] . —i—/ [[po(v*)/] u+ v*pzu] dx
b b
= [v*pou/ — (v*)’pou] +/(£v)*u dx. (8.12)

Equation (8.12) shows that, if the boundary terms [ ‘e ]Z vanish and the scalar product
is an unweighted integral from a to b, then the operator L is self-adjoint, as that term
was defined for operators. In passing, we observe that the notion of self-adjointness in
differential equation theory is weaker than the corresponding concept for operators in our
Hilbert spaces, due to the lack of a requirement on the boundary terms. We again stress
that the Hilbert-space definition of self-adjoint depends not only on the form of £ but also
on the definition of the scalar product and the boundary conditions.

Looking further at the boundary terms, we see that they are surely zero if # and v both
vanish at the endpoints x = a and x = b (a case of what are termed Dirichlet boundary
conditions). The boundary terms are also zero if both u” and v’ vanish at a and b (Neu-
mann boundary conditions). Even if neither Dirichlet nor Neumann boundary conditions
apply, it may happen (particularly in a periodic system, such as a crystal lattice) that the
boundary terms vanish because v* pou’| L =V pou’ | , forall u and v.

Specializing Eq. (8.12) to the case that # and v are eigenfunctions of £ with respective
real eigenvalues A, and X, that equation reduces to

; b
(g — AU)/v*udx = [po(v*u/ - (v*)’u)] . (8.13)
J a
It is thus apparent that if the boundary terms vanish and A, # X,, then u and v must
be orthogonal on the interval (a, b). This is a specific illustration of the orthogonality
requirement for eigenfunctions of a Hermitian operator in a Hilbert space.

Making an ODE Self-Adjoint

Some of the differential equations that are important in physics involve operators £ that are
self-adjoint in the differential-equation sense, meaning that they satisfy Eq. (8.9); others
are not. However, if an operator does not satisfy Eq. (8.9), it is known how to multiply it
by a quantity that converts it into self-adjoint form. Letting such a quantity be designated
w(x), the Sturm-Liouville eigenvalue problem of Eq. (8.7) becomes

w(x) L)Y (x) =wx)Ay(x), (8.14)

an equation that has the same eigenvalues A and eigenfunctions v (x) as the original prob-
lem in Eq. (8.7). If now w(x) is chosen to be

w(x) = py ' exp (/ PLx) dx>, (8.15)
Po(x)
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where po and p; are the quantities in £ as given in Eq. (8.8), we can by direct evaluation
find that

d? d
w(x)L(x) = ﬁoﬁ +7 T +w(x) pa(x), (8.16)

ﬁozexp(/ 1) dx), ﬁlzﬁexp</ p1x) dx>. (8.17)
po(x) Do po(x)

It is then straightforward to show that p; = P, so wL satisfies the self-adjoint condition.
If we now apply the process represented by Eq. (8.12) to wL, we get

where

b b

/v*(x)w(x)ﬁu(x)dx: [v*ﬁou/— (v*)/ﬁou]b+/w(x) (Lo)*udx.  (8.18)

a a

If the boundary terms vanish, Eq. (8.18) is equivalent to (v|L|u) = (Lv|u) when the scalar
product is defined to be

b

(v|u):/v*(x)u(x)w(x)dx. (8.19)

a

Again considering the case that u and v are eigenfunctions of £, with respective eigen-
values A, and A,, Eq. (8.18) reduces to

b
(A — Ay) / viuwdx = [wp() (v'u' — (v*)u) ] b, (8.20)

where py is the coefficient of y” in the original ODE. We thus see that if the right-hand
side of Eq. (8.20) vanishes, then u and v are orthogonal on (a, b) with weight factor w
when A, # A,. In other words, our choice of scalar product definition and boundary con-
ditions have made £ a self-adjoint operator in our Hilbert space, thereby producing an
eigenfunction orthogonality condition.

Summarizing, we have the useful and important result:

If a second-order differential operator L has coefficients po(x) and pi(X) that sat-
isfy the self-adjoint condition, Eq. (8.9), then it is Hermitian, given (a) a scalar prod-
uct of uniform weight and (b) boundary conditions that remove the endpoint terms of
Eq. (8.12).

If Eq. (8.9) is not satisfied, then L is Hermitian if (a) the scalar product is defined
to include the weight factor given in Eq. (8.15), and (b) boundary conditions cause
removal of the endpoint terms in Eq. (8.18).

Note that once the problem has been defined such that £ is Hermitian, then the general
properties proved for Hermitian problems apply: the eigenvalues are real; the eigenfunc-
tions are (or if degenerate can be made) orthogonal, using the relevant scalar product
definition.
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Example 8.2.1  LAGUERRE FUNCTIONS

Consider the eigenvalue problem Ly = Ay, with

2
L=x—7F
*ax?
subject to (a) ¥ nonsingular on 0 < x < 00, and (b) limy_, ¥ (x) = 0. Condition (a) is
simply a requirement that we use the solution of the differential equation that is regular at
x = 0; and condition (b) is a typical Dirichlet boundary condition.
The operator L is not self-adjoint, with pg = x and p; = 1 — x. But we can form

d
+ (1) (8.21)

1 1— 1
w(x) = —exp (/ xdx) =M =¥, (8.22)
X X

X

The boundary terms, for arbitrary eigenfunctions u and v, are of the form

[xe_" ( viu' — (v*)'u) ] Zo;

their contributions at x = co vanish because u and v go to zero; the common factor x
causes the x = 0 contribution to vanish also. We therefore have a self-adjoint problem,
with # and v of different eigenvalues orthogonal under the definition

o0

(v|u) :/v*(x)u(x)e_xdx.

0

The eigenvalue equation of this example is that whose solutions are the Laguerre
polynomials; what we have shown here is that they are orthogonal on (0, 0c0) with

weight e ™. ]
Exercises

8.2.1 Show that Laguerre’s ODE, Table 7.1, may be put into self-adjoint form by multiplying
by e™ and that w(x) = e™* is the weighting function.

8.2.2 Show that the Hermite ODE, Table 7.1, may be put into self-adjoint form by multiplying
by ¢~ and that this gives w(x) = e~ as the appropriate weighting function.

8.2.3 Show that the Chebyshev ODE, Table 7.1, may be put into self-adjoint form by mul-
tiplying by (1 — x%)~!/2 and that this gives w(x) = (1 — x2)~!/2 as the appropriate
weighting function.

8.2.4 The Legendre, Chebyshev, Hermite, and Laguerre equations, given in Table 7.1, have

solutions that are polynomials. Show that ranges of integration that guarantee that the
Hermitian operator boundary conditions will be satisfied are

(a) Legendre [—1, 1], (b) Chebyshev [—1, 1],
(¢) Hermite (—o0, 00), (d) Laguerre [0, 00).
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8.2.5

8.2.6

8.2.7

8.2.8

8.2.9

8.2.10

The functions u;(x) and u;(x) are eigenfunctions of the same Hermitian operator but
for distinct eigenvalues A and X,. Prove that u1 (x) and u»(x) are linearly independent.

Given that

Pix)=x and Qo(x)= %m(l +x>

1—x

are solutions of Legendre’s differential equation (Table 7.1) corresponding to different
eigenvalues:

(a) Evaluate their orthogonality integral

1
1
f)ﬁln R dx.
2 1—x

-1

(b) Explain why these two functions are not orthogonal, that is, why the proof of
orthogonality does not apply.

To(x) = 1 and Vi (x) = (1 — x%)!/? are solutions of the Chebyshev differential equation
corresponding to different eigenvalues. Explain, in terms of the boundary conditions,
why these two functions are not orthogonal on the range (—1, 1) with the weighting
function found in Exercise 8.2.3.

A set of functions u, (x) satisfies the Sturm-Liouville equation
d d
— | P = un(x) | + Apw(x)un(x) =0.
dx dx
The functions u,, (x) and u, (x) satisfy boundary conditions that lead to orthogonality.
The corresponding eigenvalues A, and X, are distinct. Prove that for appropriate bound-
ary conditions, u/,(x) and u),(x) are orthogonal with p(x) as a weighting function.

Linear operator A has n distinct eigenvalues and n corresponding eigenfunctions:
Ay = 1. Show that the n eigenfunctions are linearly independent. Do not assume
A to be Hermitian.

Hint. Assume linear dependence, i.e., that v, = Z:’;l a; ;. Use this relation and the
operator-eigenfunction equation first in one order and then in the reverse order. Show
that a contradiction results.

The ultraspherical polynomials C ,(la)(x) are solutions of the differential equation
d2

{(1 —x%w — Qa+ l)x% +n(n +2a)} CY(x)=0.

(a) Transform this differential equation into self-adjoint form.
(b) Find an interval of integration and weighting factor that make C,(,a) (x) of the same

« but different n orthogonal.

Note. Assume that your solutions are polynomials.
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8.3 ODE EIGENVALUE PROBLEMS

Now that we have identified the conditions that make a second-order ODE eigenvalue
problem Hermitian, let’s examine several such problems to gain further understanding of
the processes involved and to illustrate techniques for finding solutions.

Example 8.3.1 LEGENDRE EQUATION

The Legendre equation,
Ly =—(1—x%)y" (@) +2xy'(x) = by (), (8.23)

defines an eigenvalue problem that arises when V2 is written in spherical polar coordinates,
with x identified as cos 6, where 6 is the polar angle of the coordinate system. The range
of x in this context is —1 < x < 1, and in typical circumstances one needs solutions to
Eq. (8.23) that are nonsingular on the entire range of x. It turns out that this is a nontrivial
requirement, mainly because x = %1 are singular points of the Legendre ODE. If we regard
nonsingularity of y at x = £1 as a set of boundary conditions, we shall find that this
requirement is sufficient to define eigenfunctions of the Legendre operator.

This eigenvalue problem, namely Eq. (8.23) plus nonsingularity at x = £1, is conve-
niently handled by the method of Frobenius. We assume solutions of the form

o0
y=> ajx"t, (8.24)
=0

with indicial equation s(s — 1) = 0, whose solutions are s = 0 and s = 1. For s =0, we
obtain the following recurrence relation for the coefficients a;:
ajp=SUFTDZA (8.25)
(G+DG+2)

We may set a; = 0, thereby causing all a; of odd j to vanish, so (for s = 0) our series will
contain only even powers of x. The boundary condition comes into play because Eq. (8.24)
diverges at x = =1 for all A except those that actually cause the series to terminate after a
finite number of terms.

To see how the divergence arises, note that for large j and |x| = 1 the ratio of successive
terms of the series approaches

apd G+
Q4272 G+ DG +2)

3

so the ratio test is indeterminate. However, application of the Gauss test shows that this
series diverges, as was discussed in more detail in Example 1.1.7.

The series in Eq. (8.24) can be made to terminate after ¢; for some even [ by choosing
A =1( + 1), a value that makes a;4> = 0. Then a;44, aj+¢, ... will also vanish, and our
solution will be a polynomial, which is clearly nonsingular for all |x| < 1. Summarizing,
we have, for even /, solutions that are polynomials of degree / as eigenfunctions, and the
corresponding eigenvalues are [(I + 1).



390 Chapter 8 Sturm-Liouville Theory

For s = 1 we must set a; = 0 and the recurrence relation is
G+DG+2)—2
G+20G+3)

which also leads to divergence at |x| = 1. However, the divergence can now be avoided
by setting A = (I + 1)(I + 2) for some even value of [, thereby causing a;y7, ajy4, . ..
to vanish. The result will be a polynomial of degree [ + s, i.e., of an odd degree [ + 1.
These solutions can be described equivalently as, for odd I, polynomials of degree ! with
eigenvalues A = [(/ + 1), so the overall set of eigenfunctions consists of polynomials of all
integer degrees /, with respective eigenvalues /(! + 1). When given the conventional scal-
ing, these polynomials are called Legendre polynomials. Verification of these properties
of solutions to the Legendre equation is left to Exercise 8.3.1.

Before leaving the Legendre equation, note that its ODE is self-adjoint, and that the
coefficient of d%/dx? in the Legendre operator is pg = —(1 — x2), which vanishes at x =
+1. Comparing with Eq. (8.12), we see that this value of pg causes the vanishing of the
boundary terms when we take the adjoint of £, so the Legendre operator on the range
—1 < x <1 is Hermitian, and therefore has orthogonal eigenfunctions. In other words, the
Legendre polynomials are orthogonal with unit weight on (—1, 1). |

aji2= aj, (8.26)

Let’s examine one more ODE that leads to an interesting eigenvalue problem.

Example 8.3.2  HERMITE EQUATION

Consider the Hermite differential equation,
Ly=—y"+2xy' =1y, (8.27)

which we wish to regard as an eigenvalue problem on the range —oo < x < co. To make
L Hermitian, we define a scalar product with a weight factor as given by Eq. (8.15),

(flg) = f Frge™ dx, (8.28)

and demand (as a boundary condition) that our eigenfunctions y, have finite norms using
this scalar product, meaning that (y,|y,) < oo.

Again we obtain a solution by the method of Frobenius, as a series of the form given
in Eq. (8.24). Again the indicial equation is s(s — 1) =0, and for s = 0 we can develop a
series of even powers of x with coefficients satisfying the recurrence relation

2j — A
= A4

(G+DG+2)

This series converges for all x, but (assuming it does not terminate) it behaves asymptoti-

ajia (8.29)

cally for large |x| as ¢*” and therefore does not describe a function of finite norm, even with
the e’ weight factor in the scalar product. Thus, even though the series solution always
converges, our boundary conditions require that we arrange to terminate the series, thereby
producing polynomial solutions. From Eq. (8.29) we see that the condition for obtaining
an even polynomial of degree j is that A = 2j. Odd polynomial solutions can be obtained
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using the indicial equation solution s = 1. Details of both the solutions and the asymptotic
properties are the subject of Exercise 8.3.3.

Since we have established that this is a Hermitian eigenvalue problem with the scalar
product as defined in Eq. (8.28), its solutions (when scaled conventionally they are called
Hermite polynomials) are orthogonal using that scalar product. ]

Some ODE eigenvalue problems can be attacked by dividing the space in which they
reside into regions that are most naturally treated in different ways. The following example
illustrates this situation, with a potential that is assumed nonzero only within a finite region.

Example 8.3.3 DEUTERON GROUND STATE

The deuteron is a bound state of a neutron and a proton. Due to the short range of the
nuclear force, the deuteron properties do not depend much on the detailed shape of the
interaction potential. Thus, this system may be modeled by a spherically symmetric square
well potential with the value V = Vj < 0 when the nucleons are within a distance a of each
other, but with V = 0 when the internucleon distance is greater than a. The Schrodinger
equation for the relative motion of the two nucleons assumes the form

h2
—5- VA + VY =EY,
2p

where p is the reduced mass of the system (approximately half the mass of either particle).
This eigenvalue equation must be solved subject to the boundary conditions that ¢ be finite
at r = 0 and approach zero at r = oo sufficiently rapidly to be a member of an £ Hilbert
space. The eigenfunctions ¥ must also be continuous and differentiable for all r, including
r=a.

It can be shown that if there is to be a bound state, E will have to have a negative value
in the range Vy < E < 0, and the lowest state (the ground state) will be described by a
wave function i that is spherically symmetric (thereby having no angular momentum).
Thus, taking ¢ = ¥ (r) and using a result from Exercise 3.10.34 to write

2

VY =—-—, with u(r) =ry @),
r dr?
the Schrodinger equation reduces to an ODE that assumes the form, for r < a,
d2u1 . 2/L
FH%M:O, with k%:F(E—Vo)>O,
while, for r > a,
d*u» 5 . 5 2uE
m—kZLQ:O, with k2=—7>0.

The solutions for these two ranges of » must connect smoothly, meaning that both u
and du/dr must be continuous across r = a, and therefore must satisfy the matching
conditions u(a) = uz(a), u}(a) = u)(a). In addition, the requirement that  be finite
at r = 0 dictates that u1(0) = 0, and the boundary condition at » = oo requires that
lim, oo up(r) =0.



392

Chapter 8 Sturm-Liouville Theory
For r < a, our Schrédinger equation has the general solution
ui1(r) = Asinkyr + C coskr,

and the boundary condition at » = 0 is only met if we set C = 0. The Schrédinger equation
for r > a has the general solution

us(r) = C'exp(kar) + Bexp(—kar), (8.30)

and the boundary condition at r = oo requires us to set C’ = 0. The matching conditions
at r = a then take the form

Asinkja = Bexp(—kpya) and Akjcoskia = —kyBexp(—kaa).

Using the second of these equations to eliminate B exp(—k»a) from the first, we reach

k
Asinklaz—Ak—l coskja, (8.31)
2

showing that the overall scale of the solution (i.e., A) is arbitrary, which is of course a
consequence of the fact that the Schrédinger equation is homogeneous.

Rearranging Eq. (8.31), and inserting values for k; and k>, our matching conditions
become

1/2
ky 2ua® E—-Vy
tankja = —k—z, or tan |: 2 (E —VWVy) = —z (8.32)

This is an admittedly unpleasant implicit equation for E; if it has solutions with E in the
range Vo < E < 0, our model predicts deuteron bound state(s).

One way to search for solutions to Eq. (8.32) is to plot its left- and right-hand sides
as a function of E, identifying the E values, if any, for which they are equal. Taking
Vo=—4.046 x 10712 J, a =2.5 fermi,! ;. =0.835 x 10727 kg, and /& = 1.05 x 10734 J-s
(joule-seconds), the two sides of Eq. (8.32) are plotted in Fig. 8.3 for the range of E in
which a bound state is possible. The E values have been plotted in MeV (mega electron
volts), the energy unit most frequently used in nuclear physics (1 MeV ~ 1.6 x 10713 J).
The curves cross at only one point, indicating that the model predicts just one bound state.
Its energy is at approximately £ = —2.2 MeV.

It is instructive to see what happens if we take E values that may or may not solve
Eq. (8.32), using u(r) = Asink;r for r < a (thereby satisfying the » = 0 boundary condi-
tion) but for r > a using the general form of u(r) as given in Eq. (8.30), with the coefficient
values B and C’ that are required by the matching conditions for the chosen E value. Let-
ting E_ and E, respectively, denote values of E less than and greater than the eigenvalue
E, we find that by forcing a smooth connection at r = a we lose the required asymptotic
behavior except at the eigenvalue. See Fig. 8.4. |

1 fermi=10~15 m.
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FIGURE 8.3 Left- and right-hand sides of Eq. (8.32) as a function of E for the model
parameters given in the text.
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FIGURE 8.4 Wavefunctions for the deuteron problem when the energy is chosen to be
less than the eigenvalue E (E_ < E) or greater than E (E4 > E).

Exercises

8.3.1 Solve the Legendre equation
1 =x2)y"=2xy +n(n+1)y=0

by direct series substitution.

(a) Verify that the indicial equation is
s(s—1)=0.
(b) Using s = 0 and setting the coefficient a; = 0, obtain a series of even powers of x:

n(nz—!i- 1)x2 + (n— 2)n(n4—!|- D(n + 3)x4 L _.i|7

Yeven = A0 [1 -
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(©)

(d)

(e)

where
a2 JUFD RO D)
(G+DG+2)
Using s = 1 and noting that the coefficient a; must be zero, develop a series of
odd powers of x:

(-1 +2) 4
3! *

N (’1_3)(}1—1)(1’1"‘2)(”+4')X5_’_i|7

Yodd =ao |:x -

5!
where
G+DG+2)—nn+ l)a'
G+20G+3) a
Show that both solutions, yeyen and yoqd, diverge for x = %1 if the series continue
to infinity. (Compare with Exercise 1.2.5.)

aj+2 =

Finally, show that by an appropriate choice of n, one series at a time may be con-
verted into a polynomial, thereby avoiding the divergence catastrophe. In quantum
mechanics this restriction of n to integral values corresponds to quantization of
angular momentum.

8.3.2 Show that with the weight factor exp(—x2) and the interval —oo < x < oo for the scalar
product, the Hermite ODE eigenvalue problem is Hermitian.

833  (a)

(b)

Develop series solutions for Hermite’s differential equation
y' —2xy 4+ 2ay =0.
ANS. s(s — 1) =0, indicial equation.

For s =0,
2 j—a (j even)
Aj42 = 2dj—————— < J €ven),
TG+ DG +2)
2(—a)x? 2% (—a)(2 —a)x?
yeven=a0|:1+ o + a0 e |
Fors =1,
j+1l—«a .
aji2=2a;—————— (jeven),
GG +3)
21 —a)x3  22(1 —a)(3 — a)x?
Yodd =a1[x+ ( 3|) + ( )5(' ) ~|—}

Show that both series solutions are convergent for all x, the ratio of successive
coefficients behaving, for a large index, like the corresponding ratio in the expan-
sion of exp(x?).
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(c) Show that by appropriate choice of «, the series solutions may be cut off and
converted to finite polynomials. (These polynomials, properly normalized, become
the Hermite polynomials in Section 18.1.)

8.34 Laguerre’s ODE is
xL)(x)+ (1 —x)L}(x) +nL,(x)=0.
Develop a series solution and select the parameter n to make your series a polynomial.
8.3.5 Solve the Chebyshev equation
(1 =x)T/ —xT! +n*T, =0,

by series substitution. What restrictions are imposed on »n if you demand that the series
solution converge for x = £1?

ANS. The infinite series does converge for x = £1 and no
restriction on n exists (compare with Exercise 1.2.6).

8.3.6 Solve
(1 = xH U/ (x) = 3xU.(x) + n(n 4+ 2)Up (x) =0,

choosing the root of the indicial equation to obtain a series of odd powers of x. Since
the series will diverge for x = 1, choose n to convert it into a polynomial.

8.4 VARIATION METHOD

We saw in Chapter 6 that the expectation value of a Hermitian operator H for the normal-
ized function ¥ can be written as

(H)=(y|H|Y),

and that the expansion of this quantity in a basis consisting of the orthonormal eigenfunc-
tions of H had the form given in Eq. (6.30):

(H) =Y lau[*hy,
"

where a,, is the coefficient of the uth eigenfunction of H and A; is the corresponding
eigenvalue. As we noted when we obtained this result, one of its consequences is that (H)
is a weighted average of the eigenvalues of H, and therefore is at least as large as the small-
est eigenvalue, and equal to the smallest eigenvalue only if ¥ is actually an eigenfunction
to which that eigenvalue corresponds.

The observations of the foregoing paragraph hold true even if we do not actually make
an expansion of i and even if we do not actually know or have available the eigenfunctions
or eigenvalues of H. The knowledge that (H) is an upper limit to the smallest eigenvalue
of H is sufficient to enable us to devise a method for approximating that eigenvalue and
the associated eigenfunction. This eigenfunction will be the member of the Hilbert space
of our problem that yields the smallest expectation value of H, and a strategy for finding
it is to search for the minimum in (H) within our Hilbert space. This is the essential idea
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behind what is known as the variation method for the approximate solution of eigenvalue
problems.

Since in many problems (including most that arise in quantum mechanics) it is imprac-
tical to compute (H) for all members of a Hilbert space, the actual approach is to define a
portion of the Hilbert space by introducing an assumed functional form for i that contains
parameters, and then to minimize (H) with respect to the parameters; this is the source
of the name “variation method.” The success of the method will depend on whether the
functional form that is chosen is capable of representing functions that are “close” to the
desired eigenfunction (meaning that its coefficient in the expansion is relatively large, with
other coefficients much smaller). The great advantage of the variation method is that we
do not need to know anything about the exact eigenfunction and we do not actually have
to make an expansion; we simply choose a suitable functional form and minimize (H).

Since eigenvalue equations for energies and related quantities in quantum mechanics
usually have finite smallest eigenvalues (e.g., ground energy levels), the variation method
is frequently applicable. We point out that it is not a method having only academic inter-
est; it is at the heart of some of the most powerful methods for solving the Schrodinger
eigenvalue equation for complex quantum systems.

Example 8.4.1  VaRATION METHOD

Given a single-electron wave function (in three-dimensional space) of the form

¢3 1/2
w=<—> e, (8.33)

T

where the factor (¢ /)% makes v normalized, it can be shown that, in units with the
electron mass, its charge, and 7 (Planck’s constant divided by 27) all set to unity (so-called
Hartree atomic units), the quantum-mechanical kinetic energy operator has expectation
value (y|T|¥) = ¢2/2, and the potential energy of interaction between the electron and a
fixed nucleus of charge +Z has ({|V|¢¥) = —Z¢. For a one-electron atom with a nucleus
of charge +Z at r = 0, the total energy will be less than or equal to the expectation value
of the Hamiltonian H =T + V, given for the v of Eq. (8.33) as
¢2

(H):(T)+(V)=?—Z§. (8.34)
As is customary when the meaning is clear, we no longer explicitly show i within all
the angle brackets. We can now optimize our upper bound to the lowest eigenvalue of H
by minimizing the expectation value (H) with respect to the parameter ¢ in ¥. To do so,

we set
d §2
d§|:2 §i| 0

leading to ¢ — Z =0, or ¢ = Z. This tells us that the wave function yielding the energy
closest to the smallest eigenvalue is that with ¢ = Z, and the energy expectation value for
this value of ¢ is Z%/2 — Z? = —Z?/2.
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The result we have just found is exact, because, with malice aforethought and with
appropriate knowledge, we chose a functional form that included the exact wave function.
But now let us continue to a two-electron atom, taking a wave function of the form ¥ =
¥ (1) (2), with both ¥ of the same ¢ value. For this two-electron atom, the scalar product
is defined as integration over the coordinates of both electrons, and the Hamiltonian is
now H=T()+TQ2)+V1)+V@)+U(,?2), where T (i) and V (i) denote the kinetic
energy and the electron-nuclear potential energy for electron i; U(1,2) is the electron-
electron repulsion energy operator, equal in Hartree units to 1/r12, where r;» is the distance
between the positions of the two electrons. For the wave function in use here, the electron-
electron repulsion has expectation value (U) = 5¢/8 and the expectation value (H) (for
Z =2, thereby representing the He atom) is

S 58 _
(1‘1)—2+2 Z¢ Z§+8—€ :
Minimizing (H) with respect to ¢, we obtain the optimum value { = 27/16, and for this
value of ¢ we have (H) = —(27/16)? = —2.8477 hartree. This is the best approximation
available using a wave function of the form we chose. It cannot be exact, as the exact solu-
tion for this system with two interacting electrons cannot be a product of two one-electron
functions. We have therefore not included in our variational search the exact ground-state
eigenfunction. A highly precise value of the smallest eigenvalue for this problem can only
be obtained numerically, and in fact was produced by using the variation method with a
trial function containing thousands of parameters and yielding a result accurate to about
40 decimal places.> The value found here by very simple means is higher than the exact
value, —2.9037 - - - hartree, by only about 2%, and already conveys much physically rele-
vant information. If the two electrons did not interact, they would each have had an opti-
mum wave function with ¢ = 2; the fact that the optimum ¢ is somewhat smaller shows
that each electron partially screens the nucleus from the other electron.

From the viewpoint of the mathematical method in use here, it is desirable to note that
we did not need to assume any relation between the trial wave function and the exact form
of the eigenfunction; the variational optimization adjusts the trial function to give an ener-
getically optimum fit. The quality of the final result of course depends on the degree to
which the trial function can mimic the actual eigenfunction, and trial functions are ordi-
narily chosen in a way that balances inherent quality against convenience of use. |

Exercises

8.4.1

A function that is normalized on the interval 0 < x < oo with an unweighted scalar
product is

W =202 xe™ .
(a) Verify the normalization.
(b) Verify that for this v, (x 1) = a.

2C. Schwartz, Experiment and theory in computations of the He atom ground state, Int. J. Mod. Phys. E: Nuclear Physics
15: 877 (20006).
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(c) Verify that for this v, (d?/dx?) = —a>.
(d) Use the variation method to find the value of o that minimizes

1 d> 1
(2

2dx? x

)

and find the minimum value of this expectation value.

8.5 SUMMARY, FIGENVALUE PROBLEMS

Because any Hermitian operator on a Hilbert space can be expanded in a basis and is there-
fore mathematically equivalent to a matrix, all the properties derived for matrix eigenvalue
problems automatically apply whether or not a basis-set expansion is actually carried out.
It may be helpful to summarize some of those results, along with some that were developed
in the present chapter.

