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SOLUTIONS TO CHAPTER 1

11
In Figure 1.1(a), the restoring force is given by:

F =-mgsiné
By substitution of relationsind = x/I into the above equation, we have:

F =-mgx/I|
so the stiffness is given by:
s=-F/x=mg/I|
so we have the frequency given by:

o® =s/m=g/I

Since € is a very small angle, i.ef =sind=x/l , or x=16, we have the restoring force
given by:
F =-mgd

Now, the equation of motion using angular displacem@ntan by derived from Newton’s
second law:

F =nKX
ie. —mgd = mlé
e, é+%9=o
which shows the frequency is given by:
w® =g/l

In Figure 1.1(b), restoring couple is given byC#, which has relation to moment of inertia
given by:

~CO=16
ie. é+%9=o
which shows the frequency is given by:

w® =C/I
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In Figure 1.1(d), the restoring force is given by:

F=-2Tx/l
so Newton’s second law gives:

F = mk = —2Txl
ie. X+2T%Im=0
which shows the frequency is given by:

w? =21
Im

In Figure 1.1(e), the displacement for liquid with a heightxofhas a displacement o)f(/2 and

a mass of pAX, so the stiffness is given by:

X/2 X
Newton’s second law gives:
-G =nK
ie. — 2pAxg = pAlX
ie. X+2—gx =0

I
which show the frequency is given by:

o’ =2g/

In Figure 1.1(f), by taking logarithms of equatigpV” = constant we have:

In p+yInV = constant

so we have: @+ ;/d—v =0
\Y,

dv

do= —mp—2

i.e p 7pv

The change of volume is given btV = AX, so we have:
AX
dp=-®—
P=-P v
The gas in the flask neck has a massa#l , so Newton’s second law gives:
Adp= nX
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AZx

ie. — = pAlX
7pV P
ie. X+MX=O
[ pV

which show the frequency is given by:

2_ JPA

W =
[ pV

In Figure 1.1 (g), the volume of liquid displaced AX, so the restoring force is- pgAX. Then,

Newton’s second law gives:

F = —-pgAx= nmX
ie. X+gﬂ6\x:0
m

which shows the frequency is given by:

w® = gpA/m
1.2
Write solution x=acost +¢) in form: x=acospcosaet —asingsinest and

compare with equation (1.2) we findA=acosp and B =-asing. We can also

find, with the same analysis, that the valuesfdfand B for solution

x=asin(wt —¢) are given by: A=-asing and B =acosg, and for solution
X=acost —¢) are given by: A=acosp and B=asing.
Try solution x=acosgt +¢ ) in expressionX+w’x, we have:
X+ w°X = —aw’ cost + @) + w*acost + ¢) =0
Try solution x = asin(wt —¢ ) in expressionX+ o»°x, we have:
X+ w°X = —aw’ sin(wt — @) + w*asin(wt —¢) =0
Try solution x=acos@t—¢ ) in expressionX+w’x, we have:

X+ w°X = —aw’ cost — ¢) + w°acost —¢) =0
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1.3

(a) If the solution x=asin(wt+¢ ) satisfies x=aat t=0, then, x=asing=a

i.e. ¢ =x/2. When the pendulum swings to the positiar- +a/«/§ for the first
time after release, the value aft is the minimum solution of equation

asin(et+7/2) =+a/</2, i.e. wt=r/4. Similarly, we can find: forx=a/2,
ot =7/3 and for x=0, wt=7/2.
If the solution x=acos@t + ¢ ) satisfies x=a at t=0, then, x=acosp=a

i.e. ¢=0. When the pendulum swings to the positi&ﬁ=+a/\/§ for the first
time after release, the value aft is the minimum solution of equation
acoswt =+a/~/2, i.e. wt=7/4. Similarly, we can find: forx=a/2, ot =7/3
and for x=0, wt=17/2.

If the solution x=asin(wt—¢ ) satisfies x=a at t=0 , then,
x=asin(-¢)=a i.e. ¢=—x/2. When the pendulum swings to the position
x:+a/x/§ for the first time after release, the value @f is the minimum
solution of equationasin(a)t+7z/2)=+a/\/§, i.e. wt=r/4. Similarly, we can
find: for x=a/2, wt=7x/3 andfor x=0, wt=17x/2.

If the solution x=acoswt—¢ ) satisfies x=a at t=0 , then,
x=acost¢g)=a i.e. ¢=0. When the pendulum swings to the position
x:+a/x/§ for the first time after release, the value @f is the minimum

solution of equationacosat = + aWE i.e. ot =rx/4. Similarly, we can find: for

x=a/2, wt=x/3 andfor x=0, wt=17x/2.

(b) If the solution x=asin(@t+¢ ) satisfies x=-a at t=0 , then,

x=asing=-a i.e. g=—x/2. When the pendulum swings to the position
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x:+a/\/§ for the first time after release, the value @f is the minimum
solution of equationasin(wt — z/2) =+a/\/§, i.e. wt=3z/4. Similarly, we can
find: for x=a/2, wt=27/3 andfor x=0, ot=7/2.

If the solution x=acos@t+¢ ) satisfies x=-a at t=0 , then,
x=acosp=-a i.e. ¢=x . When the pendulum swings to the position
x:+a/x/§ for the first time after release, the value @f is the minimum
solution of equationacos@t+7z):+a/\/§, i.e. wt=3z/4. Similarly, we can
find: for x=a/2, wt=27/3 andfor x=0, wt=7/2.

If the solution x=asin(@t—-¢ ) satisfies x=-a at t=0 , then,
x=asin(-g)=-a i.e. ¢=r/2. When the pendulum swings to the position
x:+a/x/§ for the first time after release, the value @f is the minimum
solution of equationasin(wt — 7/2) =+a/x/§, i.e. wt=3z/4. Similarly, we can
find: for x=a/2, wt=27/3 andfor x=0, wt=7/2.

If the solution x=acoswt—¢ ) satisfies x=-a at t=0 , then,
X=acosf(¢g)=-a i.e. ¢=x. When the pendulum swings to the position
x:+a/x/§ for the first time after release, the value @f is the minimum
solution of equationacos@t—zz)=+a/\/§, i.e. wt=3z/4. Similarly, we can

find: for x=a/2, wt=27/3 andfor x=0, wt=7/2.

14
The frequency of such a simple harmonic motion is given by:

oo | S_ € (L6x107")?
C\ym  \4dzer®m | 4xzx 885x10™2x (005x107°)° x 9.1x10°

Its radiation generatem electromagnetic wave with a wavelength given by:

~ 45x10"[rad -s™]
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_21c 2xxx3x10°
@, 45x10'"

A ~ 42x10°[m] =42[nn
Therefore such a radiation is found irrd§y region of electromagnetic spectrum.

1.5
(a) If the massm is displaced a distance of from its equilibrium position, either

the upper or the lower stig has an extension af/2. So, the restoring force of
the mass is given byF =—-sx2 and the stiffness of the system is given by:
s =-F/x=s/2. Hence the frequency is given by’ = s/m=s/2m.

(b) The frequency of the system is given by? = s/m

(c) If the massm is displaced a distance of from its equilibrium position, the
restoring force of the mass is given bl:= —sx— sx=-2sx and the stiffness of

the system is given bys'=—F/x=2s. Hence the frequency is given by
w? =s/m=2s/m.
Therefore, we have the relatiom? : @ : @? = s/2m:s/m:2s/m=1:2:4
1.6
Attime t=0, x=X, gives:
asing = x, (1.6.1)
X=V, gives:

amwCosp =V, (1.6.2)
From (1.6.1) and (1.6.2), we have

tang = wx,/V, and a= (¢ +VZ/w?)"?

1.7
The equation of this simple haomic motion can be written asx=asin(@wt+¢ . )

The time spent in moving fronx to x+dx is given by: dt=dx/|v,|, wherey, is

the velocity of the particle at timé and is given by:v, = X=awcos@t+¢ )
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Noting that the particle will appear twice betweegnand x+dx within one period
of oscillation. We have the probability of finding it betweenx to x+dx given
by: n= Z?dt where the period is given byt = 2—”, so we have:

w

2dt 20X B dx 3 dx o dx
T  2mocosEt+¢) acos@i+¢) mafl-sin?(wt+¢) mal—x2

77:

1.8

Since the displacements of the equally spaced oscillatong irection is a sine

curve, the phase differenc&p between two oscillators a distance apart given is

proportional to the phase differen&r between two oscillators a distance apart

by: 8¢/2zx=x/A,i.e. 5¢=2mx/A.

1.9
The mass loses contact with the platformen the system is moving downwards and
the acceleration of the platform equals the acceleration of gravity. The acceleration of

a simple harmonic vibration can be written as= Aw’sin(wt+¢ , where A is the

amplitude, @ is the angular frequency angl is the initial phase. So we have:

Ao’ sin(wt+¢) =g

Ae_ 9
®* sin(wt + @)
Therefore, the minimum amplitude, which makes the mass lose contact with the
platform, is given by:
9.8
A== 5= ~ 001

A7°f?  Axr?x5?

1.10

The mass of the elemerdy is given by: m=mdy/l . The velocity of an element
dy of its length is proportional to its distancg from the fixed end of the spring, and

is given by: V' = yv/I . where v is the velocity of the element at the other end of the

spring, i.e. the velocitpf the suspended madd . Hence we have the kinetic energy
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of this element given by:

The total kinetic energy dhe spring is given by:

_| o 1/ m y 2 5
KEqping = J.O KE,,dy = J-OE(I—dyj(l—vJ o b f y dy_—m\/2

The total kinetic energy of the system is gum of kinetic energs of the spring and
the suspended mass, and is given by:

KE,, = %m\f +%Mv2 = %(M + Y3\

which shows the system is equivalent to a spring with zero mass with a mass of

M +ny3 suspended at the end. Therefore,fthquency of the oscillation system is

given by:

=M+m/3

1.11

In Figure 1.1(a), the restoringrtee of the simple pendulum is mgsiné, then, the

stiffness is given by:s=mgsind/x = mg/l . So the energy is given by:

E=1mvz+ sxz—lmx +1mgX2
2 2 2 2 1

The equation of motion is by settindg/dt =0, i.e.:

g EITD‘(Z-I-E@XZ =O
dt{ 2 2 1

i.e. ?x 0

In Figure 1.1(b), the disptement is the rotation angk, the mass is replaced by the
moment of inertial of the disc and the stiffness by the restoring coupleof the

wire. So the energy is given by:

E=1|92+1092
2 2

The equation of motion is by settindg/dt =0, i.e.:

E(Ewﬁlcez}o
dt{ 2 2
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ie. é+|99:0

In Figure 1.1(c), the energy is directly given by:
E-Ltmvilsye
2 2

The equation of motion is by settindg/dt =0, i.e.:

ﬂ(} ‘2+15><2J =0
dt{ 2 2

. .. S
I.e. X+—x=0
m

In Figure 1.1(c), the resting force is given by:—2Tx/l , then the stiffness is given

by: s=2T/l. So the energy is given by:

In Figure 1.1(e), thdiquid of a volume of pAl is displaced from equilibrium
position by a distance of/2, so the stiffness of the system is given by
s=2pgAl/l =2pgA. So the energy is given by:
1 1 1 1 1
E=-mV+=sX == pAlX® + = 2pgAxX = = pAlx® + pgAxX
o MV TSN T pAN TR epIR =S PR

The equation of motion is by settindg/dt =0, i.e.:

%(%pAb’(z + pgszj =0

i.e. X+§x=0
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In Figure 1.1(f), the gas of a mass pAl is displaced from equilibrium position by
a distance ofx and causes a pressure changelpf — )pAx/V , then, the stiffness

of the system is given by =— Adp/x = 7pA2/V . So the energy is given by:

2,2
E-imilsx :lpAb'(2 + LPAX
2 2 2 2
The equation of motion is by settindg/dt =0, i.e.:
2,2
A1 ppe  LPAR)
dt\ 2 2
i.e. X+£Ax= 0
oV

In Figure 1.1(g), the restmg force of the hydrometer is pgAx, then the stiffness
of the system is given by = pgAx/x = pgA. So the energy is given by:
E-imslsg :lm'(erlpgsz
2 2 2 2

The equation of motion is by settindg/dt =0, i.e.:

E(l mx° +%pgAx2) =0

dt\ 2
ie. X+Aﬂx =0
m
1.12
The displacement of the simplertvenic oscillator is given by:
X = asinwt (2.12.2)
so the velocity is given by:
X = am coswt (1.12.2)
From (1.12.1) and (1.12.2), we can elimindteand get:
x> X ., 2
¥+a20)2 =sin“wt+cos wt =1 (1.12.3)

which is an ellipsequation of points(x,x .)

The energy of the simple haomic oscillator is given by:
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E-lmeiise (1.12.4)
™

Write (1.12.3) in form x* = »’(a® — x* ) and substitute into (1.12.4), then we have:

E-imeslsx :lma)z(az—xz)+lsx2
2 2 2 2

Noting that the frequency» is given by: »® = s/m, we have:

E=ls(a2—x2)+lsx2 .
2 2 2

which is a constant value.

'T'iﬁltagequations of the two simple hammic oscillations can be written as:
y, = asin(ot + ¢) and Yy, = asin(wt + ¢+ 9J)
The resulting superposition amplitude is given by:
R=y,+Y, = asin(et + ¢) + sin(wt + ¢ + 5)] = 2asin(wt + ¢ + 5/2) cosE/2)
and the intensity is given by:

| = R? = 4a®cog(5/2) sin*(wt + ¢+ 5/2)
ie. | oc 4a° coS(5/2)
Noting that sin’*(«wt +¢+6/2) varies between 0 and 1, we have:

0< 1 <4a’cos(5/2)

1.14
X ’ X ’
(asinqﬁz—%sinqﬁlj J{%cosqﬁl—acosqﬁzj
2 2 2 2
= X—zsin2 b, +y—zsin2 & —ﬁsin@siwﬁ2 er—zcos2 4, +X—2co§ b, —ﬂcosqﬁ1 COSgp,

2

x> ., vy, 2Xy , ., .
== (sin’* ¢, + coS ¢,) + = (sin’ 4, + coS @) ———=(Sing, Sing, + COS¢, COS,
312( ¢ 9] az( ¢ ) alaz( ¢ sing S, COSp,)

x> y*  2x
:¥+é_ai_ai/cos¢l_¢2)

On the other hand, by substitution of :

X sinot COSg, + Ccosmt sing,
a
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Y _sinat COSp, + Cosmt sing,
&

2 2
into expression(lsin@—lsin(ﬁl} +(lcos¢l—lcos¢2j , we have:
& & & &

X . y .Y X ’
(asmgzﬁz —gsmqﬁlj + (%cosqﬁl —acosqﬁzJ
= sin® wt(sing, cosg, —sing, cosp,)* + cos’ wt(cosg, sing, — cosg, sing,)?
= (sin® ot + cos wt) sin’ (¢, — )
=sin*(¢, —4)
From the above derivation, we have:

x> y* 2xy :
¥+_2_acos@1 —¢,) = S|n2(¢2 -)
1.15
By elimination of t from equation x = asinot and y =bcoswt, we have:
2
x_2+y_ =1
a~ b

which shows the particle follows an eligal path. The energy at any position ®f

2
2

y on the ellipse is given by:

1 ., 1 1 ., 1
E==-m’+=sX+=-my’+=s
2 2 ij 2 y

= %maza)2 cos wt +%ma2a)zsin2 wt +%mb2co2 sin® wt +%mb2a)2 cos wt
_1 ma’w?® + 1 mb’w?
2 2

- %ma)z(az b2

The value of the energy shows it is a constand equal to the sum of the separate

energies of the simple harmonic vibrationsxn direction given by% mo’a® and in
y direction given by% Mo ?b>.

At any position of x, y on the ellipse, the expression of(xy—yx can be

written as:
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m(xy — yX) = m(—abwsin® ot — abe cos wt) = —abmu(sin® ot + cos wt) = —abmw

which is a constant. The quantitgbme is the angular momentum of the particle.

1.16
All possible paths described by eqoatil.3 fall within a rectangle oRa, wide and

2a, high, wherea, =x,,, and a, =Y, see Figure 1.8.
When x=0 in equation (1.3) # positive value ofy = a, sin(@, —¢4,). The value of

Yimax = 85 - So yx=0/ymax = Sin(¢2 _¢1) which defines ¢2 _¢1'

1.17

In the range0< ¢ < 7, the values ofcosp are-1<cosg <+ 1 For n random
values of ¢, statistically there will ben/2 values —1<cosg < 0and n/2 values

0<cosg <1. The positive and negative values wahd to cancel each other and the

sum of then values: ) cosg — 0, similarly > cosg, — 0. i.e.

i=1 j=1
i#]

Zn:cosqi, Zn:cos¢j -0
i=1 j=1

i#]

1.18
The exponential form of the expression:

asinot + asin(awt + o) + asin(wt + 20) +--- + asinfwt + (N-1) 5]
is given by:

aéwt + aé((ot+5) + aé(w’(+25) +eeey aei[(ot+(n—1)§]

From the analysis in page 28, the@ad expression can be rearranged as:
) n-1 .
ae‘[””[TH sinns/2

sing/2

with the imaginary part:

asin a)t+{n_1]§ S|.nn5/2
2 sing/2

which is the value of the original expression in sine term.
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1.19
From the analysis in page 28, the expressiorz otan be rearranged as:

ot sinng/2
sing/2

7 — ad™ L+ gdd g% _}___'ei(n—l)é) _a
The conjugate ofz is given by:
. L SINNS/2
z —ae'" ——
sing/2
SO we have:

ZZ* _ aéa}t Slnn5/2 .ae—i{ut Slnn5/2 A2 Sin2 n5/2
sing/2 sing/2 sin’§/2
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SOLUTIONS TO CHAPTER 2

2.1

The system is released from rest, so we know its initial velocity is zero, i.e.
dx
2 =0
dt,,

(2.1.1)

Now, rearrange the expression for the displacement in the form:
— F +Ge(—p+q)t + F-G (- p-a)t

X ——€
2 2
(2.1.2)
Then, substitute (2.1.Mto (2.1.1), we have
dx F+G F-G
2 2l (—pt+g)——ePat (L p—g)—— ¢ rfq)t} =0
S -|crrats (-p-0)"
ie.
qG= pF
(2.1.3)
By substitution of the expressions of g and p into equation (2.1.3), we have the ratio given by:
AN
F (r2—4ms)y2
2.2

The first and second derivatives of are given by:

X = [B - (A+ Bt)}e‘”/ 2m
2m

2
X{_E+ ' ~(A+ Bt)}e”/zm
m 4m

We can verify the solution by substitution of, X and X into equation:
MX+ rx+sx=_0
then we have equation:

4m

[s—r—zJ(m Bt)=0

which is true for all t, provided the first bracketed term of the above equation is zero, i.e.
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r.2
s—=0
4m

i.e. r2/am? =s/m

23
The initial displacement of the system is given by:

x=e""(Ce"" +C,e"" )= Acosp at t=0
So:
C,+C, = Acosg

(2.3.1)
Now let the initial velocity of the system to be:

X = —L+ia)’ Cle(—r/2m+iru’)t + _L_iwf Cze(_r/zm_iw,)t :_w’Asin¢ at t=0
2m 2m

e, —ZLAcos¢+ia>'(cl—c2)= —wAsing
m

If r/m is very small op ~ 72'/2, the first term of the above equation approximately equals zero,
so we have:
C,-C, =iAsing
(2.3.2)

From (2.3.1) and (2.3.2)C, and C,are given by:

o A(cosp +ising) Ags

2 2
A(Cosp —isin A
C2= ( S¢2 ¢)=Ee¢

2.4

Use the relation between current and charbe; (], and the voltage equation:

g/C+IR=0
we have the equation:

Rj+q/C=0
solve the above equation, we get:

q=Ge "™

© 2008 John Wiley & Sons, Ltd



where C, is arbitrary in value. Use initial condition, we g&}, = q,,

ie. q=qe 'F°

which shows the relaxation time of the procesfRE s.

2.5

(a) o -0?=10%¢ =r?/4m? => @ym/r =500
The condition also showso' = @, , so:
Q=aomr rg,m/r =500

27
Use 7' =—-, we have:
10)

(b) The stiffness of the system is given by:
s=o;m=10"x10"° =100 Nm]
and the resistive constant is given by:

(o oM _ 10°x107™

=2x10"[N-sn']
Q 500

(c) At t =0and maximum displacemen = 0, energy is given by:

E-lmeslse =1s>§ax=1x100x1cr“ =5x109J]
2 2 2 2

Time for energy to decay t@ ‘of initial value is given by:

m 10"
t :T: %107 =059 mg
(d) Use definition of Q factor:
E
=2r——
Q - AE

where, E is energy stored in system, ardAE is energy lost per cycle, so energy loss in the

first cycle, — AE,, is given by:

3
CAE, = —AE =275 =27k 2207 51079
Q 500

2.6
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The frequency of a damped simple harmonic oscillation is given by:

2 2 2
r
12 2 12 2 '
o' =w; - = 0" -y = = Ao=0"-0y=———
4 4y a4’ (o' + w,)
M

Use o' *r®w and Q= we find fractional change in the resonant frequency is given by:

Ao & -w, T1?

-(eQ)’

~ 2 2
@, @, 8m°w;

2.7
See page 71 of text. Analysis is the same as that in the text for the mechanical case except that
inductance L replaces masdn, resistanceR replacesr and stiffnesss is replaced by

1/C, where C is the capacitance. A larg® value requires a smalR .

2.8
Electrons per unit area of the plasma slab is given by:

g=-nle
When all the electrons are displaced a distance giving a restoring electric field:

E=nex g,, the restoring force per unit area is given by:

xn%e?l

&g

F=qE=

Newton’s second law gives:

restoringforceperunit area= electronsnaserunit areax electrongcceleratn

=nlm, x X

. , ne
ie. X+——x=0
me,
From the above equation, we can see the displacement distance of elextrassillates with

angular frequency:

, né

© Mg,
2.9
As the string is shortened work is done against: (a) graiingcosy) and (b) the centrifugal

force (m\f/r = mléz) along the time of shortening. Assume that during shortening there are
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many swings of constant amplitude so work done is:

A= —(mgcosd + mlg?)Al
where the bar denotes the average value. For séhalcos) =1—-6?/2 so:
A=-magal + (mg?/Z— mI?)

The term —mgAl is the elevation of the equilibrium position and does not affect the energy of
motion so the energy change is:

AE = (mg6?/2-mld?)Al
Now the pendulum motion has energy:

E= gl 26% + mgl(1— cosh),

that is, kinetic energy plus the potential energy related to the rest position, for @ntalk
becomes:
~ ml%9° , mglo®

2 2

E

which is that of a simple harmonic oscillation with linear amplitudk .

