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Abstract

These lectures cover some of the basics of modern cosmology, assum-
ing relatively little prior knowledge of the subject. They are organised
into three main sections: (1) Models of the expanding universe (the
Robertson-Walker metric, dynamics and the equation of state, the hot
big bang, initial conditions and inflation); (2) Dark matter (astrophysi-
cal mass measurements, particle candidates for dark matter, constraints
on dark matter from galaxy haloes, dark matter and cosmological per-
turbations); (3) Structure formation (statistics of cosmological density
fields, generation of fluctuations via inflation, observations of large-scale
structure, fluctuations in the microwave background).

1 THE ISOTROPIC UNIVERSE
1.1 The Robertson—Walker metric

Cosmological investigation began by considering the simplest possible mass distribution: one
whose properties are homogeneous (constant density) and isotropic (the same in all direc-
tions). From this symmetry, the only allowed velocity field on a local scale is expansion (or
contraction) with velocity proportional to distance:

v = Hr. (1)

Having chosen a model mass distribution, the next step is to solve the field equations to
find the corresponding metric. Since our model is a particularly symmetric one, it is perhaps not
too surprising that many of the features of the metric can be deduced from symmetry alone —
and indeed will apply even if Einstein’s equations are replaced by something more complicated.
These general arguments were put forward independently by H.P. Robertson and A.G. Walker
in 1936.

Cosmological time  The first point to note is that something suspiciously like a universal time
exists in an isotropic universe. Consider a set of observers in different locations, all of whom
are at rest with respect to the matter in their vicinity (these characters are usually termed
fundamental observers). We can envisage them as each sitting on a different galaxy, and so
receding from each other with the general expansion. We can define a global time coordinate
t, which is the time measured by the clocks of these observers — i.e. t is the proper time
measured by an observer at rest with respect to the local matter distribution. The coordinate
is useful globally rather than locally because the clocks can be synchronized by the exchange
of light signals between observers, who agree to set their clocks to a standard time when e.g.
the universal homogeneous density reaches some given value. Using this time coordinate plus
isotropy, we already have enough information to conclude that the metric must take the following
form:

cdr® = di? — R(1) [f2(r) dr® + g*(r) dy?] . (2)
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Here, we have used the equivalence principle to say that the proper time interval between two
distant events would look locally like special relativity to a fundamental observer on the spot:
for them, ¢?dr? = ?dt® — dx? — dy® — dz*. Since we use the same time coordinate as they do, our
only difficulty is in the spatial part of the metric: relating their dx etc. to spatial coordinates
centred on us.

Because of spherical symmetry, the spatial part of the metric can be decomposed into
a radial and a transverse part (in spherical polars, di? = df? + sin29d¢2). Distances have
been decomposed into a product of a time-dependent scale factor R(t) and a time-independent
comoving coordinate r. The functions f and g are arbitrary; however, we can choose our
radial coordinate such that either f = 1 or ¢ = 2, to make things look as much like Euclidean
space as possible. Furthermore, we can determine the form of the remaining function from
Symmetry arguments.

To get some feeling for the general answer, it should help to think first about a simpler
case: the metric on the surface of a sphere. A balloon being inflated is a common popular
analogy for the expanding universe, and it will serve as a two-dimensional example of a space
of constant curvature. If we call the polar angle in spherical polars r instead of the more usual
0, then the element of length on the surface of a sphere of radius R is

do? = R? (dr2 + sin? Td¢2) . (3)

It is possible to convert this to the metric for a 2-space of constant negative curvature by
the device of considering an imaginary radius of curvature, R — ¢R. If we simultaneously let
r — ir, we obtain

do® = R? (dr2 + sinh? r d¢2) . (4)

These two forms can be combined by defining a new radial coordinate that makes the transverse
part of the metric look Euclidean:

do® = R?
7 (1—kr2

+ 72 d¢2> , (5)

where k = +1 for positive curvature and k = —1 for negative curvature.

An isotropic universe has the same form for the comoving spatial part of its metric as the
surface of a sphere. This is no accident, since it it possible to define the equivalent of a sphere
in higher numbers of dimensions, and the form of the metric is always the same. For example,
a 3-sphere embedded in four-dimensional Euclidean space would be defined as the coordinate
relation 22 + 32 + 22 + w?> = R%  Now define the equivalent of spherical polars and write
w = Rcosa, z = Rsinacos B, y = Rsinasin fcosy, z = Rsinasin Fsiny, where «, § and ~
are three arbitrary angles. Differentiating with respect to the angles gives a four-dimensional
vector (dz,dy,dz,dw), and it is a straightforward exercise to show that the squared length of
this vector is

\(dx, dy, dz, dw)|* = R? [aloz2 +sin® a (dB* 4 sin? 3 d’yQ)} , (6)

which is the Robertson-Walker metric for the case of positive spatial curvature. This k = +1
metric describes a closed universe, in which a traveller who sets off along a trajectory of
fixed B and ~ will eventually return to their starting point (when o = 27). In this respect, the
positively curved 3D universe is identical to the case of the surface of a sphere: it is finite, but
unbounded. By contrast, the k = —1 metric describes an open universe of infinite extent; as
before, changing to negative spatial curvature replaces sin  with sinh «;, and « can be made as
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large as we please without returning to the starting point. The & = 0 model describes a flat
universe, which is also infinite in extent. This can be thought of as a limit of either of the
k = +1 cases, where the curvature scale R tends to infinity.

Notation and conventions  The Robertson-Walker metric (which we shall often write in the
shorthand RW metric) may be written in a number of different ways. The most compact forms
are those where the comoving coordinates are dimensionless. Define the very useful function

sinr (k=1)
Sk(r) = 4 sinhr (k=-1) (7)
r (k=0),

and its cosine-like analogue, Cy(r) = /1 —kSZ(r). The metric can now be written in the

preferred form that we shall use throughout:

Pdr® = Fdi? — R¥(t) [dr® + S}(r) dv?] . (8)

The most common alternative is to use a different definition of comoving distance, Si(r) — 7,
so that the metric becomes

dr?
1— kr2

&m%4wﬁ_m@< +ﬂwﬁ. (9)

There should of course be two different symbols for the different comoving radii, but each is
often called r in the literature, so we have to learn to live with this ambiguity; the presence of

terms like Sy (r) or 1 — kr? will usually indicate which convention is being used. Alternatively,
one can make the scale factor dimensionless, defining

a(t) = —= (10)

so that a = 1 at the present.

The redshift At small separations, where things are Euclidean, the proper separation of two
fundamental observers is just R(t)dr, so that we obtain Hubble’s law with

R
H= . (11)

At large separations where spatial curvature becomes important, the concept of radial
velocity becomes a little more slippery — but in any case how could one measure it directly in
practice? At small separations, the recessional velocity gives the Doppler shift

Temit — 14214 2, (12)
Vobs c

199



This defines the redshift z in terms of the shift of spectral lines. What is the equivalent of this
relation at larger distances? Since photons travel on null geodesics of zero proper time, we see
directly from the metric that
cdt

r= R’ (13)
The comoving distance is constant, whereas the domain of integration in time extends from
temit tO tobs; these are the times of emission and reception of a photon. Photons that are
emitted at later times will be received at later times, but these changes in temit and tons cannot
alter the integral, since r is a comoving quantity. This requires the condition dtemit/dtons =
R(temit)/R(tobs), which means that events on distant galaxies time-dilate according to how
much the universe has expanded since the photons we see now were emitted. Clearly (think of
events separated by one period), this dilation also applies to frequency, and we therefore get

Vemit

t
El—i_Z:M

Vobs R(temit) ’ (14)

In terms of the normalized scale factor a(t) we have simply a(t) = (1+2z)!. Photon wavelengths
therefore stretch with the universe, as is intuitively reasonable.

1.2 Dynamics of the expansion

Expansion and geometry  The equation of motion for the scale factor can be obtained in a
quasi-Newtonian fashion. Consider a sphere about some arbitrary point, and let the radius be
R(t)r, where r is arbitrary. The motion of a point at the edge of the sphere will, in Newtonian
gravity, be influenced only by the interior mass. We can therefore write down immediately a
differential equation (Friedmann’s equation) that expresses conservation of energy: (Rr)2 /2—
GM/(Rr) = constant. The Newtonian result that the gravitational field inside a uniform shell is
zero does still hold in general relativity, and is known as Birkhoff’s theorem. General relativity
becomes even more vital in giving us the constant of integration in Friedmann’s equation:

R?> - —pR* = — k. (15)

Note that this equation covers all contributions to p, i.e. those from matter, radiation and
vacuum; it is independent of the equation of state.

For a given rate of expansion, there is thus a critical density that will yield £ = 0,
making the comoving part of the metric look Euclidean:

_ 3H?

c — . 1
Pe= g7 (16)

A universe with density above this critical value will be spatially closed, whereas a lower-
density universe will be spatially open.

It is sometimes convenient to work with the time derivative of the Friedmann equation,
because acceleration arguments in dynamics can often be more transparent than energy ones.

200



Differentiating with respect to time requires a knowledge of p, but this can be eliminated by
means of conservation of energy: d[pc? R3] = —pd[R®]. We then obtain

R = —47GR(pc® + 3p)/3. (17)

Both this equation and the Friedmann equation in fact arise as independent equations from
different components of Einstein’s equations for the RW metric.

Density parameters etc.  The ‘flat’ universe with k£ = 0 arises for a particular critical density.
We are therefore led to define a density parameter as the ratio of density to critical density:

p  8nGp

Since p and H change with time, this defines an epoch-dependent density parameter. The
current value of the parameter should strictly be denoted by €. Because this is such a common
symbol, we shall keep the formulae uncluttered by normally dropping the subscript; the density
parameter at other epochs will be denoted by €(z). The critical density therefore just depends
on the rate at which the universe is expanding. If we now also define a dimensionless (current)
Hubble parameter as

h= Ho
= 100kms Mpc 1 (19)
then the current density of the universe may be expressed as
= 1.88 x 1072°Qh? kgm ™3
Po g (20)

= 2.78 x 1011 QA% M., Mpc=3.

A powerful approximate model for the energy content of the universe is to divide it into
pressureless matter (p oc R73), radiation (p o< R~*) and vacuum energy (p constant). The
first two relations just say that the number density of particles is diluted by the expansion, with
photons also having their energy reduced by the redshift; the third relation applies for Einstein’s
cosmological constant. In terms of observables, this means that the density is written as

81Gp
3

= H3(Q + Qa2 + Qa7 (21)

(introducing the normalized scale factor a = R/R;). For some purposes, this separation is
unnecessary, since the Friedmann equation treats all contributions to the density parameter
equally:

kc?

g = (@) + (@) + Qula) — 1. (22)

Thus, a flat & = 0 universe requires > §2; = 1 at all times, whatever the form of the contributions
to the density, even if the equation of state cannot be decomposed in this simple way.
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Lastly, it is often necessary to know the present value of the scale factor, which may be
read directly from the Friedmann equation:

Ry — Hio (@ —1)/K] V2, (23)

The Hubble constant thus sets the curvature length, which becomes infinitely large as
approaches unity from either direction.

Solutions to the Friedmann equation  The Friedmann equation may be solved most simply in
‘parametric’ form, by recasting it in terms of the conformal time dn = cdt/R (denoting deriva-
tives with respect to n by primes):

8tG

R? = ?pR“ — kR% (24)

Because HZR% = kc? /(2 — 1), the Friedmann equation becomes

0/2 = 4(9 Ii 1) |:Qr + Qma - (Q o 1)0’2 + QUG‘4:| ) (25)

which is straightforward to integrate provided €2, = 0.

To the observer, the evolution of the scale factor is most directly characterised by the
change with redshift of the Hubble parameter and the density parameter; the evolution of H(z)
and (z) is given immediately by the Friedmann equation in the form H? = 87Gp/3 — kc?/R2.
Inserting the above dependence of p on a gives

H%(a) = H} [Qy+ Qma ™+ Q0™ = (2= 1)a7?] . (26)

This is a crucial equation, which can be used to obtain the relation between redshift and comov-
ing distance. The radial equation of motion for a photon is Rdr = c¢dt = cdR/R = cdR/(RH).
With R = Ry/(1 + z), this gives

Cc
R()dT = W dz

_C
7H0

_ (27)
(1= (1 +2)* + Qy + (14 2)° + (1 + )" Y2 g,

This relation is arguably the single most important equation in cosmology, since it shows how to
relate comoving distance to the observables of redshift, Hubble constant and density parameters.

Lastly, using the expression for H(z) with Q(a) — 1 = kc?/(H?R?) gives the redshift
dependence of the total density parameter:

- Q-1
1 -Q4+ Qa2+ Q0+ Q072

Q(z) — 1 (28)

This last equation is very important. It tells us that, at high redshift, all model universes apart
from those with only vacuum energy will tend to look like the €2 = 1 model. If ) £ 1, then in
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the distant past €2(z) must have differed from unity by a tiny amount: the density and rate of
expansion needed to have been finely balanced for the universe to expand to the present. This
tuning of the initial conditions is called the flatness problem and is one of the motivations for
the applications of quantum theory to the early universe.

Matter-dominated universe  From the observed temperature of the microwave background (2.73
K) and the assumption of three species of neutrino at a slightly lower temperature (see below), we
deduce that the total relativistic density parameter is €,h% ~ 4.2 x 107°, so at present it should
be a good approximation to ignore radiation. However, the different redshift dependences of
matter and radiation densities mean that this assumption fails at early times: py,/p, x (1+2)7".
One of the critical epochs in cosmology is therefore the point at which these contributions were
equal: the redshift of matter—radiation equality

1+ zeq = 23900 QA2 (29)

At redshifts higher than this, the universal dynamics were dominated by the relativistic-particle
content. By a coincidence discussed below, this epoch is close to another important event in
cosmological history: recombination. Once the temperature falls below ~ 10* K, ionized
material can form neutral hydrogen. Observational astronomy is only possible from this point
on, since Thomson scattering from electrons in ionized material prevents photon propagation.
In practice, this limits the maximum redshift of observational interest to about 1000; unless
Q) is very low or vacuum energy is important, a matter-dominated model is therefore a good
approximation to reality.

Models with vacuum energy  The solution of the Friedmann equation becomes more compli-
cated if we allow a significant contribution from vacuum energy — i.e. a non-zero cosmological
constant. Detailed discussions of the problem are given by Felten & Isaacman (1986) and Carroll,
Press & Turner (1992); the most important features are outlined below.

The Friedmann equation itself is independent of the equation of state, and just says
H2R? = kc?/(2 — 1), whatever the form of the contributions to €. In terms of the cosmological
constant itself, we have

G Ac? .
v = gv = 2" (50)
3H 3H

de Sitter space  Before going on to the general case, it is worth looking at the endpoint of
an outwards perturbation of Einstein’s static model, first studied by de Sitter and named after
him. This universe is completely dominated by vacuum energy, and is clearly the limit of the
unstable expansion, since the density of matter redshifts to zero while the vacuum energy remains
constant. Consider again the Friedmann equation in its general form R? — 87GpR? /3 = —kc*:
since the density is constant and R will increase without limit, the two terms on the lhs must
eventually become almost exactly equal and the curvature term on the rhs will be negligible.
Thus, even if k # 0, the universe will have a density that differs only infinitesimally from the
critical, so that we can solve the equation by setting £ = 0, in which case

87Gpy A_02

R x exp Ht, H:\/ = (31)

3 3

An interesting interpretation of this behaviour was promoted in the early days of cosmology by
Eddington: the cosmological constant is what caused the expansion.
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Fig. 1: This plot shows the different possibilities for the cosmological expansion as a function of matter density
and vacuum energy. Models with total > 1 are always spatially closed (open for Q < 1), although closed models
can still expand to infinity if Q, # 0. If the cosmological constant is negative, recollapse always occurs; recollapse
is also possible with a positive 2, if ., > Q. If Q, > 1 and Q. is small, there is the possibility of a ‘loitering’
solution with some maximum redshift and infinite age (top left); for even larger values of vacuum energy, there is

no big bang singularity.

Bouncing and loitering models  Returning to the general case of models with a mixture of
energy in the vacuum and normal components, we have to distinguish three cases. For models
that start from a big bang (in which case radiation dominates completely at the earliest times),
the universe will either recollapse or expand forever. The latter outcome becomes more likely
for low densities of matter and radiation, but high vacuum density. It is however also possible
to have models in which there is no big bang: the universe was collapsing in the distant past,
but was slowed by the repulsion of a positive A term and underwent a ‘bounce’ to reach its
present state of expansion. Working out the conditions for these different events is a matter of
integrating the Friedmann equation. For the addition of A, this can only in general be done
numerically. However, we can find the conditions for the different behaviours described above
analytically, at least if we simplify things by ignoring radiation. The equation in the form of the
time-dependent Hubble parameter looks like

22 =Q,(1—a )+ Qa3 —a?)+a? (32)
Hg - v m bl
and we are interested in the conditions under which the lhs vanishes, defining a turning point
in the expansion. Setting the rhs to zero yields a cubic equation, and it is possible to give the
conditions under which this has a solution (see Felten & Isaacman 1986). The main results of
this analysis are summed up in figure 1. Since the radiation density is very small today, the
main task of relativistic cosmology is to work out where on the Qpatter — 2vacuum plane the real
universe lies. The existence of high-redshift objects rules out the bounce models, so that the
idea of a hot big bang cannot be evaded.

Flat universe  The most important model in cosmological research is that with £k = 0 =
Qiotal = 1; when dominated by matter, this is often termed the Einstein—de Sitter model.
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Paradoxically, this importance arises because it is an unstable state: as we have seen earlier,
the universe will evolve away from = 1, given a slight perturbation. For the universe to have
expanded by so many e-foldings (factors of e expansion) and yet still have 2 ~ 1 implies that
it was very close to being spatially flat at early times.

It now makes more sense to work throughout in terms of the normalized scale factor a(t),
so that the Friedmann equation for a matter-radiation mix is

0% = H} (Una ™' + 0ya7?) (33)

which may be integrated to give the time as a function of scale factor:

2
Hot = 567 [V + Qe (Qa — 20,) +20%7] (34)
this goes to a3/ 2 for a matter-only model, and to a2 for radiation only.

One further way of presenting the model’s dependence on time is via the density. Following
the above, it is easy to show that

1 N
t= (matter domination)
6wGp
(35)
¢ 5 (radiation domination)
radiation domination).
327Gp

Because (), is so small, the deviations from a matter-only model are unimportant for
z < 1000, and so the distance-redshift relation for the &k = 0 matter plus radiation model is
effectively just that of the €2,, = 1 Einstein—de Sitter model. An alternative £ = 0 model of
greater observational interest has a significant cosmological constant, so that €,, + Q, = 1
(radiation being neglected for simplicity). This may seem contrived, but once k = 0 has been
established, it cannot change: individual contributions to £2 must adjust to keep in balance. The
advantage of this model is that it is the only way of retaining the theoretical attractiveness of
k = 0 while changing the age of the universe from the relation Hyty = 2/3, which characterises
the Einstein—de Sitter model. Since much observational evidence indicates that Hotg ~ 1, this
model has received a good deal of interest in recent years. To keep things simple we shall neglect
radiation, so that the Friedmann equation is

a? = H2[Qma™t 4+ (1 — Q,,)d?], (36)

and the t(a) relation is

x dx
Hyt(a / . 37
0 VO + (1 —Q,,)x? (87)

The z* on the bottom looks like trouble, but it can be rendered tractable by the substitution
y = /23| Q — 1|/Qn, which turns the integral into

Here, k in S} is used to mean sin if €2, > 1, otherwise sinh; these are still £ = 0 models. This
t(a) relation is compared to models without vacuum energy in figure 2. Since there is nothing
special about the current era, we can clearly also rewrite this expression as
—1
Qp(a) —1|/Qm(a 2
(V@) — 1/ (a)) 03, )

H(a)t(a) = ; S T ~2 0,6
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where we include a simple approximation that is accurate to a few % over the region of interest
(Q, = 0.1). In the general case of significant A but k # 0, this expression still gives a very good
approximation to the exact result, provided €2, is replaced by 0.7€, — 0.3Q, + 0.3 (Carroll,
Press & Turner 1992).

Horizons  For photons, the radial equation of motion is just cdt = Rdr. How far can a photon
get in a given time? The answer is clearly

Ar = — = An, (40)

i.e. just the interval of conformal time. What happens as ¢y — 0 in this expression? We can
replace dt by dR/ R, which the Friedmann equation says is o dR/+\/pR? at early times. Thus,
this integral converges if pR? — oo as ty — 0, otherwise it diverges. Provided the equation of
state is such that p changes faster than R~2, light signals can only propagate a finite distance
between the big bang and the present; there is then said to be a particle horizon. Such a
horizon therefore exists in conventional big bang models, which are dominated by radiation at
early times.

1.3 Observations in cosmology

We can now assemble some essential formulae for interpreting cosmological observations. Since
we will mainly be considering the post-recombination epoch, these apply for a matter-dominated
model only. Our observables are redshift, z, and angular difference between two points on the
sky, dip. We write the metric in the form

dr? = di? — R (1) [dr? + S3(r) dv?] (41)

so that the comoving volume element is

dV = 47[RoSk(r)]? Rodr- (42)

The proper transverse size of an object seen by us is its comoving size di Sk(r) times the scale
factor at the time of emission:

dl = dip RoSy(r)/(1 + 2). (43)

Probably the most important relation for observational cosmology is that between monochro-
matic flux density and luminosity. Start by assuming isotropic emission, so that the photons
emitted by the source pass with a uniform flux density through any sphere surrounding the
source. We can now make a shift of origin, and consider the RW metric as being centred on
the source; however, because of homogeneity, the comoving distance between the source and
the observer is the same as we would calculate when we place the origin at our location. The
photons from the source are therefore passing through a sphere, on which we sit, of proper
surface area 47| RSk (r)]%. But redshift still affects the flux density in four further ways: photon
energies and arrival rates are redshifted, reducing the flux density by a factor (1+ 2)?; opposing
this, the bandwidth dv is reduced by a factor 1 + z, so the energy flux per unit bandwidth
goes down by one power of 1+ z; finally, the observed photons at frequency vy were emitted at

206



frequency (1 + z), so the flux density is the luminosity at this frequency, divided by the total
area, divided by 1+ z:

L,([1 + z]w)

Su(vo) = R3S (1 + 2)

(44)

A word about units: L, in this equation would be measured in units of W Hz~!. Recognizing
that emission is often not isotropic, it is common to consider instead the luminosity emitted into
unit solid angle — in which case there would be no factor of 4w, and the units of L, would be
WHz tsrt

The flux density received by a given observer can be expressed by definition as the product
of the specific intensity I, (the flux density received from unit solid angle of the sky) and
the solid angle subtended by the source: S, = I, d2. Combining the angular size and flux-
density relations thus gives the relativistic version of surface-brightness conservation. This is
independent of cosmology:

B, ([1+ z]v)

II/(VO) = (1—|—Z)3 5

(45)
where B, is surface brightness (luminosity emitted into unit solid angle per unit area of
source). We can integrate over vy to obtain the corresponding total or bolometric formulae,
which are needed e.g. for spectral-line emission:

Ltot
Stot = ; 46
U 4r R2S2(r)(1 + 2)2 (46)
_ Btot
Itot - (1 T+ 2)4 . (47)

The form of the above relations lead to the following definitions for particular kinds of distances:

angular — diameter distance: D, = (14 2) 'RoSi(r)

48
luminosity distance: D; = (1+ z) RoSk(r). (48)

The last element needed for the analysis of observations is a relation between redshift and
age for the object being studied. This brings in our earlier relation between time and comoving
radius (consider a null geodesic traversed by a photon that arrives at the present):

cdt = Rydr/(1+ z). (49)

Distance redshift relation  The general relation between comoving distance and redshift was
given earlier as

Rodr = ﬁdz
~1/2
- Hi [(1 — Q)1+ 2)% + QU+ Qn(L+ 23+ Q. (1 + z)ﬂ gz,
0
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Fig. 2: A plot of dimensionless angular-diameter distance versus redshift for various cosmologies. Solid lines show
models with zero vacuum energy; dashed lines show flat models with €2,, + €2, = 1. In both cases, results for
Qm = 1,0.3,0 are shown; higher density results in lower distance at high z, due to gravitational focusing of light
rays.

For a matter-dominated Friedmann model, this means that the distance of an object from which
we receive photons today is

R ¢ /Z dz (51)
r=— .
7 A N e o

Integrals of this form often arise when manipulating Friedmann models; they can usually be
tackled by the substitution u? = k(Q — 1)/[(2(1 + 2)]. This substitution produces Mattig’s
formula (1958), which is one of the single most useful equations in cosmology as far as observers
are concerned:

RoSalr) = ;_co Qz + (Q 522()1 [\+/71z)+ 9z 1] 52

2 THE HOT BIG BANG

Adiabatic expansion ~ What was the state of matter in the early phases of the big bang? Since
the present-day expansion will cause the density to decline in the future, conditions in the past
must have corresponded to high density — and thus to high temperature. We can deal with
this quantitatively by looking at the thermodynamics of the fluids that make up a uniform
cosmological model.

The expansion is clearly adiathermal, since the symmetry means that there can be no net
heat flow through any surface. If the expansion is also reversible, then we can go one step further,
because entropy change is defined in terms of the heat that flows during a reversible change. If
no heat flows during a reversible change, then entropy must be conserved, and the expansion will
be adiabatic. This can only be an approximation, since there will exist irreversible microscopic
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processes. In practice, however, it will be shown below that the effects of these processes are
overwhelmed by the entropy of thermal background radiation in the universe. It will therefore
be an excellent approximation to treat the universe as if the matter content were a simple
dissipationless fluid undergoing a reversible expansion. This means that, for a ratio of specific
heats I', we get the usual adiabatic behaviour

T o« R=3I—1), (53)

For radiation, I' = 4/3 and we get just 7" oc 1/R. A simple model for the energy content of
the universe is to distinguish pressureless ‘dust-like’ matter (in the sense that p < pc?) from
relativistic ‘radiation-like’ matter (photons plus neutrinos). If these are assumed not to interact,
then the energy densities scale as

pm x R73
4 (54)
pr X R

The universe must therefore have been radiation dominated at some time in the past,
where the densities of matter and radiation cross over. To anticipate, we know that the current
radiation density corresponds to thermal radiation with 7" ~ 2.73K. We shall shortly show
that one expects to find, in addition to this cosmic microwave backgroundCMB (CMB), a
background in neutrinos that has an energy density 0.68 times that from the photons (if the
neutrinos are massless and therefore relativistic). If there are no other contributions to the energy
density from relativistic particles, then the total effective radiation density is €2,h% ~ 4.2 x 107°
and the redshift of matter—radiation equality is

1+ zeq = 23900 Qh% (T/2.73K) 4. (55)

The time of this change in the global equation of state is one of the key epochs in determining
the appearance of the present-day universe.

Quantum gravity limit  In principle, ' — oo as R — 0, but there comes a point at which
this extrapolation of classical physics breaks down. This is where the thermal energy of typical
particles is such that their de Broglie wavelength is smaller than their Schwarzschild radius:
quantum black holes clearly cause difficulties with the usual concept of background spacetime.
Equating 27h/(mc) to 2Gm/c? yields a characteristic mass for quantum gravity known as the
Planck mass. This mass, and the corresponding length & /(mpc) and time ¢ /c form the system

of Planck units:
he
mp = “E ~ 10GeV

b = g ~ 107 m (56)
\ ¢

The Planck time therefore sets the origin of time for the classical phase of the big bang.

Collisionless equilibrium backgrounds  We need the thermodynamics of a possibly relativistic
perfect gas. We consider some box of volume V = L3, and say that we will analyse the quantum
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mechanics of particles in the box by taking the system to be periodic on scale L. Quantum
fields in the box are expanded in plane waves, with allowed wavenumbers k, = n2n/L etc.;
these harmonic boundary conditions for the allowed eigenstates in the box lead to the
density of states in k space:

%
(2m)3
(where g is a degeneracy factor for spin etc.). This expression is nice because it is extensive

(N o V) and hence the number density n is independent of V. The equilibrium occupation
number for a quantum state of energy € is given generally by

dN =g d3k (57)

() = [l 1) (58)

(4 for fermions, — for bosons). Now, for a thermal radiation background, the chemical po-
tential, p is always zero. The reason for this is quite simple: p appears in the first law
of thermodynamics as the change in energy associated with a change in particle number,
dE = TdS — PdV + pudN. So, as N adjusts to its equilibrium value, we expect that the
system will be stationary with respect to small changes in N. More formally, the Helmholtz
free energy F' = F —T'S is minimized in equilibrium for a system at constant temperature and
volume. Since dF = —SdT — PdV + udN, dF/dN = 0 = p = 0. Thus, in terms of momentum
space, the thermal equilibrium background number density of particles is

B 1 ©  Ampidp
"= 9 2rn)3 /0 o W/FT £ 1’ (59)

where € = \/m?ct + p2?c? and g is the degeneracy factor. There are two interesting limits of this
expression.

(1) Ultrarelativistic limit. For kT > mc? the particles behave as if they were massless, and

we get,
ET\® 4 > y2d
n:(—) "9 / v (60)
c) @2rh)3 )y ev+1

(2)  Non-relativistic limit. Here we can neglect the £1 in the occupation number, in which

case

—me? 4dmg 2
n=e /kT(kaT)3/2W/() e Y yldy. (61)

This shows us that the background ‘switches on’ at about k1" ~ mc?; at this energy,
photons and other species in equilibrium will have sufficient energy to create particle-
antiparticle pairs, which is how such an equilibrium background would be created. The
point at which kT ~ mc? for some particle is known as a threshold.

Similar reasoning gives the energy density of the background, since it is only necessary to
multiply the integrand by a factor €(p) for the energy in each mode:

1 A p?dp
— 2 _
U=pc =g (27Th)3 /0 ec(0) /KT 4 1 €(p)' (62)
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In the same way, we can get the pressure from kinetic theory: P = n(pv)/3 = n(p*c?/e)/3,
where v is the particle velocity, and is related to its momentum and energy by p = (¢/c?)v. The
pressure is therefore given by the following integral:

1 0o Y 2d 2.2
P=y /0 mp~dp p°c

@nh) Jo ePTE1 3¢ (63)

Clearly, in the ultrarelativistic limit with € ~ pe, the pressure obeys P = pc?/3. In the nonrel-
ativistic limit, the pressure is just P = nkT (see below), whereas the density is dominated by
the rest mass: p = mn, and therefore P < pc?/3. At a threshold, the equation of state thus
departs slightly from P = pc?/3, even if the universe is radiation dominated on either side of
the critical temperature.