1.

10.

A second-order differential operator is Hermitian if it is self-adjoint in the differential-
equation sense and the functions on which it operates are required to satisfy appropri-
ate boundary conditions. In that event, the scalar product consistent with Hermiticity
is an unweighted integral over the range between its boundaries.

If a second-order differential operator is not self-adjoint in the differential-equation
sense, it will nevertheless be Hermitian if it satisfies appropriate boundary condi-
tions and if the scalar product includes the weight function that makes the original
differential equation self-adjoint.

A Hermitian operator on a Hilbert space has a complete set of eigenfunctions. Thus,
they span the space and can be used as basis for an expansion.

The eigenvalues of a Hermitian operator are real.

The eigenfunctions of a Hermitian operator corresponding to different eigenvalues
are orthogonal, using the appropriate scalar product.

Degenerate eigenfunctions of a Hermitian operator can be orthogonalized using the
Gram-Schmidt or any other orthogonalization process.

Two operators have a common set of eigenfunctions if and only if they commute.
An algebraic function of an operator has the same eigenfunctions as the original
operator, and its eigenvalues are the corresponding function of the eigenvalues of the
original operator.

Eigenvalue problems involving a differential operator may be solved either by
expressing the problem in any basis and solving the resulting matrix problem or by
using relevant properties of the differential equation.

The matrix representation of a Hermitian operator can be brought to diagonal form by
a unitary transformation. In diagonal form, the diagonal elements are the eigenvalues,
and the eigenvectors are the basis functions. The orthonormal eigenvectors are the
columns of the unitary matrix U~! when a Hermitian matrix H is transformed to the
diagonal matrix UHU™!.
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11. Hermitian-operator eigenvalue problems which have a finite smallest eigenvalue
may have their solutions approximated by the variation method, which is based on
the theorem that for all members of the relevant Hilbert space, the expectation value
of the operator will be larger than its smallest eigenvalue (or equal to it only if the
Hilbert space member is actually a corresponding eigenfunction).

Additional Readings

Byron, F. W., Jr., and R. W. Fuller, Mathematics of Classical and Quantum Physics. Reading, MA: Addison-
Wesley (1969).

Dennery, P., and A. Krzywicki, Mathematics for Physicists. Reprinted. New York: Dover (1996).
Hirsch, M., Differential Equations, Dynamical Systems, and Linear Algebra. San Diego: Academic Press (1974).
Miller, K. S., Linear Differential Equations in the Real Domain. New York: Norton (1963).

Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations, Part 1. 2nd
ed. London: Oxford University Press (1962).

Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations. Part 2.
London: Oxford University Press (1958).



CHAPTER 9

PARTIAL DIFFERENTIAL
EQUATIONS

9.1 INTRODUCTION

As mentioned in Chapter 7, partial differential equations (PDEs) involve derivatives with
respect to more than one independent variable; if the independent variables are x and y,
a PDE in a dependent variable ¢(x, y) will contain partial derivatives, with the mean-
ing discussed in Eq. (1.141). Thus, d¢/0x implies an x derivative with y held constant,
82¢/dx? is the second derivative with respect to x (again keeping y constant), and we may

also have mixed derivatives
e 9 (0¢
dxdy dx \dy /)’

Like ordinary derivatives, partial derivatives (of any order, including mixed derivatives)
are linear operators, since they satisfy equations of the type

Ap(x, y) +bp(x,y)]  dpx,y)  d¢(x,y)
=a +b .
0x 0x 0x

Similar to the situation for ODEs, general differential operators, £, which may contain
partial derivatives of any order, pure or mixed, multiplied by arbitrary functions of the
independent variables, are linear operators, and equations of the form

Lo(x,y)=F(x,y)

are linear PDEs. If the source term F(x, y) vanishes, the PDE is termed homogeneous;
if F(x, y) is nonzero, it is inhomogeneous.
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Homogeneous PDEs have the property, previously noted in other contexts, that any
linear combination of solutions will also be a solution to the PDE. This is the superposition
principle that is fundamental in electrodynamics and quantum mechanics, and which also
permits us to build specific solutions by the linear combination of suitable members of the
set of functions constituting the general solution to the homogeneous PDE.

Example 9.1.1  various TypPEs OF PDEs

Laplace V2 =0, linear, homogeneous
Poisson Vzw = f(r), linear, inhomogeneous
L. ou VP . )
Euler (inviscid flow) ™ +u-Vu=——- nonlinear, inhomogeneous
o

Since the dynamics of many physical systems involve just two derivatives, for exam-
ple, acceleration in classical mechanics, and the kinetic energy operator ~V? in quantum
mechanics, differential equations of second order occur most frequently in physics. Even
when the defining equations are first order, they may, as in Maxwell’s equations, involve
two coupled unknown vector functions (they are the electric and magnetic fields), and
the elimination of one unknown vector yields a second-order PDE for the other (compare
Example 3.6.2).

Examples of PDEs
Among the most frequently encountered PDEs are the following:

1. Laplace’s equation, V> = 0.
This very common and very important equation occurs in studies of

(a) electromagnetic phenomena, including electrostatics, dielectrics, steady currents,
and magnetostatics,

(b) hydrodynamics (irrotational flow of perfect fluid and surface waves),

(c) heat flow,

(d) gravitation.

2. Poisson’s equation, V¢ = —p /.

This inhomogeneous equation describes electrostatics with a source term —p/gp.
3. Helmholtz and time-independent diffusion equations, V2 & k¢ = 0.

These equations appear in such diverse phenomena as

(a) elastic waves in solids, including vibrating strings, bars, membranes,
(b) acoustics (sound waves),

(c) electromagnetic waves,

(d) nuclear reactors.
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19
4. The time-dependent diffusion equation, V2 = — a—lﬁ,
a
. . . 9%y 2
5. The time-dependent classical wave equation, 252 = V.
c
6. The Klein-Gordon equation, 8%y = —u2, and the corresponding vector equations in

which the scalar function v is replaced by a vector function. Other, more complicated
forms are also common.
7. The time-dependent Schrodinger wave equation,
h? Y

—— VX + VY =ih—
2m VY =i ot

and its time-independent form

hZ
—— VX + VY =Ey.
2m

8. The equations for elastic waves and viscous fluids and the telegraphy equation.
9. Maxwell’s coupled partial differential equations for electric and magnetic fields and
those of Dirac for relativistic electron wave functions.

We begin our study of PDEs by considering first-order equations, which illustrate some
of the most important principles involved. We then continue to classification and prop-
erties of second-order PDEs, and a preliminary discussion of prototypical homogeneous
equations of the different classes. Finally, we examine a very useful and powerful method
for obtaining solutions to homogeneous PDEs, namely the method of separation of
variables.

This chapter is mainly devoted to general properties of homogeneous PDEs; full detail
on specific equations is for the most part postponed to chapters that discuss the spe-
cial functions involved. Questions arising from the extension to inhomogeneous PDEs
(i.e., problems involving sources or driving terms) are also deferred, mainly to later chap-
ters on Green’s functions and integral transforms.

Occasionally, we encounter equations of higher order. In both the theory of the slow
motion of a viscous fluid and the theory of an elastic body we find the equation

(VH2y =0.

Fortunately, these higher-order differential equations are relatively rare and are not dis-
cussed here. Sometimes, particularly in fluid mechanics, we encounter nonlinear PDEs.

9.2 FIRST-ORDER EQUATIONS

While the most important PDEs arising in physics are linear and second order, many
involving three spatial variables plus possibly a time variable, first-order PDEs do arise
(e.g., the Cauchy-Riemann equations of complex variable theory). Part of the motivation
for studying these easily solved equations is that the study provides insights that apply also
to higher-order problems.
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Characteristics

Let us start by considering the following homogeneous linear first-order equation in two
independent variables x and y, with constant coefficients a and b, and with dependent
variable ¢(x, y):

E(pzaa—(p+ba—(p=0. 9.1

ax ay

This equation would be easier to solve if we could rearrange it so that it contained only one
derivative; one way to do this is would be to rewrite our PDE in terms of new coordinates
(s, t) such that one of them, say s, is such that (d/9ds); would expand into the linear combi-
nation of 3/dx and /9y in the original PDE, while the other new coordinate, ¢, is such that
(0/0t)s does not occur in the PDE. It is easily verified that definitions of s and ¢ consistent
with these objectives for the PDE in Eq. (9.1) are s = ax + by and t = bx — ay. To check
this, write ¢ (x, y) = @(x(s, 1), y(s, 1)) = ¢(s, t), and we can verify that

a a a a d a
(), = (), o (), o ()25, (50),
ox y as /, ot ) ay /. ds /, ot )

dp dp 2 2 39
— +b—= b)—.
“ ax + ay (@ +&7) as
We see that the PDE does not contain a derivative with respect to ¢. Since our PDE now

has the simple form

SO

96
@ +11)5 =0,
as
it clearly has solution
@(s,t) = f(¢), with f(¢) completely arbitrary. 9.2)
In terms of the original variables,

p(x,y) = f(bx —ay), (9.3)

where we again stress that f(¢) is an arbitrary function of its argument.
Checking our work to this point, we note that

Lo zaﬁf(bx —ay) +b3f(bx —ay)
0x d

=abf'(bx —ay)+b [—af/(bx - ay)] =0.

Since the satisfaction of this equation does not depend on the properties of the function f,
we verify that ¢(x, y) as given in Eq. (9.3) is a solution of our PDE, irrespective of the
choice of the function f. In fact, it is the general solution of our PDE.

It is useful to visualize the significance of what we have just observed. Note that holding
t = bx — ay to a fixed value defines a line in the xy plane on which our solution ¢ is con-
stant, with individual points on this line corresponding to different values of s = ax + by.
In addition, we observe that the lines of constant s are orthogonal to those of constant ¢, and
that s has the same coefficients as the derivatives in the PDE. The general solution to our
PDE can thus be characterized as independent of s and with arbitrary dependence on t.
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The curves of constant ¢ are called characteristic curves, or more frequently just char-
acteristics of our PDE. An alternative and insightful way of describing the characteristic
curves is to observe that they are the stream lines (flow lines) of s. Put another way, they
are the lines that are traced out as the value of s is changed, keeping ¢ constant. The char-
acteristic can also be characterized by its slope,

d_y = é, for £ in Eq. (9.1). 9.4
dx a

For our present first-order PDE, the solution ¢ is constant along each characteristic. We
shall shortly see that more general PDEs can be solved using ODE methods on charac-
teristic lines, a feature that causes it to be said that PDE solutions propagate along the
characteristics, giving further significance to the notion that in some sense these are lines
of flow. In the present problem this translates into the statement that if we know ¢ at any
point on a characteristic, we know it on the entire characteristic line.

The characteristics have one additional (but related) property of importance. Ordinarily,
if a PDE solution ¢(x, y) is specified on a curve segment (a boundary condition), one
can deduce from it the values of the solution at nearby points that are not on the curve. If
one introduces a Taylor expansion about some point (xg, yg) on the curve (thereby tacitly
assuming that there are no singularities that invalidate the expansion), the value of ¢ at a
nearby point (x, y) will be given by

0 , 0 )
w(x,y)=§0(XO,yo)+%(X—XOH-%O’—YOH-W. (9.5)

To use Eq. (9.5), we need values of the derivatives of ¢. To obtain these derivatives, note
the following:

e The specification of ¢ on a given curve, with the curve parametrically described by
x(]), y(I), means that the curve direction, i.e., dx/dl and dy/dl, is known, as is the
derivative of ¢ along the curve, namely

dp dpdx  d¢dy

dl —oxdl ' oydl
Equation (9.6) therefore provides us with a linear equation satisfied by the two deriva-
tives dp/dx and d¢/dy.

(9.6)

e The PDE supplies a second linear equation, in this case

ap ad
— +b—=0. 9.7
“ ax ay ©D
e Providing that the determinant of their coefficients is not zero, we can solve Egs. (9.6)
and (9.7) for d¢/dx and d¢/dy at (xo, yo) and therefore evaluate the leading terms of
the Taylor series for ¢(x, y).! The determinant of coefficients of Egs. (9.6) and (9.7)
takes the form

D= C:T)lc (cil_)l) D
= =% T Yar
a b

I The linear terms are all that are necessary; one can choose x and y close enough to (xq, yo) that second- and higher-order terms
can be made negligible relative to those retained.
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Now we make the observation that if ¢ was specified along a characteristic (for which
t = bx — ay =constant), we have
dx d
bdx —ady=0, or b —a2 —y,
dl dl
so that D = 0 and we cannot solve for the derivatives of ¢. Our conclusions relative to
characteristics, which can be extended to more general equations, are:

1. If'the dependent variable ¢ of the PDE in Eq. (9.1) is specified along a curve (i.e., ¢
has a boundary condition specified on a boundary curve), this fixes the value of ¢
at a point of each characteristic that intersects the boundary curve, and hence at all
points of each such characteristic,

2. If'the boundary curve is along a characteristic, the boundary condition on it will ordi-
narily lead to inconsistency, and therefore, unless the boundary condition is redundant
(i.e., coincidentally equal everywhere to the solution constructed from the value of ¢
at any one point on the characteristic), the PDE will not have a solution;

3. If the boundary curve has more than one intersection with the same characteristic,
this will usually lead to an inconsistency, as the PDE may not have a solution that is
simultaneously consistent with the values of ¢ at both intersections; and

4. Only if the boundary curve is not a characteristic can a boundary condition fix the
value of ¢ at points not on the curve. Values of ¢ specified only on a character-
istic of the PDE provide no information as to the value of ¢ at points not on that
characteristic.

In the above example, the argument ¢ of the arbitrary function f was a linear combina-
tion of x and y, which worked because the coefficients of the derivatives in the PDE were
constants. If these coefficients were more general functions of x and y, the foregoing type
of analysis could still be carried out, but the form of # would have to be different. This
more complicated case is illustrated in Exercises 9.2.5 and 9.2.6.

More General PDEs
Consider now a first-order PDE of a form more general than Eq. (9.1),
0 0
E(pza—(p—i—b—w—l—q(x,y)(p:F(x,y). (9.8)
ox dy

We may identify its characteristic curves just as before, which amounts to making a trans-
formation to new variables s = ax + by, t = bx — ay, in terms of which our PDE becomes,
compare Eq. (9.5),

(a® +b%) <2—‘Sp) +4(s, )¢ = F(s,1). 9.9)

Here g (s, t) is obtained by converting g (x, y) to the new coordinates:

as +bt bs — at
a?+b2 a2 +p2)

c}(s,t)=q<
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and F is related in a similar fashion to F. Equation (9.9) is really an ODE in s (containing
what can be viewed as a parameter, t), and its general solution can be obtained by the usual
procedures for solving ODEs.

Example 9.2.1  ANOTHER FIRST-ORDER PDE

Consider the PDE

) ad
—¢+—(p+(x+y)cp=0.
ox  dy

Applying a transformation to the characteristic direction + = x — y and the direction
orthogonal thereto s = x + y, our PDE becomes

0
2—('0 + s =0.
as
This equation separates into
d
2—¢ +sds =0,
@

with general solution
S2 274
Ing=——+C®, or g=e""f0),

where f(¢), originally exp[C(t)], is completely arbitrary. One can simplify the result
slightly by noting that s2/4 = t?/4 4 xy; then exp(—t?/4) can be absorbed into f(t),
leaving the compact result (in terms of x and y)

ox,y)=e Y f(x —y), (f arbitrary).

More Than Two Independent Variables

It is useful to consider how the concept of characteristic can be generalized to PDEs with
more than two independent variables. Given the three-dimensional (3-D) differential form
dp 3¢ g
a—+b— +c—,
ax + ay + 0z
we apply a transformation to convert our PDE to the new variables s = ax + by + cz,
t=o1x + a2y + a3z, u = Bi1x + Bay + B3z, with «; and B; such that (s, 7, u) form an

orthogonal coordinate system. Then our 3-D differential form is found equivalent to

0
(@ +b* + cz)—(p,
as

and the stream lines of s (those with ¢ and u constant) are our characteristics, along which
we can propagate a solution ¢ by solving an ODE. Each characteristic can be identified by
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its fixed values of  and u. For the 3-D analog of Eq. (9.1),
dp 3¢ ¢
L 4 bh—L 4c— =0, 9.10
Tox Ty T %2 ©-10)
we have
d
(a®>+b> + Cz)_‘/) =0,
as
with solution ¢ = f (¢, u), with f a completely arbitrary function of its two arguments.
Consider next an attempt to solve our 3-D PDE subject to a boundary condition fixing
the values of the PDE solution ¢ on a surface. If the characteristic through a point on
the surface lies in the surface, we have a potential inconsistency between the boundary
condition and the solution propagated along the characteristic. We are then also unable to
extend ¢ away from the boundary surface because the data on the surface is insufficient
to yield values of the derivatives that are needed for a Taylor expansion. To see this, note
that the derivatives d¢/dx, d¢/dy, and d¢/dz can only be determined if we can find
two directions (parametrically designated [ and ") such that we can solve simultaneously
Eq. (9.10) and
dp dpdx  dpdy d¢dz
al  oxdl  dydl  dzdl’
dp dpdx  dpdy  d¢dz
' dxdll  dydl  dzdl’
A solution can be obtained only if
dx dy dz
dl dl dl
D=|dr dv dz |0
v dl’ dl
a b c
If a characteristic, with dx/dl” = a, dy/dl” = b, and dz/dl"” = c, lies in the two-
dimensional (2-D) surface, there will only be one further linearly independent direction
I, and D will necessarily be zero.
Summarizing, our earlier observations extend to the 3-D case:
A boundary condition is effective in determining a unique solution to a first-order PDE
only if the boundary does not include a characteristic, and inconsistencies may arise if
a characteristic intersects a boundary more than once.
Exercises
Find the general solutions of the PDEs in Exercises 9.2.1 to 9.2.4.
0 d
9021 W oW Loy =0
dax ay
0
922 W LW i 20
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v 0w _ oy
ox ay 9z
W L W
ax ay 0z
(a) Show that the PDE
y % +x % =0

can be transformed into a readily soluble form by writing it in the new variables
u=xy,v=x>—y2, and find its general solution.
(b) Discuss this result in terms of characteristics.

Find the general solution to the PDE

Hint. The solution to Exercise 9.2.5 may provide a suggestion as to how to proceed.

9.3 SECOND-ORDER EQUATIONS

Classes of PDEs

We consider here extending the notion of characteristics to second-order PDEs. This can
sometimes be done in a useful fashion. As a preliminary example, consider the following
homogeneous second-order equation

3 (x, 3% (x,
2070y 50701, y) _o, ©.11)
dx2 9y?

where a and ¢ are assumed to be real. This equation can be written in the factored form

0 0 d 0
a—+c—||la——c—|p=0, 9.12)
ox dy ox dy

and, since the two operator factors commute, we see that Eq. (9.12) will be satisfied if ¢ is
a solution to either of the first-order equations

0 0
a—+c—=0 or aa——c—zo. (9.13)
However, these first-order equations are of just the type discussed in the preceding subsec-
tion, so we can identify their respective general solutions as

p1(x,y) = flcx —ay), @2x,y)=g(cx +ay), (9.14)

where f and g are arbitrary (and totally unrelated) functions. Moreover, we can iden-
tify the stream lines of ax 4+ cy and ax — cy as characteristics, with implications as to
the effectiveness and possible consistency of boundary conditions. For some PDEs with
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second derivatives as given in Eq. (9.11), it will also be practical to propagate solutions
along the characteristics.
Look next at the superficially similar equation

%p(x, %p(x,
a2 (x Y)+cz p(x }’)z

12 5y 0, 9.15)
with a and ¢ again assumed to be real. If we factor this, we get
a .0 a .0
[aa+lc®i| [aa—lca}pzo. (9.16)

This factorization is of less practical value, as it leads to complex characteristics, which
do not have an obvious relevance to boundary conditions. In addition, propagation along
such characteristics does not provide a solution to the PDE for physically relevant (i.e.,
real) coordinate values.

It is customary to identify second-order PDEs as hyperbolic if they are of (or can be
transformed into) the form given in Eq. (9.11), with real values of a and c. PDEs that are of
(or can be transformed into) the form given in Eq. (9.15) are called elliptic. The designation
is useful because it correlates with the existence (or nonexistence) of real characteristics,
and therefore with the behavior of the PDE relative to boundary conditions, with further
implications as to convenient methods for solving the PDE. The terms elliptic and hyper-
bolic have been introduced based on an analogy to quadratic forms, where a?x?+c2y? = d
is the equation of an ellipse, while a®x? — ¢2y? = d is that of a hyperbola.

More general PDEs will have second derivatives of the differential form

9
L=a— +2b—— +c—r. (9.17)
X X

The form in Eq. (9.17) has the following factorization:

<b+«/b2—ac8 1/28><b—«/b2—ac8 1/23>
L=|—"i——+— ) —F— =+

9.18
cl/z dx dy cl/z dx dy ©.18)

Equation (9.18) is easily verified by expanding the product. The equation also shows
that the characteristics of Eq. (9.17) are real if and only if 5> — ac > 0. This quantity
is well known from elementary algebra, being the discriminant of the quadratic form
at* 4+ 2bt + ¢. 1If b*> —ac > 0, the two factors identify two linearly independent real charac-
teristics, as were found for the prototype hyperbolic PDE discussed in Eqs. (9.11) to (9.14).
If b> — ac < 0, the characteristics will, as for the prototype elliptic PDE in Egs. (9.15)
and (9.16), form a complex conjugate pair. We now have, however, one new possibility:
If 5> — ac = 0 (a case that for quadratic forms is that of a parabola), we have a PDE that
has exactly one linearly independent characteristic; such PDEs are termed parabolic, and
the canonical form adopted for them is

dp 0%
a—=—.
ox  9y?
If the original PDE lacked a d/dx term, it would in effect be an ODE in y that depends

on x only parametrically and need not be considered further in the context of methods for
PDEs.

(9.19)
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To complete our discussion of the second-order form in Eq. (9.17), we need to show
that it can be transformed into the canonical form for the PDE of its classification. For this
purpose we consider the transformation to new variables &, n, defined as

&= cx— C_1/2by, n= c_l/zy. (9.20)

By systematic application of the chain rule to evaluate 32/9x2, 32/dxdy, and 8%/dy?, it
can be shown that
e 3%
L=(ac—b)— +—. 9.21
(=P 37 + 50 921
Verification of Eq. (9.21) is the subject of Exercise 9.3.1.
Equation (9.21) shows that the classification of our PDE remains invariant under trans-
formation, and is hyperbolic if b — ac > 0, elliptic if b*> — ac < 0, and parabolic if
b% — ac = 0. Perhaps better seen from Eq. (9.18), we see that the stream lines of the char-

acteristics have slope
d
@o_ < 9.22)
dx  b++/b2—ac

More than Two Independent Variables

While we will not carry out a full analysis, it is important to note that many problems
in physics involve more than two dimensions (often, three spatial dimensions or several
spatial dimensions plus time). Often, the behavior in the multiple spatial dimensions is
similar, and we apply the terms hyperbolic, elliptic, and parabolic in a way that relates the
spatial to the time derivatives when the latter occur. Thus, these equations are classified as
indicated:

Laplace equation V2w =0 elliptic
Poisson equation Vi =—p/eg elliptic
192
Wave equation Vi =— _¢ hyperbolic
c2 912
cop . oy 2 .
Diffusion equation ao = Vg parabolic

The specific equations mentioned here are very important in physics and will be further
discussed in later sections of this chapter. These examples, of course, do not represent the
full range of second-order PDEs, and do not include cases where the coefficients in the
differential operator are functions of the coordinates. In that case, the classification into
elliptic, hyperbolic, and parabolic is only local; the class may change as the coordinates

vary.

Boundary Conditions

Usually, when we know a physical system at some time and the law governing the phys-
ical process, then we are able to predict the subsequent development. Such initial val-
ues are the most common boundary conditions associated with ODEs and PDEs. Finding
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solutions that match given points, curves, or surfaces corresponds to boundary value prob-
lems. Solutions usually are required to satisfy certain imposed (for example, asymptotic)
boundary conditions. These boundary conditions ordinarily take one of three forms:

1. Cauchy boundary conditions. The value of a function and normal derivative speci-
fied on the boundary. In electrostatics this would mean ¢, the potential, and E,, the
normal component of the electric field.

2. Dirichlet boundary conditions. The value of a function specified on the boundary.
In electrostatics, this would mean the potential ¢.

3. Neumann boundary conditions. The normal derivative (normal gradient) of a func-
tion specified on the boundary. In the electrostatic case this would be E,, and therefore
o, the surface charge density.

Because the three classes of second-order PDEs have different patterns of character-
istics, the boundary conditions needed to specify (in a consistent way) a unique solution
will depend on the equation class. An exact analysis of the role of boundary conditions is
complicated and beyond the scope of the present text. However, a summary of the relation
of these three types of boundary conditions to the three classes of 2-D partial differential
equations is given in Table 9.1. For a more extended discussion of these partial differ-
ential equations the reader may consult Morse and Feshbach, Chapter 6 (see Additional
Readings).

Parts of Table 9.1 are simply a matter of maintaining internal consistency or of common
sense. For instance, for Poisson’s equation with a closed surface, Dirichlet conditions lead

Table 9.1 Relation between PDE and Boundary Conditions

Boundary Class of Partial Differential Equation
Conditions

Elliptic

Hyperbolic

Parabolic

Cauchy
Open surface

Closed surface

Dirichlet
Open surface

Closed surface
Neumann

Open surface

Closed surface

Laplace, Poisson
in (x, y)

Unphysical results
(instability)

Too restrictive

Insufficient

Unique, stable
solution

Insufficient

Unique, stable
solution

Wave equation in

(x, 1)

Unique, stable
solution

Too restrictive

Insufficient

Solution not unique

Insufficient

Solution not unique

Diffusion equation
in (x,1)

Too restrictive
Too restrictive

Unique, stable
solution in one
direction

Too restrictive

Unique, stable
solution in one
direction

Too restrictive
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to a unique, stable solution. Neumann conditions, independent of the Dirichlet conditions,
likewise lead to a unique stable solution independent of the Dirichlet solution. There-
fore, Cauchy boundary conditions (meaning Dirichlet plus Neumann) could lead to an
inconsistency.

The term boundary conditions includes as a special case the concept of initial condi-
tions. For instance, specifying the initial position xo and the initial velocity vy in some
dynamical problem would correspond to the Cauchy boundary conditions. Note, how-
ever, that an initial condition corresponds to applying the condition at only one end of
the allowed range of the (time) variable.

Finally, we note that Table 9.1 oversimplifies the situation in various ways. For example,
the Helmholtz PDE,

Vi k%Y =0,

(which could be thought of as the reduction of a parabolic time-dependent equation to its
spatial part) has solution(s) for Dirichlet conditions on a closed boundary only for certain
values of its parameter k. The determination of k and the characterization of these solutions
is an eigenvalue problem and is important for physics.

Nonlinear PDEs

Nonlinear ODEs and PDEs are a rapidly growing and important field. We encountered
earlier the simplest linear wave equation,

oy oy
or | Cox

as the first-order PDE of the wavefronts of the wave equation. The simplest nonlinear wave
equation,

0,

Y oy
5 Few—=0, (9.23)

results if the local speed of propagation, c, is not constant but depends on the wave .
When a nonlinear equation has a solution of the form v (x, ) = A cos(kx — wt), where
w (k) varies with k so that w” (k) # 0, then it is called dispersive. Perhaps the best-known
nonlinear dispersive equation is the Korteweg-deVries equation,

B a3y

— — 4+ — =0, 9.24

ot v dx + 0x3 ©-24)
which models the lossless propagation of shallow water waves and other phenomena. It is
widely known for its soliton solutions. A soliton is a traveling wave with the property of
persisting through an interaction with another soliton: After they pass through each other,
they emerge in the same shape and with the same velocity and acquire no more than a
phase shift. Let ¥ (§ = x — ct) be such a traveling wave. When substituted into Eq. (9.24)
this yields the nonlinear ODE

dy &y

W - C)E + yrii 0, (9.25)
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which can be integrated to yield
dzl/f wZ
— =c — —. 9.26
5= (9.26)
There is no additive integration constant in Eq. (9.26), because the solution must be such
that d?v/dg*> — 0 with ¢ — 0 for large £. This causes ¥ to be localized at the character-
istic £ =0, or x = ct. Multiplying Eq. (9.26) by dv/d&é and integrating again yields
dy\*_ o Y
) = - 9.27
(%) =ev*-% ©27)
where dvr/dé — O for large £. Taking the root of Eq. (9.27) and integrating again yields
the soliton solution
3c
X —ct)= . 9.28
v ) cosh? (%ﬁ(x —ct)) ©-28)
Exercises

2

Show that by making a change of variables to & = ¢'/2x — ¢=1/2by, n = ¢~1/2y, the

operator £ of Eq. (9.18) can be brought to the form
2 32

ad
2
L= (ac—b )3_§2+3_T]2

9.4 SEPARATION OF VARIABLES

Partial differential equations are clearly important in physics, as evidenced by the PDEs
listed in Section 9.1, and of equal importance is the development of methods for their
solution. Our discussion of characteristics has suggested an approach that will be useful
for some problems. Other general techniques for solving PDEs can be found, for example,
in the books by Bateman and by Gustafson listed in the Additional Readings at the end of
this chapter. However, the technique described in the present section is probably that most
widely used.