Taking the solution & = @,cosat which gives 62 =62/2 and 6° =@’ 62/2 with

®=,/g/l we may write:

2 _2n2 2
_ M0, _ mglé,

E
2 2
and
202 202 22
AE = mlo°dy  mlo6; Al:—m'”‘%-m
4 2
S0:
AE_ 14l
E 21

Now @ =2zv =,/g/l so the frequency varies with 17¥2 and

(AT -

v 2 | E
S0:

E = constant
|4
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SOLUTIONS TO CHAPTER 3

3.1
The solution of the vector form of thgueation of motion for tl forced oscillator:

MmX+rx+sx = R

is given by:
iF, e iF F o
X =02 =— cost — ¢) + ——sin(wt —
7 oz COSt= @)+ sin(et )
Since Re” represents its imaginary parE,sinet, the value of x is given by the

imaginary part of the solution, i.e.:
F
X =————CoSt — @)
ol
The velocity is given by:

V=X= Zisin(a)t =)

m

3.2
The transient term of a forced oscillator decay wétti®™ to e*attime t,i.e.:
—rt/2m=—k

S0, we have the resistance of the system given by:

r =2mk/t (3.2.1)
For small damping, we have
=@y =,/gm (3.2.2)
We also have steady state displacement given by:
X = X, Sin(wt — @)

where the maximum displacement is:
I:O

= 3.2.3
a)\/r2+(a)m—s/m)2 ( )

By substitution of (3.2.1) and (3.2.2) into (3.2.3), we can find the average rate of
growth of the oscillations given by:
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3.3
Write the equation of an undamped simpimonic oscillator driven by a force of

frequency @ in the vector form, and usé&€” to represent its imaginary part

F,sinat , we have:
mX + sx = Re (3.3.1)
We try the steady state solutian= A€ and the velocity is given by:

X =i wAE™ =iwx
so that:

X =120 = —w’X

and equation (3.3.1) becomes:
(~Aw’m+A9€e” = Re”
which is true for allt when

~Aw’m+As=F,

i.e. A= F°2
S—o'm
i.e. x:—FO2 e
S—w'm
The value of x is the imaginary part of vectox, given by:
F .
X=—-=23—sinot
S—o‘m
i.e. = M where o2 =
mM(oF — %) m
Hence, the amplitude ok is given by:
A= S
m(w? — w®)
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and its behaviour as a function ofdreency is shown in the following graph:

Ay
Ry |
ma? i
0 @y >0
By solving the equation:
MX+sx=0

we can easily find the transient term of the equation of the motion of an undamped
simple harmonic oscillator dran by a force of frequencw is given by:

X = Ccosw,t + Dsina,t

where, @, =+/s/m, C and D are constant. Finally, we have the general solution

for the displacement given by the sum of steady term and transient term:

_ Fysinat

2

= +Ccoswt + Dsinwt 3.3.2
oo : : (332)

3.4
In equation (3.3.2),x=0 at t=0 gives:
X =| oSN A cosat+ Bsinot| =A=0 (3.4.1)
=0 m(a)O - ) t=0
In equation (3.3.2),x=0 at t=0 gives:
™ M—a)oAsina)OHmoBcoswot :%7%008:0
dtl_, | Mg — ) -0 M(e, — @°)
ie. B=—_ 10? (3.4.2)
Ma, (oF — o)
By substitution of (3.4.1) and (3.4.2) into (3.3.2), we have:
x:i% sinat —2-sinaygt (3.4.3)
m (@, — @°) 20

By substitution of = @, + Aw into (3.4.3), we have:
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X= R sinayt cCosAwt +SinAat coswot—ﬁsina)ot (3.4.4)
M(w, + ®)Aw @,

Since Aw/w, <<1 and Awt <<1, we have:

o=@, SiINAwt=Aat, and cosAat ~1

Then, equation (3.4.4) becomes:

F
X =———">"—| sinw,t + Awt cosw,t ——sma)ot
2ma)O @,

. F Ao .
i.e. X=- g - a)Slna)Ot-l-AC()t cosmyt
2mo,Aw\ @,

. F '

i.e. x= o[ Sinet —tcosm,t
2mw,\ o,

i.e. X = Sinw,t — ot cosw,t
2ma)0 ( 0 0 0 )

The behaviour of displacement as a function ofe,t is shown in the following

k7
X Sk meg
3F07Z' 2ma)o
2ma; \ Rt
meo 2ma)0
0 ot
\\ [ Rt
For T\ 2ma,
Ma; 2F, 7 -
Mg 3k,
Ma?
graph:
3.5

The general expression of displacemerd simple damped mechanical oscillator

driven by a forceF,cosmt is the sum of transient term and steady state term, given
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"ot F.@@ 9
x—Cezn M _ IF,€e
[oY4

m

where, C is constant,Z,, = /r*+(em-s/®)? , o, =+/m-r?/4m* and

o= tan‘l(MJ , SO the general expressivelocity is given by:

ro . ot Fy o
V=X=C|-—+im, |e 2" = +=2?
2m Z

m

and the general expression of acceleration is given by:

2 H o H
. r 2 Ia)tl’ _%_Ha)lt |a)F0 i (0t—¢)

4m m m
2 H —£+ia), i )

ie. y=c| [ 22ms_lar gyt 10F, oo (3.5.1)
2m m Z,

From (3.5.1), we find the amplitude afceleration at steady state is given by:
ok, ok,

. Z, ) \/r2+(a)m—s/a))2

At the frequency of maximum acceleratiogc!l =0
w

: d ok,
i.e. — =0
do \/r2+(a)m—s/a))2
2
ie. r2—2ms+2i2:0
(0]
. ) 2¢°
ie. ==
2sm-r

Hence, we find the expression of theginency of maximumeeeleration given by:

2s’
2sm-r?

The frequency of velocity resonance is given ly=./s/m, so if r =+/sm, the

acceleration amplitude at the frequenéyelocity resonance is given by:
V| G)FO ﬁS/mFO i

redam \/r2+(a)m—s/a))2 :\/sm+ (vsm—+/sm) " m

© 2008 John Wiley & Sons, Ltd



The limit of the acceleration amplitu@¢ high frequencies is given by:

Lo ok, : F F
limv=Ilim = lim =2
00 waoo\/r2+(a)m_s/a))2 0—0 rz S 2 m
o\ w2
So we have:
Yl _ysm = lim v
3.6
The displacement amplitude of a driveechanical oscillator is given by:
X= Ky
a)\/r2 +(wm-s/w)*
ie. X = ! (3.6.1)
\/wzrz +(0’m-9)?
The displacement resonance frequency is given by:
s r?
®=,—- 3.6.2
m 2m’ ( )
By substitution of (3.6.2) into (3.6.1), we have:
X= Fo
o s r? r2 )
ol ——— |+ =—
m 2m 2m
ie. X= Ry

s r?
"N ™ 22
m 4m

which proves the exact amplitude at the displacement resonance of a driven
mechanical oscillator may be written as:

o Fo
'r
where,
2
a)12 :i_ r .
m 4m
3.7
(a) The displacement amplitude is given by:
X Ko

) co\/r2 + (wm-s/w)*
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At low frequencies, we have:

. ) F . F
limx=Iim =lim
w—0 w—0 a)\/rZ +(0)m—3/0))2 wﬁO\/w2r2 +(0)2m—5)2

%) |O'|'|

(b) The velocity amplitude is given by:
V= Ky
\/rz + (wm-s/w)*

At velocity resonancew = ,/s/m, so we have:

vV = I:0 | — I:0 :i
P em-s?| o e (smeysmy? T

(c) From problem 3.5, we have the acceleration amplitude given by:

. ok,
V=
\/r2+(a)m—s/a))2

At high frequency, we have:
ok, F F

[imv=Ilim = lim 0 __0
w—0 w»oo\/r2+(wm_s/w)2 w—0 \/rZ/a)2+(m_S/a)2)2 m

From (a), (b) and (c), we findirrg)x, v, and limv are all constants, i.e. they are all

D—>0

frequency independent.

3.8
The expression of curve (a) in Figure 3.9 is given by:
F,X Fm(w? — »®)
=—-00m _ 3.8.1
% wZ:  m(wf - 0%+’ ( )
where @, =+/S/M
X, has either maximum or minimum value Whedaqxi =0
[
2 2
ie. i 2 Fogn(a)oz 260 )2 > |=0
do| m (o, — o) +oT
i.e. M’ (wf —»°)’ —wir’ =0
Then, we have two solutions ab given by:
o, = |aof -2 (3.8.2)
m
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and

0, = | af +“’—r$1r (3.8.3)

Since r is very small, rearrage the expressions ab, and o,, we have:

2
o @ r re r
AN T T om) A T om

2
2 @ r r r
W, = |05 t—— = [|Ot——| ———5 *O+t_—
m 2m am 2m

The maximum and the minimum values ®&f can found by substitution of (3.8.2)

and (3.8.3) into (3.8.1), so we have:

Fo . _Fo

when o = w;: = ~
' % 20, — o 2 /m - 2w

which is the maximum value ok, , and

FO ~ FO
20,0 + o 2/m - 2w

when o = w,: X, =
which is the minimum value of, .

3.9
The undamped oscillatory equation for a bound electron is given by:

X+ agX = (— e, /m) coswt (3.9.1)
Try solution x= Acoswt in equation (3.9.1), we have:
(—@” + w?) Acosat = (— eE,/m) cosmt
which is true for allt provided:
(—&” + w?)A=-€eE,/m
ek

i.e. A=——"72
m(w? — w®)

So, we find a solution to equation (3.9.1) given by:

LCOS@t (3.9.2)

X=—
m(w? — %)

For an electron number density, the induced polarizability per unit volume of a
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medium is given by:

Ze= (3.9.3)
&E

By substitution of (3.9.2) ancE = E,coswt into (3.9.3), we have

_nex _ ne’
&E  gM(wf - )

Xe =

3.10
The forced mechanical oscillator equation is given by:

MX + X+ sx= F, cosmt
which can be written as:

MK + X+ MaiX = F, cosat (3.10.1)

where, @, = ,/s/m. Its solution can be written as:

X= Forz sinat - FOXZ'“ cosot (3.10.2)
ol ol

where, X, = om-s/o, Z, =+r?+(em-s/o)?, ¢= tan‘l(wrn%S/wj

By taking the displacemenk as the component represented by curve (a) in Figure
3.9, i.e. by taking the second term of equation (3.10.2) as the expressionw
have:

FoX Fom(ewg —
X=——2"Rcosot = — 02(022 )22
m*(w; — @) + ot

coswt (3.10.3)
ol

The damped oscillatory eleotr equation can be written as:
MK + X + MwiX = —eE, cosat (3.10.4)
Comparing (3.10.1) with (3.10.4), vean immediately find the displacement for a

damped oscillatory electron by substitutirfiy = —eE, into (3.10.3), i.e.:
eEM(w; - @°)

X=— coswt 3.10.5
mz(wg_w2)2+a)2r2 ( )

By substitution of (3.10.5) into (3.9.3), we can find the expressiory ofor a

damped oscillatory electron is given by:
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nex nem(o; - »®)

£= C&E &M (@l - )+ 07
So we have:
2 2
& =1+ y =1+ ?ezrzn(a)oz zw ) >——COoSwt
Elm (w; —0) + o]
3.11

The instantaneous power dissipated is etpuéthe product of frictional force and the

instantaneous velocity, i.e.:

2
P=(rx= r%cosz(a)t =)
The period for a given frequency is given by:
2

T=22
w

Therefore, the energy disstpd per cycle is given by:
_ T _ 2r/® F02
E= jo Pdt = jo rz—écosz(a)t—gﬁ)dt

2n/0 IF ]
0o 272
2z rFO2
T w272
_ ﬂrFOZ
- wZ?

[1—cos2(wt — ¢)]dt

The displacement is given by:

X = R sin(wt — ¢)
wl

S0 we have:

By substitution of (3.11.2) into (3.11.1), we have:

E = 7 o,

3.12

(3.11.1)

(3.11.2)

The low frequency limit of the bandwidth of the resonance absorption aurve

satisfies the equation:
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om—S/w, =—r
which defines the phase angle given by:
om-se,
r

tang, = 1

The high frequency limit of the bandwidbf the resonance absorption curgg
satisfies the equation:
w,M—S/w, =1

which defines the phase angle given by:
w,M-S/w,
r

tang, = =1

3.13
For a LCR series circuit, the current through the circuit is given by

_ i ot
I =1,

The voltage across the inductance is given by:

LA L9 e il € = inLl
dt dt
i.e. the amplitude of voltage across the inductance is:

V, = all, (3.13.1)

The voltage across the condenser is given by:

9_ Lt =ije‘”‘dt=—_ eIl
CcC C C iwC @C
i.e. the amplitude of the voltage across the condenser is:
v, = o (3.13.2)

@C

When an alternating voltage, amplitudé is applied across LCR series circuit,

current amplitudel, is given by: I, =V,/Z,, where the impedanc&, is given

2
2= oo L)
wC

At current resonancel, has the maximum value:

by:

=0 (3.13.3)
and the resonant frequenay, is given by:
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1 1
wo,L———=0 or @, =— 3.13.4
ok "= e ( )
By substitution of (3.12.3) and (3.12.4) into (3.12.1), we have:
w,L
V, = qu V,
By substitution of (3.12.3) and (3.12.4) into (3.12.2), we have:
v - Vo :\/LCV _ LV LV, _ol
° orRC RC ° \CR JICR R °
Noting that the quality factor of an LCR series circuit is given by:
_ oL
Q R
so we have:
VL=V =QY%
3.14
In a resonant LCR series circuit, thegidial across the condenser is given by:
I
V.=—o 3.14.1
o= (314.0)
where, | is the current through the whol€R series circuitand is given by:
| = I, (3.14.2)
The current amplitudd , is given by:
V,
l, == 3.14.3
0= (314.3)

where, V, is the voltage amplitude applied assdhe whole LCR series circuit and is

a constant.Z, is the impedance of the whole circuit, given by:

2
Z, = \/RZ +[a>L—ij (3.14.4)
oC
From (3.14.1), (3.14.2), (84.3), and (3.14.4) we have:
VC — Vo eiwt :Vcoeiwt

2
Ca)\/ R + (a)L —1j
oC

which has the maximum value Whe%\@ =0, i.e.:
[4]
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d v,

—- =0
do 1 2
Co R2+(a)L—j
@C
2
i.e. R%[aﬂ.-i] +a)2L2—%:O
wC oC
H 2 2y 2 l—
l.e. R +20w°L"-2—=0
C
i.e a)—wfi—iz—a)Jl—le
o LC 212 V27
1 w,L
where o =—, Q, =2
%=1c ¥R
3.15
In a resonant LCR series circuit, thegadial across the inductance is given by:
V, = wll (3.15.2)

where, | is the current through the whol€R series circuitand is given by:

| = I, (3.15.2)

The current amplitudd , is given by:

V0
e 3.15.3
Z ( )

e

lo

where, V, is the voltage amplitude applied assdhe whole LCR series circuit and is

a constant.Z, is the impedance of the whole circuit, given by:

2
Z, = \/RZ +[a>L—ij (3.15.4)
oC
From (3.15.1), (3.15.2), (85.3), and (3.15.4) we have:
VL — a)LVO eia)t :VLoeia)t

]

which has the maximum value Whe%\@ =0, i.e.:
(4]
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il -0
dw 2
R2+(a)L—]
’ 1
i.e R2+[wL———J —0’’+——=0
oC
i.e R2+%—2£=0
wC C
1 11 1 @,
€ 0= | = [TAT e = @ — =
Lc_RC LC, RC R J_l )
2L 2V 27
1 w,L
where @ =—, Q,=—2
%=lc Y=g

3.16
Considering an electron in an atom asghtly damped simple harmonic oscillator,
we know its resonance absorption bandwidth is given by:

Sw=— (3.16.1)

On the other hand, the relation betweemdiency and wavelength of light is given
by:
f=— (3.16.2)

where, ¢ is speed of light in vacuum. From 18.2) we find at frequency resonance:

&:-%&

0

where 4, is the wavelength at frequency resonance. Then, the relation between

angular frequency bandwidthew and the width of spectral lin@4 is given by:

60| = 2716 | = %”;m (3.16.3)

From (3.16.1) and (3.16.3) we have:
2
|&|_ At _ A A

~2em om  Q
So the width of the spectral lineofn such an atom is given by:

—6
67| = 2o 2 08407 _ 45 104 m)
Q  5x10
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3.17

According to problem 3.6, the displacement resonance frequencnd the

corresponding displacement amplitude,., are given by:

wZ

m

=0,

2
2 2 i 2 r S
where, Zm:\/r +(om-s/w)*, o :ﬂa)o_4m2 1 %Z\/E

Now, at half maximum displacement:

I:O — Xmax _ I:O

wZ 2 20'r

m

ie. a)\/r2+(a)m—s/a))2 = 20
s\ s r?
i.e. QP +om-=| |=4 =———|r?
w m 4m
2 2 2 4
. r-—2s s°  4sr r
l.e. w4+%w2+—2——3+—4:0
m m m m
2 2 \? 2 2
. 4 s r > [S T (s r
l.e. O -2 ——— |0+ =~ | ——| =~
m 2m m 2m m {m 4m

If @ and w, are the two solutions &quation (3.17.1), and, > w,, then:

2 2_\/§|' 2
0 -0 =—@
m
2 2 \/él’ )
o -0 =———

m
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2} =0

(3.17.1)

(3.17.2)

(3.17.3)



Since the Q-value is high, we have:

,M
Q="2->>1
. , r?
l.e. ), >>—2
m
ie. 0, =0 =,

Then, from (3.17.2) and (3.17.3) we have:

(0, - w))(0, + o)) =

2J3r
(2
m

and o, + 0, = 20,
Therefore, the width of displacemt resonance curve is given by:

Jar

W, — O ® ——
2 1
m

3.18
In Figure 3.9, curve (b) correspondsabsorption, and is given by:

Foor

sinwt
M (wf — w°)? + w’r?

For
X=—2=sinat =
.

m

and the velocity component correspling to absorption is given by:

. Fo0°r
V=X=—7— >3 2ZCOSa)'[
m* (w5 — @) + o

For Problem 3.10, the velocity componeotresponding to absorption can be given
by substituting F, = —eE, into the above equation, i.e.:

eEw’r

V=X=-—
M (wf — w°)? + o’r

5 Cosmt (3.18.1)

For an electron density of, the instantaneous powerpglied equal to the product

of the instantaneous driving forcenek, coswt and the instantaneous velocity, i.e.:

eEw’r
P = (—neE cosat) x| — coswt
(nek, ) ( M’ (wf — 0°)? + w’r? J

neEw’r
YRV O22 2200§a)t
m* (o5 —o°) + o
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The average power supplied per unit volume is then given by:

Py= 2 [ Pt

¥ o2r
w (2o neEE w’r
=5 2, 2 22 2.2 cos’ wt
27 m(w; —-0°) +oT
_ n€E; w’r

2 m(a}-o®)+0’r?

which is also the mean rate of energy absorption per unit volume.
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SOLUTIONS TO CHAPTER 4

4.1
The kinetic energy of thsystem is the sum of the segia kinetic energy of the two
masses, i.e.:

E:%mx+ my’ == rr{ (X+y)* += (x y)} rn>(2+£llrri\(2
The potential energy of the system is suen of the separate goitial energy of the

two masses, i.e.:

o ;n:gx +25(y X)? +%I—gy +23(x y)?
%I—g(x +y?)s(x— y)?
=%${ (x+y)2+1(x—y)2}+s<x—y)2
=i—gx +(lmg+sjY2
4 | 2 |

Comparing the expression d&, and E, with the definition of E, and E, given

by (4.3a) and (4.3b), we have:

a_lm b_mg, c:lm,andd=m+s
2 4| 4 2l
Noting that:
12 12
m m
X, =|— X+y)=—| X
“ (zj b+) (2]
12 12
m m
and Y =|—| (x=y)=|—]| Y
(3] wen-(D)
-12 -y2
ie. xz(mj X andY:(mj Y
2 q 2 a

we have the kinetic energy of the system given by:

E, —aX? s oY :%W{PX} r{( } sl
m
i > T 1 2
E, =bX?+dy? =19 \/7x +(@+sj “‘y :—§x2+(§+_5jvz
4 | V\m ° 2l m ¢ 21 9l m)¢
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which are the expressions given by (4.4a) and (4.4b)
4.2
The total energy of Problem 4.1 can be written as:
E=E +E, =%m>‘<2 +%W2+%¥(x2+ y?) + (X - y)?
The above equation can be rearranged as the format:
E = (B + Epot)u + (Biin + Epot) y + (Epot)

where, (Eg,+E ), e[ M9 gl + (Ein +Epor)y :lmy2+ MY, sly?,
2 2l 2 2l
and E,, =-2sxy
4.3
x=-2a, y=0:
-X + Y
4 -2 < v=0 }_a‘>_34 >_a< *a"
x=0, y=-2a:
X - Y
x=0» -2z < > ¢ > 5« —» 54> 5 <«
4.4

For massm,, Newton’s second law gives:
mX, = SX
For massm,, Newton’s second law gives:

m,X, = —SX
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Provided x is the extension of the spring aidis the natural length of the spring,
we have:

X, =% =1+X

By elimination of x, and X,, we have:

MSX: 0
mm,

which shows the system oscillate at a frequency:

i.e. X +

where,
__mm
m +m,
For a sodium chloride molecule the interatomic force conssam$ given by:

2 2 3\2 27\ 2
2 zv)’m,my _ 47" x (114x10"%)? x (23x 35) x 21..67><1(T ) ~12qNm]
My, + My, (23+35x 167x10

7,

S=w

4.5
If the upper mass oscillatwith a displacement ok and the lower mass oscillate

with a displacement ofy, the equations of motion dfie two masses are given by

Newton'’s second law as:
mX = S(y — X) — SX
my = S(X-y)

MX+ S(X—Yy) —sx=0
my - s(x-y)=0

Suppose the system starts from rest andlas in only one of its normal modes of
frequency @, we may assume the solutions:

x = Ad“
y — Béa)t

where A and B are the displacement amplitude &f and y at frequencyw.
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Using these solutions, the equations of motion become:
[-mow®A+s(A-B)+sAEe” =0
[-mw’B-s(A-B)]e”" =0
We may, by dividing through bymé“, rewrite the above equations in matrix form

as:

{Zs/m—a)z —s/m }{A}zo (4.5.1)

-s/m  s/m-o° | B

which has a non-zero solution if and only if the determinant of the matrix vanishes;
that is, if

(2s/m-o?)(s/m-w?)-s?/m? =0
i.e. " — @s/m) o’ +s*/m* =0
ie. 0* = (3£+/5)—>-
2m

In the slower modew?® = (3—\/3) s/2m. By substitution of the value of frequency
into equation (4.5.1), we have:

A s s—mo® 5-1

B 2s-mw’ s 2
which is the ratio of the amplitude of the upper mass to that of the lower mass.
Similarly, in the slower modew?® = (3+ \/5) s/2m. By substitution of the value of

frequency into equation (4.5.1), we have:

A s s-me’  5+1
B 2s—me? s 2

4.6
The motions of the two pendulums in Figure 4.3 are given by:

x = 2acos\ @2 =@ ol t @)t

= 2acosw, t cosw,t

y = 2asin (@, =)t g (@ + o)t

= 2asinao,tsina.t
where, the amplitude of the two mass@scosw,t and 2asine,t, are constants

over one cycle at the frequenay, .

Supposing the spring is very weak, thefiséis of the spring is ignorable, i.e~ 0.
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Noting that @’ =g/l and @ =(g/I +2s/m), we have:

2
g 2 o+, |
TCa RO 5 = o

Hence, the energies of the masses are given by:

E, = % s&; = %@(Zacoswmt)2 = 2ma’w? cos o, t
_ 1 2 _ 1 mg - 2 _ 2 2 =2
E, =588 = EI—(Zasma)mt) = 2ma°w’ sin® w,

The total energy is given by:
E = E, +E, = 2m&w.(cos a,t +sin’ o,t) = 2maw;

Noting that w,, = (0, —@,)/2, we have:

E, = 2ma°w? cos (w, — o)t = %[1+ cos@, — o)t]

. E
E, = 2ma’e; sin’(w, — o)t = > [1-cos@, — w)1]

which show that the constant ener@y is completed exchanged between the two
pendulums at the beat frequengy, — ®,) .

4.7
By adding up the two equations of motion, we have:
m&+m,y =—(mx+m,y)(g/l)

By multiplying the equation byl/(m +m,) on both sides, we have:

mX+my g mx+my

m +m, I m+m,
ie. MX+My g mx+my _,
m+m, | m+m,
which can be written as:
X+w’X= 0 (4.7.1)
where,

X =WHMY ang w?=g/l
m +m,
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On the other hand, the equations of motion can be written as:

x=—Tx=—>(x-y)
T m

V=—|gy+i(x—y)
m,

By subtracting the above equations, we have:

$—y=—I(x—y)=| =+ |x—v)
| m m,

i.e. X—y+|:g+{i+ij:|(x_y)zo
Alm m

which can be written as:
Y+wlY =0 (4.7.2)
where,
Y=x-y and w§=g+{i+ij
| m m

Equations (4.7.1) and (4.7.2) take thenfoof linear differential equations with
constant coefficients and each equatioontains only one dependant variable,
therefore X and Y are normal coordinates and their normal frequencies are given

by @, and o, respectively.