Entropy of the background  One quantity that is of considerable importance is the entropy of
a thermal background. This may be derived in several ways. The most direct is to note that
both energy and entropy are extensive quantities for a thermal background. Thus, writing the
first law for g = 0 and using 9S/9V = S/V etc. for extensive quantities,

E oF S oS
dE =TdS — PdV = (VdV + ﬁdT) = (TVdV + TﬁdT> — Pav. (64)

Equating the dV and dS parts gives the familiar OF /9T =T 95/9T and

E+ PV
S=—n—
T (65)
Using the above integral for the pressure, the entropy is
AraV 00 24 2.2
S = 9 / p~ap £ + e , (66)
(27h)3 Jo e/FT £1\T = 3T

which becomes S = 3.602Nk (bosons) or 4.202Nk (fermions) in the ultrarelativistic limit and
S = (mc?/kT)Nk in the non-relativistic limit. So, for radiation, the entropy is just proportional
to the number of particles. For this reason, the ratio of photon to baryon number densities
n/ny is sometimes called the entropy per baryon.

Formulae for ultrarelativistic backgrounds We now summarize the most useful results from this
discussion, which are the thermodynamic quantities for massless particles. These formulae are
required time and time again in calculations of conditions in the early universe. Consider first
bosons, such as the microwave background. Evaluating the dimensionless integrals encountered
earlier (only possible numerically in the case of n) gives energy, number and entropy densities:

30 he
5oy (k—T>3 — 3.602 0
9715 \he "

(remember that g = 2 for photons).
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It is also expected that there will be a fermionic relic background of neutrinos left over from
the big bang. Assume for now that the neutrinos are massless. In this case, the thermodynamic
properties can be obtained from those of black-body radiation by the following trick:

I 2
eT+1 et—1 2@ —1"

(68)

Thus, a gas of fermions looks like a mixture of bosons at two different temperatures. Knowing
that boson number density and energy density scale as n oc 7% and u o 7, we then get the
corresponding fermionic results. The entropy requires just a little more care. Although we have
said that entropy density is proportional to number density, in fact the entropy density for an
ultrarelativistic gas was shown above to be s = (4/3)u/T, and so the fermionic factor is the
same as for energy density:

nF - §£ng
4 g
uF - g@uB. (69)
9B
Sp — Z&SB.
8 s

Using these rules, it is usually possible to forget about the precise nature of the relativistic
background in the universe and count bosonic degrees of freedom, given the effective degeneracy
factor for uw or s:

7
g= > g9i+3g > g (70)

bosons fermions

although this definition needs to be modified if some species have different temperatures (see
below).

Neutrino decoupling At the later stages of the big bang, energies are such that only light
particles survive in equilibrium: «, v and the three leptons e, u, 7. If neutrinos could be
maintained in equilibrium, the lepton-antilepton pairs would annihilate as the temperature fell
still further (7, = 10133 K, T}, = 101%! K, T, = 10°7 K), and the end result would be that the
products of these annihilations would be shared among the only massless particles. However, in
practice the weak reactions that maintain the neutrinos in thermal equilibrium ‘switch off’ at
T ~ 10'0 K. This decoupling is discussed in more detail below, but is a general cosmological
phenomenon, which arises whenever the interaction timescales exceed the local Hubble time,
leaving behind abundances of particles frozen at the values they had when last in thermal
equilibrium. Two-body reaction rates scale proportional to density, times a cross-section that
is often a declining function of energy, so that the interaction time changes at least as fast as
R73. In contrast, the Hubble time changes no faster than R~ 2 (in the radiation era), so that
there is inevitably a crossover. For neutrinos, this point occurs at a redshift of ~ 10°, whereas
the photons of the microwave background typically last interacted with matter at z ~ 1000.
The effect of the electron-positron annihilation is therefore to enhance the numbers of
photons relative to neutrinos. It is easy to see what quantitative effect this has: although
we may talk loosely about the energy of e® annihilation going into photons, what is actually
conserved is the entropy. The entropy of an e* 4+ gas is easily found by remembering that it is
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proportional to the number density, and that all three particle species have g = 2 (polarization
or spin). The total is then

s+ e +e7) = L s(). (71)

Equating this to photon entropy at a new temperature gives the factor by which the photon
temperature is enhanced with respect to that of the neutrinos. Equivalently, given the observed
photon temperature today, we infer the existence of a neutrino background with a temperature

4 1/3
T, = <H> T, = 1.95K, (72)

for T, = 2.73 K. Although it is hard to see how such low energy neutrinos could ever be detected
directly, their gravitation is certainly not negligible: they contribute an energy density that is a
factor (7/8) x (4/11)*/? times that of the photons (the fact that neutrinos have g = 1 whereas
photons have g = 2 is cancelled by the fact that neutrinos and antineutrinos are distinguishable
particles). For three neutrino species, this enhances the energy density in relativistic particles
by a factor 1.68.

Massive neutrinos  Although for many years the conventional wisdom was that neutrinos were
massless, this assumption began to be increasingly challenged around the end of the 1970s.
Theoretical progress in understanding the origin of masses in particle physics meant that it was
no longer natural for the neutrino to be completely devoid of mass. Also, experimental evidence
(Reines et al. 1980), which in fact turned out to be erroneous, seemed to imply a non-zero mass
of m ~ 10 eV for the electron neutrino. The consequences of this for cosmology could be quite
profound, as relic neutrinos are expected to be very abundant. The above section showed that
n(v+7) = (3/4)n(y; T = 1.95K). That yields a total of 113 relic neutrinos in every cm? for
each species.

The consequences of giving these particles a mass are easily worked out provided the mass
is small enough. If this is the case, then the neutrinos were ultrarelativistic at decoupling and
their statistics were those of massless particles. As the universe expands to k1" < m,c?, the total
number of neutrinos is preserved. Furthermore, their momentum redshifts as p o< 1/R, so that
the momentum-space distribution today will just be a redshifted version of the ultrarelativistic
form. As discussed more fully below, the momentum-space distribution stays exactly what
would have been expected for thermal-equilibrium neutrinos, even though they have long since
decoupled. However, this illusion is broken once the temperature falls below k7" < m,c?, because
the effect of the rest-mass energy on the equilibrium occupation number causes the nonrelativistic
momentum distribution to differ from the relativistic one. We therefore obtain the present-day
mass density in neutrinos just by multiplying the zero-mass number density by m,, and the
consequences for the cosmological density are easily worked out to be

Z m;
On? = .
h 93.5eV

(73)

For a low Hubble parameter h ~ 0.5, an average mass of only 8 eV will suffice to close the
universe. In contrast, the current laboratory limits to the neutrino masses are

v, < 15eV
v, S 0.17MeV (74)
v, < 24MeV.
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3 RELICS OF THE BIG BANG

The massive neutrino is the simplest example of a relic of the big bang: a particle that once
existed in equilibrium, but which has decoupled and thus preserves a ‘snapshot’ of the properties
of the universe at the time the particle was last in thermal equilibrium. The aim of this section
is to give a little more detail on the processes that determine the final abundance of these relics.

3.1 Freeze-out

So far, we have used a simple argument, which decrees that the relic abundance becomes fixed
when expansion and interaction timescales are equal. To do better than this, it is necessary to
look at the differential equation that governs the abundance of particle species in the expanding
universe. This is the Boltzmann equation, which considers the phase-space density: the
joint probability density for finding a particle in a given volume element and in a given range of
momentum, denoted by f(x,p). The general form of this equation is

TGV 4 (V) f = e (75)

The lhs is just the fluid-dynamical convective derivative of the phase-space density, generalized
to 6D space. The rhs is the collisional term, and the equation therefore just says that groups of
particles maintain their phase-space density as they stream through phase space, unless modified
by collisions (Liouville’s theorem). The truth of this theorem is easily seen informally in
one spatial dimension: a small square element dx dv, becomes sheared to a parallelogram of
unchanged area, and so the phase-space density is unaltered.

The Boltzmann equation has been written with respect to a fixed system of laboratory
coordinates, but it is quite easily adapted to the expanding universe. We should now interpret
the particle velocities as being relative to a set of uniformly expanding observers. A particle that
sets off from r = 0 with some velocity will effectively slow down as it tries to overtake distant
receding observers. After time ¢, the particle will have travelled x = vt, and so encountered an
observer with velocity dv = Hx. According to this observer, the particle’s momentum is now
reduced by dp = mdv = mHvt = Hpt. There is therefore the appearance of a Hubble drag
force:

, =1 (76)
In the presence of density fluctuations, this needs to be supplemented by gravitational forces,
which as usual manifest themselves through the affine connection. In a sense, most of cosmo-
logical theory comes down to solving the Boltzmann equation for photons plus neutrinos plus
collisionless dark matter, coupled to the matter fluid via gravity in all cases and also by Thom-
son scattering in the case of photons. Since the interesting processes are operating at early
times when the density fluctuations are small, this is an exercise in first-order relativistic per-
turbation theory. The technical difficulties in detail mean this will have to be omitted here (see
Peebles 1980; Efstathiou 1990); when discussing perturbations, the main results can usually be
understood in terms of a fluid approximation, and this approach is pursued below.

Things are much easier in the case of homogeneous backgrounds, where spatial derivatives
can be neglected. The Boltzmann equation then has the simple form

of of

ot pap = fc- (77)
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The collision term is usually dominated by particle-antiparticle annihilations (assuming for the
moment that the numbers of each are identical, so that there is no significant asymmetry):

fom = [tov) £ 7 . (78)

where (ov) is the velocity-averaged product of the cross-section and the velocity. We can take
(ov) outside the integral even if it is not constant provided it is evaluated at some suitable
average energy. Integrating over momentum then gives the moment equation for the number
density,

n+3Hn = —(ov)n? + S, (79)

where S is a source term added to represent the production of particles from thermal processes
— effectively pair creation. This term is fixed by a thermodynamic equilibrium argument: for a
non-expanding universe, n will be constant at the equilibrium value for that temperature, nr,
showing that

S = (ov)n. (80)

If we define comoving number densities N = a®n, the rate equation can be rewritten in the
simple form

dmN _ T | (&)2
dlna  H N ’ (81)

where I' = n{owv) is the interaction rate experienced by the particles.

Unfortunately, this equation must be solved numerically. The main features are easy
enough to see, however. Suppose first that the universe is sustaining a population in approximate
thermal equilibrium, N ~ N;. If the population under study is relativistic, N; does not change
with time, because ny oc 7% and T o< a~!. This means that it is possible to keep N = N, exactly,
whatever I'/H. It would however be grossly incorrect to conclude from this that the population
stays in thermal equilibrium: if I'/H < 1, a typical particle suffers no interactions even while the
universe doubles in size, halving the temperature. A good example is the microwave background,
whose photons last interacted with matter at z ~ 1000. The CMB nevertheless still appears to
be equilibrium black-body radiation because the number density of photons has fallen by the
right amount to compensate for the redshifting of photon energy. This sounds like an incredible
coincidence, but is in fact quite inevitable when looked at from the quantum-mechanical point of
view. This says that the occupation number of a given mode, = (exp hw/kT — 1)~ for thermal
radiation, is an adiabatic invariant that does not change as the universe expands — only the
frequency alters, and thus the apparent temperature.

Now consider the opposite case, where the thermal solution would be nonrelativistic, with
Nr o T2 exp(—mc? /KT). (82)

If the background is to stay at the equilibrium value, the lhs of the rate equation must therefore
be > —1. This is consistent if I'/H > 1, because then the (N;/N)? term on the rhs can
still be close to unity. However, if I'/H < 1, there must be a deviation from equilibrium.
When N7 changes sufficiently fast with a, the actual abundance cannot keep up, so that the
(Nz/N)? term on the rhs becomes negligible and dIn N/dIna ~ —I'/H, which is < 1. There is
therefore a critical time at which the reaction rate drops low enough that particles are simply
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conserved as the universe expands — the population has frozen out. This provides a more
detailed justification for the intuitive rule-of-thumb used above to define decoupling,

N(a — oc) = N(T/H = 1). (83)

Exact numerical solutions of the rate equation almost always turn out very close to this simple
rule (see chapter 5 of Kolb & Turner 1990).

3.2 Recombination and last scattering

One of the critical epochs in the evolution of the universe is reached when the temperature drops
to the point (7"~ 1000 K) where it is thermodynamically favourable for the ionized plasma to
form neutral atoms. This process is known as recombination: a complete misnomer, as the
plasma has always been completely ionized up to this time.

There is a problem: highly excited atoms can be produced by a series of small transitions,
but to reach the ground state requires the production of photons at least as energetic as the
2P — 18 spacing (Lyman «, with A = 1216A). Multiple absorption of these photons will cause
reionization once they become abundant, so it would now appear that recombination can never
occur at all (unlike a finite HII region, where the Lya photons can escape; see e.g. Osterbrock
1974). There is a way out, however, using two-photon emission. The 25 — 1S5 transition is
strictly forbidden at first order and one can only conserve energy and angular momentum in the
transition by emitting a pair of photons. This gives the mechanism we need for transferring the
ionization energy into photons with A > Apy,.

A highly stripped-down analysis of events simplifies the hydrogen atom to just two levels
(1S and 2S5). Any chain of recombinations that reaches the ground state can be ignored through
the above argument: these reactions produce photons that are immediately re-absorbed else-
where, so they have no effect on the ionization balance. The main chance of reaching the ground
state comes through the recombinations that reach the 25 state, since some fraction of the atoms
that reach that state will suffer two-photon decay before being re-excited. The rate equation for
the fractional ionization is thus

d(nx) _
dt

(84)

where n is the number density of protons, z is the fractional ionization, R is the recombination
coefficient (R ~ 3 x 1071 77~1/2m3s71), Ao, is the two-photon decay rate, and Ay(T) is the
stimulated transition rate upwards from the 25 state. This equation just says that recombi-
nations are a two-body process, which create excited states that cascade down to the 25 level,
from whence a competition between the upward and downward transition rates determines the
fraction that make the downward transition. A fuller discussion (see chapter 6 of Peebles 1993)
would include a number of other processes: depopulation of the ground state by inverse 2-
photon absorption; redshifting of Ly alpha photons due to the universal expansion, which can
prevent them being re-absorbed. However, at the redshifts of practical interest (1000 to 10), the
simplified equation captures the main effect.

An important point about the rate equation is that it is only necessary to solve it once,
and the results can then be scaled immediately to some other cosmological model. Consider
the rhs: both R and Ay(7T) are functions of temperature, and thus of redshift only, so that
any parameter dependence is carried just by m?, which scales o« (Qsh?)2, where Qp is the
baryonic density parameter. Similarly, the lhs depends on Qgh? through n; the other parameter
dependence comes if we convert time derivatives to derivatives with respect to redshift:

dt

7.~ —3.00 1017 (QRr%) 12 2752 g, (85)
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for a matter-dominated model at large redshift (€2 is the total density parameter). Putting these
together, the fractional ionization must scale as

(Qh2)1/2
Qph?

z(z) x

The last-scattering shell — Putting in all the relevant processes, Jones & Wyse (1985) found the
fractional ionization x near z = 1000 to be well approximated by

(Qh2)1/2< > >12.75‘

=924 x 1073
z(2) X 1072 000

(87)

The scaling with 2 and h has a marvelous consequence. If we work out the optical depth to
Thomson scattering, 7 = [ n.zopdrprep, we find just

7(2) = 0.37 (10200> - (88)

independent of cosmological parameters. The rate equation causes x(z) to scale in just the
right way that the optical depth is a completely robust quantity. Because 7 changes rapidly
with redshift, the distribution function for the redshift at which photons were last scattered,
e~ 7dr/dz, is sharply peaked, and is well fitted by a Gaussian of mean redshift 1065 and standard
deviation in redshift 8). Thus, when we look at the sky, we can expect to see in all directions
photons that originate from a last-scattering surface at z ~ 1065. This independence of
parameters is not quite exact in detail, however, and very accurate work needs to solve the
evolution equations exactly (e.g. appendix C of Hu & Sugiyama 1995).

The microwave background In a famous piece of serendipity, the redshifted radiation from the
last-scattering photosphere was detected as a 2.73 K microwave background by Penzias & Wilson
(1965). Since the initial detection of the microwave background at A = 7.3 cm, measurements
of the spectrum have been made over an enormous range of wavelengths, from the depths of
the Rayleigh—Jeans regime at 74 cm to well into the Wien tail at 0.5 mm. The most accurate
measurements come from COBE — the NASA cosmic background explorer satellite. Early
data showed the spectrum to be very close to a pure Planck function (Mather et al. 1990),
and the final result verifies the lack of any distortion with breathtaking precision. The COBE
temperature measurement and 95% confidence range of

T = 2.728 + 0.004 K (89)

improves significantly on the ground-based experiments. The lack of distortion in the shape of
the spectrum is astonishing, and limits the chemical potential to |u| < 9 x 107> (Fixsen et al.
1996). These results also allow the limit y < 1.5 x 107> to be set on the Compton-scattering
distortion parameter. These limits are so stringent that many competing cosmological models
can be eliminated.

217



3.3 Primordial nucleosynthesis

At sufficiently early times, the temperature of the universe reaches the point where nuclear
reactions can occur (T ~ 10°K). The abundance of light elements that results from these early
reactions is fixed by an argument that can be outlined quite simply. In equilibrium, the numbers
of neutrons and protons should vary as

Ny, _ e—Amc2/kT ~ 6*1-5(1010 K/T) (90)
Np

The reason that neutrons exist today is that the timescale for the weak interactions needed
to keep this equilibrium set up eventually becomes longer than the expansion timescale. The
reactions thus rapidly cease, and the neutron—proton ratio undergoes freeze-out at some char-
acteristic value. In practice this occurs at N, /N, ~ 1/6. If most of the neutrons ended up
in “He, we would then expect 25% He by mass — which is very nearly what we see. One of
the critical calculations in cosmology is therefore to calculate this freeze-out process in detail.
As the following outline of the analysis will show, the result is due to a complex interplay of
processes and the fact that there is a significant primordial abundance of anything other than
hydrogen is a consequence of a number of coincidences.

Neutron freeze-out  The only nuclear reactions that matter initially are the weak interactions
that convert between protons and neutrons:

p+e—=n+v (91)
p—l—ﬂ<—>n—|—e+.

The main systematics of the relic abundances of the light elements can be understood by looking
at the neutron to proton ratio and how it evolves.
The number density of neutrons obeys the kinetic equation

dn,,
dt

- (Ap€ + Apl/) np - (Ane + Anl/) nna (92)

where the rate coefficients A; refer to the four possible processes given above. To these two-body
processes should also be added the spontaneous decay of the neutron, which has the e-folding
lifetime of

T =887£2s (93)

(according to the Particle Data Group). We neglect this for now, as it turns out that neutron
freeze-out happens at slightly earlier times.

The quantum-field calculation of the rate coefficients is not difficult, because of the simple
form of the Fermi Lagrangian for the weak interaction. Recall that this is proportional to the
Fermi constant (Gr) times the fields of the various particles that participate, and that each field
is to be thought of as a sum of creation and annihilation operators. This means that the matrix
elements for all processes where various particles change their occupation numbers by one are
the same, and the rate coefficients differ only by virtue of integration over states for the particles
involved.

For example, the rate for neutron decay is

1

-1 2
7, x G <[27th

2
) 2 [ @i, sl e - Q) (94)
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where @) is the neutron—proton energy difference. This expression can be more or less written
down at sight. The delta function expresses conservation of energy and as usual arises auto-
matically from integration over space, rather than having to be put in by hand. The factor of
2 before the integral allows for electron helicity, but there is no need to be concerned with the
overall constant of proportionality. By performing the integral, this expression can be reduced
to

G2
Tl o ﬁ 1.636m> (natural units). (95)

The reason why the overall constant of proportionality is not needed is that all other related
weak processes have rates of the same form. The only difference is that, unlike the free decay in
a vacuum just analysed, we need to include the probabilities that the initial and final states are
occupied. For example, in n + v — p + e, we need a factor n, for the initial neutrino state and
1 — n, for the final electron state (effectively to allow for the fermionic equivalent of stimulated
plus spontaneous emission; if the particles involved were bosons, this would become 1+ n). The
rate for this process is therefore

o) 2dp
A, = [1.636m5 ,fl/ Pe Cc Py Py 96
[1.636m ] o 1+ exp(py /KD [L + exp(_eo/kT)]’ (96)

where €. = p, + Q). Very similar integrals can be written down for the other processes involved.

Since Q ~ mec?, it is clear that at high temperatures k7" > m.c?, all the rate coefficients
will be of the same form; both p. and €. can be replaced by p, in top and bottom of the integral,
leaving a single rate coefficient to be determined by numerical integration:

ET \° 1010.135 ¢\ ~°
A=13.893 7, ( 2) = (07> s (97)

MeC T

Since the number density of the thermal background of neutrinos and electrons is proportional
to T3, this says that the effective cross-section for these weak interactions scales proportional to
[energy]?. The radiation-dominated era has

10.125 1\ 2
[ (0K ©8)
327Gp T

allowing for three massless neutrinos. The T~2 dependence of the expansion timescale is much
slower than the interaction timescale, which changes as 7%, so there is a quite sudden transi-
tion between thermal equilibrium and freeze-out, suggesting that weak interactions switch off,
freezing the neutron abundance at a temperature of 7'~ 10142 K. This implies an equilibrium
neutron proton ratio of

& _ e_Q/kT _ 6_1010.176 K /T ~ 0.34. (99)
Np

This obviously cannot be a precisely correct result, because the freeze-out condition was cal-
culated assuming a temperature well above the electron mass threshold, whereas it appears
that freeze-out actually occurs at about this critical temperature. The rate A is in fact a little
larger at the threshold than the high-temperature extrapolation would suggest, so the neutron
abundance is in practice lower.
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Neutrino freeze-out  There is a yet more serious complication, because another important pro-
cess that occurs around the same time is neutrino decoupling. The weak reaction that keeps
neutrino numbers in equilibrium at this late time is v + 7 <+ et + e~. The rate for this process
can be found in exactly the same way as above. At high energies, the result is identical, save only
that the squared matrix element involved is smaller by a factor of about 5 because of the axial
coupling of nucleons: the neutrino rate scales as G2, as opposed to GZ(1 + 2g2) for nucleons.

This leads to the neutrinos decoupling at a slightly higher temperature:

T (v decoupling) ~ 10195 K. (100)

This is uncomfortably close to the electron mass threshold, but just sufficiently higher that it is
not a bad approximation to say that all e"e™ annihilations go into photons rather than neutrinos.
During the time at which nucleons are decoupling, the neutrino and photon temperatures are
therefore becoming different, and a detailed calculation must account for this. The resulting
freeze-out temperature is very close to 10’ K, at which point the neutron-to-proton ratio is
about 1:3.

Unfortunately, we are still not finished, because neutrons are not stable. It does not
matter what abundance of them freezes out: unless they can be locked away in nuclei before
t = 887 s, the relic abundance will decay freely to zero. The freeze-out point occurs at an age
of a few seconds, so there are only a few e-foldings of expansion available in which to salvage
some neutrons. So far, a remarkable sequence of coincidences has been assembled, in that the
freeze-out of neutrinos and nucleons happens at about the same time as e™ — e~ annihilation,
which is also a time of order 7,,. It may seem implausible that we can add one more i.e. that
nuclear reactions will become important at about the same time — but this is just what does
happen.

Construction of nucleons This coincidence is not surprising, since the deuteron binding energy
of 2.225 MeV is only 4.3 times larger than m,.c? and only 1.7 times larger than the neutron—proton
mass difference. At higher temperatures, the strong interaction n + p = D +  is fast enough
to produce deuterium, but thermal equilibrium favours a small deuterium fraction — i.e. typical
photons are energetic enough to disrupt deuterium nuclei very easily. Furthermore, because
of the large photon-to-baryon ratio, the photons can keep the deuterium from forming until
the temperature has dropped well below the binding energy of the deuteron. The equilibrium
abundance of deuterium is set in much the same way as the ionization abundance of hydrogen,
and so obeys an equation that is identical (apart from spin-degeneracy factors) to the Saha
equation for hydrogen ionization:

(27h)3
(2nkTmymy, /myp)3/2

np

= Z exp(x/kT), (101)

Ny,
where y is the binding energy. As with hydrogen ionization, this defines an abrupt transition
between the situation where deuterium is rare and where it dominates the equilibrium. The

terms outside the exponential keep the deuterium density low until kT <« yx: the np = n,
crossover occurs at

Tdeuteron = 108.9 Ka (102)

or a time of about 3 minutes. An exact integration of the weak-interaction kinetic equation for
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the neutron abundance at np, = n,, (including free neutron decay, which is significant) gives

nn e . « .
M 0.163 (21200 (N, /3)02 (103)
np

(see e.g. chapter 4 of Kolb & Turner 1990; chapter 6 of Peebles 1993). The dependences
on the baryon density and on the number of neutrino species are easily understood. A high
baryon density means that the Saha equation gives a higher deuterium abundance, increasing
the temperature at which nuclei finally form and giving a higher neutron abundance because
fewer of them have decayed. The effect of extra neutrino species is to increase the overall rate
of expansion, so that neutron freeze-out happens earlier, again raising the abundance.

The primordial helium abundance The argument so far has produced a universe consisting of
just hydrogen and deuterium, but this is not realistic, as one would expect “He to be preferred
on thermodynamic grounds, owing to its greater binding energy per nucleon (7 MeV, as opposed
to 1.1 MeV for deuterium). In practice, the production of helium must await the synthesis of
significant quantities of deuterium, which we have seen happens at a temperature roughly one-
third that at which helium would be expected to dominate. What the thermodynamic argument
does show, however, is that it is expected that the deuterium will be rapidly converted to helium
once significant nucleosynthesis begins. This argument is what allows us to expect that the
helium abundance can be calculated from the final n/p ratio. If all neutrons are incorporated
into “He, then the number density of hydrogen is set by the remaining protons: ny = Ny — N
The mass fraction of helium, Y, is unity minus the hydrogen fraction, so that

_ -1
Y—1u—2<1+&> . (104)

Ny + Ny, Ny,

For the earlier n/p ratio of 0.163, this gives Y = 0.28.

The ‘observed’ value of Y is in the region of Y = 0.22 to 0.23 (e.g. Pagel 1994), and there
exists something of a difference of opinion on whether this is marvelously close agreement, or
evidence for something seriously wrong with the standard model.

The number of particle generations Increasing the number of neutrino species widens the gap
between theory and observation by AY ~ 0.01 for each additional neutrino species. It is therefore
clear that strong limits can be set on the number of unobserved species, and thus on the number
of possible additional families in particle physics. For many years, these nucleosynthesis limits
were stronger than those that existed from particle physics experiments. This changed in 1990,
with a critical series of experiments carried out in LEP, which was the first experiment to
produce Z° particles in large numbers. The particles are not seen directly, but their presence is
inferred by detecting a peak in the energy-dependent cross-sections for producing pairs of leptons
(1) or hadrons (h). The interpretation is that the peak is a ‘resonance’ due to the production of
a Z° as an intermediate state, and that the energy of the peak measures the Z° mass:

1,0

e++e_—>ZO—>{h P (105)

The width of the peak measures the Z9 lifetime, through the uncertainty principle, and this gives
a means of counting the numbers of neutrino species. The ZY can decay to pairs of neutrinos so
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long as their rest mass sums to less than 91.2 GeV; more species increase the decay rate, and
increase the Z% width, which measures the total decay rate.

Since 1990, these arguments have required N to be very close to 3 (see the Opal consortium,
1990); it is a matter of detailed argument over the helium data as to whether N = 4 was ruled
out from cosmology prior to this. In any case, it is worth noting that these two routes do not
measure exactly the same thing: both are sensitive only to relativistic particles, with upper mass
scales of about 1 MeV and 100 GeV in the cosmological and accelerator cases respectively. If
LEP had measured N = 5, that would have indicated extra species of rather massive neutrinos.
The fact that both limits in fact agree is therefore good evidence for the correctness of the
standard model, containing only three families.

Other light-element abundances  The same thermodynamic arguments that say that helium
should be favoured at temperatures around 0.1 MeV say that more massive nuclei would be
preferred in equilibrium at lower temperatures. However, by the time helium synthesis is ac-
complished, the density and temperature are too low for significant synthesis of heavier nuclei
to proceed: the lower density means that reactions tend to freeze out, even for a constant cross-
section, and the need for penetration of the nuclear Coulomb barrier means that cross-sections
decline rapidly as the temperature decreases.

Apart from helium, the main nuclear residue of the big bang is therefore those deuterium
nuclei that escape being mopped up into helium, plus a trace of 3He, which is produced en route
to *He: D + p — 2He, followed by *He + n — *He (the alternative route, of first D 4 n, then p
also happens, but the intermediate tritium is not so strongly bound). There also exist extremely
small fractions of other elements: "Li (~ 1072 by mass) and "Be (~ 10~!!). Unlike helium, the
critical feature of these abundances is that they are rather sensitive to density. One of the major
achievements of big bang cosmology is that it can account simultaneously for the abundances
of H, 2D, 3He, “*He and "Li — but only for a low-density universe. A proper understanding of
the abundances really requires a numerical solution of the coupled rate equations for all the
nuclear reactions, putting in the temperature-dependent cross-sections. This careful piece of
numerical physics was first carried out impressively soon after the discovery of the microwave
background, by Wagoner, Fowler & Hoyle (1967). At least the sense of the answer can be
understood intuitively, however. We have seen that helium formation occurs at very nearly a
fixed temperature, depending only weakly on density or neutrino species. The residual deuterium
will therefore freeze out at about this temperature, leaving a number density fixed at whatever
sets the reaction rate low enough to survive for a Hubble time. Since this density is a fixed
quantity, the proportion of the baryonic density that survives as deuterium (or *He) should thus
decline roughly as 1/(density).