The method developed in this section for solution of a PDE splits a partial differential
equation of n variables into n ordinary differential equations, with the intent that an overall
solution to the PDE will be a product of single-variable functions which are solutions to
the individual ODEs. In problems amenable to this method, the boundary conditions are
usually such that they separate at least partially into conditions that can be applied to the
separate ODEs.

Further discussion of the method depends on the nature of the problem we seek to solve,
so we now make the observation that PDEs occur in physics in two contexts, either as

e An equation with no unknown parameters for which there is expected to be a unique
solution consistent with the boundary conditions (typical example: Laplace equation
for the electrostatic potential with the potential specified on the boundary), or
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e An eigenvalue problem which will have solutions consistent with the boundary con-
ditions only for certain values of an embedded but initially unknown parameter (the
eigenvalue).

In the first of these two cases, the unique solution is typically approached by first applying
boundary conditions to the separate ODEs to specialize their solutions as much as possible.
The solution is at this point normally not unique, and we have a (usually infinite) number
of product solutions that satisfy the boundary conditions thus far applied. We then regard
these product solutions as a basis that can be used to form an expansion that satisfies the
remaining boundary condition(s). We illustrate with the first and fourth examples of this
section.

In the second case identified above, we typically have homogeneous boundary condi-
tions (solution equal to zero on the boundary), and in favorable situations can satisfy all
the boundary conditions by imposing them on the separate ODEs. At this point we usually
find that each product solves our PDE with a different value of its embedded parameter,
so that we are obtaining eigenfunctions and eigenvalues. This process is illustrated in the
second and third examples of the present section.

The method of separation of variables proceeds by dividing the PDE into pieces each
of which can be set equal to a constant of separation. If our PDE has n independent
variables, there will be n — 1 independent separation constants (though we often prefer
a more symmetric formulation with n separation constants plus an equation connecting
them). The separation constants may have values that are restricted by invoking boundary
conditions.

To get a broad understanding of the method of separation of variables, it is useful to see
how it is carried out in a variety of coordinate systems. Here we examine the process in
Cartesian, cylindrical, and spherical polar coordinates. For application to other coordinate
systems we refer the reader to the second edition of this text.

Cartesian Coordinates

In Cartesian coordinates the Helmholtz equation becomes

Py Py Py,

— 4+ 4 — L 4Ky =0, 9.29

ax2  9y? 972 4 (0-29)
using Eq. (3.62) for the Laplacian. For the present, let k> be a constant. As stated in the
introductory paragraphs of this section, our strategy will be to split Eq. (9.29) into a set of
ordinary differential equations. To do so, let

Y(x,y,2) =Xx)Y(y)Z(z) (9.30)

and substitute back into Eq. (9.29). How do we know Eq. (9.30) is valid? When the dif-
ferential operators in various variables are additive in the PDE, that is, when there are no
products of differential operators in different variables, the separation method has a chance
to succeed. For success, it is usually also necessary that at least some of the boundary con-
ditions separate into conditions on the separate factors. At any rate, we are proceeding in
the spirit of let’s try and see if it works. If our attempt succeeds, then Eq. (9.30) will be
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justified. If it does not succeed, we shall find out soon enough and then we can try another
attack, such as Green’s functions, integral transforms, or brute-force numerical analysis.
With i assumed given by Eq. (9.30), Eq. (9.29) becomes

d*x d*y d*z

W+de_y2+XYd_Z2+k2XYZ=0' 9.31)

Dividing by ¥ = XY Z and rearranging terms, we obtain

1 d*Xx , 1d* 1d*z

——— =k - =—. (9.32)

X dx? Y dy? Z dz?
Equation (9.32) exhibits one separation of variables. The left-hand side is a function of
x alone, whereas the right-hand side depends only on y and z and not on x. But x, y,
and z are all independent coordinates. The equality of two sides that depend on different
variables can only be attained if each side must be equal to the same constant, a constant
of separation. We choose”

Yz

1 d*X

—_S o2 9.33

X dx? ( )
1d*y 1d%*z

Sy sy £ (9.34)
Y dy?> Z dz?

Now, turning our attention to Eq. (9.34), we obtain
l dZ_Y N Ny P l dz_Z
Y dy? Z dz?’
and a second separation has been achieved. Here we have a function of y equated to a
function of z. We resolve it, as before, by equating each side to another constant of sepa-

(9.35)

ration, —m?,
1d%Y
— = =—m? (9.36)
Y dy?
1d*z
S ] 9.37
+ Z dz? " ©-37)
The separation is now complete, but to make the formulation more symmetrical, we will set
1d*z )
= — =-—n", 9.38
Z dz? " ©:38)
and then consistency with Eq. (9.37) leads to the condition
4+ m?+n*=k> (9.39)

Now we have three ODEs, Egs. (9.33), (9.36), and (9.38), to replace Eq. (9.29). Our
assumption, Eq. (9.30), has succeeded in splitting the PDE; if we can also use the fac-
tored form to satisfy the boundary conditions, our solution of the PDE will be complete.

2The choice of sign for separation constants is completely arbitrary, and will be fixed in specific problems by the need to satisfy
specific boundary conditions, and particularly to avoid the unnecessary introduction of complex numbers.
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It is convenient to label the solution according to the choice of our constants I, m, and n;
that is,

Yimn (X, ¥,2) = X1 ()Y () Z,(2). (9.40)

Subject to the boundary conditions of the problem being solved and to the condition
k* =12 + m? 4+ n?, we may choose /, m, and n as we like, and Eq. (9.40) will still be a
solution of Eq. (9.29), provided only that X;(x) is a solution of Eq. (9.33), and so on.
Because our original PDE is homogeneous and linear, we may develop the most general
solution of Eq. (9.29) by taking a linear combination of solutions v,

V= Zalmdflmn, (9.41)
I,m

where it is understood that n will be given a value consistent with Eq. (9.39) and with the
values of / and m.

Finally, the constant coefficients a;,,, must be chosen to permit W to satisfy the boundary
conditions of the problem, leading usually to a discrete set of values [, m.

Reviewing what we have done, it can be seen that the separation into ODEs could still
have been achieved if k% were replaced by any function that depended additively on the
variables, i.e., if

K — f()+8(0) +h(2).

A case of practical importance would be the choice k> — C(x? + y? + z2), leading to
the problem of a 3-D quantum harmonic oscillator. Replacing the constant term k> by
a separable function of the variables will, of course, change the ODEs we obtain in the
separation process and may have implications relative to the boundary conditions.

Example 9.4.1 LAPLACE EQUATION FOR A PARALLELEPIPED

As a concrete example we take Eq. (9.29) with k = 0, which makes it a Laplace equation,
and ask for its solution in a parallelepiped defined by the planar surfaces x =0, x =,
y=0,y=c,z=0, z= L, with the Dirichlet boundary condition i = 0 on all the bound-
aries except that at z = L; on that boundary v is given the constant value V. See Fig. 9.1.
This is a problem in which the PDE contains no unknown parameters and should have a
unique solution.

We expect a solution of the generic form given by Eq. (9.41), with ¥, given by
Eq. (9.40). To proceed further, we need to develop the actual functional forms of X (x),
Y (y), and Z(z). For X and Y, the ODEs, written in conventional form, are

X"'=-1’X, Y'=-m’Y
with general solutions
X = Asinlx + Bcoslx, Y =A'sinmy+ B’ cosmy.

We could have written X and Y as complex exponentials, but that choice would be less
convenient when we consider the boundary conditions. To satisfy the boundary condition
at x =0, we set X(0) = 0, which can be accomplished by choosing B = 0; to satisfy
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X

y

FIGURE 9.1 Parallelepiped for solution of Laplace equation.

the boundary condition at x = ¢, we set X (c¢) = 0, which causes us to choose / such that
lc = A, where A must be a nonzero integer. Without loss of generality, we can restrict A to
positive values, as —X and X are linearly dependent. Moreover, we can include whatever
scale factor is ultimately needed in our solution for Z(z), so we may set A = 1. Similar
remarks apply to the solution Y (y), so our solutions for X and Y take the final form

il ) (9.42)

. ATTX .
X, (x) =sin (—), Y,(y) = sm(
c
withA=1,2,3,...and u=1,2,3,....
Next we consider the ODE for Z. It must be solved with a value of n? calculated from
Eq. (9.39) with k =0 as
2
=024 1.
c
This equation suggests that n will be imaginary, but that is unimportant here. Returning to
the ODE for Z, we now see that it becomes
2
7' =+5 02+ )27,
¢
and the general solution for Z(z) for given A and u is then easily identified as
g
Zu(R)=Ae >+ Be Pt with py, = —v/A2 4 p2. (9.43)
c

We now specialize Eq. (9.43) in a way that makes Z;,(0) =0 and Z; (L) = V. Noting
that sinh(,03,.2) is a linear combination of e”*#* and e™#*, we write

sinh(p,.2)

Zu(z) = v 2P
(@) sinh(ps, L)

(9.44)

At this point, we have made choices that cause all the boundary conditions to be satisfied
except that at z = L, and we are now ready to select the coefficients ay;, as required by the
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remaining boundary condition, which because of Eq. (9.44) corresponds to
1 A
V‘l’(x,y,L):/\XM:aw sin (%) sin (“T”y) —1. (9.45)

The symmetry of this expression suggests that we write ay,, = byb,,, and find the coeffi-
cients b, from the equation

szbk sin ()%) —1. (9.46)

Because the sine functions in Eq. (9.46) are the eigenfunctions of the one-dimensional
(1-D) equation for X, which is a Hermitian eigenproblem, they form an orthogonal set on
the interval (0, ¢), so the b, can be computed by the following formulas:

c

<sin <M_x>‘ 1> /sin(knx/c) dx
C

_ _ 0
CfAmx\| . [ Amx :
sin — sin T /Sinz()\,ﬂx/C) dx
0
4
=—, Xodd,
AT
=0, A even,

and our complete solution for the potential in the parallelepiped becomes

. (Amx\ . uwyy sinh(py,z)
U, v.2)=V bib - : . 9.47
(x,9,2) % 5.by sin ( . ) sm( . ) Sinh(y,L) (9.47)

As briefly mentioned earlier, PDEs also occur as eigenvalue problems. Here is a simple
example.

Example 9.4.2 QUANTUM PARTICLE IN A BOX

We consider a particle of mass m trapped in a box with planar facesatx =0,x =a, y =0,
y=0b, z=0, z=c. The quantum stationary states of this system are the eigenfunctions of
the Schrodinger equation

—~ %Vzw,y,z) =Ey(x,y,2), (9.48)

where this PDE is subject to the Dirichlet boundary condition ¢ = 0 on the walls of the
box. We identify E as the stationary-state energy (the eigenvalue), in a system of units with
m = h = 1. This is a Helmholtz equation with the new wrinkle that E is not initially known.
The boundary conditions are such that this PDE has no solution except for a set of discrete
values of E. We want to find both those values and the corresponding eigenfunctions.



420

Chapter 9 Partial Differential Equations

Separating the variables in Eq. (9.48) by assuming a solution of the form Eq. (9.30), the
PDE becomes

X// Y// Z//
| =+ —+=)=2E, 9.49
( X + Y + Z ) ©49)
and the separation yields
X//
53 = —lz, with solution X = A sinlx + B cos!/x.

After applying the boundary conditions at x =0 and x = a we get (scalingto A = 1)

. [ Amx
X;hzmn(—), A=1,2,3,..., sol=Am/a. (9.50)
a

Because the X equation is a 1-D Hermitian eigenvalue problem, these functions X (x) are
orthogonal on 0 < x <a.

Similar processing of the ¥ and Z equations, with separation constants —m?> and —n?,
yields

Y,L:sin(%) w=1,2,3,..., so m=umx/b,
9.51)
. 124
szsm<—>, v=1,2,3,..., so n=vm/c,
c

yielding two additional 1-D eigenvalue problems.
Replacing X" /X, Y" /Y, Z"/Z in Eq. (9.49), respectively, by —I?, —m?, —n?, and then
evaluating these quantities from Eqgs. (9.50) and (9.51), we have

2 2 2 2

A " v
24m?+n?=2E =" (L A 0 9.52
+m-+n , or 3 a2+b2+c2’ (9.52)

with A, u, and p arbitrary positive integers. The situation is quite different from our
solution, Example 9.4.1, of the Laplace equation. Instead of a unique solution we have
an infinite set of solutions, corresponding to all positive integer triples (A, i, v), each with
its own value of E. Making the observation that the differential operator on the left-hand
side of Eq. (9.47) is Hermitian in the presence of the chosen boundary conditions, we have
found a complete orthogonal set of its eigenfunctions. The orthogonality is obvious, as it
can be confirmed from the orthogonality of the X, Y,,, and Z, on their respective 1-D
intervals. Because we set the coefficients of all the sine functions to unity, our overall
eigenfunctions are not normalized, but we can easily normalize them if we so choose.

We close this example with the observation that this boundary-value problem will not
have a solution for arbitrarily chosen values of E, as the E values must satisfy Eq. (9.52)
with integer values of A, i, and v. This will cause the E values of the problem solutions to
be a discrete set; using terminology introduced in a previous chapter, our boundary-value
problem can be said to have a discrete spectrum. |
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Circular Cylindrical Coordinates

Curvilinear coordinate systems introduce additional nuances into the process for separating
variables. Again we consider the Helmholtz equation, now in circular cylindrical coordi-
nates. With our unknown function ¥ dependent on p, ¢, and z, that equation becomes,
using Eq. (3.149) for V?:

V2 (0, 9,2) + K>V (p, 9, 2) =0, (9.53)

or

2 2
li( %>+LM+M—H¢2¢=O. (9.54)
p 0P ap z

As before, we assume a factored form> for ¥,

V(p,9,2) =P(p)P(9)Z(2). (9.55)
Substituting into Eq. (9.46), we have
®Z d [ dP PZ d*® d*7
——(,o— +— —— + PO— +k*PDPZ=0. (9.56)
p dp \" dp 02 dg? dz?

All the partial derivatives have become ordinary derivatives. Dividing by P®Z and mov-
ing the z derivative to the right-hand side yields
1 d [ dpP 1 d*® 1d*z
pPdo \" dp p2® dy? Z dz?

Again, a function of z on the right appears to depend on a function of p and ¢ on the
left. We resolve this by setting each side of Eq. (9.57) equal to the same constant. Let us
choose* —12. Then

d*z
=1’z 9.58
dz? ©-58)
and
1 d [ dP 1 d’d
——(p— |+ ==+ =-1~ (9.59)
oPdo \" dp 02D dy?
Setting
k> + 1% =n?, (9.60)
multiplying by p?, and rearranging terms, we obtain
pd [ dP 5 1 d*®
——\p— =———. 9.61
Pdp<pdp>+np @ dg? St

3For those with limited familiarity with the Greek alphabet, we point out that the symbol P is the upper-case form of p.

4 Again, the choice of sign of the separation constant is arbitrary. However, the minus sign chosen for the axial coordinate z is
optimum if we expect exponential dependence on z, from Eq. (9.58). A positive sign is chosen for the azimuthal coordinate ¢ in
expectation of a periodic dependence on ¢, from Eq. (9.62).
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We set the right-hand side equal to m?, so

o 2o (9.62)
— =—m“P, .
d?
and the left-hand side of Eq. (9.61) rearranges into a separate equation for p:
d dpP
p— [ p— |+ 1*p* —m*> P =0. (9.63)
dp dp

Typically, Eq. (9.62) will be subject to the boundary condition that ® have periodicity 27
and will therefore have solutions

€M% or, equivalently sinme, cosmg, with integer m.

The p equation, Eq. (9.63), is Bessel’s differential equation (in the independent variable
np), originally encountered in Chapter 7. Because of its occurrence here (and in many
other places relevant to physics), it warrants extensive study and is the topic of Chapter 14.
The separation of variables of Laplace’s equation in parabolic coordinates also gives rise
to Bessel’s equation. It may be noted that the Bessel equation is notorious for the variety
of disguises it may assume. For an extensive tabulation of possible forms the reader is
referred to Tables of Functions by Jahnke and Emde.’

Summarizing, we have found that the original Helmholtz equation, a 3-D PDE, can be
replaced by three ODEs, Eqgs. (9.58), (9.62), and (9.63). Noting that the ODE for p contains
the separation constants from the z and ¢ equations, the solutions we have obtained for the
Helmbholtz equation can be written, with labels, as

Yim(p, ¢, 2) = Pin(0) P () Z;(2), (9.64)

where we probably should recall that the n in Eq. (9.63) for P is a function of / (specif-
ically, n> = 12 + k?). The most general solution of the Helmholtz equation can now be
constructed as a linear combination of the product solutions:

V(0 9,2) =) ainPin(p) P (9) Z12). (9.65)
I,m

Reviewing what we have done, we note that the separation could still have been achieved
if & had been replaced by any additive function of the form

K — f+ &f) +h(z).
0

Example 9.4.3 CYLINDRICAL EIGENVALUE PROBLEM

In this example we regard Eq. (9.53) as an eigenvalue problem, with Dirichlet boundary
conditions v = 0 on all boundaries of a finite cylinder, with k2 initially unknown and to be
determined. Our region of interest will be a cylinder with curved boundaries at p = R and
with end caps at z = £L/2, as shown in Fig. 9.2. To emphasize that k? is an eigenvalue,

5E. Jahnke and F. Emde, Tables of Functions, 4th rev. ed., New York: Dover (1945), p. 146; also, E. Jahnke, F. Emde, and
F. Losch, Tables of Higher Functions, 6th ed., New York: McGraw-Hill (1960).
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77777 -L/2
FIGURE 9.2  Cylindrical region for solution of the Helmholtz equation.

we rename it A, and our eigenvalue equation is, symbolically,
—V2y =y, (9.66)

with boundary conditions ¥ = 0 at p = R and at z = £L /2. Apart from constants, this is
the time-independent Schrodinger equation for a particle in a cylindrical cavity. We limit
the present example to the determination of the smallest eigenvalue (the ground state).
This will be the solution to the PDE with the smallest number of oscillations, so we seek a
solution without zeros (nodes) in the interior of the cylindrical region.

Again, we seek separated solutions of the form given in Eq. (9.55). The ODEs for Z and
®, Egs. (9.58) and (9.62), have the simple forms

Z//=l2Z q>//=_m2q>
with general solutions
Z=Ae*+Be™?, ®=A'sinmg+ B cosme.

We now need to specialize these solutions to satisfy the boundary conditions. The condition
on @ is simply that it be periodic in ¢ with period 27 ; this result will be obtained if m is
any integer (including m = 0, which corresponds to the simple solution & = constant).
Since our objective here is to obtain the least oscillatory solution, we choose that form,
® = constant, for ®.
Looking next at Z, we note that the arbitrary choice of sign for the separation constant
has led to a form of solution that appears not to be optimum for fulfilling conditions
requiring Z = 0 at the boundaries. But, writing /> = —w?, [ = iw, Z becomes a linear
combination of sin wz and cos wz; the least oscillatory solution with Z(£L/2) =0is Z =
cos(wz/L),so w=m/L,and [> = —7?/L.

The functions Z(z) and ®(¢) that we have found satisfy the boundary conditions in z
and ¢ but it remains to choose P(p) in a way that produces P = 0 at p = R with the least
oscillation in P. The equation governing P, Eq. (9.63), is

12

0’ P’ + pP +n?p*P =0, (9.67)
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where n was introduced as satisfying (in the current notation) n? = A + (2, see Eq. (9.60).
Continuing now with Eq. (9.67), we identify as the Bessel equation of order zero in x = np.
As we learned in Chapter 7, this ODE has two linearly independent solutions, of which
only the one designated Jp is nonsingular at the origin. Since we need here a solution that
is regular over the entire range 0 < x < nR, the solution we must choose is Jy(1p).

We can now see what is necessary to satisfy the boundary condition at p = R, namely
that Jo(nR) vanish. This is a condition on the parameter n. Remembering that we want
the least oscillatory function P, we need for n to be such that nR will be the location of
the smallest zero of Jy. Giving this point the name « (which by numerical methods can
be found to be approximately 2.4048), our boundary condition takes the form nR = «, or
n = «/R, and our complete solution to the Helmholtz equation can be written

ap Tz
,0,2) = J, (—) cos (—) 9.68
Vip.e.0)=h (7% 3 (9-68)

To complete our analysis, we must figure out how to arrange that n = «/R. Since the
condition connecting n, [, and A rearranges to

r=n>—12, (9.69)

we see that the condition on n translates into one on A. Our PDE has a unique ground-
state solution consistent with the boundary conditions, namely an eigenfunction whose
eigenvalue can be computed from Eq. (9.69), yielding

o 7?

If we had not restricted consideration to the ground state (by choosing the least
oscillatory solution), we would have (in principle) been able to obtain a complete set of
eigenfunctions, each with its own eigenvalue. |

Spherical Polar Coordinates

As a final exercise in the separation of variables in PDEs, let us try to separate
the Helmholtz equation, again with k> constant, in spherical polar coordinates. Using
Eq. (3.158), our PDE is

2
! |:sin088—r (rz%) + i <sin9%) + L2 I//i| = —k%y. (9.70)

r2siné ar 30 20 sinf 9¢?
Now, in analogy with Eq. (9.30) we try
Y (r,0,9) =R(r)OO)D(p). 9.71)

By substituting back into Eq. (9.70) and dividing by RO®®, we have

L d(,dRY 1 d (. dOy | d’® 2 ©.72)
—s— | rF— —————— | sinf—— ————— = —k". .
Rr2dr dr ®rZsind do de ®r2sin2 0 dg?
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Note that all derivatives are now ordinary derivatives rather than partials. By multiplying
by r2sin” 0, we can isolate (1/®)(d?>®/dg?) to obtain

1d*e  ,  , , 1 d({,dR 1 d (. de
——— =r"sin“f| k" ————|r"— )| — ———|sin6— ) |. (9.73)
® do? Rr2dr dr Or2sinf db do

Equation (9.73) relates a function of ¢ alone to a function of r and 6 alone. Since r, 6,
and ¢ are independent variables, we equate each side of Eq. (9.73) to a constant. In almost
all physical problems, ¢ will appear as an azimuth angle. This suggests a periodic solution
rather than an exponential. With this in mind, let us use —m? as the separation constant,
which then must be an integer squared. Then

1 d*®
1309 _ 2 9.74)
® dyp?
and
I d(dRY 1 d (. dO m? 2 ©.75)
—— | r— ———— | sinf— ) - ——— = —k". .
Rr2dr \' dr ) ©r2sinf déo do )  r2sin’6
Multiplying Eq. (9.75) by r* and rearranging terms, we obtain
1d(,dR - 1 d (. de m?
—-— — k“=— — 60— —_—. 9.76
Rdr (r dr>+r osinoas """ ag ) e ©.76)
Again, the variables are separated. We equate each side to a constant, A, and finally obtain
L4 (0% ™ o0 —0 9.77)
— l — — — 3 .
sinf do de sin” 0
1 d ([ ,dR 5 AR
—-— — k“"R— — =0. 9.78
r2 dr (r dr ) + r2 ©.78)

Once more we have replaced a partial differential equation of three variables by three
ODEs.

The ODE for @ is the same as that encountered in cylindrical coordinates, with solutions
exp(Eime) or sinmg, cosme. The ® ODE can be made less forbidding by changing the
independent variable from 6 to t = cos @, after which Eq. (9.77), with ®(8) now written
as P(cosf) = P(t), becomes

2
1—12
This is the associated Legendre equation (called the Legendre equation if m = 0), and is
discussed in detail in Chapter 15. We normally require solutions for P (¢) that do not have
singularities in the region within the range of the spherical polar coordinate 6 (namely
that it be nonsingular for the entire range 0 < 6 < &, equivalent to —1 <t < +1). The
solutions satisfying these conditions, called associated Legendre functions, are tradition-
ally denoted P;", with / a nonnegative integer. In Section 8.3 we discussed the Legendre
equation as a 1-D eigenvalue problem, finding that the requirement of nonsingularity
at + = £1 is a sufficient boundary condition to make its solutions well defined. We
found also that its eigenfunctions are the Legendre polynomials and that its eigenvalues

A =>)P"(t) = 2tP'(t) —

P(t) +AP(t) =0. (9.79)



426

Chapter 9 Partial Differential Equations

(A in the present notation) have the values /(I 4 1), where [ is an integer. The generalization
of these findings to the associated Legendre equation (that with nonzero m) shows that A
continues to be given as /(I 4 1), but with the additional restriction that [ > |m|. Details are
deferred to Chapter 15.

Before continuing to the R equation, Eq. (9.78), let us observe that in deriving the ® and
© equations we have assumed that k> was a constant. However, if k> was not a constant,
but an additive expression of the form

2 8®) hip)
o Jod r? +r2sin29’

we could still carry out the separation of variables, but the relatively familiar ® and ®
equations we have identified will be changed in ways that make them different, and prob-
ably less tractable. However, if the departure of k> from a constant value is restricted to
the form k% = k(r), then the angular parts of the separation will remain as presented
in Egs. (9.74) and (9.79), and we only need to deal with increased generality in the R
equation.

It is worth stressing that the great importance of this separation of variables in spherical
polar coordinates stems from the fact that the case k% = k2(r) covers a tremendous amount
of physics, such as a great deal of the theories of gravitation, electrostatics and atomic,
nuclear, and particle physics. Problems with k> = k?(r) can be characterized as central
force problems, and the use of spherical polar coordinates is natural in such problems.
From both a practical and a theoretical point of view, it is a key observation that the angu-
lar dependence is isolated in Eqs. (9.74) and (9.77), or its equivalent, Eq. (9.79), that these
equations are the same for all central force problems, and that they can be solved exactly.
A detailed discussion of the angular properties of central force problems in quantum me-
chanics is deferred to Chapter 16.

Returning now to the remaining separated ODE, namely the R equation, we consider in
some depth two special cases: (1) The case k> = 0, corresponding to the Laplace equation,
and (2) k* a nonzero constant, corresponding to the Helmholtz equation. For both cases we
assume that the & and ® equations have been solved subject to the boundary conditions
already discussed, so that the separation constant A must have the value /(I + 1) for some
nonnegative integer /. Continuing on the assumption that k2 is a (possibly zero) constant,
Eq. (9.79) expands into

PR’ +2r R + [kzr2 — 1+ 1)] R=0. (©-80)

Taking first the case of the Laplace equation, for which k%> = 0, Eq. (9.80) is easy to
solve. Either by inspection or by attempting to carry out a series solution by the method
of Frobenius, it is found that the initial term of the series, aor?, is by itself a complete
solution to Eq. (9.80). In fact, substituting the assumed solution R = r* into Eq. (9.80),
that equation reduces to

s(s—=Drf+2sr* =1+ 1Drf =0,

showing that s(s + 1) =I(l 4+ 1), which has two solutions, s = (obviously), and s =
—I — 1. In other words, given the value / from the choice of solution to the ® equation,
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we find that the R equation (for the Laplace equation) has the two solutions r/ and r /=1,
so its general solution takes the form

R(ry=Arl+Br~'=1, (9.81)

Combining the solutions to the separated ODEs, and summing over all choices of the
separation constants, we see that the most general solution of the Laplace equation that has
a nonsingular angular dependence can be written

Y(r,6,9) = Z(Almrl + Byr 7Y P (cos 0) (A}, sinmg + By, cosmg).  (9.82)

l,m

If our problem now has Dirichlet or Neumann boundary conditions on a spherical surface
(with the region under study either within or outside the sphere), we may be able (by meth-
ods more fully articulated in later chapters) to choose the coefficients in Eq. (9.82) so that
the boundary conditions are satisfied. Note that if the region in which we are to solve the
Laplace equation includes the origin, r = 0, then only the r/ term should be retained and
we set By, to zero. If our region for the Laplace equation is, say, external to a sphere of
some finite radius, then we must avoid the large-r divergence of r! and set A, to zero,
retaining only r—/~1. More complicated cases, e.g., where we study the annular region
between two concentric spheres, will require the retention of both Ay, and By, and will in
general be somewhat more difficult.