4.8
Since the initial condition givesc=y =0, we may write, imormal coordinate, the
solutions to the equations ofotion of Problem 4.7 as:

X = X, cosmt

Y =Y, cosm,t

X+
mX+ My _ X, cosayt
m+m,
X—Y =Y, Cosm,t
By substitution of initial conditionst=0, x=A and y=0 into the above

equations, we have:

Xo:(ml/M)A
Y,=A
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where, M =m+m,
so the equations of motion original coordinatesx, y are given by:

leerzy m Acosat
m +m,
X—Yy = Acosm,t

The solutions to the abewequations are given by:

A
X = ﬁ(ml cosw;t + m, cosw,t)
y= A% (cosmt —cosw,t)
Noting that o, =w,-w, and w,=w,+®, , where o,=(w,-®)/2 and

o, = (o, + ®,)/2, the above equations cha rearranged as:

X= VA[ml Cos@, — @, )t +m, cos@, + w,,)t]
= VA[ml(coswmt cosw,t +sina,tsinw,t) + m,(cosw,t cosm,t —sina,tsinw,t)]
A . .
= W[(ml +m,) cosw, t cosw,t +(m —m,)sine,tSinw,t]
A . .
= Acosw, t cosm,t +ﬁ(ml —m,)sine, tsina,t

and

y= A [cos(w, — o, )t — cosE, + w,)t]

= ZA%sincomtsina)at

4.9

From the analysis in Problem 4\¥%e know, at weak coupling conditiongosw, t
and sinw,t are constants over ongcle, and the relationw, ~ g/l , so the energy

of the massm,, E,, and the energy of the mass,, E,, are the sums of their

separate kinetic and potential energies, i.e.:

1 1 mg W2 =
E, =—mx += sxx ——le +

> | rqx +—= mwx
1 . .o 1mg .
E == 2, = 2:_ 2 1Y - 2 - 2\,2
y 2“513/ +23/y 2'“23/ +2 I y 2“5)’ +2“560ay
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By substitution of the expressions of and y in terms of cosw,t andsinw,t

given by Problem 4.8 into the above equations, we have:

2
E, = %m{— Aw, Cosm, tsinw,t +VAa)a(m —m,)sina,t coswat} +

2
%mla)j{Acoswmt cosw,t JrVA(ml —m,)sina,t sina)at}

1 2 A2 2 2 A2

:Emla)aW[(nlerz) cog @, t+(m —m,)*sin a)mt]
2

= Emgaj%[mf +m; +2mm, (cos o, t —sin’ a)mt)]

2
2
- %mlwi %[mf + M + 2mym, cos2, t

E
= W[mf + mg +2mm, Cos(, — wl)t]

and
2 2
E :lm2 2Aﬂa>asina>mtcosa)at +1mla)§ 2Aﬂsina)mtsina>at
o2 M 2 M
— 27 2&[ 2 2 2
= 2mym,m; YE Sin” @, t(cos w,t +sin” w,t)
2
= 2mfm,w? %sin2 ot
1 2
= (5 mijzj(%j[l— cos2a, ]
2
= E( rl\:lTZ j[l— cos@, — ,)t]
where,
E=1mla)2A2
2 a
4.10

Add up the two equations and we have:

m(X+ 'y)+¥(x+ y)+ r(X+y) = F, cosmt

ie. X + X +$x — F, cosot (4.10.1)
Subtract the two equations and we have:

m(X— y)+$(x— Y)+ r(X—y)+29x—-y) = F, cosmt
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ie. m + N+(@+ 2sjv = F, cosat (4.10.2)

Equations (4.10.1) and (4.10.8hows that the noral coordinatesX and Y are

those for damped oscillators driven by a forEgcosat .

By neglecting the effect of , equation of (4.10.1) and (4.10.2) become:

mX +$X ~ F, coswt
my + (? + ZsjY ~ F, cosmt
Suppose the above equations have solutiokis: X,coswt and Y =Y, coswt, by

substitution of the solutions the above equations, we have:

(— Mo’ +@ij coswt ~ F, cosmt

(— Mo’ + @ + ZsjYO coswt ~ F, cosat
These equations satisfy arty if
(— ma? +¥Jxo ~F,
(— mao” + ? + ZsjYO ~F,

F
X — 20—
° m(g/l -0’
~ Fo
" m(g/! +2s/m- o?)

0
so the expressions oK and Y are given by:

F
X =x+y~—72 —cosmt
m(g/l - )
I:0

~ cosot
m(g/l +2s/m-w?)

Y=X-Yy

By solving the above eqtians, the expressions at and y are given by:
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Fo 1 1
X~ —-coswt| —; >+ — 5
2m o] - W, — 0" |
S L
y ~ —>cos ot - >
m o —0° w0; -0
where,
2s
w?=3  and 02=9.2
I ' m

The ratio of y/x is given by:

F 1 1 1 1
2°coswt[ 5 +— a)z} +

2 _ 2 2 2 2 2 2
2 2 2

X F 1 1 1 1 0>+ ol —2m

—0 cosmt - - 20

5 > > > > D2 — 0 0 — a2

m o -0 w,—-0 1 2

o5 -

a)22+a)12\

v

The behaviour ofy/x as a function of frequency is shown as the figure below:
The figure shows|y/><l is less than 1 ifo <@, or o> w,, i.e. outside frequency

range @, — @, the motion of y is attenuated.
4.11
Suppose the displacement of mags is x, the displacement of mas® is vy,

and the tension of the spring 1&. Equations of motion give:

MX+ kx = F,cosmt + T (4.11.1)
my =-T (4.11.2)
Sy-x)=T (4.11.3)
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Eliminating T, we have:
MX + kx = F, cosat + Sy — X)
so for x=0 at all times, we have
F,cosat +sy=0
that is
y= —iCOSa)t

s

Equation (4.11.2) and (4.11.3) now give:
my+sy=_0

with @®=s/m, so M is stationary ate® = s/m.
This value of o satisfies all equations of motion forx=0 including

T =—F,coswt

412

Noting the relation:V = gq/C, the voltage equations can be written as:

% G _ d.

C C dt

% G _ dy

CcC C dt
so we have:

ql_qz = LCI”a

QZ _qs = LCl“b
i.e.

ql_qz = LCI”a

Q2 - Q3 = LCI”b

By substitution ofg, =-1,, ¢,=1,-1, and ¢, =1, into the above equations, we
have:

—1,—1_+1,=LCI,

l,—1,—1,=LCi,

LCi,+2I,-1,=0
LCi, -1, +2l,=0
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By adding up and subtractingetlabove equations, we have:
LC(i, +i,)+1,+1,=0
LC(i,—1,)+3(1,-1,)=0

Supposing the solutions to the abovema@rmodes equations are given by:

I, +1, = Acosmt

l,—1, = Bcosamt
so we have:
(-A®’LC + A)cosat =0
(-Bw®LC +3B)coswt =0

which are true for allt when

w-=— and B=0
LC
or
wz:i and A=0
LC

which show that the normal maglef oscillation are given by:
1
Ia = lb at COlZ = E
and

4.13

From the given equations, we have the relation betwieeand |, given by:

i wM
Izz—-ll
Z,+lal
SO.
*M
E:ia)l_pll—ia)MIZ: ia)Lp+—_ I,
Z,+iol
i.e.
E . w*M?
—=|a)Lp+—_
[, Z,+iol

which shows thatE/I,, the impedance of the whole syist seen by the generator, is

the sum of the primary impedanceyL,, and a ‘reflected impedance’ from the
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secondary circuit ofo®M?/Z_, where Z_ = Z, +ial,.

4.14
Problem 4.13 shows the impedance seen by the genefatisrgiven by:
2 2
Z=iol,+ -2 M
Z,+lal

Noting that M = /L L, and Lp/LS = nf,/ns2 , the impedance can be written as:

ol Z, —0’L L.+ @w*M? ioL Z, —o®M?*+0*M? el Z
7= p—2 p—s - p—2 _ pe2
Z,+iol Z,+iol Z,+iol
so we have:
1 Z,+iol 1 1 1 1
Z ol Z, lol Sog, lol, &Z
‘ n2

which shows the impedanc& is equivalent to the primary impedandel

connected in parallel with an impedance, / n)’Z,.

4.15

Suppose a generator with the internal impedancé,ofis connected with a load with

an impedance ofZ, via an ideal transformerith a primary inductance ot , and

the ratio of the number of primary andceadary transformer coil turns given by

np/ns, and the whole circuit odlate at a frequency otw. From the analysis in

Problem 4.13, the impedance of the load is given by:
1 1 1

H 2

Z oL, &Z
2 72
nS

At the maximum output powerZ, =Z,, i.e.:

1 1 1 1

_=—+ =

Z, iel, M_ Z

which is the relation used for matching a load to a generator.
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4.16
From the second equation, we have:

By substitution into the first equation, we have:
ZlZZ

M

l,+2,1,=E
l, = E__
2= 7 -\
M
ZM

Noting that Z,, =ioM and |, has the maximum value wheK, =X, =0, i.e.

Z, =R and Z, =R,, we have:

N I N =
in—_R1R2 oM +@ 2\/0)MR1RZ
oM oM

oM

||2|: ||1|: ||1|

E
2JRR,

which shows|l,| has the maximum value ofLRZM, when oM :Rl—l\l}, i.e.
al

2R
oM = JRR,

4.17

By substitution of j = l1land n=3 into equation (4.15), we have:

! = 20)5[1— COS%} = 2505{1— %} = 2-V2)¢
By substitution of j = 2and n=3 into equation (4.15), we have:

wf = ng[l— Cosz—ﬁ} =2,
4

By substitution of j = 3and n=3 into equation (4.15), we have:

w? = 20)5[1— COS%} = 2w§{1+ %} = 2+V2)?
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In equation (4.14), we havéy, = A, = @hen n=3, and noting thatw; =T/ma,

equation (4.14) gives:

2
when r = 1 —Ab+[2—w—2jﬁi—A2:0
2
0)2
i.e. [2——2J,0\_L—A2 =0 (4.17.1)
)
0)2
whenr= 2 —A_L+(2——2]A2—A3:0 (4.17.2)
Wy
a)z
when r =3: —A2+(2——2J%—A4:0
Wy
602
i.e. _A2+[2__2JA%:O (4.17.3)
2
Write the above equations in matrix format, we have:
2- 0’/ -1 0 A
-1 2- 0’/ -1 A |=0
0 -1 2—-0®/} | A

which has non zero solutions provided the determinant of the matrix is zero, i.e.:
(2-0?/0f)* - 2Q2-0*/0f) =0
The solutions to the abewequations are given by:

o= (2-2)0}, @?=20% and @?=2+2)a?
4.18
By substitution of 2 = (2—+/2)a? into equation (4.17.1), we have:
V2A-A=0 ie. A:A=1:42
By substitution of 2 = (2—+/2)a? into equation (4.17.3), we have:
~A+J2A=0ie. A:A=+2:1
Hence, whenw = (2—\/§)a>§, the relative displacements are given by:
A:AA=1:42:1
By substitution of w? = 2a into equation (4.17.1), we have:
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A,=0
By substitution of w? = 2a into equation (4.17.2), we have:
-A+A=0 ie. A:A=1-1
Hence, whenw? = 2w?, the relative displacements are given by:
A:A:A=10:-1

By substitution of ? = (2+/2)? into equation (4.17.1), we have:
~J2A-A=0ie. A:A=1-2

By substitution of ? = (2++/2)? into equation (4.17.3), we have:
~A-2A=0ie. A:A=-V2:1

Hence, whenw? = (2+ \/E)a)g, the relative displacements are given by:

A:A:A=1:-/2:1

The relative displacements of the three masses at different normal frequencies are
shown below:

@? = (2—2)? ®? = 2w? 0? = (2+2)0?

As we can see from the above figureatttighter coupling corresponds to higher
frequency.

4.19
Suppose the displacement of the left massis x, and that of the central madd

is y, and that of the right mass1 is z. The equations of motion are given by:
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X = S(y—X)
My = -s(y—-x)+ Hz-y)
nZ=-gz-Y)
If the system has a normal frequency @f and the displacemenof the three masses
can by written as:
X= Uleiwt
y= ﬂzeiaﬁ
7= nseia)t
By substitution of the expressions of displacements into the above equations of
motion, we have:

i wt

~ma’ne” = s(, - ﬂl)ei“t

i ot

- Ma)zﬂzeiwt =-5(1, _771)eia)t + 3(773 —1,)€

- "7‘10)2773(:!(0t =—S(175 - 772)(:3iwt
[(s—ma®)n, —sn,]e” =0
[-sm, + (25— Ma)2)772 - 5773]eiwt =0
[-s77, +(s—mo*)n,]e”" =0
which is true for allt if
(s—mw®)n, —sn, =0
— s+ (2s=Mo*)n, -1, =0
— 17, +(S—Mw®)17, = 0
The matrix format of these equations is given by:

s—maw’® -s 0 7
-s  2s-M&® -s |n,|=0
0 -s s—ma?® |\ 7,

which has non zero solutions if and only if the determinant of the matrix is zero, i.e.:

(s—mw?)’ (2s— Ma?) - 25*(s—mw?) =0

ie. (s—me?)[(s—mw®)(2s—Mw®)-2s’] =0
ie. (s—me*)[MMe* —s(M +2m)w’] = 0
ie. o’ (s—mo?)[MMao® —s(M +2m)] = 0

The solutions to the above equation, tlee frequencies of the normal modes, are
given by:

=0, 2= and 2 = SXM*2M)
m mM
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At the normal mode ofw® =0, all the atoms are stationary, =7, =75, i.e. all the
masses has the same displacement;

At the normal mode ofw’ :rin , 1,=0 and n,=-n,, i.e. the massM is
stationary, and the two masses have the same amplitutheit are “anti-phase” with

respect to each other;

At the normal mode ofa)Z:S(M—lem), min,:ny=M:=2m:M, ie. the two
m

mass m have the same amplitude and are givase” with respecto each other.
They are both “anti-phase” with respect to the m&ss The ratio of amplitude

between the massn and M is M/2m.

4.20
In understanding the motion of the masses mase instructive taonsider the range

n/2< j<n. For each value of the frequenay, the amplitude of ther™ mass is
A= Csinrj—”1 where C is a constant. Forj =n/2 adjacent masses havesd2
n+

phase difference, so the ratio®) :A :A,=-1:0:1, with the r" masses

stationary and the amplitudd, , anti-phase with respect té\ ,, so that:

+1 A - 0
M AR
A

j=n/2 s

As n/2—»n, A begins to move, the couplifgetween masses tightens and when
] is close ton each mass is anti-phase with edpto its neighbour, the amplitude
of each mass decreasetil in the limit j =n no motion is transmitted as the cut off

frequency cof =4T/ma is reached. The end points are fixed and this restricts the

motion of the masses near the end points at all frequencies except the lowest.

421

By expansion of the expression @ff, we have:
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i i 2 . 4 . 6
wzzﬁ(l Co&jzﬁ (iz/n+D° (jz/n+D*  (jz/n+D°
' ma n+1) ma 2 4) 6!

If n>>1 and j<<n, jz/n+1 has a very small value, she high order terms of

the above equation can be negldcto the above equation become:

E{(W_l)} L( ir )

[ON =
' ma 2! mal n+1
. jz | T
I.e. a) _ —_— —_
" n+1\Vma
which can be written as:
jr [T
O
I Ve
where, p=m/a and | =(n+1Da
4.22
From the first equation, we have:
L| — qr—l_qr
r-1 C

By substitution ofg, =1,,—-1, and g ,=1,,—-1,, into the above equation, we

r

have:
L| =|r—2_2|r—1+|r
r-1 C
If, in the normal mode, the cemts oscillate at a frequency, we may write the
displacements as:

(4.22.1)

I, = A—zeiwti Iy = A—lem and |, = Aem}t
Using these values of in equation (4.22.1) gives:

—COZLA_leia)t — Az_zél"'p} gt

or
~A,+(2-LC0)A ,-A= 0 (4.22.2)
By comparison of equation (4.22.2) wigguation (4.14) in t¢ book, we may find
the expression ofl, is the same as that of, in the case of mass-loaded string, i.e.
Mz

|, = Aé” = Dsin——¢“*
' n+1

Where D is constant, and the frequeney is given by:

© 2008 John Wiley & Sons, Ltd



where, j=123.n

4.23
2

By substitution of y into % we have:

i(wt+kx)

2 2
% :%(eiwteiKX) - _ple

2

By substitution of y into % we have:
X

82y 82 (eiwteikx) - _ kZei(a)HkX)

2 o
If @=ck, we have:

2 2
oy 2 o’y _ (_a)z + CZkZ)ei(wt+kx) _0

2 2
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SOLUTIONS TO CHAPTER 5

5.1

2
Write U =Ct+ X, and try % with y = f,(ct+X), we have:
X

oy _ df,(u) o’y 0*f,(u)
— = , and =
ox  du x> ou?

Try 1oy with 'y = f,(ct+x), we have:
c” ot

y_ oW Py Lo

ot ou ot? ou?
Yo}
10%y_ 1,0 () _0°f,(u)
c® at?  c? ou? ou?
Therefore:
’y_10%y
ox>  ¢? ot?
5.2

If y= f(ct—x), the expression fory at a timet+At and a positionX+ AX, where

At = A¥/c, is given by:

Yiarxeax = fl[C(t+AL) = (X+AX)]
= f[c(t+Ax/c) — (X+ AX)]
= f[ct+AX—X—AX]
= filct—X] =y,

i.e. the wave profile remains unchanged.

If y=f,(ct+X), the expression fory at a timet+At and a positionX+ AX, where

At =—Ax/c, is given by:
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Yeoatxeax = IC(L+ At) + (X + AX)]
= f[c(t — AX/C) + (x+ AX)]
= f[ct— Ax+ X+ AX]
= flct+x] =y,

i.e. the wave profile also remains unchanged.

5.3

v

qw

5.4
The pulse shape before reflection is given by the graph below:

The pulse shapes aftef a length of Al of the pulse being reflected are shown below:

(@ Al=1/4
1 1 1
> | |«
L2
3
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(b) Al =1/2

Z | Z,=o
(c) Al=3/4
Z | Z,=o
3
<« —| »
4
B
> —l -
v 2 '
d) Al =1
Z | Z,=o
«— | —>
55

The boundary conditiony, + Yy, =Yy, gives:

Aei(a)t—kx) " aei(wh—kx) _ Azei(a)t—kx)
At x =0, this equation gives:

A+B =A
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The boundary conditionMa =T 9 y,—T i(yi +Y.) gives:
OX OX

Ma — _ileA\Zei(Wt_kX) + ikTAei((x)t—kX) _ ikTBlei(wHkX)
At Xx=0, a=Y, =Y +V,, sothe above equation becomes:
2 T . T . T
-o0°'MA =-io— A +io— A -lo—
A =-lo_AtioA-io B

ie. iIAi—iIBl:(—a)M +i%jA2

C C

Noting that T/C = pC, the above equation becomes:

ipcA —ipCB = (oM +ipc)A, (5.5.2)

By substitution of (5.5)linto (5.5.3, we have:

ipcA —ipcB = (- M +ipc)(A + B)

_ —iq
1+iq

B
A

where g = wM /2pC
By substitution of the above equation into (5.5.1), we have:

iq

A~ 1+iq A=A
ie.
A_ 1
A 1+iq
5.6
Writing = tané, we have:
% - 1+1iq T 14 iane - cos;isigsine = coste ™
and
B, -ig ~—itand  —isind _ singe @/

K: 1+iq 1+itand cosd+ising
which show that A, lags A by 6 andthatB, lags A by (7/2+86) for 0<0< /2
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The reflected energy coefficients are given by:

B

2
TP B
:‘sma::'(‘*+ /2)‘ =sin’g

and the transmitted energy coefficients are given by:

2
Al ‘cos@e“"‘2 =cos 6

5.7
SupposeT is the tension of the string, the average & working by the force over one period
of oscillation on one-wavelength-long string is given by:

W= 2P M 1YY gt
23 T S

By substitution of y = asin(wt —kx) into the above equation, we have:

— @ (27w
w=2
2

2k2 2T o
T

E/k—T[—kasin(a)t —kx)][ wasin(wt — kx)]dxdt

in? (et — kx)dxdt

@*K?a%T (2r/o (Vk 1— cOSRawt — 2kX
X ety QZ ) dxdlt
o*k’a’T 1 27 1

2r 2 @ Kk
_ aoka’T
2

Noting that k = a)/c and T = ,oc2 , the above equation becomes

. 2,2 2 2,2
W:a)apc _wa’ e
2c 2

which equals the rate of eggrtransfer along the string.

5.8

Suppose the wave equation is given by= sin(wt —kx) . The maximum value of transverse
harmonic force F, is given by:

Froax = T(@] = T[2 Asin(wt - kx)} =TAKk= TAo
ax max ax max C
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max

Aw  01x27x5 7

T F 03 03
C

Noting that pC = T/C, the rate of energy transfer along the string is given by:

272
_ oA 1ICL)ZAZ = 1><%>< (2rx5)?x 0.1 = 3—”[\N]
2 2cC 2 20
so the velocity of the wave is given by:

2P 2x37/20 30, o
= 252 2 z=—1Ims
pw°A° 001x (27x5)°x01° 7«

c

]

5.9

This problem is not viable in its present form and it will be revised in the next printing. The first
part in the zero reflected amplitude may be solved by replagiiay Z;, which then equates

with R’ because each is a reflection atZgZ, boundary. We then have the total reflected

amplitude as:
tTR
1-R?
Stokes’ relations show that the incident amplitude may be reconstructed by reversing the paths of
the transmitted and reflected amplitudes.

R+tTR(1+R?+R*+--) =R+

T is transmitted back along the incident directiontds in Z, and is reflected adR’' in
Z,.

R is reflected inZ, as (R)R= R’ back along the incident direction and is refractedl&®
inthe TR" direction in Z,.

We therefore haveT+R*=1 in Z, i.e. tT =1-R* and T(R+R) =0 in Z, giving

R=-R, ..tT =1-R* =1-R? giving the total reflected amplitude iZ, as R+ R =0

with R=-R'.
: R? :
1 \{591/ R tT\aliM R z,
0, TR /0,16, Z,
T R~
Zl
Fig Q.5.9(a) Fig.5.9(b)
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Note that for zero totaeflection in mediunk,, the first reflectiorR is cancelled by the sum of all
subsequent reflections.

5.10

The impedance of the anti-reflection coati,, should have a relation to the impedance of air

Z,, and the impedance of the len&,,, given by:

= / 1
Zcoat = Zairzlens = n.n
air ' lens

So the reflective index of the coating is given by:

ncoat = Zi = V Iﬂlair nIens =N 15 = 1'22

coat

air

and the thickness of the coatingy should be a quarter of light wavelength in the coating, i.e.

7
d=—2 =240 _415.107[m)
4ncoat 4X 1'22
511
By substitution of equation (5.10) integz, we have:
X
Y_ O (A cosat+ B, sinat) cost
OX ¢ c
SO:
82 a)s . . a)nt a)r?
8_x32/ — _?(A1 cosw,t+ B, sinw,t)sin . = _? y

1)
Noting that k = —", we have:
C

0? ®* ®?

5.12

By substitution of the expression c(fyrf) into the integral, we have:

max
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1 5,0 1 5 2\ [ a2 PnX
Epwnjo(yn)maxdx_zpwn(ph + Bn)J.OSIn de

1 L, 5 ool 1-cosRm,X/C)
=2 POl A+ B[, 5 dx

== pw +B7)| | ———sin—="
et ”)[ 20 ¢

20|
C

. nzc . . . _
Noting that o, = I_ i.e. sIn =sin2nz =0, the above equation becomes:

1 2 | 2 _ 1 2 2 2
PO (e dx= 2 Pl (A +BY)

which gives the expected result.

5.13
Expand the expression of/(X,t) , we have:
y(x,t) = Acost — kx) + rAcost + kx)

= Acoswt coskx+ Asinat sinkx+ rAcoswt coskx— rAsinat sinkx
= A(L+r) coswt coskx+ A(l-r)sinwt sinkx

which is the superposition of standing waves.

5.14
The wave group has a modulation envelope of:

Aw. Ak
A=A Cos —t——X
& {2 2 j

where Aw =, —w, is the frequency difference andk =k —k, is the wave number

difference. At a certain timd, the distance between two successive zeros of the modulation

envelope AX satisfies:

A—kAX=71
2

Noting that k = 27/, for a small value ofA4/1, we have: Ak ~ (277/ A*)AA, so the above

equation becomes:
27TAA
207

AX= T

AXziﬂ,
AL

which shows that the number of wavelengths contained between two successive zeros of the

modulating envelop iss 1/AA
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5.15
The expression for group velocity is given by'
dw dv

do _d k&Y
Yo = gk T ak Y VK G

By substitution of the expression of into the above equation, we have:

v :Csin(ka/2)+ki{csin(ka/2)}
dk

’ ka/2 ka/2
S|n(ka/2) (ka2/4)0034<a/2) (a/2)sin(ka/2)
7 ka2 (ka/2)?
3 S|n(ka/2) sin(ka/2)
= a2 +ccos€ c—— = ka2
ka
=CCOS—
2

At long wavelengths, i.ek — 0, the limiting value of group velocity is the phase velooity

5.16
Noting that the group velocity of light in gas is given on page 131 as:

V. = A Oe,
g 2¢, 04

we have:
LA 0 \/( ) 630
\ g =V & +—=
25 oA 2 04
=V [A+E2— DA |+ 420 (A+E2— D/lzj
i A 204 A
=V (A+E2— DA +£(—2—E’—2D/1j
i A 2\ 4
=V (A+%— DA J{_Z_E;_ Dﬂfﬂ
=Vv(A-2DA1%)
5.17
c? o,
The relation &, = — = 1—(—ej gives:
1% @
a)zfz i a)ez
\Y

By substitution of v = a)/k, the above equation becomes:

© 2008 John Wiley & Sons, Ltd



o° = w? + ck? (5.17.1)

e

As o — o, , we have:
2 2
c @,
—2:1— —£ 1 <1
v @

i.e. V> C, which means the phase velocity exceeds that of lght
From equation (5.17.1), we have:

d(w®) = d(a)e2 +c’k?)
ie. 20dw = 2kc’dk
which shows the group velocity,, is given by:

,k ¢ c
c?—=-==c<c
® VvV Vv

dw
Vg = =
dk
i.e. the group velocity is always less than
5.18
From equation (5.17.1), we know that only electromagnetic wave® ofw, can propagate
through the electron plasma media.

