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PREFACE

Through six editions now,Mathematical Methods for Physicists has provided all the math-
ematical methods that aspirings scientists and engineers are likely to encounter as students
and beginning researchers. More than enough material is included for a two-semester un-
dergraduate or graduate course.

The book is advanced in the sense that mathematical relations are almost always proven,
in addition to being illustrated in terms of examples. These proofs are not what a mathe-
matician would regard as rigorous, but sketch the ideas and emphasize the relations that
are essential to the study of physics and related fields. This approach incorporates theo-
rems that are usually not cited under the most general assumptions, but are tailored to the
more restricted applications required by physics. For example, Stokes’ theorem is usually
applied by a physicist to a surface with the tacit understanding that it be simply connected.
Such assumptions have been made more explicit.

PROBLEM-SOLVING SKILLS

The book also incorporates a deliberate focus on problem-solving skills. This more ad-
vanced level of understanding and active learning is routine in physics courses and requires
practice by the reader. Accordingly, extensive problem sets appearing in each chapter form
an integral part of the book. They have been carefully reviewed, revised and enlarged for
this Sixth Edition.

PATHWAYS THROUGH THE MATERIAL

Undergraduates may be best served if they start by reviewing Chapter 1 according to the
level of training of the class. Section 1.2 on the transformation properties of vectors, the
cross product, and the invariance of the scalar product under rotations may be postponed
until tensor analysis is started, for which these sections form the introduction and serve as

xi



xii Preface

examples. They may continue their studies with linear algebra in Chapter 3, then perhaps
tensors and symmetries (Chapters 2 and 4), and next real and complex analysis (Chap-
ters 5–7), differential equations (Chapters 9, 10), and special functions (Chapters 11–13).

In general, the core of a graduate one-semester course comprises Chapters 5–10 and
11–13, which deal with real and complex analysis, differential equations, and special func-
tions. Depending on the level of the students in a course, some linear algebra in Chapter 3
(eigenvalues, for example), along with symmetries (group theory in Chapter 4), and ten-
sors (Chapter 2) may be covered as needed or according to taste. Group theory may also be
included with differential equations (Chapters 9 and 10). Appropriate relations have been
included and are discussed in Chapters 4 and 9.

A two-semester course can treat tensors, group theory, and special functions (Chap-
ters 11–13) more extensively, and add Fourier series (Chapter 14), integral transforms
(Chapter 15), integral equations (Chapter 16), and the calculus of variations (Chapter 17).

CHANGES TO THE SIXTH EDITION

Improvements to the Sixth Edition have been made in nearly all chapters adding examples
and problems and more derivations of results. Numerous left-over typos caused by scan-
ning into LaTeX, an error-prone process at the rate of many errors per page, have been
corrected along with mistakes, such as in the Diracγ -matrices in Chapter 3. A few chap-
ters have been relocated. The Gamma function is now in Chapter 8 following Chapters 6
and 7 on complex functions in one variable, as it is an application of these methods. Dif-
ferential equations are now in Chapters 9 and 10. A new chapter on probability has been
added, as well as new subsections on differential forms and Mathieu functions in response
to persistent demands by readers and students over the years. The new subsections are
more advanced and are written in the concise style of the book, thereby raising its level to
the graduate level. Many examples have been added, for example in Chapters 1 and 2, that
are often used in physics or are standard lore of physics courses. A number of additions
have been made in Chapter 3, such as on linear dependence of vectors, dual vector spaces
and spectral decomposition of symmetric or Hermitian matrices. A subsection on the dif-
fusion equation emphasizes methods to adapt solutions of partial differential equations to
boundary conditions. New formulas have been developed for Hermite polynomials and are
included in Chapter 13 that are useful for treating molecular vibrations; they are of interest
to the chemical physicists.
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CHAPTER 1

VECTOR ANALYSIS

1.1 DEFINITIONS, ELEMENTARY APPROACH

In science and engineering we frequently encounter quantities that have magnitude and
magnitude only: mass, time, and temperature. These we labelscalar quantities, which re-
main the same no matter what coordinates we use. In contrast, many interesting physical
quantities have magnitude and, in addition, an associated direction. This second group
includes displacement, velocity, acceleration, force, momentum, and angular momentum.
Quantities with magnitude and direction are labeledvector quantities. Usually, in elemen-
tary treatments, a vector is defined as a quantity having magnitude and direction. To dis-
tinguish vectors from scalars, we identify vector quantities with boldface type, that is,V.

Our vector may be conveniently represented by an arrow, with length proportional to the
magnitude. The direction of the arrow gives the direction of the vector, the positive sense
of direction being indicated by the point. In this representation, vector addition

C=A+B (1.1)

consists in placing the rear end of vectorB at the point of vectorA. Vector C is then
represented by an arrow drawn from the rear ofA to the point ofB. This procedure, the
triangle law of addition, assigns meaning to Eq. (1.1) and is illustrated in Fig. 1.1. By
completing the parallelogram, we see that

C=A+B= B+A, (1.2)

as shown in Fig. 1.2. In words, vector addition iscommutative.
For the sum of three vectors

D=A+B+C,

Fig. 1.3, we may first addA andB:

A+B= E.

1
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FIGURE 1.1 Triangle law of vector
addition.

FIGURE 1.2 Parallelogram law of
vector addition.

FIGURE 1.3 Vector addition is
associative.

Then this sum is added toC:

D= E+C.

Similarly, we may first addB andC:

B+C= F.

Then

D=A+ F.

In terms of the original expression,

(A+B)+C=A+ (B+C).

Vector addition isassociative.
A direct physical example of the parallelogram addition law is provided by a weight

suspended by two cords. If the junction point (O in Fig. 1.4) is in equilibrium, the vector
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FIGURE 1.4 Equilibrium of forces:F1+ F2=−F3.

sum of the two forcesF1 andF2 must just cancel the downward force of gravity,F3. Here
the parallelogram addition law is subject to immediate experimental verification.1

Subtraction may be handled by defining the negative of a vector as a vector of the same
magnitude but with reversed direction. Then

A−B=A+ (−B).

In Fig. 1.3,

A= E−B.

Note that the vectors are treated as geometrical objects that are independent of any coor-
dinate system. This concept of independence of a preferred coordinate system is developed
in detail in the next section.

The representation of vectorA by an arrow suggests a second possibility. ArrowA
(Fig. 1.5), starting from the origin,2 terminates at the point(Ax,Ay,Az). Thus, if we agree
that the vector is to start at the origin, the positive end may be specified by giving the
Cartesian coordinates(Ax,Ay,Az) of the arrowhead.

AlthoughA could have represented any vector quantity (momentum, electric field, etc.),
one particularly important vector quantity, the displacement from the origin to the point

1Strictly speaking, the parallelogram addition was introduced as a definition. Experiments show that if we assume that the
forces are vector quantities and we combine them by parallelogram addition, the equilibrium condition of zero resultant force is
satisfied.
2We could start from any point in our Cartesian reference frame; we choose the origin for simplicity. This freedom of shifting
the origin of the coordinate system without affecting the geometry is calledtranslation invariance.
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FIGURE 1.5 Cartesian components and direction cosines ofA.

(x, y, z), is denoted by the special symbolr. We then have a choice of referring to the dis-
placement as either the vectorr or the collection(x, y, z), the coordinates of its endpoint:

r↔ (x, y, z). (1.3)

Usingr for the magnitude of vectorr, we find that Fig. 1.5 shows that the endpoint coor-
dinates and the magnitude are related by

x = r cosα, y = r cosβ, z= r cosγ. (1.4)

Here cosα, cosβ, and cosγ are called thedirection cosines, α being the angle between the
given vector and the positivex-axis, and so on. One further bit of vocabulary: The quan-
tities Ax,Ay , andAz are known as the (Cartesian)components of A or theprojections
of A, with cos2α + cos2β + cos2γ = 1.

Thus, any vectorA may be resolved into its components (or projected onto the coordi-
nate axes) to yieldAx =Acosα, etc., as in Eq. (1.4). We may choose to refer to the vector
as a single quantityA or to its components(Ax,Ay,Az). Note that the subscriptx in Ax

denotes thex component and not a dependence on the variablex. The choice between
usingA or its components(Ax,Ay,Az) is essentially a choice between a geometric and
an algebraic representation. Use either representation at your convenience. The geometric
“arrow in space” may aid in visualization. The algebraic set of components is usually more
suitable for precise numerical or algebraic calculations.

Vectors enter physics in two distinct forms. (1) VectorA may represent a single force
acting at a single point. The force of gravity acting at the center of gravity illustrates this
form. (2) VectorA may be defined over some extended region; that is,A and its compo-
nents may be functions of position:Ax = Ax(x, y, z), and so on. Examples of this sort
include the velocity of a fluid varying from point to point over a given volume and electric
and magnetic fields. These two cases may be distinguished by referring to the vector de-
fined over a region as avector field. The concept of the vector defined over a region and
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being a function of position will become extremely important when we differentiate and
integrate vectors.

At this stage it is convenient to introduce unit vectors along each of the coordinate axes.
Let x̂ be a vector of unit magnitude pointing in the positivex-direction,ŷ, a vector of unit
magnitude in the positivey-direction, and̂z a vector of unit magnitude in the positivez-
direction. Thenx̂Ax is a vector with magnitude equal to|Ax | and in thex-direction. By
vector addition,

A= x̂Ax + ŷAy + ẑAz. (1.5)

Note that ifA vanishes, all of its components must vanish individually; that is, if

A= 0, thenAx =Ay =Az = 0.

This means that these unit vectors serve as abasis, or complete set of vectors, in the three-
dimensional Euclidean space in terms of which any vector can be expanded. Thus, Eq. (1.5)
is an assertion that the three unit vectorsx̂, ŷ, andẑ span our real three-dimensional space:
Any vector may be written as a linear combination ofx̂, ŷ, and ẑ. Sincex̂, ŷ, and ẑ are
linearly independent (no one is a linear combination of the other two), they form abasis
for the real three-dimensional Euclidean space. Finally, by the Pythagorean theorem, the
magnitude of vectorA is

|A| = (A2
x +A2

y +A2
z

)1/2
. (1.6)

Note that the coordinate unit vectors are not the only complete set, or basis. This resolution
of a vector into its components can be carried out in a variety of coordinate systems, as
shown in Chapter 2. Here we restrict ourselves to Cartesian coordinates, where the unit
vectors have the coordinatesx̂= (1,0,0), ŷ= (0,1,0) andẑ= (0,0,1) and are all constant
in length and direction, properties characteristic of Cartesian coordinates.

