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Introduction

This  book  is  an  updated  and  expanded  version  of  my  Advanced  Engineering
Mathematics. I have taken this opportunity to correct misprints, rewrite some of the text, 
and include new examples, problems, and projects. Of equal importance, however, is the
addition of three new chapters so that the book can now be used in a wide variety of 
differential  equations  and  engineering  mathematics  courses.  These  courses  normally 
occur after classes on the calculus of single, multivariable, and vector-valued functions.

The book begins with complex variables. All students need to know how to do simple
arithmetic  operations  involving  complex  numbers;  this  is  presented  in  the  first  two 
sections  of  Chapter  1.  The  remaining  portions  of  this  chapter  focus  on  contour
integration. This material should be taught if the course is devoted to transform methods.

After this introduction, subsequent chapters or sections follow from the goals of the
course. In its broadest form, there are two general tracks:
Differential Equations Course: Most courses on differential equations cover three
general topics: fundamental techniques and concepts, Laplace transforms, and separation 
of variable solutions to partial differential equations.

The course begins with first- and higher-order ordinary differential equations, Chapters 
2 and 3, respectively. After some introductory remarks, Chapter 2 devotes itself to 
presenting general methods for solving first-order ordinary differential equations. These 
methods  include  separation  of  variables,  employing  the  properties  of  homogeneous,
linear, and exact differential equations, and finding and using integrating factors.

The reason most students study ordinary differential equations is for their use in elementary 
physics,  chemistry,  and  engineering  courses.  Because  these  differential equations contain 
constant coefficients, we focus on how to solve them in Chapter 3, along with a detailed 
analysis of the simple, damped, and forced harmonic oscillator. Furthermore,  we  include
the  commonly  employed  techniques  of  undetermined coefficients and variation of parameters 
for finding particular solutions. Finally, the special equation of Euler and Cauchy is in-
cluded because of its use in solving partial differential equations in spherical coordinates.

After these introductory chapters, the course would next turn to Laplace transforms. Laplace
transforms are useful in solving nonhomogeneous differential equations where the initial
conditions have been specified and the forcing function “turns on and off.” The general proper-
ties are explored in §§6.1 to 6.7; the actual solution technique is presented in §§6.8 and 6.9.

Most  differential  equations  courses  conclude  with  a  taste  of  partial  differential
equations via the method of separation of variables. This topic usually begins with a quick 
introduction to Fourier series, §§4.1 to 4.4, followed by separation of variables as it ap-
plies  to  the  heat  (§§11.1–11.3),  wave  (§§10.1–  10.3),  or  Laplace’s  equation (§§12.1–
12.3). The exact equation that is studied depends upon the future needs of the students. 
Engineering Mathematics Course: This book can be used in a wide variety of 
engineering mathematics classes. In all cases the student should have seen most of the 
material in Chapters 2 and 3. There are at least three possible combinations:
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●  Option  A:  The  course  is  a  continuation  of  a  calculus  reform  sequence  where
elementary differential equations have been taught. This course begins with Laplace 
transforms and separation of variables techniques for the heat, wave, and/or Laplace 
equations, as outlined above. The course then concludes with either vector calculus or 
linear algebra. Vector calculus is presented in Chapter 13 and focuses on the gradient op-
erator as it applies to line integrals, surface integrals, the divergence theorem, and Stokes’ 
theorem. Chapter 14 presents linear algebra as a method for solving systems of linear 
equations and includes such topics as matrices, determinants, Cramer’s rule, and the 
solution of systems of ordinary differential equations via the classic eigenvalue problem.

● Option B: This is the traditional situation where the student has already studied 
differential equations in another course before he takes engineering mathematics. Here 
separation  of  variables  is  retaught  from  the  general  viewpoint  of  eigenfunction 
expansions. Sections 9.1–9.3 explain how any piecewise continuous function can be re-
expressed in an eigenfunction expansion using eigenfunctions from the classic Sturm-Li-
ouville  problem.  Furthermore,  we  include  two  sections  which  focus  on  Bessel func-
tions (§9.4) and Legendre polynomials (§9.5). These eigenfunctions appear in the solution  
of  partial  differential  equations  in  cylindrical  and  spherical  coordinates, respectively.

The course then covers linear algebra and vector calculus as given in Option A. 

● Option C: I originally wrote this book for an engineering mathematics course given 
to sophomore and junior communication, systems, and electrical engineering majors at 
the U.S. Naval Academy. In this case, you would teach all of Chapter 1 with the possible 
exception  of  §1.10  on  Cauchy  principalvalue  integrals.  This  material  was  added  to 
prepare the student for Hilbert transforms.

Because most students come to this course with a good knowledge of differential equations, 
we begin with Fourier series, Chapter 4, and proceed through Chapter 8. Chapter 5 generalizes 
the  Fourier  series  to  aperiodic  functions  and  introduces  the  Fourier  transform  in 
Chapter  5. This leads naturally to Laplace  transforms,  Chapter  6. Throughout  these  
chapters, I  make  use  of  complex  variables  in  the  treatment  and inversion of the transforms.

With the rise of digital technology and its associated difference equations, a version of 
the  Laplace  transform,  the  z-transform,  was  developed.  Chapter  7  introduces  the z-
transform  by  first  giving  its  definition  and  then  developing  some  of  its  general 
properties.  We  also  illustrate  how  to  compute  the  inverse  by  long  division,  partial 

equations, especially with respect to the stability of the system.

in communications, today’s engineer must have a command of this transform. The 
Hilbert transform is introduced in §8.1 and its properties are explored in §8.2. Two 
important applications of Hilbert transforms are introduced in §§8.3 and 8.4, namely the 
concept of analytic signals and the Kramer-Kronig relationship.

In addition to the revisions of the text and topics covered in this new addition, I now 
incorporate the mathematical software package MATLAB to reinforce the concepts that 
are taught. The power of MATLAB is its ability to quickly and easily present results in a 
graphical format. I have exploited this aspect and now included code (scripts) so that the student  

fractions,  and  contour  integration.  Finally,  we  use  z-transforms  to  solve  difference  

Finally, I added a new chapter on the Hilbert transform. With the explosion of interest 

can  explore  the  solution  for  a  wide  variety  of  parameters  and  different prospectives.
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Of course this book still  continues my principle of including a wealth of examples
from the scientific and engineering literature. The answers to the odd problems are given
in the back of the book while worked solutions to all of the problems are available from
the publisher. Most of the MATLAB scripts may be found at www.crcpress.com under
Electronic Products Downloads & Updates.





Chapter 1

Complex Variables

The theory of complex variables was originally developed by mathematicians as an aid in 
understanding  functions.  Functions  of  a  complex  variable  enjoy  many  powerful 
properties that their real counterparts do not. That is not why we will study them. For us they
provide the keys for the complete mastery of transform methods and differential equations.

In this chapter all of our work points to one objective: integration on the complex plane 
by  the  method  of  residues.  For  this  reason  we  minimize  discussions  of  limits  and
continuity which play such an important role in conventional complex variables in favor
of the computational aspects. We begin by introducing some simple facts about complex 
variables. Then we progress to differential and integral calculus on the complex plane.

1.1 COMPLEX NUMBERS

A complex  number  is  any  number  of  the  form  a+bi,  where  a  and  b  are  real  and

 or z*, of the complex number a+bi is a bi.
Complex numbers obey the fundamental rules of algebra. Thus, two complex 

numbers a+bi  and  c+di  are  equal  if  and only  if  a=c  and  b=d.  Just  
as  real  numbers  have  the fundamental operations of addition, subtraction, 
multiplication, and division, so too do complex numbers. These operations are defined:
Addition

(a+bi)+(c+di)=(a+c)+(b+d)i                                           (1.1.1)

Subtraction

(a+bi) (c+di)=(a c)+(b d)i                                           (1.1.2)

Multiplication

(a+bi)(c+di)=ac+bci+adi+i2bd=(ac bd)+(ad+bc)i  (1.1.3)

 We  denote  any  member  of  a  set  of  complex  numbers  by  the  complex 
variable z=x+iy. The real part of z, usually denoted by Re(z), is x while the imaginary part 

of z, Im(z), is y. The complex conjugate, 
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Division

(1.1.4)

The  absolute  value  or  modulus  of  a  complex  number  a+bi,  written  |a+bi|,  equals
  Additional properties include:

(1.1.5)

(1.1.6)

(1.1.7)

and

(1.1.8)

The use of  inequalities  with complex variables  has  meaning only when they involve 
absolute values.

It is often useful to plot the complex number x+iy as a point (x, y) in the xy-plane, now 
called the complex plane. Figure 1.1.1 illustrates this representation.

This geometrical interpretation of a complex number suggests an alternative method of
expressing a complex number: the polar form. From the polar representation of x and y,

x=r cos( ) and y=r sin( ),                                                (1.1.9)

where  is  the modulus,  amplitude,  or  absolute value  of  z  and  is  the 
argument or phase, we have that

z=x+iy=r[cos( )+i sin( )].                                             (1.1.10)
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Figure 1.1.1: The complex plane.

However, from the Taylor expansion of the exponential in the real case,

(1.1.11)

Expanding (1.1.11),

(1.1.12)

=cos( )+i sin( ). (1.1.13)

Equation (1.1.13) is Euler’s formula. Consequently, we may express (1.1.10) as

z=rei , (1.1.14)

which is the polar form of a complex number. Furthermore, because

zn=rnein (1.1.15)
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zn=rn[cos(n )+i sin(n )]. (1.1.16)

Equation (1.1.16) is De Moi re’s theorem.

 Example 1.1.1

Let us simplify the following complex number:

(1.1.17)

 Example 1.1.2

Let  us  reexpress  the  complex  number   in  polar  form.  From  (1.1.9)

 and =tan 1(b/a)= = /6 or 7 /6. Because  lies in
the third quadrant of the complex plane, =7 /6 and

(1.1.18)

Note that (1.1.18) is not a unique representation because ±2n  may be added to 7 /6 and 
we still have the same complex number since

ei( ±2n )=cos( ±2n )+i sin( ±2n )=cos( )+i sin( )=ei . (1.1.19)

For uniqueness we often choose n=0 and define this choice as the principal branch. Other
branches correspond to different values of n.

 Example 1.1.3

Find the curve described by the equation |z z
0
|=a.

From the definition of the absolute value,

(1.1.20)

by the law of exponents,
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(x x
0
)2+(y y

0
)2=a2. (1.1.21)

Equation (1.1.21), and hence |z z
0
|=a, describes a circle of radius a with its center located

at (x
0
, y

0
). Later on, we shall use equations such as this to describe curves in the complex plane.

 Example 1.1.4

As an example in manipulating complex numbers, let us show that

We begin by simplifying

(1.1.23)

Therefore,

(1.1.24)

MATLAB can also be used to solve this problem. Typing the commands

» syms a b real 
» abs ( (a+b*i) / (b+a*i) )

yields

ans = 
1

Note that you must declare a and b real in order to get the final result.

Problems

Simplify the following complex numbers. Represent the solution in the Cartesian form 
a+bi. Check your answers using MATLAB.

1. 

or

(1.1.22)
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2. 

3. 

4. 

Represent the following complex numbers in polar form:

6.   i

7.   4

8. 

9.   5+5i

10.  2–2i

11. 

12. By the law of exponents, ei( + )=ei ei . Use Euler’s formula to obtain expressions 
for cos( + ) and sin( + ) in terms of sines and cosines of  and .

13. Using the property that 
 and the geometric series

 obtain the following sums of trigonometric functions:

 

and

 

These results are often called Lagrange’s trigonometric identities.

14.  (a)  Using  the  property  that   if  |q|<1,  and  the  geometric

series  show that

 

and

 

(1 i)4

5.
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1.2 FINDING ROOTS

The concept of finding roots of a number, which is rather straightforward in the case of 
real numbers, becomes more difficult in the case of complex numbers. By finding the 
roots of a complex number, we wish to find all of the solutions  of the equation n=z, 
where n is a positive integer for a given z.

We begin by writing z in the polar form:

i

while we write

=Rei                                                             (1.2.2)

for the unknown. Consequently,

n=Rnein =rei =z. (1.2.3)

We satisfy (1.2.3) if

Rn=r and n = +2k , k=0, ±1, ±2,…, (1.2.4)

because the addition of  any multiple of  2  to the argument  is  also a  solution.  Thus, 

R=r1/n, where R is the uniquely determined real positive root, and

(1.2.5)

Because 
k
=

k±n
, it is sufficient to take k=0, 1, 2,…, n 1. Therefore, there are exactly n

solutions:

(b) Let  where >0. Show that

φz=re ,                                                               (1.2.1)

φ

φ
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(1.2.6)

with k=0, 1, 2,…, n 1. They are the n roots of z. Geometrically we can locate these
solutions w

k
 on a circle, centered at the point (0, 0), with radius R and separated from

each other by 2 /n radians. These roots also form the vertices of a regular polygon of n
sides inscribed inside of a circle of radius R. (See Example 1.2.1.)

In summary, the method for finding the n roots of a complex number z
0
 is as follows.

First, write z
0
 in its polar form: z

0
=rei . Then multiply the polar form by e2i k. Using the

law of exponents, take the 1/n power of both sides of the equation. Finally, using Euler’s
formula, evaluate the roots for k=0, 1,…, n 1.

 Example 1.2.1

Let us find all of the values of z for which z5= 32 and locate these values on the complex 
plane.

Because

32=32e i=25e i, (1.2.7)

(1.2.8)

or

(1.2.9)

(1.2.10)

z
2
=2e i= 2, (1.2.11)

(1.2.12)
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and

(1.2.13)

Figure 1.2.1 shows the location of these roots in the complex plane.

 Example 1.2.2

Let us find the cube roots of 1+i and locate them graphically. 

Because 1+i=

(1.2.14)

Figure 1.2.1: The zeros of z5 = 32.

or

(1.2.15)

(1.2.16)



10 Advanced Engineering Mathematics with MATLAB 

and

(1.2.17)

Figure 1.2.2 gives the location of these zeros on the complex plane.

 Example 1.2.3

The  routine  solve  in  MATLAB  can  also  be  used  to  compute  the  roots  of  complex 

numbers. For example, let us find all of the roots of z4= 4.
The MATLAB commands are as follows:

» syms a z 
» solve(z^4+a^4)

This yields the solution
ans= 
[(1/2*2^(1/2)+1/2*i*2^(1/2))*a] 
[(-1/2*2^(1/2)+1/2*i*2^(1/2))*a] 
[(1/2*2^(1/2)-1/2*i*2^(1/2))*a]   

Figure 1.2.2: The zeros of z3= 1+i.

[(-1/2*2^(1/2)-1/2*i*2^(1/2))*a]

Problems

Extract all of the possible roots of the following complex numbers. Verify your answer 
using MATLAB.
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1. 81/6

2. ( 1)1/3

3. ( i)1/3

4. ( 27i)1/6

5. Find algebraic expressions for the square roots of a bi, where a>0 and b>0.

6. Find all of the roots for the algebraic equation z4 3iz2 2=0. Then check your answer
using solve in MATLAB.

7.  Find all  of  the roots  for  the  algebraic  equation z4+6iz2+16=0.  Then check your 
answer using solve in MATLAB.

1.3 THE DERIVATIVE IN THE COMPLEX PLANE: THE 

CAUCHYRIEMANN EQUATIONS

In the previous two sections, we introduced complex arithmetic. We are now ready for 
the concept of function as it applies to complex variables.

We already defined the complex variable z=x+iy, where x and y are variable. We now
introduce another complex variable w=u+i  so that for each value of z there corresponds
a value of w=f(z). From all of the possible complex functions that we might invent, we focus on 
those functions  where  for each z there is one, and only one, value of w.  These functions

Figure 1.3.1: The complex function =z2 .

are single alued. They differ from functions such as the square root, logarithm, and
inverse sine and cosine, where there are multiple answers for each z. These multivalued
functions do arise in various problems. However, they are beyond the scope of this book
and we shall always assume that we are dealing with single-valued functions.

A popular method for representing a complex function involves drawing some closed
domain in the z-plane and then showing the corresponding domain in the -plane. This
procedure is called mapping and the z-plane illustrates the domain of the function while
the -plane illustrates its image or range. Figure 1.3.1 shows the z-plane and -plane for

=z2; a pie-shaped wedge in the z-plane maps into a semicircle on the -plane.
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 Example 1.3.1

Given the complex function  let us find the corresponding u(x, y) and (x,y)

From Euler’s formula,

(1.3.1)

Therefore, by inspection,

(1.3.2)

Note that there is no i in the expression for (x, y). The function =f(z) is single-valued 
because for each distinct value of z, there is an unique value of u(x, y) and (x, y).

 Example 1.3.2

As counterpoint, let us show that  is a multivalued function.

We begin by writing z=rei +2 ik, where r=  and = tan 1(y/x). Then,

(1.3.3)

or

(1.3.4)

Therefore,

(1.3.5)

and

(1.3.6)
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Each solution w
0
 or w

1
 is a branch of the multivalued function  We can make 

single-valued by restricting ourselves to a single branch, say w
0
. In that case, the Re(w)>0 

if we restrict < < . Although this is not the only choice that we could have made, it is 
a popular one. For example, most digital computers use this definition in their complex 
square root function. The point here is our ability to make a multivalued function single-
valued by defining a particular branch.

Although the requirement that a complex function be single-valued is important, it is 
still too general and would cover all functions of two real variables. To have a useful
theory,  we  must  introduce  additional  constraints.  Because  an  important  property 
associated with most functions is the ability to take their derivative, let us examine the 
derivative in the complex plane.

Following the definition of a derivative for a single real variable, the derivative of a 
complex function w=f(z) is defined as

(1.3.7)

A function of a complex variable that has a derivative at every point within a region of
the complex plane is said to be analytic (or regular or holomorphic) over that region. If
the function is analytic everywhere in the complex plane, it is entire.

Because the derivative is defined as a limit and limits are well behaved with respect to
elementary algebraic operations,  the following operations carry over from elementary 
calculus:

(1.3.8)

(1.3.9)

(1.3.10)

(1.3.11)

(1.3.12)
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Another important property that carries over from real variables is l’Hôspital rule: Let f(z) 

and g(z) be analytic at z
0
, where f(z) has a zero1 of order m and g(z) has a zero of order n.

Then, if m>n,

(1.3.13)

if m=n,

(1.3.14)

and if m<n,

(1.3.15)

 Example 1.3.3

Let us evaluate limz→i (z10+1)/(z6+1). From l’Hôspital rule,

(1.3.16)

So far, we introduced the derivative and some of its properties. But how do we actually
know whether a function is analytic or how do we compute its derivative? At this point
we must develop some relationships involving the known quantities u(x, y) and (x, y).

We begin by returning to the definition of the derivative. Because z= x+i y, there is
an infinite number of different ways of approaching the limit z→0. Uniqueness of that 
limit requires that (1.3.7) must be independent of the manner in which z approaches 
zero. A simple example is to take z in the x-direction so that z= x; another is to take 

z in the y-direction so that z=i y. These examples yield

(1.3.17)

1 An analytic function f(z) has a zero of order m at z0 if and only if f(z0)=f (z0)= …=f(m 1)(z0)=0
and f(m)(z0) 0.
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Figure  1.3.2:  Although  educated  as  an  engineer,  Augustin-Louis  Cauchy 
(1789–1857)  would  become  a  mathematician’s  mathematician, 
publishing 789 papers and 7 books in the fields of pure and ap-
plied mathematics. His greatest writings established the discipline 
of mathematical analysis as he refined the notions of limit, conti-
nuity, function, and convergence. It was this work on analysis that 
led him to develop complex function theory via the concept of residues. 
(Portrait courtesy of the Archives de l’Académie des sciences, Paris.)

and

(1.3.18)

In both cases we are approaching zero from the positive side. For the limit to be unique
and independent of path, (1.3.17) must equal (1.3.18), or

(1.3.19)

These equations which u  and  must both satisfy are the Cauchy-Riemann  equations.
They are  necessary  but  not  sufficient  to  ensure  that  a  function  is  differentiable.  The
following example illustrates this.
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 Example 1.3.4

Consider the complex function

(1.3.20)

Figure  1.3.3:  Despite  his  short  life,  (Georg  Friedrich)  Bernhard  Riemann’s
(1826–1866)  mathematical  work  contained  many  imaginative  and 
profound concepts. It was in his doctoral thesis on complex function 
theory  (1851)  that  he  introduced  the  Cauchy-Riemann  differential 
equations.  Riemann’s  later  work  dealt  with  the  definition  of  the 
integral and the foundations of geometry and non-Euclidean (elliptic) 
geometry. (Portrait courtesy of Photo AKG, London.)

The derivative at z=0 is given by

(1.3.21)

provided that this limit exists. However, this limit does not exist because, in general, the

numerator depends upon the path used to approach zero. For example, if z=re i/4 with

r→0, d /dz= 1. On the other hand, if z=re i/2 with r→0, d /dz=1.
Are  the  Cauchy-Riemann  equations  satisfied  in  this  case?  To  check  this,  we  first

compute
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(1.3.22)

(1.3.23)

(1.3.24)

and

(1.3.25)

Hence, the Cauchy-Riemann equations are satisfied at the origin. Thus, even though the
derivative is not uniquely defined, (1.3.21) happens to have the same value for paths 
taken along the coordinate axes so that the CauchyRiemann equations are satisfied.

In summary, if a function is differentiable at a point, the Cauchy-Riemann equations 
hold. Similarly, if the Cauchy-Riemann equations are not satisfied at a point, then the
function  is  not  differentiable  at  that  point.  This  is  one  of  the  important  uses  of  the
Cauchy-Riemann  equations:  the  location  of  nonanalytic  points.  Isolated  nonanalytic 
points of an otherwise analytic function are called isolated singularities. Functions that 
contain isolated singularities are called meromorphic.

The  Cauchy-Riemann  condition  can  be  modified  so  that  it  is  sufficient  for  the
derivative to exist. Let us require that u

x
, u

y
, 

x
, and 

y
 be continuous in some region

surrounding a point z
0
 and satisfy the Cauchy-Riemann equations there. Then

f(z) f(z
0
)=[u(z)] u(z

0
)]+i[ (z) (z

0
)] (1.3.26)

(1.3.27)

(1.3.28)

where we used the Cauchy-Riemann equations and  as x,  y  →0.
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Hence,

(1.3.29)

because | x| | z| and | y| | z|. Using (1.3.29) and the CauchyRiemann equations, we can
obtain the derivative from any of the following formulas:

(1.3.30)

and

(1.3.31)

Furthermore, f (z
0
) is continuous because the partial derivatives are.

 Example 1.3.5

Let us show that sin(z) is an entire function.

=sin(z) (1.3.32)

u+i =sin(x+iy)=sin(x) cos(iy)+cos(x) sin(iy) (1.3.33)

=sin(x) cosh(y)+i cos(x) sinh(y), (1.3.34)

because

(1.3.35)
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and

(1.3.36)

so that

u(x, y)=sin(x) cosh(y), and (x, y)=cos(x) sinh(y). (1.3.37)

Differentiating both u(x, y) and (x, y) with respect to x and y, we have that

(1.3.38)

(1.3.39)

and u(x, y) and (x, y) satisfy the Cauchy-Riemann equations for all values of x and y.

Furthermore, u
x
, u

y
, 

x
, and 

y
 are continuous for all x and y. Therefore, the function

=sin(z) is an entire function.

 Example 1.3.6

Consider the function =1/z. Then

(1.3.40)

Therefore,

(1.3.41)
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(1.3.42)

(1.3.43)

(1.3.44)

and

(1.3.45)

The function is analytic at all points except the origin because the function itself ceases to
exist when both x and y are zero and the modulus of  becomes infinite.

 Example 1.3.7

Let us find the derivative of sin(z). 
Using (1.3.30) and (1.3.34),

(1.3.46)

=cos(x) cosh(y) i sin(x) sinh(y) (1.3.47)

=cos(x+iy)=cos(z). (1.3.48)

Similarly,

(1.3.49)

Now
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(1.3.50)

The results in the above examples are identical to those for z real. As we showed earlier,
the  fundamental  rules  of  elementary  calculus  apply  to  complex  differentiation. 
Consequently, it is usually simpler to apply those rules to find the derivative rather than
breaking f(z) down into its real and imaginary parts, applying either (1.3.30) or (1.3.31), 
and then putting everything back together.

An  additional  property  of  analytic  functions  follows  by  cross  differentiating  the 
Cauchy-Riemann equations or

(1.3.51)

and

(1.3.52)

Any  function  that  has  continuous  partial  derivatives  of  second  order  and  satisfies
Laplace’s equation (1.3.51) or (1.3.52) is called a harmonic function. Because both u(x,
y) and (x, y) satisfy Laplace’s equation if f(z)=u+i  is analytic, u(x, y) and (x, y) are
called conjugate harmonic functions.

 Example 1.3.8

Given that  u(x,  y)=e x[x  sin(y) y  cos(y)],  let  us  show that  u  is  harmonic  and find  a
conjugate harmonic function (x, y) such that f(z)=u+i  is analytic.

Because

(1.3.53)

and

(1.3.54)

it  follows that  u
xx

+u
yy

=0.  Therefore,  u(x,  y)  is  harmonic.  From the  Cauchy-Riemann 

equations,
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(1.3.55)

and

(1.3.56)

Integrating (1.3.55) with respect to y,

(x, y)=ye x sin(y)+xe x cos(y)+g(x). (1.3.57)

Using (1.3.56),

x
= ye x sin(y) xe x cos(y)+e x cos(y)+g (x) 

=e x cos(y) xe x cos(y) ye x sin(x).

(1.3.58)

Therefore, g (x)=0 or g(x)=constant. Consequently,

(x, y)=e x[y sin(y)+xcos(y)]+constant. (1.3.59)

Hence,  for  our  real  harmonic  function  u(x,  y),  there  are  infinitely  many  harmonic 
conjugates (x, y) which differ from each other by an additive constant.

Problems

Show that the following functions are entire:
1. f(z)=iz+2

2. f(z)=e z

3. f(z)=z3

4. f(z)=cosh(z)

Find the derivative of the following functions:

5. f(z)=(1+z2)3/2

6. f(z)=(z+2z1/2)1/3

7. f(z)=(1+4i)z2 3z 2
8. f(z)=(2z i)/(z+2i)

9. f(z)=(iz 1) 3 
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10. 

11. 

12. Show that the function f(z)=z* is nowhere differentiable.
For  each  of  the  following  u(x,  y),  show  that  it  is  harmonic  and  then  find  a 
corresponding (x, y) such that f(z)=u+i  is analytic.

13. u(x, y)=x2 y2

14. u(x, y)=x4–6x2y2+y4+x

15. u(x, y)=x cos(x)e y y sin (x)e y

16. u(x, y)=(x2 y2) cos(y)ex 2xy sin(y)ex

1.4 LINE INTEGRALS

So far, we discussed complex numbers, complex functions, and complex differentiation. 
We are now ready for integration.

Just  as  we  have  integrals  involving  real  variables,  we  can  define  an  integral  that
involves  complex  variables.  Because  the  z-plane  is  two-dimensional  there  is  clearly
greater freedom in what we mean by a complex integral. For example, we might ask
whether the integral of some function between points A and B depends upon the curve 
along which we integrate. (In general it does.) Consequently, an important ingredient in
any complex integration is the contour that we follow during the integration.

The result of a line integral is a complex number or expression. Unlike its counterpart
in real variables, there is no physical interpretation for this quantity, such as area under a
curve.  Generally,  integration  in  the  complex  plane  is  an  intermediate  process  with  a 
physically realizable quantity occurring only after we take its real or imaginary part. For
example,  in  potential  fluid  flow,  the  lift  and  drag  are  found  by  taking  the  real  and
imaginary part of a complex integral, respectively.

How do we compute 
C

 f(z) dz? Let us deal with the definition; we illustrate the actual

method by examples.
A popular method for evaluating complex line integrals consists of breaking

everything up into real and imaginary parts. This reduces the integral to line integrals of
real-valued functions which we know how to handle. Thus, we write f(z)=u(x, y)+i (x,
y) as usual, and because z=x+iy, formally dz=dx+i dy. Therefore,

(1.4.1)

(1.4.2)

Evaluate the following limits:
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The exact method used to evaluate (1.4.2) depends upon the exact path specified. 
From the definition of the line integral, we have the following self-evident properties:

(1.4.3)

where C  is the contour C taken in the opposite direction of C and

(1.4.4)

 Example 1.4.1

Let us evaluate 
C

 z*dz from z=0 to z=4+2i along two different contours. The first
consists of the parametric equation z=t2+it. The second consists of two “dog legs”: the
first leg runs along the imaginary axis from z=0 to z=2i and then along a line parallel to
the x-axis from z=2i to z=4 +2i. See Figure 1.4.1.

For  the  first  case,  the  points  z=0  and  z=4+2i  on  C
1 

 correspond  to  t=0  and  t=2,

respectively. Then the line integral equals

(1.4.5)

Figure 1.4.1: Contour used in Example 1.4.1.

The line integral for the second contour C
2
 equals

(1.4.6)
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where C
2a

 denotes the integration from z=0 to z=2i  while C
2b

 denotes the integration

from z=2i to z=4+2i. For the first integral,

(1.4.7)

because x=0 and dx=0 along C
2a

. On the other hand, along C
2b

, y=2 and dy=0 so that

(1.4.8)

Thus the value of the entire C
2
 contour integral equals the sum of the two parts or 10 8i.

The  point  here  is  that  integration  along two different  paths  has  given  us  different
results even though we integrated from z=0 to z=4+2i both times. This result foreshadows
a general result that is extremely important. Because the integrand contains nonanalytic 
points along and inside the region enclosed by our two curves, as shown by the Cauchy-
Riemann equations, the results depend upon the path taken. Since complex integrations 
often  involve  integrands  that  have  nonanalytic  points,  many line  integrations  depend
upon the contour taken.

 Example 1.4.2

Let us integrate the entire function f(z)=z2 along the two paths from z=0 to z=2+i shown 
in Figure 1.4.2. For the first integration, x=2y

Figure 1.4.2: Contour used in Example 1.4.2.
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while along the second path we have two straight paths: z=0 to z=2 and z=2 to z=2+i. 
For the first contour integration,

(1.4.9)

(1.4.10)

(1.4.11)

(1.4.12)

(1.4.13)

For our second integration,

(1.4.14)

Along C
2a

 we find that y=dy=0 so that

(1.4.15)

and

(1.4.16)
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(1.4.17)

Figure 1.4.3: Contour used in Example 1.4.3.

In this problem we obtained the same results from two different contours of integration.
Exploring  other  contours,  we  would  find  that  the  results  are  always  the  same;  the 
integration is path-independent. But what makes these results path-independent while the 
integration in Example 1.4.1 was not? Perhaps it is the fact that the integrand is analytic
everywhere on the complex plane and there are no nonanalytic points. We will explore this later.

Finally, an important class of line integrals involves closed contours. We denote this

special subclass of line integrals by placing a circle on the integral sign:  Consider now
the following examples:

 Example 1.4.3

Let us integrate f(z)=z around the closed contour shown in Figure 1.4.3. 
From Figure 1.4.3,

(1.4.18)

Now

(1.4.19)

because x=2 and dx=0. Consequently,
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(1.4.20)

and

(1.4.21)

where we used z=e i  around the portion of the unit  circle.  Therefore,  the closed line 
integral equals zero.

 Example 1.4.4

Let us integrate f(z)=1/(z a) around any circle centered on z=a. The Cauchy-Riemann 
equations show that f(z) is a meromorphic function. It is analytic everywhere except at 
the isolated singularity z=a.

If we introduce polar coordinates by letting z a=re i and dz=ire id ,

(1.4.22)

Note  that  the  integrand  becomes  undefined  at  z=a.  Furthermore,  the  answer  is in-
dependent of the size of the circle. Our example suggests that when we have a closed contour 
integration it is the behavior of the function within the contour rather than the exact shape of 
the closed contour that is of importance. We will return to this point in later sections.

Problems

1. Evaluate  around the circle |z|=1 taken in the counterclockwise direction.

2. Evaluate 

 along the line y=x from ( 1, 1) to (1, 1).

5. Evaluate  along the line y=x2 from (0, 0) to (1, 1).

6. Evaluate  where C is (a) the upper semicircle |z|=1 and (b) the lower 
semicircle |z|=1. If z=re i

direction.

 around the square with vertices at (0, 0), (1, 0), (1, 1), and (0, 1) 
taken in the counterclockwise direction.

3. Evaluate 
C 

|z|dz along the right half of the circle |z|=1 from z= i to z=i.

4. Evaluate 

, restrict < < . Take both contours in the counterclockwise 
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In  the  previous  section  we  showed  how to  evaluate  line  integrations  by  brute-force 
reduction to real-valued integrals. In general, this direct approach is quite difficult and we 
would like to apply some of the deeper properties of complex analysis to work smarter. In 
the remaining portions of this chapter we introduce several theorems that will do just that.

Figure 1.5.1: Diagram used in proving the Cauchy-Goursat theorem.

If we scan over the examples worked in the previous section, we see considerable 
differences when the function was analytic inside and on the contour and when it was not. 
We may formalize this anecdotal evidence into the following theorem:

Cauchy-Goursat theorem
2
: Let f(z) be analytic in a domain D and let C be a simple 

Jordan cur e3 inside D so that f(z) is analytic on and inside of C. Then 
Proof: Let C denote the contour around which we will integrate =f(z). We divide the 

region within C into a series of infinitesimal rectangles. See Figure 1.5.1. The integration 
around each rectangle equals the product of the average value of  on each side and its length,

(1.5.1)

1.5 THE CAUCHY-GOURSAT THEOREM

2  Goursat, E., 1900: Sur la définition géniérale des fonctions analytiques, d’après Cauchy. Trans. 

Am. Math. Soc., 1, 14–16.
3 A Jordan curve is a simply closed curve. It looks like a closed loop that does not cross itself. See
Figure 1.5.2.
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Figure 1.5.2: Examples of a (a) simply closed curve and (b) not simply closed 
curve.

Because the function is analytic, the right side of (1.5.1) and (1.5.2) equals zero. Thus, 
the integration around each of these rectangles also equals zero.

We note next that in integrating around adjoining rectangles we transverse each side in
opposite directions, the net result being equivalent to integrating around the outer curve

C. We therefore arrive at the result  where f(z) is analytic within and
on the closed contour.

The Cauchy-Goursat theorem has several useful implications. Suppose that we have a 
domain where f(z) is analytic. Within this domain let us evaluate a line integral from point
A to B  along two different contours C

1
 and C

2
.  Then, the integral  around the closed

contour formed by integrating along C
1
 and then back along C

2
,  only in the opposite 

direction, is

(1.5.3)

Substituting =u+i  into (1.5.1),

(1.5.2)
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(1.5.4)

Because C
1
 and C

2
 are completely arbitrary, we have the result that if, in a domain, f(z) is 

analytic, the integral between any two points within the domain is path independent.
One obvious advantage of path independence is the ability to choose the contour so

that the computations are made easier. This obvious choice immediately leads to

The principle of deformation of contours: The value of a line integral of an analytic
function around any simple closed contour remains unchanged if we deform the contour
in such a manner that we do not pass over a nonanalytic point.

 Example 1.5.1

Let us integrate f(z)=z 1 around the closed contour C in the counterclockwise direction.
This contour consists of a square, centered on the origin, with vertices at (1, 1), (1, 1),
( 1, 1), and ( 1, 1).

The direct integration of  around the original contour is very cumbersome.
However,  because the integrand is  analytic  everywhere except  at  the origin,  we may 
deform the origin contour into a circle of radius r, centered on the origin. Then, z=re i and

dz=rie i d  so that

(1.5.5)

The point here is that no matter how bizarre the contour is, as long as it encircles the
origin and is a simply closed contour, we can deform it into a circle and we get the same 
answer for the contour integral. This suggests that it is not the shape of the closed contour 
that makes the difference but whether we enclose any singularities [points where f(z)
becomes undefined] that matters. We shall return to this idea many times in the next few
sections.

Finally, suppose that we have a function f(z) such that f(z) is analytic in some domain. 
Furthermore, let us introduce the analytic function F(z) such that f(z)=F (z). We would

like to evaluate  in terms of F(z).
We begin by noting that  we can represent  F, f  as  F(z)=U+iV  and f(z)=u+i .  From

(1.3.30) we have that u=U
x
 and =V

x
. Therefore,

(1.5.6)

or
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(1.5.7)

(1.5.8)

(1.5.9)

or

(1.5.10)

Equation (1.5.10) is the complex variable form of the fundamental theorem of calculus.
Thus, if we can find the antiderivative of a function f(z) that is analytic within a specific
region, we can evaluate the integral by evaluating the antiderivative at the endpoints for 
any curves within that region.

 Example 1.5.2

Let us evaluate z sin(z2) dz.

The integrand f(z)=z sin(z2) is an entire function and has the antiderivative  cos(z2).
Therefore,

(1.5.11)

Problems

For the following integrals, show that they are path independent and determine the value 
of the integral:

1. 

2. 

3. 
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4. 

1.6 CAUCHY’S INTEGRAL FORMULA

In the previous section, our examples suggested that the presence of a singularity within a
contour really determines the value of a closed contour integral.  Continuing with this
idea, let us consider a class of closed contour integrals that explicitly contain a single 

singularity within the contour,  namely  where  g(z)=f(z)/(z z
0
),  and f(z)  is

analytic within and on the contour C. We closed the contour in the positive sense where
the enclosed area lies to your left as you move along the contour.

We begin by examining a closed contour integral where the closed contour consists of
the C

1
, C

2
, C

3
, and C

4
 as shown in Figure 1.6.1. The gap or cut between C

2
 and C

4
 is

very small. Because g(z) is analytic within and on the closed integral, we have that

(1.6.1)

It  can be shown that the contribution to the integral from the path C
2
 going into the

singularity cancels the contribution from the path C
4
 going away from the singularity as

the gap between them vanishes. Because f(z) is analytic at z
0
, we can approximate its

value on C
3
 by f(z)=f(z

0
)+ (z), where  is a small quantity. Substituting into (1.6.1),

(1.6.2)

Figure 1.6.1: Diagram used to prove Cauchy’s integral formula.
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Consequently, as the gap between C
2
 and C

4
 vanishes, the contour C

1
 becomes the closed 

contour C so that (1.6.2) may be written

(1.6.3)

where we set  and 
Let M  denote the value of the integral on the right side of (1.6.3) and  equal the

greatest value of the modulus of  along the circle. Then

(1.6.4)

As the radius of the circle diminishes to zero,  also diminishes to zero. Therefore, |M|,
which is positive,  becomes less than any finite quantity,  however small,  and M  itself
equals zero. Thus, we have that

(1.6.5)

This equation is Cauchy’s integral formula. By taking n derivatives of (1.6.5), we can

extend Cauchy’s integral formula4 to

(1.6.6)

for n=1, 2, 3…. For computing integrals, it is convenient to rewrite (1.6.6) as

(1.6.7)

4 See Carrier, G.F., M.Krook, and C.E.Pearson, 1966: Functions of a Complex Variable: Theory
and Technique. McGraw-Hill, pp. 39–40 for the proof.
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 Example 1.6.1

Let us find the value of the integral

(1.6.8)

where C is the circle |z|=5. Using partial fractions,

(1.6.9)

and

(1.6.10)

By Cauchy’s integral formula with z
0
=2 and z

0
=1,

(1.6.11)

and

(1.6.12)

because  z
0
=1 and  z

0
=2 lie  inside  C  and  cos( z)  is  analytic  there.  Thus  the  required

integral has the value

(1.6.13)

 Example 1.6.2

Let us use Cauchy’s integral formula to evaluate

(1.6.14)

We need to convert (1.6.14) into the form (1.6.7). To do this, we rewrite (1.6.14) as
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(1.6.15)

Therefore, f(z)=ez/(z 3), n=1 and z
0
=1. The function f(z)  is analytic within the closed 

contour because the point z=3 lies outside of the contour. Applying Cauchy’s integral 
formula,

(1.6.16)

(1.6.17)

(1.6.18)

Problems

Use Cauchy’s integral  formula to evaluate the following integrals.  Assume all  of  the
contours are in the positive sense.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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10. 

Project: Computing Derivatives of Any Order of a Complex or Real Function

The most common technique for computing a derivative is finite differencing. Recently 
Mahajerin and Burgess5 showed how Cauchy’s integral formula can be used to compute 
the derivatives of any order of a complex or real function via numerical quadrature. In
this project you will derive the algorithm, write code implementing it, and finally test it.

Step 1: Consider the complex function f(z)=u+i  which is analytic inside the closed 
circular contour C of radius R centered at z

0
. Using Cauchy’s integral formula, show that

 

where x=x
0
+Rcos( ), and y=y

0
+Rsin( ).

Step 2: Using five-point Gaussian quadrature, write code to implement the results from 
Step 1.

Step 3:  Test  out  this  scheme by finding the first,  sixth,  and eleventh derivative of 
f(x)=8x/(x2+4)  for  x=2.  The exact  answers  are  0,  2.8125,  and 1218.164,  respectively.
What is  the maximum value of  R? How does the accuracy vary with the number of
subdivisions used in the numerical integration? Is the algorithm sensitive to the value of R  and
the number of  subdivisions? For  a  fixed number of  subdivisions,  is  there  an optimal R?

1.7 TAYLOR AND LAURENT EXPANSIONS AND SINGULARITIES

In  the  previous  section we showed what  a  crucial  role  singularities  play in  complex 
integration. Before we can find the most general way of computing a closed complex in-
tegral,  our understanding of singularities must deepen. For this,  we employ power series.

One reason why power series are so important  is  their  ability to provide locally a 
general representation of a function even when its arguments are complex. For example,
when we were introduced to trigonometric functions in high school, it was in the context 
of a right triangle and a real angle. However, when the argument becomes complex this
geometrical description disappears and power series provide a formalism for defining the 
trigonometric functions, regardless of the nature of the argument.

Let us begin our analysis by considering the complex function f(z) which is analytic

5  Reprinted  from  Computers  &  Struct.,  49,  E.Mahajerin  and  G.Burgess,  An  algorithm  for
computing  derivatives  of  any  order  of  a  complex  or  real  function,  385–387,  ©1993,  with 
permission from Elsevier Science.

everywhere on the boundary and the interior of a circle whose center is at z=z
0
. Then, if z 

denotes any point within the circle, we have from Cauchy’s integral formula that
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(1.7.1)

where C denotes the closed contour. Expanding the bracketed term as a geometric series, 
we find that

(1.7.2)

Applying Cauchy’s integral formula to each integral in (1.7.2), we finally obtain

(1.7.3)

or the familiar formula for a Taylor expansion. Consequently, we can expand any analytic 
function into a Taylor series. Interestingly, the radius of convergence6 of this series may 
be shown to be the distance between z

0
 and the nearest nonanalytic point of f(z).

 Example 1.7.1

Let us find the expansion of f(z)=sin(z) about the point z
0
=0.

Because f(z) is an entire function, we can construct a Taylor expansion anywhere on 
the complex plane. For z

0
=0,

(1.7.4)

Because f(0)=0, f (0)=1, f (0)=0, f (0)= 1 and so forth,

(1.7.5)

Because sin(z) is an entire function, the radius of convergence is |z 0|< , i.e., all z.

6  A positive  number  h  such that  the  series  diverges  for  |z z0|>h  but  converges  absolutely  for

|z z
0|h.
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 Example 1.7.2

Let us find the expansion of f(z)=1/(1 z) about the point z
0
=0. 

From the formula for a Taylor expansion,

(1.7.6)

Because f (n) (0)=n!, we find that

(1.7.7)

Equation (1.7.7) is the familiar result for a geometric series. Because the only nonanalytic 
point is at z=1, the radius of convergence is |z 0|<1, the unit circle centered at z=0.

Consider now the situation where we draw two concentric circles about some arbitrary 
point z

0
; we denote the outer circle by C while we denote the inner circle by C

1
. See

Figure 1.7.1. Let us assume that f(z) is analytic inside the annulus between the two
circles. Outside of this area, the function may or may not be analytic. Within the annulus
we pick a point z and construct a small circle around it, denoting the circle by C

2
. As the

gap or  cut  in the annulus becomes infinitesimally small,  the line  integrals that connect 

Figure 1.7.1: Contour used in deriving the Laurent expansion.
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(1.7.8)

Because f( ) is analytic everywhere within C
2
,

(1.7.9)

Using the relationship:

(1.7.10)

(1.7.8) becomes

(1.7.11)

Now,

(1.7.12)

(1.7.13)

where |z z
0
|/|  z

0
|<1 and

(1.7.14)

(1.7.15)

the circle C
2
 to C

1
 and C sum to zero, leaving
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where | z
0
|/|z z

0
|<1. Upon substituting these expressions into (1.7.11),

(1.7.16)

or

(1.7.17)

Equation  (1.7.17)  is  a  Laurent  expansion.7  If  f(z)  is  analytic  at  z
0
,  then

1
=

2
=…=a

n
=…=0 and the Laurent expansion reduces to a Taylor expansion. If z

0
 is a

singularity  of  f(z),  then  the  Laurent  expansion  includes  both  positive  and  negative 

powers.  The coefficient  of  the (z z
0
) 1  term,  a

1
,  is  the residue,  for  reasons that  will

appear in the next section.
Unlike the Taylor series, there is no straightforward method for obtaining a Laurent

series. For the remaining portions of this section we illustrate their construction. These
techniques  include  replacing  a  function  by  its  appropriate  power  series,  the  use  of 
geometric series to expand the denominator, and the use of algebraic tricks to assist in
applying the first two methods.

 Example 1.7.3

Laurent  expansions  provide  a  formalism  for  the  classification  of  singularities  of  a 
function. Isolated singularities fall into three types; they are

7  Laurent,  M.,  1843:  Extension  du  théorème  de  M.Cauchy  relatif  à  la  convergence  du
développement d’une fonction suivant les puissances ascendantes de la variable x. C. R. l’Acad. 
Sci., 17, 938–942.
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for 0<|z|< . Note that this series never truncates in the inverse powers of z.  Essential
singularities have Laurent expansions which have an infinite number of inverse powers of
z z

0
. The value of the residue for this essential singularity at z=0 is zero.

●  Removable  Singularity:  Consider  the  function  f(z)=sin(z)/z.  This  function  has  a 
singularity at z=0. Upon applying the expansion for sine,

for all z, if the division is permissible. We made f(z) analytic by defining it by (1.7.20) 
and,  in  the process,  removed the singularity.  The residue for  a  removable singularity 
always equals zero.
● Pole of order n: Consider the function

(1.7.21)

This function has two singularities: one at z=1 and the other at z= 1. 
We shall only consider the case z=1. After a little algebra,

(1.7.22)

(1.7.23)

(1.7.24)

(1.7.25)

(1.7.18)

● Essential Singularity: Consider the function f(z)=cos(1/z). Using the expansion for 
cosine,

(1.7.19)

(1.7.20)
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for 0<|z 1|<2. Because the largest inverse (negative) power is three, the singularity at z=1
is a third-order pole; the value of the residue is 1/8. Generally, we refer to a first-order
pole as a simple pole.

 Example 1.7.4

Let us find the Laurent expansion for

(1.7.26)

about the point z=1. 
We begin by rewriting f(z) as

(1.7.27)

(1.7.28)

(1.7.29)

(1.7.30)

provided 0<|z 1|<2. Therefore we have a simple pole at z=1 and the value of the residue 
is 1/2. A similar procedure would yield the Laurent expansion about z=3.

 Example 1.7.5

Let us find the Laurent expansion for

(1.7.31)

about the point z=0. 
We begin by rewriting f(z) as
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(1.7.32)

Because

(1.7.33)

if |z|<e  and

(1.7.34)

if |z|<e ,

(1.7.35)

if |z|<e . Clearly we have a nth-order pole at z=0. The residue, the coefficient of all of

the z 1 terms in (1.7.35), is found directly and equals

(1.7.36)

For complicated complex functions,  it  is  very difficult  to determine the nature of the
singularities by finding the complete Laurent expansion and we must try another method.
We shall call it “a poor man’s Laurent expansion.” The idea behind this method is the
fact that we generally need only the first few terms of the Laurent expansion to
discover its nature. Consequently, we compute these terms through the application of
power series where we retain only the leading terms. Consider the following example.

 Example 1.7.6

Let us discover the nature of the singularity at z=0 of the function

(1.7.37)
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where a and t are real.
We begin by replacing the exponential and hyperbolic sine by their Taylor expansion 

about z=0. Then

(1.7.38)

Factoring out az in the denominator,

(1.7.39)

Within the parentheses all of the terms except the leading one are small. Therefore, by 
long division, we formally have that

(1.7.40)

(1.7.41)

(1.7.42)

Thus, we have a second-order pole at z=0 and the residue equals t/a.

Problems

1. Find the Taylor expansion of f(z)=(1 z) 2 about the point z=0.

2. Find the Taylor expansion of f(z)=(z 1)ez about the point z=1. [Hint: Don’t find the 
expansion by taking derivatives.]

By constructing a Laurent  expansion,  describe the type of singularity and give the 
residue at z

0
 for each of the following functions:

3. f(z)=z10e 1/z; z
0
=0

4. f(z)=z 3 sin2(z); z
0
=0
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5. 

6. 

7. 

8. 

9. 

10. 

1.8 THEORY OF RESIDUES

Having shown that around any singularity we may construct a Laurent expansion, we 
now use this  result  in  the integration of  closed complex integrals.  Consider  a  closed
contour in which the function f(z) has a number of isolated singularities. As we did in the 
case of Cauchy’s integral formula, we introduce a new contour C  which excludes all of 
the singularities because they are isolated. See Figure 1.8.1. Therefore,

(1.8.1)

Figure 1.8.1: Contour used in deriving the residue theorem.

Consider now the mth integral, where 1 m n. Constructing a Laurent expansion for the
function f(z) at the isolated singularity z=z

m,
 this integral equals
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(1.8.2)

Because (z z
m

)k is an entire function if k 0, the integrals equal zero for each term in the 

second summation. We use Cauchy’s integral formula to evaluate the remaining terms. 

The analytic function in the numerator is 1. Because dk 1(1)/dzk 1=0 if k>1, all of the 
terms vanish except for k=1. In that case, the integral equals 2 i

1
, where a

1
 is the value 

of  the  residue  for  that  particular  singularity.  Applying  this  approach  to  each  of  the 
singularities, we obtain

Cauchy’s residue theorem
8: If f(z) is analytic inside and on a closed contour C (taken 

in the positive sense) except at points z
1
, z

2
,…, z

n
 where f(z) has singularities, then

(1.8.3)

where Res[f(z); zj] denotes the residue of the jth isolated singularity of f(z) located at 
z=zj.

 Example 1.8.1

Let us compute by the residue theorem, assuming that we take the 
contour in the positive sense.

Because the contour is a circle of radius 2, centered on the origin, the singularity at z= 
1 lies within the contour. If the singularity were not inside the contour, then the 

integrand would have been analytic inside and on the contour C. In this case, the answer 
would then be zero by the Cauchy-Goursat theorem.

Returning  to  the  original  problem,  we  construct  the  Laurent  expansion  for  the 
integrand around the point z=1 by noting that

(1.8.4)

8  See  Mitrinovi ,  D.S.,  and J.D.Kef ki ,  1984:  The Cauchy Method of  Residues:  Theory  and
Applications. D.Reidel Publishing, 361 pp. Section 10.3 gives the historical development of the 
residue theorem.
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The singularity at z= 1 is a simple pole and by inspection the value of the residue equals
1. Therefore,

(1.8.5)

As it presently stands, it would appear that we must always construct a Laurent expansion
for each singularity if we wish to use the residue theorem. This becomes increasingly
difficult as the structure of the integrand becomes more complicated. In the following
paragraphs we show several techniques that avoid this problem in practice.

We begin by noting that many functions that we will encounter consist of the ratio of
two polynomials, i.e., rational functions: f(z)=g(z)/h(z). Generally, we can write h(z) as 

(z z
1
)m1(z z

2
)m

2
…. Here we assumed that we divided out any common factors between

g(z) and h(z) so that g(z) does not vanish at z
1
, z

2
,…. Clearly z

1
, z

2
,…, are singularities of

f(z). Further analysis shows that the nature of the singularities are a pole of order m
1
 at 

z=z
1
, a pole of order m

2
 at z=z

2
, and so forth.

Having found the nature and location of the singularity, we compute the residue as
follows.  Suppose  that  we  have  a  pole  of  order  n.  Then  we  know  that  its  Laurent
expansion is

(1.8.6)

Multiplying both sides of (1.8.6) by (z z
0
)n,

F(z)=(z z
0
)nf(z) 

=
n
+a

n 1
(z z

0
)+…+b

0
(z z

0
)n+b

1
(z z

0
)n+1+….

(1.8.7)

Because F(z) is analytic at z=z
0
, it has the Taylor expansion

(1.8.8)

Matching powers of z z
0
 in (1.8.7) and (1.8.8), the residue equals

(1.8.9)
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Substituting in F(z)=(z z
0
)nf(z), we can compute the residue of a pole of order n by

(1.8.10)

For a simple pole (1.8.10) simplifies to

(1.8.11)

Quite often, f(z)=p(z)/q(z). From l’Hôspital’s rule, it follows that (1.8.11) becomes

(1.8.12)

Remember  that  these  formulas  work  only  for  finite-order  poles.  For  an  essential 
singularity we must compute the residue from its Laurent expansion; however, essential 
singularities are very rare in applications.

 Example 1.8.2

Let us evaluate

(1.8.13)

where C is any contour that includes both z=± i and is in the positive sense. 
From Cauchy’s residue theorem,

(1.8.14)

The singularities at z=± i are simple poles. The corresponding residues are

(1.8.15)
and
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(1.8.16)

Consequently,

(1.8.17)

 Example 1.8.3

Let us evaluate

(1.8.18)

where C includes all of the singularities and is in the positive sense.
The integrand has a second-order pole at z=0 and two simple poles at z= 1±i which are 

the roots of z2+2z+2=0. Therefore, the residue at z=0 is

(1.8.19)

(1.8.20)

The residue at z= 1+i is

(1.8.21)

(1.8.22)

(1.8.23)
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(1.8.24)

(1.8.25)

(1.8.26)

Then by the residue theorem,

(1.8.27)

(1.8.28)

(1.8.29)

Problems

Assuming that  all  of  the following closed contours are in the positive sense,  use the
residue theorem to evaluate the following integrals:

1.

2.

3.

4.

5.

Similarly, the residue at z= 1 i is
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6.

7.

8.

1.9 EVALUATION OF REAL DEFINITE INTEGRALS

One of the important applications of the theory of residues consists in the evaluation of 
certain  types  of  real  definite  integrals.  Similar  techniques  apply  when  the  integrand
contains a sine or cosine. See §3.4. 

 Example 1.9.1

Let us evaluate the integral

(1.9.1)

This integration occurs along the real axis. In terms of complex variables we can rewrite
(1.9.1) as

(1.9.2)

where  the  contour  C
1

 is  the  line  Im(z)=0.  However,  the  use  of  the  residue  theorem 

requires an integration along a closed contour. Let us choose the one pictured in Figure
1.9.1. Then

(1.9.3)

where C denotes the complete closed contour and C
2
 denotes the integration path along a 

semicircle at infinity. Clearly we want the second integral on the right side of (1.9.3) to 

vanish; otherwise, our choice of the contour C
2
 is poor. Because z=Re i and dz=iRe i d ,

(1.9.4)



Complex Variables 53 

which tends to zero as R→ . On the other hand, the residue theorem gives

(1.9.5)

Therefore,

(1.9.6)

Figure 1.9.1: Contour used in evaluating the integral (1.9.1).

Note that we only evaluated the residue in the upper half-plane because it is the only one 
inside the contour.

This example illustrates the basic concepts of evaluating definite integrals by the
residue  theorem.  We  introduce  a  closed  contour  that  includes  the  real  axis  and  an 
additional contour. We must then evaluate the integral along this additional contour as 
well as the closed contour integral. If we  properly choose our closed contour,  this
additional integral vanishes. For certain classes of general integrals, we shall now show
that this additional contour is a circular arc at infinity.

Theorem: If, on a circular arc C
R

 with a radius R and center at the origin, zf(z)→0
uniformly with  and as R→ , then

(1.9.7)

The proof is as follows: If |zf(z)| M
R
, then |f(z)| M

R
/R. Because the length of C

R
 is R, 

where  is the subtended angle,

(1.9.8)

because M
R
→0 as R→ .
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 Example 1.9.2

A simple illustration of this theorem is the integral

(1.9.9)

A quick check shows that z/(z2+z+1) tends to zero uniformly as R→ . Therefore, if we 
use the contour pictured in Figure 1.9.1,

(1.9.10)

(1.9.11)

Figure 1.9.2: Contour used in evaluating the integral (1.9.13).

 Example 1.9.3

Let us evaluate

(1.9.12)

In  place of  an infinite  semicircle  in  the  upper  half-plane,  consider  the  icir  following 
integral
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(1.9.13)

where we show the closed contour in Figure 1.9.2. We chose this contour for two reasons. 
First, we only have to evaluate one residue rather than the three enclosed in a traditional 
upper  half-plane  contour.  Second,  the  contour  integral  along  C

3 
 simplifies  to  a 

particularly simple and useful form.

Because the only enclosed singularity lies at z=e i/6,

(1.9.14)

(1.9.15)

Let us now evaluate (1.9.12) along each of the legs of the contour:

(1.9.16)

(1.9.17)

because of (1.9.7) and

(1.9.18)

since z=re i/3.
Substituting into (1.9.15),

(1.9.19)
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(1.9.20)

 Example 1.9.4

Rectangular  closed  contours  are  best  for  the  evaluation  of  integrals  that  involve

hyperbolic sines and cosines. To illustrate9 this, let us evaluate the integral

 

about the closed contour shown in Figure 1.9.3. Writing this contour integral in terms of
the four line segments that constitute the closed contour, we have

9 This is a slight variation on a problem solved by Spyrou, K.J., B.Cotton, and B. Gurd, 2002:
Analytical expressions of capsize boundary  for a ship with roll bias in beam waves. J. Ship Res., 
46,  167–174.  Reprinted  with  the  permission  of  the  Society  of  Naval  Architects  and  Marine 
Engineers (SNAME).

or

(1.9.23)

Because the integrand behaves as e R as R→ , the integrals along C
2
 and C

4
 vanish. On

the other hand,

(1.9.24)

(1.9.21)

(1.9.22)

where a>0 and b>1.
We begin by determining the value of
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Figure 1.9.3: Rectangular closed contour used to obtain (1.9.32).

and

(1.9.25)

because cosh(x+2 i)=cosh(x) and sinh(x+2 i)=sinh(x). 
Within the closed contour C,  we have a single singularity where b+ cosh(z

s
)=0 or

 or   To discover the nature of this 

(1.9.26)

Therefore, we have a second-order pole at z=z
s
. Therefore, the value of the residue there 

is

(1.9.27)

(1.9.28)

singularity,
 we expand b+cosh(z) in a Taylor expansion and find that
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(1.9.29)

(1.9.30)

because

(1.9.31)

Substituting (1.9.30) into (1.9.22) yields

(1.9.32)

 Example 1.9.5

The method of residues is also useful in the evaluation of definite integrals of the form

F[sin( ),cos( )]d , where F is a quotient of polynomials in sin( ) and cos( ). 

For example, let us evaluate the integral10

(1.9.33)

We begin by introducing the complex variable z=ei . This substitution yields the closed 
contour integral

(1.9.34)

where C is a circle of radius 1 taken in the positive sense. The integrand of (1.9.34) has 
five singularities: a second-order pole at z

5
=0 and simple poles located at

(1.9.35)

Therefore,
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(1.9.36)

Only the singularities z
2
, z

3
, and z

5
 lie within C. Consequently, the value of I equals 2 i 

times the sum of the residues at these three singularities. The residues equal

(1.9.37)

(1.9.38)

(1.9.39)

(1.9.40)

(1.9.41)

(1.9.42)

10 Simplified version of an integral presented by Jiang, Q.F., and R.B.Smith, 2000: V-waves, bow
shocks, and wakes in supercritical hydrostatic flow. J. Fluid Mech., 406, 27–53. Reprinted with the 
permission of Cambridge University Press.
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(1.9.43)

(1.9.44)

= 0. (1.9.45)

Summing the residues, we obtain 0. Therefore,

(1.9.46)

Problems

Use the residue theorem to verify the following integrals:

1.

2.

3.

4.

5.

6.

7.
 a, b>0

8.

9. 

10.

and
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11.

12.

13.

14.

Hint:

 

15.

Hint: See Example 1.7.5.
16. Show that

 

where a is real and not equal to zero. Hint: Show that the poles of

 

are simple and equal

 

If |a|=2, we have second-order poles at z
n
=±i.

17. Show that
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where C is a rectangular contour with vertices at ( , 0), ( , 0), ( , /b), and ( , /b).

18. Show11 that

 

Hint: Evaluate the closed contour integral

 

where C is a rectangular contour with vertices at ( , 0), ( , 0), ( , ), and ( , ).

19. During an electromagnetic calculation, Strutt12 needed to prove that

 

 

Hint: Evaluate the closed contour integral

11  Reprinted with permission from Yan, J.R.,  X.H.Yan, J.Q.You, and J.X.Zhong, 1993: On the
interaction between two nonpropagating hydrodynamic solitons. Phys. Fluids A,  5,  1651–1656. 
©1993, American Institute of Physics.
12 Strutt, M.J.O., 1934: Berechmmg des hochfrequenten Feldes einer Kreiszylinderspule in einer
konzentrischen leitenden Schirmhülle mit ebenen Deckeln. Hochfrequenztechn. Elecktroak.,  43, 

121–123.

Verify his proof by doing the following:
Step 1: Using the residue theorem, show that

where C
N

 is a circular contour that includes the poles z=  and z
n
= ±i(n+ ), n=0, 1, 2,…,

N.

Step 2: Show that in the limit of N→ , the contour integral vanishes. 
[Hint: Examine the behavior of z sinh(xz)/[(z ) cosh( z)] as |z|→ . Use (1.9.7) where 

C
R
 is the circular contour.]
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Step 3: Break the infinite series in Step 1 into two parts and simplify.
In the chapter on Fourier series, we shall show how we can obtain the same series by 

direct integration.

1.10 CAUCHY’S PRINCIPAL VALUE INTEGRAL

The conventional definition of the integral of a function f(x) of the real variable x over a 
finite interval a x b assumes that f(x) has a definite finite value at each point within the 
interval. We shall now extend this definition to cover cases when f(x) is infinite at a finite 
number of points within the interval.

Consider the case when there is only one point c at which f(x) becomes infinite. If c is
not an endpoint of the interval, we take two small positive numbers  and  and examine
the expression

(1.10.1)

If (1.10.1) exists and tends to a unique limit as  and  tend to zero independently, we say
that the improper integral of f(x) over the interval exists, its value being defined by

(1.10.2)

If, however, the expression does not tend to a limit as  and  tend to zero independently,
it may still happen that

(1.10.3)

exists. When this is the case, we call this limit the Cauchy principal value of the improper 
integral and denote it by

(1.10.4)

Finally, if f(x) becomes infinite at an endpoint, say a, of the range of integration, we say 
that f(x) is integrable over a x b if

(1.10.5)

exists.
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 Example 1.10.1

Consider the integral  dx/x. This integral does not exist in the ordinary sense because
of the strong singularity at the origin. However, the integral would exist if

(1.10.6)

existed and had a unique value as  and  independently approach zero. Because this
limit equals

(1.10.7)

our integral would have the value of ln(2) if  This particular limit is the Cauchy 
principal value of the improper integral which we express as

(1.10.8)

We can extend these ideas to complex integrals used to determine the value or principal 
value of an improper integral by Cauchy’s residue theorem when the integrand has a 
singularity on the contour of integration. We avoid this difficulty by deleting from the

area within the contour that portion which also lies within a small circle 
and then integrate around the boundary of the remaining region. This process is called
indenting the contour.

The integral around the indented contour is calculated by the theorem of residues and 
then the radius of each indentation is made to tend to zero.

Figure 1.10.1: Contour C used in Example 1.10.2.
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This process give the Cauchy principal value of the improper integral. The details of this
method are shown in the following examples.

 Example 1.10.2

Let us show that

(1.10.9)

Consider the integral

(1.10.10)

where the closed contour C consists of the real axis from R to R and a semicircle in the
upper half of the z-plane where this segment is its diameter. See Figure 1.10.1. Because 
the integrand has poles at z=± , which lie on this contour, we modify C by making an
indentation of radius  at a and another of radius  at a. The integrand is now analytic
within and on C and (1.10.10) equals zero by the Cauchy-Goursat theorem.

Evaluating each part of the integral (1.10.10), we have that

(1.10.11)

where C
1
 and C

2
 denote the integrals around the indentations at a and a, respectively. 

The modulus of the first term on the left side of (1.10.11) is less than R/(R2 a2) so that

this term tends to zero as R→ . To evaluate C
1
, we observe that  along C

1
,

where  decreases from  to 0.
Hence,

(1.10.12)

(1.10.13)
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(1.10.14)

Similarly,

(1.10.15)

as  tends to zero. 

Upon letting R→ ,  and →0, we find that

(1.10.16)

Finally, equating the real and imaginary parts, we obtain

(1.10.17)

 Example 1.10.3

Let us show that

(1.10.18)

Consider the integral

(1.10.19)

where the closed contour C consists of the real axis from R to R and a semicircle in the 
upper half of the z-plane where this segment is its diameter. Because the integrand has a 
pole at z=0, which lies on the contour, we modify C by making an indentation of radius 

at z=0. See Figure 1.10.2. Because eiz/z is analytic along C,

(1.10.20)
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Figure 1.10.2: Contour C used in Example 1.10.3.

Since e R sin( )<e R  for 0< < ,

(1.10.21)

which tends to zero as R→ . Therefore,

(1.10.22)

Now,

(1.10.23)

in the limit  because  Consequently, in the limit of 

(1.10.24)

Upon separating the real and imaginary parts, we obtain

(1.10.25)
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and

 

show that

 

2. Using f(z)=ei z/2/(z2–1), show that

 

3. Show that

 

Use a rectangular contour with vertices at ( R,  0),  (R,  0),  ( R, ),  and (R, ) with a
semicircle indentation at the origin.

4. Show13 that
 

 

Problems

1. Noting that

13  Reprinted  with  permission from Ko,  S.H.,  and A.H.Nuttall,  1991:  Analytical  evaluation  of
flush-mounted  hydrophone  array  response  to  the  Corcos  turbulent  wall  pressure  spectrum.  J. 
Acoust. Soc. Am., 90, 579–588. ©1991, Acoustical Society of America.
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where m>0 and a is real.

where a, , and  are real. Use a semicircular contour of infinite radius with the real axis 
as its diameter.

5. Using the complex function eimz/(z a) and a closed contour similar to that shown in 
Figure 1.10.2, show that

6. Using a closed contour similar to that shown in Figure 1.10.2 except that we now 
have two small semicircles around the singularities on the real axis, show that

and

7. Redo Example 1.10.3 except the contour is now a rectangle with vertices at ±R
and ±R+Ri indented at the origin.

8. Let the function f(z) possess a simple pole with a residue Res[f(z);c] on a simply 
closed  contour  C.  If  C  is  indented  at  c,  show  that  the  integral  of  f(z)  around  the 
indentation tends to Res[f(z);c] i as the radius of the indentation tends to zero,  being 
the internal angle between the two parts of C meeting at c.



Chapter 2

First-Order Ordinary Differential Equations

A differential equation is any equation that contains the derivatives or differentials of one 
or more dependent variables with respect to one or more independent variables. Because 
many  of  the  known  physical  laws  are  expressed  as  differential  equations,  a  sound 
knowledge of how to solve them is essential. In the next two chapters we present the
fundamental methods for solving ordinary differential equations—a differential equation 
which contains only ordinary derivatives of one or more dependent variables. Later, in 
§5.6 and §6.8 we show how transform methods can be used to solve ordinary differential 
equations while systems of linear ordinary differential  equations are treated in §14.6. 
Solutions  for  partial  differential  equations—a  differential  equation  involving  partial 
derivatives  of  one  or  more  dependent  variables  of  two  or  more  independent
variables—are given in Chapters 10, 11 and 12.

2.1 CLASSIFICATION OF DIFFERENTIAL EQUATIONS

Differential equations are classified three ways: by type, order, and linearity. There are
two types: ordinary and partial differential equations which have already been defined.
Examples of ordinary differential equations include

(2.1.1)

(x y)dx+4y dy=0, (2.1.2)

(2.1.3)

and

(2.1.4)
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(2.1.5)

(2.1.6)

and

(2.1.7)

In the examples that we have just given, we have explicitly written out the differentiation 
operation. However, from calculus we know that dy/dx can also be written y . Similarly 

the partial differentiation operator 4u/ x2 y2 is sometimes written u
xxyy

. We will also use

this notation from time to time.
The  order  of  a  differential  equation  is  given  by  the  highest-order  derivative.  For 

example,

(2.1.8)

is a third-order ordinary differential equation. Because we can rewrite

(x+y)dy x dx=0
(2.1.9)

as

(2.1.10)

by  dividing  (2.1.9)  by  dx,  we  have  a  first-order  ordinary  differential  equation  here. 
Finally

(2.1.11)

On the other hand, examples of partial differential equations include
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is an example of a fourth-order partial differential equation. In general, we can write 
a nth-order, ordinary differential equation as

(2.1.12)

The  final  classification  is  according  to  whether  the  differential  equation  is  linear  or 
nonlinear. A differential equation is linear if it can be written in the form:

(2.1.13)

Note that the linear differential equation (2.1.13) has two properties: (1) The dependent 
variable y and all of its derivatives are of first degree (the power of each term involving y 
is 1). (2) Each coefficient depends only on the independent variable x. Examples of linear 
first-, second-, and third-order ordinary differential equations are

(x+1) dy ydx=0,
(2.1.14)

y +3y +2y=ex, 
(2.1.15)

and

(2.1.16)

respectively. If the differential equation is not linear, then it is nonlinear. Examples of 
nonlinear first-, second-, and third-order, ordinary differential equations are 

(2.1.17)

(2.1.18)
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yy +2y=ex, (2.1.19)

respectively..
At this point it is useful to highlight certain properties that all differential equations have 
in common regardless of their type, order and whether they are linear or not. First, it is not 
obvious that just because we can write down a differential equation that a solution exists. 
The existence of a solution to a class of differential equations constitutes an important aspect 
of the theory of differential equations. Because we are interested in differential equations 
that arise from applications, their solution should exist. In §2.2 we address this question further.

Quite often a differential equation has the solution y=0, a trivial solution. For example, 
if f(x)=0 in (2.1.13), a quick check shows that y=0 is a solution. Trivial solutions are 
generally of little value.

Another important question is how many solutions does a differential equation have? In 
physical applications uniqueness is not important because, if we are lucky enough to actu-
ally find a solution, then its ties to a physical problem usually suggest uniqueness. Nevertheless, 
the question of uniqueness is of considerable importance in the theory of differential  equations.  
Uniqueness  should  not  be  confused  with  the  fact  that  many solutions to ordinary differential 
equations contain arbitrary constants much as indefinite integrals in integral calculus. A 
solution to a differential equation that has no arbitrary constants is called a particular solution.

 Example 2.1.1

Consider the differential equation

This condition y(1)=2 is called an initial condition and the differential equation plus the 
initial condition constitute an initial-value problem. Straightforward integration yields

(2.1.21)

Equation (2.1.21) is  the general  solution  to  the differential  equation (2.1.20) because
(2.1.21) is a solution to the differential equation for every choice of C. However, if we 
now satisfy the initial condition y(1)=2, we obtain a particular solution. This is done by 
substituting the corresponding values of x and y into (2.1.21) or

(2.1.22)

Therefore, the solution to the initial-value problem (2.1.20) is the particular solution

and

(2.1.20)
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y(x)=(x+1)2/2. (2.1.23)

Finally, it  must be admitted that most differential equations encountered in the “real” 
world cannot be written down either explicitly or implicitly.  For example,  the simple 
differential equation y =f(x) does not have an analytic solution unless you can integrate 
f(x). This begs the question of why it is useful to learn analytic techniques for solving 
differential  equations  that  often  fail  us.  The  answer  lies  in  the  fact  that  differential 
equations that we can solve share many of the same properties and characteristics of 
differential equations which we can only solve numerically. Therefore, by working with 
and  examining  the  differential  equations  that  we  can  solve  exactly,  we  develop  our 
intuition and understanding about those that we can only solve numerically.

Problems

Find the order and state whether the following ordinary differential equations are linear or 
nonlinear:

1. y /y=x2+x

2. y2y =x+3
3. sin(y )=5y
4. y =y

5. y =3x2

6. (y3) =1 3y

7. y =y3

8. y 4y +5y=sin(x)
9. y +xy=cos(y )
10. (2x+y)dx+(x 3y) dy=0

11. (1+x2)y =(1+y)2

12. yy =x(y2+1)

13. y +y+y2=x+ex

14. y +cos(x)y +y=0

15. x2y +x1/2(y )3+y=ex

16. y +xy +ey=x2

2.2 SEPARATION OF VARIABLES

The simplest method of solving a first-order ordinary differential equation, if it works, is 
separation  of  variables.  It  has  the  advantage  of  handling  both  linear  and  nonlinear 

problems, especially autonomous equations.1 From integral calculus, we already met this 
technique when we solved the first-order differential equation
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(2.2.1)

By multiplying both sides of (2.2.1) by dx, we obtain

dy=f(x) dx.
(2.2.2)

At this point we note that the left side of (2.2.2) contains only y while the right side is 
purely a function of x. Hence, we can integrate directly and find that

(2.2.3)

For this technique to work, we must be able to rewrite the differential equation so that all 
of the y dependence appears on one side of the equation while the x dependence is on the 
other. Finally we must be able to carry out the integration on both sides of the equation.

One of the interesting aspects of our analysis is the appearance of the arbitrary constant 
C  in (2.2.3). To evaluate this constant we need more information. The most common 
method is to require that the dependent variable give a particular value for a particular 
value  of  x.  Because  the  independent  variable  x  often  denotes  time,  this  condition  is 
usually called an initial condition, even in cases when the independent variable is not 
time.

 Example 2.2.1

Let us solve the ordinary differential equation

(2.2.4)

Because we can separate variables by rewriting (2.2.4) as

(2.2.5)

its solution is simply

1  An autonomous equation is  a  differential  equation where  the  independent  variable  does  not
explicitly appear in the equation, such as y =f(y).
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ye y e y=ln |x|+C (2.2.6)

by direct integration.

 Example 2.2.2

Let us solve

(2.2.7)

subject to the initial condition y(0)=1. 
Multiplying (2.2.7) by dx, we find that

dy+y dx=xexy dx,
(2.2.8)

or

(2.2.9)

A quick check shows that the left side of (2.2.9) contains only the dependent variable y 
while the right side depends solely on x and we have separated the variables onto one side 
or the other. Finally, integrating both sides of (2.2.9), we have

ln(y)=xex ex x+C. 
(2.2.10)

Since y(0)=1, C=1 and

y(x)=exp[(x 1)ex+1 x]. 
(2.2.11)

In addition to the tried-and-true method of solving ordinary differential equation by hand, 
scientific computational packages such as MATLAB provide symbolic toolboxes that are
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designed to do the work for you. In the present case, typing

dsolve(’Dy+y=x*exp(x)*y’,’y(0)=1’,’x’)

yields

ans = 
1/exp( 1)*exp( x+x*exp(x) exp(x))

which is equivalent to (2.2.11).
Our success here should not be overly generalized. Sometimes these toolboxes give the 

answer in a rather obscure form or they fail completely. For example, in the previous 
example, MATLAB gives the answer

ans = 
lambertw((1og (x) +C1)*exp( 1)) 1

The MATLAB function lambertw is Lambert’s W function, where w=lambertw(x) is the 

solution to wew=x. Using this definition, we can construct the solution as expressed in
(2.2.6).

 Example 2.2.3

Consider the nonlinear differential equation

x2y +y2=0. (2.2.12)

Separating variables, we find that

(2.2.13)

Equation (2.2.13) shows the wide variety of solutions possible for an ordinary differential 
equation. For example, if we require that y(0)=0, then there are infinitely many different 
solutions satisfying this initial condition because C can take on any value. On the other 
hand,  if  we  require  that  y(0)=1,  there  is  no  solution  because  we  cannot  choose  any 
constant C such that y(0)=1. Finally, if we have the initial condition that y(1)=2, then

there is only one possible solution corresponding to 
Consider now the trial solution y=0. Does it satisfy (2.2.12)? Yes, it does. On the other

hand, there is no choice of C  which yields this solution. The solution y=0 is called a
singular solution to (2.2.12). Singular solutions are solutions to a differential equation
which cannot be obtained from a solution with arbitrary constants.
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Figure 2.2.1: The solution to (2.2.13) when C= 2, 0, 2, 4.

Finally, we illustrate (2.2.13) using MATLAB. This is one of MATLAB’s strengths—the 
ability to convert an abstract equation into a concrete picture. Here the  MATLAB  script

clear 
hold on 
x = 5:0.5:5; 
for c = 2:2:4 
y = x ./ (c*x 1); 
if (c== 2) subplot(2,2,1), plot(x,y,’*’)
    axis tight; title(’c = 2’); ylabel (’y’,’Fontsize’,20); end 
if (c== 0) subplot(2,2,2), plot(x,y,’ˆ’)
    axis tight; title(’c = 0’); end 
if (c== 2) subplot(2,2,3), plot(x,y,’s’)

    axis tight; title (’c = 2’); xlabel(’x’ ,’Fontsize’,20);
    ylabel (’y’,’Fontsize’,20); end 
if (c== 4) subplot(2,2,4), plot(x,y,’h’)
    axis tight; title (’c = 4’); xlabel (’x’,’Fontsize’,20); end 
end

yields Figure 2.2.1 which illustrates (2.2.13) when C= 2, 0, 2, and 4.
The previous example showed that first-order ordinary differential equations may have 

a  unique  solution,  no  solution,  or  many  solutions.  From a  complete  study2  of  these 
equations, we have the following theorem:

2 The proof of the existence and uniqueness of first-order ordinary differential equations is beyond 
the scop of this  book.  See  Ince,  E.L.,  1956:  Ordinary  Differential  Equations.  Dover 
Publications, Inc., Chapter 3.
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Theorem: Existence and Uniqueness

Suppose some real-valued function f(x, y) is continuous on some rectangle in the xy-plane 
containing the point (a, b) in its interior. Then the initial alue problem

has  at  least  one  solution  on  the  same  open  interval  I  containing  the  point  x=a. 
Furthermore, if the partial derivati e f/ y is continuous on that rectangle, then the 
solution is unique on some (perhaps smaller) open inter al I

0
 containing the point x=a.

 Example 2.2.4

Consider  the  initial-value  problem  y =3y1/3/2  with  y(0)=1.  Here  f(x,  y)=3y1/3/2  and 

f
y
=y 2/3/2. Because f

y
 is continuous over a small rectangle containing the point (0, 1), 

there is a unique solution around x=0, namely y=(x+1)3/2, which satisfies the differential 

equation and the initial condition. On the other hand, if the initial condition reads y(0)=0, 

then f
y
 is not continuous on any rectangle containing the point (0, 0) and there is no 

unique solution. For example, two solutions to this initial-value problem, valid on any 

open interval that includes x=0, are y
1
(x)=x3/2 and

(2.2.15)

 Example 2.2.5: Hydrostatic equation

Consider  an  atmosphere  where  its  density  varies  only  in  the  vertical  direction.  The 
pressure at the surface equals the weight per unit horizontal area of all of the air from sea 
level to outer space. As you move upward, the amount of air remaining above decreases 
and so does the pressure. This is why we experience pressure sensations in our ears when 
ascending or descending in an elevator or airplane. If we rise the small distance dz, there 
must be a corresponding small  decrease in the pressure,  dp.  This pressure drop must 
equal the loss of weight in the column per unit area, g dz. Therefore, the pressure is 
governed by the differential equation

dp= g dz,                                                     (2.2.16)

(2.2.14)

commonly called the hydrostatic equation.

ρ

ρ
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Thus, the pressure (and density) of an isothermal atmosphere decreases exponentially with 

height. In particular, it decreases by e 1 over the distance RT
s
/g, the so-called “scale height.”

 Example 2.2.6: Terminal velocity

As an object moves through a fluid, its viscosity resists the motion. Let us find the motion 
of a mass m as it falls toward the earth under the force of gravity when the drag varies as 
the square of the velocity.

From Newton’s second law, the equation of motion is

To  solve  (2.2.16),  we  must  express   in  terms  of  pressure.  For  example,  in  an 
isothermal atmosphere at constant temperature T

s
, the ideal gas law gives p= RT

s
, where 

R is the gas constant. Substituting this into (2.2.16) and separating variables yields

(2.2.17)

Integrating (2.2.17) gives

(2.2.18)

(2.2.19)

where   denotes  the  velocity,  g  is  the  gravitational  acceleration,  and C
D

 is  the  drag 

coefficient. We choose the coordinate system so that a downward velocity is positive.
Equation (2.2.19) can be solved using the technique of separation of variables if we 

change from time t as the independent variable to the distance traveled x from the point of 
release. This modification yields the differential equation

(2.2.20)
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since =dx/dt. Separating the variables leads to

(2.2.21)

or

(2.2.22)

where k=C
D

/m and =0 for x=0. Taking the inverse of the natural logarithm, we finally 

obtain

(2.2.23)

Thus, as the distance that the object falls increases, so does the velocity and it eventually

approaches a constant value  commonly known as the terminal velocity.
Because the drag coefficient C

D
 varies with the superficial area of the object while the 

mass depends on the volume, k increases as an object becomes smaller, resulting in a 
smaller  terminal  velocity.  Consequently,  although a  human being of  normal  size  will 
acquire a terminal velocity of approximately 120 mph, a mouse, on the other hand, can 
fall any distance without injury.

 Example 2.2.7: Interest rate

Consider a bank account that has been set up to pay out a constant rate of P dollars per 
year for the purchase of a car. This account has the special feature that it pays an annual 
interest rate of r on the current balance. We would like to know the balance in the account 
at any time t.

Although  financial  transactions  occur  at  regularly  spaced  intervals,  an  excellent 
approximation can be obtained by treating the amount in the account x(t) as a continuous 
function of time governed by the equation

x(t+ t) x(t)+rx(t) t P t,                                             (2.2.24)

where we have assumed that both the payment and interest are paid in time increments of t. As 
the time between payments tends to zero, we obtain the first-order ordinary differential equation
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(2.2.25)

If we denote the initial deposit into this account by x(0), then at any subsequent time

x(t)=x(0)ert P (ert 1)/r. 
(2.2.26)

Although we could compute x(t) as a function of P, r, and x(0), there are only three 
separate cases that merit our close attention. If P/r>x(0), then the account will eventually 
equal zero at rt=ln{P/[P rx(0)]}. On the other hand, if P/r<x(0), the amount of money in 
the account will grow without bound. Finally, the case x(0)=P/r is the equilibrium case 
where the amount of money paid out balances the growth of money due to interest so that 
the account always has the balance of P/r.

 Example 2.2.8: Steady-state flow of heat

When the inner and outer walls of a body, for example the inner and outer walls of a house, are 
maintained at different constant temperatures, heat will flow from the warmer wall to the 
colder one. When each surface parallel to a wall has attained a constant temperature, the flow 
of heat has reached a steady state. In a steady state flow of heat, each surface parallel to a 
wall, because its temperature is now constant, is referred to as an isothermal surface. Isothermal 
surfaces at different distances from an interior wall will have different temperatures. In many 
cases the temperature of an isothermal surface is only a function of its distance x from the interior 
wall, and the rate of flow of heat Q in a unit time across such a surface is proportional both to the 
area A of the surface and to dT/dx, where T is the temperature of the isothermal surface. Hence,

(2.2.27)

where  is called the thermal conductivity of the material between the walls.
In place of a flat wall, let us consider a hollow cylinder whose inner and outer surfaces 

are located at r=r
1
 and r=r

2
, respectively. At steady state, (2.2.27) becomes

(2.2.28)

assuming no heat generation within the cylindrical wall.
We can find the temperature distribution inside the cylinder by solving (2.2.28) along 

with the appropriate conditions on T(r) at r=r
1
 and r=r

2
 (the boundary conditions). To

κ
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illustrate the wide choice of possible boundary conditions, let us require that inner surface
is maintained at the temperature T

1
. Along the outer surface we assume that heat is lost 

by convection to the environment which has the temperature T . This heat loss is usually 

modeled by the equation

(2.2.29)

where h>0 is the convective heat transfer coefficient. Upon integrating (2.2.28),

(2.2.30)

where Q
r
 is  also an unknown. Substituting (2.2.30) into the boundary conditions,  we 

obtain

(2.2.31)

with

(2.2.32)

As r
2
 increases, the first term in the denominator of (2.2.32) decreases while the second 

term increases. Therefore, Q
r
 has its largest magnitude when the denominator is smallest, 

assuming a fixed numerator. This occurs at the critical radius r
cr

=k/h, where

(2.2.33)

 Example 2.2.9: Logistic equation

The study of population dynamics yields an important class of first-order, nonlinear, ordinary  
differential  equations:  the  logistic  equation.  This  equation  arose  in  Pierre François 
Verhulst’s (1804–1849) study of animal populations.3 If x(t) denotes the number of species in 
the population and k is the (constant) environment capacity (the number of species that can 
simultaneously live in the geographical region), then the logistic or Verhulst’s equation is

3 Verhulst, P.F., 1838: Notice sur la loi que la population suit dans son accroissement. Correspond.
Math. Phys., 10, 113–121.
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x =ax(k x)/k,
(2.2.34)

where a is the population growth rate for a small number of species. 
To solve (2.2.34), we rewrite it as

(2.2.35)

Integration yields

(2.2.36)

or

(2.2.37)

If x(0)=x
0
,

(2.2.38)

As t→ , x(t)→k, the asymptotically stable solution.

 Example 2.2.10: Chemical reactions

Chemical reactions are often governed by first-order ordinary differential equations. For

example, first-order reactions, which describe reactions of the form  yield the
differential equation

(2.2.39)

ln |x| ln|1 x/k|=rt+ln(C),
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(2.2.41)

If we denote the initial value of [A] by [A]
0
, then integration yields

ln[A]=kt ln[A]
0
, 

(2.2.42)

or

[A]=[A]
0
e kt. (2.2.43)

The exponential form of the solution suggests that there is a time constant  which is 
called  the  decay  time  of  the  reaction.  This  quantity  gives  the  time  required  for  the 
concentration of decrease by 1/e of its initial value [A]

0
. It is given by =1/k.

Turning to second-order reactions, there are two cases. The first is a reaction between

two identical species: A+A  products. The rate expression here is

The second case is an overall second-order reaction between two unlike species, given by

A+B  X. In this case, the reaction is first order in each of the reactants A and B and the 
rate expression is

where k is the rate at which the reaction is taking place. Because for every molecule of A 
that disappears one molecule of B is produced, a=1 and (2.2.39) becomes

(2.2.40)

Integration of (2.2.40) leads to

(2.2.44)

(2.2.45)
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Turning to (2.2.44) first, we have by separation of variables

(2.2.46)

or

(2.2.47)

Therefore, a plot of the inverse of A versus time will yield a straight line with slope equal 
to 2k and intercept 1/[A]

0
.

With regard to (2.2.45), because an increase in X must be at the expense of A and B, it 
is useful to express the rate equation in terms of the concentration of X, [X]=[A]

0
[A]=

[B]
0

[B], where [A]
0
 and [B]

0
 are the initial concentrations. Then, (2.2.45) becomes

(2.2.48)

Separation of variables leads to

(2.2.49)

To integrate the left side, we rewrite the integral

(2.2.50)

Carrying out the integration,

(2.2.51)

Again the reaction rate constant k can be found by plotting the data in the form of the left 
side of (2.2.51) against t.
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2. (1+y2)dx (1+x2)dy=0

3. 

4. 

5. 

6. 

7. 

8. 

9. Solve the initial-value problem

 

 

 

 

Problems

For Problems 1–10, solve the following ordinary differential equations by separation of 
variables. Then use MATLAB to plot your solution. Try and find the symbolic solution 
using MATLAB’s dsolve.

1. 

where a and b are constants.
10. Setting u=y x, solve the first-order ordinary differential equation

11. Using the hydrostatic equation, show that the pressure within an atmosphere 
where the temperature decreases uniformly with height, T(z)= T

0
z, varies as

where p
0
 is the pressure at z=0.

12. Using the hydrostatic equation, show that the pressure within an atmosphere 
with the temperature distribution

is
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where p
0
 is the pressure at z=0.

13. The voltage V as a function of time t within an electrical circuit4 consisting of a 
capacitor with capacitance C and a diode in series is governed by the firstorder ordinary 
differential equation

 

where R and S are positive constants. If the circuit initially has a voltage V
0
 at t=0, find 

the voltage at subsequent times.
14. A glow plug is an electrical element inside a reaction chamber which either ignites

the nearby fuel or warms the air in the chamber so that the ignition will  occur more
quickly. An accurate prediction of the wire’s temperature is important in the design of the 
chamber.

Assuming that heat convection and conduction are not important,5 the temperature T of 
the wire is governed by

 

where A equals the specific heat of the wire times its mass, B equals the product of the
emissivity  of  the  surrounding  fluid  times  the  wire’s  surface  area  times  the  Stefan-
Boltzmann constant, T

a
 is the temperature of the surrounding fluid, and P is the power

input. The temperature increases due to electrical resistance and is reduced by radiation to
the surrounding fluid.

Show that the temperature is given by

 
4 See Aiken, C.B., 1938: Theory of the diode voltmeter. Proc. IRE, 26, 859–876.
5 Taken from Clark, S.K., 1956: Heat-up time of wire glow plugs. Jet Propulsion, 26, 278–279.
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where 4=P/B+    and T
0
 is the initial temperature of the wire.

15. Let us denote the number of tumor cells by N(t). Then a widely used deterministic 

umor growth law6 is

 

where K is the largest tumor size and 1/b is the length of time required for the specific
growth to decrease by 1/e. If the initial value of N(t) is N(0), find N(t) at any subsequent
time t.

16.  The  drop  in  laser  intensity  in  the  direction  of  propagation  x  due  to  one  and 

two-photon absorption in photosensitive glass is governed7 by

 

where I is the laser intensity,  and  are the single-photon and two-photon coefficients,
respectively. Show that the laser intensity distribution is

 

where I(0) is the laser intensity at the entry point of the media, x=0.

17. The third-order reaction  is governed by the kinetics equation

 

where [A]
0
, [B]

0
, and [C]

0
 denote the initial concentration of A, B, and C, respectively.

Find how [X] varies with time t.

18. The reversible reaction 

6 Reprinted from Math. Biosci., 61, F.B.Hanson and C.Tier, A stochastic model of tumor growth,
73–100, ©1982, with permission from Elsevier Science.
7 Reprinted with permission from Weitzman, P.S., and U.Österberg, 1996: Two-photon absorption
and photoconductivity in photosensitive glasses. J. Appl Phys., 79, 8648–8655. ©1996, American 
Institute of Physics.

 is described by the kinetics equation8

8  See  Küster,  F.W.,  1895:  Ueber  den  Verlauf  einer  umkehrbaren  Reaktion  erster  Ordnung  in
homogenem System. Zeit. Physik. Chem., 18, 171–179.
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where [X] denotes the increase in the concentration of B while [A]
0
 and [B]

0
 are the 

initial concentrations of A and B, respectively. Find [X] as a function of time t. Hint:
Show that this differential equation can be written

 

2.3 HOMOGENEOUS EQUATIONS

A homogeneous ordinary differential equation is a differential equation of the form

M(x, y) dx+N(x, y) dy=0,
(2.3.1)

where both M(x, y) and N(x, y) are homogeneous functions of the same degree n. That 

means: M(tx, ty)=tnM(x, y) and N(tx, ty)=tnN(x, y). For example, the ordinary differential 
equation

(x2+y2) dx+(x2 xy) dy=0 (2.3.2)

is  a  homogeneous  equation  because  both  coefficients  are  homogeneous  functions  of 
degree 2:

M(tx, ty)=t2x2+t2y2=t2(x2+y2)=t2M(x, y),                       (2.3.3)

and

N(tx, ty)=t2x2 t2xy=t2(x2 xy)=t2N(x, y). (2.3.4)

Why is it useful to recognize homogeneous ordinary differential equations? Let us set 
y=ux so that (2.3.2) becomes

(x2+u2x2) dx+(x2 ux2)(u dx+x du)=0. (2.3.5)
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Then,

x2(1+u) dx+x3(1 u) du=0, (2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

or

Integrating (2.3.8),

u+2ln|1+u|+ln|x|=ln|c|,

or

(x+y)2=cxey/x.

Problems

First show that the following differential equations are homogeneous and then find their 
solution. Then use MATLAB to plot your solution. Try and find the symbolic solution 
using MATLAB’s dsolve.



92 Advanced Engineering Mathematics with MATLAB 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

2.4 EXACT EQUATIONS

Consider the multivariable function z=f(x, y). Then the total derivative is

(2.4.1)

If the solution to a first-order ordinary differential equation can be written as f(x, y)=c, 
then the corresponding differential equation is

M(x, y)dx+N(x, y) dy=0.                                                    (2.4.2)

How do we know if we have an exact equation (2.4.2)? From the definition of M(x, y) 
and N(x, y),

(2.4.3)

if  M(x,  y)  and  N(x,  y)  and  their  first-order  partial  derivatives  are  continuous. 
Consequently, if we can show that our ordinary differential equation is exact, we can 
integrate

y =sec(y/x)+y/x

y =ey/x+y/x.8.
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(2.4.4)

to find the solution f(x, y)=c.

 Example 2.4.1

Let us check and see if

[y2 cos(x) 3x2y 2x] dx+[2y sin(x) x3+ln(y)] dy=0 (2.4.5)

is exact.

Since M (x, y)=y2 cos(x) 3x2y 2x, and N(x, y)=2y sin(x) x3+ln(y), we find that

(2.4.6)

and

(2.4.7)

Because N
x
=M

y
, (2.4.5) is an exact equation.

 Example 2.4.2

Because (2.4.5) is an exact equation, let us find its solution. Starting with

(2.4.8)

direct integration gives

f(x, y)=y2sin(x) x3y x2+g(y). (2.4.9)

Substituting (2.4.9) into the equation f
y
=N, we obtain
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(2.4.10)

Thus, g (y)=ln(y), or g(y)=y ln(y) y+C. Therefore, the solution to the ordinary differential 
equation (2.4.5) is

y2 sin(x) x3y x2+y ln(y) y=c. (2.4.11)

 Example 2.4.3

Consider the differential equation

(x+y)dx+x ln(x) dy=0 (2.4.12)

on the interval (0, ). A quick check shows that (2.4.12) is not exact since

(2.4.13)

However, if we multiply (2.4.12) by 1/x so that it becomes

(2.4.14)

then this modified differential equation is exact because

(2.4.15)

Therefore, the solution to (2.4.12) is

x+y ln(x)=C.
(2.4.16)

This mysterious function that converts an inexact differential equation into an exact one 
is  called an integrating factor.  Unfortunately there is  no general  rule for finding one
unless the equation is linear.
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Problems

Show that the following equations are exact. Then solve them, using MATLAB to plot 
them. Finally try and find the symbolic solution using MATLAB’s dsolve.

1. 2xyy =x2 y2

2. (x+y)y +y=x

3. (y2 1) dx+[2xy sin(y)] dy=0

4. [sin(y) 2xy+x2] dx+[x cos(y) x2] dy=0

5. y dx/x2+(1/x+1/y) dy=0

6. (3x2 6xy) dx (3x2+2y) dy=0
7. y sin(xy) dx+x sin(xy) dy=0

8. (2xy2+3x2) dx+2x2y dy=0

9. (2xy3+5x4y) dx+(3x2y2+x5+1) dy=0

10. (x3+y/x) dx+[y2+ln(x)] dy=0

11. [x+e y+x ln(y)] dy+[y ln(y)+ex] dx=0

12. cos(4y2) dx 8xy sin(4y2) dy=0

13. sin2(x+y) dx cos2(x+y) dy=0

14.  Show  that  the  integrating  factor  for  (x y)y + y(1 y)=0  is  (y)=  ya/(1 y)a+2,
a+1=1/ . Then show that the solution is

 

2.5 LINEAR EQUATIONS

In the case of first-order ordinary differential equations, any differential equation of the
form

(2.5.1)

is said to be linear.
Consider now the linear ordinary differential equation

(2.5.2)
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(2.5.3)

Let  us  now  multiply  (2.5.3)  by  x 4.  (How  we  knew  that  it  should  be  x 4  and  not 
something else will be addressed shortly.) This magical factor is called an integrating 
factor because (2.5.3) can be rewritten

(2.5.4)

or

(2.5.5)

Thus, our introduction of the integrating factor x 4 allows us to use the differentiation 
product rule in reverse and collapse the right side of (2.5.4) into a single x derivative of a 
function of x times y. If we had selected the incorrect integrating factor, the right side 
would not have collapsed into this useful form.

With (2.5.5), we may integrate both sides and find that

(2.5.6)

or

(2.5.7)

or

y=x4(x 1)ex+Cx4. (2.5.8)

From this example, it is clear that finding the integrating factor is crucial to solving first-
order,  linear,  ordinary differential  equations.  To do this,  let  us first  rewrite (2.5.1) by 
dividing through by a

1
(x) so that it becomes

or
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(2.5.9)

or

dy+[P(x)y Q(x)] dx=0.
(2.5.10)

If we denote the integrating factor by (x), then

(x)dy+ (x)[P(x)y Q(x)] dx=0.
(2.5.11)

Clearly, we can solve (2.5.11) by direct integration if it is an exact equation. If this is true, 
then

(2.5.12)

or

(2.5.13)

Integrating (2.5.13),

(2.5.14)

Note  that  we  do  not  need  a  constant  of  integration  in  (2.5.14)  because  (2.5.11)  is 
unaffected by a constant multiple. It is also interesting that the integrating factor only 
depends on P(x) and not Q(x).

We can summarize our findings in the following theorem.

Theorem: Linear First-Order Equation

If the functions P(x) and Q(x) are continuous on the open interval I containing the point 
x

0
, then the initial-value problem
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has a unique solution y(x) on I, given by

 

with an appropriate value of C and (x) is defined by (2.5.14). 
The procedure for implementing this theorem is as follows:

 Step  1: If necessary, divide the differential equation by the coefficient of dy/dx. ��
This gives an equation of the form (2.5.9) and we can find P(x) by inspection.

 Step  2: Find the integrating factor by (2.5.14). 
 Step  3: Multiply the equation created in Step 1 by the integrating factor. 
 Step 4:Run the derivative product rule in reverse, collapsing the left  side of the 

differential equation into the form d[ (x)y]/dx. If you are unable to do this, 
you have made a mistake. 

 Step 5: Integrate both sides of the differential equation to find the solution.

The following examples illustrate the technique.

 Example 2.5.1

Let us solve the linear, first-order ordinary differential equation

xy y=4x ln(x). (2.5.15)

We begin by dividing through by x to convert (2.5.15) into its canonical form. This yields

(2.5.16)

From (2.5.16), we see that P(x)=1/x. Consequently, from (2.5.14), we have that

(2.5.17)

Multiplying (2.5.16) by the integrating factor, we find that

(2.5.18)
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(2.5.19)

Integrating both sides of (2.5.19),

(2.5.20)

Multiplying (2.5.20) through by x yields the general solution

y=2x ln2(x)+Cx.
(2.5.21)

Although it is nice to have a closed form solution, considerable insight can be gained by 
graphing the solution for a wide variety of initial conditions. To illustrate this, consider 
the MATLAB script

This script does two things. First, it uses MATLAB’s symbolic toolbox to solve (2.5.15). 
Alternatively we could have used (2.5.21) and introduced it as a function. The second 
portion of this script plots this solution for y(1)=C where  C= 2, 1, 0, 1, 2, 3, 4. Figure

2.5.1 shows the results. As x→0,  we note how all of the solutions   behave like 2x ln2(x).

or

clear
% use symbolic toolbox to solve (2.5.15)
y = dsolve(’x*Dy y=4*x*log(x)’ , ’y(1) = c’,’x’);
% take the symbolic version of the solution
%       and convert it into executable code
solution = inline(vectorize(y),’x’,’c’);
close all; axes; hold on
%  now  plot  the  solution  for  a  wide  variety  of  initial
conditions
x = 0.1:0.1:2;
for c = 2:4
if  (c= = 2)  plot(x, solution(x,c),’.’); end
if  (c= = 1)  plot(x, solution(x, c),’o’); end
if  (c= =  0)  plot(x, solution(x, c),’x’); end
if  (c= =  1)  plot(x, solution(x, c),’+’); end
if  (c= =  2)  plot(x, solution(x, c),’*’); end
if  (c= =  3)  plot(x, solution(x, c),’s’); end
if  (c= =  4)  plot(x, solution(x, c),’d’); end
end
axis tight
xlabel (’x’,’Fontsize ’,20); ylabel (’y’,’Fontsize’,20)
legend (’c = 2’,’c = 1’,’c = 0’,’c = 1’,…
        ’c = 2’,’c = 3’,’c = 4’); legend boxoff
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Figure 2.5.1: The solution to (2.5.15) when the initial condition is y(1)=c.

 Example 2.5.2

Let us solve the first-order ordinary differential equation

(2.5.22)

subject to the initial condition y(2)=6. 
Beginning as before, we rewrite (2.5.22) in the canonical form

(y x)y y=0. (2.5.23)

Examining (2.5.23) more closely, we see that it is a nonlinear equation in y. On the other 
hand, if we treat x as the dependent variable and y as the independent variable, we can 
write (2.5.23) as the linear equation

(2.5.24)

Proceeding as before, we have that P(y)=1/y and (y)=y so that (2.5.24) can be rewritten

(2.5.25)
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or

(2.5.26)

Introducing the initial condition, we find that C= 6. Solving for y, we obtain

(2.5.27)

Figure 2.5.2: Schematic diagram for an electric circuit that contains a resistor of resis-
tance R and an inductor of inductance L.

We must take the positive sign in order that y(2)=6 and

(2.5.28)

 Example 2.5.3: Electric circuits

A rich  source  of  first-order  differential  equations  is  the  analysis  of  simple  electrical 
circuits. These electrical circuits are constructed from three fundamental components: the 
resistor, the inductor, and the capacitor. Each of these devices gives the following voltage 
drop: In the case of a resistor, the voltage drop equals the product of the resistance R 
times the current I. For the inductor, the voltage drop is L dI/dt, where L is called the 
inductance,  while  the  voltage  drop  for  a  capacitor  equals  Q/C,  where  Q  is  the 
instantaneous charge and C is called the capacitance.

How are these voltage drops applied to mathematically describe an electrical circuit? 
This question leads to one of the fundamental laws in physics, Kirchhoff’s law:  The 
algebraic sum of all the voltage drops around an electric loop or circuit is zero.

To illustrate Kirchhoff’s law, consider the electrical circuit shown in Figure 2.5.2. By 
Kirchhoff’s law, the electromotive force E, provided by a battery, for example, equals the 
sum  of  the  voltage  drops  across  the  resistor  RI  and  L dI/dt.  Thus  the  (differential) 
equation that governs this circuit is
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(2.5.29)

Assuming that E, I, and R are constant, we can rewrite (2.5.29) as

(2.5.30)

Integrating both sides of (2.5.30),

(2.5.31)

Figure 2.5.3: The temporal evolution of current I(t) inside an electrical circuit 
shown in Figure 2.5.2 with a constant electromotive force E.

or

(2.5.32)

To determine C
1
,  we apply the initial  condition.  Because the circuit  is  initially dead, 

I(0)=0, and

(2.5.33)

Figure  2.5.3  illustrates  (2.5.33)  as  a  function  of  time.  Initially  the  current  increases 
rapidly but the growth slows with time. Note that we could also have solved this problem 
by separation of variables.
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Quite often, the solution is separated into two parts: the steady-state solution and 
the transient solution. The steady-state solution is that portion of the solution which re-
mains as t→ . It can equal zero. Presently it equals the constant value, E/R. The tran-
sient solution is that portion of the solution that vanishes as time increases. Here it equals

Ee Rt/L/R.
Although our analysis is a useful approximation to the real world, a more realistic one 

would include the nonlinear properties of the resistor.9 To illustrate this, consider the case 
of a RL circuit without any electromotive source (E=0) where the initial value for the 
current is I

0
. Equation (2.5.29) now reads

(2.5.34)

Separating the variables,

(2.5.35)

 

9 For the analysis of

see Fairweather, A., and J.Ingham, 1941: Subsidence transients in circuits containing a non-linear 
resistor, with reference to the problem of spark-quenching. J. IEE, Part 1, 88, 330–339.

Figure  2.5.4:  The  variation  of  current  I/I
0  as  a  function  of  time  Rt/L  with 

different values of aI
0 .
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Upon integrating and applying the initial condition, we have that

(2.5.36)

Figure 2.5.4 shows I(t) for various values of a. As the nonlinearity reduces resistance, the 
decay in the current is reduced. If aI

0
>1, (2.5.36) predicts that the current would grow 

with time. The point here is that nonlinearity can have a dramatic influence on a physical 
system.

Consider now the electrical circuit shown in Figure 2.5.5 which contains a resistor with 
resistance R and a capacitor with capacitance C. Here the voltage drop across the resistor 
is still RI while the voltage drop across the capacitor is Q/C. Therefore, by Kirchhoff ’s 
law,

(2.5.37)

Equation (2.5.37) is not a differential equation. However, because current is the time rate 
of change in charge I=dQ/dt, (2.5.37) becomes

(2.5.38)

which is the differential equation for the instantaneous charge.
Let  us  solve  (2.5.38)  when  the  resistance  and  capacitance  is  constant  but  the 

electromotive force equals E
0
 cos( t). The corresponding differential equation is now

(2.5.39)
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Figure 2.5.5: Schematic diagram for an electric circuit that contains a resistor of 
resitance R and a capacitor of capacitance C.

The differential equation has the integrating factor et/(RC) so that it can be rewritten

(2.5.40)

Integrating (2.5.40),

(2.5.41)

or

(2.5.42)

If we take the initial condition as Q(0)=0, then the final solution is

(2.5.43)

Figure  2.5.6  illustrates  (2.5.43).  Note  how  the  circuit  eventually  supports  a  purely 
oscillatory solution (the steady-state solution) as the exponential term decays to zero (the 
transient solution). Indeed the purpose of the transient solution is to allow the system to 
adjust from its initial condition to the final steady state.

 Example 2.5.4: Terminal velocity

When an object passes through a fluid, the viscosity of the fluid resists the motion by 
exerting a force on the object proportional to its velocity. Let us find the motion of a mass
m that is initially thrown upward with the speed 

0
.
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If we choose the coordinate system so that it increases in the vertical direction, then the 
equation of motion is

(2.5.44)

Figure  2.5.6:  The  temporal  evolution  of  the  nondimensional  charge 

(1+R2C2 2)Q(t) /(CE0) in the electric circuit shown in Figure 2.5.4 as

a function of nondimensional time t when the circuit is driven by the
electromotive force E

0 cos( t) and RC =2.

with (0)=
0
 and k>0. Rewriting (2.5.44),  we obtain the first-order linear differential

equation

(2.5.45)

Its solution in nondimensional form is

(2.5.46)

The displacement from its initial position is
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(2.5.47)

As t→ , the velocity tends to a constant downward value, mg/k, the so-called 
“terminal velocity,” where the aerodynamic drag balances the gravitational acceleration. 
This is the steady-state solution.

Why have we written (2.5.46)–(2.5.47) in this nondimensional form? There are two 

reasons.  First,  the  solution  reduces  to  three  fundamental  variables,  a  nondimensional 

displacement x
*
=k2x(t)/(m2g), velocity 

*
= k (t)/(mg), and time t

*
=kt/m, rather than the 

six original parameters and variables: g, k, m, t, , and x. Indeed, if we had substituted t
*
,

*
, and x

*
 into (2.5.45), we would have obtained the following simplified initial-

value problem:

(2.5.48)

Figure 2.5.7:  The nondimensional displacement k2x(t)/(m2g) as a function of 
nondimensional time kt/m of an object of mass m thrown upward at 
the initial nondimensional speed =k

0/(mg) in a fluid which retards 

its motion as k .

right from the start. The second advantage of the nondimensional form is the compact 
manner in which the results can be displayed as Figure 2.5.7 shows.

From  (2.5.46)–(2.5.47),  the  trajectory  of  the  ball  is  as  follows:  If  we  define  the 
coordinate system so that x

0
=0, then the object will initially rise to the height H given by
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(2.5.49)

at the time

(2.5.50)

when (t
max

)=0. It will then fall toward the earth. Given sufficient time kt/m»1, it would 

achieve terminal velocity.

 Example 2.5.5: The Bernoulli equation

Bernoulli’s equation,

(2.5.51)

is a first-order, nonlinear differential equation. This equation can be transformed into a 

first-order,  linear  differential  equation  by  introducing  the  change  of  variable  z=y1 n.
Because

(2.5.52)

the transformed Bernoulli equation becomes

(2.5.53)

This is now a first-order linear differential equation for z and can be solved using the 
methods  introduced  in  this  section.  Once  z  is  known,  the  solution  is  found  by 
transforming back from z to y.

To illustrate this procedure, consider the nonlinear ordinary differential equation

(2.5.54)

or
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(2.5.55)

Equation  (2.5.55)  is  a  Bernoulli  equation  with  p(x)= 1/x,  q(x)=1/x2,  and  n= 1. 

Introducing z=y2, it becomes

(2.5.56)

This first-order linear differential equation has the integrating factor (x)= 1/x2 and

(2.5.57)

Integration gives

(2.5.58)

Therefore, the general solution is

(2.5.59)

Problems

Find the solution for the following differential equations. State the interval on which the 
general solution is valid. Then use MATLAB to examine their behavior for a wide class 
of initial conditions.

1. y +y=ex

2. y +2xy=x

3. x2y +xy=1
2

5. y 3y/x=2x2

6. y +2y=2sin(x)
7. y +2cos(2x)y=0
8. xy +y=ln(x)
9. y +3y=4, y(0)=5

10. y y=ex/x, y(e)=0
11. sin(x)y +cos(x)y=1

4. (2y+x ) dx=x  dy
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12. [1 cos(x)]y +2sin(x)y=tan(x)
13. y +[a tan(x)+b sec(x)]y=c sec(x)
14. (xy+y 1) dx+xdy=0

15. 

16. 

17. Solve the following initial-value problem:

 

Hint: Introduce the new dependent variable p=y2.

18. If x(t) denotes the equity capital of a company, then under certain assumptions10

x(t) is governed by

 

where N is the dividend payout ratio, r is the rate of return of equity, and S is the rate of
net new stock financing. If the initial value of x(t) is x(0), find x(t).

19. The assimilation11 of a drug into a body can be modeled by the chemical reaction

 which is governed by the chemical kinetics equations

 

where [A] denotes the concentration of the drug in the gastrointestinal tract or in the site
of injection, [B] is the concentration of the drug in the body, and [C] is either the amount
of drug eliminated by various metabolic functions or the amount of the drug utilized by 
various action sites in the body. If [A]

0 
denotes the initial concentration of A, find [A],

[B], and [C] as a function of time t.

10 See Lebowitz, J.L., C.O.Lee, and P.B.Linhart, 1976: Some effects of inflation on a firm with

Copyright ©1976.
11

of chemical kinetics. J. Chem. Educ., 51, 19–22.

20. Find the current in a RL circuit when the electromotive source equals E
0
 cos2( t).

Initially the circuit is dead. 

original cost depreciation. Bell  J.Economics,  7,  463–477. Reprinted by permission of RAND. 

 See Calder, G.V., 1974: The time evolution of drugs in the body: An application of the principle
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Find the general solution for the following Bernoulli equations:

21. 

22. 

23. 

24. 

25. 

26. 

2.6 GRAPHICAL SOLUTIONS

In spite of the many techniques developed for their solution, many ordinary differential equa-
tions cannot  be solved analytically.  In  the next  two sections,  we highlight  two alternative 
methods when analytical methods fail. Graphical methods seek to understand the nature of the 
solution by examining the differential equations at various points and infer  the  complete  
solution  from these  results.  In  the  last  section,  we highlight  the numerical  techniques  
that  are  now  commonly  used  to  solve  ordinary  differential equations on the computer.

 Direction fields

One  of  the  simplest  numerical  methods  for  solving  first-order  ordinary  differential 
equations follows from the fundamental concept that the derivative gives the slope of a 
straight line that is tangent to a curve at a given point.

Consider the first-order differential equation

y =f(x, y)
(2.6.1)

which has the initial value y(x
0
)=y

0
.  For any (x, y)  it  is possible to draw a short line 

segment  whose  slope  equals  f(x,  y).  This  graphical  representation  is  known  as  the 
direction field or slope field of (2.6.1). Starting with the initial point (x

0, 
y

0
), we can then

construct the solution curve by extending the initial line segment in such a manner that the tan-
gent of the solution curve parallels the direction field at each point through which the curve passes.

Before the days of computers, it  was common to first draw lines of constant slope 
(isoclines) or f(x, y)=c. Because along any isocline all of the line segments had the same



112 Advanced Engineering Mathematics with MATLAB 

slope, considerable computational savings were realized. Today, computer software exists 
which perform these graphical computations with great speed.

To illustrate this technique, consider the ordinary differential equation

(2.6.2)

Its exact solution is

x(t)=Cet+t2+2t+2,
(2.6.3)

where C is an arbitrary constant. Using the MATLAB script

we show in Figure 2.6.1 the directional field associated with (2.6.2) along with some of 
the particular solutions. Clearly the vectors are parallel to the various particular solutions. 
Therefore, without knowing the solution, we could choose an arbitrary initial condition 
and sketch its behavior at subsequent times. The same holds true for nonlinear equations.

 Rest points and autonomous equations

In  the  case  of  autonomous  differential  equations  (equations  where  the  independent 
variable  does  not  explicitly  appear  in  the  equation),  considerable  information  can  be 
gleaned from a graphical analysis of the equation.

clear
% create grid points in t and x
[t , x] = meshgrid( 2:0.2:3, 1:0.2:2);
% load in the slope
slope = x  t.*t;
% find the length of the vector (1, slope)
length = sqrt(1 + slope .* slope) ;
% create and plot the vector arrows
quiver(t, x, 1./length,slope./length, 0.5)
axis equal tight
hold on
% plot the exact solution for various initial conditions
tt = [ 2:0.2:3];
for cva1 =  10:1:10
x_exact = cval * exp(tt) + tt.*tt + 2*tt + 2;
plot(tt, x_exact)
xlabel(’t’ , ’Fontsize’,20)
ylabel(’x’ , ’Fontsize’,20)
end
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(2.6.4)

Figure 2.6.1:  The direction field for (2.6.2).  The solid lines are plots of the 
solution with various initial conditions.

The time derivative x  vanishes at x= 1, 0, 1. Consequently, if x(0)=0, x(t) will remain 
zero forever. Similarly, if x(0)=1 or x(0)= 1, then x(t) will equal 1 or 1 for all time. For 
this  reason,  values  of  x  for  which  the  derivative  x  is  zero  are  called  rest  points, 
equilibrium points, or critical points of the differential equation.

The  behavior  of  solutions  near  rest  points  is  often  of  considerable  interest.  For 
example, what happens to the solution when x is near one of the rest points x= 1, 0, 1?

Consider the point x=0. For x slightly greater than zero, x <0. For x slightly less than 0, 
x >0. Therefore, for any initial value of x near x=0, x will tend to zero. In this case, the 
point x=0 is an asymptotically stable critical point because whenever x is perturbed away 
from the critical point, it tends to return there again.

Turning to the point x=1, for x slightly greater than 1, x >0; for x slightly less than 1, 
x <0. Because any x near x=1, but not equal to 1, will move away from x=1, the point x=1 
is called an unstable critical point.  A similar analysis applies at the point x= 1. This 
procedure of determining the behavior of an ordinary differential equation near its critical 
points is called a graphical stability analysis.

● Phase line

A graphical representation of the results of our graphical stability analysis is the phase 
line. On a phase line, the equilibrium points are denoted by circles. See Figure 2.6.2. 
Also on the phase line we identify the sign of x  for all values of x. From the sign of x , 
we then indicate whether x is increasing or deceasing by an appropriate arrow. If the 
arrow points toward the right, x is increasing; toward the left x decreases. Then, by 
knowing the sign of  the  derivative  for  all  values  of  x,  together  with  the  starting  

Consider the nonlinear ordinary differential equation

value  of  x,  we  can determine what happens as t → . Any solution that is approached
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Figure  2.6.2:  The  phase  line  diagram  for  the  ordinary  differential  equation
(2.6.4).

asymptotically as t→  is called a steady-state output. In our present example, x=0 is a
steady-state output.

Problems

In previous sections, you used various techniques to solve first-order ordinary differential
equations. Now check your work by using MATLAB to draw the direction field and plot 
your analytic solution for the following problems taken from previous sections:

1. §2.2, Problem 5
2. §2.3, Problem 1
3. §2.4, Problem 5
4. §2.5, Problem 3

For the following autonomous ordinary differential equations, draw the phase line. Then
classify each equilibrium solution as either stable or unstable.

5. 

6. x =(x2 1)(x2 4)

7. x = 4x x3

8. x =4x x3

2.7 NUMERICAL METHODS

By now you have seen most of the exact methods for finding solutions to first-order
ordinary differential equations. The methods have also given you a view of the general
behavior  and  properties  of  solutions  to  differential  equations.  However,  it  must  be
admitted that in many instances exact solutions cannot be found and we must resort to 
numerical solutions.

In  this  section  we  present  the  two  most  commonly  used  methods  for  solving
differential equations: Euler and Runge-Kutta methods. There are many more methods and the
interested student is referred to one of countless numerical methods books. A straightforward ex-
tension of these techniques can be applied to systems of first-order and higher-order differential 
equations.

● Euler and modified Euler methods

Consider the following first-order differential equation and initial condition:
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(2.7.1)

Euler’s method is based on a Taylor series expansion of the solution about x
0
 or

(2.7.2)

where h is the step size. Euler’s method consists of taking a sufficiently small h so that 
only the first two terms of this Taylor expansion are significant.

Let us now replace y (x
0
) by f(x

0
, y

0
). Using subscript notation, we have that

y
i+1

=y
i
+hf(x

i
, y

i
)+O(h2). 

(2.7.3)

Equation (2.7.3) states that if we know the values of y
i
 and f(x

i
, y

i
) at the position x

i
, then 

the solution at x
i+1

 can be obtained with an error12 O(h2).

The trouble with Euler’s method is its lack of accuracy, often requiring an extremely 
small time step. How might we improve this method with little additional effort?

One possible method would retain the first three terms of the Taylor expansion rather 
than the first two. This scheme, known as the modified Euler method, is

(2.7.4)

This is clearly more accurate than (2.7.3).

An  obvious  question  is  how  do  we  evaluate   because  we  do  not  have  any 
information on its value? Using the forward derivative approximation, we find that

(2.7.5)

Substituting (2.7.5) into (2.7.4) and simplifying

(2.7.6)

12 The symbol O is a mathematical notation indicating relative magnitude of terms, namely that
 provided   For  example,  as  

 and 
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(2.7.7)

Although f(x
i
, y

i
) at (x

i
, y

i
) are easily calculated, how do we compute f(x

i+1
, y

i+1
) at (x

i+1
, 

y
i+1

)? For this we compute a first guess via the Euler method (2.7.3); equation (2.7.7) 

then provides a refinement on the value of y
i+1

. 

In summary then, the simple Euler scheme is

y
i+1

=y
i
+k

1
+O(h2), k

1
=hf(x

i
, y

i
). 

(2.7.8)

while the modified Euler method is

(2.7.9)

 Example 2.7.1

Let us illustrate Euler’s method by numerically solving

x = x+t, x(0)=1. (2.7.10)

A quick check shows that  (2.7.10) has the exact solution x
exact

(t)=2et t 1. Using  the 
MATLAB script

Using the differential equation,

clear
for i = 1:3
% set up time step increment and number of time steps
h = 1/10ˆi; n = 10/h;
% set up initial conditions
t=zeros (n+1, 1) ; t(1) = 0;
x_euler=zeros (n+1, 1); x_euler(1) = 1;
x_modified=zeros(n+1, 1); x_modified(1) = 1;
x_exact=zeros(n+1, 1); x_exact(1) = 1;
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Figure  2.7.1:  The  relative  error  [x(t) xexact(t)]/xexact(t)  of  the  numerical

solution of (2.7.10) using Euler’s method (the solid line) and modified
Euler’s method (the dotted line) with different time steps h. 