We continue now to the case of nonzero but constant k2. Equation (9.80) looks a lot
like a Bessel equation, but differs therefrom by the coefficient “2” in the R’ term and the
factor k> that multiplies r2 in the coefficient of R. Both these differences can be resolved
by rewriting R(r) as

_ Z(kr)

R(")—W,

(9.83)
which will then give us a differential equation for Z. Carrying out the differentiations to
obtain R’ and R” in terms of Z, and changing the independent variable from r to x = kr,
Eq. (9.83) becomes

27" +x7 + [x2 —(+ %)2] Z=0, ©-84)

showing that Z is a Bessel function, of order / + % Returning to Eq. (9.83), we can now
identify R(r) in terms of quantities known as spherical Bessel functions, where j;(x), the
spherical Bessel functions that are regular at x = 0, have definition

o /?J
Ji(x) = = 141/2(x).

Since the status of R(r) as the solution to a homogeneous ODE is not affected by the scale
factor in the definition of j;(x), we see that Eq. (9.83) is equivalent to the observation that
Eq. (9.80) has a solution j; (kr). The spherical Bessel function that is the second solution of
Eq. (9.80) is designated y;, so that solution is y;(kr), and the general solution of Eq. (9.80)
can be written

R(r) = Aji(kr) + By;(kr). (9.85)
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We note here that the properties of spherical Bessel functions are discussed more fully in
Chapter 14.

With the solutions to the radial ODE in hand, we can now write that the general solution
to the Helmholtz equation in spherical polar coordinates takes the form

Y (r.0,9) = [Amjitkr) + Binyi(kr)] x P" (cos8)(A},, sinmg + B}, cosm).
I,m

(9.86)

The above discussion assumes that k> > 0; negative values of k> (and therefore
imaginary values of k) simply correspond to our identifying an equation of the form
(V2 — k?)y =0 as a somewhat peculiar case of (V2 + k*)y = 0. For negative k2, we
can see we then get solutions that involve jj(kr) or y;(kr) with imaginary k. In order
to avoid notations that unnecessarily involve imaginary quantities, it is usual to define a
new set of functions i;(x) that are proportional to j;(ix), and are called modified spher-
ical Bessel functions. The modified solutions parallel to y;(ix) are denoted k;(x). These
functions are also discussed in Chapter 14.

The cases we have just surveyed do not, of course, cover all possibilities, and various
other choices of k%(r) lead to problems that are of importance in physics. Without pro-
ceeding to a detailed analysis here, we cite a couple:

e Taking ko = A/r + A yields (with boundary condition that i vanish in the limit
r — oo) the time-independent Schrédinger equation for the hydrogen atom; the R
equation can then be identified as the associated Laguerre differential equation, dis-
cussed in Chapter 18.

e Taking k? = Ar? + A yields (with boundary condition at = 0o0) the equation for the
3-D quantum harmonic oscillator, for which the R equation can be reduced to the
Hermite ODE, also discussed in Chapter 18.

Some other boundary-value problems lead to well-studied ODEs. However, sometimes the
practicing physicist will encounter a radial equation that may have to be solved using the
techniques presented in Chapter 7, or if all else fails, by numerical methods.

We close this subsection with an example that is a simple boundary-value problem in
spherical coordinates.

Example 9.4.4 SPHERE WITH BOUNDARY CONDITION

In this example we solve the Laplace equation for the electrostatic potential ¥ (r) in a
region interior to a sphere of radius a, using spherical polar coordinates (r, 8, ¢) with
origin at the center of the sphere. Our solution is to be subject to the Neumann boundary
condition dyy/dn = —Vp cos 6 on the spherical surface. See Fig. 9.3.

To start, we note that totally arbitrary Neumann boundary conditions will not be consis-
tent with our assumption of a charge-free sphere, as the integral of the normal derivative on
the spherical surface gives, according to Gauss’ law, a measure of the total charge within.
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— Zero 7Zero ——

FIGURE 9.3  Arrows indicate sign and relative magnitude of the (inward) normal
derivative of the electrostatic potential on a spherical surface (boundary condition
for Example 9.4.4).

The present example is internally consistent, as

2

T
/cos@dc:/d@/dgocos@—
0 0

S

Next, we need to take the general solution for the Laplace equation within a sphere, as
given by Eq. (9.82), and calculate therefrom the inward normal derivative at r = a. Since
the normal is in the —r direction, we need only compute —dr/dr, evaluated at r = a.
Noting that for the present problem B, = 0, our boundary condition becomes

—Vcosf = — Zl A ' P" (cos0) (A}, sinmg + B}, cosmg).

I,m

Since the left-hand side of this equation is independent of ¢, its right-hand side has nonzero
coefficients only for m = 0, for which we only have the term originally containing B,
because sin(0) = 0. Thus, consolidating the constants, the boundary condition becomes
the simpler form

—Veost=—Y 1A'~ Pcosh), (9.87)

l
Without having made a detailed study of the properties of Legendre functions, the solution
of an equation of this type might need to be deferred to Chapter 15, but this one is easy

to solve because Pj(cos6@) = cosf (see Legendre polynomials in Table 15.1) Thus, from
Eq. (9.87),

1A= = Vv,

so A1 =V and all the other coefficients except Ag vanish. The coefficient Ay is not deter-
mined by the boundary conditions and represents an arbitrary constant that may be added
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to the potential. Thus, the potential within the sphere has the form
Y =VrPi(cosO)+ Ag=Vrcosd + Ag=Vz+ Ay,

corresponding to a uniform electric field within the sphere, in the —z direction and of
magnitude V. The electric field is, of course, unaffected by the arbitrary value of the
constant Ag. [ |

Summary: Separated-Variable Solutions

For convenient reference, the forms of the solutions of Laplace’s and Helmholtz’s equa-
tions for spherical polar coordinates are collected in Table 9.2. Although the ODEs
obtained from the separation of variables are the same irrespective of the boundary con-
ditions, the ODE solutions to be used, and the constants of separation, do depend on the
boundaries. Boundaries with less than spherical symmetry may lead to values of m and
[ that are not integral, and may also require use of the second solution of the Legendre
equation (quantities normally denoted Q;"). Engineering applications frequently require
solutions to PDEs for regions of low symmetry, but such problems are nowadays almost
universally approached using numerical, rather than analytical methods. Consequently,
Table 9.2 only contains data that are relevant for problems inside or outside a spherical
boundary, or between two concentric spherical boundaries. This restriction to spherical
symmetry causes the angular portion of the solutions to be uniquely of the form we have
already identified.

In contrast to the unique angular solution, both linearly independent solutions to the
radial ODE are relevant, with the choice of solution dependent on the geometry. Solutions
within a sphere must employ only the radial functions that are regular at the origin, i.e.,
rl. ji, or i;. Solutions external to a sphere may employ r—/~!, k; (defined so that it will
decay exponentially to zero at large r), or a linear combination of j; and y; (both of which
are oscillatory and decay as r~!/2). Solutions between concentric spheres can use both the
radial functions appropriate to the PDE.

It is also possible to summarize the forms of solution to the Laplace and Helmholtz
equations in circular cylindrical coordinates, if we restrict attention to problems that have
circular symmetry about the axial direction of the coordinate system. However, the situa-
tion is considerably more complicated than for spherical coordinates, as we now have two

Table 9.2 Solutions of PDEs in Spherical Polar Co-

ordinates?
ajm cosme + by, sinme)
Y=Y fit)P" (cos0) or
Im Clmeimgo
V2§ =0 fl(r):rl, ri=l
V24 + k2 =0 fi(r) = ji(kr), yi(kr)
V2y —k2y =0 fi(ry=ig(kr), ky(kr)

@ For iy, ji, ki, yi, see Chapter 14; for P/", see Chapters 15 and 16.
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Table 9.3  Solutions of PDEs in Circular Cylindrical Coordinates®

Ama COSMP + by sinme)

Y= Z fma (p)ga(2) Or'
m,a Cmae™?
vy =0 Sma (0) = Im(ap), Y (ap) 8a(2) = e%%, e7 %%
or  fma(p)=Im(ap), Km(ap) ga(2) = sin(az), cos(az) or %
or  fma(p)=p", p7" gu(z)=1
V2 +ay =0 fma(p) = Jm(@p)., Y (ctp)
if,82:a2—k>0, ga(z):eﬁz, e Pz
if 2 =2 —a? >0, 8a(2) = sin(Bz), cos(Bz) or e'F?
if A =a?, gx)=1
or Jfma (p) = Im(ap), K (ap)
ifg2=—-xr—a?>0, ga(2) = P2, e P2
ifgZ=xr+a2>0, ga(2) = sin(Bz), cos(Bz) or e'P?
ifa=—a2, (@) =1
or Sfma(0)=p", p7"
ifg2=—1>0, ga(z) =eP?, e P2
ifﬁ2 =A>0, ga (z) = sin(Bz), cos(Bz) or eihz

@ The parameter o can have any real values consistent with the boundary conditions. For I,,,,
Jms Km, Ym, see Chapter 14.

coordinates (p and z) that can have a variety of boundary conditions, in contrast to the
single such coordinate () in the spherical system. In spherical coordinates the form of the
radial function is completely determined by the PDE, and specific problems differ only
in the choice (or relative weight) of the two linearly independent radial solutions. But in
cylindrical coordinates the forms of the p and z solutions, as well as their coefficients, are
determined by the boundary conditions, and not entirely by the value of the constant in the
Helmholtz equation. Choices of the p and z solutions, though coupled, can vary widely.
For details, the reader is referred to Table 9.3.

Our final observations of this section deal with the functions we encountered in the
course of the separations in cylindrical and spherical coordinates. For the purpose of this
discussion, it is useful to think of our PDE as an operator equation subject to boundary
conditions. If, in cylindrical coordinates, we restrict attention to PDEs in which the param-
eter k2 is independent of ¢ (and with boundary conditions that do not depend upon ¢), we
have chosen our operator equation as one that has circular symmetry. Moreover, we will
then always get the same @ equation, with (of course) the same solutions. In these cir-
cumstances, the solutions will have symmetry properties derived from those of our overall
boundary-value problem.® The ® equation can also be thought of as an operator equa-
tion, and we can go further and identify the operator as L% = —02/9¢?, where L, is the
z component of the angular momentum. The solutions of the ® equation are eigenfunc-
tions of this operator; the reason they can occur as part of the PDE solution is because

6Note that the solutions to a boundary-value problem need not have the full problem symmetry (a point that will be elaborated
in great detail when we develop group-theoretical methods). An obvious example is that the Sun-Earth gravitational potential is
spherically symmetric, while the most familiar solution (the Earth’s orbit) is planar. The dilemma is resolved by noting that the
spherical symmetry manifests itself in the possible existence of Earth orbits at all angular orientations.
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L% commutes with the operator defining the PDE (clearly so, because the PDE operator
does not contain ¢). In other words, because L? and the PDE operator commute, they will
have simultaneous eigenfunctions, and the overall solutions of the PDE can be labeled to
identify the Lg eigenfunction that was chosen.

Looking now at the situation in spherical polar coordinates, we note that if k2 is inde-
pendent of the angles, i.e., k> = k>(r), then our PDE always has the same angular solutions
O, (0) D, (¢). Looking further at the angular terms of our PDE, we can identify them as
the operator L2, and we see that the angular solutions we have found are eigenfunctions of
this operator. When the PDE operator is independent of the angles, it will commute with
L? and the solutions to the PDE can be labeled accordingly. These symmetry features are
very important and are discussed in great detail in Chapter 16.

Exercises

94.1

9.4.2

9.4.3

9.4.4

9.4.5

By letting the operator V2 + k2 act on the general form ajvyy(x, y, z) + axya(x, v, 2),
show that it is linear, i.e., that (V2 + k) (a1y1 + arynn) = ai (V% + K2y + a (V% +
).

Show that the Helmholtz equation,

VY + iy =0,
is still separable in circular cylindrical coordinates if k? is generalized to k> + f(p) +
(1/p*)8(9) + h(2).

Separate variables in the Helmholtz equation in spherical polar coordinates, splitting off
the radial dependence first. Show that your separated equations have the same form as
Eqgs. (9.74), (9.77), and (9.78).

Verify that

1 1
V23U (r.60.9) + |:k2 + )+ —-80)+ 2.—2h(<ﬂ)} V(r,0,9)=0
r r<sin“ 6

is separable (in spherical polar coordinates). The functions f, g, and & are functions
only of the variables indicated; k? is a constant.

An atomic (quantum mechanical) particle is confined inside a rectangular box of sides
a, b, and c. The particle is described by a wave function ¥ that satisfies the Schrodinger
wave equation

hZ
—— VXY = Evy.
2m

The wave function is required to vanish at each surface of the box (but not to be identi-
cally zero). This condition imposes constraints on the separation constants and therefore
on the energy E. What is the smallest value of E for which such a solution can be

obtained?
212
w-h 1 1 1
ANS. E=—[—=+—=+—=).
2m <a2 tet cz)
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9.4.6 The quantum mechanical angular momentum operator is given by L =
—i(r x V). Show that
L-Ly=I(+ Dy

leads to the associated Legendre equation.
Hint. Section 8.3 and Exercise 8.3.1 may be helpful.

9.4.7 The 1-D Schrodinger wave equation for a particle in a potential field V = %kx2 is
> d*y 1

5ot Ekle// =Ey(x).

(a) Defining

and setting & = ax, show that

d*y (&)
dsz

+ O —EHY(E) =0.
(b) Substituting

)
vE =yEe 2
show that y (&) satisfies the Hermite differential equation.

9.5 LAPLACE AND P0OI1SSON EQUATIONS

The Laplace equation can be considered the prototypical elliptic PDE. At this point we
supplement the discussion motivated by the method of separation of variables with some
additional observations. The importance of Laplace’s equation for electrostatics has stim-
ulated the development of a great variety of methods for its solution in the presence of
boundary conditions ranging from simple and symmetrical to complicated and convoluted.
Techniques for present-day engineering problems tend to rely heavily on computational
methods. The thrust of this section, however, will be on general properties of the Laplace
equation and its solutions.

The basic properties of the Laplace equation are independent of the coordinate system
in which it is expressed; we assume for the moment that we will use Cartesian coordinates.
Then, because the PDE sets the sum of the second derivatives, 8%/ ax?, to zero, it is
obvious that if any of the second derivatives has a positive sign, at least one of the others
must be negative. This point is illustrated in Example 9.4.1, where the x and y dependence
of a solution to the Laplace equation was sinusoidal, and as a result, the z dependence was
exponential (corresponding to different signs for the second derivative). Since the second
derivative is a measure of curvature, we conclude that if ¥ has positive curvature in any
coordinate direction, it must have negative curvature in some other coordinate direction.
That observation, in turn, means that all the stationary points of ¥ (points where its
first derivatives in all directions vanish) must be saddle points, not maxima or minima.
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Since the Laplace equation describes the static electric potential in charge-free regions, we
conclude that the potential cannot have an extremum at a point where there is no charge.
A corollary to this observation is that the extrema of the electrostatic potential in a charge-
free region must be on the boundary of the region.

A related property of the Laplace equation is that its solution, subject to Dirichlet bound-
ary conditions for the entire closed boundary of its region, is unique. This property applies
also to its inhomogeneous generalization, the Poisson equation. The proof is simple: Sup-
pose there are two distinct solutions y; and ¥ for the same boundary conditions. Then,
their difference ¢ = yr; — v, (for either the Laplace or Poisson equation) will be a solution
to the Laplace equation with ¢ = 0 on the boundary. Since ¥ cannot have extrema within
the bounded region, it must be zero everywhere, meaning that r; = .

If we have a Laplace or Poisson equation subject to Neumann boundary conditions on
the entire closed boundary of its region, then the difference v = | — ¥ of two solutions
will also be a solution to the Laplace equation with a zero Neumann boundary condition.
To analyze this situation, we invoke Green’s Theorem, in the form provided by Eq. (3.86),
taking both u and v of that equation to be . Equation (3.86) then becomes

o s
/wa—nds_/wv ¢d1+/vw-vwdu (9.88)
S \4 \4

The boundary condition causes the left-hand side of Eq. (9.88) to vanish, the first integral
on the right-hand side vanishes because ' is a solution of the Laplace equation, and the
remaining integral on the right-hand side must therefore also vanish. But that integral can
only vanish if Vi is zero everywhere, which can only be true if ¢ is constant. Thus,
solutions to the Laplace equation with Neumann boundary conditions are also unique,
except for an additive constant to the potential.

An oft-cited application of this uniqueness theorem is the solution of electrostatics prob-
lems by the method of images, which replaces a problem containing boundaries by one
without a boundary but with additional charge added in such a way that the potential at
the boundary location has the desired value. For example, a positive charge in front of a
grounded boundary (one with ¥ = 0) can be augmented by a negative charge at the mirror-
image position behind the boundary. Then the two-charge system (ignoring the boundary)
will yield the desired zero potential at the boundary location, and the uniqueness theorem
tells us that the potential calculated for the two-charge system must be the same (within
the original region) as that for the original system.

Exercises

9.5.1

9.5.2
9.5.3

Verify that the following are solutions of Laplace’s equation:

1
(@ Y1=1/r, r#0, (b) WZZmMZ

r—z

If W is a solution of Laplace’s equation, V>W = 0, show that 9¥/dz is also a solution.

Show that an argument based on Eq. (9.88) can be used to prove that the Laplace and
Poisson equations with Dirichlet boundary conditions have unique solutions.
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9.6 WAVE EQUATION

The wave equation is the prototype hyperbolic PDE. As we have seen earlier in this chap-
ter, hyperbolic PDEs have two characteristics, and for the equation

1 3%y 3%y

292 T ax2
the characteristics are lines of constant x — ¢t and those of constant x + ct. This means
that the general solution to Eq. (9.89) takes the form

U, 1) = f(x —ct) +g(x +ct), (9.90)

with f and g completely arbitrary.

Viewing x as a position variable and ¢ as the time, we can interpret f(x — ct) as a wave,
moving with velocity c, in the 4+x direction. By this we mean that the entire profile of f,
as a function of x at r = 0, will be shifted uniformly toward positive x by an amount ¢
when t = 1. See Fig. 9.4. Similarly, g(x 4 ct) describes a wave moving at velocity c¢ in the
—x direction. Because f and g are arbitrary, the traveling waves they describe need not
be sinusoidal or periodic, but may be entirely irregular; moreover, there is no requirement
that f and g have any particular relationship to each other.

An obvious special case of the general situation described above is that when f(x — ct)
is chosen to be sinusoidal, f = sin(x — ct). For simplicity we have taken f to have unit
amplitude and wavelength 2. We also take g(x + ct) to be g = sin(x + ct), a sinusoidal
wave of the same wavelength and amplitude traveling in the direction opposite to f. At a
point x and time ¢, these two waves add to produce a resultant

(9.89)

¥(x,t) =sin(x — ct) + sin(x + ct),
which, using trigonometric identities, can be rearranged to
Y(x,t) = (sinx cosct —cosxsinct) + (sinx cosct + cos x sinct) = 2sinx cos ct.

This form for ¢ can be identified as a standing wave distribution, meaning that the time
evolution of the wave’s profile in x is an oscillation in amplitude, with the wave pattern
not moving in either direction. An obvious point of difference from a traveling wave is
that for a standing wave, the nodes (points where v = 0) are stationary in time, while in a
traveling wave they are moving in time at velocity +c.

Our current interest in traveling vs. standing waves is their relation to solutions to
the wave equation that we might find using the method of separation of variables. That
method would obviously lead us to standing-wave solutions. However, it is useful to note
that the totality of the solution set from the separated variables has the same content as

FIGURE 9.4 Traveling wave f(x — ct). Dashed line is profile at t = 0; full line is
profile at a time ¢ > 0.
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the traveling-wave solutions. For example, the products sinx cosct and cosxsinct are
solutions we would get by separating the variables, and linear combinations of these yield
sin(x =+ ct).

d’Alembert’s Solution

While all ways of writing the general solution to the wave equation are mathemati-
cally equivalent, diverse forms differ in their convenience of use for various purposes.
To illustrate this, we consider how we might construct a solution to the wave equation,
given, as an initial condition, (1) the entire spatial distribution of the wave amplitude at
t =0 and (2) the time derivative of the wave amplitude at ¢+ = O for the entire spatial distri-
bution. The solution to this problem is generally referred to as d’Alembert’s solution of
the wave equation; it was also (and slightly earlier) found by Euler.

We start by using Eq. (9.90) to write our initial conditions in terms of the presently
unknown functions f and g:

¥(x,0) = f(x)+gx), (9.91)

ol 1t

M‘ — —cf'(x) + g’ (x). (9.92)
at =0

We now integrate Eq. (9.92) between the limits x — c¢ and x + ¢t (and divide the result

by 2c¢), obtaining

x—+ct
2_1c / de = %[ —fx+cet)+ f(x—ct)+gx+ct) —glx — ct)]. (9.93)
xX—ct

From Eq. (9.91), we also have

1
E[l/f(x +ct,0) + Y (x —ct,0)] =

%[f(x+ct)+g(x+ct)+f(x—ct)+g(x—ct)]. (9.94)

Adding together the right-hand sides of Egs. (9.93) and (9.94), half the terms cancel, and
those that survive combine to give the result

f(x —ct)+g(x +ct), whichis ¥ (x,1).
Therefore, from the left-hand sides of Egs. (9.93) and (9.94), we obtain the final result

x+ct
1/f(x,t)=l[Iﬂ(X-FCt,O)—Fw(X—CI,O)]—Fi f de. (9.95)
2 2c at
x—ct

This equation gives ¥ (x, t) in terms of data at + = 0 that are within the distance ct of
the point x. This is a reasonable result, since ct is the distance that waves in this problem
can move between times ¢ = 0 and ¢ = ¢. More specifically, Eq. (9.95) contains terms that
represent half the t = 0 amplitude at distances +ct from x (half, because a disturbance that
starts at these points is split between propagation in both directions), plus an additional
integral that accumulates the effect of the initial amplitude derivative over the region of
influence.
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Exercises

Solve the wave equation, Eq. (9.89), subject to the indicated conditions.

9.6.1 Determine ¥ (x, t) given that at r =0 yo(x) = sinx and 9y (x)/dt = cos x.

9.6.2 Determine v (x, ¢) given that at t = 0 ¥ (x) = 8 (x) (Dirac delta function) and the initial
time derivative of v is zero.

9.6.3 Determine v (x, t) given that at t = 0 o(x) is a single square-wave pulse as defined
below, and the initial time derivative of i is zero.

Vo) =0, [x[>a/2, vYox)=1/a, |x|<a/2.
9.6.4 Determine ¥ (x, t) given that at r =0 9 = 0 for all x, but 9y /3t = sin(x).

9.7 HEAT-FLOW, OR DIFFUSION PDE

Here we return to a parabolic PDE to develop methods that adapt a special solution of a
PDE to boundary conditions by introducing parameters. The methods are fairly general
and apply to other second-order PDEs with constant coefficients as well. To some extent,
they are complementary to the earlier basic separation method for finding solutions in a
systematic way.

We consider the 3-D time-dependent diffusion PDE for an isotropic medium, using it
to describe heat flow subject to given boundary conditions. Assuming isotropy actually is
not much of a restriction because, in case we have different (constant) rates of diffusion in
different directions, for example, in wood, our heat-flow PDE takes the form

Y L% LY L%y
—=a"— +b'— +c"—,
ot ox dy? B
if we put the coordinate axes along the principal directions of anisotropy. Now we sim-
ply rescale the coordinates using the substitutions x = a&€, y = bn, z = ¢{ to get back the
original isotropic form of Eq. (9.96),
90 020 N 9D N 9’ d ©.97)
ot 9g2  anr - ar?’ '
for the temperature distribution function ®(&,7n,¢,t) =¥ (x, v, z,1).

For simplicity, we first solve the time-dependent PDE for a homogeneous one-

dimensional medium, a long metal rod in the x-direction, for which the PDE is

Y %Y
- —a?—L,
ot 0x2
where the constant @ measures the diffusivity, or heat conductivity, of the medium. We
obtain solutions to this linear PDE with constant coefficients by the method of separation
of variables, for which we set ¥ (x, 1) = X (x)T (), leading to the separate equations
1dT 1d?’X B
T dr 7 Xdx* a?
These equations have, for any nonzero value of A, solutions 7 = €#’ and X = e***, with
o = B/a’. We seek solutions whose time dependence decays exponentially at large ¢,

(9.96)

(9.98)
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that is, solutions with negative values of 8, and therefore set @ = iw, a? = —? for real w,
and have
U (x,1) = % e — (coswx £ i sinwx)e” 4 (9.99)
Note that § = 0, for which
¥ (x,1) = Cox + Co, (9.100)

is also included in the solution set for the PDE. If we use this solution for a rod of infinite
length, we must set C, = 0 to avoid a nonphysical divergence; in any case, the value of Cy
is then the constant value that the temperature approaches at long times.

Forming real linear combinations of sinwx and cos wx with arbitrary coefficients, and
keeping the B = 0 solution, we obtain from Eq. (9.99) for any choice of A, B, w, C), and
Co, a solution

Y(x,t)=(Acoswx + B sina)x)e_“’zazt + Cyx + Co. (9.101)

Solutions for different values of these parameters can now be combined as needed to form
an overall solution consistent with the required boundary conditions.

If the rod we are studying is finite in length, it may be that the boundary conditions can
be satisfied if we restrict w to discrete nonzero values that are multiples of a basic value wy.
For a rod of infinite length, it may be better to let w assume a continuous range of values,
so that i (x, ¢) will have the general form

W(x,1) = / [A(w) cos wx + B(w) sinwxle~ " dw + Co. (9.102)
We call specific attention to the fact that

e Forming linear combinations of solutions by summation or integration over parameters
is a powerful and standard method for generalizing specific PDE solutions in order to
adapt them to boundary conditions.

Example 9.7.1 A SPECIFIC BOUNDARY CONDITION

Let us solve a 1-D case explicitly, where the temperature at time r = 0 is Yo(x) =1 =
constant in the interval between x = +1 and x = —1 and zero for x > 1 and x < —1. At
the ends, x = £1, the temperature is always held at zero. Note that this problem, including
its initial conditions, has even parity, ¥o(x) = Yo(—x), so ¥ (x, ) must also be even.

We choose the spatial solutions of Eq. (9.98) to be of the form given in Eq. (9.101),
but restricted to C(’) = Co = 0 (since the t+ — oo limit of {(x, ) is zero for the entire
range —1 < x < 1), and to cos(/x/2) for odd integer /, because these functions are the
even-parity members of an orthonormal basis for the interval —1 < x < 1 that satisfy the
boundary condition ¥ = 0 at x = 1. Then, at = 0 our solution takes the form

o0
wilx
90 = A _1 17
¥(x,0) ;alCOS 5 <X <

and we need to choose the coefficients a; so that i (x, 0) = 1.
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Using the orthonormality, we compute

4 I 4(—DH"
:—sin£:¥, [ =2m+ 1.
7l 2 Cm+ DHm

Including its time dependence, the full solution is given by the series

_1\ym
V) = — Zz( J)rlcos[(2m+1)”—;]e—“<2’"+1>m/2>2, (9.103)

which converges absolutely for + > 0 but only conditionally at t = 0, as a result of the
discontinuity at x = +1. ]

We are now ready to consider the diffusion equation in three dimensions. We start by
assuming a solution of the form ¥ = f(x, y, z) T (¢), and separate the spatial from the time
dependence. As in the 1-D case, T'(t) will have exponentials as solutions, and we can
choose the solution that decays exponentially at large 7. Assigning the separation constant
the value —k2, so that the time dependence is exp(—k>t), the separated equation in the
spatial coordinates takes the form

Ff 0N Pf

o0x2 oy -5t 322 > +k°f =0, (9.104)
which we recognize as the Helmholtz equation. Assuming that we can solve this equation
for various values of k% by further separations of variables or by other means, we can form
whatever sum or integral of individual solutions that may be needed to satisfy the boundary
conditions.