For an electron number density, ~ 107, the electron plasma frequency is given by:

0
w, =€ /n:e =16x10" 19><\/ o1 103%0288 o7 " 565x10"[rad -s™]
Eo LA1X X 0.0X

Now consider the wavelength of the wave in the media given by:

vV 2w 2w 2nc 2nx3x10
A=—= < < = T
f ) 565x10'

e

= 3x107[m]

o o

which shows the wavelength has an upper limitf10°m.

5.19
The dispersion relation?/c? = k? + m?c?/h? gives
d(w?/c?) = d(k? + m*c?/h?)

e. 29 40 = 2kdk
C
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. wdo
ie. —— =
k dk

Noting that the group velocity iflw/dk and the particle (phase) velocity ®/k , the above

equation shows their product is°.

5.20
The series in the problem is that at the bottom of page 132. The frequency components can be
expressed as:

sinAw-t/2) .

R=na
Aw-t/2

oswt

2
which is a symmetric function to the average frequeigy. It shows that atAt = A—” R=0,
W
SAC-Aw =21

In k space, we may write the series as:
y(k) = acosk x+acosk, + K)x+---+acosk, + (n—1)ok]x

As an analogy to the above analysis, we may replacéoy k andt by X, and R is zero at
Ax:z—ﬂ, i.e. AKAX=2r
Ak

5.21
The frequency of infrared absorption of NaCl is given by:

o= CAN N 2><15x( ! =+ ! 27j:3.608><1013[rad-s‘1]
alm, m 23x 166x10%  35x 166x10°

The corresponding wavelength is given by:

_2nCc 27 x3x10° N
® 3.608x10°

52 pam]

which is close to the experimental valuélum

The frequency of infrared absorption of KCl is given by:

o= CAN S ) 2x15x( 1 —+ = _27]=3.13><1013[rad-s‘1]
alm  m 39x 166x10%  35x 166x10

The corresponding wavelength is given by:

_2nCc 27 x3x10°

A =
@ 313x10°

~ 60 um]

which is close to the experimental valuélum
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5.22
Before the source passes by the observer, the source has a veldgityhef frequency noted by
the observer is given by:
Cc
c—u
After the source passes by the observer, the source has a veloeity othe frequency noted by
the observer is given by:

v, = 1%

C

c+u
So the change of frequency noted by the observer is given by:

C c j 2vcu

Av=v,-v, = -
2t (c—u C+u (c?—u?)

v, = 1%

5.23

By superimposing a velocity ofVv on the system, the observeecomes stationary and the
source has a velocity ofl —v and the wave has a velocity @f—V. So the frequency registered
by the observer is given by:

w c—V _C-V
c-v—-(u-v) c-u

v

5.24
The relation between wavelength and frequencyv of light is given by:
Cc
V=—
A
So the Doppler Effecty’ = can be written in the format of wavelength as:
c—u
c__ ¢
A" A(c-u)
c—-u
ie. A=—=1
Cc

Noting that wavelength shift is towards red, i.8. > 4, so we have:

M=2-21=-22
C

11
e LY :_3x108><17cr _ _5[Kms]
A 6x10

which shows the earth and the star are separating at a veIodﬁanS‘l.

5.25
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Suppose the aircraft fiying at a speed ofu, and the signal is being transmitted from the aircraft
at a frequency ofv and registered at the distt point at a frequency of’ . Then, the Doppler
Effect gives:
, Cc
vV =v
c—-u
Now, let the distant point be tiseurce, reflecting a frequency of and the flying aircraft be the
receiver, registering a frequency of'. By superimposing a velocity ofu on the flying
aircraft, the distant point and signal waves, we bring the aircraft to rest; the distant point now has a
velocity of —uU and signal waves a velocity of C—U . Then, the Doppler Effect gives:

s, , —C-—u ,C+U C+uU
Vv = =V =
—c—-u—(-u) c c-u
which gives:
- A 15x1
u=Y""¢ 4 5x10 x3x10° = 75qms’]

= = C:
v +v 2v+Av 2x3x10°

i.e. the aircraft is flying at a speed af50m/'s

5.26
Problem 5.24 shows the Doppler Effect in the format of wavelength is given by:
c—u
A=—=21
C
where U is the velocity of gas atom. So we have:

AA|=|2"- 4 =M/1
Cc
ie.
12
=4 =] = a4 _ 2X1U_7 x3x10P = 1x10°%[ms’]

A 6x10
The thermal energy of sodium gas is given by:

1 my,u° = Skt
2 2

where k = 138x10%°[JK™"] is Boltzmann'’s constant, so the gas temperature is given by:

2 27
T MU’ _ 23x166x10 x2130002 ~ 900K]
3k 3x138x10

5.27
A point source radiates spherical waves equally in all directions.

, vC . . .
V = - |- Observer is at rest with a moving source.
c—u
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g o
u’ =ucosd 0

!

c—V . .
V' = (—j Source at rest with a moving observer.

Cc
U X\OI

V' =vcosd

c-V .
V" = (—j Source and observer both moving.

c-u
u
v
s A0 %\ o
u' =ucosf V' =vcosd

5.28
By substitution of equation (2) into (3) and eliminating, we can find the expression df

given by:
t = EP— k(x—vt)}
v| k

Now we can eliminateX' and t’ by substituting the above equation and the equation (2) into
equation (1), i.e.

2

2
X2 — A2 = K3 (x—Vt)? —C—Z[%—k(x—vt)}
V

2 2 2 2
{1— k2 +C—2(%— kj }(2 + 2kv{k+c—2(%— kﬂXtﬁ{kzvz[c—z—lj—CZ}tZ =0
\ \Y \Y

which is true for all X and t if and only if the coefficients of all terms are zeros, so we have:
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k2(C2 _VZ) — C2

The solution to the above equations gives:

where, 8 =V/c

5.29

Source at rest a, in O frame gives signals at intervals measured @yas At =t, —t,

where t, is later thant,. O' moving with velocity v with respect toO measures these
intervals as:
t,—t/ = At' = k(At —C—VZAX) with Ax=0
- At = KAt
| =(X,—%) asseenbyO, O seesitas(x,—X)=K[(x,—x)—v(t,—t)].

Measuring l" puts t, =t] or At'=0

At’:k[At—lz(xz—xi)}:O e At =—2(x,—X)=t,~t,
C C

==X =KX, — %) — V(AL)] = k|:(x2_xl)_§(xz_xi):| _ X2;X1

S =1/k
5.30

Two events are simultaneou$;, =t,) at x, and X, in O frame. They are not simultaneous

in O frame because:

t = k(tl—c—vlej #t, = k(t2 —C—szzj e X #X,

5.31
The order of cause followed by effect can never be reversed.

2 events X,t; and X,,t, in O framewitht, >t ie. t,—t >0(t, islater).
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t;—tl’:k{(tz—tl)—c—vz(xz—&)} ie. At':k[At—C—VZAx} in O frame.

V( AX \Y}
At" real requiresk real that isv<c, At' is +ve if At >—(—j where — is +ve
cl c C

AX . . .
but <1 and — is shortest possible time for signal to traversk .
Cc

SOLUTIONS TO CHAPTER 6

6.1
Elementary kinetic theory shows that, for particles of massin a gas at temperaturé¢ , the
energy of each particle is given by:

Lo =3kt
2 2

where V is the root mean square velocity akd is Boltzmann’s constant.
Page 154 of the text shows that the velocity of so@nds a gas at pressurf is given by:

» PPV RT_NKT
p MMM

c

where V is the molar volume,M is the molar mass andN is Avogadro’s number, so:

MC? = NKT = kT ~ ng

6.2
The intensity of sound wave can be written as:

| = PZ/pOC

where P is acoustic pressurep, is air density, andC is sound velocity, so we have:

P = /lp,c = v10x 129x 330 ~ 65 Pa]

which is 65x10™* of the pressure of an atmosphere.

6.3
The intensity of sound wave can be written as:

1 2 2
| ==p.Cco
Zpo n

where 77 is the displacement amplitude of an air molecule, so we have:
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po—t (21 220 gq10%m)
2nv\ p,c  27x500 V129x330
6.4

The expression of displacement amplitude is given by Problem 6.3, i.e.:

10 10 2
po b [2x10% 1 X\/leOxl(T x10° ) poorg
2v PoC 27 x500 129x330
6.5

The audio output is the product of sound intenaitgl the cross section area of the room, i.e.:

P =1A =100l ,A=100x107?x3x3~10W]

6.6
The expression of acoustic pressure amplitudevengdy Problem 6.2, so the ratio of the pressure
amplitude in water and in air, at the same sound intensity, are given by:

pwater _N | (pOC)water — (,OOC)Water _ 145><106 ~ 60
\ 400

pair \/l (poc)air (poc)air
And at the same pressure amplitudes, we have:
Iwater — (pOC)air — 400 ~ 3><10_4

I air (poc)water 145)( 106

6.7
If 7 isthe displacement of a section of a stredctiering by a disturbance, which travels along it

in the X direction, the force at that section is given H?::Yz—n, where Y is young’s

modulus.

The relation betweerY and S, the stiffness of the spring, is found by considering the force
required to increase the length of the spring slowly by a small amouht<< L, the force F
being the same at all points of the spring in equilibrium. Thus

8—77=|— and F = Y I
ox L L
If | =X inthe stretched spring, we have:

F =sx= (%jx and Y =sL.

If the spring has mas$n per unit length, the equation of motion of a section of lend# is
given by:
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2 2
ma—de:a—Fdx:Ya—de
ot OX OX

o’n Y o’n sLo'n
or =— =—
o> mox? mox

. : |sL
a wave equation with a phase velocxkj:
m

6.8
At Xx=0,

n = Bsinkxsinmt
At X=1L,

2
M 8_727 = _sLa_U
ot OX

i.e. — Ma®?sinkL = —sLkcoskL

(which for k =w/v, p=m/L and v=,/sL/p from problem 7 whenl <<L)

becomes:

oL, oL sl® pL m
—tfan—=——=""=—
\Y \Y} Mv M M

(6.8.1)

For M >>m, v>>wlL and writing a)L/V =@ where @ is small, we have:

tand = 0+ 6°/3+...
and the left hand side of equation 6.8.1 becomes

0%[1+60%/3+...] = (wL/V)*[1+ (@l /V)?/3+...]

Now V= (sL/p)*? = (sl?/m)*? = (s/m)** and wlL/v= a)m

So eg. 6.8.1 becomes:

o’m/s(L+ w*my3s+...) = m/M

or

o* (L+ »’m/3s) = s/M (6.8.2)

Using o° = S/M as a second approximation in the bracket of eq. 6.8.2, we have:
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2 S
i.e w° = 1
M+-m
6.9
The Poissons ratiac = 025 gives:
L = 025
201+ p)
ie. A=u

So the ratio of the longitudinal wave velocity to the transverse wave velocity is given by:

ﬁ=\/2,+2,u =\/,u+2,u _J3
v o u u

In the text, the longitudinal wave velocity of the earth8kms™® and the transverse wave

velocity is 445kms*, so we have:

A+2u 8
Ju 445
ie. A=123u

so the Poissons ratio for the earth is given by:

A 123u

o = = ~ 0.276
200+ 1)  2x (123u+ u)

6.10
At a plane steel water interface, the energy ratio of reflected wave is given by:
2 v 2
1 ( Zgeo=Zyaer | [ 39%10" - 143x10° | 86%
I\ Zgeor+ Zueter 39x10" + 143x10°

At a plane steel water interface, the energy ratio of transmitted wave is given by:

| 47,2 4% 349x10° x 143x10°

ice—water —
(Zeo + Zoaer)? (349x10° + 143x10°)2

=~ 823%

_t
I i

Water)

6.11
Solution follow directly from the coefficients at top of page 165.
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. . n
Closed end is zero displacement with- = —1 (node).
n

n . .
Open end:— =1 (antinode, 7 is a max)
n

Pressure: closed endp—r =1. Pressure doubles at antinode

B
Open end :& = -1 (out of phase — cancels to give zero pressure, i.e. node)
i
6.12
(a) The boundary conditionaa—f7 =0 at x=0 gives:
X

(—Aksinkx+ Bkcosky)sinat| =0

i.,e. B=0, sowe have:; = Acoskxsinwt

The boundary conditionaa—f7 =0 at x=L gives:
X
—kAsinkxsinat| =0
i.e. KAsinkLsinawt =0

which is true for allt if kl=nx i.e. ZT”I =nx or A :gl
! n

The first three harmonics are shown below:
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(b) The boundary condi

7,
° f 3/ ' x
7,

tion(g—n= 0 at x=0 gives:

X

(—Aksinkx+ Bkcosky)sinat| =0

i.,e. B=0, sowe have:p = Acoskxsinat

The boundary conditionp =0 at X=L gives:

i.e.

which is true for allt if

Asinkxsinat| =0

Acosklsingt =0

ki :(n+£j7z ie. 2—”I =(n+£j7z or 1=
2) A 2

The first three harmonics are shown below:
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n=0: >
0 | X
n A
n=1: 0 >
/3 I x
77 A
o O /—\ :
1/5 3/5 X
6.13
The boundary condition for pressure continuityXt 0 gives:
[Aei((m_klx) + a_ei(wt_kl)()]xzo :[Agei(wt_kzx) + %ei(wt_kZX)]xzo
i.e. A+B =A+B, (6.13.1)

In acoustic wave, the pressure is given y= Zr, so the continuity of particle velocityy at

x=0 gives:
Aei(wt—klx) + aei({ut—klx) Aei({ut—kzx) + Bzei({ut—kzx)
Zl x=0 22 x=0

ie. Z,(A-B)=2Z(A-B,) (6.13.2)
At X =1, the continuity of pressure gives:

[ %ei(mt—kzx) n Bzei(mt—kzx)]x=l _ ’%ei(wt—@x) |

X=]

ie. Ae™ + B = A (6.13.3)

The continuity of particle velocity gives:
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Azei(wt—kzx) n %ei(mt—kzx) %ei(wt—ky()
ZZ x=I B Z3 x=
ie. Z,(Ae™ - BE9)=2Z,A (6.13.4)

By comparison of the boundary conditions derived above with the derivation in page 121-124, we
can easily find:

é A32 - ary
Z, A (ry+D)%cos k| +(r,, +1y,)° sin’k,

If we choosel = 4,/4, cosk,l =0 and sink,l =1, we have:

A Ay
23 '6&2 (r21+ r32)2
. Z, Z
when 1y, =1,,,ie. =2==2 or Z?=27,.
1 2

6.14
The differentiation of the adiabatic condition:

Pl % |
R | V,@+9)
gives:

oP  op e O°1
- 2 _ _ 1+ 6 ) ¥
OX  OX o) x>

since § = dn/ox.

Since (1+ )@+ S) =1, we may write:

ap +1 8277
— =—R A+ —
OX Fol+s) ox?

and from Newton’s second law we have:

op 6277
ox . oo

so that

2 2
8—727 =c(1+ S)”la—Z, where ¢ = Vi)
ot OX o
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which shows the sound velocity of high amplitude wave is givercpfL+ S) 012

6.15
The differentiation of equationn” = w? +3aTK’ gives:

2092 _ 6aTk
dk

ie. odo_ a1
Kk dk

where @ represents Boltzmann constan/K is the phase velocitydw/dk is the group
velocity.

6.16

The fluid is incompressible so that during the wave motion there is no change in the volume of the

fluid element of heighth, horizontal lengthAX and unit width. The distortion; in the

element AX is therefore directly translated to a change in its hefghtind its constant volume
requires that:

hAX = (h+ a)(Ax+ An) = hAX+ hAn + aAX+ aAn
Becausea << h and An << AX, the second order terrwAn is ignorable, we then have
a =-hAn/Ax=-hon/ox, and from now on we replacAx by dx.

We see that fora +Vve (or increase in height), we ha\@n/éx—ve, that is, a compression.

On page 153 of the text, the horizontal motionthef element is shown to be due to the difference
in forces acting on the opposing faces of the elentehx , that is:
oF o’n

~ % Ax=ph

ox Fat

where the force differencedF is —ve when measured in the-ve X direction for a
compression.

Thus:
2
_F 4x= pha—?dXZ L (6.16.1)
OX ot OX

where the pressure must be averaged over tighthef the element because it varies with the
liquid depth. This average value is found from the pressure difference (to unit depth) at the liquid
surface to between the two values @f on the opposing faces of the element. This gives:

dR, = pgda
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dP da

S0 —2 dx= pg—dx
dx 9
and we have from eq. 6.16.1:
oF do o°n o°n
——dx= h an = —hpg—dx=h? > dx= ph—- dX
ox ox = P o P o
The last two terms equate to give the wave equation. For horizontal motion as:
2 2
9 _ gn21
ot oX

with phase velocityv = ,/gh.

The horizontal motion translates directly to the vertical displacensento give an equation of
wave motion:

o _ 0

y—g x>

with a similar phase velocityw = ,/gh

6.17
(a) Since h>> A, i.e. kh>>1, we have: tanhkh~1, therefore:

vzz{g+T—k}tanhkh~g+T—k>2\/g Tk _ \/g_T
k p k p k p p

i.e. the velocity has a minimum value given by:

vt = 49T
0

when g:T—k,i.e. k2= o A =2rx /L
k p T £9

(b) If T is negligible, we have:
~ 9 tanhkh
Kk

and whenA >> 1., k— 0, and for a shallow liquid,;h— 0. Noting that whenhk — O,

tanhkh — kh, we have:

- \/% tanhkh ~ \/% kh=./gh

(c) For a deep liquid,h — +00 i.e. tanhkh— 1, the phase velocity is given by:

v2 = Ytanhkn~ 2 e, v, =\/§
Pk k k
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and the group velocity is given by:
kdv f / f f
Vg:Vp+ p:Vp—lk %: g_l gzl g
dk 2 Vk k 2Vk 2Vk

(d) For the case of short ripples dominatedsoyface tension in a deep liquid, |(% <<

Tk
0

and h — 4o, we have:

V2 = lim T—ktanhkh:T—k e v = Tk

h—+0 2 P 1%

and the group velocity is given by:

kdy, [Tk k [T 3 [Tk 3
V.=V + = |—4= |—=2|—==2v
¢ P dk p 2\pk 2\p 2°
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SOLUTIONS TO CHAPTER 7

7.1
The equation
d d
-1, =—q, =C,dx—V,
r-1 r dt qr 0 dt r
at the limit of dX— 0 becomes:
d_c dv
dx dt
(7.1.2)
The equation
d
L dx—1 =V -V
0 dt r r r+1
at the limit of dX— 0 becomes:
oV ol
xS
(7.1.2)
The derivative of equation (7.1.1) oh gives:
?_ v
oot ° at?
(7.1.3)
The derivative of equation (7.1.2) oK gives:
oV o’
— =L,
OX oxot
(7.1.4)
Equation (7.1.3) and (7.1.4) give:
Q - I-ocog
OX ot
The derivative of equation (7.1.1) oK gives:
o°l oV
—=Ch——
OX oxot
(7.1.5)
The derivative of equation (7.1.2) oh gives:
oV o’
—=Ly—
oxot ot

(7.1.6)
Equation (7.1.5) and (7.1.6) give:
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P

o o
7.2
| v
A 2a
—
I
4—
v
Fig Q.7.2.1

A pair of parallel wires of circular cross section and radusare separated at a distan2el
between their centres.

To find the inductance per unit length we close the circuit by joining the sides of a sédction o
length |.

The self inductance of this circuit is the magnétig through the circuit when a current of 1 amp
flows around it.

If the current is 1 amp the field outside the wire at a distancom the centre szl /27r

where g, is the permeability of free space. For a clockwise current in the circuit (Fig Q.7.2.1)

both wires contribute to the magnetic flu8 which points downwards into the page and the total
flux through the circuit is given by:

2l rd_zaﬂ = MIn(ﬁj for d >>a
a 2 T a

Hence the self inductance per unit length is:

L :ﬂln(ﬁj
7 a

To find the capacitance per unit length of such a pair of wires we first find the electrostatic
potential at a distanc& from a single wire and proceed to find the potential from a pair of wires
via the principle of electrostatic images.

If the radius of the wire isa and it carries a charge ol per unit length then the electrostatic

flux E per unit length of the cylindrical surface irE(r) = 4/g,, where &, is the

permittivity of free space. ThusE(r) =4/2zgr for r >a and we have the potential:
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gzﬁ(r):—z/1 In(r) + constant 4 In(gj for =0 at r=Db.

&, 27,

Fig Q.7.2.2

The conducting wires are now represented in the image systEig §f.7.2.2. The equipotential
surfaces will be seen to be cylindrical but not coaxial with the wires. Neither the electric field nor
the charge density is uniforon the conducting surface.

The surface charge is collapisento two line carrying charges A per unit length. They axis
represents an equipotential plane.
The conducting wires, of radiug, are centred a distancd from the origin o(x =y =0).

The distancest p can be chosen of the line charges so that the conducting surfaces lie on the
equipotentials of the image charge. Choosing the potential to be zevo @t the y axis, the
potential at point p inthe Xy plane is given by:

A 1 A 1 A r?
¢, = Inf = |- Inf = |= In| =
2re, \1,) 2mng, \1,) A4ns, I

7 =2ay+6
> =2py+6

In Fig Q.7.2.2:

where ¢ =(d+p); B=(d-p); y=(d+rcoshd) and & =(r’+ p°—-d?).

If the position of the image charge is such that = (d* —a?), then, atr = a:

+
¢(a) = 41 In[g p), independent off, and the right-hand conductor is an equipotential of
T,

the image charge. Symmetry requires that the potential at the surface of the other casmductor
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—¢(a) and the potential difference between the conductors is:

+
V= A In d+p
2rg, \(d-p
Gauss’s theorem applied to one of the equipotentials surrounding each conductor proves that the

surface charge on each condudsoequal to the image charge.
The capacitance per unit length is now given by:

C:i: 2re, N 2re,

Vo2 %)

for d >>a

and
12
&h‘l E Y2
L T a 7 2d
Z, for the parallel wires= ,|— = ~| =2 In(—]
C 27[80 &, a
In(2d/a)
7.3
The integral of magnetic energy over the last quarter wavelength is given by:
2
_[ L, _[ Ao, coskx dx j 2L, V2 L+cosAmyA AL V2°+
Ty 1/42 Z; 2 47
The integral of electric energy over the last quarter wavelength is given by:
2
'[ CV —I C,(2V,, sinkx)*dx= J‘ choiwdx:—%
Al4 2
Noting that Z, = ,/L,/C, , we have:
J~0 1 0 zd — ELV0+ | |:J- ECOVZdX
S 2 R T

7.4
The maximum of the magnetic energy is given by:

2 2
(Em)max = (l |_0| 2) = ELO %COSkX 2L V0+ =2C \/02+
2 max 2 Zo ZO

max

The maximum of the electric energy is given by:

1

Ene=(3

o, ) =ECO(2\/0+sinkx)2} _2C\2

max

The instantaneous value of the two energies over the last quarter wavelength is given by:
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(Em + Ee)| = % I—o( 2\Z/O+

= 2C V. cos kx+ 2C V> sin® kx
= 2C0V02+

2
coskxj + %CO 2V, sinkx)®

0

So we have:

(Em)max = (Ee)max = (Em + EE)I = 2COV02+

7.5
For a real transmission line with a propagation consganthe forward current wavd ,, at
position X is given by:

I, =1,e7=Ae”

X+

where |,, = A is the forward currentvave at positionX = 0. So the forward voltage wave at
position X is given by:

V,, =2, =Z,Ae”

x+ 07 x+

The backward current wavé, at position X is given by:

I, =1, e"™=Be"™

X—

where |, =B is the backward current wave at position= 0. So the backward voltage wave
at position X is given by:
vV, =-2,|, =-Z,Be’™*

X

Therefore the impedae seen from positionX is given by:

5 VetV _Z,Ae*-ZBe” _ Ae™-Be”
o+l Ae ™ + Be™ ° Ae”™ +Be™

If the line has a lengtH and is terminated by a load, , the value of Z, is given by:

+V, Ae’ —Be"”
=Z,—— -
+1, Ae” + Be

7.6
The impedance of the line &t = 0 is given by:

—X _ X _
z -|z, A_ Be _7. A-B
Ae™ +Be”™ ) A+B
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Noting that:

Ae’ —Be'
Z =Ly————
Ae” +Be'
we have:
(Z,—-Z,)Ae” =(Z,+Z,)B¢"
i.e. é:MeZﬂ
B (ZO_ZL)
so we have:
2 _7 AB-1 . Z,(e'-e")+zZ (¢ +e7) _ - Z,sinhyl +Z, costyl
'O AB+1 %z (e +e)+Z,(¢' —e") °Z,coshyl +Z, sinhjl
7.7

If the transmission line of Problem 7.6 is short-circuited, Zg.= 0, The expression of input

impedance in Problem 7.6 gives:

Z,sinhy

Zsc = Z0—
Z,coshy

= Z,tanhyl

If the transmission line of Problem 7.6 is open-circuited, Zg.= oo, The expression of input

impedance in Problem 7.6 gives:

Z, coshyt

Z,.=2
¢ 7% Z sinhj

= Z, cothy

By taking the product of these two impedances we have:
Z Z :Zg,i.e. Zy=4\1 2

scoc sc™—oc

which shows the characteristic impedance of the line can be obtained by measuring the
impedances of short-circuited line and open-circuited line separately and then taking the square
root of the product of the two values.