As a replacement of the graphical technique, addition and subtraction of vectors may
now be carried out in terms of their components. ForA = x̂Ax + ŷAy + ẑAz and B =
x̂Bx + ŷBy + ẑBz,

A±B= x̂(Ax ±Bx)+ ŷ(Ay ±By)+ ẑ(Az ±Bz). (1.7)

It should be emphasized here that the unit vectorsx̂, ŷ, andẑ are used for convenience.
They are not essential; we can describe vectors and use them entirely in terms of their
components:A ↔ (Ax,Ay,Az). This is the approach of the two more powerful, more
sophisticated definitions of vector to be discussed in the next section. However,x̂, ŷ, and
ẑ emphasize thedirection.

So far we have defined the operations of addition and subtraction of vectors. In the next
sections, three varieties of multiplication will be defined on the basis of their applicability:
a scalar, or inner, product, a vector product peculiar to three-dimensional space, and a
direct, or outer, product yielding a second-rank tensor. Division by a vector is not defined.
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Exercises

1.1.1 Show how to findA andB, givenA+B andA−B.

1.1.2 The vectorA whose magnitude is 1.732 units makes equal angles with the coordinate
axes. FindAx,Ay , andAz.

1.1.3 Calculate the components of a unit vector that lies in thexy-plane and makes equal
angles with the positive directions of thex- andy-axes.

1.1.4 The velocity of sailboatA relative to sailboatB, vrel, is defined by the equationvrel=
vA − vB , wherevA is the velocity ofA and vB is the velocity ofB. Determine the
velocity ofA relative toB if

vA = 30 km/hr east
vB = 40 km/hr north.

ANS. vrel= 50 km/hr, 53.1◦ south of east.

1.1.5 A sailboat sails for 1 hr at 4 km/hr (relative to the water) on a steady compass heading
of 40◦ east of north. The sailboat is simultaneously carried along by a current. At the
end of the hour the boat is 6.12 km from its starting point. The line from its starting point
to its location lies 60◦ east of north. Find thex (easterly) andy (northerly) components
of the water’s velocity.

ANS. veast= 2.73 km/hr, vnorth≈ 0 km/hr.

1.1.6 A vector equation can be reduced to the formA= B. From this show that the one vector
equation is equivalent tothree scalar equations. Assuming the validity of Newton’s
second law,F=ma, as avector equation, this means thatax depends only onFx and
is independent ofFy andFz.

1.1.7 The verticesA,B, andC of a triangle are given by the points(−1,0,2), (0,1,0), and
(1,−1,0), respectively. Find pointD so that the figureABCD forms a plane parallel-
ogram.

ANS. (0,−2,2) or (2,0,−2).

1.1.8 A triangle is defined by the vertices of three vectorsA,B andC that extend from the
origin. In terms ofA,B, andC show that thevector sum of the successive sides of the
triangle(AB +BC +CA) is zero, where the sideAB is fromA to B, etc.

1.1.9 A sphere of radiusa is centered at a pointr1.

(a) Write out the algebraic equation for the sphere.
(b) Write out avector equation for the sphere.

ANS. (a)(x − x1)
2+ (y − y1)

2+ (z− z1)
2= a2.

(b) r= r1+ a, with r1= center.
(a takes on all directions but has a fixed magnitudea.)
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1.1.10 A corner reflector is formed by three mutually perpendicular reflecting surfaces. Show
that a ray of light incident upon the corner reflector (striking all three surfaces) is re-
flected back along a line parallel to the line of incidence.
Hint. Consider the effect of a reflection on the components of a vector describing the
direction of the light ray.

1.1.11 Hubble’s law. Hubble found that distant galaxies are receding with a velocity propor-
tional to their distance from where we are on Earth. For theith galaxy,

vi =H0ri ,

with us at the origin. Show that this recession of the galaxies from us doesnot imply
that we are at the center of the universe. Specifically, take the galaxy atr1 as a new
origin and show that Hubble’s law is still obeyed.

1.1.12 Find the diagonal vectors of a unit cube with one corner at the origin and its three sides
lying along Cartesian coordinates axes. Show that there are four diagonals with length√

3. Representing these as vectors, what are their components? Show that the diagonals
of the cube’s faces have length

√
2 and determine their components.

1.2 ROTATION OF THE COORDINATE AXES3

In the preceding section vectors were defined or represented in two equivalent ways:
(1) geometrically by specifying magnitude and direction, as with an arrow, and (2) al-
gebraically by specifying the components relative to Cartesian coordinate axes. The sec-
ond definition is adequate for the vector analysis of this chapter. In this section two more
refined, sophisticated, and powerful definitions are presented. First, the vector field is de-
fined in terms of the behavior of its components under rotation of the coordinate axes. This
transformation theory approach leads into the tensor analysis of Chapter 2 and groups of
transformations in Chapter 4. Second, the component definition of Section 1.1 is refined
and generalized according to the mathematician’s concepts of vector and vector space. This
approach leads to function spaces, including the Hilbert space.

The definition of vector as a quantity with magnitude and direction is incomplete. On
the one hand, we encounter quantities, such as elastic constants and index of refraction
in anisotropic crystals, that have magnitude and directionbut that are not vectors. On
the other hand, our naïve approach is awkward to generalize to extend to more complex
quantities. We seek a new definition of vector field using our coordinate vectorr as a
prototype.

There is a physical basis for our development of a new definition. We describe our phys-
ical world by mathematics, but it and any physical predictions we may make must be
independent of our mathematical conventions.

In our specific case we assume that space is isotropic; that is, there is no preferred di-
rection, or all directions are equivalent. Then the physical system being analyzed or the
physical law being enunciated cannot and must not depend on our choice ororientation
of the coordinate axes. Specifically, if a quantityS does not depend on the orientation of
the coordinate axes, it is called a scalar.

3This section is optional here. It will be essential for Chapter 2.
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FIGURE 1.6 Rotation of Cartesian coordinate axes about thez-axis.

Now we return to the concept of vectorr as a geometric object independent of the
coordinate system. Let us look atr in two different systems, one rotated in relation to the
other.

For simplicity we consider first the two-dimensional case. If thex-, y-coordinates are
rotated counterclockwise through an angleϕ, keeping r, fixed (Fig. 1.6), we get the fol-
lowing relations between the components resolved in the original system (unprimed) and
those resolved in the new rotated system (primed):

x′ = x cosϕ + y sinϕ,
y′ = −x sinϕ + y cosϕ.

(1.8)

We saw in Section 1.1 that a vector could be represented by the coordinates of a point;
that is, the coordinates were proportional to the vector components. Hence the components
of a vector must transform under rotation as coordinates of a point (such asr). Therefore
whenever any pair of quantitiesAx andAy in thexy-coordinate system is transformed into
(A′x,A′y) by this rotation of the coordinate system with

A′x =Ax cosϕ +Ay sinϕ,
A′y =−Ax sinϕ +Ay cosϕ,

(1.9)

wedefine4 Ax andAy as the components of a vectorA. Our vector now is defined in terms
of the transformation of its components under rotation of the coordinate system. IfAx and
Ay transform in the same way asx andy, the components of the general two-dimensional
coordinate vectorr, they are the components of a vectorA. If Ax andAy do not show this

4A scalar quantity does not depend on the orientation of coordinates;S′ = S expresses the fact that it is invariant under rotation
of the coordinates.
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form invariance (also calledcovariance) when the coordinates are rotated, they do not
form a vector.

The vector field componentsAx andAy satisfying the defining equations, Eqs. (1.9), as-
sociate a magnitudeA and a direction with each point in space. The magnitude is a scalar
quantity, invariant to the rotation of the coordinate system. The direction (relative to the
unprimed system) is likewise invariant to the rotation of the coordinate system (see Exer-
cise 1.2.1). The result of all this is that the components of a vector may vary according to
the rotation of the primed coordinate system. This is what Eqs. (1.9) say. But the variation
with the angle is just such that the components in the rotated coordinate systemA′x andA′y
define a vector with the same magnitude and the same direction as the vector defined by
the componentsAx andAy relative to thex-, y-coordinate axes. (Compare Exercise 1.2.1.)
The components ofA in a particular coordinate system constitute therepresentation of
A in that coordinate system. Equations (1.9), the transformation relations, are a guarantee
that the entityA is independent of the rotation of the coordinate system.

To go on to three and, later, four dimensions, we find it convenient to use a more compact
notation. Let

x→ x1
y→ x2

(1.10)

a11= cosϕ, a12= sinϕ,

a21=−sinϕ, a22= cosϕ.
(1.11)

Then Eqs. (1.8) become

x′1= a11x1+ a12x2,

x′2= a21x1+ a22x2.
(1.12)

The coefficientaij may be interpreted as a direction cosine, the cosine of the angle between
x′i andxj ; that is,

a12= cos(x′1, x2)= sinϕ,
a21= cos(x′2, x1)= cos

(
ϕ + π

2

)=−sinϕ.
(1.13)

The advantage of the new notation5 is that it permits us to use the summation symbol
∑

and to rewrite Eqs. (1.12) as

x′i =
2∑

j=1

aij xj , i = 1,2. (1.14)

Note thati remains as a parameter that gives rise to one equation when it is set equal to 1
and to a second equation when it is set equal to 2. The indexj , of course, is a summation
index, a dummy index, and, as with a variable of integration,j may be replaced by any
other convenient symbol.

5You may wonder at the replacement of one parameterϕ by four parametersaij . Clearly, theaij do not constitute a minimum
set of parameters. For two dimensions the fouraij are subject to the three constraints given in Eq. (1.18). The justification for
this redundant set of direction cosines is the convenience it provides. Hopefully, this convenience will become more apparent
in Chapters 2 and 3. For three-dimensional rotations (9aij but only three independent) alternate descriptions are provided by:
(1) the Euler angles discussed in Section 3.3, (2) quaternions, and (3) the Cayley–Klein parameters. These alternatives have their
respective advantages and disadvantages.
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The generalization to three, four, orN dimensions is now simple. The set ofN quantities
Vj is said to be the components of anN -dimensional vectorV if and only if their values
relative to the rotated coordinate axes are given by

V ′i =
N∑
j=1

aijVj , i = 1,2, . . . ,N. (1.15)

As before,aij is the cosine of the angle betweenx′i andxj . Often the upper limitN and
the corresponding range ofi will not be indicated. It is taken for granted that you know
how many dimensions your space has.