Alternate Solutions

In an alternative approach to the heat flow equation, we now return to the one-dimensional
PDE, Eq. (9.98), seeking solutions of a new functional form v (x, t) = u(x/+/t), which
is suggested by dimensional considerations and experimental data. Substituting u(£), £ =
x/+/t, into Eq. (9.98) using

a / 82 7 8

_wzu_’ _w:u_, _w:_Lu’ (9.105)

ax Wt ax? ot ot 2013
with the notation u’(¢) = du/dé&, the PDE is reduced to the ODE

a*u’(§) +Eu'(§) =0. (9.106)

Writing this ODE as
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we can integrate it once to get Inu’ = —£2/4a” +1n Cy, where C| is an integration constant.
Exponentiating and integrating again we find the general solution

:
u(€) =Ci /e*52/4“2d$ +Co, (9.107)
0

which contains two integration constants C;. We initialize this solution at time r = 0 to
temperature +1 for x > 0 and —1 for x < 0, corresponding to u(co0) = +1 and u(—o00) =
—1. Noting that

]

/6_52/4“2615 =a/m,

0

a case of the integral evaluated in Eq. (1.148), we obtain
(o) =a/nrCi+Cr=1, u(—o00)=—a/nCi+Cr=—1,
which fixes the constants C; = 1/a./m, C, = 0. We therefore have the specific solution

X/t x/2a\/t

1 2
/e—sz/amzdg:ﬁ f e—vzdvzerf<L), (9.108)
0

V==

2a./t

where erf is the standard name for Gauss’ error function (one of the special functions
listed in Table 1.2). We need to generalize this specific solution to adapt it to boundary
conditions.

To this end we now generate new solutions of the PDE with constant coefficients
by differentiating the special solution given in Eq. (9.108). In other words, if v (x, t)
solves the PDE in Eq. (9.98), so do dvy//dt and dv/dx, because these derivatives and
the differentiations of the PDE commute; that is, the order in which they are carried out
does not matter. Note carefully that this method no longer works if any coefficient of the
PDE depends on ¢ or x explicitly. However, PDEs with constant coefficients dominate
in physics. Examples are Newton’s equations of motion in classical mechanics, the wave
equations of electrodynamics, and Poisson’s and Laplace’s equations in electrostatics and
gravity. Even Einstein’s nonlinear field equations of general relativity take on this special
form in local geodesic coordinates.

Therefore, by differentiating Eq. (9.108) with respect to x, we find the simpler, more
basic solution,

1
Ui (x, 1) = me—xz/“azi (9.109)
and, repeating the process, another basic solution
Y x2/4d%
Yo(x,t) = 2a3me . (9.110)

Again, these solutions have to be generalized to adapt them to boundary conditions. And
there is yet another method of generating new solutions of a PDE with constant coeffi-
cients: We can translate a given solution, for example, 1 (x, 1) — ¥ (x — «, 1), and then
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integrate over the translation parameter «. Therefore,

Y(x, 1) = C(a)e™ = /4a’ g ©.111)

o0
=
2a+/tm
—00

is again a solution, which we rewrite using the substitution

E=1"%  w—x—2atVi, da=—2aidE. 9.112)
2a/t
These substitutions lead to
1 o0
Y, t) = — / C(x — 2aeD)e € de, (9.113)
JT
—00

a solution of our PDE. Equation (9.113) is in a form permitting us to understand the sig-
nificance of the weight function C(x) from the translation method. If we set = 0 in that
equation, the function C in the integrand then becomes independent of &, and the integral
can then be recognized as

o
[ eFas=m
—0oQ
a well-known result equivalent to Eq. (1.148). Equation (9.113) then becomes the simpler
form

P(x,00=C(x), or C(x)=1o(x),

where Vg is the initial spatial distribution of 1. Using this notation, we can write the
solution to our PDE as

Y = % / Wolr — 2ag/De S de, 0.114)

a form that explicitly displays the role of the boundary (initial) condition. From Eq. (9.114)
we see that the initial temperature distribution, ¥o(x), spreads out over time and is damped
by the Gaussian weight function.

EXﬂmPIe 9. 7.2 SPECIAL BOUNDARY CONDITION AGAIN

We consider now a problem similar to Example 9.7.1, but instead of keeping ¢ =0 at
all times at x = £1, we regard the system as infinite in length, with {9 = 0 everywhere
except for |x| < 1, where ¥ = 1. This change makes Eq. (9.114) usable, because our PDE
now applies over the range (—oo, 00), and heat will flow (and temporarily increase the
temperature) at and beyond |x| = 1.

The range of 1/o(x) corresponds to a range of & with endpoints found from x —2a& ./t =
41, so our solution becomes

(x+1)/2a/t

1 2
JT ¢ -
(x—1)/2a/t

Vx, 1) =
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In terms of the error function, we can also write this solution as

1 x+1 x—1
w(x,t)zz[erf<m) —erf(ﬁ>:| (9115)

Equation (9.115) applies for all x, including |x| > 1. |

Next we consider the problem of heat flow for an extended spherically symmetric
medium centered at the origin, suggesting that we should use polar coordinates 7, 8, ¢. We
expect a solution of the form u(r, t). Using Eq. (3.158) for the Laplacian, we find the PDE

du 5 (%u  20u
= = — 4+, 9.116
a ¢ <8r2 + r 8r> ( )
which we transform to the 1-D heat-flow PDE by the substitution

v(r,t) ou 10dv v u 10v
u= ) == — 7o = - i
r or ror r? ot r ot

Pu 19 209v 2

— = - —— + —. 9.117
ar2  ror2 r29r 3 ( )
This yields the PDE
v 5%
— =a"—. 9.118
at a ar? ( )

Example 9.7.3 SPHERICALLY SYMMETRIC HEAT FLOW

Let us apply the 1-D heat-flow PDE to a spherically symmetric heat flow under fairly
common boundary conditions, where x is replaced by the radial variable. Initially we have
zero temperature everywhere. Then, at time ¢ = 0, a finite amount of heat energy Q is
released at the origin, spreading evenly in all directions. What is the resulting spatial and
temporal temperature distribution?

Inspecting our special solution in Eq. (9.110) we see that, for t — 0, the temperature

v(r’t)zie*rz/“”zf

ro VB

goes to zero for all r # 0, so zero initial temperature is guaranteed. As t — 00, the temper-
ature v/r — 0 for all r including the origin, which is implicit in our boundary conditions.
The constant C can be determined from energy conservation, which gives (for arbitrary ¢)
the constraint

(9.119)

o
4 C
0= a,o/ Yar = 72;7_'2 /r267r2/4”2’dr =8vVn3opa’C, (9.120)
r
"
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where p is the constant density of the medium and o is its specific heat. The final result
in Eq. (9.120) is obtained by first making a change of variable from r to & = r/2a+/t,
obtaining

o0 o0
f e A2y = Qa1 / e FE2de,
0 0

then evaluating the & integral via an integration by parts:

[ E o 1] Ned

_52 2d __5 _52 _/ _é—Zd :_T[
/e E°dE 26 . +2 e & 1
0 0

The temperature, as given by Eq. (9.119) at any moment, i.e., at fixed ¢, is a Gaussian
distribution that flattens out as time increases, because its width is proportional to /7.
As a function of time the temperature at any fixed point is proportional to t=3/2¢=1/1,
with T = r?/4a®. This functional form shows that the temperature rises from zero to a
maximum and then falls off to zero again for large times. To find the maximum, we set

d T 3
(t—S/Ze—T/t) — 52T (2 ) =0, (9.121)
dt t 2

from which we find tn,x = 27/3 = r? / 6a?. The temperature maximum arrives at later
times at larger distances from the origin. |

In the case of cylindrical symmetry (in the plane z = 0 in plane polar coordinates p =
x2 + y2, ), we look for a temperature ¥ = u(p, t) that then satisfies the ODE (using
Eq. (2.35) in the diffusion equation)

3 Pu 19
(20, (9.122)
ot 902 pap
which is the planar analog of Eq. (9.118). This ODE also has solutions with the functional
dependence p/+/t = r. Upon substituting

0 ou ov’ ou v u v ©9.123)
u=v\—| o, T T R = = Y = .
NG at 213/27 9p i 9p? ot

into Eq. (9.122) with the notation v’ = dv/dr, we find the ODE

2
' + <a— n f) v =0. (9.124)
r 2
This is a first-order ODE for v/, which we can integrate when we separate the variables v
and r as
v (L (9.125)
v r 2a%) '
This yields
o(r) = Seriaa® _ eV - rpaats (9.126)
r o
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This special solution for cylindrical symmetry can be similarly generalized and adapted to
boundary conditions, as for the spherical case. Finally, the z-dependence can be factored
in, because z separates from the plane polar radial variable p.

Exercises

9.71

9.7.2

9.7.3

9.74

For a homogeneous spherical solid with constant thermal diffusivity, K, and no heat
sources, the equation of heat conduction becomes

aT (r, t
"D eveT .
at
Assume a solution of the form
T=R(r)T (1)

and separate variables. Show that the radial equation may take on the standard form

2 2.2
r7+2r—r+arR—0,

and that sinar/r and cosar/r are its solutions.

Separate variables in the thermal diffusion equation of Exercise 9.7.1 in circular cylin-
drical coordinates. Assume that you can neglect end effects and take 7' = T'(p, ¢).

Solve the PDE
L%y
- —a?—=,
ot 0x2
to obtain ¥ (x, t) for a rod of infinite extent (in both the +x and —x directions), with a

heat pulse at time # = 0 that corresponds to ¥o(x) = AS§(x).

Solve the same PDE as in Exercise 9.7.3 for a rod of length L, with position on the rod
given by the variable x, with the two ends of the rod at x = 0 and x = L kept (at all
times t) at the respective temperatures 7 = 1 and T = 0, and with the rod initially at
T(x)=0,forO0<x <L.

9.8 SUMMARY

This chapter has provided an overview of methods for the solution of first- and second-
order linear PDEs, with emphasis on homogeneous second-order PDEs subject to bound-
ary conditions that either determine unique solutions or define eigenvalue problems. We
found that the usual boundary conditions are identified as of Dirichlet type (solution spec-
ified on boundary), Neumann type (normal derivative of solution specified on boundary),
or Cauchy type (both solution and its normal derivative specified). Applicable types of
boundary conditions depend on the classification of the PDE; second-order PDEs are clas-
sified as hyperbolic (e.g., wave equation), elliptic (e.g., Laplace equation), or parabolic
(e.g., heat/diffusion equation).
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The method of widest applicability to the solution of PDEs is the method of separation
of variables, which, when effective, reduces a PDE to a set of ODEs. The chapter has pre-
sented a very small number of complete PDE solutions to illustrate the technique. A wider
variety of examples only becomes possible when we are prepared to exploit the proper-
ties of the special functions that are the solutions of various ODEs, and, as a result, fuller
illustration of PDE solutions will be provided in the chapters that discuss these special
functions. We point out, in particular, that general PDEs with spherical symmetry all have
the same angular solutions, known as spherical harmonics. These, and the functions from
which they are constructed (Legendre polynomials and associated Legendre functions),
are the subject matter of Chapters 15 and 16. Some spherically symmetric problems have
radial solutions that can be identified as spherical Bessel functions; these are treated in
the Bessel function chapter (Chapter 14).

PDE problems with cylindrical symmetry usually involve Bessel functions, often in
ways more complex than in the examples of the present chapter. Further illustrations appear
in Chapter 14.

This chapter has not attempted to discuss methods for the solution of inhomogeneous
PDEs. That topic deserves its own chapter, and will be developed in Chapter 10.

Finally, we repeat an earlier observation: Fourier expansions (Chapter 19) and integral
transforms (Chapter 20) can also have a role in the solution of PDEs, and applications of
these techniques to PDEs are included in the appropriate chapters of this book.
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CHAPTER 10

GREEN’S FUNCTIONS

In contrast to the linear differential operators that have been our main concern when
formulating problems as differential equations, we now turn to methods involving inte-
gral operators, and in particular to those known as Green’s functions. Green’s-function
methods enable the solution of a differential equation containing an inhomogeneous term
(often called a source term) to be related to an integral operator containing the source. As
a preliminary and elementary example, consider the problem of determining the potential
¥ (r) generated by a charge distribution whose charge density is p(r). From the Poisson
equation, we know that v (r) satisfies

- Vi) =— p(r) (10.1)

We also know, applying Coulomb’s law to the potential at r; produced by each element of
charge p(r2)d>r,, and assuming the space is empty except for the charge distribution, that

W(rl)——/ _plr) (10.2)
|r1 -

Here the integral is over the entire region where p(ry) # 0. We can view the right-hand
side of Eq. (10.2) as an integral operator that converts p into v, and identify the kernel
(the function of two variables, one of which is to be integrated) as the Green’s function for
this problem. Thus, we write

1 1
G(ry,rp) = P S— (10.3)
47‘[8 r; — r2|

vy = [ ErGa o), (104
assigning our Green’s function the symbol G (for “Green”).
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This example is preliminary because the response of more general problems to an
inhomogeneous term will depend on the boundary conditions. For example, an electro-
statics problem may include conductors whose surfaces will contain charge layers with
magnitudes that depend on p and which will also contribute to the potential at general r.
It is elementary because the form of the Green’s function will also depend on the differen-
tial equation to be solved, and often it will not be possible to obtain a Green’s function in
a simple, closed form.

The essential feature of any Green’s function is that it provides a way to describe the
response of the differential-equation solution to an arbitrary source term (in the presence
of the boundary conditions). In our present example, G (ry, rz) gives us the contribution
to ¢ at the point ry produced by a point source of unit magnitude (a delta function) at the
point rp. The fact that we can determine Y everywhere by an integration is a consequence
of the fact that our differential equation is linear, so each element of the source contributes
additively. In the more general context of a PDE that depends on both spatial and time
coordinates, Green’s functions also appear as responses of the PDE solution to impulses at
given positions and times.

The aim of this chapter is to identify some general properties of Green’s functions, to
survey methods for finding them, and to begin building connections between differential-
operator and integral-operator methods for the description of physics problems. We start
by considering problems in one dimension.

ONE-DIMENSIONAL PROBLEMS

Let’s consider the second-order self-adjoint inhomogeneous ODE

d d
=4 (p(x) ﬁ) +q)y=f(x), (10.5)

which is to be satisfied on the range a < x < b subject to homogeneous boundary condi-
tions at x = a and x = b that will cause £ to be Hermitian.! Our Green’s function for this
problem needs to satisfy the boundary conditions and the ODE

LG(x,t)=08(x —1), (10.6)
so that y(x), the solution to Eq. (10.5) with its boundary conditions, can be obtained as
b
y(x):/G(x,t)f(t)dt. (10.7)

a
To verify Eq. (10.7), simply apply L:
b

b
£y(x)=//.3G(x,t)f(t)dt=/8(x—t)f(t)dt:f(x).

a

1A homogeneous boundary condition is one that continues to be satisfied if the function satisfying it is multiplied by a scale
factor. Most of the more commonly encountered types of boundary conditions are homogeneous, e.g., y =0, y' = 0, even
c1y + ¢y’ = 0. However, y = ¢ with ¢ a nonzero constant is not homogeneous.
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General Properties

To gain an understanding of the properties G (x, t) must have, we first consider the result
of integrating Eq. (10.6) over a small range of x that includes x =¢. We have

t+e¢ t+e t+e
d dG(x,t)
— | px)———|dx+ | g(x)G(x,t)dx = | 6(t —x)dx,
dx dx
t—e¢ t—e¢ t—e¢
which, carrying out some of the integrations, simplifies to
dG Jt t+e¢
NACICILIN f ¢(xX)G(x,)dx = 1. (10.8)
dx t—e

t—e

It is clear that Eq. (10.8) cannot be satisfied in the limit of small ¢ if G(x,t) and
dG(x,t)/dx are both continuous (in x) at x = ¢, but we can satisfy that equation if we
require G(x,t) to be continuous but accept a discontinuity in dG(x,t)/dx at x =t. In
particular, continuity in G will cause the integral containing g(x) to vanish in the limit
¢ — 0, and we are left with the requirement

dG(x,t)
dx

dG(x,t)
dx

lim
e—>04

1
=—. 10.9
x:tg:| p(t) ( )

Thus, the discontinuous impulse at x = ¢ leads to a discontinuity in the x derivative of
G (x,t) at that x value. Note, however, that because of the integration in Eq. (10.7), the
singularity in dG/dx does not lead to a similar singularity in the overall solution y(x) in
the usual case that f(x) is continuous.

As anext step toward reaching understanding of the properties of Green’s functions, let’s
expand G(x, t) in the eigenfunctions of our operator £, obtained subject to the boundary
conditions already identified. Since £ is Hermitian, its eigenfunctions can be chosen to be
orthonormal on (a, b), with

LOn(X) =Xn@n(x),  {@ulOm) = Snm- (10.10)

Expanding both the x and the ¢ dependence of G(x, ¢) in this orthonormal set (using the
complex conjugates of the ¢, for the # expansion),

Gx.) = gum@n(X)g (1). (10.11)

nm

x=t+e¢

We also expand 6 (x — t) in the same orthonormal set, according to Eq. (5.27):

B =1 = ) om0, 0). (10.12)

Inserting both these expansions into Eq. (10.6), we have before any simplification

LY gam@a ()@ 1) =D on(X)@ (1) (10.13)
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Applying £, which operates only on ¢, (x), Eq. (10.13) reduces to
D Mn@um@n ()@ =D o (X)@3 (1)

nm m
Taking scalar products in the x and ¢t domains, we find that g,,;, = 8, /An, 50 G (x, t) must
have the expansion

G(x,1) =ZM. (10.14)

The above analysis fails in the case that any 1, is zero, but we shall not pursue that special
case further.

The importance of Eq. (10.14) does not lie in its dubious value as a computational tool,
but in the fact that it reveals the symmetry of G:

G(x,t) = G(t,x)*. (10.15)

Form of Green’s Function

The properties we have identified for G are sufficient to enable its more complete identifi-
cation, given a Hermitian operator £ and its boundary conditions. We continue with the
study of problems on an interval (a, b) with one homogeneous boundary condition at each
endpoint of the interval.

Given a value of ¢, it is necessary for x in the range a < x < ¢ that G(x, t) have an x
dependence y; (x) that is a solution to the homogeneous equation £ = 0 and that also satis-
fies the boundary condition at x = a. The most general G (x, t) satisfying these conditions
must have the form

G(x,t) =y1(x)hi(t), (x<t), (10.16)

where & (¢) is presently unknown. Conversely, in the range t < x < b, it is necessary that
G (x, t) have the form

G(x,t)=yr(x)ha(t), (x>1), (10.17)

where y; is a solution of £ = 0 that satisfies the boundary condition at x = b. The sym-
metry condition, Eq. (10.15), permits Eqgs. (10.16) and (10.17) to be consistent only if
h3 = Ay and hi = A y,, with A a constant that is still to be determined. Assuming that
y1 and y; can be chosen to be real, we are led to the conclusion that

Ayi(x)y2(t), x<t,
G(x,t)= (10.18)
Ay()yi(t), x>1,
where Ly; = 0, with y; satisfying the boundary condition at x = @ and y; satisfying that at
x = b. The value of A in Eq. (10.18) depends, of course, on the scale at which the y; have
been specified, and must be set to a value that is consistent with Eq. (10.9). As applied
here, that condition reduces to
A On© =¥ 03n0] =

’

b
p@)



10.1 One-Dimensional Problems 451

equivalent to

A= (pO) [N ® — ¥ Oy0]) . (10.19)

Despite its appearance, A does not depend on 7. The expression involving the y; is their
Wronskian, and it has a value proportional to 1/p(t). See Exercise 7.6.11.

It is instructive to verify that the form for G (x, ) given by Eq. (10.18) causes Eq. (10.7)
to generate the desired solution to the ODE Ly = f. To this end, we obtain an explicit form
for y(x):

X b
Y00 = A ya(x) / WO FEdi+ Ay () / () £ (@) dt. (10.20)

From Eq. (10.20) it is easy to verify that the boundary conditions on y(x) are satisfied; if
x = a the first of the two integrals vanishes, and the second is proportional to y;; corre-
sponding remarks apply at x = b.

It remains to show that Eq. (10.20) yields Ly = f. Differentiating with respect to x, we
first have

V) = Ayh(x) / WO L@ di + Ay ()1 (0 £ ()
b
+AY () f (O D) dt — Ay (X)) £ ()

x b
=Ayé(x)fyl(t)f(t)dt+Ayi(x)/yz(t)f(t>dt. (10.21)

Proceeding to (py’)":

X

[y @] =a[persen]” [ o s@ar+ Al s ] mew s

a
b

o] [ 0w = Al i ] nwsw. 1022

X

Combining Eq. (10.22) and ¢(x) times Eq. (10.20), many terms drop because Ly} =
Ly, =0, leaving

L£3() = Ap@)] Y501 @) = ¥ 03200 £ = £, (10.23)

where the final simplification took place using Eq. (10.19).
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Example 10.1.1  SiMPLE SECOND-ORDER ODE

Consider the ODE
—y"'=f),

with boundary conditions y(0) = y(1) = 0. The corresponding homogeneous equation
—y” = 0 has general solution yy = cg + c1x; from these we construct the solution y; = x
that satisfies y;(0) = 0 and the solution y, = 1 — x, satisfying y>(1) = 0. For this ODE,
the coefficient p(x) = —1, yj(x) =1, y5(x) = —1, and the constant A in the Green’s
function is

A=[DiDe —ma -] =1
Our Green’s function is therefore
x(1—-1), 0<x<t,
t(l—x), t<x<l.

Assuming we can perform the integral, we can now solve this ODE with boundary condi-
tions for any function f(x). For example, if f(x) = sinmx, our solution would be
1 X
y(x) = f G(x,t)sinwtdt =(1 —x) ftsinm‘dt +x /(1 —t)sinmwtdt
0 0

1

X

1

= — sinmwx.
T2
The correctness of this result is easily checked.
One advantage of the Green’s function formalism is that we do not need to repeat most
of our work if we change the function f(x). If we now take f(x) = cosmx, we get

1
y(x) = — (Zx —1 +cos7rx).
T

Note that our solution takes full account of the boundary conditions. |

Other Boundary Conditions

Occasionally one encounters problems other than the Hermitian second-order ODEs we
have been considering. Some, but not always all of the Green’s-function properties we
have identified, carry over to such problems.

Consider first the possibility that we may have nonhomogeneous boundary conditions,
such as the problem Ly = f with y(a) = ¢ and y(b) = ¢7, with one or both ¢; nonzero.
This problem can be converted into one with homogeneous boundary conditions by making
a change of the dependent variable from y to

_ab-xv+alk-a
b—a ’

u =
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In terms of u, the boundary conditions are homogeneous: u(a) = u(b) = 0. A nonhomo-
geneous condition on the derivative, e.g., y'(a) = ¢, can be treated analogously.

Another possibility for a second-order ODE is that we may have two boundary condi-
tions at one endpoint and none at the other; this situation corresponds to an initial-value
problem, and has lost the close connection to Sturm-Liouville eigenvalue problems. The
result is that Green’s functions can still be constructed by invoking the condition of conti-
nuity in G(x, t) at x = ¢ and the prescribed discontinuity in dG/dx, but they will no longer
be symmetric.

Example 10.1.2  INITIAL VALUE PROBLEM
Consider

d2
Ly=22 4y=rw), (10.24)
dx

with the initial conditions y(0) = 0 and y’(0) = 0. This operator £ has p(x) = 1.

We start by noting that the homogeneous equation £y = 0 has the two linearly indepen-
dent solutions y; = sinx and y; = cosx. However, the only linear combination of these
solutions that satisfies the boundary condition at x = 0 is the trivial solution y = 0, so our
Green’s function for x < ¢ can only be G (x, t) = 0. On the other hand, for the region x > ¢
there are no boundary conditions to serve as constraints, and in that region we are free to
write

Gx,t)=C1(t)y1 + Ca(t)y2, or G(x,t)=Ci(t)sinx + Ca(t)cosx, x >t.
We now impose the requirements

G(it_,t)=G(t+,t) — 0=C(t)sint + Ca(t) cost,

G 0G 1
— 4y, ) — — (-, t) =——=1 —> Ci(t)cost — Ca(t)sint — (0) = 1.
dx dx p(t)
These equations can now be solved, yielding C(t) = cost, Co(¢t) = —sint, so for x > ¢

G(x,t) =costsinx — sintcosx = sin(x —t).
Thus, the complete specification of G(x, t) is

0, x <t,
G(x,t)= (10.25)
sin(x —t), Xx>t.

The lack of correspondence to a Sturm-Liouville problem is reflected in the lack of sym-
metry of the Green’s function. Nevertheless, the Green’s function can be used to construct
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the solution to Eq. (10.24) subject to its initial conditions:

e ¢]

y(x)=fG<x,r>f<r)dr
0
=/sin(x—t)f(t)dt. (10.26)
0

Note that if we regard x as a time variable, our solution at “time” x is only influenced by
source contributions from times ¢ prior to x, so Eq. (10.24) obeys causality.

We conclude this example by observing that we can verify that y(x) as given by
Eq. (10.26) is the correct solution to our problem. Details are left as Exercise 10.1.3. N

Example 70.1.3  BOUNDARY AT INFINITY

Consider

dx?

d2
<— + kz) V() = g o), (10.27)

an equation essentially similar to one we have already studied several times, but now with

boundary conditions that correspond (when multiplied by e~*“") to an outgoing wave.
The general solution to Eq. (10.27) with g = 0 is spanned by the two functions

ikx +ikx.

yi=e" and y=e

The outgoing wave boundary condition means that for large positive x we must have the
solution y», while for large negative x the solution must be y;. This information suffices
to indicate that the Green’s function for this problem must have the form

Ay (X)y2(x),  x>x',
G(x,x)=
Ap(xX)y1(x), x<x'.
We find the coefficient A from Eq. (10.19), in which p(x) = 1:
Ao 1 R
TN =y )y2(x) ik ik 2%k

Combining these results, we reach

Glx,x) = —— exp<i|x—x’|). (10.28)
2k
This result is yet another illustration that the Green’s function depends on boundary con-
ditions as well as on the differential equation.
Verification that this Green’s function yields the desired problem solution is the topic of
Exercise 10.1.8. ]
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Relation to Integral Equations

Consider now an eigenvalue equation of the form
Ly(x) =ry(x), (10.29)

where we assume £ to be self-adjoint and subject to the boundary conditions y(a) =
y(b) = 0. We can proceed formally by treating Eq. (10.29) as an inhomogeneous equa-
tion whose right-hand side is the particular function Ay(x). To do so, we would first find
the Green’s function G(x, r) for the operator £ and the given boundary conditions, after
which, as in Eq. (10.7), we could write

b
y(x):AfG(x,t)y(t)dt. (10.30)

a

Equation (10.30) is not a solution to our eigenvalue problem, since the unknown function
y(x) appears on both sides and, moreover, it does not tell us the possible values of the
eigenvalue 1. What we have accomplished, however, is to convert our eigenvalue ODE
and its boundary conditions into an integral equation which we can regard as an alternate
starting point for solution of our eigenvalue problem.