7.8
The forward and reflected voltage wawatthe end of the line are given by:

Vi =V =Vpe®

where V,, is the forward voltage at the beginning of the line. So the reflected voltage wave at
the beginning of the line is given by:

Vm =\/|7e—ik| — _V0+e—i2k|
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The forward and reflected current waves at the end of the line are given by:
I =Vi./Z, :Vmeiikl /Zo = |0+€ikl
I|— = _V|—/Zo :V|+/Zo = |0+e_ik|

where |, is the forward current at the beginning of the line. So the reflected current wave at the

beginning of the line is given by:
I(} — ||7e_ik| — |0+e—i2k|
Therefore the input impedance of the line is given by:

—i 2kl ikl —ikl H
2 Vo tVo Vo, - V(6" —e )_iZ sinkl _ ita 27

i Iy + 1, |O+(1+e—i2kl) - |0+(eikl +e—ikl) 0okl C, 2

The variation of the ratioZ, /1/ L,/C, with | is shown in the figure below:

Z

Al Lﬂ I/Cﬂ

A

2/4

22/4

—27/4 —2/4

212

Y !

7.9

The boundary condition aZ,Z,, junction gives:

Vor Vo = Vo, +Vino-

ImO++ImCF

lo, +15 =
where V,, , V, are the voltages of forward and backward waves Zgn side of Z,Z

junction; |,,, |, are the currents of form@drand backward waves od,, side of Z,Z

junction; V., V

0. are the voltages of forward and backward wavesZgn side of Z,Z |
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junction; |, , |,,  are the currents of forward and backward wavesZn side of Z,Z

junction;

The boundary condition a,.Z, junction gives:
Vo Vo =0

Lie 1 = 10
where V_ ., V. are the voltages of forward and backward wavesZon side of Z Z,

junction; | |, are the currents of forward and backward wavesZgn side of Z_Z,

mL+ ?

junction; V_, | are the voltage and current across the load.

If the length of the matching line ik, we have:

Vm0+ = VmL+eikI

Vino- = VmLfe_ikl

—ikl

I mo- = Im-€
In addition, we have the relations:
V
L-z
I L
V
0_7
l 0
Vm0+ — _VmO— — VmL+ — _VmL— — Z
m
I mO+ I mO— I mL+ I mL—
The above conditions yield:
VmL+ = Vm0+e_ikI
ImL+ - |m0+e_ikI
ZL — Zm
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m

— Z _ZL
mL— Zm + ZL mL+

Vg =V €™ :% ooy, 2o Zngin
L + Zm ZL + Zm

| =1  e®=CSm ZL) gk ~Zm ZLgi
mO- mL- ZL + Zm mlL+ mO+ ZL i Zm

Impedance mating requireg, =0 and |, =0, i.e.

Vo+ = Vm0+ +Vm&

|o+ = Im0++|m0—

ie.
Vy, =V, | 1+ Ll g
Z +Z,
Z —Z
lo, = 1oy | L+ =2—L e
o ’"0{ Z +2,
By dividing the above equations we have:
2 _> (Z,+2,)e" +(z, -z,)e™ _ Z coskl+iz,sinkl
o =

™2z, +Z,)é +(Z, -Z,)e™ "™z sinkl+iZ_coskl
which is true if kl = 7/2, or | = 1/4 and yields:

Z,f, = ZOZL

7.10
Analysis in Problem 7.8 shows the impedance of a short-circuited loss-free line has an impedance
given by:

. 2
Z = |Zotan—7Z1
A
so, if the length of the line is a quarter of one wavelength, we have:
: 2t A .
Z =iz, tan"r 2 = IZ, tan’ = oo
A4 2

If this line is bridged across another transmission line, due to the infinite impedance, the
transmission of fundamental wavelength will not be affected. However for the second

harmonic WavelengtM/Z, the impedance of the bridge line is given by:
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Z =iz, tanz—ﬂi =iZ,tanr =0

A/2 4

which shows the bridge line short circuits the second harmonic waves.

7.11

For Z, to act as a high pass filter with zero attenuation, the frequamzcysi, where
Z,=,/L/C.
The exact physical length of , is determined by . Choosing the frequencyy, determines
k =21/,

For a high frequency load, and a loss- free line, we have, for the input impedance:

5 _ o [ZLcoskl +iZ,sinkl
" 7% z,coskl +iz, sink

For n even, we have:

n4,

2
cosk| = cos—ﬂ7 =cosnz =1
For n odd, we have:
27 N4

cok| = 005—7 =cosnz =-1

The sine terms are zero.

So Z,=Z, for n odd or even, and the high frequency circuits, input and load, are uniquely

matched atw, when the circuits are tuned t@, .

7.12

The phase shift per sectioff should satisfy:

H 2
cosp =1+ = =1+ @L =1-2 LC
27, 2/iwC 2
2
ie. 1-cosp = w’LC
i.e Zsinzﬁz ’LC
e. >
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Forasmall #, S ~sinf, sothe above equation becomes:

i.e. B=wJLC =w/v=k

where the phase velocity is given hy= ZI/«/ LC and is independent of the frequency.

7.13
The propagation constaryt can be expanded as:

Y :\/(Ro+iwLo)(Go+ia’Co)

= LOCO\/(iHJ[&H]
oL, C,
- LOCO\/i2+[ RO +a%o]i+a)R|fo a%o

oL,

= LoCo\/[i-F RO + GO]—[ Rg + Gg +RO GOJ

2oL, 2awC, 40’2 40C? oL, oC,

Since R)/wl, and G,/wC, are both small quantities, the above equation becomes:

y=w LOCO[i+ R +2&j=a+ik
0

20l

Wherea:& &+& i,and k=w,L.C, =a/v
2\L  2\C,

If G=0, we have:
k w4/ L,C, o\LCy  aly

20 Ro\/Co/Lo+Go\/L0/C0 ) RO\/CO/LO R

which is the Q value of this transmission line.

7.14
R G, . L o
SupposeL— = C_ = K , where K is constant, the characteristic impedance of a lossless line is
0 0
given by:

, _ |[Rtiol, _ |[Klg+iel, _ [Ly
* VG, +iwC, \KC,+iwC, \C,
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which is a real value.

7.15

Try solution y =/, €™ in wave equation:

0° v 87z m
8x2

—= (E-V)y =0

we have:

2 87Z'm

—= (V-E)

For E>V (inside the potential well), the value ¢f is given by:

Vi = Hi %’”sz(E ~V)
So the ¥ has a standing wave expression given by:

w = Ae /T +Be_'7 e

where A, B are constants.

For E <V (outside the potential well), the value ¢f is given by:

27r
Vout = T 2m(V E)

So the expression ofy is given by:

2z 2z
l// A T,/ Be—? m(V-E)x

where A, Bare constants. i.e. th& dependence ofy is e where

2

4 2m(V - E)
7.16
Form the diffusion equation:
oH 1 0°H
ot uo ox°

we know the diffusivity is given byd = ZI/,uO'. The time of decay of the field is approximately
given by Einstein’s diffusivity relation:

I

t = —=

d Vwuo

where L is the extent of the medium.

=Luc
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For a copper sphere of radidén, the time of decay of the field is approximately given by:

t=L12uoc =1°x126x10°x 58x10" ~73 5] <10Q 9]

7.17
g e’ inM , we have:

r
Try solution f (a,t) =——
NP

of (a,t) :ﬁ{Le(ra)z}
ot at\Vrx
- ﬁe‘““)z (—Zra)a% +%% g’
_1-2r a® ray2 dr
= —\/; e E
2 2a® -1 (ra)?
=———"¢

4t~/ 7dt

r e in M,we have:

Try solution f(a,t) =—
y (a,t) \/; ox

of (a1t) —_ 2r 30{ e—(ro:)2

ox Jr

SO:
2 3 3
0 fa)(;t,t) _ —\Z/r;e‘(”’) _%e—m (=2ra)r

2r3 ?

__4r (1_ or 2a2)ef(ra)
N

_ &2‘1@““)2

4td/ 7dt
(A.7.17.2)

By comparing the above derivatives, A.7.1l@nd 2, we can find the solution

f(a,t) = ﬁe—(ra)z

satisfies the equation:
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SOLUTIONS TO CHAPTER 8

8.1

Write the expressions of, and H, as:

E. = Eosini—”(vEt -2)

E

. 21
H, =Hysin—(v,t-2)
Ay

where 4. and A4, are the wavelengths of electric and magnetic waves respectively,

and v. and v, are the velocities of electrand magnetic waves respectively.

By substitution of the these expressions into equation (8.1a), we have:

—yz—”vH H, cosz—ﬂ(th -2) = 2 E, cosz—ﬂ(vEt -2)
A A Ae Ae
i.e. ,uVH—Hocosz—ﬁ(th—z) :Ecosz—ﬁ(vEt—z)
Ay H Ae E
which is true for allt and z, provided:
Vi =V = 5,
uH,
and Ay =
so, at anyt and z, we have:
E0
=@, = t—z
be ==

Therefore E, and H, have the same wavelength and phase.

8.2
Energy Force Distance Force

Volume L3 ~ Area

= pressure

© 2008 John Wiley & Sons, Ltd



C A C

Currents inW into page. Field lines aA cancel. Those aC force wires together.
Reverse current in one wire. Field lines At in same direction, force wires apart.
Fig Q.8.2.a

R ) ° e
C w A Motion

Field lines atC in same direction as those from current in wire —
in opposite direction atA. Motion to the right
Fig Q.8.2.b

8.3
The volume of a thin shell of thicknesdr is given by: 4zr°dr, so the electrostatic
energy over the spherical volume from radis to infinity is given

by:jf%goEz@mz)dr , which equalsmdc, i.e.:

I;w%£0E2(4m2)dr =mc

2

By substitution of E = e/47rgor into the above equation, we have:

j“”ig e—2(47zr2)dr - md
a 2% (4me,r?)?
2 +00
ie. € | L ar=me
8rgy 2 1
2
i.e. € —me
8re,a

Then, the value of radiug is given by:

€’ 1.6x1079)?

a— _ ~ 141x10™[m
8re,mc 8z x88x10""x 9.1x10* x (3x10%)? L)
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Another approach to theglslem yields the value:

a= 282x10"[m]

8.4
The magnitude of Poynting vector on theface of the wire can be calculated by
deriving the electric and magnetic fields respectively.
The vector of magnetic field on the surfacela# cylindrical wire points towards the
azimuthal direction, and its magnitude is given by Ampere’s Law:
H=H,, = iee

where r is the radius of the wire’s cross circular section, dnds the current in the
wire.
Ohm's Law, J=0E, shows the vector of electric field on the surface of the
cylindrical wire points towards the currentirection, and its magnitude equals the
voltage drop per unit length, i.e.:

E=Ege, =\|/—eZ :$eZ
where, | is the length of the wire, and thé is the voltage drop along the whole
length of the wire an@ given by Ohm’s Law:V = IR, where R is the resistance of
the wire.
Hence, the Poynting vector on the surface of the wire points towards the axis of the
wire is given by:

S=ExH=Eg,xH,e, =-E,H_e

which shows the Poynting vector on the aod of the wire points towards the axis of
the wire, which corresponds to the fla energy into the we from surrounding
space. The product of its magnitude andstiméace area of the wire is given by:
Sx 2l = E,H, x 2l R om— iR
| 2ar
which is the rate of gendran of heat in the wire.

8.5
By relating Poynting vector tmagnetic energy, we first need to derive the magnitude
of Poynting vector in tens of magnetic field.
The electric field on the inneurface of the solenoid can derived from the integral
format of Faraday’s Law:
oH

§Edl = —y§5ds
where S is the area of the solenoid’s cross sectiin.is the electric field on the
inner surface of the solenoid, artd is the magnetic field inside the solenoid.
For a long uniformly wound solenoid theeelric field uniformly points towards

azimuthal direction, i.e.E=E,e,, and the magnetic field inside the solenoid
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uniformly points along the axis direction, i.él =He,. So the above equation

becomes
oH, ,
E, x2m =— Zar
0 H ot
ie. Egz—'u—raHZ
2 ot

where r is the radius of the cresection of the solenoid.
Hence, the Poynting vector on the inner surface of the solenoid is given by:
ExH=E,e xHe -y Mo
2 ot
which points towards the axis of the solehand corresponds to the inward energy
flow. The product of its magnitude and thefaoge area of the &moid is given by:
OH, OH,
ot

Sx 27l :%H x 27l = ar¥H,

z

where | is the length of the solenoid.
On the other hand, the time rate of chanfenagnetic energy ated in the solenoid
of alength | is given by:

d lluH2><7zr2| :mlezaHZ
dt\ 2 ot

which equals Sx 2zfl

8.6

For plane polarized electromagnetic wa(g,,H, ) in free space, we have the

relation:

Its Poynting vector is given by:

S

EEZZ 1

E
=EH, =E,——~—==
’ \ Ho/ € Ho \ Moo

where c= ]/«/ﬂoeo is the velocity of light.
Noting that:

g,E? = cg,E”

we have:

© 2008 John Wiley & Sons, Ltd



Since the intensity in such a wave is given by:

max

| =S, = CgOE = %CEOEZ

we have:
S =%x3x108>< 88x10"2x E2,, ~1.327x10°E7,,
2 _ 2
e [2g0e_ \/ Y2 ~ 274552
X ce, 3x10° x 88x10™ v
80 Sj/z 2 ~S¥? ~ 7.3x10°S*[Am™]
11, 3><1o8 x 47 x 10

8.7

The average intensity of the beam and is given by:

[ Power Energy B 03
area areax pulseduration 7z x (25x10°%)*x10*

= 153x10°[Wm?]

Using the result in Problem 8.6, the rootan square value of the electric field in
the wave is given by:

= I 153x1C°
E? = =\/ ~ 24x10°
\/c 3x10 < 88x107 ~ 2P0V

8.8
Using the result of Problem 8.6, the amplé of the electric field at the earth’s
surface is given by:

E, = 27455"2 = 2745x+/1350~ 101QVm*]
and the amplitude of the associated magnetic field in the wave is given by:
H, = 7.3x107%x+/1350~ 27[ Am']

The radiation pressure ofdhsunlight upon the earth edmiahe sum of the electric
field energy density and the magdield energy density, i.e.

Prag = %EOEOZ +% uHE = ¢,E; = 88x10"°x1010 = 898x10°[Pa]

8.9
The total radiant energy loss &cond of the sun is given by:

Eipss = SX 4ar? =1350x 47 x (15x10%)* = 382x1077J]
which is associated with a mass of:

382x10%®

“Ba10) = 42x10°[kg]

m E‘OSS/ 2
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8.10
At a point 10km from the station, the Poynting vector is given by:

P 10°
2m%  2xxx (10x10%)?

= 16x10“[W/m?]

Using the result in Problem 8.6, the dityale of electric field is given by:
E, = 2745x S'? = 2745x+/16x10* = 0.34V/m|

The amplitude of magnetic field is given by:

H, = 7.3x10°2S¥ = 73x10° x/1.6x10* = 92x10“[ A/

8.11
The surface current in the strip is given by:

| =Qv

where Q is surface charge per unit area on the strip and is giverQbyzE, , and

v is the velocity of surface charges along the transmission line.
Since the surface charges change along the transmission line at the same speed as the

electromagnetic wave travels, i.g.=c= , the surface current becomes:

1
N

| = Qu=E, :\/EEX
Jue \u

Analysis in page 207 shows, for plane electromagnetic Wq%ﬂy = \/EEX, so the

surface current is now given by:

_ & [Hy
-,
On the other hand, the voltage @&s the two strips is given by:

V=EL=E,

where L =1 is the distance between the two strips.
Therefore the characteristic impedance of the transmission line is given by:

ZZLEZF
| Hy &

8.12
Write equation (8.6) in form:
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0° o0 )
——E =u—|—¢, |+u—(cE
822 X ﬂ&(@t x] ﬂ@t( x)

which can be dimensionally expressed as:

voltag€length inductance>< displacemst current+ inductancca;< currentarea
lengthx length length timexarea length time

Multiplied by a dimension term, length, the above equation has the dimension:

voltage . current
=inductancex————
area timexarea
which is the dimensional form (per unit area) of the equation:
V= Lﬂ
dt

where V is a voltage,L is ainductance and is a current.

8.13
Analysis in page 210 and 211 showsaiconducting medium, the wave number of
electromagnetic wave is given by:

K= louc
2

where @ is angular frequency ofhe electromagnetic wavey and o are the

permeability and conductivity of the conducting medium.
Differentiation of the above equation gives:

dk=t |2 poy, 1 49 40
2\ ouoc 2 2\ 2w

ie. do_pl20 5] 2 , 29
dk Uo ouc k

which shows, when a group of electromagnevaves of nearly equal frequencies
propagates in a conducting medium, wheedghoup velocity anthe phase velocity

can be treated as fixechlues, the group velocityy, = dw/dk, is twice the wave

velocity, v, = w/k.

8.14

@) o __ o 01

= x 367 x10° = 720> 100
we 2nvee, 2rx50x10°x50

which shows, at a frequency &0kHz, the medium is a conductor
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(b) o __ o 0.1

= x367x10° = 36x10° <1072
we 2nvee, 2rx10'x10°x50

which shows, at a frequency df0* MHz, the medium is a dielectric.

8.15
The Atlantic Ocean is a conductor when:

9 __9%9 100

wE  2mVE &,

o 43

v< = x 367 x10° ~ 1 MHZ]
27 x100x ., 27x100x81

i.e.

Therefore the longest wavelength thatilc propagate under water is given by:

\Y Cc

y=—= =10x10°
ﬂ’max \/Zﬂ’max
e hm S AT gy
J&, x10x10°  /81x10x10
8.16

When a plane electromagnetic wave &lémg in air with an impedance oZ,, is

reflected normally from a plane mducting surface with an impedance @f, the

transmission coefficient ghagnetic field is given by:

H
T, =—*
H Hi
. I E, 2Z :
Using the relations:E, =Z H,, E =Z,,H,, and £ 2 , the above equation
i c+ air
becomes:
T =i= Etzair — Zair ZZC — 22air

" H Eizc - Zc Zc + Zair - Zc + Zair

The impedance of a good conductor tends to zeroZ.e> , so e have:

T, z—zzza" =2 or H, =2H,

air

After reflection from the air-conductor intade, standing waves d@med in the air
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with a magnitude ofH, +H, in magnetic field and a magnitude & +E, in

electric field.

Using the relations:H, + H, =H,, E +E, =E,, the standing wave ratio of magnetic

field to electric field in air is given by:
H +H,

H
E+E E

1 T

1
ZC
which is a large quantity duetd, —» .0

As an analogy, for a short-circuited transmission line, the relation between forward

(incident) and backward (reflected) voltages is givenWy+V =0 or V,+V, =0,
the forward (incident) current is given by; =1, =V,/Z,, and the backward

(reflected) current is given byt, =1_=-V_/Z,, so the transmitted current is given

by:

=1 +1, Ve MUY oV =2V—+=2|i
Z0 Z0 Z0 ZO ZO

When a plane electromagnetic wave tranglin a conductor with an impedance of

Z_ is reflected normally from a planeomductor-air interface, the transmission

C

coefficient of electric field is given by:
E _ 2z,

§ E - Zc + Zair

The impedance of a good conductor tends to zeroZ.e»> , so e have:

ZZair

T. ~
£z

=2 or E =2EF

As an analogy, for a open-circuited transsion line, the forward (incident) voltage
equals the backward (reflected) voltages, Me=V, =V, =V , the transmitted
voltage is given by:

V, =V, +V. =V, +V, =2V,

8.17

Analysis in page 215 and 216 shows, in a conductor, magnetic figldags electric
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field E, by a phase angle of =45, so we can write theattric field and magnetic
field in a conductor as:

E,=E,cosot and H, = H cos(t - ¢)

so the average value of the Poynting vedsothe integral otthe Poynting vector
E,H, overone time periodl divided by the time period, i.e.:
1,7
S.=7 [ EH,

1
= —I E, coswtH , cost — ¢)dt

EOTH j =[cosRat — #) + cosp]dt

1EH,

_L1EHo 1 o5 = LEH, cosaspwint
5o T cosp =~ EgH,cosd5 W]
Noting that the real part of impealze of the conductor is given by:

(realpartof Z) = HO coSsp = E° cosAs

0

i.e.

H
E = 9 _x(realpartof Z
0 005450 ( p c)

so we have:

S, = % E,H,Cc045

_1 Hg
2 cos45

x realpartof Z, x cos45
1., nt
:EHO x (realpartof Z_)[Wnr]

We know from analysis in g& 216 that, at a frequenaoy=3000MHz, the value of

we/o for copper is 29x10°, hence, at of frequency df00OMHz, the value of

we/o for copper is given by29x10°/3=97x10", and 4, ~ &, ~1. So, the real

part of impedance of the large copper sheet is given by:

(realpartof Z \/E

copper.

Z

copper|

:—x3766 /”f,/wg 3766><—><\/97><10’10 82x107[Q)]

Noting that, at an air-conductor interface, the transmitted magnetic field in copper
H

copper dOUDlEs the incident magnetic field,, i.e. H. . =2H,, the average
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power absorbed by the copper per squartrame the average value of transmitted
Poynting vector, which is given by:

S L H2 _ x(realpartof Z

copper — 2 copper copper)

x (realpartof Z

2
copper) copper)

1
—Z(2H
5

=2H2  x(realpartof Z

copper copper)

2
= 2{35&6} x (realpartof Z

copper)

1 2
=2 82x10° = 116x10"’
X[376.6j x 8.2x X [W]

8.18
Analysis in page 222 and 223 shows that waerelectromagnetic wave is reflected

normally from a conducting swatce its reflection coefficient, is given by:

|, =1-2 2%

r

o

Noting that &, =1, the fractional loss of energy is given by:

1-1, :1_(1_2\/2@90]:\/80)50 :\/Sa)e/g, :\/Sa)g
o o o o
8.19

Following the discussion of solution togimlem 8.17, we can also find the average
value of Poynting vector in air.

The electric and magnetic field of plane wave in air have the same phase, so the
Poynting vector in air is given by:

S, = EH, = E;cosatx H cosat = E;H, cos’ wt

and its average value is given by:

& -fem
- % IOT E, coswtH , cosmtdt
- @ IOT%[lJr cosQat)]dt
2
B %%T ) % SoHo = %X 37Egi.6 "o 3176.6 - 133107 W]
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So, the ratio of transmitted Poynting vector in copper to the incident Poynting vector
in air is given by:

Sopper _ 116x1077
S, 133x10°

air

= 881x10°

which equals the fractional loss of energy given by:

802 _ 8 97x10% = 881x10°

8.20
E, and H, arein complex expression, we have:

2

V2
:EAZ( o j g Xegin/4
2 wu

So, the average value of the Poyntuegtor in the conductor is given by:

2
1 E H — lA kze|(wt kz) v e—kze—l(wt kz) |7r/4
2 ou

12
1 * 1 O
S =realpartof| = EH |==A’ — | g
= reapanor(JE1; |- 2| e

The mean value of the electric field vectd, , is a constant value, which contributes

to the same electric energy densitithe same amount of time, i.e.:

(averageelectric energydensity)= %gfxz = % OT%gEfdt
i.e.
- 2 -2kz
E, = perel j "cod wtdt = Ae e L j Tltcos2at \,  A®
T Ao T Ao 2 2
or: E = Q Ae™
2
Noting that:
0S

1 2
v - _okx = a2l T | g2
0z 2 20u

2| WHO v o v —2kz
=-A — — | €
2 20U
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we find the value ofdS,,/6z is the product ofhe conductivity o and the square of

the mean value of the electric field vect&. The negative sign in the above
equation shows the energy is decreasing with distance.