% set up difference arrays for plotting purposes
diff1 = zeros(n, 1); diff2 = zeros(n, 1); tplot = zeros(n,
1);
% define right side of differential equation (2.7.10)
f = inline(’xx+tt’,’tt’,’xx’);
for k = 1: n
t(k+1) = t(k) + h;
% compute exact solution
x_exact(k+1) = 2*exp(t(k+1))  t(k+1)  1;
% compute solution via Euler’s method
k1 = h * f(t(k), x_euler(k));
x_euler(k+1) = x_euler(k) + k1;
tplot(k) = t(k+1);
diff1(k) = x_euler(k+1)  x_exact(k+1);
diff1(k) = abs(diff1(k) / x_exact(k+1));

k1 = h * f(t(k), x_modified(k));
k2 = h * f(t(k+1), x_modified(k)+k1);
x_modified(k+1) = x_modified(k) + 0.5 * (k1+k2) ;
diff2(k) = x_modified(k+1)  x_exact(k+1);
diff2(k) = abs(diff2(k) / x_exact(k+1));
end
% plot relative errors
semilogy (tplot, diff1,’-’, tplot,diff2,’:’)   

hold on
xlabel (’TIME’,’Fontsize’,20)
ylabel (’ |RELATIVE ERROR|’,’Fontsize’,20)
legend(’Euler method’,’modified Euler method’)
legend boxoff;
num1 = 0.2*n; num2 = 0.8*n;

% compute solution via modif ied Euler method
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Both the Euler  and modified Euler  methods have been used to  numerically  integrate
(2.7.10) and the absolute value of the relative error is plotted in Figure 2.7.1 as a function 
of time for various time steps. In general, the error grows with time. The decrease of error 
with smaller time steps, as predicted in our analysis, is quite apparent. Furthermore, the 
superiority of the modified Euler method over the original Euler method is clearly seen.

● Runge-Kutta method

As we have just shown, the accuracy of numerical solutions of ordinary differential 

equations can be improved by adding more terms to the Taylor expansion.

Figure 2.7.2: Although Carl David Tolmé Runge (1856–1927) began his studies 
in Munich, his friendship with Max Planck led him to Berlin and pure 
mathematics  with  Kronecker  and  Weierstrass.  It  was  during  his profes-
sorship at Hanover begining in 1886 and subsequent work in spectroscopy that 
led him to his celebrated paper on the numerical integration of ordinary differential 
equations. Runge’s final years were spent in Göttingen as a professor in applied 
mathematics. (Protrait taken with permission from Reid, C., 1976: Courant in 
Göttingen and New  York:  The  Story  of  an  Improbable  Mathemati-
cian. Springer-Verlag, 314 pp. ©1976, by Springer-Verlag New York Inc.)

text(3,diff1(num1), [’h = ’,num2str(h)],’Fontsize’,15,…
    ’HorizontalAlignment’,’right’,…
    ’VerticalAlignment’,’bottom’)
text(9,diff2(nun2), [’h = ’,num2str(h)],’Fontsize’,15,…
    ’HorizontalAlignment’,’righty’,…
    ’VerticalAlignment’,’bottom’)
end
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The Runge-Kutta method13 builds upon this idea, just as the  modified Euler method did. 

Let us assume that the numerical solution can be approximated by

y
i+1 1 2

(2.7.11)

where

k
1
=hf(x

i
, y

i
) and k

2
=hf(x

i
+A

1
h, y

i
+B

1
k

1
). 

(2.7.12)

Here  a,  b,  A
1
,  and  B

1
 are  four  unknowns.  Equation  (2.7.11)  was  suggested  by  the 

modified Euler method that we just presented. In that case, the truncated Taylor series 

had an error of O(h3). We anticipate such an error in the present case.

Because the Taylor series expansion of f(x+h, y+k) about (x, y) is

(2.7.13)

k
2
 can be rewritten

k
2
=hf[x

i
+A

1
h, y

i
+Bhf(x

i
, y

i
)] (2.7.14)

i 1 x 1 y (2.7.15)

Ann., 46, 167–178; Kutta, W., 1901: Beitrag zur Näherungsweisen Integration totaler Differen-
tialgleichungen. Zeit.  Math.  Phys.,  46,  435–453.  For a historical  review, see Butcher,  J.C.,  1996:  
A history  of  Runge-Kutta  methods.  Appl.  Numer.  Math.,  20, 247–260 and Butcher, J.C., and 
G.Wanner, 1996: Runge-Kutta methods: Some historical notes. Appl. Numer. Math., 22, 113–151.

13

= y +ak +bk , 
i

i

 Runge,  C.,  1895:   Ueber   die   numerische   Auflösung   von   Differentialgleichungen.   Math.

=h[f(x  , y )+(A hf +B hf f )] 
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=hf+A
1
h2f

x
+B

1
h2f fy, (2.7.16)

where we have retained only terms up to O(h2) and neglected all  higher-order terms. 
Finally, substituting (2.7.16) into (2.7.11) gives

y
i+1

=y
i
+(a+b)hf+(A

1
bf

x
+B

1
bf f

y
)h2. 

(2.7.17)

This equation corresponds to the second-order Taylor expansion:

(2.7.18)

Therefore, if we wish to solve the differential equation y =f(x, y), then

y =f
x
+f

y
y =f

x
+f f

y
. 

(2.7.19)

Substituting (2.7.19) into (2.7.18), we have that

(2.7.20)

A direct comparison of (2.7.17) and (2.7.20) yields

(2.7.21)

These  three  equations  have  four  unknowns.  If  we  choose   we  immediately

calculate  and A
1
=B

1
=1. Hence the second-order Runge-Kutta scheme is

(2.7.22)

where  k
1
=hf(x

i
,  y

i
)  and  k

2
=hf(x

i
+h,y

i
+k

1
).  Thus,  second-order  Runge-Kutta  scheme 

is identical to the modified Euler method.
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Although the derivation of the second-order Runge-Kutta scheme yields the modified
Euler scheme, it does provide a framework for computing higherorder and more accurate
schemes. A particularly popular one is the fourthorder Runge-Kutta scheme

(2.7.23)

where

1 i (2.7.24)

(2.7.25)

(2.7.26)

and

k
4
=hf(x

i
+h, y

i
+k

3
). (2.7.27)

 Example 2.7.2

Let us illustrate the fourth-order Runge-Kutta by redoing the previous example using 
the MATLAB script

clear 
% test out different time steps 
for i = 1:4 
% set up time step increment and number of time steps 
if  i= =1 h = 0.50; end; if i= =2 h = 0.10; end; 
if  i= =3 h = 0.05; end; if i= =4 h = 0.01; end; 
n = 10/h; 
% set up initial conditions 
t=zeros(n+1,1); t(1) = 0; 
x_rk=zeros(n+1,1); x_rk(1) = 1;
x_exact=zeros(n +1,1); x_exact(1) = 1; 
% set up difference arrays for plotting purposes 
diff = zeros(n,1); tplot = zeros(n, 1);

i
k =hf(x , y ), 
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% define right side of differential equation 
f = inline(’xx+tt’,’tt’,’xx’); 
for k = 1:n 
x_local = x_rk(k); t_local = t(k); 
k1 = h * f(t_local, x_local); 
k2 = h * f(t_local + h/2,x_local + k1/2); 
k3 = h * f(t_local + h/2,x_local + k2/2); 
k4 = h * f(t_local + h,x_local + k3); 
t(k+1) = t_local + h; 
x_rk(k+1) = x_local + (k1+2*k2+2*k3+k4)/6; 
x_exact(k+1) = 2*exp(t(k+1)) - t(k+1) - 1; 
tplot(k) = t(k); 
diff(k) = x_rk(k+1) - x_exact(k+1); 
diff(k) = abs(diff(k)/x_exact(k+1)); 
end 
% plot relative errors 
semilogy(tplot, diff,’-’) 
hold on   

Figure 2.7.3: Same as Figure 2.7.1 except that we have used the fourth-order
Runge-Kutta method.

xlabel(’TIME’,’Fontsize’,20) 
ylabel(’|RELATIVE ERROR|’,’Fontsize’,20) 
num1 = 2*i; num2 = 0.2*n; 
text(num1,diff(num2),[’h = ’,num2str(h)],’Fontsize’,15,…
    ’HorizontalAlignment’,’right’,…
    ’VerticalAlignment’,’bottom’) 
end

The error growth with time is shown in Figure 2.7.3. Although this script could be used 
for  any  first-order  ordinary  differential  equation,  the  people  at  MATLAB  have  an 
alternative called ode45 which combines a fourth-order and a fifth-order method which 
are similar to our fourth-order Runge-Kutta method. Their scheme is more efficient
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because it varies the step size, choosing a new time step at each step in an attempt to
achieve a given desired accuracy.

Problems

Using Euler’s method for various values of h=10 n, find the numerical solution for the
following initial-value problems. Check your answer by finding the exact solution:

1. x =x t, x(0)=2
2. x =tx, x(0)=1

3. x =x2/(t+1), x(0)=1

4. x =x+e t, x(1)=0
5. Consider the integro-differential equation

 

Figure 2.7.4:  The numerical solution of the equation describing an electrical 
circuit with a nonlinear resistor. Here =0.2 and t=0.01.
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14 Monahan, T.F., 1960: Calculation of the current in non-linear surge-current-generation circuits.
Proc. IEE, Part C, 107, 288–291.

where  the  signum  function  is  defined  by  (5.2.11).  This  equation  describes  the 
(nondimensional) current,14 x(t), within an electrical circuit that contains a capacitor, inductor, 
and nonlinear resistor. Assuming that the circuit is initially dead, x(0)=0, write a  MATLAB 
script that uses Euler’s method to compute x(t). Use a simple Riemann sum to approximate 
the integral. Examine the solution for various values of B and  as well as time step t.



Chapter 3

Higher-Order Ordinary Differential Equations

Although  first-order  ordinary  differential  equations  exhibit  most  of  the  properties  of
differential equations, higher-order ordinary differential equations are more ubiquitous in 
the sciences and engineering. This chapter is devoted to the most commonly employed 
techniques for their solution.

A linear nth-order ordinary differential equation is a differential equation of the form

(3.0.1)

If f(x)=0, then (3.0.1) is said to be homogeneous; otherwise, it is nonhomogeneous. A 
linear  differential  equation  is  normal  on  an  interval  I  if  its  coefficients  and  f(x)  are 
continuous, and the value of a

n
 (x) is never zero on I.

Solutions to (3.0.1) generally must satisfy not only the differential equations but also 
certain specified conditions at one or more points. Initial-value problems are problems 
where all of the conditions are specified at a single point x=a and have the form: y( )=b

0
,

y ( )=b
1
, y (a)=b

2
,…., y(n 1)(a)=b

n 1
, where b

0
, b

1
, b

2
,…., b

n 1
 are arbitrary constants. A 

quick check shows that if (3.0.1) is homogeneous and normal on an interval I and all of 
the initial conditions equal zero at the point x=a which lies in I, then y(x) 0 on I. This 
follows because y=0 is a solution of (3.0.1) and satisfies the initial conditions.

At  this  point  a  natural  question  would  be  whether  the  solution  exists  for  this 

initial-value problem and, if so, how many? From a detailed study of this question,1 we
have the following useful theorem.

Theorem: Existence and Uniqueness

Suppose that the differential equation (3.0.1) is normal on the open interval I containing 

the point x=a. Then, given n numbers b
0
, b

1
,…, b

n 1
, the nth-order linear equation (3.0.1) 

has a unique solution on the entire interval I that satisfies the n initial conditions y(a)=b
0
,

y (a)=b
1
,…, y(n 1)(a)= b

n 1
.

 Example 3.0.1

The  solution   to  the  ordinary  differential  equation  y +2y y 2y=0
 satisfies  the  initial  conditions  y(0)=1,  y (0)=2,  and  y (0)=0  at  x=0.  Our  theorem guarantees us

 that this is the only solution with these initial values.

1 The proof of the existence and uniqueness of solutions to (3.0.1) is beyond the scope of this
book. See Ince, E.L., 1956: Ordinary Differential Equations. Dover Publications, Inc., §3.32.
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Another class of problems, commonly called (two-point) boundary-value  problems, occurs
 when conditions are specified at two different points x= a and x=b with b>a. An important 
example, in the case of secondorder ordinary differential equations, is the  Sturm-  
Liouville  problem  where the  boundary  conditions  are

1
y( )+

1
y(a)=0 at x=a  and 

2
y(b)+

2
y (b)=0 at x=b. The Sturm-Liouville problem is treated in Chapter 9.

Having introduced some of the terms associated with higher-order ordinary linear dif-
ferential  equations,  how  do  we  solve  them?  One  way  is  to  recognize  that  these 
equations  are  really  a  set  of  linear,  first-order  ordinary  differential  equations.  For 
example, the linear second-order linear differential equation

y 3y +2y=3x
(3.0.2)

can be rewritten as the following system of first-order ordinary differential equations:

y y= , and 2v=3x
(3.0.3)

because

y –y =v =2v+3x=2y –2y+3x,
(3.0.4)

which is the same as (3.0.2). This suggests that (3.0.2) can be solved by applying the 
techniques from the previous chapter. Proceeding along this line, we first find that

(3.0.5)

Therefore,

(3.0.6)

Again, applying the techniques from the previous chapter, we have that
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(3.0.7)

Note that the solution to this second-order ordinary differential equation contains two 
arbitrary constants.

 Example 3.0.2

In the case of linear, second-order ordinary differential equations, a similar technique, called 
reduction in order, provides a method for solving differential equations if we know one of its 
solutions.

Consider the second-order ordinary differential equation

x2y 5xy +9y=0. 
(3.0.8)

A quick check shows that y
1
(x)=x3 ln(x) is a solution of (3.0.8). Let us now assume that 

the general solution can be written y(x)=u(x)x3 ln(x). Then

y =u (x)x3 ln(x)+u(x) [3x2 ln(x)+x2], (3.0.9)

and

y =u (x)x3 ln(x)+2u (x) [3x2 ln(x)+x2]+u(x) [6x ln(x)+5x]. (3.0.10)

Substitution of y(x), y (x), and y (x) into (3.0.8) yields

x5 ln(x)u +[x4 ln(x)+2x4] u =0. 
(3.0.11)

Setting u = , separation of variables leads to

(3.0.12)

Note  how our  replacement  of  u (x)  with  (x)  has  reduced the  second-order  ordinary 
differential equation to a first-order one. Solving (3.0.12), we find that
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(3.0.13)

and

(3.0.14)

Because y(x)=u(x)x3 ln(x), the complete solution is

y(x)=C
1
x3+C

2
x3 ln(x). 

(3.0.15)

Substitution of (3.0.15) into (3.0.8) confirms that we have the correct solution. 
We can verify our answer by using the symbolic toolbox in MATLAB. 
Typing the command:

dsolve(’x*x*D2y-5*x*Dy+9*y=0’,’x’) 

yields 

ans =

C1*x^3+C2*x^3*log(x)

In summary, we can reduce (in principle) any higher-order, linear ordinary differential 
equations  into  a  system of  first-order  ordinary  differential  equations.  This  system of 
differential equations can then be solved using techniques from the previous chapter. In 
Chapter  14  we  will  pursue  this  idea  further.  Right  now,  however,  we  will  introduce 
methods that allow us to find the solution in a more direct manner.

 Example 3.0.3

An autonomous differential  equation  is  one where  the  independent  variable  does  not 
appear explicitly. In certain cases we can reduce the order of the differential equation and 
then solve it.

Consider the autonomous ordinary differential equation

y =2y3. 
(3.0.16)

The trick here is to note that
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(3.0.17)

where v=dy/dx. Integrating both sides of (3.0.17), we find that

2=y4+C
1
. (3.0.18)

Solving for v,

(3.0.19)

Integrating once more, we have the final result that

(3.0.20)

Problems

For the following differential equations, use reduction of order to find a second solution. 
Can you obtain the general solution using dsolve in MATLAB?

1. xy +2y =0, y
1
(x)=1

2. y +y 2y=0, y
1
(x)=ex

3. x2y +4xy 4y=0, y
1
(x)=x

4. xy (x+1)y +y=0, y
1
 (x)=ex

5. (2x x2)y +2(x 1)y 2y=0, y
1
(x)=x 1

6. y +tan(x)y 6 cot2(x)y=0, y
1
(x)=sin3(x)

7. 

8. y +ay +b(1+ax bx2)y=0, y
1
(x)=e bx2/

2

Solve the following autonomous ordinary differential equations:

9. yy =y 2

10. y =2yy , y(0)=y (0)=1

11. yy =y +y 2

12. 2yy =1+y 2

13. y =e2y, y(0)=0, y (0)=1

14. 
15. Solve the nonlinear second-order ordinary differential equation
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by (1) reducing it to the Bernoulli equation

 

(2) solving for (x), and finally (3) integrating u =v to find u(x).
16. Consider the differential equation

a
2
(x)y +

1
(x)y +

0
(x)y=0, a

2
(x) 0. 

Show that this ordinary differential equation can be rewritten

 

using the substitution

 

3.1 HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT 

COEFFICIENTS

In our drive for more efficient methods to solve higher-order, linear, ordinary differential
equations,  let  us  examine  the  simplest  possible  case  of  a  homogeneous  differential
equation with constant coefficients:

(3.1.1)

Although we could explore (3.1.1) in its most general form, we will begin by studying the 
second-order version, namely

y +by +cy=0,
(3.1.2)

since it is the next step up the ladder in complexity from first-order ordinary differential
equations.
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Motivated by the fact that the solution to the first-order ordinary 

differential equation y +ay=0 is y(x)=C
1
e ax, we make the educated guess that 

the solution to (3.1.2) is y(x)=Aemx. Direct substitution into (3.1.2) yields

(am 2 +bm+c) Ae mx =0.
(3.1.3)

Because A 0 or we would have a trivial solution and since emx 0 for arbitrary x, (3.1.3) 
simplifies to

am 2 +bm+c=0.
(3.1.4)

Equation (3.1.4) is called the auxiliary or characteristic equation. At this point we must 
consider three separate cases.

In this case the roots to (3.1.4) are real and unequal. Let us denote these roots by m=m
1
,

and m=m
2
. Thus, we have the two solutions:

(3.1.5)

We will now show that the most general solution to (3.1.2) is

(3.1.6)

This result follows from the principle of (linear) superposition.

Theorem:
 

Let
 

y
1
, y

2
,…,

 
y

k

 
be

 
solutions

 
of

 
the

 
homogeneous

 
equation

 
(3.1.1)

 
on

 
an

interval I. Then the linear combination

y(x)=C
1
y

1
(x)+C

2
y

2
(x)+…+C

k
y

k
(x), 

(3.1.7)

where C
i
, i=1, 2,…, k, are arbitrary constants, is also a solution on the interval I.

Distinct real roots
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Proof:  We  will  prove  this  theorem  for  second-order  ordinary  differential  equations;  it  is 
easily extended to higher orders. By the superposition principle, y(x)=C

1
y

1
(x)+C

2
y

2
(x).

Upon substitution into (3.1.2), we have that

(3.1.8)

Recombining the terms, we obtain

(3.1.9)

or

0C
1
+0C

2
=0. (3.1.10)

 Example 3.1.1

A quick check shows that y
1
(x)=ex and y

2
(x)=e x are two solutions of y y=0. Our theorem tells 

us that any linear combination of these solutions, such as y(x)=5ex 3e x, is also a solution.

How about the converse? Is every solution to y y=0 a linear combination of y
1
(x) and 

y
2
(x)? We will address this question shortly.

 Example 3.1.2

Let us find the general solution to

y +2y 15y=0.
(3.1.11)

Assuming a solution of the form y(x)=Aemx, we have that

(m2+2m 15)Aemx=0. 

(3.1.12)

Because A 0 and emx generally do not equal zero, we obtain the auxiliary or characteristic
equation
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m2+2m 15=(m+5)(m 3)=0. (3.1.13)

Therefore, the general solution is

y(x)=C
1
e3x+C

2
e 5x. 

(3.1.14)

 Repeated real roots

When m=m
1
=m

2
,  we have only the single exponential solution  To

find the second solution we apply the reduction of order technique shown in Example
3.0.2. Performing the calculation, we find

(3.1.15)

Since m
1
= b/(2a), the integral simplifies to  dx and

(3.1.16)

 Example 3.1.3

Let us find the general solution to

y +4y +4y=0.
(3.1.17)

Here the auxiliary or characteristic equation is

m2+4m+4=(m+2)2=0.
(3.1.18)

Therefore, the general solution is
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y(x)=(C
1
+C

2
x)e 2x. (3.1.19)

� Complex conjugate roots

When b2 4ac<0, the roots become the complex pair m
1
= +i  and m

2
= i, where 

and  are real and i2= 1. Therefore, the general solution is

y(x)=C
1
e( +i )x+C

2
e( i)x. (3.1.20)

Although (3.1.20) is quite correct, most engineers prefer to work with real functions rather 

than complex exponentials. To this end, we apply Euler’s formula2 to eliminate ei x and e i x since

ei x=cos( x)+i sin( x), 

(3.1.21)

and

e i x=cos( x) i sin( x). (3.1.22)

Therefore,

y(x)=C
1
e x [cos( x)+i sin( x)]+C

2
eax [cos( x) i sin( x)] (3.1.23)

=C
3
e x cos( x)+C

4
e x sin( x), (3.1.24)

where C
3
=C

1
+C

2
, and C

4
=iC

1
iC

2
.

 Example 3.1.4

Let us find the general solution to

2 If you are unfamiliar with Euler’s formula, see §1.1.
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y +4y +5y=0. (3.1.25)

Here the auxiliary or characteristic equation is

m2+4m+5=(m+2)2+1=0,
(3.1.26)

or m= 2±i. Therefore, the general solution is

y(x)=e 2x[C
1
 cos(x)+C

2
 sin(x)]. 

(3.1.27)

So far we have only dealt with second-order differential equations. When we turn to 
higher-order  ordinary  differential  equations,  similar  considerations  hold.  In  place  of
(3.1.4), we now have the nth-degree polynomial equation

a
n
mn+a

n 1
mn 1+…+a

2
m2+a

1
m+a

0
=0 

(3.1.28)

for its auxiliary equation.
When we treated second-order ordinary differential equations we were able to classify 

the roots  to the auxiliary equation as distinct  real  roots,  repeated roots,  and complex 
roots.  In the case of higher-order differential  equations,  such classifications are again 
useful  although all  three  types  may occur  with  the  same equation.  For  example,  the 
auxiliary equation

m6 m5+2m4 2m3+m2 m=0 
(3.1.29)

has the distinct roots m=0 and m=1 with the twice repeated, complex roots m=±i.
Although the possible combinations increase with higher-order differential equations, 

the solution technique remains the same. For each distinct real root m=m
1
, we have a 

corresponding homogeneous solution  For each complex pair m=a± i, we have the 

corresponding pair of homogeneous solutions e x cos( x) and e x sin( x). For a repeated
root m=m

1
 of multiplicity k, regardless of whether it is real or complex, we have either
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 in the case of real m
1
 or

e x  cos( x),  e x  sin( x),  xeax  cos( x),  xe x  sin( x),  x2eax  cos( x), 

x2eaxsin( x),…, xkeaxcos( x), xkeaxsin( x)

 

in the case of complex roots ± i.  For example, the general solution for the roots to
(3.1.29) is

y(x)=C
1
+C

2
ex+C

3
 cos(x)+C

4
 sin(x)+C

5
x cos(x)+C

6
x sin(x). (3.1.30)

 Example 3.1.5

Let us find the general solution to

y +y 10y=0.
(3.1.31)

Here the auxiliary or characteristic equation is

m3+m 10=(m 2)(m2+2m+5)=(m 2)[(m+1)2+4]=0, 
(3.1.32)

or m= 2 and m= 1±2i. Therefore, the general solution is

y(x)=C
1
e 2x+e x[C

2
 cos(2x)+C

3
 sin(2x)]. 

(3.1.33)

Having  presented  the  technique  for  solving  constant  coefficient,  linear,  ordinary 
differential equations, an obvious question is: How do we know that we have captured all 
of the solutions? Before we can answer this question, we must introduce the concept of linear 
dependence.

A set of functions f
1
(x), f

2
(x),…, f

n
(x) is said to be linearly dependent on an interval I if 

there exists constants C
1
, C

2
,…, C

n
, not all zero, such that

C
1
f
1
(x)+C

2
f
2
(x)+C

3
f
3
(x)+…+C

n
f
n
(x)=0 (3.1.34)

for  each  x  in  the  interval;  otherwise,  the  set  of  functions  is  said  to  be  linearly
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independent. This concept is easily understood when we have only two functions f
1
(x) 

and f
2
(x). If the functions are linearly dependent on an interval, then there exists constants 

C
1 

and C
2
 that are not both zero where

C
1
f
1
(x)+C

2
f
2
(x)=0 

(3.1.35)

for every x in the interval. If C
1

0, then

(3.1.36)

In other words, if two functions are linearly dependent, then one is a constant multiple of 
the other. Conversely, two functions are linearly independent when neither is a constant 
multiple of the other on an interval.

 Example 3.1.6

Let us show that f(x)=2x, g(x)=3x2, and h(x)=5x 8x2 are linearly dependent on the real 
line.

To show this, we must choose three constants, C
1
, C

2
, and C

3
, such that

C
1
f(x)+C

2
g(x)+C

3
h(x)=0, 

(3.1.37)

where not all of these constants are nonzero. A quick check shows that

15f(x) 16g(x) 6h(x)=0.
(3.1.38)

Clearly, f(x), g(x), and h(x) are linearly dependent.

 Example 3.1.7

This  example  shows  the  importance  of  defining  the  interval  on  which  a  function  is 
linearly dependent or independent. Consider the two functions f(x)=x and g(x)=|x|. They 
are linearly dependent on the interval (0, ) since C

1
x+C

2
|x|=C

1
x+C

2
x=0 is satisfied for 

any nonzero choice of C
1
 and C

2
 where C

1
= C

2
. What happens on the interval ( , 0)? 

They are still linearly dependent but now C
1
=C

2
.
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Although we could use the fundamental concept of linear independence to check and 
see  whether  a  set  of  functions  is  linearly  independent  or  not,  the  following theorem
introduces a procedure that is very straightforward.

Theorem: Wronskian Test of Linear Independence

Suppose f
1
(x), f

2
(x),…, f

n
(x) possess at least n 1 derivatives. If the determinant3

 

is not zero for at least one point in the interval I, then the functions f
1
(x), f

2
(x),…, f

n
(x) 

are linearly independent on the interval. The determinant in this theorem is denoted by 
W[f

1
(x), f

2
(x),…, f

n
(x)] and is called the Wronskian of the functions.

Proof:  We  prove  this  theorem  by  contradiction  when  n=2.  Let  us  assume  that  W[f
1
(x

0
),

f
2
(x

0
)] 0 for some fixed x

0
 in the interval I and that f

1
(x) and f

2
(x) are linearly dependent 

on the interval. Since the functions are linearly dependent, there exists C
1
 and C

2
, both 

not zero, for which

C
1
f
1
(x)+C

2
f
2
(x)=0 (3.1.39)

for every x in I. Differentiating (3.1.39) gives

(3.1.40)

We  may  view  (3.1.39)–(3.1.40)  as  a  system  of  equations  with  C
1 

 and  C
2 

 as  the 

unknowns. Because the linear dependence of f
1
 and f

2
 implies that C

1
0 and/or C

2
0 for 

each x in the interval,

(3.1.41)

for every x in I. This contradicts the assumption that W[f
1
(x

0
), f

2
(x

0
) 0 and f

1
 and f

2
 are

3 If you are unfamiliar with determinants, see §14.2.

linearly independent.
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 Example 3.1.8

Are the functions f(x)=x, g(x)=xex, and h(x)=x2ex linearly dependent on the real line? To
find out, we compute the Wronskian or

(3.1.42)

(3.1.43)

Therefore, x, xex, and x2ex are linearly independent.
Having introduced this concept of linear independence, we are now ready to address 

the question of how many linearly independent solutions a homogeneous linear equation 
has.

Theorem:

On any interval I over which an n-th order homogeneous linear differential equation is 
normal, the equation has n linearly independent solutions y

1
(x), y

2
(x),…, y

n
(x) and any 

particular solution of the equation on I can be expressed as a linear combination of these 
linearly independent solutions.
Proof :  Again  for  convenience  and  clarity  we  prove  this  theorem  for  the  special  case  of 
n=2. Let y

1
(x) and y

2
(x) denote solutions on I of (3.1.2). We know that these solutions 

exist by the existence theorem and have the following values:

(3.1.44)

at some point a on I. To establish the linear independence of y
1
 and y

2
 we note that, if

C
1
y

1
(x)+C

2
y

2
(x)=0  holds  identically  on  I,  then   there  too.

Because x=a lies in I, we have that

C
1
y

1
(a)+C

2
y

2
(a)=0, 

(3.1.45)

and
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(3.1.46)

which yields  C
1
=C

2
=0 after  substituting  (3.1.44).  Hence,  the  solutions  y

1
 and  y

2
 are 

linearly independent.
To complete the proof we must now show that any particular solution of (3.1.2) can be 

expressed as a linear combination of y
1
 and y

2
. Because y, y

1
, and y

2
 are all solutions of

(3.1.2) on I, so is the function

Y(x)=y(x) y( )y
1
(a) y (a)y

2
(x), (3.1.47)

where y( ) and y (a) are the values of the solution y and its derivative at x=a. Evaluating 
Y and Y  at x=a, we have that

Y (a)=y(a) y( )y
1
( ) y (a)y

2
(a)=y(a) y(a)=0, (3.1.48)

and

(3.1.49)

Thus, Y is the trivial solution to (3.1.2). Hence, for every x in I,

y(x) y(a)y
1
(x) y (a)y

2
(x)=0. (3.1.50)

Solving (3.1.50) for y(x), we see that y is expressible as the linear combination

y(x)=y(a)y
1
(x)+y (a)y

2
(x) 

(3.1.51)

of y
1
 and y

2
, and the proof is complete for n=2.

Problems

Find the  general  solution to  the  following differential  equations.  Check your  general 
solution by using dsolve in MATLAB.

1. y +6y +5y=0
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2. y 6y +10y=0
3. y 2y +y=0
4. y 3y +2y=0
5. y 4y +8y=0
6. y +6y +9y=0
7. y +6y 40y=0
8. y +4y +5y=0
9. y +8y +25y=0
10. 4y 12y +9y=0
11. y +8y +16y=0
12. y +4y =0
13. y +4y =0
14. y +2y +y =0
15. y 8y=0
16. y 3y +3y y =0
17. The simplest differential equation with “memory”—its past behavior affects the

present—is

 

Solve this integro-differential equation by differentiating it with respect to t to eliminate
the integral.

3.2 SIMPLE HARMONIC MOTION

Second-order, linear, ordinary differential equations often arise in mechanical or electrical
problems. The purpose of this section is to illustrate how the techniques that we just
derived may be applied to these problems.

We begin by considering the mass-spring system illustrated in Figure 3.2.1 where a
mass m is attached to a flexible spring suspended from a rigid support. If there were no
spring, then the mass would simply fall  downward due to the gravitational force mg.
Because there is no motion, the gravitational force must be balanced by an upward force
due to the presence of the spring. This upward force is usually assumed to obey Hooke’s
law which states that the restoring force is opposite to the direction of elongation and
proportional to
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Figure 3.2.1: Various configurations of a mass/spring system. The spring alone 
has  a  length  L  which  increases  to  L+s  when the  mass  is  attached. 
During simple harmonic motion, the length of the mass/spring system 
varies as L+s+x.

the amount of elongation. Mathematically the equilibrium condition can be expressed
mg=ks.

Consider now what happens when we disturb this equilibrium. This may occur in one 
of two ways: We could move the mass either upward or downward and then release it. 
Another method would be to impart an initial velocity to the mass. In either case, the 
motion of the mass/spring system would be governed by Newton’s second law which 
states that the acceleration of the mass equals the imbalance of the forces. If we denote
the downward displacement of the mass from its equilibrium position by positive x, then

(3.2.1)

since ks=mg. After dividing (3.2.1) by the mass, we obtain the second-order differential 
equation

(3.2.2)

or

(3.2.3)
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where  2=k/m  and   is  the  circular  frequency.  Equation  (3.2.3)  describes  simple 
harmonic motion or free undamped motion. The two initial conditions associated with 
this differential equation are

x(0)=a, x (0)= .
(3.2.4)

The first condition gives the initial amount of displacement while the second condition 
specifies the initial velocity. If >0 while <0, then the mass starts from a point below 
the equilibrium position with an initial upward velocity. On the other hand, if <0 with 

=0 the mass is at rest when it is released | | units above the equilibrium position. Similar 
considerations hold for other values of  and .

To solve (3.2.3), we note that the solutions of the auxiliary equation m2+ 2=0 are the 
complex numbers m

1
= i, and m

2
= i. Therefore, the general solution is

x(t)=A cos( t)+B sin( t).
(3.2.5)

The (natural) period of free vibrations is T=2 /  while the (natural) frequency is f=1/T=
/(2 ).

 Example 3.2.1

Let us solve the initial-value problem

(3.2.6)

The physical interpretation is that we have pulled the mass on a spring down 10 units 
below the equilibrium position and then release it from rest at t=0. Here, =2 so that

x(t)=A cos(2t)+B sin(2t)
(3.2.7)

from (3.2.5).
Because x(0)=10, we find that

x(0)=10=A·1+B·0
(3.2.8)
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so that A=10. Next, we note that

(3.2.9)

Therefore, at t=0,

x (0)=0= 20·0+2B·1
(3.2.10)

and B=0. Thus, the equation of motion is x(t)=10 cos(2t).
What is the physical interpretation of our equation of motion? Once the system is set 

into motion, it stays in motion with the mass oscillating back and forth 10 units above 
and below the equilibrium position x=0. The period of oscillation is 2 /2=  units of time.

 Example 3.2.2

A weight of 45N stretches a spring 5cm. At time t=0, the weight is released from its
equilibrium position with an upward velocity of 28cm s 1. Determine the displacement
x(t) that describes the subsequent free motion.
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From Hooke’s law,

F=mg=45N=k 5cm (3.2.11)

so that k=9N cm 1. Therefore, the differential equation is

(3.2.12)

The initial displacement and initial velocity are x(0)=0cm and x (0)= 28 cm s 1.  The 
negative sign in the initial velocity reflects the fact that the weight has an initial velocity 
in the negative or upward direction.

Because 2=196s 2 or =14s 1, the general solution to the differential equation is

x(t)=A cos(14s 1t)+B sin(14s 1t).
(3.2.13)

Figure 3.2.2: Schematic of a floating body partially submerged in pure water.

Substituting for the initial displacement x(0) in (3.2.13), we find that

x(0)=0cm=A·1+B·0, (3.2.14)

and A=0cm. Therefore,

x(t)=B sin(14s 1t) (3.2.15)

and
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x (t)=14s 1B cos(14s 1t) (3.2.16)

Substituting for the initial velocity,

x (0)= 28cm s 1=14s 1B, 
(3.2.17)

and B= 2cm. Thus the equation of motion is

x(t)= 2cm sin(14s 1t). 
(3.2.18)

 Example 3.2.3: Vibration of floating bodies

Consider a solid cylinder of radius a that is partially submerged in a bath of pure water as 
shown in Figure 3.2.2. Let us find the motion of this cylinder in the vertical direction 
assuming that it remains in an upright position.

If the displacement of the cylinder from its static equilibrium position is x, the weight 
of water displaced equals Ag x, where 

w
 is the density of the water and g is the 

gravitational  acceleration.  This  is  the  restoring  force  according  to  the  Archimedes 
principle. The mass of the cylinder is Ah , where  is the density of cylinder. From 
second Newton’s law, the equation of motion is

Ahx +Ag
w

x=0, 
(3.2.19)

or

(3.2.20)

From (3.2.20) we see that the cylinder will oscillate about its static equilibrium position 
x=0 with a frequency of

(3.2.21)

When both A and B are both nonzero, it is often useful to rewrite the homogeneous solution 
(3.2.5) as
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x(t)=C sin( t+ ) (3.2.22)

to highlight the amplitude and phase of the oscillation. Upon employing the trigonometric 
angle-sum formula, (3.2.22) can be rewritten

x(t)=C sin( t) cos( )+C cos( t) sin( )=A cos( t)+B sin( t).
(3.2.23)

From (3.2.23), we see that A=C sin( ) and B=C cos( ). Therefore,

A 2 +B 2 =C 2 sin 2 ( )+C 2 cos 2 ( )=C 2 , (3.2.24)

and  Similarly, tan( )=A/B. Because the tangent is positive in both the first 
and third quadrants and negative in both the second and fourth quadrants, there are two pos-
sible choices for . The proper choice of  satisfies the equations A=C sin( ) and B=C cos( ).

If we prefer the amplitude/phase solution

x(t)=C cos( t ),
(3.2.25)

we now have

x(t)=C cos( t) cos( )+C sin ( t) sin( )=A cos( t)+B sin( t).
(3.2.26)

Consequently, A=C cos( ) and B=C sin( ). Once again, we obtain  On

the other hand, tan( )=B/A.

Problems

Solve the following initial-value problems and write their solutions in terms of amplitude 
and phase:

1. x +25x=0, x(0)=10, x (0)= 10
2. 4x +9x=0, x(0)=2 , x (0)=3

3. x + 2x=0, x(0)=1, 
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giving it an initial downward velocity of 5m/s from its equilibrium position. Find the 
displacement as a function of time.

5. A spring hangs vertically. A weight of mass M kg stretches it L m. This weight is 
removed. A body weighing m kg is then attached and allowed to come to rest. It is then 
pulled down s

0
 m and released with a velocity 

0
. Find the displacement of the body from 

its point of rest and its velocity at any time t.
6. A particle of mass m moving in a straight line is repelled from the origin by a force 

F. (a) If the force is proportional to the distance from the origin, find the position of the

particle as a function of time. (b) If the initial velocity of the particle is  where k is
the proportionality constant and a is the distance from the origin, find the position of the 
particle as a function of time. What happens if m<1 and m=1?

3.3 DAMPED HARMONIC MOTION

Free harmonic motion is unrealistic because there are always frictional forces which act 
to retard to retard motion. In mechanics, the drag is often modeled as a resistance that is 
proportional to the instantaneous velocity. Adopting this resistance law, it follows from 
Newton’s second law that the harmonic oscillator is governed by

(3.3.1)

where   is  a  positive  damping  constant.  The  negative  sign  is  necessary  since  this 
resistance acts in a direction opposite to the motion.

Dividing (3.3.1) by the mass m,  we obtain the differential equation of  free damped 
motion,

(3.3.2)

or

(3.3.3)

We have written 2  rather  than just   because it  simplifies  future computations.  The 

auxiliary equation is m2+2 m+ 2=0 which has the roots

(3.3.4)

4. A 4-kg mass is suspended from a 100N/m spring. The mass is set in motion by
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From (3.3.4) we see that there are three possible cases which depend on the algebraic sign of 
2 2. Because all of the solutions contain the damping factor e t, >0, x(t) vanishes as t → .

 Case I:  >
Here the system is overdamped because the damping coefficient  is large compared to 
the spring constant k. The corresponding solution is

(3.3.5)

or

(3.3.6)

In this case the motion is smooth and nonoscillatory.

 Case II: =
The system is critically damped because any slight decrease in the damping force would 
result in oscillatory motion. The general solution is

(3.3.7)

or

x(t)=e t(A+Bt). (3.3.8)

The motion is quite similar to that of an overdamped system.

 Case III: <
In  this  case  the  system  is  underdamped  because  the  damping  coefficient  is  small 
compared to the spring constant. The roots m

1
 and m

2
 are complex:

(3.3.9)

The general solution now becomes

(3.3.10)
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Equation (3.3.10) describes oscillatory motion which decays as e t. Equations (3.3.6),
(3.3.8), and (3.3.10) are illustrated in Figure 3.3.1 when the initial conditions are x(0)=1 
and x (0)=0.

Just  as  we  could  write  the  solution  for  the  simple  harmonic  motion  in  the 
amplitude/phase format,  we can write any damped solution (3.3.10) in the alternative 
form

(3.3.11)

where  and the phase angle  is given by tan ( )=A/B such that A=C 

sin( ) and B=C cos( ). The coefficient Ce t is sometimes

Figure  3.3.1:  The  displacement  x(t)  of  a  damped  harmonic  oscillator  as  a 
function of time and = / .

called the damped coefficient of vibrations. Because (3.3.11) is not a periodic function,

the  quantity   is  called  the  quasi  period  and   is  the  quasi
frequency. The quasi period is the time interval between two successive maxima of x(t).

 Example 3.3.1

A body with mass  is attached to the end of a spring that is stretched 2m by a 

force  of  100N.  Furthermore,  there  is  also  attached  a  dashpot4  that  provides  6N  of

4 A mechanical device—usually a piston that slides within a liquid-filled cylinder—used to damp
the vibration or control the motion of a mechanism to which is attached.
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resistance for each m/s of velocity. If the mass is set in motion by further stretching the

spring  and giving it an upward velocity of 10m/s, let us find the subsequent motion. 
We  begin  by  first  computing  the  constants.  The  spring  constant  is  k= 

(100N)/(2m)=50N/m. Therefore, the differential equation is

(3.3.12)

with   and  x (0)= 10m/s.  Here  the  units  of  x(t)  are  meters.  The 
characteristic or auxiliary equation is

m2+12m+100=(m+6)2+64=0,
(3.3.13)

or m= 6±8i. Therefore, we have an underdamped harmonic oscillator and the general 
solution is

x(t)=e 6t [A cos(8t)+B sin(8t)].
(3.3.14)

Review of the Solution of the Underdamped Homogeneous Oscillator 

Problem

mx + x +kx=0 subject to x(0)=x
0
, x (0) = v

0
 has the solution

x(t)=Ae t sin (
d
t+ ),  

where

 the undamped natural frequency, 
= /(2m) is the damping factor,

 is the damped natural frequency, 
and the constants A and  are determined by
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and

 

Consequently, each cycle takes 2 /8=0.79 second. This is longer than the 0.63 second 
that would occur if the system were undamped.

From the initial conditions,

(3.3.15)

Therefore,  and  Consequently,

(3.3.16)

 Example 3.3.2: Design of a wind vane

In its simplest form a wind vane is a flat plate or airfoil that can rotate about a vertical 
shaft. See Figure 3.3.2. In static equilibrium it points into the wind. There is usually a 
counterweight to balance the vane about the vertical shaft.

A vane uses a combination of the lift and drag forces on the vane to align itself with the 
wind. As the wind shifts direction from 

0
 to the new
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Figure 3.3.2: Schematic of a wind vane. The counterbalance is not shown.

direction  
i
,  the  direction   in  which  the  vane  currently  points  is  governed  by  the

equation of motion5

(3.3.17)

where I is the vane’s moment of inertia, N is the aerodynamic torque per unit angle, and R 
is the distance from the axis of rotation to the effective center of the aerodynamic force 
on the vane. The aerodynamic torque is given by

(3.3.18)

where C
L
 is the lift coefficient,  is the air density, A is the vane area, and V is the wind 

speed.
Dividing (3.3.17) by I, we obtain the second-order ordinary differential equation

(3.3.19)

The solution to (3.3.19) is

(3.3.20)

5  For  a  derivation  of  (3.3.12)  and  (3.3.13),  see  subsection  2  of  §3  in  Barthelt,  H.P,  and
G.H.Ruppersberg,  1957:  Die  mechanische  Windfahne,  eine  theoretische  und  experimentelle 
Untersuchung. Beitr. Phys. Atmos., 29, 154–185.
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(3.3.21)

and A and  are the two arbitrary constants which would be determined by presently 
unspecified initial conditions. Consequently an ideal wind vane is a damped harmonic 
oscillator where the wind torque should be large and its moment of inertia should be 
small.

Problems

For the following values of m, , and k, find the position x(t) of a damped oscillator for 
the given initial conditions:

1. 

2. m=1, =10, k=125, x(0)=3, x (0)=25
3. m=4, =20, k=169, x(0)=4, x (0)=16
4. For a fixed value of / , what is the minimum number of cycles required to produce

a reduction of at least 50% in the maxima of a underdamped oscillator?
5. For what values of c does x +cx +4x=0 have critically damped solutions?
6. For what values of c are the motions governed by 4x +cx +9x=0 (a) overdamped, (b)

underdamped, and (c) critically damped?
7. For an overdamped mass-spring system, prove that the mass can pass through its

equilibrium position x=0 at most once.

3.4 METHOD OF UNDETERMINED COEFFICIENTS

Homogeneous ordinary differential equations become nonhomogeneous when the right
side of (3.0.1) is nonzero. How does this case differ from the homogeneous one that we
have treated so far?

To  answer  this  question,  let  us  begin  by  introducing  a  function  y
p
(x)—called  a

particular solution—whose only requirement is that it satisfies the differential equation

(3.4.1)

Then,  by  direct  substitution,  it  can  be  seen  that  the  general  solution  to  any 
nonhomogeneous, linear, ordinary differential equation is

where
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y(x)=y
H

(x)+y
p
(x), (3.4.2)

where y
H

 (x)—the homogeneous or complementary solution—satisfies

(3.4.3)

Why have we introduced this complementary solution because the particular solution 
already satisfies the ordinary differential equation? The purpose of the complementary 
solution is to introduce the arbitrary constants that any general solution of an ordinary 
differential equation must have. Thus, because we already know how to find y

H
(x), we 

must only invent a method for finding the particular solution to have our general solution.

 Example 3.4.1

Let us illustrate this technique with the second-order, linear, nonhomogeneous ordinary 
differential equation

y –4y +4y =2e2x+4x–12. (3.4.4)

Taking y(x)=y
H

(x)+y
p
(x), direction substitution yields

(3.4.5)

If we now require that the particular solution y
p
(x) satisfies the differential equation

(3.4.6)

(3.4.5) simplifies to the homogeneous ordinary differential equation

(3.4.7)

6 We will show how y
p
(x) was obtained momentarily.

A quick check6 shows that the particular solution to (3.4.6) is y
p
(x)=x2e2x+ x 2. Using 

techniques  from  the  previous  section,  the  complementary  solution  is 
y

H
(x)=+C

1
e2x+C

2
xe2x.
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In general, finding y
p
(x) is a formidable task. In the case of constant coefficients, several

techniques have been developed. The most commonly employed technique is 
called  the  method  of  undetermined  coefficients  which  is  used  with  linear,  constant
coefficient, ordinary differential equations when f(x) is a constant, a polynomial, an exponential 
function e x, sin( x), cos( x), or finite sum and products of these functions. Thus, this technique 
applies when the function f(x) equals ex sin(x) (3x–2)e 2x but not when it equals ln(x).

Why does this technique work? The reason lies in the set of functions that we have
allowed to be included in f(x). They enjoy the remarkable property that derivatives of
their sums and products yield sums and products that are also constants, polynomials,
exponentials,  sines,  and cosines.  Because a  linear  combination of  derivatives such as

 must equal f(x), it seems reasonable to assume that y
p
(x) has the same 

form as f(x). The following examples show that our conjecture is correct.

 Example 3.4.2

Let  us  illustrate  the  method  of  undetermined  coefficients  by  finding  the  particular 
solution to

y –2y +y=x+sin(x)
(3.4.8)

by the method of undetermined coefficients. 
From the form of the right side of (3.4.8), we guess the particular solution

y
p
(x)=Ax+B+C sin(x)+D cos(x). (3.4.9)

Therefore,

(3.4.10)

and

(3.4.11)
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Substituting into (3.4.8), we find that

(3.4.12)

Since (3.4.12) must be true for all x, the constant terms must sum to zero or B 2A=0. 
Similarly, all of the terms involving the polynomial x must balance, yielding A=1 and 
B=2A=2. Turning to the trigonometric terms, the coefficients of sin(x) and cos(x) give 
2D=1 and 2C=0, respectively.

Therefore, the particular solution is

(3.4.13)

and the general solution is

(3.4.14)

We can verify our result by using the symbolic toolbox in MATLAB. 
Typing the command:

dsolve(’D2y-2*Dy+y=x+sin(x)’,’x’)

yields

 Example 3.4.3

Let us find the particular solution to

y +y 2y=xex 

(3.4.15)

by the method of undetermined coefficients. 
From the form of the right side of (3.4.15), we guess the particular solution

 x+2+1/2*cos(x)+C1*exp(x)+C2*exp(x)*x
ans =



158 Advanced Engineering Mathematics with MATLAB 

y
p
(x)=Axex+Bex. 

(3.4.16)

Therefore,

(3.4.17)

and

(3.4.18)

Substituting into (3.4.15), we find that

3Aex=xex.
(3.4.19)

Clearly we cannot choose a constant A such that (3.4.19) is satisfied. What went wrong? 
To  understand  why,  let  us  find  the  homogeneous  or  complementary  solution  to

(3.4.15); it is

y
H

(x)=C
1
e 2x+C

2
ex. 

(3.4.20)

Therefore, one of the assumed particular solutions, Bex, is also a homogeneous solution 
and  cannot  possibly  give  a  nonzero  left  side  when  substituted  into  the  differential 
equation. Consequently, it  would appear that the method of undetermined coefficients 
does not work when one of the terms on the right side is also a homogeneous solution.

Before we give up, let us recall that we had a similar situation in the case of linear 
homogeneous  second-order  ordinary  differential  equations  when  the  roots  from  the 
auxiliary equation were equal. There we found one of the homogeneous solution was

 We eventually found that the second solution was  Could such a solution
work here? Let us try.

We begin by modifying (3.4.16) by multiplying it by x. Thus, our new guess for the 
particular solution reads

y
p
(x)=Ax2ex+Bxex. 

(3.4.21)
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Then,

(3.4.22)

and

(3.4.23)

Substituting (3.4.21) into (3.4.15) gives

(3.4.24)

Grouping together terms that vary as xex, we find that 6A=1. Similarly, terms that vary as 

ex yield 2A+3B=0. Therefore,

(3.4.25)

so that the general solution is

(3.4.26)

In  summary,  the  method  of  finding  particular  solutions  to  higher-order  ordinary 
differential equations by the method of undetermined coefficients is as follows:

� Step 1: Find the homogeneous solution to the differential equation. 
� Step 2: Make an initial guess at the particular solution. The form of y

p
(x) is a linear 

combination  of  all  linearly  independent  functions  that  are  generated  by  repeated 
differentiations of f(x). 

� Step 3: If any of the terms in y
p
(x) given in Step 2 duplicate any of the homogeneous 

solutions, then that particular term in y
p
(x) must be multiplied by xn, where n is the 

smallest positive integer that eliminates the duplication.
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Let us apply the method of undetermined coefficients to solve

y +y=sin(x) e3x cos(5x). 
(3.4.27)

We begin by first finding the solution to the homogeneous version of (3.4.27):

(3.4.28)

Its solution is

y
H

(x)=A cos(x)+B sin(x). 
(3.4.29)

To find the particular solution we examine the right side of (3.4.27) or

f(x)=sin(x) e3x cos(5x). 
(3.4.30)

Taking a few derivatives of f(x), we find that

f (x)=cos(x) 3e3x cos(5x)+5e3x sin(5x), 
(3.4.31)

f (x)= sin(x) 9e3x cos(5x)+30e3x sin(5x)+25e3x cos(5x), 
(3.4.32)

and so forth. Therefore, our guess at the particular solution is

y
p
(x)=Cx sin(x)+Dx cos(x)+Ee3x cos(5x)+Fe3x sin(5x). 

(3.4.33)

Why have we chosen x sin (x) and x cos (x) rather than sin (x) and cos (x)? Because sin(x) 
and cos(x) are homogeneous solutions to (3.4.27), we must multiply them by a power of x.

 Example 3.4.4
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(3.4.34)

(3.4.35)

=sin(x) e3x cos(5x). 
(3.4.36)

Therefore,  2C=0,  2D=1,  30F 15E= 1,  and  30E+15F=0.  Solving  this  system  of

equations yields C=0,   and  Thus, the general solution is

(3.4.37)

Problems

Use the method of undetermined coefficients to find the general solution of the following 
differential equations. Verify your solution by using dsolve in MATLAB.

1. y +4y +3y=x+1

2. y y=ex 2e 2x

3. y +2y +2y=2x2+2x+4

4. y +y =x2+x

5. y +2y =2x+5 e 2x

6. y 4y +4y=(x+1)e2x

7. y + 4y +4y=xex

8. y 4y=4sinh(2x)
9. y + 9y=x cos(3x)
10. y +y=sin(x)+x cos(x)
11. Solve

y +2ay =sin2( x), y(0)=y (0)=0,  

by  (a)  the  method  of  undetermined  coefficients  and  (b)  integrating  the  ordinary
differential equation so that it reduces to

 

and then using the techniques from the previous section to solve this first-order ordinary

Since

differential equation.
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3.5 FORCED HARMONIC MOTION

Let us now consider the situation when an external force f(t) acts on a vibrating mass on a
spring.  For  example,  f(t)  could  represent  a  driving  force  that  periodically  raises
and lowers the support of the spring. The inclusion of f(t)  in the formulation of
Newton’s second law yields the differential equation

(3.5.1)

(3.5.2)

or

(3.5.3)

where F(t)=f(t)/m, 2 = /m, and 2=k/m. To solve this nonhomogeneous equation we will 
use the method of undetermined coefficients.

 Example 3.5.1

Let us find the solution to the nonhomogeneous differential equation

y +2y +y=2 sin(t),
(3.5.4)

subject to the initial conditions y(0)=2 and y (0)=1.
The homogeneous solution is easily found and equals

y
H

(t)=Ae t+Bte t. 
(3.5.5)

From the method of undetermined coefficients, we guess that the particular solution is
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y
p
(t)=C cos(t)+D sin(t), 

(3.5.6)

so that

(3.5.7)

and

(3.5.8)

Substituting y
p
(t),  and  into (3.5.4) and simplifying, we find that

2C sin(t)+2D cos(t)=2 sin(t)
(3.5.9)

or D=0 and C= 1. 
To find A and B, we now apply the initial conditions on the general solution

y(t)=Ae t+Bte t cos(t). 
(3.5.10)

The initial condition y(0)=2 yields

y(0)=A+0 1=2,
(3.5.11)

or A=3. The initial condition y (0)=1 gives

y (0)= A+B=1,
(3.5.12)

or B=4, since
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y (t)= Ae t+Be t Bte t+sin(t). (3.5.13)

Therefore, the solution which satisfies the differential equation and initial conditions is

y(t)=3e t+4te t cos(t). 
(3.5.14)

 Example 3.5.2

Let us solve the differential equation for a weakly damped harmonic oscillator when the 

constant forcing F
0
 “turns on” at t=t

0
. The initial conditions are that x(0)=x

0
 and x (0)=

0
. 

Mathematically, the problem is

(3.5.15)

with x(0)=x
0
 and x (0)=

0
.

0 0

0

x(t)=Ae t cos(
d
t)+Be t sin(

d
t), 

(3.5.16)

where  Upon applying the initial conditions,

(3.5.17)

as before.
For the region t

0
< t, we write the general solution as

(3.5.18)

Why have we written our solution in this particular form rather than the simpler

To solve (3.5.15), we first divide the time domain into two regions: 0< t <t  and t < t. 

For 0 < t < t ,
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(3.5.19)

Both solutions satisfy the differential equation as direct substitution verifies. However, 
the algebra is greatly simplified when (3.5.18) rather than (3.5.19) is used in matching the 
solution from each region at t=t

0
. There both the solution and its first derivative must be 

continuous or

(3.5.20)

where  and  are points just below and above t
0
, respectively. When (3.5.17) and

(3.5.18) are substituted, we find that C= F
0
/ 2, and 

d
D= C. Thus, the solution for the

region t
0
< t is

(3.5.21)

As we will see in Chapter 6, the technique of Laplace transforms is particularly well 
suited for this type of problem when the forcing function changes abruptly at one or more 
times.

As noted earlier, nonhomogeneous solutions consist of the homogeneous solution plus 
a particular solution. In the case of a damped harmonic oscillator, another, more physical, 
way of describing the solution involves its behavior at large time. That portion of the 
solution that eventually becomes negligible as t→  is often referred to as the transient 

term,  or transient solution.  In (3.5.14) the transient solution equals 3e t+4te t.  On the 
other  hand,  the portion of  the solution that  remains  as  t→  is  called the steadystate 
solution. In (3.5.14) the steady-state solution equals—cos(t).

One  of  the  most  interesting  forced  oscillator  problems  occurs  when  =0  and  the 
forcing  function  equals  F

0 
 sin(

0
t),  where  F

0 
 is  a  constant.  Then  the  initial-value 

problem becomes

(3.5.22)
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The undamped system mx +kx=F
0
 cos(

0
t) subject to the initial conditions 

x(0)=x
0
 and x'(0)=v

0
 has the solution

 

where  f
0
=F

0
/m  and   The  underdamped  system  mx + x 

+kx=F
0
 cos(

0
t) has the steady-state solution

 

where 2 = /m.

Let us solve this problem when x(0)=x (0)=0. The homogeneous solution to (3.5.22) is

x
H

(t)=A cos( t)+B sin( t). 

(3.5.23)

To obtain the particular solution, we assume that

x
p
(t)=C cos(

0
t)+D sin(

0
t). 

(3.5.24)

This leads to

(3.5.25)

(3.5.26)

and

(3.5.27)

Review of the Solution of the Forced Harmonic Oscillator Problem
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We immediately conclude that  and  Therefore,

(3.5.28)

provided that 
0
. Thus,

(3.5.29)

Figure  3.5.1:  The  solution  (3.5.31)  as  a  function  of  time when =1and 0

equals (a) 1.02, (b) 1.2, and (c) 2.

To finish the problem, we must apply the initial conditions to the general solution

(3.5.30)

From  x(0)=0,  we  find  that  A=0.  On  the  other  hand,  x (0)=0  yields

 Thus, the final result is

(3.5.31)
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Equation (3.5.31) is illustrated in Figure 3.5.1 as a function of time.
The most arresting feature in Figure 3.5.1 is the evolution of the uniform amplitude of

the oscillation shown in frame (c) into the one shown in frame (a) where the amplitude 
exhibits a sinusoidal variation as 

0
→ . In acoustics these fluctuations in the amplitude

are called beats, the loud sounds corresponding to the larger amplitudes.
As our analysis indicates, (3.5.31) does not apply when =

0
. As we shall shortly see,

this is probably the most interesting configuration. We can use (3.5.31) to examine this
case by applying L’Hôpital’s rule in the limiting case of 

0
→ . This limiting process is

analogous  to  “tuning  in”  the  frequency  of  the  driving  frequency  [
0
/(2 )]  to  the 

frequency of free vibrations [ /(2 )]. From experience, we expect that given enough time 
we should be able to substantially increase the amplitudes of vibrations. Mathematical 
confirmation of our physical intuition is as follows:

(3.5.32)

(3.5.33)

(3.5.34)

(3.5.35)

(3.5.36)

As we suspected, as t→ , the displacement grows without bounds. This phenomenon is 
known as pure resonance. We could also have obtained (3.5.36) directly using the method 
of undetermined coefficients involving the initial value problem

(3.5.37)

Because there is almost always some friction, pure resonance rarely occurs and the more 
realistic differential equation is
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(3.5.38)

Its solution is

(3.5.39)

where

(3.5.40)

(3.5.41)

and C and  are determined by the initial conditions. To illustrate (3.5.39) we rewrite the 
amplitude and phase of the particular solution as

(3.5.42)

and

(3.5.43)
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Figure 3.5.2: The amplitude of the particular solution (3.5.39) for a forced, damped  

simple  harmonic  oscillator  (normalized  with  F
0/ 2)  as  a function of 

r=
0/ .

where  r=
0
/  and  = / .  Figures  3.5.2  and  3.5.3  graph  (3.5.42)  and  (3.5.43)  as

functions of r for various values of .

 Example 3.5.3: Electrical circuits

In the previous chapter, we saw how the mathematical analysis of electrical circuits yields first-
order  linear  differential  equations.  In  those  cases  we  only  had  a  resistor  and capacitor or 
a resistor and inductor. One of the fundamental problems of electrical circuits is a circuit 
where a resistor, capacitor, and inductor are connected in series, as shown in Figure 3.5.4.

In this RCL circuit, an instantaneous current flows when the key or switch K is closed.
If Q(t) denotes the instantaneous charge on the capacitor, Kirchhoff’s law yields the differential 
equation

(3.5.44)

where E(t),  the electromotive force, may depend on time, but where L, R,  and C  are 
constant. Because I=dQ/dt, (3.5.44) becomes

(3.5.45)

Consider now the case when resistance is negligibly small. Equation (3.5.45) will become
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identical to the differential equation for the forced simple harmonic oscillator, (3.5.3), 
with =0.  Similarly,  the general  case yields various analogs to the damped harmonic
oscillator:

Case 1 Overdamped R2

Case 2 Critically damped R2

Case 3 Underdamped R2

Figure 3.5.3: The phase of the particular solution (3.5.39) for a forced, damped
simple harmonic oscillator as a function of r= 0/ .

In each of these three cases, Q(t) → 0 as t → . (See Problem 6.) Therefore, an RLC elec-
trical  circuit  behaves  like  a  damped  mass-spring  mechanical  system,  where induc-
tance acts like mass, resistance is the damping coefficient, and 1/C is the spring constant.

Problems

1. Find the values of  so that x +6x +18=cos( t) is in resonance.
2. The differential equation

x +2x +2x=10sin(2t) 

describes a damped, forced oscillator. If the initial conditions are x(0)=x
0
 and x (0)=0,

find its solution by hand and by using MATLAB. Plot the solution when x
0
= 10, 9,…,

9, 10. Give a physical interpretation to what you observe.
3. At time t=0, a mass m is suddenly attached to the end of a hanging spring with a

spring  constant  k.  Neglecting  friction,  find  the  subsequent  motion  if  the  coordinate
system is chosen so that x(0)=0.

Step 1: Show that the differential equation is

> 4L/C

= 4L/C

< 4L/C
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with the initial conditions x(0)=x (0)=0.

Figure  3.5.4:  A  simple  electrical  circuit  containing  a  resistor  of  constant 
resistance  R,  capacitor  of  constant  capacitance  C,  and  inductor  of 
constant inductance L driven by a time-dependent electromotive force 
E(t).

Step 2: Show that the solution to Step 1 is

x(t)=mg[1 cos( t)]/k, 2=k/m. 

4. Consider the electrical circuit shown in Figure 3.5.4 which now possesses negligible 
resistance and has an applied voltage E(t)=E

0
[1 cos( t)]. Find the current if the circuit is 

initially dead.
5. Find the general solution to the differential equation governing a forced, damped 

harmonic equation

mx +cx +kx=F
0 

sin( t),  

where m, c, k, F
0
, and  are constants. Write the particular solution in amplitude/phase 

format.
6. Prove that the transient solution to (3.5.45) tends to zero as t →  if R, C, and L

are greater than zero.

3.6 VARIATION OF PARAMETERS

As the previous section has shown, the method of undetermined coefficients can be used 
when  the  right  side  of  the  differential  equation  contains  constants,  polynomials, ex-
ponentials, sines, and cosines. On the other hand, when the right side contains terms other 
than these, variation of parameters provides a method for finding the particular solution.
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To understand this technique, let us return to our solution of the firstorder ordinary-
differential equation

(3.6.1)

Its solution is

(3.6.2)

The solution (3.6.2) consists of two parts: The first term is the homogeneous solution and 

can be written y
H

(x)=C
1
y

1
(x),  where y

1
(x)=e  p(x)dx.  The second term is the particular 

solution and equals the product of some function of x, say u
1
(x), times y

1
(x):

(3.6.3)

This particular solution bears a striking resemblance to the homogeneous solution if we 
replace u

1
(x) with C

1
.

Variation  of  parameters  builds  upon  this  observation  by  using  the  homogeneous 
solution  y

1
(x)  to  construct  a  guess  for  the  particular  solution  y

p
(x)=u

1
(x)y

1
(x).  Upon 

substituting this guessed y
p
(x) into (3.6.1), we have that

(3.6.4)

(3.6.5)

or

(3.6.6)

since 

Using the technique of separating the variables, we have that
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(3.6.7)

Consequently, the particular solution equals

(3.6.8)

Upon substituting for y
1
(x), we obtain (3.6.3). 

How do we apply this method to the linear second-order differential equation

a
2
(x)y +

1
y (x)+

0
(x)y=g(x), 

(3.6.9)

or

y +P(x)y +Q(x)y=f(x), (3.6.10)

where P(x), Q(x), and f(x) are continuous on some interval I?
Let y

1
(x) and y

2
(0:) denote the homogeneous solutions of (3.6.10). That is, y

1
(x) and 

y
2
(x) satisfy

(3.6.11)

and

(3.6.12)

Following our previous example, we now seek two function u
1
(x) and u

2
(x) such that

y
p
(x)=u

1
(x)y

1
(x)+u

2
(x)y

2
(x) 

(3.6.13)

is a particular solution of (3.6.10). Once again, we replaced our arbitrary constants C
1
 and

C
2 

 by  the  “variable  parameters”  u
1
(x)  and  u

2
(x).  Because  we  have  two  unknown
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functions, we require two equations to solve for u
1
(x) and u

2
(x). One of them follows

from substituting y
p
(x)=u

1
(x)y

1
(x)+ u

2
(x)y

2
(x) into (3.6.10). The other equation is

(3.6.14)

This equation is an assumption that is made to simplify the first and second derivative 
which is clearly seen by computing

(3.6.15)

after applying (3.6.14). Continuing to the second derivative,

(3.6.16)

Substituting these results into (3.6.10), we obtain

(3.6.17)

(3.6.18)

Hence, u
1
(x) and u

2
(x) must be functions that also satisfy the condition

(3.6.19)

It is important to note that the differential equation must be written so that it conforms to
(3.6.10). This may require the division of the differential equation by a

2
(x) so that you 

have the correct f(x).
Equation (3.6.14) and (3.6.19) constitute a linear system of equations for determining

the unknown derivatives  and  By Cramer’s rule,7  the solutions of (3.6.14) and
(3.6.19) equal

7 If you are unfamiliar with Cramer’s rule, see §14.3.
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(3.6.20)

where

(3.6.21)

The  determinant  W  is  the  Wronskian  of  y
1

 and  y
2
.  Because  y

1
 and  y

2
 are  linearly

independent on I, the Wronskian will never equal to zero for every x in the interval.
These results can be generalized to any nonhomogeneous, nth-order, linear equation of

the form

y(n)+P
n 1

(x)y(n 1)+P
1
(x)y +P

0
(x)=f(x). (3.6.22)

If y
H

(x)=C
1
y

1
(x)+C

2
y

2
(x)+…+C

n
y

n
(x) is the complementary function for (3.6.22), then a 

particular solution is

y
p
(x)=u

1
(x)y

1
(x)+u

2
(x)y

2
(x)+…+u

n
(x)y

n
(x), (3.6.23)

where the  k=1, 2,…, n, are determined by the n equations:

(3.6.24)

(3.6.25)

(3.6.26)

The first n 1 equations in this system, like (3.6.14), are assumptions made to simplify the
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first n 1 derivatives of y
p
(x). The last equation of the system results from substituting the

n derivative of y
p
(x) and the simplified lower derivatives into (3.6.22). Then, by Cramer’s

rule, we find that

(3.6.27)

where  W  is  the  Wronskian  of  y
1
,  y

2
,…, y

n
,  and  W

k
 is  the  determinant  obtained  by 

replacing the kth column of the Wronskian by the column [0, 0, 0, …, f(x)]T.

 Example 3.6.1

Let us apply variation of parameters to find the general solution to

y +y 2y=xex. (3.6.28)

We  begin  by  first  finding  the  homogeneous  solution  which  satisfies  the  differential 
equation

(3.6.29)

Applying the techniques from §3.1, the homogeneous solution is

y
H

(x)=Aex+Be 2x, (3.6.30)

yielding the two independent solutions y
1
(x)=ex,  and y

2
(x)=e 2x.  Thus,  the method of 

variation of parameters yields the particular solution

y
p
(x)=exu

1
(x)+e 2xu

2
(x). 

(3.6.31)

From (3.6.14), we have that

(3.6.32)
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while

(3.6.33)

Solving for  and  we find that

(3.6.34)

or

(3.6.35)

and

(3.6.36)

or

(3.6.37)

Therefore, the general solution is

y(x)=Aex+Be 2x+exu
1
(x)+e 2xu

2
(x) 

(3.6.38)

(3.6.39)

(3.6.40)

(x) (x),
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 Example 3.6.2

Let us find the general solution to

y +2y +y=e x ln(x) 
(3.6.41)

by variation of parameters on the interval (0, ). 
We start by finding the homogeneous solution which satisfies the differential equation

(3.6.42)

Applying the techniques from §3.1, the homogeneous solution is

y
H

(x)=Ae x+Bxe x, 
(3.6.43)

yielding the  two independent  solutions  y
1
(x)=e x  and y

2
(x)=xe x.  Thus,  the  particular 

solution equals

y
p
(x)=e xu

1
(x)+xe xu

2
(x). 

(3.6.44)

From (3.6.14), we have that

(3.6.45)

while

(3.6.46)

Solving for  and  we find that

(3.6.47)
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or

(3.6.48)

and

(3.6.49)

or

u
2
(x)=x ln(x) x. (3.6.50)

Therefore, the general solution is

y(x)=Ae x+Bxe x+e xu
1
(x)+xe xu

2
(x) (3.6.51)

(3.6.52)

We can verify our result by using the symbolic toolbox in MATLAB. 
Typing the command:

dsolve(’D2y+2*Dy+y=exp(-x)*log(x)’,’x’)

yields
ans = 
1/2*exp(-x)*x2*log(x)-3/4*exp(-x)*x2+C1*exp(-x) +C2*exp(-x)*x

 Example 3.6.3

So far, all of our examples have yielded closed form solutions. To show that this is not 
necessarily so, let us solve

y 4y=e2x/x (3.6.53)
by variation of parameters.
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Again we begin by solving the homogeneous differential equation

(3.6.54)

which has the solution

y
H

(x)=Ae2x+Be 2x. 
(3.6.55)

Thus, our two independent solutions are y
1
(x)=e2x and y

2
(x)=e 2x. 

Therefore, the particular solution equals

y
p
(x)=e2x

u1
(x)+e 2xu

2
(x). 

(3.6.56)

From (3.6.14), we have that

(3.6.57)

while

(3.6.58)

Solving for  and  we find that

(3.6.59)

or

(3.6.60)

and
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(3.6.61)

or

(3.6.62)

Therefore, the general solution is

y(x)=Ae2x+Be 2x+e2xu
1
(x)+e 2xu

2
(x) 

(3.6.63)

(3.6.64)

Problems

Use variation of parameters to find the general  solution for the following differential 
equations. Then see if you can obtain your solution by using dsolve in MATLAB.

1. y 4y +3y=e x

2. y y 2y=x

3. y 4y=xex

4. y +9y=2sec(x)

5. y +4y +4y=xe 2x

6. y +2ay =sin2( x)

7. y 4y +4y=(x+1)e2x

8. y 4y=sin2(x)

9. y 2y +y=ex/x
10. y +y=tan(x)

3.7 EULER-CAUCHY EQUATION

The Euler-Cauchy or equidimensional equation is a linear differential equation of the 
form

(3.7.1)
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where a
n
, 

n 1
,…, a

0
 are constants. The important point here is that in each term the

power to which x is raised equals the order of differentiation.
To illustrate this equation, we will focus on the homogeneous, secondorder, ordinary 

differential equation

(3.7.2)

The solution of higher-order ordinary differential equations follows by analog. If we wish 
to solve the nonhomogeneous equation

(3.7.3)

we can do so by applying variation of parameters using the complementary solutions that 
satisfy (3.7.2).

Our  analysis  starts  by  trying  a  solution  of  the  form  y=xm,  where  m  is  presently 
undetermined. The first and second derivatives are

(3.7.4)

respectively. Consequently, substitution yields the differential equation

(3.7.5)

=am(m 1)xm+bmxm+cxm 
(3.7.6)

=[ m(m 1)+bm+c]xm. (3.7.7)

Thus,  y=xm  is  a solution of the differential  equation whenever m  is  a solution of the 
auxiliary equation

am(m 1)+bm+c=0, or am2+(b a)m+c=0. (3.7.8)
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At this point we must consider three different cases which depend upon the values of a, b, 
and c.

● Distinct real roots

Let m
1
 and m

2
 denote the real roots of (3.7.8) such that m

1
m

2
. Then,

(3.7.9)

are homogeneous solutions to (3.7.2). Therefore, the general solution is

(3.7.10)

● Repeated real roots

If the roots of (3.7.8) are repeated [m
1
=m

2
= (b a)/2], then we presently have only one 

solution,  To construct the second solution y
2
, we use reduction in order. We

begin by first rewriting the Euler-Cauchy equation as

(3.7.11)

Letting P(x)=b/(ax), we have

(3.7.12)

(3.7.13)

(3.7.14)

The general solution is then
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(3.7.15)

For higher-order equations, if m
1
 is a root of multiplicity k, then it can be shown that

 

are the k linearly independent solutions. Therefore, the general solution of the differential 
equation equals a linear combination of these k solutions.

● Conjugate complex roots

If the roots of (3.7.8) are the complex conjugate pair m
1
= +i , and m

2
= i , where 

and  are real and >0, then a solution is

y(x)=C
1
x +i +C

2
xa i . (3.7.16)

However, because xi =[eln(x)]i =ei ln(x), we have by Euler’s formula

xi =cos[  ln(x)]+i sin [  ln (x)], 
(3.7.17)

and

x i =cos [  ln(x)] i sin [  ln(x)], (3.7.18)

Substitution into (3.7.16) leads to

y(x)=C
3
x  cos [  ln(x)]+C

4
x  sin [  ln(x)], (3.7.19)

where C
3
=C

1
+C

2
, and C

4
=iC

1
iC

2
.

● Example 3.7.1

Let us find the general solution to



186 Advanced Engineering Mathematics with MATLAB 

x2y +5xy 12y=ln(x) (3.7.20)

by the method of undetermined coefficients and variation of parameters.
In the case of undetermined coefficients, we begin by letting t=ln(x)  and y(x)=Y(t). 

Substituting these variables into (3.7.20), we find that

Y +4Y 12Y=t. (3.7.21)

The homogeneous solution to (3.7.21) is

Y
H

(t)=A e 6t+B e2t, (3.7.22)

while the particular solution is

Y
p
(t)=Ct+D (3.7.23)

from the method of undetermined coefficients. Substituting (3.7.23) into (3.7.21) yields

 and  Therefore,

(3.7.24)

or

(3.7.25)

To find  the  particular  solution  via  variation  of  parameters,  we use  the  homogeneous 
solution

(3.7.26)
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to obtain y
1
(x)=x 6 and y

2
(x)=x2. Therefore,

y
p
(x)=x 6u

1
(x)+x2u

2
(x). (3.7.27)

Substitution of (3.7.27) in (3.7.20) yields the system of equations:

(3.7.28)

and

(3.7.29)

Solving for  and 

(3.7.30)

The solutions of these equations are

(3.7.31)

and

(3.7.32)

The general solution then equals

(3.7.33)

We can verify this result by using the symbolic toolbox in MATLAB.
Typing the command:



188 Advanced Engineering Mathematics with MATLAB 

yields

Problems

Find the general solution for the following Euler-Cauchy equations valid over the domain 
( , ). Then check your answer by using dsolve in MATLAB.

1.  x2y +xy y=0

2.  x2y +2xy 2y=0

3.  x2y 2y=0

4.  x2y xy +y=0

5.  x2y +3xy +y=0

6.  x2y 3xy +4y=0

7.  x2y y +5y=0

8.  4x2y +8xy +5y=0

9.  x2y +xy +y=0

10. x2y 3xy +13y=0

11. x2y 2x2y 2xy +8y=0

12. x2y 2xy 4y=x

3.8 PHASE DIAGRAMS

In §2.6 we showed how solutions to first-order ordinary differential equations could be qualita-
tively solved through the use of the phase line. This concept of qualitatively studying differential 
equations showed promise as a method for deducing many of the characteristics of the so-
lution to a differential equation without actually solving it. In this section we extend these 
concepts to second-order ordinary differential equations by introducing the phase plane.

Consider the differential equation

x +sgn(x)=0, (3.8.1)

where  the  signum  function  is  defined  by  (5.2.11).  Equation  (3.8.1)  describes,  for example, 
the motion of an infinitesimal ball rolling in a “V” shaped trough in a constant gravitational field.8

Our analysis begins by introducing the new dependent variable v=x  so that (3.8.1) can
be written

8 See Lipscomb, T., and R.E.Mickens, 1994: Exact solution to the axisymmetric, constant force
oscillator equation. J. Sound Vibr., 169, 138–140.
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(3.8.2)

since

(3.8.3)

Figure 3.8.1: Phase diagram for the differential equation (3.8.1).

Equation  (3.8.2)  relates  v  to  x  and  t  has  disappeared  explicitly  from  the  problem.
Integrating (3.8.2) with respect to x, we obtain

(3.8.4)

or

(3.8.5)

Equation (3.8.5) expresses conservation of energy because the first term on the left side
of (3.8.5) is kinetic energy while the second term is the potential energy. The value of C
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depends upon the initial condition x(0) and (0). Thus, for a specific initial condition,
(3.8.5) gives the relationship between x and  for the motion corresponding to the initial 
condition.

Although there is a closed-form solution for (3.8.1), let us imagine that there is none. 
What could we learn from (3.8.5)?

Equation (3.8.5) can be represented in a diagram, called a phase plane, where x and v 
are its axes. A given pair of (x, v) is called a state of the system. A given state determines 
all subsequent states because it serves as initial conditions for any subsequent motion.

For each different  value of  C,  we will  obtain a curve,  commonly known as phase 
paths, trajectories, or integral curves, on the phase plane. In Figure 3.8.1, we used the 
MATLAB script
clear 
% set up grid points in the (x, v) plane 
[x, v] = meshgrid(-5:0.5:5,-5:0.5:5); 
% compute slopes 
dxdt = v; dvdt = -sign(x); 
% find magnitude of vector [dxdt,dydt]
L = sqrt(dxdt.*dxdt + dvdt.*dvdt); 

% contour trajectories 

contour(x,v,v.*v/2 + abs(x),8) 

h = findobj(’Type’,’patch’); set(h,’Linewidth’,2);

 xlabel(’x’,’Fontsize’,20);

 

ylabel(’v’,’Fontsize’,20)

to graph the phase plane for (3.8.1). Here the phase paths are simply closed, oval shaped 
curves which are symmetric with respect to both the x  and  phase space axes.  Each 
phase path corresponds to a particular possible motion of the system. Associated with 
each path is a direction, indicated by an arrow, showing how the state of the system 
changes as time increases.

An interesting feature on Figure 3.8.1 is the point (0, 0). What is happening there? In 
our discussion of phase line, we sought to determine whether there were any equilibrium 
or critical points. Recall that at an equilibrium or critical point the solution is constant 
and was given by x =0. In the case of second-order differential equations, we again have 
the  condition  x = =0.  For  this  reason  equilibrium points  are  always  situated  on  the 
abscissa of the phase diagram.

The condition x =0 is insufficient for determining critical points. For example, when a 
ball is thrown upward, its velocity equals zero at the peak height. However, this is clearly 
not a point of equilibrium. Consequently, we must impose the additional constraint that 
x = =0.  In  the  present  example,  equilibrium  points  occur  where  x = =0  and 

= sgn(x)=0 or x=0. Therefore, the point (0,0) is the critical point for (3.8.1).
The closed curves immediately surrounding the origin in Figure 3.8.1 show that we 

have periodic solutions there because on completing a circuit, the original state returns 
and the motion simply repeats itself indefinitely.

Once we have found an equilibrium point, an obvious question is whether it is stable or
not. To determine this, consider what happens  if the initial state is displaced slightly from

% plot scaled vectors 

quiver(x,v,dxdt./L,dvdt./L,0.5); axis equal tight 

hold
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the origin. It lands on one of the nearby closed curves and the particle oscillates with 
small amplitude about the origin. Thus, this critical point is stable.

In the following examples, we further illustrate the details that may be gleaned from a 
phase diagram.

● Example 3.8.1

The equation describing a simple pendulum is

ma2 +mga sin( )=0, (3.8.6)

Figure 3.8.2: Phase diagram for a simple pendulum.

where m denotes the mass of the bob, a is the length of the rod or light string, and g is the
acceleration due to gravity. Here the conservation of energy equation is

(3.8.7)

Figure 3.8.2 is the phase diagram for the simple pendulum. Some of the critical points are 
located at =±2n , n=0, 1, 2,…, and =0. Near these critical points, we have closed 
patterns  surrounding  these  critical  points,  just  as  we  did  in  the  earlier  case  of  an 
infinitesimal ball rolling in a “V” shaped trough. Once again, these critical points are 
stable  and  the  region  around  these  equilibrium  points  corresponds  to  a  pendulum 
swinging to and fro about the vertical. On the other hand, there is a new type of critical 
point at =±(2n 1) , n=0, 1, 2,… and =0. Here the trajectories form hyperbolas near 
these equilibrium points. Thus, for any initial state that is near these critical points we 
have solutions that move away from the equilibrium point.  This is  an example of an 
unstable critical point. Physically these critical points correspond to a pendulum that is 
balanced on end. Any displacement from the equilibrium results in the bob falling from 
the inverted position.

Finally, we have a wavy line as →± . This corresponds to whirling motions of the
pendulum where  has the same sign and  continuously increases or decreases.
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● Example 3.8.2: Damped harmonic oscillator

Consider the ordinary differential equation

x +2x +5x=0. (3.8.8)

The exact solution to this differential equation is

x(t)=e t [A cos(2t)+B sin(2t)], (3.8.9)

and

x (t)=2e t [B cos(2t) A sin(2t)] e t [A cos(2t)+B sin(2t)]. (3.8.10)

Figure 3.8.3: Phase diagram for the damped harmonic oscillator (3.8.8).

To construct its phase diagram, we again define =x  and replace (3.8.8) with = 2 5x.
The MATLAB script

clear 
% set up grid points in the x, x’ plane
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% compute slopes 

dxdt = v; dvdt = -2*v - 5*x; 

% find length of vector 
L = sqrt (dxdt.*dxdt + dvdt.*dvdt); 
% plot direction field 

ight

 hold 

-3:2:3; 

t = [-5:0.1:5]; 

xx = exp(-t).* (a*cos(2*t) + b*sin(2*t)); 

vv = 2 * exp(-t).* (b*cos(2*t) - a*sin(2*t)) - xx; 

% plot these values 

plot(xx,vv) 

end; end; 
xlabel (’x’,’Fontsize’,20); ylabel (’v’,’Fontsize’, 20)

was used to construct the phase diagram for (3.8.8) and is shown in Figure 3.8.3. Here the equi-
librium point is at x= =0. This is a new type of critical point. It is called a stable node because 
all slight displacements from this critical point eventually return to this equilibrium point.

Problems

1. Using MATLAB, construct the phase diagram for x –3x +2x=0. What happens around 
the point x= =0?

2. Consider the nonlinear differential  equation x =x3 x.  This equation arises in the 
study of simple pendulums with swings of moderate amplitude.

(a) Show that the conservation law is

 

What is special about C=0 and 

(b) Show that there are three critical points: x=0 and x=±1 with =0.
(c) Using MATLAB, graph the phase diagram with axes x and .

For the following ordinary differential equations, find the equilibrium points and then
classify them. Use MATLAB to draw the phase diagrams.
3.   x =2x
4.   x +sgn(x)x=0

5. 

3.9 NUMERICAL METHODS

When differential equations cannot be integrated in closed form, numerical methods must
be  employed. In  the  finite difference  method,  the  discrete  variable x

i 
or t

i
 replaces  the

[x, v] = meshgrid (-3:0.5:3,-3:0.5:3); 

quiver (x, v, dxdt./L, dvdt./L,0.5); axis equa  tl

% compute x(t) and v(t) at various times and a’s and b’s 

for b = -3:2:3; for a =
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continuous  variable  x  or  t  and  the  differential  equation  is  solved  progressively  in 
increments h starting from known initial conditions. The solution is approximate, but with 
a sufficiently small increment, you can obtain a solution of acceptable accuracy.

Although there are many different finite difference schemes available, we consider here only 
two methods that are chosen for their simplicity. The interested student may read any number 
of texts on numerical analysis if he or she wishes a wider view of other possible schemes.

Let  us  focus  on  second-order  differential  equations;  the  solution  of  higherorder 
differential equations follows by analog. In the case of second-order ordinary differential 
equations, the differential equation can be rewritten as

x =f(x, x , t), x
0
=x(0), x

0
=x (0), 

(3.9.1)

where the initial conditions x0 and  are assumed to be known.
For the present moment, let us treat the second-order ordinary differential equation

(3.9.2)

The following scheme, known as the central difference method, computes the solution 
from Taylor expansions at x

i+1
 and x

i 1
:

(3.9.3)

and

(3.9.4)

where h denotes the time interval t. Subtracting and ignoring higher-order terms, we 
obtain

(3.9.5)

Adding (3.9.3) and (3.9.4) yields
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(3.9.6)

In  both  (3.9.5)  and  (3.9.6)  we  ignored  terms  of  O(h2).  After  substituting  into  the
differential equation (3.9.2), (3.9.6) can be rearranged to

x
i+1

=2x
i

x
i 1

+h2f(x
i
, t

i
), i>1, (3.9.7)

which is known as the recurrence formula.
Consider now the situation when i=0. We note that although we have x

0
 we do not have

x
1
 Thus, to start the computation, we need another equation for x

1
. This is supplied by

(3.9.3) which gives

(3.9.8)

Once we have computed x
1
, then we can switch to (3.9.6) for all subsequent calculations.

In this development we have ignored higher-order terms that introduce what is known
as truncation errors. Other errors, such as round-off errors, are introduced due to loss of
significant  figures.  These  errors  are  all  related  to  the  time  increment  h  in  a  rather
complicated manner that are investigated in numerical analysis books. In general, better
accuracy is obtained by choosing a smaller h, but the number of computations will then
increase together with errors.

● Example 3.9.1

Let us solve x 4x=2t subject to x(0)=x (0)=1. The exact solution is

(3.9.9)

The MATLAB script

clear 
% test out different time steps 
for i = 1:3 

% set up initial conditions 

t=zeros(n+1,1); t(1) = 0; x(1) = 1; x_exact(1) = 1;

% set up time step increment and number of time steps 
h = 1/10. i; n = 10/h;

 



196 Advanced Engineering Mathematics with MATLAB 

% define right side of differential equation 
f = inline(’4*xx+2*tt’,’tt’,’xx’); 
% set up difference arrays for plotting purposes 
diff = zeros(n,1); t_plot = zeros(n,1); 
% compute first time step 
t(2) = t(1) + h; x(2) = x(1) + h + 0.5*h*h*f(t(1), x(1));
 x_exact(2) = (7/8)*exp(2*t(2)) +(1/8)*exp(-2*t(2))-t(2)/2;

 t_plot(1) = t(2);  

=

 

 x(2)- x_exact(2)  ;   =  x.exact(2)); 

% compute the remaining time steps 

for k = 2:n 

t(k+1) = t(k) + h; t_plot(k) = t(k+1); 

             -t(k+1)/2; 
diff(k) = x(k+1) – x_exact(k+1); 

diff(k) = abs(diff(k) / x_exact(k+1)); 
end 
% plot the relative error 
semilogy (t_plot, diff f,’ -’) 
hold on 

num = 0.2*n; 
text  (3*i,  diff  (num)  ,  [’h  =   ’, num2str(h)],’Fontsize’, 15,…

     ’HorizontalAlignment’ , ’right’,’VerticalAlignment’ ,’bottom’) 
xlabel (’TIME’,’Fontsize’,20); 
ylabel (’|RELATIVE ERROR|’,’Fontsize’,20); 
end

implements  our  simple  finite  difference  method  of  solving  a  second-order  ordinary 
differential equation. In Figure 3.9.1 we have plotted results for three different values of 
the time step. As our analysis suggests, the relative error is related to h2.

An alternative method for integrating higher-order ordinary differential equations is 
Runge-Kutta. It is popular because it is self-starting and the results are very accurate.

Figure 3.9.1:  The numerical solution of x 4x=2t  when x(0)=x (0)=1 
using a simple finite difference approach.

diff (1) diff(1) 

x_exact(k+1) = (7/8)*exp(2*t (k+1)) + (1/8)*exp (-2*t(k+1))…
x(k+1) = 2*x(k) – x(k-1) + h*h*f(t (k),x(k)); 

abs(diff(1)/  
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For second-order ordinary differential equations this method first reduces the differential 
equation into two first-order equations. For example, the differential equation

(3.9.10)

becomes the first-order differential equations

x =y, y =F(x,y,t). (3.9.11)

The Runge-Kutta  procedure can then be applied to  each of  these equations.  Using a 
fourth-order scheme, the procedure is as follows:

(3.9.12)

and

(3.9.13)

where

  k
1
=y

i
,                          K

1
=F(x

i
, y

i
, t

i
), (3.9.14)

(3.9.15)

(3.9.16)
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k
4
=y

i
+K

3
h, K

4
=F(x

i
+hk

3
, k

4
, t

i
+h). (3.9.17)

● Example 3.9.2

The MATLAB script

clear 
% test out different time steps 
for i = 1:4 
% set up time step increment and number of time steps 
if i==1 h = 0.50; end ; if i==2 h = 0.10; end; 
if i==3 h = 0.05; end; if i= =4 h = 0.01; end; 
n = 10/h; 
% set up initial conditions 

% set up difference arrays for plotting purposes 

% define right side of differential equation 
f = inline('4*xx+2*tt’,’tt>, ‘xx’,’yy’); 
for k = 1:n 
t_local = t(k); x_local = x_rk(k); y_local = y_rk(k); 
k1 = y_local; K1 = f (t_local,x_local,y_local) ; 
k2 = y_local + h*K1/2;

k3 = y_local + h*K2/2;

k4 = y_local + h*K3; K4 = f(t.local + h,x_local + h*k3,k4);

 t(k+1) = t_local + h;

 

x_rk(k+1) = x_local + (h/6) * (k1+2*k2+2*k3+k4); 

+1))+(1/8)*exp(-2*t(k+1))…
             - t(k+1)/2; 
t_plot(k) = t(k); 

end 
% plot the relative errors 
semilogy (t_plot, diff f, ’-’) 
hold on 
xlabel(’TIME’,’Fontsize ’,20); 
ylabel’ I RELATIVE ERROR| ’ , ’ ‘Fontsize’ ,20); 
text (2*i,diff (0.2*n),[’h=’,num2str(h)],’Fontsize’,15,…

and

t=zeros(n+1,1); t(1) = 0; 
x_rk=zeros(n+1,1); x_rk(1) = 1; 

y_rk=zeros(n+1,1); y_rk(1) = 1; 
x_exact=zeros(n+1,1); x_exact(1) = 1; 

t_plot = zeros(n,1); diff = zeros(n,1); 

y_rk(k+1) = y_local + (h/6) * (K1+2*K2+2*K3+K4);

 x_exact(k+1) = (7/8)*exp(2*t(k

 

diff(k) = x_rk(k+1) - x_exact(k+1); 
diff(k) = abs (diff (k)/x_exact(k+1)); 

K2 = f(t_local + h/2,x_local + h*k1/2,k2); 

K3 = f(t_local + h/2,x_local + h*k2/2,k3); 

     ‘HorizontalAlignment’,’right’,’VerticalAlignment’,’bottom’) 
end
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Figure  3.9.2:  The  numerical  solution  of  x 4x=2t  when  x(0)=x (0)=1  using 
Runge-Kutta method.

was  used  to  resolve  Example  3.9.1  using  the  Runge-Kutta  approach.  Figure  3.9.2 
illustrates the results for time steps of various size.

Problems

In previous sections, you found exact solutions to second-order ordinary differential
equations. Confirm these earlier results by using MATLAB and the Runge-Kutta scheme
to find the numerical solution to the following problems drawn from previous sections.

1.  §3.1, Problem 1
2.  §3.1, Problem 5
3.  §3.4, Problem 1
4.  §3.4, Problem 5
5.  §3.6, Problem 1
6.  §3.6, Problem 5



Chapter 4

Fourier Series

Fourier series arose during the eighteenth century as a formal solution to the classic wave
equation. Later on, it was used to describe physical processes in which events recur in a 
regular pattern. For example, a musical note usually consists of a simple note, called the
fundamental,  and a  series  of  auxiliary vibrations,  called overtones.  Fourier’s  theorem
provides the mathematical language which allows us to precisely describe this complex
structure.

4.1 FOURIER SERIES

One of the crowning glories1 of nineteenth century mathematics was the discovery that 
the infinite series

(4.1.1)

1“Fourier’s Theorem…is not only one of the most beautiful results of modern analysis, but may be
said to furnish an indispensable instrument in the treatment of nearly every recondite question in 
modern physics. To mention only sonorous vibrations, the propagation of electric signals along a 
telegraph wire,  and the conduction of  heat  by the earth’s  crust,  as  subjects  in  their  generality 
intractable without it, is to give but a feeble idea of its importance.” (Quote taken from Thomson,
W., and P.G.Tait, 1879: Treatise on Natural Philosophy, Part 1. Cambridge University Press, §75.)

can represent a function f(t) under certain general conditions. This series, called a Fourier 
series, converges to the value of the function f(t) at every point in the interval [ L, L] 
with the possible exceptions of the points at any discontinuities and the endpoints of the 
interval. Because each term has a period of 2L, the sum of the series also has the same 
period. The fundamental of the periodic function f(t) is the n=1 term while the harmonics 
are the remaining terms whose frequencies are integer multiples of the fundamental.

We must now find some easy method for computing the coefficients a
n
 and b

n
 for a 

given function f(t). As a first attempt, we integrate (4.1.1) term by term2 from L to L. On 
the right side, all of the integrals multiplied by a

n
 and b

n
 vanish because the average of 

cos(n t/L) and sin(n t/L) is zero. Therefore, we are left with
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(4.1.2)

Consequently a
0
 is twice the mean value of f(t) over one period.

We next  multiply  each  side  of  (4.1.1)  by  cos(m t/L),  where  m  is  a  fixed  integer. 
Integrating from L to L,

(4.1.3)

The a
0
 and b

n
 terms vanish by direct integration. Finally all of the a

n
 integrals vanish 

when n m. Consequently, (4.1.3) simplifies to

(4.1.4)

because   Finally,  by  multiplying  both  sides  of  (4.1.1)  by
sin(m t/L)(m is again a fixed integer) and integrating from L to L,

(4.1.5)

2 We assume that the integration of the series can be carried out term by term. This is sometimes
difficult to justify but we do it anyway.

Although (4.1.2), (4.1.4), and (4.1.5) give us a
0
, a

n
, and b

n
 for periodic functions over the 

interval [ L, L], in certain situations it is convenient to use the interval [ , +2L], where 
is any real number. In that case, (4.1.1) still gives the Fourier series of f(t) and
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(4.1.6)

These results  follow when we recall  that  the  function f(t)  is  a  periodic  function that
extends  from  minus  infinity  to  plus  infinity.  The  results  must  remain  unchanged,
therefore, when we shift from the interval [ L, L] to the new interval [ , +2L].

We now ask the question: what types of functions have Fourier series? Secondly, if a

function is discontinuous at a point, what value will the Fourier series give? Dirichlet3,4

answered these questions in the first half of the nineteenth century. His results may be
summarized as follows.

Dirichlet’s Theorem: If for the interval [ L, L] the function f(t) (1) is single-valued, 
(2) is bounded, (3) has at most a finite number of maxima and minima, and (4) has only 
a finite number of discontinuities (piecewise continuous), and if (5) f(t+2L)=f(t) for 
values of t outside of [ L, L], then

(4.1.7)

converges  to  f(t]  as  N→  at  values  of  t  for  which  f(t)  is  continuous  and  to
 at points of discontinuity.

The quantities t+  and t  denote points infinitesimally to the right and left of t.  The
coefficients in (4.1.7) are given by (4.1.2), (4.1.4), and (4.1.5). A function f(t) is bounded
if  the  inequality  |f(t)| M holds  for  some constant  M  for  all  values  of  t.  Because  the
Dirichlet’s conditions (1)–(4) are very mild,

3 Dirichlet, P.G.L., 1829: Sur la convergence des séries trigonométriques qui servent à représenter
une fonction arbitraire entre des limites données. J. Reine Angew. Math., 4, 157–169.

4 Dirichlet, P.G.L., 1837: Sur l’usage des intégrales définies dans la sommation des séries finies ou
infinies. J. Reine Angew. Math., 17, 57–67.
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Figure  4.1.1:  A product  of  the  French  Revolution,  (Jean  Baptiste)  Joseph 
Fourier  (1768–1830)  held  positions  within  the  Napoleonic  Empire 
during  his  early  career.  After  Napoleon’s  fall  from power,  Fourier 
devoted  his  talents  exclusively  to  science.  Although  he  won  the 
Institut  de  France  prize  in  1811  for  his  work  on  heat  diffusion, 
criticism of its mathematical rigor and generality led him to publish 
the classic book Théorie analytique de la chaleur in 1823. Within this 
book  he  introduced  the  world  to  the  series  that  bears  his  name. 
(Portrait courtesy of the Archives de l’Académie des sciences, Paris.)

it is very rare that a convergent Fourier series does not exist for a function that appears in 
an engineering or scientific problem.

● Example 4.1.1

Let us find the Fourier series for the function

(4.1.8)

We compute the Fourier coefficients a
n
 and b

n
 using (4.1.6) by letting L=  and = . We

then find that
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(4.1.9)

(4.1.10)

(4.1.11)

Figure 4.1.2:  Second to Gauss,  Peter  Gustav Lejeune Dirichlet  (1805–1859) 
was  Germany’s  leading  mathematician  during  the  first  half  of  the 
nineteenth century. Initially drawn to number theory, his later studies 
in  analysis  and  applied  mathematics  led  him  to  consider  the 
convergence of Fourier series. These studies eventually produced the 
modern concept of a function as a correspondence that associates with 
each real x in an interval some unique value denoted by f(x). (Taken 
from the  frontispiece  of  Dirichlet,  P.G.L.,  1889:  Werke.  Druck und 
Verlag von Georg Reimer, 644 pp.)

because cos(n )=( 1)n, and
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(4.1.12)

(4.1.13)

for n=1, 2, 3,…. Thus, the Fourier series for f(t) is

(4.1.14)

(4.1.15)

Figure 4.1.3: Partial sum of the Fourier series for (4.1.8).

We note that at the points t=±(2n 1) , where n=1, 2, 3,…, the function jumps from zero 
to . To what value does the Fourier series converge at these points? From Dirichlet’s
theorem, the series converges to the average of the values of the function just to the right 
and left of the point of discontinuity, i.e., ( +0)/2 /2. At the remaining points the series
converges to f(t).
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Figure 4.1.3 shows how well (4.1.14) approximates the function by graphing various 
partial sums of (4.1.14) as we include more and more terms (harmonics). The MATLAB 
script that created this figure is:

clear; 
t = [-4:0.1:4]; % create time points in plot 

    if t(k) < 0; f(k) = 0; else f(k) = t(k); end;
    if t(k) < -pi; f(k) = t(k) + 2*pi; end;
    if t(k) > pi; f(k) = 0; end; 
end 
% initialize fourier series with the mean term 

fs = (pi/4) * ones(size(t)); 
clf % clear any figures 
for n = 1:6 
% create plot of truncated FS with only n harmonic
 fs = fs - (2/pi) * cos((2*n-1)*t)/(2*n-1)^2; 
fs = fs - (-1)^n * sin (n*t) / n; 
subplot(3, 2, n), plot(t, fs, t, f, ’--’) 
if n==1

    if n >= 5; xlabel(’t’); end;
 end

As the figure shows, successive corrections are made to the mean value of the series, /2. 
As each harmonic is added, the Fourier series fits the function better in the sense of least 
squares:

(4.1.16)

where f
N

(x) is the truncated Fourier series of N terms.

● Example 4.1.2

Let us calculate the Fourier series of the function f(t)=|t| which is defined over the range 
t .

From the definition of the Fourier coefficients,

(4.1.17)

    legend([’mean plus ’, num2str(n),’ terms’], ’f(t)’)

    legend(’mean plus 1 term’,’f(t)’); legend boxoff;
 else

construct function f(t)
f = zeros(size(t)); % initialize function f(t) 
for k = 1:length(t) %

    legend boxoff 
end
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(4.1.18)

(4.1.19)

(4.1.20)

and

(4.1.21)

(4.1.22)

Figure 4.1.4: Partial sum of the Fourier series for f(t)=|t|.

for n=1, 2, 3,…. Therefore,
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(4.1.23)

for t .
In Figure 4.1.4 we show how well (4.1.23) approximates the function by graphing 

various partial sums of (4.1.23). As the figure shows, the Fourier series does very well 
even when we use very few terms. The reason for this rapid convergence is the nature of 
the function: it does not possess any jump discontinuities.

● Example 4.1.3

Sometimes the function f(t)  is an even or odd function.5  Can we use this property to 
simplify our work? The answer is yes.

Let f(t) be an even function. Then

(4.1.24)

5 An even function f
e
(t) has the property that f

e
( t)=f

e
(t); an odd function f

o
(t) has the property that

f
o
( t)= f

o
(t)

and

(4.1.25)

whereas

(4.1.26)

Here we used the properties that  and  =0.
Thus, if we have an even function, we merely compute a

0
 and a

n
 via (4.1.24)–(4.1.25)

and b
n
=0. Because the corresponding series contains only cosine terms, it is often called a

Fourier cosine series.
Similarly, if f(t) is odd, then
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(4.1.27)

Thus, if we have an odd function, we merely compute b
n
 via (4.1.27) and a

0
=a

n
=0. Because 

the corresponding series contains only sine terms, it is often called a Fourier  sine series.

● Example 4.1.4

In the case when f(x) consists of a constant and/or trigonometric functions, it is much 
easier to find the corresponding Fourier series by inspection rather than by using (4.1.6). 
For example, let us find the Fourier series for f(x)=sin2(x) defined over the range x .

We  begin  by rewriting  Next,  we  note
that any function defined over the range < x <  has the Fourier series

(4.1.28)

(4.1.29)

On the other hand,

(4.1.30)

(4.1.31)

Consequently, by inspection, we can immediately write that

(4.1.32)

Thus, instead of the usual expansion involving an infinite number of sine and cosine 
terms, our Fourier series contains only two terms and is simply
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(4.1.33)

● Example 4.1.5: Quieting snow tires 

An application of Fourier series to a problem in industry occurred several years ago, 
when drivers found that snow tires produced a loud whine6 on dry pavement. Tire sounds 
are produced primarily by the dynamic interaction of the tread elements with the road 
surface.7 As each tread element passes through the contact patch, it contributes a pulse of 
acoustic energy to the total sound field radiated by the tire.

For evenly spaced treads we envision that the release of acoustic energy resembles the
top of Figure 4.1.5. If we perform a Fourier analysis of this distribution, we find that

(4.1.34)

where  is half of the width of the tread and

(4.1.35)

(4.1.36)

(4.1.37)

(4.1.38)

(4.1.39)

6 Information based on Varterasian, J.H., 1969: Math quiets rotating machines. SAE J., 77(10), 53.
7 Willett, P.R., 1975: Tire tread pattern sound generation. Tire Sci. Tech., 3, 252–266.
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Figure 4.1.5: Temporal spacing (over two periods) and frequency spectrum of 
uniformly spaced snow tire treads.

 In  the  bottom  frame  of  Figure  4.1.5,  MATLAB  was  used  to  plot  this  amplitude, 

usually   called   the   amplitude    or  frequency  spectrum  as  a  function

of n for an arbitrarily chosen  Although the value of  will affect the exact

shape of the spectrum, the qualitative arguments that we will present remain unchanged. 

We have added the factor  so that our definition of the frequency spectrum is consistent
with that for a complex Fourier series stated after (4.5.13). The amplitude spectrum in
Figure 4.1.5 shows that the spectrum for periodically placed tire treads has its largest
amplitude  at  small  n.  This  produces  one  loud  tone  plus  strong  harmonic  overtones
because the fundamental and its overtones are the dominant terms in the Fourier series
representation.

Because f(t) is an even function, b
n
=0.

The  question  now  arises  of  how  to  best   illustrate  our  Fourier  coefficients.  
In  §4.4  we  will  show  that  any  harmonic  can   be  represented  as  a  single  wave  
A

n 
  cos(n t/L+

n
)   or    A

n  
 sin(n t/L+

n
),    where    the    amplitude
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Clearly this loud, monotone whine is undesirable. How might we avoid it? Just as
soldiers mardhing in step produce a loud uniform sound, we suspect that our uniform
tread pattern is the problem. Therefore, let us now vary the interval between the treads so
that the distance between any tread and its nearest neighbor is not equal as illustrated in 
Figure 4.1.6. Again we perform its Fourier analysis and obtain that

Figure  4.1.6:  Temporal  spacing  and  frequency  spectrum  of  nonuniformly 
spaced snow tire treads.

(4.1.40)

(4.1.41)

(4.1.42)
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(4.1.43)

(4.1.44)

and

(4.1.45)

(4.1.46)

(4.1.47)

The MATLAB script

epsilon = pi/12; % set up parameter for fs coefficient 
n = 1:20; % number of harmonics 
arg1 = (pi/2)*n; arg2 = (pi/4)*n; arg3 = epsi1on*n; 
% compute the fourier coefficient a_n 

an = (2/pi) *an./n; 
% compute the fourier coefficient b_n 
bn = (sin(arg2) - sin(arg1)).*sin(arg3); 
bn = (2/pi) *bn. /n; 
% compute the magnitude 
cn = 0.5 *sqrt(an.*an + bn.*bn); 
% add in the a_0 term 
cn = [2*epsilon/pi,cn]; 
n = [0,n]; 

clf % clear any figures 

ylabel(’(a_n^2 + b_n^2)^{1/2}/2’) % label y-axis,

an = (cos(arg1) + cos(arg2)).*sin(arg3); 

axes(’FontSize’,20) % set font size 

stem(n,cn,’filled’) % plot spectrum 
set(gca,’PlotBoxAspectRatio’, [8 4 1]) % set aspect ratio 

xlabel(’n’) % label x-axis 
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was used to compute the amplitude of each harmonic as a function of n and the results 
were plotted. See Figure 4.1.6. The important point is that our new choice for the spacing 
of the treads has reduced or eliminated some of the harmonics compared to the case of 
equally spaced treads. On the negative side we have excited some of the harmonics that 
were previously absent. However, the net effect is advantageous because the treads produce  less 
noise  at  more  frequencies  rather  than  a  lot  of  noise  at  a  few  select frequencies.

If we were to extend this technique so that the treads occurred at completely random 
positions, then the treads would produce very little noise at many frequencies and the total noise 
would be comparable to that generated by other sources within the car. To find the distribution 
of treads with the whitest noise8 is a process of trial and error. Assuming a distribution, we 
can perform a Fourier analysis to obtain its frequency spectrum. If annoying peaks are present in 
the spectrum, we can then adjust the elements in the tread distribution that may contribute 
to the peak and analyze the revised distribution. You are finished when no peaks appear.

Problems

Find the Fourier series for the following functions. Using MATLAB, plot the Fourier 
spectrum. Then plot various partial sums and compare them against the exact function.

1. 

2. 

3. 

4. 

5. 

6. 

7.     f(t)=eat, L < t < L

8.     f(t)=t+t2, L < t < L

9. 

10. 

8 White noise is sound that is analogous to white light in that it is uniformly distributed throughout
the complete audible sound spectrum.
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13. 

14. 

15. 

16. 

4.2 PROPERTIES OF FOURIER SERIES

In the previous section we introduced the Fourier series and showed how to compute one given 
the function f(t).  In this section we examine some particular properties of these series.

In certain instances we only have the Fourier series representation of a function f(t). Can 
we find the derivative or the integral of f(t) merely by differentiating or integrating the 
Fourier series term by term? Is this permitted? Let us consider the case of differentiation first.

Consider a function f(t) of period 2L which has the derivative f (t). Let us assume that 
we can expand f (t) as a Fourier series. This implies that f (t) is continuous except for a 
finite number of discontinuities and f(t) is continuous over an interval that starts at t=
and ends at t= +2L. Then

(4.2.1)

where we denoted the Fourier coefficients of f (t) with a prime. Computing the Fourier 
coefficients,

(4.2.2)

if f( +2L)=f( ). Similarly, by integrating by parts,

11. 

12. 

Differentiation of a Fourier series
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(4.2.3)

(4.2.4)

(4.2.5)

and

(4.2.6)

(4.2.7)

(4.2.8)

Consequently, if we have a function f(t) whose derivative f (t) is continuous except for a 
finite number of discontinuities and f( )=f( +2L), then

(4.2.9)

That is, the derivative of f(t)  is given by a term-by-term differentiation of the Fourier 
series of f(t).

● Example 4.2.1

The Fourier series for the periodic function

(4.2.10)
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(4.2.11)

Because f(t) is continuous over the entire interval ( , ) and f( )= f( )=0, we can find 
f (t) by taking the derivative of (4.2.11) term by term:

(4.2.12)

This is the same Fourier series that we would obtain by computing the Fourier series for

(4.2.13)

Integration of a Fourier series

To determine whether we can find the integral of f(t) by term-by-term integration of its 
Fourier series, consider a form of the antiderivative of f(t):

(4.2.14)

Now

(4.2.15)

(4.2.16)

(4.2.17)

so that F(t) has a period of 2L. Consequently we may expand F(t) as the Fourier series

is
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(4.2.18)

For A
n
,

(4.2.19)

(4.2.20)

(4.2.21)

Similarly,

(4.2.22)

Therefore,

(4.2.23)

This is identical to a term-by-term integration of the Fourier series for f(t). Thus, we can 
always find the integral of f(t) by a term-by-term integration of its Fourier series.

● Example 4.2.2

The Fourier series for f(t)=t for < t <  is

(4.2.24)

To find the Fourier series for f(t)=t2, we integrate (4.2.24) term by term and find that
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(4.2.25)

But  Substituting  and  multiplying  by  2,   we obtain   the
final result that

(4.2.26)

Parseval’s equality

One of the fundamental  quantities in engineering  is  power.  The   power  content  of  
a  periodic signal f(t) of period 2L is     f2(t) dt/L  This  mathematical definition mir-
rors the power dissipation I2R that occurs in a resistor of resistance R where I is the root 
mean square (RMS) of the current. We would like to compute this power content as 
simply as possible given the coefficients of its Fourier series.

Assume that f(t) has the Fourier series

(4.2.27)

Then,

(4.2.28)

(4.2.29)

Equation  (4.2.29)  is  Parseval’s  equality.9  It  allows  us  to  sum  squares  of  Fourier 
coefficients (which we have already computed) rather than performing the integration

 f2(t) dt analytically or numerically.

9 Parseval, M.-A., 1805: Mémoire sur les séries et sur l’intégration complète d’une équation aux
différences partielles linéaires du second ordre, à coefficients constants. Mém-oires présentés a 
l’Institut  des sciences,  lettres  et  arts,  par divers  sa ans,  et  lus  dans ses  assemblées:  Sciences 
mathématiques et Physiques, 1, 638–648.
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● Example 4.2.3

The Fourier series for f(t)=t2 over the interval [ , ] is

(4.2.30)

Then, by Parseval’s equality,

(4.2.31)

(4.2.32)

(4.2.33)

In the actual application of Fourier series, we cannot sum an infinite number of terms but 

must be content with N terms. If we denote this partial sum of the Fourier series by S
N

(t), 

we have from the definition of the Fourier series:

(4.2.34)

Gibbs phenomena
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(4.2.35)

(4.2.36)

(4.2.37)

The quantity  is called a scanning function. Over the
range 0  x 2  it has a very large peak at x=t where the amplitude equals 2N+1. See
Figure 4.2.1. On  either  side  of  this  peak there  are oscillations which  decrease rapidly

Figure 4.2.1: The scanning function over 0 x 2  for N=5.

with distance from the peak. Consequently, as N→ , the scanning function becomes essentially a
long narrow slit corresponding to the area under the large peak at x=t. If we neglect for
the moment the small area under the minor ripples adjacent to this slit, then the integral
(4.2.37) essentially equals f(t) times the area of the slit divided by 2 . If 1/2  times the
area of the slit equals unity, then the value of S

N
(t) f(t) to a good approximation for large N.
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For relatively small values of N, the scanning function deviates considerably from its ideal
form, and the partial sum S

N
(t) only crudely approximates f(t). As the partial sum includes more 

terms and N becomes relatively large, the form of the scanning function improves and so 
does the agreement between S

N
(t) and f(t). The improvement in the scanning function is due to 

the large hump becoming taller and narrower. At the same  time, the adjacent ripples be-
come more numerous as well as narrower in the same proportion as the large hump does.

The reason why S
N

(t) and f(t) will never become identical, even in the limit of N→ , 
is the presence of the positive and negative side lobes near the large peak. Because

(4.2.38)

an integration of the scanning function over the interval 0 to 2  shows that the total area 
under the scanning function equals 2 . However, from Figure

Figure  4.2.2:  The  finite  Fourier  series  representation  S
N

(t)  for  the  function

(4.2.39) for the range 1 t 7 for N=27 and N=81.

4.2.1 the net area contributed by the ripples is numerically negative so that the area under 
the large peak must  exceed 2  if  the total  area equals  2 .  Although the exact  value 
depends upon N, it is important to note that this excess does not become zero as N→ .

Thus, the presence of these negative side lobes explains the departure of our scanning func-
tion from the idealized slit  of  area 2 .  To illustrate this  departure,  consider the function:
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(4.2.39)

Then,

(4.2.40)

(4.2.41)

(4.2.42)

The first integral in (4.2.42) gives the contribution to S
N

(t) from the jump discontinuity at 
t=0 while the second integral gives the contribution from t= . In Figure 4.2.2 we have 
plotted S

N
(t) when N=27 and N=81. Residual discrepancies remain even for very large values 

of N. Indeed, as N increases, this figure changes only in that the ripples in the  vicinity of 
the discontinuity of f(t) proportionally increase their rate of oscillation as a function of t 
while their relative magnitude remains the same. As N→  these ripples compress into a 
single vertical line at the point of discontinuity. True, these oscillations occupy smaller 
and smaller spaces but they still remain. Thus, we can never approximate a function in 
the vicinity of a discontinuity by a finite Fourier series without suffering from this over- 
and undershooting of the series. This peculiarity of Fourier series is called the Gibbs 
phenomena.10 Gibbs phenomena can only be eliminated by removing the discontinuity.11

Problems

Additional  Fourier  series  representations  can  be  generated  by  differentiating  or 
integrating known Fourier series. Work out the following two examples.

1. Given

 

 

10 Gibbs, J.W., 1898: Fourier’s series. Nature, 59, 200; Gibbs, J.W., 1899: Fourier’s series. Nature,
59,  606.  For  the  historical  development,  see  Hewitt,  E.,  and  R.E.Hewitt,  1979:  The  Gibbs-
Wilbraham phenomenon: An episode in Fourier analysis. Arch. Hist. Exact Sci., 21, 129–160.

11 For a particularly clever method for improving the convergence of a trigonometric series, see
Kantorovich, L.V., and V.I.Krylov, 1964: Approximate Methods of Higher Analysis. Interscience, 
pp. 77–88.
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by term-by-term integration. Could we go the other way, i.e., take the derivative of the
second equation to obtain the first? Explain.

2. Given

 

obtain

 

by term-by-term integration. Could we go the other way, i.e., take the derivative of the
second equation to obtain the first? Explain.

3. (a) Show that the Fourier series for the odd function:

 

is

 

(b) Use Parseval’s equality to show that

 

This  series  converges  very  rapidly  to  6/960  and  provides  a  convenient  method  for 

computing 6.

obtain
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4.3 HALF-RANGE EXPANSIONS

In certain applications, we will find that we need a Fourier series representation for a 
function f(x)  that applies over the interval (0,  L) rather than ( L, L).  Because we are 
completely free to define the function over the interval ( L, 0), it is simplest to have a 
series that consists only of sines or cosines. In this section we shall show how we can 
obtain these so-called half-range expansions.

Recall in Example 4.1.3 how we saw that if f(x) is an even function, then b
n
=0 for all n. Simi-

larly, if f(x) is an odd function, then a
0
=a

n
=0 for all n. We now use these results to find a Fourier 

half-range expansion by extending the function defined over the interval (0, L) as either an 
even or odd function into the interval ( L, 0). If we extend f(x) as an even function, we will get a 
half-range cosine series; if we extend f(x) as an odd function, we obtain a half-range sine series.

It is important to remember that half-range expansions are a special case of the general Fourier 
series. For any f(x) we can construct either a Fourier sine or cosine series over the interval 
( L, L). Both of these series will give the correct answer over the interval of (0, L). Which 
one we choose to use depends upon whether we wish to deal with a cosine or sine series.

● Example 4.3.1

Let us find the half-range sine expansion of

f(x)=1, 0< x< . (4.3.1)

We begin by defining the periodic odd function

(4.3.2)

with  Because  is odd, a
0
=a

n
=0 and

(4.3.3)

(4.3.4)

The Fourier half-range sine series expansion of f(x) is therefore
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(4.3.5)

Now, 
we have that b

n
=0,

(4.3.6)

and

(4.3.7)

Thus, the Fourier half-range cosine expansion equals the single term:

x <. (4.3.8)

This is perfectly reasonable. To form a half-range cosine expansion we extend f(x) as an 
even  function  into the interval  ( ,  0).  In  this  case,  we would obtain  for

< x < . Finally, we note that the Fourier series of a constant is simply that constant.
In practice it is impossible to sum (4.3.5) exactly and we actually sum only the first N 

terms. Figure 4.3.1 illustrates f(x) when the Fourier series (4.3.5) contains N terms. As 
seen from the figure, the truncated series tries to achieve the infinite slope at x=0, but in 
the attempt, it overshoots the discontinuity by a certain amount (in this particular case, by
17.9%).  This  is  another  example of  the  Gibbs phenomena.  Increasing the number  of 
terms does not remove this peculiarity; it merely shifts it nearer to the discontinuity.

● Example 4.3.2: Inertial supercharging of an engine

An important aspect of designing any gasoline engine involves the motion of the fuel, air, 
and exhaust gas mixture through the engine. Ordinarily an engineer would consider the motion 
as steady flow; but in the case of a four-stroke, single-cylinder gasoline engine, the closing 
of  the intake  valve interrupts the  steady flow of the gasoline-air mixture for nearly three 

As counterpoint, let us find the half-range cosine expansion of f(x)=1, 0 < x <. 

f(x)=1, 0 <
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Figure  4.3.1:  Partial  sum  of  N  terms  in  the  Fourier  half-range  sine 
representation of a square wave.

quarters of the engine cycle. This periodic interruption sets up standing waves in the intake
pipe—waves which can build up an appreciable pressure amplitude just outside the input value.

When one of the harmonics of the engine frequency equals one of the resonance 
frequencies of the intake pipe, then the pressure fluctuations at the valve will be large. If 
the intake valve closes during that portion of the cycle when the pressure is less than
average, then the waves will reduce the power output. However, if the intake valve closes
when the pressure is greater than atmospheric, then the waves will have a supercharging 
effect and will produce an increase of power. This effect is called inertia supercharging.

While studying this problem, Morse et a1.12 found it necessary to express the velocity 
of the air-gas mixture in the valve, given by in terms of a Fourier expansion. The advan-
tage of working with the Fourier series rather

(4.3.9)

12 Morse, P.M., R.H.Boden, and H.Schecter, 1938: Acoustic vibrations and internal combustion
engine performance. I. Standing waves in the intake pipe system. J. Appl. Phys., 9, 16–23.



228 Advanced Engineering Mathematics with MATLAB 

than  the  function  itself  lies  in  the  ability  to  write  the  velocity  as  a  periodic  forcing
function  that  highlights  the  various  harmonics  that  might  resonate  with  the  structure
comprising the fuel line.