This provides a relatively sensitive means of weighing the baryonic content of the universe.
A key event in the development of cosmology was thus the determination of the D/H ratio in
the interstellar medium, carried out by the COPERNICUS UV satellite in the early 1970s
(Rogerson & York 1973). This gave D/H ~ 2 x 107°, providing the first evidence for a low
baryonic density, as follows. Figure 3 shows how the abundances of light elements vary with
the cosmological density, according to detailed calculations. The baryonic density in these
calculations is traditionally quoted in the field as the reciprocal of the entropy per baryon:

n = (np+ny)/ny = 2.74 x 1078(T/2.73K) > Qph?. (106)

Figure 3 shows that this deuterium abundance favours a low density, Qsh? ~ 0.02, and data on
other elements give answers close to this. The constraint obtained from a comparison between
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Fig. 3: The predicted primordial abundances of the light elements, as a function of the baryon-to-photon ratio
1 (Smith, Kawano & Malaney 1993). For a microwave-background temperature of 2.73 K, this is related to the
baryonic density parameter via Qh? = 1/2.74 x 10~%. Concordance with the data is found only for n ~ 3x 10719,
shown by the shaded strip.

nucleosynthesis predictions and observational data is rather tight:

0.010 < Quh? <0.015 (107)

(e.g. Walker et al. 1991; Smith, Kawano & Malaney 1993). This comparison is of course
non-trivial, because we can only observe abundances in present-day stars and gas, rather than
in primordial material. Nevertheless, making the best allowances possible for production or
destruction of light elements in the course of stellar evolution, the conclusions obtained from
different species are in remarkable agreement: baryons cannot close the universe. If {2 = 1, the
dark matter must be non-baryonic.

3.4 Baryogenesis

In discussing nucleosynthesis, we have taken it for granted that photons outnumber baryons in
the universe by a large factor. Since baryons and antibaryons will annihilate at low temperatures,
this is reasonable; but in that case why are there any baryons at all? A thermal background
at high enough temperatures will contain equal numbers of protons and antiprotons, and this
symmetry will be maintained as the particles annihilate. As usual, there would be some low
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frozen-out abundance of both species at late times, but the universe would display a matter-
antimatter symmetry. A recurring theme in cosmological debate has been to ask what
happened to the antimatter. It appears that the universe began with a very slight asymmetry
between matter and antimatter: at high temperatures there were 14 O(10~?) protons for every
antiproton. If baryon number is conserved, this imbalance cannot be altered once it is set in
the initial conditions; but what generates it? One attractive idea is that the matter-antimatter
asymmetry may have been set in the GUT era, before the universe cooled below the critical
temperature of ~ 10'° GeV.

The main idea to be exploited is that GUTs erase the distinction between baryons and
leptons, treating them as different states of the same underlying unity. This raises the conceptual
possibility of reactions that can generate a net baryon asymmetry, so long as the temperature is
high enough that the GUT symmetry is not broken. The particles that will be involved are the
gauge bosons of the GUT, since these are the ones that mediate the baryon « lepton exchange
reactions — e.g. the X & Y bosons of SU(5). In particular, decay processes such as

o
4/3 eT +d
X4 { o (108)

are a promising direct source of baryon-number violation.

These mechanisms provide the first of three general Sakharov conditions for baryosyn-
thesis (published in 1967, well before the invention of GUTSs):

(1)  AB # 0 reactions; (2)  CP violation; (3)  non-equilibrium conditions.

The second condition requires an asymmetry between particles and antiparticles. Recall what
the symmetries C' and P mean: a given observed reaction is possible (and will proceed with the
same rate) if particles are replaced by antiparticles (C') or viewed in a mirror (P). Although P
is violated by the weak interaction to the extent that only left-handed neutrinos are produced,
the combined symmetry C'P is obeyed in almost all cases. Consider the effect on the above
X-boson decay if CP were to hold exactly: if a fraction f of decays produce etd, then decays
of X will produce the opposite baryon number via e~d the same fraction of the time, in which
case no net asymmetry can be created. What we need is for the two fractions to be different,
and such a process is observed in the laboratory in the form of the neutral kaons: both Ky and
K decay to either two or three pions, but with branching ratios that differ at the 1073 level.

The third condition is necessary in order to prevent reverse reactions from erasing any
baryon asymmetry as soon as it has been created. As in many cases in the expanding universe,
the crucial physical results are contained in the ability of reactions to freeze out.

The challenge of baryosynthesis is to predict the observed asymmetry (in the form of a
baryon-to-photon ratio ng/n., ~ 109, In principle, this can be done once the GUT model is
given, and a connection can be made between laboratory measurements of C'P violation and the
baryon content of the universe. The simplest model for baryosynthesis would consist of a single
Majorana particle, whose decays favour the production of baryons over antibaryons:

(X >AB=+1)=1(1+¢T

(X -AB=-1)=11-¢T. (109)

Here, I' = 1/7 is the decay rate, and e parameterizes the C'P violation. The kinetic equations
governing the effect of decays on the X number density and on baryon number B can be written
down immediately following our earlier discussion of the Boltzmann equation:

110
ng + 3Hng = €l (ny —nk). (110)
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The terms involving the thermal-equilibrium X density, n%, allow for inverse processes, and are
deduced by asking what source term makes the lhs vanish in equilibrium, as before. What they
say is that it is impossible for the X boson to decay when it is relativistic; we have to wait until
kT < mc?, so that n% is suppressed. Note that the second equation explicitly makes clear the
third Sakharov criterion for a violation of equilibrium. These equations are incomplete, as they
neglect two-body processes that would contribute to the changing X abundance, such as X + X
annihilation. The simplified form will apply after the X abundance has frozen out. In terms of
comoving densities N = a®n, the equation for baryon number is just

so that the final baryon comoving density tends to e NI as the X’s decay away. The baryon-
to-entropy ratio produced by this process is then

N, 2
B C exp < Mxe ) , (112)

s G B kT

where the entropy density is defined here as g, times the photon density, and the last term
allows for the freeze-out suppression of the X density relative to massless backgrounds. Since
the required ratio is ~ 1079 and g, ~ 100 at early times, we need ¢ > 10~7. Note that the
freeze-out point cannot be very late: even for € = 1, k1" > myc?/16 is needed.

Other mechanisms  Baryosynthesis via GUT decay as above is the simplest mechanism, but
there are other possibilities. First note that the above picture may well be inconsistent with an
inflationary origin for the universe. Inflation generally involves a GUT-scale phase transition
that leaves the universe reheated to a temperature somewhat below that of the GUT scale. Any
pre-existing baryon asymmetry would be rendered irrelevant by the inflationary expansion, and
things would not be hot enough afterwards for GUT processes to operate.

It is possible that baryosynthesis may proceed at still lower temperatures, since baryon
non-conserving processes may even occur as part of the electroweak phase transition at 1" ~
200 GeV. This is a surprise, since the electroweak Lagrangian contains no terms that would
violate baryon number: leptons and hadrons are explicitly contained in different multiplets.
This constraint may possibly be evaded by quantum tunnelling, but the exact extent to which
baryon number violation may be realized in practice within the standard model is still a matter
of debate (see e.g. section 6.8 of Kolb & Turner 1990; Grigoriev et al. 1992; Moore 1996; Ellis
1997).

4 INFLATIONARY COSMOLOGY

The standard isotropic cosmology is a very successful framework for interpreting observations,
but prior to the early 1980s there were certain questions that had to be avoided. The initial
conditions of the big bang appear to be odd in a number of ways; these puzzles are encapsulated
in a set of classical ‘problems’, as follows.

The horizon problem  Standard cosmology contains a particle horizon of comoving radius

tcdt

Ty = ; m, (113)

which converges because R o« t1/2 in the early radiation-dominated phase. At late times, the
integral is largely determined by the matter-dominated phase, for which

6000
VQz
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The horizon at last scattering (z ~ 1000) was thus only ~ 100 Mpc in size, subtending an angle
of about 1 degree. Why then are the large number of causally disconnected regions we see on
the microwave sky all at the same temperature?

The flatness problem  The €2 = 1 universe is unstable:

[1-1/9(z)] = f(z) [1 - 1/, (115)

where f(z) = (1+2)~! in the matter-dominated era and f(z) o (1+ 2)~2 for radiation domina-
tion, so that f(z) ~ (1+ 2eq)/(1+2)? at early times. To get 2 ~ 1 today requires a fine tuning
of € in the past, which becomes more and more precisely constrained as we increase the redshift
at which the initial conditions are presumed to have been imposed. Ignoring annihilation effects,
14+ 2z =Tinie/2.7 K and 1 4 zeq ~ 104, so that the required fine tuning is

1Q(tinie) — 1] < 10722 (B /GeV)2, (116)

At the Planck epoch, which is the natural initial time, this requires a deviation of only 1 part
in 10%.

The expansion problem  Even the most obvious fact of the cosmological expansion is unex-
plained. Although general relativity forbids a static universe, this is not enough to understand
the expansion. As shown above, the gravitational dynamics of the cosmological scale factor
R(t) are just those of a cannonball travelling vertically in the Earth’s gravity. Suppose we see
a cannonball rising at a given time ¢ = ty: it may be true to say that it has r = rg and v = vg
at this time because at a time At earlier it had r = r — vgAt and v = vy — gAt, but this is
hardly a satisfying explanation for the motion of a cannonball that was in fact fired by a cannon.
Nevertheless, this is the only level of explanation that classical cosmology offers: the universe
expands now because it did so in the past. Although it is not usually included in the list, one
might thus with justice add an ‘expansion problem’ as perhaps the most fundamental in the
catalogue of classical cosmological problems.

For many years, it was assumed that any solution to these difficulties would have to await
a theory of quantum gravity. The classical singularity can be approached no closer than the
0~%3 s, and so the initial conditions for the classical evolution following
this time must have emerged from behind the presently impenetrable barrier of the quantum
gravity epoch. There remains a significant possibility that this policy of blaming everything on
quantum gravity may be correct, but the great development of cosmology in the 1980s was the
realization that the explanation of the initial-condition puzzles might involve physics at lower
energies: ‘only’ 101 GeV. Although this idea, now known as inflation, cannot be considered
to be firmly established, the ability to treat gravity classically puts the discussion on a much
less speculative foundation. What has emerged is a general picture of the early universe that
has compelling simplicity, which moreover may be subject to observational verification. What
follows is an outline of the main features of inflation; for more details see e.g. chapter 8 of Kolb

& Turner (1990); Brandenberger (1990); Liddle & Lyth (1993).

Planck time of ~ 1

Equation of state for inflation ~ The list of problems with conventional cosmology provides a
strong hint that the equation of state of the universe may have been very different at very early
times. To solve the horizon problem and allow causal contact over the whole of the region
observed at last scattering requires a universe that expands ‘faster than light’ near t = 0:
R x t%, with a > 1. If such a phase had existed, the integral for the comoving horizon would
have diverged, and there would be no difficulty in understanding the overall homogeneity of the
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universe — this could then be established by causal processes. Indeed, it is tempting to assert
that the observed homogeneity proves that such causal contact must once have occurred. This
phase of accelerated expansion is the most general feature of what has become known as the
inflationary universe.

What condition does this place on the equation of state? In the integral for ry, we can
replace dt by dR/ R, which the Friedmann equation says is x dR /v/ pR? at early times. Thus, the
horizon diverges provided the equation of state is such that pR? vanishes or is finite as R — 0.
For a perfect fluid with p = (T' —1)e as the relation between pressure and energy density, we have
the adiabatic dependence p oc R73", and the same dependence for p if the rest-mass density is
negligible. A period of inflation therefore needs

r<2/3 = p+3p<0. (117)

An alternative way of seeing that this criterion is sensible is that the ‘active mass density’
p+3p/ ¢? then vanishes. Since this quantity forms the rhs of Poisson’s equation generalized to
relativistic fluids, it is no surprise that the vanishing of p+ 3p/c? allows a coasting solution with
R t.

Such a criterion can also solve the flatness problem. Consider the Friedmann equation,

B 81GpR? B
3

As we have seen, the density term on the rhs must exceed the curvature term by a factor of
at least 10% at the Planck time, and yet a more natural initial condition might be to have the
matter and curvature terms being of comparable order of magnitude. However, an inflationary
phase in which pR? increases as the universe expands can clearly make the curvature term
relatively as small as required, provided inflation persists for sufficiently long.

R? kc?. (118)

de Sitter space and inflation ~ We have seen that inflation will require an equation of state with
negative pressure, and the only familiar example of this is the p = —pc? relation that applies
for vacuum energy; in other words, we are led to consider inflation as happening in a universe
dominated by a cosmological constant. As usual, any initial expansion will redshift away matter
and radiation contributions to the density, leading to increasing dominance by the vacuum term.
If the radiation and vacuum densities are initially of comparable magnitude, we quickly reach
a state where the vacuum term dominates. The Friedmann equation in the vacuum-dominated
case has three solutions:

sinh Ht (k=-1)
R o ¢ cosh Ht (k=+1) (119)
exp Ht (k=0),

where H = \/Ac?/3 = \/87G pyac/3; all solutions evolve towards the exponential £ = 0 solution,
known as de Sitter space. Note that H is not the Hubble parameter at an arbitrary time
(unless £ = 0), but it becomes so exponentially fast as the hyperbolic trigonometric functions
tend to the exponential.

Because de Sitter space clearly has H? and p in the right ratio for 2 = 1 (obvious, since
k = 0), the density parameter in all models tends to unity as the Hubble parameter tends to
H. If we assume that the initial conditions are not fine tuned (i.e. 2 = O(1) initially), then
maintaining the expansion for a factor f produces

Q=1+0(f2). (120)
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This can solve the flatness problem, provided f is large enough. To obtain 2 of order unity
today requires |Q — 1| < 10752 at the GUT epoch, and so

In f 2 60 (121)

e-foldings of expansion are needed; it will be proved below that this is also exactly the number
needed to solve the horizon problem. It then seems almost inevitable that the process should
go to completion and yield €2 = 1 to measurable accuracy today. There is only a rather small
range of e-foldings (60 + 2, say) around the critical value for which €2 today can be of order unity
without it being equal to unity to within the tolerance set by density fluctuations (£107°), and
it would constitute an unattractive fine-tuning to require that the expansion hit this narrow
window exactly.

This gives the first of two strong predictions of inflation: that the universe must be
spatially flat

inflation = &k =0. (122)

Note that this need not mean the Einstein—de Sitter model; the alternative possibility is that a
vacuum contribution is significant in addition to matter, so that €2, + €2, = 1. Astrophysical
difficulties in finding evidence for €2,, = 1 are thus one of the major motivations, through
inflation, for taking the idea of a large cosmological constant seriously.

4.1 Inflation field dynamics

The general concept of inflation rests on being able to achieve a negative-pressure equation of
state. This can be realized in a natural way by quantum fields in the early universe.

Quantum fields at high temperatures The critical fact we shall need from quantum field theory
is that quantum fields can produce an energy density that mimics a cosmological constant. The
discussion will be restricted to the case of a scalar field ¢ (complex in general, but often illustrated
using the case of a single real field). The restriction to scalar fields is not simply for reasons
of simplicity, but because the scalar sector of particle physics is relatively unexplored. While
vector fields such as electromagnetism are well understood, it is expected in many theories of
unification that additional scalar fields such as the Higgs field will exist. We now need to look
at what these can do for cosmology.

The Lagrangian density for a scalar field is as usual of the form of a kinetic minus a
potential term:

L=30,60"6—V(e). (123)
In familiar examples of quantum fields, the potential would be
V(g) = $m? ¢, (124)

where m is the mass of the field in natural units. However, it will be better to keep the potential
function general at this stage. As usual, Noether’s theorem gives the energy momentum tensor

for the field as

TH = 9lpd” § — ' L. (125)
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From this, we can read off the energy density and pressure:

p=350"+V(9) +3(Vo)’
p=5¢0° = V() - §(Ve)*.
If the field is constant both spatially and temporally, the equation of state is then p = —p, as

required if the scalar field is to act as a cosmological constant; note that derivatives of the field
spoil this identification.

(126)

If ¢ is a (complex) Higgs field, then the symmetry-breaking Mexican hat potential might
be assumed:

V(g) = 128> + Ao|*. (127)

At the classical level, such potentials determine where |¢| will be found in equilibrium: at the
potential minimum. In quantum terms, this goes over to the vacuum expectation value
(0]¢|0). However, these potentials do not include the inevitable fluctuations that will arise in
thermal equilibrium. We know how to treat these in classical systems: at non-zero temperature
a system of fixed volume will minimize not its potential energy, but the Helmholtz free energy
F =V —-T5§5, § being the entropy. The calculation of the entropy is technically complex, since
it involves allowance for quantum interactions with a thermal bath of background particles.
However, the main result can be justified, as follows. The effect of the thermal interaction must
be to add an interaction term to the Lagrangian Ly (¢,1), where v is a thermally fluctuating
field that corresponds to the heat bath. In general, we would expect Lyt to have a quadratic
dependence on |¢| around the origin: Liy oc |¢]? (otherwise we would need to explain why
the second derivative either vanishes or diverges); the coefficient of proportionality will be an
effective mass? that depends on the thermal fluctuations in 1. On dimensional grounds, this
coefficient must be proportional to T2, although a more detailed analysis would be required to
obtain the constant of proportionality.

There is thus a temperature-dependent effective potential that we have to minimize:
Verr (9, 1) = V(9. 0) + aZ?|¢]. (128)

The effect of this on the symmetry-breaking potential depends on the form of the zero-temperature
V(). If the function is taken to be the simple Higgs form V = —p? +A¢?, then the temperature-
dependent part simply modifies the effective value of p?: ,ugﬁ = p? —aT?. At very high tempera-
tures, the potential will be parabolic, with a minimum at |¢| = 0; below the critical temperature,
T. = p1/+/a, the ground state is at |¢| = [u%z/(2))]"/? and the symmetry is broken. At any given
time, there is only a single minimum, and so this is a second-order phase transition.

It is easy enough to envisage more complicated behaviour, as illustrated in figure 4. This
plots the potential

Veir(6,T) = Ag|* — blo|* + aT?|o], (129)

which displays two critical temperatures. At very high temperatures, the potential will have a,
parabolic minimum at |¢| = 0; at 77, a second minimum appears in Veg at |¢| # 0, and this
will be the global minimum for some 7o < Tj. For T' < T3, the state at |¢| = 0 is known
as the false vacuum, whereas the global minimum is known as the true vacuum. For this
particular form of potential, the second minimum around ¢ = 0 always exists, so that there is a
potential barrier preventing a transition to the false vacuum. This can be overcome by adding a
small —p?|¢|? component to the potential, so that there will be a third critical temperature at
which the curvature around the origin changes sign, leaving only one minimum in the potential.
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Fig. 4: The temperature-dependent effective potential V' = 1%|¢|> — |$|> 4 |¢|*, illustrated at several temperatures:
T? = 0.5, 9/32, 1/4, 0.1, 0. For T > Ty = (9/32)"/? ~ 0.53, only the false vacuum is available; for T < Tp = 1/2
the true vacuum is energetically favoured and the potential approaches the zero-temperature form.

Alternatively, once the barrier is small enough, quantum tunnelling can take place and free ¢ to
move. The universe is no longer trapped in the false vacuum and can make a first-order phase
transition to the true vacuum state.

The crucial point to note for cosmology is that there is an energy-density difference between
the two vacuum states:

it
AV = — 130

7 (130)
If we say that the zero of energy is such that V' = 0 in the true vacuum, this implies that
the false-vacuum symmetric state displays an effective cosmological constant. On dimensional
grounds, this must be an energy density ~ m?* in natural units, where m is the energy at which
the phase transition occurs. For GUTSs, m ~ 10 GeV; in laboratory units, this implies

1015GeV)* _
Pvac = % ~ 10% kgm™3, (131)
h°c

The inevitability of such a colossal vacuum energy in models with GUT-scale symmetry breaking
was the major motivation for the concept of inflation as originally envisaged by Guth (1981).
At first sight, the overall package looks highly appealing, since the phase transition from false to
true vacuum both terminates inflation and also reheats the universe to the GUT temperature,
allowing the possibility that GUT-based reactions that violate baryon-number conservation can
generate the observed matter/antimatter asymmetry. Because the traunsition is first-order, the
original inflation model is known as first-order inflation.

However, while a workable inflationary cosmology will very probably deploy the three basic
elements of vacuum-driven expansion, fluctuation generation and reheating, it has become clear
that such a model must be more complex than Guth’s initial proposal. To explain where the
problems arise, we need to look in more detail at the functioning of the inflation mechanism.
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Dynamics of the inflation field Treating the field classically (i.e. considering the expectation
value (@), we get from energy-momentum conservation (T%” = 0) the equation of motion

¢+ 3Hd— V3¢ +dV/dg = 0. (132)

This can also be derived more easily by the direct route of writing down the action S =
[ L+/—g d*x and applying the Euler-Lagrange equation that arises from a stationary action
(v/—g = R3(t) for an FRW model, which is the origin of the Hubble drag term 3H ¢).

The solution of the equation of motion becomes tractable if we both ignore spatial inhomo-
geneities in ¢ and make the slow-rolling approximation that |q§| is negligible in comparison
with [3H¢| and |dV/d@|. Both these steps are required in order that inflation can happen; we
have shown above that the vacuum equation of state only holds if in some sense ¢ changes slowly
both spatially and temporally. Suppose there are characteristic temporal and spatial scales T’
and X for the scalar field; the conditions for inflation are that the negative-pressure equation of
state from V(¢) must dominate the normal-pressure effects of time and space derivatives:

V> ¢ T? Vo> ¢2 /X3, (133)

hence |dV/d¢| ~ V/¢ must be > ¢/T? ~ ¢. The ¢ term can therefore be neglected in the
equation of motion, which then takes the slow-rolling form for homogeneous fields:

3Hd = —dV/de. (134)

The conditions for inflation can be cast into useful dimensionless forms. The basic condition
V > $? can now be rewritten using the slow-roll relation as

m;

167

€=

V')V« 1. (135)

Also, we can differentiate this expression to obtain the criterion V” < V' /my. Using slow-roll
once more gives 3H¢/myp for the rhs, which is in turn < 3H+/V /mp because ¢? < V, giving
finally

2

lP "
= — (V"/V 1 1
7 3 ( / ) < ( 36)

(recall that for de Sitter space H = \/8tGV (¢)/3 ~ /V /my in natural units). These two criteria
make perfect intuitive sense: the potential must be flat in the sense of having small derivatives
if the field is to roll slowly enough for inflation to be possible.

Similar arguments can be made for the spatial parts. However, they are less critical: what
matters is the value of V¢ = Veomoving @/R. Since R increases exponentially, these perturba-
tions are damped away: assuming V is large enough for inflation to start in the first place,
inhomogeneities rapidly become negligible. This ‘stretching’ of field gradients as we increase
the cosmological horizon beyond the value predicted in classical cosmology also solves a related
problem that was historically important in motivating the invention of inflation — the monopole
problem. Monopoles are point-like topological defects that would be expected to arise in any
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phase transition at around the GUT scale (t ~ 1073° s). If they form at approximately one per
horizon volume at this time, then it follows that the present universe would contain 2 > 1 in
monopoles. This unpleasant conclusion is avoided if the horizon can be made much larger than
the classical one at the end of inflation; the GUT fields have then been aligned over a vast scale,
so that topological-defect formation becomes extremely rare.

Ending inflation — Although spatial derivatives of the scalar field can thus be neglected, the
same is not always true for time derivatives. Although they may be negligible initially, the
relative importance of time derivatives increases as ¢ rolls down the potential and V approaches
zero (leaving aside the subtle question of how we know that the minimum is indeed at zero
energy). Even if the potential does not steepen, sooner or later we will have e ~ 1 or || ~ 1
and the inflationary phase will cease. Instead of rolling slowly ‘downhill’, the field will oscillate
about the bottom of the potential, with the oscillations becoming damped by the 3H ¢ friction
term (see figure 5). Eventually, we will be left with a stationary field that either continues to
inflate without end, if V(¢ = 0) > 0, or which simply has zero density. This would be a most
boring universe to inhabit, but fortunately there is a more realistic way in which inflation can
end. We have neglected so far the couplings of the scalar field to matter fields. Such couplings
will cause the rapid oscillatory phase to produce particles, leading to reheating. Thus, even
if the minimum of V(¢) is at V' = 0, the universe is left containing roughly the same energy
density as it started with, but now in the form of normal matter and radiation — which starts
the usual FRW phase, albeit with the desired special ‘initial’ conditions.

As well as being of interest for completing the picture of inflation, it is essential to realize
that these closing stages of inflation are the only ones of observational relevance. Inflation might
well continue for a huge number of e-foldings, all but the last few satisfying e, 7 < 1. However,
the scales that left the de Sitter horizon at these early times are now vastly greater than our
observable horizon, ¢/Hj, which exceeds the de Sitter horizon by only a finite factor. If inflation
terminated by reheating to the GUT temperature, then the expansion factor required to reach
the present epoch is

agor = Equr/Es. (137)
The comoving horizon size at the end of inflation was therefore
du(tour) = agiy [¢/Houor] = [Ep/Ey] Egiy, (138)

where the last expression in natural units uses H ~ 'V /Ep ~ F2./Eps. For a GUT energy
of 10 GeV, this is about 10 m. This is a sobering illustration of the magnitude of the horizon
problem; if we relied on causal processes at the GUT era to produce homogeneity, then the
universe would only be smooth in patches a few comoving metres across. To solve the problem,
we need enough e-foldings of inflation to have stretched this GUT-scale horizon to the present
horizon size

(139)

-1
Ny —In [300011 Mpc] 60

(Bo/E,)Egiy

By construction, this is enough to solve the horizon problem, and it is also the number of e-
foldings needed to solve the flatness problem. This is no coincidence, since we saw earlier that
the criterion in this case was

Nzlm (ﬂ) . (140)
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Fig. 5: A plot of the exact solution for the scalar field in a model with a V o« ¢? potential. The top panel shows
how the absolute value of ¢ falls smoothly with time during the inflationary phase, and then starts to oscillate
when inflation ends. The bottom panel shows the evolution of the scale factor. We see the initial exponential
behaviour flattening as the vacuum energy ceases to dominate. The two models shown have starting points of
Wi = Vi/(¢7H?) = 0.002 and 0.005; the former (upper lines in each panel) gives about 380 e-foldings of inflation,
the latter (lower lines) only 150. According to the e = n = 1 criterion, inflation in these models ends at respectively
t = 730 and 240. The observationally relevant part of inflation is the last 60 e-foldings, and the behaviour of the

scale factor is significantly non-exponential in this regime.
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Now, aeq = py/p, and p = 3H?Q/(87G). In natural units, this translates to p ~ E%(c/Hp) 2, or
agg ~ E3(c/Hy) 2/ Efl/. The expression for N is then identical to that in the case of the horizon
problem: the same number of e-folds will always solve both.

Criteria for inflation — Successful inflation in any of these models requires > 60 e-foldings of
the expansion. The implications of this are easily calculated using the slow-roll equation, which
gives the number of e-foldings between ¢; and ¢9 as

8 b2
N=[| Hdt=—— — d 141
/ 2 e (141)

For any potential that is relatively smooth, V' ~ V/¢, and so we get N ~ (¢start/mp)?, assuming
that inflation terminates at a value of ¢ rather smaller than at the start. The criterion for
successful inflation is thus that the initial value of the field exceeds the Planck scale:

¢start > mp. (142)

By the same argument, it is easily seen that this is also the criterion needed to make the slow-roll
parameters € and n < 1. To summarize, any model in which the potential is sufficiently flat that
slow-roll inflation can commence will probably achieve the critical 60 e-foldings. Counterexam-
ples can of course be constructed, but they have to be somewhat special cases.

It is interesting to review this conclusion for some of the specific inflation models listed
above. Consider a mass-like potential V' = m?2¢2. If inflation starts near the Planck scale,
the fluctuations in V' are ~ mf, and these will drive @gtart 0 Pstart > mp provided m < mp;
similarly, for V = A\¢*, the condition is weak coupling: A < 1. Any field with a rather flat
potential will thus tend to inflate, just because typical fluctuations leave it a long way from
home in the form of the potential minimum. In a sense, inflation is realized by means of ‘inertial
confinement’: there is nothing to prevent the scalar field from reaching the minimum of the
potential — but it takes a long time to do so, and the universe has meanwhile inflated by a large
factor.

4.2 Relic fluctuations from inflation

We have seen that de Sitter space contains a true event horizon, of proper size ¢/H. This
suggests that there will be thermal fluctuations present, as with a black hole, for which the
Hawking temperature is kT = hc/(4nrs). This analogy is close, but imperfect, and the
characteristic temperature of de Sitter space is a factor 2 higher:

deeSitter = Z—H (143)
T
This existence of thermal fluctuations is one piece of intuitive motivation for expecting fluctu-
ations in the quantum fields that are present in de Sitter space, but is not so useful in detail.
In practice, we need a more basic calculation, which is to see how the zero-point fluctuations
in small-scale quantum modes freeze out as classical density fluctuations once the modes have
been inflated to super-horizon scales.

The details of this calculation are given below. However, we can immediately note that
a natural prediction will be a spectrum of perturbations that are nearly scale invariant. This
means that the metric fluctuations of spacetime receive equal levels of distortion from each
decade of perturbation wavelength, and may be quantified in terms of the rms fluctuations, o,
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in Newtonian gravitational potential, ® (¢ = 1):

do?(®)
2 _ A2 _
0 Ap = dlnk

H —

= constant. (144)

The notation dy arises because the potential perturbation is of the same order as the density
fluctuation on the scale of the horizon at any given time.

It is commonly argued that the prediction of scale invariance arises because de Sitter
space is invariant under time translation: there is no natural origin of time under exponential
expansion. At a given time, the only length scale in the model is the horizon size ¢/H, so it is
inevitable that the fluctuations that exist on this scale are the same at all times. After inflation
ceases, the resulting fluctuations (at constant amplitude on the scale of the horizon) give us
the Zeldovich spectrumZeldovich or scale-invariant spectrumscale-invariant spectrum. The
problem with this argument is that it ignores the issue of how the perturbations evolve while
they are outside the horizon; we have only really calculated the amplitude for the last generation
of fluctuations — 7.e. those that are on the scale of the horizon at the time inflation ends.
Fluctuations generated at earlier times will be inflated outside the de Sitter horizon, and will
re-enter the FRW horizon at some time after inflation has ceased.