8.21
Noting that the relation between refractive indexof a dielectric and its impedance

Z, is given by: n :%, where Z, is the impedance in free space, so, when light
d

travelling in free space is normally incidemt the surface of a dielectric, the reflected
intensity is given by:

| = 52_ Zd_ZO 2_ 1_ZO/Zd 2_(1—_nj2
"\ ) |z,+z,) \1+z,)z,) \1+n

and the transmitted intensity is given by:

| _ZE_Z( 22, Tz, 2 Zzn 2 Y _ 4n
‘' z,E* z,\Z,+2,) Z,\1+Z,/Z, 1+n)  (@+n)?

8.22

If the dielectric is a glasgn,...=15), we have:

glass

2
1-n ~15Y
Ir glass = e = 1-15 = 4%
- 1+n 1+15

glass

ANgass  4x15

L - — 06%
99 T )’ (L4 15)° °

Problem 8.15 shows water is a conductotaip frequency of 10MHz, i.e. water is a
dielectric at a frequecy of 100MHz and has a refractive index of:

So, the reflectivity is given by:

2 2
I r_water 1- nwater = (1__9j =64%
N 1+ Nyater 1+9

and transmittivity given by:

4nVVater 4 X 9
It_water = 7= 2
@+ Nyaer)”  @+9)

=36%

8.23
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The loss of intensity is given by:

loss =11 4l5

loss

where |,, is the transmittivity from air to glass anld, is the transmittivity from

glass to air. Following the discgisn in problem 8.21, we have:

_ZE 7 22, V' _zf 2 Y _if 2 }_ a4
¢ zZE z,\Z,+2,) ZzZ,\1+Z,/Z,) nl1+¥n) (@+n?* "

So we have:

les =1— 12 =1— 096" = 784%

loss
8.24
Noting that c = 1/1//,1050 = Aw/2r , the radiating power can be written as:

_dE qa)x0
Tt 127,

03 S
—— @
127rgoc : 02 a

12580,12 o
1 27[\/7()()(0}2 2
=—x— _|—=| == | |
2" 35\ 2
ie. R:ﬁJE(XOj _78{ ][Q]
3 Vg4

By substitution of given parameters, the wavelength is given by:

2

i:%:%:GOQm] >> %, =30[m]

So the radiation resistance ahe radiated power are given by:
2
R =787x [ﬁj — 787x ( 30 j = 197[Q)]
A 600

=) =%R|o2 :%x 197x 207 ~ 40QW]
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SOLUTIONS TO CHAPTER 9

9.1

2 2
Substituting the expression af into — +—, we have:
OX

2 2
—2 f+—2yf = (K2 +K2) Al (Nl — (k2 1 k2)7
X

Noting that k? = @?/c? = k2 + kZ, we have:

0’z 0’z o’

WJray2 -t

2

. . . 10z
Substituting the expression af into — —-, we have:

c” ot
2 2 2
1072 @ ) dortoekn __ 9",
c? ot? c? c?
So we have:
622+ 0’z _ 10°z
e oy at?
9.2

Boundary conditionz=0 at y=0 gives:

Aei(wt—klx) n Aei(mt_klx) =0 ie. A=-A

so the expression oz can be written as:

7= Ai{elazt—( kxrkoy)] e{wt—( I‘1><—|<2y)]} — Al[ei((ut—klx) (e—ikzy _ eikzy)] — _ZIA1 Sin( l& y)ei((ut—klx)

Therefore, the real part o is given by:
Z., = +2Asink,ysin(wt — kx)
Using the above expression, boundary conditibs 0 at y=b gives:

z = -2iA sink,be ") =0

which is true for anyt and X, provided: Sink,b=0, i.e. k, = nTﬂ
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9.3
As an analogy to discussion in text page 242, electric fleld between these two planes is the
superposition of the incident and reflected waves, which can be written as:

Ez — Eie[(l&x+kyy)—(vt] + Ezel(— Kxkyy)—at]
where k, =kcosf and k, = ksing
Boundary conditionE, =0 at x=0 gives:
(E,+E)e™ ™ =0
which is true foranyt and y if E =-E, =E,, sowe have:

E — Eoe[('&ﬁkyy)ﬂ] _ Eoe[(fl&mkyy)—wt] _ Eo(eikxx _e—ikxx)ei(kyy—wt)

z

Using the above equation, boundary conditibnp =0 at x=a gives:

EZ — Eo(eikxa _e_ikxa)ei(ky)kwt) — 0
i(kyy—at) _ 0

i.e. sink,ae

which is true for anyt and y if sinka=0,ie. k, =nz/a.

- . . 1 1
By substitution of the expressions fot, and /19 into — +—-, we have:
c g

1 1 (k) kY KZ+kZ K2 (a)) 1
—t— = = + | — — — — _—
A /13 2r 27 (27)*  (27)* \2mc 2

9.4
Electric field components inX, Yy, z directions in problem 9.3 are given by:

_ _ _ ik, x ik X\ i (K y—ct)
E,=E,=0 and E, =E,(e™ - ™")e

By substitution of these values into equation 8.1, we have:

0 0 . X cikxy i (K y—at)
-u—H, =—E =ik e~ —e ™)e

p =B, =ik By )

0 0 , kx| ik xy i (K y-at)
—uy—H =——E. =k ex +e )e
P ™ Tox ol )

which yields:
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Kk, E

Hx —_y 0 (eikxx _ e—ikxx)ei(kyyfa)t) iC
MO
H , __ kx Eo (eikxx + e—ikxx)ei(kyy—wt) D
MO

where C and D are constants, which shows the magnetic fields in botand y directions

have non-zero values.

9.5

line integral §B- dl
) e 2
Current into

paper .<______________________-----.T.--J

a

Current out of ¢
—>

paper

§B-d|=y| S B=ul/b

Closed circuit formed by connecting ends of line lengttthreaded by flux:

B ulla
b

.. inductancd. perunitlength= ,u%

capacitaneC perunitlength= 59
a
" Zy= \/E - EJZQ
C bVe
9.6

Text in page 208 shows the time averaged value of Poynting vector for an electromagnetic wave in
a media with permeability ofz and permittivity of & is given by:
| = %Cé‘Eg
Noting that, in the waveguide of Problem 9.5, the area of cross section is givekh-bw@b, and
the velocity of the electromagnetic wave is given lwzl/\/E the power transmitted by a

single positive travelling wave is given by:
1 1 1 1 &
P=IA==ceElab=—ab——¢E> = —abE’ /—
2 o 2 1/,uggEO 2 % Y7,
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9.7
The wave equation of such an electromagnetic wave is given by:

_10°E(v2)

2
V°E pra——

0°E O°E O°E_10E
ox* oy* oz ¢ ot

By substitution of the solutiorE = E( 'y, Z)ncost — Kk X) into the above equation, we have:

2 O’E(v,2) | O°E(v:2) ke @0 _
{kxE(y,z)+ Y + P }cos@t KX) = < o E(y, z)cos@t — K X)

which is true for anyt and X if:

CEND)  FEMD (2@ gy g
oy* oz* toc |

O°E(Y,2) N O’E(%2) _

PY: poe —K’E(y,2)

or:

1)
where k* =—-k?
C

9.8
Using the result of Problem 9.7, the electric fieldxn direction can be written as:

E, = F(y,z)cos@t -k 2)
and equation:

’F(y2) O°F(%2) _ -
Y + P e k°F(y,2)

is satisfied.
Write F(Y,2) inform: F(y,2) =G(y)H(2) and substitute to the above equation, we have:
1 0Gly), 1 °H@D)_ .
G(y) oy* H(2 o7

The solution to the above equation is given by:

G(y) = CGe"” +C,e ™ and H(2) = De™* + D, ™

where C,,C,,D;,D, are constants ant + k. = k*
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So the electric field inX direction is given by:

E, = F(Y,2)cost — k x) = G(y)H (2) cos@t — k,x)

Ky oy _ (9.8.1)
= (Ce"™ +C,e ) (De"* + D,g ™) cost — k X)
Using boundary conditionE, =0 at y=0 in equation (9.8.1) givesC, =-C,.
Using boundary conditionE, =0 at z=0 in equation (9.8.1) givesD, = -D,.
So equation (9.8.1) becomes:
E, =C,D, (" —e")(e"* —e ™) cospt — k X)
or E, = Asink ysink,zcosgt - k x) (9.8.2)

where A is constant.

Using boundary conditionE, =0 at y=a in equation (9.8.2) givessinkya:O, ie.
k, =mz/a, where m=123---.
Using boundary conditionE, =0 at z=Db in equation (9.8.2) givessinkb=0, ie.

k, =nz/b, where n=123,--.
Finally, we have:
E = AsinMsin%cos@t— K X)
a

where

2
K? = k2 +k? = zz[ﬂﬂ‘—J
a

9.9
From problem 9.7 and 9.8, we know:

m’ n?
k? = w?/c®—k? = 0?/c? - 7° _2+F
a

For Kk, to be real, we have:

m? n?
kf = O)Z/CZ—HZ[?‘FFJ >0

2 2

n

i.e. @2 | —+—
a? b’

Therefore, whenm=n=1, ® has the lowest possible value (the cut-off frequency) given by:
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1 1

@ =C|—+—
a> b?

min

9.10
The dispersion relation of the waves of Problem 9.7 — 9.9 is given by:

2 2

m n
kf :a)z/cz—ﬂ'z —2+—2
a- b

The differentiation of this equation gives:

2k dk, = C—Zza)da)

. a)_ 2 2
l.e. ——=C" or VpVg—C

9.11
Using boundary conditionz=0 at X=0 in the displacement equation gives:

(Al_i_ A4)ei(a)t—k2y) +(A2 + %)ei(wtﬁ-kﬂ) - 0
which is true for anyt and y if:
A=A and A =-A,

so we have:
7= AL{e[wH kxtioy) ei[wtf(f |‘1X+kz)’)]} + Az{e[wP( kx-koy)l ei[wtf(f kx-ky)l

= —2A\i sink,xe“" + 2A i sink xe 'Y (9.11.1)
— —2| Sin klx[ Aei(a)t—kzy) _ Aei(wt—%—kzy)]

Using boundary conditionz=0 at y=0 in equation (9.11.1) gives:

—2isinkx(A -A)E" =0
which is true for anyt and X if:
A=A
Therefore, equation (9.11.1) becomes:
z = —4A sinkxsink,yd”
and the real part ofz is given by:
z., = —4A sink xsink,ycosat (9.11.2)
Using boundary conditionz=0 at X=a in equation (9.11.2) gives:

sinka=0,i.e. k1=%ﬂ,where n=123---.
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Using boundary conditionz=0 at y=Db in equation (9.11.2) gives:
: : n,r

sink,b=0,i.e. k, =T , Where n, = 1,23,---.

9.12

Multiplying the equation of geometric progression seriesei{}”/kT on both sides gives:

e—hv/kTN — e—hv/sz Nn — No[e—hv/kT + e—2hv/kT + e—3hv/kT Feeet e—(n+l)hv/kT]
n

so we have:
N _ efhv/kTN — No[l_ Ll_r)r;lo ef(rHl)hV/kT] — NO
ie.
_ No
1— e—hv/kT

The total energy over all th& energy states is given by:
E=) E,=> Nnnhr=hv> Nn
n n n
— th\lO(e_hv/kT + 2e—2hv/kT + 3e—3hv/kT et ne—nhv/kT)

hv/KT

Multiplying the above equation by on both sides gives:

Ee—hv/kT — hVi\lo[e—Zhv/kT + 2e73hv/kT +3e—4hv/kT bt ne—(n+1)hv/kT]

so we have:

E— Ee—hv/kT — hVi\IO Lm[e—hv/kT + e—2hv/kT + e—Shv/kT bt e—nhv/kT _ ne—(n+1)hv/kT]

— hVNOefhv/kT Iim[1+ e VKT | @ 2W/kT | | o (-Dhv/kT _ ne—nhv/kT]
N—o

. 1— e—nhv/kT n
=hiNe"" Ilm( -~

noo| 1— e—hv/kT enhv/kT

1

1— e—hv/kT

— h VNOe—hv/kT

h Ve—hv/kT

i.e. E= NOW

Hence, the average energy per oscillator is given by:

hVe_hV/kT
E 0 (1_ efhv/kT)Z efhv/kT hy
E = —= = h]/ — =
N NO l1-e hv/KT ehv/kT -1
1— e—hv/kT

By expanding the denominator of the above equationtfer<< KT , we have:
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hv _ hv KT
[1+hv/KT + (hv/KT)?/2+--]-1  hv/KT

g =

which is the classical expression of Rayleigh-8danan oscillator with two degrees of freedom.
Alternative derivation forE and ¢ :

o0

z (nhve—nhv/kT)

E = Nz = Nnhy where nhy = =0

i e—nhv/kT
n=0

- o ®
nhy = — log) ek
20m 02,
__ 0 log 1
A(kT)™ T1-emiT
hVefhv/kT
- N hVe_hv/kT
E=N nhV = m
hv

and ¢ =nhy=———/——
efhv/kT -1

9.13
One solution of this Schrodinger’s time-independent equation can be written as:

y = X(XYY(V)Z(2)

Substituting this expression into the Schrodinger’s equation and divigingn both sides of the

equation, we have:

1 82X(x)+ 1 62Y(y)+ 1 9°2(2) _ 8z’m

2 2 2 2 E
X(x) ox Y(y) oy Z(z) oz h
which yields:
*X(X)
+E X(X)=0
v X (X)
o*Y(y)
> +EY(y)=0
0°Z(2)
+EZ(2)=0
—rEZ()
87°m

E

where E,,E ,E, are constants and satisf§, + E, + E, =

h2

By solving the above three equations, we have:
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X(x) = C,eVE* 4 D g V&
Y(y) = Cyeiﬁy + Dye_iﬁy
Z(z)=C,eN% + D,g V&
and
v = (C,eV5* + D, &*)(C V5" + D,e V&) (C,eV5 + D& VE)

where C,, DX,Cy, Dy,CZ, D, are constants.

Boundary conditonyy =0 at X=0 gives C, =—D, , boundary conditiony =0 at

X !

y=0 gives C,=-D,, boundary conditony =0 at z=0 gives C,=-D,, so we

have:

= CC,C (V5 —e VB (V5 e By (e B g W)

= Asinﬁxsin\/fyysinﬁz

2
Using the above expressiomr, boundary conditionyy =0 at Xx=L, gives: E, :(—j ,

2
boundary conditiony =0 at X= Ly gives: Ey =U_—”J , boundary conditiony =0 at
y

2
x=L, gives: E, = (nL—”J ,wherel,r,n= 012,---, so we have:

2 2 2 2
|z rz nz 87°‘m
— | +|—| +|—| =—5—FE
L, L, L, h

h>( 12 r? n?
sm| L2 L2 L2
h2
When L, =L, =L, =L, Ezﬁ(lz+r2+n2). If E=E, for =1, r=n=0, the
m

next energy levels are given by:

E=3E, for I=r=n=1.

E=6E, for I=r=4n=2; l=n=14r=2 and n=r =11 =2, which is a three-fold
degenerate state.

E=9E, for |=r=2n=1; |=n=2r=1 and n=r =21 =1 which is a three-fold
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degenerate state.
E=11F, for I=r=14n=3; |=n=21r=3 and n=r =11 =3 which is a three-fold
degenerate state.

E=12E, for | =r=n=2.

E=14E, for I=Lr=2n=3 ; I1=Ln=3r=2 ; I1=2n=4r=3 ;
l=2n=3r=1; |=3n=14r=2and | =3,n=2r =1 which is a six-fold degenerate
state.
9.14
Planck’s Radiation Law is given by:
87v?  hv
dv=————-——dv
EV C3 ehv/kT -1
At low energy levelshv << KT , by expansion ofe™ " in series, the above equation
becomes:
2
h
Edv= 87[;/ " r‘]/ 5 dv
C
1+7V+1 7‘/ +...=-1
KT 2\ KT
87v* hv 87v°kT
~ = dv

¢ hy/kT Yo c?

which is Rayleigh-Jeans expression

9.15

Using the variablex = Ch//ikT , energy per unit range of wavelength can be written as:

_ 8mch(kTX®  87(KTX)°
T (ch®(e -1  (ch)*(e*-1)

Substitute the expression df; into integral IO E,d1 and, we have:
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I _I 87T(kTX)
(ch)*(e* 1) ka
:J-OO 87[(3|(T?(4X3 dx
° (ch)’(e"-1)

B 8z (kT)* S
(ch)® 15
B 8r°k*
15¢3h®
i.e.
[ E.di=aT*
0
8r°k*
where a= W
9.16

Using the expression o, in Problem 9.15, the wavelength,, at which E, is maximum

should satisfy the equation:

d
—E, =0
dx *
which yields:
d_x _
dx (e* -1)
47 X 5
o 5x*(e* -1) - €x 0

(€' -1)°

ie. (1—5je* -1
5

ch
where X=——
AKT

9.17
The most sensitive wavelength to the human eye can be given by substituting the sun’s

temperatureT = 600QK] into equationch/4,, =5kT, i.e.:

ch 3x10P x 663x10°%

" > ~ 47x107[m]
5kT 5x 138x10 " x 6000

which is in the green region of the visible spectrum.
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9.18

Substituting the tungsten’s temperatufe= 200QK] into equationch/4,, = 5kT, i.e.:

ch 3x10P x 663x10°%
" 5kT 5x 138x10%x 2000

which is well into infrared.

~14x107[m]

9.19
As an analogy to the derivation of number of pointsiinstate shown in text page 250, 251, the
number of points ink space betweerk and k+dk is given by:

1 (volumeof sphericashell)
8 volumeof cell

_ 4ﬂk2dk.(£]3
8 pa

Noting that for each value ok there are two allowed statdbge total number of states ik
space between k and k+dk is given by:

2 3
P(k) = 2. Ank dk_(kj
8 T

From E = (h?/2m)k?, we have k = /(2m'/#?)E . By substitution into the above equation,

we get the number of stateS(E)dE in the energy intervaldE given by:

S(E)dE=2_4n(2m*/h;)3/zEdJE(£]3
T
_Cem /h2)$2 - L*(2m' /h2)3/2\/—
) 27°VE 2r°

Provided m~m and A= L>, we have:
A (2m\*
S(E) = (hz j JE
Since Fermi energy level satisfies the equation:

[ s(E)dE=N

By substitution of the expression dB(E) , we have:

5 (jx/_dEN

o 27°
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which gives:

provided m~m’
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SOLUTIONS TO CHAPTER 10

10.1
The wave form in the upper figure has aprage value of zerand is an odd function
of time, so its Fourier seridsas a constant of zero andly sine terms. Since the

wave form is constant over itslh@eriod, the Fourier coefficienb, will be zero if

n is even, i.e. there are only odd harmordaosl the harmonics range from 1,3,5 to
infinity.

The wave form in the lower figure has a positive average value and is a even function
of time, so its Fourier series has a constant of positive value and only cosine terms.

Since /T #1/2, there are both odd and evenrhanics. The harmonics range from

1,2,3 to infinity.

10.2

Such a periodic waveform should satisfy(x) =—f(x-T/2), where T is the

period of the waveform. Its Fourier coeféai of cosine terms can be written as:

a,= EJ' f(X) cosz_l_ﬂ(dx

= TE[J'T/Z f(x) 052? dx+I f(x) cosz? dx}

:TZUT/Zf( )cos—dx+j —f(x— T/2)cos—d(x T/Z)}

If n iseven, we have

2m(x-T/2) {Zyznx j 27X
08— = 0§ ——— N7 |=COS——

Hence, by substituting int@, and usingu = x-T/2, we have:

anzé{.f f(x)coszﬂ(dx_[ f(u)cos@du}:o

Similarly, the coefficient of sine terms is given by:

I f(x)smm(dx

= $U’ f (x)sin? dx+'[r f(x) sm@ dx}

2 27X

:?{jg/zf(x)sin@‘dm Jy - fOx-T/2)sin = d(x- T/Z)}
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If n iseven, usingu=x-T/2, we have:
2 27mx
q’:'r[I f (9sin=—=dx- j f(u)&n————du} 0
Therefore, if n is even, the Fourier coefficient§ both cosine and sine terms are

zero, i.e. there are no everder frequency components.

10.3
The constant term of the Fourier series is given by:

1 1 (r 1 ¢er, . h
2a0 =5 jo ydx= 2 jo hsinxdx= .
The Fourier coefficient of cosine term is given by:
a, = lrﬂ ycosnxdx= Drsin xcosnxadx
0 70
when n=1, we have:
her . h = .
a = ~ L sinxcosxdx= o IO sin2xdx=0

when n>1, we have:

a, = E_[”sinxcosnxdx
7 90

h ¢ . .
= ZIO sin(l+ n)x+ sin(— n)xdx

= —L{icosm n)x+icos(L n)x}
27 1+n 1-n 0
which gives:
_h2 o 0 a-"2 ,_9ga-_H2"
=T BT AT g BT ST

The Fourier coefficient of sine term is given by:
1 27 . h T, .
b, = ;L ysinnxdx= ;.[O sinxsinnxadx
when n=1, we have:
b, = Drsinxsinxdx= Drsin2 xdx=1
0 bl 2
when n>1, we have:

her o
b, :—J. sinxsinnxdx
7T Y0

h ¢r
= E'[O cos(l— n)x—cos(+ n)xdx

= L[ism(l n)x+ism(1+ n)xT
1+n

27 1-n 0
=0
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Overall, the Fourier series is given by:
= %ao +Y_a,cosnx+ Y b, sinnx
1 1

h 1+—smx—icost—icosAx—ico%x
Tz 1.2 1.3 3.5 5.7

10.4
Such a wave form is a even function with a periodzaf Hence, there are only
constant term and cosine terms.
The constant term is given by:
1 1er, . 2h
an = ;J'O hsinxdx= —
which doubles the constant shown in Problem 10.3
The coefficient of cosine term is given by:

4h 2mx
— smxcos—dx

T %0 T

= 4—h.|.ﬂ/zsin Xcos2nxdx
72' 0

zghfﬂbma+2mx+sma—2mﬂdx
7Z' 0

/2

_ 2 1 cos(+2n)x+ 1 cos(—2n)x
1+2n 1-2n 0
which gives:
__h2 _h2 _h2
e N A A

Therefore the Fourier series is given by:

ao+zanCO 27X

h 1—ic052x—icos4x—icosﬁx
Tz 1.3 3.5 5.7

Compared with Problem 10.3, theodulating ripple of the first harmoni(%sinx
disappears.

10.5

f(x) is even function in the intervat 7, so its Fourier series has a constant term

given by:

1 (= 1 ¢ n
Za,=—| f(X)dx=—| x’dx="-
% 27sz ) 272"[‘” 3
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The coefficient of cosine term is given by:

a, =EJ' f(x)coszﬂ(dx
V4 2

- EJ‘” x? cosnxdx= —I x2d sinnx

2 [x S|nn>{ I smnxd%}:T xd cosnx

n7r nrz

4 —_ 4 )4
= [xcosnxjo —J'o cosnxdx} = zcosnz = (-1 =z

Therefore the Fourier series is given by:

1 > 2mx 1 > 4
f(X)==a,+ cos——==72+Y) (-D)"— cosnx
(x) 2ao Zl:an or 3" Z( ) e

1

10.6

The square wave function of unit heighitx hpas a constant value of 1 over its first
half period [0,z ] so we have:

f(z/2) =1

By substitution into its Fourier series, we have:

f(;z/Z)z— S|n—+1sm3—7[+lsln5—” =1
Vs 2 3 2 5 2

Wl
gl
|
~N e
NG

10.7
It is obvious that the pulse train satisfidqt) = f (-t , i.g. it is an even function. The
cosine coefficients of its Fourier series are given by:

Ao 2mx 4 T . 2mx 2 . 2z
a,=—| cos——dx=—-——sin——| =—sin—nr
T T T 2m T |, nr

10.8

.27 2z )
As 7 becomes very smallsln?nr - ?nr , SO we have:

2 27 2 2r 47
a,=—sin—nr~—-—nr=—
nz T nr T T

We can see as — 0, a, —» 0, which shows as the energy representation in time
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domain — 0, the energy representation in frequency domai0 as well.

10.9
The constant term of the Fourier series is given by:
-T/2 22' - 27 T

The coefficient of cosine term is given by.