From the definition ofaij as the cosine of the angle between the positivex′i direction
and the positivexj direction we may write (Cartesian coordinates)6

aij = ∂x′i
∂xj

. (1.16a)

Using the inverse rotation (ϕ→−ϕ) yields

xj =
2∑

i=1

aij x
′
i or

∂xj

∂x′i
= aij . (1.16b)

Note that these arepartial derivatives. By use of Eqs. (1.16a) and (1.16b), Eq. (1.15)
becomes

V ′i =
N∑
j=1

∂x′i
∂xj

Vj =
N∑
j=1

∂xj

∂x′i
Vj . (1.17)

The direction cosinesaij satisfy anorthogonality condition∑
i

aij aik = δjk (1.18)

or, equivalently, ∑
i

ajiaki = δjk. (1.19)

Here, the symbolδjk is the Kronecker delta, defined by

δjk = 1 for j = k,

δjk = 0 for j 
= k.
(1.20)

It is easily verified that Eqs. (1.18) and (1.19) hold in the two-dimensional case by
substituting in the specificaij from Eqs. (1.11). The result is the well-known identity
sin2ϕ + cos2ϕ = 1 for the nonvanishing case. To verify Eq. (1.18) in general form, we
may use the partial derivative forms of Eqs. (1.16a) and (1.16b) to obtain∑

i

∂xj

∂x′i
∂xk

∂x′i
=
∑
i

∂xj

∂x′i

∂x′i
∂xk

= ∂xj

∂xk
. (1.21)

6Differentiatex′
i

with respect toxj . See discussion following Eq. (1.21).



1.2 Rotation of the Coordinate Axes 11

The last step follows by the standard rules for partial differentiation, assuming thatxj is
a function ofx′1, x′2, x′3, and so on. The final result,∂xj /∂xk , is equal toδjk , sincexj and
xk as coordinate lines (j 
= k) are assumed to be perpendicular (two or three dimensions)
or orthogonal (for any number of dimensions). Equivalently, we may assume thatxj and
xk (j 
= k) are totally independent variables. Ifj = k, the partial derivative is clearly equal
to 1.

In redefining a vector in terms of how its components transform under a rotation of the
coordinate system, we should emphasize two points:

1. This definition is developed because it is useful and appropriate in describing our
physical world. Our vector equations will be independent of any particular coordinate
system. (The coordinate system need not even be Cartesian.) The vector equation can
always be expressed in some particular coordinate system, and, to obtain numerical
results, we must ultimately express the equation in some specific coordinate system.

2. This definition is subject to a generalization that will open up the branch of mathemat-
ics known as tensor analysis (Chapter 2).

A qualification is in order. The behavior of the vector components under rotation of the
coordinates is used in Section 1.3 to prove that a scalar product is a scalar, in Section 1.4
to prove that a vector product is a vector, and in Section 1.6 to show that the gradient of a
scalarψ, ∇ψ , is a vector. The remainder of this chapter proceeds on the basis of the less
restrictive definitions of the vector given in Section 1.1.

Summary: Vectors and Vector Space

It is customary in mathematics to label an ordered triple of real numbers (x1, x2, x3) a
vector x. The numberxn is called thenth component of vectorx. The collection of all
such vectors (obeying the properties that follow) form a three-dimensional realvector
space. We ascribe five properties to our vectors: Ifx= (x1, x2, x3) andy= (y1, y2, y3),

1. Vector equality:x= y meansxi = yi , i = 1,2,3.
2. Vector addition:x+ y= z meansxi + yi = zi, i = 1,2,3.
3. Scalar multiplication:ax↔ (ax1, ax2, ax3) (with a real).
4. Negative of a vector:−x= (−1)x↔ (−x1,−x2,−x3).
5. Null vector: There exists a null vector0↔ (0,0,0).

Since our vector components are real (or complex) numbers, the following properties
also hold:

1. Addition of vectors is commutative:x+ y= y+ x.
2. Addition of vectors is associative:(x+ y)+ z= x+ (y+ z).
3. Scalar multiplication is distributive:

a(x+ y)= ax+ ay, also (a + b)x= ax+ bx.

4. Scalar multiplication is associative:(ab)x= a(bx).
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Further, the null vector0 is unique, as is the negative of a given vectorx.
So far as the vectors themselves are concerned this approach merely formalizes the com-

ponent discussion of Section 1.1. The importance lies in the extensions, which will be con-
sidered in later chapters. In Chapter 4, we show that vectors form both an Abelian group
under addition and a linear space with the transformations in the linear space described by
matrices. Finally, and perhaps most important, for advanced physics the concept of vectors
presented here may be generalized to (1) complex quantities,7 (2) functions, and (3) an infi-
nite number of components. This leads to infinite-dimensional function spaces, the Hilbert
spaces, which are important in modern quantum theory. A brief introduction to function
expansions and Hilbert space appears in Section 10.4.

Exercises

1.2.1 (a) Show that the magnitude of a vectorA, A= (A2
x +A2

y)
1/2, is independent of the

orientation of the rotated coordinate system,(
A2
x +A2

y

)1/2= (A′2x +A′2y
)1/2

,

that is, independent of the rotation angleϕ.
This independence of angle is expressed by saying thatA is invariant under

rotations.
(b) At a given point(x, y), A defines an angleα relative to the positivex-axis and

α′ relative to the positivex′-axis. The angle fromx to x′ is ϕ. Show thatA= A′
defines thesame direction in space when expressed in terms of its primed compo-
nents as in terms of its unprimed components; that is,

α′ = α − ϕ.

1.2.2 Prove the orthogonality condition
∑

i ajiaki = δjk . As a special case of this, the direc-
tion cosines of Section 1.1 satisfy the relation

cos2α + cos2β + cos2γ = 1,

a result that also follows from Eq. (1.6).

1.3 SCALAR OR DOT PRODUCT

Having defined vectors, we now proceed to combine them. The laws for combining vectors
must be mathematically consistent. From the possibilities that are consistent we select two
that are both mathematically and physically interesting. A third possibility is introduced in
Chapter 2, in which we form tensors.

The projection of a vectorA onto a coordinate axis, which gives its Cartesian compo-
nents in Eq. (1.4), defines a special geometrical case of the scalar product ofA and the
coordinate unit vectors:

Ax =Acosα ≡A · x̂, Ay =Acosβ ≡A · ŷ, Az =Acosγ ≡A · ẑ. (1.22)

7Then-dimensional vector space of realn-tuples is often labeledRn and then-dimensional vector space of complexn-tuples is
labeledCn.
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This special case of a scalar product in conjunction with general properties the scalar prod-
uct is sufficient to derive the general case of the scalar product.

Just as the projection is linear inA, we want the scalar product of two vectors to be
linear inA andB, that is, obey the distributive and associative laws

A · (B+C) = A ·B+A ·C (1.23a)

A · (yB) = (yA) ·B= yA ·B, (1.23b)

wherey is a number. Now we can use the decomposition ofB into its Cartesian components
according to Eq. (1.5),B= Bx x̂+By ŷ+Bzẑ, to construct the general scalar or dot product
of the vectorsA andB as

A ·B = A · (Bx x̂+By ŷ+Bzẑ)

= BxA · x̂+ByA · ŷ+BzA · ẑ upon applying Eqs. (1.23a) and (1.23b)

= BxAx +ByAy +BzAz upon substituting Eq. (1.22).

Hence

A ·B≡
∑
i

BiAi =
∑
i

AiBi = B ·A. (1.24)

If A= B in Eq. (1.24), we recover the magnitudeA = (
∑

A2
i )

1/2 of A in Eq. (1.6) from
Eq. (1.24).

It is obvious from Eq. (1.24) that the scalar product treatsA and B alike, or is sym-
metric in A andB, and is commutative. Thus, alternatively and equivalently, we can first
generalize Eqs. (1.22) to the projectionAB of A onto the direction of a vectorB 
= 0
asAB = Acosθ ≡ A · B̂, whereB̂ = B/B is the unit vector in the direction ofB andθ
is the angle betweenA and B, as shown in Fig. 1.7. Similarly, we projectB onto A as
BA = B cosθ ≡ B · Â. Second, we make these projections symmetric inA andB, which
leads to the definition

A ·B≡ABB =ABA =AB cosθ. (1.25)

FIGURE 1.7 Scalar productA ·B=AB cosθ .
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FIGURE 1.8 The distributive law
A · (B+C)=ABA +ACA =A(B+C)A, Eq. (1.23a).

The distributive law in Eq. (1.23a) is illustrated in Fig. 1.8, which shows that the sum of
the projections ofB andC ontoA, BA + CA is equal to the projection ofB+ C ontoA,
(B+C)A.

It follows from Eqs. (1.22), (1.24), and (1.25) that the coordinate unit vectors satisfy the
relations

x̂ · x̂= ŷ · ŷ= ẑ · ẑ= 1, (1.26a)

whereas

x̂ · ŷ= x̂ · ẑ= ŷ · ẑ= 0. (1.26b)

If the component definition, Eq. (1.24), is labeled an algebraic definition, then Eq. (1.25)
is a geometric definition. One of the most common applications of the scalar product in
physics is in the calculation ofwork= force·displacement·cosθ , which is interpreted as
displacement times the projection of the force along the displacement direction, i.e., the
scalar product of force and displacement,W = F · S.

If A · B = 0 and we know thatA 
= 0 andB 
= 0, then, from Eq. (1.25), cosθ = 0, or
θ = 90◦,270◦, and so on. The vectorsA and B must be perpendicular. Alternately, we
may sayA andB are orthogonal. The unit vectorsx̂, ŷ, andẑ are mutually orthogonal. To
develop this notion of orthogonality one more step, suppose thatn is a unit vector andr is
a nonzero vector in thexy-plane; that is,r= x̂x + ŷy (Fig. 1.9). If

n · r= 0

for all choices ofr, thenn must be perpendicular (orthogonal) to thexy-plane.
Often it is convenient to replacêx, ŷ, andẑ by subscripted unit vectorsem,m= 1,2,3,

with x̂= e1, and so on. Then Eqs. (1.26a) and (1.26b) become

em · en = δmn. (1.26c)

For m 
= n the unit vectorsem anden are orthogonal. Form = n each vector is normal-
ized to unity, that is, has unit magnitude. The setem is said to beorthonormal. A major
advantage of Eq. (1.26c) over Eqs. (1.26a) and (1.26b) is that Eq. (1.26c) may readily be
generalized toN -dimensional space:m,n = 1,2, . . . ,N . Finally, we are picking sets of
unit vectorsem that are orthonormal for convenience – a very great convenience.
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FIGURE 1.9 A normal vector.

Invariance of the Scalar Product Under Rotations

We have not yet shown that the wordscalar is justified or that the scalar product is indeed
a scalar quantity. To do this, we investigate the behavior ofA · B under a rotation of the
coordinate system. By use of Eq. (1.15),

A′xB ′x +A′yB ′y +A′zB ′z =
∑
i

axiAi

∑
j

axjBj +
∑
i

ayiAi

∑
j

ayjBj

+
∑
i

aziAi

∑
j

azjBj . (1.27)

Using the indicesk andl to sum overx, y, andz, we obtain∑
k

A′kB ′k =
∑
l

∑
i

∑
j

aliAialjBj , (1.28)

and, by rearranging the terms on the right-hand side, we have∑
k

A′kB ′k =
∑
l

∑
i

∑
j

(alialj )AiBj =
∑
i

∑
j

δijAiBj =
∑
i

AiBi. (1.29)

The last two steps follow by using Eq. (1.18), the orthogonality condition of the direction
cosines, and Eqs. (1.20), which define the Kronecker delta. The effect of the Kronecker
delta is to cancel all terms in a summation over either index except the term for which the
indices are equal. In Eq. (1.29) its effect is to setj = i and to eliminate the summation
over j . Of course, we could equally well seti = j and eliminate the summation overi.
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Equation (1.29) gives us

∑
k

A′kB ′k =
∑
i

AiBi, (1.30)

which is just our definition of a scalar quantity, one that remains invariant under the rotation
of the coordinate system.