The evolution during this period is a topic where some care is needed, since the description
of these large-scale perturbations is sensitive to the gauge freedom in general relativity. A
technical discussion is given in e.g. Mukhanov, Feldman & Brandenberger (1992); for the present,
we shall rely on simply motivating the inflationary result, which is that potential perturbations
re-enter the horizon with the same amplitude they had on leaving. This may be made reasonable
in two ways. Perturbations outside the horizon are immune to causal effects, so it is hard to see
how any large-scale non-flatness in spacetime could ‘know’ whether it was supposed to grow or
decline.

We therefore argue that the inflationary process produces a universe that is fractal-like
in the sense that scale-invariant fluctuations correspond to a metric that has the same ‘wrinkli-
ness’ per log length-scale. It then suffices to calculate that amplitude on one scale — i.e. the
perturbations that are just leaving the horizon at the end of inflation, so that super-horizon
evolution is not an issue. It is possible to alter this prediction of scale invariance only if the
expansion is non-exponential; we have seen that such deviations plausibly do exist towards the
end of inflation, so it is clear that exact scale invariance is not to be expected.

To anticipate the detailed treatment, the inflationary prediction is of a horizon-scale am-
plitude

H2
o = — (145)
21 ¢

which can be understood as follows. Imagine that the main effect of fluctuations is to make
different parts of the universe have fields that are perturbed by an amount d¢. In other words,
we are dealing with various copies of the same rolling behaviour ¢(t), but viewed at different
times

_%
-

These universes will then finish inflation at different times, leading to a spread in energy densities
(figure 6). The horizon-scale density amplitude is given by the different amounts that the

5t (146)
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Fig. 6: This plot shows how fluctuations in the scalar field transform themselves into density fluctuations at the
end of inflation. Different points of the universe inflate from points on the potential perturbed by a fluctuation
d¢, like two balls rolling from different starting points. Inflation finishes at times separated by 4t in time for these

two points, inducing a density fluctuation 6 = Hdt.

universes have expanded following the end of inflation:

H2
ou ~ H 6t = —, (147)
2m ¢
where the last step uses the crucial input of quantum field theory, which says that the rms d¢
is given by H /2.

The fluctuation spectrum — We now need to go over this vital result in rather more detail (see
Liddle & Lyth 1993 for a particularly clear treatment). First, consider the equation of motion
obeyed by perturbations in the inflaton field. The basic equation of motion is

b+ 3Hp —V2p+ V' () =0, (148)

and we seek the corresponding equation for the perturbation d¢ obtained by starting inflation
with slightly different values of ¢ in different places. Suppose this perturbation takes the form
of a comoving plane-wave perturbation of comoving wavenumber k& and amplitude A: §¢ =
Aexp(ik - x — ikt/a). If the slow-roll conditions are also assumed, so that V’ may be treated
as a constant, then the perturbed field §¢ obeys the first-order perturbation of the equation of
motion for the main field:

[06] + 3H[5¢] + (k/a)*[5¢] = 0, (149)

which is a standard wave equation for a massless field evolving in an expanding universe.

Having seen that the inflaton perturbation behaves in this way, it is not much work to
obtain the quantum fluctuations that result in the field at late times (i.e. on scales much larger
than the de Sitter horizon). First consider the fluctuations in flat space: the field would be
expanded as

O = wray + w,ﬁaz, (150)
and the field variance would be
O] |pnl* 10) = |wr|*. (151)

To solve the general problem, we only need to find how the amplitude wj, changes as the universe
expands. The idea is to start from the situation where we are well inside the horizon (k/a > H),
in which case flat-space quantum theory will apply, and end at the point of interest outside the
horizon (where k/a < H).
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Returning now to the calculation, we want to know how the mode amplitude changes as
the wavelength passes through the horizon. Initially, we have the standard result from flat-space
quantum field theory, which can be rewritten in comoving units as

wp = a” % (2k/a)"1/? et/ (152)

The powers of the scale factor, a(t), just allow for expanding the field in comoving wavenumbers
k. The field amplitude contains a normalizing factor of V=2, V being a proper volume; hence
the a=3/2 factor, if we use comoving V = 1. Another way of looking at this is that the proper
number density of inflatons goes as ™3 as the universe expands. With this boundary condition,
it straightforward to check by substitution that the following expression satisfies the evolution
equation:

wp = a~%? (2k)a) "2 e */H (1 4 jaH k) (153)

(remember that H is a constant, so that (d/dt)[aH] = Ha = aH? etc.). At early times,
when the horizon is much larger than the wavelength, aH/k < 1, and so wy, is the flat-space
result, except that the time dependence looks a little odd, being exp(—ik/aH ). However, since
(d/dt)[k/aH] = —k/a, we see that the oscillatory term has a leading dependence on ¢ of the
desired kt/a form. In the limit of very early times, the period of oscillation is < H~!, so a is
effectively a constant from the point of view of the epoch where quantum fluctuations dominate.

At the opposite extreme, aH/k > 1, the fluctuation amplitude becomes frozen out at the
value
H2
0] [¢x?|0) = ~=. 154
(0]164 10) = 5.5 (154)
The initial quantum zero-point fluctuations in the field have been transcribed to a constant
classical fluctuation that can eventually manifest itself as large-scale structure. The fluctuations
in ¢ depend on k in such a way that the fluctuations per decade are constant:

2 k3 2
S L

(the factor (27) 2 comes from the Fourier transform; 4wk?dk = 4nk®dIlnk comes from the
k-space volume element). This completes the argument. The rms value of fluctuations in ¢ can
be used as above to deduce the power spectrum of mass fluctuations well after inflation is over.
In terms of the variance per In k in potential perturbations, the answer is

H4
02 = A2 (k) = —
(2m¢)?
H? = 8 V. (156)
3 m3
3Hp = -V,

where we have also written once again the exact relation between H and V and the slow-roll
condition, since manipulation of these three equations is often required in derivations.

This result calls for a number of comments. First, if H and q§ are both constant then
the predicted spectrum is exactly scale invariant, with some characteristic inhomogeneity on
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the scale of the horizon. As we have seen, exact de Sitter space with constant H will not be
strictly correct for most inflationary potentials; nevertheless, in most cases the main points of the
analysis still go through. The fluctuations in ¢ start as normal flat-space fluctuations (and so not
specific to de Sitter space), which change their character as they are advected beyond the horizon
and become frozen-out classical fluctuations. All that matters is that the Hubble parameter is
roughly constant for the few e-foldings that are required for this transition to happen. If H does
change with time, the number to use is the value at the time that a mode of given k crosses the
horizon. Even if H were to be precisely constant, there remains the dependence on (ﬁ, which
again will change as different scales cross the horizon. This means that different inflationary
models display different characteristic deviations from a nearly scale-invariant spectrum, and
this is discussed in more detail below.

Two other characteristics of the perturbations are more general: they will be Gaussian and
adiabatic in nature. A Gaussian density field is one for which the joint probability distribution
of the density at any given number of points is a multivariate Gaussian. The easiest way for
this to arise in practice is for the density field to be constructed as a superposition of Fourier
modes with independent random phases; the Gaussian property then follows from the central
limit theorem. It is easy to see in the case of inflation that this requirement will be satisfied: the
quantum commutation relations only apply to modes of the same k, so that modes of different
wavelength behave independently and have independent zero-point fluctuations.

Gravity waves and tilt  The density perturbations left behind as a residue of the quantum
fluctuations in the inflaton field during inflation are an important relic of that epoch, but are
not the only one. In principle, a further important test of the inflationary model is that it also
predicts a background of gravitational waves, whose properties couple with those of the density
fluctuations.

It is easy to see in principle how such waves arise. In linear theory, any quantum field
is expanded in a similar way into a sum of oscillators with the usual creation and annihilation
operators; the above analysis of quantum fluctuations in a scalar field is thus readily adapted
to show that analogous fluctuations will be generated in other fields during inflation. In fact,
the linearized contribution of a gravity wave, h,,, to the Lagrangian looks like a scalar field
¢ = (mp/4y/7) hyw, the expected rms gravity-wave amplitude is

hrms ~ H/mP (157)

The fluctuations in ¢ are transmuted into density fluctuations, but gravity waves will survive to
the present day, albeit redshifted.

This redshifting produces a break in the spectrum of waves. Prior to horizon entry, the
gravity waves produce a scale-invariant spectrum of metric distortions, with amplitude h,ng per
In k. These distortions are observable via the large-scale CMB anisotropies, where the tensor
modes produce a spectrum with the same scale dependence as the Sachs-Wolfe gravitational
redshift from scalar metric perturbations. In the scalar case, we have 01/T ~ ¢/3c?, i.e. of
order the Newtonian metric perturbation; similarly, the tensor effect is

5T
(—) ~ Rems < 0 ~ 1072, (158)
T GW

where the second step follows because the tensor modes can constitute no more than 100%
of the observed CMB anisotropy. The energy density of the waves is pgw ~ m2h%k?, where
k ~ H(aentry) is the proper wavenumber of the waves. At horizon entry, we therefore expect

Pew ™~ Tn’]2j hl%ms H2(aentry)- (159)
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After horizon entry, the waves redshift away like radiation, as a %, and generate a present-

day energy spectrum per Ink that is constant for modes that entered the horizon while the
universe was radiation dominated (because a o t1/2 = H?a* = constant). What is the density
parameter of these waves? In natural units, Q = (87/3)p/(H?*m2), so Qaw ~ h2,. at the time of
horizon entry, at which epoch the universe was radiation dominated with €2, = 1 to an excellent
approximation. Thereafter, the wave density maintains a constant ratio to the radiation density,

since both redshift as a™*, giving the present-day density as

Qew ~ Q. (H/mp)? ~ 1074V /m. (160)

The gravity-wave spectrum therefore displays a break between constant metric fluctuations on
super-horizon scales and constant density fluctuations on small scales. An analogous break
also exists in the spectrum of density perturbations in dark matter. If gravity waves make an
important contribution to CMB anisotropies, we must have hyys ~ 107°, and so Qqw ~ 107
is expected.

An alternative way of presenting the gravity-wave effect on the CMB anisotropies is via
the ratio between the tensor effect of gravity waves and the normal scalar Sachs—Wolfe effect,
as first analysed in a prescient paper by Starobinsky (1985). Denote the fractional temperature
variance per natural logarithm of angular wavenumber by A? (constant for a scale-invariant
spectrum). The tensor and scalar contributions are respectively

A2 ~ hip ~ (H?/m2) ~ V/m. (161)

rms

H?  HS %%
A2~ 32~ e~ ~ . (162)
¢ (V/)2 mg V/2
The ratio of the tensor and scalar contributions to the variance of microwave background
anisotropies is therefore proportional to the inflationary parameter e:

A2
T ~124¢, (163)

A
inserting the exact coefficient from Starobinsky (1985). If it could be measured, the gravity-wave
contribution to CMB anisotropies would therefore give a measure of €, one of the dimensionless
inflation parameters. The less ‘de Sitter-like’ the inflationary behaviour, the larger the relative
gravitational-wave contribution.

Since deviations from exact exponential expansion also manifest themselves as density
fluctuations with spectra that deviate from scale invariance, this suggest a potential test of
inflation. Define the tilt of the fluctuation spectrum as follows:

dln 62

tit=1—-—n=— .
! "= Tk

(164)

We then want to express the tilt in terms of parameters of the inflationary potential, € and 7.
These are of order unity when inflation terminates; e and n must therefore be evaluated when
the observed universe left the horizon, recalling that we only observe the last 60-odd e-foldings
of inflation. The way to introduce scale dependence is to write the condition for a mode of given
comoving wavenumber to cross the de Sitter horizon,

a/k=H 1 (165)
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Since H is nearly constant during the inflationary evolution, we can replace d/d Ink by d Ina,
and use the slow-roll condition to obtain

d d ¢ d 2V d
dInk da H d¢ 8t V do
We can now work out the tilt, since the horizon-scale amplitude is
H* 1287 (V3
0= ——— = : 167

and derivatives of V' can be expressed in terms of the dimensionless parameters ¢ and 1. The
tilt of the density perturbation spectrum is thus predicted to be

1—n=06e—2n (168)

In the section below on CMB anisotropies, we discuss whether this relation is observationally
testable.

5 EVIDENCE FOR VACUUM ENERGY AT LATE TIMES

The idea of inflation is audacious, but undeniably speculative. However, once we accept the
idea that quantum fields can generate an equation of state resembling a cosmological constant,
we need not confine this mechanism to GUT-scale energies. There is no known mechanism that
requires the minimum of V(¢) to lie exactly at zero energy, so it is quite plausible that there
remains in the universe today some non-zero vacuum energy.

The most direct way of detecting vacuum energy has been the immense recent progress in
the use of supernovae as standard candles. Type la SNe have been used as standard objects for
around two decades, with an rms scatter in luminosity of 40%, and so a distance error of 20%.
The big breakthrough came when it was realized that the intrinsic timescale of the SNe correlates
with luminosity (brighter SNe last longer). Taking out this effect produces corrected standard
candles that are capable of measuring distances to about 5% accuracy. Large search campaigns
have made it possible to find of order 100 SNe over the range 0.1 < z < 1, and two teams have
used this strategy to make an empirical estimate of the cosmological distance-redshift relation.

The results of the Supernova cosmology project (e.g. Perlmutter et al. 1998) and the High-
z supernova search (e.g. Riess et al. 1998) are highly consistent. Figure 7 shows the Hubble
diagram from the latter team. The SNe magnitudes are K-corrected, so that their variation
with redshift should be a direct measure of luminosity distance as a function of redshift.

We have seen above that this is written as the following integral, which must usually be
evaluated numerically:

Dy(z) = (1 + 2)RoSk(r) = (1 + 2) Q712

C
-
H0|
g z |1 _ Q|1/2 dz’ (169)

k /0 VIt 220+ (L o)

where Q = Q,,, + Q,, and S is sinh if 2 < 1, otherwise sin. It is clear from figure 7 that the
empirical distance-redshift relation is very different from the simplest inflationary prediction,
which is the 2 = 1 Einstein-de Sitter model; by redshift 0.6, the SNe are fainter than expected
in this model by about 0.5 magnitudes. If this model fails, we can try adjusting €2, and 2,
in an attempt to do better. Comparing each such model to the data yields the likelihood
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Fig. 7: The Hubble diagram produced by the High-z Supernova search team (Riess et al. 1998). The lower panel
shows the data divided by a default model (Q,, = 0.2, 2, = 0). The results lie clearly above this model, favouring
a non-zero A. The lowest line is the Einstein-de Sitter model, which is in gross disagreement with observation.
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Fig. 8: Confidence contours on the €,—,, plane, according to Riess et al. (1998). Open models of all but the
lowest densities are apparently ruled out, and nonzero A is strongly preferred. If we restrict ourselves to k = 0,
then ©,, ~ 0.3 is required. The constraints perpendicular to the k& = 0 line are not very tight, but CMB data can

help here in limiting the allowed degree of curvature.

contours shown in figure 8, which can be used in the standard way to set confidence limits on
the cosmological parameters. The results very clearly require a low-density universe. For A = 0,
a very low density is just barely acceptable, with €,, < 0.1. However, the discussion of the
CMB below shows that such a heavily open model is hard to sustain. The preferred model has
Q, ~ 1; if we restrict ourselves to the inflationary & = 0, then the required parameters are very
close to (2, ) = (0.3,0.7).

Cosmic coincidence  This is an astonishing result — an observational detection of the physical
reality of vacuum energy. The error bars continue to shrink, and no convincing systematic error
has been suggested that could yield this result spuriously; this is one of the most important
achievements of 20th-Century physics.

And yet, accepting the reality of vacuum energy raises a difficult question. If the universe
contains a constant vacuum density and normal matter with p oc a3, there is a unique epoch
at which these two contributions cross over, and we seem to be living near to that time. This
coincidence calls for some explanation. One might think of appealing to anthropic ideas, and
these can limit A to some extent: if the universe became vacuum-dominated at z > 1000,
gravitational instability as discussed in the next section would have been impossible — so that
galaxies, stars and observers would not have been possible. On the other hand, Weinberg (1989)
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argues that A could have been much larger than its actual value without making observers
impossible. Efstathiou (1995) attempted to construct a probability distribution for A by taking
this to be proportional to the number density of galaxies that result in a given model. However,
there is no general agreement on how to set a probability measure for this problem.

It would be more satisfactory if we had some physical mechanism that guaranteed the
coincidence, and one possibility has been suggested. We already have one coincidence, in that
we live relatively close in time to the era of matter-radiation equality (z ~ 10, as opposed to
z ~ 10% for the GUT era). What is required is a cosmological ‘constant’ that switches on around
the equality era. Zlatev, Wang & Steinhardt (1998) have suggested how this might happen. The
idea is to use the vacuum properties of a homogeneous scalar field as the physical origin of the
negative-pressure term detected via SNe. This idea of a ‘rolling’ A was first explored by Ratra
& Peebles (1988), and there has recently been a tendency towards use of the fanciful term
‘quintessence’. In any case, it is important to appreciate that the idea uses exactly the same
physical elements that we discussed in the context of inflation: there is some V(¢), causing the
expectation value of ¢ to obey the damped oscillator equation of motion, so the energy density
and pressure are

ps =02 +V
ps = 2/2— V.

This gives us two extreme equations of state: (i) vacuum-dominated, with V' > ¢? /2, so that
p = —p; (ii) kinetic-dominated, with V < g232/2, so that p = p. In the first case, we know
that p does not alter as the universe expands, so the vacuum rapidly tends to dominate over
normal matter. In the second case, the equation of state is the unusual I' = 2, so we get the
rapid behaviour p o< 79, If a quintessence-dominated universe starts off with a large kinetic
term relative to the potential, it may seem that things should always evolve in the direction of
being potential-dominated. However, this ignores the detailed dynamics of the situation: for
a suitable choice of potential, it is possible to have a tracker field, in which the kinetic and
potential terms remain in a constant proportion, so that we can have p o a™%, where a can be
anything we choose.

(170)

Putting this condition in the equation of motion shows that the potential is required to
be exponential in form. More importantly, we can generalize to the case where the universe
contains scalar field and ordinary matter. Suppose the latter dominates, and obeys p,, o< a™ .

It is then possible to have the scalar-field density obeying the same p oc = law, provided

V(8) = 15(6/a— 1) exp[-Ad). ()

The scalar-field density is py = (a/ A?)protal (see e.g. Liddle & Scherrer 1998). The impressive
thing about this solution is that the quintessence density stays a fixed fraction of the total,
whatever the overall equation of state: it automatically scales as a™* at early times, switching
to =3 after matter-radiation equality.

This is not quite what we need, but it shows how the effect of the overall equation of state
can affect the rolling field. Because of the 3H ¢ term in the equation of motion, ¢ ‘knows’ whether
or not the universe is matter dominated. This suggests that a more complicated potential
than the exponential may allow the arrival of matter domination to trigger the desired A-like
behaviour. Zlatev, Wang & Steinhardt suggest two potentials which might achieve this:

V(g) = M*"*PpF or V(g) =M [exp(m,/¢) — 1]. (172)

The evolution in these potentials may be described by w(t), where w = p/p. We need w ~ 1/3 in
the radiation era, changing to w ~ —1 today. The evolution in the inverse exponential potential
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Fig. 9: This figure, taken from Zlatev, Wang & Steinhardt (1998), shows the evolution of the density in the
‘quintessence’ field (top panel), together with the effective equation of state of the quintessence vacuum (bottom
panel), for the case of the inverse exponential potential. This allows vacuum energy to lurk at a few % of the
total throughout the radiation era, but switching on a cosmological constant after the universe becomes matter

dominated.

is shown in figure 9, demonstrating that the required behaviour can be found. However, a slight
fine-tuning is still required, in that the trick only works for M ~ 1 meV, so there has to be an
energy coincidence with the energy scale of matter-radiation equality.

So, the idea of tracker fields does not remove completely the puzzle concerning the level
of present-day vacuum energy. In a sense, relegating the solution to a potential of unexplained
form may seem a retrograde step. However, it is at least a testable step: the prediction of
figure 9 is that w ~ —0.8 today, so that the quintessence density scales as p oc a=%6. This is a
significant difference from the classical w = —1 vacuum energy, and it should be detectable as
the SNe data improve. The existing data already require approximately w < —0.5, so there is
the entrancing prospect that the equation of state for the vacuum will soon become the subject
of experimental study.
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CtA: 0° < 6 < 30° 6" v < 12000 km s~ !

Fig. 10: One of the most dramatic pictures of the large-scale structure in the galaxy distribution is this slice made
from the Harvard-Smithsonian Center for Astrophysics redshift survey to B ~ 15.5. The survey coverage is not
quite complete; as well as the holes due to the galactic plane around right ascensions 6" and 19", the rich clusters
are somewhat over-represented with respect to a true random sampling of the galaxy population. Nevertheless,
this plot emphasizes nicely both the large-scale features such as the ‘great wall’ on the left, the totally empty void
regions, and the radial ‘fingers of God’ caused by virialized motions in the clusters.

6 DYNAMICS OF STRUCTURE FORMATION

The overall properties of the universe are very close to being homogeneous; and yet telescopes
reveal a wealth of detail on scales varying from single galaxies to large-scale structures of
size exceeding 100 Mpc (see figure 10). The existence of these cosmological structures must
be telling us something important about the initial conditions of the big bang, and about the
physical processes that have operated subsequently.

The study of cosmological perturbations can be presented as a complicated exercise in
linearized general relativity; fortunately, much of the essential physics can be extracted from
a Newtonian approach. We start by writing down the fundamental equations governing fluid
motion (non-relativistic for now):

Dv Vp
Euler: — — Y2 _ygo
uler: - — 5 A%
D
energy : D—? =—pV-v (173)

Poisson :  V2® = 47Gp,

where D /Dt = 0/0t 4+ v - V is the usual convective derivative. We now produce the linearized
equations of motion by collecting terms of first order in perturbations about a homogeneous
background: p = pg + dp etc. As an example, consider the energy equation:

[0/0t 4 (vo +6v) - V] (po + 0p) = —(po + 0p) V - (vo + 6V). (174)
For no perturbation, the zero-order equation is (9/9t 4+ vo-V)py = —poV - vp; since pg is

homogeneous and vg = Hx is the Hubble expansion, this just says pg = —3H pg. Expanding the
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full equation and subtracting the zeroth-order equation gives the equation for the perturbation:
(0/0t+vo-V)op+6v-V(po+0,) =—(po+0p)V-0v—0pV - vy. (175)

Now, for sufficiently small perturbations, terms containing a product of perturbations such as
ov - Vo, must be negligible in comparison with the first-order terms. Remembering that pg is
homogeneous leaves the linearized equation

[0/0t +vo-V]dép=—pyV-dv —3pV - vy. (176)

It is straightforward to perform the same steps with the other equations; the results look
simpler if we define the fractional density perturbation

5 177
Po' ( )

0

As above, when dealing with time derivatives of perturbed quantities, the full convective time
derivative D /Dt can always be replaced by d/dt = 9/t + v - V, which is the time derivative
for an observer comoving with the unperturbed expansion of the universe. We then can write

d V ép

E(SV = —7 —V(Sq) — ((SV 'V)VO
d (178)
o V.ov

V26d = 4G pyd.

There is now only one complicated term to be dealt with: (6v - V)vg on the rhs of the perturbed
Euler equation. This is best attacked by writing it in components:

(v - V)vol; = [00]: Vi [uol; = H [5u], (179)

where the last step follows because vo = H xg = V;[vg]; = H ;5. This leaves a set of equations
of motion that have no explicit dependence on the global expansion speed vy; this is only present
implicitly through the use of convective time derivatives d/dt.

These equations of motion are written in Eulerian coordinates: proper length units are
used, and the Hubble expansion is explicitly present through the velocity vy. The alternative
approach is to use the comoving coordinates formed by dividing the Eulerian coordinates by the
scale factor a(t):

180
ov(t) = a(t)u(t) (180)
The next step is to translate spatial derivatives into comoving coordinates:
1
V.= EVT. (181)

To keep the notation simple, subscripts on V will normally be omitted hereafter, and spatial
derivatives will be with respect to comoving coordinates. The linearized equations for conserva-
tion of momentum and matter as experienced by fundamental observers moving with the Hubble
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flow then take the following simple forms in comoving units:

' )
a4oi,_8_Vor

a a  pPo (182)
0=-V-u,

where dots stand for d/dt. The peculiar gravitational acceleration Vé®/a is denoted by g.

Before going on, it is useful to give an alternative derivation of these equations, this time
working in comoving length units right from the start. First note that the comoving peculiar
velocity u is just the time derivative of the comoving coordinate r:

X = ar + ar = Hx + ar, (183)

where the rhs must be equal to the Hubble flow Hx, plus the peculiar velocity v = au. In
this equation, dots stand for exact convective time derivatives — i.e. time derivatives measured
by an observer who follows a particle’s trajectory — rather than partial time derivatives 9/0kt.
This allows us to apply the continuity equation immediately in comoving coordinates, since this
equation is simply a statement that particles are conserved, independent of the coordinates used.
The exact equation is

D

P01 +0) =—=po(1+9)V - u, (184)
and this is easy to linearize because the background density po is independent of time when
comoving length units are used. This gives the first-order equation § = —V - u immediately. The

equation of motion follows from writing the Eulerian equation of motion as X = gy + g, where
g = Vi®/a is the peculiar acceleration defined earlier, and g is the acceleration that acts on
a particle in a homogeneous universe (neglecting pressure forces, for simplicity). Differentiating
X = ar twice gives

% = ail+ 20U+ - x = go + g (185)
a

The unperturbed equation corresponds to zero peculiar velocity and zero peculiar acceleration:
(a/a)x = go; subtracting this gives the perturbed equation of motion u + 2(a/a)u = g, as
before. This derivation is rather more direct than the previous route of working in Eulerian
space. Also, it emphasizes that the equation of motion is exact, even though it happens to be
linear in the perturbed quantities.

After doing all this, we still have three equations in the four variables §, u, 6® and dp.
The system needs an equation of state in order to be closed; this may be specified in terms of
the sound speed
op
8_/)'
—ikr

= (186)
Now think of a plane-wave disturbance § o e , where k is a comoving wavevector; in other
words, suppose that the wavelength of a single Fourier mode stretches with the universe. All
time dependence is carried by the amplitude of the wave, and so the spatial dependence can
be factored out of time derivatives in the above equations (which would not be true with a
constant comoving wavenumber k/a). An equation for the amplitude of § can then be obtained
by eliminating u:

5+ 2%5 — §5(4nGpy — c2k2/a?). (187)
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This equation is the one that governs the gravitational amplification of density perturbations.

There is a critical proper wavelength, known as the Jeans length, at which we switch
from the possibility of exponential growth for long-wavelength modes to standing sound waves
at short wavelengths. This critical length is

Ay = s G (188)

and clearly delineates the scale at which sound waves can cross an object in about the time
needed for gravitational free-fall collapse. When considering perturbations in an expanding
background, things are more complex. Qualitatively, we expect to have no growth when the
‘driving term’ on the rhs is negative. However, owing to the expansion, A; will change with
time, and so a given perturbation may switch between periods of growth and stasis.

Radiation-dominated universes At early enough times, the universe was radiation dominated
(cs = ¢/+/3) and the analysis so far does not apply. It is common to resort to general relativity
perturbation theory at this point. However, the fields are still weak, and so it is possible to
generate the results we need by using special relativity fluid mechanics and Newtonian gravity
with a relativistic source term. For simplicity, assume that accelerations due to pressure gradi-
ents are negligible in comparison with gravitational accelerations (i.e. restrict the analysis to
A > \; from the start). The basic equations are then a simplified Euler equation and the full
energy and gravitational equations:

Dv
Euler : Dr = -Voé

energy : DBt (p+p/02> = % (p/c2> - (p+p/02> V.v
Poisson :  V2® = 4G (p + 3p/c?).

(189)

For total radiation domination, p = pc?/3, and it is easy to linearize these equations as before.
The main differences come from factors of 2 and 4/3 due to the non-negligible contribution of

the pressure. The result is a continuity equation V-u = —(3/4)d, and the evolution equation
for ¢:
" a. 327

so the net result of all the relativistic corrections is a driving term on the rhs that is a factor
8/3 higher than in the matter-dominated case.

Solutions for §(t)  In both matter- and radiation-dominated universes with Q = 1, we have
po o< 1/t2:

2

matter domination (a o t2/3) : 4rGpy = vl
3t (191)
radiation domination (a « t'/?): 327Gpy/3 = e

Every term in the equation for § is thus the product of derivatives of § and powers of ¢, and
a power-law solution is obviously possible. If we try § oc t", then the result is n = 2/3 or —1
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for matter domination; for radiation domination, this becomes n = +1. For the growing mode,
these can be combined rather conveniently using the conformal time 1 = [dt/a:

2

J x . (192)

Recall that n is proportional to the comoving size of the horizon.

The general case It is also interesting to think about the growth of matter perturbations in
universes with nonzero vacuum energy, or even possibly some other exotic background with a
peculiar equation of state. The differential equation for § is as before, but a(t) is altered. The
way to deal with this is to treat a spherical perturbation as a small universe. Consider the
Friedmann equation in the form

(a)* = Q' Hia* + K, (193)

where K = —kc?/ R(%; this emphasizes that K is a constant of integration. A second constant of
integration arises in the expression for time:

t= / a tda+ C. (194)
0

This lets us argue as before in the case of decaying modes: if a solution to the Friedmann
equation is a(t, K, C'), then valid deunsity perturbations are

Olna Olna
6O(<8K >t or <8C’ )t. (195)

Since 9(a?)/0K = 1, this gives the growing and decaying modes as

5o { (a/a) o (@) da (growing mode) (196)

(a/a) (decaying mode).

(Heath 1977; see also section 10 of Peebles 1980).