Clearly f(t) is an even function and its Fourier representation will be a cosine series. In 
this problem = / , and L= / . Therefore,

(4.3.10)

and

(4.3.11)

(4.3.12)

(4.3.13)

(4.3.14)

Plotting these Fourier coefficients using the MATLAB script:

for m = 1:21; 
n = m-1; 
% compute the fourier coefficients a_n 
if n == 2; an(m) = pi/4; else; 
an(m) = 4.*cos(pi*n/4)/(4-n*n); end; 
end 
nn = 0:20; % create indices for x-axis 

clf % clear any figures 

hold on 
plot(nn,fzero,’-’) % plot the zero line 

s
ylabel(’a_n’) % label y-axis,

axes(’FontSize’,20) % set font size
 stem(nn,an,’filled’) % plot spectrum

 

fzero = zeros(size(nn)); % create the zero line 

set (gca,’PlotBoxAspectRatio’, [8 4 1]) % set aspect ratio 
xlabel(’n’) % label x-axi
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we see that these Fourier coefficients become small rapidly (see Figure 4.3.2). For that 
reason, Morse et al. showed that there are only about three resonances where the acoustic
properties of  the intake  pipe can  enhance engine  performance. These peaks occur when 

Figure  4.3.2:  The  spectral  coefficients  of  the  Fourier  cosine  series  of  the 
function (4.3.9).

q=30c/NL=3, 4, or 5, where c is the velocity of sound in the air-gas mixture, L is the

effective length of the intake pipe, and N is the engine speed in rpm. See Figure 4.3.3.

Subsequent experiments13 verified these results.
Such analyses are valuable to automotive engineers. Engineers are always seeking

ways to optimize a system with little or no additional cost. Our analysis shows that by
tuning the length of the intake pipe so that it falls on one of the resonance peaks, we
could obtain higher performance from the engine with little or no extra work. Of course,
the problem is that no car always performs at some optimal condition.

Figure  4.3.3:  Experimental  verification  of  inertial  supercharging  within  a 
gasoline engine resulting from the resonance of the air-gas mixture 
and the intake pipe system. The peaks correspond to the n=3, 4, and 5 
harmonics of the Fourier representation (4.3.14) and the parameter q is 
defined in the text. (From Morse, P., Boden, R.H., and Schecter, H., 
1938: Acoustic vibrations and internal combustion engine per-
formance. J. Appl. Phys., 9, 17 with permission.)

13 Boden, R.H., and H.Schecter, 1944: Dynamics of the inlet system of a four-stroke engine. NACA
Tech. Note 935.
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Problems

Find the Fourier cosine and sine series for the following functions. Then, use MATLAB
to plot the Fourier coefficients.

4.     f(t)=ekt

5. 

6. 

7.    f(t)= 2 t2

8. 

9. 

10. 

11. 

12. 

13. 

1.     f(t)=t, 0 < t <
2.     f(t)= t,  0 < t <
3.     f(t)=t( t), 0 < t <

, 0 < t <

, 0 < t <
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14. 

15. Using the relationships14 that

 

and

 

14  Gradshteyn, I.S.,  and I.M.Ryzhik, 1965: Table of Integrals,  Series, and Products.  Academic
Press, §3.753, Formula 2 and §3.771, Formula 8.

with  obtain the following half-range expansions:

 

and

 

Here J
v
( ) denotes the Bessel function of the first kind and order v (see §9.5) and ( ) is

the function.15

16. The function

 

is a curve fit  to the observed pressure trace of an explosion wave in the atmosphere. 
Because the observed transmission of atmospheric waves depends on the five-fourths 

power of the frequency, Reed16 had to re-express this curve fit as a Fourier sine series 
before he could use the transmission law. He found that

15 Gradshteyn and Ryzhik, op. cit., §6.41.
16 From Reed, J.W., 1977: Atmospheric attenuation of explosion waves. J. Acoust. Soc. Am., 61,

39–47 with permission.
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Confirm his result.

4.4 FOURIER SERIES WITH PHASE ANGLES

Sometimes it is desirable to rewrite a general Fourier series as a purely cosine or purely 
sine series with a phase angle. Engineers often speak of some quantity leading or lagging
another quantity. Re-expressing a Fourier series in terms of amplitude and phase provides 
a convenient method for determining these phase relationships.

Suppose, for example, that we have a function f(t) of period 2L, given in the interval
[ L, L], whose Fourier series expansion is

(4.4.1)

We wish to replace (4.4.1) by the series:

(4.4.2)

To do this we note that

(4.4.3)

(4.4.4)
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We equate coefficients of sin(n t/L) and cos(n t/L) on both sides and obtain

(4.4.5)

Hence, upon squaring and adding,

(4.4.6)

while taking the ratio gives

(4.4.7)

Similarly we could rewrite (4.4.1) as

(4.4.8)

where

(4.4.9)

and

(4.4.10)

In both cases, we must be careful in computing 
n
 because there are two possible values of 

n
 which satisfy (4.4.7) or (4.4.9). These angles 

n
 must give the correct a

n
 and b

n 
using 

either (4.4.5) or (4.4.10).

 Example 4.4.1

The Fourier series for f(t)=et over the interval L < t < L is
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(4.4.11)

Let us rewrite (4.4.11) as a Fourier series with a phase angle. Regardless of whether we 
want the new series to contain cos(n t/L+ 

n
) or sin(n t/L+ 

n
), the amplitude A

n
 or B

n
 is

the same in both series:

(4.4.12)

If we want our Fourier series to read

(4.4.13)

then

(4.4.14)

where 
n
 lies in the first quadrant if n is even and in the third quadrant if n is odd. This 

ensures that the sign from the ( 1)n is correct.
On the other hand, if we prefer

(4.4.15)

then

(4.4.16)

where 
n
 lies in the fourth quadrant if n is odd and in the second quadrant if n is even.
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1. 

2. 

3. 

4. 

4.5 COMPLEX FOURIER SERIES

So far in our discussion, we expressed Fourier series in terms of sines and cosines. We
are now ready to re-express a Fourier series as a series of complex exponentials. There
are two reasons for this. First, in certain engineering and scientific applications of Fourier 
series,  the  expansion  of  a  function  in  terms  of  complex  exponentials  results  in 
coefficients of considerable simplicity and clarity. Second, these complex Fourier series 
point the way to the development of the Fourier transform in the next chapter.

We begin by introducing the variable 
n
=n /L, where n=0, ±1, ±2,… Using Euler’s

formula we can replace the sine and cosine in the Fourier series by exponentials and find
that

(4.5.1)

(4.5.2)

If we define  then

(4.5.3)

(4.5.4)

Problems

Write the following Fourier series in both the cosine and sine phase angle form:
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(4.5.5)

To simplify (4.5.2) we note that

(4.5.6)

which yields the result that

(4.5.7)

so that we can write (4.5.2) as

(4.5.8)

Letting n= m in the second summation on the right side of (4.5.8),

(4.5.9)

where we introduced m=n into the last summation in (4.5.9). Therefore,

(4.5.10)

On the other hand,

(4.5.11)

because 
0
=0 /L=0. Thus, our final result is

Similarly, the complex conjugate of c
n
,  equals
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(4.5.12)

where

(4.5.13)

and  n=0,  ±1,  ±2,….  Note  that  even  though  c
n

 is  generally  complex,  the  summation

(4.5.12) always gives a real-valued function f(t).
Just as we can represent the function f(t) graphically by a plot of t against f(t), we can

plot  c
n

 as  a  function  of  n,  commonly  called  the  frequency  spectrum.  Because  c
n

 is

generally complex, it is necessary to make two plots. Typically the plotted quantities are
the amplitude spectra |c

n
| and the phase spectra 

n
, where 

n
 is the phase of c

n
. However,

we could just as well plot the real and imaginary parts of c
n
. Because n is an integer, these

plots consist merely of a series of vertical lines representing the ordinates of the quantity
|c

n
| or 

n
 for each n. For this reason we refer to these plots as the line spectra.

Because 2c
n
=a

n
ib

n
, the coefficients c

n
 for an even function will be purely real; the

coefficients c
n
 for an odd function are purely imaginary. It is important to note that we

lose the advantage of even and odd functions in the sense that we cannot just integrate
over the interval 0 to L and then double the result. In the present case we have a line
integral of a complex function along the real axis.

 Example 4.5.1

Let us find the complex Fourier series for

(4.5.14)

which has the periodicity f(t+2 )=f(t).
With L=  and = , 

n
=n /L=n. Therefore,

(4.5.15)



238 Advanced Engineering Mathematics with MATLAB 

(4.5.16)

(4.5.17)

if n 0. Because en i=cos(n )+i sin(n )=( 1)n and e n i=cos( n )+ i sin( n )=( 1)n, then

(4.5.18)

with

(4.5.19)

In  this  particular  problem  we  must  treat  the  case  n=0  specially  because  (4.5.16)  is 
undefined for n=0. In that case,

(4.5.20)

Because c
0
=0, we can write the expansion:

(4.5.21)

since  we  can  write  all  odd  integers  as  2m 1,  where  m=0,  ±1,  ±2,  ±3,….  Using  the 
MATLAB script

max = 31; % total number of harmonics 
mid = (max+1)/2; % in the array, location of c_0 
for m = 1:max; 
n = m - mid; % compute value of harmonic 

= 0; cni(m) = 0; else; 
cnr(m) = 0; cni(m) = - 2/(pi*n); end; 
end 

create the zero line

nn=(1-mid):(max-mid); % create indices for x-axis 

fzero=zeros(size(nn));
 

%

 

% compute complex Fourier coefficient c_n = (cnr, cni) 

if mod(n,2) == 0; cnr(m) 
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clf % clear any figures 
amplitude = sqrt (cnr.*cnr+cni.*cni); 
phase = atan2 (cni,cnr); 
% plot amplitude of c_n 
subplot (2,1,1), stem (nn,amplitude,’filled’) 
% label amplitude plot 
text(6,0.75,’amplitude’,’FontSize’,20) 
subplot(2,l,2), stem (nn,phase,’filled’)% plot phases of c_n 
text (7,1,’ phase’,’FontSize’,20) % label phase plot
 xlabel(’n’,’Fontsize’,20) % label x-axis,

we plot the amplitude and phase spectra for the function (4.5.14) as a function of n in 
Figure 4.5.1.

• Example 4.5.2

The concept of Fourier series can be generalized to multivariable functions. Consider the 
function f(x, y) defined over 0<x<L and 0<y<H. Taking y constant, we have that

(4.5.22)

Figure 4.5.1: Amplitude and phase spectra for the function (4.5.14).

Similarly, holding 
n
 constant,
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(4.5.23)

Therefore, the (complex) Fourier coefficient for the two-dimensional function f(x,y) is

(4.5.24)

assuming that the integral exists. 
To recover f(x,y) given c

nm
, we reverse the process of deriving c

nm
. Starting with

(4.5.25)

we find that

(4.5.26)

Therefore,

(4.5.27)

Problems

Find the complex Fourier series for the following functions. Then use MATLAB to plot 
the corresponding spectra.

1. f(t)=|t|, t

2. f(t)=et, 0<t<2
3. f(t)=t, 0<t<2

4. f(t)=t2, t

5. 

6. f(t)=t, 1<t<1
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An  important  application  of  Fourier  series  is  the  solution  of  ordinary  differential 

equations. Structural engineers especially use this technique because the occupants of buildings  

and  bridges  often  subject  these  structures  to  forcings  that  are  periodic  in nature.17

 Example 4.6.1

Let us find the general solution to the ordinary differential equation

y +9y=f(t),
(4.6.1)

where the forcing is

f(t)=|t|, t , f(t+2 )=f(t).
(4.6.2)

(4.6.3)

Next, we note that the general solution consists of the complementary solution, which 
equals

Hy (t)=A cos(3t)+B sin(3t),
(4.6.4)

and the particular solution y
p
(t) which satisfies the differential equation

17 Timoshenko, S.P., 1943: Theory of suspension bridges. Part II. J.Franklin Inst., 235, 327–349;
Inglis,  C.E.,  1934:  A  Mathematical  Treatise  on  Vibrations  in  Railway  Bridges.  Cambridge 
University Press, 203 pp.

4.6 THE USE OF FOURIER SERIES IN THE SOLUTION OF 

ORDINARY DIFFERENTIAL EQUATIONS

This  equation  represents  an  oscillator  forced  by  a  driver  whose  displacement  is  the 
saw-tooth function.

forcing function is periodic. The advantage of expressing f(t) as a Fourier series is its 
validity for any time t. The alternative would be to construct a solution over each interval 
n <t<(n+1)  and then piece together the final solution assuming that the solution and its 
first derivative is continuous at each junction t=n . Because the function is an even 
function, all of the sine terms vanish and the Fourier series is

We begin by replacing the function f(t) by its Fourier series representation because the 
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(4.6.5)

To determine this particular solution, we write (4.6.5) as

(4.6.6)

By the method of undetermined coefficients, we guess the particular solution:

(4.6.7)

or

(4.6.8)

Because

(4.6.9)

(4.6.10)

or



Fourier Series 243 

(4.6.11)

Because (4.6.11) must hold true for any time, each harmonic must vanish separately and

(4.6.12)

and  b
n
=0.  All  of  the  coefficients  a

n 
 are  finite  except  for  n=2,  where  a

2 
 becomes 

undefined.  This  coefficient  is  undefined  because  the  harmonic  cos(3t)  in  the  forcing 
function resonates with the natural mode of the system.

Let us review our analysis to date. We found that each harmonic in the forcing function 
yields a corresponding harmonic in the particular solution (4.6.8).  The only difficulty 
arises with the harmonic n=2. Although our particular solution is not correct because it 
contains cos(3t), we suspect that if we remove that term then the remaining harmonic 
solutions  are  correct.  The problem is  linear,  and difficulties  with  one harmonic  term 
should not affect other harmonics. But how shall we deal with the cos(3t) term in the 
forcing function? Let us denote that particular solution by Y(t) and modify our particular 
solution as follows:

(4.6.13)

Substituting  this  solution  into  the  differential  equation  and  simplifying,  everything 
cancels except

(4.6.14)

The solution of this equation by the method of undetermined coefficients is

(4.6.15)

This term, called a secular term,  is the most important one in the solution. While the 
other terms merely represent simple oscillatory motion, the term t sin(3t) grows linearly 
with time and eventually becomes the dominant term in the series.  Consequently, the
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general solution equals the complementary plus the particular solution or

(4.6.16)

 Example 4.6.2

Let us redo the previous problem only using complex Fourier series. That is, let us find 
the general solution to the ordinary differential equation

(4.6.17)

From  the  method  of  undetermined  coefficients  we  guess  the  particular  solution  for
(4.6.17) to be

(4.6.18)

(4.6.19)

Then

Substituting (4.6.18) and (4.6.19) into (4.6.17),

(4.6.20)

Because (4.6.20) must be true for any t,

(4.6.21)

Therefore,

(4.6.22)
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However, there is a problem when n= 1 and n=2. Therefore, we modify (4.6.22) to read

(4.6.23)

Substituting (4.6.23) into (4.6.17) and simplifying,

(4.6.24)

The general solution is then

(4.6.25)

The first two terms on the right side of (4.6.25) represent the complementary solution. 
Although (4.6.25) is equivalent to (4.6.16), we have all of the advantages of dealing with 
exponentials  rather  than  sines  and  cosines.  These  advantages  include  ease  of 
differentiation and integration, and writing the series in terms of amplitude and phase.

 Example 4.6.3: Temperature within a spinning satellite

In  the  design  of  artificial  satellites,  it  is  important  to  determine  the  temperature 
distribution on the spacecraft’s surface. An interesting special case is the temperature 
fluctuation in the skin due to the spinning of the vehicle. If the craft is thin-walled so that 
there  is  no  radial  dependence,  Hrycak18  showed  that  he  could  approximate  the 
nondimensional temperature field at the equator of the rotating satellite by

(4.6.26)

where

(4.6.27)

18 Hrycak, P., 1963: Temperature distribution in a spinning spherical space vehicle. AIAA J., 1,

96–99.



246 Advanced Engineering Mathematics with MATLAB 

(4.6.28)

a  is  the  thermal  diffusivity  of  the  shell,  f  is  the  rate  of  spin,  r  is  the  radius  of  the 
spacecraft, S is the net direct solar heating,  is the ratio of the emissivity of the interior 
shell to the emissivity of the exterior surface,  is the overall emissivity of the exterior 
surface,  is the satellite’s skin conductance, and  is the Stefan-Boltzmann constant. The 
independent  variable   is  the  longitude  along the  equator  with  the  effect  of  rotation 
subtracted out (2 = 2 ft). The reference temperature T  equals the temperature that 

the spacecraft would have if it spun with infinite angular speed so that the solar heating 
would be uniform around the craft. We nondimensionalized the temperature with respect 
to T .

We begin by introducing the new variables

(4.6.29)

and  so that (4.6.26) becomes

(4.6.30)

Next, we expand F( ) as a Fourier series because it is a periodic function of period 1. 
Because it is an even function,

(4.6.31)

where

(4.6.32)
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(4.6.33)

and

(4.6.34)

(4.6.35)

if n 2. Therefore,

(4.6.36)

From the method of undetermined coefficients, the particular solution is

(4.6.37)

which yields

(4.6.38)

and

(4.6.39)

Substituting into (4.6.30),
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(4.6.40)

To satisfy (4.6.40) for any , we set

(4.6.41)

(4.6.42)

(4.6.43)

(4.6.44)

and

(4.6.45)

or

(4.6.46)

(4.6.47)
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(4.6.48)

and

(4.6.49)

Figure 4.6.1: Temperature distribution along the equator of a spinning spherical 
satellite.  (From  Hrycak,  P.,  1963:  Temperature  distribution  in  a 
spinning  spherical  space  vehicle.  AIAA  J.,  1,  97.  ©1963  AIAA, 
reprinted with permission.)

Substituting for a
0
, a

1
, b

1
, a

2n
, and b

2n
, the particular solution is

(4.6.50)
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temperature as a function of  for the spinning rate v
0
. The other parameters are typical of

a satellite with aluminum skin and fully covered with glass-protected solar cells. As a
check on the solution, we show the temperature field (the dashed line) of a nonrotating 
satellite  where  we  neglect  the  effects  of  conduction  and  only  radiation  occurs.  The
difference  between the  v

0
=0 solid  solid  and  dashed lines  arises  primarily  due  to  the 

linearization of the nonlinear radiation boundary condition during the derivation of the 
governing equations.

Problems

Solve the following ordinary differential  equations by Fourier  series  if  the forcing is 
given by the periodic function

 

and f(t)=f(t+2 ):
1. y y=f(t),
2. y +y=f(t),
3. y 3y +2y=f(t).

Solve the following ordinary differential equations by complex  Fourier series if the 
forcing is given by the periodic function

f(t)=|t| t , 

and f(t)=f(t+2 ):
4. y y=f(t),
5. y +4y=f(t).
6. An object radiating into its nocturnal surrounding has a temperature y(t) governed by 

the equation19

 

where the constant  a  is  the  heat  loss  coefficient  and the Fourier  series  describes  the
temporal variation of the atmospheric air temperature and the effective sky temperature.
If y(0)=T

0
, find y(t).

7. The equation that governs the charge q on the capacitor of an LRC electrical circuit
is

q +2 q + 2q = 2E, 

Figure  4.6.1  is  from Hrycak’s  paper  and  shows  the  variation  of  the  nondimensional

19 Reprinted from Solar Energy, 28, M.S.Sodha, Transient radiative cooling, 541, ©1982, with the
kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, OX5 1GB, 
UK.
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find q(t).

4.7 FINITE FOURIER SERIES

In many applications we must construct a Fourier series from values given by data or a 
graph. Unlike the situation with analytic formulas where we have an infinite number of 
data  points  and,  consequently,  an  infinite  number  of  terms  in  the  Fourier  series,  the 
Fourier  series  contain  a  finite  number  of  sines  and  cosines  where  the  number  of 
coefficients equals the number of data points.

Assuming that these series are useful, the next question is how do we find the Fourier 
coefficients? We could compute them by numerically integrating (4.1.6). However, the 
results would suffer from the truncation errors that afflict all numerical schemes. On the 
other hand, we can avoid this problem if we again employ the orthogonality properties of 
sines and cosines, now in their discrete form. Just as in the case of conventional Fourier 
series,  we  can  use  these  properties  to  derive  formulas  for  computing  the  Fourier 
coefficients. These results will be exact except for roundoff errors.

We start by deriving some preliminary results. Let us define x
m

= mP/(2N). Then, if k is 

an integer,

(4.7.1)

(4.7.2)

because r2N=exp(2 ki)=1 if r 1. If r=1, then the sum consists of 2N terms, each of which 
equals one. The condition r=1 corresponds to k=0, ±2N,  ±4N,…. Taking the real and 
imaginary part of (4.7.2),

(4.7.3)

where =R/(2L), 2=1/(LC), R denotes resistance, C denotes capacitance, L denotes the 
inductance, and E is the electromotive force driving the circuit. If E is given by
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and

(4.7.4)

for all k.
Consider now the following sum:

(4.7.5)

(4.7.6)

Let us simplify the right side of (4.7.6) by restricting ourselves to k+j lying between 0 to 
2N.  This  is  permissible  because of  the periodic  nature of  (4.7.5).  If  k+j=0,  k=j=0;  if 
k+j=2N, k=j=N. In either case, k j=0 and the right side of (4.7.6) equals 2N. Consider 
now the case k j. Then k+j 0 or 2N and k j 0 or 2N. The right side of (4.7.6) must equal
0. Finally, if k=j 0 or N, then k+j 0 or 2N but k j=0 and the right side of (4.7.6) equals 
N. In summary,

(4.7.7)

In a similar manner,

(4.7.8)

for all k and j and

(4.7.9)

Armed with (4.7.7)–(4.7.9) we are ready to find the coefficients A
n
 and B

n
 of the finite 

Fourier series,
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(4.7.10)

where we have 2N data points and now define P as the period of the function.
To find A

k
 we proceed as before and multiply (4.7.10) by cos(2 jx/P) (j may take on 

values from 0 to N) and sum from 0 to 2N 1. At the point x=x
m

,

(4.7.11)

If j 0 or N, then the first summation on the right side vanishes by (4.7.3), the third by
(4.7.9),  and the fourth by (4.7.7).  The second summation does not  vanish if  k=j  and 
equals N. Similar considerations lead to the formulas for the calculation of A

k
 and B

k
:

(4.7.12)

and

(4.7.13)

If there are 2N+1 data points and f(x
0
)=f(x

2N
), then (4.7.12)–(4.7.13) is still valid and we 

need only consider the first 2N points. If f(x
0
) f(x

2N
), we can still use our formulas if we 

require that the endpoints have the value of [f(x
0
)+f(x

2N
)]/2. In this case the formulas for 

the coefficients A
k
 and B

k
 are

(4.7.14)
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where k=0, 1, 2,…, N, and

(4.7.15)

where k=1, 2,…, N 1.
It is important to note that 2N  data points yield 2N  Fourier coefficients A

k
 and B

k
.

Consequently  our  sampling  frequency  will  always  limit  the  amount  of  information,
whether in the form of data points or Fourier coefficients. It might be argued that from
the Fourier series representation of f(t) we could find the value of f(t) for any given t,
which is more than we can do with the data alone. This is not true. Although we can
calculate f(t) at any t using the finite Fourier series, the values may or may not be correct
since the constraint on the finite Fourier series is that the series must fit the data in a least
squared sense. Despite the limitations imposed by only having a finite number of Fourier
coefficients, the Fourier analysis of finite data sets yields valuable physical insights into
the processes governing many physical systems.

 Example 4.7.1: Water depth at Buffalo, NY

Each entry20 in Table 4.7.1 gives the observed depth of water at Buffalo, NY (minus the 

low-water datum of 568.6ft) on the 15th of the corresponding

Table 4.7.1: The Depth of Water in the Harbor at Buffalo, NY (Minus the Low-Water 

Datum of 568.8ft) on the 15th Day of Each Month During 1977

mo n depth mo n depth mo n depth

Jan 1 1.61 May 5 3.16 Sep 9 2.42

Feb 2 1.57 Jun 6 2.95 Oct 10 2.95

Mar 3 2.01 Jul 7 3.10 Nov 11 2.74

Apr 4 2.68 Aug 8 2.90 Dec 12 2.63

month during 1977. Assuming that the water level is a periodic function of 1 year, and
that we took the observations at equal intervals, let us construct a finite Fourier series
from these data. This corresponds to computing the Fourier coefficients A

0
, A

1
,…, A

6
,

B
1
,…, B

5
, which give the mean level and harmonic fluctuations of the depth of water, the

harmonics having the periods 12 months, 6 months, 4 months, and so forth.

20  National  Ocean Survey,  1977: Great Lakes Water Level,  1977,  Daily and Monthly Average
Water Surface Elevations. National Oceanic and Atmospheric Administration.
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In  this  problem,  P  equals  12  months,  N=P/2=6mo  and  x
m

=  mP/(2N)=m(12mo) 

/12mo=m.  That  is,  there  should  be  a  data  point  for  each  month.  From (4.7.12)  and
(4.7.13),

(4.7.16)

and

(4.7.17)

Substituting the data into (4.7.16)–(4.7.17) yields
A

0
=twice the mean level =+5.120ft

A
1
=harmonic component with a period of 12mo= 0.566ft 

B
1
=harmonic component with a period of 12mo= 0.128ft 

A
2
=harmonic component with a period of 6mo= 0.177ft 

B
2
=harmonic component with a period of 6mo= 0.372ft 

A
3
=harmonic component with a period of 4mo= 0.110ft 

B
3
=harmonic component with a period of 4mo= 0.123ft 

A
4
=harmonic component with a period of 3mo= 0.025ft 

B
4
=harmonic component with a period of 3mo=+0.052ft 

A
5
=harmonic component with a period of 2.4mo= 0.079ft 

B
5
=harmonic component with a period of 2.4mo= 0.131ft 

A
6
=harmonic component with a period of 2mo= 0.107ft 

Figure 4.7.1 is a plot of our results using (4.7.10). Note that when we include all of the 
harmonic terms, the finite Fourier series fits the data points exactly. The values given by 
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Figure 4.7.1: Partial sums of the finite Fourier series for the depth of water in 

the harbor of Buffalo, NY during 1977. Circles indicate observations 

on the 15th of the month; crosses are observations on the first.

the series at points between the data points may be right or they may not. To illustrate
this, we also plotted the values for the first of each month.
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Sometimes the values given by the Fourier series and these intermediate data points are 
quite different.

Let us now examine our results in terms of various physical processes. In the long run the 

depth of water in the harbor at Buffalo, NY depends upon the three-way balance between

precipitation, evaporation, and inflow-outflow of any rivers. Because the inflow and outflow of

the rivers depends strongly upon precipitation, and evaporation is of secondary importance, the

water level should correlate with the precipitation rate. It is well known that more precipi-

tation falls during the warmer months rather than the colder months. The large amplitude 

of the Fourier coefficient A
1
 and B

1
, corresponding to the annual cycle (k=1), reflects this.

Another important term in the harmonic analysis corresponds to the semiannual cycle (k=2). 
During  the  winter  months  around  Lake  Ontario,  precipitation  falls  as  snow. Therefore, the 
inflow from rivers is greatly reduced. When spring comes, the snow and ice melt and a jump in
the water level occurs. Because the second harmonic gives periodic  variations  associated 
with  seasonal  variations,  this  harmonic  is  absolutely necessary if we want to get the
correct answer while the higher harmonics do not represent any specific physical process.

 Example 4.7.2: Numerical computation of Fourier coefficients

At  the  begining  of  this  chapter,  we  showed  how  you  could  compute  the  Fourier

coefficients a
0
, a

n
, and b

n
 from (4.1.6) given a function f(t). All of this assumed that you

could carry out the integrations. What do you do if you cannot perform the integrations? 
The obvious solution is perform it numerically. In this section we showed that the best approx-
imation to (4.1.6) is given by (4.7.12)–(4.7.13). In the case when we have f(t) this is still true but 
we may choose N as large as necessary to obtain the desired number of Fourier coefficients.

To illustrate this we have redone Example 4.1.1 and ploted the exact (analytic) and numeri-
cally computed Fourier coefficients in Figure 4.7.2. This figure was created using the MATLAB 
script
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Figure 4.7.2: The computation of Fourier coefficients using a finite Fourier series 

when f(t) is given by (4.1.8). The circles give a
n
 and b

n
 as computed from (4.1.9), 

(4.1.11), and (4.1.13). The crosses give the  corresponding Fourier coefficients given 

by the finite Fourier series with N=15.
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It shows that a relative few data points can yield quite reasonable answers.
Let us examine this script a little closer. One of the first things that you will note is that 

there is no explicit reference to (4.7.12)–(4.7.13). How did we get the correct answer?

Although we could have coded (4.7.12)–(4.7.13), no one does that any more. In the 

1960s, J.W.Cooley and J.W.Tukey21 devised an incredibly clever method of performing
(4.7.12)–(4.7.13). This method, commonly called a fast Fourier transform or FFT, is so 
popular that all computational packages contain it as an intrinsic function and MATLAB 
is no exception, calling it fft. This is what has been used here.

Although we now have a fft to compute the coefficients, this routine does not directly 
give the coefficients a

n
 and b

n
 but rather some mysterious (complex) number that is 

related to a
n
+ib

n
. This is a common problem in using a package’s FFT rather than your 

own and why the script divides by N and we keep changing the sign. The best method for 

discovering how to extract the coefficients a
n
 and b

n
 is to test it with a dataset created by 

a simple, finite series such as

f(x)=20+cos(t)+3sin(t)+6cos(2t) 20sin(2t) 10cos(3t) 30sin(3t).
(4.7.18)

If the code is correct, it must give back the coefficient in (4.7.18) to within round-off. 
Otherwise, something is wrong.

Finally, most FFTs assume that the dataset will start repeating after the final data point. 
Therefore, when reading in the dataset, the point corresponding to x=L must be excluded.

 Example 4.7.3: Aliasing

In the previous example, we could only resolve phenomena with a period of 2 months or 
greater although we had data for each of the 12 months. This is an example of Nyquist’s 
sampling criteria22: At least two samples are required to resolve the highest frequency in 
a periodically sampled record.
Figure 4.7.3 will help explain this phenomenon. In case (a) we have quite a few data 
points over one cycle. Consequently our picture, constructed from data, is fairly good. 

21 Cooley, J.W., and J.W.Tukey, 1965: An algorithm for machine calculation of complex Fourier
series. Math. Comput., 19, 297–301.

22 Nyquist, H., 1928: Certain topics in telegraph transmission theory. AIEE Trans., 47, 617–644.
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In case (b), we took only samples at the ridges and troughs of the wave. Although our 
picture of the real phenomenon is poor, at least we know that there is a  wave.  From  this 
picture  we  see  that  even  if  we  are  lucky  enough  to  take  our observations at the 
ridges and troughs of a wave, we need at least two data points per cycle (one for the 
ridge, the other for the trough) to resolve the highest-frequency wave.

In case (c) we have made a big mistake. We have taken a wave of frequency N Hz and
misrepresented  it  as  a  wave  of  frequency  N/2Hz.  This  misrepresentation  of  a high-
frequency wave by a lower-frequency wave is called aliasing. It arises because we are sampling 
a continuous signal at equal intervals. By comparing cases (b) and (c), we see that there is a cut-
off between aliased and nonaliased frequencies. This frequency is called the Nyquist or folding
frequency. It corresponds to the highest frequency resolved by our finite Fourier analysis.

Because most periodic functions require an infinite number of harmonics for their 
representation, aliasing of signals is a common problem. Thus the question is not “can I
avoid aliasing?” but “can I live with it?” Quite often, we can construct our experiments to
say yes. An example where aliasing is unavoidable occurs in a Western at the movies 
when we see the rapidly rotating spokes of the stagecoach’s wheel. A movie is
a sampling of  continuous  motion  where  we  present  the  data  as  a  succession 
of  pictures. Consequently, a film aliases the high rate of revolution of the stage-
coach’s wheel in such a manner so that it appears to be stationary or rotating very slowly.

Figure 4.7.3: The effect of sampling in the representation of periodic functions.
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Figure 4.7.4: The sea elevation at the mouth of the Chesapeake Bay from its 
average depth as a function of time after 1 July 1985.

 Example 4.7.4: Spectrum of the Chesapeake Bay

For our final example, we perform a Fourier analysis of hourly sea-level measurements
taken at the mouth of the Chesapeake Bay during the 2000 days from 9 April 1985 to 29
June 1990. Figure 4.7.4 shows 200 days of this record, starting from 1 July 1985. As this
figure shows, the measurements contain a wide range of oscillations. In particular, note
the large peak near day 90 which corresponds to the passage of hurricane Gloria during 
the early hours of 27 September 1985.

Utilizing the entire 2000 days, we plotted the amplitude of the Fourier coefficients as a 
function of period in Figure 4.7.5. We see a general rise of the amplitude as the period
increases. Especially noteworthy are the sharp peaks near periods of 12 and 24 hours. The
largest peak is at 12.417 hours and corresponds to the semidiurnal tide. Thus, our Fourier 
analysis shows that the dominant oscillations at the mouth of the Chesapeake Bay are the 
tides. A similar situation occurs in Baltimore harbor. Furthermore, with this spectral
information we could predict high and low tides very accurately.

Although the tides are of great interest to some, they are a nuisance to others because
they mask other physical processes that might be occurring. For that reason we would like
to remove them from the tidal gauge history and see what is left. One way would be to 
zero out the Fourier coefficients corresponding to the tidal components and then plot the
resulting Fourier series. Another method is to replace each hourly report with an average 
of hourly reports that occurred 24 hours ahead and behind of a particular report. We con-
struct this average in such a manner that waves with periods of the tides sum to zero.23

23 See Godin, G., 1972: The Analysis of Tides. University of Toronto Press, §2.1.
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Figure 4.7.5: The amplitude of the Fourier coefficients for the sea elevation at
the  Chesapeake  Bay  bridge  and  tunnel  (top)  and  Baltimore  harbor
(bottom) as a function of period.

Such a filter is a popular method for eliminating unwanted waves from a record. Filters
play an important role in the analysis of data. We plotted the filtered sea level data in
Figure 4.7.6. Note that summertime (0–50 days) produces little variation in the sea level
compared to wintertime (100–150 days) when intense coastal stor ms occur.
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Figure 4.7.6: Same as Figure 4.7.4 but with the tides removed.

Problems

Find the finite Fourier series for the following pieces of data:

1. f(0)=0, f(1)=1, f(2)=2, f(3)=3, and N=2.
2. f(0)=1, f(1)=1, f(2)= 1, f(3)= 1, and N=2.

Project: Spectrum of the Earth’s Orography

Table 4.7.2 gives the orographic height of the earth’s surface used in an atmospheric
general circulation model (GCM) at a resolution of 2.5° longitude along the latitude belts
of 28°S, 36°N, and 66°N. In this project you will find the spectrum of this orographic
field along the various latitude belts.

Step 1: Write a MATLAB script that reads in the data and find A
n
 and B

n
 and then

construct the amplitude spectra for this data.
Step 2: Construct several spectra by using every data point, every other data point, etc.

How do the magnitudes of the Fourier coefficient change? You might like to read about

leakage from a book on harmonic analysis.24

24  For example,  Bloomfield,  P.,  1976: Fourier Analysis  of  Time Series:  An Introduction.  John
Wiley &: Sons, 258 pp.
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Figure 4.7.7: The orography of the earth and its spectrum in meters along three lat-
itude belts using a topography dataset with a resolution of 1.25° longitude.

Step 3:  Compare and contrast the spectra from the various latitude belts. How do the
magnitudes of the Fourier coefficients decrease with n? Why are there these differences?

Step 4: You may have noted that some of the heights are negative, even in the middle
of the ocean! Take the original data (for any latitude belt) and zero out all of the negative
heights. Find the spectra for this new data set. How have the spectra changed? Is there a
reason why the negative heights were introduced?
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Longitude 28°S 36°N 66°N Longitude 28°S 36°N 66°N

180.0 4. 3. 2532. 82.5 36. 4047. 737.

177.5 1. 2. 1665. 80.0 64. 3938. 185.

175.0 1. 2. 1432. 77.5 138. 1669. 71.

172.5 1. 3. 1213. 75.0 363. 236. 160.

170.0 1. 1. 501. 72.5 4692. 31. 823.

167.5 1. 3. 367. 70.0 19317. 8. 1830.

165.0 1. 1. 963. 67.5 21681. 0. 3000.

162.5 0. 0. 1814. 65.0 9222. 2. 3668.

160.0 1. 6. 2562. 62.5 1949. 2. 2147.

157.5 0. 1. 3150. 60.0 774. 0. 391.

155.0 0. 3. 4008. 57.5 955. 5. 77.

152.5 1. 2. 4980. 55.0 2268. 6. 601.

150.0 1. 4. 6011. 52.5 4636. 1. 3266.

147.5 6. 1. 6273. 50.0 4621. 2. 9128.

145.0 14. 3. 5928. 47.5 1300. 4. 17808.

142.5 6. 1. 6509. 45.0 91. 1. 22960.

140.0 2. 6. 7865. 42.5 57. 1. 20559.

137.5 0. 3. 7752. 40.0 25. 4. 14296.

135.0 2. 5. 6817. 37.5 13. 1. 9783.

132.5 1. 2. 6272. 35.0 10. 6. 5969.

130.0 2. 0. 5582. 32.5 8. 2. 1972.

127.5 0. 5. 4412. 30.0 4. 22. 640.

125.0 2. 423. 3206. 27.5 6. 33. 379.

122.5 1. 3688. 2653. 25.0 2. 39. 286.

120.0 3. 10919. 2702. 22.5 3. 2. 981.

117.5 2. 16148. 3062. 20.0 3. 11. 1971.

115.0 3. 17624. 3344. 17.5 1. 6. 2576.

112.5 7. 18132. 3444. 15.0 1. 19. 1692.

110.0 12. 19511. 3262. 12.5 0. 18. 357.

107.5 9. 22619. 3001. 10.0 1. 490. 21.

105.0 5. 20273. 2931. 7.5 0. 2164. 5.

102.5 3. 12914. 2633. 5.0 1. 4728. 10.

100.0 5. 7434. 1933. 2.5 0. 5347. 0.

Table 4.7.2: Orographic Heights (in m) Times the Gravitational Acceleration Constant 
(g=9.81m/s2) Along Three Latitude Belts
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92.5 8. 2404. 2318. 5.0 7. 1612. 31.

90.0 12. 1721. 2285. 7.5 13. 1744. 58.

87.5 18. 1681. 1561. 10.0 28. 1153. 381.

85.0 23. 2666. 1199. 12.5 107. 838. 2472.

15.0 2208. 1313. 5263. 97.5 0. 35538. 6222.

17.5 6566. 862. 5646. 100.0 2. 31985. 5523.

20.0 9091. 1509. 3672. 102.5 0. 23246. 4823.

22.5 10690. 2483. 1628. 105.0 4. 17363. 4689.

25.0 12715. 1697. 889. 107.5 2. 14315. 4698.

27.5 14583. 3377. 1366. 110.0 17. 12639. 4674.

30.0 11351. 7682. 1857. 112.5 302. 10543. 4435.

32.5 3370. 9663. 1534. 115.0 1874. 4967. 3646.

35.0 15. 10197. 993. 117.5 4005. 1119. 2655.

37.5 49. 10792. 863. 120.0 4989. 696. 2065.

40.0 31. 11322. 756. 122.5 4887. 475. 1583.

42.5 20. 13321. 620. 125.0 4445. 1631. 3072.

45.0 17. 15414. 626. 127.5 4362. 2933. 7290.

47.5 19. 12873. 836. 130.0 4368. 1329. 8541.

50.0 18. 6114. 1029. 132.5 3485. 88. 7078.

52.5 6. 2962. 946. 135.0 1921. 598. 7322.

55.0 2. 4913. 828. 137.5 670. 1983. 9445.

57.5 3. 6600. 1247. 140.0 666. 2511. 10692.

60.0 3. 4885. 2091. 142.5 1275. 866. 9280.

62.5 2. 3380. 2276. 145.0 1865. 13. 8372.

65.0 1. 5842. 1870. 147.5 2452. 11. 6624.

67.5 2. 12106. 1215. 150.0 3160. 4. 3617.

70.0 0. 23032. 680. 152.5 2676. 1. 2717.

72.5 2. 35376. 531. 155.0 697. 0. 3474.

75.0 1. 36415. 539. 157.5 67. 3. 4337.

77.5 1. 26544. 579. 160.0 25. 3. 4824.

80.0 0. 19363. 554. 162.5 12. 1. 5525.

82.5 1. 17915. 632. 165.0 10. 4. 6323.

85.0 2. 22260. 791. 167.5 5. 2. 5899.

87.5 1. 30442. 1455. 170.0 0. 1. 4330.

97.5 6. 4311. 1473. 0.0 4. 2667. 6.

95.0 8. 2933. 1689. 2.5 5. 1213. 1.
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90.0 3. 33601. 3194. 172.5 0. 4. 3338.

92.5 1. 30873. 4878. 175.0 4. 3. 3408.

95.0 0. 31865. 5903. 177.5 3. 1. 3407.



Chapter 5

The Fourier Transform

In the previous chapter we showed how we could expand a periodic function in terms of
an infinite sum of sines and cosines. However, most functions encountered in engineering
are aperiodic. As we shall see, the extension of Fourier series to these functions leads to
the Fourier transform.

5.1 FOURIER TRANSFORMS

The Fourier  transform is  the  natural  extension of  Fourier  series  to  a  function  f(t)  of
infinite period. To show this, consider a periodic function f(t) of period 2T that satisfies

the so-called Dirichlet’s conditions.1 If the integral  exists, this function has the
complex Fourier series

(5.1.1)

where

(5.1.2)

Equation  (5.1.1)  applies  only  if  f(t)  is  continuous  at  t;  if  f(t)  suffers  from  a  jump

discontinuity  at  t,  then  the  left  side  of  (5.1.1)  equals   where

f(t+)=lim
x→t+

 f(x) and f(t )=lim
x→t

 f(x). Substituting (5.1.2) into (5.1.1),

(5.1.3)

Let us now introduce the notation 
n
=n /T so that 

n
=

n+1 n
= /T. Then,

1 A function f(t) satisfies Dirichlet’s conditions in the interval (a, b) if (1) it is bounded in (a, b),
and (2) it has at most a finite number of discontinuities and a finite number of maxima and minima 
in that interval.
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(5.1.4)

where

(5.1.5)

As T→ ,  
n
 approaches a continuous variable ,  and 

n
 may be interpreted as the 

infinitesimal d . Therefore, ignoring any possible difficulties,2

(5.1.6)

and

(5.1.7)

Equation (5.1.7)  is  the  Fourier  transform  of  f(t)  while  (5.1.6)  is  the  inverse  Fourier 
transform which converts a Fourier transform back to f(t). Alternatively, we may combine
(5.1.6)–(5.1.7) to yield the equivalent real form

(5.1.8)

Hamming3 suggested the following analog in understanding the Fourier transform. Let us 
imagine that f(t) is a light beam. Then the Fourier transform, like a glass prism, breaks up 
the  function  into  its  component  frequencies   each  of  intensity  F( ).  In  optics,  the 
various frequencies are called colors; by analogy the Fourier transform gives us the color

2  For a rigorous derivation, see Titchmarsh, E.C., 1948: Introduction to the Theory of Fourier
Integrals. Oxford University Press, Chapter 1.

3 Hamming, R.W., 1977: Digital Filters. Prentice-Hall, p. 136.
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spectrum  of  a  function.  On  the  other  hand,  the  inverse  Fourier  transform  blends  a
function’s spectrum to give back the original function.

Most  signals  encountered  in  practice  have  Fourier  transforms  because  they  are
absolutely integrable since they are bounded and of finite duration. However, there are
some notable exceptions. Examples include the trigonometric functions sine and cosine.

 Example 5.1.1

Let us find the Fourier transform for

(5.1.9)

From the definition of the Fourier transform,

(5.1.10)

(5.1.11)

where sinc(x)=sin(x)/x is the sinc function.
Although this particular example does not show it, the Fourier transform is, in general,

a complex function. The most common method of displaying it is to plot its amplitude
and phase on two separate graphs for all values of . Another problem here is ratio of 0/0
when  =0.  Applying  L’HôpitaPs  rule,  we  find  that  F(0)=2.  Thus,  we  can  plot  the
amplitude and phase of F( ) using the MATLAB script:
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Figure 5.1.1: Graph of the Fourier transform for (5.1.9). 

 

Figure 5.1.1 shows the output from the MATLAB script. Of these two quantities, the am-
plitude is by far the more popular one and is given the special name of frequency spectrum

From the definition of the inverse Fourier transform,

(5.1.12)

An

 

important

 

question

 

is

 

what

 

value

 

does

 

f(t)

 

converge

 

to

 

in

 

the

 

limit

 

as

 

t→a

 

and

 

t→ ?
Because

 

Fourier

 

transforms

 

are

 

an

 

extension

 

of

 

Fourier

 

series,

 

the

 

behavior

 

at

 

a

 

jump

 

is

the

 

same

 

as

 

that

 

for

 

a

 

Fourier

 

series.

 

For

 

that

 

reason,

 

and
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Figure 5.1.2: Graph of the function given in (5.1.15) for =300.

 Example 5.1.2: Dirac delta function

Of the many functions that have a Fourier transform, a particularly important one is the
(Dirac) delta function.4 For example, in §5.6 we will use it to solve differential equations. 
We define it as the inverse of the Fourier transform F( )=1. Therefore,

(5.1.13)

To give some insight into the nature of the delta function, consider another band-limited 
transform

(5.1.14)

where  is real and positive. Then,

(5.1.15)

Figure  5.1.2  illustrates  f (t)  for  a  large  value  of  .  We observe  that  as  → ,  f (t) 

becomes very large near t=0 as well as very narrow. On the other hand, f (t)  rapidly 

approaches zero as |t| increases. Therefore, the delta function is given by the limit

(5.1.16)

4 Dirac, P.A.M., 1947: The Principles of Quantum Mechanics. Oxford University Press, §15.
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or

(5.1.17)

Table 5.1.1: The Fourier Transforms of Some Commonly Encountered Functions

 f(t), |t|< F( )

1. e atH(t), a>0

2. eatH( t) a>0

3. te atH(t), a>0

4. teatH( t), a>0

5. tne atH(t), Re(a)>0, n=1, 2,…

6. e a|t|, a>0

7. te a|t|, a>0

8.

9.

10.

11.

12.

13.

Note: The Heaviside step function H(t) is defined by (5.1.31).
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Because the Fourier transform of the delta function equals one,

(5.1.18)

Since (5.1.18) must hold for any , we take =0 and find that

(5.1.19)

Thus, the area under the delta function equals unity. Taking (5.1.17) into account, we can 
also write (5.1.19) as

(5.1.20)

Finally, from the law of the mean of integrals, we have the sifting property that

(5.1.21)

if a<t
0
<b. This property is given its name because (t t

0
) acts as a sieve, selecting from 

all possible values of f(t) its value at t=t
0
.

We can  also  use  several  other  functions  with  equal  validity  to  represent  the  delta 
function.  These  include  the  limiting  case  of  the  following  rectangular  or  triangular 
distributions:

(5.1.22)

or

(5.1.23)
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and the Gaussian function:

(5.1.24)

Note that the delta function is an even function.

 Example 5.1.3: Multiple Fourier transforms

The concept of Fourier transforms can be extended to multivariable functions. Consider a 
two-dimensional function f(x, y). Then, holding y constant,

(5.1.25)

Then, holding  constant,

(5.1.26)

Therefore, the double Fourier transform of f(x, y) is

(5.1.27)

assuming that the integral exists.
In a similar manner, we can compute f(x, y) given F( , ) by reversing the process. 

Starting with

(5.1.28)

followed by

(5.1.29)
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(5.1.30)

 Example 5.1.4: Computation of Fourier transforms using MATLAB

The Heaviside (unit) step function is a piecewise continuous function defined by

(5.1.31)

where a 0. We will have much to say about this very useful function in the chapter on 
Laplace  transforms.  Presently  we  will  use  it  to  express  functions  whose  definition 
changes over different ranges of t.  For example, the “top hat” function (5.1.9) can be 
rewritten  f(t)=H(t+a) H(t a).  We  can  see  that  this  is  correct  by  considering  various 
ranges of t. For example, if t< a, both step functions equal zero and f(t)=0. On the other 
hand, if t>a, both step functions equal one and again f(t)=0. Finally, for a<t<a, the first 
step function equals one while the second one equals zero. In this case, f(t)=1. Therefore, 
f(t)=H(t+a) H(t a) is equivalent to (5.1.9).

This ability to rewrite functions in terms of the step function is crucial if you want to 
use  MATLAB  to  compute  Fourier  transform  via  the  MATLAB  routine  fourier.  For 
example, how would we compute the Fourier transform of the signum function? The 
MATLAB commands

Problems

1. (a) Show that the Fourier transform of

f(t)=e |t|, a>0, 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Use MATLAB’s fourier to find F( ).

we find that
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2. (a) Show that the Fourier transform of

f(t)=te a|t|, a>0, 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Use MATLAB’s fourier to find F( ).
3. (a) Show that the Fourier transform of

 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Use MATLAB’s fourier to find F( ).
4. (a) Show that the Fourier transform of

 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Rewrite f(t) in terms of step functions. Then use MATLAB’s fourier to find F( ).
5. (a) Show that the Fourier transform of

 

is
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Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Rewrite f(t) in terms of step functions. Then use MATLAB’s fourier to find F( ).
6. (a) Show that the Fourier transform of

 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Rewrite f(t) in terms of step functions. Then use MATLAB’s fourier to find F( ).
7. (a) Show that the Fourier transform of

 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Rewrite f(t) in terms of step functions. Then use MATLAB’s fourier to find F( ).
8. (a) Show that the Fourier transform of

 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Rewrite f(t) in terms of step functions. Then use MATLAB’s fourier to find F( ).
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9. (a) Show that the Fourier transform of

 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Rewrite f(t) in terms of step functions. Then use MATLAB’s fourier to find F( ).
10. (a) Show that the Fourier transform of

 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Rewrite f(t) in terms of step functions. Then use MATLAB’s fourier to find F( ).
11. (a) Show that the Fourier transform of

 

is

 

Using MATLAB, plot the amplitude and phase spectra for this transform.
(b) Rewrite f(t) in terms of step functions. Then use MATLAB’s fourier to find F( ).

12. The integral representation5 of the modified Bessel function K
v
( ) is

 

5 Watson, G.N., 1966: A Treatise on the Theory of Bessel Functions. Cambridge University Press,
p. 185.
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13. Show that the Fourier transform of a constant K is 2 ( )K.
14. Show that

 

Hint: Use integration by parts.
15. For the real function f(t) with Fourier transform F( ), prove that |F( )|=|F( )| 
and the phase of F( ) is an odd function of .

5.2 FOURIER TRANSFORMS CONTAINING THE DELTA FUNCTION

In the previous section we stressed the fact that such simple functions as cosine and sine 
are not absolutely integrable. Does this mean that these functions do not possess a Fourier 
transform? In this section we shall show that certain functions can still have a Fourier 
transform even though we cannot compute them directly.

The reason why we can find the Fourier transform of certain functions that are not 
absolutely integrable lies with the introduction of the delta function because

(5.2.1)

for all t. Thus, the inverse of the Fourier transform (
0
) is the complex exponential

 or

(5.2.2)

This yields immediately the result that

F(1)=2 ( ),
(5.2.3)

where ( ) is the gamma function, v 0 and a>0. Use this relationship to show that
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if we set 
0
=0. Thus, the Fourier transform of 1 is an impulse at =0 with weight 2 . 

Because the Fourier transform equals zero for all 0, f(t)=1 does not contain a nonzero 
frequency and is consequently a DC signal.

Another set of transforms arises from Euler’s formula because we have that

(5.2.4)

= [ (
0
) – ( +

0
)]/i 

(5.2.5)

= i (
0
)+ i ( +

0
)( +

0
) (5.2.6)

and

(5.2.7)

= [ (
0
)+ ( +

0
)]. (5.2.8)

Note that although the amplitude spectra of sin(
0
t)  and cos(

0
t)  are the same, their 

phase spectra are different.
Let us consider the Fourier transform of any arbitrary periodic function. Recall that any 

such function f(t) with period 2L can be rewritten as the complex Fourier series

(5.2.9)

where 
0
= /L. The Fourier transform of f(t) is

(5.2.10)

Therefore,  the  Fourier  transform of  any  arbitrary  periodic  function  is  a  sequence  of 
impulses with weight 2 c

n
 located at =n

0
 with n=0, ±1, ±2, …. Thus, the Fourier

series and transform of a periodic function are closely related.
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 Example 5.2.1: Fourier transform of the sign function

Consider the sign function

(5.2.11)

The  function  is  not  absolutely  integrable.  However,  let  us  approximate  it  by

 where   is  a  small  positive  number.  This  new  function  is  absolutely 
integrable and we have that

(5.2.12)

(5.2.13)

If 0, (5.2.13) equals 2/i . If =0, (5.2.13) equals 0 because

(5.2.14)

Thus, we conclude that

(5.2.15)

 Example 5.2.2: Fourier transform of the step function

An important function in transform methods is the (Heaviside) step function

(5.2.16)

(5.2.17)

In terms of the sign function it can be written
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Because the Fourier transforms of 1 and sgn(t)  are 2 ( )  and 2/i ,  respectively, we 
have that

(5.2.18)

These transforms are used in engineering but the presence of the delta function requires 
extra care to ensure their proper use.

Problems

1. Verify that

 

2. Verify that

 

3. Using the definition of Fourier transforms and (5.2.18), show that

 

4. Following Example 5.2.1, show that

 

and

 

5.3 PROPERTIES OF FOURIER TRANSFORMS

In principle we can compute any Fourier transform from its definition. However, it is far
more efficient to derive some simple relationships that relate transforms to each other.
This is the purpose of this section.
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Linearity

If f(t) and g(t) are functions with Fourier transforms F( ) and G( ), respectively, then

F[c
1
f(t)+c

2
g(t)]=c

1
F( )+c

2
G( ), 

(5.3.1)

where c
1
 and c

2
 are (real or complex) constants.

This result follows from the integral definition

(5.3.2)

(5.3.3)

=c
1
F( )+c

2
G( ). (5.3.4)

Figure 5.3.1:  The  amplitude  and phase  spectra  of  the  Fourier  transform for 
cos(2t)  H(t)  (solid  line)  and  cos[2(t 1)]H(t 1)  (dashed  line).  The

amplitude becomes infinite at =±2.
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Time shifting

If f(t) is a function with a Fourier transform F( ), then F[f(t )]= e i F( ). 
This follows from the definition of the Fourier transform

(5.3.5)

(5.3.6)

 Example 5.3.1

The  Fourier  transform  of  f(t)=cos(at)H(t)  is  F( )=i /(a2 2)+  [ ( +a)+ ( a)]/2. 
Therefore,

F{cos[a(t k)]H(t k)}=e ik F[cos(at)H(t)], (5.3.7)

or

(5.3.8)

In Figure 5.3.1 we present the amplitude and phase spectra for cos(2t) H(t) (the solid line) 
while the dashed line gives these spectra for cos[2(t 1)]H(t 1).

This  figure  shows that  the  amplitude  spectra  are  identical  (why?)  while  the  phase 
spectra are considerably different.

Scaling factor

Let f(t) be a function with a Fourier transform F( ) and k be a real, nonzero constant. 
Then F[f(kt)]=F(+/k)/|k|.

From the definition of the Fourier transform:

(5.3.9)
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The Fourier transform of f(t)=e tH(t) is F( )=1/(1+ i). Therefore, the Fourier transform

for f(at)=e atH(t), a>0, is

(5.3.10)

To illustrate this scaling property we use the MATLAB script

Figure 5.3.2:  The amplitude and phase spectra  of  the Fourier  transform for
e tH(t) (solid line) and e 2tH(t) (dashed line)

 Example 5.3.2
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to plot the amplitude and phase when a=1 and a=2. Figure 5.3.2 shows the results from 

the MATLAB script: The amplitude spectra decreased by a factor of two for e 2tH(t)

compared to e tH(t) while the differences in the phase are smaller.

Symmetry

If the function f(t) has the Fourier transform F( ), then F[F(t)]= 2 F( ). 
From the definition of the inverse Fourier transform,

(5.3.11)

Then

(5.3.12)

 Example 5.3.3

The Fourier transform of 1/(1+t2) is e | |. Therefore,

(5.3.13)

or

(5.3.14)

Derivatives of functions

Let  f(k)(t),  k=0,  1,  2,…,  n 1,  be  continuous  and  f(n)(t)  be  piecewise  continuous.  Let
|f(k)(t)| Ke bt,  b>0,  0 t< ;|f(k)(t)|  Meat,  a>  0,  <t 0,  k=0,  1,…,  n.  Then,  F[f(n)

(t)]=(i )n F( ).
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We begin by noting that if the transform f[f (t)] exists, then

(5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

Finally,

f[f(n)(t)]=i F[f(n 1)(t)]=(i )2F[f(n 2)(t)]=…=(i )nF( ). (5.3.19)

 Example 5.3.4

The Fourier transform of f(t)=1/(1+t2) is F( )= e | |. Therefore,

(5.3.20)

or

(5.3.21)
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Figure 5.3.3: The (amplitude) spectrum of a rectangular pulse (5.1.9) with a half 
width a=10 that has been modulated with cos(5t).

Modulation

In  communications  a  popular  method  of  transmitting  information  is  by  amplitude
modulation  (AM).  In  this  process  the  signal  is  carried  according  to  the  expression

 where 
0
 is  the carrier frequency  and f(t)  is  an arbitrary function of  time

whose amplitude spectrum peaks at some frequency that is usually small compared to 
0
. 

We now show that the Fourier transform of  is F(
0
),  where F( )  is the

Fourier transform of f(t).
We begin by using the definition of the Fourier transform or

(5.3.22)

=F(
0
). (5.3.23)

Therefore, if we have the spectrum of a particular function f(t), then the Fourier transform 

of the modulated function  is  the same as that  for f(t)  except that  it  is  now
centered on the frequency 

0
 rather than on the zero frequency.
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Let us determine the Fourier transform of a square pulse modulated by a cosine wave as

shown  in  Figures  5.3.3  and  5.3.4.  Because   and  the
Fourier transform of a square pulse is F( )=2sin( a)/ ,

(5.3.24)

Figure 5.3.4: The (amplitude) spectrum of a rectangular pulse (5.1.9) with a half 
width a=10 that has been modulated with cos(t/2).

Therefore, the Fourier transform of the modulated pulse equals one half of the sum of the
Fourier transform of the pulse centered on 

0
 and 

0
. See Figures 5.3.3 and 5.3.4.

In many practical situations, 
0
» /a. In this case we may treat each term as completely

independent from the other;  the contribution from the peak at  =
0
 has a negligible

effect on the peak at =
0
.

 Example 5.3.6

The Fourier transform of f(t)=e btH(t) is F( )=1/(b+i ). Therefore,

(5.3.25)

(5.3.26)

 Example 5.3.5
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(5.3.27)

(5.3.28)

We illustrate this result using e 2tH(t) and e 2t cos(4t)H(t) in Figure 5.3.5.

 Example 5.3.7: Frequency modulation

In contrast to amplitude modulation, frequency modulation (FM) transmits information 
by instantaneous variations of the carrier frequency. It can be

Figure 5.3.5: The amplitude and phase spectra of the Fourier transform for 
e 2tH(t) (solid line) and e 2t cos(4t)H(t) (dashed line).

 as exp 
 where C is a constant. To illustrate this concept, 

let us find the Fourier transform of a simple frequency modulation

(5.3.29)

and C=
1
T/2. In this case, the signal in the time domain is
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(5.3.30)

(5.3.31)

We illustrate this signal in Figures 5.3.6 and 5.3.7. 
The Fourier transform of the signal G( ) equals

(5.3.32)

 

Figure  5.3.6:  The  (amplitude)  spectrum  |G( )|/T  of  a  frequency-modulated 
signal  (shown  top)  when  

1T=2  and  0T=10 .  The  transform 

becomes undefined at =
0.
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(5.3.33)

Applying the fact that

(5.3.34)

(5.3.35)

(5.3.36)

Figures  5.3.6  and  5.3.7  illustrate  the  amplitude  spectrum  for  various  parameters.  In 
general, the transform is not symmetric, with an increasing number of humped curves as 

1
T increases.

Parseval’s equality

In applying Fourier methods to practical problems we may encounter a situation where 
we are interested in computing the energy of a system.
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Figure  5.3.7:  The  (amplitude)  spectrum  |G( )|/T  of  a  frequency-modulated 
signal  (shown  top)  when  

1T=8  and  0T=10 .  The  transform 
becomes undefined at = 0.

Energy  is  usually  expressed  by  the  integral   Can  we  compute  this 
integral if we only have the Fourier transform of F( )?

From the definition of the inverse Fourier transform

(5.3.37)

we have that

(5.3.38)

Interchanging the order of integration on the right side of (5.3.38),

(5.3.39)

However,

(5.3.40)Therefore,
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(5.3.41)

Table 5.3.1: Some General Properties of Fourier Transforms

  function, f(t) Fourier transform, F( )

1. Linearity c1f(t)+c2g(t) c1F( )+c2G( )

2. Complex conjugate f*(t) F*( )

3. Scaling f( t) F( / )/| |

4. Delay f(t ) e i F( )

5. Frequency translation F( 0)

6. Duality-time frequency F(t) 2 f( )

7. Time differentiation f (t) i F( )

This is Parseval’s equality6 as it applies to Fourier transforms. The quantity |F( )|2 is 
called the power spectrum.

 Example 5.3.8

In Example 5.1.1,  we showed that  the Fourier  transform for  a  unit  rectangular  pulse 
between a<t<a is 2sin( a)/ . Therefore, by Parseval’s equality,

(5.3.42)

or

(5.3.43)

6 Apparently first derived by Rayleigh, J.W., 1889: On the character of the complete radiation at a
given temperature. Philos. Mag., Ser. 5, 27, 460–469.
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Poisson’s summation formula

If f(x) is integrable over ( , ), there exists a relationship between the function and its

Fourier transform, commonly called Poisson’s summation formula.7

We begin by inventing a periodic function g(x) defined by

(5.3.44)

Because g(x) is a periodic function of 2 , it can be represented by the complex Fourier 
series:

(5.3.45)

or

(5.3.46)

Computing c
n
, we find that

(5.3.47)

(5.3.48)

(5.3.49)

where F( ) is the Fourier transform of f(x). Substituting (5.3.49) into (5.3.46), we obtain

(5.3.50)

7 Poisson, S.D., 1823: Suite du mémoire sur les intégrales définies et sur la sommation des séries.
J. École Polytech., 19, 404–509. See page 451.
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(5.3.51)

 Example 5.3.9

One of the popular uses of Poisson’s summation formula is the evaluation of infinite 

series. For example, let f(x)=1(a2+x2) with a real and nonzero. Then, F( )= e |a | /|a| and

(5.3.52)

(5.3.53)

Problems

1. Find the Fourier transform of 1/(1+a2t2), where a is real, given that F[1/(1+t2)]= e | |.

2.  Find  the  Fourier  transform  of  cos(at)/(1+t2),  where  a  is  real,  given  that 

F[1/(1+t2)]= e | |.

3. Use the fact that F[e atH(t)]=1/(a+i ) with a>0 and Parseval’s equality to show that

 

4. Use the fact that F[1/(1+t2)]= e | | and Parseval’s equality to show that

 

5. Use the function f(t)=e at sin(bt)H(t) with >0 and Parseval’s equality to show that

or
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6. Using the modulation property and F[e btH(t)] =1/(b+i ), show that

 

Use MATLAB to plot and compare the amplitude and phase spectra for e tH(t) and e t 

sin(2t) H(t).

7. Use Poisson’s summation formula with f(t)=e |t| to show that

 

8. Use Poisson’s summation formula to prove8 that

 

9. Use Poisson’s summation formula to prove that

 

where ( ) is the Dirac delta function.

10. Prove the two-dimensional form9 of Poisson’s summation formula:

 

where

 

8  First  proved  by  Ewald,  P.P.,  1921:  Die  Berechnung  optischer  und  elektrostatischer
Gitterpotentiale. Ann. Phys., 4te Folge, 64, 253–287.

9 Taken from Lucas, S.K., R.Sipcic, and H.A.Stone, 1997: An integral equation solution for the
steady-state  current  at  a  periodic  array  of  surface  microelectrodes.  SIAM J.  Appl.  Math.,  57, 

1615–1638.
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inverse Fourier transform. Recall that the improper integral (5.1.6) defines the inverse. 
Consequently one method of inversion is direct integration.

 Example 5.4.1

Let us find the inverse of F( )= e | |.

From the definition of the inverse Fourier transform,

(5.4.1)

(5.4.2)

An alternative to direct integration is the MATLAB function ifourier. For example, invert 

f F( )= e | |, we type in the commands:

Another method for inverting Fourier transforms is rewriting the Fourier transform using 
partial fractions so that we can use transform tables. The following example illustrates 
this technique.

 Example 5.4.2

Let us invert the transform

5.4 INVERSION OF FOURIER TRANSFORMS

Having focused on the Fourier transform in the previous sections, we now consider the

(5.4.3)
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We begin by rewriting (5.4.3) as

(5.4.4)

(5.4.5)

Using Table 5.1.1, we invert (5.4.5) term by term and find that

(5.4.6)

To check our answer, we type the following commands into MATLAB:

Although we may find the inverse  by direct  integration or  partial  fractions,  in  many 
instances the Fourier transform does not lend itself  to these techniques.  On the other 
hand, if we view the inverse Fourier transform as a line integral along the real axis in the 
complex -plane, then perhaps some of the techniques that we developed in Chapter 1 
might be applicable to this problem. To this end, we rewrite the inversion integral (5.1.6) 
as

(5.4.7)

where C denotes a closed contour consisting of the entire real axis plus a new contour C
R 

that  joins  the  point  ( ,  0)  to  ( ,  0).  There  are  countless  possibilities  for  C
R

.  For 

example, it could be the loop ( , 0) to ( , R) to ( , R) to ( , 0) with R>0. However,
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any choice of C
R

 must be such that we can compute  When we take

that constraint into account, the number of acceptable contours decreases to just a few. 

The best is given by Jordan’s lemma.10

Jordan’s lemma: Suppose that, on a circular arc CR with radius R and center at the 
origin, f(z)→0 uniformly as R→ . Then

(1)

(5.4.8)

if C
R
 lies in the first and/or second quadrant;

(2)

(5.4.9)

if CR lies in the third and/or fourth quadrant;
(3)

(5.4.10)

if C
R
 lies in the second and/or third quadrant; and

(4)

(5.4.11)

if C
R
 lies in the first and/or fourth quadrant.

Technically,  only  (1)  is  actually  Jordan’s  lemma  while  the  remaining  points  are 
variations.

Proof: We shall prove the first part; the remaining portions follow by analog. We begin 
by noting that

10  Jordan,  C.,  1894:  Cours  D’Analyse  de  l’École  Polytechnique.  Vol  2.  Gauthier-Villars,  pp.
285–286.  See  also  Whittaker,  E.T.,  and  G.N.Watson,  1963:  A  Course  of  Modern  Analysis. 
Cambridge University Press, p. 115.
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(5.4.12)

Now

|dz|=Rd , |f(z)| M
R
, 

(5.4.13)

|eimz|=|exp(imRe i)|=|exp{imR[cos( )+isin( )]}|=e mRsin( ). (5.4.14)

Therefore,

(5.4.15)

where 0
0
<

1
. Because the integrand is positive, the right side of (5.4.15) is largest if 

we take 
0
=0 and 

1
= . Then

(5.4.16)

We cannot evaluate the integrals in (5.4.16) as they stand. However, because sin( ) 2 /
if 0 /2, we can bound the value of the integral by

(5.4.17)

If m>0, |I
R
| tends to zero with M

R
 as R→ . 

Consider now the following inversions of Fourier transforms:

 Example 5.4.3

For our first example we find the inverse for

(5.4.18)
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From the inversion integral,

(5.4.19)

Figure 5.4.1: Contour used to find the inverse of the Fourier transform (5.4.18). 
The contour C consists of the line integral along the real axis plus C

R
.

or

(5.4.20)

where C  denotes a closed contour consisting of the entire real axis plus C
R
.  Because 

f(z)=1/(z2–2ibz a2 b2) tends to zero uniformly as |z|→  and m=t, the second integral in
(5.4.20) vanishes by Jordan’s lemma if C

R
 is a semicircle of infinite radius in the upper 

half of the z-plane when t>0 and a semicircle in the lower half of the z-plane when t<0.

Next we must find the location and nature of the singularities. They are located at

z2 2ibz a2 b2=0, 
(5.4.21)

or
z=±a+bi. (5.4.22)
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(5.4.23)

Thus, all of the singularities are simple poles.
Consider  now  t>0.  As  stated  earlier,  we  close  the  line  integral  with  an  infinite 

semicircle in the upper half-plane. See Figure 5.4.1. Inside this closed contour there are 
two singularities: z=±a+bi. For these poles,

(5.4.24)

(5.4.25)

where we used Euler’s formula to eliminate eiat. Similarly,

(5.4.26)

Consequently  the  inverse  Fourier  transform follows  from (5.4.23)  after  applying  the 
residue theorem and equals

(5.4.27)

for t>0.
For t<0 the semicircle is in the lower half-plane because the contribution from the 

semicircle vanishes as R→ . Because there are no singularities within the closed contour, 
f(t)=0. Therefore, we can write in general that

(5.4.28)

 Example 5.4.4

Let us find the inverse of the Fourier transform

(5.4.29)
where a is real and positive.

Therefore we can rewrite (5.4.20) as
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From the inversion integral,

(5.4.30)

(5.4.31)

where C denotes a closed contour consisting of the entire real axis plus C
R
. The contour 

C
R

 is  determined by Jordan’s lemma because 1/(z2+a2)→0 uniformly as |z|→ .  Since 

m=t 1, the semicircle C
R

 of infinite radius lies in the upper half-plane if t>1 and in the 

lower half-plane if t<1. Thus, if t>1,

(5.4.32)

whereas for t<1,

(5.4.33)

The minus sign in front of the 2 i arises from the clockwise direction or negative sense of 
the contour. We can write the inverse as the single expression

(5.4.34)

 Example 5.4.5

Let us evaluate the integral

(5.4.35)

where a, k>0. 
We begin by noting that
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(5.4.36)

where C
1
 denotes a line integral along the real axis from  to . A quick check shows

that the integrand of the right side of (5.4.36) satisfies Jordan’s lemma. Therefore,

(5.4.37)

(5.4.38)

where C denotes the closed infinite semicircle in the upper half-plane. Taking the real and
imaginary parts of (5.4.38),

(5.4.39)

Figure 5.4.2: Contour used in Example 5.4.6.

and

(5.4.40)
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 Example 5.4.6

Let us now invert the Fourier transform F( )=2a/(a2 2), where a is real. The interesting
aspect  of  this  problem is  the  presence  of  singularities  at  =±  which  lie  along  the 
contour of integration. How do we use contour integration to compute

(5.4.41)

The answer to this question involves the concept of  Cauchy principal  value integrals 
which allows us to extend the conventional definition of integrals to include integrands 
that become infinite at a finite number of points. See §1.10. Thus, by treating (5.4.41) as 
a  Cauchy  principal  value  integral,  we  again  convert  (5.4.41)  into  a  closed  contour 
integration by closing the line integration along the real axis as shown in Figure 5.4.2. 
The semicircles at infinity vanish by Jordan’s lemma and

(5.4.42)

For t>0,

(5.4.43)

Figure 5.4.3: Contour used in Example 5.4.7.
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We have the factor  because we are only passing over the “top” of the singularity at z=a
and z= a. Computing the residues and simiplifying the results, we obtain

f(t)=sin(at).
(5.4.44)

Similarly, when t<0,

(5.4.45)

These results can be collapsed down to the single expression

f(t)=sgn(t)sin(at).
(5.4.46)

 Example 5.4.7

So  far,  we  used  only  the  first  two  points  of  Jordan’s  lemma.  In  this  example11  we
illustrate how the remaining two points may be applied.

Consider the contour integral

 

where c>0 and ,  are re+al. Let us evaluate this contour integral where the contour 
is shown in Figure 5.4.3.

11  Reprinted  from  Int.  J.  Heat  M ss  Transfer,  15,  T.C.Hsieh  and  R.Greif,  Theoretical
determination of the absorption coefficient  and the total  band absorptance including a specific 
application to carbon monoxide, 1477–1487, ©1972, with kind permission from Elsevier Science 
Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.

From the residue theorem,
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(5.4.47)

Now

(5.4.48)

(5.4.49)

(5.4.50)

(5.4.51)

and

(5.4.52)
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(5.4.53)

Therefore,

(5.4.54)

(5.4.55)

where cot( )=i(e2i +1)/(e2i 1) and we made extensive use of Euler’s formula.
Let us now evaluate the contour integral by direct integration. The contribution from 

the integration along the semicircle at  infinity vanishes according to Jordan’s lemma. 
Indeed that is why this particular contour was chosen. Therefore,

(5.4.56)

Now, because z=iy,

(5.4.57)
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(5.4.58)

(5.4.59)

(5.4.60)

and

(5.4.61)

In the limit of 

(5.4.62)

(5.4.63)

or
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(5.4.64)

If we let y=x/2 ,

(5.4.65)

 Example 5.4.8

An additional benefit of understanding inversion by the residue method is the ability to 
qualitatively anticipate the inverse by knowing the location of the poles of F( ). This 
intuition  is  important  because  many  engineering  analyses  discuss  stability  and 
performance entirely  in  terms of  the  properties  of  the  system’s  Fourier  transform.  In 
Figure 5.4.4 we graphed the location of the poles of F( ) and the corresponding f(t). The 
student should go through the mental exercise of connecting the two pictures.

Problems

1. Use direct integration to find the inverse of the Fourier transform

 

Check your answer using MATLAB. 
Use partial fractions to invert the following Fourier transforms:

2.

3.

4.

5.

Then check your answer using MATLAB.
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By taking the appropriate closed contour,  find the inverse of the following Fourier
transforms by contour integration. The parameter a is real and positive.

6.

7.

8.

9.

10.

11.

12.

13.

Then check your answer using MATLAB.

14. Find the inverse of F( )=cos( )/( 2+a2), a>0, by first rewriting the transform as
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Figure 5.4.4: The correspondence between the location of the simple poles of 
the Fourier transform F( ) and the behavior of f(t).

and then using the residue theorem on each term.
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where a>0 and R>1. Hint: You must find separate inverses for different time intervals.
For example, in the case of F

+
( ), you must examine the special cases of t<0 and t>0.

16.  As we shall  show shortly,  Fourier  transforms can be used to  solve differential

equations. During the solution of the heat equation, Taitel et al.13 inverted the Fourier
transform

 

where y and p are real. Show that they should have found

 

In this case, our time variable t was their spatial variable x .
17. Find the inverse of the Fourier transform

 

where L, , and  are real and positive and sgn(z)=1 if Re(z)>0 and 1 if Re(z)< 0.
Use the residue theorem to verify the following integrals:

18. 

19. 

12  Taken from Scharstein, R.W., 1992: Transient electromagnetic plane wave reflection from a
dielectric slab. IEEE Trans. Educ., 35, 170–175.

13 Reprinted from Int. J. Heat M ss Transfer, 16, Y.Taitel, M.Bentwich, and A. Tamir, Effects of
upstream  and  downstream  boundary  conditions  on  heat  (mass)  transfer  with  axia1  diffusion, 
359–369,  ©1973,  with  kind  permission  from Elsevier  Science  Ltd.,  The  Boulevard,  Langford 
Lane, Kidlington OX5 1GB, UK.

15. Find12 the inverse Fourier transform for
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21.
 

22. The concept of forced convection is normally associated with heat streaming through 

a duct or past an obstacle. Bentwich14 showed that a similar transport can exist when
convection results from a wave traveling through an essentially stagnant fluid.  In the 
process of computing the amount of heating he proved the following identity:

 

Confirm his result.

5.5 CONVOLUTION

The  most  important  property  of  Fourier  transforms  is  convolution.  We  shall  use  it
extensively in the solution of differential equations and the design of filters because it
yields in time or space the effect of multiplying two transforms together.

The convolution operation is

(5.5.1)

Then,

(5.5.2)

(5.5.3)

Thus, the Fourier transform of the convolution of two functions equals the product of the 
Fourier transforms of each of the functions.

20.

14 Reprinted from Int. J. Heat M ss Transfer, 9, M.Bentwich, Convection enforced by surface and
tidal waves, 663–670, ©1966, with kind permission from Elsevier Science Ltd., The Boulevard, 
Langford Lane, Kidlington OX5 1GB, UK.
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 Example 5.5.1

Let  us  verify  the  convolution  theorem  using  the  functions  f(t)=H(t+  a) H(t a)  and 

g(t)=e tH(t), where a>0.
The convolution of f(t) with g(t) is

(5.5.4)

(5.5.5)

If t< a, then the integrand of (5.5.5) is always zero and f(t)*g(t)=0. If t>a,

(5.5.6)

Finally, for a<t<a,

(5.5.7)

In summary,

(5.5.8)

An alternative to examining various cases involving the value of t, we could have used 
MATLAB to evaluate (5.5.5). The MATLAB instructions are as follows:
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The Fourier transform of f(t)*g(t) is

(5.5.9)

(5.5.10)

(5.5.11)

and the convolution theorem is true for this special case. The Fourier transform (5.5.11) 
could also be obtained by substituting our earlier MATLAB result into fourier and then 
using simplify(ans).

 Example 5.5.2

Let us consider the convolution of f(t)=f
+
(t)H(t) with g(t)=g

+
H(t). Note that both of the 

functions are nonzero only for t>0.
From the definition of convolution,

(5.5.12)

(5.5.13)

For t<0, the integrand is always zero and f(t)*g(t)=0. For t>0,

(5.5.14)
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(5.5.15)

This is the definition of convolution that we will use for Laplace transforms where all of 
the functions equal zero for t<0.

The convolution operation also applies to Fourier transforms, in what is commonly 
known as frequency convolution. We now prove that

(5.5.16)

where

(5.5.17)

where F( ) and G( ) are the Fourier transforms of f(t) and g(t), respectively. 
Proof: Starting with

(5.5.18)

we can multiply the inverse of F( ) by g(t) so that we obtain

(5.5.19)

Then, taking the Fourier transform of (5.5.19), we find that

(5.5.20)

(5.5.21)

(5.5.22)

Therefore, in general,
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Thus,  the  multiplication  of  two  functions  in  the  time  domain  is  equivalent  to  the 
convolution of their spectral densities in the frequency domain.

Problems

1. Show that

e tH(t)*e tH(t)=te tH(t). 

Then verify your result using MATLAB.

 

2. Show that

 

Then verify your result using MATLAB.
3. Show that

e tH(t)*e 2tH(t)=(e t e 2t) H(t). 

Then verify your result using MATLAB.
4. Show that

 

Then verify your result using MATLAB.
5. Show that

 

Then try and verify your result using MATLAB. What do you have to do to make it 
work?

6. Show that

e |t|*e |t|=(1+|t|)e |t|. 

7. Prove that the convolution of two Dirac delta functioris is a Dirac delta function.
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5.6 SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS BY 

FOURIER TRANSFORMS

As with Laplace transforms, we may use Fourier transforms to solve ordinary differential 
equations. However, this method gives only the particular solution and we must find the 
complementary solution separately.

Consider the differential equation

(5.6.1)

Taking the Fourier transform of both sides of (5.6.1),

(5.6.2)

where we used the derivative rule (5.3.19) to obtain the transform of y  and Y( )=F[y(t)]. 
Therefore,

(5.6.3)

Applying the inversion integral to (5.6.3),

(5.6.4)

We evaluate (5.6.4) by contour integration. For t>0 we close the line integral with an 
infinite semicircle in the upper half of the -plane. The integration along this arc equals 
zero by Jordan’s lemma. Within this closed contour we have a second-order pole at z=i. 
Therefore,

(5.6.5)

(5.6.6)
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(5.6.7)

For t<0, we again close the line integral with an infinite semicircle but this time it is in 
the  lower  half  of  the  -plane.  The  contribution  from the  line  integral  along  the  arc 
vanishes  by  Jordan’s  lemma.  Within  the  contour,  we  have  a  simple  pole  at  z= i. 
Therefore,

(5.6.8)

and

(5.6.9)

The minus sign in front of the 2 i results from the contour being taken in the clockwise 
direction or negative sense. Using the step function, we can combine (5.6.7) and (5.6.9) 
into the single expression

(5.6.10)

Note that we only found the particular or forced solution to (5.6.1). The most general 

solution therefore requires that we add the complementary solution Ae t, yielding

(5.6.11)

The arbitrary constant A would be determined by the initial condition which we have 
not specified.

We could also have solved this problem using MATLAB. The MATLAB script

and
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which is equivalent to (5.6.10). 
Consider now a more general problem of

y +y=f(t), <t<
(5.6.12)

where we assume that f(t) has the Fourier transform F( ). Then the Fouriertransformed 
solution to (5.6.12) is

(5.6.13)

or

y(t)=g(t)*f(t),
(5.6.14)

where g(t)=F l[1/(1+ i)]=e tH(t). Thus, we can obtain our solution in one of two ways. 
First,  we can take the Fourier transform of f(t),  multiply this transform by G( ),  and 
finally compute the inverse. The second method requires a convolution of f(t) with g(t). 
Which method is easiest depends upon f(t) and g(t).

The function g(t)  can also be viewed as the particular solution of (5.6.12) resulting 
from the forcing function (t), the Dirac delta function, because F[ (t)]=1. Traditionally 
this forced solution g(t) is called the Green’s function and G( ) is called the frequency 
response  or  steady-state  transfer  function  of  our  system.  Engineers  often  extensively 
study the frequency response in their analysis rather than the Green’s function because 
the frequency response is easier to obtain experimentally and the output from a linear 
system is just the product of two transforms [see (5.6.13)] rather than an integration.



324 Advanced Engineering Mathematics with MATLAB 

In summary, we can use Fourier transforms to find particular solutions to differential 
equations.  The  complete  solution  consists  of  this  particular  solution  plus  any 
homogeneous solution that we need to satisfy the initial conditions. Convolution of the 
Green’s function with the forcing function also gives the particular solution.

 Example 5.6.1: Spectrum of a damped harmonic oscillator

Second-order  differential  equations  are  ubiquitous  in  engineering.  In  electrical engineering  
many  electrical  circuits  are  governed  by  second-order,  linear  ordinary differential 
equations. In mechanical engineering they arise during the application of Newton’s second law. 
For example, in mechanics the damped oscillations of a mass m attached to a spring with a 
spring constant k and damped with a velocity dependent resistance are governed by the equation

my +cy +ky=f(t),
(5.6.15)

where y(t)  denotes  the displacement  of  the oscillator  from its  equilibrium position,  c 
denotes the damping coefficient, and f(t) denotes the forcing.

Assuming that both f(t) and y(t) have Fourier transforms, let us analyze this system by finding 
its frequency response. We begin by solving for the Green’s function g(t) which is given by

mg +cg +kg= (t),
(5.6.16)

because the Green’s function is  the response of a system to a delta function forcing. 
Taking the Fourier transform of both sides of (5.6.16), the frequency response is

(5.6.17)

where  is the natural frequency of the system. The most useful quantity to 
plot is the frequency response or

(5.6.18)

(5.6.19)
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In Figure 5.6.1 we plotted the frequency response as a function of c2/(km). Note that as

the damping becomes larger, the sharp peak at =
0
 essentially vanishes. As c2/(km)→0,

we obtain a very finely tuned response curve.
Let  us  now find  the  Green’s  function.  From the  definition  of  the  inverse  Fourier

transform,

(5.6.20)

where

(5.6.21)

and =c/2m>0. We can evaluate (5.6.20) by residues. Clearly the poles always lie in the
upper half of the -plane. Thus, if t<0 in (5.6.20) we can close the line integration along
the real  axis  with a  semicircle of  infinite  radius in the lower half  of  the -plane by
Jordan’s lemma. Because the integrand is analytic within the closed contour, g(t)=0 for

t<0. This is simply the causality condition,15 the impulse forcing being the cause of the
excitation. Clearly, causality is closely connected with the analyticity of the frequency
response in the lower half of the -plane.

Figure 5.6.1: The variation of the frequency response for a damped harmonic 
oscillator as a function of driving frequency . See the text for the 
definition of the parameters.

15 The principle stating that an event cannot precede its cause.
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If t>0, we close the line integration along the real axis with a semicircle of infinite radius
in the upper half of the -plane and obtain

(5.6.22)

(5.6.23)

Let us now examine the damped harmonic oscillator by describing the migration of the
poles 

1, 2
 in the complex -plane as  increases from 0 to . See Figure 5.6.2. For «

0

(weak damping),  the poles 
1,  2

 are very near to the real axis,  above the points ±
0

respectively. This corresponds to the narrow resonance band discussed earlier and we
have  an  underdamped  harmonic  oscillator.  As   increases  from  0  to  

0
,  the  poles

approach the positive imaginary axis, moving along a semicircle of radius 
0
 centered at

the origin. They coalesce at the point i
0
 for =

0
, yielding repeated roots, and we have

a critically damped oscillator. For >
0
, the poles move in opposite directions along the

positive imaginary axis; one of them approaches the origin, while the other tends to i  as 
→ . The solution then has two purely decaying, overdamped solutions.

During  the  early  1950s,  a  similar  diagram  was  invented  by  Evans16  where  the
movement of closed-loop poles is plotted for all values of a system parameter, usually the
gain. This root-locus method is very popular in system control

16 Evans, W.R., 1948: Graphical analysis of control systems. Trans. AIEE, 67, 547–551; Evans,
W.R., 1954: Control-System Dynamics. McGraw-Hill, 282 pp.
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Figure 5.6.2: The migration of the poles of the frequency response of a damped 
harmonic oscillator as a function of .

theory for two reasons. First, the investigator can easily determine the contribution of a 
particular  closed-loop  pole  to  the  transient  response.  Second,  he  can  determine  the 
manner in which open-loop poles or zeros should be introduced or their location modified
so that he will achieve a desired performance characteristic for his system.

 Example 5.6.2: Low frequency filter

Consider the ordinary differential equation

(5.6.24)

where R and C are real, positive constants. If y(t) denotes current, then (5.6.24) would be 
the equation that gives the voltage across a capacitor in a RC circuit. Let us find the 
frequency response and Green’s function for this system.

We begin by writing (5.6.24) as

(5.6.25)

where g(t)  denotes the Green’s function. If  the Fourier transform of g(t)  is  G( ),  the 
frequency response G( ) is given by
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(5.6.26)

Figure 5.6.3: The variation of the frequency response (5.6.28) as a function of 
driving frequency . See the text for the definition of the parameters.

or

(5.6.27)

and

(5.6.28)

where 
p
=1/(RC) is an intrinsic constant of the system. In Figure 5.6.3 we plotted |G( )| 

as a function of . From this figure, we see that the response is largest for small  and 
decreases as  increases.

This is an example of a low frequency filter because relatively more signal passes 
through at lower frequencies than at higher frequencies. To understand this, let us drive 
the system with a forcing function that has the Fourier transform F( ). The response of 
the system will be G( )F( ). Thus, that portion of the forcing function’s spectrum at the 
lower frequencies is relatively unaffected because |G( )| is near unity. However, at high-
er frequencies where |G( )| is smaller, the magnitude of the output is greatly reduced.
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During his study of tumor growth, Adam17 found the particular solution to an ordinary 
differential equation which, in its simpliest form, is

(5.6.29)

by the method of Green’s functions. Let us retrace his steps and see how he did it. 
The first step is finding the Green’s function. We do this by solving

g 2g= (x), 
(5.6.30)

subject  to  the  boundary  conditions  lim
|x|→

g(x)→0.  Taking  the  Fourier  transform  of

(5.6.30), we obtain

(5.6.31)

The function G( ) is the frequency response for our problem. Straightforward inversion 
yields the Green’s function

(5.6.32)

Therefore, by the convolution integral (5.6.14),

(5.6.33)

To evaluate (5.6.33) we must consider four separate cases: <x< L, L<x<0, 0<x<L, 
and L<x< . Turning to the <x< L case first, we have

(5.6.34)

 Example 5.6.3

17 Reprinted from Math. Biosci., 81, J.A.Adam, A simplified mathematical model of tumor growth,
229–244, ©1986, with permission from Elsevier Science.
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(5.6.35)

(5.6.36)

Similarly, for x>L,

(5.6.37)

(5.6.38)

(5.6.39)

On the other hand, for L<x< 0, we find that

(5.6.40)

(5.6.41)

(5.6.42)

Finally, for 0<x<L, we have that

(5.6.43)
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(5.6.44)

(5.6.45)

These results can be collapsed down into

(5.6.46)

if |x|>L and

(5.6.47)

if |x|>L.

Problems

Find the particular solutions for the following differential equations. For Problems 1–3, 
verify your solution using MATLAB.

1. y +3y +2y=e tH(t)

2. 

3. y 4y +4y=e tH(t)

4. yiv 4y= (x),

where  has a positive real part and a negative imaginary part.



 



Chapter 6

The Laplace Transform

The previous chapter introduced the concept of the Fourier integral. If the function is

nonzero  only  when  t>0,  a  similar  transform,  the  Laplace  transform,1  exists.  It  is 
particularly useful in solving initial-value problems involving linear, constant coefficient, 
ordinary  and  partial  differential  equations.  The  present  chapter  develops  the  general
properties and techniques of Laplace transforms.

6.1 DEFINITION AND ELEMENTARY PROPERTIES

Consider a function f(t) such that f(t)=0 for t<0. Then the Laplace integral:

(6.1.1)

defines the Laplace transform of f(t), which we shall write L[f(t)] or F(s). The Laplace 
transform converts a function of t into a function of the transform variable s.

Not all functions have a Laplace transform because the integral (6.1.1) may fail to exist. 
For example, the function may have infinite discontinuities. For this reason, f(t)=tan(t) 
does not have a Laplace transform. We can avoid this difficulty by requiring that f(t) be 
piece-wise  continuous.  That  is,  we  can  divide  a  finite  range  into  a  finite  number  of 
intervals in such a manner that f(t)  is  continuous inside each interval and approaches 
finite values as we approach either end of any interval from the interior.

Another unacceptable function is f(t)=1/t because the integral (6.1.1) fails to exist. This 

leads to the requirement that the product tn|f(t)|  is bounded near t=0 for some number 
n<1.

Finally |f(t)| cannot grow too rapidly or it could overwhelm the e st term. To express 
this, we introduce the concept of functions of exponential order. By exponential order we 
mean that there exist some constants, M and k, for which

1  The standard reference for Laplace transforms is Doetsch, G.,  1950: Handbuch der Laplace-
Transformation.  Band  1.  Theorie  der  Laplace-Transformation.  Birkhäuser  Verlag,  581  pp.; 
Doetsch, G., 1955: Handbuch der Laplace-Transformation. Band 2. Anwendungen der Laplace-
Transformation.  1.  Abteilung.  Birkhäuser  Verlag,  433  pp.;  Doetsch,  G.,  1956:  Handbuch  der 
Laplace-Transformation.  Band  3.  Anwendungen  der  Laplace-Transformation.  2.  Abteilung. 
Birkhäuser Verlag, 298 pp.
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|f(t)| Mekt
(6.1.2)

for all t>0. Then, the Laplace transform of f(t) exists if s, or just the real part of s, is
greater than k.

In summary, the Laplace transform of f(t) exists, for sufficiently large s, provided f(t) 
satisfies the following conditions:

 f(t)=0 for t<0, 

 f(t) is continuous or piece-wise continuous in every interval, 

 tn|f(t)|<  as t→0 for some number n, where n<1,

 

 as  t→ ,  for  some number  s
0
.  The  quantity  s

0
 is  called  the

abscissa of convergence.

 Example 6.1.1

Let us find the Laplace transform of 1, eat, sin(at), cos(at), and tn from the definition of
the Laplace transform. From (6.1.1), direct integration yields

(6.1.3)

(6.1.4)

(6.1.5)

(6.1.6)

(6.1.7)

(6.1.8)
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(6.1.9)

and

(6.1.10)

where n is a positive integer.
MATLAB provides the routine laplace to compute the Laplace transform for a given 

function. For example,

The
 
Laplace

 
transform

 
inherits

 
two

 
important

 
properties

 
from

 
its

 
integral

 
definition.

 
First, 

the transform of a sum equals the sum of the transforms or

(6.1.11)

This linearity property holds with complex numbers and functions as well.

 Example 6.1.2

Success  with  Laplace  transforms  often  rests  with  the  ability  to  manipulate  a  given 
transform  into  a  form  which  you  can  invert  by  inspection.  Consider  the  following 
examples.

Given F(s)=4/s3, then
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(6.1.12)

from (6.1.10). 
Given

(6.1.13)

then

f(t)=cos(t)+2sin(t)
(6.1.14)

by (6.1.7), (6.1.9), and (6.1.11). 
Because

(6.1.15)

by partial fractions, then

f(t)=et 1 
(6.1.16)

by (6.1.3), (6.1.5), and (6.1.11).
MATLAB also provides the routine ilaplace to compute the inverse Laplace transform 

for a given function. For example,

 

The second important property deals with derivatives. Suppose f(t) is continuous and has 
a piece-wise continuous derivative f (t). Then
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(6.1.17)

by integration by parts. If f(t) is of exponential order, e stf(t) tends to zero as t→ , for 
large enough s, so that

(6.1.18)

Similarly,  if  f(t)  and f (t)  are  continuous,  f (t)  is  piece-wise continuous,  and all  three 
functions are of exponential order, then

(6.1.19)

Table 6.1.1: The Laplace Transforms of Some Commonly Encountered Functions

 f(t), t 0 F(s)

1. 1

2. e at

3.

4.

5.

6. sin(at)

7. cos(at)

8. sinh(at)
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9. cosh(at)

10. t sin(at)

11. 1 cos(at)

12. at sin(at)

13. t cos(at)

14. sin(at) atcos(at)

15. t sinh(at)

16. t cosh(at)

17. atcosh(at) sinh(at)

18. e bt sin(at)

19. e btcos(at)

20. (1+a2t2)sin(at) atcos(at)

21. sin(at)cosh(at) cos(at)sinh(at)

22. sin(at)sinh(at)

23. sinh(at) sin(at)
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24. cosh(at) cos(at)

25.

26.

27.

28. tn, n 0

29.

30.

31. tne at, n 0

32. s [n +(1/2)]

33. J0(at)

34. I0(at)

35.

36.

37.

38.
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39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Notes:

Error function: erf (x)
Complementary error function: erfc(x)=1 erf(x)

In general,

(6.1.20)

on the assumption that f(t) and its first n 1 derivatives are continuous, f(n)(t) is piece-wise 
continuous, and all are of exponential order so that the Laplace transform exists.
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(6.1.21)

then

(6.1.22)

(6.1.23)

and

(6.1.24)

where u(0)=0.

Problems

Using the definition of the Laplace transform, find the Laplace transform of the following 
functions. For Problems 1–4, check your answer using MATLAB.

1. f(t)=cosh(at)

2. f(t)=cos2(at)

3. f(t)=(t+1)2

4. f(t) (t+1)e at

5. 

6. 

Using your knowledge of  the transform for 1,  eat,  sin(at),  cos(at),  and tn,  find the 
Laplace transform of
7. f(t)=2 sin(t) cos(2t)+cos(3) t

8. f(t)=t 2+e 5t sin(5t)+cos(2).
Find the inverse of the following transforms. Verify your result using MATLAB.
9. F(s)=1/(s+3)

10. F(s)=1/s4

The converse of (6.1.20) is also of some importance. If
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12. F(s)=(2s+3)/(s2+9)

13. F(s)=2/(s2+1) 15/s3+2/(s+1) 6s/(s2+4)

14. F(s)=3/s+15/s3+(s+5)/(s2+1) 6/(s 2).
15. Verify the derivative rule for Laplace transforms using the function f(t)= sin(at).
16. Show that L[f(at)]=F(s/a)/a, where F(s)=L[f(t)].

17. Using the trigonometric identity sin2(x)=[1 cos(2x)]/2, find the Laplace transform 
of f(t)=sin2[ t/(2T)].

6.2 THE HEAVISIDE STEP AND DIRAC DELTA FUNCTIONS

Change can occur abruptly. We throw a switch and electricity suddenly flows. In this 
section we introduce two functions, the Heaviside step and Dirac delta, that will give us 
the ability to construct complicated discontinuous functions to express these changes.

Heaviside step function

We define the Heaviside step function as

(6.2.1)

where a 0. From this definition,

(6.2.2)

11. F(s)=1/(s2+9)
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Figure 6.2.1: Largely a self-educated man, Oliver Heaviside (1850–1925) lived 
the life of a recluse. It was during his studies of the implications of 
Maxwell’s  theory  of  electricity  and  magnetism that  he  re-invented 
Laplace  transforms.  Initially  rejected,  it  would require  the  work of 
Bromwich to  justify  its  use.  (Portrait  courtesy  of  the  Institution of 
Electrical Engineers, London.)

Note that this transform is identical to that for f(t)=1 if a=0. This should not surprise us.
As pointed out  earlier,  the function f(t)  is  zero for  all  t<0 by definition.  Thus,  when 
dealing with Laplace transforms f(t)=1 and H (t) are identical. Generally we will take 1 
rather than H(t) as the inverse of 1/s.

The  Heaviside  step  function  is  essentially  a  bookkeeping  device  that  gives  us  the
ability  to “switch on” and “switch off” a  given function.  For example,  if  we want  a
function f(t)  to become nonzero at time t=a,  we represent this process by the product
f(t)H(t a). On the other hand, if we only want the function to be “turned on” when a<t<b,
the desired expression is then f(t)[H(t a) H(t b)].  For t<a,  both step functions in the
brackets have the value of zero. For a<t<b, the first step function has the value of unity
and the second step function has the value of zero, so that we have f(t). For t>b, both step
functions equal unity so that their difference is zero.

 Example 6.2.1

Quite  often  we  need  to  express  the  graphical  representation  of  a  function  by  a
mathematical equation. We can conveniently do this through the use of step functions in a 
two-step procedure. The following example illustrates this procedure.



344 Advanced Engineering Mathematics with MATLAB 

Figure 6.2.2: Graphical representation of (6.2.5).

Consider Figure 6.2.2. We would like to express this graph in terms of Heaviside step 
functions. We begin by introducing step functions at each point where there is a kink 
(discontinuity in the first derivative) or jump in the graph—in the present case at t=0, t=1,
t=2, and t=3. These are the points of abrupt change. Thus,

f(t)=a
0
(t)H(t)+a

1
(t)H(t 1)+a

2
(t)H(t 2)+a

3
(t)H(t 3), (6.2.3)

where the coefficients a
0
(t),a

1
(t),…are yet to be determined. Proceeding from left to right 

in Figure 6.2.2, the coefficient of each step function equals the mathematical expression 
that we want after the kink or jump minus the expression before the kink or jump. As 
each Heaviside turns on, we need to add in the new t behavior and subtract out the old t 
behavior. Thus, in the present example,

f(t)=(t 0)H(t)+(1 t)H(t 1)+[(3 t) 1]H(t 2)+[0 (3 t)]H(t 3)
(6.2.4)

or

f(t)=tH(t) (t 1)H(t 1) (t 2)H(t 2)+(t 3)H(t 3).
(6.2.5)

We can easily find the Laplace transform of (6.2.5) by the “second shifting” theorem 
introduced in the next section.

 Example 6.2.2

Laplace  transforms are  particularly  useful  in  solving  initial-value  problems involving
linear, constant coefficient, ordinary differential equations where the nonhomogeneous 
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term is discontinuous. As we shall show in the next section, we must first rewrite the 
nonhomogeneous  term using  the  Heaviside  step  function  before  we can  use  Laplace 
transforms. For example, given the nonhomogeneous ordinary differential equation:

(6.2.6)

we can rewrite the right side of (6.2.6) as

y +3y +2y=t tH(t 1)=t (t 1)H(t 1) H(t 1). (6.2.7)

In  §6.8  we will  show how to  solve  this  type  of  ordinary  differential  equation  using 
Laplace transforms.

Dirac delta function

The second special function is the Dirac delta function or impulse function. We define it 
by

(6.2.8)

where a 0. 
A popular way of visualizing the delta function is as a very narrow rectangular pulse:

(6.2.9)

where  is some small number and a>0. See Figure 6.2.3. This pulse has a width 

height  and its center at t=a so that its area is unity. Now as this pulse shrinks in

width  its height increases so that it remains centered at t=a and its area equals 
unity. If we continue this process, always keeping the area unity and the pulse symmetric 
about t=a, eventually we obtain an extremely narrow, very large amplitude pulse at t=a. If 
we proceed to the limit,  where the width approaches zero and the height  approaches 
infinity (but still with unit area), we obtain the delta function (t a).

The delta function was introduced earlier during our study of Fourier transforms. So 
what is the difference between the delta function introduced then and the delta function 
now? Simply put, the delta function can now only be used on the interval [0, ). Outside

of that, we shall use it very much as we did with Fourier transforms.
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Figure 6.2.3: The Dirac delta function.

Using (6.2.9), the Laplace transform of the delta function is

(6.2.10)

(6.2.11)

(6.2.12)

=e as. (6.2.13)

In the special case when a=0, L[ (t)]=1, a property that we will use in §6.9. Note that this 
is exactly the result that we obtained for the Fourier transform of the delta function.

If we integrate the impulse function,

(6.2.14)
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This integral gives a result that is precisely the definition of the Heaviside step function
so that we can rewrite (6.2.14)

(6.2.15)

Consequently the delta function behaves like the derivative of the step function or

(6.2.16)

Because the conventional derivative does not exist at a point of discontinuity, we can only 
make sense of (6.2.16) if we extend the definition of the derivative. Here we extended the 
definition  formally,  but  a  richer  and  deeper  understanding  arises  from the  theory  of 

generalized functions.2

 Example 6.2.3

Let us find the (generalized) derivative of

f(t)=3t2[H(t) H(t 1)]. 
(6.2.17)

Proceeding formally,

f (t)=6t[H(t) H(t 1)]+3t2[ (t) (t 1)] 
(6.2.18)

=6t[H(t) H(t 1)]+0–3 (t 1) (6.2.19)

=6t[H(t) H(t 1)] 3 (t 1), (6.2.20)

because f(t) (t t
0
)=f(t

0
) (t t

0
).

according to whether the impulse does or does not come within the range of integration.

2  The generalization of the definition of a function so that it  can express in a mathematically
correct form such idealized concepts as the density of a material point, a point charge or point
dipole, the space charge of a simple or double layer, the intensity of an instantaneous source, etc.
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while stepfunction is used in numerical calculations. For example, the Laplace transform
of (6.2.5) is

In  a  similar  manner,  the  symbolic  function  for  the  Dirac  delta  function  is  Dirac.
Therefore, the Laplace transform of (t 1) (t 2) is

 

Problems

Sketch the following functions and express them in terms of the Heaviside step functions:

1. 

2. 

Rewrite  the  following  nonhomogeneous  ordinary  differential  equations  using  the
Heaviside step functions:

3. 

4. 

5. 

6. 

 Example 6.2.4

MATLAB also includes the step and Dirac delta functions among its intrinsic functions. 
There are two types of step functions. In symbolic calculations, the function is Heaviside
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7. 

8. 

9. 

10. 

6.3 SOME USEFUL THEOREMS

Although at first sight there would appear to be a bewildering number of transforms to
either  memorize  or  tabulate,  there  are  several  useful  theorems which  can  extend the
applicability of a given transform. 

First shifting theorem

Consider the transform of the function e atf(t),  where a  is any real number. Then, by
definition,

(6.3.1)

or

L[e atf(t)]=F(s+a). (6.3.2)

That is, if F(s) is the transform of f(t) and a is a constant, then F(s+a) is the transform of

e atf(t).

 Example 6.3.1

Let us find the Laplace transform of f(t)=e atsin(bt). Because the Laplace transform of

sin(bt) is b/(s2+b2),

(6.3.3)
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where we simply replaced s by s+a in the transform for sin(bt). 

 Example 6.3.2

Let us find the inverse of the Laplace transform

(6.3.4)

Rearranging terms,

(6.3.5)

(6.3.6)

Immediately, from the first shifting theorem,

(6.3.7)

Second shifting theorem

The second shifting theorem states that if F(s) is the transform of f(t), then e bsF(s) is the
transform  of  f(t b)H(t b),  where  b  is  real  and  positive.  To  show  this,  consider  the
Laplace transform of f(t b)H(t b). Then, from the definition,

(6.3.8)

(6.3.9)

(6.3.10)
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or

L[f(t b)H(t b)=e bsF(s), (6.3.11)

where we set x=t b. This theorem is of fundamental importance because it allows us to
write down the transforms for “delayed” time functions. That is, functions which “turn
on” b units after the initial time. 

 Example 6.3.3

Let us find the inverse of the transform (1 e s)/s. Since

(6.3.12)

(6.3.13)

because L 1(1/s) and f(t 1)=1.

 Example 6.3.4

Let us find the Laplace transform of f(t)=(t2 1)H(t 1).

We begin by noting that 

(6.3.14)

=[(t 1)2+2(t 1)]H(t 1) (6.3.15)

=(t 1)2H(t 1)+2(t 1)H(t 1). 
(6.3.16)

A direct application of the second shifting theorem leads then to

(6.3.17)

(t2 1)H(t 1)=[(t 1+l)2–1]H(t 1) 
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 Example 6.3.5

In  Example  6.2.2  we  discussed  the  use  of  Laplace  transforms  in  solving  ordinary
differential equations. One further step along the road consists of finding Y(s)=L[y(t)].
Now that we have the second shifting theorem, let us do this.

Continuing Example 6.2.2 with y(0)=0 and y (0)=1, let us take the Laplace transform
of (6.2.8). Employing the second shifting theorem and (6.1.20), we find that

(6.3.18)

Substituting in the initial conditions and solving for Y(s), we finally obtain

(6.3.19)

Laplace transform of tnf(t)

In addition to the shifting theorems, there are two other particularly useful theorems that
involve the derivative and integral of the transform F(s). For example, if we write

(6.3.20)

and differentiate with respect to s, then

(6.3.21)

In general, we have that 

(6.3.22)

Laplace transform of f(t)/t 

Consider the following integration of the Laplace transform F(s):

n n

(6.3.23)

(n)F (s)=( 1) L[t f(t)]. 
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Upon interchanging the order of integration, we find that

(6.3.24)

(6.3.25)

Therefore,

(6.3.26)

 Example 6.3.6

Let us find the transform of t sin(at). From (6.3.21),

(6.3.27)

 Example 6.3.7

Let us find the transform of [1 cos(at)]/t. To solve this problem, we apply (6.3.26) and 
find that

(6.3.28)

(6.3.29)

(6.3.30)
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Initial-value theorem

Let f(t)  and f (t)  possess Laplace transforms. Then, from the definition of the Laplace 
transform,

(6.3.31)

Because s is a parameter in (6.3.31) and the existence of the integral is implied by the 
derivative rule, we can let s→  before we integrate. In that case, the left side of (6.3.31) 
vanishes to zero, which leads to

(6.3.32)

This is the initial-value theorem.

 Example 6.3.8

Let  us  verify  the  initial-value  theorem  using  f(t)=e3t.  Because  F(s)=  1/(s 3), 
lim

s→
s/(s 3)=1. This agrees with f(0)=1.

In the common case when the Laplace transform is ratio to two polynomials, we can 
use MATLAB to find the initial value. This consists of two steps. First,  we construct 
sF(s)  by creating vectors which describe the numerator and denominator of sF(s)  and 
then evaluate the numerator and denominator using very large values of s. For example, 
in the previous example,

»num = [1 0]; 
»den = [1 -3]; 

    1

Final-value theorem

Let f(t) and f (t) possess Laplace transforms. Then, in the limit of s→0, (6.3.31) becomes

(6.3.33)

»initialvalue = polyval(num, 1e20)/polyval(den,1e20) 
initialvalue =
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(6.3.34)

Equation (6.3.34) is the final-value theorem. It should be noted that this theorem assumes 
that limt

t→
 f(t) exists. For example, it does not apply to sinusoidal functions. Thus, we 

must restrict ourselves to Laplace transforms that have singularities in the left half of the 
s-plane unless they occur at the origin.

 Example 6.3.9

Let us verify the final-value theorem using f(t)=t. Because F(s)=1/s2,

(6.3.35)

The limit of f(t) as t→  is also undefined.
Just as we can use MATLAB to find the initial value of a Laplace transform in the case 

when F(s) is a ratio of two polynomials, we can do the same here for the final value. 
Again we define vectors num and den that give sF(s)  and then evaluate them at s=0. 
Using the previous example, the MATLAB commands are:

»num = [0 1 0]; 

»den = [1 0 0]; 

zero. 
finalvalue =
    NaN

This agrees with the result from a hand calculation and shows what happens when the 
denominator has a zero.

 Example 6.3.10

Looking ahead, we will shortly need to find the Laplace transform of y(t) which is de-
fined by a differential equation. For example, we will want Y(s) where y(t) is governed by

y +2y +2y=cos(t)+ (t /2), y(0)=y (0)=0.
(6.3.36)

Because f(0) is not a function of t or s, the quantity f(0) cancels from the (6.3.33), leaving

»finalvalue = polyval(num,0)/polyval(den,0)  
Warning:    Divide by
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(6.3.37)

or

(6.3.38)

Substituting for y(0) and y (0) and solving for Y(s), we find that

(6.3.39)

Presently this is as far as we can go.
How would we use MATLAB to find Y(s)? The following MATLAB script shows you 

how:

clear 
% define symbolic variables 
syms pi s t Y 
% take Laplace transform of left side of differential equation 
LHS = laplace(diff (diff (sym ( ’y(t) ’)))+2*diff (sym(’y(t)’))…
    +2*sym(’y(t)’)); 
% take Laplace transform of right side of differential equation
RHS = laplace(cos(t)+’Dirac(t-pi/2)’,t,s); 
% set Y for Laplace transform of y 
%    and introduce initial conditions 
newLHS = subs (LHS,’laplace(y(t) ,t,s) ’,’y(0) ’,’D (y) (0)’,Y,0,0); 
% solve for Y 
Y = solve(newLHS-RHS,Y)

It yields
Y =

 (s+exp 
 

(−1/2*pi*s)*s^2+exp(−1/2*pi*s))(s^4+3*s ^2+2*s^3+2*s+2)

Problems

Find the Laplace transform of the following functions and then check your work using 
MATLAB.

1. f(t)=e t sin(2t)
2. f(t)=e 2t cos(2t)

Applying Laplace transforms to both sides of (6.3.36), we have that
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3. f(t)=t2H(t 1)

4. f(t)=e2tH(t 3)

5. f(t)=tet+sin(3t)et+cos(5t)e2t

6. f(t)=t4e 2t+sin (3t)et+cos(4t)e2t

7. f(t)=t2e t+sin(2t)et+cos(3t)e 3t

8. f(t)=t2H(t 1)+et H(t 2)

9. f(t)=(t2+2) H(t 1)+H(t 2)

10. f(t)=(t+1)2H(t 1)+et H(t 2)

11. 

12. 

13. f(t)=te 3t sin (2t)
Find the inverse of the following Laplace transforms by hand and using MATLAB:

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 
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27. 

28. Find the Laplace transform of f(t)=tet[H(t 1) H(t 2)] by using (a) the definition of the  
Laplace  transform,  and  (b)  a  joint  application  of  the  first  and  second  shifting 
theorems.

29. Write the function

 

in terms of Heaviside’s step functions. Then find its transform using (a) the definition of 
the Laplace transform, and (b) the second shifting theorem.

In Problems 30–33, write the function f(t) in terms of the Heaviside step functions and 
then  find  its  transform using  the  second  shifting  theorem.  Check  your  answer  using 
MATLAB.

30. 

31. 

32. 

33. 

Find Y(s) for the following ordinary differential equations and then use MATLAB to 
check your work.
34. y +3y +2y=H(t 1); y(0)=y (0)=0
35. y +4y=3H(t 4); y(0)=1, y (0)=0
36. y +4y +4y=tH(t 2); y(0)=0, y (0)=2

37. y +3y +2y=et H(t 1); y(0)=y (0)=0

38. y 3y +2y=e t H(t 2); y(0) 2, y (0)=0

39. y 3y +2y t2H(t 1); y(0)=0, y (0)=5
40. y +y=sin(t)[1 H(t )]; y(0) y (0)=0

41. y +3y +2y=t+[ae (t ) t] H(t a); y(0)=y (0)=0.
For each of the following functions, find its value at t=0. Then check your answer 
using the initial-value theorem by hand and using MATLAB.
42. f(t)=t
43. f(t)=cos(at)

44. f(t)=te t

45. f(t)=etsin(3t)
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the final-value theorem. If you can, find the final value by hand and using MATLAB. 
Check your result by finding the inverse and finding the limit as t→ .

46. 

47. 

48. 

49. 

50. 

51. 

6.4 THE LAPLACE TRANSFORM OF A PERIODIC FUNCTION

Periodic functions frequently occur in engineering problems and we shall now show how 
to calculate their transform. They possess the property that f(t+T)=f(t) for t>0 and equal 
zero for t<0, where T is the period of the function.

For convenience let us define a function x(t) which equals zero except over the interval 
(0, T) where it equals f(t):

(6.4.1)

By definition

(6.4.2)

(6.4.3)

Now let z=t kT, where k=0, 1, 2,…, in the kth integral and F(s) becomes

(6.4.4)

For each of the following Laplace transforms, state whether you can or cannot apply
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However,

x(z)=f(z)=f(z+T)=…=f(z+kT)=…,
(6.4.5)

because the range of integration in each integral is from 0 to T. Thus, F(s) becomes

(6.4.6)

or

F(s)=(1+e sT+e 2sT+…+e ksT+…)X(s). (6.4.7)

The first term on the right side of (6.4.7) is a geometric series with common ratio e sT. If

|e sT|<1, then the series converges and

(6.4.8)

 Example 6.4.1

Let us find the Laplace transform of the square wave with period T:

(6.4.9)

By definition x(t) is

(6.4.10)
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(6.4.11)

(6.4.12)

and

(6.4.13)

If  we  multiply  numerator  and  denominator  by  exp(sT/4)  and  recall  that  tanh(u)= 

(eu e u)/(eu+e u), we have that

(6.4.14)

 Example 6.4.2

Let us find the Laplace transform of the periodic function

(6.4.15)

By definition x(t) is

(6.4.16)

Then

(6.4.17)

Hence,

(6.4.18)

Then
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(6.4.19)

Problems

Find the Laplace transform for the following periodic functions:

1. f(t)=sin(t), 0 t , f(t)=f(t+ )

2. 

3. 

4. 

6.5 INVERSION BY PARTIAL FRACTIONS: HEAVISIDE’S 

EXPANSION THEOREM

In the previous sections, we devoted our efforts to calculating the Laplace transform of a 
given function.  Obviously we must have a method for going the other way.  Given a 
transform, we must find the corresponding function. This is often a very formidable task. 
In the next few sections we shall present some general techniques for the inversion of a 
Laplace transform.

The  first  technique  involves  transforms  that  we  can  express  as  the  ratio  of  two 
polynomials: F(s)=q(s)/p(s). We shall assume that the order of q(s) is less than p(s) and 
we have divided out any common factor between them. In principle we know that p(s) 
has n  zeros,  where n  is  the order of the p(s)  polynomial.  Some of the zeros may be 
complex, some of them may be real, and some of them may be duplicates of other zeros. 
In the case when p(s) has n simple zeros (nonrepeating roots), a simple method exists for 
inverting the transform.

We want to rewrite F(s) in the form:

(6.5.1)

where s
1
, s

2
,…, s

n
 are the n simple zeros of p(s). We now multiply both sides of (6.5.1) 

by s s
1
 so that

(6.5.2)
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If we set s=s
1
, the right side of (6.5.2) becomes simply a

1
. The left side takes the form 0/0

and there are two cases. If p(s)=(s s
1
)g(s), then 

1
=q(s

1
)/g(s

1
). If we cannot explicitly

factor out s s
1
, l’Hôspital’s rule gives

(6.5.3)

In a similar manner,  we can compute all  of the coefficients 
k
,  where k= 1, 2,…, n. 

Therefore,

(6.5.4)

(6.5.5)

This is Heaviside’s expansion theorem, applicable when p(s) has only simple poles.

 Example 6.5.1

Let us invert the transform s/[(s+2)(s2+1)]. It has three simple poles at s= 2 and s=±i. 

From our earlier discussion, q(s)=s, p(s)=(s+ 2)(s2+1), and p (s)=3s2+4s+1. Therefore,

(6.5.6)

(6.5.7)

(6.5.8)

(6.5.9)

where we used sin(t)= (eit e it), and cos(t)= (eit+e it).
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 Example 6.5.2

Let us invert  the transform 1/[(s 1)(s 2)(s 3)].  There are three simple poles at  s
1
=1, 

s
2
=2, and s

3
=3. In this case, the easiest method for computing a

1
, a

2
 and a

3
 is

(6.5.10)

(6.5.11)

and

(6.5.12)

Therefore,

(6.5.13)

(6 .5.14)

Note  that  for  inverting  transforms  of  the  form  F(s)e s  with  a>0,  you  should  use 
Heaviside’s expansion theorem to first  invert  F(s)  and then apply the second shifting 
theorem.

Let us now find the expansion when we have multiple roots, namely

(6.5.15)

where the order of the denominator, m
1
+m

2
+…+m

n
, is greater than that for the numerator. 

Once again we eliminated any common factor between the numerator and denominator. 
Now we can write F(s) as



The Laplace Transform 365 

(6.5.16)

Multiplying (6.5.16) by (s s
k
)mk,

(6.5.17)

where we grouped together into the square-bracketed term all of the terms except for
those with 

kj
 coefficients. Taking the limit as s→sk,

(6.5.18)

Let us now take the derivative of (6.5.17),

 

(6.5.19)

Taking the limit as s→s
k
,

(6.5.20)

In general,

(6.5.21)

and by direct inversion,
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(6.5.22)

 Example 6.5.3

Let us find the inverse of

(6.5.23)

We first note that the denominator has simple zeros at s=±i and a repeated root at s= 2.
Therefore,

(6.5.24)

where

(6.5.25)

(6.5.26)

(6.5.27)

and

(6.5.28)

Thus,

(6.5.29)
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(6.5.30)

In  §6.10  we  shall  see  that  we  can  invert  transforms  just  as  easily  with  the  residue
theorem.

Let us now find the inverse of

(6.5.31)

by Heaviside’s expansion theorem. Then

(6.5.32)

(6.5.33)

where =tan 1(d/c). Note that we must choose  so that it gives the correct sign for c and
d.

Taking the inverse of (6.5.33),

(6.5.34)

(6.5.35)

Equation (6.5.35) is the amplitude/phase form of the inverse of (6.5.31). It is particularly
popular with electrical engineers.

 Example 6.5.4

Let us express the inverse of

(6.5.36)
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in the amplitude/phase form. 
Starting with

(6.5.37)

(6.5.38)

or

f(t)=5.1017e 2t+3it+38.3675°i+5.1017e 2t 3it 38.3675°i
(6.5.39)

=10.2034e 2tcos(3t+38.3675°). (6.5.40)

 Example 6.5.5: The design of film jectors

For our final example we anticipate future work. The primary use of Laplace transforms 
is the solution of differential equations. In this example we illustrate this technique that 
includes Heaviside’s expansion theorem in the form of amplitude and phase.

This problem3 arose in the design of projectors for motion pictures. An early problem 
was ensuring that the speed at which the film passed the electric eye remairied essentially 
constant; otherwise, a frequency modulation of the reproduced sound resulted. Figure
6.5.1(A) shows a diagram of the projector. Many will remember this design from their 
days as a school projectionist. In this section we shall show that this particular design 
filters out variations in the film speed caused by irregularities either in the driving-gear 
trains or in the engagement of the sprocket teeth with the holes in the film.

3  Cook, E.D., 1935: The technical aspects of the high-fidelity reproducer. J. Soc. Motion Pict.
Eng., 25, 289–312.
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Figure  6.5.1:  (A)  The  schematic  for  the  scanning  light  in  a  motion-picture
projector and (B) interior of the film drum head.

Let us now focus on the film head—a hollow drum of small moment of inertia J
1
. See

Figure 6.5.1(B). Within it there is a concentric inner flywheel of moment of inertia J
2
,

where J
2
»J

1
. The remainder of the space within the drum is filled with oil. The inner

flywheel rotates on precision ball bearings on the drum shaft. The only coupling between
the drum and flywheel is through fluid friction and the very small friction in the ball
bearings. The flection of the film loops between the drum head and idler pulleys provides
the spring restoring force for the system as the film runs rapidly through the system.