Our generation of Eq. (10.30) shows that it is implied by Eq. (10.29). If we can also
show that we can connect these equations in the reverse order, namely that Eq. (10.30)
implies Eq. (10.29), we can then conclude that they are equivalent formulations of the
same eigenvalue problem. We proceed by applying £ to Eq. (10.30), labeling it £, to
make clear that it is an operator on x, not ¢:

b
Exy(x)zkﬁx/G(x,t)y(t)dt

b

b
:A/EXG(x,t)y(t)dt:Afa(x—t)y(t)dt

a

=y(x). (10.31)

The above analysis shows that under rather general circumstances we will be able to
convert an eigenvalue equation based on an ODE into an entirely equivalent eigenvalue
equation based on an integral equation. Note that to specify completely the ODE eigen-
value equation we had to make an explicit identification of the accompanying boundary
conditions, while the corresponding integral equation appears to be entirely self-contained.
Of course, what has happened is that the effect of the boundary conditions has influenced
the specification of the Green’s function that is the kernel of the integral equation.

Conversion to an integral equation may be useful for two reasons, the more practical
of which is that the integral equation may suggest different computational procedures for
solution of our eigenvalue problem. There is also a fundamental mathematical reason why
an integral-equation formulation may be preferred: It is that integral operators, such as that
in Eq. (10.30), are bounded operators (meaning that their application to a function y of
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finite norm produces a result whose norm is also finite). On the other hand, differential
operators are unbounded; their application to a function of finite norm can produce a result
of unbounded norm. Stronger theorems can be developed for operators that are bounded.
We close by making the now obvious observation that Green’s functions provide the
link between differential-operator and integral-operator formulations of the same problem.

Example 10.1.4  DiFFeERENTIAL VS. INTEGRAL FORMULATION

Here we return to an eigenvalue problem we have already treated several times in various
contexts, namely

—y"(x) = Ay(x),

subject to boundary conditions y(0) = y(1) = 0. In Example 10.1.1 we found the Green’s
function for this problem to be

x(1—1), 0<x<t,
t(l—x), t<x=<l1,
and, following Eq. (10.30), our eigenvalue problem can be rewritten as
1
y(x):)»/G(x,t)y(t)dt. (10.32)
0

Methods for solution of integral equations will not be discussed until Chapter 21, but we
can easily verify that the well-known solution set for this problem,

y=sinnmx, An:nznz, n=1,2, ...,

also solves Eq. (10.32). |
Exercises
10.1.1 Show that
x, 0<x<rt,
G(x,t)=
t, t<x<l1,
is the Green’s function for the operator £ = —d?/dx?* and the boundary conditions
y(0)=0,y'(1)=0.
10.1.2  Find the Green’s function for

_ d’y(x) y(0) =0,
(a) Ey(x)—W—l-y(x), {y’(l):O.
d*y(x)

(b) Lyx)=

2 —y(x), y(x) finite for —oo < x < 0.
X
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10.1.4

10.1.5

10.1.6

10.1.7

10.1.8

10.1.9
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Show that the function y(x) defined by Eq. (10.26) satisfies the initial-value problem
defined by Eq. (10.24) and its initial conditions y(0) = y’(0) = 0.
Find the Green’s function for the equation

&y

dx?
with boundary conditions y(0) = y(r) =0.

IS

= f(x),

2sin(x/2)cos(t/2), 0<x <t,
ANS. G(x,t)=
2cos(x/2)sin(t/2), t<x <m.
Construct the Green’s function for
d*y  dy
2 2.2
— — 4+ (k*x*—1)y =0,
o dx2+xdx+( * )y
subject to the boundary conditions y(0) =0, y(1) =0.
Given that
a’ d
L=(1—-x")— —2x—
( ) dx? o dx

and that G(=%1, ¢) remains finite, show that no Green’s function can be constructed by
the techniques of this section.

Note. The solutions to £ = 0 needed for the regions x < ¢ and x > ¢ are linearly depen-
dent.

Find the Green’s function for

Py dy
W‘Fkﬁ—f@),

subject to the initial conditions v (0) = v¥'(0) = 0, and solve this ODE for ¢ > 0 given
f (@) =exp(—1).

Verify that the Green’s function
G(x,x') = —Z’—k exp (ik|x _ x’|)

yields an outgoing wave solution to the ODE

d2
(— +k2) ¥ (x) = g(x).

dx?
Note. Compare with Example 10.1.3.

Construct the 1-D Green’s function for the modified Helmholtz equation,

d2
(— —~ kz) Y (x) = f(x).
dx?
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10.1.10

10.1.11

10.1.12

10.1.13

The boundary conditions are that the Green’s function must vanish for x — oo and
X — —00.

1
ANS. G(x1, xz)——ﬁexp< k|x1—x2|).

From the eigenfunction expansion of the Green’s function show that

@) 2 i 1nn7rxsmn71t x(1—-1), 0=<x<t,
Q) — =
w2~ t1—x), t<x<l.
) 2 i 1n(n+%)nx sin(n—}—%)m‘ x, 0<x<t,
m? ne0 ("+%)2 B t, t<x=<l.

Derive an integral equation corresponding to

V') —yx)=0, y(H=1, y(=Dh=I,

(a) by integrating twice.
(b) by forming the Green’s function.

1
ANS. y(x):l—fK(x,t)y(t)dt,
-1

{%(l—x)(t—i—l), X >1,
K(x,t)=
%(l—t)(x—i—l), x <t.

The general second-order linear ODE with constant coefficients is

Y +ary' () +ayx) =
Given the boundary conditions y(0) = y(1) = 0, integrate twice and develop the inte-
gral equation

1
y(x) = / K(x,t)y(t)dt,
0

with

at(l—x)+a1(x—-1), t<ux,
K(x,t)=
arx(1—1t)+arx, X <t.

Note that K (x, t) is symmetric and continuous if a; = 0. How is this related to self-
adjointness of the ODE?

Transform the ODE

d*y(r e’
A
dr r

y(@r) =
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and the boundary conditions y(0) = y(co) = 0 into an integral equation of the form

o0

—t
y(r)= —VO/ G(r, 1) eTy(t)dt.
0

The quantities V and k2 are constants. The ODE is derived from the Schrodinger wave
equation with a mesonic potential:

1
—— e Mginhkr, 0<r<t,
G(r,t)=

% e ¥ sinhkt, t<r <oo.

PROBLEMS IN TWO AND THREE DIMENSIONS

Basic Features

The principles, but unfortunately not all the details of our analysis of Green’s functions in
one dimension, extend to problems of higher dimensionality. We summarize here proper-
ties of general validity for the case where L is a linear second-order differential operator
in two or three dimensions.

1. A homogeneous PDE Ly (r;) = 0 and its boundary conditions define a Green’s
function G (ry, rp), which is the solution of the PDE

LG(r1, 1) =68(r —ro)

subject to the relevant boundary conditions.
2. The inhomogeneous PDE Ly (r) = f(r) has, subject to the boundary conditions of
Item 1, the solution

v = / G(ri,r2) f(r)d’ra,

where the integral is over the entire space relevant to the problem.
3. When £ and its boundary conditions define the Hermitian eigenvalue problem
Ly = Ay with eigenfunctions ¢, (r) and corresponding eigenvalues A, then

e G(ry, ry) is symmetric, in the sense that
G(r1,r2) = G*(ra,r1), and

e G(ry, ) has the eigenfunction expansion

G(”l,l'z)zzw'

n
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4. G(ry,rp) will be continuous and differentiable at all points such that r; # r;. We
cannot even require continuity in a strict sense at r; = r» (because our Green’s func-
tion may become infinite there), but we can have the weaker condition that G remain
continuous in regions that surround, but do not include r; = r;. G must have more
serious singularities in its first derivatives, so that the second-order derivatives in £
will generate the delta-function singularity characteristic of G and specified in Item 1.

What does not carry over from the 1-D case are the explicit formulas we used to con-
struct Green’s functions for a variety of problems.

Self-Adjoint Problems

In more than one dimension, a second-order differential equation is self-adjoint if it has
the form

LYm =V [ pOVY®] +a®y ) = f®), (10.33)

with p(r) and ¢ (r) real. This operator will define a Hermitian problem if its boundary
conditions are such that (p|Ly¥) = (Le|¥). See Exercise 10.2.2.
Assuming we have a Hermitian problem, consider the scalar product

<G(r, rl)( LG, r2)> - <[,G(r, rl)’ G(r, r2)>. (10.34)

Here the scalar product and £ both refer to the variable r, and the Hermitian property is
responsible for this equality. The points r| and r, are arbitrary. Noting that LG results in
a delta function, we have, from the left-hand side of Eq. (10.34),

<G(r, rl)( LG, r2)> - (G(r, rl)‘ 5(r— r2)> — G*(ra,11). (10.35)
But, from the right-hand side of Eq. (10.34),
<£G(r, rl)) G(r, r2)> = <8(r — rl)‘ G(r, r2)> = G(r1, ). (10.36)

Substituting Eqgs. (10.35) and (10.36) into Eq. (10.34), we recover the symmetry condition
G(ri,r2) = G*(ra, ry).

Eigenfunction Expansions

We already saw, in 1-D Hermitian problems, that the Green’s function of a Hermitian
problem can be written as an eigenfunction expansion. If £, with its boundary conditions,
has normalized eigenfunctions ¢, (r) and corresponding eigenvalues A,, our expansion
took the form

G(ri,r) = ZM. (10.37)

n

It turns out to be useful to consider the somewhat more general equation

Ly (ry) — Ay (ry) =682 —ry), (10.38)
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where X is a parameter (not an eigenvalue of £). In this more general case, an expansion in
the ¢, yields for the Green’s function of the entire left-hand side of Eq. (10.38) the formula

G(rl,rz)zzw. (10.39)

Note that Eq. (10.39) will be well-defined only if the parameter A is not equal to any of the
eigenvalues of L.

Form of Green’s Functions

In spaces of more than one dimension, we cannot divide the region under consideration
into two intervals, one on each side of a point (here designated r;), then choosing for
each interval a solution to the homogeneous equation appropriate to its outer boundary.
A more fruitful approach will often be to obtain a Green’s function for an operator £
subject to some particularly convenient boundary conditions, with a subsequent plan to
add to it whatever solution to the homogeneous equation £ (r) = 0 that may be needed
to adapt to the boundary conditions actually under consideration. This approach is clearly
legitimate, as the addition of any solution to the homogeneous equation will not affect the
(dis)continuity properties of the Green’s function.

We consider first the Laplace operator in three dimensions, with the boundary condition
that G vanish at infinity. We therefore seek a solution to the inhomogeneous PDE

V3G (r1, 1) =8(r; —rp) (10.40)

with lim;, , o G(r1, r2) = 0. We have added a subscript “1” to V to remind the reader that
it operates on ry and not on r». Since our boundary conditions are spherically symmetric
and at an infinite distance from r; and r,, we may make the simplifying assumption that
G(ry, rp) is a function only of 12 = |r; —r2|.

Our first step in processing Eq. (10.40) is to integrate it over a spherical volume of radius
a centered at rp:

/ Vi -ViG(r,r)d’r =1, (10.41)

rpp<a

where we have reduced the right-hand side using the properties of the delta function and
written the left-hand side in a form making it ready for the application of Gauss’ theorem.
We now apply that theorem to the left-hand side of Eq. (10.41), reaching

, dG

dri |y ,—a

/ V1G(r1, 1) -doy =4ma =1 (10.42)

rip=a

Since Eq. (10.42) must be satisfied for all values of a, it is necessary that

d 1
— G, n)=—>,
drip 4rri,
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which can be integrated to yield

G(r'1,1'2)=—i ; (10.43)
4 |rp — 1|
We do not need to add a constant of integration because this form for G vanishes at infinity.

At this point it may be useful to note that the sign of G(ry, r2) depends on the sign asso-
ciated with the differential operator of which it is a Green’s function. Some texts (including
previous editions of this book) have defined G as produced by a negative delta function
so that Eq. (10.43) when associated with +V? would not need a minus sign. There is,
of course, no ambiguity in any physical results because a change in the sign of G must
be accompanied by a change in the sign of the integral in which G is combined with the
inhomogeneous term of a differential equation.

The Green’s function of Eq. (10.43) is only going to be appropriate for an infinite system
with G = 0 at infinity but, as mentioned already, it can be converted into the Green’s func-
tions of another problem by addition of a suitable solution to the homogeneous equation
(in this case, Laplace’s equation). Since that is a reasonable starting point for a variety
of problems, the form given in Eq. (10.43) is sometimes called the fundamental Green’s
function of Laplace’s equation (in three dimensions).

Let’s now repeat our analysis for the Laplace operator in two dimensions for a region
of infinite extent, using circular coordinates p = (p, ). The integral in Eq. (10.41) is then
over a circular area, and the 2-D analog of Eq. (10.42) becomes

/ VIG(P1»P2)'d61=27Tdd—G =1,
pr2=a P12 lpip=a
leading to
L G(pls p2) = )
dp12 27 p12

which has the indefinite integral

1
Gp1.02) = 5= Inlpy = pol. (10.44)

The form given in Eq. (10.44) becomes infinite at infinity, but it nevertheless can be
regarded as a fundamental 2-D Green’s function. However, note that we will generally
need to add to it a suitable solution to the 2-D Laplace equation to obtain the form needed
for specific problems.

The above analysis indicates that the Green’s function for the Laplace equation in 2-D
space is rather different than the 3-D result. This observation illustrates the fact that there
is a real difference between flatland (2-D) physics and actual (3-D) physics, even when the
latter is applied to problems with translational symmetry in one direction.

This is also a good time to note that the symmetry in the Green’s function corresponds
to the notion that a source at rp produces a result (a potential) at ry that is the same as the
potential at rp from a similar source at ry. This property will persist in more complicated
problems so long as their definition makes them Hermitian.
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Table 10.1 Fundamental Green’s Functions®

Laplace Helmholtz? Modified
v? V242 Helmbholtz®
v2_ 2
D Ly -l L expliklx —xa)  — = exp(—klxs —xa)
_ Dy — e _ ~ exp(— _
> X1 —Xx2 % Xp(ik|x) —xo % Xp X1 — X2
2D hnlpi—pol  —iH Kl —pah)  — = KoKl — pab
o P — P2 270 P — P2 - olkipp — P2
1D 1 1 _exp(ik|r; —ra)) _exp(—k|r; — )
4r |r; — 1| 4r|ry —rp| dr|ry — 1|

4 Boundary conditions: For the Helmholtz equation, outgoing wave;
for modified Helmholtz and 3-D Laplace equations, G — 0 at infinity;
for 1-D and 2-D Laplace equation, arbitrary.

bHOl is a Hankel function, Section 14.4.

€Ky is a modified Bessel function, Section 14.5.

Because they occur rather frequently, it is useful to have Green’s functions for the
Helmbholtz and modified Helmholtz equations in two and three dimensions (for one dimen-
sion these Green’s functions were introduced in Example 10.1.3 and Exercise 10.1.9). For
the Helmholtz equation, a convenient fundamental form results if we take boundary con-
ditions corresponding to an outgoing wave, meaning that the asymptotic » dependence
must be of the form exp(+ikr). For the modified Helmholtz equation, the most convenient
boundary condition (for one, two, and three dimensions) is that G decay to zero in all direc-
tions at large r. The one-, two-, and three-dimensional (3-D) fundamental Green’s functions
for the Laplace, Helmholtz, and modified Helmholtz operators are listed in Table 10.1.

We shall not derive here the forms of the Green’s functions for the Helmholtz equations;
in fact, for two dimensions, they involve Bessel functions and are best treated in detail in a
later chapter. However, for three dimensions, the Green’s functions are of relatively simple
form, and the verification that they return correct results is the topic of Exercises 10.2.4
and 10.2.6. The fundamental Green’s function for the 1-D Laplace equation may not be
instantly recognizable in comparison to the formulas we derived in Section 10.1, but con-
sistency with our earlier analysis is the topic of Example 10.2.1

Sometimes it is useful to represent Green’s functions as expansions that take advantage
of the specific properties of various coordinate systems. The so-called spherical Green’s
function is the radial part of such an expansion in spherical polar coordinates. For the
Laplace operator, it takes a form developed in Egs. (16.65) and (16.66). We write it here
only to show that it exhibits the two-region character that provides a convenient represen-
tation of the discontinuity in the derivative:

1 1 2 20 +1
_——— e — P
prE—— 12—0 - g(r1,r2) Pi(cos x),
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where y is the angle between r| and rp, P; is a Legendre polynomial, and the spherical
Green’s function g(rq, ) is
l

1 |
—m rlﬁ’ ry <ra,
2
gi(ri,rn) = !
1 Ty
-, r1 >T71).
1+1
21+1r1

An explicit derivation of the formula for g; is given in Example 16.3.2.

In cylindrical coordinates (p, ¢, z) one encounters an axial Green’s function g,, (o1, 02),
in terms of which the fundamental Green’s function for the Laplace operator takes the form
(also involving a continuous parameter k)

1 1
Grir)=—— ——
R e Iry — 12|
(- r
=— im(@1—¢2) _
=22 m;me’ s /gm(kplakPZ)COSk(Zl 22)dk.
- 0

Here

gmkp1, kp2) = — Iy (kp<) Ky (kps),

where p- and p-. are, respectively, the smaller and larger of p; and p;. The quantities I,,
and K, are modified Bessel functions, defined in Chapter 14. This expansion is discussed
in more detail in Example 14.5.1. Again we note the two-region character.

Example 10.2.1 ACCOMMODATING BOUNDARY CONDITIONS

Let’s use the fundamental Green’s function of the 1-D Laplace equation,

2
d di(;) =0, namely G(x;,x)) = % X1 — xal.

to illustrate how we can modify it to accommodate specific boundary conditions. We return
to the oft-used example with Dirichlet conditions ¢ =0 at x = 0 and x = 1. The continu-
ity of G and the discontinuity in its derivative are unaffected if we add to the above G one
or more terms of the form f(x1)g(x2), where f and g are solutions of the 1-D Laplace
equation, i.e., any functions of the form ax + b.

For the boundary conditions we have specified, the Green’s function we require has the
form

1 1
G(x1,x2) = _E(xl +x2) +x1x2 + 3 lx1 — xal.
The continuous and differentiable terms we have added to the fundamental form bring us
to the result
Glxyxa) = —S X)) Fxix 4 Fn —x) =—xi(1 —x2), X1 <x2,
—l ) Fxix + S0 —x) = —x(l —x1), X2 <xi.

This result is consistent with what we found in Example 10.1.1. ]
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Example 10.2.2 QUANTUM MECHANICAL SCATTERING: BORN APPROXIMATION

The quantum theory of scattering provides a nice illustration of Green’s function tech-
niques and the use of the Green’s function to obtain an integral equation. Our physical
picture of scattering is as follows. A beam of particles moves along the negative z-axis
toward the origin. A small fraction of the particles is scattered by the potential V (r) and
goes off as an outgoing spherical wave. Our wave function 1 (r) must satisfy the time-
independent Schrédinger equation

h2
- %Vzwm + V()Y (r) = EY(r), (10.45)
or

2mE

— (10.46)

2
V2 (r) + y(r) = [h—Tvmw)} . k=

From the physical picture just presented we look for a solution having the asymptotic
form

ikr

W) ~ e 1 60, 0) 8 (10.47)

’
where ¢/k0T is an incident plane wave’ with the propagation vector ko carrying the sub-
script O to indicate that it is in the & = 0 (z-axis) direction. The ¢!*” /r term describes an
outgoing spherical wave with an angular and energy-dependent amplitude factor f; (6, ¢),’
and its 1/r radial dependence causes its asymptotic total flux to be independent of r. This
is a consequence of the fact that the scattering potential V (r) becomes negligible at large r.

Equation (10.45) contains nothing describing the internal structure or possible motion of
the scattering center and therefore can only represent elastic scattering, so the propagation
vector of the incoming wave, Ko, must have the same magnitude, &, as the scattered wave.
In quantum mechanics texts it is shown that the differential probability of scattering, called
the scattering cross section, is given by | (6, ¢|>.

We now need to solve Eq. (10.46) to obtain v (r) and the scattering cross section. Our
approach starts by writing the solution in terms of the Green’s function for the operator
on the left-hand side of Eq. (10.46), obtaining an integral equation because the inhomoge-
neous term of that equation has the form (2m/ RV (r)y (r):

2m 3
1ﬂ(r1)=/?V(l‘z)l/f(l‘z)G(l‘l,rz)d 7. (10.48)

We intend to take the Green’s function to be the fundamental form given for the Helmholtz
equation in Table 10.1. We then recover the exp(ikr)/r part of the desired asymptotic
form, but the incident-wave term will be absent. We therefore modify our tentative for-
mula, Eq. (10.48), by adding to its right-hand side the term exp(ikg - r), which is legiti-
mate because this quantity is a solution to the homogeneous (Helmholtz) equation. That

2For simplicity we assume a continuous incident beam. In a more sophisticated and more realistic treatment, Eq. (10.47) would
be one component of a wave packet.
31t V (r) represents a central force, f; will be a function of 6 only, independent of the azimuthal angle ¢.



466 Chapter 10 Green’s Functions

approach leads us to

etklri—ral

. 2
lﬂ(rl) = elk0~r1 — / h_r;l V(rz)lp(rz)m d3}’2. (1049)

This integral equation analog of the original Schrodinger wave equation is exact. It is
called the Lippmann-Schwinger equation, and is an important starting point for studies
of quantum-mechanical scattering phenomena.

We will later study methods for solving integral equations such as that in Eq. (10.49).
However, in the special case that the unscattered amplitude

Yo(ry) =k (10.50)

dominates the solution, it is a satisfactory approximation to replace ¥ (rz) by ¥o(r2) within
the integral, obtaining

ezk\rl—rzl

, 2 .
Yi(ry) = o — / h—"z’V(rz) Moy, (10.51)

4 iry —ra|

This is the famous Born approximation. It is expected to be most accurate for weak

potentials and high incident energy. |
Exercises

10.2.1  Show that the fundamental Green’s function for the 1-D Laplace equation, |x; — x2]/2,
is consistent with the form found in Example 10.1.1.

10.2.2  Show that if

Lym=V- [ pOVY®] +amy o,
then £ is Hermitian for p(r) and ¢ (r) real, assuming Dirichlet boundary conditions on
the boundary of a region and that the scalar product is an integral over that region with
unit weight.

10.2.3  Show that the terms +k2 in the Helmholtz operator and —k? in the modified Helmholtz
operator do not affect the behavior of G(ry, ry) in the immediate vicinity of the singular
point r; = r,. Specifically, show that

lim K*G(r1,r2)d’ry = —1.
[ri—rz|—0
10.2.4  Show that

_exp(ik|r; —ra|)
4 lry — 1|

satisfies the appropriate criteria and therefore is a Green’s function for the Helmholtz
equation.
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10.2.5  Find the Green’s function for the 3-D Helmholtz equation, Exercise 10.2.4, when the
wave is a standing wave.

10.2.6  Verify that the formula given for the 3-D Green’s function of the modified Helmholtz
equation in Table 10.1 is correct when the boundary conditions of the problem are that
G vanish at infinity.

10.2.7  An electrostatic potential (mks units) is

—ar

r)=
¢(r) dmwey r

Reconstruct the electrical charge distribution that will produce this potential. Note that
o(r) vanishes exponentially for large r, showing that the net charge is zero.

2 ,—ar

Za“ e
ANS. p(r)=2Z6(r) — —
dr  r
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CHAPTER 11

COMPLEX VARIABLE
THEORY

The imaginary numbers are a wonderful
fight of God’s spirit; they are almost an
amphibian between being and not being.

GOTTFRIED WILHELM VON LEIBNIZ, 1702

We turn now to a study of complex variable theory. In this area we develop some of the
most powerful and widely useful tools in all of analysis. To indicate, at least partly, why
complex variables are important, we mention briefly several areas of application.

1.

In two dimensions, the electric potential, viewed as a solution of Laplace’s equation,
can be written as the real (or the imaginary) part of a complex-valued function, and this
identification enables the use of various features of complex variable theory (specifi-
cally, conformal mapping) to obtain formal solutions to a wide variety of electrostatics
problems.

The time-dependent Schrodinger equation of quantum mechanics contains the imagi-
nary unit i, and its solutions are complex.

In Chapter 9 we saw that the second-order differential equations of interest in physics
may be solved by power series. The same power series may be used in the complex
plane to replace x by the complex variable z. The dependence of the solution f(z) at
a given zo on the behavior of f(z) elsewhere gives us greater insight into the behavior
of our solution and a powerful tool (analytic continuation) for extending the region in
which the solution is valid.

The change of a parameter k from real to imaginary, k — ik, transforms the Helmholtz
equation into the time-independent diffusion equation. The same change connects the
spherical and hyperbolic trigonometric functions, transforms Bessel functions into
their modified counterparts, and provides similar connections between other super-
ficially dissimilar functions.
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5. Integrals in the complex plane have a wide variety of useful applications:

e Evaluating definite integrals and infinite series,
e Inverting power series,
e Forming infinite products,

e Obtaining solutions of differential equations for large values of the variable
(asymptotic solutions),

e Investigating the stability of potentially oscillatory systems,

e Inverting integral transforms.

6. Many physical quantities that were originally real become complex as a simple physi-
cal theory is made more general. The real index of refraction of light becomes a com-
plex quantity when absorption is included. The real energy associated with an energy
level becomes complex when the finite lifetime of the level is considered.

COMPLEX VARIABLES AND FUNCTIONS

We have already seen (in Chapter 1) the definition of complex numbers z = x + iy as
ordered pairs of two real numbers, x and y. We reviewed there the rules for their arithmetic
operations, identified the complex conjugate z* of the complex number z, and discussed
both the Cartesian and polar representations of complex numbers, introducing for that pur-
pose the Argand diagram (complex plane). In the polar representation z = re’?, we noted
that » (the magnitude of the complex number) is also called its modulus, and the angle
0 is known as its argument. We proved that ¢!? satisfies the important equation

¢! =cosf +isinf. (11.1)

This equation shows that for real 6, ¢/? is of unit magnitude and is therefore situated on
the unit circle, at an angle 6 from the real axis.

Our focus in the present chapter is on functions of a complex variable and on their
analytical properties. We have already noted that by defining complex functions f(z) to
have the same power-series expansion (in z) as the expansion (in x) of the correspond-
ing real function f(x), the real and complex definitions coincide when z is real. We also
showed that by use of the polar representation, z = re'?, it becomes clear how to com-
pute powers and roots of complex quantities. In particular, we noted that roots, viewed as
fractional powers, become multivalued functions in the complex domain, due to the fact
that exp(2nri) = 1 for all positive and negative integers n. We thus found z'/2 to have
two values (not a surprise, since for positive real x, we have +./x). But we also noted
that z!/” will have m different complex values. We also noted that the logarithm becomes
multivalued when extended to complex values, with

Inz=In(re'’) =Inr +i(0 + 2nn), (11.2)

with n any positive or negative integer (including zero).
If necessary, the reader should review the topics mentioned above by rereading
Section 1.8.
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CAUCHY-RIEMANN CONDITIONS

Having established complex functions of a complex variable, we now proceed to differen-
tiate them. The derivative of f(z), like that of a real function, is defined by

fetd)—f@ _ . 8@ _df
_— 1m =

520 (z4+87)—z 620 8z d_z -

(), (11.3)

provided that the limit is independent of the particular approach to the point z. For real
variables we require that the right-hand limit (x — x¢ from above) and the left-hand limit
(x = xo from below) be equal for the derivative df (x)/dx to exist at x = xo. Now, with z
(or zg) some point in a plane, our requirement that the limit be independent of the direction
of approach is very restrictive.

Consider increments 6x and §y of the variables x and y, respectively. Then

8z =08x +idy. (11.4)
Also, writing f =u +iv,

8f =du+idv, (11.5)
so that

L % (11.6)

Let us take the limit indicated by Eq. (11.3) by two different approaches, as shown in
Fig. 11.1. First, with §y = 0, we let x — 0. Equation (11.3) yields

i Sf i 8u+.8v 8u+,8v (L7

im —=1lm|(|(—+i—|)|=—+i—, .
8z—>0 38z  Sx—0\ dx ox ax ax

assuming that the partial derivatives exist. For a second approach, we set x = 0 and then

let 5y — 0. This leads to

. Of . Su Sv ou  ov
lim —=lm|—i—+—)=—i—+ —.