The equation for the growing mode requires numerical integration in general, with a(a)
given by the Friedmann equation. A very good approximation to the answer is given by Carroll
et al. (1992):

d(z=0,9Q)
0(z=10,2=1)

-1
2 B0 [N — Qu + (1+ 30)(1+ 4] (197)

This fitting formula for the growth suppression in low-density universes is an invaluable practical
tool. For flat models with €2, + €, = 1, it says that the growth suppression is less marked than
for an open universe — approximately Q¥23 as against Q%65 if A = 0. This reflects the more
rapid variation of €2, with redshift; if the cosmological constant is important dynamically, this
only became so very recently, and the universe spent more of its history in a nearly Einstein—de
Sitter state by comparison with an open universe of the same €),,.

Mészdros effect  What about the case of collisionless matter in a radiation background? The
fluid treatment is not appropriate here, since the two species of particles can interpenetrate.

249



A particularly interesting limit is for perturbations well inside the horizon: the radiation can
then be treated as a smooth, unclustered background that affects only the overall expansion
rate. This is analogous to the effect of A, but an analytical solution does exist in this case. The
perturbation equation is as before

54225 = 4nGppmo, (198)
a

but now H? = 87G(pm + pr)/3. If we change variable to y = py,/pr = a/aeq, and use the
Friedmann equation, then the growth equation becomes
2+ 3y 3
&+ - 6=0 (199)
2y(1+y) 2y(1 +y)
(for k = 0, as appropriate for early times). It may be seen by inspection that a growing solution
exists with ¢ = 0:

dxy+2/3. (200)

It is also possible to derive the decaying mode. This is simple in the radiation-dominated case
(y < 1): 6 x —Iny is easily seen to be an approximate solution in this limit.

What this says is that, at early times, the dominant energy of radiation drives the universe
to expand so fast that the matter has no time to respond, and ¢ is frozen at a constant value. At
late times, the radiation becomes negligible, and the growth increases smoothly to the Einstein—
de Sitter § o< a behaviour (Mészéros 1974). The overall behaviour is therefore similar to the
effects of pressure on a coupled fluid: for scales greater than the horizon, perturbations in matter
and radiation can grow together, but this growth ceases once the perturbations enter the horizon.
However, the explanations of these two phenomena are completely different. In the fluid case,
the radiation pressure prevents the perturbations from collapsing further; in the collisionless
case, the photons have free-streamed away, and the matter perturbation fails to collapse only
because radiation domination ensures that the universe expands too quickly for the matter to
have time to self-gravitate. Because matter perturbations enter the horizon (at y = Yentry) with
5 >0, & is not frozen quite at the horizon-entry value, and continues to grow until this initial
‘velocity’ is redshifted away, giving a total boost factor of roughly In yentry. This log factor may
be seen below in the fitting formulae for the CDM power spectruim.

6.1 The peculiar velocity field

The equations for velocity-field perturbations were developed in section 5.2 as part of the machin-
ery of analysing self-gravitating density fluctuations. There, the velocity field was eliminated, in
order to concentrate on the behaviour of density perturbations. However, the peculiar velocity
field is of great importance in cosmology, so it is convenient to give a summary that highlights
the properties of velocity perturbations.

Consider first a galaxy that moves with some peculiar velocity in an otherwise uniform
universe. FEven though there is no peculiar gravitational acceleration acting, its velocity will
decrease with time as the galaxy attempts to catch up with successively more distant (and
therefore more rapidly receding) neighbours. If the proper peculiar velocity is v, then after time
dt the galaxy will have moved a proper distance x = v dt from its original location. Its near
neighbours will now be galaxies with recessional velocities H x = H v dt, relative to which the
peculiar velocity will have fallen to v — Hz. The equation of motion is therefore just

v=—Huv=—2u, (201)
a
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with the solution v x a !

peculiar velocities of nonrelativistic objects suffer redshifting by
exactly the same factor as photon momenta. It is often convenient to express the peculiar
velocity in terms of its comoving equivalent, v = a u, for which the equation of motion becomes
1w = —2H u. Thus, in the absence of peculiar accelerations and pressure forces, comoving peculiar

velocities redshift away through the Hubble drag term 2Hu.

If we now include the effects of peculiar acceleration, this simply adds the acceleration g
on the right-hand side. This gives the equation of motion
a2, _8 (202)
a a
where g = Vd® /a is the peculiar gravitational acceleration. Pressure terms have been neglected,
so A > A;. Remember that throughout we are using comoving length units, so that Vroper =
V /a. This equation is the exact equation of motion for a single galaxy, so that the time derivative
is d/dt = 8/0t+u - V. In linear theory, the second part of the time derivative can be neglected,
and the equation then turns into one that describes the evolution of the linear peculiar velocity
field at a fixed point in comoving coordinates.

The solutions for the peculiar velocity field can be decomposed into modes either parallel to
g or independent of g (these are the homogeneous and inhomogeneous solutions to the equation
of motion). The interpretation of these solutions is aided by knowing that the velocity field
satisfies the continuity equation: p = —V - (pv) in proper units, which obviously takes the
same form p = —V - (pu) if lengths and densities are in comoving units. If we express the
density as p = po(1 +9) (where in comoving units pg is just a number independent of time), the
continuity equation takes the form

6=—-V-[(1+40)u, (203)

which becomes just

V-u=-94 (204)

in linear theory when both § and u are small. This says that it is possible to have vorticity
modes with V - u = 0, for which § vanishes. We have already seen that ¢ either grows or decays
as a power of time, so these modes require zero density perturbation, in which case the associ-
ated peculiar gravity also vanishes. These vorticity modes are thus the required homogeneous
solutions, and they decay as v = au o< a” ', as with the kinematic analysis for a single particle.
For any gravitational-instability theory, in which structure forms via the collapse of small per-
turbations laid down at very early times, it should therefore be a very good approximation to
say that the linear velocity field must be curl-free.

For the growing modes, we want to try looking for a solution u = F(t)g. Then using
continuity plus Gauss’s theorem, V - g = 4nGapd, gives us

2f(92)
ov=—"—-
MEYTORS
where the function f(Q) = (a/d)dd/da. A very good approximation to this (Peebles 1980) is
g ~ Q%6 (a result that is almost independent of A; Lahav et al. 1991). Alternatively, we can
work in Fourier terms. This is easy, as g and k are parallel, so that V-u = —ik - u = —iku.
Thus, directly from the continuity equation,

(205)

iH(Q)

bvic = —— 25k (206)
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The 1/k factor tells us that cosmological velocities come predominantly from larger-scale pertur-
bations than those that dominate the density field. Deviations from the Hubble flow are therefore
in principle a better probe of the inhomogeneity of the universe than large-scale clustering,.

6.2 The Boltzmann equation

We now turn to the question of how to treat the matter source, without assuming that it is a
fluid. The general approach that should be taken is to consider the phase-space distribution
function f(x,p)—i.e. the product of the particle number density and the probability distribution
for momentum. The equation that describes the evolution of f is the Boltzmann equation. The
general relativistic form of the equation is

0 0
a3 _

This equation is exact for particles affected by gravitational forces and by collisions. The collision
term on the rhs, C, has to contain all the appropriate scattering physics (Thomson scattering,
in the case of a coupled system of electrons and photons); the gravitational forces are contained
implicitly in the connection coefficients. What has to be done is to perturb this equation,
using the perturbed metric coeflicients, together with their equation of motion derived from the
Einstein equations. Although this is easily said, the detailed algebra of the calculation consumes
many pages, and it will not be reproduced here (see Peebles 1980; Efstathiou 1990; Bond 1997).
The result is a system of coupled differential equations for the distribution functions of the non-
fluid components (photons, neutrinos, plus possibly collisionless dark matter), together with
the density and pressure of the collisional baryon fluid. Remembering to include gravitational
waves, the whole system has to be integrated numerically, starting with a single Fourier mode of
wavelength much greater than the horizon scale, and evolving to the present. Finally, the present-
day perturbations to observational quantities such as density and radiation specific intensity are
constructed by adding together modes of all wavelengths (which evolve independently in the
linear approximation).

This, then, is a brief summary of the professional approach to cosmological perturbations.
A modern cosmological Boltzmann code, such as that described by Seljak & Zaldarriaga (1996),
is a large and sophisticated piece of machinery, which is the final outcome of decades of intellec-
tual effort. Although heroic analytical efforts have been made in an attempt to find alternative
methods of calculation (e.g. Hu & Sugiyama 1995), results of high precision demand the full ap-
proach. For a non-specialist, the best that can be done is to attempt to use simple approximate
physical arguments in order to understand the main features of the results; on large scales, this
approach is usually quantitatively successful.

6.3 Transfer functions

Real power spectra result from modifications of any primordial power by a variety of processes:
growth under self-gravitation; the effects of pressure; dissipative processes. In general, modes
of short wavelength have their amplitudes reduced relative to those of long wavelength in this
way. The overall effect is encapsulated in the transfer function, which gives the ratio of the
late-time amplitude of a mode to its initial value:

Ty, = 5.0 DG (208)

where D(z) is the linear growth factor between redshift z and the present. The normalization
redshift is arbitrary, so long as it refers to a time before any scale of interest has entered the
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horizon. Once we possess the transfer function, it is a most valuable tool. The evolution of linear
perturbations back to last scattering obeys the simple growth laws summarized above, and it is
easy to see how structure in the universe will have changed during the matter-dominated epoch.

There are in essence two ways in which the power spectrum that exists at early times
may differ from that which emerges at the present, both of which correspond to a reduction of
small-scale fluctuations:

(1) Jeans mass effects. Prior to matter—radiation equality, we have already seen that perturba-
tions inside the horizon are prevented from growing by radiation pressure. Once zq is reached,
one of two things can happen. If collisionless dark matter dominates, perturbations on all scales
can grow. If baryonic gas dominates, the Jeans length remains approximately constant, as fol-
lows: The sound speed, ¢2 = dp/dp, may be found by thinking about the response of matter
and radiation to small adiabatic compressions:

5p = (4/9prOV/IV),  p=lpm + (4/3)p:)(6V/V), (209)
implying
-1 P -1
e =c? (3—{—%2—?) = [3—1—2(%)} . (210)

Here, zq is the redshift of equality between matter and photons; 1 + 2,0 = 1.68(1 + 2eq)
because of the neutrino contribution. At z < z.,q, we therefore have cg « /1 + z. Since
p=(1+2)33QsH2/(87G), the comoving Jeans length is constant at

’

c 3272 Y2

M= o] =50(Qsh*)~" Mpec. 211
' Hy <27QB(1+zmd)) (k%) P (21

Thus, in either case, one of the critical length scales for the power spectrum will be the horizon

distance at zeq (= 2390002 for T = 2.73 K, counting neutrinos as radiation). In the matter-

dominated approximation, we get

2

dyy Q)72 = deq = 39(Q03) ' Mpe. (212)

0

The exact distance—redshift relation is

Rodr = — dz
O T H (14 )1+ Qe + (Lt 22,

(213)

from which it follows that the correct answer for the horizon size including radiation is a factor
V2 — 1 smaller: deq = 16.0 (k%)= Mpe.

It is easy from the above to see the approximate scaling that must be obeyed by transfer
functions. Consider the adiabatic case first. Perturbations with kdeq < 1 always undergo growth
as § o« d%. Perturbations with larger k enter the horizon when dy; ~ 1/k; they are then frozen
until z¢q, at which point they can grow again. The missing growth factor is just the square of
the change in dy during this period, which is oc k2. The approximate limits of an adiabatic
transfer function would therefore be

1 (kdeq < 1)
Ty, = { [kdeq) 2 (kdeq > 1). (214)
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For isocurvature perturbations, the situation is the opposite. Consider a perturbation of short
wavelength: once it comes well inside the horizon, the photons disperse, and so all the perturba-
tion to the entropy density (which must be conserved) is carried by the matter perturbation. The
perturbation thus enters the horizon with the original amplitude J;. Thereafter, it grows in the
same way as an isothermal perturbation. This means there are two regimes, for perturbations
that enter the horizon before and after matter—radiation equality. The former match onto the
Mészéaros solution, and keep their amplitudes constant until they start to grow after acq. The
present-day amplitude for these is §/0; = (3/2)[1/aeq]. Perturbations that enter after matter—
radiation equality start to grow immediately, so that their present amplitude is §/0; ~ 1/@entry-
Entry occurs when kdy ~ 1, and the horizon evolves as dy = (2¢/Hy)a'/? (assuming Q = 1).
Putting these arguments together, the isocurvature transfer function relative to 9; is

(2/15) [kc/Hg)? (kdeq < 1)
Ty =~ { (3/2) at ' (kdeq > 1) (215)

(a more sophisticated argument is required to obtain the exact factor 2/15 in the long-wavelength
limit; see Efstathiou 1990). Since this goes to a constant at high k, it is also common to quote
the transfer function relative to this value. This means that 7}, < 1 at kdeq S 1, and so the

isocurvature transfer function is the mirror image of the adiabatic case: one falls where the other
rises (see figure 11).

(2) Damping. In addition to having their growth retarded, very small-scale perturbations will be
erased entirely, which can happen in one of two ways. For collisionless dark matter, perturbations
are erased simply by free streaming: random particle velocities cause blobs to disperse. At
early times (KT > mc?), the particles will travel at ¢, and so any perturbation that has entered
the horizon will be damped. This process switches off when the particles become non-relativistic;
for massive particles, this happens long before zeq (resulting in cold dark matter;CDM CDM).
For massive neutrinos, on the other hand, it happens at zeq: only perturbations on very large
scales survive in the case of hot dark matterHDM (HDM). In a purely baryonic universe, the
corresponding process is called Silk damping: the mean free path of photons due to scattering
by the plasma is non-zero, and so radiation can diffuse out of a perturbation, convecting the
plasma with it. The typical distance of a random walk in terms of the diffusion coefficient D is
x ~ +/Dt, which gives a damping length of

As ~ /Adn, (216)

the geometric mean of the horizon size and the mean free path. Since A = 1/(noy) = 44.3(1 +
2)73(Qsh?) ™! proper Gpe, we obtain a comoving damping length of

As = 16.3 (1 + 2)/4(Q2Qn%) Y4 Gpe. (217)

This becomes close to the Jeans length by the time of last scattering, 1 + z ~ 1000.

It is invaluable in practice to have some accurate analytic formulae that fit the numerical
results for transfer functions. We give below results for some common models of particular
interest (illustrated in figure 11, along with other cases where a fitting formula is impractical).
For the models with collisionless dark matter, Qp < Qis assumed, so that all lengths scale with
the horizon size at matter—radiation equality, leading to the definition

k

_ 218
Qh2Mpc? (218)

q =
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Fig. 11: A plot of transfer functions for various models. For adiabatic models, Tx — 1 at small k, whereas the
opposite is true for isocurvature models. A number of possible matter contents are illustrated: pure baryons; pure
CDM; pure HDM; MDM (30% HDM, 70% CDM). For dark-matter models, the characteristic wavenumber scales
proportional to Qh?. The scaling for baryonic models does not obey this exactly; the plotted cases correspond to
Q=1, h=0.5.

We consider the following cases: (1) Adiabatic CDM; (2) Adiabatic massive neutrinos (1 massive,
2 massless); (3) Isocurvature CDM; these expressions come from Bardeen et al. (1986; BBKS).
Since the characteristic length-scale in the transfer function depends on the horizon size at
matter-radiation equality, the temperature of the CMB enters. In the above formulae, it is
assumed to be exactly 2.7 K; for other values, the characteristic wavenumbers scale oc 7'~2. For
these purposes massless neutrinos count as radiation, and three species of these contribute a
total density that is 0.68 that of the photons.

In(1+2.34 —1/4
1) T, = “(%4(13@ [1 +3.89¢ + (16.19)? + (5.46¢)® + (6.71q)4] /
(2) Ty = exp(—3.9¢ — 2.1¢%) (219)
—1/1.24

(3) Ty = (5.6q)2 (1 + [15_0q + (0-9q)3/2 + (5_6(1)2]1.24)

The case of mixed dark matter (MDM:MDM a mixture of massive neutrinos and CDM) is
more complex. See Pogosyan & Starobinksy (1995) for a fit in this case.

The above expressions assume pure dark matter, which is unrealistic. At least for CDM
models, a non-zero baryonic density lowers the apparent dark-matter density parameter. We
can define an apparent shape parameter I' for the transfer function:

q = (k/h Mpc™')/T, (220)

and I' = QA in a model with zero baryon content. This parameter was originally defined by
Efstathiou, Bond & White (1992), in terms of a CDM model with Qg = 0.03. Peacock & Dodds
(1994) showed that the effect of increasing 2y was to preserve the CDM-style spectrum shape,
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but to shift to lower values of I'. This shift was generalized to models with  # 1 by Sugiyama
(1995):

T = Qh exp[—Qs(1 + V2h/Q)]. (221)

This formula fails if the baryon content is too large, and the transfer function develops oscillations
(see Eisenstein & Hu 1998 for a more accurate approximation in this case).

6.4 The spherical model

An overdense sphere is a very useful nonlinear model, as it behaves in exactly the same way as
a closed sub-universe. The density perturbation need not be a uniform sphere: any spherically
symmetric perturbation will clearly evolve at a given radius in the same way as a uniform sphere
containing the same amount of mass. In what follows, therefore, density refers to the mean
density inside a given sphere. The equations of motion are the same as for the scale factor, and
we can therefore write down the cycloid solution immediately. For a matter-dominated universe,
the relation between the proper radius of the sphere and time is

r=A(1l —cosf)

222
t = B(0 —sin#), (222)

and A% = GM B?, just from ¥ = —GM /r?. Expanding these relations up to order 6° gives r(t)
for small ¢:

A (66N 1 /66\%3
o — (—) 1—— (—) , (223)
2 \B 20\ B
and we can identify the density perturbation within the sphere:
3 (6t\?
o~ — | —= . 224
5 (5) (22

This all agrees with what we knew already: at early times the sphere expands with the a o t2/3
Hubble flow and density perturbations grow proportional to a.

We can now see how linear theory breaks down as the perturbation evolves. There are
three interesting epochs in the final stages of its development, which we can read directly from
the above solutions. Here, to keep things simple, we compare only with linear theory for an
Q) = 1 background.

(1) Turnround. The sphere breaks away from the general expansion and reaches a maximum
radius at = 7, t = wB. At this point, the true density enhancement with respect to the

background is just [A(6t/B)%/3/2]3 /r® = 97%/16 ~ 5.55.

(2) Collapse. If only gravity operates, then the sphere will collapse to a singularity at
6 = 27. This occurs when &y, = (3/20)(127)%/3 ~ 1.69.

(3)  Virialization. Consider the time at which the sphere has collapsed by a factor 2 from
maximum expansion. At this point, it has kinetic energy K related to potential energy
V by V = —2K. This is the condition for equilibrium, according to the virial theorem.
For this reason, many workers take this epoch as indicating the sort of density contrast to
be expected as the endpoint of gravitational collapse. This occurs at § = 37/2, and the
corresponding density enhancement is (97 + 6)2 /8 ~ 147, with dy;, ~ 1.58. Some authors
prefer to assume that this virialized size is eventually achieved only at collapse, in which
case the contrast becomes (67)%/2 ~ 178.
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These calculations are the basis for a common ‘rule of thumb’, whereby one assumes that linear
theory applies until &y, is equal to some . a little greater than unity, at which point virialization
is deemed to have occurred. Although the above only applies for 2 = 1, analogous results can be
worked out from the full oy, (2,Q) and ¢(z, Q) relations; dj, ~ 1 is a good criterion for collapse
for any value of € likely to be of practical relevance. The full density contrast at virialization
may be approximated by

1+ by ~ 178 Q707 (225)

(although flat A-dominated models show less dependence on ; Eke et al. 1996).

7 COSMOLOGICAL DENSITY FIELDS

The next step is to see how the above theoretical ideas can be confronted with statistical measures
of the observed matter distribution, and to summarize what is known about the dimensionless
density perturbation field

RO (226)

This quantity need not be assumed to be small. Indeed, some of the most interesting issues arise
in understanding the evolution of the density field to large values of §.

A critical feature of the ¢ field is that it inhabits a universe that is isotropic and homo-
geneous in its large-scale properties. This suggests that the statistical properties of § should
also be homogeneous, even though it is a field that describes inhomogeneities. This statement
sounds contradictory, and yet it makes perfect sense if there exists an ensemble of universes.
The concept of an ensemble is used every time we apply probability theory to an event such as
tossing a coin: we imagine an infinite sequence of repeated trials, half of which result in heads,
half in tails. To say that the probability of heads is 1/2 means that the coin lands heads up in
half the members of this ensemble of universes. The analogy of coin tossing in cosmology is that
the density at a given point in space will have different values in each member of the ensemble,
with some overall variance (6%) between members of the ensemble. Statistical homogeneity of
the d field then means that this variance must be independent of position. The actual field found
in a given member of the ensemble is a realization of the statistical process.

There are two problems with this line of argument: (i) we have no evidence that the
ensemble exists; (ii) in any case, we only get to observe one realization, so how is the variance
(6?) to be measured? The first objection applies to coin tossing, and may be evaded if we
understand the physics that generates the statistical process — we only need to imagine tossing
the coin many times, and we do not actually need to perform the exercise. The best that can be
done in answering the second objection is to look at widely separated parts of space, since the
0 fields there should be causally unconnected; this is therefore as good as taking measurements
from two different member of the ensemble. In other words, if we measure the variance (62) by
averaging over a sufficiently large volume, the results would be expected to approach the true
ensemble variance, and the averaging operator (---) is often used without being specific about
which kind of average is intended. Fields that satisfy this property, whereby

volume average <«  ensemble average (227)

are termed ergodic. Giving a formal proof of ergodicity for a random process is not always
easy (Adler 1981); in cosmology it is perhaps best regarded as a common-sense axiom.
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7.1 Fourier analysis of density fluctuations

It is often convenient to consider building up a general field by the superposition of many modes.
For a flat comoving geometry, the natural tool for achieving this is via Fourier analysis. How
do we make a Fourier expansion of the density field in an infinite universe? If the field were
periodic within some box of side L, then we would just have a sum over wave modes:

F(x) =Y Fee =, (228)

The requirement of periodicity restricts the allowed wavenumbers to harmonic boundary
conditions
2
kw:nf, n=12---, (229)
with similar expressions for k, and k.. Now, if we let the box become arbitrarily large, then the
sum will go over to an integral that incorporates the density of states in k-space, exactly as in
statistical mechanics. The Fourier relations in n dimensions are thus

F(z) = <£)TL/Fk(k) exp(—ik - x) d"k

s

Fu(k) = (%)n / F(a) exp(ik - x) d"z. 20

Correlation functions and power spectra  As an immediate example of the Fourier machinery
in action, consider the important quantity

§(r) = (6(x)d(x + 1)), (231)

which is the autocorrelation function of the density field — usually referred to simply as the
correlation function. The angle brackets indicate an averaging over the normalization volume
V. Now express ¢ as a sum and note that J is real, so that we can replace one of the two d’s by
its complex conjugate, obtaining

¢ = <Z > 5k5§,ei<k’—k>'xe—ik'r> : (232)

k k

Alternatively, this sum can be obtained without replacing (60) by (§6*), from the relation be-
tween modes with opposite wavevectors that holds for any real field: dx(—k) = ;. (k). Now, by
the periodic boundary conditions, all the cross terms with k’ # k average to zero. Expressing
the remaining sum as an integral, we have

£(r) = % / |61 e " d’ k. (233)

In short, the correlation function is the Fourier transform of the power spectrum. This re-
lation has been obtained by volume averaging, so it applies to the specific mode amplitudes
and correlation function measured in any given realization of the density field. Taking ensemble
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averages of each side, the relation clearly also holds for the ensemble average power and cor-
relations — which are really the quantities that cosmological studies aim to measure. We shall
hereafter often use the alternative notation

P(k) = (|0x]*) (234)

for the ensemble-average power. The distinction between the ensemble average and the actual
power measured in a realization is clarified below in the section on Gaussian fields.

In an isotropic universe, the density perturbation spectrum cannot contain a preferred
direction, and so we must have an isotropic power spectrum: (|6|?(k)) = [dx|?(k). The
angular part of the k-space integral can therefore be performed immediately: introduce spherical
polars with the polar axis along k, and use the reality of ¢ so that e™** — cos(krcos@). In
three dimensions, this yields

£(r) = % / P(k) Siz fr 47k d. (235)

The 2D analogue of this formula is
A
) = =2 / P(k) Jo(kr) 27k dk. (236)
(2m)?

We shall usually express the power spectrum in dimensionless form, as the variance per

Ink (A2(k) = d(s2)/dIn k o k3P[k)):

A%(k) = (2‘;)3 4rk3 P(k) = %k?’ /OOO &(r) sizfr r2 dr. (237)

This gives a more easily visualizable meaning to the power spectrum than does the quantity
V P(k), which has dimensions of volume: A?(k) = 1 means that there are order-unity density
fluctuations from modes in the logarithmic bin around wavenumber k. A?(k) is therefore the
natural choice for a Fourier-space counterpart to the dimensionless quantity &(r).

Power-law spectra  The above shows that the power spectrum is a central quantity in cosmol-
ogy, but how can we predict its functional form? For decades, this was thought to be impossible,
and so a minimal set of assumptions was investigated. In the absence of a physical theory, we
should not assume that the spectrum contains any preferred length scale, otherwise we should
then be compelled to explain this feature. Consequently, the spectrum must be a featureless
power law:

(|0 [2) o k" (238)

The index n governs the balance between large- and small-scale power. The meaning of different
values of n can be seen by imagining the results of filtering the density field by passing over it
a box of some characteristic comoving size x and averaging the density over the box. This will
filter out waves with k& > 1/z, leaving a variance (§?) o fol/w k™4rk?dk oc 2~ (™3, Hence, in

terms of a mass M o z°, we have

S 0 M H3)/6, (239)
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Similarly, a power-law spectrum implies a power-law correlation function. If &(r) =
(r/ro) 7, with v = n + 3, the corresponding 3D power spectrum is

2 2 —

A2(k) = 2 (kro) D2 — ) sin EZIT = g(ary (240)
T

(= 0.903(kro)® if vy = 1.8). This expression is only valid for n < 0 (y < 3); for larger values of

n, £ must become negative at large r (because P(0) must vanish, implying [;°&(r) r?dr = 0).

A cutoff in the spectrum at large k is needed to obtain physically sensible results.

The Zeldovich spectrum — Most important of all is the scale-invariant spectrum, which cor-
responds to the value n = 1, i.e. A% & k*. To see how the name arises, consider a perturbation
0P in the gravitational potential:

V2® = 4nGpyd = by = —4wGpody /K> (241)

The two powers of k pulled down by V? mean that, if A% « k* for the power spectrum of
density fluctuations, then A% is a constant. Since potential perturbations govern the flatness of
spacetime, this says that the scale-invariant spectrum corresponds to a metric that is a fractal:
spacetime has the same degree of ‘wrinkliness’ on each resolution scale. The total curvature
fluctuations diverge, but only logarithmically at either extreme of wavelength.

Another way of looking at this spectrum is in terms of perturbation growth balancing the
scale dependence of §: § oc = ("+3)/2, We know that ¢ viewed on a given comoving scale will
increase with the size of the horizon: § o< r2. At an arbitrary time, though, the only natural

length provided by the universe (in the absence of non-gravitational effects) is the horizon itself:
8(ru) oc rirg " = p U, (242)

Thus, if n = 1, the growth of both ry and § with time cancels out so that the universe always
looks the same when viewed on the scale of the horizon; such a universe is self-similar in the
sense of always appearing the same under the magnification of cosmological expansion. This
spectrum is often known as the Zeldovich spectrum (sometimes hyphenated with Harrison
and Peebles, who invented it independently).

Filtering and moments A common concept in the manipulation of cosmological density fields
is that of filtering, where the density field is convolved with some window function: § —
0 * f. Many observable results can be expressed in this form. Some common 3D filter functions
areGaussian filtertop-hat filter

1%
GauSSian : f = mefrz/QRé = fk — e,kZRé/Q
{ ) 3 (243)
top —hat : f = Py (r<Ry) = fr= E(siny —ycosy) (y=kRy).

Note the factor of V' in the definition of f; this is needed to cancel the 1/V in the definition
of convolution. For some power spectra, the difference in these filter functions at large k is
unimportant, and we can relate them by equating the expansions near k = 0, where 1—|f|? o< k2.
This equality requires

Ry =5 Re. (244)

We are often interested not in the convolved field itself, but in its variance, for use as
a statistic (e.g. to measure the rms fluctuations in the number of objects in a cell). By the
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convolution theorem, this means we are interested in a moment of the power spectrum times
the squared filter transform. We shall generally use the following notation:

2
On

% / P(k) | fx]* 2" &°K; (245)

the filtered variance is thus o3 (often denoted by just 02). Clustering results are often published
in the form of cell variances of § as a function of scale, o2, using either cubical cells of side
¢ (Efstathiou et al. 1990) or Gaussian spheres of radius Rq (Saunders et al. 1991). For a
power-law spectrum (A? oc k"13), we have for the Gaussian sphere

0% = A? (k =[5 (=) ) Rgl) . (246)

For n < 0, this formula also gives a good approximation to the case of cubical cells, with

R — ¢/+/12. The result is rather insensitive to assumptions about the power spectrum, and
just says that the variance in a cell is mainly probing waves with A ~ 2/¢.