In a similar approach that exploits this concept of invariance, we takeC = A+ B and
dot it into itself:

C ·C = (A+B) · (A+B)

= A ·A+B ·B+ 2A ·B. (1.31)

Since

C ·C= C2, (1.32)

the square of the magnitude of vectorC and thus an invariant quantity, we see that

A ·B= 1

2

(
C2−A2−B2), invariant. (1.33)

Since the right-hand side of Eq. (1.33) is invariant — that is, a scalar quantity — the left-
hand side,A · B, must also be invariant under rotation of the coordinate system. Hence
A ·B is a scalar.

Equation (1.31) is really another form of the law of cosines, which is

C2=A2+B2+ 2AB cosθ. (1.34)

Comparing Eqs. (1.31) and (1.34), we have another verification of Eq. (1.25), or, if pre-
ferred, a vector derivation of the law of cosines (Fig. 1.10).

The dot product, given by Eq. (1.24), may be generalized in two ways. The space need
not be restricted to three dimensions. Inn-dimensional space, Eq. (1.24) applies with the
sum running from 1 ton. Moreover,n may be infinity, with the sum then a convergent infi-
nite series (Section 5.2). The other generalization extends the concept of vector to embrace
functions. The function analog of a dot, or inner, product appears in Section 10.4.

FIGURE 1.10 The law of cosines.
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Exercises

1.3.1 Two unit magnitude vectorsei andej are required to be either parallel or perpendicular
to each other. Show thatei · ej provides an interpretation of Eq. (1.18), the direction
cosine orthogonality relation.

1.3.2 Given that (1) the dot product of a unit vector with itself is unity and (2) this relation is
valid in all (rotated) coordinate systems, show thatx̂′ · x̂′ = 1 (with the primed system
rotated 45◦ about thez-axis relative to the unprimed) implies thatx̂ · ŷ= 0.

1.3.3 The vectorr, starting at the origin, terminates at and specifies the point in space(x, y, z).
Find the surface swept out by the tip ofr if

(a) (r− a) · a= 0. Characterizea geometrically.
(b) (r− a) · r= 0. Describe the geometric role ofa.

The vectora is constant (in magnitude and direction).

1.3.4 The interaction energy between two dipoles of momentsµ1 andµ2 may be written in
the vector form

V =−µ1 ·µ2

r3
+ 3(µ1 · r)(µ2 · r)

r5

and in the scalar form

V = µ1µ2

r3
(2 cosθ1 cosθ2− sinθ1 sinθ2 cosϕ).

Hereθ1 andθ2 are the angles ofµ1 andµ2 relative tor, while ϕ is the azimuth ofµ2
relative to theµ1–r plane (Fig. 1.11). Show that these two forms are equivalent.
Hint: Equation (12.178) will be helpful.

1.3.5 A pipe comes diagonally down the south wall of a building, making an angle of 45◦
with the horizontal. Coming into a corner, the pipe turns and continues diagonally down
a west-facing wall, still making an angle of 45◦ with the horizontal. What is the angle
between the south-wall and west-wall sections of the pipe?

ANS. 120◦.
1.3.6 Find the shortest distance of an observer at the point(2,1,3) from a rocket in free

flight with velocity (1,2,3) m/s. The rocket was launched at timet = 0 from (1,1,1).
Lengths are in kilometers.

1.3.7 Prove the law of cosines from the triangle with corners at the point ofC and A in
Fig. 1.10 and the projection of vectorB onto vectorA.

FIGURE 1.11 Two dipole moments.
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1.4 VECTOR OR CROSS PRODUCT

A second form of vector multiplication employs the sine of the included angle instead
of the cosine. For instance, the angular momentum of a body shown at the point of the
distance vector in Fig. 1.12 is defined as

angular momentum= radius arm× linear momentum

= distance× linear momentum× sinθ.

For convenience in treating problems relating to quantities such as angular momentum,
torque, and angular velocity, we define the vector product, or cross product, as

C=A×B, with C =AB sinθ. (1.35)

Unlike the preceding case of the scalar product,C is now a vector, and we assign it a
direction perpendicular to the plane ofA andB such thatA,B, andC form a right-handed
system. With this choice of direction we have

A×B=−B×A, anticommutation. (1.36a)

From this definition of cross product we have

x̂× x̂= ŷ× ŷ= ẑ× ẑ= 0, (1.36b)

whereas

x̂× ŷ= ẑ, ŷ× ẑ= x̂, ẑ× x̂= ŷ,
ŷ× x̂=−ẑ, ẑ× ŷ=−x̂, x̂× ẑ=−ŷ.

(1.36c)

Among the examples of the cross product in mathematical physics are the relation between
linear momentump and angular momentumL, with L defined as

L= r× p,

FIGURE 1.12 Angular momentum.
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FIGURE 1.13 Parallelogram representation of the vector product.

and the relation between linear velocityv and angular velocityω,

v= ω× r.

Vectorsv andp describe properties of the particle or physical system. However, the posi-
tion vectorr is determined by the choice of the origin of the coordinates. This means that
ω andL depend on the choice of the origin.

The familiar magnetic inductionB is usually defined by the vector product force equa-
tion8

FM = qv×B (mks units).

Herev is the velocity of the electric chargeq andFM is the resulting force on the moving
charge.

The cross product has an important geometrical interpretation, which we shall use in
subsequent sections. In the parallelogram defined byA andB (Fig. 1.13),B sinθ is the
height ifA is taken as the length of the base. Then|A× B| = AB sinθ is thearea of the
parallelogram. As a vector,A×B is the area of the parallelogram defined byA andB, with
the area vector normal to the plane of the parallelogram. This suggests that area (with its
orientation in space) may be treated as a vector quantity.

An alternate definition of the vector product can be derived from the special case of the
coordinate unit vectors in Eqs. (1.36c) in conjunction with the linearity of the cross product
in both vector arguments, in analogy with Eqs. (1.23) for the dot product,

A× (B+C)=A×B+A×C, (1.37a)

(A+B)×C=A×C+B×C, (1.37b)

A× (yB)= yA×B= (yA)×B, (1.37c)

8The electric fieldE is assumed here to be zero.
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wherey is a number again. Using the decomposition ofA andB into their Cartesian com-
ponents according to Eq. (1.5), we find

A×B ≡ C= (Cx,Cy,Cz)= (Ax x̂+Ay ŷ+Azẑ)× (Bx x̂+By ŷ+Bzẑ)

= (AxBy −AyBx)x̂× ŷ+ (AxBz −AzBx)x̂× ẑ

+ (AyBz −AzBy)ŷ× ẑ

upon applying Eqs. (1.37a) and (1.37b) and substituting Eqs. (1.36a), (1.36b), and (1.36c)
so that the Cartesian components ofA×B become

Cx =AyBz −AzBy, Cy =AzBx −AxBz, Cz =AxBy −AyBx, (1.38)

or

Ci =AjBk −AkBj , i, j, k all different, (1.39)

and with cyclic permutation of the indicesi, j , andk corresponding tox, y, andz, respec-
tively. The vector productC may be mnemonically represented by a determinant,9

C=
∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣≡ x̂

∣∣∣∣Ay Az

By Bz

∣∣∣∣− ŷ

∣∣∣∣Ax Az

Bx Bz

∣∣∣∣+ ẑ

∣∣∣∣Ax Ay

Bx By

∣∣∣∣ , (1.40)

which is meant to be expanded across the top row to reproduce the three components ofC
listed in Eqs. (1.38).

Equation (1.35) might be called a geometric definition of the vector product. Then
Eqs. (1.38) would be an algebraic definition.

To show the equivalence of Eq. (1.35) and the component definition, Eqs. (1.38), let us
form A ·C andB ·C, using Eqs. (1.38). We have

A ·C = A · (A×B)

= Ax(AyBz −AzBy)+Ay(AzBx −AxBz)+Az(AxBy −AyBx)

= 0. (1.41)

Similarly,

B ·C= B · (A×B)= 0. (1.42)

Equations (1.41) and (1.42) show thatC is perpendicular to bothA andB (cosθ = 0, θ =
±90◦) and therefore perpendicular to the plane they determine. The positive direction is
determined by considering special cases, such as the unit vectorsx̂× ŷ= ẑ (Cz =+AxBy).

The magnitude is obtained from

(A×B) · (A×B) = A2B2− (A ·B)2
= A2B2−A2B2 cos2 θ

= A2B2 sin2 θ. (1.43)

9See Section 3.1 for a brief summary of determinants.
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Hence

C =AB sinθ. (1.44)

The first step in Eq. (1.43) may be verified by expanding out in component form, using
Eqs. (1.38) forA × B and Eq. (1.24) for the dot product. From Eqs. (1.41), (1.42), and
(1.44) we see the equivalence of Eqs. (1.35) and (1.38), the two definitions of vector prod-
uct.

There still remains the problem of verifying thatC = A × B is indeed a vector, that
is, that it obeys Eq. (1.15), the vector transformation law. Starting in a rotated (primed
system),

C′i = A′jB ′k −A′kB ′j , i, j, andk in cyclic order,

=
∑
l

aj lAl

∑
m

akmBm −
∑
l

aklAl

∑
m

ajmBm

=
∑
l,m

(ajlakm − aklajm)AlBm. (1.45)

The combination of direction cosines in parentheses vanishes form= l. We therefore have
j and k taking on fixed values, dependent on the choice ofi, and six combinations of
l andm. If i = 3, thenj = 1, k = 2 (cyclic order), and we have the following direction
cosine combinations:10

a11a22− a21a12= a33,

a13a21− a23a11= a32,

a12a23− a22a13= a31

(1.46)

and their negatives. Equations (1.46) are identities satisfied by the direction cosines. They
may be verified with the use of determinants and matrices (see Exercise 3.3.3). Substituting
back into Eq. (1.45),

C′3 = a33A1B2+ a32A3B1+ a31A2B3− a33A2B1− a32A1B3− a31A3B2

= a31C1+ a32C2+ a33C3

=
∑
n

a3nCn. (1.47)

By permuting indices to pick upC′1 andC′2, we see that Eq. (1.15) is satisfied andC is
indeed a vector. It should be mentioned here that thisvector nature of thecross product
is an accident associated with thethree-dimensional nature of ordinary space.11 It will be
seen in Chapter 2 that the cross product may also be treated as a second-rank antisymmetric
tensor.