From  Figure  6.5.1  the  dynamical  equations  governing  the  outer  case  and  inner
flywheel  are  (1)  the  rate  of  change  of  the  outer  casing  of  the  film head  equals  the
frictional torque given to the casing from the inner flywheel plus the restoring torque due
to the flection of the film, and (2) the rate of change of the inner flywheel equals the
negative of the frictional torque given to the outer casing by the inner flywheel.

Assuming that the frictional torque between the two flywheels is proportional to the
difference in their angular velocities, the frictional torque given to the casing from the
inner  flywheel  is  B(

2 1
),  where  B  is  the  frictional  resistance,  

1
 and  

2
 are  the

deviations  of  the  drum  and  inner  flywheel  from  their  normal  angular  velocities,
respectively. If r is the ratio of the diameter of the winding sprocket to the diameter of the
drum, the restoring torque due to the flection of the film and its corresponding angular

twist equals K  where K is the rotational stiffness and 
0
 is the deviation of the winding

sprocket from its normal angular velocity. The quantity r
0
 gives the angular velocity at

which the  film is  running through the  projector  because  the  winding sprocket  is  the
mechanism that pulls the film. Consequently the equations governing this mechanical
system are

(6.5.41)and
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(6.5.42)

With the winding sprocket, the drum, and the flywheel running at their normal uniform 
angular  velocities,  let  us  assume  that  the  winding  sprocket  introduces  a  disturbance 
equivalent to an unit increase in its angular velocity for 0.15 second, followed by the 
resumption of its normal velocity. It is assumed that the film in contact with the drum 
cannot slip. The initial conditions are 

1
(0)=

2
(0)=0.

Taking the Laplace transform of (6.5.41)–(6.5.42) using (6.1.18),

(6.5.43)

and

B
1
(s)+(J

2
s+B)

2
(s)=0. 

(6.5.44)

The solution of (6.5.43)–(6.5.44) for 
1
(s) is

(6.5.45)

where typical values4 are

(6.5.46)

(6.5.47)

The transform 
1
(s)  has three simple poles located at s

1
= 1.58, s

2
= 3.32+11.6i,  and 

s
3
= 3.32 11.6i.

Because the sprocket angular velocity deviation 
0
(t) is a pulse of unit amplitude and

0.15 second duration, we express it as the difference of two Heaviside step functions

0
(t)=H(t) H(t 0.15). 

4 J1=1.84 104 dyne cm sec2 per radian, J2=8.43 104 dyne cm sec2 per radian, B=12.4 104 dyne

cm sec per radian, K=2.89 106 dyne cm per radian, and r=0.578.
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(6.5.49)

Figure 6.5.2: The deviation 1(t) of a film drum head from its uniform angular 
velocity  when the  sprocket  angular  velocity  is  perturbed  by  a  unit 
amount for the duration of 0.15 second.

so that (6.5.45) becomes

(6.5.50)

The  inversion  of  (6.5.50)  follows  directly  from  the  second  shifting  theorem  and 
Heaviside’s expansion theorem or

(6.5.51)

where

(6.5.52)

(6.5.48)Its Laplace transform is
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(6.5.53)

(6.5.54)

and

(6.5.55)

Using Euler’s identity cos(t)=(eit+e it)/2, we can write (6.5.51) as

(6.5.56)

Equation (6.5.56) is plotted in Figure 6.5.2. Note that fluctuations in 
1
(t) are damped out

by the particular design of this film projector. Because this mechanical device dampens
unwanted fluctuations (or noise) in the motionpicture projector, this particular device is
an example of a mechanical filter.

Problems

Use  Heaviside’s  expansion  theorem  to  find  the  inverse  of  the  following  Laplace
transforms:

1. 

2. 

3. 

4. 



The Laplace Transform 373 

5. 

6. 

7. 

8. 

9. 

6.6 CONVOLUTION

In this section we turn to a fundamental concept in Laplace transforms: convolution. We 
shall restrict ourselves to its use in finding the inverse of a transform when that transform 
consists of the product of two simpler transforms. In subsequent sections we will use it to 
solve ordinary differential equations.

We  begin  by  formally  introducing  the  mathematical  operation  of  the  convolution 
product

(6.6.1)

In most cases the operations required by (6.6.1) are straightforward.

 Example 6.6.1

Let us find the convolution between cos(t) and sin(t).

(6.6.2)

(6.6.3)

Find the inverse of the following transforms and express them in amplitude/phase form:
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(6.6.4)

 Example 6.6.2

Similarly, the convolution between t2 and sin(t) is

(6.6.5)

(6.6.6)

(6.6.7)

=t2+2cos(t) 2 (6.6.8)

by integration by parts.

 Example 6.6.3

Consider now the convolution between et and the discontinuous function H(t 1) H(t 2):

(6.6.9)

(6.6.10)

In order to evaluate the integral (6.6.10) we must examine various cases. If t<1, then both 
of the step functions equal zero and the convolution equals zero. However, when 1<t<2, 
the first step function equals one while the second equals zero as the dummy variable x 
runs between 1 and t. Therefore,
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(6.6.11)

because the portion of the integral from zero to one equals zero. Finally, when t>2, the 
integrand is only nonzero for that portion of the integration when 1<x<2. Consequently,

(6.6.12)

Thus, the convolution of et with the pulse H(t 1) H(t 2) is

(6.6.13)

MATLAB can also be used to find the convolution of two functions. For example, in the 
present case the commands

syms x t positive 

int ( ’ exp (t−x) * (Heaviside (x−1) −Heaviside (x−2) ) ’, x, 0, t) 

yields 

ans = 

−Heaviside  (t−1)  +Heaviside  (t−1)  *exp  (t−1)  +Heaviside (t−2)

    −Heaviside (t−2) *exp (t−2)

The  reason  why  we  introduced  convolution  stems  from  the  following  fundamental 

theorem (often called Borel’s theorem5). If

(t)=u(t)* (t) (6.6.14)

then

W(s)=U(s)V(s).
(6.6.15)

In other words, we can invert a complicated transform by convoluting the inverses to two 
simpler functions. The proof is as follows:

5 Borel, É., 1901: Leçons sur les séries divergentes. Gauthier-Villars, p. 104.
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(6.6.16)

(6.6.17)

(6.6.18)

(6.6.19)

where t=r+x.

 Example 6.6.4

Let us find the inverse of the transform

(6.6.20)

(6.6.21)

from Example 6.6.1.

 Example 6.6.5

Let us find the inverse of the transform

(6.6.22)
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(6.6.23)

(6.6.24)

(6.6.25)

(6.6.26)

 Example 6.6.6

Let us use the results from Example 6.6.3 to verify the convolution theorem.
We begin by rewriting (6.6.13) in terms of the Heaviside step functions. Using the 

method outline in Example 6.2.1,

f(t)*g(t)=(et 1 1)H(t 1)+(1 et 2)H(t 2). 
(6.6.27)

Employing the second shifting theorem,

(6.6.28)

(6.6.29)

(6.6.30)

and the convolution theorem holds true. If we had not rewritten (6.6.13) in terms of step 

functions,  we  could  still  have  found   from  the  definition  of  the  Laplace
transform.

Therefore,
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Verify the following convolutions and then show that the convolution theorem is true.
Use MATLAB to check your answer.

1. 1*1=t
2. 1*cos(at)=sin(at)/a

3. 1*et=et 1

4. t*et=t3/6
5. t*sin(t)=t sin(t)

6. t*et=et t 1

7. 

8. 
9. H(t a)*H(t b)=(t a b)H(t a b)

10. 
Use the convolution theorem to invert the following functions:

11. 

12. 
13. Prove that the convolution of two Dirac delta functions is a Dirac delta function.

6.7 INTEGRAL EQUATIONS

An  integral  equation  contains  the  dependent  variable  under  an  integral  sign.  The
convolution theorem provides an excellent tool for solving a very special class of these

equations, Volterra equation of the second kind:6

(6.7.1)

These  equations  appear  in  history-dependent  problems,  such as  epidemics,7  vibration

problems,8 and viscoelasticity.9

6 Fock, 1924: Über eine Klasse von Integralgleichungen. Math. Zeit., 21, 161–173; Koizumi, S.,
1931: On Heaviside’s operational solution of a Volterra’s integral equation when its nucleus is a 
function of (x ). Philos. Mag., Ser. 7, 11, 432–441.
7 Wang, F.J.S., 1978: Asymptotic behavior of some deterministic epidemic models. SIAM J. Math.
Anal, 9, 529–534.

Problems

8 Lin, S.P., 1975: Damped vibration of a string. J. Fluid Mech., 72, 787–797.

9 Rogers, T.G., and E.H.Lee, 1964: The cylinder problem in viscoelastic stress analysis. Q. Appl.
Math., 22, 117–131.
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 Example 6.7.1

Let us find f(t) from the integral equation

(6.7.2)

The integral in (6.7.2) is such that we can use the convolution theorem to find its Laplace

transform. Then, because  the convolution theorem yields

(6.7.3)

Therefore, the Laplace transform converts (6.7.2) into

(6.7.4)

Solving for F(s),

(6.7.5)

By partial fractions, or by inspection,

(6.7.6)

Therefore, inverting term by term,

(6.7.7)

Note that the integral equation

(6.7.8)
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also has the same solution.

 Example 6.7.2

Let us solve the equation

(6.7.9)

Again the integral is one of the convolution type; it differs from the previous example in 
that it includes a derivative. Taking the Laplace transform of (6.7.9),

(6.7.10)

Because f(0)=0, (6.7.10) simplifies to

(6.7.11)

Solving for F(s),

(6.7.12)

Using partial fractions to invert (6.7.12),

(6.7.13)

Problems

Solve the following integral equations:

1. 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. Solve the following equation for f(t) with the condition that f(0)=4:

 

15. Solve the following equation for f(t) with the condition that f(0)=0:

 

16. During a study of nucleation involving idealized active sites along a boiling surface,

Marto and Rohsenow10 solved the integral equation

 
10 From Marto, P.J., and W.M.Rohsenow, 1966: Nucleate boiling instability of alkali metals. J.
Heat Transfer, 88, 183–193 with permission.
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to find the position x(t) of the liquid/vapor interface. If A, B, and C are constants and
x(0)=0, find the solution for them.
17. Solve the following equation for x(t) with the condition that x(0)=0:

 

where c is constant.
18. During a study of the temperature f(t) of a heat reservoir attached to a semi-infinite
heat-conducting rod, Huber 11solved the integral equation

 

where  and  are constants and f(0)=0. Find f(t) for him. Hint:

 

19. During the solution of a diffusion problem, Zhdanov, Chikhachev, and Yavlinskii
solved an integral equation similar to

 

where erf (x)  dy is the error function. What should they have found? Hint:
You will need to prove that

 

11 From Huber, A., 1934: Eine Methode zur Bestimmung der Wärme- und Temperaturleitfahigkeit.
Monatsh. Math. Phys., 41, 35–42.
12 Zhdanov, S.K., A.S.Chikhachev, and Yu.N.Yavlinskii, 1976: Diffusion boundary-value problem
for  regions with moving boundaries  and conservation of  particles.  Sov.  Phys.  Tech.  Phys.,  21, 

883–884.
13 See §5.3 in Andrews, L.C., 1985: Special Functions for Engineers and Applied Mathematicians.
MacMillian, 357 pp.

20. The Laguerre polynomial13

12
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satisfies the ordinary differential equation

ty +(1 t)y +ny=(ty ) ty +ny=0, 
 

with y(0)=1 and y (0)= n. 
step 1: Using (6.1.20) and (6.3.22), show that the Laplace transformed version of this

differential equation is

 

where Y(s) is the Laplace transform of y(t).
Step 2: Using (6.3.22) and the convolution theorem, show that Laguerre polynomials 

are the solution to the integral equation

 

6.8 SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS WITH 

CONSTANT COEFFICIENTS

For the engineer, as it was for Oliver Heaviside, the primary use of Laplace transforms is 
the  solution  of  ordinary,  constant  coefficient,  linear  differential  equations.  These 
equations are important not only because they appear in many engineering problems but 
also because they may serve as approximations, even if locally, to ordinary differential 
equations with nonconstant coefficients or to nonlinear ordinary differential equations.

For all of these reasons, we wish to solve the initial-value problem

(6.8.1)
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by Laplace transforms, where a
1
, a

2
,…are constants and we know the value of y, y ,…, 

y(n 1) at t=0. The procedure is as follows. Applying the derivative rule (6.1.20) to (6.8.1), 
we reduce the differential equation to an algebraic one involving the constants a

1
, a

2
, a

n
,

the parameter s, the Laplace transform of f(t), and the values of the initial conditions. We 
then solve for the Laplace transform of y(t), Y(s). Finally, we apply one of the many 
techniques of inverting a Laplace transform to find y(t).

Similar  considerations  hold  with  systems  of  ordinary  differential  equations.  The 
Laplace transform of the system of ordinary differential equations results in an algebraic 
set of equations containing Y

1
(s), Y

2
(s),…, Y

n
(s). By some method we solve this set of 

equations and invert each transform Y
1
(s), Y

2
(s),…, Y

n
(s) in turn to give y

1
(t), y

2
(t),…, y

n
(t).

The following examples will illustrate the details of the process.

 Example 6.8.1

Let us solve the ordinary differential equation

y +2y =8t, 

subject to the initial conditions that y (0)=y(0)=0. Taking the Laplace transform of both 
sides of (6.8.2),

(6.8.3)

or

(6.8.4)

where  Substituting the initial conditions into (6.8.4) and solving for

Y(s),

(6.8.5)

(6.8.6)

(6.8.2)
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Matching powers of s in the numerators of (6.8.6), C+D=0, B+2C=0, A+2B=0, and 2A=8
or A=4, B= 2, C=1 and D= 1. Therefore,

(6.8.7)

Finally, performing term-by-term inversion of (6.8.7), the final solution is

y(t)=2t2 2t+1 e 2t. (6.8.8)

We  could  have  performed  the  same  operations  using  the  symbolic  toolbox  with
MATLAB. The MATLAB script

clear 
% define symbolic variables 
syms s t Y 

% take Laplace transform of left side of differential equation 

LHS = laplace(diff(diff(sym(’y(t)’))) +2*diff (sym(’y(t)’))); 

% take Laplace transform of right side of differential equation 
RHS = laplace(8*t); 
% set Y for Laplace transform of y 
%    and introduce initial conditions 
newLHS = subs(LHS,’laplace(y(t),t,s)’,’y(0)’,’D(y)(0)’,Y,0,0); 
% solve for Y 
Y = solve (newLHS-RHS, Y) ; 
% invert Laplace transform and find y(t) 
y = ilaplace(Y,s,t)

yields the result

y = 
1 exp( 2*t) 2*t+2*tˆ2

which agrees with (6.8.8).

 Example 6.8.2

Let us solve the ordinary differential equation

y +y=H(t) H(t 1) (6.8.9)
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of (6.8.9),

(6.8.10)

where  Substituting the initial conditions into (6.8.10) and solving for
Y(s),

(6.8.11)

Using the second shifting theorem, the final solution is

y(t)=1 cos(t) [1 cos(t 1)]H(t 1). (6.8.12)

We can check our results using the MATLAB script

clear
% define symbolic variables
syms s t Y

% take Laplace transform of left side of differential equation
LHS = laplace(diff(diff(sym(’y(t)’))) +sym(’y(t)’));

% take Laplace transform of right side of differential equation
RHS = laplace(’Heaviside(t) Heaviside(t 1)’,t,s);
% set Y for Laplace transform of y
%    and introduce initial conditions
newLHS = subs(LHS,’laplace(y(t),t,s)’,’y(0)’,’D(y)(0)’,Y,0,0);
% solve for Y
Y = solve(newLHS-RHS,Y);
% invert Laplace transform and find y(t)
y = ilaplace (Y,s,t)

which yields

y =
1 cos(t) Heaviside(t 1)+Heaviside(t 1)*cos(t 1)

with the initial conditions that y (0)=y(0)=0. Taking the Laplace transform of both sides
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Let us solve the ordinary differential equation

y +2y +y=f(t) (6.8.13)

with the initial conditions that y (0)=y(0)=0, where f(t) is an unknown function whose 
Laplace transform exists. Taking the Laplace transform of both sides of (6.8.13),

s2Y(s) sy(0) y (0)+2sY(s) 2y(0)+Y(s)=F(s), (6.8.14)

where  Substituting the initial conditions into (6.8.14) and solving for
Y(s),

(6.8.15)

We wrote (6.8.15) in this form because the transform Y(s)  equals the product of two 

transforms 1/(s+1)2 and F(s). Therefore, by the convolution theorem we can immediately 
write

(6.8.16)

Without knowing f(t), this is as far as we can go.

 Example 6.8.4: Forced harmonic oscillator

Let us solve the simple harmonic oscillator forced by a harmonic forcing

y + 2y=cos( t), (6.8.17)

subject to the initial conditions that y (0)=y(0)=0. Although the complete solution could 
be found by summing the complementary solution and a particular solution obtained, say, 
from the method of undetermined coefficients, we now illustrate how we can use Laplace 
transforms to solve this problem.

Taking  the  Laplace  transform  of  both  sides  of  (6.8.17),  substituting  in  the  initial 
conditions, and solving for Y(s),

 Example 6.8.3
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(6.8.18)

and

(6.8.19)

Equation (6.8.19) gives an oscillation that grows linearly with time although the forcing function 
is simply periodic. Why does this occur? Recall that our simple harmonic oscillator has the nat-
ural frequency . But that is exactly the frequency at which we drive the system. Consequently, 
our choice of forcing has resulted in resonance where energy continuously feeds into the 
oscillator.

 Example 6.8.5

Let us solve the system of ordinary differential equations:

2x +y=cos(t), 

and

y 2x=sin(t),

subject to the initial conditions that x(0)=0, and y(0)=1. Taking the Laplace transform of
(6.8.20) and (6.8.21),

(6.8.22)

and

(6.8.23)

after introducing the initial conditions. Solving for X(s) and Y(s),

(6.8.20)

(6.8.21)
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(6.8.24)

and

(6.8.25)

Taking the inverse of (6.8.24)–(6.8.25) term by term,

(6.8.26)

and

y(t)=t sin(t)+cos(t). (6.8.27)

The MATLAB script

clear 
% define symbolic variables 
syms s t X Y 

% take Laplace transform of left side of differential equations 
LHS1 = laplace(2*diff(sym(’x(t)’)) +sym(’y(t)’));
LHS2 = laplace(diff(sym(’y(t)’)) 2*sym(’x(t)’)); 
% take Laplace transform of right side of differential equations 
RHS1 = laplace(cos(t)); RHS2=laplace(sin(t)); 
% set X and Y for Laplace transforas of x and y 
%    and introduce initial conditions 
newLHS1 = subs(LHS1,’laplace(x(t),t,s)’,’laplace(y(t),t,s)’,…
    ’x(0)’,’y(0)’,X,Y,0,1); 
newLHS2 = subs(LHS2,’laplace(x(t),t,s)’,’laplace(y(t),t,s)’,…

    ’x(0)’,’y(0)’,X,Y,0,1); 
% solve for X and Y 
[X,Y] = solve(newLHS1 RHS1, newLHS2 RHS2,X,Y); 
% invert Laplace transform and find x(t) and y(t) 
x = ilaplace(X,s,t);y = ilaplace(Y,s,t)
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uses the symbolic toolbox to solve (6.8.20)–(6.8.21). MATLAB finally gives

x = 
1/2*t*cos(t) 1/2*sin(t) 
y = 
t*sin(t)+cos(t)

 Example 6.8.6

Let us determine the displacement of a mass m attached to a spring and excited by the 
driving force

(6.8.28)

The dynamical equation governing this system is

(6.8.29)

where 2=k/m and k is the spring constant. Assuming that the system is initially at rest, 
the Laplace transform of the dynamical system is

(6.8.30)

or

(6.8.31)

Partial fraction yield

(6.8.32)

Inverting (6.8.32) term by term,
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(6.8.33)

The solution to this problem consists of two parts. The exponential terms result from the 
forcing and will die away with time. This is the transient portion of the solution. The 
sinusoidal  terms are those natural  oscillations that  are necessary so that  the solution sat-
isfies  the  initial  conditions.  They are  the  steady-state  portion of  the  solution and endure 
forever. Figure 6.8.1 illustrates the solution when T=0.1, 1, and 2. Note that the displacement 
decreases in magnitude as the nondimensional frequency of the oscillator increases.

 Example 6.8.7

Let us solve the equation

y +16y= (t /4)
(6.8.34)

with the initial conditions that y(0)=1, and y (0)=0. 
Taking the Laplace transform of (6.8.34) and inserting the initial conditions,

(s2+16)Y(s)=s+e s /4,
(6.8.35)

or

(6.8.36)
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Figure  6.8.1:  Displacement  of  a  simple  harmonic  oscillator  with 
nondimensional frequency T as a function of time t/T. The 
top frame shows the forcing function.

Applying the second shifting theorem,

(6.8.37)

(6.8.38)

We can check our results using the MATLAB script

clear 
% define symbolic variables 
syms pi s t Y 
% take Laplace transform of left side of differential equation 



The Laplace Transform 393 

LHS = laplace(diff(diff(sym(’y(t)’)))+16*sym(’y(t)’)); 
% take Laplace transform of right side of differential equation 

RHS = laplace (’ Dirac(t-pi/4)’,t,s); 
% set Y for Laplace transf orm of y 
%    and introduce initial conditions 
newLHS = subs(LHS,’laplace(y(t),t,s)’,’y(0)’,’D(y)(0)’,Y,1,0); 
% solve for Y 
Y = solve (newLHS-RHS, Y); 
% invert Laplace transform and find y(t) 
y = ilaplace (Y,s,t)

which yields

y = 
cos(4*t) 1/4*Heaviside(t 1/4*pi)*sin(4*t)

We can also verify that (6.8.38) is the solution to our initial-value problem by computing 
the (generalized) derivative of (6.8.38) or

(6.8.39)

(6.8.40)

(6.8.41)

since f(t) (t t
0
)=f(t

0
) (t t

0
). Similarly,

(6.8.42)

(6.8.43)

(6.8.44)
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of y(0) and y (0) also shows that we have the correct solution. 

 Example 6.8.8: Oscillations in electric circuits

During the middle of the nineteenth century, Lord Kelvin14 analyzed the LCR electrical
circuit shown in Figure 6.8.2 which contains resistance R, capacitance C, and inductance
L.  For  reasons  that  we  shall  shortly  show,  this  LCR circuit  has  become  one  of  the
quintessential circuits for electrical engineers. In this example, we shall solve the problem
by Laplace transforms.

Because  we  can  add  the  potential  differences  across  the  elements,  the  equation
governing the LCR circuit is

(6.8.45)

where I denotes the current in the circuit. Let us solve (6.8.45) when we close the circuit
and the initial  conditions are  I(0)=0 and Q(0)= Q

0
.  Taking the Laplace transform of

(6.8.45),

(6.8.46)

Figure 6.8.2: Schematic of a LCR circuit.

Substituting (6.8.38) and (6.8.44) into (6.8.34) completes the verification. A quick check

14 Thomson, W., 1853: On transient electric currents. Philos. Mag., Ser. 4, 5, 393–405.
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(6.8.47)

where =R/(2L), and  From the first shifting theorem,

(6.8.48)

where 2= 2>0. The quantity  is  the natural  frequency of the circuit,  which is
lower than the free frequency 

0
 of  a  circuit  formed by a  condenser  and coil.  Most

importantly, the solution decays in amplitude with time.
Although Kelvin’s solution was of academic interest when he originally published it,

this  radically changed with the advent  of  radio telegraphy15  because the LCR circuit

described the fundamental physical properties of wireless transmitters and receivers.16

The inescapable conclusion from numerous analyses was that no matter how cleverly the
receiver was designed, eventually the resistance in the circuit would dampen the electrical
oscillations and thus limit the strength of the received signal.

This  technical  problem was  overcome  by  Armstrong17  who  invented  an  electrical
circuit  that  used  De Forest’s  audion  (the  first  vacuum tube)  for  generating  electrical
oscillations and for amplifying externally impressed oscillations by “regenerative action.”
The effect of adding the “thermionic amplifier” is seen by again considering the LRC
circuit as shown in Figure 6.8.3 with the modification suggested by Armstrong.18

15  Stone, J S.,  1914: The resistance of the spark and its effect on the oscillations of electrical
oscillators. Proc. IRE, 2, 307–324.

16 See Hogan, J.L., 1916: Physical aspects of radio telegraphy. Proc. IRE, 4, 397–420.

17  Armstrong,  E.H.,  1915:  Some  recent  developments  in  the  audion  receiver.  Proc.  IRE,  3,

215–247.

Solving for (s),

18 From Ballantine, S., 1919: The operational characteristics of thermionic amplifiers. Proc. IRE,
7, 129–161. ©IRE (now IEEE).
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Figure 6.8.3: Schematic of a LCR circuit with the addition of a thermionic 
amplifier. [From Ballantine, S., 1919: The operational characteris-
tics of thermionic amplifiers. Proc. IRE, 7, 155. ©IRE (now IEEE).]

The governing equations of this new circuit are

(6.8.49)

and

(6.8.50)

where the plate circuit has the current I
p
, the resistance R

0
, the inductance L

2
, and the

electromotive  force  (emf)  of   The  mutual  inductance  between  the  two 
circuits is given by M. Taking the Laplace transform of (6.8.49)–(6.8.50),

(6.8.51)

and

(6.8.52)
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Eliminating 
p
(s) between (6.8.51)–(6.8.52) and solving for (s),

(6.8.53)

For high-frequency radio circuits, we can approximate the roots of the denominator of
(6.8.53) as

(6.8.54)

and

(6.8.55)

In the limit of M and R
0
 vanishing, we recover our previous result for the LRC circuit. 

However, in reality, R
0
 is very large and our solution has three terms. The term associated 

with s
1
 is a rapidly decaying transient while the s

2
 and s

3
 roots yield oscillatory solutions 

with  a  slight  amount  of  damping.  Thus,  our  analysis  shows  that  in  the  ordinary 
regenerative circuit, the tube effectively introduces sufficient “negative” resistance so that 
the resultant positive resistance of the equivalent LCR circuit is relatively low, and the 
response of an applied signal voltage at the resonant frequency of the circuit is therefore 
relatively great. Later, Armstrong19 extended his work on regeneration by introducing an 
electrical circuit—the superregenerative circuit—where the regeneration is made large 
enough so that the resultant resistance is negative, and self-sustained oscillations can occur.
20 It was this circuit21 which led to the explosive development of radio in the 1920s and 1930s.

19  Armstrong,  E.H.,  1922:  Some recent  developments  of  regenerative  circuits.  Proc.  IRE,  10,

244–260.

20  See  Frink,  F.W.,  1938:  The  basic  principles  of  superregenerative  reception.  Proc.  IRE,  26,

76–106.

21 Lewis, T., 1991: Empire of the Air: The Men Who Made Radio. HarperCollins Publishers, 421
pp.
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Figure 6.8.4: Schematic of a resonance transformer circuit.

 Example 6.8.9: Resonance transformer circuit

One of the fundamental electrical circuits of early radio telegraphy22  is the resonance
transformer  circuit  shown  in  Figure  6.8.4.  Its  development  gave  transmitters  and 
receivers the ability to tune to each other.
The governing equations follow from Kirchhoff ’s law and are

22 Fleming, J.A., 1919: The Principles of Electric Wave Telegraphy and Telephony.  Longmans,
Green, 911 pp.

(6.8.56)

and

(6.8.57)

Let us examine the oscillations generated if initially the system has no currents or charges 
and the forcing function is E(t)= (t).



The Laplace Transform 399 

Taking the Laplace transform of (6.8.56)–(6.8.57),

(6.8.58)

and

(6.8.59)

Because the current in the second circuit is of greater interest, we solve for 
2
 and find 

that

(6.8.60)

where =R/(2L
2
),  and k2=M2/(L

1
L

2
), the so-called

coefficient of coupling.

We  can  obtain  analytic  solutions  if  we  assume  that  the  coupling  is  weak  (k2«1).
Equation (6.8.60) becomes

(6.8.61)

Using partial fractions and inverting term by term, we find that

(6.8.62)
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Figure  6.8.5:  The  resonance  curve   for  a  resonance

transformer circuit with r= 2/ 1.

where 
The  exponentially  damped  solutions  will  eventually  disappear,  leaving  only  the 

steady-state  oscillations  which  vibrate  with  the  angular  frequency  
1
,  the  natural

frequency  of  the  primary  circuit.  If  we  rewrite  this  steadystate  solution  in
amplitude/phase form, the amplitude is

(6.8.63)

where r=
2
/

1
. As Figure 6.8.5 shows, as r increases from zero to two, the amplitude 

rises  until  a  very sharp peak occurs  at  r=1 and then decreases just  as  rapidly as  we 
approach r=2. Thus, the resonance transformer circuit provides a convenient way to tune 
a transmitter or receiver to the frequency 

1
.

 Example 6.8.10: Delay differential equation

Laplace  transforms  provide  a  valuable  tool  in  solving  a  general  class  of  ordinary 

differential equations called delay differential equations. These equations arise in such 

diverse fields as chemical kinetics23 and population dynam ics.24

23 See Roussel, M.R., 1996: The use of delay differential equations in chemical kinetics. J. Phys.
Chem., 100, 8323–8330.

24  See  the  first  chapter  of  MacDonald,  N.,  1989:  Biological  Delay  Systems:  Linear  Stability
Theory. Cambridge University Press, 235 pp.
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To illustrate the technique,25 consider the differential equation

x = x(t 1) (6.8.64)

with x(t)=1 at for 0<t<1. Clearly, x(0)=1. 

Multiplying (6.8.64) by e st and integrating from 1 to ,

(6.8.65)

(6.8.66)

(6.8.67)

(6.8.68)

since x (t)= a for 0<t<1. Solving for X(s),

X(s)=(1+ae s/s a/s)/[s(1+ae s/s)]. (6.8.69)

To facilitate the inversion of (6.8.69), we expand its denominator in terms of a geometric 
series and find that

(6.8.70)

25 Reprinted with permission from Epstein, I.R., 1990: Differential delay equations in chemical
kinetics: Some simple linear model systems. J. Chem. Phys., 92, 1702–1712. ©1990, American 
Institute of Physics.
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(6.8.71)

and

(6.8.72)

Figure 

 

6.8.6 

 

illustrates 

 

(6.8.72) 

 

as 

 

a 

 

function 

 

of 

 

time 

 

for 

 

various 

 

values 

 

of 

 

a. 

 

For 

0< <e 1, x(t) decays monotonically from 1 to an asymptotic limit of zero. For e 1<a< /2, 
the solution is a damped oscillatory function. If

Figure

 

6.8.6:

 

The

 

solution

 

to

 

the

 

differential

 

delay

 

equation

 

(6.8.59)

 

at

 

various 
times t and values of a.

/2<a, then x(t) is oscillatory with an exponentially increasing envelope. 
When a= /2, x(t) oscillates periodically.

 Example 6.8.11

Laplace

 

transforms

 

can

 

sometimes

 

be

 

used

 

to

 

solve

 

ordinary

 

differential

 

equations

 

where 
the coefficients are powers of

 

t. To illustrate this, let us solve

(6.8.73)

We begin by taking the Laplace transform of (6.8.73) and find that

(6.8.74)
               

 

The first and third sums cancel, except for the n=0 term in the first sum.
Therefore,
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(6.8.75)

Later on, we will find A.
Equation

 

(6.8.75)

 

is

 

a

 

first-order,

 

linear,

 

ordinary

 

differential

 

equation

 

with

 

s

 

as

 

its 
independent

 

variable.

 

To

 

find

 

Y(s),

 

we

 

use

 

the

 

standard

 

technique

 

of

 

multiplying

 

it

 

by

 

its

integrating factor, here  and rewriting it as

(6.8.76)

Integrating (6.8.76) from s to , we obtain

(6.8.77)

or

(6.8.78)

We

 

must

 

now

 

evaluate

 

A.

 

From

 

the

 

final-value

 

theorem,

 

lim
t→

 

y(t)= lim
s→0

 

sY(s)=0. 

Therefore,

 

multiplying

 

(6.8.78)

 

by

 

s

 

and

 

using

 

the

 

expansion

 

for

 

the

 

complementary

 

error 
function for small s, we have that

(6.8.79)

In order that lim  Therefore,

(6.8.80)

The final step is to invert (6.8.80). Applying tables and the convolution theorem,

(6.8.81)

An interesting aspect of this problem is the fact that we not know y (0). To circumvent 
this difficulty, let us temporarily set y (0)= A so that (6.8.74) becomes
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(6.8.82)

Problems

Solve  the  following  ordinary  differential  equations  by  Laplace  transforms.  Then  use 
MATLAB to verify your solution.

1. y 2y=1 t; y(0)=1

2. y 4y +3y=et; y(0)=0, y (0)=0

3. y 4y +3y=e2t; y(0)=0, y (0)=1

4. y 6y +8y=et; y(0)=3, y (0)=9

5. y +4y +3y=e t; y(0)=1, y (0)=1
6. y +y=t; y(0)=1, y (0)=0

7. y +4y +3y=et; y(0)=0, y (0)=2
8. y 4y +5y=0; y(0)=2, y (0)=4
9. y +y=tH(t 1); y(0)=0
10. y +3y +2y=H(t 1); y(0)=0, y (0)=1
11. y 3y +2y=H(t 1); y(0)=0, y (0)=1
12. y +4y=3H(t 4); y(0)=1, y (0)=0
13. y +4y +4y=4H(t 2); y(0)=0, y (0)=0

14. y +3y +2y=et 1 H(t 1); y(0)=0, y (0)=1

15. y 3y +2y=e (t 2)H(t 2); y(0)=0, y (0)=0
16. y 3y +2y=H(t 1) H(t 2); y(0)=0, y (0)=0
17. y +y=1 H(t T); y(0)=0, y (0)=0

18. 

19. 

20. 

21. y 2y +y=3 (t 2); y(0)=0, y (0)=1
22. y 5y +4y= (t 1); y(0)=0, y (0)=0
23. y +5y +6y=3 (t 2) 4 (t 5); y(0)=y (0)=0
24. y + y =A (t ) BH(t ); y(0)=y (0)=0
25. x 2x+y=0, y 3x 4y=0; x(0)=1, y(0)=0
26. x 2y =1, x +y x=0; x(0)=y(0)=0

27. x + 2x y =0, x +y+x=t2; x(0)=y(0)=0
28. x +3x y=1, x +y +3x=0; x(0)=2, y(0)=0
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x 2y =F
1
+x+2y, 2x +y =F

2
+2x+3y, 

subject to the initial  conditions that x(0)=y(0)=x (0)=y (0)=0. Find the solution to this
system.
Use  Laplace  transforms  to  find  the  solution  for  the  following  ordinary  differential
equations:
30.y +2ty 8y=0, y(0)=1, y (0)=0
31.y ty +2y=0, y(0)= 1, y (0)=0
Step 1: Show that the Laplace transform for these differential equations is

30. 2sY (s)+(10 s2)Y(s)= s

31. sY (s)+(s2+3)Y(s)= s
Step 2: Solve these first-order ordinary differential equations and show that

30.Y(s)=1/s+8/s3+32/s5+Aes2/4/s5

31.Y(s)=(A 2)e s2/2/s3+2/s3 1/s
Step 3: Invert Y(s) and show that the general solutions are

30. y(t)=1+4t2+4t4/3

31. y(t)=t2–1
Use  Laplace  transforms  to  find  the  general  solutions  for  the  following  ordinary 
differential equations:
32. ty (2 t)y y=0
33. ty 2(a+bt)y +b(2a+bt)y=0, a 0
Step 1: Show that the Laplace transform for these differential equations is

26  Reprinted  from  Astronaut.  Acta,  14,  K.Forster,  P.R.Escobal,  and  H.A.Lieske,  Motion  of  a
vehicle in the transition region of the three-body problem, 1–10, ©1968, with kind permission 
from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.

32. s(s+1)Y (s)+2(2s+1)Y(s)=3y(0)

33. (s b)2Y (s)+2(1+a)(s b)Y(s)=(1+2 )y(0)
Step 2: Solve these first-order ordinary differential equations and show that

32.Y(s)=y(0)/(s +1)+y(0)/[2(s+1)2]+A/[s2(S+1)2]

33. Y(s)=y(0)/(s b)+A/(a b)2+2a

Step 3: Invert Y(s) and show that the general solutions are

32. y(t)=C
1
(t+2)e t+C

2
(t 2)

33. y(t)=C
1
ebt+C

2
t2a+1ebt

29.  Forster,  Escobal,  and Lieske26  used Laplace transforms to solve the linearized equa
tions of motion of a vehicle in a gravitational field created by two other bodies. A 
simplified  form  of  this  problem  involves  solving  the  following  system  of  ordinary
 differential equations:
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with a forcing term is its lack of generality. Each new  forcing function requires a 
repetition of the entire process. In this section we give some methods for finding the 
solution in a somewhat more general manner for stationary systems where the forcing, 
not any initially stored energy (i.e., nonzero initial conditions), produces the total output. 
Unfortunately, the solution must be written as an integral.

In Example 6.8.3 we solved the linear differential equation

y +2y +y=f(t),

subject to the initial conditions y(0)=y (0)=0. At that time we wrote the Laplace transform 
of y(t), Y(s), as the product of two Laplace transforms:

(6.9.2)

One drawback in using (6.9.2) is its dependence upon an unspecified Laplace transform 
F(s).  Is  there  a  way  to  eliminate  this  dependence  and  yet  retain  the  essence  of  the 
solution?

One way of obtaining a quantity that is independent of the forcing is to consider the 
ratio:

(6.9.3)

This ratio is called the transfer function because we can transfer the input F(s) into the 
output  Y(s)  by  multiplying  F(s)  by  G(s).  It  depends  only  upon the  properties  of  the 
system.

Let us now consider a related problem to (6.9.1), namely

g +2g +g= (t), t>0,
(6.9.4)

with g(0)=g (0)=0. Because the forcing equals the Dirac delta function, g(t) is called the 

impulse response or Green’s function.27 Computing G(s),

(6.9.5)

6.9 TRANSFER FUNCTIONS, GREEN’S FUNCTION, AND 

INDICIAL ADMITTANCE

One of the drawbacks of using Laplace transforms to solve ordinary differential equations

(6.9.1)

27 For the origin of the Green’s function, see Farina, J.E.G., 1976: The work and significance of
George Green, the miller mathematician, 1793–1841. Bull. Inst. Math. Appl., 12, 98–105.
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for computing the transfer function is to subject the system to impulse forcing and the
Laplace transform of the response is the transfer function.

From (6.9.3),

Y(s)=G(s)F(s),
(6.9.6)

or

y(t)=g(t)*f(t).
(6.9.7)

That is,  the convolution of the impulse response with the particular forcing gives the
response of the system. Thus, we may describe a stationary system in one of two ways:
(1) in the transform domain we have the transfer function, and (2) in the time domain
there is the impulse response.

Despite the fundamental importance of the impulse response or Green’s function for a
given linear system, it is often quite difficult to determine, especially experimentally, and
a  more  convenient  practice  is  to  deal  with  the  response  to  the  unit  step  H(t).  This

response is called the indicial admittance or step response, which we shall denote by a(t). 

Because   we  can  determine  the  transfer  function  from the  indicial 

admittance because  or sA(s)=G(s). Furthermore, because

(6.9.8)

then

(6.9.9)

from (6.1.18).

 Example 6.9.1 

Let us find the transfer function, impulse response, and step response for the system

From (6.9.3) we see that G(s) is also the transfer function. Thus, an alternative method

y 3y +2y=f(t), (6.9.10)
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with y(0)=y (0)=0. To find the impulse response, we solve

g 3g +2g= (t), (6.9.11)

with g(0)=g (0)=0. Taking the Laplace transform of (6.9.11), we find that

(6.9.12)

which is the transfer function for this system. The impulse response equals the inverse of
G(s) or

g(t)=e2t et. 
(6.9.13)

To find the step response, we solve

a 3a +2a=H(t),
(6.9.14)

with a(0)=a (0)=0. Taking the Laplace transform of (6.9.14),

(6.9.15)

or

(6.9.16)

Note that a (t)=g(t).
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MATLAB’s control toolbox contains several routines for the numerical computation of
impulse and step responses if the transfer function can be written as the ratio of two 
polynomials.  To  illustrate  this  capacity,  let  us  redo  the  previous  example  where  the 
transfer function is given by (6.9.12). The transfer function is introduced by loading in 
the polynomial in the numerator num and in the denominator den followed by calling tf. 
The MATLAB script

clear 
% load in coefficients of the numerator and denominator 
%    of the transfer function 
num = [0 0 1] ; den = [1 3 2] ; 
% create the transfer function 
sys = tf (num, den) ; 
% find the step response, a

Figure  6.9.1:  The  impulse  and  step  responses  corresponding  to  the  
transfer function (6.9.12).

[a, t] = step (sys) ; 
% plot the indicial admittance 
subplot (2, 1, 1) , plot (t, a, ’o’) 
ylabel ( ’ indicial response’,’Fontsize’, 20) 
% find the impulse response, g 
[g, t] = impulse (sys) ; 
% plot the impulse response 
subplot (2, 1, 2), plot (t, g, ’o’ ) 
ylabel ( ’ impulse response’,’Fontsize’ , 20) 
xlabel ( ’time’, ’Fontsize’ , 20 )

shows how the impulse and step responses are found. Both of them are shown in Figure
6.9.1.

 Example 6.9.2
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 Example 6.9.3

There is an old joke about a man who took his car into a garage because of a terrible
knocking sound. Upon his arrival the mechanic took one look at it and gave it a hefty 
kick.28 Then, without a moment’s hesitation he opened the hood, bent over, and tightened
up a loose bolt. Turning to the owner, he said, “Your car is fine. That’ll be $50.” The 
owner felt that the charge was somewhat excessive, and demanded an itemized account.
The mechanic said, “The kicking of the car and tightening one bolt, cost you a buck. The 
remaining $49 comes from knowing where to kick the car and finding the loose bolt.”

Although the moral of the story may be about expertise as a marketable commodity, it

also illustrates the concept of transfer function.29 Let us model the car as a linear system 
where the equation

(6.9.17)

governs the response y(t) to a forcing f(t). Assuming that the car has been sitting still, the 
initial conditions are zero and the Laplace transform of (6.9.17) 

is

K(s)Y(s)=F(s),
(6.9.18)

where

K(s)=a
n
sn+a

n 1
sn 1+…+

1
s+a

0
. (6.9.19)

Hence

(6.9.20)

where the transfer function G(s) clearly depends only on the internal workings of the car. 
So if we know the transfer function, we understand how the car vibrates because

28 This is obviously a very old joke.

29 Originally suggested by Stern, M.D., 1987: Why the mechanic kicked the car—A teaching aid
for transfer functions. Math. G z., 71, 62–64.
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(6.9.21)

But what does this have to do with our mechanic? He realized that a short sharp kick
mimics  an  impulse  forcing  with  f(t)= (t)  and  y(t)=g(t).  Therefore,  by  observing  the
response of the car to his kick, he diagnosed the loose bolt and fixed the car.

In this section we showed how the response of any system can be expressed in terms of
its Green’s function and the arbitrary forcing. Can we also determine the response using
the indicial admittance a(t)?

Consider first a system that is dormant until a certain time t=
1
.  At that instant we

subject the system to a forcing H(t
1
). Then the response will be zero if t<

1
 and will

equal the indicial admittance a(t
1
) when t>

1
 because the indicial admittance is the

response of a system to the step function. Here t
1
 is the time measured from the instant

of change.
Next, suppose that we now force the system with the value f(0) when t=0 and hold that

value until t=
1
. We then abruptly change the forcing by an amount f(

1
) f(0) to the value

f(
1
) at the time 

1
 and hold it at that value until t=

2
. Then we again abruptly change the

forcing by an amount f(
2
) f(

1
) at the time 

2
, and so forth (see Figure 6.9.2). From

Figure 6.9.2: Diagram used in the derivation of Duhamel’s integral.

the linearity of the problem the response after the instant t=
n
 equals the sum

y(t)=f(0) (t)+[f(
1
) f(0)]a(t

1
)+[f(

2
) f(

1
)]a(t

2
)

+…+[f(
n
) f(

n 1
)] (t

n
).

(6.9.22)
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If we write f(
k
) f(

k 1
)= f

k
 and 

k k 1
=

k
, (6.9.22) becomes

(6.9.23)

Finally, proceeding to the limit as the number n  of jumps becomes infinite, in such a 
manner that all jumps and intervals between successive jumps tend to zero, this sum has 
the limit

(6.9.24)

Because the total response of the system equals the weighted sum [the weights being 
(t)] of the forcing from the initial moment up to the time t, we refer to (6.9.24) as the 

superposition integral,  or  Duhamel’s  integral,30  named after  the French mathematical 
physicist Jean-Marie-Constant Duhamel (1797–1872) who first derived it in conjunction 
with heat conduction.

We can also express (6.9.24) in several different forms. Integration by parts yields

(6.9.25)

 Example 6.9.4

Suppose that a system has the step response of a(t)=A[1 e t/T], where A and T are positive 
constants. Let us find the response if we force this system by f(t)=kt, where k is a constant.

From the superposition integral (6.9.24),

(6.9.26)

Problems

For  the  following  nonhomogeneous  differential  equations,  find  the  transfer  function, 
impulse response, and step response. Assume that all of the necessary initial conditions
are zero. If you have MATLAB’s control toolbox, use MATLAB to check your work.

30  Duhamel,  J.-M.-C.,  1833:  Memoire  sur  la  méthode  générale  relative  au  mouvement  de  la
chaleur dans les corps solides plongés dans des milieux dont la température varie avec le temps. J. 
École Polytech., 22, 20–77.
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1. y +ky=f(t)
2. y 2y 3y=f(t)
3. y +4y+3y=f(t)
4. y 2y +5y=f(t)
5. y 3y +2y=f(t)
6. y +4y +4y=f(t)
7. y 9y=f(t)
8. y +y=f(t)
9. y y =f(t)

6.10 INVERSION BY CONTOUR INTEGRATION

In §6.5 and 6.6 we showed how we can use partial fractions and convolution to find the
inverse of the Laplace transform F(s). In many instances these methods fail simply
because of the complexity of the transform to be inverted. In this section we shall show
how we can invert transforms through the powerful method of contour integration. Of 
course, the student must be proficient in the use of complex variables.

Consider the piece-wise differentiable function f(x) which vanishes for x<0. We can

express the function e cxf(x) by the complex Fourier representation of

(6.10.1)

for any value of the real constant c, where the integral

(6.10.2)

exists. By multiplying both sides of (6.10.1) by ecx and bringing it inside the first integral,

(6.10.3)

With the substitution z=c+ i, where z is a new, complex variable of integration,

(6.10.4)
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express f(t) in terms of its transform by the complex contour integral

(6.10.5)

This line integral, Bromwich’s integral,31 runs along the line x=c parallel to the imaginary
axis and c units to the right of it, the so-called Bromwich contour. We select the value of c
sufficiently large so that the integral (6.10.2) exists; subsequent analysis shows that this
occurs when c is larger than the real part of any of the singularities of F(z).

We  must  now evaluate  the  contour  integral.  Because  of  the  power  of  the  residue
theorem in complex variables, the contour integral is usually transformed into a closed
contour through the use of Jordan’s lemma. See §5.4, Equations (5.4.12) and (5.4.13).
The following examples will illustrate the proper use of (6.10.5).

 Example 6.10.1

Let us invert

(6.10.6)

From Bromwich’s integral,

(6.10.7)

(6.10.8)

31 Bromwich, T.J. I’A., 1916: Normal coordinates in dynamical systems. Proc. London Math. Soc.,
Ser. 2, 15, 401–448.

The quantity inside the square brackets is the Laplace transform F(z). Therefore, we can
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Figure 6.10.1: An outstanding mathematician at Cambridge University 
at the turn  of  the  twentieth  century,  Thomas  John  I’Anson  
Bromwich (1875–1929)  came  to  Heaviside’s  operational  
calculus  through  his interest  in  divergent  series.  Beginning  
a  correspondence  with Heaviside, Bromwich was able to 
justify operational calculus through the  use  of  contour  
integrals  by  1915.  After  his  premature  death, individuals 
such as J.R.Carson and Sir H. Jeffreys brought Laplace trans-
forms  to  the  increasing  attention  of  scientists  and  
engineers. (Portrait courtesy of the Royal Society of London.)

where C
R
 is a semicircle of infinite radius in either the right or left half of the z-plane and 

C is the closed contour that includes C
R
 and Bromwich’s contour. See Figure 6.10.2.

Our  first  task  is  to  choose  an  appropriate  contour  so  that  the  integral  along  C
R

vanishes. By Jordan’s lemma this requires a semicircle in the right half-plane if t 3<0 
and a semicircle in the left half-plane if t 3>0. Consequently, by considering these two separate 
cases, we force the second integral in (6.10.8) to zero and the inversion simply equals the closed 
contour.

Consider  the  case  t<3  first.  Because  Bromwich’s  contour  lies  to  the  right  of  any 
singularities, there are no singularities within the closed contour and f(t)=0.

Consider now the case t<3. Within the closed contour in the left halfplane, there is a 
second-order pole at z=0 and a simple pole at z=1.
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Figure 6.10.2: Contours used in the inversion of (6.10.6).

Therefore,

(6.10.9)

where

(6.10.10)

(6.10.11)

=2 t,
(6.10.12)

and

(6.10.13)
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Taking our earlier results into account, the inverse equals

f(t)=[et 3 (t 3) 1] H(t 3) 
(6.10.14)

which we would have obtained from the second shifting theorem and tables.

 Example 6.10.2

For our second example of the inversion of Laplace transforms by complex integration,
let us find the inverse of

(6.10.15)

where a is real. From Bromwich’s integral,

(6.10.16)

Here c  is greater than the real part of any of the singularities in (6.10.15). Using the 

infinite product for the hyperbolic sine,32

(6.10.17)

Thus, we have a second-order pole at z=0 and simple poles at z
n
=±n i/ , where n=1, 2, 

3,….
We can convert the line integral (6.10.16), with the Bromwich contour lying parallel

and slightly to the right of the imaginary axis, into a closed contour using Jordan’s lemma 
through the addition of an infinite semicircle joining i  to i  as shown in Figure 6.10.3.
We now apply the residue theorem. For the second-order pole at z=0,

(6.10.18)

(6.10.19)

32  Gradshteyn,  I.S.,  and I.M.Ryzhik,  1965:  Table of  Integrals,  Series and Products.  Academic
Press, §1.431, Formula 2.
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(6.10.20)

(6.10.21)

after using sinh(az)=az+O(z3). For the simple poles z
n
=±n i/ ,

(6.10.22)

(6.10.23)

(6.10.24)

Figure 6.10.3: Contours used in the inversion of (6.10.15).
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because cosh(±n i)=cos(n )=( 1)n. Thus, summing up all of the residues gives

(6.10.25)

(6.10.26)

In addition to computing the inverse of Laplace transforms, Bromwich’s integral places
certain restrictions on F(s) in order that an inverse exists. If  denotes the minimum value
that c may possess, the restrictions are threefold.33 First, F(z) must be analytic in the half-
plane x , where z=x+iy. Second, in the same half-plane it must behave as z k, where
k>1. Finally, F(x) must be real when x .

 Example 6.10.3

Is the function sin(s)/(s2 +4) a proper Laplace transform? Although the function satisfies the first 
and third criteria listed in the previous paragraph on the half-plane x>2, the function becomes 
unbounded as y→±  for any fixed x>2. Thus, sin(s)/(s2+4) cannot be a Laplace transform.

 Example 6.10.4

An additional benefit of understanding inversion by the residue method is the ability to
qualitatively anticipate the inverse by knowing the location of the poles of F(s).  This 
intuition  is  important  because  many  engineering  analyses  discuss  stability  and 
performance entirely in terms of the properties of the system’s Laplace transform. In
Figure 6.10.4 we have graphed the location of the poles of F(s) and the corresponding 
f(t). The student should go through the mental exercise of connecting the two pictures.

Problems

Use Bromwich’s integral to invert the following Laplace transforms:

1. 

2. 

33 For the proof, see Churchill, R.V., 1972: Operational Mathematics. McGraw-Hill, §67.
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3. 

4. 

5. 

6. 

7. 

8. 
9. Consider a function f(t) which has the Laplace transform F(z) which is analytic in

the half-plane Re(z)>s
0
. Can we use this knowledge to find g(t) whose Laplace transform

G(z) equals F[ (z)], where (z) is also analytic for Re(z)>s
0
? The answer to this question

leads to the Schouten34-Van der Pol35 theorem.
Step 1: Show that the following relationships hold true:

 

and

 

34 Schouten, J.P., 1935: A new theorem in operational calculus together with an application of it.
Physica, 2, 75–80.

35 Van der Pol, B., 1934: A theorem on electrical networks with applications to filters. Physica, 1,

521–530.
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Figure 6.10.4: The correspondence between the location of the simple 
poles of the Laplace transform F(s) and the behavior of f(t).
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This is the Schouten-Van der Pol theorem.

Step 3: If  show that  

Hint: Do not evaluate the contour integral. Instead, ask yourself: What function of time

has a Laplace transform that equals e (z) , where  is a parameter? Then use tables.

Step 2: Using the results from Step 1, show that



Chapter 7

The Z-Transform

Since  the  Second  World  War,  the  rise  of  digital  technology  has  resulted  in  a 
corresponding demand for designing and understanding discrete-time (data sampled) sys-
tems. These systems are governed by difference equations in which members of the 
sequence y

n
 are coupled to each other.

One source of difference equations is the numerical evaluation of integrals on a digital
computer. Because we can only have values at discrete time points t

k
=kT for k=0, 1, 2,…,

the value of the integral  d  is

(7.0.1)

(7.0.2)

=y[(k 1)T]+Tf(kT), 
(7.0.3)

because  Equation (7.0.3) is  an example of a firstorder
difference  equation  because  the  numerical  scheme  couples  the  sequence  value  y(kT)
directly to the previous sequence value y[(k 1)T]. If (7.0.3) had contained y[(k 2)T],
then it would have been a second-order difference equation, and so forth.

Although we could use the conventional Laplace transform to solve these difference
equations, the use of z-transforms can greatly facilitate the analysis, especially when we 
only desire responses at the sampling instants. Often the entire analysis can be done using 
only the transforms and the analyst does not actually find the sequence y(kT).
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Figure  7.1.1:  Schematic  of  how a  continuous  function  f(t)  is  sampled  by  a 
narrow-width pulse sampler 

In this chapter we will first define the z-transform and discuss its properties. Then we 
will show how to find its inverse. Finally we shall use them to solve difference equations.

7.1 THE RELATIONSHIP OF THE Z-TRANSFORM TO THE LAPLACE 

TRANSFORM
1

Let f(t) be a continuous function that an instrument samples every T units of time. We

denote this data-sampled function by  See Figure 7.1.1. Taking  the duration of
an individual sampling event, to be small, we may approximate the narrow-width pulse in

Figure 7.1.1 by flat-topped pulses. Then  approximately equals

(7.1.1)

if «T.

1 Gera [Gera, A.E., 1999: The relationship between the z-transform and the discretetime Fourier
transform. IEEE Trans. Auto. Control, AC-44, 370–371] has explored the general relationship be-
tween the one-sided discrete-time Fourier transform and the onesided z-transform. See also
Naumovi , M.B., 2001: Interrelationship between the one-sided discrete-time Fourier transform and
one-sided delta transform. Electr. Engng., 83, 99–101.

(t) and an ideal sampler f (t).s
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Clearly the presence of  is troublesome in (7.1.1); it adds one more parameter to our 
problem.  For  this  reason  we  introduce  the  concept  of  the  ideal  sampler,  where  the 
sampling time becomes infinitesimally small so that

(7.1.2)

(7.1.3)

Let us now find the Laplace transform of this data-sampled function. From the linearity 
property of Laplace transforms,

(7.1.4)

(7.1.5)

Because  (7.1.5) simplifies to

(7.1.6)

If we now make the substitution that z=esT, then F
S
(s) becomes

(7.1.7)

where F(z)  is  the  one-sided z-transform2  of  the  sequence f(nT),  which we shall  now 

denote  by  f
n
.  Here   denotes  the  operation  of  taking  the  z-transform  while  1

2 The standard reference is Jury, E.I., 1964: Theory and Application of the z-Transform Method
John Wiley & Sons, 330 pp.
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represents the inverse z-transformation. We will consider methods for finding the inverse 
z-transform in §7.3.

Just as the Laplace transform was defined by an integration in t, the z-transform is 
defined by a power series (Laurent series) in z. Consequently, every z-transform has a 
region  of  convergence  which  must  be  implicitly  understood  if  not  explicitly  stated. 
Furthermore,  just  as  the  Laplace  integral  diverged  for  certain  functions,  there  are 
sequences where the associated power series diverges and its z-transform does not exist.

.
Consider now the following examples of how to find the z-transform.

 Example 7.1.1

Given the unit sequence f
n
=1, n 0, let us find F(z). Substituting f

n
 into the definition of 

the z-transform leads to

(7.1.8)

because  is a complex-valued geometric series with common ratio z 1. This

series converges if |z 1|<1 or |z|>1, which gives the region of convergence of F(z).
MATLAB’s symbolic toolbox provides an alternative to the hand computation of the 

z-transform. In the present case, the command

» syms z; syms n positive
 » ztrans (1, 

ans =
 

z/(z-1)

 Example 7.1.2

Let us find the z-transform of the sequence

f
n
=e anT, n 0, (7.1.9)

for a real and a imaginary.
For a real, substitution of the sequence into the definition of the ztransform yields

n, z) 

yields
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(7.1.10)

If u=e aT z 1, then (7.1.10) is a geometric series so that

(7.1.11)

Because |u|=e aT|z 1|, the condition for convergence is that |z|>e aT. 
Thus,

(7.1.12)

For imaginary a, the infinite series in (7.1.10) converges if |z|>1, because |u|=|z 1| when a 
is imaginary. Thus,

(7.1.13)

Although the z-transforms in (7.1.12) and (7.1.13) are the same in these two cases, the 
corresponding regions of convergence are different. If a is a complex number, then

(7.1.14)

Checking our work using MATLAB, we type the commands:

» syms a z; syms n T positive  
» ztrans(exp(-a*n*T),n,z);
» simplify(ans)

which yields

ans =  
z*exp(a*T)/(z*exp(a*T)-1)

 Example 7.1.3

Let us find the z-transform of the sinusoidal sequence
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f
n
=cos(n T), n 0. (7.1.15)

Substituting (7.1.15) into the definition of the z-transform results in

(7.1.16)

From Euler’s formula,

(7.1.17)

so that (7.1.16) becomes

(7.1.18)

or

(7.1.19)

From (7.1.13),

(7.1.20)

Substituting (7.1.20) into (7.1.19) and simplifying yields

(7.1.21)

 Example 7.1.4

Let us find the z-transform for the sequence
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(7.1.22)

From the definition of the z-transform,

(7.1.23)

(7.1.24)

(7.1.25)

We could also have obtained (7.1.25) via MATLAB by typing the commands:

» syms z;syms n positive 
» ztrans(’1+((1/2^n-1)*Heaviside(n-6)’,n,z)

which yields

ans = 
2*z/(2*z-1)+1/2/z+3/4/z^2+7/8/z^3+15/16/z^4+31/32/z^5

We summarize some of the more commonly encountered sequences and their transforms 
in Table 7.1.1 along with their regions of convergence.

 Example 7.1.5

In many engineering studies, the analysis is done entirely using transforms without 
actually finding any inverses. Consequently, it is useful to compare and contrast how 
various transforms behave in very simple test problems.

Consider the time function f(t)=ae atH(t), a>0. Its Laplace and Fourier transform are 
identical, namely a/(a+i ), if we set s=i . In Figure 7.1.2 we illustrate its behavior as a 
function of positive .

Let  us  now  generate  the  sequence  of  observations  that  we  would  measure  if  we 

sampled f(t) every T units of time apart: f
n
=ae anT. Taking the
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 f
n
, n 0 F(z) Region of convergence

1. f0=k=const. 

f
n
=0, n 1

k |z|>0

2. f
m

=k=const. 

f
n
=0, for all values 

of n m

kz m |z|>0

3. k=constant kz/(z 1) |z|>1

4. kn kz/(z 1)2 |z|>1

5. kn2 kz(z+1)/(z 1)3 |z|>1

6. ke anT, a complex kz/(z e aT) |z|>|e aT|

7. kne anT, a complex |z|>|e aT|

8. sin(
0nT) |z|>1

9. cos( 0nT) |z|>1

10. e anT sin( 0nT) |z|>|e aT|

11. e anT cos( 0nT) |z|>|e aT|

12. n,  constant z/(z ) |z|>| |

13. n n z/(z )2 |z|>| |

14. n2 n z(z+ )/(z )3 |z|>| |

15. sinh( 0nT) |z|>cosh( 0T)

16. cosh( 0nT) |z|>sinh( 0T)

17. an/n! ea/z |z|>0

18. [ln(a)]n/n! a1/z |z|>0

Table 7.1.1: Z-Transforms of Some Commonly Used Sequences
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Figure 7.1.2: The amplitude of the Laplace or Fourier transform (solid line) for 
ae atH(t) and the z-transform (dashed line) for f

n
=ae anT as a function 

of frequency  for various positive values of a and T=1.

z-transform of this sequence, it equals az/(z e aT). Recalling that z= esT=eiwT, we can also
plot this transform as a function of positive . For small , the transforms agree, but as 
becomes larger they diverge markedly. Why does this occur?

Recall that the z-transform is computed from a sequence comprised of samples from a 
continuous  signal.  One  very  important  flaw  in  sampled  data  is  the  possible misrepresenta-
tion of high-frequency effects as lower-frequency phenomena. It is this aliasing or folding
effect that we are observing here. Consequently, the z-transform of a sampled  record  can
differ  markedly  from  the  corresponding  Laplace  or  Fourier transforms  of  the  continuous
record  at  frequencies  above  one  half  of  the  sampling frequency. This also suggests
that care should be exercised in interpolating between sampling instants. Indeed, in those
applications where the output between sampling instants is very important, such as in a hybrid 
mixture of digital and analog systems, we must apply the so-called “modified z-transform.”

Problems

From the fundamental definition of the z-transform, find the transform of the following
sequences, where n 0. Then check your answer using MATLAB.

1. 

2. 

3. 

4. 
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5. 

7.2 SOME USEFUL PROPERTIES

In  principle  we  could  construct  any  desired  transform  from  the  definition  of  the
z-transform. However, there are several general theorems that are much more effective in
finding new transforms.

Linearity

From the definition of the z-transform, it immediately follows that

if          h
n
=c

1
f
n
+c

2
g

n
, then H(z)=c

1
F(z)+c

2
G(z), (7.2.1)

where F(z)= (f
n
), G(z)= (g

n),
 H(z)= (h

n
), and c

1
, c

2
 are arbitrary constants.

Multiplication by an exponential sequence

If g
n
=e anTf

n
, n 0, then G(z)=F(zeaT). (7.2.2)

This follows from

(7.2.3)

(7.2.4)

This is the z-transform analog to the first shifting theorem in Laplace transforms.

Shifting
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The effect of shifting depends upon whether it is to the right or to the left, as Table 7.2.1 
illustrates. For the sequence f

n 2,
 no values from the sequence f

n
 are lost; thus, we anticipate 

that  the  z-transform  of  f
n 2 

 only  involves  F(z).  However,  in  forming  the sequence 
f
n+2,

 the first two values of f
n
 are lost, and we anticipate that the z-transform of f

n+2
 cannot 

be expressed solely in terms of F(z) but must include those two lost pieces of information.

Table 7.2.1: Examples of Shifting Involving Sequences

n f
n 

f
n 2 f

n+2

0 1 0 4

1 2 0 8

2 4 1 16

3 8 2 64

4 16 4 128

Let  us  now confirm these  conjectures  by  finding  the  z-transform of  f
n+1

 which  is  a 

sequence that has been shifted one step to the left. From the definition of the z-transform, 
it follows that

(7.2.5)

or

(7.2.6)

where we added zero in (7.2.6). This algebraic trick allows us to collapse the first two 
terms on the right side of (7.2.6) into one and

(7.2.7)

In a similar manner, repeated applications of (7.2.7) yield
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(7.2.8)

where  m>0.  This  shifting  operation  transforms  f
n+m 

 into  an  algebraic  expression 

involving m. Furthermore, we introduced initial sequence values, just as we introduced 
initial conditions when we took the Laplace transform of the nth derivative of f(t). We
will make frequent use of this property in solving difference equations in §7.4.

Consider now shifting to the right by the positive integer k,

g
n
=f

n k
H

n k
, n 0, 

(7.2.9)

where H
n k

=0 for n<k and 1 for n k. Then the z-transform of (7.2.9) is

G(z)=z kF(z), (7.2.10)

where G(z)= (g
n
), and F(z)= (f

n
). This follows from

(7.2.11)

(7.2.12)

This  result  is  the  z-transform  analog  to  the  second  shifting  theorem  in  Laplace
transforms.

In symbolic calculations involving MATLAB, the operator H
n k

 can be expressed by 

Heaviside(n k).

Initial-value theorem

The initial value of the sequence f
n
, f

0
, can be computed from F(z) using the initial-value

theorem:

(7.2.13)
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From the definition of the z-transform,

(7.2.14)

In the limit of z→ , we obtain the desired result.

Final-value theorem

The value of f
n
, as n→ , is given by the final-value theorem:

(7.2.15)

where F(z) is the z-transform of f
n
.

We begin by noting that

(7.2.16)

Using the shifting theorem on the left side of (7.2.16),

(7.2.17)

Applying the limit as z approaches 1 to both sides of (7.2.17):

(7.2.18)

(7.2.19)

(7.2.20)
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= f
0
+f . (7.2.21)

Consequently,

(7.2.22)

Note that this limit has meaning only if f  exists. This occurs if F(z) has no second-order

or higher poles on the unit circle and no poles outside the unit circle.

Multiplication by n

Given

g
n
=nf

n
, n 0, (7.2.23)

this theorem states that

(7.2.24)

where G(z)= (g
n
), and F(z)= (f

n
).

This follows from

(7.2.25)

Periodic sequence theorem

Consider the N-periodic sequence:

(7.2.26)
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(7.2.27)

This theorem allows us to find the z-transform of f
n
 if we can find the ztransform of x

n

via the relationship

(7.2.28)

where X(z)= (x
n
).

This follows from

(7.2.29)

(7.2.30)

Application of the shifting theorem in (7.2.30) leads to

F(z)=X(z)+z NX(z)+z 2NX(z)+…
(7.2.31)

=X(z)[1+z N+z 2N+…].
(7.2.32)

Equation (7.2.32) contains an infinite geometric series with common ratio z N,  which

converges if |z–N|<1. Thus,

(7.2.33)

Convolution

Given the sequences f
n
 and g

n
, the convolution product of these two sequences is
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(7.2.34)

Given F(z) and G(z), we then have that W(z)=F(z)G(z). 
This follows from

(7.2.35)

because g
n k

=0 for k>n. Reversing the order of summation and letting m=n k,

(7.2.36)

(7.2.37)

We can use MATLAB’s command conv( ) which multiplies two polynomials to perform
discrete convolution as follows:

»x = [1 1 1 1 1 1 1] ; 
»y = [1 2 4 8 16 32 64] ; »z = conv 
(x, y)

produces

z =
    1 3 7 15 31 63 127 126 124 120 112 96 64

The  first seven values of z contains the convolution of the sequence x with the sequence y.
Consider now the following examples of the properties discussed in this section.

 Example 7.2.1

From

(7.2.38)

for n 0 and |z|>|a|, we have that

and the related sequence:
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(7.2.39)

and

(7.2.40)

if n 0 and |z|>1. Therefore, the sequence f
n
=cos(nx) has the z-transform

(7.2.41)

(7.2.42)

 Example 7.2.2

Using the z-transform,

(7.2.43)

we find that

(7.2.44)

=(–z) ( 1) (1 az 1) 2( a)( 1)z 2 
(7.2.45)

(7.2.46)

 Example 7.2.3

Consider F(z)=2az 1/(1 az 1)3, where |a|<|z| and |a|<1. Here we have that
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(7.2.47)

from the initial-value theorem. This agrees with the inverse of F(z):

f
n
=n(n+1)an, n 0. (7.2.48)

If the z-transform consists of the ratio of two polynomials, we can use MATLAB to find 

f
0
. For example, if F(z)=2z2/(z 1)3, we can find f

0
 as follows:

»num = [2 0 0]; 
»den = conv([1 -1],[1 -1]); 
»den = conv(den,[1 -1]); 

    2.0000e-20

Therefore, f
0

=0.

 Example 7.2.4

Given  the  z-transform  F(z)=(1 a)z/[(z 1)(z a)],  where  |z|>1>  a>0,  then  from  the 
final-value theorem we have that

(7.2.49)

This is consistent with the inverse transform f
n
=1 an with n 0.

 Example 7.2.5

Using the sequences f
n
=1 and g

n
=an, where a is real, verify the convolution theorem.

We first compute the convolution of f
n
 with g

n
, namely

(7.2.50)

Taking the z-transform of 
n
,

»initialvalue = polyval(num, 1e20) / polyval(den,1e20) 
initialvalue =
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(7.2.51)

and convolution theorem holds true for this special case.

Problems

Use  the  properties  of  z-transforms  and  Table  7.1.1  to  find  the  z-transform  of  the 
following sequences. Then check your answer using MATLAB.

1.      f
n
=nTe anT

3. 

4. 

5.     f
n
=cos(n 2)H

n 2

6.    f
n
=3+e 2nT

7.    f
n
=sin(n

0
T+ )

8. 

9.   f
n
=( 1)n 

    (Hint: f
n
 is a periodic sequence.)

10.  Using  the  property  stated  in  (7.2.23)–(7.2.24)  twice,  find  the  z-transform  of

n2=n[n(1)n]. Then verify your result using MATLAB.

11.  Verify the convolution theorem using the sequences f
n
=g

n
=1.  Then check your

results using MATLAB.

12. Verify the convolution theorem using the sequences f
n
=1 and g

n
=n. Then check

your results using MATLAB.

13. Verify the convolution theorem using the sequences f
n
=g

n
=1/(n!). [Hint: Use the

binomial theorem with x=1 to evaluate the summation.] Then check your results using 
MATLAB.

14. If a is a real number, show that (anf
n
)=F(z/ ), where (f

n
)=F(z).

2.
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f
n
 by inverting the z-transform F(z). There are four methods for finding the inverse: (1) 

power series,  (2) recursion, (3) partial  fractions,  and (4) the residue method. We will 
discuss each technique individually. The first three apply only to those functions F(z) that 
are  rational  functions  while  the  residue  method  is  more  general.  For  symbolic 
computations with MATLAB, you can use iztrans.

Power series

By  means  of  the  long-division  process,  we  can  always  rewrite  F(z)  as  the  Laurent 
expansion:

F(z)=a
0
+a

1
z 1+a

2
z 2+…. (7.3.1)

From the definition of the z-transform,

(7.3.2)

the desired sequence f
n
 is given by a

n
.

 Example 7.3.1

Let

(7.3.3)

Using long division, N(z) is divided by D(z) and we obtain

(7.3.4)

Therefore,

(7.3.5)

7.3 INVERSE Z-TRANSFORMS

In the previous two sections we dealt with finding the z-transform. In this section we find
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which suggests that f
0
=  and f

n
=1 for n 1 is the inverse of F(z).

 Example 7.3.2

Let us find the inverse of the z-transform:

(7.3.6)

By the long-division process, we have that

 

Thus,  f
0
=2,  f

1
=1.5,  f

2
=1.25,  f

3
=1.125,  and  so  forth,  or  f

n
=1+ n.  In  general,  this

technique only produces numerical values for some of the elements of the sequence. Note 
also that our long division must always yield the power series (7.3.1) in order for this 
method to be of any use.

To check our answer using MATLAB, we type the commands:

syms z;syms n positive 

a   ns = 

 

1+(1/2)^n

Recursive method

An alternative to long division was suggested3 several years ago. It obtains the inverse 
recursively.

We begin by assuming that the z-transform is of the form

3 Jury, E.I., 1964: Theory and Application of the z-Transform Method. John Wiley & Sons, p. 41;
Pierre, D.A., 1963: A tabular algorithm for z-transform inversion. Control Engng., 10(9), 110–111. 
The present derivation is by Jenkins, L.B., 1967: A useful recursive form for obtaining inverse 
z-transforms. Proc. IEEE, 55, 574–575. ©IEEE.

iztrans((2*z^2-1.5*z)/(z^2-1.5*z+0.5),z,n) 

which yields
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where some of the coefficients 
i
 and b

i
 may be zero and b

0
0. Applying the initial-value 

theorem, 

(7.3.8)

Next, we apply the initial-value theorem to z[F(z) f
0
] and find that

(7.3.9)

(7.3.10)

=(a
1

b
1
f
0
)/b

0
. (7.3.11)

Note that the coefficient a
0

b
0
f
0
=0 from (7.3.8). Similarly,

(7.3.12)

(7.3.13)

=(a
2

b
2
f
0

b
1
f
1
)/b

0 (7.3.14)

because a
0

b
0
f
0
=a

1
b

1
f
0

f
1
b

0
=0. Continuing this process, we finally have that

(7.3.7)
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fn=(a
n

b
n
f
0

b
n 1

f
1

… b
1
f
n 1

)/b
0
, (7.3.15)

where a
n
=b

n
0 for n>m.

● Example 7.3.3

Let us redo Example 7.3.2 using the recursive method.  Comparing (7.3.7)  to (7.3.6),

0
=2, 

1
= 1.5, 

2
=0, b

0
=1, b

1
= 1.5, b

2
=0.5, and a

n
=b

n
=0 if n 3. From (7.3.15),

f
0
=a

0
/b

0
=2/1=2, (7.3.16)

f
1
=(a

1
b

1
f
0
)/b

0
=[ 1.5 ( 1.5)(2)]/1=1.5, (7.3.17)

f
2
=(a

2
b

2
f
0

b
1
f
1
)/b

0 (7.3.18)

=[0 (0.5)(2) ( 1.5)(1.5)]/1=1.25, (7.3.19)

and

f
3
=(a

3
b

3
f
0

b
2
f
1

b
1
f
2
)/b

0 (7.3.20)

=[0 (0)(2) (0.5)(1.5) ( 1.5)(1.25)]/1=1.125. (7.3.21)

Partial fraction expansion

One  of  the  popular  methods  for  inverting  Laplace  transforms  is  partial  fractions.  A
similar, but slightly different scheme works here.
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Given F(z)=z/(z2 1), let us find f
n
. The first step is to obtain the partial fraction expansion 

of F(z)/z. Why we want F(z)/z rather than F(z) will be made clear in a moment. Thus,

(7.3.22)

where

(7.3.23)

and

(7.3.24)

Multiplying (7.3.22) by z,

(7.3.25)

Next, we find the inverse z-transform of z/(z 1) and z/(z+1) in Table 7.1.1. This yields

(7.3.26)

Thus, the inverse is

(7.3.27)

From this  example it  is  clear  that  there  are  two steps:  (1)  obtain  the  partial  fraction
expansion of F(z)/z, and (2) find the inverse z-transform by referring to Table 7.1.1.

 Example 7.3.5

Given F(z)=2z2/[(z+2)(z+l)2], let us find f
n
. We begin by expanding F(z)/z as

 Example 7.3.4
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(7.3.28)

where

(7.3.29)

(7.3.30)

and

(7.3.31)

so that

(7.3.32)

or

(7.3.33)

From Table 7.1.1,

(7.3.34)

(7.3.35)
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(7.3.36)

Applying (7.3.34)–(7.3.36) to (7.3.33),

f
n
=4( 1)n 4( 2)n+2n( 1)n, n 0. (7.3.37)

 Example 7.3.6

Given F(z)=(z2+z)/(z 2)2, let us determine f
n
. Because

(7.3.38)

(7.3.39)

Referring to Table 7.1.1,

(7.3.40)

Substituting (7.3.40) into (7.3.39) yields

(7.3.41)

Residue method

The power series, recursive, and partial fraction expansion methods are rather limited. We
now prove that f

n
 may be computed from the following inverse integral formula:

(7.3.42)

and
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where  C  is  any  simple  curve,  taken  in  the  positive  sense,  that  encloses  all  of  the 
singularities of F(z). It is readily shown that the power series and partial fraction methods
are special cases of the residue method.

Proof: Starting with the definition of the z-transform

(7.3.43)

we multiply (7.3.43) by zn 1  and integrating both sides around any contour C  which
includes all of the singularities,

(7.3.44)

Let C  be a  circle  of  radius R,  where R>R
1
.  Then,  changing variables  to  z=Rei ,  and 

dz=izd ,

(7.3.45)

Substituting (7.3.45) into (7.3.44) yields the desired result that

(7.3.46)

We can easily evaluate the inversion integral (7.3.42) using Cauchy’s residue theorem.

 Example 7.3.7

Let us find the inverse z-transform of

(7.3.47)

From the inversion integral,

(7.3.48)
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Clearly the integral has simple poles at z=1 and z=2. However, when n=0 we also have a 
simple pole at z=0. Thus the cases n=0 and n>0 must be considered separately.

Case 1: n=0. The residue theorem yields

(7.3.49)

Evaluating these residues,

(7.3.50)

(7.3.51)

and

(7.3.52)

Substituting (7.3.50)–(7.3.52) into (7.3.49) yields f
0
=0. 

Case 2: n>0. Here we only have contributions from z=1 and z=2.

(7.3.53)

where

(7.3.54)

and

(7.3.55)
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Thus,

f
n
=2n 1 1, n>0. (7.3.56)

Combining our results,

(7.3.57)

 Example 7.3.8

Let us use the inversion integral to find the inverse of

(7.3.58)

The inversion theorem gives

(7.3.59)

where the pole at z=1 is second order. Consequently, the corresponding residue is

(7.3.60)

Thus, the inverse z-transform of (7.3.58) is

f
n
=3n+1, n 0. (7.3.61)

 Example 7.3.9

Let F(z) be a z-transform whose poles lie within the unit circle |z|=1. 
Then

(7.3.62)
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(7.3.63)

We now multiply both sides of (7.3.63) by z 1 and integrate around the unit circle C.
Therefore,

(7.3.64)

after interchanging the order of integration and summation. Performing the integration,

(7.3.65)

which is  Parseval’s  theorem  for  one-sided z-transforms.  Recall  that  there  are  similar
theorems for Fourier series and transforms.

 Example 7.3.10 Evaluation of partial summations
4

Consider the partial summation S
N

= f
n
. We shall now show that z-transforms can be

employed to compute S
N

.

We begin by noting that

(7.3.66)

Here  we  employed  the  inversion  integral  to  replace  f
n 

 and  reversed  the  order  of 
integration and summation. This interchange is permissible since we only have a partial sum-
mation. Because the summation in (7.3.66) is a geometric series, we have the final result that

4 Taken from Bunch, K.J., W.N.Cain, and R.W.Grow, 1990: The z-transform method of evaluating
partial summations in closed form. J. Phys. A, 23, L1213–L1215. The material has been used with 
the permission of the authors and IOP Publishing Limited.

and
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summations.

Let us find S
N

=  n3. Because f
n
=n3, F(z)=z(z2+4z+1)/(z  1)4. Consequently

(7.3.68)

(7.3.69)

(7.3.70)

(7.3.71)

 Example 7.3.11

An additional benefit of understanding inversion by the residue method is the ability to 
qualitatively anticipate the inverse by knowing the location of the poles of F(z). This 
intuition  is  important  because  many  engineering  analyses  discuss  stability  and 
performance entirely in terms of the properties of the system’s z-transform. In Figure

7.3.1 we graphed the location of the poles of F(z) and the corresponding f
n
. The student 

should go through the mental exercise of connecting the two pictures.

Problems

Use the power series or recursive method to compute the first few values of f
n
 of the 

following z-transforms. Then check your answers with MATLAB.

1. 

2. 

3. 

(7.3.67)

Therefore,  we  can  use  the  residue  theorem  and  z-transforms  to  evaluate  partial
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4. 

Use partial fractions to find the inverse of the following z-transforms. Then verify your
answers with MATLAB.

5. 

6. 

7. 

8. 

9. Using the property that the z-transform of g
n
=f

n k
H

n k
 if n 0 is G(z)=z kF(z), find

the inverse of

 

Then check your answer with MATLAB.
Use the residue method to find the inverse z-transform of the following z-transforms.

Then verify your answer with MATLAB.

10. 

11. 

12. 

13.    F(z)=e /z
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Figure 7.3.1: The correspondence between the location of the simple poles of 
the z-transform F(z) and the behavior of f

n
.
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7.4 SOLUTION OF DIFFERENCE EQUATIONS

Having reached the point where we can take a z-transform and then find its inverse, we
are ready to use it to solve difference equations. The procedure parallels that of solving
ordinary  differential  equations  by  Laplace  transforms.  Essentially  we  reduce  the
difference equation to an algebraic problem. We then find the solution by inverting Y(z).

 Example 7.4.1

Let us solve the second-order difference equation

2y
n+2

–3y
n+1

+y
n
=5 3n, n 0, (7.4.1)

where y
0
=0 and y

1
=1. 

Taking the z-transform of both sides of (7.4.1), we obtain

(7.4.2)

From the shifting theorem and Table 7.1.1,

(7.4.3)

Substituting y
0
=0 and y

1
=1 into (7.4.3) and simplifying yields

(7.4.4)

or

(7.4.5)
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To obtain y
n
 from Y(z) we can employ partial fractions or the residue method.

Applying partial fractions gives

(7.4.6)

where

(7.4.7)

and

(7.4.8)

Thus,

(7.4.9)

or

(7.4.10)

From (7.4.10) and Table 7.1.1,

(7.4.11)

An alternative to this hand calculation is to use MATLAB’s ztrans and iztrans to solve
difference equations. In the present case, the MATLAB script would read

clear 
% define symbolic variables 
syms z Y; syms n positive 
% take z-transform of left side of difference equation 
LHS = ztrans(2*sym(’y(n+2)’)-3*sym(’y(n+1)’)) ;+sym(’y(n)’),n,z
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% take z-transform of right side of difference equation 

RHS = 5*ztrans(3^n,n,z);
 

% 

 

set

  

Y 

 

for 

 

z-transform

  

of 

 

y 

 

and 

 

introduce

  

initial conditions 
newLHS

 

= subs

 

(LHS,

 

’

 

ztrans

 

(y

 

(n),

 

n ,

 

z)

 

’,’

 

y

 

(0)

 

’, ’

 

y

 

(0)’,’Y,0,1);

 % solve for Y 

Y = solve (newLHS-RHS,Y);

 
% invert z-transform and find y(n) 

y = iztrans(Y,z,n)

-1/2+1/2*3^n

Two checks confirm that we have the correct solution. First, our solution must satisfy the 
initial values of the sequence. Computing y

0
 and y

1
,

(7.4.12)

and

(7.4.13)

Thus, our solution gives the correct initial values. 
Our sequence y

n
 must also satisfy the difference equation. Now

(7.4.14)

and

(7.4.15)

Therefore,

(7.4.16)

This script produced 

y =
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and our solution is correct.

Finally, we note that the term 3n/2 is necessary to give the right side of (7.4.1); it is the 
particular solution. The 1/2 term is necessary so that the sequence satisfies the initial
values; it is the complementary solution.

 Example 7.4.2

Let us find the y
n
 in the difference equation

y
n+2

2y
n+1

+y
n
=1, n 0 (7.4.17)

with the initial conditions y
0
=0 and y

1
=3/2. 

From (7.4.17),

(7.4.18)

The z-transform of the left side of (7.4.18) is obtained from the shifting theorem and 
Table 7.1.1 yields (1). Thus,

(7.4.19)

Substituting y
0
=0 and y

1
=3/2 in (7.4.19) and simplifying gives

(7.4.20)

or

(7.4.21)

We find the inverse z-transform of (7.4.21) by the residue method or

(7.4.22)
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(7.4.23)

Thus,

(7.4.24)

Note that n2/2 gives the particular solution to (7.4.17), while n is there so that y
n
 satisfies

the  initial  conditions.  This  problem  is  particularly  interesting  because  our  constant forcing 
produces a response that grows as n2, just as in the case of resonance in a time-continuous
system when a finite forcing such as sin(

0
t) results in a response whose amplitude grows as tm.

 Example 7.4.3

Let us solve the difference equation

b2y
n
+y

n+2
=0, (7.4.25)

where the initial conditions are y
0
=b2 and y

1
=0.

We begin by taking the z-transform of each term in (7.4.25). This yields

(7.4.26)

From the shifting theorem, it follows that

b2Y(z)+z2Y(z) z2y
0

zy
1
=0. (7.4.27)

Substituting y
0
=b2 and y

1
=0 into (7.4.27),

b2Y(z)+z2Y(z) b2z2=0, (7.4.28)
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or

(7.4.29)

To find y
n
 we employ the residue method or

(7.4.30)

Thus,

(7.4.31)

(7.4.32)

because cos(x)=  (eix+e ix). Consequently, we obtain the desired result that

(7.4.33)

 Example 7.4.4: Compound interest

Difference equations arise in finance because the increase or decrease in an account 
occurs in discrete steps. For example, the amount of money in a compound interest sav-
ing account after n+1 conversion periods  (the time period between interest payments) is

y
n+1

=y
n
+ry

n
, 

(7.4.34)
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Figure 7.4.1: The amount in a saving account  as a function of an
annual conversion period when interest is compounded at the
annual rate of 12% and a $1000 is taken from the account every
period starting with period 10.

where r is the interest rate per conversion period. The second term on the right side of
(7.4.34) is the amount of interest paid at the end of each period.

Let us ask a somewhat more difficult question of how much money we will have if we
withdraw the amount A at the end of every period starting after the period ℓ. Now the
difference equation reads

y
n+1

=y
n
+ry

n
AH

n ℓ 1
. (7.4.35)

Taking the z-transform of (7.4.35),

(7.4.36)

after using (7.2.10) or

(7.4.37)

Taking the inverse of (7.4.37),

(7.4.38)
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The first term in (7.4.38) represents the growth of money by compound interest while the 
second term gives the depletion of the account by withdrawals.

Figure 7.4.1 gives the values of y
n
 for various starting amounts assuming an annual 

conversion period with r=0.12, ℓ=10 years, and A=$1000. These computations were done 
two ways using MATLAB as follows:

% load in parameters 
clear; r = 0.12; A = 1; k = 0:30 ; 
y = zeros(length(k),3); yanswer = zeros(length(k),3); 
% set initial condition 
for m=1:3 
y (1, m) = m; 
% compute other y values 
for n = 1:30 
y(n+1,m) = y(n,m)+r*y(n,m); 

end 
% now use (7.4.38) 
for n = 1:31 

end; end; 
plot(k,y,’o’); hold; plot(k,yanswer,’s’)s; 
axis([0 30 0 10]) 
xlabel(’number of conversion periods ’,’Fontsize’,20) 
ylabel(’amount left in account(K$)’,’Fontsize’,20)

Figure 7.4.1 shows that if an investor places an initial amount of $3000 in an account 
bearing 12% annually, after 10 years he can withdraw $1000 annually, essentially forever. 
This is because the amount that he removes every year is replaced by the interest on the 
funds that remain in the account.

 Example 7.4.5

Let us solve the following system of difference equations:

x
n+1

=4x
n
+2y

n
, (7.4.39)

and

y
n+1

=3x
n
+3y

n
, (7.4.40)

y(n+1,m) = y(n+1, m)-A*stepfun(n,11); 

yanswer(n, m)=y(1,m)*(1+r)^(n-1); 
yanswer (n, m) = yanswer (n, m)-A* ((1+r)^(n-10)-1)*stepfun(n,11)/r;
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with the initial values of x
0
=0 and y

0
=5.

Taking the z-transform of (7.4.39)–(7.4.40),

zX(z) x
0
z=4X(z)+2Y(z), 

(7.4.41)

zY(z) y
0
z=3X(z)+3Y(z), (7.4.42)

or

(z 4)X(z) 2Y(z)=0, (7.4.43)

3X(z) (z 3)Y(z)= 5z. (7.4.44)

Solving for X(z) and Y(z),

(7.4.45)

and

(7.4.46)

Taking the inverse of (7.4.45)–(7.4.46) term by term,

x
n
= 2+2 6n, and y

n
=3+2 6n. (7.4.47)

We can also check our work using the MATLAB script

clear 
% define symbolic variables 
syms X Y z ; syms n positive 
% take z-transform of left side of differential equations 
LHS1 = ztrans(sym(’x(n+1)’)-4*sym(’x(n)’) -2*sym(’y(n)’),n,z);
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LHS2 = ztrans(sym(’y(n+1)’)-3*sym(’x(n)’)-3*sym (’y(n)’),n,z
% set X and Y f or the z-transform of x and y 
%    and introduce initial conditions 
newLHS1 = subs(LHS1,’ztrans(x(n),n,z)’,’ztrans(y(n),n,z)’,…
    ’x(0)’,’y(0)’,X,Y,0,5); 
newLHS2 = subs(LHS2,’ztrans(x(n),n,z)’,’ztrans(y(n),n,z)’,…
    ’x(0)’,’y(0)’,X,Y,0,5); 
% solve for X and Y 
[X, Y] = solve (newLHS1, newLHS2, X, Y) ; 
% invert z-transform and find x (n) and y (n) 
x = iztrans (X, z, n) 
y = iztrans (Y, z, n)

This script yields
x =

 2*6^n 

2*6^n+3

Problems

Solve  the  following difference  equations  using  z-transforms,  where  n 0.  Check your 
answer using MATLAB.

1. y
n+1

y
n
=n2, y0=1.

2. y
n+2

–2 yn+1+yn=0, y0=y1=1.

3. y
n+2

–2y
n+1

+y
n
=1, y

0
=y

1
=0.

4. y
n+1

+3y
n
=n, y

0
=0.

5. y
n+1

5y
n
=cos(n ), y

0
=0.

6. y
n+2

–4y
n
=1, y

0
=1, y

1
=0.

7. 

8. y
n+2

5y
n+1

+6y
n
=0, y

0
=y

1
=1

−2
 y  =  
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9. y
n+2

–3y
n+1

+2y
n
=1, y

0
=y

1
=0.

10. y
n+2

–2y
n+1

+y
n
=2, y

0
=0, y

1
=2.

11. x
n+1

=3x
n

4y
n
, y

n+1
=2x

n
3y

n
, x

0
=3, y

0
=2.

12. x
n+1

=2x
n

10y
n
, y

n+1
= x

n
y
n
, x

0
=3, y

0
= 2.

13. x
n+1

=x
n

2y
n
, y

n+1
= 6y

n
, x

0
= 1, y

0
= 7.

14. x
n+1

=4x
n

5y
n
, y

n+1
=x

n
2y

n
, x

0
=6, y

0
=2.

7.5 STABILITY OF DISCRETE-TIME SYSTEMS

When we discussed the solution of ordinary differential equations by Laplace transforms, 
we introduced the concept of transfer function and impulse response. In the case of 
discrete-time systems, similar considerations come into play.

Consider the recursive system

y
n
=a

1
y

n 1
H

n 1
+a

2
y

n 2
H

n 2
+x

n
, n 0, 

(7.5.1)

where H
n k

 is the unit step function. It equals 0 for n<k and 1 for n k. Equation (7.5.1) is 

called a recursive system because future values of the sequence depend upon all of the 
previous values. At present, a

1
 and 

2
 are free parameters which we shall vary.

Using (7.2.10),

z2Y(z)
1
zY(z) a

2
Y(z)=z2X(z), 

(7.5.2)

or

(7.5.3)
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inverse of the transfer function gives the impulse response for our discrete-time system. 
This particular transfer function has two poles, namely

(7.5.4)

At this point, we consider three cases.

Case 1: /4+a
2
<0. In this case z

1
 and z

2
 are complex conjugates. Let us write them as

z
1
, 

2
=re±i 0T. Then

(7.5.5)

where r2= a
2
, and 

0
T=cos 1(a

1
/2r). From the inversion integral,

(7.5.6)

where g
n
 denotes the impulse response. Now

(7.5.7)

(7.5.8)

(7.5.9)

Similarly,

(7.5.10)

As in the case of Laplace transforms, the ratio Y(z)/X(z)  is  the transfer function. The
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and

(7.5.11)

A graph of sin[(n+1)
0
T]/sin(

0
T) with respect to n gives a sinusoidal envelope. More 

importantly, if |r|<1 these oscillations vanish as n→  and the system is stable. On the 
other  hand,  if  |r|>1  the  oscillations  grow without  bound  as  n→  and  the  system is 
unstable.

Recall  that  |r|>1 corresponds to poles  that  lie  outside the unit  circle  while  |r|<1 is 
exactly the opposite. Our example suggests that for discretetime systems to be stable, all 
of the poles of the transfer function must lie 

within the unit circle while an unstable system has at least one pole that lies outside of 
this circle.

Case 2: /4+a
2
>0. This case leads to two real roots, z

1
 and z

2
. From the inversion

integral, the sum of the residues gives the impulse response

(7.5.12)

Once again, if the poles lie within the unit circle, |z
1
|<1 and |z

2
|<1, the system is stable.

Case 3: /4+a
2
=0. This case yields z

1
=z

2
,

(7.5.13)

and

(7.5.14)

This system is obviously stable if |a
1
/2|<1 and the pole of the transfer function lies within 

the unit circle.
In summary, finding the transfer function of a discrete-time system is important in 

determining  its  stability.  Because  the  location  of  the  poles  of  G(z)  determines  the 
response  of  the  system,  a  stable  system  has  all  of  its  poles  within  the  unit  circle. 
Conversely,  if  any  of  the  poles  of  G(z)  lie  outside  of  the  unit  circle,  the  system is 
unstable. Finally, if lim

n→
 g

n
=c, the system is marginally stable. For example, if G(z) 

has simple poles, some of the poles must lie on the unit circle.
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 Example 7.5.1

Numerical  methods  of  integration  provide  some of  the  simplest,  yet  most  important, 

difference equations in the literature. In this example,5 we show how z-transforms can be 
used to highlight the strengths and weaknesses of such schemes.

Consider  the  trapezoidal  integration  rule  in  numerical  analysis.  The  integral  y
n

 is

updated by adding the latest trapezoidal approximation of the continuous curve. Thus, the 
integral is computed by

(7.5.15)

where T is the interval between evaluations of the integrand.
We first determine the stability of this rule because it is of little value if it is not stable. 

Using (7.2.10), the transfer function is

(7.5.16)

To find the impulse response, we use the inversion integral and find that

(7.5.17)

At this point, we must consider two cases: n=0 and n>0. For n=0,

(7.5.18)

For n>0,

(7.5.19)

Therefore, the impulse response for this numerical scheme is g
0
=  and g

n
=T for n>0.

5 From Salzer, J.M., 1954: Frequency analysis of digital computers operating in real time. Proc.
IRE, 42, 457–466. ©IRE (now IEEE).
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Note that this is a marginally stable system (the solution neither grows nor decays with n)
because the pole associated with the transfer function lies on the unit circle.

Having discovered that the system is not unstable, let us continue and explore some of

its properties. Recall now that z=esT=ei T if s=i .
Then the transfer function becomes

(7.5.20)

On the other hand, the transfer function of an ideal integrator is 1/s or i/ . Thus, the
trapezoidal rule has ideal phase but its shortcoming lies in its amplitude characteristic; it
lies below the ideal integrator for 0< T< . We show this behavior, along with that for
Simpson’s one third rule and Simpson’s three eighth rule, in Figure 7.5.1.

Figure 7.5.1 confirms the superiority of Simpson’s one third rule over his three eighth
rule. The figure also shows that certain schemes are better at suppressing noise at higher
frequencies, an effect not generally emphasized in numerical calculus but often important
in  system  design.  For  example,  the  trapezoidal  rule  is  inferior  to  all  others  at  low
frequencies but only to Simpson’s one third rule at higher frequencies. Furthermore, the
trapezoidal rule might actually be preferred not only because of its simplicity but also
because it attenuates at higher frequencies, thereby counteracting the effect of noise.

Figure 7.5.1: Comparison of various quadrature formulas by ratios of 
their amplitudes to that of an ideal integrator. [From Salzer, 
J.M., 1954: Frequency analysis of digital computers operating 
in real time. Proc. IRE, 42, p. 463. ©IRE (now IEEE).]

 Example 7.5.2

Given the transfer function
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(7.5.21)

is this discrete-time system stable or marginally stable? 
This transfer function has two simple poles. The pole at z=1/2 gives rise to a term that

varies as  in the impulse response while the z=1 pole gives a constant. Because this
constant neither grows nor decays with n, the system is marginally stable.

 Example 7.5.3

In most cases the transfer function consists of a ratio of two polynomials. In this case we 
can  use  the  MATLAB  function  filter  to  compute  the  impulse  response  as  follows: 
Consider the Kronecker delta sequence, x

0
=1, and x

n
=0 for n>0. From the definition of 

thez-transform, X(z)=1. Therefore, if our input into filter is the Kronecker delta sequence, 
the output y

n
 will be the impulse response since Y(z)=G(z). If the impulse response grows

without bound as n increases, the system is unstable. If it goes to zero as n increases, the 
system is stable. If it remains constant, it is marginally stable.

To illustrate this concept, the following MATLAB script finds the impulse response 
corresponding to the transfer function (7.5.21):

% enter the coefficients of the numerator
he transfer function (7.5.21)   

Figure  7.5.2:  The  impulse  response  for  a  discrete  system with  a  
transform function given by (7.5.21).

num = [1 0 0]; 
% enter the coefficients of the denominator 
%    of the transfer function (7.5.21) 
den = [1 -1.5 0.5]; 
% create the Kronecker delta sequence 
x = [1 zeros(1, 20)]; 
% find the impulse response

    % of t
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y = filter(num,den,x); 
% plot impulse response 
plot(y,’o’),axis([0 20 0.5 2.5]) 
xlabel(’n+1’,’Fontsize’,20) 
ylabel(’impulse response’, ’Fontsize’,20)

Figure 7.5.2 shows the computed impulse response. The asymptotic limit is two, so the 
system is marginally stable as we found before.

We note in closing that the same procedure can be used to find the inverse of any z-
transform which consists of a ratio of two polynomials. Here we simply set G(z) equal to 
the given z-transform and perform the same analysis.

Problems

For the following time-discrete systems, find the transfer function and determine whether 
the systems are unstable, marginally stable, or stable. Check your answer by graphing the 
impulse response using MATLAB.

1. y
n
=y

n 1
H
n 1

+x
n

2. y
n
=2y

n 1
H
n 1

y
n 2

H
n 2

+x
n

3. y
n
=3y

n 1
H
n 1

+x
n

4. 



Chapter 8

The Hilbert Transform

In  addition  to  the  Fourier,  Laplace,  and  z-transforms,  there  are  many  other  linear 
transforms which have their own special niche in engineering. Examples include Hankel, 
Walsh, Radon, and Hartley transforms. In this chapter we consider the Hilbert transform 
which is a commonly used technique for relating the real and imaginary parts of a 
spectral response, particularly in communication theory.
We begin our study of Hilbert transforms by first defining them and then exploring their 
properties. Next, we develop the concept of the analytic signal. Finally, we explore a property of 
Hilbert transforms that is frequently applied to data analysis: the Kramers-Kronig relationship.

8.1 DEFINITION

In Chapter 7 we motivated the development of z-transforms by exploring the concept of the ideal 
sampler. In the case of Hilbert transforms, we introduce another fundamental operation,  namely  
quadrature  phase  shifting  or  the  ideal  Hilbert  transformer.  This procedure does nothing 
more than shift the phase of all input frequency components by /2. Hilbert transformers 
are frequently used in communication systems and signal processing; examples include the 
generation of single-sideband modulated signals and radar and speech signal processing.

Because a /2 phase shift is equivalent to multiplying the Fourier transform of a signal 
by e i /2= i, and because phase shifting must be an odd function of frequency,1 the trans-
fer function of the phase shifter is G( )= i sgn( ), where sgn( ) is defined by
(5.2.11). In other words, if X( ) denotes the input spectrum to the phase shifter, the output spec-
trum must be i sgn( )X( ). If the process is repeated, the total phase shift is , a complete 
phase reversal of all frequency components. The output spectrum then equals [ i sgn( )]2X( )= 

X( ). This agrees with the notion of phase reversal because the output function is x(t).

Consider now the impulse response of the quadrature phase shifter, g(t)= F 1[G( )]. 
From the definition of Fourier transforms,

(8.1.1)

and

(8.1.2)

1    For a real function the phase of its Fourier transform must be an odd function of .
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Since G ( )= 2i ( ), the corresponding impulse response is

(8.1.3)

Consequently, if x(t) is the input to a quadrature phase shifter, the superposition integral 
gives the output time function as

(8.1.4)

We shall  define  as  the Hilbert  transform  of  x(t),  although some authors  use the
negative of (8.1.4) corresponding to a+ /2 phase shift. The transform  is also called
the harmonic conjugate of x(t).

In similar fashion,  is the Hilbert transform of the Hilbert transform of x(t) and
corresponds to the output of two cascaded phase shifters. However, this output is known

to be x(t), so = x(t), and we arrive at the inverse Hilbert transform relationship that

(8.1.5)
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Figure 8.1.1:  Descended from a Prussian middle-class family,  David Hilbert 
(1862–1943)  would  make  significant  contributions  in  the  fields  of 
algebraic  form,  algebraic  number  theory,  foundations  of  geometry, 
analysis, mathematical physics, and the foundations of mathematics. 
Hilbert  transforms  arose  during  his  study  of  integral  equations 
[Hilbert, D., 1912: Grundzüge einer allgemeinen Theorie der linearen 
Integralgleichungen.  Teubner,  p.  75].  (Portrait  courtesy  of  Photo 
AKG, London.)

Taken together, x(t) and  are called a Hilbert pair. Hilbert pairs enjoy the unique

property that x(t)+  is an analytic function.2

Because of the singularity at =t, the integrals in (8.1.4) and (8.1.5) must be taken in 
the Cauchy principal value sense by approaching the singularity point from both sides, 
namely

(8.1.6)

so that the infinities to the right and left of =t, cancel each other. See §1.10. We also note
that the Hilbert transform is basically a convolution and

2  For  the  proof,  see  Titchmarsh,  E.C.,  1948:  Introduction to  the  Theory  of  Fourier  Integrals.
Oxford University Press, p. 125.
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does not produce a change of domain; if x is a function of time, then  is also a function 
of  time.  This  is  quite  different  from  what  we  encountered  with  Laplace  or  Fourier 
transforms.

From its origin in phase shifting, Hilbert transforms of sinusoidal functions are trivial. 
Some examples are

(8.1.7)

Similarly,

(8.1.8)

and

(8.1.9)

Thus, Hilbert transformation does not change the amplitude of sine or cosine but does 
change their phase by ± /2.

 Example 8.1.1

Let us apply the integral definition of the Hilbert transform (8.1.4) to find the Hilbert 
transform of sin( t), 0.

From the definition,

(8.1.10)

If x=t , then

(8.1.11)



The Hilbert Transform 477 

 Example 8.1.2

Let  us  compute  the  Hilbert  transform of  x(t)=sin(t)/(t2+1)  from the  definition  of  the 
Hilbert transform, (8.1.4).

From the definition,

(8.1.12)

Because of the singularity on the real axis at =t, we treat the integrals in (8.1.12) in the 
sense of Cauchy principal value.

To evaluate (8.1.12), we convert it into a closed contour integration by introducing a 
semicircle C

R
 of infinite radius in the upper half-plane. This

Table 8.1.1: The Hilbert Transform of Some Common Functions

 function, x(t) Hilbert transform, 

1.

2. sin( t+ ) sgn( ) cos( t+ )

3. cos( t+ ) sgn( ) sin( t+ )

4. ei t+ i i sgn( )ei t+ i

5. (t)

6.

7.

8.

9.

10.

11. sin (at)J1(at), 0<a cos(at)J1(at)
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12. sin(at) J
n
(bt), 0<b<a cos(at)J

n
(bt)

13. cos( t)J
1( t), 0<a sin(at)J1(at)

14. cos(at)J
n
(bt), 0<b< sin(at)J

n
(at)

15.

16.

yields a closed contour C which consists of the real line plus this semicircle. Therefore,
(8.1.12) can be rewritten

(8.1.13)

The second integral on the right side of (8.1.13) vanishes by (1.9.7).
The evaluation of the closed integral in (8.1.13) follows from the residue theorem. We 

have that

(8.1.14)

and

(8.1.15)

We do not have a contribution from z= i  because it lies outside of the closed contour.
Therefore,

(8.1.16)

Only one half of the value of the residue at z=t was included; this reflects the semicircular 
indentation around the singularity there. Substituting (8.1.16) into (8.1.12), we obtain the 
final result that
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(8.1.17)

 Example 8.1.3

Let us employ the relationship that the Fourier transform of  equals i sgn( ) times 

the Fourier transform of x(t) to find the Hilbert transform of .

Because 

(8.1.18)

Therefore,

(8.1.19)

(8.1.20)

(8.1.21)

(8.1.22)

where  s=t+ i.  The  integral  in  (8.1.22)  is  the  well  known  Dawson’s  integral.3  See

Gautschi and Waldvogel4 for an alternative derivation.

 Example 8.1.4: Numerical computation of the Hilbert transform

Recently  André  Weideman5  devised  a  particularly  efficient  method  for  numerically 
computing the Hilbert transform when x(t) is known exactly for any real t and enjoys the 
property that

3  Press,  W.H.,  S.A.Teukolsky,  W.T.Vetterling,  and  B.P.Flannery,  1992:  Numerical  Recipes  in
Fortran: The Art of Scientific Computing. Cambridge University Press, §6.10.

4  Gautschi,  W.,  and  J.Waldvogel,  2000:  Computing  the  Hilbert  transform  of  the  generalized
Laguerre and Hermite weight functions. BIT, 41, 490–503.

5 Weideman, J.A.C., 1995: Computing the Hilbert transform on the real line. Math. Comput., 64,

745–762.
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Given (8.1.23), the function x(t) can be represented by the rational expansion

(8.1.24)

where (t) is the set of rational functions

(8.1.25)

and

or

(8.1.27)

if we introduce the substitution t=tan( /2). 
Why is (8.1.24) useful? Taking the Hilbert transform of both sides of (8.1.24),

(8.1.28)

(8.1.26)

(8.1.23)

n
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(8.1.29)

where sgn(t) is the signum function with sgn(0)=1. Therefore,

(8.1.30)

We must now approximate (8.1.30) so that we can evaluate it numerically. We do this by 
introducing the following truncated version:

(8.1.31)

This particular truncation was chosen because n(t) and 
n 1

(t) are a conjugate pair. The 

coefficient a
n
 has become A

n
, which equals

(8.1.32)

where j= j/N.  The terms corresponding to j=±N  have been set  to zero because it  is 
assumed that x(t) vanishes rapidly with t→± . Finally, we substitute  for t and transform
(8.1.31) into

(8.1.33)

The advantage of (8.1.32) and (8.1.33) is that they can be evaluated using fast Fourier 
transforms. For example, the following MATLAB script devised by Weideman illustrates 

his methods for x(t)=1/(1+t4):

- N:N-1]’;   

Using contour integration, we find that

% initialize parameters used in computation 
b  =  1;  N  =  8;  n  =  [  
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Figure  8.1.2:  The  Hilbert  transform  for  x(t)=1/(1+t4)  computed  from 
Weidemans algorithm.

% set up collocation points and evaluate function there

 t = b * tan(pi*(n+1/2)/(2*N));F = 1./(1+t.^4);

 % evaluate (8.1.32) 
an = fftshift (fft(F.*(b-i*t))); 

% compute hilbert transform via (8.1.33) 
hilbert  =  ifft (fftshift (i* (sign (n+1/2).*an) ) )./b-i*t);

 hilbert = -real (hilbert) ; 
% find points at which we will compute exact answer 
tt = [-12:0.02:12]; 
% compute exact answer 
answer = tt.*(1+tt.^2)./(1+tt.^4)./sqrt (2) ; 
fzero = zeros (size (tt)); 
% plot both computed Hilbert transform and exact answe

legend ( ’exact Hilbert transform’,’ computed Hilbert transform’)
legend boxoff

Figure  8.1.2  illustrates  Weideman’s  algorithm for  numerically  computing  the  Hilbert 

transform of 1/(1+t4).

There  are  two  important  points  concerning  Weideman’s  implementation  of  his 
algorithm. First, the collocation points originally given by t

j
= tan[ j/(2N)], j= N,…, N 1

have changed to  j= N,…, N 1. This change replaces the 

trapezoidal  rule  discretization  for  the  Fourier  coefficients  with  a  midpoint  rule.  The

r
 plot(tt,answer,’-’,t,hilbert,’o’,tt,fzero,’--’)

 xlabel (’t’,’Fontsize’,20) 
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advantages are twofold: First, it avoids the nuisance of dealing with a collocation point at 
infinity. Second, it actually yields more accurate results in many cases.

The discerning student will also notice that Weideman introduced a free parameter b which  
we  set  to  one.  This  rescaling  parameter  can  have  a  major  influence  on  the accuracy. The 
interested student is referred to the bottom of page 756 in Weideman’s paper for further details.

 Example 8.1.5: Discrete Hilbert transform

Quite often the function is given as discrete data points. How do we find the Hilbert trans-
form in this case? We will now prove6 that the equivalent discrete Hilbert transform is

(8.1.34)

where f
n
 denotes a set of discrete data values that are sampled at t=nT and both k and n 

run from  to . The corresponding inverse is

(8.1.35)

We begin our proof by inserting (8.1.34) into (8.1.35). For n even,

(8.1.36)

(8.1.37)

(8.1.38)

6  Kak, S.C., 1970: The discrete Hilbert transform. Proc. IEEE, 58, 585–586. ©1970 IEEE. For an
alternative derivation, see Kress, R., and E.Martensen, 1970: Anwendung der Rechteckregel auf die  
reelle  Hilberttransformation  mit  unendlichem  Intervall.  Zeit.  Angew.  Math.  Mech.,  50, 

T61–T64.
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(8.1.39)

However, the term in the brackets of (8.1.39) equals 2/8. Therefore, (8.1.34)– (8.1.35) is 
proved for n even. An identical proof follows for n odd.

A popular  alternative7  to  (8.1.34)  involves  the  (fast)  Fourier  transform  and  the

relationship that   sgn( )X( ),  where X( )  and  denote the Fourier

transform of x(t)  and  respectively. In this technique, a fast Fourier transform is 
taken of the data. This transformed dataset is then multiplied by i sgn( ) and then back 
transformed to give the Hilbert transform.

Let x(t) be a real, even function. Then X( ), the Fourier transform of x(t), is also an 
even function. Consequently,

(8.1.40)

(8.1.41)

(8.1.42)

(8.1.43)

Note that the Hilbert transform in this case is an odd function. Similarly, if x(t) is a real, 
odd function,

(8.1.44)

The  term  within  the  curly  brackets  equals  zero  as  k  runs  through  all  of  its  values. 
Therefore, (8.1.38) reduces to

and the Hilbert transform is an even function.

7 í ek, V., 1970: Discrete Hilbert transform. IEEE Trans. Audio Electroacoust., AU-18, 340–343.
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1. Show that the Hilbert transform of a constant function is zero.
2. Use (8.1.4) to compute the Hilbert transform of cos( t), 0.
3. Use (8.1.4) to show that the Hilbert transform of the Dirac delta function (t) is 

1/( t).

4. Use (8.1.4) to show that the Hilbert transform of 1/(t2+1) is t/(t2+1).

5. The output y(t) from an ideal lowpass filter can be expressed by the convolution 
integral

 

where x(t) is the input signal. Show that this expression can also be expressed in terms of 
Hilbert transforms as

y(t)=H[x(t) cos(2 t)] sin(2 t) H[x(t) sin(2 t)] cos(2 t). 
 

Use (8.1.26) to find the Hilbert transforms of

6. 

7. 

Using MATLAB, test Weideman’s algorithm for the following cases. Why does the 
algorithm do well or not?

8. 

9. sin(t)

10. 

11. 

For Problem 11, you will need

 

Problems
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8.2 SOME USEFUL PROPERTIES

In principle we could construct any desired transform from the definition of the Hilbert 
transform. However, there are several general theorems that are much more effective in 
finding new transforms.

Linearity

From  the  definition  of  the  Hilbert  transform,  it  immediately  follows  that  if

z(t)=c
1
x(t)+c

2
y(t), where c

1
 and c

2
 are arbitrary constants, then  

The energy in a signal and its Hilbert transform are the same.

Consider the energy spectral densities at input and output of a quadrature phase shifter.
The output equals

(8.2.1)

Because the energy spectral density at input and output are the same, so are the total 
energies.

A signal and its Hilbert transform are orthogonal.

        From Parseval’s theorem,

(8.2.2)

where  Then,

(8.2.3)

because the integrand in the middle expression of (8.2.3) is odd. Thus,

(8.2.4)
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The reason why a function and its Hilbert transform are orthogonal to each other follows from 
the fact that a Hilbert transformation of a function shifts the phase of each Fourier component of 
the function forward by /2 for positive frequencies and backward for negative frequencies.

 Example 8.2.1

Let us verify the orthogonality condition for Hilbert transforms using x(t)=1/(1+t2).

Because 

(8.2.5)

since the integrand is an odd function.

Shifting

Let us find the Hilbert  transform of x(t+a)  if  we know  From the definition of
Hilbert transforms,

(8.2.6)

or 

Time scaling

Let a>0. Then,

(8.2.7)

On the other hand, if a<0,

(8.2.8)

Thus, we have that 
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Derivatives

Let us find the relationship between the nth derivative of x(t) and its Hilbert transform. 
Using the derivative rule as it applies to Fourier transforms,

(8.2.9)

(8.2.10)

Taking the inverse Fourier transforms, we have that

(8.2.11)

Convolution

Hilbert transforms enjoy a similar,  but not identical,  property with Fourier transforms 
with respect to convolution. If

(8.2.12)

then

(t)= (t)*û(t). (8.2.13)

Table 8.2.1: Some General Properties of Hilbert Transforms 

 function, x(t) Hilbert transform, 

1. x(t)

2. x(t)+y(t)
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3. x(t+a), a real

4.

5. x(at)

6. tx(t)

7. (t+a)x(t)

Proof:  From  the  convolution  theorem  as  it  applies  to  Fourier  transforms, 
W( )=V( )U( ). Multiplying both sides of the equation by i sgn( ),

( )= i sgn( ) W( )=V( )[ i sgn( )U( )]=V( )Û( ). (8.2.14)

Again, using the convolution theorem as it applies to Fourier transforms, we arrive at the 
final result.

 Example 8.2.2

Given the functions u(t)=cos(t) and v(t)=1/(1+t4), let us verify the convolution theorem as 
it applies to Hilbert transforms.

With u(t)=cos(t) and (t)=1/(1+t4),

(8.2.15)

(8.2.16)

(8.2.17)

so that

(8.2.18)
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Because 

(8.2.19)

(8.2.20)

(8.2.21)

(8.2.22)

and the convolution theorem for Hilbert transforms holds true in this case.

Product theorem

Let  f(t)  and  g(t)  denote  complex  functions  with  Fourier  transforms  F( )  and  G( ), 
respectively. If

1) F( ) vanishes for | |>a, and G( ) vanishes for | |<a, where a>0, 
or
2) f(t) and g(t) are analytic functions (their real and imaginary parts are Hilbert pairs), 
then the Hilbert transform of the product of f(t) and g(t) is

(8.2.23)

(8.2.24)

Because 

8  Taken from Bedrosian, E.,  1963: A product theorem for Hilbert  transforms. Proc. IEEE,  51,

868–869. ©1963 IEEE. This theorem has been extended to functions of n-dimensional real vectors 
by Stark, H., 1971: An extension of the Hilbert transform product theorem. Proc. IEEE, 59, 1359–1360.

Proof:8 The product f(t)g(t) can be expressed as



The Hilbert Transform 491 

(8.2.25)

Figure 8.2.1: Region of integration in the proof of the product theorem.

The  shaded  regions  of  Figure  8.2.1  are  those  in  which  the  product  F(u)G( )  is
nonvanishing for the conditions of the theorem. In Figure 8.2.1(a) the nonoverlapping
Fourier transforms yield two semi-infinite strips in which the product is nonvanishing. In
Figure  8.2.1(b),  for  analytic  functions,  the  Fourier  transforms  vanish  for  negative
arguments9 so that the product is nonvanishing only in the first quadrant. In both cases 
sgn(u+ )= sgn( ) over the regions of integration in which the integrand is nonvanishing. Thus,

(8.2.26)

(8.2.27)

 Example 8.2.3: Hilbert Transforms of Band-Pass Functions

In communications, we have the double-sideband, amplitude modulated signal given by 
a(t)  cos( t+ ),  where  is  constant.  From the product  theorem its  Hilbert  transform 
equals a(t) sin( t+ ), >0, provided that the highest frequency component in a(t) is less

9  Titchmarsh, E.C., 1948: Introduction to the Theory of Fourier Integrals. Oxford University Press,
p. 128.
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than . Paradoxically, the Hilbert transform of more general a(t) cos[ t+ (t)], which 
equals a(t) sin[ t+ (t)], has no such restriction.

Problems

Verify the orthogonality property of Hilbert transforms using

1. x(t)=1/(1+t4)

2. x(t)=sin(t)/(1+t2)

Verify the convolution theorem for Hilbert transforms using

4. 

5. 

6. Use the product theorem to show that

 

if n=0, 1, 2, 3,…. 
Hint:

 

where T
n
( ) is a Chebyshev polynomial of the first kind and m=n/2 or (n 1)/2, depending 

upon which definition gives an integer.
7. Given cosine and sine integrals:

 

and

 

use the product rule to show that
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Hint:

 

8. Prove that

 

Hint:

 

8.3 ANALYTIC SIGNALS

The  monochromatic  signal  A cos(
0
t+ )  appears  in  many  physical  and  engineering

applications.  It  is  common  to  represent  this  signal  by  the  complex  representation

Aei( t+ ). These two representations are related to each other by

(8.3.1)

Furthermore, the Fourier transform of A cos(
0
t+ ) is

(8.3.2)

while the Fourier transform of  is

(8.3.3)

As  (8.3.2)  and  (8.3.3)  clearly  show,  in  passing  from  the  real  signal  to  its  complex
representation, we double the strength of the positive frequencies and remove entirely the
negative frequencies.

0
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Let us generalize these concepts to nonmonochromatic signals. For the real signal x(t) 
with Fourier transform X( ) and the complex signal z(t) with Fourier transform Z( ), the 
previous paragraph shows that our generalization must have the property:

(8.3.4)

or

(8.3.5)

Taking the inverse of (8.3.4), we have the definition of an analytic signal as

(8.3.6)

where x(t) is a real signal and  is its Hilbert transform.

 Example 8.3.1

In Figure 8.3.1 the amplitude spectrum of the analytic signal is graphed when x(t) is the
rectangular pulse (3.1.9). Note that the amplitude spectrum equals zero for <0 and twice
the amplitude spectrum for >0.

Figure 8.3.1: The spectrum of the analytic signal when x(t) is the rectangular pulse 
given by (5.1.9).
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 Example 8.3.2

Let us find the energy of an analytic signal. 
The energy of an analytic signal is

(8.3.7)

(8.3.8)

by  Parseval’s  theorem.  Thus,  the  analytic  signal  has  twice  the  energy  of  the
corresponding real signal. 

Consider  the  function  x(t)  whose  amplitude  spectrum  |X( )|  is  shown  in  Figure
8.3.2(a).  If  we  were  to  amplitude  modulate  x(t)  with  cos(

0
t),  then  the  amplitude 

spectrum of this modulated signal would appear as pictured in Figure 8.3.2(b).
Consider now the signal

(8.3.9)

(8.3.10)

where z(t) is the analytic signal of x(t). We have plotted the amplitude spectrum |Z( )| in 
Figure 8.3.2(c). If we compute the amplitude spectrum of y(t), we would find that

(8.3.11)

(8.3.12)
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Figure 8.3.2: Given a function x(t) with an amplitude spectrum shown in (a),
frame (b) shows the amplitude spectrum of the amplitude modulated
signal  x(t)  cos(

0t)  while  frames  (c)  and  (d)  give  the  amplitude

spectrum of the analytic signal z(t)  and x(t)  cos(
0t)  

respectively.