Moments may also be expressed in terms of the correlation function over the sample
volume:

ﬁ:/]am—fnﬂmﬂfw%fw. (247)

To prove this, it is easiest to start from the definition of o2 as an integral over the power spectrum

times | fx|?, write out the Fourier representations of P and f and use [ exp|ik - (x — x’ +r)] d*k =
(27r)35](33) (x —x' +r). Finally, it is also sometimes convenient to express things in terms of

derivatives of the correlation function at zero lag. Odd derivatives vanish, but even derivatives

give

(248)

Normalization  For scale-invariant spectra, a natural amplitude measure is the variance in
gravitational potential per unit In k, which is a constant, independent of scale:

A2 9 /ck\ 74
a=2e_2 (E) A2(k). (249)

Two further commonly encountered measures relate to the clustering field around 10 Mpc.
One is oy, the rms density variation when smoothed with a top-hat filter (sphere of uniform
weight) of radius 84! Mpc; this is observed to be very close to unity. The other is an integral
over the correlation function:.J;3

Jo= [ et vy~ [ 2w T (250)

where W (k) = (sin kr—kr cos kr) /k3. The canonical value of this is J3(10 h~! Mpc) = 277h~3 Mpc?
(from the CfA survey; see Davis & Peebles 1983). It is sometimes more usual to use instead the
dimensionless volume-averaged correlation function ¢:

3
47r3

£(r) =

/0 "¢(x) dra? do — T—?;Jg(r). (251)
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Fig. 12: The N-point correlation functions of a density field consisting of a set of particles are calculated by looking
at a set of cells of volume dV (so small that they effectively only ever contain 0 or 1 particles). The Poisson
probability that two cells at separation r12 are both occupied is p2dVidVa; with clustering, this is modified by a
factor 1+ &(r12), where £ is the two-point correlation function. Similarly, the probability of finding a triplet of
occupied cells is a factor 1+ £(712, 713, r23) times the random probability; this defines the three-point correlation

function.

The canonical value then becomes £(10 h~! Mpc) = 0.83; this measure is clearly very close in
content to og = 1.

A point to beware of is that the normalization of a theory is often quoted in terms of a
value of these parameters extrapolated according to linear time evolution. Since the observed
values are clearly nonlinear, there is no reason why theory and observation should match exactly.
Even more confusingly, it is quite common in the literature to find the linear value of og called
1/b, where b is a bias parameter. The implication is that b # 1 means that light does not follow
mass; this may well be true in reality, but with this definition, nonlinearities will produce b # 1
even in models where mass traces light exactly. Use of this convention is not recommended.

7.2 N-point correlations

An alternative definition of the autocorrelation function is as the two-point correlation func-
tion, which gives the excess probability for finding a neighbour a distance r from a given galaxy
(see figure 12). By regarding this as the probability of finding a pair with one object in each of
the volume elements dV; and dV5,

dP = p3 [1+ &(r)] dVy dVa, (252)

this is easily seen to be equivalent to the autocorrelation definition of {: £ = (6(z1)d(x2)). A
related quantity is the cross-correlation function. Here, one considers two different classes
of object (a and b, say), and the cross-correlation function £, is defined as the (symmetric)
probability of finding a pair in which dV; is occupied by an object from the first catalogue and
dV5 by one from the second:

dP = papy [1 + Eap(r)] dV1 dV5. (253)

In terms of density fields, clearly £, = (04(x1)dp(22)). Cross-correlations give information about
the density profile around objects; for example, ;. between galaxies and clusters measures the
average galaxy density profile around clusters (at least out to radii where clusters overlap).

7.3 Gaussian density fields

Apart from statistical isotropy of the fluctuation field, there is another reasonable assumption
we might make: that the phases of the different Fourier modes d; are uncorrelated and random.
This corresponds to treating the initial disturbances as some form of random noise, analogous
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to Johnson noise in electrical circuits; indeed, many mathematical tools that have become in-
valuable in cosmology were first established with applications to communication circuits in mind
(e.g. Rice 1954). The random-phase approximation has a powerful consequence, which derives
from the central limit theorem: loosely, the sum of a large number of independent random
variables will tend to be normally distributed. This will be true not just for the field 9; all
quantities that are derived from linear sums over waves (such as field derivatives) will be have
a joint Normal distribution. The result is a Gaussian random field, whose properties are
characterised entirely by its power spectrum.

Clustering of peaks  Another important calculation that can be performed with density peaks
is to estimate the clustering of cosmological objects. Peaks have some inbuilt clustering as a
result of the statistics of the linear density field: they are ‘born clustered’. For galaxies, this
clustering amplitude is greatly altered by the subsequent dynamical evolution of the density
field, but this is not true for clusters of galaxies, which are the largest nonlinear systems at
the current epoch. We recognize clusters simply because they are the most spectacularly large
galaxy systems to have undergone gravitational collapse; this has an important consequence,
as first realized by Kaiser (1984). The requirement that these systems have become nonlinear
by the present means that they must have been associated with particularly high peaks in the
initial conditions. If we thus confine ourselves to peaks above some density threshold in v,
the statistical correlations can be very strong — especially for the richer clusters corresponding
to high peaks.

The main effect is easy to work out, using the peak—background split. Here, one
conceptually decomposes the density field into short-wavelength terms, which generate the peaks,
plus terms of much longer wavelength, which modulate the peak number density. Consider the
large-wavelength field as if it were some extra perturbation d.; if we select all peaks above a
threshold v in the final field, this corresponds to taking all peaks above 6 = vog — d4 in the
initial field. This varying effective threshold will now produce more peaks in the regions of high
0+, leading to amplification of the clustering pattern. For high peaks, P(> v) x v2ev"/ 2: the
exponential is the most important term, leading to a perturbation dP/P ~ v(d4/0p). Hence,
we obtain the high-peak amplification factor for the correlation function:

V2

gpk(r) = ) gmass(r)' (254)

90

It is important to realize that the process as described need have nothing to do with biased
galaxy formation; it works perfectly well if galaxy light traces mass exactly in the universe.
Clusters occur at special places in the mass distribution, so there is no reason to expect their
correlations to be the same as those of the mass field.

In more detail, the exact clustering of peaks is just an extension of the calculation of the
number density of peaks. We want to find the density of peaks of height v at a distance r
from a peak of height v1. This involves a 6 x 6 covariance matrix for the fields and first and
second derivatives even in 1D (20 x 20 in 3D). Moreover, most of the elements in this matrix
are non-zero, so that the analytical calculation of ¢ is sadly not feasible (see Lumsden, Heavens
& Peacock 1989). However, a closely related calculation is easier to solve: the correlations of
thresholded regions. Assume that objects form with unit probability in all regions whose
density exceeds some threshold value, so that we need to deal with the correlation function of a
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modified density field that is constant above the threshold and zero elsewhere. This is

_ 1 00 [0 dx dy
o) = pop | ] s g

o ( 2492 — 256@/1/1(7“))
P 2[1 — 2(r)]

(255)

(Kaiser 1984). For high thresholds, this should be very close to the correlation function of peaks.
The complete solution of this equation is given by Jensen & Szalay (1986) (see also Kashlinsky
1991 for the extension to the cross-correlation of fields above different thresholds). A good
approximation, which extends Kaiser’s original result, is

1/2
1+ £>I/ ~ exp (1 + pfmass . (256)
0

There remains the question of the inclusion of dynamics into the above treatment. As the
density field evolves, density peaks will move from their initial locations, and the clustering will
alter. The general problem is rather nasty (see Bardeen et al. 1986), but things are relatively
straightforward in the linear regime where the mass fluctuations are small. If the statistical
enhancement of correlations produces a fractional perturbation in the numbers of thresholded
objects of dgtatistical = f Omass, then the effect of allowing weak dynamical evolution is just

5obs = 5statistical + 5mass- (257)

To see this, think of density perturbations arising as in the Zeldovich approximation, via objects
moving closer together. Density peaks will be convected with the flow and compressed in number
density in the same way as for any other particle. Thus, the effective enhancement ends up as
f — f+1. We can deduce the value of f for Kaiser’s model by looking at the expression for the
correlation function in the limit of small correlations: f ~ v/oy. So, for large-scale correlations
of high peaks, we expect

Epk (1 + %)2 Emass- (258)

This idea of obtaining enhanced correlations by means of a threshold in density has been highly
influential in cosmology. As well as the original application to clusters, attempts have also been
made to use this mechanism to explain why galaxies might have clustering properties that differ
from those of the mass.

Application to galaxy clusters  This is the class of object that forms the main application of
the peak clustering method. In order to model these systems as density peaks, it is necessary
to specify a filter radius and a threshold; once we choose a filter radius to select cluster-sized
fluctuations, the threshold is then fixed mainly by the number density (although altering the
power-spectrum model also has a slight influence through ). For Gaussian filtering, the con-
ventional choice of Ry for clusters is 5o~1 Mpc. For h = 1/2 cold dark matter with v = 0.74
on this scale, the required threshold is v = 2.81. These figures seem quite reasonable: Abell
clusters are the rare high peaks of the mass distribution, and collapsed only recently. The reason
for setting any threshold at all is the requirement of gravitational collapse by the present, so it
is inevitable that v ~ 1.

The observations of the spatial correlations of clusters are somewhat controversial. The
correlation function found by most workers is consistent with a scaled version of the galaxy
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function, & = (r/rg) ™18, but values of 79 vary. The original value found by Bahcall & Soneira
(1983) was 25! Mpc, but later work favoured values in the range 1520 h ! Mpc (Sutherland
1988; Dalton et al. 1992; Peacock & West 1992). The enhancement with respect to & for galaxies
is thus a factor ~ 10. Since o is close to unity for this smoothing, the simple asymptotic scaling
would imply a threshold v ~ 3, which is reasonable for moderately rare peaks.

7.4 Nonlinear clustering evolution

Observations of galaxy clustering extend into the highly nonlinear regime, ¢ < 104, so it is es-
sential to understand how this nonlinear clustering relates to the linear-theory initial conditions.
A useful trick for dealing with this problem is to think of the density field under full nonlinear
evolution as consisting of a set of collapsed, virialized clusters. What is the density profile of
one of these objects? At least at separations smaller than the clump separation, the density
profile of the clusters is directly related to the correlation function, since this just measures the
number density of neighbours of a given galaxy. For a very steep cluster profile, p o< ¢, most
galaxies will lie near the centres of clusters, and the correlation function will be a power law,
&(r) oc 777, with v = e. In general, because the correlation function is the convolution of the
density field with itself, the two slopes differ. In the limit that clusters do not overlap, the
relation is v = 2e — 3 (for 3/2 < € < 3; see Peebles 1974 or McClelland & Silk 1977). In any
case, the critical point is that the correlation function may be be thought of as arising directly
from the density profiles of clumps in the density field.

In this picture, it is easy to see how & will evolve with redshift, since clusters are virialized
objects that do not expand. The hypothesis of stable clustering states that, although the
separation of clusters will alter as the universe expands, their internal density structure will stay
constant with time. This hypothesis clearly breaks down in the outer regions of clusters, where
the density contrast is small and linear theory applies, but it should be applicable to small-scale
clustering. Regarding & as a density profile, its small-scale shape should therefore be fixed in
proper coordinates, and its amplitude should scale as (1 + 2)~2 owing to the changing mean
density of unclustered galaxies, which dilute the clustering at high redshift. Thus, with & oc 777,
we obtain the comoving evolution

£(ryz) o< (1 +2)"™2  (nonlinear). (259)

Since the observed v ~ 1.8, this implies slower evolution than is expected in the linear regime:

E(r,z) o< (1 +2)"2g(Q) (linear). (260)

This argument does not so far give a relation between the nonlinear slope v and the index n of the
linear spectrum. However, the linear and nonlinear regimes match at the scale of quasilinearity,
i.e. £(ro) = 1; each regime must make the same prediction for how this break point evolves. The
linear and nonlinear predictions for the evolution of ry are respectively rg oc (1 + 2)72/ (n+3) and
7o oc (L4 2)~G=/7 so that v = (3n +9)/(n + 5). In terms of an effective index v = 3 + nyy,
this becomes

6
54+n

NNy =

(261)

The power spectrum resulting from power-law initial conditions will evolve self-similarly with
this index. Note the narrow range predicted: —2 < ny;, < —1 for —2 < n < +1, with an n = -2
spectrum having the same shape in both linear and nonlinear regimes.
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Indications from the angular clustering of faint galaxies (Efstathiou et al. 1991) and
directly from redshift surveys (Le Fevre et al. 1996) are that the observed clustering of galaxies
evolves at about the linear-theory rate, rather more rapidly than the scaling solution would
indicate. However, any interpretation of such data needs to assume that galaxies are unbiased
tracers of the mass, whereas the observed high amplitude of clustering of quasars at z ~ 1
(ro ~ Th™! Mpc; see Shanks et al. 1987, Shanks & Boyle 1994) warns that at least some
high-redshift objects have clustering that is apparently not due to gravity alone.

For many years it was thought that only these limiting cases of extreme linearity or
nonlinearity could be dealt with analytically, but in a marvelous piece of alchemy, Hamilton et
al. (1991; HKLM) suggested a general way of understanding the linear < nonlinear mapping.
The conceptual basis of their method can be understood with reference to the spherical collapse
model. For Q = 1, a spherical clump virializes at a density contrast of order 100 when the linear
contrast is of order unity. The trick now is to think about the density contrast in two distinct
ways. To make a connection with the statistics of the density field, the correlation function
&(r) may be taken as giving a typical clump profile. What matters for collapse is that the
integrated overdensity within a given radius reaches a critical value, so one should work with
the volume-averaged correlation function &(r):

§(R) = 47:;{3

R
/0 &(r) 4mr? dr. (262)

A density contrast of 1+ can also be thought of as arising through collapse by a factor (1+6)1/ 3

in radius, which suggests that a given nonlinear correlation &y () should be thought of as
resulting from linear correlations on a linear scale:

T, = [1 + gNL(TNL)]l/?)TNL- (263)

This is the first part of the HKLM procedure. Having performed this translation of scales,
the second step is to conjecture that the nonlinear correlations are a universal function of the
linear ones:

ENL(TNL) = fNL(gL(TL))- (264)

The asymptotics of the function can be deduced readily. For small arguments z < 1, fy.(z) ~ z;
the spherical collapse argument suggests fxi,(1) =~ 10%. Following collapse, &x;, depends on scale
factor as a® (stable clustering), whereas & o a?; the large-z limit is therefore fur(z) o /2.
HKLM deduced from numerical experiments a numerical fit that interpolated between these two
regimes, in a manner that empirically showed negligible dependence on the power spectrum.

However, these equations are often difficult to use stably for numerical evaluation; it is
better to work directly in terms of power spectra. The key idea here is that £(r) can often be
thought of as measuring the power at some effective wavenumber: it is obtained as an integral
of the product of A%(k), which is often a rapidly rising function, and a window function that
cuts off rapidly at £ 2 1/r:

§(r) = M(ket), ket = 2/, (265)

where n is the effective power-law index of the power spectrum. This approximation for the
effective wavenumber is within 20 per cent of the exact answer over the range —2 < n < 0.
In most circumstances, it is therefore an excellent approximation to use the HKLM formulae
directly to scale wavenumbers and powers:

AiL(kNL) = fNL(AE (kL))

_ (266)
by = [1+ A2, (k)] P hoer.
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Fig. 13: The generalization of the HKLM function relating nonlinear power to linear power, for the cases n = 0,
—1, —1.5 and —2. Data points are shown for the case €2 = 1 only, with the corresponding fitting formulae shown
as solid lines. This diagram clearly displays three regimes: (i) linear (A% < 1); (ii) quasilinear (1 < AZ; < 100);
(iii) stable-clustering (AZ; > 100). For a given linear power, the nonlinear power increases for more negative n.
There is also a greater nonlinear response in the case of an open universe with 2 = 0.2, indicated by the dashed
lines. The fitting formula is shown for models with zero vacuum energy only, but what matters in general is the

Q-dependent linear growth suppression factor g(2).

What about models with 2 # 17 The argument that leads to the fy.(x) 23/2 asymptote
in the nonlinear transformation is just that linear and nonlinear correlations behave as a? and a®
respectively following collapse. If collapse occurs at high redshift, then Q = 1 may be assumed
at that time, and the nonlinear correlations still obey the a? scaling to low redshift. All that has
changed is that the linear growth is suppressed by some {2-dependent factor g(€2). According to
Carroll, Press & Turner (1992), the required factor may be approximated almost exactly by

—1
9() = 5%, [O7 — 0 + (1 + 301+ 500)] (267)

where we have distinguished matter (m) and vacuum (v) contributions to the density parameter
explicitly. It then follows that the large-z asymptote of the nonlinear function is

Fru(a) o [g(2)] 722, (268)

This says that the amplitude of highly nonlinear clustering is greater for low-density universes.

The suggestion of HKLM was that fy;, might be independent of the form of the linear
spectrum, but Jain, Mo & White (1995) showed that this is not true, especially when the linear
spectrum is rather flat (n < —1.5). Peacock & Dodds (1996) suggested that the HKLM method
should be generalized by using the following fitting formula for the n-dependent nonlinear func-
tion (strictly, the one that applies to the power spectrum, rather than to £):

1 + BBz + [Az]®? e

Jau(z) = 1+ ([Az]*g3(Q)/[Vx1/2])8

(269)

B describes a second-order deviation from linear growth; A and o parameterize the power law
that dominates the function in the quasilinear regime; V' is the virialization parameter that gives
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the amplitude of the fy,(z) x 23/2 asymptote; 3 softens the transition between these regimes.
An excellent fit to N-body data (illustrated in figure 13) is given by the following spectrum
dependence of the expansion coefficients:

= 0.542 (1 4 n/3) 7008
=0.097 (1 4 n/3) 022
a = 3.235 (1 +n/3)0-236 (270)
= 0.659 (1 4 n/3)70-356
=11.54 (1 + n/3)7937L,

The more general case of curved spectra can be dealt with very well by using the tangent spectral
index at each linear wavenumber:
dln P

Tleff = dnk’ (271)

although evaluating neg at a wavenumber of k/2 gives even better results.

Evolution of clustering The discussion of nonlinear evolution has revealed that in practice the
regime 1 < A% < 100 is dominated by the steep quasilinear transition where fy.(z) o 22,
a ~ 3.5-4.5. This turns out to predict a rate of evolution that is very different from the
extremes of linear evolution or stable clustering. For A% > 1, the transitional spectrum scales
as

Fxi, >~ [AiL] 1/SkL

272
A2, x [D?(a) A2, (272)

where D(a) is the linear growth law for density perturbations. For a power-law linear spectrum,
A? o k37, this predicts a quasilinear power law

A3y o DOTFD/ g7 | (273)
where the nonlinear power-law index depends as follows on the slope of the linear spectrum:

3B+ n)(1+a)
3+ B+n)(1+a)

(274)

For the observed index of v ~ 1.8, this would require n ~ —2.2, very different from the n =0
that would give v = 1.8 in the virialized regime.

We can now summarize the rate of evolution of clustering in the three different regimes:

linear :  £(r, z) o [D(2)]?
quasilinear :  £(r, z) o [D(z)](6_27)<1+a)/3 (275)

nonlinear :  £(r,z) o (1+ 2)~ 6=,

K

where v is the power-law slope in the relevant regime. For a = 4, v = 1.7, this gives & oc D*3 for
the quasilinear evolution; this is more than twice as fast as the linear evolution, and over three
times the rate of stable-clustering evolution if 2 = 1, so that D(z) = 1/(1 4 z). The conclusion
is that clustering in the regime where most data exist is expected to evolve very rapidly with
redshift, unless €2 is low. We discuss below whether this effect has been seen.
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7.5 Real-space clustering

It is possible to avoid the complications of redshift space. One can deal with pure two-
dimensional projected clustering, as discussed in the next section. Alternatively, peculiar veloc-
ities may be dealt with by using the correlation function evaluated explicitly as a 2D function
of transverse (r1) and radial (r|) separation. Integrating along the redshift axis then gives the
projected correlation function, which is independent of the velocities

rdr

wp(m_) = /OO §(7“J_,7"||) d?"|| = 2/:05(7“) m (276)

— 00

In principle, this statistic can be used to recover the real-space correlation function by using the
inverse relation for the Abel integral equation:

)= -+ /T°° w(y) (yZ_d%. (277)

An alternative notation for the projected correlation function is Z(r,) (Saunders, Rowan-
Robinson & Lawrence 1992). Note that the projected correlation function is not dimensionless,
but has dimensions of length. The quantity =(r,)/r, is more convenient to use in practice as
the projected analogue of £(r).

The reason that w,(r ) is independent of redshift-space distortions is that peculiar ve-
locities simply move pairs of points in 7|, but not in 7, and the expected pair count is just
proportional to 277 dr, dr. Suppose we ignore the linear-theory velocities (which are more
easily treated in Fourier space as above), and just consider the effect of a small-scale velocity
dispersion. The correlation function is then convolved in the radial direction:

o0
E(ro,my) :/ Eorue(TL,7) f(r — 1) dr

—00
o X2 21—v/2 2 /242 (278)
= r{ + (rp —x)?]7 e /4% dx
o [0y ey ,
where the latter expression applies for power-law clustering and a Gaussian velocity dispersion.
Looking at the function in the redshift direction thus allows the pairwise velocity dispersion to
be estimated; this is the origin of the above estimate of 0;,. See Fisher (1995) for more discussion

of this method.

Sometimes these complications are neglected, and correlations are calculated in redshift
space assuming isotropy. The result is a small increase in scalelength, as power on small scales
is transferred to separations of order the velocity smearing. The result is a scale length around
7h~! Mpc for the redshift-space £(s) as opposed to the 5h~t Mpc that applies for &(7).

Projection on the sky A more common situation is where we lack any distance data; we then
deal with a projection on the sky of a magnitude-limited set of galaxies at different depths.
The statistic that is observable is the angular correlation function, w(#), or its angular power
spectrum Ag. If the sky were flat, the relation between these would be the usual Hankel
transform pair:

w(f) = /0 - A2 Jy(K6) dK/K

(279)

A} = K? / w(0) Jo(K0) 6 do.
J0
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For power-law clustering, w(0) = (0/6y)~¢, this gives

T(1—¢/2)
I'(e/2)

which is equal to 0.77(K6y)¢ for e = 0.8. At large angles, these relations are not quite correct.
We should really expand the sky distribution in spherical harmonics:

0(@) =) _ ai"Yem (@), (281)

where q is a unit vector that specifies direction on the sky. The functions Yy, are the eigenfunc-
tions of the angular part of the V2 operator: Yy, (0,$) oc exp(im@)P,™(cos 0), where P/ are
the associated Legendre polynomials (see e.g. section 6.8 of Press et al. 1992). Since the
spherical harmonics satisfy the orthonormality relation [ Yy, Y, d?q = 64pOppmy, the inverse
relation is

AF(K) = (Kfp) 2" (280)

ap = [ 8@V, &g (282)

The analogues of the Fourier relations for the correlation function and power spectrum are

1 m=+/ .
w(e):EZ S [af'? Py(cos 6)
{ m=—/{

1 (283)
la* = 277/ w(@) Py(cos ) dcosb.
-1

For small 6 and large ¢, these go over to a form that looks like a flat sky, as follows. Consider
the asymptotic forms for the Legendre polynomials and the Jy Bessel function:

Py(cos ) ~ 4/ 7r€s2in0 oS [(€+ %) 0— %’R’]
Jo(z) =~ \/gcos [z - iﬂ'} ,

for respectively ¢ — oo, z — o0; see chapters 8 & 9 of Abramowitz & Stegun 1965. This shows
that, for £ > 1, we can approximate the small-angle correlation function in the usual way in
terms of an angular power spectrum Az and angular wavenumber K:

(284)

00 dK 2 +1
2 2 _ _ m|2
w(6) :/0 Ag(K) Jo(K0) ==, Ay (K—£+ %) = V;'aﬂ 2. (285)

An important relation is that between the angular and spatial power spectra. In outline,
this is derived as follows. The perturbation seen on the sky is

s@= | 5(y) y26(y) dy, (256)

where ¢(y) is the selection function, normalized such that [ 3?¢(y)dy = 1, and y is comoving
distance. The function ¢ is the comoving density of objects in the survey, which is given by the
integrated luminosity function down to the luminosity limit corresponding to the limiting flux
of the survey seen at different redshifts; a flat universe (2 = 1) is assumed for now. Now write
down the Fourier expansion of §. The plane waves may be related to spherical harmonics via
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the expansion of a plane wave in spherical Bessel functions j,(z) = (7/2z)'/?J, nt1/2(7) (see
chapter 10 of Abramowitz & Stegun 1965 or section 6.7 of Press et al. 1992):

o0

eikrcos@ — Z(2€ + 1) Z.é PZ(COS 9) jg(kﬂ‘), (287)
0

plus the spherical harmonic addition theorem

An m=-+/¢ o
Py(cosb) = 57— ZYem Yo (@);  @-d = cost. (288)

These relations allow us to take the angular correlation function w(f) = (6(q)d(q’)) and trans-
form it to give the angular power spectrum coefficients. The actual manipulations involved are
not as intimidating as they may appear, but they are left as an exercise and we simply quote
the final result (Peebles 1973):

2

(ap )y =an [ a%0) 5 | [ oot duthy) do] (259)

What is the analogue of this formula for small angles? Rather than manipulating large-¢
Bessel functions, it is easier to start again from the correlation function. By writing as above
the overdensity observed at a particular direction on the sky as a radial integral over the spatial
overdensity, with a weighting of y2¢(y), we see that the angular correlation function is

(3@s@) = [[6(r3(v2)) v2ud()o(v2) dyn dye (200)

We now change variables to the mean and difference of the radii, y = (y1 +v2)/2; * = (y1 — y2).
If the depth of the survey is larger than any correlation length, we only get a signal when
y1 ~ y2 ~ y. If the selection function is a slowly varying function, so that the thickness of the
shell being observed is also of order the depth, the integration range on x may be taken as being
infinite. For small angles, we then obtain Limber’s equation:

/ Yo dy / ( x2+y292) dx (291)

(see sections 51 and 56 of Peebles 1980). Theory usually supplies a prediction about the linear
density field in the form of the power spectrum, and so it is convenient to recast Limber’s
equation:

w() = /0 Tyt dy /0 T r A2(k) Jo (kyB) di /K. (202)

The form ¢ o< y /2 exp[—(y/y*)?] is often taken as a reasonable approximation to the Schechter
function, and this gives

Vs o0 %12 dk
w() = / A2(k) e W00 2/8 [1 _ Lipgy*y2] 25 203
(0) e (7) b (k) (1= 3005)°] 5 (293)
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The power-spectrum version of Limber’s equation is already in the form required for the relation
to the angular power spectrum (w = [ A2.Jy(K6) dK/K), and so we obtain the direct small-angle
relation between spatial and angular power spectra:

Aj = % / AN*(K/y) v°¢* () dy. (294)

This is just a convolution in log space, and is considerably simpler to evaluate and interpret
than the w — £ version of Limber’s equation.

Finally, note that it is not difficult to make allowance for spatial curvature in the above
discussion. Write the Robertson-Walker metric in the form

dr?
272 _ 22 2 202] .
cdr* =c*dt* — R [1_kr2+r0], (295)

for k = 0, the notation y = Ror was used for comoving distance, where Ry = (¢/Hp)|1 — Q|~1/2.
The radial increment of comoving distance was dr = Rydr, and the comoving distance between
two objects was (dz? + y202)1/ 2. To maintain this version of Pythagoras’s theorem, we clearly
need to keep the definition of y and redefine radial distance: dx = RydrC(y), where C(y) =
[1 — k(y/Ro)?] /2. The factor C(y) appears in the non-Euclidean comoving volume element,
dV o y*C(y)dy, so that we now require the normalization equation for ¢ to be

/OOO v o(y)C(y)dy = 1. (296)

The full version of Limber’s equation therefore gains two powers of C(y), but one of these is lost
in converting between Rydr and dx:

/ [C(y)]? 4¢2dy/ < x2+y292) % (297)

The net effect is therefore to replace ¢?(y) by C(y)¢?(y), so that the full power-spectrum equa-
tion is

- & [ 22K /) Cwe ) dv (208)

It is also straightforward to allow for evolution. The power version of Limber’s equation is really
just telling us that the angular power from a number of different radial shells adds incoherently,
so we just need to use the actual evolved power at that redshift. These integral equations can
be inverted numerically to obtain the real-space 3D clustering results from observations of 2D

clustering; see Baugh & Efstathiou (1993; 1994).

7.6 Measuring the clustering spectrum

The history of attempts to quantify galaxy clustering goes back to Hubble’s demonstration that
the distribution of galaxies on the sky was non-uniform. The major post-war landmarks were
the angular analysis of the Lick catalogue, described in Peebles (1980), and the analysis of the
CfA redshift survey (Davis & Peebles 1983). It has taken some time to obtain data on samples
that greatly exceed these in depth, but several pieces of work appeared around the start of
the 1990s that clarified many of the discrepancies between different surveys and which paint
a relatively consistent picture of large-scale structure. Perhaps the most significant of these
surveys have been the APM survey (automatic plate-measuring machine survey; see Maddox
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et al. 1990 and Maddox et al. 1996), the CfA survey (Center for Astrophysics survey; see
Huchra et al. 1990) and the LCRS (Las Campanas redshift survey; see Shectman et al. 1996),
together with a variety of surveys based on galaxies selected at 60um by theinfrared astronomy
satellite infrared astronomy satellite, IRASIRAS satellite (Saunders et al. 1991; Fisher et al.
1993). These surveys are sensitive to rather different galaxy populations: the APM, CfA and
LCRS surveys select in blue light and are sensitive to stellar populations of intermediate age;
the IRAS emission originates from hot dust, associated with bursts of active star formation. A
compilation of clustering results for a variety of tracers was given by Peacock & Dodds (1994);
the results are shown in figure 14.