10Equations (1.46) hold for rotations because they preserve volumes. For a more general orthogonal transformation, the r.h.s. of
Eqs. (1.46) is multiplied by the determinant of the transformation matrix (see Chapter 3 for matrices and determinants).
11Specifically Eqs. (1.46) hold only for three-dimensional space. See D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric
Calculus (Dordrecht: Reidel, 1984) for a far-reaching generalization of the cross product.
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If we define a vector as an ordered triplet of numbers (or functions), as in the latter part
of Section 1.2, then there is no problem identifying the cross product as a vector. The cross-
product operation maps the two triplesA andB into a third triple,C, which by definition
is a vector.

We now have two ways of multiplying vectors; a third form appears in Chapter 2. But
what about division by a vector? It turns out that the ratioB/A is not uniquely specified
(Exercise 3.2.21) unlessA andB are also required to be parallel. Hence division of one
vector by another is not defined.

Exercises

1.4.1 Show that the medians of a triangle intersect in the center, which is 2/3 of the median’s
length from each corner. Construct a numerical example and plot it.

1.4.2 Prove the law of cosines starting fromA2= (B−C)2.

1.4.3 Starting withC=A+B, show thatC×C= 0 leads to

A×B=−B×A.

1.4.4 Show that

(a) (A−B) · (A+B)=A2−B2,

(b) (A−B)× (A+B)= 2A×B.
The distributive laws needed here,

A · (B+C)=A ·B+A ·C,

and

A× (B+C)=A×B+A×C,

may easily be verified (if desired) by expansion in Cartesian components.

1.4.5 Given the three vectors,

P = 3x̂+ 2ŷ− ẑ,

Q = −6x̂− 4ŷ+ 2ẑ,

R = x̂− 2ŷ− ẑ,

find two that are perpendicular and two that are parallel or antiparallel.

1.4.6 If P= x̂Px + ŷPy andQ= x̂Qx + ŷQy are any two nonparallel (also nonantiparallel)
vectors in thexy-plane, show thatP×Q is in thez-direction.

1.4.7 Prove that(A×B) · (A×B)= (AB)2− (A ·B)2.



1.4 Vector or Cross Product 23

1.4.8 Using the vectors

P = x̂ cosθ + ŷ sinθ,

Q = x̂ cosϕ − ŷ sinϕ,

R = x̂ cosϕ + ŷ sinϕ,

prove the familiar trigonometric identities

sin(θ + ϕ) = sinθ cosϕ + cosθ sinϕ,

cos(θ + ϕ) = cosθ cosϕ − sinθ sinϕ.

1.4.9 (a) Find a vectorA that is perpendicular to

U = 2x̂+ ŷ− ẑ,

V = x̂− ŷ+ ẑ.

(b) What isA if, in addition to this requirement, we demand that it have unit magni-
tude?

1.4.10 If four vectorsa,b, c, andd all lie in the same plane, show that

(a× b)× (c× d)= 0.

Hint. Consider the directions of the cross-product vectors.

1.4.11 The coordinates of the three vertices of a triangle are(2,1,5), (5,2,8), and(4,8,2).
Compute its area by vector methods, its center and medians. Lengths are in centimeters.
Hint. See Exercise 1.4.1.

1.4.12 The vertices of parallelogramABCD are(1,0,0), (2,−1,0), (0,−1,1), and(−1,0,1)
in order. Calculate the vector areas of triangleABD and of triangleBCD. Are the two
vector areas equal?

ANS. AreaABD =−1
2(x̂+ ŷ+ 2ẑ).

1.4.13 The origin and the three vectorsA, B, andC (all of which start at the origin) define a
tetrahedron. Taking the outward direction as positive, calculate the total vector area of
the four tetrahedral surfaces.
Note. In Section 1.11 this result is generalized to any closed surface.

1.4.14 Find the sides and angles of the spherical triangleABC defined by the three vectors

A = (1,0,0),

B =
(

1√
2
,0,

1√
2

)
,

C =
(

0,
1√
2
,

1√
2

)
.

Each vector starts from the origin (Fig. 1.14).
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FIGURE 1.14 Spherical triangle.

1.4.15 Derive the law of sines (Fig. 1.15):

sinα

|A| =
sinβ

|B| =
sinγ

|C| .

1.4.16 The magnetic inductionB is defined by the Lorentz force equation,

F= q(v×B).

Carrying out three experiments, we find that if

v = x̂,
F
q
= 2ẑ− 4ŷ,

v = ŷ,
F
q
= 4x̂− ẑ,

v = ẑ,
F
q
= ŷ− 2x̂.

From the results of these three separate experiments calculate the magnetic inductionB.

1.4.17 Define a cross product of two vectors in two-dimensional space and give a geometrical
interpretation of your construction.

1.4.18 Find the shortest distance between the paths of two rockets in free flight. Take the first
rocket path to ber= r1+ t1v1 with launch atr1= (1,1,1) and velocityv1= (1,2,3)
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FIGURE 1.15 Law of sines.

and the second rocket path asr = r2+ t2v2 with r2 = (5,2,1) andv2 = (−1,−1,1).
Lengths are in kilometers, velocities in kilometers per hour.

1.5 TRIPLE SCALAR PRODUCT, TRIPLE VECTOR PRODUCT

Triple Scalar Product

Sections 1.3 and 1.4 cover the two types of multiplication of interest here. However, there
are combinations of three vectors,A · (B×C) andA× (B×C), that occur with sufficient
frequency to deserve further attention. The combination

A · (B×C)

is known as thetriple scalar product. B× C yields a vector that, dotted intoA, gives a
scalar. We note that(A ·B)×C represents a scalar crossed into a vector, an operation that
is not defined. Hence, if we agree to exclude this undefined interpretation, the parentheses
may be omitted and the triple scalar product writtenA ·B×C.

Using Eqs. (1.38) for the cross product and Eq. (1.24) for the dot product, we obtain

A ·B×C = Ax(ByCz −BzCy)+Ay(BzCx −BxCz)+Az(BxCy −ByCx)

= B ·C×A=C ·A×B

= −A ·C×B=−C ·B×A=−B ·A×C, and so on. (1.48)

There is a high degree of symmetry in the component expansion. Every term contains the
factorsAi , Bj , andCk . If i, j , andk are in cyclic order(x, y, z), the sign is positive. If the
order is anticyclic, the sign is negative. Further, the dot and the cross may be interchanged,

A ·B×C=A×B ·C. (1.49)
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FIGURE 1.16 Parallelepiped representation of triple scalar product.

A convenient representation of the component expansion of Eq. (1.48) is provided by the
determinant

A ·B×C=
∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ . (1.50)

The rules for interchanging rows and columns of a determinant12 provide an immediate
verification of the permutations listed in Eq. (1.48), whereas the symmetry ofA, B, and
C in the determinant form suggests the relation given in Eq. (1.49). The triple products
encountered in Section 1.4, which showed thatA×B was perpendicular to bothA andB,
were special cases of the general result (Eq. (1.48)).

The triple scalar product has a direct geometrical interpretation. The three vectorsA, B,
andC may be interpreted as defining a parallelepiped (Fig. 1.16):

|B×C| = BC sinθ

= area of parallelogram base. (1.51)

The direction, of course, is normal to the base. DottingA into this means multiplying the
base area by the projection ofA onto the normal, or base times height. Therefore

A ·B×C= volume of parallelepiped defined byA,B, andC.

The triple scalar product finds an interesting and important application in the construc-
tion of a reciprocal crystal lattice. Leta, b, andc (not necessarily mutually perpendicular)

12See Section 3.1 for a summary of the properties of determinants.
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represent the vectors that define a crystal lattice. The displacement from one lattice point
to another may then be written

r= naa+ nbb+ ncc, (1.52)

with na,nb, andnc taking on integral values. With these vectors we may form

a′ = b× c
a · b× c

, b′ = c× a
a · b× c

, c′ = a× b
a · b× c

. (1.53a)

We see thata′ is perpendicular to the plane containingb andc, and we can readily show
that

a′ · a= b′ · b= c′ · c= 1, (1.53b)

whereas

a′ · b= a′ · c= b′ · a= b′ · c= c′ · a= c′ · b= 0. (1.53c)

It is from Eqs. (1.53b) and (1.53c) that the namereciprocal lattice is associated with the
pointsr′ = n′aa′ + n′bb′ + n′cc′. The mathematical space in which this reciprocal lattice ex-
ists is sometimes called aFourier space, on the basis of relations to the Fourier analysis of
Chapters 14 and 15. This reciprocal lattice is useful in problems involving the scattering of
waves from the various planes in a crystal. Further details may be found in R. B. Leighton’s
Principles of Modern Physics, pp. 440–448 [New York: McGraw-Hill (1959)].

Triple Vector Product

The second triple product of interest isA×(B×C), which is a vector. Here the parentheses
must be retained, as may be seen from a special case(x̂× x̂)× ŷ= 0, while x̂× (x̂× ŷ)=
x̂× ẑ=−ŷ.

Example 1.5.1 A TRIPLE VECTOR PRODUCT

For the vectors

A= x̂+ 2ŷ− ẑ = (1,2,−1), B= ŷ+ ẑ= (0,1,1), C= x̂− ŷ= (0,1,1),

B×C=
∣∣∣∣∣∣
x̂ ŷ ẑ
0 1 1
1 −1 0

∣∣∣∣∣∣= x̂+ ŷ− ẑ,

and

A× (B×C)=
∣∣∣∣∣∣
x̂ ŷ ẑ
1 2 −1
1 1 −1

∣∣∣∣∣∣ = −x̂− ẑ=−(ŷ+ ẑ)− (x̂− ŷ)

= −B−C. �
By rewriting the result in the last line of Example 1.5.1 as a linear combination ofB and

C, we notice that, taking a geometric approach, the triple vector product is perpendicular
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FIGURE 1.17 B andC are in thexy-plane.
B×C is perpendicular to thexy-plane and

is shown here along thez-axis. Then
A× (B×C) is perpendicular to thez-axis

and therefore is back in thexy-plane.

to A and toB× C. The plane defined byB andC is perpendicular toB× C, and so the
triple product lies in this plane (see Fig. 1.17):

A× (B×C)= uB+ vC. (1.54)

Taking the scalar product of Eq. (1.54) withA gives zero for the left-hand side, so
uA · B + vA · C = 0. Henceu = wA · C andv = −wA · B for a suitablew. Substitut-
ing these values into Eq. (1.54) gives

A× (B×C)=w
[
B(A ·C)−C(A ·B)]; (1.55)

we want to show that

w = 1

in Eq. (1.55), an important relation sometimes known as theBAC–CAB rule. Since
Eq. (1.55) is linear inA, B, andC, w is independent of these magnitudes. That is, we
only need to show thatw = 1 for unit vectorsÂ, B̂, Ĉ. Let us denoteB̂ · Ĉ = cosα,
Ĉ · Â= cosβ, Â · B̂= cosγ , and square Eq. (1.55) to obtain[

Â× (B̂× Ĉ)
]2 = Â2(B̂× Ĉ)2− [Â · (B̂× Ĉ)

]2
= 1− cos2α − [Â · (B̂× Ĉ)

]2
= w2[(Â · Ĉ)2+ (Â · B̂)2− 2(Â · B̂)(Â · Ĉ)(B̂ · Ĉ)

]
= w2(cos2β + cos2γ − 2 cosα cosβ cosγ

)
, (1.56)
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using(Â× B̂)2= Â2B̂2− (Â · B̂)2 repeatedly (see Eq. (1.43) for a proof). Consequently,
the (squared) volume spanned byÂ, B̂, Ĉ that occurs in Eq. (1.56) can be written as[

Â · (B̂× Ĉ)
]2= 1− cos2α −w2(cos2β + cos2γ − 2 cosα cosβ cosγ

)
.