We have sketched this amplitude spectrum |Y( )| in Figure 8.3.2(d). Each triangular part
is called the single sideband signal because it contains the upper frequencies (| |>

0
) of 

the  modulated  signal  x(t)cos(
0
t).  Similarly,  if  we  had  used   sin

(
0
t), we would have only obtained the lower sidebands. Consequently, a communication 

system using x(t) cos(
0
t)   sin (

0
t) would realize a

50% savings in its frequency bandwidth over one transmitting x(t) cos(
0
t).

Problems

1. Find the analytic signal corresponding to 
2. Show that the polar form of an analytic signal can be written

z(t)=|z(t)|ei (t), 

where

 

3. Analytic signals are often used with narrow-band waveforms with carrier frequency 

0
. If (t)=

0
t+ (t), show that the analytic signal can be written z(t)=r(t)ei 0t, where
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r(t)=|z(t)|ei (t). The function r(t) is called the complex envelope or the phasor amplitude;
this is a generalization of the phasor idea beyond pure alternating currents.

8.4 CAUSALITY: THE KRAMERS-KRONIG RELATIONSHIP

Causality is the physical principle which states that an event cannot proceed its cause. In
this section we explore what effect this principle has on Hilbert transforms.

We  begin  by  introducing  the  concept  of  causal  functions.  A causal  function  is  a
function which equals zero for all t<0. As with all functions we can write it in terms of an
even x

e
(t)  and  an  odd  x

o
(t)  part  x(t)=x

e
(t)+x

o
(t). Because x(t) is causal, x

o
(t)=sgn(t)x

e
(t)

and

x(t)=x
e
(t)+sgn(t)x

e
(t). (8.4.1)

Taking the Fourier transform of (8.4.1), we find that the Fourier transform of all causal
functions are of the form

(8.4.2)

where

(8.4.3)

and

(8.4.4)

because

(8.4.5)

Equations (8.4.3)–(8.4.4) first arose in dielectric theory and, taken together, are called the 

Kramers10 and Kronig11 relation after their discoverers who derived these relationships
during their work on the dispersion of light by gaseous atoms or molecules.

10  Kramers,  H.A.,  1929: Die Dispersion und Absorption von Röntgenstrahlen.  Phys.  Zeit.,  30,

522–523.
11  Kronig, R.de L., 1926: On the theory of dispersion of x-rays. J. Opt. Soc. Am., 12, 547–551.

as 
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(8.4.6)

Consequently, by the Kramers-Kronig relation

(8.4.7)

This agrees with the result given in Example 5.2.2.

 Example 8.4.2

A simple  example  of  a  causal  function  is  the  impulse  response  or  Green’s  function
introduced in earlier chapters. From (8.4.2) we have the result that the transfer function
G( ),  the Fourier transform of the impulse response, must yield the Hilbert transform
pair G

e
( ) i

e
( ).

For example,  Because

(8.4.8)

we have the Hilbert transform pair of

(8.4.9)

 Example 8.4.3

Let us verify the Kramers-Kronig relation for the Hilbert transform pair

 Example 8.4.1

Let us verify the Kramers-Kronig relation using the causal time function x(t)=H(t). 

Because 
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(8.4.10)

by direct integration. 
From (8.4.3), we have that

(8.4.11)

Applying the residue theorem to the right side of (8.4.11), we obtain

(8.4.12)

We only include one half of the value of the residue at =  because the singularity lies on 
the path of integration and we must treat this integration along the lines of a Cauchy 
principal value. Evaluating the residues, we find

(8.4.13)

(8.4.14)

and

(8.4.15)

Substituting (8.4.13)–(8.4.15) into the right side of (8.4.12), we obtain the left side.

Problems

1. For a causal function x(t), prove that x
0
(t)=sgn(t)x

e
(t) and x

e
(t)= sgn(t)x

o
(t).

2. Redo our analysis if x(t) is a negative time function, i.e., x(t)=0 if t>0. Verify your 

result using x(t)=etH( t).

3. Using g(t)=te tH(t), find the corresponding Hilbert transform pairs.
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4. Using g(t)=e t cos( t)H(t), find the corresponding Hilbert transform pairs.
5. Verify the Kramers-Kronig relation for the Hilbert transform pair

 

and

 

by direct integration.



Chapter 9

The Sturm-Liouville Problem

In  the  next  three  chapters  we  will  be  solving  partial  differential  equations  using  the 
technique of separation of variables. This technique requires that we expand a piece-wise
continuous function f(x) as a linear sum of eigenfunctions, much as we used sines and 
cosines to re-express f(x) in a Fourier series. The purpose of this chapter is to explain and
illustrate these eigenfunction expansions.

9.1 EIGENVALUES AND EIGENFUNCTIONS

Repeatedly, in the next three chapters on partial differential equations, we will solve the 
following second-order linear differential equation:

(9.1.1)

together with the boundary conditions:

(9.1.2)
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Figure 9.1.1: By the time that Charles-François Sturm (1803–1855) met Joseph 
Liouville in the early 1830s, he had already gained fame for his work 
on  the  compression  of  fluids  and  his  celebrated  theorem  on  the 
number of real roots of a polynomial. An eminent teacher, Sturm spent 
most  of  his  career  teaching  at  various  Parisian  colleges.  (Portrait 
courtesy of the Archives de l’Académie des sciences, Paris.)

In (9.1.1), p(x), q(x), and r(x) are real functions of x;  is a parameter; and p(x) and r(x) 
are functions that  are  continuous and positive on the interval  a x b.  Taken together,
(9.1.1) and (9.1.2) constitute a regular Sturm-Liouville problem, named after the French 
mathematicians Sturm and Liouville1 who first studied these equations in the 1830s. In 
the case when p(x) or r(x) vanishes at one of the endpoints of the interval [a, b] or when the  
interval  is  of  infinite  length,  the  problem  becomes  a  singular  Sturm-Liouville problem.

Consider now the solutions to the regular Sturm-Liouville problem. Clearly there is the 
trivial  solution  y=0 for  all  .  However,  nontrivial  solutions  exist  only  if   takes  on 
specific  values;  these  values  are  called  characteristic  values  or  eigenvalues.  The 
corresponding nontrivial solutions are

1  For  the  complete  history  as  well  as  the  relevant  papers,  see  Lützen,  J.,  1984:  Sturm   and
Liouville’s  work  on  ordinary  linear  differential  equations.  The  emergence  of Sturm Liouville
theory. Arch. Hist. Exact Sci, 29, 309–376.
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called the characteristic functions or eigenfunctions. In particular, we have the following 
theorems.

Theorem: For a regular Sturm-Liouville problem with p(x)>0, all of the eigenvalues are real 
if p(x), q(x), and r(x) are real functions and the eigenfunctions are differentiable and continuous.

Proof:  Let  y(x)=u(x)+i (x)  be  an  eigenfunction  corresponding  to  an  eigenvalue 

=
r
+i

i
, where 

r
, 

i
 are real numbers and u(x), (x) are real functions of x. Substituting 

into the Sturm-Liouville equation yields

{p(x)[u (x)+i (x)]} +[q(x)+( r+i
i
)r(x)][u(x)+i (x)]=0. (9.1.3)

Separating the real and imaginary parts gives

[p(x)u (x)] +[q(x)+
r
]u(x)

i
r(x) (x)=0, (9.1.4)

and

[p(x) (x)] +[q(x)+
r
] (x)+

i
r(x)u(x)=0. (9.1.5)

If we multiply (9.1.4) by  and (9.1.5) by u and subtract the results, we find that

u(x)[p(x) (x)] (x)[p(x)u (x)] +
i
r(x)[u2(x)+ 2(x)]=0. (9.1.6)

The derivative terms in (9.1.6) can be rewritten so that (9.1.6) becomes

(9.1.7)

Integrating from a to b, we find that

(9.1.8)



504 Advanced Engineering Mathematics with MATLAB 

From the boundary conditions (9.1.2),

[u(a)+i (a)]+ [u (a)+i (a)]=0, (9.1.9)

and

[u(b)+i (b)] + [u (b)+i (b)]=0. (9.1.10)

Separating the real and imaginary parts yields

u(a)+ u (a)=0, and a (a)+ (a)=0, (9.1.11)

and

u(b)+ u (b)=0, and (b)+ (b)=0. (9.1.12)

Figure 9.1.2: Although educated as an engineer, Joseph Liouville (1809– 
1882) would devote his life to teaching pure and applied 
mathematics in the leading Parisian institutions of higher 
education. Today he is most famous for founding and editing 
for almost 40 years the Journal de Liouville.  (Portrait  courtesy  
of  the  Archives  de  l’Académie  des sciences, Paris.)
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Both  and  cannot be zero; otherwise, there would be no boundary condition at x=a. 
Similar considerations hold for  and . Therefore,

u( ) (a) u (a) (a)=0, and u(b) (b) u (b) (b)=0, (9.1.13)

if  we  treat  ,  ,  ,  and   as  unknowns  in  a  system  of  homogeneous  equations
(9.1.11)–(9.1.12) and require that the corresponding determinants equal zero. Applying
(9.1.13) to the right side of (9.1.8), we obtain

(9.1.14)

Because  r(x)>0,  the  integral  is  positive  and  i=0.  Since  i=0,   is  purely  real.  This 
implies that the eigenvalues are real.

If there is only one independent eigenfunction for each eigenvalue, that eigenvalue is 
simple. When more than one eigenfunction belongs to a single eigenvalue, the problem is 
degenerate.

Theorem: The regular Sturm-Liouville problem has infinitely many real and simple 
eigenvalues  

n
,  n=0,  1,  2,…,  which  can  be  arranged  in  a  monotonically  increasing 

sequence 
0
<

1
<

2
<…such that lim

n→
 

n
= . Every eigenfunction y

n
(x) associated with 

the corresponding eigenvalue 
n
 has exactly  n  zeros in  the interval  (a,  b).  For each 

eigenvalue there exists only one eigenfunction (up to a multiplicative constant).

The proof  is  beyond the  scope  of  this  book but  may be  found in  more  advanced 

treatises.2

In the following examples we illustrate how to find these real eigenvalues and their 
corresponding eigenfunctions.

 Example 9.1.1

Let us find the eigenvalues and eigenfunctions of

y + y=0,                                                           (9.1.15)

2  See,  for  example,  Birkhoff,  G.,  and G.-C.Rota,  1989:  Ordinary Differential  Equations.  John
Wiley &; Sons,  Chapters  10 and 11;  Sagan,  H.,  1961:  Boundary and Eigenvalue Problems 
in Mathematical Physics. John Wiley &; Sons, Chapter 5.
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subject to the boundary conditions

y(0)=0, and y( ) y ( )=0. (9.1.16)

Our first task is to check to see whether the problem is indeed a regular Sturm-Liouville 
problem. A comparison between (9.1.1) and (9.1.15) shows that they are the same if 
p(x)=1, q(x)=0, and r(x)=1. Similarly, the boundary conditions (9.1.16) are identical to
(9.1.2) if = =1, = 1, =0, =0, and b= .

Because the form of the solution to (9.1.15) depends on , we consider three cases: 

negative, positive, or equal to zero. The general solution3 of the differential equation is

y(x)=A cosh(mx)+B sinh(mx), if <0, (9.1.17)

y(x)=C+Dx, if =0, (9.1.18)

and

y(x)=E cos(kx)+F sin(kx), if >0, (9.1.19)

3  In  many  differential  equations  courses,  the  solution  to  y m2y=0,  m>0,  is  written

y(x)=c
1emx+c2e mx.  However,  we  can  rewrite  this  solution  as y(x)=

    where

cosh(mx)=(emx+e mx)/2  and  sinh(mx)=(emx e mx)/2.  The  advantage  of  using  these  
hyperbolic functions over exponentials is the simplification that occurs when we substitute 
the hyperbolic functions into the boundary conditions.
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Figure 9.1.3: Graphical solution of tan( x)=x.

where for convenience = m2<0 in (9.1.17) and =k2>0 in (9.1.19). Both k and m are real 
and positive by these definitions.

Turning  to  the  condition  that  y(0)=0,  we  find  that  A=C=E=0.  The  other  boundary 
condition y( ) y( )=0 gives

B[sinh(m ) m cosh(m )]=0, (9.1.20)

D=0, (9.1.21)

and

F[sin(k ) k cos(k )]=0. (9.1.22)

If we graph sinh(m ) m cosh(m ) for all positive m, this quantity is always negative. 
Consequently, B=0. However, in (9.1.22), a nontrivial solution (i.e., F 0) occurs if

F cos(k )[tan(k ) k]=0, or tan(k )=k. (9.1.23)

In summary, we found nontrivial solutions only when 
n
=  >0, where k

n
 is the nth root

of  the  transcendental  equation  (9.1.23).  We  can  find  the  roots  either  graphically  or
through the use of a numerical algorithm. Figure 9.1.3 illustrates the graphical solution to 
the problem. We exclude the root k=0 because  must be greater than zero.
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Let us now find the corresponding eigenfunctions. Because A=B= C=D=E=0, we are 
left with y(x)=F sin(kx). Consequently, the eigenfunction, traditionally written without 
the arbitrary amplitude constant, is

y
n
(x)=sin(k

n
x), 

(9.1.24)

because k must equal k
n
. Figure 9.1.4 shows the first four eigenfunctions.

Figure  9.1.4:  The  first  four  eigenfunctions  sin(k
n
x)  corresponding  to  the

eigenvalue problem tan(k )=k.

 Example 9.1.2

For our second example let us solve the Sturm-Liouville problem,4

y + y=0, (9.1.25)

with the boundary conditions

y(0) y (0)=0, and y( ) y ( )=0.
(9.1.26)

4  Sosov and Theodosiou [Sosov, Y., and C.E.Theodosiou, 2002: On the complete  solution  of  the

Sturm-Liouville problem (d2X/dx2)+ 2X=0 over a closed interval. J. Math. Phys., 43, 2831–2843]
have analyzed this problem with the general boundary conditions (9.1.2).
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Once again the three possible solutions to (9.1.25) are

y(x)=A cosh(mx)+B sinh(mx), if = m2<0, (9.1.27)

y(x)=C+Dx, if =0, (9.1.28)

and

y(x)=E cos(kx)+F sin(kx), if =k2>0. (9.1.29)

Let us first check and see if there are any nontrivial solutions for < 0. Two simultaneous 
equations result from the substitution of (9.1.27) into (9.1.26):

A mB=0,
(9.1.30)

and

[cosh(m ) m sinh(m )]A+[sinh(m ) m cosh(m )]B=0. (9.1.31)

The elimination of A between the two equations yields

sinh(m )(1 m2)B=0. (9.1.32)

If (9.1.27) is a nontrivial solution, then B 0, and

sinh(m )=0, (9.1.33)
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or

m2=1. (9.1.34)

Equation  (9.1.33)  cannot  hold  because  it  implies  m= =0  which  contradicts  the 
assumption  used  in  deriving  (9.1.27)  that  <0.  On  the  other  hand,  (9.1.34)  is  quite 
acceptable. It corresponds to the eigenvalue = 1 and the eigenfunction is

y
0
=cosh(x)+sinh(x)=ex, (9.1.35)

because it satisfies the differential equation

y
0

y
0
=0, (9.1.36)

and the boundary conditions

y
0
(0) y

0
(0)=0, 

(9.1.37)

and

y
0
( ) y

0
( )=0. (9.1.38)

An alternative method of finding m, which is quite popular because of its use in more 
difficult  problems,  follows  from  viewing  (9.1.30)  and  (9.1.31)  as  a  system  of 

homogeneous linear equations, where A and B are the unknowns. It is well known5 that 
for (9.1.30)–(9.1.31) to have a nontrivial solution (i.e., A 0 and/or B 0) the determinant 
of the coefficients must vanish:

(9.1.39)

Expanding the determinant,

5 See Chapter 14.
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sinh(m )(1 m2)=0, (9.1.40)

which leads directly to (9.1.33) and (9.1.34). 
We consider next the case of =0. Substituting (9.1.28) into (9.1.26), we find that

C D=0, (9.1.41)

and

C+D D=0. (9.1.42)

This set of simultaneous equations yields C=D=0 and we have only trivial solutions for 
=0.

Finally, we examine the case when >0. Substituting (9.1.29) into (9.1.26), we obtain

E kF=0,
(9.1.43)

and

[cos(k )+k sin(k )]E+[sin(k ) k cos(k )]F=0.
(9.1.44)

The elimination of E from (9.1.43) and (9.1.44) gives

F(1+k2) sin(k )=0. 
(9.1.45)

If (9.1.29) is nontrivial, F 0, and

       k2= 1, (9.1.46)
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or

sin(k )=0. (9.1.47)

Condition (9.1.46) violates the assumption that k is real, which follows from the fact that

=k2>0. On the other hand, we can satisfy (9.1.47) if k=1, 2, 3,…; a negative k yields the

same . Consequently we have the additional eigenvalues 
n
=n2.

Let us now find the corresponding eigenfunctions. Because E=kF, y(x)=F sin(kx)+Fk
cos(kx) from (9.1.29). Thus, the eigenfunctions for >0 are              

y
n
(x)=sin(nx)+n cos(nx). (9.1.48)

 Example 9.1.3

Consider now the Sturm-Liouville problem 

y + y
(9.1.49)

with 

y( )=y( ), and y ( )=y ( ). (9.1.50)

Figure 9.1.5 illustrates some of the eigenfunctions given by (9.1.35) and (9.1. 48).

=0,
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Figure  9.1.5:  The  first  four  eigenfunctions  for  the  Sturm-Liouville  problem
(9.1.25)– (9.1.26).

This  is  not  a  regular  Sturm-Liouville  problem  because  the  boundary  conditions  are 
periodic and do not conform to the canonical boundary condition (9.1.2).

The general solution to (9.1.49) is

y(x)=A cosh(mx)+B sinh(mx), if = m2<0, (9.1.51)

y(x)=C+Dx, if =0, (9.1.52)

and

y(x)=E cos(kx)+F sin(kx), if =k2>0. (9.1.53)

Substituting these solutions into the boundary condition (9.1.50),

A cosh(m )+B sinh(m )=A cosh( m )+B sinh( m ), (9.1.54)
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C+D =C D , (9.1.55)

and

E cos(k )+F sin(k )=E cos( k )+F sin( k ), (9.1.56)

or

B sinh(m )=0, D 0, and F sin(k )=0, (9.1.57)

because  cosh( m )=cosh(m ),  sinh( mr)= sinh(m ),  cos( k )=  cos(k ),  and 

sin( k )= sin(k ). Because m must be positive, sinh(m ) cannot equal zero and B=0. On 

the other hand, if sin(k )=0 or k=n, n=1, 2, 3,…, we have a nontrivial solution for 

positive  and 
n
=n2. Note that we still have A, C, E, and F as free constants.

From the boundary condition (9.1.50),

A sinh(m )=A sinh( m ),
(9.1.58)

and

E sin(k )+F cos(k )= E sin( k )+F cos( k ).
(9.1.59)

The solution y
0
(x)=C identically satisfies the boundary condition (9.1.50) for all C. Be-

cause m and sinh(m ) must be positive, A=0. From (9.1.57), we once again have 
sin(k )=0, and k=n. Consequently, the eigenfunction solutions to (9.1.49) (9.1.50) are

0
=0, y

0
(x)=1, (9.1.60)
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(9.1.61)

and we have a degenerate set of eigenfunctions to the Sturm-Liouville problem (9.1.49) 
with the periodic boundary condition (9.1.50).

Problems

Find the eigenvalues and eigenfunctions for each of the following:
1. y + y=0, y (0)=0, y(L)=0

2. y + y=0, y (0)=0, y ( )=0

3. y + y=0, y(0)+y (0)=0, y( )+y ( )=0

4. y + y=0, y (0)=0, y( ) y ( )=0

5. y(i )+ y=0, y(0)=y"(0)=0, y(L)=y (L)=0

Find an equation from which you could find  and give the form of the eigenfunction for 
each of the following:

6. y + y=0, y(0)+y (0)=0, y(1)=0

7. y + y=0, y(0)=0, y( )+y ( )=0

8. y + y=0, y (0)=0, y(1) y (1)=0

9. y + y=0, y(0)+y (0)=0, y ( )=0

10. y + y=0, y(0)+y (0)=0, y( ) y ( )=0

11. Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem  

for each of the following boundary conditions: (a) u(1)=u(e)=0, (b) u(1)=u (e)=0, and (c)
u (1)=u (e)=0.

Find the eigenvalues and eigenfunctions of the following Sturm-Liouville problems:

12. x2y +2xy + y=0, y(1)=y(e)=0, 1 x e

13. 

14. 

15. y 4y=0, y (0)=y (0)=y (1)=y (1)=0, 0<x<1

9.2 ORTHOGONALITY OF EIGENFUNCTIONS

In the previous section we saw how nontrivial solutions to the regular Sturm-Liouville
problem  consist  of  eigenvalues  and  eigenfunctions.  The  most  important  property  of 
eigenfunctions is orthogonality.

and
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Theorem: Let the functions p(x), q(x), and r(x) of the regular SturmLiou ille problem
(9.1.1)–(9.1.2)  be real  and continuous on the interval  [a,  b].  If  y

n
(x)  and y

m
 (x)  are 

continuously differentiable eigenfunctions corresponding to the distinct eigenvalues 
n 

and 
m

, respectively, then y
n
 (x) and y

m
 (x) satisfy the orthogonality condition:

(9.2.1)

if  
n m

.  When (9.2.1) is satisfied ,  the eigenfunctions y
n
(x)  and  y

m
(x)  are said to be 

orthogonal to each other with respect to the weight function r(x).

The term orthogonality appears to be borrowed from linear algebra where a similar 
relationship holds between two perpendicular or orthogonal vectors.

Proof:  Let  y
n
(x)  and y

m
(x)  denote  the  eigenfunctions  associated with  two different 

eigenvalues 
n
 and 

m
. Then

(9.2.2)

(9.2.3)

and both solutions satisfy the boundary conditions. Let us multiply the first differential 
equation by y

m
; the second by y

n
. Next, we subtract these two equations and move the 

terms containing y
n
y

m
 to the right side. The resulting equation is

(9.2.4)

Integrating (9.2.4) from a to b yields

(9.2.5)
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(9.2.6)

The second integral equals zero since the integrand vanishes identically. Because y
n
(x) 

and y
m

(x) satisfy the boundary condition at x=a,

(9.2.7)

and

(9.2.8)

These two equations are simultaneous equations in  and . Hence, the determinant of 
the equations must be zero:

(9.2.9)

Similarly, at the other end,

(9.2.10)

Consequently, the right side of (9.2.6) vanishes and (9.2.5) reduces to (9.2.1).

 Example 9.2.1

Let us verify the orthogonality condition for the eigenfunctions that we found in 
Example  9.1.1.

Because r(x)=1, a=0, b= , and y
n
(x) sin(k

n
x), we find that

(9.2.11)

We can simplify the left side of (9.2.5) by integrating by parts to give
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(9.2.12)

(9.2.13)

(9.2.14)

(9.2.15)

(9.2.16)

(9.2.17)

We  used  the  relationships  k
n
=tan(k

n
),  and  k

m
=tan(k

m
)  to  simplify  (9.2.15).  Note, 

however, that if n=m,

(9.2.18)

(9.2.19)

(9.2.20)
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because sin(2A)=2sin(A)cos(A),  and k
n
=tan(k

n
).  That is,  any eigenfunction cannot  be

orthogonal to itself.
In closing, we note that had we defined the eigenfunction in our example as

(9.2.21)

rather than y
n
(x)=sin(k

n
x), the orthogonality condition would read

(9.2.22)

This process of normalizing an eigenfunction so that the orthogonality condition becomes

(9.2.23)

generates orthonormal eigenfunctions. We will see the convenience of doing this in the 
next section.

Problems

1. The Sturm-Liouville problem y + y=0, y(0)=y(L)=0, has the eigenfunction solution 
y

n
(x)=sin(n x/L). By direct integration verify the orthogonality condition (9.2.1).

2.  The  Sturm-Liouville  problem  y + y=0,  y (0)=y (L)=0,  has  the  eigenfunction solutions 

y
0
(x)=1 and y

n
(x)=cos(n x/L). By direct integration verify the orthogonality condition (9.2.1).

3. The Sturm-Liouville problem y + y=0, y(0)=y (L)=0, has the eigenfunction solution 
y

n
(x)=sin[(2n 1) x/(2L)]. By direct integration verify the orthogonality condition (9.2.1).

4. The Sturm-Liouville problem y + y=0, y (0)=y(L)=0, has the eigenfunction solution 
y

n
(x)=cos[(2n 1) x/(2L)]. By direct integration verify the orthogonality condition (9.2.1)

.

9.3 EXPANSION IN SERIES OF EIGENFUNCTIONS

In calculus we learned that under certain conditions we could represent a function f(x) by a  
linear  and  infinite  sum  of  polynomials  (x x

0
)n.  In  this  section  we  show  that  an 

analogous procedure exists for representing a piece-wise continuous function by a linear 
sum of eigenfunctions. These eigenfunction expansions will be used in the next three 
chapters to solve partial differential equations.
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terms of the eigenfunctions y
n
(x) given by a regular SturmLiouville problem. Assuming 

that the function f(x) can be represented by a uniformly convergent series,6 we write

(9.3.1)

The orthogonality relation (9.2.1) gives us the method for computing the coefficients c
n
.

First we multiply both sides of (9.3.1) by r(x)y
m

(x), where m is a fixed integer, and then 

integrate from a to b. Because this series is uniformly convergent and y
n
(x) is continuous, 

we can integrate the series term by term or

(9.3.2)

The orthogonality relationship states that all of the terms on the right side of (9.3.2) must 
disappear except the one for which n=m. Thus, we are left 

with

(9.3.3)

or

(9.3.4)

if we replace m by n in (9.3.3).
Usually, both integrals in (9.3.4) are evaluated by direct integration. In the case when 

the  evaluation  of  the  denominator  is  very  difficult,  Lockshin7  has  shown  that  the 
denominator of (9.3.4) always equals 

Let the function f(x) be defined in the interval a<x<b. We wish to re-express f(x) in

6  If S
n
(x)=  u

k
(x), S(x)=lim

n→ S 
n
(x), and 0<|S

n
(x) S(x)|<  for all n>M>0, the series 

u
k
(x) is uniformly convergent if M is dependent on  alone and not x.

7
 Lockshin, J.L, 2001: Explicit closed-form expression for eigenfunction norms. Appl. Math. Lett.,

14, 553–555.
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for a regular Sturm-Liouville problem with eigenfunction solution y where p(x), q(x), and
r(x) are continuously differentiable on the interval [a, b].

The series (9.3.1) with the coefficients found by (9.3.4) is a generalized Fourier series

of the function f(x)  with respect  to  the eigenfunction y
n
(x).  It  is  called a  generalized

Fourier series because we generalized the procedure of re-expressing a function f(x) by 

sines and cosines into one involving solutions to regular Sturm-Liouville problems. Note that if 

we had used an orthonormal set of eigenfunctions, then the denominator of (9.3.4) would equal

one and we reduce our work by half. The coefficients c
n
 are the Fourier coefficients.

One of the most remarkable facts about generalized Fourier series is their applicability 
even when the function has a finite number of bounded discontinuities in the range [a, b].
We may formally express this fact by the following theorem:

Theorem: If both f(x) and f (x) are piece-wise continuous in a x b, then f(x) can be
expanded in  a  uniformly  convergent  Fourier  series  (9.3.1),  whose  coefficients  c

n
 are

given by (9.3.4). It converges to [f(x+)+f(x )]/2 at any point x in the open interval a<x<b.

The  proof  is  beyond  the  scope  of  this  book  but  can  be  found  in  more  advanced
treatises.8 If we are willing to include stronger constraints, we can make even stronger 
statements  about  convergence.  For  example,9  if  we  require  that  f(x)  be  a  continuous
function with a piece-wise continuous first derivative, then the eigenfunction expansion
(9.3.1)  converges to  f(x)  uniformly and absolutely in  [a,  b]  if  f(x)  satisfies  the same
boundary conditions as does y

n
(x).

In the case when f(x) is discontinuous, we are not merely rewriting f(x) in a new form.
We are actually choosing the coefficients c

n
 so that the eigenfunction expansion fits f(x)

in the “least squares” sense that

Consequently we should expect peculiar things, such as spurious oscillations, to occur in 

the  neighborhood  of  the  discontinuity.  These  are  Gibbs  phenomena,10  the  same
phenomena discovered with Fourier series. See §4.2.

(9.3.5)

8    For example, Titchmarsh, E.C., 1962: Eigenfunction Expansions Associated with Second-Order
Differential Equations. Part 1. Oxford University Press, pp. 12–16.

9    Tolstov, G.P., 1962: Fourier Series. Dover Publishers, p. 255.
10   Apparently first discussed by Weyl, H., 1910: Die Gibbs’sche Erscheinung in der Theorie der

Sturm-Liouvilleschen Reihen. Rend. Circ. Mat. Palermo, 29, 321–323.

(9.3.6)
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 Example 9.3.1

To illustrate the concept of an eigenfunction expansion, let  us find the expansion for 
f(x)=x over the interval 0<x<  using the solution to the regular Sturm-Liouville problem of

y + y=0, y(0) y( )=0. (9.3.7)

This problem arises when we solve the wave or heat equation by separation of variables 
in the next two chapters.

Because  the  eigenfunctions  are  y
n
(x)=sin(nx),  n=1,  2,  3,…,  r(x)=1,  a=0,  and  b= ,

(9.3.4) yields

(9.3.8)

(9.3.9)

Equation (9.3.1) then gives

(9.3.10)

This particular example is in fact an example of a half-range sine expansion.
Finally we must state the values of x  for which (9.3.10) is valid. At x=  the series 

converges to zero while f( )= . At x=0 both the series and the function converge to zero. 
Hence the series expansion (9.3.10) is valid for 0 x< .
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 Example 9.3.2

For our second example let us find the expansion for f(x)=x over the interval 0<x<  using 
the solution to the regular Sturm-Liouville problem of

y + y=0, y(0)=y( ) y ( )=0. (9.3.11)

We will encounter this problem when we solve the heat equation with radiative boundary 
conditions by separation of variables.

Because  r(x)=1,  a=0,  b=  and  the  eigenfunctions  are  y
n
(x)=  sin(k

n
x),  where 

k
n
=tan(k

n
), (9.3.4) yields

(9.3.12)

(9.3.13)

(9.3.14)

(9.3.15)

where we used the property that sin(k
n

)=k
n
cos(k

n
). Equation (9.3.1) then gives

(9.3.16)

To illustrate the use of (9.3.5), we note that

(9.3.17)
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(9.3.18)

Therefore,

(9.3.19)

(9.3.20)

(9.3.21)

Note that we set  after taking the derivatives with respect to .

Problems

1. The Sturm-Liouville problem y + y=0, y(0)=y(L)=0, has the eigenfunction solution 
yn(x)=sin(n x/L). Find the eigenfunction expansion for f(x)=x using this eigenfunction.

2.  The  Sturm-Liouville  problem  y + y=0,  y (0)=y (L)=0,  has  the  eigenfunction so-

lutions y0(x)=1, and yn(x)=cos(n x/L). Find the eigenfunction expansion for f(x)=x using 

these eigenfunctions.

3. The Sturm-Liouville problem y + y=0, y(0)=y (L)=0, has the eigenfunction solution 

yn(x)=sin[(2n 1) x(2L)].  Find  the  eigenfunction  expansion  for  f(x)=x  using  

this eigenfunction.

4. The Sturm-Liouville problem y + y=0, y (0)=y(L)=0, has the eigenfunction solution 

yn(x)=cos[(2n 1) x/(2L)].  Find  the  eigenfunction  expansion  for  f(x)=x  using  

this eigenfunction.

5. Consider the eigenvalue problem

y +( a2)y=0, 0<x<1, 
with the boundary conditions

y (0)+ay(0)=0 and y (1)+ y(1)=0. 

Step 1: Show that this is a regular Sturm-Liouville problem.
Step 2: Show that the eigenvalues and eigenfunctions are

and
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0=0, y0(x)=e ax,

n
=a2+n2 2, y

n
(x)=a sin(n x) n  cos(n x),

where n=1, 2, 3,….

Step 3: Given a function f(x), show that we can expand it as follows:

 

where

 

and

 

6. Consider the eigenvalue problem

y + y =0, 0<x<1,  

with the boundary conditions y(0)=y (0)=y(1)=y (1)=0. Prove the following points:

Step 1: Show that the eigenfunctions are

 

where k
n
 denotes the nth root of

2 2cos(k) k sin(k)=sin(k/2)[sin(k/2) (k/2) cos(k/2)]=0. 

Step 2: Show that there are two classes of eigenfunctions:

K
n
=2n , y

n
(x)=1 cos(2n x), 
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Step 3: Show that the orthogonality condition for this problem is

 

where y
n
(x)  and y

m
(x)  are  two distinct  eigenfunction solutions of  this  problem. Hint:

Follow the proof in §9.2 and integrate repeatedly by parts to eliminate higher derivative
terms.

Step  4:  Show  that  we  can  construct  an  eigenfunction  expansion  for  an  arbitrary
function f(x) via

 

provided

 

What are the condition(s) on f(x)?

9.4 A SINGULAR STURM-LIOUVILLE PROBLEM: LEGENDRE’S

EQUATION

In the previous sections we used solutions to a regular Sturm-Liouville problem in the
eigenfunction expansion of the function f(x). The fundamental reason why we could form
such an expansion was the orthogonality condition (9.2.1). This crucial property allowed
us to solve for the Fourier coefficient c

n
 given by (9.3.4).

In the next few chapters, when we solve partial differential equations in cylindrical and
spherical coordinates, we will find that f(x) must be expanded in terms of eigenfunctions
from singular Sturm-Liouville problems. Is this permissible? How do we compute the
Fourier coefficients in this case? The final two sections of this chapter deal with these
questions by examining the two most frequently encountered singular Sturm-Liouville
problems, those involving Legendre’s and Bessel’s equations.

We  begin  by  determining  the  orthogonality  condition  for  singular  Sturm-Liouville
problems. Returning to the beginning portions of §9.2, we combine (9.2.5) and (9.2.6) to
obtain

and
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(9.4.1)

Figure  9.4.1:  Born  into  an  affluent  family,  Adrien-Marie  Legendre’s 
(1752–1833)  modest  family  fortune  was  sufficient  to  allow him to 
devote his life to research in celestial mechanics, number theory, and 
the  theory  of  elliptic  functions.  In  July  1784  he  read  before  the 
Académie des sciences his Recherches sur la figure des planètes. It is 
in  this  paper  that  Legendre  polynomials  first  appeared.  (Portrait 
courtesy of the Archives de l’Académie des sciences, Paris.)

From (9.4.1) the right side vanishes and we preserve orthogonality if y
n
(x) is finite and

p(x)y
n
(x) tends to zero at both endpoints. This is not the only choice but let us see where

it leads.
Consider now Legendre’s equation:

(9.4.2)
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(9.4.3)

where we set a= 1, b 1, =n(n+1), p(x)=1 x2, q(x)=0, and r(x)=1. This equation arises in
the  solution  of  partial  differential  equations  involving  spherical  geometry.  Because
p( 1)=p(1)=0,  we are  faced with a  singular  Sturm-Liouville  problem. Before we can
determine if any of its solutions can be used in an eigenfunction expansion, we must find
them.

Equation (9.4.2) does not have a simple general solution. [If n=0, then y(x)=1 is a
solution.] Consequently we try to solve it with the power series:

(9.4.4)

(9.4.5)

and

(9.4.6)

Substituting into (9.4.2),

(9.4.7)

which equals

(9.4.8)

If we define k=m+2 in the first summation, then

(9.4.9)

or
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follows that

(k+2)(k+1)A
k+2

=[k(k+1) n(n+1)]A
k
, (9.4.10)

or

(9.4.11)

where k=0, 1, 2,…. Note that we still have the two arbitrary constants A
0
 and A

1
 that are 

necessary for the general solution of (9.4.2).
The first few terms of the solution associated with A

0
 are

(9.4.12)

while the first few terms associated with the A
1
 coefficient are

(9.4.13)

If n is an even positive integer (including n=0), then the series (9.4.12) terminates with 

the term involving xn: the solution is a polynomial of degree n. Similarly, if n is an odd 

integer,  the  series  (9.4.13)  terminates  with  the  term  involving  xn.  Otherwise,  for  n 
noninteger the expressions are infinite series.

For reasons that will  become apparent,  we restrict  ourselves to positive integers n. 
Actually,  this  includes all  possible  integers  because the negative integer n 1 has the 
same Legendre’s equation and solution as the positive integer n. These polynomials are 

Legendre polynomials11 and we may compute them by the power series:

(9.4.14)

Because (9.4.9) must be true for any x, each power of x must vanish separately. It then

11  Legendre, A.M., 1785: Sur l’attraction des sphéroïdes homogénes. Mém. math. phys. présentés à
l’Acad. sci. pars divers sa ants, 10, 411–434. The best reference on Legendre polynomials is 
Hobson, E.W., 1965: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing Co., 
500 pp.
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where  m=n/2,  or  m=(n 1)/2,  depending  upon  which  is  an  integer.  We  chose  to  use
(9.4.14) over (9.4.12) or (9.4.13) because (9.4.14) has the advantage that P

n
(1)=1. Table

9.4.1 gives the first ten Legendre polynomials.

The other solution, the infinite series, is the Legendre function of the second kind,
Q

n
(x).  Figure 9.4.2 illustrates  the first  four  Legendre polynomials  P

n
(x)  while  Figure

9.4.3 gives the first four Legendre functions of the second kind Q
n
(x). From this figure

we see that Q
n
(x) becomes infinite at the points x=±1. As shown earlier, this is important

because we are only interested in solutions to Legendre’s equation that are finite over the
interval  [ 1,  1].  On the other  hand,  in  problems where we exclude the points  x=±1,

Legendre functions of the second kind will appear in the general solution.12

In the case that n is not an integer, we can construct a solution13 that remains finite at
x=1 but not at x= 1. Furthermore, we can construct a solution which is finite at x= 1 but
not at x=1. Because our solutions

Table 9.4.1: The First Ten Legendre Polynomials

P0(x)=1

P
1(x)=x

12   See Smythe, W.R., 1950: Static and Dynamic Electricity. McGraw-Hill, §5.215 for an example.
13   See Carrier, G.F., M.Krook, and C.E.Pearson, 1966: Functions of the Complex Variable: 

Theory and Technique. McGraw-Hill, pp. 212–213.
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must be finite at both endpoints so that we can use them in an eigenfunction expansion,
we must reject these solutions from further consideration and are left only with Legendre
polynomials.  From  now  on,  we  will  only  consider  the  properties  and  uses  of  these
polynomials.

Although we have the series (9.4.14) to compute P
n
(x), there are several alternative

methods. We obtain the first method, known as Rodrigues’ formula,14 by writing (9.4.14)
in the form

(9.4.15)

(9.4.16)

The last summation is the binomial expansion of (x2 1)n so that

(9.4.17)

14    Rodrigues, O., 1816: Mémoire sur l’attraction des sphéroïdes. Correspond. l’Ecole Polytech., 3,

361–385.
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Figure 9.4.2: The first four Legendre functions of the first kind.

Another method for computing P
n
(x) involves the use of recurrence formulas. The first 

step in finding these formulas is to establish the fact that

(1+h2 2xh) 1/2=P
0
(x)+hP

1
(x)+h2P

2
(x)+…. (9.4.18)

The  function  (1+h2 2xh) 1/2  is  the  generating  function  for  P
n
(x).  We  obtain  the 

expansion via the formal binomial expansion

(9.4.19)

Upon expanding the terms contained in 2x h2 and grouping like powers of h,

(9.4.20)

A direct  comparison  between  the  coefficients  of  each  power  of  h  and  the  Legendre 
polynomial P

n
(x) completes the demonstration. Note that these results hold only if |x| and 

|h|<1.

Next we define W(x, h)=(1+h2 xh) 1/2. A quick check shows that W(x, h) satisfies the 
first-order partial differential equation
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(9.4.21)

The substitution of (9.4.18) into (9.4.21) yields

(9.4.22)

Setting the coefficients of hn equal to zero, we find that

(n+1)P
n+1

(x) 2nxP
n
(x)+(n 1)P

n 1
(x)+P

n 1
(x) xP

n
(x)=0, (9.4.23)

Figure 9.4.3: The first four Legendre functions of the second kind.

or

(9.4.24)

with n=1, 2, 3,….
Similarly, the first-order partial differential equation

(9.4.25)
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leads to

(9.4.26)

which implies

(9.4.27)

Differentiating (9.4.24), we first eliminate  and then  from the resulting 
equations and (9.4.27). This gives two further recurrence relationships:

(9.4.28)

and

(9.4.29)

Adding (9.4.28) and (9.4.29), we obtain the more symmetric formula

(9.4.30)

Given any two of the polynomials P
n+1

(x), P
n
(x), and P

n 1
(x), (9.4.24) or (9.4.30) yields 

the third.
Having determined several methods for finding the Legendre polynomial P

n
(x),  we 

now turn to the actual orthogonality condition.15 Consider the integral

(9.4.31)

15  From  Symons,  B.,  1982:  Legendre  polynomials  and  their  orthogonality.  Math.  Gaz.,  66,

152–154 with permission.
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(9.4.32)

(9.4.33)

On the other hand, if a=(1+h2)/2h, and b=(1+t2)/2t, the integral J is

(9.4.34)

(9.4.35)

(9.4.36)

But a+1=(1+h2+2h)/2h=(1+h)2/2h, and a 1=(1 h)2/2h. After a little algebra,

(9.4.37)

(9.4.38)

As we noted earlier, the coefficients of hntm in this series is  P
n
(x)P

m
(x) dx. If we

match the powers of hntm, the orthogonality condition is
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(9.4.39)

With the orthogonality condition (9.4.39) we are ready to show that we can represent a 
function f(x), which is piece-wise differentiable in the interval ( 1, 1), by the series:

(9.4.40)

To find A
m

 we multiply both sides of (9.4.40) by P
n
(x) and integrate from 1 to 1:

(9.4.41)

All of the terms on the right side vanish except for n=m because of the orthogonality 
condition (9.4.39). Consequently, the coefficient A

n
 is

(9.4.42)

or

(9.4.43)

In the special case when f(x)  and its first n  derivatives are continuous throughout the 
interval ( 1, 1), we may use Rodrigues’ formula to evaluate

(9.4.44)
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(9.4.45)

by integrating by parts n times. Consequently,

(9.4.46)

A particularly useful result follows from (9.4.46) if f(x) is a polynomial of degree k. 

Because all derivatives of f(x) of order n vanish identically when n>k, A
n
=0 if n>k. 

Consequently, any polynomial of degree k can be expressed as a linear combination of 

the first k+1 Legendre polynomials [P
0
(x),…, P

k
(x)]. Another way of viewing this result 

is to recognize that any polynomial of degree k is an expansion in powers of x. When we 
expand in Legendre polynomials we are merely regrouping these powers of x into new 
groups that can be identified as P

0
(x), P

1
(x), P

2
(x),…, P

k
(x).

 Example 9.4.1

Let us use Rodrigues’ formula to compute P
2
(x). From (9.4.17) with n=2,

(9.4.47)

 Example 9.4.2

Let us compute P
3
(x) from a recurrence relation. From (9.4.24) with n=2,

3P
3
(x) 5xP

2
(x)+2P

1
(x)=0. (9.4.48)

But P
2
(x)=(3x2 1)/2, and P

1
(x)=x, so that

(9.4.49)
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P
3
(x)=(5x3–3x)/2. (9.4.50)

 Example 9.4.3

We want to show that

(9.4.51)

From (9.4.30),

(9.4.52)

=P
n+1

(x) P
n 1

(x)|1
–1 (9.4.53)

=P
n+1

(1) P
n 1

(1) 

P
n+1

( 1)+P
n 1

( 1)=0, (9.4.54)

because P
n
(1)=1 and P

n
( 1)=( 1)n.

 Example 9.4.4

Let us express f(x)=x2 in terms of Legendre polynomials. The results from (9.4.46) mean 
that we need only worry about P

0
(x), P

1
(x), and P

2
(x):

x2=A
0
P

0
(x)+A

1
P

1
(x)+A

2
P

2
(x). (9.4.55)

Substituting for the Legendre polynomials,

(9.4.56)

or
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(9.4.57)

 Example 9.4.5

Let us find the expansion in Legendre polynomials of the function:

(9.4.58)

We could have done this  expansion as  a  Fourier  series  but  in  the  solution of  partial
differential equations on a sphere we must make the expansion in Legendre polynomials.

In this problem, we find that

(9.4.59)

Therefore,

(9.4.60)

(9.4.61)

so that

(9.4.62)

Figure 9.4.4 illustrates the expansion (9.4.62) where we used only the first four terms. It
was created using the MATLAB script

clear; 
x = [-1:0.01:1]; % create x points in plot 

construct  function f(x)

% initialize Fourier-Legendre series with zeros

and

f = zeros(size(x)); % initialize function f(x) 

for  k  =  1  :  length  (x)  %
 

    if x(k)<0; f(k)=0; else f(k)=1; end; 
end
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flegendre = zeros (size(x)); 
% read in Fourier coefficients 
a(1) = 1/2; a(2) = 3/4; a(3) = 0; 
a(4)= -7/16; a(5) = 0; a(6) = 11/32; 
c1f  % clear any figures 
for n = 1:6 
% compute Legendre polynomial 
N = n-1; P = legendre (N,x); 
% compute Fourier-Legendre series 
flegendre = flegendre + a(n)*P(1,:); 
% create plot of truncated Fourier-Legendre series 
%    with n terms 

if n==1 subplot (2,2,1), plot (x, flegendre, x,f,’--’);
    legend(’one term’,’f(x)’); legend boxoff; end 
if n==2 subplot (2,2,2), plot(x,flegendre,x,f,’--’);
    legend(’two terms’,’f(x)’); legend boxoff; end 
if n==4 subplot (2,2,3), plot(x,flegendre,x,f,’--’);
    legend(’four terms’,’f(x)’); legend boxoff ;
    xlabel(’x’,’Fontsize’,20); end 
if n==6 subplot (2,2,4), plot(x, flegendre,x,f,’--’);
    legend(’six terms’,’f(x)’); legend boxoff;

end

As we add each additional term in the orthogonal expansion, the expansion fits f(x) better 
in the “least squares” sense of (9.3.5). The spurious oscillations arise from trying to 
represent a discontinuous function by four continuous, oscillatory functions. Even if we 
add additional terms, the spurious oscillations persist, although located nearer 
to the discontinuity. This is another example of Gibbs phenomena.16 See §4.2.

16   Weyl, H., 1910: Die Gibbs’sche Erscheinung in der Theorie der Kugelfunktionen. Rend. 
Circ. Mat. Palermo, 29, 308–321.

    xlabel(’x’,’Fontsize’,20);end 
axis ([-1 1-0.5 1.5])
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Figure 9.4.4: Representation of the function f(x)=1 for 0<x<1 and 0 for 1<x<0 
by various partial summations of its Legendre polynomial expansion. 
The dashed lines denote the exact function.

 Example 9.4.6: Iterative solution of the radiative transfer equation

One of the fundamental equations of astrophysics is the integro-differential equation that 
describes  radiative  transfer  (the  propagation  of  energy  by  radiative,  rather  than
conductive or convective, processes) in a gas.

Consider  a  gas  that  varies  in  only  one  spatial  direction  and  that  we  divide  into
infinitesimally thin slabs. As radiation enters a slab, it is absorbed and scattered. If we 
assume  that  all  of  the  radiation  undergoes  isotropic  scattering,  the  radiative  transfer 
equation is

(9.4.63)

where I is the intensity of the radiation,  is the optical depth (a measure of the absorbing 
power of the gas and related to the distance that you travel within the gas), =cos( ), and 

 is  the angle at  which radiation enters  the slab.  In this  example,  we show how the 

Fourier-Legendre expansion17

(9.4.64)

may  be  used  to  solve  (9.4.63).  Here  I
n
( )  is  the  Fourier  coefficient  in  the  Fourier-

Legendre expansion involving the Legendre polynomial P
n
( ).

17    Chandrasekhar, S., 1944: On the radiative equilibrium of a stellar atmosphere. Astrophys. J.,
99, 180–190. Published by University of Chicago Press, ©1944.
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We begin by substituting (9.4.64) into (9.4.63),

(9.4.65)

where we used (9.4.24) to eliminate P
n
( ). Note that only the I

0
( ) term remains after 

integrating because of the orthogonality condition:

(9.4.66)

if n>0. Equating the coefficients of the various Legendre polynomials,

(9.4.67)

for n=1, 2,…and

(9.4.68)

Thus, the solution for I
1 

is I
1
=constant =3F/4, where F is the net integrated flux and an 

observable quantity.
For n=1,

(9.4.69)

Therefore,

(9.4.70)
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(9.4.71)

Because I
1
 is a constant and we only retain I

0
, I

1
, and I

2
 in the simplest approximation, 

we neglect dI
3
/d  and I

2
=0. Thus, the simplest approximate solution is

(9.4.72)

To complete our approximate solution, we must evaluate A.  If  we are dealing with a 
stellar atmosphere where we assume no external radiation incident on the star, I(0, )=0 
for 1< <0. Therefore,

(9.4.73)

Taking the limit →0 and using the boundary condition,

(9.4.74)

Thus, we must satisfy, in principle, an infinite set of equations. For example, for n=0, 1, 
and 2,

(9.4.75)

(9.4.76)

and

(9.4.77)

The next differential equation arises from n=2 and equals
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(9.4.78)

(9.4.79)

and

(9.4.80)

Of  the  two  possible  Equations  (9.4.78)–(9.4.79),  Chandrasekhar  chose  (9.4.79)  from
physical considerations. Thus, to first approximation, the solution is

(9.4.81)

Better approximations can be obtained by including more terms; the interested reader is

referred  to  the  original  article.  In  the  early  1950s,  Wang  and  Guth18  improved  the
procedure for finding the successive approximations and formulating the approximate
boundary conditions.

Problems

Find the first three nonvanishing coefficients in the Legendre polynomial expansion for
the following functions:

1. 

2. 

3. f(x)=|x|, |x|<1

4. f(x) x3, |x|<1

5. 

6. 

18   Wang, M.C., and E.Guth, 1951: On the theory of multiple scattering, particularly of 
charged particles. Phys. Re ., Ser. 2, 84, 1092–1111.

Using I
1
(0)=3F/4,
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    Then use MATLAB to illustrate various partial sums of the Fourier-Legendre series.

7. Use Rodrigues’ formula to show that 

8. Given  and P
4
(x) from Problem 7, use the recurrence 

formula for P
n+1

(x) to find P
6
(x).

9.  Show  that  (a)  P
n
(1)=1,  (b)  P

n
( 1)=(–1)n,  (c)  P

2n+1
(0)=0,  and  (d)  P

2n
(0)= 

( 1)n(2n)!/(22nn!n!).

10. Prove that

 

11. Given19

 

show that the following generalized Fourier series hold:

 

if we use the eigenfunction  and H( ) is
Heaviside’s step function, and

 

if we use the eigenfunction  and H( ) is
Heaviside’s step function.
12. The series given in Problem 11 are also expansions in Legendre polynomials. In 
that light, show that

 

19   Hobson, E.W., 1965: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing
Co., pp. 26–27.
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and

 

where 0<t< .

13. (a) Use the generating function (9.4.18) to show that

 

(b) Use the results from part (a) to show that

 

Hint:

 

14.  The  generating  function  (9.4.18)  actually  holds20  for  |h| 1  if  |x|<1.  Using  this
relationship, show that

 

and

 

Use these relationships to show that

 

20    Ibid., p. 28.
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if |x|<1.

Figure 9.5.1: It was Friedrich William Bessel’s (1784–1846) apprenticeship to
the famous mercantile firm of Kulenkamp that ignited his interest in
mathematics and astronomy. As the founder of the German school of
practical  astronomy, Bessel  discovered his functions while studying
the problem of planetary motion. Bessel functions arose as coefficients
in one of the series that described the gravitational interaction between
the sun and two other planets in elliptic orbit.  (Portrait  courtesy of
Photo AKG, London.)

9.5 ANOTHER SINGULAR STURM-LIOUVILLE PROBLEM:

BESSEL’S EQUATION

In the previous section we discussed the solutions to Legendre’s equation, especially with

regard to their use in orthogonal expansions. In the section we consider another classic

equation, Bessel’s equation21

x2y +xy +( 2x2 n2)y=0, (9.5.1)

21   Bessel,  F.W.,  1824:  Untersuchung des  Teils  der  planetarischen Störungen,  welcher  aus  der
Bewegung der Sonne entsteht. Abh. d. K. Akad. Wiss. Berlin, 1–52. See Dutka, J., 1995: On the
early history of Bessel functions. Arch. Hist. Exact Sci., 49, 105–134. The classic reference on
Bessel functions is Watson, G.N., 1966: A Treatise on the Theory of Bessel Functions. Cambridge
University Press, 804 pp.
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(9.5.2)

Once again, our ultimate goal is the use of its solutions in orthogonal expansions. These 
orthogonal expansions, in turn, are used in the solution of partial differential equations in 
cylindrical coordinates.

A quick check of Bessel’s equation shows that it conforms to the canonical form of the 

Sturm-Liouville problem: p(x)=x, q(x)= n2/x, r(x)=x, and = 2. Restricting our attention 
to the interval [0, L], the Sturm-Liouville problem involving (9.5.2) is singular because 
p(0)=0.  From (9.4.1)  in the previous section,  the eigenfunctions to a  singular  Sturm-
Liouville problem will still be orthogonal over the interval [0, L] if (1) y(x) is finite and 
xy (x) is zero at x=0, and (2) y(x) satisfies the homogeneous boundary condition (9.1.2) at 
x=L. Consequently, we only seek solutions that satisfy these conditions.

We cannot write down the solution to Bessel’s equation in a simple closed form; as in 
the case with Legendre’s equation, we must find the solution by power series. Because 
we intend to make the expansion about x=0 and this point is a regular singular point, we 

must  use  the  method  of  Frobenius,  where  n  is  an  integer.22  Moreover,  because  the 

quantity n2  appears in (9.5.2),  we may take n  to be nonnegative without any loss of 
generality.

To simplify matters, we first find the solution when =1; the solution for 1 follows 
by substituting x for x. Consequently, we seek solutions of the form

(9.5.3)

(9.5.4)

and

(9.5.5)

or
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summation. The substitution of (9.5.3)–(9.5.5) into (9.5.1) with =1 yields

(9.5.6)

or

(9.5.7)

22 This case is much simpler than for arbitrary n. See Hildebrand, F.B., 1962: Advanced Calculus
for Applications. Prentice-Hall, §4.8.

If we explicitly separate the k=0 term from the other terms in the first summation in
(9.5.7),

(9.5.8)

We now change the dummy integer in the first summation of (9.5.8) by letting m=k+1 so 
that

(9.5.9)

Because (9.5.9) must be true for all  x,  each power of x  must vanish identically.  This 
yields s=±n, and

[(2k+s+2)2 n2]B
k+1

+B
k
=0. (9.5.10)

Since the difference of the larger indicial root from the lower root equals the integer 2n, 
we are only guaranteed a power series solution of the form (9.5.3) for s=n. If we use this 
indicial  root  and  the  recurrence  formula  (9.5.10),  this  solution,  known as  the  Bessel 
function of the first kind of order n and denoted by J

n
(x), is

where  we  formally  assume  that  we  can  interchange  the  order  of  differentiation  and
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(9.5.11)

To find the second general solution to Bessel’s equation, the one corresponding to s= n, 

the most economical method23 is to express it in terms of partial derivatives of J
n
(x) with 

respect to its order n:

(9.5.12)

Upon substituting the power series representation (9.5.11) into (9.5.12),

(9.5.13)

23  See Watson, G.N., 1966: A Treatise on the Theory of Bessel Functions. Cambridge University
Press, §3.5 for the derivation.

Figure 9.5.2: The first four Bessel functions of the first kind over 0 x 8.

where

(9.5.14)
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disappears. This function Y
n
(x) is Neumann’s Bessel function of the second kind of order 

n. Consequently, the general solution to (9.5.1) is

y(x)=AJ
n
( x)+BY

n
( x). (9.5.15)

Figure 9.5.2 illustrates the functions J
0
(x), J

1
(x), J

2
(x), and J

3
(x) while Figure 9.5.3 gives 

Y
0
(x), Y

1
(x), Y

2
(x), and Y

3
(x).

An equation which is very similar to (9.5.1) is

(9.5.16)

It arises in the solution of partial differential equations in cylindrical coordinates. If we 

substitute  into (9.5.16), it becomes Bessel’s equation:

(9.5.17)

Consequently, we may immediately write the solution to (9.5.16) as

y(x)=c
1
 J

n
(ix)+c

2
Y

n
(ix), 

(9.5.18)

if n is an integer. Traditionally the solution to (9.5.16) has been written

y(x)=c
1
I
n
(x)+c

2
K

n
(x) 

(9.5.19)

rather than in terms of J
n
(ix) and Y

n
(ix), where

(9.5.20)

(1)= , and  is Euler’s constant (0.5772157). In the case n=0, the first sum in (9.5.13)
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Figure 9.5.3: The first four Bessel functions of the second kind over 0<x<8.

and

(9.5.21)

The function I
n
(x) is the modified Bessel function of the first kind, of order n, while K

n
(x)

is the modified Bessel function of the second kind, of order n. Figure 9.5.4 illustrates
I
0
(x),  I

1
(x),  I

2
(x),  and  I

3
(x)  while  in  Figure  9.5.5  K

0
(x),  K

1
(x),  K

2
(x),  and  K

3
(x)  are

graphed. Note that K
n
(x) has no real zeros while I

n
(x) equals zero only at x=0 for n 1.

As our derivation suggests, modified Bessel functions are related to ordinary Bessel 

functions  via  complex  variables.  In  particular,  J
n
(iz)=inI

n
(z),  and  I

n
(iz)=inJ

n
(z)  for  z

complex.
Although we found solutions to Bessel’s equation (9.5.1), as well as (9.5. 16), can we

use any of them in an eigenfunction expansion? From Figures 9.5.2–9.5.5 we see that
J

n
(x)  and  I

n
(x)  remain  finite  at  x=0  while  Y

n
(x)  and  K

n
(x)  do  not.  Furthermore,  the 

products  and  tend to zero at x=0. Thus, both J
n
(x) and I

n
(x) satisfy the

first requirement of an eigenfunction for a Fourier-Bessel expansion.
What about the second condition that the eigenfunction must satisfy the homogeneous

boundary condition (9.1.2) at x=L? From Figure 9.5.4 we see that I
n
(x) can never satisfy

this condition while from Figure 9.5.2 J
n
(x) can. For that reason, we discard I

n
(x) from

further consideration and continue our analysis only with J
n
(x).

Before we can derive the expressions for a Fourier-Bessel expansion, we need to find
how J

n
(x)  is  related to J

n+1
(x)  and J

n 1
(x).  Assuming that n  is  a positive integer,  we

multiply the series (9.5.11) by xn and then differentiate with respect to x. This gives
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(9.5.22)

Figure 9.5.4:  The first  four modified Bessel  functions of  the first  kind over 
0<x<3.

(9.5.23)

=xnJ
n 1

(x) (9.5.24)

or

(9.5.25)

for n=1, 2, 3,…. Similarly, multiplying (9.5.11) by x n, we find that

(9.5.26)
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for n=0, 1, 2, 3,…. If we now carry out the differentiation on (9.5.25) and (9.5.26) and

divide by the factors x±n, we have that

(9.5.27)

and

(9.5.28)

Figure 9.5.5: The first four modified Bessel functions of the second kind over 

Equations (9.3.27)–(9.3.28) immediately yield the recurrence relationships

(9.5.29)

and

(9.5.30)

.0≤x≤3
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for n=1, 2, 3,…. For n=0, we replace (9.5.30) by 
Let us now construct a Fourier-Bessel series. The exact form of the expansion depends 

upon the boundary condition at  x=L.  There  are  three possible  cases.  One of  them is 
y(L)=0 and results in the condition that J

n
(

k
L)=0. Another condition is y (L)=0 and gives

 Finally, if hy(L)+y (L)=0, then  In all of these
cases, the eigenfunction expansion is the same, namely

(9.5.31)

where  
k 

 is  the  kth  positive  solution  of  either   or

We now need a mechanism for computing A
k
. We begin by multiplying (9.5.31) by 

xJ
n
(

m
x) dx and integrate from 0 to L. This yields

(9.5.32)

From the general orthogonality condition (9.2.1),

(9.5.33)

if k m. Equation (9.5.32) then simplifies to

(9.5.34)

or

(9.5.35)
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(9.5.36)

and k has replaced m in (9.5.34).
The factor C

k
 depends upon the nature of the boundary conditions at x=L. In all cases 

we start from Bessel’s equation

(9.5.37)

If we multiply both sides of (9.5.37) by  (
k
x), the resulting equation is

(9.5.38)

An integration of (9.5.38) from 0 to L, followed by the subsequent use of integration by 
parts, results in

(9.5.39)

Because J
n
(0)=0 for n>0, J

0
(0)=1 and  at  x=0, the contribution from the

lower limits vanishes. Thus,

(9.5.40)

(9.5.41)

Because

(9.5.42)

where
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(9.5.43)

if J
n
(

k
L)=0. Otherwise,  then

(9.5.44)

Finally,

(9.5.45)

if 
All of the preceding results must be slightly modified when n=0 and the boundary

condition is  or 
k
J

1
(

k
L)=0. This modification results from the additional

eigenvalue 
0
=0 being present and we must add the extra term A

0
 to the expansion. For

this case the series reads

(9.5.46)

where the equation for finding A
0
 is

(9.5.47)

and (9.5.35) and (9.5.44) with n=0 give the remaining coefficients.

 Example 9.5.1

Starting with Bessel’s equation, we show that the solution to

from (9.5.28), C
k
 becomes
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(9.5.48)

is

y(x)=Axa J
n
(bxc)+BxaY

n
(bxc), 

(9.5.49)

provided that bxc>0 so that Y
n
(bxc) exists. 

The general solution to

(9.5.50)

is

=AJ
n
( )+BY

n
( ). 

(9.5.51)

If we now let =y(x)/xa and =bxc, then

(9.5.52)

(9.5.53)

(9.5.54)

and

(9.5.55)

Substituting (9.5.52)–(9.5.55) into (9.5.50) and simplifying yields the desired result.
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 Example 9.5.2

We show that

(9.5.56)

From (9.5.28),

(9.5.57)

(9.5.58)

and

(9.5.59)

after using (9.5.27) and (9.5.28). Simplifying,

(9.5.60)

After multiplying (9.5.60) by x2, we obtain (9.5.56).

 Example 9.5.3

Show that

(9.5.61)
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(9.5.62)

because d[x3J
3
(x)]/dx=x2 J

2
(x) by (9.5.25). Finally,

(9.5.63)

since x4J
3
(x)=d[x4 J

4
(x)]/dx by (9.5.25).

 Example 9.5.4

Let us expand f(x)=x, 0<x<1, in the series

(9.5.64)

where 
k
 denotes the kth zero of J

1
( ). From (9.5.35) and (9.5.43),

(9.5.65)

However, from (9.5.25),

(9.5.66)

if n=2. Therefore, (9.5.65) becomes

(9.5.67)

and the resulting expansion is

(9.5.68)

We begin by integrating (9.5.61) by parts. If u=x2, and d =x3 J
2
(x) dx, then
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Figure 9.5.6 shows the Fourier-Bessel expansion of f(x)=x in truncated form when we 
only include one, two, three, and four terms. It was created using the MATLAB script

 Example 9.5.5

Let us expand the function f(x)=x2, 0<x<1, in the series

(9.5.69)

clear;

% initialize Fourier-Bessel series
fbesse1 = zeros (size (x));
% read in the first four zeros of J_1(mu) = 0
mu(1) = 3.83171; mu(2) = 7.01559;
mu(3) = 10.17347; mu(4) = 13.32369;
c1f % clear any figures
for n = 1:4
% Fourier coefficient
factor = 2 / (mu (n) * besselj (2,mu(n)));
% compute Fourier-Bessel series
fbesse1 = fbesse1 + factor * besse1j (1,mu(n)*x);
% create plot of truncated Fourier-Bessel series    with n terms
subplot(2, 2, n), plot(x,fbessel,x,f,’--’)
axis([0 1 0.25 1.25])
if n == 1 legend (’1 term’,’f(x)’); legend boxoff;
else Iegend([num2str(n)’terms’],’f(x)’);legend boxoff;
end
if n > 2 xlabel (’x’,’Fontsize’,20); end
end

f = x; % construct function f(x)
x = [0:0.01:1]; % create x points in plot
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Figure  9.5.6:  The  Fourier-Bessel  series  representation  (9.5.68)  for  f(x)=x, 
0<x<1, when we truncate the series so that it includes only the first, 
first two, first three, and first four terms.

where k denotes the kth positive zero of J
0
( ). From (9.5.35) and (9.5.43),

(9.5.70)

If we let t=
k
x, the integration (9.5.70) becomes

(9.5.71)

We now let u=t2 and d =tJ
0
(t) dt so that integration by parts results in

(9.5.72)

(9.5.73)
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(9.5.74)

(9.5.75)

However, from (9.5.29) with n=1,

(9.5.76)

Figure  9.5.7:  The  Fourier-Bessel  series  representation  (9.5.79)  for  f(x)=x2,
0<x<1, when we truncate the series so that it includes only the first, 
first two, first three, and first four terms.

or

(9.5.77)

because J
0
(

k
)=0. Therefore,

(9.5.78)
and

because =tJ
1
(t) from (9.5.25). If we integrate by parts once more, we find that
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(9.5.79)

Figure 9.5.7 shows the representation of x2 by the Fourier-Bessel series (9.5.79) when we 
truncate  it  so  that  it  includes  only  one,  two,  three,  or  four  terms.  As  we  add  each 
additional term in the orthogonal expansion, the expansion fits f(x) better in the “least 
squares” sense of (9.3.5).

Problems

1. Show from the series solution that

 

From the recurrence formulas, show these following relations:

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. Show that the maximum and minimum values of J
n
(x) occur when

 

Show that

11. 

12. 

13. 
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14. 

15. 

16. 

17. 

18. 

19. Show that

 

where 
k
 is the kth positive root of J

0
( )=0. Then use MATLAB to illustrate various

partial sums of the Fourier-Bessel series.
20. Show that

 

where k  is the kth positive root of J
0
( )=0. Then use MATLAB to illustrate various 

partial sums of the Fourier-Bessel series.
21. Show that

 

where 
k
 is the kth positive root of J

1
(2 )=0. Then use MATLAB to illustrate various 

partial sums of the Fourier-Bessel series.
22. Show that

 

where 
k
 is the kth positive root of J

1
( )=0. Then use MATLAB to illustrate various

partial sums of the Fourier-Bessel series.
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where k is the kth positive root of J
1
( )=0. Then use MATLAB to illustrate various
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24. Show that

 

where 
k
 is the kth positive root of J

0
( )=0. Then use MATLAB to illustrate various

partial sums of the Fourier-Bessel series.
25. Show that

 

where 
k
 is the kth positive root of J

1
( )= LJ

0
( ).  Then use MATLAB to illustrate

various partial sums of the Fourier-Bessel series.

26. Using the relationship24

 

show that

 

where 
k
 is the kth positive root of J

0
( a)=0 and b is a constant.

27. Given the definite integral25

 

23. Show that

24    Watson, op. cit., §5.11, Equation 8.
25    Gradshteyn, I.S.,  and I.M.Ryzhik, 1965: Table of Integrals,  Series, and Products.  Academic

Press, §6.567, Formula 1 with v=0 and = 1/2.
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show that

 

where 
k
 is the kth positive root of J

0
( )=0 and H( ) is Heaviside’s step function.

28. Using the same definite integral from the previous problem, show26 that

 

where a<b, 
n
 is the nth positive root of  and H( ) is Heaviside’s

step function.

29. Given the definite integral27

 

show that

 

where 0<x<a, 
k
 is the kth positive root of J

0
( )=0, H( ) is Heaviside’s step function,

and b is a constant.

30. Using the integral definition of the Bessel function28 for J
1
(z):

 

26   Reprinted from Int. J. Solids Struct., 37, X.X.Wei and K.T.Chau, Finite solid circular cylinders
subjected to arbitrary surface load. Part II-Application to double-punch test, 5733–5744, 
©2000, with permission of Elsevier Science.

27   Gradshteyn and Ryzhik, op. cit., §6.677, Formula 6.
28   Gradshteyn and Ryzhik, op. cit., §3.753, Formula 5.
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show that

 where H(  )  is  Heaviside’s step function.  [Hint:  Treat  this  as a Fourier  halfrange sine 
expansion.]

31. Show that

 where 
k
 is the kth positive root of J

0
( )=0 and ( ) is the Dirac delta function.

32. Show that

 where 
k
 is the kth positive root of J

0
( )= 0 and ( ) is the Dirac delta function.



Chapter 10

The Wave Equation

In this chapter we will study problems associated with the equation

(10.0.1)

where u=u(x,  t),  x  and t  are the two independent variables,  and c  is  a constant.  This 
equation, called the wave equation, serves as the prototype for a wider class of hyperbolic 
equations

(10.0.2)

where b2>4ac. It arises in the study of many important physical problems involving wave 
propagation, such as the transverse vibrations of an elastic string and the longitudinal 
vibrations or torsional oscillations of a rod.

10.1 THE VIBRATING STRING

The motion of a string of length L and constant density  (mass per unit length) is a 
simple example of a physical system described by the wave equation. See Figure 10.1.1. 
Assuming that the equilibrium position of the string and the interval [0, L] along the 
x-axis coincide, the equation of motion which

Figure 10.1.1: The vibrating string.

describes the vertical displacement u(x, t)  of the string follows by considering a short 
piece whose ends are at x and x+ x and applying Newton’s second law.
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Figure 10.1.1 shows the forces on an element of the string. Applying Newton’s second 
law in the x-direction, the sum of forces equals

T(x) cos(
1
)+T(x+ x) cos(

2
), (10.1.1)

where T(x) denotes the tensile force. If we assume that a point on the string moves only in 
the  vertical  direction,  the  sum  of  forces  in  (10.1.1)  equals  zero  and  the  horizontal 
component of tension is constant:

T(x) cos(
1
)+T(x+ x) cos(

2
)=0, (10.1.2)

and

T(x) cos(
1
)=T(x+ x) cos(

2
)=T, a constant. (10.1.3)

If gravity is the only external force, Newton’s law in the vertical direction gives

(10.1.4)

where u
tt
 is the acceleration. Because

(10.1.5)

then

(10.1.6)

The  quantities  tan(
1
)  and  tan(

2
)  equal  the  slope  of  the  string  at  x  and  x+ x, 

respectively; that is,

(10.1.7)

If we assume that the string is perfectly flexible and offers no resistance to bending,
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Substituting (10.1.7) into (10.1.6),

(10.1.8)

After dividing through by x, we have a difference quotient on the left:

(10.1.9)

In the limit as x→0, this difference quotient becomes a partial derivative with respect to 
x, leaving Newton’s second law in the form

(10.1.10

or

(10.1.11)

where c2=T/ . Because u
tt
 is generally much larger than g, we can neglect the last term, 

giving the equation of the vibrating string as

(10.1.12)

Equation (10.1.12) is the one-dimensional wave equation.

As a second example1 we derive the threadline equation which describes how a thread
composed of yard vibrates as we draw it between two eyelets spaced a distance L apart. 
We assume that the tension in the thread is constant, the vibrations are small, the thread is
perfectly flexible, the effects of gravity and air drag are negligible, and the mass of the
thread per unit length is constant. Unlike the vibrating string between two fixed ends, we
draw  the  threadline  through  the  eyelets  at  a  speed  V  so  that  a  segment  of  thread 
experiences motion in both the x  and y  directions as it  vibrates about its  equilibrium
position. The eyelets may move in the vertical direction.

1  Reprinted  from  J.  Franklin  Inst.,  275,  R.D.Swope  and  W.F.Ames,  Vibrations  of  a  moving
threadline,  36–55,  ©1963,  with  kind  permission  from  Elsevier  Science  Ltd,  The  
Boulevard, Langford Lane, Kidlington OX5 1GB, UK.
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(10.1.13)

where m is the mass of the thread. But

(10.1.14)

Because dx/dt=V,

(10.1.15)

and

(10.1.16)

Because both m and V are constant, it follows that

(10.1.17)

The sum of the forces again equals

(10.1.18)

so that the threadline equation is

(10.1.19)

From Newton’s second law,
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or

(10.1.20

where  is the density of the thread. Although (10.1.20) is not the classic wave equation
given  in  (10.1.12),  it  is  an  example  of  a  hyperbolic  equation.  As  we  shall  see,  the
solutions to hyperbolic equations share the same behavior, namely, wave-like motion.

10.2 INITIAL CONDITIONS: CAUCHY PROBLEM

Any mathematical  model  of  a  physical  process  must  include  not  only  the  governing
differential  equation  but  also  any  conditions  that  are  imposed  on  the  solution.  For
example, in time-dependent problems the solution must conform to the initial condition
of the modeled process. Finding those solutions that satisfy the initial conditions (initial
data) is called the Cauchy problem.

In the case of partial differential equations with second-order derivatives in time, such
as the wave equation, we correctly pose the Cauchy boundary condition if we specify the
value of the solution u(x, t

0
)=f(t) and its time derivative u

t
(x, t

0
)=g(t) at some initial time

t
0
, usually taken to be t

0
=0. The functions f(t) and g(t) are called the Cauchy data. We

require  two conditions  involving time because the  differential  equation has  two time
derivatives.

In addition to the initial conditions, we must specify boundary conditions in the spatial
direction. For example, we may require that the end of the string be fixed. In the next
chapter,  we  discuss  boundary  conditions  in  greater  depth.  However,  one  boundary
condition that is uniquely associated with the wave equation on an open domain is the
radiation condition. It requires that the waves radiate off to infinity and remain finite as
they propagate there.

In summary, Cauchy boundary conditions, along with the appropriate spatial boundary
conditions,  uniquely  determine  the  solution  to  the  wave  equation;  any  additional
information  is  extraneous.  Having  developed  the  differential  equation  and  initial
conditions necessary to solve the wave equation, let us now turn to the actual methods
used to solve this equation.

10.3 SEPARATION OF VARIABLES

Separation  of  variables  is  the  most  popular  method  for  solving  the  wave  equation.
Despite its current widespread use, its initial application to the vibrating string problem
was controversial because of the use of a half-range Fourier sine series to represent the
initial conditions. On one side, Daniel Bernoulli claimed (in 1775) that he could represent
any general initial condition with this technique. To d’Alembert and Euler, however, the
half-range Fourier sine series, with its period of 2L,  could not possibly represent any



574 Advanced Engineering Mathematics with MATLAB

arbitrary  function.2  However,  by  1807  Bernoulli  was  proven  correct  by  the  use  of

separation of variables in the heat conduction problem and it rapidly grew in acceptance.3

In the following examples we show how to apply this method.
Separation of variables consists of four distinct steps which convert a second-order 

partial differential equation into two ordinary differential equations. First, we assume that 
the solution equals the product X(x)T(t). Direct substitution into the partial differential
equation  and  boundary  conditions  yields  two  ordinary  differential  equations  and  the
corresponding boundary conditions. Step two involves solving a boundary-value problem 
of the Sturm-Liouville type. In step three we find the corresponding time dependence.
Finally  we  construct  the  complete  solution  as  a  sum of  all  product  solutions.  Upon 
applying the initial conditions, we have an eigenfunction expansion and must compute
the Fourier coefficients. The substitution of these coefficients into the summation yields 
the complete solution.

 Example 10.3.1

Let us solve the wave equation for the special case when we clamp the string at x=0 and
x=L. Mathematically, we find the solution to the wave

equation

(10.3.1)

which satisfies the initial conditions

(10.3.2)

and the boundary conditions

u(0, t)=u(L, t)=0, 0<t. (10.3.3)

2  See Hobson, E.W., 1957: The Theory of Functions of a Real Variable and the Theory of Fourier’s

       Series, Vol 2. Dover Publishers, §§312–314.
3   Lützen,  J.,  1984:  Sturm and  Liouville’s  work  on  ordinary  linear  differential  equations.  The

emergence of Sturm-Liouville theory. Arch. Hist. Exact Sci., 29, 317.
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For the present, we leave the Cauchy data quite arbitrary.
We begin by assuming that the solution u(x, t) equals the product X(x)T(t). (Here T no

longer denotes tension.) Because

(10.3.4)

and

(10.3.5)

the wave equation becomes

c2X T=T X, (10.3.6)

or

(10.3.7)

after dividing through by c2X(x)T(t). Because the left side of (10.3.7) depends only on x 
and the right side depends only on t,  both sides must equal a constant. We write this 
separation constant  and separate (10.3.7) into two ordinary differential equations:

T +c2 T=0, 0<t, 
(10.3.8)

and

X + X=0, 0<x<L. (10.3.9)

We now rewrite the boundary conditions in terms of X(x) by noting that the boundary 
conditions become

u(0, t)=X(0)T(t)=0,
(10.3.10)
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u(L, t)=X(L)T(t)=0 (10.3.11)

for 0<t. If we were to choose T(t)=0, then we would have a trivial solution fo u(x, t). 
Consequently,

X(0)=X(L)=0. (10.3.12)

This concludes the first step.
In the second step we consider three possible values for : <0, =0, and >0. Turning 

first to <0, we set = m2 so that square roots of  will not appear later on and m is real. 
The general solution of (10.3.9) is

X(x)=A cosh(mx)+B sinh(mx). (10.3.13)

Because X(0)=0, A=0. On the other hand, X(L)=Bsinh(mL)=0. The function sinh(mL) 
does not equal to zero since mL 0 (recall m>0). Thus, B=0 and we have trivial solutions 
for a positive separation constant.

If =0, the general solution now becomes

X(x)=C+Dx. (10.3.14)

The condition X(0)=0 yields C=0 while X(L)=0 yields DL=0 or D=0. Hence, we have a 
trivial solution for the =0 separation constant.

If =k2>0, the general solution to (10.3.9) is

X(x)=E cos(kx)+F sin(kx). (10.3.15)

The condition X(0)=0 results in E=0. On the other hand, X(L)= F sin(kL)=0. If we wish to 

avoid a trivial solution in this case (F 0), sin(kL)=0, or k
n
=n /L, and 

n
=n2 2/L2. The x-

dependence equals X
n
(x)=F

n
sin(n x/L). We added the n subscript to k and  to indicate 

that these quantities depend on n. This concludes the second step.

and
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T
n
(t)=G

n
 cos(k

n
ct)+H

n
 sin(k

n
ct), (10.3.16)

where G
n
 and H

n
 are arbitrary constants. For each n=1, 2, 3,…, a particular solution that

satisfies the wave equation and prescribed boundary conditions 
is

(10.3.17)

or

(10.3.18)

where A
n
=F

n
G

n
 and B

n
=F

n
H

n
. This concludes the third step.

An equivalent method of finding the product solution is to treat (10.3.9) along with 
X(0)=X(L)=0  as  a  Sturm-Liouville  problem.  In  this  method  we  obtain  the  spatial 
dependence  by  solving  the  Sturm-Liouville  problem  and  finding  the  corresponding
eigenvalues 

n
 and eigenfunctions. Next we solve for T

n
(t). Finally we form the product

solution u
n
(x, t) by multiplying the eigenfunction times the temporal dependence.

For any choice of A
n
 and B

n
, (10.3.18) is a solution of the partial differential equation

(10.3.1)  also  satisfying  the  boundary  conditions  (10.3.3).  Therefore,  any  linear
combination of u

n
(x, t) also satisfies the partial differential equation and the boundary 

conditions. In making this linear combination we need no new constants because A
n
 and

B
n
 are still arbitrary. We have, then,

(10.3.19)

Our method of using particular solutions to build up the general solution illustrates the 
powerful principle of linear superposition, which is applicable to any linear system. This 
principle  states  that  if  u

1
 and  u

2
 are  any  solutions  of  a  linear  homogeneous  partial

differential equation in any region, then u=c
1
u

1
+c

2
u

2
 is also a solution of that equation in 

that region, where c
1
 and c

2
 are any constants. We can generalize this to an infinite sum. 

It is extremely important because it allows us to construct general solutions to partial 
differential equations from particular solutions to the same problem.

Turning to (10.3.8) for the third step, the solution to the T(t) equation 
is
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(10.3.20)

and

(10.3.21))

Both  of  these  series  are  Fourier  half-range  sine  expansions  over  the  interval  (0,  L). 
Applying the results from §4.3,

(10.3.22)

and

(10.3.23)

or

(10.3.24))

At this point we might ask ourselves whether the Fourier series solution to the wave 
equation always converges. For the case g(x)=0, Carslaw4 showed that if the initial 
position of the string forms a curve so that f(x) or the slope f (x) is continuous between 
x=0 and x=L, then the series converges uniformly.

As an example, let us take the initial conditions

(10.3.25)

and

g(x)=0, 0<x<L. (10.3.26)

Our fourth and final task remains to determine A
n
 and B

n
. At t=0,

4   Carslaw,  H.S.,  1902:  Note  on  the  use  of  Fourier’s  series  in  the  problem of  the  transverse
vibrations of strings. Proc. Edinburgh Math. Soc., Ser. 1, 20, 23–28.
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(10.3.27)

(10.3.28)

(10.3.29)

(10.3.30)

(10.3.31)

because   and  1 cos(2A)=  2sin2(A)

.

Therefore,

(10.3.32

Because sin(n /2)  vanishes for  n  even,  so does A
n
.  If  (10.3.32)  were evaluated on a

computer, considerable time and effort would be wasted. Consequently it is preferable 

to

rewrite  (10.3.32)  so  that  we  eliminate  these  vanishing  terms.  The  most  convenient
method introduces the general expression n=2m 1 for any odd integer, where m=1, 

2,

3,…, and notes that

sin[(2m 1) /2]=( 1)m+1. Therefore, (10.3.32) becomes

In this particular example, B
n
=0 for all n because g(x)=0. On the other hand,
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(10.3.33)

Although we completely solved the problem, it is useful to rewrite (10.3. 33) as

(10.3.34)

through  the  application  of  the  trigonometric  identity  

 From general physics we find expressions like sin[k
n
(x  ct)] or

sin(kx t)  arising in  studies  of  simple  wave motions.  The quantity  sin(kx t)  is  the
mathematical description of a propagating wave in the sense that we must move to the
right at the speed c if we wish to keep in the same position relative to the nearest crest
and trough. The quantities k, , and c are the wavenumber, frequency, and phase speed or
wave-velocity,  respectively.  The  relationship  =kc  holds  between  the  frequency  and
phase speed.

It may seem paradoxical that we are talking about traveling waves in a problem dealing
with waves confined on a string of length L. Actually we are dealing with standing waves
because at  the same time that  a  wave is  propagating to the right  its  mirror  image is
running to the left so that there is no resultant progressive wave motion. Figures 10.3.1
and 10.3.2 illustrate our solution. Figure 10.3.1 gives various cross sections. The single
large peak at t=0 breaks into two smaller peaks which race towards the two ends. At each
end, they reflect and turn upside down as they propagate back towards x=L/2 at ct/L=1.
This  large,  negative  peak  at  x=L/2  again  breaks  apart,  with  the  two  smaller  peaks
propagating towards the endpoints. They reflect and again become positive peaks as they
propagate back to x=L/2 at ct/L=2. After that time, the whole process repeats itself.

MATLAB can used to examine the solution in its totality. The script

% set parameters for the calculation
clear ; M = 50 ; dx = 0.02 ; dt = 0.02 ;
% compute Fourier coefficients
sign = 32 ;
for m = 1 : M
temp1 = (2*m 1)*pi ; temp2 = sin (temp1/8) ;
a (m) = sign * temp2 * temp2 / (temp1 * temp1) ;
sign = sign ;
end
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Figure 10.3.1: The vibration of a string u(x, t)/h at various positions x/L at the 
times ct/L=0, 0.2, 0.4, 0.6, 0.8, and 1. For times 1<ct/L<2 the pictures 
appear in reverse time order.

gives  a  three-dimensional  view  of  (10.3.33).  The  solution  can  be  viewed  in  many 
different prospects using the interactive capacity of MATLAB.

An  important  dimension  to  the  vibrating  string  problem  is  the  fact  that  the 
wavenumber k

n
 is not a free parameter but has been restricted to the values of n /L. This 

restriction on wavenumber is common in wave problems dealing with limited domains 
(for example, a building, ship, lake, or planet) and these oscillations are given the special 
name of normal modes or natural vibrations.

In our problem of the vibrating string, all of the components propagate with the same 
phase speed. That is, all of the waves, regardless of wavenumber

% compute grid and initialize solution
X = [0 : dx : 1] ; T = [0 : dt : 2] ;
u = zeros (length (T) , length (X) ) ;
XX = repmat (X,[length (T) 1] ) ;
TT = repmat (T’,[1 length (X)] ) ;
% compute solution from (10.3.33)
for m = 1:M
temp1 = (2*m 1)*pi;
u = u + a(m) .* sin(templ*XX) .* cos(temp1*TT);
end
% plot space/time picture of the solution
surf (XX, TT, u)
xlabel(’DISTANCE’,’Fontsize’,20);ylabel(’TIME’,’Fontsize’,20)
zlabel(’SOLUTION’,’Fontsize’,20)
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Figure 10.3.2:  Two-dimensional  plot  of  the vibration of  a  string u(x,  t)/h  at 
various times ct/L and positions x/L.

k
n
, move the characteristic distance c t or c t after the time interval t elapsed. In the 

next example we will see that this is not always true.

 Example 10.3.2: Dispersion

In the preceding example, the solution to the vibrating string problem consisted of two 
simple waves,  each propagating with  a  phase speed c  to  the  right  and left.  In  many 
problems where the equations of motion are a little more complicated than (10.3.1), all of 
the harmonics no longer propagate with the same phase speed but at a speed that depends 
upon the wavenumber. In such systems the phase relation varies between the harmonics 
and these systems are referred to as dispersive.

A modification of the vibrating string problem provides a simple illustration. We now 
subject each element of the string to an additional applied force which is proportional to 
its displacement:

(10.3.35))

where h>0 is constant. For example, if we embed the string in a thin sheet of rubber, then 
in addition to the restoring force due to tension, there is a restoring force due to the 
rubber on each portion of the string. From its use in the quantum mechanics of “scalar” 
mesons, (10.3.35) is often referred to as the Klein-Gordon equation.

We shall again look for particular solutions of the form u(x, t)=X(x)T(t). 
This time, however,

XT c2X T+hXT=0, 
(10.3.36)

or

(10.3.37)
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X + X=0, (10.3.38)

and

T +( c2+h)T=0. (10.3.39)

If we attach the string at x=0 and x=L, the X(x) solution is

(10.3.40)

with k
n
=n /L, and 

n
=n2 2/L2. On the other hand, the T(t) solution becomes

(10.3.41)

so that the product solution is

(10.3.42)

Finally, the general solution becomes

 (10.3.43)

from the principle of linear superposition. Let us consider the case when B
n
=0. Then we 

can write (10.3.43) as

(10.3.44)

Comparing our results with (10.3.34), the distance that a particular mode k
n
 moves during 

the time interval t depends not only upon external parameters such as h, the tension and 
density  of   the   string,   but  also  upon  its  wavenumber  (or  equivalently,  wavelength).

which leads to two ordinary differential equations
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Furthermore, the frequency of a particular harmonic is larger than that when h=0. This
result is not surprising, because the added stiffness of the medium should increase the
natural frequencies.

Figure 10.3.3: The vibration of a string u(x, t)/h embedded in a thin sheet of
rubber at various positions x/L at the times ct/L=0, 0.2, 0.4, 0.6, 0.8,

and 1 for  hL2/c2=10.  The same parameters  were used as  in  Figure
10.3.1.

The importance of dispersion lies in the fact that if the solution u(x, t) is a superposition
of  progressive  waves  in  the  same direction,  then  the  phase  relationship  between  the
different harmonics changes with time. Because most signals consist of an infinite series
of these progressive waves, dispersion causes the signal to become garbled. We show this
by comparing the solution (10.3.43) given in Figures 10.3.3 and 10.3.4 for the initial

conditions (10.3.25) and (10.3.26) with hL2/c2=10 to the results given in Figures 10.3.1
and 10.3.2. In the case of Figure 10.3.4, the MATLAB script line

u = u + a(m) .* sin (temp1*XX) .* cos (temp1*TT);
has been replaced with 
temp2 = temp1 * sqrt (1 + H/(temp1*temp1));
u = u + a (m) .* sin (temp1*XX) .* cos(temp2*TT);

where H=10 is defined earlier in the script. Note how garbled the picture becomes at
ct/L=2 in Figure 10.3.4 compared to the nondispersive solution at the same time in Figure
10.3.2.

 Example 10.3.3: Damped wave equation

In the previous example a slight modification of the wave equation resulted in a wave
solution where each Fourier harmonic propagates with its own particular phase speed. In
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this example we introduce a modification of the wave equation that results not only in 
dispersive  waves  but  also  in  the  exponential  decay  of  the  amplitude  as  the  wave
propagates.

So far we neglected the reaction of the surrounding medium (air or water, for example) 
on the motion of the string. For small-amplitude motions this

Figure 10.3.4: The two-dimensional plot of the vibration of a string u(x, t)/h 
embedded in a thin sheet of rubber at various times ct/L and positions 

x/L for hL2/c2=10.

reaction opposes the motion of  each element  of  the string and is  proportional  to  the 
element’s velocity. The equation of motion, when we account for the tension and friction 
in the medium but not its stiffness or internal friction, is

(10.3.45)

Because (10.3.45) first arose in the mathematical description of the telegraph,5 it is generally 
known as the equation of telegraphy. The effect of friction is, of course, to damp out the free
vibration.

Let us assume a solution of the form u(x, t)=X(x)T(t)  and separate the variables to 
obtain the two ordinary differential equations:

X + X=0, (10.3.46)

5  The  first  published  solution  was by Kirchhoff, G., 1857: Über die Bewegung der Electrität in
Drähten. Ann. Phys. Chem., 100, 193–217. English translation: Kirchhoff, G., 1857: On the motion 
of electricity in wires. Philos. Mag., Ser. 4, 13, 393–412.
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T +2hT + c2T=0 (10.3.47)

with X(0)=X(L)=0. Friction does not affect the shape of the normal modes; they are still

(10.3.48)

Figure 10.3.5: The vibration of a string u(x, t)/h with frictional dissipation at 
various positions x/L at the times ct/L=0, 0.2, 0.4, 0.6, 0.8, and 1 for 
hL/c=1. The same parameters were used as in Figure 10.3.1.

with k
n
=n /L and 

n
=n2 2/L2. 

The solution for the T(t) equation is

(10.3.49)

with  the  condition  that  k
n
c>h.  If  we  violate  this  condition,  the  solutions  are  two 

exponentially decaying functions in time. Because most physical problems usually fulfill
this condition, we concentrate on this solution. 

and
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From the principle of linear superposition, the general solution is

(10.3.50)

where c>hL. From (10.3.50) we see two important effects. First, the presence of friction
slows all of the harmonics. Furthermore, friction dampens all of the harmonics. Figures
10.3.5 and 10.3.6 illustrate the solution using the initial conditions given by (10.3.25) and
(10.3.26) with hL/c=1. In the case of Figure 10.3.6, the script line that produced Figure
10.3.2:

u = u + a (m) .* sin (temp1*XX) .* cos (temp1*TT) ; 

has been replaced with 

temp2 = temp1 * sqrt (1 − (H*H) / (templ*templ) ) ; 

u  =  u  +  a  (m)  .*  exp  (  −H*TT)  .*  sin  (temp1*XX)  .*  cos (temp2*TT) ;

where H=1 is defined earlier in the script. Because this is a rather large coefficient of
friction, Figures 10.3.5 and 10.3.6 exhibit rapid damping as well as dispersion.

Figure 10.3.6: The vibration of a string u(x, t)/h with frictional dissipation at 
various times ct/L and positions x/L for hL/c=1.

This  damping  and  dispersion  of  waves  also  occurs  in  solutions  of  the equation of 
telegraphy where the solutions are progressive waves. Because early telegraph lines were 
short,  time  delay  effects  were  negligible.  However,  when  engineers  laid  the  first 
transoceanic cables in the 1850s, the time delay became seconds and differences in the 
velocity   of    propagation   of  different  frequencies,  as  predicted  by  (10.3.50),  became
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noticeable  to  the  operators.  Table  10.3.1  gives  the  transmission  rate  for  various 
transatlantic submarine telegraph lines. As it shows, increases in the transmission rates 
during  the  nineteenth  century  were  due  primarily  to  improvements  in  terminal 
technology.

When they  instituted  long-distance  telephony  just  before  the  turn  of  the  twentieth 
century, this difference in velocity between frequencies should have limited the circuits to 

a few tens of miles.6 However, in 1899, Prof. Michael Pupin, at Columbia University, 
showed that  by adding inductors  (“loading coils”)  to  the line at  regular  intervals  the 

velocities at  the different frequencies could be equalized.7  Heaviside8  and the French 

engineer Vaschy9 made

Year Performance 
(words/min)

1857 58 Mirror galvanometer 3 7

1870 Condensers 12

1872 Siphon recorder 17

1879 Duplex 24

1894 Larger diameter cable 72 90

1915 20 Brown drum repeater and Heurtley magnifier 100

1923 28 Magnetically loaded lines 300 320

1928 32 Electronic signal shaping amplifiers and time division
multiplexing

480

1950 Repeaters on the continental shelf 100 300

1956 Repeater telephone cables 21600

From Coates, V.T., and B.Finn, 1979: A Retrospective Technology Assessment: Submarine Telegraphy. 
The Transatlantic Cable of 1866. San Francisco Press, Inc., 268 pp. 

6   Rayleigh, J.W., 1884: On telephoning through a cable. Br. Assoc. Rep., 632–633; Jordan, D.W.,
1982: The adoption of self-induction by telephony, 1886–1889. Ann. Sci., 39, 433–461.

7   There is  considerable controversy concerning who is exactly the inventor.  See Brittain,  J.E.,
1970:  The  introduction  of  the  loading  coil:  George  A.Campbell  and  Michael  I.Pupin.  Tech.
Culture, 11, 36–57.

8  First published 3 June 1887. Reprinted in Heaviside, O., 1970: Electrical Papers, Vol 2. Chelsea
Publishing, pp. 119–124.

9  See Devaux-Charbonnel, X.G.F., 1917: La contribution des ingénieurs français à la téléphonie à 
grande distance par câbles souterrains: Vaschy et Barbarat. Re . Gén. Électr., 2, 288–295.

Table 10.3.1: Technological Innovation on Transatlantic Telegraph Cables

Technological Innovation
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similar suggestions in the nineteenth century. Thus, adding resistance and inductance, 
which would seem to make things worse, actually made possible long-distance telephony. 
Today you can see these loading coils as you drive along the street; they are the black 
cylinders, approximately one between each pair of telephone poles, spliced into the 
telephone cable. The loading of long submarine telegraph cables had to wait 
for the development of permalloy and mu-metal materials of high magnetic induction.

 Example 10.3.4: Axisymmetric vibrations of a circular membrane

The wave equation

(10.3.51)

governs axisymmetric vibrations of  a  circular  membrane,  where u(r,  t)  is  the vertical 
displacement of the membrane, r is the radial distance, t is time, c is the square root of the 
ratio of the tension of the membrane to its density, and a is the radius of the membrane. 
We will solve (10.3.51) when the membrane is initially at rest, u(r, 0)=0, and struck so 
that its initial velocity is

(10.3.52)

If this problem can be solved by separation of variables, then u(r, t)= R(r)T(t). Following 
the substitution of this u(r, t) into (10.3.51), separation of variables leads to

(10.3.53)

or

(10.3.54)
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and

(10.3.55)

The separation constant k2 must be negative so that we obtain solutions that remain 
bounded in the region 0<r<a and can satisfy the boundary condition. This boundary
condition is u(a, t)=R(a)T(t)=0, or R(a)=0.

The solutions of (10.3.54)–(10.3.55), subject to the boundary condition, 
are

(10.3.56)

and

(10.3.57)

where  
n 

 satisfies  the  equation  J
0
( )=0.  Because  u(r,  0)=0,  and  T

n
(0)=0,  B

n
=0.

Consequently, the product solution is

(10.3.58)

To determine A
n
, we use the condition

(10.3.59)

Equation (10.3.59) is a Fourier-Bessel expansion in the orthogonal function J
0
 (

n
r/ ),

where

(10.3.60)
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(10.3.61)

Figure 10.3.7:  The axisymmetric vibrations u (r,  t)=capu(r,  t)/P of  a circular 
membrane at various positions r/a at the times ct/a=0, 0.2, 0.4, 0.6,

0.8, and 1 for  Initially the membrane is struck by a hammer.

or

(10.3.62)

Figures 10.3.7, 10.3.8, and 10.3.9 illustrate the solution (10.3.62) for various times and

positions  when   and   They  were  generated  using  the  MATLAB
script

from (9.5.35) and (9.5.43) in §9.5. Carrying out the integration,

% initialize parameters
clear; eps_over_a = 0.25; M = 20; dr = 0.02; dt = 0.02;
% load in zeros of J_0
zero( 1) = 2.40483; zero( 2) = 5.52008; zero( 3) = 8.65373;
zero( 4) = 11.79153; zero( 5) = 14.93092 ; zero( 6) = 18.07106 ;
zero( 7) = 21.21164 ; zero(  8) = 24.35247 ; zero( 9) = 27.49347 ;
zero( 10) = 30.63461 ; zero( 11) = 33.77582 ; zero( 12) = 36.91710 ;
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Figure 10.3.8: The axisymmetric vibrations capu(r, t)/P of a circular membrane 
resulting from an initial  hammer  blow with  =a/4.  The solution is 
plotted at various times ct/a and positions r/a.

for m = 1 : M

end

u = zeros (length (T), length(R));

zero( 16) = 49.48261; zero( 17) = 52.62405; zero( 18) = 55.76551;

zero( 19) = 58.90698; zero( 20) = 62.04847;

% compute Fourier-Bessel coefficients

a (m) = 2 * besse1j ( 1 , eps_over_a*zero (m) ) …
    / (eps_over_a*pi*zero(m)*zero(m)*besselj(1,zero(m))ˆ2);

R = [0:dr:1]; T = [0:dt:4];

RR = repmat (R,[length(T)1]);

46.34119;zero( 13) = 40.05843; zero( 14) = 43.19979; zero( 15) =

TT = repmat (T’, [1 length(R)]);
% compute solution from series solution
for m = 1:M
u = u + a (m) .* besse1j(0,zero(m)*RR).* sin(zero(m)*TT);

end
% plot results
surf (RR, TT, u)
xlabel  (’R’,’Fontsize’ ,20) ; ylabel ( ’ TIME’ , ’Fontsize’,20)

zlabel (’SOLUTION’,’ Fontsize’,20)
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Figures 10.3.8 and 10.3.9 show that striking the membrane with a hammer generates a 
pulse that propagates out to the rim, reflects, inverts, and propagates back to the center. 
This process then repeats forever.

Problems

Solve the wave equation u
tt
=c2u

xx
, 0<x<L, 0<t, subject to the boundary conditions that 

u(0, t)=u(L, t)=0, 0<t, and the following initial conditions for 0<x<L. Use MATLAB to 
illustrate your solution.

1. u(x, 0)=0, u
t
(x, 0)=1

2. u(x, 0)=1, u
t
(x, 0)=0

Figure 10.3.9: Same as Figure 10.3.8 except =a/20.

3. 

4. u(x, 0)=[3sin( x/L) sin(3 x/L)]/4, u
t
(x, 0)=0,

5. 

6. 

7. 
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subject to the boundary conditions

 

and the initial conditions

 

[Hint: You must include the separation constant of zero.]

9. Solve10 the wave equation

subject to the boundary conditions

 

and the initial conditions

 

where <1. Hint: Use the substitution 4x=r2.
10. The differential equation for the longitudinal vibrations of a rod within a viscous 

fluid is

 

where c is the velocity of sound in the rod and h is the damping coefficient. If the rod is 
fixed at x=0 so that u(0, t)=0, and allowed to freely oscillate at the other end x=L, so that 
u

x
(L, t)=0, find the vibrations for any location x and subsequent time t if the rod has the 

initial displacement of u(x, 0)=x and the initial velocity u
t
(x, 0)=0 for 0<x<L. Assume that 

h<c /(2L). Why?

8. Solve the wave equation

10   Solved in a slightly different manner by Bailey, H., 2000: Motions of a hanging chain after the
free end is given an initial velocity. Am. J. Phys., 68, 764–767.
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the outside air in the ratio of 1+s
0
 to 1. Everything being at rest, we suddenly draw aside

 

the disk closing one end of the pipe. We want to determine what happens inside the pipe

 

after we remove the disk.
As the air rushes outside, it generates sound waves within the pipe. The wave equation

 

governs these waves, where c is the speed of sound and u(x, t) is the velocity potential.

 

Without going into the fluid mechanics of the problem, the boundary conditions are

a. No flow through the closed end: u
x
(0, t)=0.

b. No infinite acceleration at the open end: u
xx

(L, t)=0.

c. Air is initially at rest: u
x
(x, 0)=0.

d. Air initially has a density greater than the surrounding air by the amount s
0
: u

t
(x,

0)= c2s
0
.

Find the velocity potential at all positions within the pipe and all subsequent times.
12. One of the classic applications of the wave equation has been the explanation of the 
acoustic properties of string instruments. Usually we excite a string in one of three ways: 
by plucking (as in the harp, zither, etc.), by striking with a hammer (piano), or by bowing 
(violin, violoncello, etc.). In all of these cases, the governing partial differential equation is

 

with the boundary conditions u(0, t)=u(L, t)=0, 0<t. For each of the following methods of

 

exciting a string instrument, find the complete solution to the problem:

(a) Plucked string

For the initial conditions:

 

and

 

11. A closed pipe of length L contains  air whose density is slightly greater than that of
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We note that the harmonics are absent where sin(n a/L)=0. Thus, if we pluck the string at 
the center, all of the harmonics of even order are absent. Furthermore, the intensity of the 
successive harmonics varies as n 2.  The  higher harmonics (overtones) are therefore
relatively feeble compared to the n=1 term (the fundamental).

(b) String excited by impact

The effect of the impact of a hammer depends upon the manner and duration of the 
contact, and is more difficult to estimate. However, as a first estimate, 
let

u(x, 0)=0, 0<x<L, 

and

 

where  Show that the solution in this case is

 

As in part (a), the nth mode is absent if the origin is at a node. The intensity of the 
overtones are now of the same order of magnitude; higher harmonics (overtones) are
relatively more in evidence than in part (a).

(c) Bowed violin string

The theory of the vibration of a string when excited by bowing is poorly understood. The
bow drags the string for a time until the string springs back. After awhile the process 
repeats. It can be shown11 that the proper initial conditions are

u(x, 0)=0, 0<x<L, 

and

u
t
(x, 0)=4 c(L x)/L2, 0<x<L, 

where  is the maximum displacement. Show that the solution is now

 

show that

11    See Lamb, H., 1960: The Dynamical Theory of Sound. Dover Publishers, §27.
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10.4 D’ALEMBERT’S FORMULA

In the previous section we sought solutions to the homogeneous wave equation in the 
form of a product X(x)T(t). For the one-dimensional wave

Figure 10.4.1:  Although largely self-educated in mathematics,  Jean Le Rond 
d’Alembert (1717–1783) gained equal fame as a mathematician and 
philosophe  of  the  continental  Enlightenment.  By the  middle  of  the 
eighteenth  century,  he  stood  with  such  leading  European 
mathematicians and mathematical physicists as Clairaut, D.Bernoulli, 
and  Euler.  Today  we  best  remember  him  for  his  work  in  fluid 
dynamics and applying partial  differential  equations to problems in 
physics.  (Portrait  courtesy  of  the  Archives  de  l’Académie  des 
sciences, Paris.)

equation  there  is  a  more  general  method  for  constructing  the  solution,  published  by 

D’Alembert12 in 1747.
Let us determine a solution to the homogeneous wave equation

which satisfies the initial conditions
(10.4.1)

12    D’Alembert, J., 1747: Recherches sur la courbe que forme une corde tenduë mise en vibration.
Hist. Acad. R. Sci. Belles Lett., Berlin, 214–219.
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(10.4.2)

We begin by introducing two new variables ,  defined by =x+ct, and =x ct, and set 
u(x, t)= ( , ). The variables  and  are called the characteristics of the wave equation. 
Using the chain rule,

(10.4.3)

(10.4.4)

(10.4.5)

(10.4.6)

and similarly

(10.4.7)

so that the wave equation becomes

(10.4.8)
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( , )=F( )+G( ). (10.4.9)

Thus, the general solution of (10.4.1) is of the form

u(x, t)=F(x+ct)+G(x ct),
(10.4.10)

where  F  and G  are  arbitrary  functions  of  one  variable  and are  assumed to  be  twice 
differentiable. Setting t=0 in (10.4.10) and using the initial condition that u(x, 0)=f(x),

F(x)+G(x)=f(x). (10.4.11)

The partial derivative of (10.4.10) with respect to t yields

(10.4.12)

Here primes denote differentiation with respect to the argument of the function. If we set 
t=0 in (10.4.12) and apply the initial condition that u

t
(x, 0)= g(x),

cF (x) cG (x)=g(x). (10.4.13)

Integrating (10.4.13) from 0 to any point x gives

(10.4.14)

where C is the constant of integration. Combining this result with (10.4.11),

(10.4.15)

The general solution of (10.4.8) is
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Figure 10.4.2: D’Alembert’s solution (10.4.18) to the wave equation.

and

(10.4.16)

If we replace the variable x in the expression for F and G by x+ct and x ct, respectively, 
and substitute the results into (10.4.10), we finally arrive at the formula

(10.4.17)

This is known as d’Alembert’s formula for the solution of the wave equation (10.4.1) subject to 
the initial conditions (10.4.2). It gives a representation of the solution in terms of known initial 
conditions.

 Example 10.4.1

To illustrate d’Alembert’s formula, let us find the solution to the wave equation (10.4.1) 
satisfying  the  initial  conditions  u(x,  0)=H(x+1) H(x 1)  and  u

t
(x,  0)=0, <x< .  By 

d’Alembert’s formula (10.4.17),

(10.4.18)
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We illustrate this solution in Figure 10.4.2 generated by the MATLAB script

In  this  figure,  you  can  clearly  see  the  characteristics  as  they  emanate  from  the
discontinuities at x=±1.

 Example 10.4.2

Let  us  find  the  solution  to  the  wave  equation  (10.4.1)  when  u(x,  0)=0,  and  u
t
(x,

0)=sin(2x), <x< . By d’Alembert’s formula, the solution
is

(10.4.19)

In addition to providing a method of solving the wave equation, d’Alembert’s solution
can also provide physical insight into the vibration of a string. Consider the case when we
release a string with zero velocity after giving it an initial displacement of f(x). According
to (10.4.17), the displacement at a point x at any time t is

(10.4.20)

Because the function f(x ct) is the same as the function of f(x) translated to the right by a
distance equal to ct, f(x ct) represents a wave of form f(x) traveling to the right with the
velocity c, a forward wave. Similarly, we can interpret the function f(x+ct) as representing
a wave with the shape f(x) traveling to the left with the velocity c, a backward wave.

% set mesh size for solution 
clear ; dx = 0.1 ; dt = 0.1 ; 
% compute grid 
X=[ 10:dx:10]; T = [0:dt:10]; 
for j=1:length (T); t = T(j); 
for i=1:length(X); x = X (i); 
% compute characteristics 
characteristic_1 = x + t; characteristic_2 = x  t; 
% compute solution 
XX(i, j) = x; TT(i, j) = t;

end; end

xlabel  (’DISTANCE’,  ’Fontsize’,20);  ylabel(’TIME’,’Fontsize’,20)

zlabel (’SOLUTION’,’Fontsize’,20)

u(i, j) = 0.5 * (stepfun (characteristic_1, 1) …
    + stepfun (characteristic_2, 1) …
     stepfun (characteristic_1, 1) …
     stepfun (characteristic_2, 1) );

surf (XX,TT,u); colormap autumn ;
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Thus, the solution (10.4.17) is a superposition of forward and backward waves traveling
with the same velocity c and having the shape of the initial profile f(x) with half of the

Figure  10.4.3:  The  propagation  of  waves  due  to  an  initial  displacement 
according to d’Alembert’s formula.

amplitude.  Clearly the characteristics  x+ct  and x ct  give the propagation paths along 
which the waveform f(x) propagates.

 Example 10.4.3

To illustrate our physical interpretation of d’Alembert’s solution, suppose that the string 
has an initial displacement defined by

(10.4.21)

In Figure 10.4.3(A) the forward and backward waves, indicated by the dashed line, 
coincide at t=0. As time advances, both waves move in opposite directions. In particular, 
at t=a/(2c), they moved through a distance a/2, resulting in the displacement of the string 
shown  in  Figure  10.4.3(B).  Eventually,  at  t=a/c,  the  forward  and  backward  waves 
completely  separate.  Finally,  Figures  10.4.3(D)  and  10.4.3(E)  show  how  the  waves 
radiate off to infinity at the speed of c. Note that at each point the string returns to its 
original position of rest after the passage of each wave.
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If we introduce the function

(10.4.23)

then we can write (10.4.22) as

u(x, t)= (x+ct) (x ct),
(10.4.24)

which again shows that the solution is a superposition of a forward wave (x ct) and a 
backward wave (x+ct) traveling with the same velocity c. The function , which we
compute from (10.4.23) and the initial velocity g(x), determines the exact form of these waves.

 Example 10.4.4: Vibration of a moving threadline

The characterization and analysis of the oscillations of a string or yarn have an important 

application in the textile industry because they describe the way that yarn winds on a 

bobbin.13 As we showed in §10.4.1, the governing equation, the “threadline equation,” is

(10.4.25

where =2V, =V2 gT/ , V is the windup velocity, g is the gravitational attraction, T is
the  tension  in  the  yarn,  and   is  the  density  of  the  yarn.  We  now  introduce  the 
characteristics  =x+

1
t,  and  =x+

2
t,  where  

1 
 and  

2 
 are  yet  undetermined.  Upon

substituting  and  into (10.4.25),

(10.4.26

If we choose 
1
 and 

2
 to be roots of the equation

2+2V +V2 gT/ =0, (10.4.27)

(10.4.26) reduces to the simple form

Consider  now  the  opposite  situation  when  u(x,  0)=0,  and  u
t
(x,  0)=  g(x).  The 

displacement is

(10.4.22)

13    Reprinted  from J.  Franklin  Inst.,  275,  R.D.Swope  and  W.F.Ames,  Vibrations  of  a  moving
threadline,  36–55,  ©1963,  with  kind  permission  from  Elsevier  Science  Ltd,  The  Boule-
vard, Langford Lane, Kidlington OX5 1GB, UK.
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u =0, (10.4.28)

which has the general solution

u(x, t)=F( )+G( )=F(x+
1
t)+G(x+

2
t). (10.4.29)

Figure 10.4.4: Displacement of an infinite, moving threadline when c=10, and 
V=1.

Solving (10.4.27) yields

1
=c V, and 

2
= c V, (10.4.30)

where  If the initial conditions are

u(x, 0)=f(x), and u
t
(x, 0)=g(x), 

(10.4.31)
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(10.4.32)

Because 
1
 does not generally equal to 

2
, the two waves that constitute the motion of the

string move with different speeds and have different shapes and forms. For example, if

(10.4.33)

(10.4.34)

Figures 10.4.4 and 10.4.5 illustrate this solution for several different parameters.

Figure 10.4.5: Displacement of an infinite, moving threadline when c=11, and
V=10.

Problems

Use d’Alembert’s formula to solve the wave equation (10.4.1) for the following initial
conditions defined for |x|< . Then illustrate your solution using MATLAB.

1. u(x, 0)=2 sin(x) cos(x) u
t
(x, 0)=cos(x)

2. u(x, 0)=x sin(x) u
t
(x, 0)=cos(2x)

3. u(x, 0)=1/(x2+1) u
t
(x, 0)=ex

4. u(x, 0)=e x u
t
(x, 0)=1/(x2+1)

5. u(x, 0)=cos( x/2) u
t
(x, 0)=sinh(ax)

6. u(x, 0)=sin(3x) u
t
(x, 0)=sin(2x) sin(x)

7. Assuming that the functions F and G are differentiable, show by direct substitution
that 

then
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and

 

are the D’Alembert solutions to the hyperbolic system

 

where c2=E/  and E, k, and  are constants.
8. D’Alembert’s solution can also be used in problems over the limited domain 0<x<L.

To illustrate this, let us solve the wave equation (10.4.1) with the initial conditions u(x,
0)=0, u

t
(x, 0)=V

max
(1 x/L), 0<x<L, and the boundary conditions u(0, t)=u(L, t) 0, 0<t. 

Step 1: Show that the solution to this problem is

 

where

 

along with the periodicity conditions V
0
( )=V

0
( ), and V

0
(L+ )= V

0
(L ) to take care of

those cases when the argument of V
0
( ) is outside of (0, L). Hint: Substitute the solution

into the boundary conditions.

Step 2: Show that at any point x within the interval (0, L), the solution repeats with a
period of 2L/c if ct>2L. Therefore, if we know the behavior of the solution for the
time interval 0<ct<2L, we know the behavior for any other time.

Step 3: Show that the solution at any point x within the interval (0, L) and time t+L/c, where 
0<ct<L, is the mirror image (about u=0) of the solution at the point L x and time t, where 
0<ct<L.

Step 4: Show that the maximum value of u(x, t) occurs at x=ct, where 0<x<L and when 
0<ct<L. At that point,
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where u
max

 equals the largest magnitude of u(x, t) for any time t. Plot u
max

 as a function x

and show that it a parabola. Hint: Find the maximum value of u(x, t) when 0<x ct and
ct x<L with 0<x+ct<L or L<x+ct<2L.

10.5 THE LAPLACE TRANSFORM METHOD

The solution of linear partial differential equations by Laplace transforms is the most 
commonly  employed  analytic  technique  after  separation  of  variables.  Because  the 
transform consists solely of an integration with respect to time, the transform U(x, s) of 
the solution of the wave equation u(x, t) is

(10.5.1)

assuming that the wave equation only varies in a single spatial variable x and time t.
Partial derivatives involving time have transforms similar to those that we encountered 

in the case of functions of a single variable. They include

(10.5.2)

and

(10.5.3)

These transforms introduce the initial conditions via u(x, 0) and ut(x, 0). On the other 
hand, derivatives involving x become

(10.5.4)

and

(10.5.5)

Because the transformation eliminates the time variable, only U(x, s) and its derivatives 
remain in the equation. Consequently, we transform the partial differential equation into a
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boundary-value  problem  involving  an  ordinary  differential  equation.  Because  this 
equation is often easier to solve than a partial differential equation, the use of Laplace 
transforms  considerably  simplifies  the  original  problem.  Of  course,  the  Laplace 
transforms must exist for this technique to work.

The following schematic summarizes the Laplace transform method:

In  the  following  examples,  we  illustrate  transform  methods  by  solving  the  classic 
equation  of  telegraphy  as  it  applies  to  a  uniform  transmission  line.  The  line  has  a
resistance R, an inductance L, a capacitance C,  and a leakage conductance G  per unit
length. We denote the current in the direction of positive x by I; V is the voltage drop 
across the transmission line at the point x. The dependent variables I and V are functions 
of both distance x along the line and time t.

To derive the differential equations that govern the current and voltage in the line, 
consider the points A at x and B at x+ x in Figure 10.5.1. The current and voltage at A are

I(x, t) and V(x, t); at B,  and  Therefore, the voltage drop from A

to B is  and the

Figure 10.5.1: Schematic of an uniform transmission line.
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current in the line is  Neglecting terms that are proportional to ( x)2,

(10.5.6)

The voltage drop over the parallel portion HK of the line is V while the current in this

portion of the line is  Thus,

(10.5.7)

Therefore, the differential equations for I and V are

(10.5.8)

and

(10.5.9)

Turning  to  the  initial  conditions,  we  solve  these  simultaneous  partial  differential 
equations with the initial conditions

I(x, 0)=I
0
(x), 

(10.5.10)

and

V(x, 0)=0(x) (10.5.11)

for 0<t. There are also boundary conditions at the ends of the line; we will introduce them 
for each specific problem. For example, if the line is shortcircuited at x=a, V=0 at x=a; if 
there is an open circuit at x=a, I=0 at x=a.

To solve (10.5.8)–(10.5.9) by Laplace transforms, we take the Laplace transform of 
both sides of these equations, which yields
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(10.5.12)

and

(10.5.13)

Eliminating  gives an ordinary differential equation in 

(10.5.14)

where q2=(Ls+R)(Cs+G). After finding  we may compute  from

(10.5.15)

At this point we treat several classic cases.

 Example 10.5.1: The semi-infinite transmission line

We consider the problem of a semi-infinite line 0<x with no initial current and charge. 
The end x=0 has a constant voltage E for 0<t.

In this case,

(10.5.16)

The boundary conditions at the ends of the line are

V(0, t)=E, 0<t,
(10.5.17)

and V(x, t) is finite as x→ . The transform of these boundary conditions 
is

(10.5.18)
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(10.5.19)

The requirement that  remains finite as x →  forces B=0. The boundary condition 
at x=0 gives A=E/s. Thus,

(10.5.20)

We discuss  the  general  case  later.  However,  for  the  so-called  “lossless”  line,  where 
R=G=0,

(10.5.21)

where  Consequently,

(10.5.22)

where H(t) is Heaviside’s step function. The physical interpretation of this solution is as 
follows: V(x, t) is zero up to the time x/c at which time a wave traveling with speed c 
from x=0 would arrive at the point x. V(x, t) has the constant value E afterwards.

For the so-called “distortionless” line,14 R/L=G/C= ,

(10.5.23)

In this case, the disturbance not only propagates with velocity c but also attenuates as we 
move along the line.

Suppose  now,  that  instead  of  applying  a  constant  voltage  E  at  x=0,  we  apply  a 
time-dependent voltage, f(t). The only modification is that in place of (10.5.20),

(10.5.24)

The general solution of (10.5.16) is

14     Prechtl  and  Schürhuber  [Prechtl,  A.,  and  R.Schürhuber,  2000:  Nonuniform  distortionless
transmission  lines.  Electr.  Engng,  82,  127–134]  have  generalized  this  problem to  nonuni-
form transmission lines.
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and

(10.5.26)

Thus, our solution shows that the voltage at x is zero up to the time x/c. Afterwards V(x, t)

follows the voltage at x=0 with a time lag of x/c and decreases in magnitude by e px/c.

 Example 10.5.2: The finite transmission line

We now discuss the problem of a finite transmission line 0<x<l with zero initial current
and charge. We ground the end x=0 and maintain the end x=l at constant voltage E for
0<t.

The transformed partial differential equation becomes

(10.5.27)

Figure 10.5.2: The voltage within a lossless, finite transmission line of length l 
as a function of time t.

The boundary conditions are

V(0, t)=0, and V(l, t)=E, 0<t. (10.5.28)

In the case of the distortionless line, q=(s+ )/c, this becomes

(10.5.25)
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The Laplace transform of these boundary conditions is

(10.5.29)

The solution of (10.5.27) which satisfies the boundary conditions is

(10.5.30)

Let  us  rewrite  (10.5.30)  in  a  form  involving  negative  exponentials  and  expand  the 
denominator by the binomial theorem,

(10.5.31)

(10.5.32)

(10.5.33)

In the special case of the lossless line where q=s/c,

(10.5.34

or

(10.5.35

We illustrate (10.5.35) in Figure 10.5.2. The voltage at x is zero up to the time (t x)/c, at
which time a wave traveling directly from the end x=l  would reach the point  x.  The
voltage  then  has  the  constant  value  E  up  to  the  time (l+x)/c,  at  which  time a  wave
traveling from the end x=l and reflected back from the end x=0 would arrive. From this
time up to the time of arrival of a twice-reflected wave, it has the value zero, and so on.
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Figure 10.5.3: The voltage within a submarine cable as a function of distance 
for various values of t.