There is a wide range of power measured, ranging over perhaps a factor 20 between the
real-space APM galaxies and the rich Abell clusters. Are these measurements all consistent with
one (GGaussian power spectrum for mass fluctuations? Corrections for redshift-space distortions
and nonlinearities can be applied to these data to reconstruct the linear mass fluctuations,
subject to an unknown degree of bias. The simplest assumption for this is that the bias is a
linear response of the galaxy-formation process, and may be taken as independent of scale:

— p2A2

A?
tracer mass"*

(299)

There thus exist five free parameters that can be adjusted to optimize the agreement between
the various estimates of the linear power spectrum; these are 2 and the four bias parameters for
Abell clusters, radio galaxies, optical galaxies and IRAS galaxies (ba, by, bo, b); however, only
two of these really matter: 2 and some measure of the overall level of fluctuations. For now, we
take the IRAS bias parameter to play this latter role. Once these two are specified, the other
bias parameters are well determined, principally from the linear data at small k£, and have the
approximate ratios

by tbr:ibo by =45:19:1.3:1 (300)

(Peacock & Dodds 1994). The reasons why different galaxy tracers may show different strengths
of clustering are discussed above. Rich clusters are inevitably biased with respect to the mass,
simply through the statistics of rare high-density regions. Massive ellipticals such as radio
galaxies share some of this bias through the effect of morphological segregation, which says that
the E/SO fraction rises in clusters to almost 100%, by comparison with a mean of 20%. At high
overdensities, the fraction of optical galaxies that are IRAS galaxies declines by a factor ~ 3
5 (Strauss et al. 1992), reflecting the fact that IRAS galaxies are mainly spirals. Generally,
the analysis of galaxies of a given type assumes that the luminosity function is independent
of environment so that bias is independent of luminosity. This is not precisely true, and the
amplitude of & does appear to rise slightly for galaxies of luminosity above several times L*.
(Valls-Gabaud et al. 1989; Loveday et al. 1995; Benoist et al. 1996). However, for the bulk of the
galaxies in a given population, it is a good approximation to say that luminosity segregation
can be neglected.

The various reconstructions of the linear power spectrum for the case 2 = b, = 1 are
shown superimposed in figure 14, and display an impressive degree of agreement. This argues
very strongly that what we measure from large-scale galaxy clustering has a direct relation to
mass fluctuations, rather than being an optical illusion caused by non-uniform galaxy-formation
efficiency (Bower et al. 1993). If effects other than gravity were dominant, the shape of spectrum
inferred from clusters would have a very different shape at large scales, contrary to observation.

Large-scale power-spectrum data and models 1t is interesting to ask whether the power spec-
trum contains any features or whether it is consistent with a single smooth curve. A convenient
description is in terms of the CDM power spectrum, which is A%(k) o k""'STkQ. The CDM
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Fig. 14: A compilation of power-spectrum data, adapted from Peacock & Dodds (1994). The upper panel shows
raw power-spectrum data in the form A? = do?/dInk; all data with the exception of the APM power spectrum
are in redshift space. The two dotted lines shown for reference are the transforms of the canonical real-space
correlation functions for optical and IRAS galaxies (10 = 5h ! Mpc and 3.78 h~! Mpc and slopes of 1.8 and 1.57
respectively). The lower panel shows the results of correcting these datasets for different degrees of bias and for
nonlinear evolution. There is an excellent degree of agreement, particularly in the detection of a break around
k = 0.03h. The data are compared to various CDM models, assuming scale-invariant initial conditions, with the
same large-wavelength normalization. Values of the fitting parameter I' = 0.5, 0.45, ...0.25, 0.2 are shown. The
best-fit model has I' = 0.25.
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spectrum is very commonly used as a basis for comparison with cosmological observations, and
it is essential to realize that this can be done in two ways. The CDM physics can be accepted,
in which case the best-fitting value of I' constrains €2, A and Qg. Alternatively, the CDM spec-
trum can be used as a completely empirical fitting formula, which is assumed to approximate
some different set of physics. For example, the MDM model includes CDM and an admixture
of massive neutrinos; over a limited range of k, this will appear similar to a CDM spectrum,
but with an effective value of I' that is very much less than Qh, because of the way in which
neutrinos remove small-scale power in this case.

The normalization of the spectrum is specified by the rms variation in the fractional
density contrast, averaged over 8 h~! Mpc spheres; for CDM-like spectra, this measures power
at an effective wavenumber well approximated by

02 = A?(kegt), kegr/hMpc™! = 0.172 + 0.011 [In(I'/0.34)). (301)
Fitting this spectrum to the large-scale linearised data of figure 14 requires the parameters
'~0.25+0.3(1/n—1), (302)

in agreement with many previous arguments suggesting that an apparently low-density model is
needed; the linear transfer function does not bend sharply enough at the break wavenumber if
a ‘standard’ high-density I' = 0.5 model is adopted. For any reasonable values of A and baryon
density, a high-density CDM model is not viable. Even a high degree of ‘tilt’ in the primordial
spectrum (Cen et al. 1992) does not help change this conclusion unless n is set so low that
major difficulties result when attempting to account for microwave-background anisotropies.

An important general lesson can also be drawn from the lack of large-amplitude features
in the power spectrum. This is a strong indication that collisionless matter is deeply implicated
in forming large-scale structure. Purely baryonic models contain large bumps in the power
spectrum around the Jeans’ length prior to recombination (k ~ 0.03Qh? Mpc!), whether the
initial conditions are isocurvature or adiabatic. It is hard to see how such features can be
reconciled with the data, beyond a ‘visibility’ in the region of 20%.

These ideas can be illustrated with a simple empirical model. Consider a spectrum in the
form of a break between two power laws:

(k/ko)

" T R .

A2 (k)

As shown in figure 16, the nonlinear power that results from this linear spectrum matches the
data very nicely, if we choose the parameters

ko = 0.3 hMpc™t
ki1 = 0.05 hMpc*
a=0.8

B = 4.0.

(304)

A value of 8 = 4 corresponds to a scale-invariant spectrum at large wavelengths, whereas the
effective small-scale index is n = —2.2. We consider below the physical ways in which a spectrum
of this shape might arise.

Finally, it is important to note that bias of either sign may have to be considered. A
high-density universe with the cluster-normalized value of og predicts clustering well below that
observed. However, the opposite is true for low Q. If we simply take the APM power spectrum
and ignore nonlinear corrections, the apparent value of gg is about 0.9. Contrast this with the
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Fig. 15: The clustering data for optical galaxies, compared to three models with I' = 0.25: Q = 1, os = 0.6;
OQm =0.3,Q0,=0,08=1; Qm = 0.3, Q, = 0.7, 0s = 1. The linear spectra are shown dotted; solid lines denote
evolved nonlinear spectra. All these models are chosen with a normalization that is approximately correct for the
rich-cluster abundance and large-scale peculiar velocities. In all cases, the shape of the predicted spectrum fails
to match observation. The high-density model would require a bias that is not a monotonic function of scale,

whereas the low-density models exceed the observed small-scale clustering (figure adapted from Peacock 1997).

prediction of the cluster-normalization formula, which requires og = 1.4 for 2 = 0.2, or 2.1 for
) = 0.1. Thus, low-density models inevitably require significant antibias, and we would have
to consider the possibility that galaxy formation was suppressed in high-density regions. Bias in
this sense has one advantage over positive bias, since it will tend to make the predicted small-
scale spectrum less steep, which figure 15 suggests may be required in order to match the data.
However, as discussed above, it is implausible that the scale dependence of the bias will be very
extreme; a model that matches the data at k ~ 1 A Mpc~! will probably significantly undershoot
the ‘bump’ at k ~ 0.1 AMpc—!. This large-scale feature therefore has a critical importance in
the interpretation of large-scale structure. If it is correct, then the simplest CDM models fail and
must be replaced by something more complicated. However, if future observations should yield
lower power values at this point, then a low-density CDM model with antibias would provide a
model for large-scale structure that is attractive in many ways (Jing et al. 1998).

7.7 Peculiar velocity fields

A research topic that has assumed increasing importance since about 1986 is the subject of
deviations from the Hubble flow. Although the relation v = Hr is a good approximation, it
has long been known that individual galaxies have random velocities of a few hundred kms™?
superimposed on the general expansion. An exciting development has been the realization that
these peculiar velocities display large-scale coherence in the form of bulk flows or streaming
flows, which gives us the chance to probe very large-scale density fluctuations in the universe,
and perhaps even to measure its mean density. Detailed reviews of these developments are given
by Dekel (1994) and Strauss & Willick (1995).

In linear perturbation theory, the peculiar velocity is parallel to the peculiar gravitational
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acceleration g = Vi®/a:

_2f()
where
a\ do
Q)= (=) =~ 306
ro=(5) % (306)
Alternatively, we can work in Fourier terms, where
i H f (€2 ~
SVie = —#@k. (307)
In either case, the linear peculiar-velocity field satisfies the continuity relation
V.v=—Hf(Q) (308)

(where the divergence is in terms of proper coordinates). Since the fractional density perturba-
tion (denoted by 0) is unobservable directly, one makes a connection with the galaxy distribution
via the linear bias parameter

5light = b(Smass- (309)
The combination
B=0"/b (310)

can therefore be measured in principle, given the observed velocity field plus a large deep redshift
survey from which the density perturbation field can be estimated.

Cosmological dipoles  The well-determined absolute motion of the Earth with respect to the
microwave background provides one of the possible general methods of estimating the cosmo-
logical density parameter €2. Given a galaxy redshift survey, an estimate can be made of the
gravitational acceleration of the local group produced by large-scale galaxy clustering. In per-
turbation theory, the relation between v and g can then be used to derive the peculiar velocity
at a point in terms of the surrounding density field:

_HO 0.6 0 . 3

(Peebles 1980).

Weighing the universe The power of velocity fields is that they sample scales large enough that
density perturbations are fully in the linear regime. In combination with large redshift surveys
to define the spatial distribution of light, this has allowed not only a test of the assumption that
large-scale clustering reflects gravitational instability but also a much more powerful extension
of velocity-based methods for estimating the global density. We showed above how a knowledge
of the density field surrounding the local group could be used to estimate the motion of the local
group and hence predict the CMB dipole. Given a deep enough redshift survey, it is possible
to use the same method to predict the peculiar velocity for any point in our local region. If we
know the galaxy density perturbation field ¢4, then the peculiar velocity of a point is given by

H 0g ..
V:ﬁ4—7(r) /r—grd‘q’n (312)
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Fig. 16: A comparison of peculiar velocities inferred from the infrared Tully—Fisher method with predictions from
the TRAS galaxy density field, for galaxies within 30° of the supergalactic plane and within 6000 kms~!, assuming
B92%C% /b = 0.5. The data of Davis, Nusser & Willick (1996) have been averaged onto a grid for clarity in regions
of high galaxy density.

where the r coordinate system is centred on the point of interest. The only subtlety is that J,
is not observed directly in real space, but is deduced in redshift space. In practice, this can
be corrected in an iterative way: ¢, is used to predict v, the galaxy redshifts are corrected for
the peculiar velocities, and the exercise is repeated until a stable real-space estimate of 4 is
obtained. Both this correction and the final prediction for v depend on (, and so it should be
possible to estimate J from a comparison between the predicted velocity field and the peculiar
velocities derived using distance indicators such as the Tully-Fisher method. Figure 16 shows a
recent result from one of these studies (Davis, Nusser & Willick 1997). Since most galaxies are
concentrated towards the supergalactic plane defined by the local supercluster, it makes sense
to plot the velocity vectors projected onto this plane. Since thousands of galaxies are involved,
the velocity field is shown averaged onto a grid. The right-hand panel shows the field predicted
from the gravity field due to the local density distribution.

This figure shows that, within 5000kms™!, the velocity field appears to be dominated
by a few distinct regions in which the flow is nearly coherent. Of these features, the one that
has received the most attention is the outward flow seen near SGX = —4000kms™!, SGY =
—1000kms~!. This suggests the existence of a single large mass concentration at somewhat
larger radii, which has been dubbed the great attractor (Dressler et al. 1987). Popular
discussions of this object have sometimes given the impression of some mysterious concentration
of mass that is detected only through its gravitational attraction. However, it should be clear
from figure 16 that this is implausible; the overwhelming impression is that the observed and
predicted velocity fields follow each other with reasonable fidelity, strongly suggesting that it
should be possible to see the great attractor. This is not a totally straightforward process, since
the long-range nature of gravity leaves some ambiguity over the distance at which the mass
responsible for the peculiar velocities may lie. However, it is clear that the region of sky towards
the great attractor contains many particularly rich superclusters, so there is no shortage of
candidates (see e.g. Hudson 1993). The general agreement between the observed flows and the
predictions of gravitational instability is enormously encouraging; furthermore, the amplitude
of the prediction scales with 3, and § = 0.5 seems to give a reasonable overall match (Davis,
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Nusser & Willick 1996; Willick et al. 1997; see figure 16). This is very satisfying, as it agrees
with the determinations from clustering anisotropy discussed earlier.

Could we make the comparison the other way around, and predict the density from the
velocities? At first sight, this seems impossible, since observations only reveal radial components
of velocity. However, in linear theory, vorticity perturbations become negligible relative to the
growing mode for times sufficiently long after the perturbations are created. It is therefore very
tempting to make the assumption that the linear velocity field should be completely irrotational
at the present epoch. Furthermore, Kelvin’s circulation theorem (see section 8 of Landau
& Lifshitz 1959) guarantees that the flow will remain irrotational even in the presence of non-
linearities, provided these are not so large as to cause dissipative processes. Dissipation does of
course operate on the smallest scales (galaxies rotate, after all), but this should not affect the
large-scale motions. We are therefore driven to write

v =V (313)

The problem is now solved in principle: the velocity potential ¢ can be estimated by integrat-
ing the peculiar velocities along radial lines of sight. The unobservable transverse components
can then be recovered by differentiation of the potential. In practice, this is a nontrivial problem,
given that we are dealing with a limited number of galaxies, each of which has a rather noisy
velocity estimate, of 20% precision at best. Nevertheless, by averaging over large numbers of
galaxies to produce a smoothed representation of the radial velocity field on a grid, it is possible
to use this method. The practical application goes by the name of POTENT (Bertschinger et
al. 1990).

8 COSMIC BACKGROUND FLUCTUATIONS
8.1 Mechanisms for primary fluctuations

At the last-scattering redshift (z ~ 1000), gravitational instability theory says that fractional
density perturbations ¢ = 1072 must have existed in order for galaxies and clusters to have
formed by the present. A long-standing challenge in cosmology has been to detect the corre-
sponding fluctuations in brightness temperature of the cosmic microwave background (CMB)
radiation, and it took over 25 years of ever more stringent upper limits before the first detec-
tions were obtained, in 1992. The study of CMB fluctuations has subsequently blossomed into
a critical tool for pinning down cosmological models.

This can be a difficult subject; the treatment given here is intended to be the simplest
possible. For technical details see e.g. Bond (1997), Efstathiou (1990), Hu & Sugiyama (1995),
Seljak & Zaldarriaga (1996); for a more general overview, see White, Scott & Silk (1994) or
Partridge (1995). The exact calculation of CMB anisotropies is complicated because of the
increasing photon mean free path at recombination: a fluid treatment is no longer fully adequate.
For full accuracy, the Boltzmann equation must be solved to follow the evolution of the photon
distribution function. A convenient means for achieving this is provided by the public domain
CMBFAST code (Seljak & Zaldarriaga 1996). Fortunately, these exact results can usually
be understood via a more intuitive treatment, which is quantitatively correct on large and
intermediate scales. This is effectively what would be called local thermodynamic equilibrium
in stellar structure: imagine that the photons we see each originated in a region of space in which
the radiation field was a Planck function of a given characteristic temperature. The observed
brightness temperature field can then be thought of as arising from a superposition of these
fluctuations in thermodynamic temperature.

We distinguish primary anisotropies (those that arise due to effects at the time of
recombination) from secondary anisotropies, which are generated by scattering along the
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line of sight. There are three basic primary effects, illustrated in figure 17, which are important
on respectively large, intermediate and small angular scales:

(1)  Gravitational (Sachs Wolfe) perturbations. Photons from high-density regions at last
scattering have to climb out of potential wells, and are thus redshifted.

(2)  Intrinsic (adiabatic) perturbations. In high-density regions, the coupling of matter and
radiation can compress the radiation also, giving a higher temperature.

(3)  Velocity (Doppler) perturbations. The plasma has a non-zero velocity at recombination,
which leads to Doppler shifts in frequency and hence brightness temperature.

To make quantitative progress, the next step is to see how to predict the size of these effects in
terms of the spectrum of mass fluctuations.

The temperature power spectrum  The statistical treatment of CMB fluctuations is very similar
to that of spatial density fluctuations. We have a 2D field of random fluctuations in brightness
temperature, and this can be analysed by the same tools that are used in the case of 2D galaxy
clustering.

Suppose that the fractional temperature perturbations on a patch of sky of side L are
Fourier expanded:

2
%T(X) = (2LT)2 /TK exp(—iK - X) d*°K

= % %T(X) exp(iK - X) d*X,

where X is a 2D position vector on the sky, and K is a 2D wavevector. This is only a valid
procedure if the patch of sky under consideration is small enough to be considered flat; we
give the full machinery below. We will normally take the units of length to be angle on the sky,
although they could also in principle be h~! Mpc at a given redshift. The relation between angle
and comoving distance on the last-scattering sphere requires the comoving angular-diameter
distance to the last-scattering sphere; because of its high redshift, this is effectively identical to
the horizon size at the present epoch, Ry:

(314)
Tk (K)

2
Ry = a (;{ (open)

o (315)
Ry ~ i, (flat);

the latter approximation for models with €, + Q, = 1 is due to Vittorio & Silk (1991).

As with the density field, it is convenient to define a dimensionless power spectrum of
fractional temperature fluctuations,

L2
T? = oL o K2 |Tk|?, (316)

so that 72 is the fractional variance in temperature from modes in unit range of In K. The
corresponding dimensionless spatial statistic is the two-point correlation function

c0) = (ST w+0). (317)
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which is the Fourier transform of the power spectrum, as usual:

dK
C(9) = / T2(K) Jo(K0) S (318)
Here, the Bessel function comes from the angular part of the Fourier transform:
/ exp(iz cos ¢) dp = 2mJy(x). (319)

Now, in order to predict the observed anisotropy of the microwave background, the problem
we must solve is to integrate the temperature perturbation field through the last-scattering
shell. In order to do this, we assume that the sky is flat; we also neglect curvature of the
3-space, although this is only strictly valid for flat models with £ = 0. Both these restrictions
mean that the results are not valid for very large angles. Now, introducing the Fourier expansion
of the 3D temperature perturbation field (with coefficients TP) we can construct the observed
2D temperature perturbation field by integrating over k£ space and optical depth:

T .
‘% = —(2‘;)3 / T3P e T @k e dr. (320)

A further simplification is possible if we approximate e~ "dr by a Gaussian in comoving radius:
exp(—7) dr o< exp[—(r — rps)?/207] dr- (321)

This says that we observe radiation from a last-scattering shell centred at comoving distance
ris (which is very nearly identical to 7y, since the redshift is so high), with a thickness o,.. The
section on recombination showed that the appropriate value of o, is approximately

o, = 7(QR%)~Y2 Mpe. (322)

An intuitively useful way of thinking about the integral for the observed temperature
perturbation is as a two-stage process: produce a temperature field that is convolved in the
radial direction, and then say that we observe a single shell that slices through this convolved
field at the radius of last scattering. If the observed CMB is a slice in the (z,y) plane, the effect
of the last-scattering convolution in the z direction is TPP — TP exp[—k202/2] (= will briefly
denote the Cartesian coordinate in the redshift direction, not redshift itself). As a result of this
radial convolution and the angular dependence of the Doppler scattering term, the temperature
spatial power spectrum is anisotropic. Nevertheless, we can still write down 2D and 3D Fourier-
transform expressions for the correlation function in the plane z = 0 (taking the origin to be in
the centre of the last-scattering shell):

T2
Csp = [ =28 e~k gk, dk, dk,
dmks 323
72 (323)
_ 2D —iK-x
CQD = 27TK2 e de de.

Note the distinction between k and K — wavenumbers in 3D and 2D respectively. The definition
of ’];2D as the dimensionless power spectrum of spatial variations in temperature is analogous to
the 3D spatial power spectrum:

v
Tip = 2n) 4mk® | TP |? (324)
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Fig. 17: Tllustrating the physical mechanisms that cause CMB anisotropies. The shaded arc on the right repre-
sents the last-scattering shell; an inhomogeneity on this shell affects the CMB through its potential, adiabatic
and Doppler perturbations. Further perturbations are added along the line of sight by time-varying potentials
(Rees Sciama effect) and by electron scattering from hot gas (Sunyaev Zeldovich effect). The density field at
last scattering can be Fourier analysed into modes of wavevector k. These spatial perturbation modes have a
contribution that is in general damped by averaging over the shell of last scattering. Short-wavelength modes are
more heavily affected (i) because more of them fit inside the scattering shell, and (ii) because their wavevectors

point more nearly radially for a given projected wavelength.

(the 2D equivalent was written above just as 72, but sometimes it will be convenient for clarity to
add an explicit subscript 2D). Equating the two expressions for C(x) gives the usual expression
relating 2D and 3D power spectra, which we shall write in the slightly different form

2 _ 2 (T2 (e o2 —we? dw
TQD(K)—K/O %D( K2+w2)6 (w2 1 K22 (325)

This simple expression gives the 2D spectrum as a projection, to which all modes with wavelength
shorter than the projected wavelength of interest contribute; short-wavelength modes that run
nearly towards the observer have a much longer apparent wavelength on the sky; see figure 17.
The integral will generally be dominated by the contribution around w = 0, unless ’Z?D is a very
rapidly increasing function, in which case what matters will be the small-scale cutoff governed
by the width of the last-scattering shell.

The 2D power spectrum is thus a smeared version of the 3D one: any feature that appears
at a particular wavenumber in 3D will cause a corresponding feature at the same wavenumber in
2D. A particularly simple converse to this rule arises when there are no features: the 3D power
spectrum is scale-invariant (73, = constant). In this case, for scales large enough that we can

neglect the radial smearing from the last-scattering shell,
Tip, = T (326)

so that the pattern on the CMB sky is scale invariant also. To apply the above machinery for a
general spectrum, we now need quantitative expressions for the spatial temperature anisotropies.

Sachs—wolfe effect  This is the dominant large-scale effect, and arises from potential perturba-
tions at last scattering. These have two effects: (i) they redshift the photons we see, so that
an overdensity cools the background as the photons climb out, §T/T = 6®/c?; (ii) they cause
time dilation at the last-scattering surface, so that we seem to be looking at a younger (and
hence hotter) universe where there is an overdensity. The time dilation is 0t/t = 0®/c?; since
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the time dependence of the scale factor is a o< t2/3 and T o 1 /a, this produces the counterterm
ST/T = —(2/3)6®/c?. The net effect is thus one-third of the gravitational redshift:

of _ 9% (327)

This effect was originally derived by Sachs & Wolfe (1967) and bears their nameSW effect (SW
effect). It is common to see the first argument alone, with the factor 1/3 attributed to some
additional complicated effect of general relativity. However, in weak fields, general relativistic
effects should already be incorporated within the concept of gravitational time dilation; the
above argument shows that this is indeed all that is required to explain the full result.

To relate to density perturbations, use Poisson’s equation V2§®;, = 4wGpdy.. The effect of
V2 is to pull down a factor of —k?/a? (a? because k is a comoving wavenumber). Eliminating
p in terms of  and 2.5 gives

Tk _ _Q(l + zLS) <E>2 6/6(ZLS) . (328)

2 c k2

Doppler source term  The effect here is just the Doppler effect from the scattering of photons
by moving plasma:

—=— (329)

Using the standard expression for the linear peculiar velocity, the corresponding k-space result
is
Hy

T = —iy/ Q1 + 215) <7> Or(2Ls)

k

k-t (330)

Adiabatic source term  This is the simplest of the three effects mentioned earlier:

(331)

because on.,/ny = op/p and n, < T 3. However, this simplicity conceals a paradox. Last scat-
tering occurs only when the universe recombines, which occurs at roughly a fixed temperature:
kT ~ x, the ionization potential of hydrogen. Surely, then, we should just be looking back to a
surface of constant temperature? Hot and cold spots should normalize themselves away, so that
the last-scattering sphere appears uniform. The solution is that a denser spot recombines later:
it is therefore less redshifted and appears hotter. In algebraic terms, the observed temperature

perturbation is
T
(5—> _ 0= % (332)
T obs 1+2z P

where the last expression assumes linear growth, § oc (1 + z)7!. Thus, even though a more
correct picture for the temperature anisotropies seen on the sky is of a crinkled surface at
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constant temperature, thinking of hot and cold spots gives the right answer. Any observable
cross-talk between density perturbations and delayed recombination is confined to effects of
order higher than linear.

We now draw the above results together to form the spatial power spectrum of CMB
fluctuations in terms of the power spectrum of mass fluctuations at last scattering;:

T = [(fa + fow)?(R) + F2(k)p°] AR (z1s). (333)

There is no cross term between the adiabatic and Sachs—Wolfe terms proportional to § and the
Doppler term proportional to id: |ad + ibd|? = (ad + ibd)(ad* —ibs*). The dimensionless factors
can be written most simply as

2

fSW = - (kDLs)2
fo— 2 (334)
V' kD,.g
fA = 1/3
where
2c —1/2 2\—1/2
Dis = o (1) /2 — 184(0h%) ™2 Mpc (335)

is the comoving horizon size at last scattering (a result that is independent of whether there is
a cosmological constant).

We can see immediately from these expressions the relative importance of the various
effects on different scales. The Sachs-Wolfe effect dominates for wavelengths > 1h~! Gpc;
Doppler effects then take over but are almost immediately dominated by adiabatic effects on
the smallest scales.

Small-scale fluctuations The above expressions apply to perturbations for which only gravity
has been important up till last scattering, i.e. those larger than the horizon at z.,. For smaller
wavelengths, a variety of additional physical processes act on the radiation perturbations, gen-
erally reducing the predicted anisotropies. An accurate treatment of these effects is not really
possible without a more complicated analysis, as is easily seen by considering the thickness of
the last-scattering shell, o, = 7(Qh?)~Y2 Mpc. This clearly has to be of the same order of
magnitude as the photon mean free path at this time; on any smaller scales, a fluid approxima-
tion for the radiation is inadequate and a proper solution of the Boltzmann equation is needed.
Nevertheless, some qualitative insight into the small-scale processes is possible. The radiation
fluctuations will be damped relative to the baryon fluid by photon diffusion, characterised by the
Silk-damping scale, As = 2.7(Q2Q:h%)~Y/* Mpe. Below the horizon scale at Zeqs 16(Q2R%)™1 Mpec,
there is also the possibility that dark-matter perturbations can grow while the baryon fluid is
still held back by radiation pressure, which results in adiabatic radiation fluctuations that are
less than would be predicted from the dark-matter spectrum alone. In principle, this suggests
a suppression factor of (1 + zeq)/(1 + zus), or roughly a factor 10. In detail, the effect is an
oscillating function of scale, since we have seen that baryonic perturbations oscillate as sound
waves when they come inside the horizon:

Op o (303)1/4 exp <:ti/kcs d7'> ; (336)

284



here, T stands for conformal time. There is thus an oscillating signal in the CMB, depending on
the exact phase of these waves at the time of last scattering. These oscillations in the fluid of
baryons plus radiation cause a set of acoustic peaks in the small-scale power spectrum of the
CMB fluctuations (see below).

It is clear that small-scale CMB anisotropies are a complex area, because of the near-
coincidence between zeq and zg, and between o, 74(zeq) and Ag. To some extent, these com-
plications can be ignored, because the finite thickness of the last-scattering shell smears out
small-scale perturbations in any case. However, the damping is exponential in (ku)? and so
modes with low p receive little damping; averaging over all directions gives a reduction in power
that goes only oc k!, In the absence of the other effects listed above, small-scale adiabatic
fluctuations would still dominate the anisotropy pattern.

Large-scale fluctuations  The flat-space formalism becomes inadequate for very large angles;
the proper basis functions to use are the spherical harmonics:

orT . N
(@) = D af" Vo (@), (337)
where q is a unit vector that specifies direction on the sky. Since the spherical harmonics satisfy

the orthonormality relation [ Yy, Yy, ., d?>q = 8y 0y , the inverse relation is

5_T
T

ay’ =

Y, d. (338)

The analogues of the Fourier relations for the correlation function and power spectrum are

1 m=-+¥¢ .
) = EZ Y- lag'? Pu(cos )
{ m=—~¢

1 (339)
lal'* = 277/ C(6) Py(cos ) dcos@.
-1

These are exact relations, governing the actual correlation structure of the observed sky. How-
ever, the sky we see is only one of infinitely many possible realizations of the statistical process
that yields the temperature perturbations; as with the density field, we are more interested in
the ensemble average power. A common notation is to define Cy as the expectation value of
2
|ag"|:
1
C(0) = — D20+ 1) Cy Puleos),  Cr={lap"[), (340)
4 7
where now C(#) is the ensemble-averaged correlation. For small § and large ¢, the exact form
reduces to a Fourier expansion:

dK

¢+ 3©2e+1)
=, S VA

21 1y _
T2AK =0+ 1) -

C(0) = /0 T TR Jo(K0) . (341)

The effect of filtering the microwave sky with the beam of a telescope may be expressed
as a multiplication of the Cy, as with convolution in Fourier space:

Cs(0) = ﬁ > (204 1) W7 Cy Py(cos 0). (342)
4
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When the telescope beam is narrow in angular terms, the Fourier limit can be used to deduce
the appropriate ¢-dependent filter function. For example, for a Gaussian beam of FWHM
(full-width to half maximum) 2.35¢, the filter function is W, = exp(—£20?/2).

For the large-scale temperature anisotropy, we have already seen that what matters is
the Sachs—Wolfe effect, for which we have derived the spatial anisotropy power spectrum. The
spherical harmonic coefficients for a spherical slice through such a field can be deduced using
the results for large-angle galaxy clustering, in the limit of a selection function that goes to a
delta function in radius:

_ ) dk
C5Y — 167 / (kDvs) ™A} (z15) 57 (kRut) 7 (343)

where the j, are spherical Bessel functions (see chapter 10 of Abramowitz & Stegun 1965).
This formula, derived by Peebles (1982), strictly applies only to spatially flat models, since
the Fourier expansion of the density field is invalid in an open model. Nevertheless, since the
curvature radius Ry subtends an angle of Q/[2(1 — Q)¥/?], even the lowest few multipoles are
not seriously affected by this point, provided € > 0.1.