8z—0 8z  8y—0 8y 8y ay  dy
If we are to have a derivative df/dz, Eqs. (11.7) and (11.8) must be identical. Equating
real parts to real parts and imaginary parts to imaginary parts (like components of vectors),

we obtain

(11.8)

du Jv u dv

—_— =, —=—-—— (11.9)
dx  dy dy ax
y
Sx—0 %0
dy=0
ox=0
oy —0

X

FIGURE 11.1  Alternate approaches to zg.
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These are the famous Cauchy-Riemann conditions. They were discovered by Cauchy
and used extensively by Riemann in his development of complex variable theory. These
Cauchy-Riemann conditions are necessary for the existence of a derivative of f(z). That
is, in order for df/dz to exist, the Cauchy-Riemann conditions must hold.

Conversely, if the Cauchy-Riemann conditions are satisfied and the partial derivatives
of u(x, y) and v(x, y) are continuous, the derivative df/dz exists. To show this, we start
by writing

ov ou  odv
of = +l— ox+ | —+i— oy, (11.10)
ax ay ay

where the justification for this expression depends on the continuity of the partial deriva-
tives of # and v. Using the Cauchy-Riemann equations, Eq. (11.9), we convert Eq. (11.10)

to the form
Ju v Jv . ou
8f = +l— x4+ ——4+i— )5y
0x 0x 0x

du VN syt is 11.11
<8 +la—>(x+ly) (11.11)

Replacing §x + i8y by 8z and bringing it to the left-hand side of Eq. (11.11), we reach

5f  ou dv
S _ o, 0 11.12
52 ox lox (11.12)

an equation whose right-hand side is independent of the direction of 8z (i.e., the relative
values of §x and 8y). This independence of directionality meets the condition for the exis-
tence of the derivative, df/dz.

Analytic Functions

If f(z) is differentiable and single-valued in a region of the complex plane, it is said to
be an analytic function in that region.! Multivalued functions can also be analytic under
certain restrictions that make them single-valued in specific regions; this case, which is
of great importance, is taken up in detail in Section 11.6. If f(z) is analytic everywhere
in the (finite) complex plane, we call it an entire function. Our theory of complex vari-
ables here is one of analytic functions of a complex variable, which points up the crucial
importance of the Cauchy-Riemann conditions. The concept of analyticity carried on in
advanced theories of modern physics plays a crucial role in the dispersion theory (of ele-
mentary particles). If f/(z) does not exist at z = zg, then zg is labeled a singular point;
singular points and their implications will be discussed shortly.
To illustrate the Cauchy-Riemann conditions, consider two very simple examples.

1Some writers use the term holomorphic or regular.
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Example 11.2.1  z%Is ANALYTIC

Let f(z) = z2. Multiplying out (x —iy)(x —iy) = x2—y24+2ixy, we identify the real part
of z2 as u(x, y) = x> — y? and its imaginary part as v(x, y) = 2xy. Following Eq. (11.9),

ou . ov ou ov

—=2x=—, —=-2y .
ax dy ay dax

We see that f(z) = z? satisfies the Cauchy-Riemann conditions throughout the complex

plane. Since the partial derivatives are clearly continuous, we conclude that f(z) = z2 is

analytic, and is an entire function. ]

Example 11.2.2  z* s NoT ANALYTIC

Let f(z) = z*, the complex conjugate of z. Now u = x and v = —y. Applying the Cauchy-
Riemann conditions, we obtain

du =1# dv =—1.

ax ay

The Cauchy-Riemann conditions are not satisfied for any values of x or y and f(z) = z*
is nowhere an analytic function of z. It is interesting to note that f(z) = z* is continu-
ous, thus providing an example of a function that is everywhere continuous but nowhere
differentiable in the complex plane. |

The derivative of a real function of a real variable is essentially a local characteristic, in
that it provides information about the function only in a local neighborhood, for instance,
as a truncated Taylor expansion. The existence of a derivative of a function of a com-
plex variable has much more far-reaching implications, one of which is that the real and
imaginary parts of our analytic function must separately satisfy Laplace’s equation in two
dimensions, namely

Py 92
oy + v =0.
ax2  9y?

To verify the above statement, we differentiate the first Cauchy-Riemann equation in

Eq. (11.9) with respect to x and the second with respect to y, obtaining

0%u _ 8% 8%u _ 8%v
9x2  9xdy’  dy2  dydx’

Combining these two equations, we easily reach
8%u n 3%u
0x2  9y?

confirming that u(x, y), the real part of a differentiable complex function, satisfies the

Laplace equation. Either by recognizing that if f(z) is differentiable, so is —if(z) =

v(x,y) —iu(x,y), or by steps similar to those leading to Eq. (11.13), we can confirm

that v(x, y) also satisfies the two-dimensional (2-D) Laplace equation. Sometimes u and

v are referred to as harmonic functions (not to be confused with spherical harmonics,

which we will later encounter as the angular solutions to central force problems).

=0, (11.13)
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The solutions u(x, y) and v(x, y) are complementary in that the curves of constant
u(x, y) make orthogonal intersections with the curves of constant v(x, y). To confirm this,
note that if (xg, yo) is on the curve u(x, y) = c, then xo +dx, yo +dy is also on that curve if

ou ou

—d —dy =0,
ax x+8y Y

meaning that the slope of the curve of constant u at (xq, yg) is
d —du/d
(l) _ Zu/ox (11.14)
dx ), ou/dy

where the derivatives are to be evaluated at (xg, yo). Similarly, we can find that the slope
of the curve of constant v at (xq, yo) is

dy\ _ —0dv/dx _ du/dy
dx ), 9v/dy  du/dx’

(11.15)

where the last member of Eq. (11.15) was reached using the Cauchy-Riemann equations.
Comparing Eqgs. (11.14) and (11.15), we note that at the same point, the slopes they
describe are orthogonal (to check, verify that dx,dx, + dy,dy, = 0).

The properties we have just examined are important for the solution of 2-D electrostatics
problems (governed by the Laplace equation). If we have identified (by methods outside
the scope of the present text) an appropriate analytic function, its lines of constant u will
describe electrostatic equipotentials, while those of constant v will be the stream lines of
the electric field.

Finally, the global nature of our analytic function is also illustrated by the fact that it
has not only a first derivative, but in addition, derivatives of all higher orders, a property
which is not shared by functions of a real variable. This property will be demonstrated in
Section 11.4.

Derivatives of Analytic Functions

Working with the real and imaginary parts of an analytic function f(z) is one way to take
its derivative; an example of that approach is to use Eq. (11.12). However, it is usually
easier to use the fact that complex differentiation follows the same rules as those for real
variables. As a first step in establishing this correspondence, note that, if f(z) is analytic,
then, from Eq. (11.12),

af

f(Z)=a,

[rese] =(£) [ree] = (5) [fos)]

af ag , ,
(a_) g+ f(@ (—) =f(2)gk)+ f(2)g (2),
X 0x

and that
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the familiar rule for differentiating a product. Given also that

dz 9z
dz  ox
we can easily establish that
dz* dz"
@ - 2z, and, by induction, @ nz"!
dz dz

Functions defined by power series will then have differentiation rules identical to those
for the real domain. Functions not ordinarily defined by power series also have the same
differentiation rules as for the real domain, but that will need to be demonstrated case by
case. Here is an example that illustrates the establishment of a derivative formula.

Example 11.2.3  DERIVATIVE OF LOGARITHM

We want to verify that d Inz/dz = 1/z. Writing, as in Eq. (1.138),
Inz=Inr +i0 +2nrwi,

we note that if we write Inz =u + iv, we have u =Inr, v =60 + 2nm. To check whether
In z satisfies the Cauchy-Riemann equations, we evaluate

ou 1or x ou lor vy

ax rax 2 3y ray r2
dv 90  —y dv 90 x
ax  dx r2’ 3y 9y r?’
The derivatives of r and 6 with respect to x and y are obtained from the equations connect-
ing Cartesian and polar coordinates. Except at r = 0, where the derivatives are undefined,
the Cauchy-Riemann equations can be confirmed.
Then, to obtain the derivative, we can simply apply Eq. (11.12),

dlnz du . 0v _ x—iy 1 1

= 4ij—=" = =
dz ax | ox r2 x+iy z

Because In z is multivalued, it will not be analytic except under conditions restricting it to
single-valuedness in a specific region. This topic will be taken up in Section 11.6. ]

Point at Infinity

In complex variable theory, infinity is regarded as a single point, and behavior in its neigh-
borhood is discussed after making a change of variable from z to w = 1/z. This transfor-
mation has the effect that, for example, z = —R, with R large, lies in the w plane close
to z = 4R, thereby among other things influencing the values computed for derivatives.
An elementary consequence is that entire functions, such as z or e?, have singular points
at z = 00. As a trivial example, note that at infinity the behavior of z is identified as that of
1/w as w — 0, leading to the conclusion that z is singular there.
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Exercises

11.2.1
11.2.2

11.2.3

11.2.4

11.2.5

11.2.6

11.2.7

11.2.8

11.2.9

Show whether or not the function f(z) = N(z) = x is analytic.

Having shown that the real part u(x, y) and the imaginary part v(x, y) of an analytic
function w(z) each satisfy Laplace’s equation, show that neither u(x, y) nor v(x, y) can
have either a maximum or a minimum in the interior of any region in which w(z) is
analytic. (They can have saddle points only.)

Find the analytic function
w(z) =u(x,y) +iv(x,y)

(@) ifu(x,y)=x3—=3xy%, (b) ifv(x,y)=esinx.

If there is some common region in which w; = u(x,y) + iv(x, y) and wy = w}‘ =
u(x,y) —iv(x, y) are both analytic, prove that u(x, y) and v(x, y) are constants.

Starting from f(z) = 1/(x + iy), show that 1/z is analytic in the entire finite z plane
except at the point z = 0. This extends our discussion of the analyticity of z” to negative
integer powers 7.

Show that given the Cauchy-Riemann equations, the derivative f’(z) has the same value
for dz = adx + ibdy (with neither a nor b zero) as it has for dz = dx.

Using f(reig) = R(r,0)e!®"? in which R(r,0) and O(r, 0) are differentiable real
functions of r and 6, show that the Cauchy-Riemann conditions in polar coordinates
become

OR _R0O LoR _ 00

@ 5 =73 ©® 7w ar

Hint. Set up the derivative first with §z radial and then with 8z tangential.

As an extension of Exercise 11.2.7 show that @ (r, 0) satisfies the 2-D Laplace equation
in polar coordinates,

0’0 190 1970
ar2 ror  r2oe?

For each of the following functions f(z), find f’(z) and identify the maximal region
within which f(z) is analytic.

sinz

(a) f(Z)ZTs d) f=el7,
=72—3z+2
b f@=m, O SOTETEE
| (H  f(z) =tan(z),
© f@@= , (g) f(z)=tanh(z).

z2(z+1)
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11.2.10  For what complex values do each of the following functions f(z) have a derivative?

11.2.11

@@ f@) =2

(b) f)=z72

(©) f(x)=tan"'(2),
(d) f(z)=tanh ' (2).

Two-dimensional irrotational fluid flow is conveniently described by a complex poten-
tial f(z) = u(x,v) + iv(x,y). We label the real part, u(x, y), the velocity potential,
and the imaginary part, v(x, y), the stream function. The fluid velocity V is given by
V =Vu.If f(z) is analytic:

(a) Show thatdf/dz=V, —iVy.

(b) Show that V - V =0 (no sources or sinks).

(c) Show that V x V =0 (irrotational, nonturbulent flow).

11.2.12 The function f(z) is analytic. Show that the derivative of f(z) with respect to z* does

11.3

not exist unless f(z) is a constant.
Hint. Use the chain rule and take x = (z + z*)/2, y = (z — z¥)/2i.

Note. This result emphasizes that our analytic function f(z) is not just a complex func-
tion of two real variables x and y. It is a function of the complex variable x +iy.

CAUCHY’S INTEGRAL THEOREM

Contour Integrals

With differentiation under control, we turn to integration. The integral of a complex vari-
able over a path in the complex plane (known as a contour) may be defined in close
analogy to the (Riemann) integral of a real function integrated along the real x-axis.

We divide the contour, from z to z;,, designated C, into n intervals by picking n — 1
intermediate points z1, z2, . .. on the contour (Fig. 11.2). Consider the sum

Sn =Zf(§j)(2j —2Zj-1),

j=l1
where ¢; is a point on the curve between z; and z;_1. Now let n — oo with
lzj —zj-11—>0

for all j. If lim,—, oo S, exists, then

!

n )
nlilgozf@i)(zj—Zj71)=/f(z)dz=ff(z)dz. (11.16)
Jj=1 b c

The right-hand side of Eq. (11.16) is called the contour integral of f(z) (along the specified
contour C from z = z¢ to z = 7).
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FIGURE 11.2 Integration path.

As an alternative to the above, the contour integral may be defined by

2 x2,y2
/f(z)dz = / [u(x, y) +iv(x, y)][dx +idy]
21 X1,)1

x2,y2 x2,72

_ /[u(x,y>dx—v(x,y>dy]+i /[v(x,y>dx+u<x,y)dy],

X1, V1 X1,Y1

(11.17)

with the path joining (x1, y1) and (x2, y2) specified. This reduces the complex integral to
the complex sum of real integrals. It is somewhat analogous to the replacement of a vector

integral by the vector sum of scalar integrals.

Often we are interested in contours that are closed, meaning that the start and end of the
contour are at the same point, so that the contour forms a closed loop. We normally define
the region enclosed by a contour as that which lies to the left when the contour is traversed
in the indicated direction; thus a contour intended to surround a finite area will normally be
deemed to be traversed in the counterclockwise direction. If the origin of a polar coordinate
system is within the contour, this convention will cause the normal direction of travel on

the contour to be that in which the polar angle 6 increases.

Statement of Theorem

Cauchy’s integral theorem states that:

If f{z) is an analytic function at all points of a simply connected region in the complex

plane and if C is a closed contour within that region, then

?gf(z)dz=0.
c

(11.18)
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To clarify the above, we need the following definition:

e A region is simply connected if every closed curve within it can be shrunk continu-
ously to a point that is within the region.

In everyday language, a simply connected region is one that has no holes. We also need to
explain that the symbol ¢ will be used from now on to indicate an integral over a closed
contour; a subscript (such as C) is attached when further specification of the contour is
desired. Note also that for the theorem to apply, the contour must be “within” the region of
analyticity. That means it cannot be on the boundary of the region.

Before proving Cauchy’s integral theorem, we look at some examples that do (and do
not) meet its conditions.

Example 11.3.1 2" on CiRcuLAR CONTOUR

Let’s examine the contour integral § z"dz, where C is a circle of radius r > 0 around the
origin z = 0 in the positive mathematical sense (counterclockwise). In polar coordinates,
cf. Eq. (1.125), we parameterize the circle as z = re' and dz = ire!®df. Forn # —1,n an
integer, we then obtain

2
fz"dz =jr"t! /exp[i(n +1)01d6
c 0
ol (110 2
=it ——| =0 (11.19)
in+1) 0
because 277 is a period of ¢! "+ 1% However, for n = —1
2
dz . .
— =i | df =2ni, (11.20)
b4
C 0

independent of » but nonzero.

The fact that Eq. (11.19) is satisfied for all integers n > 0 is required by Cauchy’s the-
orem, because for these n values z" is analytic for all finite z, and certainly for all points
within a circle of radius ». Cauchy’s theorem does not apply for any negative integer n
because, for these n, z" is singular at z = 0. The theorem therefore does not prescribe any
particular values for the integrals of negative n. We see that one such integral (that for
n = —1) has a nonzero value, and that others (for integral n # —1) do vanish. |

Example 11.3.2 ;" ON SQUARE CONTOUR

We next examine the integration of z”* for a different contour, a square with vertices at
:I:% + %i. It is somewhat tedious to perform this integration for general integer n, so we
illustrate only withn =2 and n = —1.
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y
A+ 1+i
2 2
X
_— ° —_—
1-i 1-i
2 2

FIGURE 11.3 Square integration contour.

For n =2, we have z2 = x> — y2 + 2ixy. Referring to Fig. 11.3, we identify the con-
tour as consisting of four line segments. On Segment 1, dz =dx (y = —% and dy = 0);
on Segment 2, dz =idy, x = %, dx =0; on Segment 3, dz =dx, y = %, dy = 0; and on
Segment 4, dz =idy, x = —%, dx = 0. Note that for Segments 3 and 4 the integration is

in the direction of decreasing value of the integration variable. These segments therefore
contribute as follows to the integral:

dx(? = L= i) =+ l_<_l) AT -
4 318 8 4 2 6’

Segment 1:

. | 5 . i il 1 1 i
Segment 2: idy(z—y +ly)=z_§ s (3 _5(0)28’

| |
Pl= T— e NI T —

Segment 3: [ (@02~ +ix) = -3 1—<—l> ri-to=2
egment 3: N g i =—3|¢ 2 =-,
1

4 2 6
2
1
2
. I 9. i il 1 1 i
Segment4: | (idy)(z —y _ly)=_4_1+§ s~ (3 _5(0)2_6‘
1
2

We find that the integral of z> over the square vanishes, just as it did over the circle. This
is required by Cauchy’s theorem.

For n = —1, we have, in Cartesian coordinates,

_ X —iy
Z1

_x2+y2’
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and the integral over the four segments of the square contour takes the form

1

—i x—i/2 14
y(idy)—i—/ & dx+/ 271 G ay).
ye+ 4 X<+ |

=

x+i/2
x2+}1

\MI.—
QL
=
+
\mw
ol —
[\*)

1 2 241
| 7 yetg
2 2 2

=

Several of the terms vanish because they involve the integration of an odd integrand over
an even interval, and others simply cancel. All that remains is

the same result as was obtained for the integration of z~! around a circle of any radius.
Cauchy’s theorem does not apply here, so the nonzero result is not problematic. |

Cauchy’s Theorem: Proof
We now proceed to a proof of Cauchy’s integral theorem. The proof we offer is subject to

a restriction originally accepted by Cauchy but later shown unnecessary by Goursat. What
we need to show is that

f#f(z)dz=0,
c

subject to the requirement that C is a closed contour within a simply connected region R
where f(z) is analytic. See Fig. 11.4. The restriction needed for Cauchy’s (and the present)
proof is that if we write f(z) = u(x, y) + iv(x, y), the partial derivatives of # and v are
continuous.

Cc

N
>

FIGURE 11.4 A closed-contour C within a simply connected region R.

Nt \\¥
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We intend to prove the theorem by direct application of Stokes’ theorem (Section 3.8).
Writing dz =dx +idy,

ff(z)dZZ%(uvLiv)(dx—f-idy)
C

C

zyg(udx—vdy)—kif(vdx—}-udy). (11.21)
c c

These two line integrals may be converted to surface integrals by Stokes’ theorem, a pro-
cedure that is justified because we have assumed the partial derivatives to be continuous
within the area enclosed by C. In applying Stokes’ theorem, note that the final two integrals
of Eq. (11.21) are real.

To proceed further, we note that all the integrals involved here can be identified as
having integrands of the form (V. e, + V,e,) - dr, the integration is around a loop in the
xy plane, and the value of the integral will be the surface integral, over the enclosed area,
of the z component of V x (V, &, + Vyéy). Thus, Stokes’ theorem says that

v, AV,

f(vx dx + Vydy) =/ —2 — — 2 )dx dy, (11.22)
ax ay

C A

with A being the 2-D region enclosed by C.
For the first integral in the second line of Eq. (11.21), let u =V, and v = -V, 2 Then

f(udx - vdy):f(vxdx%—Vydy)
C C

9V, BV, v 9

:/ LASTIALY dxdyz_/ DM axdy.  (11.23)
ax  dy dx  dy

A A

For the second integral on the right side of Eq. (11.21) we let u =V, and v = V. Using
Stokes’ theorem again, we obtain

w9

55(1; dx+udy)=/<—u——v>dxdy. (11.24)
ax  dy

C A

Inserting Eqs. (11.23) and (11.24) into Eq. (11.21), we now have

v a w9

ff(z)dp—/ Al dxdy—f—i/ M axday=o. (11.25)
ax  dy ax  dy

C A A

Remembering that f(z) has been assumed analytic, we find that both the surface integrals
in Eq. (11.25) are zero because application of the Cauchy-Riemann equations causes their
integrands to vanish. This establishes the theorem.

2For Stokes’ theorem, Vy and Vy are any two functions with continuous partial derivatives, and they need not be connected by
any relations stemming from complex variable theory.
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Multiply Connected Regions

The original statement of Cauchy’s integral theorem demanded a simply connected region
of analyticity. This restriction may be relaxed by the creation of a barrier, a narrow region
we choose to exclude from the region identified as analytic. The purpose of the barrier
construction is to permit, within a multiply connected region, the identification of curves
that can be shrunk to a point within the region, that is, the construction of a subregion that
is simply connected.

Consider the multiply connected region of Fig. 11.5, in which f(z) is only analytic in
the unshaded area labeled R. Cauchy’s integral theorem is not valid for the contour C,
as shown, but we can construct a contour C’ for which the theorem holds. We draw a
barrier from the interior forbidden region, R’, to the forbidden region exterior to R and
then run a new contour, C’, as shown in Fig. 11.6.

The new contour, C’, through ABDEFGA, never crosses the barrier that converts R into
a simply connected region. Incidentally, the three-dimensional analog of this technique
was used in Section 3.9 to prove Gauss’ law. Because f(z) is in fact continuous across the
barrier dividing DE from G A and the line segments DE and G A can be arbitrarily close
together, we have

A D
/f(Z)dZ=—/f(Z)dz. (11.26)
G E

N\

> X

7

FIGURE 11.6 Conversion of a multiply connected region into a simply connected region.
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Then, invoking Cauchy’s integral theorem, because the contour is now within a simply
connected region, and using Eq. (11.26) to cancel the contributions of the segments along
the barrier,

ff(Z)dZZ/f(Z)dZ‘f—/f(Z)dZZO. (11.27)
C/

ABD EFG

Now that we have established Eq. (11.27), we note that A and D are only infinitesimally
separated and that f(z) is actually continuous across the barrier. Hence, integration on the
path ABD will yield the same result as a truly closed contour ABDA. Similar remarks apply
to the path EFG, which can be replaced by EFGE. Renaming ABDA as C| and EFGE as
—C}, we have the simple result

ff(z)dz = yg f(@dz, (11.28)
C; Ch

in which C| and C} are both traversed in the same (counterclockwise, that is, positive)
direction.

This result calls for some interpretation. What we have shown is that the integral of an
analytic function over a closed contour surrounding an “island” of nonanalyticity can be
subjected to any continuous deformation within the region of analyticity without changing
the value of the integral. The notion of continuous deformation means that the change
in contour must be able to be carried out via a series of small steps, which precludes
processes whereby we “jump over” a point or region of nonanalyticity. Since we already
know that the integral of an analytic function over a contour in a simply connected region
of analyticity has the value zero, we can make the more general statement

The integral of an analytic function over a closed path has a value that remains
unchanged over all possible continuous deformations of the contour within the region
of analyticity.

Looking back at the two examples of this section, we see that the integrals of z vanished
for both the circular and square contours, as prescribed by Cauchy’s integral theorem for
an analytic function. The integrals of z~! did not vanish, and vanishing was not required
because there was a point of nonanalyticity within the contours. However, the integrals of
z~! for the two contours had the same value, as either contour can be reached by continuous
deformation of the other.

We close this section with an extremely important observation. By a trivial extension to
Example 11.3.1 plus the fact that closed contours in a region of analyticity can be deformed
continuously without altering the value of the integral, we have the valuable and useful
result:

The integral of (z — zg)" around any counterclockwise closed path C that encloses z(
has, for any integer n, the values

jg(z—zo)"dz={0’ n7 -l (11.29)
C

2ri, n=-—1.
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22 21
Showthat/f(z)dz=—/f(z)dz.
21 22

Prove that <|flmax - L,

/ Fdz
C

where | f|max 1S the maximum value of | f(z)| along the contour C and L is the length
of the contour.
Show that the integral

4-3i

/ (42 = 3iz) dz

3+4i
has the same value on the two paths: (a) the straight line connecting the integration
limits, and (b) an arc on the circle |z| = 5.
Z
Let F(z) = / cos2¢deg.
(14i)

Show that F(z) is independent of the path connecting the limits of integration, and
evaluate F(ri).

Evaluate 55C (x2 — iy?) dz, where the integration is (a) clockwise around the unit circle,
(b) on a square with vertices at £1 4 i. Explain why the results of parts (a) and (b) are
or are not identical.
Verify that

1+i

/ Z¥dz

0

depends on the path by evaluating the integral for the two paths shown in Fig. 11.7.
Recall that f(z) = z* is not an analytic function of z and that Cauchy’s integral theorem
therefore does not apply.

Show that

d
e
7tz

C
in which the contour C is a circle defined by |z| = R > 1.
Hint. Direct use of the Cauchy integral theorem is illegal. The integral may be evaluated
by expanding into partial fractions and then treating the two terms individually. This
yields O for R > 1 and 27i for R < 1.



486

11.4

Chapter 11 Complex Variable Theory

y

o (1,1)

FIGURE 11.7 Contours for Exercise 11.3.6.

CAUCHY’S INTEGRAL FORMULA

As in the preceding section, we consider a function f (z) that is analytic on a closed contour
C and within the interior region bounded by C. This means that the contour C is to be
traversed in the counterclockwise direction. We seek to prove the following result, known
as Cauchy’s integral formula:

1 f@

2ni J z—20
o)

dz = f(z20), (11.30)

in which zg is any point in the interior region bounded by C. Note that since z is on the
contour C while zg is in the interior, z — zog # 0 and the integral Eq. (11.30) is well defined.
Although f(z) is assumed analytic, the integrand is f(z)/(z — zo) and is not analytic at
z = zo unless f(z9) = 0. We now deform the contour, to make it a circle of small radius
r about z = zg, traversed, like the original contour, in the counterclockwise direction. As
shown in the preceding section, this does not change the value of the integral. We therefore
write z = zg + re'?, so dz = ire'?de, the integration is from 6 = 0 to 6 = 2, and
2 i0
S@ 4 / J@AreT) i g,
7—20 rei?
c 0

Taking the limit r — 0, we obtain

2
f /@ dz=if(zo)/d0=2nif(z()), (1131)
A Z—20 0

where we have replaced f(z) by its limit f(zo) because it is analytic and therefore contin-
uous at z = zg. This proves the Cauchy integral formula.

Here is a remarkable result. The value of an analytic function f (z) is given at an arbitrary
interior point z = zo once the values on the boundary C are specified.
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It has been emphasized that z¢ is an interior point. What happens if zg is exterior to C?
In this case the entire integrand is analytic on and within C. Cauchy’s integral theorem,
Section 11.3, applies and the integral vanishes. Summarizing, we have

1 f@dz {f(ZO), zo within the contour,

2mi Z—20 0, z0 exterior to the contour.
c

Example 11.4.1 AN INTEGRAL

Consider
= ?§ _%
72(z+2)
c

where the integration is counterclockwise over the unit circle. The factor 1/(z + 2) is
analytic within the region enclosed by the contour, so this is a case of Cauchy’s integral
formula, Eq. (11.30), with f(z) = 1/(z + 2) and zo = 0. The result is immediate:

1
I=2ni[ :| =i.
Z+2 7=0

Example 11.4.2  INTEGRALWITH TWO SINGULAR FACTORS

dz
I= ,
y§4z2— 1

C

Consider now

also integrated counterclockwise over the unit circle. The denominator factors into
4 (Z - %) (z + %), and it is apparent that the region of integration contains two singular fac-
tors. However, we may still use Cauchy’s integral formula if we make the partial fraction

expansion
1 1 1
422-1" 4 —1 41 )

after which we integrate the two terms individually. We have

I—l dz dz
T4 -1 Jz4l
P 2 2

C

Each integral is a case of Cauchy’s formula with f(z) = 1, and for both integrals the
point zg = :i:% is within the contour, so each evaluates to 27, and their sum is zero. So
I=0. ]
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Derivatives

Cauchy’s integral formula may be used to obtain an expression for the derivative of f(z).
Differentiating Eq. (11.30) with respect to zg, and interchanging the differentiation and the

7 integration,’
1 /@)
/
20)=— P ———dz. 11.32
Fe =5 oo (11.32)
Differentiating again,
2 f(R)dz
U
0= ——.
F o) 271 | (z—z20)3
Continuing, we get*
! d
FO ) = 2§ T DE (11.33)

2mi J (z —zo)t 1’

that is, the requirement that f(z) be analytic guarantees not only a first derivative but
derivatives of all orders as well! The derivatives of f(z) are automatically analytic. As
indicated in a footnote, this statement assumes the Goursat version of the Cauchy integral
theorem. This is a reason why Goursat’s contribution is so significant in the development
of the theory of complex variables.