Herew2 = 1, since this volume is symmetric inα,β, γ . That is,w = ±1 and is inde-
pendent ofÂ, B̂, Ĉ. Using again the special casex̂× (x̂× ŷ) = −ŷ in Eq. (1.55) finally
givesw = 1. (An alternate derivation using the Levi-Civita symbolεijk of Chapter 2 is the
topic of Exercise 2.9.8.)

It might be noted here that just as vectors are independent of the coordinates, so a vector
equation is independent of the particular coordinate system. The coordinate system only
determines the components. If the vector equation can be established in Cartesian coor-
dinates, it is established and valid in any of the coordinate systems to be introduced in
Chapter 2. Thus, Eq. (1.55) may be verified by a direct though not very elegant method of
expanding into Cartesian components (see Exercise 1.5.2).

Exercises

1.5.1 One vertex of a glass parallelepiped is at the origin (Fig. 1.18). The three adjacent
vertices are at(3,0,0), (0,0,2), and(0,3,1). All lengths are in centimeters. Calculate
the number of cubic centimeters of glass in the parallelepiped using the triple scalar
product.

1.5.2 Verify the expansion of the triple vector product

A× (B×C)= B(A ·C)−C(A ·B)

FIGURE 1.18 Parallelepiped: triple scalar product.
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by direct expansion in Cartesian coordinates.

1.5.3 Show that the first step in Eq. (1.43), which is

(A×B) · (A×B)=A2B2− (A ·B)2,
is consistent with theBAC–CAB rule for a triple vector product.

1.5.4 You are given the three vectorsA, B, andC,

A = x̂+ ŷ,

B = ŷ+ ẑ,

C = x̂− ẑ.

(a) Compute the triple scalar product,A · B×C. Noting thatA= B+C, give a geo-
metric interpretation of your result for the triple scalar product.

(b) ComputeA× (B×C).

1.5.5 The orbital angular momentumL of a particle is given byL= r× p=mr× v, where
p is the linear momentum. With linear and angular velocity related byv= ω× r, show
that

L=mr2[ω− r̂(r̂ ·ω)].
Herer̂ is a unit vector in ther-direction. Forr · ω= 0 this reduces toL= Iω, with the
moment of inertiaI given bymr2. In Section 3.5 this result is generalized to form an
inertia tensor.

1.5.6 The kinetic energy of a single particle is given byT = 1
2mv2. For rotational motion this

becomes12m(ω× r)2. Show that

T = 1

2
m
[
r2ω2− (r ·ω)2].

For r ·ω= 0 this reduces toT = 1
2Iω

2, with the moment of inertiaI given bymr2.

1.5.7 Show that13

a× (b× c)+ b× (c× a)+ c× (a× b)= 0.

1.5.8 A vector A is decomposed into a radial vectorAr and a tangential vectorAt . If r̂ is a
unit vector in the radial direction, show that

(a) Ar = r̂(A · r̂) and
(b) At =−r̂× (r̂×A).

1.5.9 Prove that a necessary and sufficient condition for the three (nonvanishing) vectorsA,
B, andC to be coplanar is the vanishing of the triple scalar product

A ·B×C= 0.

13This is Jacobi’s identity for vector products; for commutators it is important in the context of Lie algebras (see Eq. (4.16) in
Section 4.2).
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1.5.10 Three vectorsA, B, andC are given by

A = 3x̂− 2ŷ+ 2ẑ,

B = 6x̂+ 4ŷ− 2ẑ,

C = −3x̂− 2ŷ− 4ẑ.

Compute the values ofA ·B×C andA× (B×C),C× (A×B) andB× (C×A).

1.5.11 VectorD is a linear combination of three noncoplanar (and nonorthogonal) vectors:

D= aA+ bB+ cC.

Show that the coefficients are given by a ratio of triple scalar products,

a = D ·B×C
A ·B×C

, and so on.

1.5.12 Show that

(A×B) · (C×D)= (A ·C)(B ·D)− (A ·D)(B ·C).

1.5.13 Show that

(A×B)× (C×D)= (A ·B×D)C− (A ·B×C)D.

1.5.14 For aspherical triangle such as pictured in Fig. 1.14 show that

sinA

sinBC
= sinB

sinCA
= sinC

sinAB
.

Here sinA is the sine of the included angle atA, while BC is the side opposite (in
radians).

1.5.15 Given

a′ = b× c
a · b× c

, b′ = c× a
a · b× c

, c′ = a× b
a · b× c

,

anda · b× c 
= 0, show that

(a) x · y′ = δxy, (x,y= a,b, c),
(b) a′ · b′ × c′ = (a · b× c)−1,

(c) a= b′ × c′

a′ · b′ × c′
.

1.5.16 If x · y′ = δxy, (x,y= a,b, c), prove that

a′ = b× c
a · b× c

.

(This is the converse of Problem 1.5.15.)

1.5.17 Show that any vectorV may be expressed in terms of the reciprocal vectorsa′, b′, c′ (of
Problem 1.5.15) by

V= (V · a)a′ + (V · b)b′ + (V · c)c′.
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1.5.18 An electric chargeq1 moving with velocityv1 produces a magnetic inductionB given
by

B= µ0

4π
q1

v1× r̂
r2

(mks units),

wherer̂ points fromq1 to the point at whichB is measured (Biot and Savart law).

(a) Show that the magnetic force on a second chargeq2, velocity v2, is given by the
triple vector product

F2= µ0

4π

q1q2

r2
v2× (v1× r̂).

(b) Write out the corresponding magnetic forceF1 thatq2 exerts onq1. Define your
unit radial vector. How doF1 andF2 compare?

(c) CalculateF1 andF2 for the case ofq1 andq2 moving along parallel trajectories
side by side.

ANS.

(b) F1=−µ0

4π

q1q2

r2
v1× (v2× r̂).

In general, there is no simple relation between
F1 andF2. Specifically, Newton’s third law,F1=−F2,
does not hold.

(c) F1= µ0

4π

q1q2

r2
v2r̂=−F2.

Mutual attraction.

1.6 GRADIENT, ∇
To provide a motivation for the vector nature of partial derivatives, we now introduce the
total variation of a function F(x, y),

dF = ∂F

∂x
dx + ∂F

∂y
dy.

It consists of independent variations in thex- andy-directions. We writedF as a sum of
two increments, one purely in thex- and the other in they-direction,

dF(x, y) ≡ F(x + dx, y + dy)− F(x, y)

= [F(x + dx, y + dy)− F(x, y + dy)
]+ [F(x, y + dy)− F(x, y)

]
= ∂F

∂x
dx + ∂F

∂y
dy,

by adding and subtractingF(x, y+ dy). The mean value theorem (that is, continuity ofF )
tells us that here∂F/∂x, ∂F/∂y are evaluated at some pointξ, η betweenx andx + dx, y
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andy + dy, respectively. Asdx→ 0 anddy→ 0, ξ → x andη→ y. This result general-
izes to three and higher dimensions. For example, for a functionϕ of three variables,

dϕ(x, y, z) ≡ [ϕ(x + dx, y + dy, z+ dz)− ϕ(x, y + dy, z+ dz)
]

+ [ϕ(x, y + dy, z+ dz)− ϕ(x, y, z+ dz)
]

+ [ϕ(x, y, z+ dz)− ϕ(x, y, z)
]

(1.57)

= ∂ϕ

∂x
dx + ∂ϕ

∂y
dy + ∂ϕ

∂z
dz.

Algebraically,dϕ in the total variation is a scalar product of the change in positiondr and
the directional change ofϕ. And now we are ready to recognize the three-dimensional
partial derivative as a vector, which leads us to the concept of gradient.

Suppose thatϕ(x, y, z) is a scalar point function, that is, a function whose value depends
on the values of the coordinates(x, y, z). As a scalar, it must have the same value at a given
fixed point in space, independent of the rotation of our coordinate system, or

ϕ′(x′1, x′2, x′3)= ϕ(x1, x2, x3). (1.58)

By differentiating with respect tox′i we obtain

∂ϕ′(x′1, x′2, x′3)
∂x′i

= ∂ϕ(x1, x2, x3)

∂x′i
=
∑
j

∂ϕ

∂xj

∂xj

∂x′i
=
∑
j

aij
∂ϕ

∂xj
(1.59)

by the rules of partial differentiation and Eqs. (1.16a) and (1.16b). But comparison with
Eq. (1.17), the vector transformation law, now shows that we haveconstructed a vector
with components∂ϕ/∂xj . This vector we label the gradient ofϕ.

A convenient symbolism is

∇ϕ = x̂
∂ϕ

∂x
+ ŷ

∂ϕ

∂y
+ ẑ

∂ϕ

∂z
(1.60)

or

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (1.61)

∇ϕ (or delϕ) is our gradient of the scalarϕ, whereas∇ (del) itself is a vector differential
operator (available to operate on or to differentiate a scalarϕ). All the relationships for∇
(del) can be derived from the hybrid nature of del in terms of both the partial derivatives
and its vector nature.