- 1 2mt 4 1 T 1 . 2mr
0S—= - sin

— =— sin =
T2 T T2o2m T, ner T

an__

As 7 — 0, we have:

1 . 2mr 1 2mr 2
a, = sin ~ : ==
Nzt T nzr T T

Now we have the Fourier series given by:

2mt 1 28 2mt
f(t ——a0+§aﬂco ==+ cos——
® T T T4 T

10.10
Following the derivation in the problem, we have:

F(t) = i [F(@)e*do

J. _(1 ela)T)ela)tda)
—wla)

_i _(1 ele)ela)tda)
27 1w

=i +w[ieia)t _ieiru(t—T):lda)
27 iw %)

Using the fact that forT very large:
rw.i e’ Vdw = rm.i e “"do=-x

i@ - i@
we have:
) =2+ ("L ddg
2 2r>*ilw
10.11

Following the derivation in the problem, we have:
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Fv)=[ f(t)e™ " dr

+7/2 i 2yt
= feotdt

—7/2
fo +7/2 —i 277 (v—vo)t’ H ’
=" e td[—i27z(v —v,)t
—i2z(v—v,) J:f/2 [ v=vo)t]

= fO e—i 2z(v—vo)r/2 _ ei 27 (v-vqy )1/2)
—127(v—-v,)

sin[z(v —v,)7]
(v —vy)T

= for

which shows the relative energy disution in the spectrum given by:

L SIn[z(v—vy)7]
[7(v-vo)]?

IFO) = (fo7)

follows the intensity distribution curve asingle slit diffraction pattern given by:

sin’(zd sing/ 1)
° (ndsing/1)?

10.12
The energy spectrum has a maximum when:

Sin2[7r(vmax -vo)7]

[”(Vmax - VO) Z']2 B

ie. (Vi

-vy)r= 0or v, =v,
The frequencies for the minima of the energy spectrum are given by:

2 Sinz[ﬂ-(vmin _VO)T] —

[ﬂ(vmin - VO) T] ?

|F (Vmin)| = ( fOT)

n nh

n —_—
— _VO_

ie. Z(Vmin—Vo)T =Nz OF Vv

where n=—o,--- — 3- 2- 1123 --- 0
Hence, the total width of the first maxum of the energy spectrum is given by:

2A0v =yt :E or Av=l
T

min ~ “'min T
Using the differentiation of the relation = %:

Av :%A/l
we have
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2
%Alzl or CTZi—
A T AL

which is the coherence length of Problem 10.11.
10.13

2
Use the relationAA = ﬁAv , we have:
C

(6.936x10 ")?
3x1C

Then, using the result in Problem 10.1t# coherence length is given by:

_ & (6.936x107)?
AL 1.6x10"

AL = x10* ~ 1.6x10™[m]

| = 3x10°[m]

10.14
Referring to pages 46 and 47 of the texid an particular tothe example of the
radiating atom, we see that the enefythe damped simple harmonic motion:

E=Ee” =Ege" where Q/w,=t, the period for which the atom radiates

before cut off ate™.
The length of the wave train radiated by the atonhisct where c is the velocity

of light and | is the coherence length which contai@s radians.

Since the coherence length is finite tlagliation cannot be represented by a single

angular frequencyw, but by a bandwidthA® centred aboutw,.
Now Q=w,/A®w so Q/w,=t=1/Aw . Writing t=At we have AwAt=1 or

AVAt=1/2r .

The bandwidth effect on the spectral linarisreased in a gas o&diating atoms at
temperatureT . Collisions between the atoms sieor the coherence length and the
Doppler effect from atomithermal velocities adds ta v .

10.15

The Fourier transform off (t )yives:

F) =] f(ge'®dt=[" f,e*"lee ™ dt= [ fe? o N

—00

Noting thatt >0 for f(t), we have:
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FO)= ) et

— 1:o {e[i 27 (vo—v)Y ]t [T }
i2z(vy-v)-1r 0

— fO — fo
i2z(vo—v)-Yr Yr+i2z(v-v,)

Hence, the energy distribution of frequencies in the regien, is given by:

2
£ f2 f2

|F(V)|2:| . L =2 = 2 2= 2 2
Wr+i2n@-vy)| 12 @) +[22(v—-vy)?  @7)? +(0-,)

10.16
In the text of Chapter 3, the resonaposver curve is given by the expression:
2 2 2
P, - F cos¢=F°2: : For :
27 225 2[r*+(wm-s/w)?]

In the vicinity of @, =./s/m, we have w ~ @,, so the above equation becomes:

~ FO2r _ FOZI’ — f02
YA+ (wm-5w)? 2Ari+m(w-m)? W)’ +(0-o,)?

=[Fef

2

For m
where f? = 20 > and 7 =—
m r

The frequency at half the maximum value|6f(v)|2 is given by:

2 _ f02 _ (‘I:oz—)2
Fe) = W) +(w-w,)® 2

i.e. ow-w, =117
so the frequency width &alf maximum is given by:
Aw =2/t or Av=1Yxrr
In Problem 10.12 the spectrum width is given by:
AV =Yz

so we have the relation between the trespectively defined frequency spectrum
widths given by:
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G G
Noting that A1 =-2Av and A1 =-2Av', we have:
c c

T
where A4 and AA' are the wavelength spectrum ditis defined here and in

Problem 10.12, respectively.
If the spectrum line has a valuéi =3x10°m in Problem 10.12, the coherence
length is given by:

T S - W
AV AMr 3x10°xrx

10.17
The double slit function (upper figure) aitd self convolution (lower figure) are
shown below:

«—d —

VA /\ A

—> 27 «— d-7 — 2t «— d-7 — 27 <«—

Fig. A.10.17

10.18
The convolution of the two functions is shown in Fig. A.10.18.1.

J oL,

«—d— «— 4 —» “«— d —»<—d —»

Fig. A.10.18.1
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The respective Fourier transforms of th® functions are shown in Fig. A.10.18.2.

2/d
J \J:“

2/d
i «— —J ) ) /\ v
d

Fig. A.10.18.2
Hence, the Fourier transform of the convolution of the two functions is the product of
the Fourier transform of the individualriction, which is shown in Fig. A.10.18.3

F( )

«— d —»
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«—d —» «— ¢ —»
v
= R ) x F( I )
«— d —
«— d — v

2/d
_ /\TA
1d

Fig. A.10.18.3

10.19
The area of the overlap is given by:

A= Zer -20—%-2rsin¢9-rcos¢9j

=r?(20 - 2sinfcosh)

2
where cos¢9=E and sing = 1{1—i2
2r 4r

Hence the convolution is given by:

1

2 \2
O(R)=r? 2cost R 1—% R
2r ar 2r
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The convolutionO(R ) in the region [0,2r ]is sketched below:
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SOLUTIONS TO CHAPTER 11

11.1

Fig A.11.1
In a bi-convex lens, as shown in Fig A.11.1, the time taken by the wavefront to travel
through path AB is the same as through pa#hiB’, so we have:

nd r* 1 (nj[ r rZJ (1}( rZJ
—t——=|—|d+———— |+ = | 2+ —
c 2R, c (c 2R, 2R c 2R

which yields:
2
Z= (n_]_)[i_ijr_
R R)2
i.e. p:i:(n_l)(i_i]
f R R
11.2
> A z B
r
> A B 70O

Fig A.11.2
As shown in Fig A.11.2, the time taken by the wavefront to travel through pBth
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is the same as through patB’, so we have:

2
nd _(np—oar’)d Lz

C c C
which yields:
z=ar’d
i.e. f = 1
2ad
11.3

Choosing the distanc®F = 1/2 then, for the path differenc8F — BF’, the phase

difference is = radians.

Similarly for the path differenceAF’— AF the phase difference ig radians.

Thus for the path differencé\F'—BF' the phase difference i8z radians and the
resulting amplitude of theecondary waves is zero.

Writing F'F = x/2, we then have in the triangle'FP: gsine =§’ so the width of

the focal spot isx = L .
sing

11.4
If 2 man’s near point is 40cm from hisegyis eye has a rangéaccommodation of:

1 .
— = 25[dioptres
04 [dioptres]

Noting that a healthy eye has a rangeaotommodation of 4 dioptres, he needs
spectacles of power:

P=4-25=15dioptres]

If anther man is unable to focus at distance greater than 2m, his eye’s minimum
accommodation is:

% = 0.5[dioptres]

Therefore, he needs diverging spectacldgl wipower of -0.5 dioptres for clear image
of infinite distance.

11.5
Noting that lzll—, we have the transverseagnification given by:M; =|I—. The
y
T Byl _d :
angular magnification is given byM =~ = d =7 Using the thin lens power
Y/ dy
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equation: P:%—i, we have%z P+|—1,, i.e. M, =d,(P+¥I")=Pd, +1

11.6
The power of the whole two-lens tetmpe system is zero, so we have:

P=R+P,-LPP,=0

where L is the separation of the two lenses. Noting tl%adcfi and P, :fi, we

0 e
have:
1.1 ,11 4
f, f f, f,

e

which gives: L = f,+ f,
Suppose the image height at poihtis h, we have:

lo| =d/2L=h/|f,| and |a|=D/2L = h/|f|

a!

which yields:

a!

(24

f0

f

M: = =

a

b
d

e

11.7
As shown from Figure 11.20, the magaodiion of objective lens is given by:

M :—%. Suppose the objective lens is a thin lens, we hﬂ%% i.e.

(o] (o]

Similarly, the magnification of eye lens is given byt :%. Suppose the eye lens

e

is a thin lens, we haveP, _1 ie. M, =Pd

' o e~o "
fe

So we have the total magnification given by:
M=MM,=-PPdX
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11.8

Glass

Fig.A.11.8(a)

As shown in Fig.A.11.8(a), Snell’s law gives:
nsinZOPC=sina =sinZIPC
In triangle OCP, we have:

od _ [pd
sinZOPC sinZPOC
e R = R
a nsinZOPC  sin/POC
e R___ R
h sinZIPC  sinZPOC
i.e. /IPC = ZPOC
i.e. A’s OPC and PIC are similar
. oc |PC
i.e. =L
PC |IC
. Pc R
l.e. ICl=—"=——=nR

© 2008 John Wiley & Sons, Ltd



Fig.A.11.8(b)
Equate optical path$IP|2 = n2|OP|2. Let [IC|=k, |CB/=I and |PB=d, then:

IP]* = (k+¢)? + d* = n*(OP)? = n{(%ﬂ] + dz}

ie. k*+ 2kl +1?+d? = R* + 2nRI+n*(1* + d?)
ie. k*+ 2kl + R* = R* + 2nRI+ n’R?
that is k=|IC|=nR
11.9
(a) The powers of the two spherical surfaces are given by:
P - n-n_ 1.5—1:_0.5 and P, = n—n :1—1.5:0
R -1 R 00

Suppose a parallel incident rayr, =0) strikes the front surface of the system at a

height of y,. By using matrix method, we can find the ray angie and heighty,

at the back surface of the system given by:

a, ] [L RT1 o1 RYa
=R,1,R = Y
y; Yi 0 1 _d1' 1j0 1 Yi
(1 0f 1 0|1 -05)0]| [-05y,
|0 1-03 1|0 1 |y | | 115y,
So the focal length is given by:

f=2= o
|0(2' 05y,

The principal plane is located at a distamteto the left side of the right-end surface
of the system, which is given by:

g Vo= vl _[115y; -y

=03m
;| 05y, m)

(b) The powers of the foupkerical surfaces are given by:

p- n—n:1.5—1:0
R 0
P - n-n :1—1.5:1
R -05
P, = n —n:1._—1:_05
R -1
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P4:n—n :1—1.5:O
R 0

Suppose a parallel incident rayr, =0) strikes the front surface of the system at a

height of y,. By using matrix method, we can find the ray anglg and heighty,

at the back surface of the system given by:

|:(;4:| RTBARTZBRT12R1|:yl:|
1 PR 1 OfJ1 R 1 ofr R 1 01 R
o 2 o 2l alo T o 515
1 0o 1 O]J1 -05 0
:_0 1}[— 015 1}{0 1 { 0.2 1}[ }{ 015 1}{ }{yj

[ osy,
| 071y,
So the focal length is given by:
NN 67m)
| | 06y,

The principal plane is located at a distamteto the left side of the right-end surface
of the system, which is given by:

|Y4 y1| |O-71y1_y1|
o, 06y,

= 049 m|

(c) The powers of the foupherical surfaces are given by:

p- n—n:1.5—1:0
R 0

P - n-n :1—1.5:
R - 05

P - n—n: 1.5—1:1

05

P4:n—n :1—1.5:O

R 0

Suppose a parallel incident rayr, =0) strikes the front surface of the system at a

height of y,. By using matrix method, we can find the ray anglg and heighty,

at the back surface of the system given by:
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a,

.

1

@,
y! = R4T34 R3T23R2T12R1
4

o 5l o 1l 2o 1l 2o 2[5
0 1|-d; 1J0 1-d; 1|0 1]-d 1|0 1|y
1 0] 1 off1 1] 2 of21 1] 1 o1 ofo
"o 1}{— 015 1}[0 1}{— 06 1}{0 1}{— 015 1}{0 1}{%}
[ 14y,
:_0.19yj

So the focal length is given by:

The principal plane is located at a distarmteto the left side of the right-end surface

of the system, which is given by:

Yo—vi| 019y,

d=

—

]
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SOLUTIONS TO CHAPTER 12

12.1

Fig.A.12.1

As shown in Fig.A.12.1, the air gap thicknessis given by:

Noting that there is ar rad of phase shift upon the eggtion at the lower surface of
the air gap, the thickness of gap at dark rings should satisfy:
2t=ni

2 2
. r r
l.e. ———=n4

R R

which yields the radiug,, of the nth dark ring given by:

> _RRn
""R-R

12.2
The matrix relating reflection coefficient and transmission coefficiert for the

A/4 film is given by:
M _{ COSo isiné/nz}_[ 0 i/nz}

in,sind  coso in, O

where the phase changg= /2 for the 1/4 film.

Following the analysis in text pag52, we can find the coefficiend and B are
given by:

A= nl(Mll+ MlZnS) = inlns/nz
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B= (M21+ Mzzna) = inz
A perfect anti-reflector requires:

_A-B _inny/n,—in,
A+B inn,/n,+in,

which gives:

2

n, = nng

12.3
As shown in page 357 of thiext, the intensity distribution of the interference pattern
is given by:

| =4a® coszé
2

where 6 is the phase difference between the two waves transmitted from the two
radio masts to a poinP and is given by:

5 =k sind = 2= £ sind = 2n x 400x Sin@ = 47sind
y) 3x10°/1500x10°
so we have:
| = 4a2cog ZESINY _ 21,[1+ cos@r sing)]
where |, =a* represents the radiatéttensity of each mast.

The intensity distribution is shown in the polar diagram below:

Fig.A.12.3
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12.4
(@)

Analysis is the same as Problem 12.3 except:
0 =0,+kfsing = 7z+27”%sin¢9 =7+ 7zsing

Hence, the intensity distribution is given by:

| =4a” cosz(gJ = 4a* 0052(7””—28"16’] =4l sinz(”sénej

where | =a’ is the intensity of each source.

The polar diagram forl versus @ is shown below:

0=270

Fig.A.12.4(a)

(b)
In this case, the phase difference is given by:
0 =0, +kf sin9=£+2—ﬂ~isin9=ﬂﬂ—smg
2 1 4 2
Hence, the intensity distribution is given by:

2 r+msing

| =4a® coszg =4a°co 41 {co§%(l+ sin&)}

where | =a’ is the intensity of each source.

The polar diagram forl versus @ is shown below:
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0=270

Fig.A.12.4(b)

125
(@)

Fig.A.12.5(a)

Fig.A.12.5(a) shows elements of a verticalumn and a horizontabw of radiators in
a rectangular lattice withnit square cells of sidel . Rays leave each lattice point at
an angle# to reach a distant poinP. If P is simultaneously the location of the
mth spectral order of interferenceon the column radiation and theth spectral
order of interference from the row radatj we have from pages 364/5 the relations:

dsind=mi and dcosd =nA
Thus
ﬁ — tane — m
cosd n
where m and n are integers.

(b)
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Fig.A.12.5(b)
Waves scattered elastically (without changeiof by successive planes separated by
a distanced in a crystal reinforce to givenaxima on reflection when the path
difference 2dsind =nA. In Fig.A.12.5(b), the path difference ABC between the
incident and the reflected rays 2d sing .

12.6
Using the Principal Maximum condition:

fsind=nAi
at Hzi%, we have: f =ni, which shows the minimum separation of equal

sources is given by:f = 1.
When N =4, the intensity distribtion as a function ofé is given by:

sin’ (4 siné)

| =
* sin’(zsing)

The N-1=3 points of zero intensity occur when:

fsinH:i,i,%

4 2 4

i.e. sinezl,l,§
4 2 4

The position of theN-2=2 points of secondary imeity maxima should occur
between the zero intensippints and should satisfy:

ar_,

do
i d _d sin® (4 siné) _
h dé da| ° sin’(zsind)
ie. 6cos(rsingd)-1= 0
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) ) ) 1 1
which yields: sind = —arccos+ —
Y E fesj

T

i.e. secondary intensity maxima occur whér= 215 and € =393

The angular distribution of éintensity is shown below:

12.7
The angular width of the central maximu#a® is the angular difference between +1

and -1 order zero intensity position and should satisfy:

singg = 2 - 2921

= =1.875x10° or 66=6
Nf 32x7

The angular separation between successive principal masi¢éhas given by:

sinA0=%=%= 003 or A@=142
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12.8
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Fig.A.12.8

210

240

270

300

The above polar diagrams show the tracesetifhof the intensity of diffracted light
| for monochromatic light normally incidewin a single slit when the ratio of slit

width to the wavelengthd/A changes from 1 to 4. It is evidently shown that the

polar diagram becomes concentrated along the diredlierd0 as d/4A becomes

larger.

12.9

It is evident thata =0 satisfies the conditiony = tana .

By substitution of @ =37/2-¢6 into the condition:« = tana  we have:

© 2008 John Wiley & Sons, Ltd

3r/2-6 =tan@r/2-5)



ie. 3r/2-6 =cotd

ie. (3z/2-5)sind = coso
when ¢ is small, we have:

2
(37/2-5)5 :1—%

The solution to the above equation is given bBy= 0.7 .

Using the similar analysis fora =57z/2-65 and a=7z/2-6, we can find
0=0041r and 6 =0.029r respectively. Therefore the real solutions fer are
a = 0+1437 £2.4597 3.471x,etc.

12.10
If only interference effects arconsidered the intensity tfis grating is given by:
sin’ 343
I P
sin® g

The intensity of the prinpal maximum is given byl =91, when g =0.

The g for the secondary maximum should satisfy:

d(sif3p)_
dg\ sin?g |

ie. sinf = 1

ie. Beec max = (2n+1)%, where n is integer

Hence, at the secondary maximum:
sin’ 33

sec_max 1 |

| A Ly
0 _:.2
sin /Bsec_max

= | ==
sec_max 0 9 max

12.11

Suppose a monochromatic light incident a grating, the phase changg required

to move the diffracted light from the principal maximum to the first minimum is given
by:

f sing@
A

A A
2

_ _ 7 4(sing) z
dﬂ—d( j—;td(sm@)— NFoN
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Since N is a very large number, we have:
T
dg=—=0
4 N
Then, suppose a non-momoomatic light, i.e. 4 is not constant, incident on the
same grating, the phase chandg required to move the fliiacted light from the

principal maximum to the first minimum should be the same value as given above, so
we have:

dB = d(ﬂf S'”‘gj _ ™ d(sing)+ A sined(lj
A A A
~ ™ cospig- T30 g, -7 g
A A N
which gives:
dé = (nNcotd)™
12.12
(a)
The derivative of the equation:
f sind=nAi
gives:
f cosidd = ndA
when 6 is a small angle we have:
a4 _n
dia f

When the diffracted light from the grag is projected by a s of focal lengthF
on the screen, the relation between linear spacing on the screed the diffraction
angle @ is given by:

|l =F&8
Its derivative overi gives:
dl _-do_nF
di  di f

(b)
Using the result given above, the change in linear separation per unit increase in
spectral order is given by:

dl _ Fdi _ 2x(62x10"-5x107)

N 2%10° =2x107[m]
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12.13
(@)

Using the resolving power equation:
A

—=nN
dA
we have:
_ A _ (589x107 +5.896x107)/2 _ 398
ndi 3x (5.896x10" — 589x107)
(b)
Using the resolving power equation:
A =nN
dA
we have:
7
di=t 26240 107
nN 3x9x10
12.14

When the objectsO and O’ are just resolved att and |I’' the principal
maximum of O and the first minimum ofO’ are located atl . Rayleigh’s criterion
thus defines the path difference:

OBI-OAl =0'B-0O'A=1224 (Bl =Al)
Also OB=0A giving
(O'B-0OB)+(OA-0'A) =1221

Fig.Q.12.14 showsOA parallel to O'A and OB parallel to O'B, so:
OA-O'A=0'C =00'sini = ssini

and
O'B-0OB=0'C'=00'sini = ssini

We therefore write:

oo 1222 122

if 1=45

or s

2sini 2sini
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Fig.A.12.14
SOLUTIONS TO CHAPTER 13

131

For such an electron, the uncertainty of momentdjd roughly equals the magnitude of

momentum P, and the uncertainty of radiuAr roughly equals the magnitude of radius So

we have:

h h
~AP=—~—
P P Ar r

By substitution of the above equation into the expression of electron energy, we have:

_ﬁ_ ? _hz/rz_ e?
2m A4rzeyr  2m Arer

(13.1.1)

The minimum energy occurs whedE/dr =0, i.e.:

E(L/fz_ ¢ J:o

dr\ 2m  Adzer

_n e’

+ =0
mr? 47rgor2

which yields the minimum Bohr radius given by:
_Aagh® g h?
me€  mé
By substitution into equation 13.1.1, we find the electron’s ground state energy given by:
2
Eo—h—z mé | & mmé -mé
2m| g,h? Arg, gn’ 8glh?

13.2

Use the uncertainty relatiodpAX ~ h we have:

szlzﬂ

Ap p

Photons’ energy converted from mags is given by:

E=pc=mc
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So, the momentum of these photons is given by:
p=mc
Therefore, these photons’ spatial uncertainty should satisfy:

Axs> -

mcC
which shows the short wavelength limit on length measurement, i.e. the Compton wavelength, is

given by:

A=—
mcC

By substitution of electron massn, = 9.1x10°'[kg] into the above equation, we have the
Compton wavelength for an electron given by:

34
a= o 06307 410
mc  91x10*x3x10

13.3
The energy of a simple harmonic oscillation at frequerzyshould satisfy:

2 A2 -
E= £+1ma)zxz > A—p+1ma)2AX2
m 2 m 2

- 2 _ 2
The relation: (AX*)(Ap?) = % gives: Ap® ~ h_z , by substitution into the above equation,
4AX

we have:

N2 _ 2 _ 2 .
Ap + 1 Mw? AX? = e + 1 M’ AX? > 2 e (1 ma)zszj
2m 2 8SmAX: 2 8mAX>

=1ha)=1hv
2 2

E>

i.e. the simple harmonic oscillation has a minimum energyz—difv.

134
When an electron passes through a slit of widtk, the intensity distribution of diffraction
pattern is given by:

tn2
SIN" o T .
| =1,———, where a = —AXsing
a A

The first minimum of the intensity pattern occurs when= r ,

ie. a:ZAxsinezn
A

Noting that A = h/p, we have:
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a= %Axpsin@ =7
i.e. AXAp=h

where Ap = psing is the change of the electron’s momentum in the direction parallel to the

plane of the slit. This relation is in accordance with Heisenberg’s uncertainty principle.

135
The angular spread due to diffraction can be seen as the half angular width of the principal
maximum A& of the diffraction pattern. Use the same analysis as Problem 13.4, we have:

a="dsingd~ZdAg =1
A A

5
ie. AH—i— 10

=4 " 10° =01l= 54

13.6
The energy of the electron aftercateration across aotential differenceV is given by:

E =eV, so its momentum is given byp:\/ZmEE :\/ZmEeV, therefore its de Broglie

wavelength is given by:

34
a=h__ b 663x10 = 123x10°V ¥
p

CJ2meV  \2x91x10%x 16x107V

13.7
From problem 13.6 we have:

123x10° 123x10°
A 3x10

\VAG
-V =1681V]
13.8

1
The energy per unit volume of electromagnetic wave is giventby: EgoEg , where E, isthe

electric field amplitude. For photons of zero rest mass, the energy is givela 1@1:3,11nc2 = pc,

where p is the average momentum per unit volume associated with this electromagnetic wave.
So we have:

1
EEOE()Z =pcC
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1

ie. p=g,E / c
2

The dimension the above equation is given by:

F-VZm? C-V-m?> C-W-m? A-s-kg-m?-m? 1 1
1 = 1 = 1 = 1 3 :kgm S
m-s m-s m-s—-A m-s—-s’-A

which is the dimension of momentum.