 Example 10.5.3: The semi-infinite transmission line reconsidered

In the first example, we showed that the transform of the solution for the semi-infinite 
line is

(10.5.36)

where q2=(Ls+R)(Cs+G). In the case of a lossless line (R=G=0), we found traveling wave 
solutions.

In this example, we shall examine the case of a submarine cable,15 where L=G=0. In 
this special case,

(10.5.37)

where  =1/(RC).  From  a  table  of  Laplace  transforms,16  we  can  immediately  invert
(10.5.37) and find that

(10.5.38)

where erfc is the complementary error function. Unlike the traveling wave solution, the 
voltage diffuses into the cable as time increases. We illustrate (10.5.38) in Figure 10.5.3.

15    First  solved by Thomson,  W.,  1855:  On the theory of  the electric  telegraph.  Proc.  R.
Soc. London, Ser. A, 7, 382–399.

16     See Churchill, R. 1972: Operational Mathematics. McGraw-Hill Book, §27.
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 Example 10.5.4: A short-circuited, finite transmission line

Let us find the voltage of a lossless transmission line of length l that initially has the 
constant  voltage  E.  At  t=0,  we  ground  the  line  at  x=0  while  we  leave  the  end  x=l
insulated.

The transformed partial differential equation now becomes

(10.5.39)

where  The boundary conditions are

(10.5.40)

and

(10.5.41)

from (10.5.15).
The solution to this boundary-value problem is

(10.5.42)

The first term on the right side of (10.5.42) is easy to invert and the inversion equals E.
The second term is much more difficult to handle. We will use Bromwich’s integral.

In §6.10 we showed that

(10.5.43)
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To evaluate this integral we must first locate and then classify the singularities. Using the 
product formula for the hyperbolic cosine,

(10.5.44)

This  shows  that  we  have  an  infinite  number  of  simple  poles  located  at  z=0,  and 

z
n
=±(2n 1) ci/(2l), where n=1, 2, 3,…. Therefore, Bromwich’s contour can lie along, and 

just to the right of, the imaginary axis. By Jordan’s lemma we close the contour with 
a semicircle of infinite radius in the left half of the complex plane. Computing the residues,

(10.5.45)

and

(10.5.46)

(10.5.47)

(10.5.48)

Summing the residues and using the relationship that cos(t)=(eti+e ti)/2,

(10.5.49)

(10.5.50)
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An alternative to contour integration is to rewrite (10.5.42) as

(10.5.51)

(10.5.52)

so that

(10.5.53)

 Example 10.5.5: The general solution of the equation of telegraphy

In this example we solve the equation of telegraphy without any restrictions on R, C, G,
or L. We begin by eliminating the dependent variable I(x, t) from the set of equations
(10.5.8)–(10.5.9). This yields

(10.5.54)

We next take the Laplace transform of (10.5.54) assuming that V(x,  0)=f(x),  and V
t
(x,

0)=g(x). The transformed version of (10.5.54) is

(10.5.55)

or

(10.5.56)

where c2=1/LC, =c2(RC+GL)/2, and =c2(RC GL)/2.
We solve (10.5.56)  by Fourier  transforms (see  §5.6)  with  the  requirement  that  the

solution dies away as |x|→ . The most convenient way of expressing this solution is the
convolution product (see §5.5)
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(10.5.57)

From a table of Laplace transforms,

(10.5.58)

where  b>0  and  I
0
(  )  is  the  zeroth  order  modified  Bessel  function  of  the  first  kind. 

Therefore, by the first shifting theorem,

(10.5.59)

Using (10.5.59) to invert (10.5.57), we have that

 

(10.5.60)

The last  term in  (10.5.60)  arises  from noting that   If  we
explicitly write out the convolution, the final form of the solution is

 

(10.5.61)
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Figure 10.5.4:  The evolution of  the  voltage with  time given by the  general
equation of telegraphy for initial conditions and parameters stated in
the text.

The physical interpretation of the first line of (10.5.61) is straightforward. It represents
damped progressive waves; one is propagating to the right and the other to the left. In
addition to these progressive waves, there is a contribution from the integrals, even after
the waves pass. These integrals include all of the points where f(x) and g(x) are nonzero
within a distance ct  from the point  in question.  This  effect  persists  through all  time,
although dying away, and constitutes a residue or tail. Figure 10.5.4 illustrates this for

=0.1, =0.2, and c=1. This figure was obtained using the MATLAB script:

% initialize parameters in calculation 

clear; dx = 0.1; dt = 0.5; rho_over_c = 0.1; sigma_over_c = 0.2;

%

X=[−10:dx:10]; T = [0:dt:10]; % compute locations of x and t
% 

for j=1:length (T); t = T(j); 

for i=1:length (X); x = X(i);

XX(i, j ) = x; TT(i, j) = t; deta_i = 0.05 % set up grid

% 

% compute characteristics x+ct and x−ct 
% 

characteristic_1 = x − t; characteristic_2 = x + t; 
% 

% compute first term in (10.5.61)
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%

F = inline(’stepfun(x,−1.0001)−stepfun(x, 1.0001)’); 
u(i, j ) = F(characteristic_1) + F(characteristic_2); 

% 

% find the upper and lower limits of the integration 

% 

upper = characteristic_2; lower = characteristic_1; 

% 

if t > 0 & upper > −1 & lower < 1 
if upper > 1 upper = 1; end 

if lower < −1 lower = −1; end 
% 

% set up parameters needed for integration 

% 

interval = upper−lower ;
NN = interval / deta_i; 

if mod(NN,2) > 0 NN = NN + 1; end; 

deta = interval / NN;

% 

% compute integrals in (10.5.61) by Simpson’s rule 

%  sum1 deals with the  first integral while  sum2 is the second

% 

sum1 = 0; sum2 = 0; eta = lower; 

for k = 0:2:NN-2 

arg = sigma_over_c * sqrt(t*t−(x−eta)*(x−eta)); 
sum1 = sum1 + besseli(0, arg);

if (arg = = 0) sum2 = sum2 + 0.5 * sigma_over_c * t;

else sum2 = sum2 + t * besse1i(1, arg) / arg; end 

eta = eta + deta;

arg = sigma_over_c * sqrt(t*t−(x−eta)*(x−eta));
sum1 = sum1 + 4*besseli(0, arg);

if (arg == 0) sum2 = sum2 + 4 * 0.5 * sigma_over_c * t;

else sum2 = sum2 + 4 * t * besseli(1, arg) / arg; end 

eta = eta + deta;

arg = sigma_over_c * sqrt(t*t−(x−eta)*(x−eta));
sum1 = sum1 + besseli(0, arg);

if (arg == 0) sum2 = sum2 + 0.5 * sigma_over_c * t;

else sum2 = sum2 + t * besse1i(1, arg) / arg; end

end

u(i, j) = u(i, j) + 2 * rho_over_c * deta * sum1 / 3 …

    + sigma_over_c * deta * sum2 / 3;

end 

% 

% multiply final answer by damping coefficient

% 

u(i, j) = 0.5 * exp(−rho_over_c * t) * u (i, j);
%

end;end; 

% 

% plot results
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% 

mesh(XX,TT,real (u)); colormap spring; 
xlabel(’DISTANCE’,’ Fontsize’,20); ylabel(’TIME’,’Fontsize’,20) 
zlabel(’SOLUTION’,’Fontsize’,20)

We  evaluated  the  integrals  by  Simpson’s  rule  for  the  initial  conditions  f(x)= H(x+1) H(x
1), and g(x)=0. If there was no loss, then two pulses would propagate to the left and right. How-
ever, with resistance and leakage the waves leave a residue after their leading edge has passed.

 Example 10.5.6: Cutoff frequency

A  powerful  method  for  solving  certain  partial  differential  equations  is  the  joint
application of Laplace and Fourier transforms. To illustrate this joint transform method,
let us find the Green’s function for the Klein-Gordon equation

(10.5.62)

subject to the boundary condition limax→±  |u(x,t)|< , 0<t,  and the initial conditions
u(x, 0)=u

t
(x, 0) 0, <x< .

We begin by taking the Laplace transform of (10.5.62) and find that

(10.5.63)

with the boundary condition lim
x→±

 |U(x, s)|< . Assuming that the Fourier transform of

U(x, s), (k, s), exists, we take the Fouier transform of (10.5.63) and obtain

(10.5.64)

or

(10.5.65)

where 
Inverting the Laplace transform first, we have that
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(10.5.66)

Consequently,

(10.5.67)

(10.5.68)

(10.5.69)

where J
0
( ) is the zeroth order Bessel function of the first kind. Thus, forcing the Klein-

Gorden equation by an impulse forcing yields waves that propagate to the right and left 
from x=0 with the wave front located at x=±ct. At a given point, after the passage of the
wave front, the solution vibrates with an ever decreasing amplitude and at a frequency 
that approaches a—the so-called cutoff frequency—at t→ .

Why is a called a cutoff frequency? From (10.5.67), we see that, although the spectral 
representation includes all of the wavenumbers k running from ) to , the frequency

 is  restrictred  to  the  range  a.  Thus,  a  is  the  lowest  possible
frequency that a wave solution to the KleinGorden equation may have for a real value of k.

Problems

1. Use transform methods to solve the wave equation

 

with the boundary conditions u(0, t)=u(1, t)=0, 0<t, and the initial conditions u(x, 0)=0,
u

t
(0, t)=1, 0<x<1.

2. Use transform methods to solve the wave equation

 

with the boundary conditions u(0, t)=u
x
(1, t)=0, 0<t, and the initial conditions u(x, 0)=0,

u
t
(0, t)=x, 0<x<1.
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3. Use transform methods to solve the wave equation

 

with  the  boundary  conditions  u(0,  t)=u(1,  t)=0,  0<t,  and  the  initial  conditions  u(x,
0)=sin( x), u

t
(x, 0)= sin( x), 0<x<1.

4. Use transform methods to solve the wave equation

 

with the boundary conditions u(0, t)=sin( t), u(a, t)=0, 0<t, and the initial conditions u(x,
0)=u

t
(x, 0)=0, 0<x<a. Assume that a/c is not an integer multiple of . Why?

5. Use transform methods to solve the wave equation

 

with the boundary conditions u
x
(0, t)= f(t), u

x
(L, t)=0, 0<t, and the initial conditions u(x,

0)=u
t
(x, 0)=0, 0<x<L. Hint: Invert the Laplace transform following the procedure used in

Example 10.5.2.
6. Use transform methods to solve the wave equation

 

with the boundary conditions u(a, t)=0, u
x
(b, t)=0, 0<t,  and the initial conditions u(x,

0)=0, ut(x, 0)= q(0), a<x<b. Hint: To find U(x, s), express both U(x, s) and the right side
of the ordinary differential  equation governing U(x,  s)  in  an eigenfunction expansion
using sin{(2n+1) (x a)/[2(b  a)]}. These eigenfunctions satisfy the boundary conditions.

7. Use transform methods to solve the wave equation

 

with the boundary conditions

 

and the initial conditions u(x, 0)=0, u
t
(x, 0)=x, 0<x< .
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with the boundary conditions

 

and the initial conditions u(x,0)=1, u
t
(x, 0)=0, 0<x< .

9. Use transform methods to solve the wave equation

 

with the boundary conditions

 

and the initial conditions u(x, 0)=u
t
(x, 0)=0, 0<x<L, where k, m, and g are constants.

10. Use transform methods17 to solve the wave equation

 

with the boundary conditions

 

and  the  initial  conditions  u(x,  0)=u
t
(x,  0)=0,  0<x<1.  Assume  that  2 c

n
,  where

J
0
( n)=0. [Hint: The ordinary differential equation

 

has the solution

 

8. Use transform methods to solve the wave equation

17    Suggested by a problem solved by Brown, J., 1975: Stresses in towed cables during re-entry. J.
Spacecr. Rockets, 12, 524–527.
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respectively. Note that J
n
(iz)=inI

n
(z) and I

n
(iz)=inj

n
(z) for complex z.]

11. A lossless transmission line of length ℓ has a constant voltage E applied to the end
x=0 while we insulate the other end [V

x
 (ℓ, t)=0]. Find the voltage at any point on the line

if the initial current and charge are zero.

12. Solve the equation of telegraphy without leakage

 

subject to the boundary conditions u(0, t)=0, u(ℓ, t)=E, 0<t, and the initial conditions u(x,

0)=u
t
(x, 0)=0, 0<x<ℓ. Assume that 4 2L/CR2

ℓ
2>1. Why?

13.  The  pressure  and  velocity  oscillations  from  water  hammer  in  a  pipe  without

friction18 are given by the equations

 

where p(x, t) denotes the pressure perturbation, u(x, t) is the velocity perturbation, c is the
speed of  sound in  water,  and  is  the density  of  water.  These two first-order  partial
differential equations can be combined to yield

 

Find the solution to this partial differential equation if p(0, t)=p
0
, and u(L, t)=0, and the

initial conditions are p(x, 0)=p
0
, 

Pt
(x, 0)=0, and u(x, 0)=u

0
.

14. Use Laplace transforms to solve the wave equation19

 

subject to the boundary conditions that

 

where  I
0
(x)  and  k

0
(x)  are  modified  Bessel  functions  of  the  first  and  second  kind,

18     See Rich, G.R.,  1945: Water-hammer analysis by the Laplace-Mellin transformation.  Trans.
ASME, 67, 361–376.

19     Reprinted  from  Soil  Dynam.  Earthq.  Engng.,  5,  J.P.Wolf  and  G.R.Darbre,  Timedomain

 boundary  element  method  in  visco-elasticity  with  application  to  a  spherical  cavity,  138–
148, ©1986, with permission from Elsevier Science.
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and the initial conditions that u(r, 0)=u
t
(r, 0)=0, a<r< . Hint: The homogeneous solution

to the ordinary differential equation

 

is

 

15. Use Laplace transforms to solve the wave equation 20

 

subject to the boundary conditions that

 

where >0, and the initial conditions that u(r, 0)=u
t
(r, 0)=0, a<r< .

16. Consider a vertical rod or column of length L that is supported at both ends. The
elastic waves that arise when the support at the bottom is suddenly removed are governed 

by the wave equation21

 

where g denotes the gravitational acceleration, c2=E/ , E is Young’s modulus, and  is
the mass density. Find the wave solution if the boundary conditions are u

x
(0,  t)=u

x
(L,

t)=0, 0<t, and the initial conditions are

20    Originally solved using Fourier transforms by Sharpe, J.A., 1942: The production of elastic
waves by explosion pressures. I. Theory and empirical field observations. Geophysics, 7, 144–154.

21    Abstracted with permission from Hall, L.H., 1953: Longitudinal vibrations of a vertical column
by the method of Laplace transform. Am. J. Phys., 21, 287–292. ©1953 American Association 
of Physics Teachers.
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17. Use Laplace transforms to solve the hyperbolic equation

 

subject  to  the  boundary  conditions  that  u
x
(0,  t) 0,  u

x
(1,  t)=1,  0<t,  and  the  initial

conditions that u(x, 0)=u
t
(x, 0)=0, 0<x<1.

18. Solve the telegraph-like equation22

 

subject to the boundary conditions

 

and the initial conditions u(x, 0)=u
0
, u

t
(x, 0)=0, 0<x< , with c>k.

Step 1: Take the Laplace transform of the partial differential equation and boundary
conditions and show that

 

with U (0, s)= u
0
, and lim

x→
 |U(x, s)|< .

Step 2: Show that the solution to the previous step is

22    From Abbott, M.R., 1959: The downstream effect of closing a barrier across an estuary with
particular reference to the Thames. Proc. R. Soc. London, Ser. A, 251, 426–439 with permission.
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where 4a2=a2c2 k2>0. 

Step 3: Using the first and second shifting theorems and the property that

 

show that 

u(x, t)=u
0
+u

0
ce kt/2H(t x/c)

 

19. As an electric locomotive travels down a track at the speed V, the pantograph (the metallic 
framework that connects the overhead power lines to the locomotive)  pushes  up  the  line
with  a  force  P.  Let  us  find  the  behavior23  of  the overhead wire as a pantograph 
passes between two supports of the electrical cable that are located a distance L apart. 
We model this system as a vibrating string with a point load:

 

Let us assume that the wire is initially at rest [u(x, 0)=u
t
(x, 0)=0 for 0<x<L] and fixed at 

both ends [u(0, t)=u(L, t)=0 for 0<t].

Step 1: Take the Laplace transform of the partial differential equation and show that

 

23   From Oda,  O.,  and Y.Ooura,  1976:  Vibrations of  catenary overhead wire.  Q. Rep.,  (Tokyo)
Railway Tech. Res. Inst., 17, 134–135 with permission.
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where

 

a
n
=n c/L and 

n
=n V/L. This solution satisfies the boundary conditions. 

Step 3: By inverting the solution in Step 2, show that

 

or

The  first  term in  both  summations  represents  the  static  uplift  on  the  line;  this  term 
disappears after the pantograph passes. The second term in both summations represents 
the  vibrations  excited  by  the  traveling  force.  Even  after  the  pantograph  passes,  they 
continue to exist.

20. Solve the wave equation

 

Step 2: Solve the ordinary differential equation in Step 1 as a Fourier halfrange sine series
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where 0< <a, subject to the boundary conditions

 

and the initial conditions u(r, 0)=u
t
(r, 0)=0, 0 r<a.

Step 1: Take the Laplace transform of the partial differential equation and show that

 

with

 

Step 2: Show that the Dirac delta function can be reexpressed as the FourierBessel series

 

where 
n
 is the nth root of  and   J

0
( ) 

,J
1
( ) are the zeroth and first-order Bessel functions of the first kind, respectively.

Step 3: Show that solution to the ordinary differential equation in Step 1 is

 

Note that this solution satisfies the boundary conditions.

Step 4: Taking the inverse of the Laplace transform in Step 3, show that the solution to
the partial differential equation is

 

21. Solve the hyperbolic equation
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subject to the boundary conditions u(0, t)=e t,  lim
x→

 |u(x, t)|< ,  0<t,  and u(x,  0)=1, 

lim
t→

 |u(x, t)|<Mekt, 0<k, M, x, t.

Step 1: Take the Laplace transform of the partial differential equation and show that

 

Step 2: Show that

 

Step 3: Using tables and the convolution theorem, show that the solution is

 

where J
0
( ) is the Bessel function of the first kind and order zero.

22. Solve the hyperbolic equation

 

subject to the boundary conditions u(0,  t)=ect,  lim
x→  

|u(x,  t)|< ,  0<t,  and u(x,  0)=1, 

lim
t→

 |u(x, t)|<Mekt, 0<k, M, t, x.

Step 1: Take the Laplace transform of the partial differential equation and show that

 

Step 2: Show that

 

Step 3: Using tables, the first shifting theorem, and the convolution theorem, show that 
the solution is

 

where I
0
( ) is the modified Bessel function of the first kind and order zero.
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10.6 NUMERICAL SOLUTION OF THE WAVE EQUATION

Despite the powerful techniques shown in the previous sections for solving the wave 
equation, often these analytic techniques fail and we must resort to numerical techniques. 
In contrast to the continuous solutions, finite difference methods, a type of numerical 
solution technique, give discrete numerical values at a specific location (x

m
, t

n
), called a 

grid  point.  These  numerical  values  represent  a  numerical  approximation  of  the 
continuous solution over the region (x

m
x/2, x

m
+ x/2) and (t

n
t/2, t

n
+ t/2), where x 

and t are the distance and time intervals between grid points, respectively. Clearly, in the 
limit of x, t→0, we recover the continuous solution. However, practical considerations 
such as computer memory or execution time often require that x and t, although small, 
are not negligibly small.

The  first  task  in  the  numerical  solution  of  a  partial  differential  equation  is  the 
replacement  of  its  continuous  derivatives  with  finite  differences.  The  most  popular 
approach employs Taylor expansions. If we focus on the x-derivative, then the value of 
the solution at u[(m+1) x, n t] in terms of the solution at (m x, n t) is

 

(10.6.1)

(10.6.2)

where O[( x)2] gives a measure of the magnitude of neglected terms.24 

From (10.6.2), one possible approximation for u
x
 is

(10.6.3)

where  we  use  the  standard  notation  that   This  is  an  example  of  a 
one-sided finite difference approximation of the partial derivative u

x
. The error in using 

this approximation grows as x.

24 The symbol O is a mathematical notation indicating relative magnitude of terms, namely that

 provided  lim  For  example,  as  

 and 



The Wave Equation 633 

Another possible approximation for the derivative arises from using u(m x, n t) and
u[(m 1) x, n t]. From the Taylor expansion:

(10.6.4)

we can also obtain the one-sided difference formula

(10.6.5)

A third possibility arises from subtracting (10.6.4) from (10.6.1):

(10.6.6)

or

(10.6.7)

Thus, the choice of the finite differencing scheme can produce profound differences in 
the accuracy of the results. In the present case, centered finite differences can yield results 
that are markedly better than using one-sided differences.

To  solve  the  wave  equation,  we  need  to  approximate  u
xx

.  If  we  add  (10.6.1)  and

(10.6.4),

(10.6.8)
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(10.6.9)

Similar considerations hold for the time derivative. Thus, by neglecting errors of O[( x)2] 

and O[( t)2], we may approximate the wave equation by

(10.6.10

Because the wave equation represents evolutionary change of some quantity, (10.6.10) is

generally used as a predictive equation where we forecast  by

(10.6.11)

Figure 10.6.1: Schematic of the numerical solution of the wave equation with fixed 
end points.

Figure 10.6.1 illustrates this numerical scheme.

The greatest challenge in using (10.6.11) occurs with the very first prediction. When 

n=0,  clearly   and  are  specified  from the  initial  condition  u(m x,

0)=f(x
m

).  But what about  Recall  that we still  have u
t
(x,  0)=g(x).  If  we use the

backward difference formula (10.6.5),

or
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(10.6.12)

Solving for 

(10.6.13)

One disadvantage of using the backward finite-difference formula is the larger error 
associated with this term compared to those associated with the finite-differenced form of 
the wave equation. In the case of the barotropic vorticity equation, a partial differential 
equation with wave-like solutions, this inconsistency eventually leads to a separation of 
solution between adjacent time levels.25 This difficulty is avoided by stopping after a 
certain number of time steps, averaging the solution, and starting again.

A better solution for computing that first time step employs the centered difference 
form

(10.6.14)

along with the wave equation

(10.6.15)

so that

(10.6.16)

Although it appears that we are ready to start calculating, we need to check whether our 
numerical scheme possesses three properties: convergence, stability, and consistency. By 
consistency we mean that the difference equations approach the differential equation as

x, t→0. To prove consistency, we first write  and  in terms of
u(x, t) and its derivatives evaluated at (x

m
, t

n
). From Taylor expansions,

25   Gates, W.L., 1959: On the truncation error, stability, and convergence of difference solutions of
the barotropic vorticity equation. J. Meteorol, 16, 556–568. See §4.
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(10.6.17)

(10.6.18)

(10.6.19)

and

(10.6.20)

Substituting (10.6.17)–(10.6.20) into (10.6.10), we obtain

(10.6.21)

The first term on the right side of (10.6.21) vanishes because u(x, t) satisfies the wave
equation. As x→0, t→0, the remaining terms on the right side of (10.6.21) tend to zero
and (10.6.10) is a consistent finite difference approximation of the wave equation.

Stability is another question. Under certain conditions the small errors inherent in fixed 
precision arithmetic (round off) can grow for certain choices of x and t. During the 
1920s the mathematicians Courant, Friedrichs, and

Lewy26 found that if c t/ x>1, then our scheme is unstable. This CFL criterion has its
origin in the fact that if c t> x, then we are asking signals in the numerical scheme to 
travel faster than their real-world counterparts and this unrealistic expectation leads to
instability!

One method of determining stability, commonly called the von Neumann method,27

involves examining solutions to (10.6.11) that have the form

26   Courant, R., K.O.Friedrichs, and H.Lewy, 1928: Über die partiellen Differenzengleichungen der
mathematischen Physik. Math. Annalen, 100, 32–74. Translated into English in IBM J. Res. De ., 11, 

215–234.
27   After its inventor, J.von Neumann. See O’Brien, G.G., M.A.Hyman, and S.Kaplan, 1950: A

study of the numerical solution of partial differential equations. J. Math. Phys. (Cambridge, MA), 29,

223–251.

        (10.6.22)
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represented by a Fourier series where a typical term behaves as eim .

If we substitute (10.6.22) into (10.6.10) and divide out the common factor eim ein  we
have that

(10.6.23)

or

(10.6.24)

The behavior of  is determined by the values of  given by (10.6.24). If c t/ x<1, 

then  is real and  is bounded for all  as n→ . If c t/ x>1, then it is possible to find 
a value of  such that the right side of (10.6.24) exceeds unity and the corresponding 
values of  occur as complex conjugate pairs. The  with the negative imaginary part 
produces a solution with exponential growth because n=t

n
/ t→  as t→0 for a fixed t

n

and c t/ x. Thus, the value of  becomes infinitely large, even though the initial data
may be arbitrarily small.

Finally,  we must  check for  convergence.  A numerical  scheme is  convergent  if  the
numerical  solution  approaches  the  continuous  solution  as  x,  t→0.  The  general 

procedure for proving convergence involves the evolution of the error term  which
gives the difference between the true solution u(x

m
, t

n
) and the finite difference solution

 From (10.6.21),

(10.6.25)

where  is an arbitrary real number and  is a yet undetermined complex number. Our 

choice  of  (10.6.22)  is  motivated  by  the  fact  that  the  initial  condition   can  be
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Figure  10.6.2:  The  growth  of  error  ||e
n
||  as  a  function  of  ct  for  various

resolutions. For the top line, x=0.1; for the middle line, x=0.01; and
for the bottom line, x=0.001.

Let us apply (10.6.25) to work backwards from the point (x
m

, t
n
) by changing n to n 1.

The  nonvanishing  terms  in   reduce  to  a  sum  of  n+1  values  on  the  line

 terms  of  the  form  A( x)4.  If  we  define  the  max  norm

 then

(10.6.26)

Because n x<ct
n
, (10.6.26) simplifies to

(10.6.27)

Thus, the error tends to zero as x→0, verifying convergence. We illustrate (10.6.27) by

using  the  finite  difference  equation  (10.6.11)  to  compute   during  a  numerical

experiment  that  used  c t/ x=0.5,  f(x)=sin( x),  and   is  plotted  in
Figure 10.6.2. Note how each increase of resolution by 10 results in a drop in the error by
100.

In the following examples we apply our  scheme to solve a  few simple initial  and 
boundary conditions:
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 Example 10.6.1

For our first example, we resolve (10.3.1)–(10.3.3) and (10.3.25)–(10.3.26) numerically
using MATLAB. The MATLAB code is

Overall, the numerical solution shown in Figure 10.6.3 approximates the exact or analytic
solution well. However, we note small-scale noise in the numerical solution at later times.
Why does this occur? Recall that the exact solution could be written as an infinite sum of
sines in the x dimension. Each successive harmonic adds a contribution from waves of
shorter  and  shorter  wavelength.  In  the  case  of  the  numerical  solution,  the  longer-
wavelength harmonics are well represented by the numerical scheme because there are
many grid points available to resolve a given wavelength. As the wavelengths become
shorter,  the  higher  harmonics  are  poorly  resolved by the  numerical  scheme,  move at
incorrect phase speeds, and their misplacement (dispersion) creates the smallscale noise
that you observe rather than giving the sharp angular features of the exact solution. The
only method for avoiding this problem is to devise schemes that minimize dispersion.

clear 
coeff = 0.5; coeffsq = coeff * coeff % coeff = c t/ x

dx = 0.04; dt = coeff * dx; N = 100; x = 0:dx:1;
M = 1/dx + 1; % M = number of spatial grid points 
% introduce the initial conditions via F and G 
F = zeros (M, 1) ; G = zeros(M, 1); 
for m = 1:M 
if x(m) >= 0.25 & x(m) <= 0.5
    F(m) = 4 * x(m) 1; end 
if x(m) >= 0.5 & x(m) <= 0.75
    F(m) = 3–4 * x(m); end; end 
% at t = 0, the solution is: 
tplot(1) = 0; u = zeros (M,N+1) ; u(1:M, 1) = F(1:M); 
% at t = t, the solution is given by (10.6.16)
tplot (2) = dt; 
for m = 2:M 1 
u (m, 2) = 0.5 * coeffsq * (F(m+1) + F(m 1)) …
    + (1  coeffsq) * F(m) + dt * G(m) ; 
end 
% in general, the solution is given by (10.6.11) 
for n = 2:N 
tplot(n+1) = dt * n; 
for m = 2:M 1 
u(m,n+1) = 2 * u(m,n)  u(m,n 1) …
    + coeffsq * (u(m+1,n) 2 * u(m,n) + u(m 1,n) ); 
end; end 
X = x’ * ones (1,length  (tplot)) ; T  =  ones  M,  1)  * 
tplot; 
surf (X,T,u) 
xlabel(’DISTANCE’,’Fontsize’,20);  ylabel(’TIME’,’Fontsize’,20 ) 

zlabel(’SOLUTION’,’Fontsize’,20)
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 Example 10.6.2

Let us redo Example 10.6.1 except that we introduce the boundary condition that u
x
(L,

t)=0. This corresponds to a string where we fix the left end and allow the right end to 
freely move up and down. This requires a

Figure  10.6.3:  The  numerical  solution  u(x,  t)/h  of  the  wave  equation  with

 using  (10.6.11)  at  various  positions  x =x/L  and  times
t =ct/L. The exact solution is plotted in Figure 10.3.2.

new difference condition along the right boundary. If we employ centered differencing,

(10.6.28)

and

(10.6.29)

Eliminating between  between (10.6.28)–(10.6.29),

(10.6.30)
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(10.6.31)

The  MATLAB  code  used  to  numerically  solve  the  wave  equation  with  a  Neumann
boundary condition is very similar to the one used in the previous example that we must
add the line

u (M, 2) = coeffsq * F (M−1) + (1−coeffsq) * F (M) + dt*G (M); 

after

Figure 10.6.4: The numerical solution u(x, t)/h of the wave equation when the

right end moves freely with  using (10.6.11) and (10.6.30)
at various positions x =x/L and times t =ct/L.

for m = 2:M−1 
u(m, 2) = 0.5 * coeffsq * (F(m+1) + F(m−1)) …
    + (1 − coeffsq) * F(m) + dt * G(m);
end

and 

u(M,n+1) = 2 * u(M, n) −u(M,n−1) …
    + 2 * coeffsq * (u(M−1,n)−u(M,n));
after

for m = 2:M−1 
u(m,n+1) = 2 * u(m,n) − u(m,n−1) …
    + coeffsq * (u(m+1,n) − 2 * u(m,n) + u(m−1,n));
end

Figure  10.6.4  shows  the  results.  The  numerical  solution  agrees  well  with  the  exact
solution

For the special case of n=1, (10.6.30) becomes
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(10.6.32

The results are also consistent with those presented in Example 10.6.1, especially with
regard to small-scale noise due to dispersion.

Figure 10.6.5: The numerical solution u(x, t) of the first-order hyperbolic partial
differential  equation  u

t
+u

x
=0  using  the  Lax-Wendroff  formula  as

observed  at  t=0,  1,  2,…,  20.  The  initial  conditions  are  given  by

(10.3.25) with h=1,  and x=0.02.

Project: Numerical Solution of First-Order Hyperbolic Equations

The equation u
t
+u

x
=0 is the simplest possible hyperbolic partial differential equation. In-

deed the classic wave equation consists of a system of these equations: u
t
+c

x
=0, and 

t

+cu
x
=0. In this project you will examine several numerical schemes for solving such a

partial differential equation using MATLAB.

Step  1:  One  of  the  simplest  numerical  schemes  is  the  forward-in-time,  center 
ed-in-space of

 

Use von Neumann’s stability analysis to show that this scheme is always unstable.

Step 2: The most widely used method for numerically integrating first-order hyperbolic 

equations is the Lax- Wendroff method:28

28    Lax, P.D., and B.Wendroff, 1960: Systems of conservative laws. Comm. Pure Appl. Math., 13,

217–237.
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Figure 10.6.6: Same as Figure 10.6.5 except that the centered-in-time, centered-
in-space scheme was used.

This method introduces errors of O[( t)2] and O[( x)2]. Show that this scheme is stable 
if it satisfies the CFL criteria of t/ x 1.

Using the initial condition given by (10.3.25), write a MATLAB code that uses this
scheme to  numerically  integrate  u

t
+u

x
=0.  Plot  the  results  for  various  t/ x  over  the 

interval 0 x 1 given the periodic boundary conditions of u(0, t)=u(1, t) for the temporal 
interval  0 t 20.  Discuss the strengths and weaknesses of  the scheme with respect  to 
dissipation or damping of the numerical solution and preserving the phase of the solution.

Most numerical methods books discuss this.29

Step 3: Another simple scheme is the centered-in-time, centered-in-space of

 

This method introduces errors of O[( t)2] and O[( x)2].
Repeat the analysis from Step 1 for this scheme. One of the difficulties is taking the 

first time step. Use the scheme in Step 1 to take this first time step.

29    For  example,  Lapidus,  L.,  and G.F.Pinder,  1982:  Numerical  Solution of  Partial  Differential
Equations in Science and Engineering. John Wiley &; Sons, 677 pp.



 



Chapter 11

The Heat Equation

In this chapter we deal with the linear parabolic differential equation

(11.0.1)

in the two independent variables x and t. This equation, known as the onedimensional 
heat equation, serves as the prototype for a wider class of parabolic equations

(11.0.2)

where b2=4ac. It arises in the study of heat conduction in solids as well as in a variety of 
diffusive phenomena. The heat equation is similar to the wave equation in that it is also 
an equation of evolution. However, the heat equation is not “conservative” because if we 
reverse the sign of t, we obtain a different solution. This reflects the presence of entropy 
which must always increase during heat conduction.

Figure 11.1.1: Heat conduction in a thin bar.

11.1 DERIVATION OF THE HEAT EQUATION

To derive the heat  equation,  consider  a  heat-conducting homogeneous rod,  extending 
from x=0 to x=L along the x-axis (see Figure 11.1.1). The rod has uniform cross section A
and constant density , is insulated laterally so that heat flows only in the x-direction, and 
is sufficiently thin so that the temperature at all points on a cross section is constant. Let
u(x, t) denote the temperature of the cross section at the point x at any instant of time t, 
and let c  denote the specific heat of the rod (the amount of heat required to raise the
temperature of a unit mass of the rod by a degree). In the segment of the rod between the
cross section at x and the cross section at x+ x, the amount of heat is
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(11.1.1)

On the other hand, the rate at which heat flows into the segment across the cross section 
at x is proportional to the cross section and the gradient of the temperature at the cross 
section (Fourier’s law of heat conduction):

(11.1.2)

where  denotes the thermal conductivity of the rod. The sign in (11.1.2) indicates that 
heat flows in the direction of decreasing temperature. Similarly, the rate at which heat 
flows out of the segment through the cross section at x+ x equals

(11.1.3)

The difference between the amount of heat that flows in through the cross section at x and 
the amount of heat that flows out through the cross section at x+ x must equal the change 
in  the  heat  content  of  the  segment  x s  x+ x.  Hence,  by  subtracting  (11.1.3)  from
(11.1.2) and equating the result to the time derivative of (11.1.1),

(11.1.4)

Assuming that the integrand in (11.1.4) is a continuous function of s, then by the mean 
value theorem for integrals,

(11.1.5)

so that (11.1.4) becomes

(11.1.6)
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(11.2.7)

with  a2= /(cp).  Equation  (11.1.7)  is  called  the  one-dimensional  heat  equation.  The 

constant a2 is called the diffusivity within the solid.
If an external source supplies heat to the rod at a rate f(x, t) per unit volume per unit

time, we must add the term  f (s, t) ds to the time derivative term of (11.1.4). Thus,
in the limit x→0,

(11.1.8)

where  F(x,  t)=f(x,  t)/(c )  is  the  source  density.  This  equation  is  called  the 
nonhomogeneous heat equation.

11.2 INITIAL AND BOUNDARY CONDITIONS

In the case of heat conduction in a thin rod, the temperature function u(x, t) must satisfy 
not only the heat equation (11.1.7) but also how the two ends of the rod exchange heat 
energy with the surrounding medium. If (1) there is no heat source, (2) the function f(x), 
0<x<L, describes the temperature in the rod at t=0, and (3) we maintain both ends at zero 
temperature for all time, then the partial differential equation

(11.2.1)

describes the temperature distribution u(x, t) in the rod at any later time 0<t subject to the 
conditions

u(x, 0)=f(x), 0<x<L,
(11.2.2)

and

u(0, t)=u(L, t)=0, 0<t.
(11.2.3)

Equations  (11.2.1)–(11.2.3)  describe  the  initial-boundary-value  problem  for  this 
particular  heat  conduction problem; (11.2.3)  is  the  boundary condition while  (11.2.2)

Dividing both sides of (11.1.6) by c x and taking the limit as x→0,
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gives the initial condition. Note that in the case of the heat equation, the problem only 
demands the initial value of u(x, t) and not u

t
(x, 0), as with the wave equation.

Historically most linear boundary conditions have been classified in one of three ways. 

The condition (11.2.3) is an example of a Dirichlet problem1 or condition of the first kind. 
This type of boundary condition gives the value of the solution (which is not necessarily 
equal to zero) along a boundary.

The next simplest condition involves derivatives. If we insulate both ends of the rod so 
that  no  heat  flows from the  ends,  then according to  (11.1.2)  the  boundary  condition 
assumes the form

(11.2.4)

This is an example of a Neumann problem2 or condition of the second kind. This type of 
boundary condition specifies the value of the normal derivative (which may not be equal 
to zero) of the solution along the boundary.

Finally,  if  there is  radiation of  heat  from the ends of  the rod into the surrounding 
medium, we shall show that the boundary condition is of the form

(11.2.5)

and

(11.2.6)

for 0<t, where h is a positive constant. This is an example of a condition of the third kind 

or Robin problem3 and is a linear combination of Dirichlet and Neumann conditions.

11.3 SEPARATION OF VARIABLES

As with the wave equation, the most popular and widely used technique for solving the 
heat equation is separation of variables. Its success depends on our ability to express the 
solution u(x, t)  as the product X(x)T(t).  If we cannot achieve this separation, then the 
technique must be abandoned for others.  In the following examples we show how to 
apply this technique.

1  Dirichlet,  P.G.L.,  1850:  Über  einen  neuen  Ausdruck  zur  Bestimmung  der  Dichtigkeit  einer

    unendlich dünnen Kugelschale, wenn der Werth des Potentials derselben in jedem Punkte ihrer 
Oberfläche gegeben ist. Abh. Königlich. Preuss. Akad. Wiss., 99–116.

2   Neumann, C.G., 1877: Untersuchungen über das Logarithmische und Newton’sche Potential.
3  Robin, G., 1886: Sur la distribution de l’électricité à la surface des conducteurs fermés et des

conducteurs ouverts. Ann. Sci. l’Ecole Norm. Sup., Ser. 3, 3, S1–S58.
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 Example 11.3.1

Let us find the solution to the homogeneous heat equation

(11.3.1)

which satisfies the initial condition

u(x, 0)=f(x), 0<x<L, (11.3.2)

and the boundary conditions

u(0, t)=u(L, t)=0, 0<t. (11.3.3)

This system of equations models heat conduction in a thin metallic bar where both ends 
are held at the constant temperature of zero and the bar initially has the temperature f(x).

We shall solve this problem by the method of separation of variables. Accordingly, we 
seek particular solutions of (11.3.1) of the form

u(x, t)=X(x)T(t),
(11.3.4)

which satisfy the boundary conditions (11.3.3). Because

(11.3.5)
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(11.3.6)

(11.3.1) becomes

T (t)X(x)=a2X (x)T(t). 
(11.3.7)

Dividing both sides of (11.3.7) by a2X(x)T(t) gives

(10.3.8)

where  is the separation constant. Equation (11.3.8) immediately yields two ordinary 
differential equations:

X + X=0, (11.3.9)

and

T + 2 T=0 
(11.3.10)

for the functions X(x) and T(t), respectively.
We now rewrite the boundary conditions in terms of X(x) by noting that the boundary 

conditions are u(0, t)=X(0)T(t)=0, and u(L, t)= X(L)T(t)=0 for 0<t. If we were to choose 
T(t)=0, then we would have a trivial solution for u(x, t). Consequently, X(0)=X(L)=0.

We now solve  (11.3.9).  There  are  three  possible  cases:  = m2,  =0,  and  =k2.  If 

= m2<0, then we must solve the boundary-value problem

X m2X=0, x(0)=X(L)=0. (11.3.11)

The general solution to (11.3.11) is

X(x)=A cosh(mx)+B sinh(mx). (11.3.12)

and
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Because x(0)=0, it follows that A=0. The condition X(L)=0 yields B sinh(mL)=0. Since 
sinh(mL) 0, B=0, and we have a trivial solution for <0.

If =0, the corresponding boundary-value problem is

X (x)=0, X(0)=X(L)=0. (11.3.13)

The general solution is

X(x)=C+Dx.
(11.3.14)

From X(0)=0, we have that C=0. From X(L)=0, DL=0, or D=0. Again, we obtain a trivial 
solution.

Finally, we assume that =k2>0. The corresponding boundary-value problem is

X +k2X=0, X(0)=X(L)=0. 
(11.3.15)

The general solution to (11.3.15) is

X(x)=E cos(kx)+F sin(kx). (11.3.16)

Because  X(0)=0,  it  follows  that  E=0;  from  X(L)=0,  we  obtain  F  sin(kL)=0.  For  a 
nontrivial solution, F 0 and sin(kL)=0. This implies that k

n
L=n , where n=1, 2, 3,…. In 

summary, the x-dependence of the solution is

(11.3.17)

where 
n
=n2 2/L2.

Turning to the time dependence, we use 
n
=n2 2/L2 in (11.3.10)

(11.3.18)
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(11.3.19)

Thus, the functions

(11.3.20)

where  B
n
=F

n
G

n
,  are  particular  solutions  of  (11.3.1)  and  satisfy  the  homogeneous 

boundary conditions (11.3.3).
As we noted in the case of the wave equation, we can solve the xdependence equation 

as a regular Sturm-Liouville problem. After finding the eigenvalue 
n
 and eigenfunction, 

we solve for T
n
(t). The product solution u

n
(x, t) equals the product of the eigenfunction 

and T
n
(t).

Having found particular solutions to our problem, the most general solution equals a 
linear sum of these particular solutions:

(11.3.21)

The coefficient B
n
 is chosen so that (11.3.21) yields the initial condition (11.3.2) if t=0. 

Thus, setting t=0 in (11.3.21), we see from (11.3.2) that the coefficients B
n
 must satisfy 

the relationship

(11.3.22)

This is precisely a Fourier half-range sine series for f(x) on the interval (0, L). Therefore, 
the formula

(11.3.23)

gives the coefficients B
n
. For example, if L=  and u(x, 0)=x( x), then

(11.3.24)

The corresponding general solution is
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(11.3.25)

(11.3.26)

Hence,

(11.3.27)

Figure 11.3.1: The temperature u(x, t) within a thin bar as a function of position
x and time a2t when we maintain both ends at zero and the initial
temperature equals x( x).

Figure 11.3.1 illustrates (11.3.27) for various times. It was created using the MATLAB
script

clear 
M = 20; dx = pi/25; dt = 0.05; 
% compute grid and initialize solution 
X = [0:dx:pi]; T = [0:dt:2]; 
u = zeros (length(T), length(X));
XX = repmat(X, [length(T)1]); TT = repmat(T’,[1 length (X)]);
% compute solution from (11.3.27)
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for m = 1:M 

temp1 = 2*m−1; coeff = 8 / (pi * temp1 * temp1 * temp1) ; 
u = u + coeff * sin (temp1*XX) .* exp (−temp1 * temp1 * TT); 
end 

surf (XX,TT,u) 

xlabel (’DISTANCE’,’Fontsize’,20); ylabel (’TIME’,’Fontsize’,20)

zlabel (’U(X, T)’,’Fontsize’,20)

Note  that  both  ends  of  the  bar  satisfy  the  boundary  conditions,  namely  that  the
temperature equals zero. As time increases, heat flows out from the center of the bar to
both ends where it is removed. This process is reflected in the collapse of the original
parabolic shape of the temperature profile toward zero as time increases.

 Example 11.3.2

As a second example, let us solve the heat equation

(11.3.28)

which satisfies the initial condition

u(x, 0)=x, 0<x<L, (11.3.29)

and the boundary conditions

(11.3.30)

The  condition  u
x
(0,  t)=0  expresses  mathematically  the  constraint  that  no  heat  flows

through the left boundary (insulated end condition).
Once  again,  we  employ  separation  of  variables;  as  in  the  previous  example,  the

positive and zero separation constants yield trivial solutions. For a negative separation
constant, however,

X +k2X=0, 
(11.3.31)
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X (0)=X(L)=0, (11.3.32)

because  u
x
(0,  t)=X (0)T(t)=0,  and  u(L,  t)=X(L)T(t)=0.  This  regular  Sturm-Liouville 

problem has the solution

(11.3.33)

The temporal solution then becomes

(11.3.34)

Consequently, a linear superposition of the particular solutions gives the total solution 
which equals

(11.3.35)

Our final task remains to find the coefficients B
n
. Evaluating (11.3.35) at t=0,

(11.3.36)

Equation  (11.3.36)  is  not  a  half-range  cosine  expansion;  it  is  an  expansion  in  the 
orthogonal  functions  cos[(2n 1) x/(2L)]  corresponding to  the  regular  Sturm-Liouville 
problem (11.3.31)–(11.3.32). Consequently, B

n
 is given by (9.3.4) with r(x)=1 as

(11.3.37)

(11.3.38)

with
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(11.3.39)

(11.3.40)

as cos[(2n 1) /2]=0, and sin[(2n 1) /2]=( 1)n+1. Consequently, the complete solution is

(11.3.41)

using the MATLAB script

clear 

M = 200; dx = 0.02; dt = 0.05; 

% compute fourier coefficients 

sign = −1; 
for m = 1:M 

temp1 = 2*m−1; 
a (m) = 2/(pi*temp1*temp1) + sign/temp1;

sign = − sign;
end 

% compute grid and initialize solution 

X = [0:dx:1]; T = [0:dt:1]; 

u = zeros (length(T), length(X));

XX = repmat(X,[length(T)1]);

TT = repmat(T’,[1 length(X)]); 

% compute solution from (11.3.41) 

for m = 1:M

Figure 11.3.2 illustrates the evolution of the temperature field with time. It was  
generated



The Heat Equation 657

Figure  11.3.2:  The  temperature  u(x,  t)/L  within  a  thin  bar  as  a  function  of 

position x/L and time a2t/L2 when we insulate the left end and hold the 
right end at the temperature of zero. The initial temperature equals x.

temp1 = (2*m−1)*pi/2;
u = u + a(m) * cos(temp1*XX) .* exp(−temp1 * temp1 * TT);
end 

u = − (4/pi) * u ;
surf(XX,TT,u) ; axis([0 1 0 1 0 1] );

xlabel(’DISTANCE’,’Fontsize’,20); ylabel(’TIME’,’Fontsize’,20)

zlabel ( ’ SOLUTION’ , ’Fontsize’ , 20)

Initially, heat near the center of the bar flows toward the cooler, insulated end, resulting in
an increase of temperature there. On the right side, heat flows out of the bar because the
temperature is maintained at zero at x=L. Eventually the heat that has accumulated at the
left end flows rightward because of the continual heat loss on the right end. In the limit of
t→ , all of the heat has left the bar.

 Example 11.3.3

A slight variation on Example 11.3.1 is

(11.3.42)
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u(x, 0)=u(0, t)=0, and u(L, t)= . (11.3.43)

We begin by blindly employing the technique of separation of variables. Once again, we 
obtain the ordinary differential equation (11.3.9) and (11.3.10). The initial and boundary 
conditions become, however,

X(0)=T(0)=0,
(11.3.44)

and

X(L)T(t)= .
(11.3.45)

Although (11.3.44) is acceptable, (11.3.45) gives us an impossible condition because T(t) 
cannot be constant. If it were, it would have to equal to zero by (11.3.44).

To find a way around this difficulty, suppose that we want the solution to our problem 
at  a  time  long  after  t=0.  From  experience  we  know  that  heat  conduction  with 
time-independent boundary conditions eventually results in an evolution from the initial 
condition  to  some  time-independent  (steadystate)  equilibrium.  If  we  denote  this 
steady-state solution by (x), it must satisfy the heat equation

a2 (x)=0, (11.3.46)

and the boundary conditions

w(0)=0, and w(L)= . (11.3.47)

We can integrate (11.3.46) immediately to give

(x)=A+Bx, (11.3.48)

where
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(11.3.49)

Clearly (11.3.49) cannot hope to satisfy the initial conditions; that was never expected of 
it. However, if we add a time-varying (transient) solution (x, t) to (x) so that

u(x, t)= (x)+ (x, t), (11.3.50)

we could satisfy the initial condition if

(x, 0)=u(x, 0) (x), (11.3.51)

and (x, t) tends to zero as t → . Furthermore, because (x)= (0)=0, and (L)= ,

(11.3.52)

with the boundary conditions

(0, t)= (L, t)=0, 0<t. (11.3.53)

We can solve (11.3.51), (11.3.52), and (11.3.53) by separation of variables; we did it in 
Example 11.3.1. However, in place of f(x) we now have u(x, 0) (x), or (x) because 
u(x, 0)=0. Therefore, the solution (x, t) is

(11.3.54)

with

(11.3.55)

(11.3.56)

and the boundary condition (11.3.47) results in
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(11.3.57)

(11.3.58)

Thus, the entire solution is

(11.3.59)

The quantity a2t/L2 is the Fourier number. 
Figure 11.3.3 illustrates our solution and was created with the MATLAB script

clear 

M = 1000; dx = 0.01; dt = 0.01;

% compute grid and initialize solution 

X = [0:dx:1]; T = [0:dt:0.2];

XX = repmat(X,[length(T)1]);TT = repmat(T’,[1 length(X)]);

u = XX;

% compute solution from (11.3.59) 

sign = −2/pi;
for m = 1 :M

coeff = sign/m;

u = u + coeff * sin((m*pi)*XX).* exp(−(m*m*pi*pi) * TT); 
sign = −sign; 
end 

surf (XX,TT,u); axis ( [0 1 0 0.2 0 1] );
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Figure  11.3.3:  The  temperature  u(x,  t)/  within  a  thin  bar  as  a  function  of

position x/L and time a2t/L2 with the left end held at a temperature of
zero and right end held at a temperature  while the initial temperature
of the bar is zero.

xlabel(’DISTANCE’,’Fontsize’,20); ylabel(’TIME’,’Fontsize’,20)
zlabel(’SOLUTION’,’Fontsize’,20)

Clearly it satisfies the boundary conditions. Initially, heat flows rapidly from right to left.
As time increases, the rate of heat transfer decreases until the final equilibrium (steady-
state) is established and no more heat flows.

 Example 11.3.4

Let us find the solution to the heat equation

(11.3.60)

subject to the Neumann boundary conditions

(11.3.61)
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u(x, 0)=x, 0<x<L. (11.3.62)

We have now insulated both ends of the bar. 
Assuming that u(x, t)=X(x)T(t),

(11.3.63)

where we have presently assumed that the separation constant is negative. The Neumann 
conditions give u

x
(0, t)=X (0)T(t)=0, and u

x
(L, t)= X (L)T(t)=0 so that X (0)=X (L)=0.

The Sturm-Liouville problem

X +k2X=0, 
(11.3.64)

and

X (0)=X (L)=0
(11.3.65)

gives the x-dependence. The eigenfunction solution is

(11.3.66)

where k
n
=n /L and n=1, 2, 3,…. 

The corresponding temporal part equals the solution of

(11.3.67)

which is

(11.3.68)

and the initial condition that
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(11.3.69)

Unlike our previous problems, there is a nontrivial solution for a separation constant that 
equals zero. In this instance, the x-dependence equals

X(x)= x+B. (11.3.70)

The boundary conditions X (0)=X (L)=0 force A  to  be zero but  B  is  completely  free. 
Consequently, the eigenfunction in this particular case is

x
0
(x)=1. (11.3.71)

Because  in this case, the temporal part equals a constant which we shall take to 
be A

0
/2. Therefore, the product solution corresponding to the zero separation constant is

u
0
(x, t)=X

0
(x)T

0
(t)=A

0
/2. (11.3.72)

The most general solution to our problem equals the sum of all of the possible solutions:

(11.3.73)

Upon substituting t=0 into (11.3.73), we can determine A
n
 because

(11.3.74)

is merely a half-range Fourier cosine expansion of the function x over the interval (0, L). 
From (2.1.23)–(2.1.24),

(11.3.75)

Thus, the product solution given by a negative separation constant is
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(11.3.76)

(11.3.77)

(11.3.78)

The complete solution is

(11.3.79)

because all of the even harmonics vanish and we may rewrite the odd harmonics using
n=2m 1, where m=1, 2, 3, 4,….

Figure 11.3.4 illustrates (11.3.79) for various positions and times.  It  was generated
using the MATLAB script

clear 

M = 100; dx = 0.01; dt = 0.01;

% compute grid and initialize solution

X = [0:dx:1]; T = [0:dt:0.3];

u = zeros(length(T), length(X)); u = 0.5;

XX = repmat(X,[length(T)1]); TT = repmat(T’,[1 length(X)]);

% compute solution from (11.3.79) 

for m = 1:M 

temp1 = (2*m−1) * pi ;

and
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Figure  11.3.4:  The  temperature  u(x,  t)/L  within  a  thin  bar  as  a  function  of

position x/L and time a2t/L2 when we insulate both ends. The initial
temperature of the bar is x.

coeff = 4 / (temp1*temp1);

u = u − coeff*cos(temp1*XX).* exp(−temp1 * temp1 * TT);
end 

surf(XX,TT,u); axis ( [0 1 0 0.3 0 1] );

xlabel (’DISTANCE’,’Fontsize’,20); ylabel(’TIME’,’Fontsize’,20)

zlabel(’SOLUTION’,’Fontsize’,20)

The physical interpretation is quite simple. Since heat cannot flow in or out of the rod
because of the insulation, it can only redistribute itself. Thus, heat flows from the warm
right end to the cooler left end. Eventually the temperature achieves steady-state when the
temperature is uniform throughout the bar.

 Example 11.3.5

So far  we have dealt  with problems where the temperature or  flux of  heat  has  been
specified at the ends of the rod. In many physical applications, one or both of the ends
may radiate to free space at temperature u

0
. According to Stefan’s law, the amount of heat 

radiated from a given area dA in a given time interval dt is

(11.3.80)
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where  is called the Stefan-Boltzmann constant. On the other hand, the amount of heat
that reaches the surface from the interior of the body, assuming 

that we are at the right end of the bar, equals

(11.3.81)

where  is the thermal conductivity. Because these quantities must be equal,

(11.3.82)

If u and u
0
 are nearly equal, we may approximate the second bracketed term on the right

side of (11.3.82) as  We write this approximate form of (11.3.82) as

(11.3.83)

where  h,  the  surface  conductance  or  the  coefficient  of  surface  heat  transfer,  equals

 Equation (11.3.83) is  a “radiation” boundary condition.  Sometimes someone 
will  refer  to  it  as  “Newton’s  law”  because  (11.3.83)  is  mathematically  identical  to 
Newton’s law of cooling of a body by forced convection.

Let us now solve the problem of a rod that we initially heat to the uniform temperature 
of  100.  We then allow it  to  cool  by maintaining the temperature  at  zero at  x=0 and 

radiatively cooling to the surrounding air at the temperature of zero4  at x=L.  We may
restate the problem as

(11.3.84)

with

u(x, 0)=100, 0<x<L, (11.3.85)

u(0, t)=0, 0<t, (11.3.86)

4    Although this would appear to make h=0, we have merely chosen a temperature scale so that the
air temperature is zero and the absolute temperature used in Stefan’s law is nonzero.
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and

(11.3.87)

Once again, we assume a product solution u(x, t)=X(x)T(t)  with a negative separation

 

constant so that

(11.3.88)

We obtain for the x-dependence that

X +k2X=0, (11.3.89)

Table 11.3.1: The First Ten Roots of (11.3.93) and C
n
 for hL=1

n
n

Approximate 
n

C
n

1 2.0288 2.2074 118.9221

2 4.9132 4.9246 31.3414

3 7.9787 7.9813 27.7549

4 11.0855 11.0865 16.2891

5 14.2074 14.2079 14.9916

6 17.3364 17.3366 10.8362

7 20.4692 20.4693 10.2232

8 23.6043 23.6044 8.0999

9 26.7409 26.7410 7.7479

10 29.8786 29.8786 6.4626

but the boundary conditions are now
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X(0)=0, and X (L)+hX(L)=0. (11.3.90)

The most general solution of (11.3.89) is

X(x)=A cos(kx)+B sin(kx).
(11.3.91)

However, A=0, because X(0)=0. On the other hand,

       k cos(kL)+h sin(kL)=kL cos(kL)+hL sin(kL)=0, (11.3.92)

if B 0. The nondimensional number hL is the Biot number and depends completely upon 
the physical characteristics of the rod.

In Chapter 9 we saw how to find the roots of the transcendental equation

a+hL tan( )=0,
(11.3.93)

where =kL. Consequently, if 
n
 is the nth root of (11.3.93), then the eigenfunction is

X
n
(x)=sin(

n
x/L). 

(11.3.94)

In Table 11.3.1, we list the first ten roots of (11.3.93) for hL=1. 
In general, we must solve (11.3.93) either numerically or graphically. If

 is large, however, we can find approximate values5 by noting that

cot( )= hL/ 0, (11.3.95)

or

n
=(2n 1) /2, (11.3.96)

where

5    Using  the  same  technique,  Stevens  and  Luck  [Stevens,  J.W.,  and  R.Luck,  1999:  Explicit
approximations for all eigenvalues of the 1-D transient heat conduction equations. Heat Transfer
Engng., 20(2), 35–41] have found approximate solutions to 

n
 tan(

n
)=Bi. They showed that
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(11.3.97)

where  Substituting into (11.3.95),

(11.3.98)

We can simplify (11.3.98) to

(11.3.99)

because cot[(2n 1) /2 ]=tan( ), and tan( ) 0 for «1. Solving for ,

(11.3.100)

and

(11.3.101)

In Table 11.3.1 we compare the approximate roots given by (11.3.101) with the actual
roots.

The temporal part equals

(11.3.102)

 

where n=1, 2, 3,…. We can obtain a better approximation by setting
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Consequently, the general solution is

(11.3.103)

where 
n
 is the nth root of (11.3.93). 

To determine C
n
, we use the initial condition (11.3.85) and find that

(11.3.104)

Equation (11.3.104) is an eigenfunction expansion of 100 employing the eigenfunctions 
from the Sturm-Liouville problem

X +k2X=0, 
(11.3.105)

and

X(0)=X (L)+hX(L)=0. (11.3.106)

Thus, the coefficient C
n
 is given by (9.3.4) or

(11.3.107)
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(11.3.108)

because sin(2
n
)=2cos(

n
)sin(

n
), and 

n
= hL tan(

n
). The complete solution is

(11.3.109)

Figure 11.3.5 illustrates  this  solution for  hL=1 at  various times and positions.  It  was
generated using the MATLAB script

clear 

hL = 1; M = 200; dx = 0.02; dt = 0.02;

% create initial guess at alpha_n

zero = zeros(M ,1);

for n = 1:M

temp = (2*n−1)*pi; zero (n) = 0.5*temp + 2*hL/temp ;
end;

% use Newton-Raphson method to improve values of alpha_n

Figure 11.3.5: The temperature u(x, t) within a thin bar as a function of position x/L
and time a2t/L2 when we allow the bar to radiatively cool at x=L while the
temperature is zero at x=0. Initially the temperature was 100.

for n = 1:M; for k = 1:10
f=zero(n)+ hL*tan(zero(n)); fp =1 + hL * sec(zero(n))^2;

as r(x)=1. Performing the integrations,
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zero(n) = zero(n) − f 1 fp; 
end ; end ; 

% compute Fourier coefficients 

for m = 3:M 

a(m) = 422*(3−cos(zero(m)))1(zero (m)*(3,cos(zero(m))]41hL));
end 

% compute grid and initialize solution 

U = X2:dx:3[; S = X2:dt:207[;

u = zeros (length(S). length(U));

UU = repmat (U . Xlength(S)3[);

SS = repmat (S’ . X3 length (U) [ ) ; 

% compute solution from (33050329) 

for m = 3 : M 

u = u , a (m) * sin (zero (m) *UU) 0* exp (/zero (m) *zero

(m) *SS) ; 

end 

surf (UU . SS . u) 

xlabel ( ’ DIOSANCE’ . ’Fontsize’ . 42) ; ylabel ( ’ SIME’ .

’Fontsize’ . 42) zlabel ( ’ T(U. S) ’ . ’Fontsize’ . 42)

It is similar to Example 11.3.1 in that the heat lost to the environment occurs either
because the temperature at an end is zero or because it radiates heat  to space which has
the temperature of zero.

 Example 11.3.6: Refrigeration of apples

Some decades ago, shiploads of apples, going from Australia to England, deteriorated from
a  disease  called  “brown  heart,”  which  occurred  under  insufficient  cooling conditions.
Apples, when placed on shipboard, are usually warm and must be cooled to be carried in
cold storage. They also generate heat by their respiration. It was suspected that this heat
generation effectively counteracted the refrigeration of the apples, resulting in the “brown heart.”

This was the problem which induced Awberry6 to study the heat distribution within a
sphere in which heat is being generated. Awberry first assumed that the apples are
initially at a  uniform temperature.  We  can take this  temperature to be  zero
by  the appropriate choice of temperature scale. At time t=0, the skins of the apples
assume the temperature  immediately when we introduce them into the hold.

Because of the spherical geometry, the nonhomogeneous heat equation becomes

where  a2  is  the  thermal  diffusivity,  b  is  the  radius  of  the  apple,   is  the  thermal
conductivity, and G is the heating rate (per unit time per unit volume).

6     Awberry,  J.H.,  1927:  The  flow of  heat  in  a  body  generating  heat.  Philos.  Mag.,  Ser.  7,  4,

629–638.

(11.3.110)
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If we try to use separation of variables on (11.3.110), we find that it does not work 
because of the G/  term. To circumvent this difficulty, we ask the simpler question of
what happens after a very long time. We anticipate that  a balance will  eventually be
established where conduction transports the heat produced within the apple to the surface
of the apple where the surroundings absorb it.  Consequently,  just  as we introduced a
steady-state solution in Example 11.3.3, we again anticipate a steady-state solution (r)
where the heat conduction removes the heat generated within the apples. The ordinary
differential equation

(11.3.111)

gives  the  steady-state.  Furthermore,  just  as  we  introduced  a  transient  solution  which
allowed our solution to satisfy the initial condition, we must also have one here and the
governing equation is

(11.3.112)

Solving (11.3.111) first,

(11.3.113

The  constant  D  equals  zero  because  the  solution  must  be  finite  at  r=0.  Since  the 
steady-state solution must satisfy the boundary condition (b)=0,

(11.3.114)

Turning to the transient problem, we introduce a new dependent variable y(r, t)=r (r, t). 
This new dependent variable allows us to replace (11.3.112) with

(11.3.115)
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which we can solve.  If  we assume that  y(r,  t)=R(r)T(t)  and we only have a negative 
separation constant, the R(r) equation becomes

(11.3.116)

which has the solution

R(r)=A cos(kr)+B sin(kr). (11.3.117)

The constant A equals zero because the solution (11.3.117) must vanish at r=0 so that (0,
t) remains finite. However, because = (b)+ (b, t) for all time and (b, t)=R(b)T(t)/b=0,
then R(b)=0. Consequently, k

n
=n /b, and

(11.3.118)

Superposition gives the total solution which equals

(11.3.119)

Finally, we determine the coefficients B
n
 by the initial condition that u(r, 0)=0. Therefore,

(11.3.120)

(11.3.121)

The complete solution is

(11.3.3.122)
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The first line of (11.3.122) gives the temperature distribution due to the imposition of the 
temperature  on the surface of the apple while the second line gives the rise in the 
temperature due to the interior heating.

Returning to our original problem of whether the interior heating is strong enough to 
counteract the cooling by refrigeration, we merely use the second line of (11.3.122) to find 
how much the temperature deviates from what we normally expect. Because the highest 
temperature exists at the center of each apple, its value there is the only one of interest  in  
this  problem.  Assuming  b=4cm  as  the  radius  of  the  apple, a2G/k=1.33 10 5°C/s,  and  
a2=  1.55 10 3cm2/s,  the  temperature  effect  of  the  heat generation is very small, only 
0.0232°C when, after about 2 hours, the temperatures within the apples reach equilibrium. 
Thus, we must conclude that heat generation within the apples is not the cause of brown heart.

We now know that brown heart results from an excessive concentration of carbon dioxide and 
an insufficient amount of oxygen in the storage hold.7 Presumably this atmosphere affects 
the metabolic activities that are occurring in the apple8 and leads to low-temperature breakdown.

 Example 11.3.7

In this example we illustrate how separation of variables can be employed in solving the ax-
isymmetric heat equation in an infinitely long cylinder. In circular coordinates the heat equation 
is

(11.3.123)

where r denotes the radial distance and a2 denotes the thermal diffusivity. Let us assume 

that we heated this cylinder of radius b to the uniform temperature T
0
 and then allowed it 

to cool by having its surface held at the temperature of zero starting from the time t=0.

7   Thornton, N.C., 1931: The effect of carbon dioxide on fruits and vegetables in storage. Contrib.
Boyce Thompson Inst., 3, 219–244.

8    Fidler, J.C.,  and  C. J.North, 1968: The effect of conditions of storage on the respiration of apples.
IV.  Changes  in  concentration  of  possible  substrates  of  respiration,  as  related  to  production  of 
carbon dioxide and uptake of oxygen by apples at low temperatures. J. Hortic. Sci., 43, 429–439.
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(11.3.124)

The only values of the separation constant that yield nontrivial solutions are negative. The 

nontrivial solutions are R(r)=J
0
(kr/b), where J

0
 is the Bessel function of the first kind and

zeroth order. A separation constant of zero gives R(r)=ln(r) which becomes infinite at the

origin. Positive separation constants yield the modified Bessel function I
0
(kr/b). Although

this function is finite at the origin, it cannot satisfy the boundary condition that 
u(b, t)=R(b)T(t)=0, or R(b)=0.

The boundary condition that R(b)=0 requires that J
0
(k)=0. This transcendental equation

yields an infinite number of constants k
n
. For each k

n
, the temporal part of the solution

satisfies the differential equation

(11.3.125)

which has the solution

(11.3.126)

Consequently, the product solutions are

(11.3.127)

The total solution is a linear superposition of all of the particular solutions or

(11.3.128)

Our final task remains to determine A
n
. From the initial condition that u(r, 0)=T

0
,

(11.3.129)

We begin by assuming that the solution is of the form u(r, t)=R(r)T(t) so that
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(11.3.130)

(11.3.131)

Figure 11.3.6: The temperature u(r, t)/T0 within an infinitely long cylinder at

various positions r/b and times a2t/b2 that we initially heated to the
uniform temperature T

0
 and then allowed to cool by forcing its surface

to equal zero.

from (9.5.25). Thus, the complete solution is

(11.3.132)

Figure 11.3.6 illustrates the solution (11.3.132) for various Fourier numbers a2t/b2. It was
generated using the MATLAB script

clear 
M = 20; dr = 0.02; dt = 0.02;
% load in zeros of J_0
zero( 1) = 2.40482; zero( 2) = 5.52007; zero( 3) = 8.65372;

From (9.5.35) and (9.5.43),
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zero( 4) = 11.79153; zero( 5) = 14.93091; zero( 6) = 18.07106; 

zero( 7) = 21.21164; zero( 8) = 24.35247; zero( 9) = 27.49347; 

zero( 10) = 30.63461; zero( 11) = 33.77582; zero( 12) = 36.91710; 

zero( 13) = 40.05843; zero( 14) = 43.19979; zero( 15) = 46.34119; 

zero( 16) = 49.48261; zero( 17) = 52.62405; zero( 18) = 55.76551; 

zero( 19) = 58.90698; zero ( 20) = 62.04847; 

% compute Fourier coefficients 

for m = 1:M 

a(m) = 2 / (zero(m)*besselj(1,zero(m))); 

end 

% compute grid and initialize solution 

R = [0:dr:1]; T = [0:dt:0.5];

u = zeros(length(T), length(R));

RR = repmat (R,[length (T) 1]);

TT = repmat (T’,[1 length (R)]);

% compute solution from (11.3.132)

for m = 1:M

u = u + a(m)*besselj(0,zero(m)*RR).*exp(−zero(m)*zero(m)*TT); 
end 

surf(RR,TT,u)

xlabel(’R’,’Fontsize’,20);ylabel(’TIME’,’Fontsize’,20)

zlabel(’SOLUTION’,’Fontsize’,20)

It is similar to Example 11.3.1 except that we are in cylindrical coordinates. Heat flows
from the interior and is removed at the cylinder’s surface where the temperature equals
zero. The initial oscillations of the solution result from Gibbs phenomena because we have
a jump in the temperature field at r=b.

 Example 11.3.8

In this example9 we find the evolution of the temperature field within a cylinder of radius b
as it radiatively cools from an initial uniform temperature T

0
. The heat equation is

(11.3.133)

which we will solve by separation of variables u(r, t)=R(r)T(t). Therefore,

9    For another example of solving the heat equation with Robin boundary conditions, see §3.2 in
Balakotaiah,  V.,  N.Gupta,  and  D.H.West,  2000:  A simplified  model  for  analyzing  catalytic
reactions in short monoliths. Chem. Engng. Sci., 55, 5367–5383.

(11.3.134)
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satisfies the boundary condition. This solution is R(r)=J
0
(kr/b), where J

0
 is the Bessel

function of the first kind and zeroth order.
The radiative boundary condition can be expressed as

(11.3.135)

Because T(t) 0,

(11.3.136)

where the product hb  is the Biot number. The solution of the transcendental equation
(11.3.136) yields an infinite number of distinct constants k

n
. For each k

n
, the temporal

part equals the solution of

(11.3.137)

or

(11.3.138)

The product solution is, therefore,

(11.3.139)

and the most general solution is a sum of these product solutions

(11.3.140)

because only a negative separation constant yields a R(r) which is finite at the origin and
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Finally, we must determine A
n
. From the initial condition that u(r, 0)= T

0
,

(11.3.141)

where

(11.3.142)

(11.3.143)

(11.3.144)

(11.3.145)

which  follows  from  (9.5.25),  (9.5.35),  (9.5.45),  and  (11.3.136).  Consequently,  the
complete solution is

(11.3.146)
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Figure 11.3.7: The temperature u(r, t)/T0 within an infinitely long cylinder at
various positions r/b and times a2t/b2 that we initially heated to the
temperature T

0
 and then allowed to radiatively cool with hb=1.

Figure 11.3.7 illustrates the solution (11.3.146) for various Fourier numbers a2t/b2 with
hb=1. It was created using the MATLAB script

clear 

hb = 1; m=0; M = 100; dr = 0.02; dt = 0.02; 

% find k_n which satisfies hb J_0(k) = k J_1(k) 

for n = 1:10000 

k1 = 0.05*n; k2 = 0.05*(n+1); 

y1 = hb * besselj(0, k1) − k1 * besse1j(1, k1); 
y2 = hb * besselj(0, k2) − k2 * besselj(1, k2); 
if y1*y2 <= 0 ; m = m+1 ; zero (m) = k1; end; 

end; 

% 

% use Newton-Raphson method to improve values of k_n 

% 

for n = 1:M; for k = 1:5 

term0 = besselj(0, zero(n)); 

term1 = besse1j(1, zero(n)); 

term2 = besselj(2, zero(n)); 

f = hb * term0 − zero(n) * term1; 
fp = 0.5*zero(n)*(term2-term0) − (1+hb) *term1; 
zero(n) = zero(n) − f / fp; 
end; end; 

% compute Fourier coefficients 

for m = 1:M 

denom = zero(m)*(besselj(0,zero(m))^2+besselj(1,zero(m))^2);
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a(m) = 2 * besse1j(1,zero(m)) / denom;
end 
% compute grid and initialize solution
R = [0:dr:1]; T = [0:dt:0.5];
u = zeros (length(T),length(R));
RR = repmat (R,[length(T) 1]);
TT = repmat (T’,[1 length(R)]);
% compute solution from (11.3.146)
for m = 1:M
u = u + a(m)*besselj(0,zero(m)*RR).*exp(-zero(m)*zero(m)*TT);
end
surf(RR,TT,u)
xlabel(’R’,’Fontsize’,20);ylabel(’TIME’,’Fontsize’,20) 
zlabel(’SOLUTION’,’Fontsize’,20)

These results are similar to Example 11.3.5 except that we are in cylindrical coordinates.
Heat flows from the interior and is removed at the cylinder’s surface where it radiates to
space at the temperature zero. Note that we do not suffer from Gibbs phenomena in this
case because there is no initial jump in the temperature distribution.

 Example 11.3.9: Temperature within an electrical cable

In the design of cable installations we need the temperature reached within an electrical
cable as a function of current and other parameters. To this end,10 let us solve the nonho-
mogeneous heat equation in cylindrical coordinates with a radiation boundary condition.

The derivation of the heat equation follows from the conservation of energy:

heat generated=heat dissipated+heat stored, 

or

(11.3.147)

where I is the current through each wire, R is the resistance of each conductor, N is the
number of conductors in the shell between radii r and r+ r=2 mr r/( b2), b is the radius
of the cable, m is the total number of conductors in the cable,  is the thermal
conductivity,  is the density, c is

10    Iskenderian,  H.P.,  and  W.J.Horvath,  1946:  Determination  of  the  temperature  rise  and  the
maximum safe current through multiconductor electric cables. J. Appl. Phys., 17, 255–262.
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the average specific heat, and u is the temperature. In the limit of r→0, (11.3.147) 
becomes

(11.3.148)

where A=I2Rm/( b2cp), and a2= /( c).
Equation  (11.3.148)  is  the  nonhomogeneous  heat  equation  for  an  infinitely  long,

axisymmetric  cylinder.  From  Example  11.3.3,  we  know  that  we  must  write  the
temperature as the sum of a steady-state and transient solution: u(r, t)= (r)+ (r, t). The
steady-state solution (r) satisfies

(11.3.149)

or

(11.3.149)

where T
c
 is the (yet unknown) temperature in the center of the cable.

The transient solution (r, t) is governed by

(11.3.151)

with the initial condition that u(r, 0)=T
c

Ar2/(4a2)+v(0, t)=0. At the surface r=b,  heat
radiates to free space so that the boundary condition is u

r
= hu, where h is the surface 

conductance. Because the temperature equals the steady-state solution when all transient effects
die away, (r) must satisfy this radiation boundary condition regardless of the transient 
solution.

This requires that

(11.3.152)
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Therefore, (r, t) must satisfy 
r
(b, t)= h (b, t) at r=b.

We  find  the  transient  solution  (r,  t)  by  separation  of  variables  (r,  t)=  R(r)T(t).
Substituting into (11.3.151),

(11.3.153)

or

(11.3.154)

and

(11.3.155)

with R (b)= hR(b). The only solution of (11.3.154) which remains finite at r=0 and
satisfies the boundary condition is R(r)=J

0
(kr), where J

0
 is the zero-order Bessel function 

of the first kind. Substituting J
0
(kr) into the boundary condition, the transcendental equation is

kbJ
1
(kb) hbJ

0
(kb)=0. (11.3.156)

For a given value of h and b, (11.3.156) yields an infinite number of unique zeros k
n
.

The corresponding temporal solution to the problem is

(11.3.157)

so that the sum of the product solutions is

(11.3.158)
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(11.3.159)

which is a Fourier-Bessel series in J
0
(k

n
r). In §9.5 we showed that the coefficient of a

Fourier-Bessel series with the orthogonal function J
0
(k

n
r)  and the boundary condition

(11.3.156) equals

(11.3.160)

from (9.5.35) and (9.5.45). Carrying out the indicated integrations,

(11.3.161)

We obtained (11.3.161) by using (9.5.25) and integrating by parts as shown in Example
9.5.5.

To illustrate this solution, let us compute it for the typical parameters b=4cm, hb=1,

a2=1.14cm2/s, A=2.2747°C/s, and T
c
=23.94°C. The value of A corresponds to 37 wires of

#6 AWG copper wire within a cable carrying a current of 22amp.
Figure 11.3.8 illustrates the solution as a function of radius at various times. It was

created using the MATLAB script

clear 
asq = 1.14; A = 2.2747; b = 4; dr = 0.02; dt = 0.02;
  

Our final task remains to compute A
n
. By evaluating (11.3.158) at t=0,
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Figure 11.3.8: The temperature field (in degrees Celsius) within an electric
copper cable containing 37 wires and a current of 22 amperes at
various positions r/b and times a2t/b2. Initially the temperature was
zero and then we allow the cable to cool radiatively as it is heated.
The parameters are hb=1 and the radius of the cable b=4cm.
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    − anmrs41ycpn(l))*]crrcih(3.ycpn(l))’
    , anmrs5 * ]crrcih(2.ycpn(l)):

[(l) ; 4 * [(l) 1 bcmnl:

cmb 

% anlotsc epgb [mb gmgsg[igyc rnitsgnm

L ; O29bp93T: M ; O29bs94T:

t ; MXa * nmcr(icmesf(M). icmesf(L)):

LL ; pcol[s(L. Oicmesf(M) 3T):

MM ; pcol[s(Mz.O3 icmesf(L)T):

% anlotsc rnitsgnm dpnl (33050354)

t ; t − anmrs3 * LL 0* LL:
dnp l ; 39F

t ; t , [(l)*]crrcih(2.ycpn(l)*LL)0*cuo(/ycpn(l)*ycpn(l)*MM):

cmb 

rtpd(LL.MM.t): [ugr(O2 3 2 4 2 47T):

ui[]ci (zLz.zDnmsrgycz.42):xi[]ci(zMEFCz.zDnmsrgycz.42)

yi[]ci(zMCFICL=MNLC.USagpa Az.zDnmsrgycz.42)

From an initial temperature of zero, the temperature rises due to the constant electrical
heating.  After  a  short  period of  time,  it  reaches its  steady-state  distribution given by
(11.3.150). The cable is coolest at the surface where heat is radiating away. Heat flows
from the interior to replace the heat lost by radiation.

Problems

For Problems 1–5, solve the heat equation u
t
=a2u

xx
, 0<x< , 0<t, subject to the boundary

conditions that u(0, t)=u( , t)=0, 0<t, and the following initial conditions for 0<x< . Then
plot your results using MATLAB.

1.  u(x, 0)=A, a constant

2.  u(x, 0)=sin3(x)=[3sin(x) sin(3x)]/4
3.  u(x, 0)=x
4.  u(x, 0)= x

5. 
 

For  Problems  6–10,  solve  the  heat  equation  u
t
=a2u

xx
,  0<x< ,  0<t,  subject  to  the

boundary conditions that u
x
(0, t)=u

x
( , t)=0, 0<t, and 

the following initial conditions for 0<x< . Then plot your results using MATLAB.
6.  u(x, 0)=1
7.  u(x, 0)=x

8.  u(x, 0)=cos2(x)=[1+cos(2x)]/2
9.  u(x, 0)= x

10. 



688 Advanced Engineering Mathematics with MATLAB

following  boundary  conditions  and  initial  condition.  Then  plot  your  results  using 
MATLAB.

11. u
x
(0, t)=u( , t)=0, 0<t; u(x, 0)=x2 2, 0<x<

12. u(0, t)=u( , t)=T
0
, 0<t; u(x, 0)=T

1
T

0
, 0<x<

13. u(0, t)=0, u
x
( , t)=0, 0<t; u(x, 0)=1, 0<x<

14. u(0, t)=0, u
x
( , t)=0, 0<t; u(x, 0)=x, 0<x<

15. u(0, t)=0, u
x
( , t)=0, 0<t; u(x, 0)= x, 0<x<

16. u(0, t)=T
0
, u

x
( , t)=0, 0<t; u(x, 0)=T

1
T

0
, 0<x<

17. u(0, t)=0, u( , t)=T
0
, 0<t; u(x, 0)=T

0
, 0<x<

18. It is well known that a room with masonry walls is often very difficult to heat. 

Consider a wall of thickness L, conductivity , and diffusivity a2 which we heat by a 
surface heat flux at a constant rate H. The temperature of the outside (out-of-doors) face 
of the wall remains constant at T

0
 and the entire wall initially has the uniform temperature 

T
0
. Let us find the temperature of the inside face as a function of time.11

We begin by solving the heat conduction problem

 

subject to the boundary conditions that

 

and the initial condition that u(x, 0)=T
0
. Show that the temperature field equals

 

Therefore, the rise of temperature at the interior wall x=0 is

 

For  Problems  11–17,  solve  the  heat  equation  u
t
=a2u

xx
,  0<x< ,  0<t,  subject  to  the

11  Reproduced with acknowledgment to Taylor and Francis, Publishers, from Dufton, A. F., 1927:
The warming of walls. Philos. Mag., Ser. 7, 4, 888–889.
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or

 

For a2t/L2<1, this last expression can be approximated12 by 2Hat1/2/ 1/2 . We thus see 
that  the  temperature  will  initially  rise  as  the  square  root  of  time and diffusivity  and 
inversely with conductivity. For an average

 

Then
 

Consider now the integral

 

If we approximate this integral by using the trapezoidal rule with x=2, then

 

and  f (t) a 3/2/(4Lt1/2).  Integrating  and  using  f(0)=0,  we  finally  have  f(t)  a 3/2t1/2(2L).  The

smaller a2t/L2 is, the smaller the error will be. For example, if t=L2/a2, then the error is 2.4% .

rock =0.0042g/cm-s, and a2=0.0118cm2/s, while for wood (Spruce) =0.0003g/cm-s, 

and a2=0.0024cm2/s.
The same set of equations applies to heat transfer within a transistor operating at low 

frequencies.13 At the junction (x=0) heat is produced at the rate of H and flows to the 
transistor’s  supports  (x=±L)  where  it  is  removed.  The supports  are  maintained at  the 
temperature T

0
 which is also the initial temperature of the transistor.

12    Let us define the function:

13   Mortenson, K.E., 1957: Transistor junction temperature as a function of time. Proc. IRE, 45,

504–513. Equation 2a should read T
x
= F/k.
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19. The linearized Boussinesq equation14

 

governs the height of the water table u(x, t) above some reference point, where a2 is the
product of the storage coefficient times the hydraulic coefficient divided by the aquifer

thickness. A typical value of a2 is 10m2/min. Consider the problem of a strip of land of 
width L that separates two reservoirs of depth h

1
. Initially the height of the water table 

would be h
1
. Suddenly we lower the reservoir on the right x=L to a depth h

2
 [u(0, t)=h

1
,

u(L, t)=h
2
, and u(x, 0)=h

1
]. Find the height of the water table at any position x within the 

aquifer and any time t>0.
20. The equation (see Problem 19)

 

governs the height of the water table u(x, t). Consider the problem15 of a piece of land 
that suddenly has two drains placed at the points x=0 and x=L so that u(0, t)=u(L, t)=0. If

the  water  table  initially  has  the  profile  u(x,  0)=8H(L3x 3L2x2+4Lx3–2x4)/L4,  find  the
height of the water table at any point within the aquifer and any time t>0.

21.  We want  to  find the rise  of  the water  table  of  an aquifer  which we sandwich 
between a canal and impervious rocks if we suddenly raise the water level in the canal h

0

units above its initial elevation and then maintain the canal at this level. The linearized 
Boussinesq equation (see Problem 19)

 

14     See,  for  example,  Van  Schilfgaarde,  J.,  1970:  Theory  of  flow  to  drains.  Advances  in
Hydroscience, No. 6, Academic Press, 81–85.

15     For a similar problem, see Dumm, L.D., 1954: New formula for determining depth and spacing
of subsurface drains in irrigated lands. Agric. Eng., 35, 726–730.
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t)=0, and the initial condition u(x, 0)=0. Find the height of the water table at any point in
the aquifer and any time t>0.

22. Solve the nonhomogeneous heat equation

 

subject to the boundary conditions u(0, t)=u
x
( , t)=0, 0<t, and the initial condition u(x,

0)=f(x), 0<x< .
23. Solve the nonhomogeneous heat equation

 

subject  to  the  boundary  conditions  u
x
(0,  t)=u

x
(1,  t)=0,  0<t,  and  the  initial  condition

 0<x<1.  [Hint:  Note  that  any  function  of  time  satisfies  the
boundary conditions.]

24. Solve the nonhomogeneous heat equation

 

subject to the boundary conditions u
x
(0, t)=u

x
( , t)=0, 0<t, and the initial condition u(x,

0)=f(x), 0<x< . [Hint: Note that any function of time satisfies the boundary conditions.]
25. Solve the nonhomogeneous heat equation

 

subject to the boundary conditions u(0, t)=u( , t)=0, 0<t, and the initial condition u(x,
0)=0,  0<x<  .  [Hint:  Represent  the  forcing  function  as  a  half-range  Fourier  sine 
expansion over the interval (0, ).]

26. A uniform, conducting rod of length L and thermometric diffusivity a2 is initially at 
temperature  zero.  We  supply  heat  uniformly  throughout  the  rod  so  that  the  heat
conduction equation is

 

where P is the rate at which the temperature would rise if there was no conduction. If we 
maintain the ends of the rod at the temperature of zero,  find the temperature at  any po-
sition and subsequent time. How would the solution change  if  the  boundary  conditions 
became  n(0,  t)=u(L,  t)=A 0,  0<t,  and  the  initial conditions read u(x, 0)=A, 0<x<L?

governs the level of the water table with the boundary conditions u(0, t)=h
0
, and u

x
(L,
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27. Solve the nonhomogeneous heat equation

 

where a2= /cp, with the boundary conditions that

 

and the initial condition that u(x, 0)=0, 0<x<L.
28. Find the solution of

 

with the boundary conditions u(0, t)=1, and u(L, t)=0, 0<t, and the initial condition u(x,
0)=0, 0<x<L.

29. Solve16

 

with the boundary conditions

 

and the initial condition u(x, 0)=u
0
, 0<x<L.

30. Solve

 

with the boundary conditions

 

and the initial condition u(x, 0)=1, 0<x<1. Hint: Let u(x, t)= (x, t) exp[(2x t)/(4a2)] so 
that the problem becomes

16   Motivated by problems solved in Gomer, R., 1951: Wall reactions and diffusion in static and
flow systems. J. Chem. Phys., 19, 284–289.
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with the boundary conditions

 

and the initial condition (x, 0)=exp[ x/(2a2)], 0<x<1.
31. Solve the heat equation in spherical coordinates

 

subject to the boundary conditions lim
r→0

 |u(r, t)|< , and u(1, t)=0, 0<t, and the initial

condition u(r, 0)=1, 0 r<1.
32. Solve the heat equation in spherical coordinates

 

subject to the boundary conditions u( , t)=u
r
( , t)=0, 0<t, and the initial condition u(r,

0)=u
0
, <r< .

33. Solve17 the heat equation in spherical coordinates

 

subject to the boundary conditions

 

and the initial condition u(r, 0)=u0, 0 r<b.

17    Reprinted  from  Chem.  Engng.  Sci. ,  57,  H.Zhou, S.Abanades, G.Flamant, D. Gauthier, and J.Lu,
Simulation of heavy metal vaporization dynamics of a fluidized bed, 2603–2614, ©2002, with
permission from Elsevier Science. See also Mantell, C., M.Rodriguez, and E.Martinez de la Ossa, 
2002: Semi-batch extraction of anthocyanins from red grape pomace in packed beds: Experimental 
results and process modelling. Chem. Engng. Sci., 57, 3831–3838.
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subject to the boundary conditions lim
r→0

 |u(r, t)|< , and u(b, t)=u
0
, 0<t, and the initial

condition u(r, 0)=0, 0<r<b.
35. Solve the heat equation in cylindrical coordinates

 

subject to the boundary conditions lini
r→0

 |u(r, t)|< , and u(b, t)= , 0<t, and the initial

condition u(r, 0)=1, 0 r<b.
36. Solve the heat equation in cylindrical coordinates

 

subject to the boundary conditions lim
r→0

 |u(r, t)|< , and u(1, t)=0, 0<t, and the initial

condition

 

37. The equation19

 
governs  the  velocity  u(r,  t)  of  an  incompressible  fluid  of  density   and  kinematic
viscosity v flowing in a long circular pipe of radius b with an imposed, constant pressure

34. Solve18 the heat equation in cylindrical coordinates

18    Taken from Destriau, G., 1946: Propagation des charges électriques sur les pellicules faiblement
conductrices “problèm plan.” J. Phys. Radium, 7, 43–48.

19    Reprinted from J. Math. Pures Appl., Ser. 9, 11, P.Szymanski, Quelques solutions exactes des
équations de l’hydrodynamique du fluide visqueux dans le cas d’un tube cylindrique,  67–107, 
©1932, with permission from Elsevier Science.
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u(b, t)=0, 0<t, find the velocity at any subsequent time and position.
38. Solve the heat equation in cylindrical coordinates

 

subject to the boundary conditions lim
r→0

 |u(r, t)|< , and u
r
(b, t)= h u(b, t), 0<t, and the 

initial condition u(r, 0)=b2 r2, 0 r<b.

39. Solve20 the heat equation in cylindrical coordinates

 

subject to the boundary conditions lim
r→0

 |u(r, t)|< , and u
r
(L, t)= hu(L, t), 0<t, and the 

initial condition

 

where b<L, and 0<h, .
40. In their study of heat conduction within a thermocouple through which a steady 

current  flows,  Reich  and  Madigan21  solved  the  following  nonhomogeneous  heat 
conduction problem:

 

where J  represents  the Joule heating generated by the steady current  and the P  term 
represents the heat loss from Peltier cooling.22 Find u(x, t) if both ends are kept at zero 
[u(0, t)=u(L, t)=0] and initially the temperature is zero [u(x, 0)=0]. The interesting aspect 
of this problem is the presence of the delta function.

Step 1:  Assuming that u(x, t)  equals the sum of a steady-state solution (x)  and a 
transient solution (x, t), show that the steady-state solution is governed by

 

gradient G. If the fluid is initially at rest u(r, 0)=0, 0<r<b, and there is no slip at the wall

20    Mack, W., M.Plöchl, and U.Gamer, 2000: EfFects of a temperature cycle on an elastic-plastic
shrink fit with solid inclusion. Chinese J. Mech., 16, 23–30.

21   Reich, A.D., and J.R.Madigan, 1961: Transient response of a thermocouple circuit under steady
currents. J. Appl. Phys., 32, 294–301.

22   In 1834 Jean Charles Athanase Peltier (1785–1845) discovered that there is a heating or cooling
effect, quite apart from ordinary resistance heating, whenever an electric current flows through 
the junction between two different metals.
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Step 2: Show that the steady-state solution is

 

Step 3: The temperature must be continuous at x=b; otherwise, we would have infinite
heat conduction there. Use this condition to show that Ab= B(L b).

Step  4:  To  find  a  second  relationship  between  A  and  B,  integrate  the  steadystate 
differential equation across the interface at x=b and show that

 

Step 5: Using the result from Step 4, show that A+B= P/a2, and

 

Step 6: Re-express (x) as a half-range Fourier sine expansion and show that

 

Step 7: Use separation of variables to find the transient solution by solving
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0)= w(x), 0<x<L.

Step 8: Add the steady-state and transient solutions together and show that

 

41. Use separation of variables to solve23 the partial differential equation

 

subject to the boundary conditions that u
x
(0, t)+2au(0, t)=0, u

x
(1, t)+ 2au(1, t)=0, 0<t,

and the initial condition that u(x, 0)=1, 0<x<1.

Step 1: Introducing u(x, t)=e ax (x, t), show that the problem becomes

 

subject to the boundary conditions that 
x
(0, t)+a (0, t)=0, 

x
(1, t)+ a (1, t)=0, 0<t, and

the initial condition that u(x, 0)=e x, 0<x<1.

Step 2: Assuming that (x, t)=X(x)T(t), show that the problem reduces to the ordinary 
differential equations

X +( a2)X=0, X (0)+aX(0)=0, X (1)+aX(1)=0, 

and T + T=0, where  is the separation constant.

Step 3: Solve the eigenvalue problem and show that 
0
=0, X

0
(x)=e ax, T

0
(t)=A

0
, and

n
=a2+n2 2, X

n
(x)=asin(n x) n cos(n x), and T

n
(t)=A

n
e (a2+n2 2)t, where n=1, 2, 3,…,

so that

 

subject to the boundary conditions (0, t)= (L, t)=0, 0<t, and the initial condition (x,

23    Reprinted from Physica, 9, S.R.DeGroot, Théorie phénoménologique de l’effet Soret, 699–707,
©1942, with permission from Elsevier Science.
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Step 4: Evaluate A
0
 and A

n
 and show that

 

42. Use separation of variables to solve24 the partial differential equation

 

subject to the boundary conditions that u(0, t)=u
x
(0, t)=u(1, t)=u

x
(1, t) =0, 0<t, and the

initial condition that  0<x<1.
Step 1: Assuming that u(x, t)=X(x)T(t), show that the problem reduces to the ordinary differen-
tial equations X +k2X =0, X(0)=X (0)=X(1)= X (1)=0, and T +k2T=0, where k2 is the separation 
constant.

Step 2: Solving the eigenvalue problem first, show that

 

where k
n
 denotes the nth root of 

2–2cos(k) ksin (k)=sin(k/2)[sin(k/2) (k/2) cos(k/2)]=0.

Step  3:  Using  the  results  from  Step  2,  show  that  there  are  two  classes  of 
eigenfunctions: 

n
=2n  , X

n
(x)=1 cos(2n x), and

 

Step 4: Consider the eigenvalue problem

X + X =0, 0<x<1, 

with  the  boundary  conditions  X(0)=X (0)=X (1)=X (1)=0.  Show that  the  orthogonality 
condition for this problem is

24    Taken from Hamza, E.A., 1999: Impulsive squeezing with suction and injection. J. Appl Mech.,
66, 945–951.
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where X
n
(x) and X

m
(x) are two distinct eigenfunctions of this problem. Then show that

we can construct an eigenfunction expansion for an arbitrary function f(x) via

 

and f (x)  exists  over  the interval  (0,  1).  Hint:  Follow the proof in  §9.2 and integrate
repeatedly by parts to eliminate the higher derivative terms.

Step 5: Show that

 

if X
n
(x)=1 cos(2n x), and

 

if X
n
(x)=1 cos(

n
x)+2[sin(

n
x)

n
x]/

n
. Hint: sin(

n
)=

n
[1+ cos(

n
)]/2.

Step 6: Use the above results to show that

 

where A
n
 is the Fourier coefficient corresponding to the eigenfunction 1  cos(2n x) while

B
n 

is the Fourier coefficient corresponding to the eigenfunction 1 cos(
n
x)

2[sin(
n
x)

n
x]/

n
. Step 7: Show that A

n
=0 and 

 so that

 

Hint:  sin(
n
)=

n
[1+cos(

n
)]/2,  sin(

n
)=2[1 cos(

n
)]/

n
,  and  cos(

n
)=
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11.4 THE LAPLACE TRANSFORM METHOD

In the previous chapter we showed that we can solve the wave equation by the method of 
Laplace transforms.  This  is  also  true  for  the  heat  equation.  Once again,  we take the 
Laplace transform with respect to time. From the definition of Laplace transforms,

(11.4.1)

(11.4.2)

and

(11.4.3)

We  next  solve  the  resulting  ordinary  differential  equation,  known  as  the  auxiliary 
equation, along with the corresponding Laplace transformed boundary conditions. 
The initial  condition gives  us  the  value  of  u(x,  0).  The final  step  is  the  inversion 
of  the Laplace transform U(x, s). We typically use the inversion integral.

 Example 11.4.1

To illustrate these concepts, we solve a heat conduction problem25  in a plane slab of 
thickness 2L. Initially the slab has a constant temperature of unity. For 0<t, we allow both 
faces of the slab to radiatively cool in a medium which has a temperature of zero.

If  u(x,  t)  denotes  the  temperature,  a2  is  the  thermal  diffusivity,  h  is  the  relative 
emissivity, t is the time, and x is the distance perpendicular to the face of the slab and 
measured from the middle of the slab, then the governing equation is

(11.4.4)

with the initial condition

u(x, 0)=1, L<x<L, (11.4.5)

25    Goldstein,  S.,  1932: The application of Heaviside’s operational method to the solution of a
problem in heat conduction. Zeit. Angew. Math. Mech., 12, 234–243.
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and boundary conditions

(11.4.6)

Taking the Laplace transform of (11.4.4) and substituting the initial condition,

(11.4.7)

If we write s=a2q2, (11.4.7) becomes

(11.4.8)

From the boundary conditions U(x, s) is an even function in x and we may conveniently 
write the solution as

(11.4.9)

From (11.4.6),

(11.4.10)

and

(11.4.11)

The inverse of U(x, s) consists of two terms. The first term is simply unity. We will invert 
the second term by contour integration.

We begin by examining the nature and location of the singularities in the second term. 
Using the product formulas for the hyperbolic cosine and sine functions, the second term
equals
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(11.4.12)

Because q2=s/a2, (11.4.12) shows that we do not have any  in the transform and we 
need not  concern  ourselves  with  branch points  and cuts.  Furthermore,  we have  only 
simple poles: one located at s=0 and the others where

qsinh(qL)+h cosh(gL)=0.
(11.4.13)

If we set q=i , (11.4.13) becomes

h cos( L)  sin( L)=0,
(11.4.14)

or

Ltan( L)=hL.
(11.4.15)

From Bromwich’s integral,

(11.4.16)

where  q=z1/2/a  and  the  closed  contour  C  consists  of  Bromwich’s  contour  plus  a 
semicircle of infinite radius in the left half of the z-plane. The residue at z=0 is 1 while at

(11.4.17)
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(11.2.18)

(11419)

(11.4.20)

Therefore, the inversion of U(x, s) is

(11.4.21)

or

(11.4.22)

We  can  further  simplify  (11.4.22)  by  using  h/
n
=tan(

n
L),  and  hL=  

n
L  tan(

n
L).

Substituting these relationships into (11.4.22) and simplifying,

(11.4.23)

Figure 11.4.1 illustrates (11.4.23). It was created using the MATLAB script

clear 
hL = 1 ; m = 0 ; M = 100 ; dx = 0.05 ; dt = 0.05 ; 
%
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Figure 11.4.1: The temperature within the portion of a slab 0<x/L<1 at various times
a2t/L2 if the faces of the slab radiate to free space at temperature zero and the
slab initially has the temperature 1. The parameter hL=1.

% create initial guess at zero_n 

% 

zero = zeros(length(M)); 

for n = 1:10000 

k1 = 0.1*n; k2 = 0.1*(n+1); 

prod = k1 * tan(k1);y1 = hL − prod;y2 = hL − k2 * 
tan(k2); 

if (y1*y2<= 0 & prod <2 & m < M)m = m+1; zero(m) = 

k1;end; 

end ; 

% 

% use Newton-Raphson method to improve values of zero_n 

% 

for n = 1:M; for k = 1:10 

f = hL − zero (n) * tan(zero(n)); 
fp = −tan (zero(n)) - zero(n)*sec(zero(n))^2; 
zero(n) = zero(n) − f / fp; 
end; end; 

% compute Fourier coefficients 

for m = 1:M 

a(m) = 2*sin(zero(m))/(zero(m)+sin(zero(m))*cos(zero(m)); 

end 

% compute grid and initialize solution 

X = [0:dx:1]; T = [0:dt:2]; 

u = zeros(length(T),length(X));

XX=repmat(X,[length(T)1]); TT=repmat(T’,[1 length (X)]);
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% compute solution from (11.4.23)
for m = 1:M
u = u + a(m) * cos(zero(m)*XX).*exp(-zero(m) *zero (m)*TT);
end 
surf(XX,TT,u)
xlabel(’distance’,’Fontsize’,20);ylabel(’time’,’Fontsize’,20)
zlabel(’U(X,T)’,’Fontsize’,20)

 Example 11.4.2: Heat dissipation in disc brakes

Disc brakes consist of two blocks of frictional material known as pads which press against
each side of a rotating annulus, usually made of a ferrous material. In this problem we determine
the transient temperatures reached in a disc brake during a single brake application.26 If 
we ignore the errors introduced by replacing the cylindrical portion of the drum by a rectangular
plate, we can model our disc brakes as a one-dimensional solid which friction heats at both ends.
Assuming symmetry about x=0, the boundary condition there is u

x
(0, t)=0. To model the 

heat flux from the pads, we assume a uniform disc deceleration that generates heat from the
frictional surfaces at the rate N(1 Mt), where M and N are experimentally determined constants.

If u(x, t), , and a2 denote the temperature, thermal conductivity, and diffusivity of the
rotating annulus, respectively, then the heat equation is

(11.4.24)

with the boundary conditions

(11.4.25)

The boundary condition at x=L gives the frictional heating of the disc pads. 
Introducing the Laplace transform of u(x, t), defined as

(11.4.26)

the equation to be solved becomes

(11.4.27)

26    From Newcomb, T.P., 1958: The flow of heat in a parallel-faced infinite solid. Brit. J. Appl
Phys., 9, 370–372. See also Newcomb, T.P., 1958/59: Transient temperatures in brake drums
and linings. Proc. Inst. Mech. Eng., Auto. Di ., 227–237; Newcomb, T.P., 1959: Transient
temperatures attained in disk brakes. Brit. J. Appl. Phys., 10, 339–340.
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subject to the boundary conditions that

(11.4.28)

The solution of (11.4.27) is

U(x, s)=A cosh(qx)+B sinh(qx), (11.4.29)

where q=s1/2/a. Using the boundary conditions, the solution becomes

(11.4.30)

It now remains to invert the transform (11.4.30). We will invert cosh(qx)/ [sq sinh(qL)]; 
the inversion of the second term follows by analog.

Our  first  concern  is  the  presence  of  s1/2  because  this  is  a  multivalued  function. 
However, when we replace the hyperbolic cosine and sine functions with their Taylor 
expansions,  cosh(qx)/[sq  sinh(qL)]  contains only powers of s and is, in fact, a single-
valued function.

From Bromwich’s integral,

(11.4.31)

where q=z1/2/a. Just as in the previous example, we replace the hyperbolic cosine and 
sine with their product expansion to determine the nature of the singularities. The point

z=0 is a second-order pole. The remaining poles are located where  or

z
n
= n2 2a2/L2, where n=1, 2, 3,…. We have chosen the positive sign because z1/2 must 

be single-valued; if we had chosen the negative sign the answer would have been the 
same. Our expansion also shows that the poles are simple.

Having classified the poles, we now close Bromwich’s contour, which lies slightly to 
the right of the imaginary axis, with an infinite semicircle in the left half-plane, and use
the residue theorem. The values of the residues are
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(11.4.32)

(11.4.33)

(11.4.34)

(11.4.35)

(11.4.36)

and

(11.4.57)

(11.4.38)

(11.4.39)

(11.4.40)

When we sum all of the residues from both inversions, the solution is
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(11.4.41)

Figure 11.4.2 shows the temperature in the brake lining at various places within the lining 

[x =x/L]  if  a2=3.3 10 3cm2/sec,  =1.8 10 3  cal/(cm  sec°C),  L=0.48cm,  and 

N=1.96cal/(cm2  sec).  Initially  the  frictional  heating  results  in  an  increase  in  the  disc 
brake’s temperature. As time increases, the heating rate decreases and radiative cooling 
becomes sufficiently large that the temperature begins to fall.

 Example 11.4.3

In the previous example we showed that Laplace transforms are particularly useful when 
the boundary conditions are time dependent.  Consider now the case when one of the 
boundaries is moving.

We wish to solve the heat equation

(11.4.42)

subject to the boundary conditions

(11.4.43)

and the initial condition

u(x, 0)=0, 0<x< .
(11.4.44)
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Figure 11.4.2: Typical curves of transient temperature at different locations in a 
brake  lining.  Circles  denote  computed  values  while  squares  are 
experimental measurements. (From Newcomb, T.P., 1958: The flow of 
heat in a parallel-faced infinite solid. Brit. J. Appl. Phys., 9, 372 with 
permission.)

This type of problems arises in combustion problems where the boundary moves due to
the burning of the fuel.

We begin by introducing the coordinate =x t. Then the problem can be reformulated
as

(11.4.45)

subject to the boundary conditions

(11.4.46)

and the initial condition

u( , 0)=0, 0< < . (11.4.47)
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(11.4.48)

with

(11.4.49)

The solution to (11.4.48)–(11.4.49) is

(11.4.50)

Because

(11.4.51)

where

(11.4.52)

and

(11.4.53)

we have by the convolution theorem that

(11.4.54)

or

(11.4.55)

Taking the Laplace transform of (11.4.45), we have that
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Problems

1. Solve

 

subject to the boundary conditions u
x
(0, t)=u

x
(1, t)=0, 0<t, and the initial condition u(x,

0)=0, 0<x<1.
2. Solve

 

subject to the boundary conditions u
x
(0, t)=0, u(1, t)=t, 0<t, and the initial condition u(x,

0)=0, 0<x<1.
3. Solve

 

subject to the boundary conditions u(0, t)=0, u(1, t)=1, 0<t, and the initial condition u(x,
0)=0, 0<x<1.

4. Solve

 

subject  to  the  boundary  conditions   and  the

initial condition 
5. Solve

 

subject to the boundary conditions u(0, t)=u(1, t)=0, 0<t, and the initial condition u(x,
0)=0, 0<x<1.

6. Solve27

 

subject to the boundary conditions
27    If u(x, t) denotes the Eulerian velocity of a viscous fluid in the half space x>0 and parallel to the

 wall located at x=0, then this problem was first solved by Stokes, G.G., 1850: On the effect of 
the internal friction of fluids on the motions of pendulums. Proc. Cambridge Philos. Soc., 9, Part II,

[8]–[106].
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and  the  initial  condition  u(x,  0)=0,  0<x< .  [Hint:  Use  tables  to  invert  the  Laplace 
transform.]

7. Solve

 

subject to the boundary conditions

 

and  the  initial  condition  u(x,  0)=0,  0<x< .  [Hint:  Use  tables  to  invert  the  Laplace 
transform.]

8. Solve

 

subject to the boundary conditions

 

and the  initial  condition  u(x,  0)=e x,  0<x< .  [Hint:  Use  tables  to  invert  the  Laplace 
transform.]

9. Solve

 

where  is a constant, subject to the boundary conditions

 

and the initial condition u(x, 0)=0, 0<x< . Note that
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where erfc is the complementary error function.

10. During their modeling of a chemical reaction with a back reaction, Agmon et al.28

solved

 

subject to the boundary conditions

 

and  the  initial  condition  u(x,  0)=0,  0<x< ,  where  
d 

 and  
r 
 denote  the  intrinsic 

dissociation and recombination  rate  coefficients,  respectively.  What  should  they have 
found?

11. Solve29

 

subject to the boundary conditions

 

and the initial condition u(x, 0)=0, 0<x< , where , , and  are constants and .

28  Reprinted  with  permission  from  Agmon,  N.,  E.Pines,  and  D.Huppert,  1988:  Geminate
recombination in proton-transfer reactions. II. Comparison of diffusional and kinetic 
schemes. J. Chem. Phys., 88, 5631–5638. ©1988, American Institute of Physics.

29  Reprinted from Bull Math. Biol, 49, G.M.Saidel, E.D.Morris, and G.M.Chisolm, Transport of

 macromolecules in arterial wall in ivo: A mathematical model and analytic solutions, 153–
169. ©1987, with permission from Elsevier Science.

ρ σ σ ρ
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subject to the boundary conditions

 

and the initial condition u(x, 0)=u
0
, 0<x< .

13. Solve

 

subject to the boundary conditions u(0, t)=t, u(L, t)=0, 0<t, and the initial condition u(x,
0)=0, 0<x<L.

14. Solve

 

subject to the boundary conditions u(0, t)=u(L, t)=T
0
, 0<t, and the initial condition u(x,

0)=T
0
, 0<x<L.

15. An electric fuse protects electrical devices by using resistance heating to melt an 
enclosed wire when excessive current passes through it. A knowledge of the distribution 
of temperature along the wire is important in the design of the fuse. If the temperature 
rises to the melting point only over a small interval of the element, the melt will produce 
a small  gap,  resulting in an unnecessary prolongation of the fault  and a considerable 
release of energy.

Therefore, the desirable temperature distribution should melt most of the wire. For this 

reason, Guile and Carne30 solved the heat conduction equation

 
to understand the temperature structure within the fuse just before meltdown. The second 
term on the right side of the heat conduction equation gives the resistance heating which

12. Solve

30    From Guile, A.E., and E.B.Carne, 1954: An analysis of an analogue solution applied to the heat
conduction problem in a cartridge fuse. AIEE Trans., Part 1, 72, 861–868. ©AIEE (now IEEE).
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is assumed to vary linearly with temperature. If the terminals at x=±L remain at a constant 
temperature, which we can take to be zero, the boundary conditions are u(–L, t)=u(L,
t)=0, 0<t.  The initial  condition is  u(x,  0)=0,  –L<x<L.  Find the temperature field as a 
function of the parameters a, q, and .

16. Solve31

 

subject to the boundary conditions

 

and the initial condition u(r,  0)=0, 0<r<1. [Hint:  Use the new dependent variable v(r,
t)=ru(r, t).]

17. Solve32

 

subject to the boundary conditions

 

and the initial condition u(r, 0)=u
0
, b<r< .

31   From Reismann, H., 1962: Temperature distribution in a spinning sphere during atmospheric
entry. J. Aerosp. Sci., 29, 151–159 with permission.

32    Reprinted with permission from Frisch, H.L, and F.C.Collins, 1952: Diffusional processes in the
growth of aerosol particles. J. Chem. Phys., 20, 1797–1803. ©1952, American Institute of Physics.

33    Reproduced  with   acknowledgment  to  Taylor  and Francis,  Publishers,  from Havelock,  T.H.,
1921: The solution of an integral equation occurring in certain problems of viscous fluid 
motion. Philos. Mag., Ser. 6, 42, 620–628.

18.  Consider33  a  viscous  fluid  located  between two fixed  walls  x=±L.  At  x=0 we 
introduce a thin, infinitely long rigid barrier of mass m per unit area and let it fall under 
the force of  gravity which points  in  the direction of  positive x.  We wish to find the 
velocity  of  the  fluid  u( x,  t) .  The  fluid is governed by the partial differential  equation
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subject to the boundary conditions

 

and the initial condition u(x, 0)=0, 0<x<L.

19.  Consider34  a  viscous  fluid  located  between two fixed  walls  x=±L.  At  x=0 we 
introduce a thin, infinitely long rigid barrier of mass m per unit area. The barrier is acted 
upon by an elastic force in such a manner that it would vibrate with a frequency  if the 
liquid were absent. We wish to find the barrier’s deviation from equilibrium, y(t). The 
fluid is governed by the partial differential equation

 

The boundary conditions are

 

and the initial conditions are u(x, 0)=0, 0<x<L, and y(0)=A, y (0)=0.

20. Solve35

 

subject to the boundary conditions u
x
(0, t)=0, a2u

x
(L, t)+ u(L, t)=F, 0<t, and the initial 

condition u(x, 0)=0, 0<x<L.

34     Reproduced with  acknowledgment  to  Taylor  and Francis,  Publishers,  from Havelock,  T.H.,
1921: On the decay of oscillation of a solid body in a viscous fluid. Philos. Mag., Ser. 6, 
42, 628–634.

35     Taken from McCarthy,  T.A.,  and H.J.Goldsmid,  1970:  Electro-deposited  copper  in  bismuth

telluride. J. Phys. D, 3, 697–706. Reprinted with the permission of IOP Publishing Limited.
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21. Solve

 

subject to the boundary conditions

 

and the initial condition u(x, 0)=0, 0 x<1.

22. Solve36 the partial differential equation

 

where V is a constant, subject to the boundary conditions

u(0, t)=1, u
x
(1, t)=0, 0<t, 

and the initial condition u(x, 0)=0, 0<x<1.
23. Solve

 

subject to the boundary conditions

 

and the initial condition u(r, 0)=0, 0 r<a, where (t) is the Dirac delta function. Note that

J
n
(iz)=inI

n
(z) and I

n
(iz)=inJ

n
(z) for all complex z.

24. Solve

 

36  Reprinted  from  Solar  Energy,  56,  H.Yoo  and  E.-T.Pak,  Analytical  solutions  to  a
one-dimensional finite-domain model for stratified thermal storage tanks, 315–322, ©1996, with kind 
permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.
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and the initial condition u(r, 0)=0, 0 r<a. Note that J
n
(iz)=inI

n
(z) and I

n
(iz)=inJ

n
(z) for al

l

complex z.

25. Solve

 

subject to the boundary conditions

 

and the initial condition u(r, 0)=1, 0 r< . Note that J
n
(iz)=inI

n
(z) and I

n
(iz)=inJ

n
(z) for all

complex z.
26. Solve

 

subject to the boundary conditions

 

and the initial condition u(r, 0)=0, 0 r<b. Note that J
n
(iz)=inI

n
(z) and I

n
(iz)=inJ

n
(z) for all

complex z.

27. Solve the nonhomogeneous heat equation for the spherical shell37

 

subject to the boundary conditions

subject to the boundary conditions

37   Abstracted with permission from Malkovich, R.Sh., 1977: Heating of a spherical shell by a
radial current. Sov. Phys. Tech. Phys., 22, 636. ©1977 American Institute of Physics.
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and the initial condition u(r, 0)=0, <r< . 
Step 1: By introducing (r, t)=ru(r, t), show that the problem simplifies to

 

subject to the boundary conditions

 

and the initial condition

(r, 0)=0, <r< .  

Step 2:  Using Laplace transforms and variation of parameters,  show that the Laplace
transform of u(r, t) is

 

where  and ℓ= –a.

Step 3: Take the inverse of U(r, s) and show that

 

where 
n
 is the nth root of a +tan(ℓ )=0, and =1+ /ℓ.
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11.5 THE FOURIER TRANSFORM METHOD

We now consider the problem of one-dimensional heat flow in a rod of infinite length 
with insulated sides. Although there are no boundary conditions because the slab is of 
infinite  extent,  we  do  require  that  the  solution  remains  bounded  as  we  go  to  either 
positive or negative infinity. The initial temperature within the rod is u(x, 0)=f(x).

Employing the product solution technique of §11.3, u(x, t)=X(x)T(t) with

T +a2 T=0, (11.5.1)

and

X + X=0.
(11.5.2)

Solutions to (11.5.1)–(11.5.2) which remain finite over the entire x-domain are

X(x)=E cos(kx)+F sin(kx),
(11.5.3)

and

T(t)=C exp(–k2a2t). (11.5.4)

Because we do not have any boundary conditions, we must include all possible values of 
k. Thus, when we sum all of the product solutions according to the principle of linear 
superposition, we obtain the integral

(11.5.5)

We can satisfy the initial condition by choosing

(11.5.6)
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(11.5.7)

because the initial condition has the form of a Fourier integral

(11.5.8)

when t=0. 
Several important results follow by rewriting (11.5.8) as

(11.5.9)

Combining terms,

(11.5.10)

(11.5.11)

Reversing the order of integration,

(11.5.12)

The inner integral is called the source function. We may compute its value through an 
integration on the complex plane; it equals

(11.5.13)

and
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(11.5.14)

 Example 11.5.1

Let us find the temperature field if the initial distribution is

(11.5.15)

Then

(11.5.16)

(11.5.17)

(11.5.18)

(11.5.19)

where erf is the error function.

 Example 11.5.2: Kelvin’s estimate of the age of the earth

In the middle of the nineteenth century Lord Kelvin38 estimated the age of the earth using 
the observed vertical temperature gradient at the earth’s surface. He hypothesized that the 
earth was initially  formed at  a  uniform high temperature T

0
 and that  its  surface was 

subsequently maintained at the lower temperature of T
S
. Assuming that most of the heat 

conduction  occurred  near  the  earth’s  surface,  he  reasoned  that  he  could  neglect  the 
curvature  of  the  earth,  consider  the  earth’s  surface  planar,  and  employ  our 
one-dimensional heat conduction model in the vertical direction to compute the observed 
heat flux.

Following Kelvin, we model the earth’s surface as a flat plane with an infinitely deep 
earth  below (z>0).  Initially  the  earth  has  the  temperature  T

0
.  Suddenly  we  drop  the

if 0<t. This gives the final form for the temperature distribution:

38    Thomson, W., 1863: On the secular cooling of the earth. Philos. Mag., Ser. 4, 25, 157–170.

temperature at the surface to TS. We wish to find
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the  heat  flux  across  the  boundary  at  z=0  from  the  earth  into  an  infinitely  deep 
atmosphere.

The first step is to redefine our temperature scale (z, t)=u(z, t)+T
S
, where (z, t) is the

observed temperature so that u(0, t)=0 at the surface. Next, in order to use (11.5.14), we 
must define our initial state for z<0. To maintain the temperature u(0, t)=0, the initial 
temperature field f(z) must be an odd function or

(11.5.20)

From (11.5.14)

(11.5.21)

(11.5.22)

following the work in the previous example.
The heat flux q at the surface z=0 is obtained by differentiating (11.5.22) according to 

Fourier’s law and evaluating the result at z=0:

(11.5.23)

The  surface  heat  flux  is  infinite  at  t=0  because  of  the  sudden  application  of  the 
temperature T

S
 at t=0. After that time, the heat flux decreases with time. Consequently, 

the time t at which we have the temperature gradient (0, t)/ z is

(11.5.24)
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the age of the earth from (11.5.24) is 65 million years.
Although Kelvin realized that this was a very rough estimate, his calculation showed 

that  the  earth  had a  finite  age.  This  was  in  direct  contradiction to  the  contemporary 
geological  principle of uniformitarianism  that  the earth’s surface and upper crust  had 
remained  unchanged  in  temperature  and  other  physical  quantities  for  millions  and 
millions  of  years.  The  resulting  debate  would  rage  throughout  the  latter  half  of  the 
nineteenth  century  and  feature  such  luminaries  as  Kelvin,  Charles  Darwin,  Thomas 

Huxley,  and  Oliver  Heaviside.39  Eventually  Kelvin’s  arguments  would  prevail  and 
uniformitarianism would fade into history.

Today,  Kelvin’s  estimate  is  of  academic  interest  because  of  the  discovery  of 
radioactivity at the turn of the twentieth century. During the first half of the twentieth 
century, geologists assumed that the radioactivity was uniformly distributed around the 
globe and restricted to the upper few tens of kilometers of the crust. Using this model 
they would then use observed heat fluxes to compute the distribution of radioactivity 

within the solid earth.40 Today we know that the interior of the earth is quite dynamic; the 
oceans and continents are mobile and interconnected according to the theory of plate 
tectonics.  However,  geophysicists  still  use  measured  surface  heat  fluxes  to  infer  the 

interior41 of the earth.

 Example 11.5.3

So far we have shown how a simple application of separation of variables and the Fourier 
transform yields solutions to the heat equation over the semi-infinite interval (0, ) via
(11.5.5). Can we still use this technique for more complicated versions of the heat equation? 

The answer is yes but the procedure is more complicated. We illustrate it by solving42

(11.5.25)

subject to the boundary conditions

(11.5.26)

(11.5.27)

For the present near-surface thermal gradient of 25K/km, T
0

T
S
=2000K, and a2=1mm2/s,

39   See Burchfield, J.D., 1975: Lord Kelvin and the Age of the Earth. Science History Publ., 260 pp.
40   See Slichter, L.B., 1941: Cooling of the earth. Bull Geol Soc. Am., 52, 561–600.
41   Sclater, J.G., C.Jaupart, and D.Galson, 1980: The heat flow through oceanic and continental

      crust and the heat loss of the earth. Re . Geophys. Space Phys., 18, 269–311.
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and the initial condition

u(x, 0)=0, 0<x< .
(11.5.28)

We begin by multiplying (11.5.25) by sin(kx) and integrating over x from 0 to :

(11.5.29)

42 Taken from Fetec u, C., and J.Zierep, 2001: On a class of exact solutions of the equations of
motion of a second grade fluid. Acta Mech., 150, 135–138.