The gradient of a scalar is extremely important in physics and engineering in expressing
the relation between a force field and a potential field,

forceF=−∇(potentialV ), (1.62)

which holds for both gravitational and electrostatic fields, among others. Note that the
minus sign in Eq. (1.62) results in water flowing downhill rather than uphill! If a force can
be described, as in Eq. (1.62), by a single functionV (r) everywhere, we call the scalar
functionV its potential. Because the force is the directional derivative of the potential, we
can find the potential, if it exists, by integrating the force along a suitable path. Because the
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total variationdV =∇V · dr=−F · dr is the work done against the force along the path
dr, we recognize the physical meaning of the potential (difference) as work and energy.
Moreover, in a sum of path increments the intermediate points cancel,[
V (r+ dr1+ dr2)− V (r+ dr1)

]+ [V (r+ dr1)− V (r)
]= V (r+ dr2+ dr1)− V (r),

so the integrated work along some path from an initial pointri to a final pointr is given by
the potential differenceV (r)− V (ri ) at the endpoints of the path. Therefore, such forces
are especially simple and well behaved: They are calledconservative. When there is loss of
energy due to friction along the path or some other dissipation, the work will depend on the
path, and such forces cannot be conservative: No potential exists. We discuss conservative
forces in more detail in Section 1.13.

Example 1.6.1 THE GRADIENT OF A POTENTIAL V (r)

Let us calculate the gradient ofV (r)= V (
√
x2+ y2+ z2 ), so

∇V (r)= x̂
∂V (r)

∂x
+ ŷ

∂V (r)

∂y
+ ẑ

∂V (r)

∂z
.

Now,V (r) depends onx through the dependence ofr onx. Therefore14

∂V (r)

∂x
= dV (r)

dr
· ∂r
∂x

.

Fromr as a function ofx, y, z,

∂r

∂x
= ∂(x2+ y2+ z2)1/2

∂x
= x

(x2+ y2+ z2)1/2
= x

r
.

Therefore
∂V (r)

∂x
= dV (r)

dr
· x
r
.

Permuting coordinates(x→ y, y→ z, z→ x) to obtain they andz derivatives, we get

∇V (r) = (x̂x + ŷy + ẑz)
1

r

dV

dr

= r
r

dV

dr
= r̂

dV

dr
.

Herer̂ is a unit vector(r/r) in thepositive radial direction. The gradient of a function of
r is a vector in the (positive or negative) radial direction. In Section 2.5,r̂ is seen as one
of the three orthonormal unit vectors of spherical polar coordinates andr̂∂/∂r as the radial
component of∇. �

14This is a special case of thechain rule of partial differentiation:

∂V (r, θ,ϕ)

∂x
= ∂V

∂r

∂r

∂x
+ ∂V

∂θ

∂θ

∂x
+ ∂V

∂ϕ

∂ϕ

∂x
,

where∂V/∂θ = ∂V/∂ϕ = 0, ∂V/∂r→ dV/dr.
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A Geometrical Interpretation

One immediate application of∇ϕ is to dot it into an increment of length

dr= x̂dx + ŷdy + ẑdz.

Thus we obtain

∇ϕ · dr= ∂ϕ

∂x
dx + ∂ϕ

∂y
dy + ∂ϕ

∂z
dz= dϕ,

the change in the scalar functionϕ corresponding to a change in positiondr. Now consider
P andQ to be two points on a surfaceϕ(x, y, z)= C, a constant. These points are chosen
so thatQ is a distancedr fromP . Then, moving fromP toQ, the change inϕ(x, y, z)= C

is given by

dϕ = (∇ϕ) · dr= 0 (1.63)

since we stay on the surfaceϕ(x, y, z) = C. This shows that∇ϕ is perpendicular todr.
Sincedr may have any direction fromP as long as it stays in the surface of constantϕ,
pointQ being restricted to the surface but having arbitrary direction,∇ϕ is seen as normal
to the surfaceϕ = constant (Fig. 1.19).

If we now permitdr to take us from one surfaceϕ = C1 to an adjacent surfaceϕ = C2
(Fig. 1.20),

dϕ = C1−C2=�C = (∇ϕ) · dr. (1.64)

For a givendϕ, |dr| is a minimum when it is chosen parallel to∇ϕ (cosθ = 1); or, for
a given|dr|, the change in the scalar functionϕ is maximized by choosingdr parallel to

FIGURE 1.19 The length incrementdr has to stay on the surfaceϕ = C.
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FIGURE 1.20 Gradient.

∇ϕ. This identifies ∇ϕ as a vector having the direction of the maximum space rate
of change of ϕ, an identification that will be useful in Chapter 2 when we consider non-
Cartesian coordinate systems. This identification of∇ϕ may also be developed by using
the calculus of variations subject to a constraint, Exercise 17.6.9.

Example 1.6.2 FORCE AS GRADIENT OF A POTENTIAL

As a specific example of the foregoing, and as an extension of Example 1.6.1, we consider
the surfaces consisting of concentric spherical shells, Fig. 1.21. We have

ϕ(x, y, z)= (x2+ y2+ z2)1/2= r = C,

wherer is the radius, equal toC, our constant.�C =�ϕ =�r , the distance between two
shells. From Example 1.6.1

∇ϕ(r)= r̂
dϕ(r)

dr
= r̂.

The gradient is in the radial direction and is normal to the spherical surfaceϕ = C. �

Example 1.6.3 INTEGRATION BY PARTS OF GRADIENT

Let us prove the formula
∫

A(r) ·∇f (r) d3r =− ∫ f (r)∇ ·A(r) d3r , whereA or f or both
vanish at infinity so that the integrated parts vanish. This condition is satisfied if, for exam-
ple,A is the electromagnetic vector potential andf is a bound-state wave functionψ(r).
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FIGURE 1.21 Gradient for
ϕ(x, y, z)= (x2+ y2+ z2)1/2, spherical

shells:(x2
2 + y2

2 + z2
2)

1/2= r2= C2,
(x2

1 + y2
1 + z2

1)
1/2= r1= C1.

Writing the inner product in Cartesian coordinates, integrating each one-dimensional
integral by parts, and dropping the integrated terms, we obtain∫

A(r) ·∇f (r) d3r =
∫∫ [

Axf |∞x=−∞ −
∫

f
∂Ax

∂x
dx

]
dy dz+ · · ·

= −
∫∫∫

f
∂Ax

∂x
dx dy dz−

∫∫∫
f
∂Ay

∂y
dy dx dz−

∫∫∫
f
∂Az

∂z
dz dx dy

=−
∫

f (r)∇ ·A(r) d3r.

If A= eikzê describes an outgoing photon in the direction of the constant polarization unit
vectorê andf =ψ(r) is an exponentially decaying bound-state wave function, then∫

eikzê ·∇ψ(r) d3r =−ez
∫

ψ(r)
deikz

dz
d3r =−ikez

∫
ψ(r)eikz d3r,

because only thez-component of the gradient contributes. �

Exercises

1.6.1 If S(x, y, z)= (x2+ y2+ z2)−3/2, find

(a) ∇S at the point(1,2,3);
(b) the magnitude of the gradient ofS, |∇S| at (1,2,3); and
(c) the direction cosines of∇S at (1,2,3).
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1.6.2 (a) Find a unit vector perpendicular to the surface

x2+ y2+ z2= 3

at the point(1,1,1). Lengths are in centimeters.
(b) Derive the equation of the plane tangent to the surface at(1,1,1).

ANS. (a)(x̂+ ŷ+ ẑ)/
√

3, (b)x + y + z= 3.

1.6.3 Given a vectorr12= x̂(x1− x2)+ ŷ(y1− y2)+ ẑ(z1− z2), show that∇1r12 (gradient
with respect tox1, y1, andz1 of the magnituder12) is a unit vector in the direction of
r12.

1.6.4 If a vector functionF depends on both space coordinates(x, y, z) and timet , show that

dF= (dr ·∇)F+ ∂F
∂t

dt.

1.6.5 Show that∇(uv) = v∇u+ u∇v, whereu andv are differentiable scalar functions of
x, y, andz.

(a) Show that a necessary and sufficient condition thatu(x, y, z) andv(x, y, z) are
related by some functionf (u, v)= 0 is that(∇u)× (∇v)= 0.

(b) If u= u(x, y) andv = v(x, y), show that the condition(∇u)× (∇v)= 0 leads to
the two-dimensional Jacobian

J

(
u,v

x, y

)
=
∣∣∣∣ ∂u∂x ∂u

∂y
∂v
∂x

∂v
∂y

∣∣∣∣= 0.

The functionsu andv are assumed differentiable.

1.7 DIVERGENCE, ∇
Differentiating a vector function is a simple extension of differentiating scalar quantities.
Supposer(t) describes the position of a satellite at some timet . Then, for differentiation
with respect to time,

dr(t)
dt

= lim
�→0

r(t +�t)− r(t)
�t

= v, linear velocity.

Graphically, we again have the slope of a curve, orbit, or trajectory, as shown in Fig. 1.22.
If we resolver(t) into its Cartesian components,dr/dt always reduces directly to a

vector sum of not more than three (for three-dimensional space) scalar derivatives. In other
coordinate systems (Chapter 2) the situation is more complicated, for the unit vectors are
no longer constant in direction. Differentiation with respect to the space coordinates is
handled in the same way as differentiation with respect to time, as seen in the following
paragraphs.
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FIGURE 1.22 Differentiation of a vector.

In Section 1.6,∇ was defined as a vector operator. Now, paying attention to both its
vector and its differential properties, we let it operate on a vector. First, as a vector we dot
it into a second vector to obtain

∇ ·V= ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z
, (1.65a)

known as the divergence ofV. This is a scalar, as discussed in Section 1.3.

Example 1.7.1 DIVERGENCE OF COORDINATE VECTOR

Calculate∇ · r:

∇ · r =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· (x̂x + ŷy + ẑz)

= ∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
,

or ∇ · r= 3. �

Example 1.7.2 DIVERGENCE OF CENTRAL FORCE FIELD

Generalizing Example 1.7.1,

∇ · (rf (r)) = ∂

∂x

[
x f (r)

]+ ∂

∂y

[
y f (r)

]+ ∂

∂z

[
zf (r)

]
= 3f (r)+ x2

r

df

dr
+ y2

r

df

dr
+ z2

r

df

dr

= 3f (r)+ r
df

dr
.
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The manipulation of the partial derivatives leading to the second equation in Example 1.7.2
is discussed in Example 1.6.1. In particular, iff (r)= rn−1,

∇ · (rrn−1) = ∇ · r̂rn

= 3rn−1+ (n− 1)rn−1

= (n+ 2)rn−1. (1.65b)

This divergence vanishes forn=−2, except atr = 0, an important fact in Section 1.14.�

Example 1.7.3 INTEGRATION BY PARTS OF DIVERGENCE

Let us prove the formula
∫
f (r)∇ · A(r) d3r = − ∫ A · ∇f d3r, whereA or f or both

vanish at infinity.
To show this, we proceed, as in Example 1.6.3, by integration by parts after writing

the inner product in Cartesian coordinates. Because the integrated terms are evaluated at
infinity, where they vanish, we obtain∫

f (r)∇ ·A(r) d3r =
∫

f

(
∂Ax

∂x
dx dy dz+ ∂Ay

∂y
dy dx dz+ ∂Az

∂z
dz dx dy

)
= −

∫ (
Ax

∂f

∂x
dx dy dz+Ay

∂f

∂y
dy dx dz+Az

∂f

∂z
dz dx dy

)
= −

∫
A ·∇f d3r. �

A Physical Interpretation

To develop a feeling for the physical significance of the divergence, consider∇ · (ρv) with
v(x, y, z), the velocity of a compressible fluid, andρ(x, y, z), its density at point(x, y, z).
If we consider a small volumedx dy dz (Fig. 1.23) atx = y = z= 0, the fluid flowing into
this volume per unit time (positivex-direction) through the faceEFGH is (rate of flow
in)EFGH = ρvx |x=0 = dy dz. The components of the flowρvy andρvz tangential to this
face contribute nothing to the flow through this face. The rate of flow out (still positive
x-direction) through faceABCD is ρvx |x=dx dy dz. To compare these flows and to find the
net flow out, we expand this last result, like the total variation in Section 1.6.15 This yields

(rate of flow out)ABCD = ρvx |x=dx dy dz

=
[
ρvx + ∂

∂x
(ρvx) dx

]
x=0

dy dz.