Example 11.4.3  Use OF DERIVATIVE FORMULA

Consider

sinzdz

(z—a)*’
C

where the integral is counterclockwise on a contour that encircles the point z = a. This is
a case of Eq. (11.33) with n = 3 and f (z) = sin’ z. Therefore,

2mi [ d3 .2 i . 8mi
I =—|— sin“z = —[ — 851nzcosz] = ———sinacosa.
e 3 = 3

3The interchange can be proved legitimate, but the proof requires that Cauchy’s integral theorem not be subject to the continuous
derivative restriction in Cauchy’s original proof. We are therefore now depending on Goursat’s proof of the integral theorem.
4This expression is a starting point for defining derivatives of fractional order. See A. Erdelyi, ed., Tables of Integral Trans-
forms, Vol. 2. New York: McGraw-Hill (1954). For more recent applications to mathematical analysis, see T. J. Osler, An inte-
gral analogue of Taylor’s series and its use in computing Fourier transforms, Math. Comput. 26: 449 (1972), and references
therein.
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Morera’s Theorem
A further application of Cauchy’s integral formula is in the proof of Morera’s theorem,

which is the converse of Cauchy’s integral theorem. The theorem states the following:

If a function f(z) is continuous in a simply connected region R and fC f(@)dz =0 for
every closed contour C within R, then f(z) is analytic throughout R.

To prove the theorem, let us integrate f(z) from z; to z». Since every closed-path inte-
gral of f(z) vanishes, this integral is independent of path and depends only on its end-
points. We may therefore write

2
F(Zz)—F(Z1)=/f(Z)dz, (11.34)

21

where F(z), presently unknown, can be called the indefinite integral of f(z). We then
construct the identity

F(z2) = F(z1)
22— 121

22
1
—f(Zl)=—/[f(t)—f(Z1)] dt, (11.35)
2 — 11

where we have introduced another complex variable, ¢. Next, using the fact that f(¢) is
continuous, we write, keeping only terms to first order in t — zy,

fO = fe)=f)t—z)+-,
which implies that

22 22

/[f(ﬂ-f(a)] dl:/[f/(z1)(t—11)+~--]dt:

21 21

(za—z1)>+--.

f'(z1)

2
It is thus apparent that the right-hand side of Eq. (11.35) approaches zero in the limit
22 = 21, SO

f(z1) = lim M:F/(zl). (11.36)
221 22— 21
Equation (11.36) shows that F(z), which by construction is single-valued, has a derivative
at all points within R and is therefore analytic in that region. Since F(z) is analytic, then
so also must be its derivative, f(z), thereby proving Morera’s theorem.

At this point, one comment might be in order. Morera’s theorem, which establishes
the analyticity of F(z) in a simply connected region, cannot be extended to prove that
F(z), as well as f(z), is analytic throughout a multiply connected region via the device of
introducing a barrier. It is not possible to show that F'(z) will have the same value on both
sides of the barrier, and in fact it does not always have that property. Thus, if extended

to a multiply connected region, F(z) may fail to have the single-valuedness that is one
of the requirements for analyticity. Put another way, a function which is analytic in a
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multiply connected region will have analytic derivatives of all orders in that region, but its
integral is not guaranteed to be analytic in the entire multiply connected region. This issue
is elaborated in Section 11.6.

The proof of Morera’s theorem has given us something additional, namely that the
indefinite integral of f(z) is its antiderivative, showing that:

The rules for integration of complex functions are the same as those for real functions.

Further Applications

An important application of Cauchy’s integral formula is the following Cauchy inequal-
ity. If f(2) = Y_ a,z" is analytic and bounded, | f(z)| < M on a circle of radius r about
the origin, then

la,|r"™ <M (Cauchy’s inequality) (11.37)

gives upper bounds for the coefficients of its Taylor expansion. To prove Eq. (11.37) let us
define M (r) = max;—, | f(z)| and use the Cauchy integral for a, = F™ () /n!,

! 15, 2
|an|=g Zn+1d2‘§M(r)m-

lz|=r

An immediate consequence of the inequality, Eq. (11.37), is Liouville’s theorem: If
f(z) is analytic and bounded in the entire complex plane it is a constant. In fact, if
|f(2)| <M for all z, then Cauchy’s inequality Eq. (11.37), applied for |z] = r, gives
lan| < Mr~". If now we choose to let r approach co, we may conclude that for all n > 0,
|a,| = 0. Hence f(z) =ap.

Conversely, the slightest deviation of an analytic function from a constant value implies
that there must be at least one singularity somewhere in the infinite complex plane. Apart
from the trivial constant functions then, singularities are a fact of life, and we must learn to
live with them. As pointed out when introducing the concept of the point at infinity, even
innocuous functions such as f(z) = z have singularities at infinity; we now know that this
is a property of every entire function that is not simply a constant. But we shall do more
than just tolerate the existence of singularities. In the next section, we show how to expand
a function in a Laurent series at a singularity, and we go on to use singularities to develop
the powerful and useful calculus of residues in a later section of this chapter.

A famous application of Liouville’s theorem yields the fundamental theorem of alge-
bra (due to C. F. Gauss), which says that any polynomial P(z) =) ,_,a,z’ withn >0
and a, # 0 has n roots. To prove this, suppose P(z) has no zero. Then 1/P(z) is analytic
and bounded as |z| — o0, and, because of Liouville’s theorem, P(z) would have to be a
constant. To resolve this contradiction, it must be the case that P(z) has at least one root A
that we can divide out, forming P (z)/(z — A), a polynomial of degree n — 1. We can repeat
this process until the polynomial has been reduced to degree zero, thereby finding exactly
n roots.
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Unless explicitly stated otherwise, closed contours occurring in these exercises are to
be understood as traversed in the mathematically positive (counterclockwise) direction.
Show that

1 .
— @ 2" " 'dz, m and n integers
2mi

(with the contour encircling the origin once), is a representation of the Kronecker §,,,,.

7§ dz
2-1

C

Evaluate

where C is the circle |z — 1| = 1.

Assuming that f(z) is analytic on and within a closed contour C and that the point zg
is within C, show that

(@ dz— (@ dz

Z—20 (z—z0?%
C C

You know that f(z) is analytic on and within a closed contour C. You suspect that the
nth derivative £ (z¢) is given by

FO () = 2 75 AC

— 2= _dz.
2 (z _Zo)n+1
C

Using mathematical induction (Section 1.4), prove that this expression is correct.

(a) A function f(z) is analytic within a closed contour C (and continuous on C). If
f(z) # 0 within C and | f(z)| < M on C, show that

lf@l=M
for all points within C.
Hint. Consider w(z) =1/f(2).

(b) If f(z) = 0 within the contour C, show that the foregoing result does not hold
and that it is possible to have | f(z)| = 0 at one or more points in the interior with
| f (z)] > 0 over the entire bounding contour. Cite a specific example of an analytic
function that behaves this way.

Evaluate
ei b4
% Z—3 d Z,
C

for the contour a square with sides of length a > 1, centered at z = 0.
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11.4.7 Evaluate

sin?z — 72
3 4%
(z—a)
where the contour encircles the point z = a.
11.4.8 Evaluate
% dz
72z + 1)’
c
for the contour the unit circle.
11.4.9 Evaluate
z
?g f(@ dz.
z2z+1)
c

for the contour the unit circle.

Hint. Make a partial fraction expansion.

11.5 LAURENT EXPANSION

Taylor Expansion

The Cauchy integral formula of the preceding section opens up the way for another deriva-

tion of Taylor’s series (Section 1.2), but this time for functions of a complex variable.

Suppose we are trying to expand f(z) about z = zo and we have z = z; as the nearest

point on the Argand diagram for which f(z) is not analytic. We construct a circle C cen-

tered at z = zo with radius less than |z; — zo| (Fig. 11.8). Since z; was assumed to be the

nearest point at which f(z) was not analytic, f(z) is necessarily analytic on and within C.
From the Cauchy integral formula, Eq. (11.30),

1 Ndz7
f(z)zr%f(f#
Tl T —2Z
C

_ fhdZ
C2mi ) (2 —z0) — (z— z20)
C
_ Lyﬁ F&dz . (11.38)
27 J (7 —z0)[1 — (z—20)/(@ — 20)]

Here 7’ is a point on the contour C and z is any point interior to C. It is not legal yet
to expand the denominator of the integrand in Eq. (11.38) by the binomial theorem, for
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>Nz

N

FIGURE 11.8 Circular domains for Taylor expansion.

we have not yet proved the binomial theorem for complex variables. Instead, we note the
identity

1 0
— =1 4t+24+2+ =) 11.39
il R A § ( )

which may easily be verified by multiplying both sides by 1 — ¢. The infinite series, fol-
lowing the methods of Section 1.2, is convergent for || < 1.

Now, for a point z interior to C, |z — zo| < |2/ — zol, and, using Eq. (11.39), Eq. (11.38)
becomes

(@ —zo)"*!

1 [=(z—2z20)"f(Z)dZ
o f Z; . (11.40)
c "=

Interchanging the order of integration and summation, which is valid because Eq. (11.39)
is uniformly convergent for |f| < 1 — ¢, with 0 < & < 1, we obtain

"Yd7'
fz) = Z(z—z )” f(Z) < (11.41)

Zo)n+1

Referring to Eq. (11.33), we get

)
fo=31 anO) (z—z0)", (11.42)

n=0

which is our desired Taylor expansion.

It is important to note that our derivation not only produces the expansion given in
Eq. (11.41); it also shows that this expansion converges when |z — zo| < |z1 — zo|- For this
reason the circle defined by |z — zg| = |z1 — zo| is called the circle of convergence of our
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20 Contour
line

FIGURE 11.9  Annular region for Laurent series.
12 = zole, > 1z — zol; 12" — zolc, <1z — 2ol

Taylor series. Alternatively, the distance |z] — zp| is sometimes referred to as the radius of
convergence of the Taylor series. In view of the earlier definition of 71, we can say that:

The Taylor series of a function f(z) about any interior point zq of a region in which
f () is analytic is a unique expansion that will have a radius of convergence equal to
the distance from z to the singularity of f(z) closest to zg, meaning that the Taylor
series will converge within this circle of convergence. The Taylor series may or may
not converge at individual points on the circle of convergence.

From the Taylor expansion for f(z) a binomial theorem may be derived. That task is
left to Exercise 11.5.2.

Laurent Series

We frequently encounter functions that are analytic in an annular region, say, between
circles of inner radius r and outer radius R about a point zg, as shown in Fig. 11.9. We
assume f(z) to be such a function, with z a typical point in the annular region. Draw-
ing an imaginary barrier to convert our region into a simply connected region, we apply
Cauchy’s integral formula to evaluate f(z), using the contour shown in the figure. Note
that the contour consists of the two circles centered at zg, labeled C; and C, (which can be
considered closed since the barrier is fictitious), plus segments on either side of the barrier
whose contributions will cancel. We assign C, and Cj the radii rp and ry, respectively,
where r < rp <r; < R. Then, from Cauchy’s integral formula,
! / !/ /
f(z)=L. w—L w (11.43)
2mi 7' —z 2mi 7 —z
C C

Note that in Eq. (11.43)) an explicit minus sign has been introduced so that the contour
C» (like Cy) is to be traversed in the positive (counterclockwise) sense. The treatment of
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Eq. (11.43) now proceeds exactly like that of Eq. (11.38) in the development of the Taylor
series. Each denominator is written as (z' — zg) — (z — z¢) and expanded by the binomial
theorem, which is now regarded as proven (see Exercise 11.5.2).

Noting that for Cy, |z — zo| > |z — zol|, while for C», |z’ — zg| < |z — zol, we find

f@=5— Z(z )" fizi+#;(Z—Zo)_"?g(z/—Zo)"_lf(z/)dz/-

ZO)n+l
Cy

(11.44)

The minus sign of Eq. (11.43) has been absorbed by the binomial expansion. Labeling the
first series S and the second S we have

f(ha7
2m§(z )f( mpnvE (11.45)

which has the same form as the regular Taylor expansion, convergent for |z — zg| < |z’ —
zo0| = r1, that is, for all z interior to the larger circle, C. For the second series in Eq. (6.65)
we have

Z(Z—ZO) "?g(z —z20"" ' f(2)d7, (11.46)
T 2mi

n=1 &

convergent for |z — zg| > |z’ — zo| = r2, that is, for all z exterior to the smaller circle, C;.
Remember, C> now goes counterclockwise.
These two series are combined into one series,” known as a Laurent series, of the form

[e¢]

f@= ) anz—z0)", (11.47)

n=—oo

where

1 fhdz

ol e (11.48)
C

a, =

Since convergence of a binomial expansion is not relevant to the evaluation of Eq. (11.48),
C in that equation may be any contour within the annular region r < |z — zo| < R that
encircles zg once in a counterclockwise sense. If such an annular region of analyticity does
exist, then Eq. (11.47) is the Laurent series, or Laurent expansion, of f(z).

The Laurent series differs from the Taylor series by the obvious feature of negative
powers of (z — zp). For this reason the Laurent series will always diverge at least at 7 = zg
and perhaps as far out as some distance r. In addition, note that Laurent series coefficients
need not come from evaluation of contour integrals (which may be very intractable). Other
techniques, such as ordinary series expansions, may provide the coefficients.

Numerous examples of Laurent series appear later in this book. We limit ourselves here
to one simple example to illustrate the application of Eq. (11.47).

5 Replace n by —n in Sy and add.
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Example 11.5.1 LAURENT EXPANSION

Let f(z) = [z(z — 1)]~!. If we choose to make the Laurent expansion about zo = 0, then
r > 0 and R < 1. These limitations arise because f(z) diverges both at z =0 and z = 1.
A partial fraction expansion, followed by the binomial expansion of (1 — z)~!, yields the
Laurent series

1 1 1 1
S N S S R S R 11.49
e-0  1-z z 2 ¢ 7F n;z (14

From Egs. (11.49), (11.47), and (11.48), we then have

—1 forn> -1, 11.50
%_mwf@mﬂw—n_{o forn < —1, (11.50)
where the contour for Eq. (11.50) is counterclockwise in the annular region between 7/ =0
and || = 1.

The integrals in Eq. (11.50) can also be directly evaluated by insertion of the geometric-
series expansion of (1 —z/)~!

27[1 % Z( )m (Z/)n+2 (11'51)

Upon interchanging the order of summation and integration (permitted because the series
is uniformly convergent), we have

1 — Nm—n—2
=—— L dy. 11.52
ap 5o mE:O 56 (@) z ( )

The integral in Eq. (11.52) (including the initial factor 1/27i, but not the minus sign) was
shown in Exercise 11.4.1 to be an integral representation of the Kronecker delta, and is
therefore equal to §,, ,+1. The expression for a, then reduces to

-1, n>-1,
anz_zam,n+1={ 0. n<-—1
m=0 9 9
in agreement with Eq. (11.50). ]
Exercises
11.5.1  Develop the Taylor expansion of In(1 + 7).

o0 Z"
ANS. e
Sl
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11.5.7
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Derive the binomial expansion

[e 0]

m_ mon=D a2 (M)

A+20"=1+mz+ 12 T+ = A\ z
=

for m, any real number. The expansion is convergent for |z| < 1. Why?

A function f(z) is analytic on and within the unit circle. Also, | f(z)| < 1 for |z] <1
and f(0) =0. Show that | f(z)| < |z| for |z] < 1.

Hint. One approach is to show that f(z)/z is analytic and then to express [ f(z0)/z0]"
by the Cauchy integral formula. Finally, consider absolute magnitudes and take the nth
root. This exercise is sometimes called Schwarz’s theorem.

If f(z) is a real function of the complex variable z = x + iy, that is, f(x) = f*(x), and
the Laurent expansion about the origin, f(z) = Y a,z", has a, =0 for n < —N, show
that all of the coefficients a,, are real.

Hint. Show that zV f(z) is analytic (via Morera’s theorem, Section 11.4).

Prove that the Laurent expansion of a given function about a given point is unique;
that is, if

]

f@= Y az—z20)"= Y biz—20)",

n=—N n=—N
show that a,, = b,, for all n.
Hint. Use the Cauchy integral formula.
Obtain the Laurent expansion of e?/z> about z = 0.
Obtain the Laurent expansion of ze*/(z — 1) about z = 1.

Obtain the Laurent expansion of (z — 1) e!/% about z = 0.

SINGULARITIES

Poles

We define a point zo as an isolated singular point of the function f(z) if f(z) is not
analytic at z = z¢ but is analytic at all neighboring points. There will therefore be a Laurent
expansion about an isolated singular point, and one of the following statements will be true:

1.

2.

The most negative power of z — zg in the Laurent expansion of f(z) about z = zo will
be some finite power, (z — z9) ™", where n is an integer, or

The Laurent expansion of f(z) about z — zg will continue to negatively infinite powers
of z — zp.
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In the first case, the singularity is called a pole, and is more specifically identified as
a pole of order n. A pole of order 1 is also called a simple pole. The second case is not
referred to as a “pole of infinite order,” but is called an essential singularity.

One way to identify a pole of f(z) without having available its Laurent expansion is to
examine

Zlingo(z —20)" f(z0)

for various integers n. The smallest integer n for which this limit exists (i.e., is finite) gives
the order of the pole at z = zg. This rule follows directly from the form of the Laurent
expansion.

Essential singularities are often identified directly from their Laurent expansions. For
example,

clearly has an essential singularity at z = 0. Essential singularities have many pathologi-
cal features. For instance, we can show that in any small neighborhood of an essential
singularity of f(z) the function f(z) comes arbitrarily close to any (and therefore every)
preselected complex quantity wg.® Here, the entire w-plane is mapped by f into the neigh-
borhood of the point zg.

The behavior of f(z) as z — oo is defined in terms of the behavior of f(1/¢) ast — 0.
Consider the function

© (_1)nz2n+l

inzg = _ 11.53
sinz nX:(:) an D] ( )

As z — 00, we replace the z by 1/¢ to obtain

o (?> :ZW- (11.54)

n=0

It is clear that sin(1/¢) has an essential singularity at = 0, from which we conclude that
sin z has an essential singularity at z = co. Note that although the absolute value of sinx
for all real x is equal to or less than unity, the absolute value of siniy = i sinh y increases
exponentially without limit as y increases.

A function that is analytic throughout the finite complex plane except for isolated poles
is called meromorphic. Examples are ratios of two polynomials, also tanz and cotz. As
previously mentioned, functions that have no singularities in the finite complex plane are
called entire functions. Examples are exp z, sinz, and cos z.

OThis theorem is due to Picard. A proof is given by E. C. Titchmarsh, The Theory of Functions, 2nd ed. New York: Oxford
University Press (1939).
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Branch Points

In addition to the isolated singularities identified as poles or essential singularities, there
are singularities uniquely associated with multivalued functions. It is useful to work with
these functions in ways that to the maximum possible extent remove ambiguity as to the
function values. Thus, if at a point zg (at which f(z) has a derivative) we have chosen a
specific value of the multivalued function f(z), then we can assign to f(z) values at nearby
points in a way that causes continuity in f(z). If we think of a succession of closely spaced
points as in the limit of zero spacing defining a path, our current observation is that a given
value of f(zp) then leads to a unique definition of the value of f(z) to be assigned to
each point on the path. This scheme creates no ambiguity so long as the path is entirely
open, meaning that the path does not return to any point previously passed. But if the path
returns to zg, thereby forming a closed loop, our prescription might lead, upon the return,
to a different one of the multiple values of f(zp).

Example 11.6.1  vaLueoF z!/2 oN A CLOSED Loop

We consider f(z) = z!/? on the path consisting of counterclockwise passage around the
unit circle, starting and ending at z = +1. At the start point, where z'/? has the multiple
values +1 and —1, let us choose f(z) = +1. See Fig. 11.10. Writing f(z) = ¢'?/2, we
note that this form (with & = 0) is consistent with the desired starting value of f(z), +1.
In the figure, the start point is labeled A. Next, we note that passage counterclockwise on
the unit circle corresponds to an increase in 6, so that at the points marked B, C, and D in
the figure, the respective values of 6 are 7 /2, m, and 37 /2. Note that because of the path
we have decided to take, we cannot assign to point C the 8 value —m or to point D the 6
value —7r /2. Continuing further along the path, when we return to point A the value of 6
has become 27 (not zero).

Now that we have identified the behavior of 6, let’s examine what happens to f(z). At
the points B, C, and D, we have

; ; 1+
f(ZB):eZQB/2:el7T/4: ,
V2
fe) =€ =+i,
: -1+
flap) =¥/t =
V2
Y B
C/ 9 \A «x
D

FIGURE 11.10  Path encircling z = 0 for evaluation of z!/2.
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FIGURE 11.11  Path not encircling z = 0 for evaluation of z!/2.

When we return to point A, we have f(+1) = e!™ = —1, which is the other value of the
multivalued function z!/2.

If we continue for a second counterclockwise circuit of the unit circle, the value of 6
would continue to increase, from 27 to 47 (reached when we arrive at point A after the
second loop). We now have f(+1) = ¢/ = ¢27i = 1, 50 a second circuit has brought
us back to the original value. It should now be clear that we are only going to be able to
obtain two different values of z!/? for the same point z. |

Example 11.6.2  ANOTHER CLOSED LooP

Let’s now see what happens to the function z!/? as we pass counterclockwise around a

circle of unit radius centered at z = +2, starting and ending at z = +3. See Fig. 11.11.
At z = 3, the values of f(z) are ++/3 and —\/§; let’s start with f(z4) = ++/3. As we
move from point A through point B to point C, note from the figure that the value of 6
first increases (actually, to 30°) and then decreases again to zero; further passage from C
to D and back to A causes 0 first to decrease (to —30°) and then to return to zero at A. So
in this example the closed loop does not bring us to a different value of the multivalued
function z'/2. |

The essential difference between these two examples is that in the first, the path encircled
z = 0; in the second it did not. What is special about z = 0 is that (from a complex-variable
viewpoint) it is singular; the function z!/? does not have a derivative there. The lack of a
well-defined derivative means that ambiguity in the function value will result from paths
that circle such a singular point, which we call a branch point. The order of a branch
point is defined as the number of paths around it that must be taken before the function
involved returns to its original value; in the case of z!/2, we saw that the branch point at
z=01s of order 2.

We are now ready to see what must be done to cause a multivalued function to be
restricted to single-valuedness on a portion of the complex plane. We simply need to pre-
vent its evaluation on paths that encircle a branch point. We do so by drawing a line (known
as a branch line, or more commonly, a branch cut) that the evaluation path cannot cross;
the branch cut must start from our branch point and continue to infinity (or if consistent
with maintaining single-valuedness) to another finite branch point. The precise path of a
branch cut can be chosen freely; what must be chosen appropriately are its endpoints.

Once appropriate branch cut(s) have been drawn, the originally multivalued function has
been restricted to being single-valued in the region bounded by the branch cut(s); we call
the function as made single-valued in this way a branch of our original function. Since we
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could construct such a branch starting from any one of the values of the original function
at a single arbitrary point in our region, we identify our multivalued function as having
multiple branches. In the case of z1/2, which is double-valued, the number of branches
is two.

Note that a function with a branch point and a corresponding branch cut will not be
continuous across the cut line. Hence line integrals in opposite directions on the two sides
of the branch cut will not generally cancel each other. Branch cuts, therefore, are real
boundaries to a region of analyticity, in contrast to the artificial barriers we introduced in
extending Cauchy’s integral theorem to multiply connected regions.

While from a fundamental viewpoint all branches of a multivalued function f(z) are
equally legitimate, it is often convenient to agree on the branch to be used, and such a
branch is sometimes called the principal branch, with the value of f(z) on that branch
called its principal value. It is common to take the branch of z'/2 which is positive for
real, positive z as its principal branch.

An observation that is important for complex analysis is that by drawing appropriate
branch cut(s), we have restricted a multivalued function to single-valuedness, so that it
can be an analytic function within the region bounded by the branch cut(s), and we can
therefore apply Cauchy’s two theorems to contour integrals within the region of analyticity.

Example 11.6.3  Inz HAs AN INFINITE NUMBER OF BRANCHES

Here we examine the singularity structure of Inz. As we already saw in Eq. (1.138), the
logarithm is multivalued, with the polar representation

Inz=In (rgi<9+2nﬂ>) —1Inr +i(6 +2n7), (11.55)

where n can have any positive or negative integer value.

Noting that In z is singular at z = 0 (it has no derivative there), we now identify z =0
as a branch point. Let’s consider what happens if we encircle it by a counterclockwise
path on a circle of radius r, starting from the initial value Inr, at z = r = re'? with 6 =0.
Every passage around the circle will add 27 to 6, and after n complete circuits the value
we have for Inz will be Inr + 2ni. The branch point of Inz at z = 0 is of infinite order,
corresponding to the infinite number of its multiple values. (By encircling z = 0 repeatedly
in the clockwise direction, we can also reach all negative integer values of n.)

We can make In z single-valued by drawing a branch cut from z = 0 to z = co in any
way (though there is ordinarily no reason to use cuts that are not straight lines). It is typical
to identify the branch with n = 0 as the principal branch of the logarithm. Incidentally, we
note that the inverse trigonometric functions, which can be written in terms of logarithms,
as in Eq. (1.137), will also be infinitely multivalued, with principal values that are usually
chosen on a branch that will yield real values for real z. Compare with the usual choices of
the values assigned the real-variable forms of sin~! x = arcsin x, etc. |

Using the logarithm, we are now in a position to look at the singularity structures of
expressions of the form z?, where both z and p may be complex. To do so, we write

z=eM%, s0 7P =P N7 (11.56)

which is single-valued if p is an integer, ¢-valued if p is a real rational fraction (in lowest
terms) of the form s/¢, and infinitely multivalued otherwise.
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Example 11.6.4  MuLTIPLE BRANCH POINTS

Consider the function
fO=E =DV =@+D"e-1"

The first factor on the right-hand side, (z 4 1)'/2, has a branch point at z = —1. The second
factor has a branch point at z = +1. At infinity f(z) has a simple pole. This is best seen
by substituting z = 1/¢ and making a binomial expansion at t = 0:
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We want to make f(z) single-valued by making appropriate branch cut(s). There are many
ways to accomplish this, but one we wish to investigate is the possibility of making a
branch cut from z = —1 to z = +1, as shown in Fig. 11.12.

To determine whether this branch cut makes our f(z) single-valued, we need to see what
happens to each of the multivalent factors in f(z) as we move around on its Argand dia-
gram. Figure 11.12 also identifies the quantities that are relevant for this purpose, namely
those that relate a point P to the branch points. In particular, we have written the position
relative to the branch point at z = 1 as z — 1 = pe?, with the position relative to z = —1
denoted z + 1 = re'?. With these definitions, we have

f(Z) — V]/2p1/26(9+w/2.

Our mission is to note how ¢ and 6 change as we move along the path, so that we can use
the correct value of each for evaluating f(z).

We consider a closed path starting at point A in Fig. 11.13, proceeding via points B
through F, then back to A. At the start point, we choose 6§ = ¢ = 0, thereby causing the
multivalued f(z4) to have the specific value ++/3. As we pass above z = +1 on the way
to point B, 6 remains essentially zero, but ¢ increases from zero to 7. These angles do not
change as we pass from B to C, but on going to point D, € increases to 7, and then, passing
below z = —1 on the way to point E, it further increases to 2w (not zero!). Meanwhile, ¢
remains essentially at 7. Finally, returning to point A below z = +1, ¢ increases to 27,
so that upon the return to point A both ¢ and 6 have become 27. The behavior of these
angles and the values of (8 + ¢)/2 (the argument o