Next, we integrate by parts. For example,

(11.5.30)

(11.5.31)

(11.5.32)

=kf(t) k2U(k, t), 
(11.5.33)

where

(11.5.34)
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and  the  boundary  conditions  have  been  used  to  simplify  (11.5.30)  and  (11.5.  32). 
Equation (11.5.34) is the definition of the Fourier sine transform. It and its mathematical

cousin,  the  Fourier  cosine  transform   u(x,  t)  cos(kx)  dx,  are  analogous  to  the 
half-range sine and cosine expansions that appear in solving the heat equation over the 
finite interval (0, L). The difference here is that our range runs from 0 to .

Applying the same technique to the other terms, we obtain

[kf (t)–k2U (k, t)]+a2[kf(t)–k2U(k, t)]=U (k, t) 
(11.5.35)

with U(k,  0)=0, where the primes denote differentiation with respect to time. Solving
(11.5.35),

(11.5.36)

Using integration by parts on the second integral in (11.5.36), we find that

(11.5.37)

Because

(11.5.38)

(11.5.39)
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(11.5.40)

Problems

For Problems 1–4, find the solution of the heat equation

 

subject to the stated initial conditions.

2. u(x, 0)=e b|x|

4. u(x, 0)= (x)

Lovering43  has applied the solution to Problem 1 to cases involving the cooling of
lava.

5. Solve the spherically symmetric equation of diffusion,44

 

with u(r, 0)=u
0
 (r).

Step 1: Assuming v(r, t)=ru(r, t), show that the problem can be recast as

 

43    Lovering, T.S., 1935: Theory of heat conduction applied to geological problems. Bull. Geol Soc.
Am., 46, 69–94.

44   From Shklovskii, I.S., and V.G.Kurt, 1960: Determination of atmospheric density at a height of
430km by means of the diffusion of sodium vapors. ARS J., 30, 662–667 with permission.
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with v(r, 0)=r u
0
(r). 

Step 2: Using (11.5.14), show that the general solution is

 

Hint: What is the constraint on (11.5.14) so that the solution remains radially symmetric? 

Step 3: For the initial concentration of
 

show that

 

where erf is the error function.

11.6 THE SUPERPOSITION INTEGRAL

In  our  study  of  Laplace  transforms,  we  showed  that  we  can  construct  solutions  to 
ordinary differential equations with a general forcing f(t) by first finding the solution to a
similar problem where the forcing equals Heaviside’s step function. Then we can write 
the general solution in terms of a superposition integral according to Duhamel’s theorem.
In this section we show that similar considerations hold in solving the heat equation with
time-dependent boundary conditions or forcings.

Let us solve the heat condition problem

(11.6.1)

with the boundary conditions

u(0, t)=0, u(L, t)=f(t), 0<t, (11.6.2)
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u(x, 0)=0, 0<x<L. (11.6.3)

The solution of  (11.6.1)–(11.6.3)  is  difficult  because of  the  time-dependent  boundary 
condition. Instead of solving this system directly, let us solve the easier problem

(11.6.4)

with the boundary conditions

A(0, t)=0, A(L, t)=1, 0<t, (11.6.5)

and the initial condition

A(x, 0)=0, 0<x<L. (11.6.6)

Separation of variables yields the solution

(11.6.7)

Consider the following case. Suppose that we maintain the temperature at zero at the end 
x=L  until  t=

1 
 and  then  raise  it  to  the  value  of  unity.  The  resulting  temperature 

distribution equals zero everywhere when t<
1
 and equals A(x, t

1
) for t>

1
. We have 

merely shifted our time axis so that the initial condition occurs at t=
1
.

Consider an analogous, but more complicated, situation of the temperature at the end 
position x=L held at f(0) from t=0 to t=

1
 at which time we abruptly change it by the 

amount f(
1
)–f(0) to the value f(

1
). This temperature remains until t=

2
 when we again 

abruptly change it by an amount f(
2
)–f(

1
). We can imagine this process continuing up to 

the instant t=
n
. Because of linear superposition, the temperature distribution at any given 

time equals the sum of these temperature increments: 

u(x, t)=f(0)A(x, t)+[f(
1
)–f(0)]A(x, t

1
)+[f(

2
)–f(

1
)]A(x, t–

2
)

+…+[f(
n
)–f(

n 1
)]A(x, t

n
), 

(11.6.8)

and the initial condition
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fk=f(
k
)–f(

k 1
), and 

k
=

k
–

k–1
, (11.6.9)

(11.6.8) becomes

(11.6.10)

Consequently, in the limit of 
k
→0, (11.6.10) becomes

(11.6.11)

assuming that f(t) is differentiable. Equation (11.6.11) is the superposition integral. We 
can obtain an alternative form by integration by parts:

(11.6.12)

or

(11.6.13)

because

(11.6.14)

To illustrate the superposition integral, suppose f(t)=t. Then, by (11.6.11),

(11.6.15)

(11.6.16)

where 
n
 is the time of the most recent temperature change. If we write
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 Example 11.6.1: Temperature oscillations in a wall heated by an 

alternating current

In  addition  to  finding  solutions  to  heat  conduction  problems  with  timedependent
boundary  conditions,  we  can  also  apply  the  superposition  integral  to  the
nonhomogeneous heat equation when the source depends on time. Jeglic45 used this tech-
nique in obtaining the temperature distribution within a slab heated by alternating electric 
current. If we assume that the flat plate has a surface area A and depth L, then the heat
equation for the plate when electrically heated by an alternating current of frequency  is

(11.6.17)

where q is the average heat rate caused by the current,  is the density, C
p
 is the specific 

heat at constant pressure, and a2 is the diffusivity of the slab. We will assume that we 
insulated the inner wall so that

(11.6.18)

bigskip while we allow the outer wall to radiatively cool to free space at the temperature 
of zero or

(11.6.19)

where  is the thermal conductivity and h  is the heat transfer coefficient. The slab is 
initially at the temperature of zero or

u(x, 0)=0, 0<x<L.
(11.6.20)

45    Jeglic, F.A., 1962: An analytical determination of temperature oscillations in a wall heated by
alternating  current.  NASA Tech.  Note  No.  D-1286.  In  a  similar  vein,  Al-Nimr  and  
Abdallah [Al-Nimr, M.A., and M.R.Abdallah, 1999: Thermal behavior of insulated electric wires 
producing pulsating signals. Heat Transfer Engng., 20(4), 62–74] have found the heat transfer 
with an insulated wire that carries an alternating current.
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(11.6.21)

with the boundary conditions

(11.6.22)

and the initial condition

A(x, 0)=0, 0<x<L.
(11.6.23)

The solution A(x, t) is the indicial admittance because it is the response of a system to 
forcing by the step function H(t).

We solve (11.6.21)–(11.6.23) by separation of variables. We begin by assuming that 
A(x, t) consists of a steady-state solution (x) plus a transient solution (x, t), where

2 (x)=–1, (0)=0, (L)+h (L)=0, 
(11.6.24)

(11.6.25)

and

(x, 0)=–w(x).
(11.6.26)

Solving (11.6.24),

(11.6.27)

To solve the heat equation, we first solve the simpler problem of
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h* k
1

k
2

k
3

k
4

k
5

k
6

0.001 0.03162 3.14191 6.28334 9.42488 12.56645 15.70803

0.002 0.04471 3.14223 6.28350 9.42499 12.56653 15.70809

0.005 0.07065 3.14318 6.28398 9.42531 12.56677 15.70828

0.010 0.09830 3.14477 6.28478 9.42584 12.56717 15.70860

0.020 0.14095 3.14795 6.28637 9.42690 12.56796 15.70924

0.050 0.22176 3.15743 6.29113 9.43008 12.57035 15.71115

0.100 0.31105 3.17310 6.29906 9.43538 12.57432 15.71433

0.200 0.43284 3.20393 6.31485 9.44595 12.58226 15.72068

0.500 0.65327 3.29231 6.36162 9.47748 12.60601 15.73972

1.000 0.86033 3.42562 6.43730 9.52933 12.64529 15.77128

2.000 1.07687 3.64360 6.57833 9.62956 12.72230 15.83361

5.000 1.31384 4.03357 6.90960 9.89275 12.93522 16.01066

10.000 1.42887 4.30580 7.22811 10.20026 13.21418 16.25336

20.000 1.49613 4.49148 7.49541 10.51167 13.54198 16.58640

1.57080 4.71239 7.85399 10.99557 14.13717 17.27876

Turning to the transient solution (x, t), we use separation of variables and find that

(11.6.28)

where k
n
 is the nth root of the transcendental equation: k

n
 tan(k

n
)=hL/ = h*. Table 11.6.1 

gives the first six roots for various values of hL/ .
Our final task is to compute C

n
. After substituting t=0 into (11.6.28), we are left with a 

orthogonal expansion of –w(x) using the eigenfunctions cos(k
n
x/L). From (9.3.4),

(11.6.29)

(11.6.30)

Table 11.6.1: The First Six Roots of the Equation k
n
 tan (k

n
)=h*
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(11.6.31)

Consequently, A(x, t) equals

(11.6.32)

We now wish to use the solution (11.6.32) to find the temperature distribution within the 
slab when it is heated by a time-dependent source f(t). As in the case of time-dependent 
boundary conditions, we imagine that we can break the process into an infinite number of 
small changes to the heating which occur at the times t=

1
, t=

2
, etc. Consequently, the 

temperature distribution at the time t following the change at t=
n
 and before the change 

at t=
n+1

 is

(11.6.33)

where

fk=f(
k
)–f(

k 1
) and 

k
=

k
–

k–1
. 

(11.6.34)

In the limit of 
k
→0,

(11.6.35)

(11.6.36)

In our present problem,

(11.6.37)

Combining (11.6.28) and (11.6.30),
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(11.6.38)

(11.6.39)

(11.6.40)

Figure 11.6.1: The nondimensional temperature a2 ApC
p
u(x, t)/qL within a slab

Therefore,

that we heat by alternating electric current as a function of position x/L and time 
a2t/L2 when we insulate the x=0 end and let the x=L end radiate to free space at 
temperature zero. The initial temperature is zero, hL/k=1, and a2/(L2 )=1.
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Figure 11.6.1 illustrates (11.6.40) for hL/ =1, and a2/(L2 )=1. This figure was created 
using the MATLAB script

[gaXo 

XpnUltaoUlhacXE4 D 3A dUprXo D 3A h D 2A F D 32A

]x D 203A ]r D 203A

% 

% [oaXra eiereXg csapp Xr fUi 

% 

zaol D zaolp )gaicrd)F**A

blo i D 3=32222 

f3 D 203+iA f4 D 203+ )i,3*A

mol] D f3 + rXi)f3*A

y3 D dUprXo / mol]A y4 D dUprXo / f4 + rXi)f4*A

eb)y3+y4 CD 2 ( mol] C 4 ( h C F* h D h,3A zaol)h* D f3A ai]A

ai]A

%

% spa Iaurli/LXmdpli hardl] rl ehmolta tXgsap lb fUi

%

blo i D 3=FA blo f D 3=32

b D dUprXo’zaol)i* + rXi)zaol)i**A

bm D ’ rXi)zaol)i** ’ zaol)i*+pa[)zaol)i**T4A

zaol)i* D zaol)i* ’ b 1 bmA

ai] A ai] A 

% [lhmsra coe] Xi] eiereXgeza plgsreli 

N D O2=]x=3SA M D O2=]r=;SA

rahm3 D )20: , 31dUprXo*+liap)3.3aicrd)N** / 20:+N0+NA

rahm4 D liap)3. gaicrd)M** / [lp)4+M*A

s D rahm3’ + rahm4A

NN D N’ + liap)3.gaicrd)M**A

MM D liap )3.gaicrd)N**’+MA

% [lhmsra plgsreli bolh )330;052*

blo h D3=F

xrahm3 D zaol)h*+zaol)h*A

  

xrahm4 D 5 , asq_over_omegaL2*asq_over_omegaL2*xtempl*xtempl;
xtemp3 = asq_over_omegaL2 * xtemp1;
xtemp4 = zero(m) + sin(2*zero (m))/2;
xtemp5 = asq_over_omegaL2 * xtemp1;
aaaaa = 4 * sin(zero(m))/(xtemp1 * xtemp2 * xtemp4);
u = u – aaaaa * cos (zero(m)*X)’…
  *(xtemp5*sin(2*T) - 2 * cos(2*T) + 2* exp(-xtemp5 * T));
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end 
surf(XX,TT,u) 
xlabel(’DISTANCE’,’Fontsize’,20);ylabel(’TIME’,’Fontsize’,20)
zlabel(’SOLUTION’,’Fontsize’,20)

The oscillating solution, reflecting the periodic heating by the alternating current, rapidly
reaches  equilibrium.  Because  heat  is  radiated  to  space  at  x=L,  the  temperature  is
maximum at x=0 at any given instant as heat flows from x=0 to x=L.

 Example 11.6.2

Consider  the  following  heat  conduction  problem with  time-dependent  forcing  and/or
boundary conditions:

(11.6.41)

B(u)=g(Q, t), 0<t, (11.6.42)

and

u(P, 0)=h(P), (11.6.43)

where

(11.6.44)

(11.6.45)

P denotes an arbitrary interior point at (x
1
, x

2
, x

3
) of a region R, and Q is any point on the

boundary of R. Here c
i
, C

i
, and K

i
 are functions of x

1
, x

2
, and x

3
 only.

Many years ago, Bartels and Churchill46  extended Duhumel’s theorem to solve this
heat  conduction  problem.  They  did  this  by  first  introducing  the  simpler  initial-
boundary-value problem:

46    Bartels,  R.C.F.,  and R.V.Churchill,  1942: Resolution of boundary problems by the use of a
generalized convolution. Am. Math. Soc. Bull., 48, 276±282.
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(11.6.46)

B( )=g(Q, t
1
), 0<t, (11.6.47)

and

(P, 0)=h(p),
(11.6.48)

which has a constant forcing and boundary conditions in place of the timedependent ones. 
Here t

1
 denotes an arbitrary but fixed instant of time. Then Bartels and Churchill proved 

that the solution to the original problem is given by the convolution integral

(11.6.49)

To illustrate47 this technique, let us solve

(11.6.50)

subject to the boundary conditions

(11.6.51)

and the initial condition u(r, 0)=u
0
, <r< .

We begin by solving the alternative problem

(11.6.52)

subject to the boundary conditions

47   Reprinted with permission from Reiss, H., and V.K.LaMer, 1950: Diffusional boundary value
problems involving moving boundaries, connected with the growth of colloidal particles. J. 
Chem. Phys., 18, 1–12. ©1950, American Institute of Physics.
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(11.6.53)

and the initial condition (r, 0, t )=u
0
, a<r< , or equivalently

(11.6.54)

subject to the boundary conditions

(11.6.55)

and the initial condition w(r, 0, t )=u
0
(1 e ct ), <r< , where (r, t, t )=u

0
e ct +w(r, t, t ).

The  heat  condition  problem (11.6.54)–(11.6.55)  can  be  solved  using  separation  of 
variables. Following example 11.3.6, we find that

(11.6.56)

where k
n
 is the nth root of k=tan[k( a)], and 2c

n
={  sin2 [k

n
(  a)] }. Therefore,

(11.6.58)

(11.6.59)
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(11.6.60)

and the final answer is

(11.6.61)

Problems

1. Solve the heat equation48

 

subject to the boundary conditions u(0, t)=u(L, t)=f(t), 0<t, and the initial condition u(x,
0)=0, 0<x<L.
Step 1: First solve the heat conduction problem

 

subject to the boundary conditions A(0, t)=A(L, t)=1, 0<t, and the initial condition A(x,
0)=0, 0<x<L. Show that

 

Step 2: Use Duhamel’s theorem and show that

 

2. A thermometer measures temperature by the thermal expansion of a liquid (usually 
mercury or alcohol) stored in a bulb into a glass stem containing an empty cylindrical

48     From Tao,  L.N.,  1960:  Magnetohydrodynamic effects  on the  formation of  Couette  flow.  
J. Aerosp. Sci, 27, 334–338 with permission.
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channel. Under normal conditions, temperature changes occur sufficiently slow so that
the temperature within the liquid is uniform. However,  for rapid temperature changes
(such  as  those  that  would  occur  during  the  rapid  ascension  of  an  airplane  or
meteorological balloon), significant errors could occur. In such situations the recorded
temperature would lag behind the actual temperature because of the time needed for the 

heat to conduct in or out of the bulb. During his investigation of this question, McLeod49 

solved

 

subject to the boundary conditions lim
r→0

 |u(r, t)|< , and u(b, t)= (t), 0<t, and the initial

condition u(r, 0)=0, 0<r<b. The analysis was as follows:

Step 1: First solve the heat conduction problem

 

subject to the boundary conditions lim
r→0

 |A(r, t)|< , and A(b, t)=1, 0<t, and the initial

condition A(r, 0)=0, 0 r<b. Show that

 

where J
0
(k

n
)=0.

Step 2: Use Duhamel’s theorem and show that

 

49  Reproduced with acknowledgment to Taylor and Francis, Publishers, from McLeod, A.R., 1919:
On the lags of thermometers with spherical and cylindrical bulbs in a medium whose temper-
ature is changing at a constant rate. Philos. Mag., Ser. 6, 37, 134–144. See also Bromwich, T.J. 
I’A., 1919:  Examples  of  operational  methods  in  mathematical  physics.  Philos.  Mag.,  Ser. 

 

6,  37, 407–419; McLeod, A.R., 1922: On the lags of thermometers. Philos. Mag., Ser. 6, 43, 49–70.
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McLeod found that for a mercury thermometer of 10-cm length a lag of 0.01°C would 

occur for a warming rate of 0.032°C s 1 (a warming gradient of 1.9°C per thousand feet
and a descent of one thousand feet per minute). Although this is a very small number,
when he included the surface conductance of the glass tube, the lag increased to 0.85°C. 

Similar problems plague bimetal thermometers50 and thermistors51 used in radiosondes
(meteorological sounding balloons).

3. A classic problem52 in fluid mechanics is the motion of a semi-infinite viscous fluid
that results from the sudden movement of the adjacent wall starting at t=0. Initially the
fluid is at rest. If we denote the velocity of the fluid parallel to the wall by u(x, t), the
governing equation is

 

with the boundary conditions u(0, t)=V(t), lim
x→

 u(x, t)→0, 0<t, and the initial condition

u(x, 0)=0, 0<x< .
Step 1: Find the step response by solving

 

subject to the boundary conditions

 

and the initial condition A(x, 0)=0, 0<x< . Show that

Step 3: If (t)=Gt, show that

50    Mitra,  H.,  and  M.B.Datta,  1954:  Lag  coefficient  of  bimetal  thermometer  of  chronometric
radiosonde. Indian J. Meteorol. Geophys., 5, 257–261.

51   Badgley, F.I., 1957: Response of radiosonde thermistors. Re . Sci. Instrum., 28, 1079–1084.
52  This problem was first posed and partially solved by Stokes, G.G., 1850: On the effect of the

internal friction of fluids on the motions of pendulums. Proc. Cambridge Philos. Soc., 9, Part 

II, [8]–[106],
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where erfc is the complementary error function. Hint: Use Laplace transforms. 
Step 2: Use Duhamel’s theorem and show that the solution is

 

4. During their study of the propagation of a temperature step in a nearly supercritical, 

van der Waals gas, Zappoli and Durand-Daubin53 solved

 

with the boundary conditions  lim
x→

 u(x, t)→0, 0<t, and the initial 

condition u(x, 0)=0, 0<x< , where u
0
 is a constant.

Step 1: Find the step response by solving

 

subject  to  the  boundary conditions  A(0,  t)=1,  lim
x→

 A(x,  t)→  0,  0<t,  and the initial

condition A(x, 0)=0, 0<x< . Show that

 

where erfc is the complementary error function. Hint: Use Laplace transforms.
Step 2: Use Duhamel’s theorem and show that the solution is

 

53   Reprinted  with  permission from Zappoli,  B.,  and A.Durand-Daubin,  1994:  Heat-  and mass
transport in a near supercritical fluid. Phys. Fluids, 6, 1929–1936. ©1994, American Institute 
of Physics.
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subject  to  the boundary conditions u(0,  t)=f(t),  u
x
(1,  t)= hu(1,  t),  0<t,  and the initial

condition u(x, 0)=0, 0<x<1.
Step 1: First solve the heat conduction problem

 

subject  to  the  boundary  conditions  A(0,  t)=1,  A
x
(1,  t)= hA(1,  t),  0<t,  and  the  initial

condition A(x, 0)=0, 0<x<1. Show that

 

where k
n
 is the nth root of k cot(k)= h. 

Step 2: Use Duhamel’s theorem and show that

 

11.7 NUMERICAL SOLUTION OF THE HEAT EQUATION

In the previous chapter we showed how we may use finite difference techniques to solve 
the wave equation. In this section we show that similar considerations hold for the heat 
equation.

Starting with the heat equation

(11.7.1)

we must  first  replace the exact  derivatives with finite  differences.  Drawing upon our 
work in §10.6,

(11.7.2)

5. Solve the heat equation
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Figure 11.7.1: Schematic of the numerical solution of the heat equation when
we hold both ends at a temperature of zero.

and

(11.7.3)

where the notation  denotes u(x
m

, t
n
). Figure 11.7.1 illustrates our numerical scheme

when we hold both ends at the temperature of zero. Substituting (11.7.2)–(11.7.3) into
(11.7.1) and rearranging,

(11.7.4)

The numerical integration begins with n=0 and the value of  and  are
giyen by f(m x). 

Once again we must check the convergence, stability, and consistency of our scheme.

We begin by writing  and  in terms of the exact solution u and its 
derivatives evaluated at the point x

m
=m x and t

n
=n t. By Taylor’s expansion,

(11.7.5)

(11.7.6)and
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(11.7.7)

Substituting into (11.7.4), we obtain

(11.7.8)

The first  term on the right side of (11.7.8) vanishes because u(x,  t)  satisfies the heat 
equation. Thus, in the limit of x→0, t→0, the right side of (11.7.8) vanishes and the 
scheme is consistent.

To determine the stability of the explicit scheme, we again use the Fourier method. 
Assuming a solution of the form:

(11.7.9)

we substitute (11.7.9) into (11.7.4) and find that

(11.7.10)

or

(11.7.11)

The quantity ei  will grow exponentially unless

(11.7.12)

The right inequality is trivially satisfied if a2 t/( x)2>0, while the left inequality yields

(11.7.13)
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leading to the stability condition  This is a rather restrictive 
condition because doubling the resolution (halving x) requires that we reduce the time 
step by a quarter. Thus, for many calculations the required time step may be unacceptably 
small.  For  this  reason,  many  use  an  implicit  form of  the  finite  differencing  (Crank-

Nicholson implicit method54):

(11.7.14)

Figure  11.7.2:  The  growth  of  error  ||e
n
||  as  a  function  of  a2t  for  various 

resolutions. For the top line, x=0.1; for the middle line, x=0.01; and 
for the bottom line, x=0.001.

although it requires the solution of a simultaneous set of linear equations. However, there 
are several efficient methods for their solution.

Finally we must check and see if our explicit scheme converges to the true solution. If 

we let  denote the difference between the exact and our finite differenced solution to 

the heat equation, we can use (11.7.8) to derive the equation governing  and find that

(11.7.15)

54    Crank, J., and P.Nicholson, 1947: A practical method for numerical evaluation of solutions of
partial  differential  equations  of  the  heat-conduction  type.  Proc.  Cambridge.  Philos.  Soc.,
43, 50–67.
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for m=1, 2,…, M. Assuming that  then

 

 (11.7.16)

||e
n
||+A[( t)2+ t( x)2], (11.7.17)

where  Consequently,

||e
n+1

|| ||e
n
||+A[( t)2+ t( x)2]. (11.7.18)

Because ||e
0
||=0 and n t t

n
, we find that

                                ||e
n+1

|| A
n
[( x)2] At

n
[ t+( x)2]. (11.7.19)

As x→0, t→0, the errors tend to zero and we have convergence. We have illustrated
(11.7.19) in Figure 11.7.2 by using the finite difference equation (11.7.4) to compute ||e

n
||

during a numerical experiment that used a2 t/( x)2=0.5, and f(x)=sin( x). Note how each 
increase of resolution by 10 results in a drop in the error by 100.
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Figure  11.7.3:  The  numerical  solution  u(x,  t)  of  the  heat  equation  with

a2 t/( x)2= 0.47 at various positions x =x/L and times t =a2t/L2 using
(11.7.4). The initial temperature u(x, 0) equals 4x (1–x ) and we hold
both ends at a temperature of zero.

The following examples illustrate the use of numerical methods. 

  Example 11.7.1

For  our  first  example,  we  redo  Example  11.3.1  with  a2 t/( x)2=0.47  and  0.53.  Our
numerical solution was computed using the MATLAB script

clear 

coeff = 0.47; % coeff = a2∆t/(∆x)2 
ncount = 1; dx = 0.1; dt = coeff * dx * dx;

N = 99; x = 0: dx:1;

M = 1/dx + 1; % M = number of spatial grid points 

tplot(1) = 0; u = zeros (M,N+1); 

for m = 1:M; u (m,1)=4*x(m)*(1−x(m));temp(m,1)=u(m,1); end 
% integrate forward in time 

for n = 1:N 

t = dt * n; 

for m = 2 : M−1 
u(m,n+1) = u(m,n) + coeff*(u(m+1,n) - 2 * u(m,n) + u(m−1,n)); 
end 

if mod(n+1,2) == 0 

ncount = ncount + 1; tplot(ncount) =t; 

for m = 1:M; temp(m,ncount) = u(m,n+1); end

end; end
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Figure 11.7.4: Same as Figure 11.7.3 except that a2 t/( x)2=0.53.

% plot the numerical solution
X = x’ * ones(1,length(tplot)); T = ones(M,1)* tplot;
surf (X,T,temp)
xlabel(’DISTANCE’,’Fontsize’,20);ylabel(’TIME’,’Fontsize’,20)
zlabel(’TEMPERATURE’,’Fontsize’,20)

As Figure 11.7.3 shows, the solution with a2 t/( x)2<1/2 performs well. On the other

hand,  Figure  11.7.4  shows small-scale,  growing disturbances  when a2 t/( x)2>1/2.  It
should be noted that for he reasonable x= L/100, it takes approximately 20,000 time

steps before we reach a2t/L2=1.

 Example 11.7.2

In this example, we redo the previous example with an insulated end at x=L. Using the
centered differencing formula,

(11.7.20)



The Heat Equation 751

(11.7.21)

Eliminating  between the two equations,

(11.7.22)

Figure 11.7.5:  Same as Figure 11.7.4 except  that  we now have an insulated
boundary condition u

x
(L, t)=0.

To implement this new boundary condition in our MATLAB script, we add the line

u(M,n+1) = u(M,n) + 2 * coeff * (u(M−1,n) - u(M,n));
after the lines 

for m = 2:M−1
u(m,n+1)=u(m,n) + coeff * (u(m+1,n) - 2 * u(m,n) + u (m−1,n));
end

Figure 11.7.5 illustrates our numerical solution at various positions and times.

Project: Implicit Numerical Integration of the Heat Equation

The difficulty in using explicit time differencing to solve the heat equation is the very
small time step that must be taken at moderate spatial resolutions to ensure stability. This
small time step translates into an unacceptably long execution time. In this project you
will  investigate  the Crank-Nicholson implicit  scheme which allows for  a  much more
reasonable time step.

because u
x
(L, t)=0. Also, at i=M,
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Step 1: Develop a MATLAB script that uses the Crank-Nicholson equation (11.7.14) to 
numerically integrate the heat equation. To do this, you will need a tridiagonal solver to

find  This is explained at the end of §14.1. However, many numerical methods 

books55 actually have code already developed for your use. You might as well use this 
code.

Figure 11.7.6: The numerical solution u(x, t) of the heat equation u
t
=a2u

xx
 using

the Crank-Nicholson method. The parameters used in the numerical 
solution are a2 t=0.005 and x=0.05. Both ends are held at zero with 

an  initial  condition  of  u(x,  0)=0  for   and

Step  2:  Test  your  code  by  solving  the  heat  equation  given  the  initial  condition  u(x,
0)=sin( x), and the boundary conditions u(0, t)=u(1, t)=0. Find the solution for various 
values of t with x=0.01. Compare this numerical solution against the exact solution 
which you can find. How does the error (between the numerical and exact solutions) 
change with t? For small t, the errors should be small. If not, then you have a mistake 
in your code.
Step 3: Once you have confidence in your code, discuss the behavior of the scheme for

various values of x and t for the initial condition u(x, 0)=0 for  and u(x,

0)=1  for   with  the  boundary  conditions  u(0,  t)=u(1,  t)=0.

55    For example, Press, W.H., B.P.Flannery, S.A.Teukolsky, and W.T.Vetterling, 1986: Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, §2.6.
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Although you can take quite a large t, what happens? Did a similar problem arise in 

Step  2?  Explain  your  results.  Zvan  et  al.56  have  reported  a  similar  problem  in  the 
numerical integration of the Black-Scholes equation from mathematical finance.

56    Zvan, R., K.Vetzal, and P.Forsyth, 1998: Swing low, swing high. Risk, 11(3), 71–75.



Chapter 12 

Laplace’s Equation

In the previous chapter we solved the one-dimensional heat equation. Quite often we
found that the transient solution died away, leaving a steady state. The partial differential
equation that describes the steady state for two-dimensional heat conduction is Laplace’s
equation

(12.0.1)

In general, this equation governs physical processes where equilibrium has been reached. 
It also serves as the prototype for a wider class of elliptic equations

(12.0.2)

where b2<4ac. Unlike the heat and wave equations, there are no initial conditions and the 
boundary conditions completely specify the solution. In this chapter we present some of 
the common techniques for solving this equation.

12.1 DERIVATION OF LAPLACE’S EQUATION

Imagine a thin, flat plate of heat-conducting material between two sheets of insulation. 
Sufficient time has passed so that the temperature depends only 

on the spatial coordinates x and y. Let us now apply the law of conservation of energy 
(in rate form) to a small rectangle with sides x and y.

If q
x
 (x, y) and q

y
 (x, y) denote the heat flow rates in the x- and y-direction, respectively, 

conservation of energy requires that the heat flow into the slab equals the heat flow out of 
the slab if there is no storage or generation of heat.

Now

rate in=q
x
(x, y+ y/2) y+q

y
(x+ x/2, y) x, (12.1.1)

and

rate out=q
x
(x+ z, y+ y/2) y+q

y
(x+ x/2, y+ y) x. (12.1.2)
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[qx(x,  y+ y/2)+ y/2)–q
x
(x+ x,  y+ y/2)] y  +[q

y
(x+ x/2,  y)–q

y
(x+ x/2, 

y+ y)] x=0. 
(12.1.3)

Upon dividing through by x y we obtain two differences quotients on the left side of
(12.1.3). In the limit as x, y→0, they become partial derivatives, giving

(12.1.4)

for any point (x, y). 
We now employ Fourier’s law to eliminate the rates q

x
 and q

y
, yielding

(12.1.5)

if we have an isotropic (same in all directions) material. Finally, if a2 is constant, (12.1.5) 
reduces to

(12.1.6)

which is the two-dimensional, steady-state heat equation (i.e., u
t

0 as t→ ).

Solutions of Laplace’s equation (called harmonic functions) difFer fundamentally from 
those encountered with the heat and wave equations. These latter two equations describe 
the evolution of some phenomena. Laplace’s equation, on the other hand, describes things 
at  equilibrium. Consequently,  any change in  the boundary conditions affects  to  some 
degree the  entire  domain because a  change to  any one point  causes  its  neighbors  to 
change in order to reestablish the equilibrium. Those points will, in turn, affect others.

If the plate has unit thickness,
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Figure 12.1.1: Today we best remember Pierre-Simon Laplace (1749–1827) for 
his work in celestial mechanics and probability. In his five volumes 
Traité  de  Mécanique  céleste  (1799–1825),  he  accounted  for  the 
theoretical orbits of the planets and their satellites. Laplace’s equation 
arose during this study of gravitational attraction. (Portrait courtesy of 
the Archives de l’Académie des sciences, Paris.)

Because  all  of  these  points  are  in  equilibrium,  this  modification  must  occur 
instantaneously.

Further insight follows from the maximum principle. If Laplace’s equation governs a 
region, then its solution cannot have a relative maximum or minimum inside the region 

unless the solution is constant.1 If we think of the solution as a steady-state temperature
distribution, this principle is clearly true because at any one point the temperature cannot
be greater than at all other nearby points. If that were so, heat would flow away from the
hot point to cooler points nearby, thus eliminating the hot spot when equilibrium was 
once again restored.

It  is  often  useful  to  consider  the  two-dimensional  Laplace’s  equation  in  other 
coordinate systems. In polar coordinates, where x=r cos( ), y=

1    For the proof, see Courant, R., and D.Hilbert, 1962: Methods of Mathematical Physics, Vol 2:
Partial Differential Equations. Interscience, pp. 326–331.
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(12.1.7)

if the problem possesses axisymmetry. On the other hand, if the solution is independent 
of z, Laplace’s equation becomes

(12.1.8)

In  spherical  coordinates,  x=r  cos( )sin( ),  y=r  sin( )sin( ),  and  z=r  cos( ),  where 
r2=x2+y2+z2,  is the angle measured down to the point from the z-axis (colatitude) and 
is the angle made between the x-axis and the projection of the point on the xy plane. In 
the case of axisymmetry (no  dependence), Laplace’s equation becomes

(12.1.9)

12.2 BOUNDARY CONDITIONS

Because Laplace’s equation involves time-independent phenomena, we must only specify 
boundary  conditions.  As  we  discussed  in  §11.2,  we  can  classify  these  boundary 
conditions as follows:

1. Dirichlet condition: u given

2. Neumann condition:  given, where n is the unit normal direction

3. Robin condition:  given

along any section of the boundary. In the case of Laplace’s equation, if all of the 
boundaries have Neumann conditions, then the solution is not unique. This follows from 
the fact that if u(x, y) is a solution, so is u(x, y)+c, where c is any constant.

Finally we note that we must specify the boundary conditions along each side of the 
boundary. These sides may be at infinity as in problems with semiinfinite domains. We 
must specify values along the entire boundary because we could not have an equilibrium 
solution if any portion of the domain was undetermined.

12.3 SEPARATION OF VARIABLES

As in the case of the heat and wave equations, separation of variables is the most popular 
technique for solving Laplace’s equation. Although the same general procedure carries

r sin( ), and z=z, Laplace’s equation becomes

over from the previous two chapters, the following examples fill out the details.
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 Example 12.3.1: Groundwater flow in a valley

Over a century ago, a Prench hydraulic engineer named Henri-PhilibertGaspard Darcy 

(1803–1858) published the results of a laboratory experiment on the flow of water 

through sand. He showed that the apparent fluid velocity q relative to the sand grains is 

directly  proportional  to  the  gradient  of  the  hydraulic  potential   where  the
hydraulic potential  equals the sum of the elevation of the point of measurement plus 
the pressure potential (p/ g). In the case of steady flow, the combination of Darcy’s law 

with conservation of mass  yields Laplace’s equation  if the aquifer
is isotropic (same in all directions) and homogeneous.

To illustrate how separation of variables can be used to solve Laplace’s equation, we 
will determine the hydraulic potential within a small drainage basin that lies in a shallow 

valley.  See  Figure  12.3.1.  Following  Tóth,2  the  governing  equation  is  the 
two-dimensional Laplace equation

(12.3.1)

along with the boundary conditions

u(x, z
0
)=gz

0
+gcx, (12.3.2)

u
x
(0, y)=u

x
(L, y)=0, and u

y
(x, 0)=0, (12.3.3)

where u(x, y) is the hydraulic potential, g is the acceleration due to gravity, and c gives 
the slope of the topography. The conditions u

x
(L, y)=0, and u

y
(x, 0)=0 specify a no-flow 

condition through the bottom and sides of the aquifer. The condition u
x
(0, y)=0 ensures 

symmetry about the x=0 line.  Equation (12.3.2) gives the fluid potential  at  the water 
table, where z

0
 is the elevation of the water table above the standard datum. The term gcx 

in (12.3.2) expresses the increase of the potential from the valley bottom toward the water 
divide. On average it closely follows the topography.

Following  the  pattern  set  in  the  previous  two  chapters,  we  assume  that  u(x,
y)=X(x)Y(y). Then (12.3.1) becomes

X Y+XY =0. (12.3.4)

2    Tóth, J., J. Geophys. Res., 67, 4375–4387, 1962, copyright by the American Geophysical Union.
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Figure 12.3.1: Cross section of a valley.

Separating the variables yields

(12.3.5)

Both sides of (12.3.5) must be constant, but the sign of that constant is not obvious. From 
previous experience we anticipate that the ordinary differential equation in the x-direction leads  
to  a  Sturm-Liouville  problem  because  it  possesses  homogeneous  boundary conditions.  
Proceeding  along  this  line  of  reasoning,  we  consider  three  separation constants.

Trying  a  positive  constant  (say,  m2),  (12.3.5)  separates  into  the  two  ordinary 
differential equations

X"–m2X=0, and Y"+m2Y=0,
(12.3.6)

which have the solutions

X(x)=A cosh(mx)+B sinh(mx),
(12.3.7)
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and

Y(y)=C cos(my)+D sin(my). (12.3.8)

Because the boundary conditions (12.3.3) imply X (0)=X (L)=0, both A and B must be 
zero, leading to the trivial solution u(x, y)=0.

When the separation constant equals zero, we find a nontrivial solution given by the

eigenfunction  X
0
(x)=1,  and   However,  because   from

(12.3.3),  B
0
=0.  Thus,  the  particular  solution  for  a  zero  separation  constant  is  u

0
(x,

y)=A
0
/2.

Finally, taking both sides of (12.3.5) equal to k2,

X +k2X=0, and Y k2Y=0. (12.3.9)

The first of these equations, along with the boundary conditions X (0)= X (L)=0, gives the 
eigenfunction X

n
(x)=cos(k

n
x), with k

n
=n /L, n=1, 2, 3,… The function Y

n
(y) for the same 

separation constant is

Y
n
(y)=A

n
 cosh(k

n
y)+B

n
 sinh(k

n
y). (12.3.10)

We must take B
n
=0 because 

We now have the product solution X
n
(x)Y

n
(y), which satisfies Laplace’s equation and

all  of  the boundary conditions except  (12.3.2).  By the principle  of  superposition,  the
general solution is

(12.3.11)

Applying (12.3.2), we find that

(12.3.12)
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(12.3.13)

and

(12.3.14)

Performing the integrations,

A
0
=2gz

0
+gcL, (12.3.15)

and

(12.3.16)

Finally, the complete solution is

(12.3.17)

Figure 12.3.2 presents two graphs by Tóth for two different aquifers. We see that the 
solution satisfies the boundary condition at the bottom and side

which we recognize as a Fourier half-range cosine series such that

Figure  12.3.2:  Two-dimensional  potential  distribution  and  flow    

patterns  for different depths of the horizontally impermeable boundary.
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boundaries. Water flows from the elevated land (on the right) into the valley (on the left), 
from regions of high to low hydraulic potential.

 Example 12.3.2

In the previous example, we had the advantage of homogeneous boundary conditions along x=0 
and x=L. In a different hydraulic problem, Kirkham3 solved the more difficult problem of

(12.3.18)

subject to the Dirichlet boundary conditions

u(x, 0)=Rx, u(x, h)=RL, u(L, y)=RL, (12.3.19)

and

(12.3.20)

This  problem arises  in  finding  the  steady  flow within  an  aquifer  resulting  from the 
introduction of water at the top due to a steady rainfall and its removal along the sides by 
drains. The parameter L equals half of the distance between the drains, h is the depth of 
the aquifer, and R is the rate of rainfall.

3     Kirkham,  D.,  Trans.  Am.  Geophys.  Union,  39,  892–908,  1958,  copyright  by  the  American
Geophysical Union.

The point of this example is: We need homogeneous boundary conditions along either 
the x or y boundaries for separation of variables to work. We achieve this by breaking the 
original problem into two parts, namely

u(x, y)= (x, y)+ (x, y)+RL,
(12.3.21)
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where

(12.3.22)

with

(0, y)= (L, y)=0, (x, h)=0, (12.3.23)

and

(x, 0)= R(x L); (12.3.24)

(12.3.25)

with

(x, 0)= (x, h)=0, (L, y)=0, (12.3.26)

and

(12.3.27)

Employing the same technique as in Example 12.3.1, we find that

(12.3.28)

where

(12.3.29)



764 Advanced Engineering Mathematics with MATLAB

Similarly, the solution to (x, y) is found to be

(12.3.30)

where

(12.3.31)

(12.3.32)

The complete solution consists of substituting (12.3.28) and (12.3.30) into (12.3.21).

 Example 12.3.3

The electrostatic potential is defined as the amount of work which must be done against electric 
forces to bring a unit charge from a reference point to a given point. It is readily shown4 that the 
electrostatic potential is described by Laplace’s equation if there is no charge within the domain. 
Let us find the electrostatic potential u(r, z) inside a closed cylinder of length L and radius 
a. The base and lateral surfaces have the potential 0 while the upper surface has the potential V.

Because  the  potential  varies  in  only  r  and  z,  Laplace’s  equation  in  cylindrical 
coordinates reduces to

(12.3.33)

subject to the boundary conditions

u(a, z)=u(r, 0)=0, and u(r, L)=V.
(12.3.34)

To solve this problem by separation of variables,5 let u(r, z)=R(r)Z(z) and

(12.3.35)

4  For static fields, where E is the electric force. From §13.4, we can
 From Gauss’ law,  introduce a potential  such that 

5  Wang and Liu [Wang, M.-L., and B.-L.Liu, 1995: Solution of Laplace equation by the method of
separation of variables. J. Chinese Inst. Eng., 18, 731–739] have written a review article on 
the solutions to (12.3.33) based upon which order the boundary conditions are satisfied.
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Only a negative separation constant yields nontrivial solutions in the radial direction. In 
that case, we have that

(12.3.36)

The  solutions  of  (12.3.36)  are  the  Bessel  functions  J
0
(kr/a)  and  Y

0
(kr/a).  Because

Y
0
(kr/a) becomes infinite at r=0, the only permissible solution is J

0
(kr/a). The condition

that u(a, z)=R(a)Z(z)=0 forces us to choose values of k such that J
0
(k)=0. Therefore, the

solution in the radial direction is J
0
(k

n
r/a), where k

n
 is the nth root of J

0
(k)=0.

In the z direction,

(12.3.37)

The general solution to (12.3.37) is

(12.3.38)

Because u(r, 0)=R(r)Z(0)=0 and cosh(0)=1, B
n
 must equal zero. Therefore, the general

product solution is

(12.3.39)
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(12.3.40)

where

(12.3.41)

from (9.5.35) and (9.5.43). Thus,

(12.3.42)

The solution is then

(12.3.43)

Figure 12.3.3 illustrates (12.3.43) for the case when L=a where we included the first 20
terms of the series. It was created using the MATLAB script

clear 
L_over_a = 1; M = 20; dr = 0.02; dz = 0.02; 
% load in zeros of J_0 
zero( 1) = 2.40482; zero( 2) = 5.52007; zero( 3) = 8.65372;
zero( 4) = 11.79153; zero( 5) = 14.93091; zero( 6) = 18.07106; 
zero( 7) = 21.21164; zero( 8) = 24.35247; zero( 9) = 27.49347; 
zero(10) = 30.63461; zero(11) = 33.77582; zero(12) = 36.91710;

The condition that u(r, L)=V determines the arbitrary constant A
n
. Along z=L,
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Figure 12.3.3:  The steady-state  potential  (divided by V)within  a  cylinder  of
equal radius and height a when the top has the potential V while the
lateral side and bottom are at potential 0.

zero(13) = 40.05843; zero(14) = 43.19979; zero(15) = 46.34119;
zero(16) = 49.48261; zero(17) = 52.62405; zero(18) = 55.76551; 
zero(19) = 58.90698;  zero(20) = 62.04847;
% compute Fourier coeff icients 
for m = 1:M
a(m) = 2/ (zero(m)*besselj(1,zero(m))*sinh(L_over_a * zero(m)));
end 
% compute grid and initialize solution 
R_over_a = [0:dr:1]; Z_over_a = [0:dz:1];
u = zeros(length(Z_over_a), length(R_over_a));
RR_over_a = repmat(R_over_a, [length(Z_over_a)1]);
ZZ_over_a = repmat(Z_over_a’,[1 length(R_over_a)]);
% compute solution from (12.3.43)
for m = 1:M
u=u+a(m).*besselj(0,zero(m)*RR_jover_a).*sinh(zero(m)*ZZ_over_a);
end 
surf(RR_over_a,ZZ_over_a,u)
xlabel(’R/A’,’Fontsize’,20);ylabel(’Z/A’,’Fontsize’,20)
zlabel(’U(R,Z)’,’Fontsize’,20)
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jump from V to 0 at r=a. For that reason our solution 
suffers  from Gibbs  phenomena  along  this  boundary.  As  we  move  away from that

region the electrostatic potential varies smoothly.

 Example 12.3.4

Let us now consider a similar, but slightly different, version of example 12.3.3, where the
ends are held at zero potential while the lateral side has the value V.  Once again, the 
governing equation is (12.3.33) with the boundary conditions

u(r, 0)=u(r, L)=0, and u(a, z)=V. (12.3.44)

Separation of variables yields

(12.3.45)

with Z(0)=Z(L)=0. We chose a positive separation constant because a negative constant
would give hyperbolic functions in z  which cannot satisfy the boundary conditions. A
separation constant of zero would give a straight line for Z(z). Applying the boundary 
conditions  gives  a  trivial  solution.  Consequently,  the  only  solution  in  the  z  direction 
which satisfies the boundary conditions is Z

n
(z)=sin(n z/L).

In the radial direction, the differential equation is

(12.3.46)

As we showed in §9.5, the general solution is

(12.3.47)

where I
0
 and K

0
 are modified Bessel functions of the first and second kind, respectively,

of  order  zero.  Because  K
0
(x)  behaves  as—ln(x)  as  x→0,  we must  discard  it  and our 

solution in the radial direction becomes R
n
(r)= A

n
I
0
(n r/L). Hence, the product solution is

(12.3.48)

Of particular interest are the ripples along the line z=L. Along that line, the solution must
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and the general solution is a sum of these particular solutions, namely

(12.3.49)

Finally, we use the boundary conditions that u(a, z)=V to compute A
n
.  This condition

gives

(12.3.50)

so that

(12.3.51)

Therefore, the final answer is

(12.3.52)

Figure 12.3.4 illustrates the solution (12.3.52) for the case when L=a. It was created using
the MATLAB script

clear 

a_over_L = 1; M = 200; dr = 0.02; dz = 0.02;

%

% compute grid and initialize solution 

%

R_over_L = [0:dr:1]; Z_over_L = [0:dz:1];

u = zeros(length(Z_over_L),length(R_over_L));

RR_over_L = repmat(R_over_L,[length(Z_over_L)1]);

ZZ_over_L = repmat(Z_over_L’,[1 length(R_over_L)]);

%

for m = 1:M

temp = (2*m−1)*pi; prod1 = temp*a_over_L;
%

% compute modified besse1 functions in (12.3.52) 

% 

for j = 1:length(Z_over_L); f or  i = 1:length(R_over_L);

prod2 = temp*RR_over_L(i,j);

%
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if prod2 - prod1 > −10
%

if prod2 < 20

ratio(i,j) = besseli(0,prod2) / besseli (0,prod1);

else

% for large values of prod, use asymptotic expansion

% for modified besse1 function 

ratio(i,j) = sqrt(prod1/prod2) * exp(prod2-prod1); end;

%

Figure 12.3.4: Potential (divided by V) within a conducting cylinder when the top
and bottom have a potential 0 while the lateral side has a potential V.

else 
ratio (i,j) = 0; end
%
end; end;
% 
% compute solution from (12.3.52)
% 
u = u + (4/temp)*ratio .* sin(temp*ZZ_over_L);
end
surf(RR_over_L,ZZ_over_L,u)
xlabel(’R/L’,’Fontsize’,20);ylabel (’Z/L’,’Fontsize’,20)
zlabel(’SOLUTION’,’Fontsize’,20)

Once again, there is a convergence of equipotentials at the corners along the right side. If
we had plotted more contours, we would have observed Gibbs phenomena in the solution
along the top and bottom of the cylinder.
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 Example 12.3.5

In  the  previous  examples,  the  domain  was  always  of  finite  extent.  Assuming  axial 
symmetry, let us now solve Laplace’s equation

(12.3.53)

in the half-plane z>0 subject to the boundary conditions

(12.3.54)

(12.3.55)

This problem gives the steady-state temperature distribution in the half-space z>0 where

the temperature on the bounding plane z=0 equals u
0
 within a circle of radius a and

equals 0 outside of the circle.
As before we begin by assuming the product solution u(r, z)=R(r)Z(z) and separate the 

variables. Again, the separation constant may be positive, negative, or zero. Turning to
the positive separation constant first, we have that

(12.3.56)

Focusing on the R equation,

(12.3.57)

The solution to (12.3.57) is

R(r)=A
1
I
0
(mr)+A

2
k

0
(mr), 

(12.3.58)

where I
0
( ) and K

0
( ) denote modified Bessel functions of order zero and the first and

second kind, respectively. Because u(r, 2), and hence R(r), must be bounded as r→0, 
A

2
=0.  Similarly,  since  u(r, z)  must  also  be  bounded  as r→ , A

1
=0 because lim r→

I
0
(mr)→ . Thus, there is only a trivial solution for a positive separation constant. 
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We next try the case when the separation constant equals 0. This yields

(12.3.59)

The solution here is

R(r)=A
1
+A

2
 ln(r). (12.3.60)

Again, boundedness as r → 0 requires that A
2
=0. What about A

1
? Clearly, for any 

arbitrary value of z, the amount of internal energy must be finite.
This corresponds to

(12.3.61)

and A
1
=0. The choice of the zero separation constant yields a trivial solution. 

Finally, when the separation constant equals k2, the equations for R(r) and Z(z) are

r2R +rR+k2r2R=0, and Z k2Z=0, 
(12.3.62)

respectively. Solving for R(r) first, we have that

R(r)=A
1
J

0
(kr)+A

2
Y

0
(kr), 

(12.3.63)

where J
0
( ) and Y

0
( )denote Bessel functions of order zero and the first and second kind, 

respectively. The requirement that u(r, z), and hence R(r), is bounded as r → 0 forces us
to take A

2
=0, leaving R(r)=A

1
J

0
(kr). From the equation for Z(z), we conclude that

Z(z)=B
1
ekz+B

2
e kz. (12.3.64)
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Z(z)=B
2
e kz.

Presently our analysis has followed closely those for a finite domain. However, we
have satisfied all of the boundary conditions and yet there is still  no  restriction on k.
Consequently, we conclude that k is completely arbitrary and any product solution

u
k
(r, z)=A

1
B

2
 J

0
(kr) e kz 

(12.3.65)

is a solution to our partial differential equation and satisfies the boundary conditions. 
From the principle of linear superposition, the most general solution equals the sum of all
of the possible solutions or

(12.3.66)

where we have written the arbitrary constant A
1
B

2
 as A(k)k. Our final task remains to 

compute A(k).
Before  we can find A(k),  we must  derive  an  intermediate  result.  If  we define  our 

Fourier transform in an appropriate manner, we can write the twodimensional Fourier 
transform pair as

(12.3.67)

where

(12.3.68)

Consider now the special case where f(x, y) is only a function of  so that
f(x, y)=g(r). Then, changing to polar coordinates through the 

substitution x=r cos( ), y=r sin( ), k=  cos( ), and ℓ=  sin( ), we have that

kx+ℓy=r [cos( ) cos( )+sin( ) sin( )]=r  cos( ), (12.3.69)

Since u(r, z),  and hence Z(z),  must be bounded as z → ,  it  follows that B
1
=0, leaving
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dA=dx dy=r dr d . (12.3.70)

Therefore, the integral in (12.3.68) becomes

(12.3.71)

(12.3.72)

If we introduce = , the integral

(12.3.73)

(12.3.74)

=2 J
0
( r). 

(12.3.75)

Integral (12.3.74) is equivalent to (12.3.73) because the integral of a periodic function 
over one full  period is the same regardless of where the integration begins.  Equation

(12.3.75) follows from the integral definition of the Bessel function.6 Therefore,

(12.3.76)

Finally, because (12.3.76) is clearly a function of  and

(12.3.77)

Conversely, if we begin with (12.3.67), make the same substitution, and integrate over the 
kℓ plane, we have that

and

6    Watson, G.N., 1966: A Treatise on the Theory of Bessel Functions. Cambridge University Press,
§2.2, Equation 5.
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(12.3.78)

(12.3.79)

(12.3.80)

Figure 12.3.5: The axisymmetric potential u(r, z)/u0 in the half-space z>0 when 

u(r, 0)=u
0 if r<a and u(r, 0)=0 if r>a.

Thus, we obtain the result that if  exists, then

(12.3.81)

where

(12.3.82)
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function of order 0. The function G( ) is called the Hankel transform of g(r). 
Why did we introduce Hankel transforms? First, setting z=0 in (12.3. 66), we find that

(12.3.83)

If  we  now  compare  (12.3.83)  with  (12.3.81),  we  recognize  that  A(k)  is  the  Hankel 
transform of u(r, 0). Therefore,

(12.3.84)

(12.3.85)))

Thus, the complete solution is

(12.3.86)

Equation (12.3.86) is illustrated in Figure 12.3.5.

 Example 12.3.6: Mixed boundary-value problem

In all  of  our previous examples,  the boundary condition along any specific boundary 
remained  the  same.  In  this  example,  we  relax  this  condition  and  consider  a  mixed 
boundary-value problem.

Consider7 the axisymmetric Laplace equation

(12.3.87)

subject to the boundary conditions

(12.3.88)

Taken together, (12.3.81) and (12.3.82) constitute the Hankel transform pair for Bessel

7    Reprinted from J.  Theor.  Biol,  81,  A.Nir  and R.Pfeffer,  Transport  of  macromolecules across
arterial  wall  in  the presence of  local  endothial  injury,  685–711,  ©1979,  with permission
from Elsevier Science.
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(12.3.89)

The interesting aspect of this example is the mixture of boundary conditions along the 
boundary z=1. For r a, we have a Dirichlet boundary condition which becomes a Robin 
boundary condition when r>a.

Our analysis begins as it did in the previous examples with separation of variables and 
a superposition of solutions. In the present case the solution is

(12.3.90)

The first term on the right side of (12.3.90) arises from a separation constant that equals 
zero while the second term is the contribution from a negative separation constant. Note 
that (12.3.90) satisfies all of the boundary conditions given in (12.3.88). Substitution of
(12.3.90) into (12.3.89) leads to the dual integral equations:

(12.3.91)

if 0<r<a, and

(12.3.92)

if 1<r<a.

What sets this problem from the routine separation of variables is the solution of dual 

integral equations;8 in general, they are very difficult to solve. The process usually begins 
with finding a solution that satisfies (12.3.92) via the orthogonality condition involving 

Bessel functions. This is the technique employed by Tranter9 who proved that the dual 
integral equations:

and

8   The standard references is Sneddon, I.N., 1966: Mixed Boundary Value Problems in Potential
Theory. Wiley, 283 pp.

9   Tranter, C.J., 1950: On some dual integral equations occurring in potential problems with axia1
symmetry. Quart. J. Mech. Appl. Math., 3, 411–419.
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(12.3.93)

and

(12.3.94)

have the solution

(12.3.95)

if G( ) and g(a) are known. The value of k is chosen so that the difference G( ) 2k 2 is
fairly small. In the present case, f( )=sinh(k)A(k, a), g(a)=1, and G( )=1+k coth(k)/ .

What is the value of k here? Clearly we would like our solution to be valid for a wide
range of . Because G( ) →1 as → , a reasonable choice is k=1. Therefore, we take

(12.3.96)

Our final task remains to find A
n
.

We begin by writing

(12.3.97)

where  B
mn 

 depends  only  on  a  and  .  Multiplying  (12.3.97)  by  J
2p 1

(ka)  dk/k  and

integrating,

(12.3.98)
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Because10

(12.3.99)

where 
mp

 is the Kronecker delta:

(12.3.100)

(12.3.98) reduces to

(12.3.101)

If we define

(12.3.102)

then we can rewrite (12.3.101) as

(12.3.103)

Because11

(12.3.104)

if r<a, where P
m

( ) is the Legendre polynomial of order m, (12.3.91) can be rewritten

10    Gradshteyn, I.S.,  and I.M.Ryzhik, 1965: Table of Integrals,  Series, and Products.  Academic
Press, §6.538, Formula 2.

11    Ibid., §6.512, Formula 4.
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(12.3.105)

Equation (12.3.105) follows from the substitution of (12.3.96) into (12.3.91) and then 

using (12.3.104). Multiplying (12.3.105) by P
m 1

( )d , integrating between 1 and 1, 

and using the orthogonality properties of the Legendre polynomial, we have that

(12.3.106)

(12.3.107)

Table 12.3.1: The Convergence of the Coefficients A
n
 Given by (12.3.110) Where S

mn 

Has Nonzero Values for 1 m, n N

N A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

1 2.9980        

2 3.1573 1.7181       

3 3.2084 2.0329 1.5978      

4 3.2300 2.1562 1.9813 1.4517     

5 3.2411 2.2174 2.1548 1.8631 1.3347    

6 3.2475 2.2521 2.2495 2.0670 1.7549 1.2399   

7 3.2515 2.2738 2.3073 2.1862 1.9770 1.6597 1.1620  

8 3.2542 2.2882 2.3452 2.2626 2.1133 1.8925 1.5772 1.0972

which shows that only m=1 yields a nontrivial sum. Thus,

(12.3.108)
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and

(12.3.109)

or

(12.3.110)

Thus, we have reduced the problem to the solution of an infinite number of linear
equations  which  yield  A

n
—a  common  occurrence  in  the  solution  of  dual  integral 

equations. Selecting some maximum value for n and m, say N, each term in the matrix
S

mn
, 1 m, n N, is evaluated numerically for a given value of a and . By inverting

(12.3.110), we obtain the coefficients A
n
 for n=1,…, N. Because we solved a truncated

version (12.3.110), they will only be approximate. To find more accurate values, we can

increase N by 1 and again invert (12.3.110). In addition to the new A
N+1

, the previous

coefficients will become more accurate. We can repeat this process of increasing N until 
the coefficients converge to their correct value. This is illustrated in Table 12.3.1 when

=a=1.
Once we have computed the coefficients A

n
 necessary for the desired accuracy, we use

(12.3.96) to find A(k, a) and then obtain u(r, z) from (12.3.90) via numerical integration.
Figure 12.3.6 illustrates the solution when =1 and a=2.

Mixed boundary-value problems over a finite domain can be solved in a

Figure 12.3.6: The solution of the axisymmetric Laplace’s equation (12.3.87) 
with u(r, 0) =0 and the mixed boundary condition (12.3.89). Here we 
have chosen =1 and a=2.
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(12.3.111)

subject to the boundary conditions

(12.3.112)

and

(12.3.113)

We begin by solving (12.3.111) via separation of variables. This yields

(12.3.114)

where k
n
 is the nth root of J

1
(ka)=0. Note that (12.3.114) satisfies all of the boundary

conditions except those along z=1. Substituting (12.3.114) into (12.3.113), we find that

(12.3.115)

Other examples include:

Sherwood, J.D., and H.A.Stone, 1997: Added mass of a disc accelerating within a pipe. Phys. 
Fluids, 9, 3141–3148.

Galceran,  J.,  J.Cecilia,  E.Companys,  J.Salvador,  and  J.Puy,  2000:  Analytical  expressions  for 
feedback currents at the scanning electrochemical microscope. J. Phys. Chem. B, 104, 7993–8000.

similar manner. Consider the partial differential equation12

12 Reprinted  from  Chem.  Engng.  Sci. ,46, J.S.Vrentas, D.C.Venerus, and C.M. Vrentes, An exact
analysis  of  reservoir  effects  for  rotational  viscometers,  33–37,  ©1991,  with  permission  from 
Elsevier Science.
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(12.3.116)

Equations (12.3.115) and (12.3.116) show that in place of dual integral equations, we now have 
dual Fourier-Bessel series. Cooke and Tranter13 have shown that the dual Fourier-Bessel series

(12.3.117)

where J
v
(k

n
)=0, will be automatically satisfied if

(12.3.118)

where |p| 1. Because a
n
=k

n
A

n
 cosh(kn) and v=1 here, A

n
 is given by

(12.3.119)

if we take p=0.
Substitution of (12.3.119) into (12.3.115) gives

(12.3.120)

Multiplying both sides of (12.3.120) by rJ
1
(k

p
r) dr, p=1, 2 , 3,…, and integrating from 0 

to 1, we find that

(12.3.121)

where

(12.3.122)

and

13    Cooke, J.C., and C.J.Tranter, 1959: Dual Fourier-Bessel series. Quart. J. Mech. Appl. Math., 12,

379–386.
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(12.3.123)

Figure 12.3.7: The solution of (12.3.111) which satisfies the boundary condition
(12.3.112)  and  the  mixed  boundary  condition  (12.3.113).  Here  we 
have chosen a=2.

Carrying out the integration, (12.3.120) yields the infinite set of equations

(12.3.124)

where

(12.3.125)

Once again, we compute B
m

 by truncating (12.3.124) to M terms and inverting the 
systems of equations. Increasing the value of M yields more accurate results. Once we 
have  B

m
,  we  use  (12.3.119)  to  find A

n
. Finally, u(r, z) follows from (12.3.114). Figure

12.3.7 illustrates u(r, z) when a=2.

 Example 12.3.7

Let us find the potential at any point P within a conducting sphere of radius a. At the
surface, the potential is held at V

0
 in the hemisphere 0< < /2, and V

0
 for /2< < . 
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Laplace’s equation in spherical coordinates is

(12.3.126)

To solve (12.3.126) we use the separation of variables u(r, )=R(r) ( ). Substituting into
(12.3.126), we have that

(12.3.127)

or

r2R +2rR k2R=0, (12.3.128)

and

(12.3.129)

A common substitution replaces  with =cos( ). Then, as  varies from 0 to ,  varies
from 1 to 1. With this substitution (12.3.129) becomes

(12.3.130)

This  is  Legendre’s  equation  which  we  examined  in  §9.4.  Consequently,  because  the 

solution must remain finite at the poles, k2=n(n+1), and

n
( ) P

n
( )=P

n
[cos( )], 

(12.3.131)

where n=0, 1, 2, 3,….
Turning  to  (12.3.128),  this  equation  is  the  equidimensional  or  EulerCauchy  linear 

differential equation. One method of solving this equation consists of introducing a new 

independent variable s so that r=es, or s=ln(r).
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(12.3.132)

it follows that

(12.3.133)

Substituting into (12.3.128),

(12.3.134)

Equation (12.3.134) is a second-order, constant coefficient ordinary differential equation
which has the solution

R
n
(s)=C

n
ens+D

n
e (n+1)s 

(12.3.135)

=C
n 

exp[n ln(r)] +D
n 

exp[ (n+1) ln(r)] (12.3.136)

=C
n
 exp[ln(rn)]+D

n
 exp[ln(r 1 n)] (12.3.137)

=C
n
rn+D

n
r 1 n. (12.3.138)

A more convenient form of the solution is

(12.3.139)

where A
n
= nC

n
 and B

n
=D

n
/an+1, We introduced the constant a, the radius of the sphere,

to simplify future calculations.
Using the results from (12.3.131) and (12.3.139), the solution to Laplace’s equation in

axisymmetric problems is

Because
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(12.3.140)

In 
our particular problem we must take B

n
=0 because the solution becomes infinite at r=0

otherwise.  If  the  problem had  involved  the  domain  a<r< ,  then  A
n
=0  because  the

potential must remain finite as r → .
Finally, we must evaluate A

n
. Finding the potential at the surface,

(12.3.141)

Upon examining (12.3.141), it is merely an expansion in Legendre polynomials of the
function

(12.1.142)

Consequently, from (12.3.142),

(12.3.143)

Because f( ) is an odd function, A
n
=0 if n is even. When n is odd, however,

(12.3.144)

We 
can further simplify (12.3.144) by using the relationship that

(12.3.145)

where n 1. In our problem, then,

(12.3.146)
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The first few terms are A
1
=3V

0
/2, A

3
= 7V

0
/8, and A

5
=11V

0
/16.

Figure 12.3.8 illustrates our solution. It was created using the MATLAB script

clear 
N = 51; dr = 0.05; dtheta = pi / 15; 
% compute grid and set solution equal to zero
r = [0:dr:1]; theta = [0:dtheta:2*pi];

Figure 12.3.8: Electrostatic potential within a conducting sphere when the
upper hemispheric surface has the potential 1 and the lower surface
has the potential 1.

mu = cos(theta); Z = r’ * mu;

for L = 1:2

if L == 1 X = r’ * sin(theta);

    else X = −r’ * sin(theta); end
u = zeros(size(X));

% compute solution from (12.3.140)

rfactor = r;

for n = 1:2:N

A=legendre(n−1,0);B=legendre(n+1,0);coeff=A(1)−B(1);
C = legendre(n,mu); Theta = C(1,:);

u = u + coeff * rfactor’* Theta;

rfactor = rfactor .* r .* r ;

end 

surf(Z,X,u); hold on; end

xlabel(’Z’,’Fontsize’,20); ylabel(’X’,’Fontsize’,20)

zlabel(’u(R,\theta)’,’Fontsize’,20);
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Here we have the convergence of the equipotentials along the equator and at the surface. 
The slow rate at which the coefficients are approaching zero suggests that the solution 
suffers from Gibbs phenomena along the surface.

 Example 12.3.8

We now find the steady-state temperature field within a metallic sphere of radius a, which 
we place in direct sunlight and allow to radiatively cool.

This  classic  problem,  first  solved  by  Rayleigh,14  requires  the  use  of  spherical 
coordinates with its origin at the eenter of sphere and its z-axis pointing toward the sun. 
With this choice for the coordinate system, the incident sunlight is

(12.3.147)

If heat dissipation takes place at the surface r=a according to Newton’s law of cooling 
and the temperature of the surrounding medium is zero, the solar heat absorbed by the 
surface dA must balance the Newtonian cooling at the surface plus the energy absorbed 
into the sphere’s interior. This physical relationship is

(12.3.148)

where  is the reflectance of the surface (the albedo),  is the surface conductance or 
coefficient  of  surface  heat  transfer,  and   is  the  thermal  conductivity.  Simplifying
(12.3.148), we have that

(12.3.149)

for r=a.
If  the  sphere  has  reached  thermal  equilibrium,  Laplace’s  equation  describes  the 

temperature field within the sphere. In the previous example, we showed that the solution 
to Laplace’s equation in axisymmetric problems is

(12.3.150)

In  this  problem,  B
n
=0 because  the  solution  would  become infinite  at  r=0 otherwise. 

Therefore,

 Q
n

 Q
n

 d ,  Q
n
,  Q

n
 being Laplace’s    

coefRcients of the orders n, n , with application to the theory of radiation. Philos. Trans. R. 
Soc. London, Ser. A, 160, 579–590.

14  Rayleigh, J.W., 1870: On the values of the integral 

ρ
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(12.3.151)

Differentiation gives

(12.3.152)

Substituting into the boundary condition leads to

(12.3.153)

or

(12.3.154)

where

(12.3.155)

We determine the coefficients by

(12.3.156)

Evaluation of the first few coefficients gives

(12.3.157)
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(12.3.158)

(12.3.159)

(12.3.160)

Figure 12.3.9 illustrates the temperature field within the sphere with D(0)=1200W/m2,

=45W/m K, =5W/m2 K, =0, and a=0.1 m. This corresponds to a cast iron sphere with
blackened surface in sunlight. This figure was created by the MATLAB script

clear 

dr = 0.05; dtheta = pi / 15;

D_0 = 1200; kappa = 45; epsilon = 5; rho = 0; a = 0.1; 

% compute grid and set solution equal to zero 

r = [0:dr:1]; theta = [0:dtheta:pi];

mu = cos(theta); Z = r’ * mu;

aaaa = (1-rho) * D_0 / (4 * epsilon);

aa(1) = a * (1-rho) * D_0 / (2 * (kappa+epsilon*a));

aa(2) = 5 * a * (1-rho) * D_0 / (16 * (2*kappa+epsilon*a));

aa(3) = 0; 

aa(4) = − 3 * a *(1-rho) * D_0 / (32 *(4*kappa+epsilon*a));

Figure 12.3.9: The difference (in °C) between the temperature field within a blackened iron sur-
face of radius 0.1m and the surrounding medium when we heat the surface by sunlight
and allow it to radiatively cool.
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aa(5) = 0;

aa(6) = 13 * a * (1−rho) * D_0 / (256 * (6*kappa+epsilon*a));

aa(7) = 0;

aa(8) = −17 * a * (1−rho) * D_0 / (512 * (8*kappa+epsilon*a));
aa(9) = 0;

aa(10)= 49 * a * (1−rho) * D_0 / (2048 *(10*kappa+epsilon*a));
for L = 1:2 

if L == 1 X = r’ * sin(theta);

  else X = −r’ * sin(theta); end
u = aaaa * ones(size(X));

rfactor = r;

for n = 1:10

A = legendre(n,mu); Theta = A(1,:);

u = u + aa(n) * rfactor’ * Theta;

rfactor = rfactor .* r;

end

surf(Z,X,u); hold on; end

xlabel (’Z’,’Fontsize’,20);ylabel(’X’,’Fontsize’,20);

zlabel (’U(R,\theta)’,’Fontsize’,20);

The temperature is quite warm with the highest temperature located at the position where
the solar radiation is largest; the coolest temperatures are located in the shadow region.

Figure  12.3.10:  Point  charge  +q  in  the  presence  of  a  grounded  conducting sphere.
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 Example 12.3.9

In this example we find the potential at any point P exterior to a conducting, grounded 
sphere centered at z=0 after we place a point charge +q at z=a on the z-axis. See Figure
12.3.10. From the principle of linear superposition, the total potential u(r, ) equals the sum of 
the potential from the point charge and the potential (r, ) due to the induced charge on the 
sphere

(12.3.161)

In common with the first term q/s, (r, ) must be a solution of Laplace’s equation. In 
Example  12.3.7  we  showed  that  the  general  solution  to  Laplace’s  equation  in 
axisymmetric problems is

(12.3.162)

Because the solutions must be valid anywhere outside of the sphere, A
n
=0; otherwise, the 

solution would not remain finite as r→ . Hence,

(12.3.163)

We determine the coefficient B
n
 by the condition that u(r

0
, )=0, or

(12.3.164)

We need to expand the first term on the left  side of (12.3.164) in terms of Legendre 
polynomials. From the law of cosines,

(12.3.165)
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(12.3.166)

In §9.4, we showed that

(12.3.167)

Therefore,

(12.3.168)

From (12.3.164),

(12.3.169)

We can only satisfy (12.3.169) if the square-bracketed term vanishes identically so that

(12.3.170)

On substituting (12.3.170) back into (12.3.163),

(12.3.171)

The physical interpretation of (12.3.171) is as follows: Consider a point, such as a  (see
Figure 12.3.10) on the z-axis. If r>a , the Legendre expansion of 1/s  is

(12.3.172)

Consequently, if a>r, then
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Figure 12.3.11: Electrostatic potential outside of a grounded conducting sphere
in thepresence of a point  charge located at  a/r

0
=2. Contours are in

units of q/r
0
.

Using (12.3.172), we can rewrite (12.3.171) as

(12.3.173)

if we set  Our final result is then

(12.3.174)

provided that q  equals r
0
q/a. In other words, when we place a grounded conducting

sphere near a point charge +q, it changes the potential in the same manner as would a

point charge of the opposite sign and magnitude q =r
0
q/a, placed at the point 

The charge q  is the image of q.
Figure 12.3.11 illustrates the solution (12.3.171) and was created using the MATLAB

script

clear

a_over_r0 = 2;

% set up x-z array

dx = 0.02; x = −3: dx:3; dz = 0.02; z = −3:dz:3;



796 Advanced Engineering Mathematics with MATLAB

u = 1000 * zeros(length(x), length(z));

X = x’ * ones(1,length(z)); Z=ones(length(x),1) * z;

% compute r and theta

rr = sqrt(X .* X + Z .* Z);

theta = atan2(X,Z);

% find the potential 

r_over_aprime = a_over_r0 * rr;

s = 1 + r_over_aprime . * r_over_aprime …

    − 2 * r_over_aprime .* cos (theta);
for j = 1:1ength(z); for i = 1:1ength(x);

if rr(i,j) >= 1; u(i,j) = 1 ./ sqrt(s(i,j));end;

end; end 

% plot the solution 

[cs,h] = contourf(X,Z,u);colormap(hot); brighten(hot,0.5);

axis square; clabel (cs, h,’manual’,’Fontsize’, 16);

xlabel(’X’,’Fontsize’,20);ylabel(’Z’,’Fontsize’,20);

Because the charge is located directly above the sphere, the electrostatic potential for any
fixed r is largest at the point =0 and weakest at = .

 Example 12.3.10: Poisson’s integral formula

In this example we find the solution to Laplace’s equation within a unit disc. The problem
can be posed as

(12.3.175)

with the boundary condition u(1, )=f( ). 
We begin by assuming the separable solution u(r, )=R(r) ( ) so that

(12.3.176)

The solution to +k2 =0 is

( )=A cos(k )+B sin(k ). (12.3.177)
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R(r)=Crk+Dr k. (12.3.178

Because the solution must be bounded for all r and periodic in , we must take D=0 and 
k=n, where n=0, 1, 2, 3,…. Then, the most general solution is

(12.3.179)

where a
n
 and b

n
 are chosen to satisfy

(12.3.180)

Because

(12.3.181)

we may write u(r, ) as

(12.3.182)

If we let = , and z=r[cos( )+i sin( )], then

(12.3.183)

(12.3.184)

(12.3.185)

The solution to R(r) is
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(12.3.186)

(12.3.187)

(12.3.188)

Substituting (12.3.188) into (12.3.182), we finally have that

(12.3.189)

This  solution  to  Laplace’s  equation  within  the  unit  circle  is  referred  to  as  Poisson’s 

integral formula.15

Problems

Solve Laplace’s equation over the rectangular region 0<x<a, 0<y<b with the following 
boundary conditions. Illustrate your solution using MATLAB.

1. u(x, 0)=u(x, b)=u(a, y)=0, u(0, y)=1
2. u(x, 0)=u(0, y )=u(a, y)=0, u(x, b)=x
3. u(x, 0)=u(0, y)=u(a, y) 0, u(x, b)=x a

4. u(x, 0)=u(0, y)=u(a, y)=0, 
5. u

x
(0, y)=u(a, y)=u(x, 0)=0, u(x, b)=1

6. u
y
(x, 0) u(x, y) u(a, y)=0, u(0, y)=1

7. u
y
(a, 0)=u

y
(x, y)=0, u(0, y)=u(a, y)=1

8. u
x
(a, y)=u

y
(x, b)=0, u(0, y)=u(x, 0)=1

9. u
y
(x, 0)=u(x, b)=0, u(0, y)=u(a, y)=1

10. u(a, y)=u(x, 6)=0, u(0, y)=u(x, 0)=1
11. u

x
(0, y)=0, u(a, y)=u(x, 0)=u(x, b)=1

for all r such that |r|<1. Consequently,

15    Poisson, S.D., 1820: Mémoire sur la manière d’exprimer les fonctions par des séries de quantités
périodiques, et sur l’usage de cette transformation dans la résolution de différens problèmes. 
J. École Polytech., 18, 417–489.
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12. u
x
(0, y)=u

x
( ,y)=0, u(x,b)=u

1
, 

13.  Variations  in  the  earth’s  surface  temperature  can arise  as  a  result  of  topographic 
undulations  and  the  altitude  dependence  of  the  atmospheric  temperature.  These 
variations,  in  turn,  affect  the  temperature  within  the  solid  earth.  To show this,  solve 
Laplace’s equation with the surface boundary condition that

u(x, 0)=T
0
+ Tcos(2 x/ ), 

where   is  the  wavelength  of  the  spatial  temperature  variation.  What  must  be  the 
condition on u(x, y) as we go towards the center of the earth (i.e., y→ )?

14. Tóth16 generalized his earlier analysis of groundwater in an aquifer when the water 
table  follows  the  topography.  Find  the  groundwater  potential  if  it  varies  as  u(x, 
z

0
)=g[z

0
+cx+a sin(bx)] at the surface y=z

0
, while u

x
(0, y)=u

x
(L, y)=u

y
(x, 0)=0, where g is 

the acceleration due to gravity. Assume that bL n , where n=1, 2, 3,….
15. Solve

 

with

 

16. During their study of the role that diffusion plays in equalizing gas concentrations 

within that portion of the lung that is connnected to terminal bronchioles, Chang et al.17

solved Laplace’s equation in cylindrical coordinates

 

subject to the boundary conditions that

 

and

 

16    Tóth, J., J. Geophys. Res., 68, 4795–4812, 1963, copyright by the American Geophysical Union.
17   Reprinted   from   Math.    Biosci. ,  29,  D.B.Chang,  S.M.Lewis,  and  A.C.Young,  A theoretical

discussion  of  diffusion  and  convection  in  the  lung,  331–349,  ©1976,  with  permission  from 
Elsevier Science.
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What should they have found?

17. Solve18

with the boundary conditions

 

u(r, L)=A, 0 r b, 

 

and

 

18. Solve

 

with

 

and

 

18   Reprinted  from Math.  Biosci.,  1,  K.H.Keller  and  T.R.Stein,  A two-dimensional  analysis  of
porous membrane transfer, 421–437, ©1967, with permission from Elsevier Science.
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19. Solve

 

with

 

and

 

20. Solve

 

with

 

21. Solve

 

with

 

22. Solve
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23. Solve

 

with the boundary conditions

 

and

24. Solve Laplace’s equation in cylindrical coordinates

 

subject to the boundary conditions that

 

and

 

25. Solve19

 

19  Reprinted  from  Int.  J.  Heat  M ss  Transfer,  19,  J.Kern  and  J.O.Hansen,  Transient  heat
conduction in cylindrical systems with an axially moving boundary, 707–714, ©1976, with kind 
permission from Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.

with
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with the boundary conditions
 

and
 

where B is a constant.

26. Solve20

 

with the boundary conditions
 

 

and
 

where b>a.

27. Solve21

 

subject to the boundary conditions

 

20  Taken from Smirnova, E. V., and I.A.Krinberg, 1970: Spatial distribution of the atoms of an
impurity element in an arc discharge. I. J. Appl. Spectroscopy, 13, 859–864.

21  Reprinted  from  J.  Electroanal.  Chem.,  222,  M.Fleischmann  and  S.Pons,  The  behavior  of

     microdisk and microring electrodes, 107–115, ©1987, with permission from Elsevier Science.
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where u  and u are constants.

Step 1: Show that

 

satisfies the partial differential equation and the boundary conditions as r → 0, r → , 
and z → .
Step 2: Show that

 

Step 3: Using the relationship22

 

show that kA(k)=C sin(ka). 

Step 4: Using the relationship23

 

show that

 

and

22    Gradshteyn and Ryzhik, op. cit., §6.671, Formula 7.
23    Ibid., §6.693, Formula 1 with v=0.



Laplace’s Equation 805

its surface is maintained at the temperature u(a, )= 100[cos( ) cos5( )].

29. Find the steady-state temperature within a sphere if the upper half of the exterior 
surface  at  radius  a  is  maintained  at  the  temperature  100  while  the  lower  half  is 
maintained at the temperature 0.

30. The surface of a sphere of radius a has a temperature of zero everywhere except in 
a spherical cap at the north pole (defined by the cone = ), where it equals T

0
. Find the 

steady-state temperature within the sphere.

31. Using the relationship

 

and Poisson’s integral formula, find the solution to Laplace’s equation within a unit disc 
if u(1, )=f( )=T

0
, a constant.

12.4 THE SOLUTION OF LAPLACE’S EQUATION ON THE UPPER 

HALF-PLANE

In this  section we shall  use Fourier  integrals  and convolution to find the solution of 
Laplace’s equation on the upper half-plane y>0. We require that the solution remains 
bounded over the entire domain and specify it along the x-axis, u(x, 0)=f(x). Under these 
conditions, we can take the Fourier transform of Laplace’s equation and find that

(12.4.1)

If everything is sufficiently differentiable, we may successively integrate by parts the first 
integral in (12.4.1) which yields

(12.4.2)

(12.4.3)

28. Find the steady-state temperature within a sphere of radius a if the temperature along
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=– 2U( , y), (12.4.4)

where

(12.4.5)

The second integral becomes

(12.4.6)

along with the boundary condition that

(12.4.7)

Consequently  we  reduced  Laplace’s  equation,  a  partial  differential  equation,  to  an 
ordinary differential equation in y, where  is merely a parameter:

(12.4.8)

with the boundary condition U( , 0)=F( ). The solution to (12.4.8) is

U( , y)=A( )e| |y+B( )e | |y, 0 y. 
(12.4.9)

We must discard the e| |y term because it becomes unbounded as we go to infinity along 
the y-axis. The boundary condition results in B( )=F( ).

Consequently,

U( , y)=F( )e | |y. 
(12.4.10)
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(12.4.11)

(12.4.12)

(12.4.13)

(12.4.14)

(12.4.15)

Furthermore, because (12.4.10) is a convolution of two Fourier transforms, its inverse is

(12.4.16)

Equation (12.4.16) is  Poisson’s integral formula24  for  the half-plane y>0 or Schwarz’

integral formula.25 

 Example 12.4.1

As an example, let u(x, 0)=1 if |x|<1 and u(x, 0)=0 otherwise. Then,

(12.4.17)

(12.4.18)

24   Poisson, S.D., 1823: Suite du mémoire sur les intégrales définies et sur la sommation des séries.
J. École Polytech., 19, 404–509. See pg. 462.

The inverse of the Fourier transform e | |y equals

25  Schwarz,  H.A.,  1870:  Über  die  Integration  der  partiellen  Differentialgleichung 2u/ x2

+ 2u/ y2=0 für die Fläche eines Kreises. Vierteljahrsschr. Naturforsch. Ges. Zürich, 15, 113–128.
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Problems

Find the solution to Laplace’s equation in the upper half-plane for the following boundary
conditions:

1. 

2. 

3. 

4. 

5. 

6. 

12.5 POISSON’S EQUATION ON A RECTANGLE

Poisson’s equation26 is Laplace’s equation with a source term:

(12.5.1)

It  arises  in  such  diverse  areas  as  groundwater  flow,  electromagnetism,  and  potential 
theory. Let us solve it if u(0, y)=u(a, y)=u(x, 0)=u(x, b)=0.

We begin by solving a similar partial differential equation:

(12.5.2)

26    Poisson, S.D., 1813: Remarques sur une équation qui se présente dans la théorie des attractions
des sphéroïdes. Nou . Bull Soc. Philomath. Paris, 3, 388–392.
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(12.5.3)

Figure 12.5.1: Siméon-Denis Poisson (1781–1840) was a product as well as a 
member of the French scientific establishment of his day. Educated at 
the École Polytechnique, he devoted his life to teaching, both in the 
classroom and with administrative duties, and to scientific research. 
Poisson’s equation dates from 1813 when Poisson sought to extend 
Laplace’s  work on gravitational  attraction.  (Portrait  courtesy of  the 
Archives de l’Académie des sciences, Paris.)

Because we must satisfy the boundary conditions that x(0)=X(a)=Y(0)= Y(b)=0, we have 
the following eigenfunction solutions:

(12.5.4)

by separation of variables. If u(x,y)=X(x)Y(y), then
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with  
nm

= n2 2/a2 m2 2/b2;  otherwise,  we  would  only  have  trivial  solutions.  The

corresponding particular solutions are

(12.5.5)

where n=1, 2, 3,…, and m=1, 2, 3,…. 
For a fixed y, we can expand f(x,y) in the half-range Fourier sine series

(12.5.6)

where

(12.5.7)

However, we can also expand A
n
(y) in a half-range Fourier sine series

(12.5.8)

where

(12.5.9)

(12.5.10)

and

(12.5.11)

In other words, we re-expressed f(x, y) in terms of a double Fourier series.
Because (12.5.2) must hold for each particular solution,
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(12.5.12)

if we now associate (12.5.1) with (12.5.2). Therefore, the solution to Poisson’s equation
on a rectangle where the boundaries are held at zero is the double Fourier series

(12.5.13)

Problems

1. The equation

 

describes the hydraulic potential (elevation of the water table) u(x, y) within a rectangular
island on which a recharging well is located at (0, 0). Here R is the rate of recharging and
T is the product of the hydraulic conductivity and aquifer thickness. If the water table is at 
sea  level  around the  island  so  that  u( a,  y)=u(a,  y)=u(x,  b)=u(x,  b)=0,  find  u(x,  y)
everywhere in the island.  [Hint:  Use symmetry and redo the above analysis  with the
boundary conditions: u

x
(0, y)=u(a, y)=u

y
(x, 0)=u(x, b)=0.]

2.  Let  us  apply  the  same approach that  we used to  find  the  solution  of  Poisson’s
equation on a  rectangle  to  solve  the  axisymmetric  Poisson equation inside  a  circular
cylinder

 

subject to the boundary conditions

 

and

u(r, b)=u(r, b)=0, 0 r<a.  

Step 1: Replace the original problem with
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subject to the same boundary conditions. Use separation of variables to show that the
solution to this new problem is

 

where k
n
 is the nth zero of J

0
(k)=0, n=1, 2, 3,…, and m=0, 1, 2,…. 

Step 2: Show that f(r, z) can be expressed as

 

where

 

Step 3: Show that the general solution is

 

12.6 THE LAPLACE TRANSFORM METHOD

Laplace  transforms  are  useful  in  solving  Laplace’s  or  Poisson’s  equation  over  a
semi-infinite strip. The following problem illustrates this technique.

Let us solve Poisson’s equation within a semi-infinite circular cylinder

(12.6.1)

subject to the boundary conditions

(12.6.2)
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u(a, z)=0, 0<z< , (12.6.3)

where  0<b<a.  This  problem  gives  the  electrostatic  potential  within  a  semi-infinite 
cylinder  of  radius  a  that  is  grounded  and  has  the  charge  density  of  n(z)  within  an 
infinitesimally thin shell located at r=b.

Because  the  domain  is  semi-infinite  in  the  z  direction,  we  introduce  the  Laplace 
transform

(12.6.4)

Thus, taking the Laplace transform of (12.6.1), we have that

(12.6.5)

Although  u(r,  0)=0,  u
z
(r,  0)  is  unknown and  we  denote  its  value  by  f(r).  Therefore,

(12.6.5) becomes

(12.6.6)

with lim U(r, s)|< , and U(a, s)=0. 
To solve (12.6.6) we first assume that we can rewrite f(r) as the FourierBessel series

(12.6.7)

where k
n
 is the nth root of the J

0
(k)=0, and

(12.6.8)

Similarly, the expansion for the delta function is

(12.6.9)

and

r→0 |
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because

(12.6.10)

Why we chose this particular expansion will become apparent shortly. 
Thus, (12.6.6) may be rewritten as

(12.6.11)

where 
The form of the right side of (12.6.11) suggests that we seek solutions of the form

(12.6.12)

We now understand why we rewrote the right side of (12.6.6) as a FourierBessel series;
the solution U(r, s) automatically satisfies the boundary condition U(a, s)=0. Substituting
(12.6.12) into (12.6.11), we find that

(12.6.13)

We have not yet determined a
k
. Note, however, that in order for the inverse of (12.6.13)

not  to  grow  as   the  numerator  must  vanish  when  s=k
n
/a  and  s=k

n
/a  is  a

removable pole. Thus, 
k
= 2N(k

n
/a)J

0
(k

n
b/a), and

(12.6.14)

The inverse  of  U(r,  s)  then  follows  directly  from simple  inversions,  the  convolution 
theorem, and the definition of the Laplace transform. The complete solution is
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(12.6.15)

(12.6.16)

Problems

1. Use Laplace transforms to solve

 

subject to the boundary conditions

 

and

u(x, 0)=u(x, a)=0, 0<x< .  

2. Use Laplace transforms to solve

 

subject to the boundary conditions

 

and
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As in the case of the heat and wave equations, numerical methods can be used to solve 
elliptic partial differential equations when analytic techniques fail or are too cumbersome. 
They are also employed when the domain differs from simple geometries.

The numerical analysis of an elliptic partial differential equation begins by replacing
the  continuous  partial  derivatives  by  finite-difference  formulas.  Employing  centered
differencing,

(12.7.1)

and

(12.7.2)

where u
m, n

 denotes the solution value at the grid point m, n. If x= y, Laplace’s equation 

becomes the difference equation

u
m+1, n

+u
m 1, n

+u
m, n+1

+u
m, n 1

4u
m

, 
n
=0. (12.7.3)

Thus, we must now solve a set of simultaneous linear equations that yield the value of the 
solution at each grid point.

The solution of (12.7.3) is best done using techniques developed by algebraists. Later 
on, in Chapter 14, we will show that a very popular method for directly solving systems 
of linear equations is  Gaussian elimination.  However,  for many grids at  a  reasonable 
resolution, the number of equations are generally in the tens of thousands. Because most 
of the coefficients in the equations are zero, Gaussian elimination is unsuitable, both from 
the point  of  view of  computational  expense and accuracy.  For this  reason alternative 
methods have been developed that generally use successive corrections or iterations. The 
most common of these point iterative methods are the Jacobi method, unextrapolated 
Liebmann  or  Gauss-Seidel  method,  and  extrapolated  Liebmann  or  successive 
over-relaxation (SOR). None of these approaches is completely satisfactory because of 
questions involving convergence and efficiency. Because of its simplicity we will focus 
on the Gauss-Seidel method.

We may illustrate the Gauss-Seidel method by considering the system:

10x+y+z=39, (12.7.4)

12.7 NUMERICAL SOLUTION OF LAPLACE’S EQUATION
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2x+10y+z=51, (12.7.5)

and

2x+2y+10z=64. (12.7.6)

An important aspect of this system is the dominance of the coefficient of x in the first 
equation of the set and that the coefficients of y and z are dominant in the second and 
third equations, respectively.

The Gauss-Seidel method may be outlined as follows: 

● Assign an initial value for each unknown variable. If possible, make a good first 
guess. If not, any arbitrarily selected values may be chosen. The initial value will not 
affect the convergence but will affect the number of iterations until convergence.

● Starting with (12.7.4), solve that equation for a new value of the unknown which has 
the largest coefficient in that equation, using the assumed values for the other unknowns.

● Go to (12.7.5) and employ the same technique used in the previous step to compute the 
unknown that has the largest coefficient in that equation. Where possible, use the latest values.

● Proceed to the remaining equations, always solving for the unknown having the 
largest coefficient in the particular equation and always using the most recently calculated 
values for the other unknowns in the equation. When the last equation (12.7.6) has been 
solved, you have completed a single iteration.

● Iterate until the value of each unknown does not change within a predetermined 
value.

Usually a compromise must be struck between the accuracy of the solution and the 
desired rate of convergence. The more accurate the solution is, the longer it will take for 
the solution to converge.

To illustrate this method, let us solve our system (12.7.4)–(12.7.6) with the initial guess 
x=y=z=0.  The  first  iteration  yields  x=3.9,  y=4.32,  and  z=4.756.  The  second  iteration 
yields x=2.9924,  y=4.02592,  and z=4.996336.  As can be readily seen,  the solution is 
converging to the correct solution of x=3, y=4, and z=5.

Applying these techniques to (12.7.3),

(12.7.7)

where we assume that the calculations occur in order of increasing m and n.

 Example 12.7.1

To illustrate the numerical solution of Laplace’s equation, let us redo Example 12.3.1
with the boundary condition along y=H simplified to u(x, H)=1+x/L.



818 Advanced Engineering Mathematics with MATLAB

We begin by finite-differencing the boundary conditions. The condition ux(0, y)=u
x
(L,

y)=0 leads to u
1, n 

and u
1, n

=u
M+1, n

 if we employ centered differences at m=0 and m=M.

Substituting these values in (12.7.7), we have the following equations for the left and 
right boundaries:

(12.7.8)

and

(12.7.9)

On the other hand, u
y
(x, 0)=0 yields u

m, 1
=u

m
, 

1,
 and

(12.7.10)

At the bottom corners, (12.7.8)–(12.7.10) simplify to

(12.7.11)

and

(12.7.12)

These equations along with (12.7.7) were solved using the Gauss-Seidel method using the
MATLAB script

clear
dx=0.1; x = 0:dx:1; M = 1/dx+1; % M = number of x grid points
dy=0.1; y = 0:dy:1; N = 1/dy+1; % N = number of y grid points
X = x’ * ones(1,N); Y = ones(M, 1) * y;
u = zeros(M,N); % create initial guess for the solution 
% introduce boundary condition along y = H
for m = 1:M; u (m,N) = 1 + x (m); end
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% 

% prXor EXspp.Nbfabg hbrela clo IXmgX]b’p bnsXrfli

% 

clo frbo C 2=3:; 

% 

% al reb firboflo cfopr 

% 

clo i C 3=M’2A clo h C 3=L’2A

s(h,i) C (s(h+2,i)+s(h’2,i)+s(h,i+2)+s(h,i’2))05A

biaA bia

% 

% ilt al reb u C 1 Xia u C I pfabp 

% 

clo i C 3=M’2

s(2,i) C (3*s(3,i) +s(2,i+2) +s(2,i’2)) 0 5A

s(L,i) C (3*s(L’2,i) +s(L,i+2) +s(L,i’2)) 0 5A

bia 

% 

% ilt al reb x C 1 pfab 

% 

clo h C 3=L’2

s(h,2)C(s(h+2,2)+s(h’2,2)+3*s(h,3))05A

bia 

% 

% cfiXggx al reb ]loibop 

% 

s(2,2) C (s(3,2)+s(2,3))03As(L,2) C (s(L’2,2)+s(L,3))03A

% 

% mglr reb plgsrfli 

% 

fc(frbo CC 5) ps[mglr (3,3,2), T]p,eU C ]lirlsoc(O,S,s)A

  ]gX[bg (]p,e,T1/3 1/; 2 2/5U,’Dlirpfyb’,2;)

  Xufp rfderA rfrgb(’Xcrbo 5 frboXrflip’,’Dlirpfyb’,31)A

  xgX[bg(’S0F’,’Dlirpfyb’,31)Abia

fc(frbo CC 2;) ps[mglr(3,3,3),T]p,eU C ]lirlsoc(O,S,s)A

  ]gX[bg (]p, e,’Dlirpfyb’, 2;)

  Xufp rfderArfrgb(’Xcrbo 2; frboXrflip’,’Dlirpfyb’,31)A

  xgX[bg (’S0F’,zDlirpfyb’,31)Abia 

fc(frbo CC ;5) ps[mglr(3,3,4),T]p,eU C ]lirlsoc(O,S,s)A

  ]gX[bg (]p, e, ’Dlirpfyb’, 2;)

  Xufp rfderA rfrgb (’Xcrbo ;5 frboXrflip’,’Dlirpfyb’,31)A

  ugX[bg(’O0I’,’Dlirpfyb’,31)AxgX[bg(’S0F’,’Dlirpfyb’,31)A
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end 
if (iter == 256) subplot (2,2,4), [cs,h]  =  contourf (X,Y,u);
  clabel(cs,h,’Fontsize’,16)
  axis tight; title(’after 256 iterations’,’Fontsize’,20);
  xlabel (’X/L’,’Fontsize’,20); ylabel (’Y/H’,’Fontsize’,20);
end 
end

The initial guess everywhere except along the top boundary was zero. In Figure 12.7.1
we illustrate the numerical solution after 4, 16, 64, and 256 iterations where we have
taken 11 grid points in the x and y directions.

Project: Successive Over-Relaxation

The fundamental difficulty with relaxation methods used in solving Laplace’s equation is
the rate of convergence. Assuming x= y, the most popular method for accelerating
convergence of these techniques is successive over-relaxation (SOR):

 

where
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Figure 12.7.1: The solution to Laplace’s equation by the Gauss-Seidel method.
The boundary conditions are  u

x
(0,  y)=u

x
(L,  y)=u

y
(x,  0)=0,  and u(x,

H)=1+x/L.

Figure  12.7.2:  The  number  of  iterations  required  so  that  |R
m

,  
n
| 10 3  as  a

function of  during the iterative solution of the problem posed in the
project. We used x= y=0.01, and L=z

0=1. The iteration count for the

boundary conditions stated in Step 1 is given by the solid line while
the  iteration  count  for  the  boundary  conditions  given  in  Step  2  is
shown by the dotted line. The initial guess equaled zero.
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Most numerical methods books dealing with partial differential equations discuss the the-
oretical reasons behind this technique;27 the optimum value always lies between one and two.

Step 1:  Write a MATLAB script  that  uses the Gauss-Seidel method to numerically 
solve Laplace’s equation for 0 x L, 0 y z

0
 with the following boundary conditions: u(x,

0)=0, u(x, z
0
)=1+x/L, u(0, y)=y/z

0
, and u(L, y)=2y/z

0
. Because this solution will act as 

“truth” in this project, you should iterate until the solution does not change.

Step 2: Now redo the calculation using successive over-relaxation. Count the number 

of iterations until |R
m,n

| 10 3 for all m and n. Plot the number of iterations as a function

of . How does the curve change with resolution x?

Step 3: Redo Steps 1 and 2 with the exception of u(0, y)=u(L, y)=0. How has the conver-
gence rate changed? Can you explain why? How sensitive are your results to the first guess?

27    For example, Young, D.M., 1971: Iterative Solution of Large Linear Systems. Academic    
Press, 570 pp.



Chapter 13 

Vector Calculus

Physicists  invented  vectors  and  vector  operations  to  facilitate  their  mathematical
expression of such diverse topics as mechanics and electromagnetism. In this chapter we
focus  on  multivariable  differentiations  and  integrations  of  vector  fields,  such  as  the 
velocity of a fluid, where the vector field is solely a function of its position.

13.1 REVIEW

The  physical  sciences  and  engineering  abound  with  vectors  and  scalars.  Scalars  are
physical quantities which only possess magnitude. Examples include mass, temperature,
density, and pressure. Vectors  are physical quantities that possess both magnitude and 
direction. Examples include velocity, acceleration, and force. We shall denote vectors by
boldfaced letters.

Two  vectors  are  equal  if  they  have  the  same  magnitude  and  direction.  From  the 
limitless number of possible vectors, two special cases are the zero vector 0 which has no 
magnitude and unspecified direction and the unit vector which has unit magnitude.

The most convenient method for expressing a vector analytically is  in terms of its
components.  A vector  a  in  three-dimensional  real  space  is  any  order  triplet  of  real 
numbers (components) a

1
, a

2
, and a

3
 such that a=a

1
i+ a

2
j+a

3
k, where a

1
i, a

2
j, and a

3
k

are vectors which lie along the coordinate axes and have their origin at a common initial
point. The magnitude, length,

or norm of a vector a, |a|, equals  A particularly important vector is the
position vector, defined by r=xi+yj+zk.

As in the case of scalars, certain arithmetic rules hold. Addition and subtraction are 
very similar to their scalar counterparts:

a+b=(a
1
+b

1
)i+(a

2
+b

2
)j+(a

3
+b

3
)k, 

(13.1.1)

and

a b=(a
1

b
1
)i+(a

2
–b

2
)j+(a

3
–b

3
)k. (13.1.2)

In contrast to its scalar counterpart, there are two types of multiplication. The dot product 
is defined as
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a·b=|a||b| cos( )=a
1
b

1
+a

2
b

2
+a

3
b

3
, (13.1.3)

where  is the angle between the vector such that 0 . The dot product yields a scalar 
answer.  A particularly important  case is  a·b=0 with |a| 0,  and |b| 0.  In this  case the 
vectors are orthogonal (perpendicular) to each other.

The  other  form  of  multiplication  is  the  cross  product  which  is  defined  by 
a b=|a||b|sin( )n, where  is the angle between the vectors such that 0  and n is a 
unit  vector  perpendicular  to  the  plane  of  a  and  b  with  the  direction  given  by  the 
right-hand rule. A convenient method for computing the cross product from the scalar 
components of a and b is

(13.1.4)

Two nonzero vectors a and b are parallel if and only if a b=0.
Most of the vectors that we will use are vector-valued functions. These functions are 

vectors that vary either with a single parametric variable t or multiple variables, say x, y 
and z.

The most commonly encountered example of a vector-valued function which varies 
with a single independent variable involves the trajectory of particles. If a space curve is 
parameterized by the equations x=f(t), y=g(t), and z=h(t) with a t b, the position vector r(t)=f(t)i
+g(t)j+h(t)k gives the location of a point P as it moves from its initial position to its final 
position. Furthermore, because the increment quotient r/ t is in the direction of a secant 
line, then the limit of this quotient as t→0, ρ → (t), gives the tangent to the curve at P.

 Example 13.1.1:

Foucault pendulum

One of the great experiments of mid-nineteenth century physics was the demonstration by 
J.B.L.Foucault (1819–1868) in 1851 of the earth’s rotation by designing a (spherical) pendulum,  
supported  by  a  long  wire,  that  essentially  swings  in  an  nonaccelerating coordinate 
system. This problem demonstrates many of the fundamental concepts of vector calculus.

The total force1 acting on the bob of the pendulum is F=T+mG, where T is the tension 
in the pendulum and G is the gravitational attraction per unit mass. Using Newton’s second law,

(13.1.5)

1    From Broxmeyer, C., 1960: Foucault pendulum effect in a Schuler-tuned system. J. Aerosp. Sci.,
27, 343–347 with permission.
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where r is the position vector from a fixed point in an inertial coordinate system to the
bob.  This  system  is  inconvenient  because  we  live  on  a  rotating  coordinate  system.

Employing the conventional geographic coordinate system,2 (13.1.5) becomes

(13.1.6)

where  is the angular rotation vector of the earth and r now denotes a position vector in 
the rotating reference system with its origin at the center of the earth and terminal point at 
the bob. If we define the gravity vector g=G ( r), then the dynamical equation is

(13.1.7)

where the second term on the left side of (13.1.7) is called the Coriolis force.
Because the equation is linear,  let  us break the position vector r into two separate 

vectors: r
0
 and r

1
, where r=r

0
+r

1
. The vector r

0
 extends from the center of the earth to 

the  pendulum’s  point  of  support  and  r
1

 extends  from the  support  point  to  the  bob. 

Because r
0
 is a constant in the geographic system,

(13.1.8)

If  the length of  the pendulum is  L,  then for  small  oscillations r
1

xi+ yj+Lk  and the

equations of motion are

(13.1.9)

(13.1.10)

2   For  the  derivation,  see  Marion,  J.B.,  1965:  Classical  Dynamics  of  Particles  and  Systems.
Academic Press, §§12.2–12.3.
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and

(13.1.11)

where  denotes the latitude of the point and  is the rotation rate of the earth. The 
relationships  between  the  components  of  tension  are  T

x
=xT

z
/L,  and  T

y
=yT

z
/L.  From

(13.1.11),

(13.1.12)

Substituting the definitions of T
x
, T

y
, and (13.1.12) into (13.1.9) and (13.1.10),

(13.1.13)

and

(13.1.14)

The approximate solution to these coupled differential equations is

(13.1.15)

and

(13.1.16)

if  2«g/L.  Thus,  we have a pendulum that swings with an angular frequency 
However, depending upon the latitude  ,  the direction in which the pendulum swings
changes counterclockwise with time, completing a full cycle in 2 /[  sin( )]. This result
is most clearly seen when = /2 and we are at the North Pole. There the earth is turning 
underneath  the  pendulum.  If  initially  we  set  the  pendulum  swinging  along  the  0°
longitude, the pendulum will shift with time to longitudes east of the Greenwich median.
Eventually, after 24 hours, the process repeats itself.
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Consider  now  vector-valued  functions  that  vary  with  several  variables.  A vector 
function of position assigns a vector value for every value of x, y, and z within some 
domain. Examples include the velocity field of a fluid at a given instant:

v=u(x, y, z)i+ (x, y, z)j+ (x, y, z)k. (13.1.17)

Another example arises in electromagnetism where electric and magnetic fields often 
vary as a function of the space coordinates. For us, however, probably the most useful 
example involves the vector differential operator, del or nabla,

(13.1.18)

Figure 13.1.1: For a two-dimensional field T(x, y), the gradient is a vector that 
is perpendicular to the isotherms T(x, y)=constant and points in the 
direction of most rapidly increasing temperatures.

which we apply to the multivariable differentiable scalar function F(x, y, z) to give the 
gradient 

An  important  geometric  interpretation  of  the  gradient—one  which  we  shall  use

frequently—is the fact that  is perpendicular (normal) to the level surface at a given 
point P. To prove this, let the equation F(x, y, z)=c describe a three-dimensional surface. 
If the differentiable functions x=f(t), y=g(t), and z=h(t) are the parametric equations of a 
curve on the surface, then the derivative of F[f(t), g(t), h(t)]=c is

(13.1.19)
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(13.1.20)

When r 0, the vector  is orthogonal to the tangent vector. Because our argument 
holds for any differentiable curve that passes through the arbitrary point (x, y, z), then

 is normal to the level surface at that point.
Figure 13.1.1 gives a common application of the gradient. Consider a twodimensional 

temperature field T(x, y). The level curves T(x, y)=constant are lines that connect points 
where the temperature is the same (isotherms). The gradient in this case  is a vector
that is perpendicular or normal to these isotherms and points in the direction of most 
rapidly increasing temperature.

 Example 13.1.2

Let us find the gradient of the function f(x, y, z)=x2z2 sin(4y). 
Using the definition of gradient,

(13.1.21)

= 2xz2 sin(4y)i+4x2z2 cos(4y)j+2x2z sin(4y)k. (13.1.22)

 Example 13.1.3

Let us find the unit normal to the unit sphere at any arbitrary point (x, y, z).

The  surface  of  a  unit  sphere  is  defined  by  the  equation  f(x,  y,  z) x2+  y2+z2=1. 
Therefore, the normal is given by the gradient

(13.1.23)

and the unit normal

(13.1.24)

because x2+y2+z2=1.

or

'
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u(a, z)=0, 0<z< , (12.6.3)

where  0<b<a.  This  problem  gives  the  electrostatic  potential  within  a  semi-infinite 
cylinder  of  radius  a  that  is  grounded  and  has  the  charge  density  of  n(z)  within  an 
infinitesimally thin shell located at r=b.

Because  the  domain  is  semi-infinite  in  the  z  direction,  we  introduce  the  Laplace 
transform

(12.6.4)

Thus, taking the Laplace transform of (12.6.1), we have that

(12.6.5)

Although  u(r,  0)=0,  u
z
(r,  0)  is  unknown and  we  denote  its  value  by  f(r).  Therefore,

(12.6.5) becomes

(12.6.6)

with limr→0 |U(r, s)|< , and U(a, s)=0. 
To solve (12.6.6) we first assume that we can rewrite f(r) as the FourierBessel series

(12.6.7)

where k
n
 is the nth root of the J

0
(k)=0, and

(12.6.8)

Similarly, the expansion for the delta function is

(12.6.9)

and
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with a velocity field that does not vary with time, the streamlines give the paths along 
which small parcels of the fluid move.

To find the streamlines of a given vector field F with components P(x, y, z), Q(x, y, z),
and  R(x,  y,  z),  we  assume  that  we  can  parameterize  the  streamlines  in  the  form
r(t)=x(t)i+y(t)j+z(t)k.  Then  the  tangent  line  is  r (t)=x (t)i+y (t)j+z (t)k.  Because  the
streamline must be parallel to the vector field at any t, r (t)= F, or

(13.1.25)

or

(13.1.26)

The solution of this system of differential equations yields the streamlines.

 Example 13.1.5

Let us find the streamlines for the vector field F=sec(x)i cot(y)j+ k that passes through
the point ( /4, , 1). In this particular example, F represents a measured or computed 
fluid’s velocity at a particular instant.

From (13.1.26),

(13.1.27)

This yields two differential equations:

(13.1.28)

Integrating these equations gives

sin(x)=ln |cos(y)|+c
1
, and z=ln |cos(y)|+c

2
. (13.1.29)

Substituting for the given point, we finally have that

(13.1.30)
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 Example 13.1.6

Let us find the streamlines for the vector field F=sin(z)j+ey
k that passes through the point

(2, 0, 0).
From (13.1.26),

(13.1.31)

This yields two differential equations:

dx=0, and sin(z) dz=ey dy. (13.1.32)

Integrating these equations gives

x=c
1
, and ey= cos(z)+c

2
. (13.1.33)

Substituting for the given point, we finally have that

x=2, and ey=2 cos(z). (13.1.34)

Note that (13.1.34) only applies for a certain strip in the yz-plane.

Problems

Given the following vectors a and b, verify that a·(a b)=0, and b·(a b)= 0:
1.  a=4i 2j+5k, b=3i+j k

2.  a=i 3j+k, b=2i+4k

3.  a=i+j+k, b= 5i+2j+3k

4.  a=8i+j 6k, b=i 2j+10k

5.  a=2i+7j 4k, b=i+j k.
6.  Prove a (b c)=(a·c)b (a·b)c.
7.  Prove a (b c)+b (c a)+c (a b)=0.
Find the gradient of the following functions:
8.  f(x, y, z)=xy2/z3

9.  f(x, y, z)=xy cos(yz)

10.  f(x, y, z)=ln(x2+y2+z2)
11.  f(x, y, z)=x2y2(2z+1)2

12.  f(x, y, z)=2x y2+z2.
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Use MATLAB to illustrate the following surfaces as well as the the unit normal.
13.  z=3

14.  x2+y2=4

15.  z=x2+y2

16.  
17.  z=y
18.  x+y+z=1

19.  z=x2

Find the streamlines for the following vector fields that  pass through the specified 
point:
20.  F=i+j+k; (0, 1, 1)

21.  F=2i y2
j+zk; (1, 1, 1)

22.  F=3x2
i y2

j+z2
k; (2, 1, 3)

23.  F=x2
i+y2

j z3
k; (1, 1, 1)

24.  F=(1/x)i+ey
j k; (2, 0, 4)

25.  Solve  the  differential  equations  (13.1.13)–(13.1.14)  with  the  initial  conditions

x(0)=y(0)=y (0)=0, and  assuming that 2«g/L.

26. If a fluid is bounded by a fixed surface f(x, y, z)=c, show that the fluid must satisfy 
the boundary condition  where v is the velocity of the fluid.

27. A sphere of radius a is moving in a fluid with the constant velocity u. Show that the 
fluid satisfies the boundary condition (v–u)·(r–ut)=0 at the surface of the sphere, if the 
center of the sphere coincides with the origin at t=0 and v denotes the velocity of the fluid.

13.2 DIVERGENCE AND CURL

Consider a vector field v defined in some region of three-dimensional space. The function 
v(r) can be resolved into components along the i, j, and k directions or

v(r)=u(x, y, z)i+ (x, y, z)j+ (x, y, z)k. (13.2.1)
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Figure 13.2.1: Divergence of a vector function v(x, y, z).

If v is a fluid’s velocity field, then we can compute the flow rate through a small (differential) 
rectangular box defined by increments ( x, y, z) centered at the point (x, y, z). See Figure 
13.2.1. The flow out from the box through the face with the outwardly pointing normal n= j is

v·( j)= (x, y– y/2, z) x z,
(13.2.2)

and the flow through the face with the outwardly pointing normal n=j is

v·j= (x, y+ y/2, z) x z.
(13.2.3)

The net flow through the two faces is

[ (x, y+ y/2, z) (x, y y/2, z)] x z v
y
(x, y, z) x y z. (13.2.4)

A similar analysis of the other faces and combination of the results give the approximate 
total flow from the box as

[u
x
 (x, y, z)+

y
(x, y, z)+

z
 (x, y, z)] x y z. 

(13.2.5)

Dividing by the volume x y z and taking the limit as the dimensions of the box tend to 
zero yield u

x
+

y
+

z
 as the flow out from (x, y, z) per unit volume per unit time. This 

scalar quantity is called the divergence of the vector v:
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(13.2.6)

Thus, if the divergence is positive, either the fluid is expanding and its density at the 
point is falling with time, or the point is a source at which fluid is entering the field. 
When the divergence is negative, either the fluid is contracting and its density is rising at 
the point, or the point is a negative source or sink at which fluid is leaving the field.

If the divergence of a vector field is zero everywhere within a domain, then the flux 
entering any element of space exactly balances that  leaving it  and the vector field is 
called nondivergent or solenoidal (from a Greek word meaning a tube). For a fluid, if 
there are no sources or sinks, then its density cannot change.

Some useful properties of the divergence operator are

(13.2.7)

(13.2.8)

and

(13.2.9)

The expression (13.2.9) is very important in physics and is given the special name of the 

Laplacian.3

 Example 13.2.1

If F=x2zi 2y3z2
j+xy2zk, compute the divergence of F.

(13.2.10)

=2xz 6y2z2+xy2. 
(13.2.11)

3   Some mathematicians write  instead of 
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If r=xi+yj+zk, show that r/|r|3 is nondivergent.

(13.2.12)

(13.2.13)

Another important vector function involving the vector field v is the curl of v, written
curl(v) or rot(v) in some older textbooks. In fluid flow problems

Figure 13.2.2: Examples of vector fields with and without divergence and curl.

it is proportional to the instantaneous angular velocity of a fluid element. In rectangular 
coordinates,

(13.2.14)

where v=ui+ j+ k as before. However, it is best remembered in the mnemonic form:

(13.2.15)

If  the  curl  of  a  vector  field  is  zero  everywhere  within  a  region,  then  the  field  is 
irrotational.

Figure  13.2.2  illustrates  graphically  some vector  fields  that  do and do not  possess 
divergence and curl.  Let  the vectors  that  are  illustrated represent  the motion of  fluid

 Example 13.2.2
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particles. In the case of divergence only, fluid is streaming from the point, at which the 
density is falling. Alternatively the point could be a source. In the case where there is
only curl, the fluid rotates about the point and the fluid is incompressible. Finally, the
point that possesses both divergence and curl is a compressible fluid with rotation.

Some useful computational formulas exist for both the divergence and curl operations:

(13.2.16)

(13.2.17)

(13.2.18)

(13.2.19)

(13.2.20)

(13.2.21)

(13.2.22

and

(13.2.23)

In this book the operation  is undefined.

 Example 13.2.3

If F=xz3
i 2x2yzj+2yz4

k, compute the curl of F and verify that 
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From the definition of curl,

(13.2.24)

 

(13.2.25)

=(2z4+2x2y)i–(0 3xz2)j+( 4xyz 0)k (13.2.26)

=(2z4+2x2y)i+3xz2
j 4xyzk. (13.2.27)

From the definition of divergence and (13.2.27),

(13.2.28)

 Example 13.2.4: Potential flow theory

One of the topics in most elementary fluid mechanics courses is the study of irrotational
and nondivergent fluid flows. Because the fluid is irrotational, the velocity vector field v satisfies 

 From (13.2.17) we can introduce a potential  such that 
Because the flow field is nondivergent,  Thus, the fluid flow can be
completely  described  in  terms  of  solutions  to  Laplace’s  equation.  This  area  of  fluid
mechanics is called potential flow theory.

Problems

Compute  and  for the following vector fields:

1.  F=x2zi+yz2
j+xy2

k

2.  F=4x2y2
i+(2x+2yz)j+(3z+y2)k

3.  F=(x y)2
i+e xy

j+xze2y
k

4.  F=3xyi+2xz2
j+y3

k

5.  F=5yzi+x2zj+3x3
k

6. F=y3
i+(x3y2 xy)j (x3yz xz)k
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7.  F=xe y
i+yz2

j+3e z
k

8.  F=y ln(x)i+(2 3yz)j+xyz3
k

9.  F=xyzi+x3yzez
j+xyez

k

10.  F=(xy3 z4)i+4x4y2 y4z5
k

11.  F=xy2
i+xyz2

j+xy cos(z)k

12.  F=xy2
i+xyz2

j+xy sin(z)k

13.  F=xy2
i+xyzj+xy cos(z)k

14.  (a) Assuming continuity of all partial derivatives, show 
that

 

(b) Using F=3xyi+4yzj+2xzk, verify the results in part (a).

15. If E=E(x, y, z, t) and B=B(x, y, z, t) represent the electric and magnetic fields in a
vacuum, Maxwell’ field equations are:

 

where c  is the speed of light. Using the results from Problem 14, show that E  and B 

satisfy

 

16.  If  f  and  g  are  continuously  differentiable  scalar  fields,  show  that   is

solenoidal. Hint: Show that 
17.  An inviscid  (frictionless)  fluid  in  equilibrium obeys  the  relationship  =  F,

where  denotes the density of the fluid, p denotes the pressure, and F denotes the body 
forces (such as gravity). Show that 
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Figure 13.3.1: Diagram for the line integration in Example 13.3.1.

13.3 LINE INTEGRALS

Line integrals are ubiquitous in physics. In mechanics they are used to compute work. In
electricity and magnetism, they provide simple methods for computing the electric and
magnetic fields for simple geometries.

The line integral most frequently encountered is an oriented one in which the path C is
directed and the integrand is the dot product between the vector function F(r) and the
tangent of the path dr. It is usually written in the economical form

(13.3.1)

where F=P(x, y, z)i+Q(x, y, z)j+R(x, y, z)k. If the starting and terminal points are the same

so that the contour is closed, then this closed contour integral will be denoted by  In
the following examples we show how to evaluate the line integrals along various types of
curves.

 Example 13.3.1

If F=(3x2+6y)i 14yzj+20xz2
k, let us evaluate the line integral cF·dr along the parametric

curves x(t)=t, y(t)=t2, and z(t)=t3 from the point (0, 0, 0) to (1, 1, 1). Using the MATLAB
commands

u MdaFn 

u q : ,2,+,02. 

u oqae1(q*q+=0*q+=1)5 rdFGad(…r…*…;mfqocta…*0,)5…

  sdFGad (…s…*…;mfqocta…*0,)5 tdFGad(…t…*…;mfqocta…*0,)5
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we illustrate these parametric curves in Figure 13.3.1.
We begin by finding the values of t which give the corresponding end points. A quick

check shows that t=0 gives (0, 0, 0) while t=1 yields (1, 1, 1).

Figure 13.3.2: Diagram for the line integration in Example 13.3.2.

It should be noted that the same value of t  must give the correct coordinates in each
direction. Failure to do so suggests an error in the parameterization.

Therefore,

(13.3.2)

(13.3.3)

(13.3.4)

 Example 13.3.2

Let us redo the previous example with a contour that consists of three “dog legs,” namely 
straight  lines  from  (0,  0,  0)  to  (1, 0, 0), from (1, 0, 0) to (1, 1, 0), and from (1, 1, 0) to 
(1, 1, 1). See Figure 13.3.2.

In this particular problem we break the integration down into integrals along each of 
the legs:

(13.3.5)
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For C
1
, y=z=dy=dz=0, and

(13.3.6)

For C
2
, x=1 and z=dx=dz=0, so that

(13.3.7)

Figure 13.3.3: Diagram for the line integration in Example 13.3.3.

For C
3
, x=y=1 and dx=dy=0, so that

(13.3.8)

Therefore,

(13.3.9)

 Examle 13.3.3

For our third calculation, we redo the first example where the contour is a straight line. 
The parameterization in this case is x=y=z=t with 0 t 1. See Figure 13.3.3. Then,
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(13.3.10

(13.3.11)

An interesting aspect of these three examples is that, although we used a common vector 
field and moved from (0, 0, 0) to (1, 1, 1) in each case, we obtained a different answer in 
each case. Thus, for this vector field, the line integral is path dependent. This is generally 
true. In the next section we will meet conservative vector fields where the results will be 
path independent.

Figure 13.3.4: Diagram for the line integration in Example 13.3.4.

 Example 13.3.4

If F=(x2+y2)i–2xyj+xk, let us evaluate 
C

 F·dr if the contour is that portion of the circle

x2+y2=a2from the point (a, 0, 3) to ( , 0, 3). See Figure 13.3.4.
The parametric equations for this example are x=a cos( ), dx=  sin( ) d , y=a sin( ),

dy=a cos( ) d , z=3, and dz=0 with 0 .
Therefore,

(13.3.12)
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(13.3.13)

(13.3.14)

(13.3.15)

 Example 13.3.5: Circulation

Let v(x, y, z) denote the velocity at the point (x, y, z) in a moving fluid. If it varies with

time, this is the velocity at a particular instant of time. The integral  v·dr around a
closed  path  C  is  called  the  circulation  around  that  path.  The  average  component  of 
velocity along the path is

(13.3.16

where s is the total length of the path. The circulation is thus  the product
of the length of the path and the average velocity along the path. When the circulation is 
positive, the flow is more in the direction of integration than opposite to it. Circulation is 
thus an indication and to some extent a measure of motion around the path.