For simple mass spectra, the integral for the Cy can be performed analytically. The case
of most practical interest is a scale-invariant spectrum (A% x k4), for which the integral scales
as

- ﬁ y (344)
(see equation 6.574.2 of Gradshteyn & Ryzhik 1980). The direct relation between the mass
fluctuation spectrum and the multipole coefficients of CMB fluctuations mean that either can
be used as a measure of the normalization of the spectrum. One measure that has become
common is to work in terms of the amplitude of the quadrupole (¢ = 2), by means of the rms
temperature fluctuation Qs produced just by the ¢ = 2 term(s) in the spherical harmonic
expansion:

1 m=+2

= > JagP; (345)

m=—2

2
Qrms =

Unfortunately, although the quadrupole is the largest-scale intrinsic anisotropy signal (the in-
trinsic dipole is unobservable, owing to the Earth’s motion), it is not a good choice as a reference
point, for several reasons. First, the large-scale temperature pattern is subject to corruption by
emission from the Milky Way, and it is better to work at galactic latitudes |b| 2 20°; second, the
intrinsic quadrupole is badly affected by cosmic variance. The Cy coefficients are the average
of |a7*|> over an ensemble, and so the Q2 value seen by a given observer is distributed like x>

with five degrees of freedom. A more useful quantity is the ensemble-averaged quadrupole, since
this relates directly to the power spectrum:

9 5

rms—ps — E

Cs. (346)

However, in practice power is measured over a range of multipoles, centred at ¢ > 2, so that the
value at ¢ = 2 is really an extrapolation that assumes a specific index for the spectrum. The most
common choice is a scale-invariant spectrum, and so the clumsy quantity Qps—psn—1 is used as
a way of expressing the normalization of a scale-invariant spectrum. More generally, following
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our discussion of small-scale anisotropies, it makes sense to define a broad-band measure of the
‘power per log ¢’:

T?(0) = @ Ce, (347)

so that 72 is constant for a scale-invariant spectrum. This is a close relation of another measure
that is sometimes encountered: Q2(¢) = (5/12)T2(¢) is an obvious generalization of the Q
notation for the quadrupole amplitude. Finally, whichever measure is adopted, there is still the
choice of units. The temperature fluctuation AT'/T is dimensionless, but anisotropy experiments
generally measure AT directly, independent of the mean temperature. It is therefore common
practice to quote numbers like @) in units of uK.

8.2 Characteristics of CMB anisotropies

We are now in a position to understand the characteristic angular structure of CMB fluctuations.
The change-over from scale-invariant Sachs—Wolfe fluctuations to fluctuations dominated by
Doppler scattering has been shown to occur at k ~ D;g. This is one critical angle (call it 6;);
its definition is 1 = Dy s/ Ry, and for a matter-only model it takes the value

0, = 1.80Y2 degrees. (348)

For flat low-density models with significant vacuum density, Ry is smaller; #; and all subsequent
angles would then be larger by about a factor Q%6 (i.e. ; is roughly independent of Q in flat
A-dominated models).

The second dominant scale is the scale of last-scattering smearing set by o, = 7(Qh2)*1/ 2
Mpc. This subtends an angle

05 = 4QY2 arcmin. (349)

Finally, a characteristic scale in many density power spectra is set by the horizon at z.,. This
is 16(2h%)~ Mpc and subtends

3 = 9h~! arcmin, (350)

independent of 2. This is quite close to 65, so that alterations in the transfer function are an
effect of secondary importance in most models.

We therefore expect that all scale-invariant models will have similar CMB power spectra:
a flat Sachs-Wolfe portion down to K ~ 1degree™!, followed by a bump where Doppler and
adiabatic effects come in, which turns over on arcminute scales through damping and smearing.
This is illustrated well in figure 18, which shows some detailed calculations of 2D power spectra,
generated with the CMBFAST package. From these plots, the key feature of the anisotropy
spectrum is clearly the peak at ¢ ~ 100. This is often referred to as the Doppler peak,
but it is not so clear that this name is accurate. Our simplified analysis suggests that Sachs
Wolfe anisotropy should dominate for 8 > 6, with Doppler and adiabatic terms becoming of
comparable importance at 6, and adiabatic effects dominating at smaller scales. There are
various effects that cause the simple estimate of adiabatic effects to be too large, but they
clearly cannot be neglected for 8§ < ;. A better name, which is starting to gain currency,
is the acoustic peak. In any case, it is clear that the peak is the key diagnostic feature of
the CMB anisotropy spectrum: its height above the SW ‘plateau’ is sensitive to (2 and its
angular location depends on €2 and A. It is therefore no surprise that many experiments are
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Fig. 18: Angular power spectra 72(£) = £(¢ + 1)C;/27 for the CMB, plotted against angular wavenumber £ in
radians~'. The experimental data are an updated version of the compilation described in White, Scott & Silk
(1994), communicated by M. White; see also Hancock et al. (1997). Various model predictions for adiabatic scale-
invariant CDM fluctuations are shown. The two solid lines correspond to (€2, Qs, k) = (1,0.05,0.5) and (1,0.1,0.5),
with the higher Qg increasing power by about 20% at the peak. The dotted line shows a flat A-dominated model
with (©,Qs,h) = (0.3,0.05,0.65); the dashed line shows an open model with the same parameters. Note the
very similar shapes of all the curves. The normalisation has been set to the large-scale amplitude, and so any
dependence on (2 is quite modest. The main effects are that open models shift the peak to the right, and that
the height of the peak increases with Qg and h.

currently attempting accurate measurements of this feature. Furthermore, it is apparent that
sufficiently accurate experiments will be able to detect higher ‘harmonics’ of the peak, in the
form of smaller oscillations of amplitude perhaps 20% in power, around ¢ ~ 500 1000. These
features arise because the matter—radiation fluid undergoes small-scale oscillations, the phase of
which at last scattering depends on wavelength, since the density oscillation varies roughly as
0 x exp(icskT). Accurate measurement of these oscillations would pin down the sound speed at
last scattering, and help give an independent measurement of the baryon density.

Q dependence and normalization It is not uncommon to encounter the claim that the level
of CMB fluctuations is inconsistent with a low-density universe, and in particular that a high
density in collisionless dark matter is required. In fact, this statement is something of a fallacy,
and it is worth examining the issue of density dependence in some detail.

Suppose we perform calculations assuming some mass power spectrum and 2 = 1. If we
now change ) while keeping the shape and normalization of the power spectrum fixed, there are
two effects: the power spectrum is translated both horizontally and vertically. The horizontal
translation is quite simple: the main angles of importance scale as Q2 so the CMB pattern
shifts to smaller scales as €2 is reduced (unless A is important, in which case the shift is almost
negligible; see above). To predict the vertical shift, it will suffice to consider the Sachs—Wolfe
portion of the spectrum. This is

4

Tow = (kDo) A (215). (351)
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To relate ¢ at last scattering to its present value, we need the Q2-dependent growth-suppression
factor for density perturbations:

do
T+ 28

d(z1s) =~ [g())™ (352)

i.e. there is less growth in low-density universes. Including the €2 dependence of D, g gives

2 1 /ck\™ 2 2 -2
L= () A3 @, (353)
4 \ Hy
The approximate power-law dependence of g is Q2% for open models or Q%23 for flat models,
so it appears that low-density universes predict lower fluctuations. This is clearly contrary to
the common idea that low-density universes are ruled out owing to the freeze-out of density-
perturbation growth requiring higher fluctuations at last scattering. The fractional density
fluctuations are indeed higher, but the potential fluctuations that are observable depend on the
total density fluctuation, which is lower.

Predictions from galaxy clustering  However, A3 here is the mass power spectrum, and the
normalization we deduce from the light will generally depend on €). The effect this has depends
on the scale at which we normalize. One common approach is to use og, the rms density
contrast in spheres of radius 8 ! Mpc, since this is closely related to the abundance of rich
clusters of galaxies. Alternatively, the amplitude of large-scale peculiar velocities measures the
fractional density fluctuation on a somewhat larger scale — in both cases with a dependence of
approximately 0y < Q796. Note that neither of these determinations use galaxy clustering data
at all: the present-day potential fluctuations are measurable directly, and yield 6oQ2%-¢. What we
deduce from galaxy clustering, conversely, is the biased quantity bdy, and so galaxy clustering
observations allow the parameter 3 = Q%0/b to be measured (as well as the shape of the
spectrum, of course). The requirement for larger matter fluctuations in the case of lower 2 now
makes the density dependence of the Sachs—Wolfe effect very weak: roughly (Agw)l/ 2 x Q7025
(open) or Q17 (flat).

How then can we constrain ) from CMB observations? One possible route arises because
the transfer function on small scales is rather sensitive to the total density, since modes with
wavelengths below ry(zeq) = 16(Qh%)~1 Mpc have their amplitudes reduced. For a given pri-
mordial amplitude, this reduction clearly increases as {2 decreases, and is particularly severe for
pure baryon universes where the small-scale power is removed by Silk damping. In the extreme
case, low-density universes can have very little power on 8-Mpc wavelengths, and so normalizing
on this scale gives silly answers. The number og measures the total rms density fluctuation after
filtering with a sphere, and the only way this number can be large in models with a damping
cutoff is to set the amplitude of 100-Mpc modes high. This is the real reason why low-density
universes have often been associated with very large CMB fluctuations. In any case, now that
we have clustering data on 100-Mpc scales, it makes much more sense to fix the normalization
there, in which case the predicted amplitude of large-scale temperature fluctuations loses almost
all dependence on €2, as discussed above.

Following this discussion, it should be clear that it was possible to make relatively clear
predictions of the likely level of CMB anisotropies, even in advance of the first detections. What
was required was a measurement of the typical depth of large-scale potential wells in the universe,
and many lines of argument pointed inevitably to numbers of order 10~°. This was already clear
from the existence of massive clusters of galaxies with velocity dispersions of up to 1000 kms~!:
s GM o 02

=

vV o~

(354)

-~
r c2 2
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so the potential well of a cluster is of order 10~° deep. More exactly, the abundance of rich clus-
ters is determined by the amplitude og, which measures [A%(k)]'/2 at an effective wavenumber
of very nearly 0.17 hMpc~!. If we assume that this is a large enough scale that what we are
measuring is the amplitude of any scale-invariant spectrum, then the earlier expression for the

temperature power spectrum gives
T3y ~ 107" Qog [g()] 7" (355)

There were thus strong grounds to expect that large-scale fluctuations would be present at about
the 107° level, and it was a significant boost to the credibility of the gravitational-instability
model that such fluctuations were eventually seen.

8.3 Observations of CMB anisotropies

Prior to April 1992, no CMB fluctuations had been detected, but existing limits were close to
the interesting 10~ level. Continued non-detection of fluctuations at a much lower level would
have forced a fundamental overhaul of our ideas about cosmological structure formation, so this
period was a critical time for cosmology.

April 23 1992 saw the announcement by the COBE DMR team of the first detection of
CMB fluctuations (Smoot et al. 1992). COBE is an acronym for NASA’s cosmic background
explorer satellite; launched in November 1989, this carried several experiments to probe the
large-scale radiation field over the wavelength range 1um to 1cm. The one concerned with the
CMB at A 2 1lmm was the differential microwave radiometer. The DMRDMR experiment
made a map of the sky with an angular resolution set by its 7° FWHM beam. This resolution
means that only the low-order multipoles are accessible; DMR thus probes pure Sachs—Wolfe,
and so it is easy to relate the DMR detection of sky fluctuations to a limit on the power spectrum.

In the case of the COBE measurements, the simplest and most robust datum in the initial
detection reports was just the sky variance (convolved to 10° FWHM resolution, in order to
suppress the noise a little), i.e. Cgs(0) with o = 4.25°. The expected result for this for pure
Sachs—Wolfe anisotropies can be predicted to almost perfect accuracy by using a small-angle

approximation:
02 dk
Cs(0 :—/4k2 Ho)*A2(k) W2(kRy) —
5(0) 21 [k(2¢/Ho)]"A%(k) W=(kRu) — (356)
W2(y) = [1 — j5(y) — 351 (y)] F(yo)/(yo)
where a Gaussian beam of FWHM 2.35¢ is assumed, and
F(z)= exp(—acz)/ exp(t?) dt (357)
0

is Dawson’s integral. The terms involving Bessel functions correspond to the subtraction of the
unobservable monopole and dipole terms. The window function is relatively sharply peaked and
so the COBE variance essentially picks out the power at a given characteristic scale, which is
well approximated as follows (¢ in radians):

oo ko A2
Cs(O)—10.65(jj ) 4lks(2¢/Hp)| "4 A2 (k) .

ksRy = —— +2.19(n — 1)
g

(Peacock & Dodds 1994). The original reported value was C/2(0) = 1.10 4 0.18 x 10~ (Smoot
et al. 1992). For scale-invariant spectra, this corresponds to an rms quadrupole Qrms—ps =

290



15.0£2.5 pK. The final results from 4 years of data are consistent with the initial announcement:
a scale-invariant fitted Qpms—ps = 18.0 & 1.8 pK. Only weak constraints on the spectrum index
can be set, but the results are certainly consistent with the scale-invariant prejudice: n = 1.240.3
(Bennett et al. 1996).

This detection required a large number of systematic effects to be eliminated in order
to be certain that the reported signal was indeed cosmological. The COBE experiment had
the advantage of being a satellite in a stable environment, with no atmospheric fluctuations to
contend with. By observing the same piece of sky many times from different parts of its orbit,
any signals that related to low-level interference from the Earth or Sun could be eliminated.
The most serious remaining problem was astronomical foregrounds — principally emission from
the Milky Way. The DMR, experiment observed with three different frequency channels: 31.5,
53 and 90 GHz, each of which had two independent receivers. At these wavelengths, the main
contaminants are galactic synchrotron and bremsstrahlung emission (brightness temperatures
varying roughly as v~ 2% and v 2, respectively). A constant-temperature cosmological signal
can thus be picked up by averaging the channels so as to make the galactic signal vanish (and
analysing only high galactic latitudes for good measure). Even after the systematics have been
dealt with, the individual DMR receivers had significant thermal noise; in the 4-year data set,
the full-resolution combined map suffers a noise of around 30 pK at any given position. Since the
sky map has 1844 pixels, the excess cosmological variance can be detected with huge significance,
but some have criticised COBE on the grounds that it failed to detect individual structures in
the CMB. Such comments are unwarranted, since all that any CMB experiment can do is to
measure multipole components of the temperature perturbation field down to some limit. COBE
was unable to measure individual multipole coefficients to its full resolution (¢ ~ 20), but did
perfectly well to £ ~ 10: the hot and cold spots on the CMB sky at 20° resolution were correctly
identified even in the first-year data.

Small-scale experiments  Eventually, the CMB sky will be revisited by satellite experiments
with resolutions well below 1 degree. In the meantime, experiments that seek to improve on
the COBE map have to work either from the ground or from balloons. In either case, they are
forced to work with restricted patches of the sky, and have to contend with variable atmospheric
emission. As a result, multiple-beam experiments designed to remove atmospheric emission are
the norm. The simplest strategy is to switch rapidly between either two beams separated by an
angle 0 (chopping) or between three beam positions in a line, each separated by 6 (chopping plus
nodding). It is then possible to form combinations of these signals that reduce the atmospheric
contribution: 7o — 77 in the two-beam case or To — (71 + T3)/2 in the three-beam case. The
first case gives a signal insensitive to the mean atmosphere, whereas the second also cancels any
contribution from a constant gradient in atmospheric emission. Squaring these expressions and
taking expectation values shows that the rms fluctuations measured in such experiments are

AT/T = 4/2[C(0) — C(0)] (two-beam)
= \/2[C(0) - C(9)] -

Putting in the relation between power spectrum and C(6), we see that three-beam experiments
produce an effective 2D window function,

(359)

[C(0) —C(20)] (three-beam)

[l

5 2\ _ 2 1172
(T/T)?) / T2 W2 dK/K 0
WE = [3 = 2J0(K0) + LJo(2K0)| 7%,

where 2.3560, is the beam FWHM and 6 is the beam throw. The filter function peaks at some
effective wavelength that is very close to 20. In general, all such experiments can be viewed in
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this way as observing the CMB sky with some effective window function,

((6T/T)*) = % Y+ )WEC (361)
l

(see Partridge 1995 for more complex observing strategies).

8.4 Conclusions and outlook

Having reviewed the physical mechanisms that cause anisotropies in the microwave background,
and summarized the observational situation, it is time to ask what conclusions can be drawn.
In order to narrow the field of possibilities, the discussion will concentrate on models with
primordial fluctuations that are adiabatic and Gaussian. As well as being the simplest models,
they will also turn out to be in reasonably good agreement with observation. Isocurvature
models suffer from the high amplitude of the large-scale perturbations, and do not become any
more attractive when modelled in detail (Hu, Bunn & Sugiyama 1995). Topological defects were
for a long time hard to assess, since accurate predictions of their CMB properties were difficult to
make. Recent progress does, however, indicate that these theories may have difficulty matching
the main details of CMB anisotropies, even as they are presently known (Pen, Seljak & Turok
1997).

Inflationary predictions Matching the CMB sky with what we know of mass inhomogeneities
today is important for physical cosmology, since we have seen that the anisotropies depend on
the cosmological parameters 2, A, 5 and h. As if this were not already potentially a rich
enough prize, CMB anisotropies also offer the chance to probe the very earliest phases of the big
bang, and to test whether the expanding universe really did begin with an inflationary phase.
Let us recall what predictions inflation makes for the fluctuation spectrum. Inflation is driven by
a scalar field ¢, with a potential V' (¢). As well as the characteristic energy density of inflation,
V', this can be characterised by two dimensionless parameters

2
€= (V!/V)?
_m V" V)
n= - )

where mp is the Planck mass, V/ = dV/d¢, and all quantities are evaluated towards the end of
inflation, when the present large-scale structure modes were comparable in size to the inflationary
horizon. Prior to transfer-function effects, the primordial fluctuation spectrum is specified by a
horizon-scale amplitude (extrapolated to the present) d, and a slope n:

A?(k) = o2 (;[—IZ>B+”. (363)

The inflationary predictions for these numbers are

V1/2
Oy ~ ———
T mZel/2 (364)
n=1—6e+ 2n,

which leaves us in the unsatisfactory position of having two observables and three parameters.
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The critical ingredient for testing inflation by making further predictions is the possibil-
ity that, in addition to scalar modes, the CMB could also be affected by gravitational waves
(following the original insight of Starobinsky 1985). We therefore distinguish explicitly between
scalar and tensor contributions to the CMB fluctuations by using appropriate subscripts. The
former category are those described by the Sachs Wolfe effect, and are gravitational potential
fluctuations that relate directly to mass fluctuations. The relative amplitude of tensor and scalar
contributions depended on the inflationary parameter e alone:

i
—= =~ 12.4e ~6(1 — n). (365)

Cy
The second relation to the tilt (which is defined to be 1 — n) is less general, as it assumes a
polynomial-like potential, so that 7 is related to €. If we make this assumption, inflation can be
tested by measuring the tilt and the tensor contribution. For simple models, this test should
be feasible: V = \¢* implies n ~ 0.95 and Cy/C} ~ 0.3. To be safe, we need one further
observation, and this is potentially provided by the spectrum of C/. Suppose we write separate
power-law index definitions for the scalar and tensor anisotropies:

CS o ms=3,  COf oc ™73, (366)

From the discussion of the Sachs Wolfe effect, we know that, on large scales, the scalar index is
the same as index in the matter power spectrum: ng =n = 1 —6¢+ 2. By the same method, it
is easily shown that ny = 1 — 2¢ (although different definitions of n; are in use in the literature;
the convention here is that n = 1 always corresponds to a constant 72(¢)). Finally, then, we
can write the inflationary consistency equation:

cr
o5 6.2(1 — nr). (367)

The slope of the scalar perturbation spectrum is the only quantity that contains 7, and so ng is
not involved in a consistency equation, since there is no independent measure of n with which
to compare it.

From the point of view of an inflationary purist, the scalar spectrum is therefore an an-
noying distraction from the important business of measuring the tensor contribution to the
CMB anisotropies. A certain degree of degeneracy exists here (see Bond et al. 1994), since the
tensor contribution has no acoustic peak; € is roughly constant up to the horizon scale and
then falls. A spectrum with a large tensor contribution therefore closely resembles a scalar-only
spectrum with smaller €, (and hence a relatively lower peak). One way in which this degen-
eracy may be lifted is through polarization of the CMB fluctuations. A nonzero polarization
is inevitable because the electrons at last scattering experience an anisotropic radiation field.
Thomson scattering from an anisotropic source will yield polarization, and the practical size of
the fractional polarization P is of the order of the quadrupole radiation anisotropy at last scat-
tering: P 2 1%. Furthermore, the polarization signature of tensor perturbations differs from
that of scalar perturbations (e.g. Seljak 1997; Hu & White 1997); the different contributions to
the total unpolarized Cy can in principle be disentangled, allowing the inflationary test to be
carried out.

Implications of large-scale anisotropies  Despite the above discussion, it will be convenient to
compare the present-day mass distribution with the CMB data by considering only scalar per-
turbations at first. Possible complications due to tensor contributions can be brought in a little
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later. The best and cleanest anisotropy measurements are those due to COBE, and we have
seen above how the large-scale Sachs—Wolfe anisotropy can be calculated. It is possible to argue
in both directions, either using the mass spectrum to predict the CMB, or vice versa; we shall
start with the latter route. Gérski et al. (1995), Bunn, Scott & White (1995), and White &
Bunn (1995) discuss the large-scale normalization from the 2-year COBE data in the context of
CDM-like models. The final 4-year COBE data favour very slightly lower results, and we scale
to these in what follows. For scale-invariant spectra and 2 = 1, the best normalization is

k 4
COBE = AQ(k):<0.0737hMpcl>’ (368)

which is equivalent to Qrms—ps = 18.0 uK, or oy = 2.05 x 1075,

For low-density models, the earlier discussion suggests that the power spectrum should
depend on € and the growth factor g as P oc g?/2%. Because of the time dependence of the
gravitational potential (integrated Sachs—Wolfe effect) and because of spatial curvature, this
expression is not exact, although it captures the main effect. From the data of White & Bunn
(1995), a better approximation is

2
A%(k) x % 7. (369)

This applies for low-{2 models both with and without vacuum energy, with a maximum error
of 2% in density fluctuation provided ©Q > 0.2. Since the rough power-law dependence of g is
g(Q) ~ Q%65 and Q%23 for open and flat models respectively, we see that the implied density
fluctuation amplitude scales approximately as Q7912 and Q=999 respectively for these two cases.
The dependence is weak for open models, but vacuum energy implies much larger fluctuations
for low €.

What if we consider a tilted spectrum? To see the effect of n # 1, we need to know the
effective k at which COBE determines the spectrum. We saw earlier that the Sachs—Wolfe con-
tribution to the rms sky fluctuations filtered with a Gaussian beam of FWHM 2.350 effectively
measured the power at kRy = (0.54/0) + 2.19(n — 1). For 10° resolution, o = 0.0742, and so
the effective wavenumber is approximately

Q10 (open)

Q04 (flat), (370)

ES9PP = 0.0012 h Mpe™ x {

ignoring the small n-dependent correction. This is a scale at least 20 times beyond the largest
wavelength on which large-scale structure is reliably measured, and so the effects of tilt will be
substantial. We will adopt the following measure of power on the largest reliable scales:

A2

opt

(k= 0.02hMpc™t) ~ 0.005 + 0.0015. (371)

Furthermore, we know from redshift-space distortions and the value of og inferred from the
cluster abundance that the corresponding number for the mass must be lower if 3 = 1. As
before, b ~ 1.6 seems the best guess for Q = 1. Since og from clusters scales as Q790 this
suggests that A2 . (k = 0.02hMpc™!) ~ 0.002Q2711. We can compare this number with the
COBE prediction, scaling the COBE-predicted amplitude with €2 as above and pivoting the
power-law spectrum about keg; clearly there will be a unique value of n that matches prediction
and observation. The only problem is that, although k& = 0.02h Mpc™! is a very large scale, the
power measured there is not quite the primordial value. Two physical models that fit the shape
of the large-scale clustering spectrum were discussed above: (i) I' = 0.25 CDM; (ii) I' = 0.4,

f, = 0.3 MDM. At k = 0.02hMpc~!, the transfer functions for these models are 0.69 and
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Fig. 19: A plot of the power-law index of the spectrum needed to reconcile the COBE level of CMB fluctuations

with the inferred present-day mass fluctuations on the largest scales, k = 0.02 h Mpc ™"

, allowing for the effects of
the transfer function as described in the text. Both open models and flat A-dominated models are shown. Solid
lines denote models without gravity waves; dashed lines show the effect of adding gravity waves with the usual
coupling to tilt. A scale-invariant spectrum (n = 1) requires an open universe with  ~ 0.6. For lower densities,

A-dominated flat models with gravity waves come closest to simple inflationary predictions (n =~ 0.9).

0.81 respectively. We therefore adopt a mean of 0.75, and scale the inferred primordial mass
fluctuations upwards by 1/(0.75)2.

Figure 19 shows the values of n that are required to reconcile this measure of primordial
large-scale structure with COBE. Gravity waves are treated in two distinct ways: in the first
case they are ignored; in the second they are added in with the above inflationary coupling to
tilt, C}/C; = 6(1 — n). Figure 19 has several interesting features:

(1)  For Q = 1, a significant tilt is needed: n ~ 0.84 without tensors, rising to n = 0.95 if
they are included.

(2) Going to low-density A-dominated models requires a greater degree of tilt. Even though
the inferred mass fluctuations today increase for low €2, the ) dependence of the CMB
fluctuations in A models is even stronger.

(3) Conversely, the weak CMB dependence on ) for open models means that the required
tilt changes rapidly with €. A scale-invariant spectrum with no tensor contribution is
consistent with the data if Q ~ 0.6.

Some of these results look more attractive than others. High degrees of tilt are not expected in
simple models of inflation (e.g. n = 0.95 for V = A\¢*). Moreover, large tilt causes problems
with the CMB on smaller scales. COBE normalization corresponds to £ ~ 20, whereas we have
seen that there is mounting evidence for a peak at £ ~ 200. The existence of tilt thus reduces
the amplitude of this peak relative to COBE by a factor 101~", which is equal to 1.4 for Q =1
without gravity waves. Things are just as bad if gravity waves are included: the tilt is less, but
the gravity-wave component has no peak, so that the reduction of the relative height of the peak
is again a factor 1.4. Looking at figure 18, we see that n = 1 models with a reasonable baryon
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content in fact get the height of the peak about right; to allow the tilted variants, the baryon
content would have to be boosted above what is allowed from nucleosynthesis.

Although the preference for n < 1 is thus a negative feature of flat models, it may not be
fatal, since the inferred tilt depends on the accuracy of the large-scale clustering measurements.
Changing the assumed large-scale power by a factor 1.5 changes n by 0.14 without gravity waves,
or 0.06 with gravity waves. If flat models are to survive, the true power at k = 0.02h Mpc~!
would thus need to be larger by a factor of order 1.5, and current data do not exclude this
possibility.

Implications of small-scale anisotropies  Stronger diagnostics for 2 and A come from the intermediate-
scale and small-scale CMB anisotropies. The location of the peak at £ ~ 200 is sensitive to €2,

since it measures directly the angular size of the horizon at last scattering, which scales as

¢ x Q12 for open models. The cutoff at ¢ ~ 1000 caused by last-scattering smearing also
moves to higher ¢ for low €Q; if 2 were small enough, the smearing cutoff would be carried to

large ¢, where it would be inconsistent with the upper limits to anisotropies on 10-arcminute
scales. For flat models with A # 0, the €2 dependence is much weaker, which is one possible way

of detecting A, should other arguments favour 2 < 1.

This tendency for open models to violate the upper limits to arcminute-scale anisotropies
is is a long-standing problem, which allowed Bond & Efstathiou (1984) to deduce the following
limit on CDM universes:

Q>0.3n43 (372)

(in the absence of reionization, with a spectrum normalization that was independent of €, thus
not allowing for the possibility of bias).

Coda  The study of anisotropies in the CMB is presently one of the most exciting observational
areas in cosmology, as a plethora of experiments map out the anisotropy spectrum over a wide
range of scales. The fact that these detections are at the < 107° level makes an amusing contrast
with the early days of the subject, when fluctuations of order 102 were expected, based on the
simplistic formula ‘07'/T = (1/3)dp/p and I must make galaxies by z = 3’. Today, we have a
much more sophisticated appreciation of the scales that are accessible to observation, plus much
improved data on the inhomogeneity of the local universe.

The COBE detection and smaller-scale measurements are enormously encouraging indica-
tions of the overall correctness of the picture of structure formation via gravitational instability,
but they leave open many possibilities. These will be constrained by the information which
resides in the ¢ > 100 peaks in the anisotropy spectrum. At present, all we can say is that
there are hints of a acoustic peak in the spectrum at ¢ ~ 200 and a sharp fall by ¢ ~ 1000. If
confirmed, these facts would make it very difficult to sustain the idea of an open universe. As
we saw earlier, the supernovae Hubble diagram strongly favours a low-density universe, if we
consider only £ = 0 models. We therefore need to consider a ‘standard model’ in which the
majority of the energy density is in the form of vacuum energy: either a classical cosmological
constant, or ‘quintessence’, where the scalar field continues to roll.

Definitive measurements of the CMB fluctuation spectrum will require a new generation
of experiments, which are expected to yield results in the first decade of the 21st Century. As
well as accurate large-scale mapping, these probes will measure the fine-scale anisotropy down
to £ ~ 1000. Measurements of the higher harmonics of the acoustic oscillations will be sensitive
to the fine details of the physical conditions at last scattering: these will either rule out all the
standard range of models or determine the nature of dark matter and measure very accurately
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the main cosmological parameters, if the present framework is correct (Bond, Efstathiou &
Tegmark 1997; Zaldarriaga, Spergel & Seljak 1997).

Finally, the deepest attraction offered by CMB studies is the possibility of testing in-
flation. We have seen that one characteristic prediction of inflation is the existence of tensor
anisotropies, and have discussed how these may in principle be detected via their contribution to
the CMB anisotropy spectrum, and also through the polarization of CMB fluctuations. These
will be challenging observations, but ones whose importance it would be difficult to overstate.
The detection of the inflationary background of gravitational waves would give us experimental
evidence on the nature of physics at almost the Planck energy. It is astonishing to realize that
this might be accomplished within a mere 100 years from the first discovery of the expansion of
the universe. The present is undoubtedly a golden age for cosmology, but perhaps the best is
yet to come.
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