13.9
When the wave is normally incident on a perfalosorber, all the photons’ velocity changes from
C to 0, the radiation pressure should equal the energy density of the incident wave, i.e.:

P:cp—O:cpzégoEé

When the wave is normally incident on a perfedkector, all the photons’ velocity changes to the
opposite directing but keeps the same value, hence, the radiation pressure is given by:

P =cp-(-cp) = 2cp= £,E¢

13.10
Using the result of Problem 13.9, we have the radiation pressure from the sun incident upon the
perfectly absorbing surface of the earth given by:

14x10°
3x10°

11

P= 3%5% =15x10"°[Pg ~ 10 "[atm

1
==X
3

, 1 1
= — X —
5 3 C

13.11
Using the result of Problem 13.3, we have the minimum energy, i.e. the zero point energy, of such
an oscillation given by:

%hv = %x 663x10% x 643x10" = 213x10%[J] = 133x10[eV]

13.12
The probability of finding the mass in the box is given by the integral:

a 2 a1, 2\
j_a|y/(x)| dx = j_aa(l— o j dx

a 1 X% %t
:f-aa[l‘ 42’ +64a4de
2 4
_o_ 2 N 27

12 320

~ 096

The general expression of the wave function is givenyy= C& + De™, where A B are

constants. Using boundary condition &at=a and X =—a, we have:
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w(a)=Cd“*+De™ =0

w(-a)=Ce™ +De** =0
which gives: C = D, so we have:
w =Cd* + Ce™ = Acoskx
where A=2C.

Boundary condition:y =0 at X=a gives: coska=0, i.e.:

k :(nﬁjﬁ, where n= 0123
2/)a

Hence, the ground state equation is given by letting O, i.e.:

X
= ACcog —
v {Zaj

By normalization of the wave function, we have:

f:|x//(x)|2dx =1
ie. _|'+°°A2 cos{ﬁjdx =1
- 2a

ie. raAzl*LZWa)dx:l

—a

ie. A:]/\/g

Therefore the normalized ground state wave function is:

v (¥) = (/a) cos(py/2a)

which can be expanded as:

1 1( 2x ) 1 G
Vo= ﬁ{l‘z(z] } ~—a[1‘ = ]

13.13
At ground state, i.e. at the bottom of the deep potential wglk- n, =n, =1.

By normalization of the wave function at ground state, we have:
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[veyafav=[T

2
Asinﬁsinﬂsinz‘ dxdydz
a b c

:AZJ'a N PNCaL dx-J'ID 1 1062 dy-J'c 1105224z
o\2 2 0 2 0
a

a 2 b 2 2 c
=A2.Z .E.E =1
222
i.e A=,/8/abc
13.14
Text in page 426 shows number of electrons per unit volume in energy in@vais given by:
2x 4z (2m¥)¥2EY?
dn = ( ) dE
h3
and the total number of electrons given by:
N = 167 (2m3)V?EF?
3n’®

so we have the total energy of these electrons given by:

U =jEdn=j0Ef E%dE

N2 =32
:J'Ef 2><47Z'(2n; ) E dE
0 h
32 =52
_16ram)EF 3y
5h 5

13.15
Noting that Copper has one conduction electron per atom and one atom has a mass of

m, = 166x 102"kg, the number of free electrons per unit volume in Copper is given by:

P 9x10°
64m, 64x166x107*

N, ~ 8x 107 [m"]

Using the expression of number of electrons per unit volume in text of page 426, we have the
Fermi energy level of Copper given by:

~ 108x10"°[J] = 7[eV]

23 23

n, -3h° 8x 108 x3x (663x107%%)?

E. =|—2 " | =
16742 167 x/2x (91x10°%%)°
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13.16

By substitution of values ofk, V —E, and m into the expressiore >, we have:

For an electron:

—20X

o2 _ 872[ em(V-E) )k e {J 29210161019 /(e.eaaoszt/z;:)}xzdmo _ go0s

~ 01

For a proton:

- B -3V 216707x1640%/(66340%/27 ) k2a0®
a2 _ o 22m (Y E) /nx _e { } _ o4 108

13.17
Text in page 432-434 shows the amplitude reflection and transmission coefficients for such a
particle are given by:

where,

v 2mE A 2m(E-V)

k, = and k, =YY"=~ "7
h h

If Vis a very large negative value at> O, we have the amplitude reflection coefficient given

by:

__ \2mE—/2m(E-V)
r=Iim =—
vome [2mE + \[2m(E-V)

and the amplitude transmission coefficient given by:

2+/2mE

Voo \[2ME +,/2m(E - V)

i.e. the amplitude of reflected wave tends to unity and that of transmitted wave to zero.
13.18
The potential energy of one dimensional simple harmonic oscillator of frequendyg given by:
1
V = =mo’x?
2
By substitution into Schrédinger’s equation, we have:

d% 2m 1, 2}
+— | E—=mo°X* [y =0
X hz{ i

(13.18.1)

Try z//(x)=1/a/\/;e“"‘zxz/2 in dy/dx:
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dw , a PN
——=-aX /—e 2
dx Jr
a PN
+a |-2e = =(a*x*-a?).|—e 2
o s Nt Nz

In order to satisfy the Schrédingeequation (13.18.1), we should have:

SO:

2mE m’w?
?="—— and 20 =a’
h h
which yields:
h%a®
== 2m ="

Try t//(x)=w/a/2\/;2axe‘a‘2x2/2 in dy/dx:

d‘/’ 2a/ “/ ae _(2a 2a3x2)/
72'
SO:

dZV/ 3\/Tazxz 5.3 3 a e 5.3 3 a -
=-A4aX [—e 2 +(2a°x’-2a’X). |—e 2 = (2a’°X’-6a’X). |[——e ?
Y. A Wadn® = Wadn

In order to satisfy the Schrédingeequation (13.18.1), we should have:

2 2
3a’ = Z;EE and mhz) =a’
which yields:
3n%a® 3
= =—ho
& 2m 2
13.19
When n=0:
N, = (a/z*22°0)"2 = \Ja/z
H (aX) ( 1)0 a’x? —ax =1
Hence:
Vo= ’\loHo(aX)e_azxz/2 =4 / _aZXZ/z
When n=1:

N, = (a/ 7"221)"* = \Ja/ 2
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H,(ax) = (-1)'e®™* L e -(—2ax) = 2ax
d(ax)

Hence:

v, = N,H,(a)e ™% = \Ja/ 2\ 2axe**/*
When n=2:

N
N, = (a/z"*2°2)"” = \[a/8Vx :#
2,2 d2 2.2
H,(ax) = (-1)%e** ~€%F =-2+4a%
d(ax)
Hence:
v, = N,H,(a)e 7 = \Ja/2x (2a°X* —1)e /2

When n=3:

N, = (a/ 7*22%3)* = \[a/48Jx =—“°/j’\/;

2.2 d3 2.2
H,(ax) = (-1)°e** -e " =8a’’ -12ax
d(ax)
Hence:
w, = N;H,(a)e ™72 = \Ja/3/r (2a®¢ — 3ax)e /2

13.20

The reflection angled. and reflection wavelengthl, should satisfy Bragg condition:

2asind, = 4,
where a is separation of the atomic plane of the nickel crystal. Hence the reflected electron

momentum P, should satisfy:

h h

=7 2asing,

r

Hence, the reflected electron energy is given by:
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p2 h2
“2m 8ma’sin’é,
_ (663x10%)?
8% 9.1x10° x (091x10"%)* xsin’ 65
= 888x10"°[J]=55.5[eV]
The difference between the incident and scattered kinetic energies is given by:
[E. -E| 555-54
E 54

r

x100% = 2.8% < 39%

13.21

For w =sinka:

Since 1//,1//*,V are all periodic functions with a period @f, we have:

a . 27mx
. | sinkxV, cos™——dx
e Jrvwdx L a

[vpdx &= J‘asin2 kxdx

_[al cos(2znx/ a) o 27mx

_ 2
- _ZV J-a 1—cos(2znx/a) d?(

2

dx

1pa 27X 27mx
o ——j COS—— -COS———dX
vV 20 a a

:_Z - "
*J‘ [ 27z(m+ n)x o S27z(m—n)x}dx
Z

a

a
The above equation has non-zero term only wimes- N, so we have:

a 47mx
(00% + 1)dx
AE =V, a v, 2 -ty
2a 2a 2

For w = coska:
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a 272mx
- . | cos kxV,, cos~———dx
AE _ J-l// VWdX _ IO a

) [vydx &= cho§ kxdx

J-a 1+ cos(27nx/a) o 27imx

0 2 a
r 1+ cos(27nx/ a) dx

0 2

dx

S,
m=1

1a 27X 27mx
—| cos——-cos———dx

Ny 20 a a
=—>yV,_
2 a2
] 1J-a[00527z(m+ nx , COS27z(m— n)x}dx
2% a a
= _va
m=1 a
The above equation has non-zero term only wimes- N, so we have:
J' a(cos@+ljdx
0 a 1
AE = _Vr.| = —Vr_| _ = __VI"I
2a 2a 2
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SOLUTIONS TO CHAPTER 14

14.1

For 6, <30, we have:

T<T, 14+ Lsin2 30 =1.017T,
4 2

T-To _ 1.7% < 2%

0

For 6,=90", we have:

T= T[1+1S|n2£) 1.125T,
4 2

T-To _ 125%

0

14.2
Multiplying the equation of motion by2dx/dt and integrating with respect tb

dx )’ x
rr(aj = A- 2j0f(x)dx

where A is the constant of integration. The veloc'%%( is zero at the maximum

gives:

displacementx = x,, giving A= ZLXO f (x)dx.

ie. rr(%jz = 2]0“ f (x)dx—zj: f (X)dx = 2F (%) — 2F (X)
e. & \/ [F (%)~ F (0]

Upon integration of the above equation, we have:
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t_J'\/E dx
V2 JF(x)-F(0

If x=0 attime t=0 and 7, is the period of oscillation, thex=x, at t=17,/4,

-4 m o dx
’ EL JF0)—F(
14.3

By substitution of the solution int:

so we have:

© n? n n> . n
X= —a. —C0S—¢g—b, —sin—
z[ "9 3¢ "9 34

n=1
Since s; << s, we have 5(X) = §X, SO:

2

" - _n*) n on).n |
X+S(X)—;|:an(sl gjcos§¢+b{sl gjsm34 F, coswt
le. i[ (sl——chos—¢+b[sl——2]S|n 4 F, cosg
ie.

The above equation is true only if = @nd the even numbered cosine terms are

zero. By neglecting the zero terms, we have:
85(S, —1) coSp+ay(s —9) coS3p + - = F, cosp

i.e. a,(s, —1) cosp + a,(s, — 9)(4cos ¢ —3cosp) +--- = F, cosp
ie. [a,(s, 1) —38y(s, ~9)] Cosp + 4ay(s,—9) cOS g+ = F, COsy

As we can see, onla, and a, are the main coefficients in the solution, i.e. the

fundamental frequency terrma its third harmonic term arthe significant terms in
the solution.

14.4

SinceV =V, at r =r,, by expandingV at r,, we have:

V= V+( )(I’ o) + [ z\/j (I’—I‘O)2
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Noting that:

12 6
(dZVJ =12\/0[ﬁ_ﬂj - 72V_g

14 8
r.O r.0 rO

We have:
V =V0+7_2;/0(r _r0)2+...
r

0

The expression of potential energyr fdiarmonic oscillation is given by:

V=V, +%sx2, hence s= 7—2;/0 and the oscillation frequency is given by:

r0
a)z = E = 72/20
m my
14.5
The restoring force of thigscillator is given by:

F(X) = —% = —kx+ax’

Hence, the equation of motion is given by:

X = F(X)
ie. X+£x—3x2:0
m m

At @} = ®® =k/m, using « = a/m, the equation of motion becomes:

X+ agx—ax’ =0

2
try the solution x = Acosa,t + Bsin2m,t + X, in the above equation withx, =

2
@y

ah’® _ L aX

and B=-——=-—=, we have:
6wy 3

X = X — o, Asinwyt + 2w,B cos2a,t
X = % — @f Acoswyt — 4w BSsin2mit = % — @ Acosmt —gaa)jxl sin2ot  (a)

X? = X2 + A? cog gt + B*sin® 2wt + 2ABcosa,t Sin2am,t + 2( Acosagt + Bsin2am,t) X,
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—ax® = —ax; —al’ cos w,t — aB®sin’ 2w,t — 2aABCOSt Sin2am,t

—2a(Acosat + Bsin2m,t) x,
where
—al cog wt = —2aw}X% CoS ot (b)
az
—aB?sin® 2wt = —Exfsin2 205t (e)
- 2 2 -
—20ABcosot Sin2a,t = 5oz Acosm,t sin2m,t |X (c)
— 20AX, COSwt — 2aBX Sin 2wt = —2aAX COSw,t (d)

+§a2)(12 Sin2ayt )
Using (a)(b)(c)(d) the coefficients ok, are:
? —gaa}j sin2ayt — 2aw; coS wyt — 2a® Acoswyt Sin2wm,t — 2aAcosagt
which with a << @ leaves wix,_ as the only significant term.
Similarly using (e) and (f) the coefficients of are:

2
- —a—sinZa)Ot + g0{2 sin2a,t
9 3

with —ax’ the dominant term. (Noteg oc i4).
Wy

We therefore havex +wix —ax’ =0 as a good approximation to the original

equation.

14.6
Extending the chain rule at the bottom of page 472 and noting that the fixed>goint

is the origin of the cyclex; — X, = X, — X, which are fixed points forf?> when
A >% and also noting thai = f(x, )and x, = f(x ), we have:

F206) = £/ '06) and £2(¢) =00 /04 )
So the slopes off > at x and x, are equal.

© 2008 John Wiley & Sons, Ltd



14.7
The fractal dimension of the Koch Snowflake is:
d=1004_1 567
log3
The Hausdorff—Besicovitch definition usasscaling process for both integral and
fractal dimensions to produce the relation:

c=a’

where ¢ is the number of copies(includingettoriginal) produced when a shape of
dimensionsd has its side length increased by a factar

Thus, for a=2

® aline d=1 hasc=2

(i) asquared=2 hasc=4

(i) acubed=3 hasc=8

(iv)  an equilateral triangle with a horizahtbase produces 3 copies to give

_ log3
log2

d =1.5849 (a fractal)
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SOLUTIONS TO CHAPTER 15

151

In the energy conservation equation the internal energy:

y=1p
so the two terms:
e P_ 7P
p r-1lp
1
In the reservoir there is no flow energy, so its total energy is intesmafy—&=—cg,
y=lp, r-1

where C, is the velocity of sound in the reservoir.

When the diaphragm where is flow along the tube of velotityand energyil,/Zu2 so the total
energy of flow along the tube is:

1u2+ y p*_ &2y 1 C*2=(1+ 1 Jc*z

* *2
whereu:c,uzzc »

Hence,

1 C2:2+(7_1)C*2— 7+1 %2

10T 20 © 21

If the wavefront flows at a velocityy, with a local velocity of soundc,, the energy
conservation condition gives:

Wi+ 2 ]/+1 C*Z
2! y—1Cl 2(y -1

1.1 (q) _ y1(c)

2 y-1Uuy 2(y-1 U

: 1 1 y+1

l.e. — > "
2 (y-DM7  2(y-1M
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M2 o (rrOMme

ie. = 5
(]/—1)M s T 2
15.2
Energy conservation gives
—c+=uf C22+lu§ __rtl oo from Problem 15.1
y—1 2 -1 2 2(y-1)

So
2 7=1, 2 7_1u22=7+1c*2
2 2

(A)

Momentum conservation gives

u
CZ+ 2 = £2(c2 4+ iZ) = = (c2 + i)
P1 u,

(B)

Combine equations A and B to eIimina(ﬁ and 022 and rearrange terms to give

y+1 ., y-1, > Wly+1l., y-1, 2
c?- u?+w?=—=1 c?- u? +
2 2 1 WJ. u2 2 2 2 7u2
i.e. 7/—+1(c*2 +u?) =ﬁ(7—+1j(c*2 +UZ
2 u,\ 2
ie. (U, —U,)c? = (U — uu’) = uu,(u, —u,)
ie. c?=uu,

15.3
The three conservation equations are given by:

P4 = pU,
(15.3.1)
p1+p1u12 =P, +p2u22
(15.3.2)
luf+el+&:lu§+e2+&
2 P2 P
(15.3.3)

Using equation 15.3.1 and 15.3.2 to eliminatg gives:
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2_
P2 p1p2u22: Y

1

(15.3.4)
Using equation 15.3.1 and 15.3.3 and the relation

e= C\/T :iﬁ
y=1p

to eliminate U, gives:

pr—pi o 7 (pz_gj
2_
2p; y=1Up p

(15.3.5)

Then, using equation 15.3.4 and 15.3.5 to eliminaje we have:

Potp_ ¥V _ o+
2 y_l(plpz P2 pl) P, — P,
o /02//01+1= Y P/Pi=pa/p
- 2 y=1 p/p-1
i.e. [@+ pz/pl)(7_1)_27] pz/ p, =@+ ,02/,01)(}/—1)—27,3
ie. [B(r=D-(r+DIp./p=(r-D-B(y+1)
which yields:
P, — ﬂ_a
p, 1-pa

where & = (y~1/(y+1) and f=p,/p,.

15.4
Using the result of Problems 15.1 and 15.2, we have:

(15.4.1)

Using equation 15.3.1 and 15.3.2 to elimingbe gives:
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(15.4.2)

Using equation 15.3.1 and 15.3.3 to elimingbe gives:
w2 7 (w, ,
2 U; ) pu; 7 =1{ U, s

Using equation 15.4.2 and 15.4.3 to elimingbg gives:

(15.4.3)

(15.4.4)

where y = p,/p, and & = (7 ~D/(y+1).

Then, using equation 15.4.1 and 15.4.4 to eliminatéu, we have:

M= U ly+a
* g Vlta

(15.4.5)
Frome equation 15.4.4 and 15.4.5 we have:
u  l+ay
¢ Vlt+a y+a

(15.4.6)
Hence, from equations 15.4.5 and 15.4.6 we have the flow velocity behind the shock give by:

oy = Gd-a)(y-9
7 v a)(y+a)

u=u

155

In the case of reflected shock wave, Bsven in Fig.(b), the shock strength ip3/ p, and the
velocity of sound ahead of the shock frontds. Hence, using the result of Problem 15.4, we

have the flow velocityu, behind the reflected wave given by:

U _ (-a)(py/p.-1)
¢, JA+a)(py/p,+a)

(15.5.1)
In Fig.(a) the flow velocityu behind of the incident shock front is given by:
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u_ (A-a)y-1)
¢ Jl+a)y+a)

(15.5.2)

Using equation 15.5.1 and 15.5.2 together with the relationu, =0, ¢,/c, = (T,/T,)"* and

T. 1+
?j = y[a fi//] , where y = p,/p,, we have:

(Y=D(P/P,+) _ g
(ps/ P, —1)° vi+ay)

which yields:

P Qa+ly-a
P, ay+l

15.6

P~ B — ps/pz_ pl/pZ — p3/p2_]7/y= yps/pz_l
P =Py 1- pl/ P, 1—],/)/ y-1

20+1)y—
By substitution of y = p2/ p, and P _ w into the above equation, we have:

P, ay+1
Qa+l)y*-ay
Ps— P _ ay+1 _ (a+Dy*~2ay-1
P, — Py y-1 (y-D(ay+1)

In the limit of very strong shock, i.ey >>1, we have:

2
P:— P (ZOH‘?y :2+1
P~ P oy a
15.7
u =—(u+tu)f’
uf '
l.e

t

1+tf'
From equation 15.9 in the text, we have:

fl
u, =
1+tf’
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so we have:
uf’ uf '
+—
1+tf" 1+tf'

U, +uu, =— =
15.8

Using u=-2vy,/y, we have:

ut =2y Vi _zl//tl//x

W

2
u, = —2v Vol —Wy

2

V4
3
u, = —2V|: W xx _ &Vxlé/xx + ZW; :|
y oy %

By substitution of the above expression into Burger’s equation, we have:

_ 3 3
— 2y Vi zl/ltl//x + 4V2 V/le//xg Yy + ZVZ[WXXX _ &//XV/XX + ZI/IXJ =0

y 7 vy vy

i.e. VY x _ZWth =y VY xxx _ZWXWXX
v v
Y )x v o)
which yields:
l//t = V‘//xx
15.9

Using the relation tarilt = seclig and secty = sechftanhg, whereg = a(x — c), we have the
derivatives:

U = 4o ¢ secfig tanhg = 2cuc tanhg
U, = —4o® seclig tanhp = —2au tanhy
Uy = 8a* seclig tantfg — 40* seciig = 402U tantfg — u?

Ux = —160° sechig tanhyp + 48x° seclig tanhy = —&%u tanhp + 1207 tanhy

Then, using the relatiorc = 40® we have:
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u, +6uu, +U,,,

= 2auctanhg — 120U tanhg — 8o °utanhg +120u° tanhg
=0

15.10

At the peak of Figure 15.5(a)p = 2a(Xx—ct)=0, and near the base of Figure 15.5(a),

¢ =2a(x—ct)>>0,i.e. €’ ~0.Hence, the solution of the KdV equation can be written as:

2 2

U(X,t) = 28—2|Og[1+ e—Za(x—ct)] ~ za_ze—Za(x—ct) — 8a2e—2a(x—ct)
5X 8X

Then, we have the derivatives,

ut — 16a3ce72a(xfct)
uXXX — _64a5e72a(xfct)

Therefore, if ¢ = 4a?,

15.11
Using the substitutionz = X—ct and the relation tanj= seclig and secty = —sechtanhy,

where ¢ = a(z—-z,), we have the derivatives:

U, = —4o.°c seclig tanhg = 2ouc tanhy
Uy = —4¢” seclig tanhy = —2au tanhg
U = 4c* seclg + 4cPutantfg = 402U tantfg + u?

Ux = —162° sechig tanhy + 480> sech¢ tanhy = —80°u tanhy — 12007 tanhy
Then, using the relatiorc = 40%, we have:

U, —6uu, +U,,,

= 2auctanhg +12qu’ tanhg + 8o °u tanhg — 120U tanhg

= —8c’utanhg + 8a’utanhg

=0
15.12

If v’+v, =u, then:
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U, = 2w, +V,,
2
l"IXX = 2(VX + VVXX) + VXXX

Uy, = 22V V,, + VWV, + VYV, ) +V,

XXX XXX

=06V, + 2V +V

XXX XXX XXXX

U, = 2wV, +V,,
The left side terms of equation mark in equation 15.13 give:

(i + ZVj(vt —6VV, +V, )

oX
=V~ 6(2VV3 + V2Vxx) Voo T 2V(Vt - 6\/va + Vxxx)
= 2w, =12V, +V, — 120 —6VV,, + 2wV, +V.

0o T Voo
The right side terms of equation mark in equation 15.13 give:
U, —6uu, +U,,,
= 20\, + Vy = BV +V, ) (204, + V) + BV, 2V, + Vi
=2W, 12V, +V,, — 120 —6V'V, +2W,, +V,,
So we have:
) =U, —6uu, +U,,

XXX

(2 + ZVJ(Vt —6VV, +V
OX

15.13

By substitution of V=, / into U(X) =V, +V*, we have:

2 2
2 _ W~V Wy _ Vi
U(X) =V, + V7 = 0o =0 =

% y' ooy

hence,

l//xx_u(x)w =YV l/:;x =0

15.14

wx =—ahA sech (X — %) tanhx (X — %)
Wi = &PA secti(X — %) — 20°A secha (x — %)
Using the soliton solution

u = —20% secha (X — %)
we have:
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Yo T (A —UX)) y
= o*A sechu(x — %) — 20°A secla (x — %) + [~ secha (X — %)]A sechr (X — %)

=0

15.15

Using transformationu - u —A and X— X +64t, whereu” and X are the variables

before transformation, we havel =u+4 and X = X—61t, hence:
U, :(u _i)t =

u =(u —2),. X =u,

* * *

u,=u..xX =Uu..

XX xx X X X

u _ * .
XXX XXX X XXX

Using the above relations, equatian + 6uu, + U, = 0 is transformed to its original form:

u +6uu. +u,..=0
X X X X

15.16

y = asinzx

Fig.A.15.16

In Fig.A.15.16, A is the peak andB is the base point of the leading edge of the right going

wave: Y = asinzX. The phase velocity of any point on the leading edge is given by:

12
V= co(1+ ea?} = co(1+ %ea?) = co(1+%aa7z cos;zxj
X X
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.. phasevelocityat A:v, = ¢, (cos;zx = cos% = O)
andphasevelocityatB : v, = Co(l—%é‘aﬂ'j (cosx = cosr =-1)
.. phasevelocityof ArelatedtoB:

V,—Vg =Cy— Co(l—%é‘aﬁj = %Cogaﬁ =|dy

The phase distanc{ﬂxj between A and B = 7/2
.. Timefor Atoreach theosition \erticallyaboveBis:

dx

du

T 1 1
= = [secs]
2 Y2cpear  cyea
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