Problems

Evaluate 
C

 F·dr for the following vector fields and curves:

1. F=y sin( z)i+x2ey
j+3xzk and C is the curve x=t, y=t2, and z=t3 from (0, 0, 0) to (1, 1,

1). Use MATLAB to illustrate the parametric curves.

2. F=yi+zj+xk and C consists of the line segments from (0, 0, 0) to (2, 3, 0), and from 
(2, 3, 0) to (2, 3, 4). Use MATLAB to illustrate the parametric curves.

3.  F=ex
i+xexy

j+xyexyz
k  and  C  is  the  curve  x=t,  y=t2,  and  z=t3  with  0 t 2.  Use 

MATLAB to illustrate the parametric curves.

4. F=yzi+xzj+xyk and C is the curve x=t3, y=t2, and z=t with 1 t 2. Use MATLAB to 
illustrate the parametric curves.

5.  F=yi–xj+3xyk  and  C  consists  of  the  semicircle  x2+y2=4,  z=0,  y>0,  and the  line 
segment from ( 2, 0, 0) to (2, 0, 0). Use MATLAB to illustrate the parametric 
curves.

6. F=(x+2y)i+(6y 2x)j and C consists of the sides of the triangle with vertices at (0, 0,

0), (1, 1, 1), and (1, 1, 0). Proceed from (0, 0, 0) to (1, 1, 1) to (1, 1, 0) and back to 
(0, 0, 0). Use MATLAB to illustrate the parametric curves.
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z=1. Use MATLAB to illustrate the parametric curves.
8. F=2xi+yj+zk and C is the contour x=t, y=sin(t), and z= cos(t)+sin(t) with 0 t 2 .

Use MATLAB to illustrate the parametric curves.

9. F=(2y2+z)i+4xyj+xk and C is the spiral x=cos(t), y=sin(t), and z=t with 0 t 2 be-
tween the points (1, 0, 0) and (1, 0, 2 ). Use MATLAB to illustrate the parametric curves.

10. F=x2
i+y2

j+(z2+2xy)k and C consists of the edges of the triangle with vertices at (0, 
0, 0), (1, 1, 0), and (0, 1, 0). Proceed from (0, 0, 0) to (1, 1, 0) to (0, 1, 0) and back to (0, 
0, 0). Use MATLAB to illustrate the parametric curves.

13.4 THE POTENTIAL FUNCTION

In §13.2 we showed that the curl operation applied to a gradient produces the zero vector:

 Consequently, if we have a vector field F such that  everywhere,
then that vector field is called a conservative field and we can compute a potential  such
that 

 Example 13.4.1

Let us show that the vector field F=yexy cos(z)i+xexy cos(z)j  exy sin(z)k is conservative
and then find the corresponding potential function.

To show that the field is conservative, we compute the curl of F or

(13.4.1)

To find the potential we must solve three partial differential equations:

x=yexy cos(z)=F·i, 
(13.4.2)

y=xexy cos(z)=F·j, (13.4.3)

and

z= exy sin(z)=F·k. (13.4.4)

We begin by integrating any one of these three equations. Choosing (13.4.2),

7. F=2xzi+4y2
j+x2

k and C is taken counterclockwise around the ellipse x2/4+y2/9=1,

φ

φ

φ
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(x, y, z)=exy cos(z)+f(y, z). (13.4.5)

To find f(y, z) we differentiate (13.4.5) with respect to y and find that

y=xexy cos(z)+f
y
(y, z)=xexy cos(z) 

(13.4.6)

from (13.4.3). Thus, f
y
=0 and f(y, z) can only be a function of z, say g(z). 

Then,

(x, y, z)=exy cos(z)+g(z). 
(13.4.7)

Finally,

z= exy sin(z)+g (z)= exy sin(z) (13.4.8)

from (13.4.4) and g (z)=0. Therefore, the potential is

(x, y, z)=exy cos(z)+constant. 
(13.4.9)

Potentials can be very useful in computing line integrals because

(13.4.10)

where the point B is the terminal point of the integration while the point A is the starting
point. Thus, any path integration between any two points is path independent.

Finally, if we close the path so that A and B coincide, then

(13.4.11)

It should be noted that the converse is not true. Just because  we do not
necessarily have a conservative field F.

φ

φ

φ

φ

φ
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In  summary  then,  an  irrotational  vector  in  a  given  region  has  three  fundamental 
properties:  (1)  its  integral  around every simply connected circuit  is  zero,  (2)  its  curl
equals zero, and (3) it is the gradient of a scalar function. For continuously differentiable 
vectors  these  properties  are  equivalent.  For  vectors  which  are  only  piece-wise
differentiable, this is not true. Generally the first property is the most fundamental and 
taken as the definition of irrotationality.

 Example 13.4.2

Using the potential found in Example 13.4.1, let us find the value of the line integral

C
F·dr from the point (0, 0, 0) to ( 1, 2, ).

From (13.4.9),

(13.4.12)

Problems

Verify that the following vector fields are conservative and then find the corresponding 
potential:

1.  F=2xyi+(x2+2yz)j+(y2+4)k

2.  F=(2x+2ze2x)i+(2y 1)j+e2x
k

3.  F=yzi+xzj+xyk

4.  F=2xi+3y2
j+4z3

k

5.  F=[2x sin(y)+e3z]i+x2 cos(y)j+(3xe3z+4)k

6.  F=(2x+5)i+3y2
j+(1/z)k

7.  F=e2z
i+3y2

j+2xe2z
k

Figure 13.5.1: Diagram for the surface integration in Example 13.5.1.
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8.  F=yi+(x+z)j+yk

9.  F=(x+y)i+xj+xk.

13.5 SURFACE INTEGRALS

Surface integrals appear in such diverse fields as electromagnetism and fluid mechanics.
For example, if we were oceanographers we might be interested in the rate of volume of
seawater through an instrument which has the curved surface S. The volume rate equals 

S
 v·n d , where v is the velocity and n d  is an infinitesimally small element on the 

surface of the instrument. The surface element n d  must have an orientation (given by n)
because  it  makes  a  considerable  difference  whether  the  flow is  directly  through  the
surface  or  at  right  angles.  In  the  special  case  when  the  surface  encloses  a  three-
dimensional volume, then we have a closed surface integral.

To illustrate the concept of computing a surface integral, we will do three examples 
with simple geometries. Later we will show how to use surface coordinates to do more 
complicated geometries.

 Example 13.5.1

Let us find the flux out the top of a unit cube if the vector field is F=xi+yj+zk. See Figure
13.5.1.

The top of a unit cube consists of the surface z=1 with 0 x 1 and 0 y 1. By inspection
the unit normal to this surface is n=k, or n= k. Because we are interested in the flux out
of the unit cube, n=k, and

(13.5.1)

because z=1.

Figure 13.5.2: Diagram for the surface integration in Example 13.5.2.
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 Example 13.5.2

Let us find the flux out of that portion of the cylinder y2+z2=4 in the first octant bounded
by x=0, x=3, y=0, and z=0. The vector field is F=xi+2zj+yk. See Figure 13.5.2.

Because we are dealing with a cylinder, cylindrical coordinates are appropriate. Let

y=2cos( ),  z=2sin( ),  and  x=x  with  0 /2.  To  find  n,  we  use  the  gradient  in 

conjunction with the definition of the surface of the cylinder f(x, y, z)=y2+z2=4. Then

(13.5.2)

because  y2+z2=4 along  the  surface.  Since  we  want  the  flux  out  of  the  surface,  then 

n=yj/2+zk/2 whereas the flux into the surface would require n= yj/2 zk/2. Therefore,

(13.5.3)

What is d ? Our infinitesimal surface area has a side in the x direction of length dx and a 
side in the  direction of length 2 d  because the radius equals 2. Therefore, d =2 dx d .

Bringing all of these elements together,

(13.5.4)

(13.5.5)

As counterpoint to this example, let us find the flux out of the pie-shaped surface at x=3. 
In this case, y=r cos( ), z=r sin( ), and

Figure 13.5.3: Diagram for the surface integration in Example 13.5.3.
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(13.5.6)

(13.5.7)

Let us find the flux of the vector field F=y2
i+x2

j+5zk  out of the hemispheric surface 

x2+y2+z2=a2, z>0. See Figure 13.5.3.
We begin by finding the outwardly pointing normal. Because the surface is defined by 

f(x, y, z)=x2+y2+z2=a2,

(13.5.8)

because x2+y2+z2=a2. This is also the outwardly pointing normal since n=r/a, where r is 
the radial vector.

Using spherical  coordinates,  x=a  cos( )  sin( ),  y=a  sin( )sin  ( ),  and z=a  cos( ), 
where   is  the  angle  made by the  projection of  the  point  onto  the  equatorial  plane, 
measured from the x-axis, and  is the colatitude or “cone angle” measured from the 
z-axis. To compute d , the infinitesimal length in the  direction is a d  while in the 
direction it is a sin( ) d , where the sin( ) factor takes into account the convergence of 

the meridians. Therefore, d =a2 sin( ) d  d , and

(13.5.9)

(13.5.10)

(13.5.11)

Example 13.5.3

φ φ
φ

φ
φ

φ
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(13.5.12)

(13.5.13)

(13.5.14)

Although these techniques apply for simple geometries such as a cylinder or sphere, we 
would like a general method for treating any arbitrary surface. We begin by noting that a 
surface is an aggregate of points whose coordinates are functions of two variables. For
example, in the previous example, the surface was described by the coordinates  and .
Let us denote these surface coordinates in general by u and . Consequently, on any
surface  we  c an  reexpress  x,  y,  and  z  in  terms  of  u and ; x=x(u, ), y=y(u, ), and z=z (u

).
Next, we must find an infinitesimal element of area. The position vector to the surface

is r=x(u, v)i+y(u, )j+z(u, )k. Therefore, the tangent vectors along =constant, ru, and
along u=constant, r , equal

r
u
=x

u
i+y

u
j+z

u
k, (13.5.15)

and

r =x i+y j+z k. (13.5.16)

Consequently,  the sides of  the infinitesimal  area are  r
u
 du  and r  d .  Therefore,  the 

vectorial area of the parallelogram that these vectors form is

n d =r
u

r  du d (13.5.17)

and is called the vector element of area on the surface. Thus, we may convert F·n d  into 
an expression involving only u and  and then evaluate the surface integral by integrating
over the appropriate domain in the u -plane. Of course, we are in trouble if r

u
r =0.

φ
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Therefore, we only treat regular

Figure 13.5.4: Diagram for the surface integration in Example 13.5.4.

points  where r
u

r 0.  In the next  few examples,  we show how to use these surface

coordinates to evaluate surface integrals.

 Example 13.5.4

Let  us  find  the  flux  of  the  vector  field  F=xi+yj+zk  through  the  top  of  the  plane
3x+2y+z=6 which lies in the first octant. See Figure 13.5.4.

Our parametric equations are x=u, y= , and z=6 3u 2 . Therefore,

r=ui+ j+(6 3u 2v)k,

(13.5.18)

so that

r
u
=i 3k, r =j 2k, 

(13.5.19

and

r
u

r =3i+2j+k. (13.5.20)

Bring all of these elements together,

(13.5.21)
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(13.5.22)

(13.5.23)

To set up the limits of integration, we note that the area in u,  space corresponds to the 
xy-plane. On the xy-plane, z=0 and 3u+2v=6, along with boundaries u=v=0.

Figure 13.5.5: Diagram for the surface integration in Example 13.5.5.

 Example 13.5.5

Let us find the flux of the vector field F=xi+yj+zk through the top of the surface z=xy+1 
which covers the square 0 x 1, 0 y 1 in the xy-plane. See Figure 13.5.5.

Our parametric equations are x=u, y= , and z=u +1 with 0 u 1 and 0 1. Therefore,

r=ui+ j+(u +1)k, (13.5.24)

so that

r
u
=i+ k, r =j+uk, (13.5.25)

and
r

u
r = i uj+k. (13.5.26)



Vector Calculus 853

(13.5.27)

(13.5.28)

(13.5.29)

 Example 13.5.6

Let us find the flux of the vector field F=4xzi+xyz2
j+3zk through the exterior surface of 

the cone z2 x2+y2 above the xy-plane and below z=4. See Figure 13.5.6.

Figure 13.5.6: Diagram for the surface integration in Example 13.5.6.

A natural choice for the surface coordinates is polar coordinates r and . Because x=r
cos( ) and y=r sin( ), z=r. Then

r=r cos( )i+r sin( )j+rk

(13.5.30)

with 0 r 4 and 0< <2  so that

r
r
=cos( )i+sin( )j+kr = r sin( )i+r cos( )j, (13.5.31)

Bring all of these elements together,
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r
r

r = r cos( )i r sin( )j+rk. (13.5.32)

This is the unit area inside the cone. Because we want the exterior surface, we must take 
the negative of (13.5.32). Bring all of these elements together,

(13.5.33)

(13.5.34)

(13.5.35)

Problems

Compute the surface integral 
S 

F·n d  for the following vector fields and surfaces:

1.  F=xi zj+yk and the surface is the top side of the z=1 plane where 0 x 1 and 0 y 1.

2.  F=xi+yj+xzk and the surface is the top side of the cylinder x2+y2=9, z=0, and z=1.

3.  F=xyi+zj+xzk and the surface consists of both exterior ends of the cylinder 

defined by x2+y2=4, z=0, and z=2.

4.  F=xi+zj+yk and the surface is the lateral and exterior sides of the cylinder 

defined by x2+y2=4, z= 3, and z=3.

5.  F=xyi+z2
j+yk and the surface is the curved exterior side of the cylinder y2+z2=9 

in the first octant bounded by x=0, x=1, y=0, and z=0.

6.  F=yj+z2
k and the surface is the exterior of the semicircular cylinder y2+z2=4, 

z 0, cut by the planes x=0 and x=1.

7.  F=zi+xj+yk and the surface is the curved exterior side of the cylinder x2+y2=4 in 
the first octant cut by the planes z=1 and z=2.

8.  F=x2
i z2

j+yzk  and  the  surface  is  the  exterior  of  the  hemispheric  surface  of 

x2+y2+z2=16 above the plane z=2.
9.   F=yi+xj+yk  and the surface is  the top of the surface z=x+1, where 1 x 1 

and 1 y 1.
10.  F=zi+xj 3zk and the surface is the top side of the plane x+y+z=2a that lies 

above the square 0 x<a, 0<y<a in the xy-plane.

11.  F=(y2+z2)i+(x2+z2)j+(x2+y2)k and the surface is the top side of the surface 
z=1 x2 with 1 x 1 and 2 y 2.

12.  F=y2
i+xzj k  and  the  surface  is  the  cone  

normal pointing away from the z-axis.

and

 with  the
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13. F=y2
i+x2

j+5zk and the surface is the top side of the plane z=y+1, where 1 x 1
and 1 y 1.

14.  F= yi+xj+zk  and  the  surface  is  the  exterior  or  bottom side  of  the  

paraboloid z=x2+y2, where 0 z 1.

15. F= yi+xj+6z2
k and the surface is the exterior of the paraboloids z=4 x2 y2 and

z=x2+y2.

13.6 GREEN’S LEMMA

Consider a rectangle in the xy-plane which is bounded by the lines x=a, x=b, y=c, and
y=d. We assume that the boundary of the rectangle is a piece-wise smooth curve which 
we denote by C. If we have a continuously differentiable vector function F=P(x, y)i+Q(x,
y)j at each point of enclosed region R, then

(13.6.1)

(13.6.2)

(13.6.3)

where the last integral is a closed line integral counterclockwise around the rectangle 
because the horizontal sides vanish since dy=0. By similar arguments,

(13.6.4)

so that

(13.6.5)
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(13.6.6)

Although this proof was for a rectangular area, it can be generalized to any simply closed 
region on the xy-plaue as follows. Consider an area which is surrounded by simply closed 
curves.  Within the  closed contour  we can divide the  area  into  an infinite  number  of 
infinitesimally small rectangles and apply (13.6.6) to each rectangle. When we sum up all 

of these rectangles, we find  where the integration is over the entire
surface area. On the other hand, away from the boundary, the line integral along any one 
edge of a rectangle cancels the line integral along the same edge in a contiguous

Figure  13.6.1:  Diagram  for  the  verification  of  Green’s  lemma  in  Example
13.6.1.

rectangle. Thus, the only nonvanishing contribution from the line integrals arises from the

outside boundary of the domain 

 Example 13.6.1

Let  us  verify  Green’s  lemma using the  vector  field  F=(3x2 8y2)i+ (4y 6xy)j  and the 

enclosed area lies between the curves  The two curves intersect at
x=0 and x=1. See Figure 13.6.1.

We begin with the line integral:

(13.6.7)

This result, often known as Green’s lemma, may be expressed in vector form as
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(13.6.8)

In (13.6.7) we used y=x2 in the first integral and  in our return integration. For
the areal integration,

(13.6.9)

(13.6.10

and Green’s lemma is verified in this particular case.

 Example 13.6.2

Let us redo Example 13.6.1 except that the closed contour is the triangular region defined
by the lines x=0, y=0, and x+y=1.

The line integral is

(13.6.11)

(13.6.12)

(13.6.13)

On the other hand, the areal integration is

(13.6.14)
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(13.6.15

and Green’s lemma is verified in this particular case.

 Example 13.6.3

Let us verify Green’s lemma using the vector field F=(3x+4y)i+(2x  3y)j and the closed
contour is a circle of radius two centered at the origin of the xy-plane. See Figure 13.6.2.

Beginning with the line integration,

(13.6.16)

(13.6.17)

(13.6.18)

= 8 . (13.6.19)

Figure  13.6.2:  Diagram  for  the  verification  of  Green’s  lemma  in  Example
13.6.3.
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For the areal integration,

(13.6.20

and Green’s lemma is verified in the special case.

Problems

Verify Green’s lemma for the following two-dimensional vector fields and contours:

1. F=(x2+4y)i+(y x)j and the contour is the square bounded by the lines x=0, y=0, x=1,
and y=1.

2. F=(x y)i+xyj and the contour is the square bounded by the lines x=0, y=0, x=1, and
y 1.

3. F= y2
i+x2

j and the contour is the triangle bounded by the lines x=1, y=0, and y=x.
4. F=(xy x2)i+x2yj and the contour is the triangle bounded by the lines y=0, x=1, and

y=x.
5.  F=sin(y)i+xcos(y)j  and  the  contour  is  the  triangle  bounded  by  the  lines  x+y=1,

y x=1, and y=0.
6. F=y2

i+x2
j and the contour is the same contour used in Problem 4.

7. F= y2i+x2
j and the contour is the circle x2+y2=4.

8. F= x2
i+xy2

j and the contour is the closed circle of radius a.
9. F=(6y+x)i+(y+2x)j and the contour is the circle (x 1)2+(y 2)2=4.

10. F=(x+y)i+(2x2 y2)j and the contour is the boundary of the region determined by

the curves y=x2 and y=4.
11. F=3yi+2xj and the contour is the boundary of the region determined by the curves

y=0 and y=sin(x) with 0 x .

12. F= 16yi+(4ey+3x2)j  and the contour is the pie wedge defined by the lines y=x,

y= x, x2+y2=4, and y>0.

13.7 STOKES’ THEOREM

In §13.2 we introduced the vector quantity v which gives a measure of the rotation of
a parcel of fluid lying within the velocity field v. In this section we show how the curl
can be used to simplify the calculation of certain closed line integrals.

This relationship between a closed line integral and a surface integral involving the
curl is

Stokes’ Theorem: The circulation of F=Pi+Qj+Rk around the closed boundary C of
an oriented surface S in the direction counterclockwise with respect to the surface ‘s unit 
normal vector n equals the integral of F·n over S or
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(13.7.1)

Stokes’ theorem requires that all of the functions and derivatives be continuous.
The proof of Stokes’ theorem is as follows: Consider a finite surface S whose boundary 

is the loop C. We divide this surface into a number of small elements n d  and compute

the  circulation   around  each  element.  When  we  add  all  of  the
circulations together, the contribution from an integration along a boundary line between
two adjoining elements cancels out because the boundary is transversed once in each
direction. For this reason, the only contributions that survive are those parts where the
element

Figure 13.7.1: Sir George Gabriel Stokes (1819–1903) was Lucasian Professor 
of Mathematics at Cambridge University from 1849 until his death. 
Having learned of an integral theorem from his friend Lord Kelvin, 
Stokes  included  it  a  few  years  later  among  his  questions  on  an 
examination  that  he  wrote  for  the  Smith  Prize.  It  is  this  integral 
theorem that we now call Stokes’ theorem. (Portrait courtesy of the 
Royal Society of London.)

boundaries  form  part  of  C.  Thus,  the  sum  of  all  circulations  equals   the
circulation around the edge of the whole surface.

Next,  let  us  compute the circulation another  way.  We begin by finding the  Taylor 
expansion for P(x, y, z) about the arbitrary point (x

0
, y

0
, z

0
):
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(13.7.2)

with similar expansions for Q(x, y, z) and R(x, y, z). Then

 

(13.7.3)

where L denotes some small loop located in the surface S. Note that integrals such as 

dx and  vanish.
If we now require that the loop integrals be in the clockwise or positive sense so that 

we preserve the right-hand screw convention, then

(13.7.4)

(13.7.5)

(13.7.6)

and

(13.7.7)

Therefore,  the  sum  of  all  circulations  in  the  limit  when  all  elements  are  made

infinitesimally small becomes the surface integral  and Stokes’ theorem
is proven.



862 Advanced Engineering Mathematics with MATLAB

In the following examples we first apply Stokes’ theorem to a few simple geometries. 

We then show how to apply this theorem to more complicated surfaces.4

 Example 13.7.1

Let us verify Stokes’ theorem using the vector field F=x2
i+2xj+z2

k and the closed curve
is a square with vertices at (0, 0, 3), (1, 0, 3), (1, 1, 3), and (0, 1, 3). See Figure 13.7.2.

We begin with the line integral:

(13.7.8)

where C
1
, C

2
, C

3
, and C

4
 represent the four sides of the square. Along C

1
, x varies while

y=0 and z=3. Therefore,

(13.7.9)

Figure  13.7.2:  Diagram for  the  verification  of  Stokes’ theorem in  Example
13.7.1.

because dy=dz=0, and z=3. Along C
2
, y varies with x=1 and z=3.

Therefore,

4    Thus, different Stokes for different folks.
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(13.7.10)

Along C
3
, x again varies with y=1 and z=3, and so,

(13.7.11)

Note how the limits run from 1 to 0 because x is decreasing. Finally, for C
4
, y again varies 

with x=0 and z=3. Hence,

(13.7.12)

Hence,

(13.7.13)

Turning to the other side of the equation,

(13.7.14)

Our line integral has been such that the normal vector must be n=k. Therefore,

(13.7.15)
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Figure  13.7.3:  Diagram for  the  verification  of  Stokes’ theorem in  Example
13.7.2.

and Stokes’ theorem is verified for this special case.

 Example 13.7.2

Let us verify Stokes’ theorem using the vector field F=(x2 y)i+4zj+ x2
k, where the closed

contour consists of the x and y coordinate axes and that portion of the circle x2+y2=a2 that
lies in the first quadrant with z=1. See Figure 13.7.3. 

The line integral consists of three parts:

(13.7.16)

Along C
1
, x varies while y=0 and z=1. Therefore,

(13.7.17)

Along  the  circle  C
2
,  we  use  polar  coordinates  with  x=a  cos(t),  y=a  sin(t),  and  z=1.

Therefore,

(13.7.18)

(13.7.19)
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(13.7.20)

(13.7.21)

Figure  13.7.4:  Diagram for  the  verification  of  Stokes’ theorem in  Example
13.7.3.

because dx= a sin(t)dt, and dy=a cos(t)dt. Finally, along C
3
, y varies with x=0 and z=1

Therefore,

(13.7.22)

so that

(13.7.23)

Turning to the other side of the equation,

(13.7.24)
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(13.7.25)

and Stokes’ theorem is verified for this case.

 Example 13.7.3

Let us verify Stokes’ theorem using the vector field F=2yzi (x+3y  2)j+(x2+z)k, where
the closed triangular region is  that  portion of the plane x+y+z=1 that  lies in the first 
octant.

As shown in Figure 13.7.4, the closed line integration consists of three line integrals:

(13.7.26)

Along C
1
, z=0 and y=1 x. Therefore, using x as the independent variable,

 

(13.7.27)

Along C
2
, x=0 and y=1 z. Thus,

 

(13.7.28)

Finally, along C
3
, y=0 and z=1 x. Hence,

 

(13.7.29)

From the path of our line integral, our unit normal vector must be n=k. Then,
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(13.7.30)

On the other hand,

(13.7.31)

To find n d , we use the general coordinate system x=u, y= , and z= 1 u . Therefore, 
r=ui+ j+(1 u )k and

(13.7.32)

Thus,

(13.7.33)

(13.7.34)

(13.7.35)

(13.7.36)

and Stokes’ theorem is verified for this case.

Problems

Verify Stokes’ theorem using the following vector fields and surfaces:

1. F=5yi 5xj+3zk and the surface S is that portion of the plane z=1 with the square at 
the vertices (0, 0, 1), (1, 0, 1), (1, 1, 1), and (0, 1, 1).

2. F=x2
i+y2

j+z2
k and the surface S is the rectangular portion of the plane z=2 defined 

by the corners (0, 0, 2), (2, 0, 2), (2, 1, 2), and (0, 1, 2).

Thus,

3. F=zi+xj+yk and the surface S is the triangular portion of the plane z=1 defined by 
the vertices (0, 0, 1), (2, 0, 1), and (0, 2, 1).
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4. F=2zi 3xj+4yk and the surface S is that portion of the plane z=5 within the cylinder 

x2+y2=4.

5. F=zi+xj+yk and the surface S is that portion of the plane z=3 bounded by the lines 

y=0, x=0, and x2+y2=4.
6. F=(2z+x)i+(y z)j+(x+y)k and the surface S is the interior of the triangularly 

shaped plane with vertices at (1, 0, 0), (0, 1, 0), and (0, 0, 1).
7. F=zi+xj+yk  and the surface S is that portion of the plane 2x+y+2z=6 in the first 

octant.

8. F=xi+xzj+yk and the surface S is that portion of the paraboloid z=9 x2 y2 within the 

cylinder x2+y2=4.

13.8 DIVERGENCE THEOREM

Although Stokes’ theorem is useful in computing closed line integrals, it is usually very 
difficult to go the other way and convert a surface integral into a closed line integral 
because the integrand must have a very special form, namely  In this section
we introduce a theorem that allows with equal facility the conversion of a closed surface 
integral into a volume integral and ice ersa. Furthermore, if we can convert a given 
surface integral into a closed one by the introduction of a simple surface (for example, 
closing a hemispheric surface by adding an equatorial plate), it may be easier to use the 
divergence theorem and subtract off the contribution from the new surface integral rather 
than do the original problem.

This relationship between a closed surface integral and a volume integral involving the 
divergence operator is

Figure 13.8.1: Carl Friedrich Gauss (1777–1855), the prince of mathe-
maticians, must be on the list of the greatest mathematicians who 
ever lived. Gauss, a child prodigy, is almost as well known for 
what he did not publish during his lifetime as for what he did. 
This is true of Gauss’s divergence theorem which he proved 
while working on the theory of gravitation. It was only when his 
notebooks were published in 1898 that  his  precedence  over  the  
published  work  of  Ostrogradsky (1801– 1862)  was  es-
tablished.  (Portrait  courtesy  of  Photo  AKG, London.)
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The Divergence or Gauss’s Theorem: Let V be a closed and bounded region in three-
dimensional space with a piece-wise smooth boundary S that is oriented outward. Let F=P(x, y,
z)i+Q(x, y, z)j+R(x, y, z)k be a vector field for which P, Q, and R are continuous and have
continuous first partial derivatives in a region of three dimensional space containing V. Then

(13.8.1)

Here, the circle on the double integral signs denotes a closed surface integral.
A nonrigorous proof of Gauss’s theorem is as follows. Imagine that our volume V is 

broken down into small elements d  of volume of any shape so long as they include all of 
the original volume. In general, the surfaces of these elements are composed of common 
interfaces between adjoining elements. However, for the elements at the periphery of V, 
part  of  their  surface  will  be  part  of  the  surface  S  that  encloses  V.  Now

 is  the  net  flux of  the  vector  F out  from the  element  dr.  At  the
common interface between elements, the flux out of one element equals the flux into its 
neighbor.

Figure  13.8.2:  Diagram  for  the  verification  of  the  divergence  theorem  in 
Example 13.8.1.
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Therefore, the sum of all such terms yields

(13.8.2)

and all of the contributions from these common interfaces cancel; only the contribution 
from the parts on the outer surface S is left. These contributions, when added together,

give  over S and the proof is completed.

 Example 13.8.1

Let us verify the divergence theorem using the vector field F=4xi  2y2
j+z2

k  and the

enclosed surface is the cylinder x2+y2=4, z=0, and z=3. See Figure 13.8.2. 
We begin by computing the volume integration. Because

(13.8.3)

(13.8.4)

(13.8.5)

(13.8.6)

(13.8.7)

(13.8.8)
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(13.8.9)

Turning to the surface integration, we have three surfaces:

(13.8.10

The first integral is over the exterior to the cylinder. Because the surface is defined by f(x,

y, z)=x2+y2=4,

(13.8.11)

Therefore,

(13.8.12)

(13.8.13)

(13.8.14)

(13.8.15)

(13.8.16)

because x=2 cos( ), y=2 sin( ), and d =2 d  dz in cylindrical coordinates.
Along the top of the cylinder, z=3, the outward pointing normal is n=k, and d =r dr 

d . Then,
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(13.8.17)

However, along the bottom of the cylinder, z=0, the outward pointing normal is n= k and
d =r dr d . Then,

(13.8.18)

Consequently, the flux out the entire cylinder is

(13.8.19)

and the divergence theorem is verified for this special case.

 Example 13.8.2

Let us verify the divergence theorem given the vector field F=3x2y2
i+ yj 6xy2zk and the

volume is the region bounded by the paraboloid z=x2+y2 and the plane z=2y. See Figure
13.8.3.

Computing the divergence,

(13.8.20)

Then,

(13.8.21)

(13.8.22)

(13.8.23)
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(13.8.24)

(13.8.25)

(13.8.26)

(13.8.27)

(13.8.28)

The limits in the radial direction are given by the intersection of the paraboloid and plane:

r2=2r sin( ), or r=2 sin( ), and y is greater than zero.
Turning to the surface integration, we have two surfaces:

(13.8.29)

Figure  13.8.3:  Diagram  for  the  verification  of  the  divergence  theorem  in

Example 13.8.2. The dashed line denotes the curve r=2 sin( ).
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where S
1
 is the plane z=2y, and S

2
 is the paraboloid. For either surface, polar coordinates are best 

so that x=r cos( ), and y=r sin( ). For the integration over the plane, z=2r sin( ). Therefore,

r=r cos( )i+r sin( )j+2r sin( )k,

(13.8.30)

so that

r
r
=cos( )i+sin( )j+2 sin( )k, (13.8.31)

and

r = r sin( )i+r cos( )j+2r cos( )k. (13.8.32)

Then,

(13.8.33)

This is  an outwardly pointing normal so that  we can immediately set  up the surface
integral:

(13.8.34)

(13.8.35)

(13.8.36)
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(13.8.37)

(13.8.38)

= 2 . (13.8.39)

For the surface of the paraboloid,

r=r cos( )i+r sin( )j+r2
k, (13.8.40)

so that

r
r
=cos( )i+sin( )j+2rk, (13.8.41

and

r = r sin( )i+r cos( )j. (13.8.42)

Then,

(13.8.43)

= 2r2 cos( )i 2r2 sin( )j+rk. (13.8.44)

This is an inwardly pointing normal so that we must take the negative of it before we do
the surface integral. Then,
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(13.8.45)

(13.8.46)

(13.8.47)

(13.8.48)

(13.8.49)

(13.8.50)

(13.8.51)

(13.8.52

Consequently,

(13.8.53)

and the divergence theorem is verified for this special case.
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 Example 13.8.3: Archimedes’ principle

Consider a solid5 of volume V and surface S that is immersed in a vessel filled with a
fluid of density . The pressure field p in the fluid is a function of the distance from the
liquid/air interface and equals

P=P
0

gz, 
(13.8.54)

where g  is the gravitational acceleration, z  is the vertical distance measured from the
interface  (increasing  in  the  k  direction),  and  p

0 
 is  the  constant  pressure  along  the

liquid/air interface.
If we define F= pk, then F·n d  is the vertical component of the force on the surface

due to the pressure and  d  is the total lift. Using the divergence theorem and
noting that  the total lift also equals

(13.8.55)

which is the weight of the displaced liquid. This is Archimedes’ principle: the buoyant
force on a solid immersed in a fluid of constant density equals the weight of the fluid
displaced.

 Example 13.8.4: Conservation of charge

Let a charge of density  flow with an average velocity v. Then the charge crossing the
element dS per unit time is v·dS=J·dS,  where J is defined as the conduction current
vector or current density vector. The current across any surface drawn in the medium is

The total charge inside the closed surface is 
V 

 dV. If there are no sources or sinks

inside the surface, the rate at which the charge decreases is  Because this
change is due to the outward flow of charge,

(13.8.56)

5    Adapted from Altintas,  A.,  1990:  Archimedes’ principle  as  an application of  the divergence
theorem. IEEE Trans. Educ., 33, 222. ©IEEE.
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(13.8.57)

Because  the  result  holds  true  for  any  arbitrary  volume,  the  integrand  must  vanish 
identically and we have the equation of continuity or the equation of conservation of
charge:

(13.8.58)

Problems

Verify the divergence theorem using the following vector fields and volumes:

1. F=x2
i+y2

j+z2
k and the volume V is the cube cut from the first octant by the planes 

x=1, y=1, and z=1.

2. F=xyi+yzj+xzk and the volume V is the cube bounded by 0 x 1, 0 y 1, and 0 z 1.

3. F=(y x)i+(z y)j+(y x)k and the volume is the cube bounded by 1 x 1, 1 y 1,
and 1 z 1.

4. F=x2
i+yj+zk and the volume V is the cylinder defined by the surfaces x2+y2=1, z=0,

and z=1.

5. F=x2
i+y2

j+z2
k and the volume V is the cylinder defined by the surfaces x2+y2=4,

z=0, and z=1.

6.  F=2/2i+xz3
j+(z 1)2

k  and  the  volume  V  is  the  cylinder  bounded  by  the  surface

x2+y2=4, and the planes z=1 and z=5.

7. F=6xyi+4yzj+xe y
k and the volume V is that region created by the plane x+y+z=1,

and the three coordinate planes.

8. F=yi+xyj zk and the volume V is that solid created by the paraboloid z=x2+y2 and
plane z=1.

Applying the divergence theorem,



Chapter 14

Linear Algebra

Linear algebra involves the systematic solving of linear algebraic or differential equations 
that arise during the mathematical modeling of an electrical, mechanical, or even human
system where two or more components are interacting with each other. In this chapter we
present efficient techniques for expressing these systems and their solution.

14.1 FUNDAMENTALS OF LINEAR ALGEBRA

Consider the following system of m simultaneous linear equations in n unknowns x
1
, x

2
,

x
3
,…, x

n
:

(14.1.1)

where the coefficients 
ij
 and constants b

j
 denote known real or complex numbers. The 

purpose of this chapter is to show how matrix algebra can be used to solve these systems 
by first introducing succinct notation so that we can replace (12.1.1) with rather simple 
expressions and then employing a set of rules to manipulate these expressions. In this 
section we focus on developing these simple expressions.

The  fundamental  quantity  in  linear  algebra  is  the  matrix.1  A matrix  is  an  ordered 
rectangular array of numbers or mathematical expressions. We shall use upper case letters 
to denote them. The m n matrix

(14.1.2)

1 This term was first used by Sylvester, J.J., 1850: Additions to the articles, “On a new class of
theorems,” and “On Pascal’s theorem.” Philos. Mag., Ser. 4, 37, 363–370.
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matrix. If some or all of the elements are complex, then A is a complex matrix. For a square
matrix, the diagonal from the top left corner to the bottom right corner is the principal diagonal.

From the limitless number of possible matrices, certain ones appear with sufficient regularity
that they are given special names. A zero matrix (sometimes called a null matrix) has all of
its elements equal to zero. It fulfills the role in matrix algebra that is analogous to that of zero in
scalar algebra. The unit or identity matrix is a n n matrix having 1’s along its principal diagonal
and zero everywhere else. The unit matrix serves essentially the same purpose in matrix algebra 
as does the number one in scalar algebra. A symmetric matrix is one where 

ij
=

ji
 for all i and j.

 Example 14.1.1

Examples of zero, identity, and symmetric matrices are

respectively. 
A special class of matrices are column vectors and row vectors:

We denote row and column vectors by lower case, boldfaced letters. The length or norm 
of the vector x of n elements is

Two matrices A and B are equal if and only if 
ij
=b

ij
 for all possible i and j and they have 

the same dimensions.
Having defined a  matrix,  let  us  explore some of  its  arithmetic  properties.  For  two 

matrices  A  and  B  with  the  same  dimensions  (conformable  for  addition),  the  matrix 
C=A+B  contains  the  elements  c

ij
=

ij
+b

ij
.  Similarly,  C=A B  contains  the  elements

has m rows and n columns. The order (or size) of a matrix is determined by the number of 
rows and columns; (12.1.2) is of order m by n. If m=n, the matrix is a square matrix; 
otherwise, A is rectangular. The numbers or expressions in the array aij are the elements 
of A and can be either real or complex. When all of the elements are real, A is a real

(14.1.5)

(14.1.4)

(14.1.3)
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c
ij
=a

ij
b

ij
.  Because  the  order  of  addition  does  not  matter,  addition  is  commutative:

A+B=B+A.
Consider  now a scalar  constant  k.  The product  kA  is  formed by multiplying every

element of A by k. Thus the matrix kA has elements ka
ij
.

So far the rules for matrix arithmetic conform to their scalar counterparts. However,
there are several possible ways of multiplying two matrices together. For example, we
might simply multiply together the corresponding elements from each matrix. As we will
see, the multiplication rule is designed to facilitate the solution of linear equations.

We begin by requiring that the dimensions of A be m n while for B they are n p. That 
is, the number of columns in A must equal the number of rows in B. The matrices A and B 
are then said to be conformable for multiplication. If this is true, then C=AB is a matrix 
m p, where its elements equal

(14.1.6)

The right side of (14.1.6) is referred to as an inner product of the ith row of A and the jth 
column of B. Although (14.1.6) is the method used with a computer, an easier method for 
human computation is as a running sum of the products given by successive elements of 
the ith row of A and the corresponding elements of the jth column of B.

The product AA is usually written A2; the product AAA, A3, and so forth.

 Example 14.1.2

If

(14.1.7)

then

(14.1.8)

(14.1.9)

Checking our results using MATLAB, we have that

» A = [ 1 4 ; 2 3]; 
» B = [1 2 ; 3 4];
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» C = A*B 
C =
    11  14
    7  8

Note that there is a tremendous difference between the MATLAB command for matrix 
multiplication * and element-by-element multiplication .*.

Matrix multiplication is associative and distributive with respect to addition:

(kA)B=k(AB)=A(kB),                                                 (14.1.10)

A(BC)=(AB)C,                                                           (14.1.11)

(A+B)C=AC+BC,                                                      (14.1.12)

and

C(A+B)=CA+CB.                                                      (14.1.13)

On the other hand, matrix multiplication is not commutative. In general, AB BA.

 Example 14.1.3

Does AB=BA if

and

(14.1.14)

Because

(14.1.15)

(14.1.16)
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AB BA. (14.1.17)

find the product AB.
Performing the calculation, we find that

 Example 14.1.4

Given

(14.1.18)

The point here is that just because AB=0, this does not imply that either A or B equals the
zero matrix.

We  cannot  properly  speak  of  division  when  we  are  dealing  with  matrices.
Nevertheless, a matrix A is said to be nonsingular or invertible if there exists a matrix B
such that AB=BA=I. This matrix B is the multiplicative inverse of A or simply the inverse

of A, written A 1. A n n matrix is singular if it does not have a multiplicative inverse.

 Example 14.1.5

If

(14.1.19)

(14.1.20)

let us verify that its inverse is

(14.1.21)
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We perform the check by finding AA 1 or A 1A,

(14.1.22)

In a later section we will show how to compute the inverse, given A.
Another matrix operation is transposition. The transpose of a matrix A with dimensions 

m n is another matrix, written AT, where we interchanged the rows and columns from A. 

In MATLAB, AT is computed by typing A’. Clearly, (AT)T=A as well as (A+B)T=AT+BT,

and (kA)T=kAT. If A and B are conformable for multiplication, then (AB)T=BT AT. Note the
reversal of order between the two sides. To prove this last result, we first show that the
results are true for two 3 3 matrices A and B and then generalize to larger matrices.

Having introduced some of the basic concepts of linear algebra, we are ready to rewrite
(14.1.1) in a canonical form so that we can present techniques for its solution. We begin 
by writing (14.1.1) as a single column vector:

(14.1.23)

We now use the multiplication rule to rewrite (14.1.23) as

(14.1.24)

or

Ax=b,

where  x  is  the  solution  vector.  If  b=0,  we  have  a  homogeneous  set  of  equations;
otherwise, we have a nonhomogeneous set. In the next few sections, we will give a
number of methods for finding x.

(14.1.25)
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A common problem in linear algebra involves solving systems such as

b
1
y

1
+c

1
y

2
=d

1
, (14.1.26)

a
2
y

1
+b

2
y

2
+c

2
y

3
=d

2
, (14.1.27)

(14.1.28)

b
N

y
N 1

+c
N

y
N

=d
N

. (14.1.29)

Such systems arise in the numerical solution of ordinary and partial differential equations. 
We begin by rewriting (14.1.26)–(14.1.29) in the matrix notation:

(14.1.30)

The matrix in (14.1.30) is an example of a banded matrix:  a matrix where all of the
elements in each row are zero except for the diagonal element and a limited number on
either side of it.  In the present case, we have a tridiagonal  matrix in which only the
diagonal  element  and the  elements  immediately  to  its  left  and right  in  each row are
nonzero.

Consider the nth equation. We can eliminate a
n
 by multiplying the (n 1)th equation by

a
n
/b

n 1
 and subtracting this new equation from the nth equation. The values of b

n
 and d

n

become

(14.1.31)

 Example 14.1.6: Solution of a tridiagonal system
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(14.1.32)

for n=2, 3,…, N. The coefficient c
n
 is unaffected. Because elements a

1
 and c

N
 are never

involved, their values can be anything or they can be left undefined. The new system of
equations may be written

(14.1.33)

The matrix in (14.1.33) is in upper triangular form because all of the elements below the
principal diagonal are zero. This is particularly useful because y

n
 can be computed by

back substitution. That is, we first compute y
N

. Next, we calculate y
N 1

 in terms of y
N

.

The  solution  y
N 2

 can  then  be  computed  in  terms of  y
N

 and  y
N 1

.  We continue  this

process until we find y
1
 in terms of y

N
, y

N 1
,…, y

2
. In the present case, we have the rather

simple:

(14.1.34)

and

(14.1.35)

for n=N 1, N 2,…, 2,1.
As we shall show shortly, this is an example of solving a system of linear equations by

Gaussian elimination. For a tridiagonal case, we have the advantage that the solution can
be expressed in  terms of  a  recurrence relationship,  a  very convenient  feature  from a

computational point of view. This algorithm is very robust, being stable2 as long as |a
i
+a

i
|

<|b
i
|. By stability, we mean

2 Torii, T., 1966: Inversion of tridiagonal matrices and the stability of tridiagonal systems of linear
systems. Tech. Rep. Osaka Uni ., 16, 403–414.

and
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that  if  we  change  b  by  b  so  that  x  changes  by  x,  then   where

 0<M< , for any N.

Problems

Given  and  find

1. A+B, B+A
2. A B, B A
3. 3A 2B, 3(2A B)

4. AT, BT, (BT)T

5. (A+B)T, AT+BT

6. B+BT, B BT

7. AB, ATB, BA, BT A

8. A2, B2

9. BBT, BTB

10. A2 3A+I

11. A3+2A

12. A4 4A2+2I
by hand and using MATLAB.
Can multiplication occur between the following matrices? If so, compute it.

13. 

14. 

15. 

16. 

17. 

If  verify that

18. 7A=4A+3A,
19. 10A=5(2A),

20. (AT)T=A 
by hand and using MATLAB. 
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21. (A+B)+C=A+(B+C),
22. (AB)C=A(BC),
23. A(B+C)=AB+AC,
24. (A+B)C=AC+BC
by hand and using MATLAB.

Verify that the following A 1 are indeed the inverse of A:

25. 

 

26. 

 

by hand and using MATLAB.
Write the following linear systems of equations in matrix form: Ax=b.
27.

1 2 1 2

28.

1 2 3 1 2 3 1 2 3

29.

2 3 4 1 3 4

1 2 3 4 1 2 3 4

14.2 DETERMINANTS

Determinants appear naturally during the solution of simultaneous equations. Consider,
for example, two simultaneous equations with two unknowns x

1
 and x

2
,

a
11

x
1
+a

12
x

2
=b

1
, (14.2.1)

and 

a
21

x
1
+a

22
x

2
=b

2
. (14.2.2)

The solution to these equations for the value of x
1
 and x

2
 is

(14.2.3)

 verify thatIf 

x 2x =5  3x +x =1

2x +x +4x =2 4x +2x +5x =6 6x 3x +5x =2

x +2x +3x =2 3x 4x 4x =5

x +x +x +x = 3 2x 3x +x 3x =7.
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(14.2.4)

and

Note  that  the  denominator  of  (14.2.3)  and  (14.2.4)  is  the  same.  This  term,  which 
always appears in the solution of 2 2 systems, is formally given the name of determinant 
and written

(14.2.5)

MATLAB provides a simple command det (A) which computes the determinant of A. For 
example, in the present case,

» det(A) 
ans = 
0

Although determinants  have their  origin in  the solution of  systems of  equations,  any 

square array of numbers or expressions possesses a unique determinant, independent of 

whether it is involved in a system of equations or not. This determinant is evaluated (or 

expanded) according to a formal rule known as Laplace’s expansion of cofactors.3 The
process revolves around expanding the determinant using any arbitrary column or row of 
A. If the ith row or jth column is chosen, the determinant is given by

det(A)=a
i1

A
i1

+a
i2

A
i2

+…+a
in

A
in (14.2.6)

=a
1j

A
1j

+a
2j

A
2j

+…+a
nj

A
nj

, (14.2.7)

where A
ij
, the cofactor of a

ij
, equals ( 1)i+j M

ij
. The minor M

ij
 is the determinant of the 

(n 1) (n 1) submatrix obtained by deleting row i, column j of A. This rule, of course, 
was chosen so that determinants are still useful in solving systems of equations.

3 Laplace, P.S., 1772: Recherches sur le calcul intégral et sur le système du monde. Hist. Acad. R.

Sci., IIe Partie, 267–376. Œuvres, 8, pp. 369–501. See Muir, T., 1960: The Theory of Determinants 
in the Historical Order of Development, Vol. I, Part 1, General Determinants Up to 1841. Dover 
Publishers, pp. 24–33.

» A = [2 1 2 ; 1 3 2; 5 1 6];  
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(14.2.8)

=2(16) 1( 8)+5( 8)=0. (14.2.9)

The greatest source of error is forgetting to take the factor ( 1)i+j into account during the 
expansion.

Although  Laplace’s  expansion  does  provide  a  method  for  calculating  det(A),  the 
number  of  calculations  equals  (n!).  Consequently,  for  hand  calculations,  an  obvious 
strategy is to select the column or row that has the greatest number of zeros. An even 
better strategy would be to manipulate a determinant with the goal of introducing zeros 
into a particular column or row. In the remaining portion of this section, we show some 
operations that may be performed on a determinant to introduce the desired zeros. Most 
of the properties follow from the expansion of determinants by cofactors.

� Rule 1: For every square matrix A, det(AT)=det(A).
The proof is left as an exercise. 
� Rule 2: If any two rows or columns of A are identical, det(A)=0. 
To see that this is true, consider the following 3 3 matrix:

(14.2.10)

� Rule 3: The determinant of a triangular matrix is equal to the product of its diagonal 
elements.

by an expansion in cofactors. 
Using the first column,

 Example 14.2.1

Let us evaluate
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If A is lower triangular, successive expansions by elements in the first column give

(14.2.11)

=…=a
11

a
22

…a
nn

. (14.2.12)

If A is upper triangular, successive expansions by elements of the first row prove the 
property.
● Rule 4: If a square matrix A has either a row or a column of all zeros, then det(A)=0. 
The proof is left as an exercise. 
● Rule 5: If each element in one row (column) of a determinant is multiplied by a 

number c, the value of the determinant is multiplied by c.
Suppose that |B| has been obtained from |A| by multiplying row i (column j) of |A| by c. 

Upon expanding |B| in terms of row i (column j) each term in the expansion contains c as 
a factor. Factor out the common c, the result is just c times the expansion |A| by the same 
row (column).
● Rule 6: If each element of a row (or a column) of a determinant can be expressed as 

a binomial, the determinant can be written as the sum of two determinants.
To understand this property, consider the following 3 3 determinant:

(14.2.13)

The proof follows by expanding the determinant by the row (or column) that contains the
binomials.
● Rute 7: If B is a matrix obtained by interchanging any two rows (columns) of a 

square matrix A, then det(B)= det(A).
The proof is by induction. It is easily shown for any 2 2 matrix. Assume that this rule 

holds  of  any  (n 1) (n 1)  matrix.  If  A  is  n n,  then  let  B  be  a  matrix  formed  by
interchanging rows i and j. Expanding |B| and |A| by a different row, say k, we have that

(14.2.14)

where M
ks

 and N
ks

 are the minors formed by deleting row k, column s from |B| and |A|,

respectively. For s=1, 2,…, n, we obtain N
ks

 and M
ks

 by interchanging rows i and j. By

the induction hypothesis and recalling that N
ks

 and M
ks

 are (n 1) (n 1) determinants,
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N
ks

= M
ks

 for s=1, 2,…, n. Hence, |B|= |A|. Similar arguments hold if two columns are

interchanged.
� Rule 8: If one row (column) of a square matrix A equals to a number c times some

other row (column), then det(A)=0.
Suppose one row of a square matrix A is equal to c times some other row. If c=0, then

|A|=0. If c 0, then |A|=c|B|,  where |B|=0 because |B|  has two identical rows. A similar
argument holds for two columns.

� Rule 9: The value of det(A) is unchanged if any arbitrary multiple of any line (row 
or column) is added to any other line.

To see that this is true, consider the simple example:

(14.2.15)

where c 0. The first determinant on the left side is our original determinant. In the second
determinant, we again expand the first column and find that

(14.2.16)

 Example 14.2.2

Let us evaluate

 

using a combination of the properties stated above and expansion by cofactors.
By adding or subtracting the first row to the other rows, we have that

(14.2.17)

(14.2.18)
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(14.2.19)

Problems

Evaluate the following determinants. Check your answer using MATLAB.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. Using the properties of determinants, show that

 

This determinant is called Vandermonde’s determinant.
10. Show that
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11. Show that if all of the elements of a row or column are zero, then det(A)= 0.

12. Prove that det(AT)=det(A).

14.3 CRAMER’S RULE

One of the most popular methods for solving simple systems of linear equations is 
Cramer’s rule.4 It is very useful for 2 2 systems, acceptable for 3 3 systems, and of 
doubtful use for 4 4 or larger systems.

Let us have n equations with n unknowns, Ax=b. Cramer’s rule states that

(14.3.1)

where A
i
 is a matrix obtained from A by replacing the ith column with b and n is the 

number of unknowns and equations. Obviously, det(A) 0 if Cramer’s rule is to work.

To prove5 Cramer’s rule, consider

(14.3.2)

by Rule 5 from the previous section. By adding x
2
 times the second column to the first

column,

(14.3.3)

Multiplying each of the columns by the corresponding x
i
 and adding it to the first column 

yields

4 Cramer, G., 1750: Introduction à l’analyse des lignes courbes algébriques. Geneva, p. 657.

5 First proved by Cauchy, L.A., 1815: Mémoire sur les fonctions quine peuvent obtemir que deux
valeurs  égales  et  de  signes  contraires  par  suite  des  transportations  opérées  entre  les  variables 
qúelles renferment. J. l’Ecole Polytech., 10, 29–112.
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(14.3.4)

The first column of (14.3.4) equals Ax and we replace it with b. Thus,

(14.3.5)

or

(14.3.6)

provided det(A) 0. To complete the proof we do exactly the same procedure to the jth 
column.

 Example 14.3.1

Let us solve the following system of equations by Cramer’s rule:

2x
1
+x

2
+2x

3
= 1, (14.3.7)

x
1
+x

3
= 1, (14.3.8)

and

x
1
+3x

2
2x

3
=7. (14.3.9)

From the matrix form of the equations,
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(14.3.10)

we have that

(14.3.11)

(14.3.12)

(14.3.13)

and

(14.3.14)

Finally,

(14.3.15)

You can also use MATLAB to perform Cramer’s rule. In the present example, the script is
as follows:

clear ; % clear all previous computations 
A = [2 1 2; 1 0 1; 1 3 2]; % input coefficient matrix
b = [ 1 ; 1; 7]; % input right side 
A1 = A; A1(:,1) = b ; % compute A_1 
A2 = A; A2(:,2) = b ; % compute A_2 
A3 = A; A3(:,3) = b ; % compute A_3 
% compute solution vector 
x = [det(A1), det(A2), det(A3)] / det(A)
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1. x
1
+2x

2
=3, 3x

1
+x

2
=6

2. 2x
1
+x

2
= 3, x

1
x

2
=1

3. x
1
+2x

2
2x

3
=4, 2x

1
+x

2
+x

3
= 2, x

1
+x

2
x

3
=2

4. 2x
1
+3x

2
x

3
= 1, x

1
2x

2
+x

3
=5, 3x

1
—x

2
= 2.

Check your answer using MATLAB.

14.4 ROW ECHELON FORM AND GAUSSIAN ELIMINATION

So far, we assumed that every system of equations has a unique solution. This is not 
necessary true as the following examples show.

 Example 14.4.1

Consider the system

x
1
+x

2
=2, (14.4.1)

and

2x
1
+2x

2
= 1. (14.4.2)

This system is inconsistent because the second equation does not follow after multiplying 
the first by 2. Geometrically (14.4.1) and (14.4.2) are parallel lines; they never intersect 
to give a unique x

1
 and x

2
.

 Example 14.4.2

Even if a system is consistent, it still may not have a unique solution. For example, the 
system

x
1
+x

2
=2, (14.4.3)

and

2x
1
+2x

2
=4 (14.4.4)

Problems

Solve the following systems of equations by Cramer’s rule:
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is consistent, the second equation formed by multiplying the first by 2. However, there 
are an infinite number of solutions.

Our examples suggest the following: 

Theorem: A system of m linear equations in n unknowns may: (1) have no solution, in 
which case it is called an inconsistent system, or (2) have exactly one solution (called a 
unique solution), or (3) have an infinite number of solutions. In the latter two cases, the 
system is said to be consistent.

Before we can prove this theorem at the end of this section, we need to introduce some 
new concepts.

The first  one is  equivalent  systems.  Two systems of  equations  involving the  same 
variables are equivalent if they have the same solution set. Of course, the only reason for 
introducing equivalent systems is the possibility of transforming one system of linear 
systems into another which is easier to solve. But what operations are permissible? Also 
what is the ultimate goal of our transformation?

From a complete study of possible operations, there are only three operations for trans-
forming one system of linear equations into another. These three elementary row operations are

(1) interchanging any two rows in the matrix,
(2) multiplying any row by a nonzero scalar, and
(3) adding any arbitrary multiple of any row to any other row.

Armed with our elementary row operations, let us now solve the following set of linear 
equations:

x
1

3x
2
+7x

3
=2, 

(14.4.5)

2x
1
+4x

2
3x

3
= 1, 

(14.4.6)

and

x
1
+13x

2
21x

3
=2. 

(14.4.7)

We begin by writing (14.4.5)–(14.4.7) in matrix notation:

(14.4.8)
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The matrix in (14.4.8) is called the coefficient matrix of the system.
We now introduce the concept of the augmented matrix: a matrix B composed of A

plus the column vector b or

(14.4.9)

We  can  solve  our  original  system  by  performing  elementary  row  operations  on  the 
augmented matrix. Because x

i
 functions essentially as a placeholder, we can omit them 

until the end of the computation.
Returning to the problem, the first row can be used to eliminate the elements in the 

first column of the remaining rows. For this reason the first row is called the pivotal row 
and the element a

11
 is the pivot. By using the third elementary row operation twice (to 

eliminate the 2 and 1 in the first column), we have the equivalent system

(14.4.10)

At this point we choose the second row as our new pivotal row and again apply the third 
row operation to eliminate the last element in the second column. This yields

(14.4.11)

Thus,  elementary  row  operations  transformed  (14.4.5)–(14.4.7)  into  the  triangular 
system:

x
1

3x
2
+7x

3
=2, (14.4.12)

10x
2

17x
3
= 5, (14.4.13)

3x
3
=9, (14.4.14)
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substitution, solving from (14.4.14) back to (14.4.12). In the present case, x
3
=3. Then,

10x
2
=17(3) 5, or x

2
=4.6. Finally, x

1
=3x

2
7x

3
+2= 5.2.

In general, if an n n linear system can be reduced to triangular form, then it has a 
unique  solution  that  we  can  obtain  by  performing  back  substitution.  This  reduction
involves n 1 steps. In the first step, a pivot element, and thus the pivotal row, is chosen from
the nonzero entries in the first  column of the matrix. We interchange rows (if necessary) 
so that the pivotal row is the first row. Multiples of the pivotal row are then subtracted
from each of the remaining n 1 rows so that there are 0’s in the (2,1),…, (n, 1) positions.
In the second step, a pivot element is chosen from the nonzero entries in column  2,  rows 
2  through  n,  of  the  matrix.  The  row  containing  the  pivot  is  then interchanged with the
second row (if necessary) of the matrix and is used as the pivotal row.  Multiples  of  the
pivotal  row are  then subtracted  from the  remaining n 2 rows, eliminating all entries
below the diagonal in the second column. The same procedure is repeated for columns
3 through n 1. Note that in the second step, row 1 and column 1 remain unchanged,  in
the third step the first  two rows and first  two columns remain unchanged, and so on.

If elimination is carried out as described, we arrive at an equivalent upper triangular
system after n 1 steps. However, the procedure fails if, at any step, all possible
choices for a pivot element equal zero. Let us now examine such cases.

Consider now the system

x
1
+2x

2
+x

3
= 1, (14.4.15)

2x
1
+4x

2
+2x

3
= 2, (14.4.16)

x
1
+4x

2
+2x

3
=2. (14.4.17)

Its augmented matrix is

(14.4.18)

Choosing the first row as our pivotal row, we find that

(14.4.19)

which  is  equivalent  to  the  original  system.  The  final  solution  is  obtained  by  back
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or

(14.4.20)

The difficulty here is the presence of the zeros in the third row. Clearly any finite

numbers satisfy the equation 0x
1
+0x

2
+0x

3
=0 and we have an infinite number of solutions.

Closer examination of the original system shows a underdetermined system; (14.4.15) 
and (14.4.16) differ by a multiplicative factor of 2. An important aspect of this problem is
the fact that the final augmented matrix is of the form of a staircase or echelon form
rather than of triangular form.

Let us modify (14.4.15)–(14.4.17) to read

x
1
+2x

2
+x

3
= 1, (14.4.21)

2x
1
+4x

2
+2x

3
=3, (14.4.22)

x
1
+4x

2
+2x

3
=2, (14.4.23)

then the final augmented matrix is

(14.4.24)

We  again  have  a  problem  with  the  third  row  because  0x
1
+0x

2
+0x

3
=5,  which  is 

impossible. There is no solution in this case and we have an inconsistent system. Note, 
once again, that our augmented matrix has a row echelon form rather than 

(1) The first nonzero entry in each row is 1.
(2) If row k does not consist entirely of zeros, the number of leading zero
entries in row k+1 is greater than the number of leading zero entries in row k.
(3) If there are rows whose entries are all zero, they are below the rows
having nonzero entries.
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The number of nonzero rows in the row echelon form of a matrix is known as its rank. In 
MATLAB, the rank is easily found using the command rank( ). Gaussian elimination is 
the process of using elementary row operations to transform a linear system into one 
whose augmented matrix is in row echelon form.

 Example 14.4.3

Each of the following matrices is not of row echelon form because they violate one of the 
conditions for row echelon form:

(14.4.25)

 Example 14.4.4

The following matrices are in row echelon form:

(14.4.26)

 Example 14.4.5

Gaussian elimination can also be used to solve the general problem AX= B. One of the 
most common applications is in finding the inverse. For example, let us find the inverse 
of the matrix

(14.4.27)

by Gaussian elimination.

Because the inverse is defined by AA 1=I, our augmented matrix is

(14.4.28)
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(14.4.29)

(14.4.30)

(14.4.31)

(14.4.32)

(14.4.33)

(14.4.34)

(14.4.35)

Thus, the right half of the augmented matrix yields the inverse and it equals

MATLAB has the ability of doing Gaussian elimination step-by-step. We begin by typing

»% input augmented matrix 
»aug = [4 2 2 1 0 0 ; 2 4 4 0 1 0; 4 2 8 0 0 1] ; 
»rrefmovie(aug);

The MATLAB command rrefmovie(A) produces the reduced row echelon form of A.
Repeated pressing of any key gives the next step in the calculation along with a statement 
of how it computed the modified augmented matrix. Eventually you obtain

Then, by elementary row operations,

(14.4.36)
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A=  
    1    0    0   1/5  1/10   0  
    0    1    0    0   1/5  1/10   
    0    0    1   1/10   0   1/10    

You can read the inverse matrix just as we did earlier.
Gaussian elimination may be used with overdetermined systems. Over-determined sys-

tems are linear systems where there are more equations than unknowns (m>n). These 
systems are usually (but not always) inconsistent.

 Example 14.4.6

Consider the linear system

x
1
+x

2
=1, (14.4.37)

x
1
+2x

2
= 2, (14.4.38)

x
1

x
2
=4. (14.4.39)

After several row operations, the augmented matrix

(14.4.40)

becomes

(14.4.41)

From  the  last  row  of  the  augmented  matrix  (14.4.41)  we  see  that  the  system  is 
inconsistent.

If we test this system using MATLAB by typing

»% input augmented matrix 

eventually you obtain

»aug = [1 1 1 ; 1 2 2; 1 1 4] ;  
» rrefmovie(aug) ;  



Linear Algebra 905

A=  
    1    0    0   
    0    1    0   
    0    0    1

Although  the  numbers  have  changed  from  our  hand  calculation,  we  still  have  an 
inconsistent system because x

1
=x

2
=0 does not satisfy x

1
+x

2
=1.

Considering now a slight modification of this system to

x
1
+x

2
=1, (14.4.42)

x
1
+2x

2
=5, (14.4.43)

x
1
= 1, (14.4.44)

the final form of the augmented matrix is

(14.4.45)

which has the unique solution x
1
= 1 and x

2
=2. 

How does MATLAB handle this problem? Typing

»% input augmented matrix 
»aug = [1 1 1 ; 1 2 5; 1 0 1] ; 
»rrefmovie (aug) ;

we eventually obtain

A=
    1    0    1
    0    1    2  
    0    0    0

This yields x
1
= 1 and x

2
=2, as we found by hand.

Finally, by introducing the set:

x
1
+x

2
=1, (14.4.46)
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2x
1
+2x

2
=2, (14.4.47)

3x
1
+3x

3
=3, (14.4.48)

the final form of the augmented matrix is

(14.4.49)

There are an infinite number of solutions: x
1
=1 , and x

2
= . 

Turning to MATLAB, we first type

»% input augmented matrix 

and we eventually obtain

A=  
    1    1    1   
    0    0    0   
    0    0    0     

This is the same as (14.4.49) and the final answer is the same.
Gaussian  elimination  can  also  be  employed  with  underdetermined  systems.  An 

underdetermined linear system  is one where there are fewer equations than unknowns 
(m<n). These systems usually have an infinite number of solutions although they can be 
inconsistent.

 Example 14.4.7

Consider the underdetermined system:

2x
1
+2x

2
+x

3
= 1, (14.4.50)

4x
1
+4x

2
+2x

3
=3. (14.4.51)

»aug = [1 1 1 ; 2 2 2 ; 3 3 3] ;  
»rrefmovie (aug) ;
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Its augmented matrix can be transformed into the form:

(14.4.52)

Clearly this case corresponds to an inconsistent set of equations. On the other hand, if
(14.4.51) is changed to

4x
1
+4x

2
+2x

3
= 2, 

(14.4.53)

then the final form of the augmented matrix is

(14.4.54)

and we have an infinite number of solutions, namely x
3
= , x

2
= , and 2x

1
= 1 2 .

Consider now one of the most important classes of linear equations: the homogeneous
equations Ax=0. If det(A) 0, then by Cramer’s rule x

1
= x

2
=x

3
=…=x

n
=0. Thus, the only 

possibility for a nontrivial solution is det(A)=0. In this case, A is singular, no inverse 
exists, and nontrivial solutions exist but they are not unique.

• Example 14.4.8

Consider the two homogeneous equations:

x
1
+x

2
=0, 

(14.4.55)

x
1

x
2
=0. (14.4.56)

Note that det(A)= 2. Solving this system yields x
1

 x
2
=0.

However, if we change the system to

x
1
+x

2
=0, (14.4.57)
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x
1
+x

2
=0, (14.4.58)

which  has  the  det(A)=0  so  that  A  is  singular.  Both  equations  yield  x
1
=  x

2
= ,  any

constant.  Thus,  there  is  an  infinite  number  of  solutions  for  this  set  of  homogeneous
equations.

We close this section by outlining the proof of the theorem which we introduced at the
beginning.

Consider the system Ax=b.  By elementary row operations, the first equation in this 
system can be reduced to

x
1
+

12
x

2
+…+

1n
x

n
=

1
. (14.4.59)

The second equation has the form

x
p
+

2p+1
x

p+1
+…+

2n
x

n
=

2
, (14.4.60)

where p>1. The third equation has the form

x
q
+

3q+1
xq

+1
+…+

3n
x

n
=

3
, (14.4.61)

where q>p, and so on. To simplify the notation, we introduce z
i
 where we choose the first

k values so that z
1
=x

1
, z

2
=x

p
, z

3
=x

q
,…. Thus, the question of the existence of solutions

depends upon the three integers: m, n, and k. The resulting set of equations have the form:

(14.4.62)

Note that 
k+1

,…, 
m

 need not be all zero. 

There are three possibilities:
(a) k<m and at least one of the elements 

k+1
,…, 

m
 is nonzero.
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Suppose that an element 
p
 is nonzero (p>k). Then the pth equation is

0z
1
+0z

2
+…+0z

n
=

p
0. (14.4.63)

However, this is a contradiction and the equations are inconsistent.
(b) k=n and either (i) k<m and all of the elements 

k+1
,…, 

m
 are zero, or (ii) k=m.

Then the equations have a unique solution which can be obtained by back-substitution.
(c) k<n and either (i) k<m and all of the elements 

k+1
,…, 

m
 are zero, or (ii) k=m.

Then, arbitrary values can be assigned to the n k variables z
k+1

,…, z
n
. The equations can

be solved for z
1
, z

2
,…, z

k
 and there is an infinity of solutions.

For homogeneous equations b=0, all of the 
i
 are zero. In this case, we have only two

cases:
(b ) k=n, then (14.4.62) has the solution z=0 which leads to the trivial solution for the

original system Ax=0.
(c ) k<n,  the equations possess an infinity of solutions given by assigning arbitrary

values to z
k+1

,…, z
n
.

Problems

Solve the following systems of linear equations by Gaussian elimination. Check your
answer using MATLAB.

1. 2x
1
+x

2
=4, 5x

1
2x

2
=1

2. x
1
+x

2
=0, 3x

1
4x

2
=1

3. x
1
+x

2
+2x

3
=0, 3x

1
+4x

2
+x

3
=0, x

1
+x

2
+2x

3
=0

4. 4x
1
+6x

2
+x

3
=2, 2x

1
+x

2
4x

3
=3, 3x

1
2x

2
+5x

3
=8

5. 3x
1
+x

2
2x

3
= 3, x

1
x

2
+2x

3
= 1, 4x

1
+3x

2
6x

3
=4

6. x
1

3x
2
+7x

3
=2, 2x

1
+4x

2
–3x

3
= 1, 3x

1
+7x

2
+2x

3
=3

7. x
1

x
2
+3x

3
=5, 2x

1
4x

2
+7x

3
=7, 4x

1
9x

2
+2x

3
= 15

8. x
1
+x

2
+x

3
+x

4
= 1, 2x

1
x

2
+3x

3
=1, 2x

2
+3x

4
=15, x

1
+2x

2
+x

4
= 2

Find the inverse of each of the following matrices by Gaussian elimination. Check your
answers using MATLAB.

9. 

10. 

11. 
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12. 

13. Does (A2) 1=(A 1)2? Justify your answer.

14.5 EIGENVALUES AND EIGENVECTORS

One of the classic problems of linear algebra6 is finding all of the ’s which satisfy the
n n system

Ax= x.                                                           (14.5.1)

The nonzero quantity  is the eigenvalue or characteristic value of A. The vector x is the
eigenvector or characteristic vector belonging to . The set of the eigenvalues of A is
called the spectrum of A. The largest of the absolute values of the eigenvalues of A is
called the spectral radius of A.

To find  and x, we first rewrite (14.5.1) as a set of homogeneous equations:

(A I)x=0.                                                        (14.5.2)

From the theory of linear equations, (14.5.2) has trivial solutions unless its determinant
equals zero. On the other hand, if

det(A I)=0,                                                      (14.5.3)

there are an infinity of solutions.
The expansion of the determinant (14.5.3) yields a nth-degree polynomial in ,  the 

characteristic polynomial. The roots of the characteristic polynomial are the eigenvaluesof A. 
Because the characteristic polynomial has exactly n  roots,  A has n  eigenvalues,some  
of  which  can  be  repeated  (with  multiplicity  k n)  and  some  of  which  can  becomplex 
numbers. For each eigenvalue 

i
, there is a corresponding eigenvector x

i
. Thiseigenvector 

is the solution of the homogeneous equations (A iI)xi=0. 

An important  property of  eigenvectors  is  their  linear  independence  if  there  are  
independent if the equation can be satisfied only by 

n

6  The standard reference is Wilkinson, J.H.,  1965: The Algebraic Eigenvalue Problem.  Oxford
University Press, 662 pp.

ndistinct 
eigenvalues. Vectors are  linearly taking
 all of the coefficients  equal to zero.
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To show that this is true in the case of n distinct eigenvalues 
1
, 

2
,…, 

n
, each eigenvalue 

i
 having a corresponding eigenvector x

i
, we first write down the linear dependence condition

1
x

1
+

2
x

2
+…+

n
x

n
=0. (14.5.5)

Premultiplying (14.5.5) by A,

1
Ax

1
+

2
Ax

2
+…+

n
Ax

n
=

1 1
x

1
+

2 2
x

2
+…+

n n
x

n
=0. (14.5.6)

Premultiplying (14.5.5) by A2,

(14.5.7)

In a similar manner, we obtain the system of equations:

(14.5.8)

Because

(14.5.9)

1
x

1
+

2
x

2
+…+

n
x

n
=0 (14.5.4)

since  it  is  a  Vandermonde  determinant,  
1
x

1
=

2
x

2
=

3
x

3
=…=

n
x

n
=  0.  Because  the 

eigenvectors  are  nonzero,  
1
=

2
=

3
=…=

n
=0,  and  the  eigenvectors  are  linearly

independent.
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This property of eigenvectors allows us to express any arbitrary vector x as a linear
sum of the eigenvectors x

i
, or

x=c
1
x

1
+c

2
x

2
+…+c

n
x

n
. 

(14.5.10)

We will make good use of this property in Example 14.5.3. 

 Example 14.5.1

Let us find the eigenvalues and corresponding eigenvectors of the matrix

(14.5.11)

We begin by setting up the characteristic equation:

(14.5.12)

Expanding the determinant, 

( 4 )( 1 )+2= 2+5 +6=( +3)( +2)=0. (14.5.13)

Thus, the eigenvalues of the matrix A are 
1
= 3, and 

2
= 2.

To find the corresponding eigenvectors, we must solve the linear system:

(14.5.14)

For example, for 
1
= 3,

(14.5.15)
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or

x
1
=2x

2
. 

(14.5.16)

Thus, any nonzero multiple of the vector 

Of course, MATLAB will do all of the computations for you via the command eig 
which computes the eigenvalues and corresponding eigenvalues. In the present case, you 
would type

» % find eigenvalues and eigenvectors 
» [eigenvector, eigenvalue] = eig(A)

This yields

eigenvector =  
    0.8944    0.7071   
    0.4472    0.7071

and

eigenvalue =  
    3    0   
     0   2.    

The eigenvalues are given as the elements along the principal diagonal of eigenvalue. The 
corresponding vectors are given by the corresponding column of eigenvector.  As this 
example shows,  these eigenvectors  have been normalized so that  their  norm (14.1.5) 
equals one. Also their sign may be different than you would choose. We can recover our 
hand-computed results by dividing the first eigenvector by 0.4472 while in the second 
case we would divide by 0.7071.

 Example 14.5.2

Let us now find the eigenvalues and corresponding eigenvectors of the matrix

(14.5.17)

 is an eigenvector belonging to 
1
= 3.

Similarly, for 
2
= 2, the eigenvector is any nonzero multiple of the vector 

» A = [ 4 2 ; 1 1] ; % load in array A  



914 Advanced Engineering Mathematics with MATLAB

det(A I)

(14.5.18)

(14.5.19)

(14.5.20)

Thus, the eigenvalues of the matrix A are 
1, 2

=1 (twice), and 
3
=6. 

To find the corresponding eigenvectors, we must solve the linear system:

( 4 )x
1
+5x

2
+5x

3
=0, (14.5.21)

5x
1
+(6 )x

2
+5x

3
=0, (14.5.22)

and

5x
1
+5x

2
+(6 )x

3
=0. (14.5.23)

For 
3
=6, (14.5.21)–(14.5.23) become

10x
1
+5x

2
+5x

3
=0, (14.5.24)

5x
1
+5x

3
=0, (14.5.25)

Setting up the characteristic equation:
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5x
1
+5x

2
=0. (14.5.26)

Thus, x
1
=x

2
=x

3
 and the eigenvector is any nonzero multiple of the vector 

The  interesting  aspect  of  this  example  centers  on  finding  the  eigenvector  for  the
eigenvalue 

1, 2
=1. If 

1, 2
=1, then (14.5.21)–(14.5.23) collapses into one equation

x
1
+x

2
+x

3
=0 

(14.5.27)

and we have two free parameters at our disposal. Let us take x
2
= , and x

3
= . Then the

eigenvector equals 

In  this  example,  we  may  associate  the  eigenvector   and

 so that, along with the eigenvector 

linearly independent  eigenvectors  for  our  3 3  matrix.  However,  with repeated
eigenvalues this is not always true. For example,

(14.5.28)

has the repeated eigenvalues 
1, 2

=1. However, there is only a single eigenvector  for

both 
1
 and 

2
.

What happens in MATLAB in the present case? Typing in

» A= [ 4 5 5; 5 6 5; 5 5 6]; % load in array A 
» % find eigenvalues and eigenvectors 
» [eigenvector,eigenvalue]=eig(A)

we obtain

eigenvector =
    0.8165    0.5774    0.6345

and

 we still have n
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    0.4082    0.5774   0.1278
    0.4082    0.5774    0.7623

and

eigenvalue =
    1    0    0
    0    6    0
    0    0    1

The second eigenvector is clearly the same as the hand-computed one if you normalized
it  with  0.5774.  The  equivalence  of  the  first  and  third  eigenvectors  is  not  as  clear.
However,  if  you  choose  = = 0.4082,  then  the  first  eigenvector  agrees  with  the
hand-computed value.  Similarly,  taking = 0.1278 and =0.7623 result  in  agreement 
with the third MATLAB eigenvector.

 Example 14.5.3

When we discussed the stability of numerical schemes for the wave equation in §10.6, we
examined the behavior of a prototypical Fourier harmonic to variations in the parameter
c t/ x. In this example we shall show another approach to determining the stability of a
numerical scheme via matrices.

Consider  the  explicit  scheme  for  the  numerical  integration  of  the  wave  equation
(10.6.11). We can rewrite that single equation as the coupled difference equations:

(14.5.29)

and

(14.5.30)

where r=c t/ x.  and  where  is real. Then
(14.5.29)–(14.5.30) become

(14.5.31)

and

(14.5.32)
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(14.5.33)

where  The eigenvalues  of this amplification matrix are given by

(14.5.34)

or

(14.5.35)

Because each successive time step consists of multiplying the solution from the previous
time step by the amplification matrix, the solution is stable

only  if   remains  bounded.  This  occurs  only  if  all  of  the  eigenvalues  have  a
magnitude less or equal to one because

(14.5.36)

where A denotes the amplification matrix and x
k
 denotes the eigenvectors corresponding

to the eigenvalues 
k
. Equation (14.5.36) follows from our ability to express any initial

condition in terms of an eigenvector expansion

(14.5.37)

In our particular example, two cases arise. If r2 sin2( x/2) 1,

(14.5.38)

and |
1, 2

|=1. On the other hand, if r2sin2( x/2)>1, |
1, 2

|>1. Thus, we have stability only 

if c t/ x 1.

or in the matrix form

Find the eigenvalues and corresponding eigenvectors for the following matrices. Check 
your answers using MATLAB.

Problems

1. 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

Project: Numerical Solution of the Sturm-Liouville Problem

You may have been struck by the similarity of the algebraic eigenvalue problem to the Sturm-
Liouville problem. In both cases nontrivial solutions exist only for characteristic values 
of . The purpose of this project is to further deepen your insight into these similarities.

Figure 14.5.1: Schematic for finite-differencing a Sturm-Liouville problem into
a set of difference equations.
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Consider the Sturm-Liouville problem

y + y=0, y(0)=y( )=0. (14.5.39)

We know that it has the nontrivial solutions 
m

=m2, y
m

(x)=sin(mx), where m=1, 2, 3,…. 

step 1: Let us solve this problem numerically. Introducing centered finite differencing
and the grid shown in Figure 14.5.1, show that

(14.5.40)

where x= /(N+1). Show that the finite-differenced form of (14.5.39) is

h2y
n+1

+2h2y
n

h2y
n 1

= y
n (14.5.41)

with y
0
=y

N+1
=0, and h=1/( x). 

step 2: Solve (14.5.41) as an algebraic eigenvalue problem using N=1, 2,…. Show that
(14.5.41) can be written in the matrix form of

(14.5.42)

Table 14.5.1: Eigenvalues Computed from (14.5.42) as a Numerical Approximation 
of the Sturm-Liouville Problem (14.5.39)

N
1 2 3 4 5 6 7

1 0.81057       

2 0.91189 2.73567      

3 0.94964 3.24228 5.53491     

4 0.96753 3.50056 6.63156 9.16459    
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5 0.97736 3.64756 7.29513 10.94269 13.61289   

6 0.98333 3.73855 7.71996 12.13899 16.12040 18.87563  

7 0.98721 3.79857 8.00605 12.96911 17.93217 22.13966 24.95100

8 0.98989 3.84016 8.20702 13.56377 19.26430 24.62105 28.98791

20 0.99813 3.97023 8.84993 15.52822 23.85591 33.64694 44.68265

50 0.99972 3.99498 8.97438 15.91922 24.80297 35.59203 48.24538

Note that the coefficient matrix is symmetric.
Step 3: You are now ready to compute the eigenvalues. For small N this could be done 

by hand. However, it is easier just to write a MATLAB program that will handle any N 2. 
Table 14.5.1 has been provided so that you can check your program.

With  your  program,  answer  the  following  questions:  How  do  your  computed
eigenvalues compare to the eigenvalues given by the Sturm-Liouville problem? What 
happens as you increase N? Which computed eigenvalues agree best with those given by
the Sturm-Liouville problem? Which ones compare the worst?

Step 4: Let us examine the eigenfunctions now. Starting with the smallest eigenvalue, 
use MATLAB to plot Cy

j
 as a function of x

i
 where y

j
 is the jth eigenvector, j=1, 2,…, N,

x
i
=i x, i=1, 2,…, N, and C is chosen so that  On the same plot,

graph  Why did we choose C as we did? Which eigenvectors and
eigenfunctions agree the best? Which eigenvectors and eigenfunctions agree the worst?
Why? Why are there N eigenvectors and an infinite number of eigenfunctions?

Step 5: The most important property of eigenfunctions is orthogonality. But what do
we mean by orthogonality in the case of eigenvectors? Recall from three-dimensional
vectors we had the scalar dot product

a·b=a
1
b

1
+a

2
b

2
+a

3
b

3
. (14.5.43)

For n-dimensional vectors, this dot product is generalized to the inner product

(14.5.44)

Orthogonality implies that x·y=0 if x y. Are your eigenvectors orthogonal? How might 
you use this property with eigenvectors?

14.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

In this section we show how we may apply the classic algebraic eigenvalue problem to 
solve a system of ordinary differential equations.
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Let us solve the following system:

(14.6.1)

and

(14.6.2)

where the primes denote the time derivative. 
We begin by rewriting (14.6.1)–(14.6.2) in matrix notation:

x =Ax,

(14.6.3)

where

(14.6.4)

Note that

(14.6.5)

Assuming a solution of the form

(14.6.6)

is a constant vector, we substitute (14.6.6) into (14.6.3) and find that

e t
x

0
=Ae t

x
0
. 

(14.6.7)

Because e t does not generally equal zero, we have that
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(A I)x
0
=0, 

(14.6.8)

which we solved in the previous section. This set of homogeneous equations is the classic 
eigenvalue problem. In order for this set not to have trivial solutions,

(14.6.9)

Expanding the determinant,

(1 )2–9=0 or = 2, 4. 
(14.6.10)

Thus, we have two real and distinct eigenvalues: = 2 and 4. 
We must now find the corresponding x

0
 or  eigen ector  for each eigenvalue.  From

(14.6.8),

(1 )a+3b=0,
(14.6.11)

and

3a+(1 )b=0.
(14.6.12)

If =4, these equations are consistent and yield a=b=c
1
. If = 2, we 

have that a= b=c
2
. Therefore, the general solution in matrix notation is

(14.6.13)

To evaluate c
1
 and c

2
, we must have initial conditions. For example, if x

1
(0) =x

2
(0)=1,

then

(14.6.14)
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Solving for  c
1
 and c

2
,  c

1
=1,  c

2
=0,  and the  solution with  this  particular  set  of  initial

conditions is

(14.6.15)

 Example 14.6.1

Let us solve the following set of linear ordinary differential equations

(14.6.16)

(14.6.17)

and

(14.6.18)

or in matrix form,

(14.6.19)

Assuming the solution x=x
0
e t,

(14.6.20)

or

(14.6.21)
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(14.6.22)

and

( 1)( 3)( +1)=0, or = 1, 1, 3. (14.6.23)

To determine the eigenvectors, we rewrite (14.6.21) as

a b+c=0, (14.6.24)

4a (1+ )b 4c=0, (14.6.25)

and

3a b+(4 )c=0. (14.6.26)

For example, if =1,

a b+c=0, (14.6.27)

4a 2b 4c=0, (14.6.28)

and

3a b+3c=0; (14.6.29)

or a=c, and b=0. Thus, the eigenvector for  Similarly,

For nontrivial solutions,
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for  and for  Thus, the most general solution
is

(14.6.30)

 Example 14.6.2

Let us solve the following set of linear ordinary differential equations:

(14.6.31)

and

(14.6.32)

or in matrix form,

(14.6.33)

Assuming the solution x=x
0
e t,

(14.6.34)

For nontrivial solutions,

(14.6.35)
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(14.6.36)

The interesting aspect of this example is the single solution that the traditional approach
yields because we have repeated roots. To find the second solution, we try the solution

(14.6.37)

We guessed (14.6.37) using our knowledge of solutions to differential equations when the 

characteristic polynomial has repeated roots. Substituting (14.6.37) into (14.6.33), we 

find that c=d=2c
2
, and a b=c

2
. Thus, we have one free parameter, which we choose to be 

b, and set it equal to zero. This is permissible because (14.6.37) can be broken into two

terms:   and   The  first  term  can  be  incorporated  into  the

 term. Thus, the general solution is

(14.6.38)

 Example 14.6.3

Let us solve the system of linear differential equations:

(14.6.39)

and

(14.6.40)

or in matrix form,

(14.6.41)

Thus, we have the solution
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Assuming the solution x=x
0
e t,

(14.6.42)

For nontrivial solutions,

(14.6.43)

and =2±3i. If  then b= ai if =2+3i, and b=ai if =2 3i. Thus, the general
solution is

(14.6.44)

where  c
1

 and  c
2

 are  arbitrary  complex  constants.  Using  Euler  relationships,  we  can

rewrite (14.6.44) as

(14.6.45)

where c
3
=c

1
+c

2
 and c

4
=i(c

1
c

2
).

Problems

Find the general solution of the following sets of ordinary differential equations using
matrix technique. You may find the eigenvalues and eigenvectors either by hand or use
MATLAB.

1.  
2.  

3.  

4.  

5.  

6.  

7.  

8.  
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9.  

10.  

11.  

12.  

13.  

14.  

15.  

16.   

17.   

18.   

19.   



Answers To the Odd-Numbered Problems

Section 1.1

1. 1+2i
3. 2/5

5. 

7. 4e i

9. 

11. 2e2 i/3

Section 1.2

1. 

3. 

5. 

7. z
1, 2

=±(1+i); z
3, 4

=±2(1 i)

Section 1.3

1. u=2 y, =x

3. u=x3 3xy2, =3x2y y3

5. f (z)=3z(1+z2)1/2

7. f (z)=2(1+4i)z 3

9. f (z)= 3i(iz 1) 4

11. 1/6
13. (x, y)=2xy+constant

15. (x, y)=x sin(x)e y+ye y cos(x)+constant.

Section 1.4

1. 0
3. 2i
5. 14/15 i/3

Section 1.5

1. (e 2 e 4)/2
3. /2

Section 1.6

1. i/32
3. i/2
5. 2 i
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7. 2 i
9. 6

Section 1.7

1. 

3. 

We have an essential singularity and the residue equals 1/11!

5. 

We have a removable singularity where the value of the residue equals zero.

7. 

We have a simple pole and the residue equals 2.

9. 

We have a simple pole and the residue equals 1/2.

Section 1.8

1. 3 i/4
3. 2 i.
5. 2 i
7. 2 i

Section 2.1

1. first-order, linear
3. first-order, nonlinear
5. second-order, linear
7. third-order, nonlinear
9. second-order, nonlinear
11. first-order, nonlinear
13. first-order, nonlinear
15. second-order, nonlinear

Section 2.2

1. y= ln(C x2/2)

3. y2(x) ln2(x)=2C

5. 2+y2(x)=C(1+x2)

7. y(x)= ln(C ex)

9.
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13. 

15. N(t)=N(0)exp{ln[K/N(0) (1 e bt)}

17. 

Section 2.3

1. In |y| x/y=C

3. |x|(x2+3y2)=C

5. y=x (ln |x|+C)2

7. sin(y/x) ln |x|=C

Section 2.4

1. 
3. xy2 x+cos(y)=C
5. y/x+ln(y)=C
7. cos(xy)=C

9. x2y3+x5y+y=C

11. xy ln(y)+ex e y=C

13. 

Section 2.5

1. 

3. y=ln(x)/x+Cx 1, x 0

5. 

7. esin(2x)y=C, n + <2x<(n+1) + , where  is any real and n is any integer.

9. 

11. y(x)=(x+C)csc(x)

13. 

15. 

17. y2(x)=2(x x2/k)/(2 k) if k 2; y2(x)=x ln(1/x) if k=2
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19. 

21. y(x)=[Cx+x ln(x)] 1

23. 

25. y(x)=[Cx x ln(x)]1/2

Section 2.6

5. The equilibrium points are x=0, , and 1. The equilibrium at x=  is unstable while the
equilibriums at x=0 and 1 are stable.

7. The equilibrium point for this differential equation is x=0, which is stable.

Section 2.7

1. x(t)=et+t+1

2. x(t)=et2/2

3. x(t)=[1 ln(t+1)] 1

4. 

Section 3.0

1. y
2
(x)=A/x

3. y
2
(x)=Ax 4

5. y
2
(x)=A(x2 x+1)

7. 

9. y(x)=C
2
eC1x

11. y=(1+C
2
eC1x)/C

1

13. y= ln|1 x|

15. y=C
1

2 ln(x2+C
2
)

Section 3.1

1. y(x)=C
1
e x+C

2
e 5x

3. y(x)=C
1
ex+C

2
xex

5. y(x)=C
1
e2x cos(2x)+C

2
e2x sin(2x)

7. y(x)=C1e 10x+C
2
e4x
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9. y(x)=e 4x [C
1
 cos(3x)+C

2
 sin(3x)]

11. y(x)=C
1
e 4x+C

2
xe 4x

13. y(x)=C
1
+C

2
x+C

3
 cos(2x)+C

4
 sin(2x)

15. 

17. 

Section 3.2

1. 

3. x(t)=2cos( t /3)

5.   and  (t)=
0 

 cos( t) s
0 

 sin( t),  where
2=Mg/mL.

Section 3.3

1. x(t)=4e 2t 2e 4t

3. 
5. The roots are equal when c=4 when m= 2. 

Section 3.4

1. 

3.    y(x)=e x[A cos(x)+B sin(x)]+x2 x+2

5. 

7. 

9. 

11. 

Section 3.5

1. =3

5. 

Section 3.6

1. 

3. y(x)=Ae2x+Be 2x (3x+2)ex/9

5. y(x)=(A+Bx)e 2x+x3e 2x/6

7. 

9. y(x)=Aex+Bxex+x ln (x)ex
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Section 3.7

1. y(x) C
1
x+C

2
x 1

3. y(x)=C
1x

2+C
2
/x

5. y(x)=C
1
/x+C

2
 ln(x)/x

7. y(x)=C
1
x cos[2 ln(x)]+C

2
xsin[ln(x)]

9. y(x)=C
1
 cos[ln(x)]+C

2
 sin[ln(x)]

11. y(x)=C
1
x2+C

2
x4+C

3
/x

Section 3.8

1. The trajectories spirals outward from (0, 0).
3. The equilibrium points are (x, 0); they are unstable.
5. The equilibrium points are =0 and |x|<2; they are unstable.

Section 4.1

1 

3. 

5. 

7. 

9. 

11. 

13. 

15. 

Section 4.3

1. 



Answers To the Odd-Numbered Problems 935

3. 

5. 

7. 

9. 

13. 

Section 4.4

1. 

3. 

Section 4.5

1. 



936 Advanced Engineering Mathematics with MATLAB

3. 

5. 

Section 4.6

1. 

3. 

5. 

7. 

Section 4.7

1. 

Section 5.3

1. e | /a|/|a|

Section 5.4

1. t/(1 + t2)2

3. 

5. 

7. f(t)=ie atH(t)/2 ieatH( t)/2

9. f(t)=(1 |t|)e a|t|/(4a)

11. f(t)=( 1)n+1t2n+1e atH(t)/(2n+1)!

13. f(t)=e2tH( t)+e tH(t)

15. 
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17. 

Section 5.6

1. y(t)=[(t 1)e t+e 2t]H(t)

3. 

Section 6.1

1. F(s)=s/(s2 a2)

3. F(s)=1/s+2/s2+2/s3

5. F(a)=[1 e 2(s 1)] /(s 1)

7. F(s)=2/(s2+1) s/(s2+4)+cos(3)/s 1/s2

9. f(t)=e 3t

11. 

13. 

17. F(s)=1/(2s) sT2/[2(s2T2+ 2)]

Section 6.2

1. f(t)=(t 2)H(t 2) (t 2)H(t 3)
3. y +3y +2y=H(t 1)
5. y +4y +4y=tH(t 2)

7. y 3y +2y=e tH(t 2)
9. y +y=sin(t)[1 H(t )]

Section 6.3

1. F(s)=2/(s2+2s+5)

3. F(s)=1/(s 1)2+3/(s2–2s+10)+(s 2)/(s2–4s+29)

5. F(s)=2/(s+1)3+2/(s2 2s+5)+(s+3)/(s2+6s+18)

7. F(s)=e6e 3s/(s 2)

9. F(s)=2e s/s3+2e s/s2+3e s/s+e 2s/s

11. F(s)=(1+e s )/(s2+1)

13. F(s)=4(s+3)/(s2+6s+13)2

15. 

17. f(t)=s t cos(t)+2e t sin(t)

19. (t)=e 2t 2te 2t+cos(t)e t+sin(t)e t

21. f(t)=et 3H(t 3)

23. f(t)=e (t 1)[cos(t 1) sin(t 1)]H(t 1)

25. 
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27. 

29. f(t)=t[H(t) H(t a)]; F(s)=1/s2 e as/s2 ae as/s

31. F(s)=1/s2 e s/s2 e 2s/s

33. F(s)=e s/s2 e 2s/s2 e 3s/s

35. Y(s)=s/(s2+4)+3e 4s/[s(s2+4)]

37. Y(s)=e (s 1)/[(s 1)(s+1)(s+2)]

39. Y(s)=5/[(s 1)(s 2)]+e s/[s3(s 1)(s 2)] +2e s[s2(s 1)(s 2)]+e s[s(s 1)(s 2)]

41. Y(s)=1/[s2(s+2)(s+1)]+ae as/[(s+1)2(s+2)] e as/[s2(s+1)(s+2)] e as/[s(s+1)(s+2)]
43. f(0)=1
45. f(0)=0
47. Yes
49. No
51. No

Section 6.4

1. 

3. 

Section 6.5

1. f(t)=e t e 2t

3. 

5. 

7. f(t)=2.3584 cos(4t+0.5586)

9. 

Section 6.6

11. f(t)=et t 1

Section 6.7

1. f(t)=1+2t

3. f(t)=t+t2/2

5. f(t)=t3+t5/20

7. f(t)=t2 t4/3

9. f(t)=5e2t 4et 2tet

11. f(t)=(1 t)2e t

13. 

15. 
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17. 

19. 

Section 6.8

1. 

3.   y(t)=e3t e2t

5. 

9. y(t)=(t 1)H(t 1)

11. 

13. y(t)=[1 e 2(t 2) 2(t 2)e 2(t 2)]H(t 2)

15. 

17. y(t)=1 cos(t) [1 cos(t T)]H(t T)

19. 

21. y(t)=tet+3(t 2)et 2H(t 2)

23. y(t)=3 [e 2(t 2) e 3(t 2)] H(t 2) 
+
4[e 3(t 5) e 2(t 5)]H(t 5)

25 

27. x(t)=t 1+e t cos(t), y(t)=t2 t+e t sin(t)

29. x(t)=3F
1

2F
2

F
1 

cosh(t)+F
2
et 2F

1 
cos(t)+F

2 
cos(t) F

2 
sin(t)

y(t)=F
2

2F
1
+F

1
e t F

2
 cos(t)+F

1
 cos(t)+F

1
 sin(t)

Section 6.9

1. G(s)=1/(s+k) g(t)=e kt a(t)=(1 e kt)/k

3. G(s)=1/(s2+4s+3) 

5. G(s)=1/[(s 2)(s 1)] g(t)=e2t et 

7. G(s)=1/(s2 9) 

9. G(s)=1/[s(s 1)] g(t)=et 1 a(t)=et t 1

Section 6.10

1.   f(t)=(2 t)e 2t 2e 3t

3. 

5. 

7. 
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7. 

Section 7.1

1. F(z)=2z/(2z 1) if |z|>1/2

3. F(z)=(z6 1)/(z6 z5) if |z|>0

5. F(z)=(a2+a z)/[z(z a)] if |z|>a.

Section 7.2

1. F(z)=zTeaT/(zeaT 1)2

3. F(z)=z(z+a)/(z a)3

5. F(z)=[z cos(1)]/{z[z2 2z cos(1)+1]}

7. F(z)=z[z sin( )+sin(
0
T )]/[z2 2z cos(

0
T)+1]

9. F(z)=z/(z+1)
11. fn*gn=n+1

13. f
n
*g

n
=2n/n!

Section 7.3

1. f
0
=0.007143, f

1
=0.08503, f

2
=0.1626, f

3
=0.2328

3. f
0
=0.09836, f

1
=0.3345, f

2
=0.6099, f

3
=0.7935

5. 
7. f

n
=(1 n+1)/(1 )

9. 

11. 

13. f
n
=an/n!

Section 7.4

1. 

3. 

5. 

7. 

9. y
n
=2n n 1

11. x
n
=2+( 1)n; y

n
=1+( 1)n

13. x
n
=1 2( 6)n; y

n
= 7( 6)n
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Section 7.5

1. marginally stable
3. unstable

Section 8.1

7. 

Section 8.2

5. w(t)=u(t)* (t)= e 1 sin(t)

Section 8.3

1. z(t)=ei t

Section 8.4

Section 9.1

1. 
n
=(2n 1)2 2/(4L2), y

n
(x)=cos[(2n 1) x/(2L)]

3. 
0
= 1, y

0
(x)=e x and 

n
=n2, y

n
(x)=sin(nx) n cos(nx)

5. 
n
= n4 4/L4, y

n
(x)=sin(n x/L)

7. 

9. 

11.
(a) 

n
=n2 2, y

n
(x) sin[n  ln(x)]

(b) 
n
=(2n 1)2 2/4, yn(x)=sin[(2n 1)  ln(x)/2]

(c) 
0
=0, y

0
(x)=1; 

n
=n2 2, yn(x)=cos[n  ln(x)]

13. 
n
=n2+1, y

n
(x)=sin[n ln(x)]/x

15. =0, y
0
(x)=1; y

n
(x)=cosh(

n
x)+cos(

n
x) tanh(

n
)[sinh(

n
x)+ sin(

n
x)], where n=1,

2, 3,…, and 
n
 is the nth root of tanh( )= tan( ).

Section 9.3

1. 

3. 

3.
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Section 9.4

1. 

3. 

5. 

Section 10.3

1. 

3. 

5. 

7. 

9. 

where k
n
 is the nth solution of J

0
(2k)=0.

11. 

Section 10.4

1.   u(x, t)=sin(2x) cos(2ct)+cos(x) sin(ct)/c

3. 

5. 

Section 10.5

1. 

3.  u(x,t)=sin( x) cos( t) sin( x) sin( t)/
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5. 

7.     u(x,t)=xt te x+sinh(t)e x+[1 e (t x)+t x sinh(t x)] H(t x)

9. 

11. 

13. 

15. 

17. 

Section 11.3

1. 

3. 

5. 

7. 

9. 

11. 
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13. 

15. 

17. 

19. 

21. 

23. 

25. 

27. 

where 
n
 is the nth root of  tan( )=hL/k.

29. 

where k
n
 denotes the nth root of k tan(kL)=k

2
/a2

31. 

33. 

where k
n
 is the nth root of k cot(k)=1 A, n <k

n
 <(n+1) .

35. 

where k
n
 is the nth root of J

0
(k)=0.



Answers To the Odd-Numbered Problems 945

37. 

where k
n
 is the nth root of J

0
(k)=0.

39. 

where k
n
 is the nth root of kJ

1
(kL)=hJ

0
(kL).

Section 11.4

1. 

3. 

5. 

7. 

9. 

11. 

13. 

15. 

17. 
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where 

19. 

where 
n
 is the nth root of 

21. 

where 
n
 is the nth root of cot( )=(3a+ 2)/3a.

23. 

where k
n
 is the nth root of J

0
(k)=0.

25. 

where k
n
 is the nth root of J

0
(k)=0. 

Section 11.5

1. 

3. 

Section 12.3

1. 

3. 

5. 

7.  u(x, y)=1

9. 

11.  u(x, y)=1

13.  u(x,y)=T
0
+ T cos(2 x/ )e 2 y/
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15. 

where k
n
 is the nth root of J

0
(k)=0.

17. 

where k
n
 is the nth root of J

1
(kb)=0.

19. 

where k
n
 is the nth root of J

1
(k)=0.

21. 

23. 

where k
n
 is the nth root of kJ

0
(k)=J

1
(k).

25. 

where k
n
 is the nth root of kJ

1
(k)=BJ

0
(k).

29. 

31. u(r, )=T
0 

Section 12.4

1. 

3. 

5. 
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1. 

Section 12.6

1. 

Section 13.1

1. a b= 3i+19j+10k

3. a b=i 8j+7k

5. a b= 3i 2j 5k

9. 

11. 

13. Plane parallel to the xy plane at height of z=3, n=k

15.  Paraboloid,

17. A plane, 

19. A parabola of infinite extent along the y-axis,

21. y=2/(x+1); z=exp[(y 1)/y]

23. y=x; z2=y/(3y 2)

Section 13.2

1. 

3. 

5. 

7. 

9. 

Section 12.5
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11. 

13. 

Section 13.3

1. 16/7 + 2/(3 )

3. e2+2e8/3+e64/2 13/6
5. 4
7. 0
9. 2

Section 13.4

1. (x, y, z)=x2y+y2z+4z+constant
3. (x, y, z)=xyz+constant

5. (x, y, z)=x2 sin(y)+xe3z+4z+constant

7. (x, y, z)=xe2z+y3+constant
9. (x, y, z)=xy+xz+constant

Section 13.5

1. 1/2
3. 0
5. 27/2
7. 5
9. 0
11. 40/3
13. 86/3
15. 96

Section 13.6

1. 5
3. 1
5. 0
7. 0
9. 16
11. 2

Section 13.7

1. 10
3. 2
5. 
7. 45/2
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Section 13.8

1.        3
3.       16
5.       4
7.       5/12

Section 14.1

1. 

3. 

5. 

7. 

9. 

11. 

13.       yes 

15.       yes 

17. 

19. 

21. 

23. 

25. 

27. 

no
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29. 

Section 14.2

1. 7
3. 1
5. 24
7. 3

Section 14.3

1. 

3. x
1
=0, x

2
=0, x

3
= 2

Section 14.4

1. x
2
=2, x

1
=1

3. x
3
= , x

2
, x

1
=

5. x
3
= , x

2
=2 , x

1
= 1

7. x
3
=2.2, x

2
=2.6, x

1
=1

9. 

11. 

Section 14.5

1. 

3. 

5. 

7. 



952 Advanced Engineering Mathematics with MATLAB

1. 

3. 

5. 

7. 

9. 

11. 

13. 

15. 

17. 

19. 

Section 14.6



Index

abscissa of convergence, 284
absolute value

of a complex number, 2ff
addition

of complex numbers, 2
of matrices, 745
of vectors, 694

age of the earth, 608
aliasing, 219ff
amplitude

modulation, 246
of a complex number, 4
spectrum, 229

analytic complex function, 11
derivative of, 11

analytic signal, 417ff
Archimedes’ principle, 740ff
argument of a complex number, 4
autonomous ordinary

differential eq, 65, 110
auxiliary eq, 112

back substitution, 749, 761
band-pass functions, 415
Bernoulli equation, 92
Bessel

eq of order n, 460ff
function of the first kind, 462

expansion in, 466ff
function of the second kind, 462
function, modified, 464
recurrence formulas, 466

Bessel, Friedrich Wilhelm, 460
Biot number, 563
boundary conditions

Cauchy, 482
Dirichlet, 548
Neumann, 548
Robin, 548

boundary-value problem, 108
branches of a complex function, 11

principal, 4
Bromwich contour, 351
Bromwich integral, 351
Bromwich, Thomas J.I’A., 352



954 Index

carrier frequency, 246
Cauchy

boundary condition, 482
data, 482
integral formula, 28ff
principle value, 54ff
problem, 482

Cauchy, Augustin-Louis, 13
Cauchy-Goursat theorem, 25
Cauchy-Riemann eqs, 13
centered finite differences, 535
characteristic

eq, 112
functions, 425
polynomial, 770
value, 424, 770
vector, 770

characteristics, 504
chemical reaction, 73ff
circular frequency, 121
circulation, 710
closed

contour integral, 23, 707
surface integral, 714

cofactor, 752
column in a matrix, 744
column vector, 744
complementary error function, 289
complementary solution of an

ordinary differential eq, 132
complex

conjugate, 1
envelope, 419
Fourier coefficients, 199, 439
Fourier integral, 228ff
Fourier series, 198ff
number, 1
plane, 4
-valued function, 9ff
variable, 1

components of a vector, 693
compound interest, 71, 389ff
conformable

for addition of matrices, 745
for multiplication of matrices, 745

conservative field, 712
consistency in finite differencing

for the heat eq, 629
for the wave eq, 537



Index  955

consistent system of linear eqs, 760
contour integral, 20ff
convergence

of finite difference solution
for heat eq, 630
for wave eq, 538

of a Fourier integral, 230
of Fourier series, 169

convolution theorem
for Fourier transform, 269ff
for Hilbert transform, 412
for Laplace transform, 317ff
for z-transform, 371ff

Coriolis force, 695
Cramer’s rule, 756
Crank-Nicolson method, 629
critically damped, 127
critical points, 97, 158

stable, 97, 158
stable node, 160
unstable, 97, 159

cross product, 694
curl, 703
curve

simply closed, 25
space, 694

cutoff frequency, 524

d’Alembert, Jean Le Rond, 504
d’Alembert’s solution, 503ff
damped constant, 126
damped harmonic motion, 126ff
deformation principle, 26
degenerate eigenvalue problem, 433
del operator, 696
delay differential eq, 338
(Dirac) delta function, 231ff, 294ff
de Moivre’s theorem, 3
design of film projectors, 313ff
design of wind vane, 129
determinant, 751ff
diagonal, principal, 744
difference eq, 359
differential eqs, 61

first-order, 61ff
linear, 63
linear, first-order, 83
linear nth-order, 107
nonlinear, 63
order, 62
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ordinary, 61ff
partial, 61
type, 61

differentiation of a Fourier series, 181
diffusivity, 547
direction fields, 95
Dirichlet conditions, 169
Dirichlet, Peter G.Lejeune-, 171
Dirichlet problem, 548
dispersion, 490
divergence

theorem, 733ff
of a vector, 702

division of complex numbers, 2
dot product, 694
double Fourier series, 682
dual Fourier-Bessel series, 659
dual integral eq, 654
Duhamel’s theorem

for the heat eq, 614ff
for ordinary differential eqs, 349

eigenfunctions, 425ff
expansion in, 437
orthogonality of, 434

eigenvalue
of a matrix, 770
of a Sturm-Liouville problem, 424ff

eigenvalue problem
for matrices, 770ff
for ordinary differential eqs, 423ff
singular, 424

eigenvectors, 770ff
orthogonality of, 778

electrical circuit, 87, 143, 333ff
electrostatic potential, 644
element of a matrix, 744
elementary row operations, 760
elliptic partial differential eq, 635
entire complex function, 11
equilibrium points, 97, 158
equivalent systems of linear eqs, 760
error function, 289
essential singularity, 36
Euler-Cauchy equation, 152ff
Euler’s formula, 3
Euler method, 98
exact ordinary differential eq, 79
explicit numerical method

for heat eq, 627
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for wave eq, 535
exponential order, 284
existence of ordinary differential eq

first-order, 69
n-order, 108

evaluation of partial sums
using z-transforms, 383

fast Fourier transform, 219
filter, 222
final-value theorem

for Laplace transforms, 302
for z-transforms, 369

finite differences approximation
to derivatives, 535ff

finite Fourier series, 212ff
first shifting theorem, 297
first-order ordinary differential eq, 61

linear, 83ff
flux lines, 698
folding frequency, 220
forced harmonic motion, 137ff
Fourier

coefficients, 168
cosine series, 175
cosine transform, 612
number, 557
series in

amplitude/phase form, 195ff
series of an even function, 189
series of an odd function, 189
series for

a multivariable function, 202
series on [-L, L], 167ff
sine series, 175
sine transform, 612

Fourier, Joseph, 170
Fourier-Bessel

coefficients, 467
expansion, 466

Fourier-Legendre
coefficients, 451
expansion, 451

Fourier transform, 227ff
basic properties of, 241ff
convolution for, 269ff
inverse of, 228, 254ff
method of solving the heat eq, 607
of a constant, 238
of derivatives, 245



958 Index

of multivariable functions, 233
of sign function, 239
of step function, 240

free undamped motion, 121
frequency convolution, 271
frequency modulation, 247
frequency response, 275
frequency spectrum, 230

for a damped
harmonic oscillator, 275ff

for low frequency filter, 279
function

even extension of, 189
generalized, 296
multivalued complex, 10
odd extension of, 189
single-valued complex, 10
vector-valued, 696ff

fundamental of a Fourier series, 168

Gauss, Carl Friedrich, 734
Gauss’s divergence theorem, 733ff
Gaussian elimination, 763
Gauss-Seidel method, 687
general solution

to ordinary differential eq, 64
generalized functions, 296
generating function

for Legendre polynomials, 448
Gibbs phenomenon, 185ff
gradient, 697
graphical stability analysis, 97
Green’s function, 275ff, 345ff

for a damped
harmonic oscillator, 277

for the Klein-Gordon eq, 524
for low frequency filter, 278

Green’s lemma, 722ff
grid point, 534
groundwater flow, 639ff

half-range expansions, 189ff
Hankel transform, 653
harmonic function, 18, 636

conjugate, 18
harmonic of a Fourier series, 168
heat conduction

in a rotating satellite, 207ff
within a metallic sphere, 663ff

heat dissipation in disc brakes, 595ff
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heat eq, 545ff
for an infinite cylinder, 569ff
for a semi-infinite bar, 607ff
nonhomogeneous, 547
one-dimensional, 549ff
within a solid sphere, 567ff

Heaviside
expansion theorem, 309ff
step function, 291ff

Heaviside, Oliver, 292
Hilbert, David, 401
Hilbert pair, 401
Hilbert transform, 399ff

and convolution, 412
and derivatives, 412
and shifting, 411
and time scaling, 412
discrete, 408
linearity of, 410
product theorem, 414

holomorphic complex function, 11
homogeneous

ordinary differential eq, 78, 107
solution to ordinary

differential eq, 132
system of linear eqs, 748

hydraulic potential, 639
hydrostatic eq, 69
hyperbolic partial differential eq, 479

ideal Hilbert transformer, 399
ideal sampler, 361
imaginary part

of a complex number, 1
impulse function,

see (Dirac) delta function
impulse response, 345
inconsistent system of linear eqs, 759
indicial admittance

for heat eq, 617
for ordinary differential eqs, 345

inertia supercharging, 191
initial

conditions, 482ff
-value problem, 107, 326ff

initial-boundary-value problem, 548
initial-value theorem

for Laplace transforms, 301
for z-transforms, 369

inner product, 745



960 Index

integral curve, 157
integral eq of convolution type, 321
integrals

complex contour, 19
Fourier type, evaluation of, 260
line, 707ff
real, evaluation of, 45

integration of a Fourier series, 182ff
interest rate, 71, 389
integrating factor, 82
inverse

discrete Fourier transform, 213
Fourier transform, 228, 254ff
Hilbert transform, 400
Laplace transform, 309ff, 317, 350ff
z-transform, 375ff

inversion formula
for the Fourier transform, 228
for the Laplace transform, 350ff
for the z-transform, 380ff

inversion of Fourier transform, 254ff
by contour integration, 256
by direct integration, 254
by partial fractions, 255

inversion of Laplace transform
by contour integration, 350ff
by convolution, 317
by partial fractions, 309ff
in amplitude/phase form, 312ff

inversion of z-transform
by contour integration, 380ff
by partial fractions, 378ff
by power series, 375ff
by recursion, 376ff

irrotational, 704
isoclines, 95
isolated singularities, 15
iterative methods

Gauss-Seidel, 687
successive over-relaxation, 691

iterative solution
of the radiative transfer eq, 455ff

joint transform method, 524
Jordan curve, 25
Jordan’s lemma, 256

Kirchhoff’s law, 87
Klein-Gordon eq, 490

Green’s function for, 524
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Kramers-Kronig relationship, 420ff

Lagrange’s trignometric identity, 5
Laplace integral, 283
Laplace, Pierre Simon, 637
Laplace transform(s), 283ff

basic properties of, 297ff
convolution for, 317ff
definition of, 283
derivative of, 300
in solving

delay differential eq, 338
heat eq, 591ff
integral eqs, 321ff
Laplace eq, 684ff
ordinary differential eqs, 326ff
wave eq, 512ff

integration of, 300
inverse of, 309ff, 350ff
of derivatives, 290
of periodic functions, 306ff
of the delta function, 295
of the step function, 291
Schouten-van der Pol

theorem for, 357
Laplace’s eq, 635ff

in cylindrical coordinates, 638
in spherical coordinates, 638
numerical solution of, 686ff
solution on the half-plane, 678ff
solution by Laplace

transforms, 684ff
solution by separation

of variables, 639ff
Laplace’s expansion in cofactors, 752
Laplacian, 703
Laurent expansion, 35
Lax-Wendroff scheme, 543
Legendre, Adrien-Marie, 444
Legendre polynomial, 446

expansion in, 451
generating function for, 448
orthogonality, 451
recurrence formulas, 449

Legendre’s differential eq, 444
length of a vector, 693
linear dependence

of functions, 116
of eigenvectors, 770

linearity
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of Fourier transform, 241
of Hilbert transform, 410
of Laplace transform, 285
of z-transform, 367

line integral, 19ff, 707ff
line spectrum, 200
lines of force, 698
Liouville, Joseph, 426
logistic eq, 73
low frequency filter, 279

magnitude of a vector, 693
mapping of complex functions, 10
matrix, 744

algebra, 743
amplification, 775
augmented, 760
banded, 749
coefficient, 760
complex, 744
identity, 744
inverse, 747
invertible, 747
method for stability

of a numerical scheme, 775ff
nonsingular, 747
real, 744
rectangular, 744
singular, 747
square, 744
symmetric, 744
tridiagonal, 749
unit, 744
upper triangular, 749
zero, 744

matrices
addition of, 745
equal, 745
multiplication of, 745

maximum principle, 637
Maxwell’s eqs, 706
mechanical filter, 316
meromorphic function, 15
method of partial fractions

for Fourier transform, 255
for Laplace transform, 309ff
for z-transform, 378ff

method of undetermined
coefficients, 131ff

minor, 752
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mixed boundary-value
problems, 654ff

modified
Bessel function, first kind, 464
Bessel function, second kind, 464
Euler method, 98

modulation, 246ff
modulus of a complex number, 2ff
multiplication

of complex numbers, 2
of matrices, 745

multivalued complex function, 10

nabla, 696
Neumann problem, 548
Neumann’s Bessel function

of order n, 462
Newton’s law of cooling, 562
nondivergent, 703
nonhomogeneous

heat eq, 547
ordinary differential eq, 107
system of linear eqs, 748

norm of a vector, 694, 745
normal differential eq, 107
normal modes, 489
normal to a surface, 697
not simply connected, 26
numerical solution

of heat eq, 627ff
of Laplace’s eq, 686ff
of wave eq, 534ff

Nyquist frequency, 220
Nyquist sampling criteria, 219

one-sided finite differences, 534
order

of a matrix, 744
of pole, 36

orthogonality
of eigenfunctions, 434ff
of eigenvectors, 778ff

orthonormal eigenfunctions, 437
overdamped, 127
overdetermined system

of linear eqs, 765

parabolic partial differential eq, 545
Parseval’s identity

for Fourier series, 184
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for Fourier transform, 249ff
for z-transform, 383

partial fraction expansion
for Fourier transform, 255
for Laplace transform, 309ff
for z-transform, 378ff

particular solution
to ordinary differential eq, 64, 131

path
in complex integrals, 20
in line integrals, 707

path independence
in complex integrals, 26
in line integrals, 713

phase, 4
angle in Fourier series, 195ff
diagram, 156
line, 97
path, 157
spectrum, 229

phasor amplitude, 419
pivot, 761
pivotal row, 761
Poisson, Siméon-Denis, 681
Poisson’s

eq, 680
integral formula

for a circular disk, 670
for upper half-plane, 678

summation formula, 252, 254
polar form of a complex number, 3
pole of order n, 36
position vector, 694
positively oriented curve, 28
potential function, 712ff
power content, 184
power spectrum, 251
principal branch, 4
principal diagonal, 744
principle of

linear superposition, 113, 486

quadrature phase shifting, 399
quieting snow tires, 176ff

radiation condition, 483
radius of convergence, 33
rank of a matrix, 763
real part of a complex number, 1
real definite integrals,
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evaluation of, 45
recurrence relation

in finite differencing, 162
for Bessel functions, 466
for Legendre polynomial, 449ff

reduction in order, 109
regular complex function, 11
regular Sturm-Liouville problem, 424
relaxation methods, 687ff
removable singularity, 36
residue, 35
residue theorem, 39ff
resonance, 142, 205, 329
rest points, 97
Riemann, G.F.B., 14
Robin problem, 548
Rodrigues’ formula, 448
root locus method, 277
roots of a complex number, 6ff
row echelon form, 763
row of a matrix, 744
row vector, 744
Runge, Carl, 102
Runge-Kutta method, 101, 163

scalar, 693
Schouten-van der Pol theorem

for Laplace transforms, 357
Schwarz’s integral formula, 679
second shifting theorem, 298
separation of variables

for heat eq, 548ff
for Laplace’s eq, 639ff
for ordinary differential eq, 65
for Poisson’s eq, 680ff
for wave eq, 483ff

shifting
in the s variable, 297
in the t variable, 242, 298
in the  variable, 246

sifting property, 233
simple

closed curve, 25
eigenvalue, 426
pole, 36

simple harmonic oscillator, 120ff, 329
simply close curve, 25
sinc function, 229
single sideband signal, 419
single-valued complex function, 10
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singular
solutions to ordinary

differential eq, 67
Sturm-Liouville problem, 424

singularity
essential, 36
isolated, 36
pole of order n, 36
removable, 36

slope field, 95
solenoidal, 703
solution curve, 95
solution of ordinary differential eq

by Fourier series, 203ff
by Fourier transform, 273ff

space curve, 694
spectral radius, 770
spectrum of a matrix, 770
stability of numerical methods

by Fourier method
for heat eq, 629
for wave eq, 538

by matrix method
for wave eq, 775

steady-state heat eq, 71, 556
steady-state output, 98
steady-state solution to ordinary differential eq, 139
steady-state transfer function, 275
step function, 291ff
step response, 345
Stokes, Sir George Gabriel, 727
Stokes’ theorem, 726ff
streamlines, 698
Sturm, Charles, 424
Sturm-Liouville

eq, 423
problem, 423ff

subtraction
of complex numbers, 2
of matrices, 745
of vectors, 694

successive over-relaxation, 691
superposition integral

for heat eq, 616ff
for ordinary differential eqs, 349

superposition principle, 486
surface conductance, 562
surface integral, 714ff
system of linear

differential eqs, 779ff
homogeneous eqs, 748
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nonhomogeneous eqs, 748

tangent vector, 694
Taylor expansion, 33
terminal velocity, 71, 90
telegraph eq, 493, 513ff
thermal conductivity, 546
threadline eq, 509ff
time shifting, 242, 297
trajectories, 157
transfer function, 344
transform

Fourier, 227ff
Hilbert, 399ff
Laplace, 283ff
z-transform, 359ff

transient solution to ordinary differential eq, 139
transmission line, 513ff
transpose of a matrix, 747
tridiagonal matrix,

solution of, 748ff

underdamped, 127
underdetermined system

of linear eqs, 767
uniqueness of ordinary differential eq

first-order, 69
nth-order, 108

unit
normal, 698
step function, 291ff
vector, 693

Vandermonde’s determinant, 756
variation of parameters, 145ff
vector, 693, 744
vector element of area, 717
vibrating string, 489
vibrating threadline, 509
vibration of floating body, 124
Volterra eq of the second kind, 321
volume integral, 733ff

wave eq, 479ff
damped, 492ff
for a circular membrane, 496ff
for an infinite domain, 503ff
one-dimensional, 481

weight function, 434
Wronskian, 118
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zero vector, 693
z-transform, 359ff

basic properties of, 367
convolution for, 371
final-value theorem for, 369
initial-value theorem for, 369
inverse of, 375ff
of periodic sequences, 370
of a sequence multiplied by an

exponential sequence, 367
of a shifted sequence, 367
solving of difference eqs, 386ff
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