Here the derivative term is a first correction term, allowing for the possibility of nonuniform
density or velocity or both.16 The zero-order termρvx |x=0 (corresponding to uniform flow)

15Here we have the incrementdx and we show a partial derivative with respect tox sinceρvx may also depend ony andz.
16Strictly speaking,ρvx is averaged over faceEFGH and the expressionρvx + (∂/∂x)(ρvx) dx is similarly averaged over face
ABCD. Using an arbitrarily small differential volume, we find that the averages reduce to the values employed here.
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FIGURE 1.23 Differential rectangular parallelepiped (in first octant).

cancels out:

Net rate of flow out|x = ∂

∂x
(ρvx) dx dy dz.

Equivalently, we can arrive at this result by

lim
�x→0

ρvx(�x,0,0)− ρvx(0,0,0)

�x
≡ ∂[ρvx(x, y, z)]

∂x

∣∣∣∣
0,0,0

.

Now, thex-axis is not entitled to any preferred treatment. The preceding result for the two
faces perpendicular to thex-axis must hold for the two faces perpendicular to they-axis,
with x replaced byy and the corresponding changes fory andz: y→ z, z→ x. This is
a cyclic permutation of the coordinates. A further cyclic permutation yields the result for
the remaining two faces of our parallelepiped. Adding the net rate of flow out for all three
pairs of surfaces of our volume element, we have

net flow out
(per unit time)

=
[
∂

∂x
(ρvx)+ ∂

∂y
(ρvy)+ ∂

∂z
(ρvz)

]
dx dy dz

= ∇ · (ρv) dx dy dz. (1.66)

Therefore the net flow of our compressible fluid out of the volume elementdx dy dz per
unit volume per unit time is∇ · (ρv). Hence the namedivergence. A direct application is
in the continuity equation

∂ρ

∂t
+∇ · (ρv)= 0, (1.67a)

which states that a net flow out of the volume results in a decreased density inside the
volume. Note that in Eq. (1.67a),ρ is considered to be a possible function of time as well
as of space:ρ(x, y, z, t). The divergence appears in a wide variety of physical problems,
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ranging from a probability current density in quantum mechanics to neutron leakage in a
nuclear reactor.

The combination∇ · (fV), in whichf is a scalar function andV is a vector function,
may be written

∇ · (fV) = ∂

∂x
(f Vx)+ ∂

∂y
(f Vy)+ ∂

∂z
(f Vz)

= ∂f

∂x
Vx + f

∂Vx

∂x
+ ∂f

∂y
Vy + f

∂Vy

∂y
+ ∂f

∂z
Vz + f

∂Vz

∂z

= (∇f ) ·V+ f∇ ·V, (1.67b)

which is just what we would expect for the derivative of a product. Notice that∇ as a
differential operator differentiates bothf andV; as a vector it is dotted intoV (in each
term).

If we have the special case of the divergence of a vector vanishing,

∇ ·B= 0, (1.68)

the vectorB is said to besolenoidal, the term coming from the example in whichB is the
magnetic induction and Eq. (1.68) appears as one of Maxwell’s equations. When a vector
is solenoidal, it may be written as the curl of another vector known as the vector potential.
(In Section 1.13 we shall calculate such a vector potential.)

Exercises

1.7.1 For a particle moving in a circular orbitr= x̂r cosωt + ŷr sinωt ,

(a) evaluater× ṙ, with ṙ= dr
dt
= v.

(b) Show thaẗr+ω2r= 0 with r̈= dv
dt
.

The radiusr and the angular velocityω are constant.

ANS. (a)ẑωr2.

1.7.2 VectorA satisfies the vector transformation law, Eq. (1.15). Show directly that its time
derivativedA/dt also satisfies Eq. (1.15) and is therefore a vector.

1.7.3 Show, by differentiating components, that

(a) d
dt
(A ·B)= dA

dt
·B+A · dB

dt
,

(b) d
dt
(A×B)= dA

dt
×B+A× dB

dt
,

just like the derivative of the product of two algebraic functions.

1.7.4 In Chapter 2 it will be seen that the unit vectors in non-Cartesian coordinate systems are
usually functions of the coordinate variables,ei = ei (q1, q2, q3) but |ei | = 1. Show that
either∂ei/∂qj = 0 or ∂ei/∂qj is orthogonal toei .
Hint. ∂e2

i /∂qj = 0.
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1.7.5 Prove∇ · (a× b)= b · (∇× a)− a · (∇× b).
Hint. Treat as a triple scalar product.

1.7.6 The electrostatic field of a point chargeq is

E= q

4πε0
· r̂
r2

.

Calculate the divergence ofE. What happens at the origin?

1.8 CURL, ∇×
Another possible operation with the vector operator∇ is to cross it into a vector. We obtain

∇×V = x̂
(

∂

∂y
Vz − ∂

∂z
Vy

)
+ ŷ

(
∂

∂z
Vx − ∂

∂x
Vz

)
+ ẑ

(
∂

∂x
Vy − ∂

∂y
Vx

)

=
∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣ , (1.69)

which is called thecurl of V. In expanding this determinant we must consider the derivative
nature of∇. Specifically,V×∇ is defined only as an operator, another vector differential
operator. It is certainly not equal, in general, to−∇ × V.17 In the case of Eq. (1.69) the
determinant must be expandedfrom the top down so that we get the derivatives as shown
in the middle portion of Eq. (1.69). If∇ is crossed into the product of a scalar and a vector,
we can show

∇× (fV)|x =
[
∂

∂y
(f Vz)− ∂

∂z
(f Vy)

]
=
(
f
∂Vz

∂y
+ ∂f

∂y
Vz − f

∂Vy

∂z
− ∂f

∂z
Vy

)
= f∇×V|x + (∇f )×V|x. (1.70)

If we permute the coordinatesx→ y, y→ z, z→ x to pick up they-component and
then permute them a second time to pick up thez-component, then

∇× (fV)= f∇×V+ (∇f )×V, (1.71)

which is the vector product analog of Eq. (1.67b). Again, as a differential operator∇
differentiates bothf andV. As a vector it is crossed intoV (in each term).

17In this same spirit, ifA is a differential operator, it is not necessarily true thatA × A = 0. Specifically, for the quantum
mechanical angular momentumoperator L=−i(r×∇), we find thatL×L= iL. See Sections 4.3 and 4.4 for more details.
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Example 1.8.1 VECTOR POTENTIAL OF A CONSTANT B FIELD

From electrodynamics we know that∇ ·B= 0, which has the general solutionB=∇×A,

whereA(r) is called the vector potential (of the magnetic induction), because∇ ·(∇×A)=
(∇×∇) ·A≡ 0, as a triple scalar product with two identical vectors. This last identity will
not change if we add the gradient of some scalar function to the vector potential, which,
therefore, is not unique.

In our case, we want to show that a vector potential isA= 1
2(B× r).

Using theBAC–BAC rule in conjunction with Example 1.7.1, we find that

2∇×A=∇× (B× r)= (∇ · r)B− (B ·∇)r= 3B−B= 2B,

where we indicate by the ordering of the scalar product of the second term that the gradient
still acts on the coordinate vector. �

Example 1.8.2 CURL OF A CENTRAL FORCE FIELD

Calculate∇× (rf (r)).
By Eq. (1.71),

∇× (rf (r))= f (r)∇× r+ [∇f (r)
]× r. (1.72)

First,

∇× r=
∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

x y z

∣∣∣∣∣∣= 0. (1.73)

Second, using∇f (r)= r̂(df/dr) (Example 1.6.1), we obtain

∇× rf (r)= df

dr
r̂× r= 0. (1.74)

This vector product vanishes, sincer= r̂r andr̂× r̂= 0. �
To develop a better feeling for the physical significance of the curl, we consider the

circulation of fluid around a differential loop in thexy-plane, Fig. 1.24.

FIGURE 1.24 Circulation around a differential loop.
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Although the circulation is technically given by a vector line integral
∫

V · dλ (Sec-
tion 1.10), we can set up the equivalent scalar integrals here. Let us take the circulation to
be

circulation1234=
∫

1
Vx(x, y) dλx +

∫
2
Vy(x, y) dλy

+
∫

3
Vx(x, y) dλx +

∫
4
Vy(x, y) dλy. (1.75)

The numbers 1, 2, 3, and 4 refer to the numbered line segments in Fig. 1.24. In the first
integral,dλx =+dx; but in the third integral,dλx =−dx because the third line segment
is traversed in the negativex-direction. Similarly,dλy =+dy for the second integral,−dy
for the fourth. Next, the integrands are referred to the point(x0, y0) with a Taylor expan-
sion18 taking into account the displacement of line segment 3 from 1 and that of 2 from 4.
For our differential line segments this leads to

circulation1234= Vx(x0, y0) dx +
[
Vy(x0, y0)+ ∂Vy

∂x
dx

]
dy

+
[
Vx(x0, y0)+ ∂Vx

∂y
dy

]
(−dx)+ Vy(x0, y0)(−dy)

=
(
∂Vy

∂x
− ∂Vx

∂y

)
dx dy. (1.76)

Dividing by dx dy, we have

circulation per unit area=∇×V|z. (1.77)

The circulation19 about our differential area in thexy-plane is given by thez-component
of ∇ × V. In principle, the curl∇ × V at (x0, y0) could be determined by inserting a
(differential) paddle wheel into the moving fluid at point(x0, y0). The rotation of the little
paddle wheel would be a measure of the curl, and its axis would be along the direction of
∇×V, which is perpendicular to the plane of circulation.

We shall use the result, Eq. (1.76), in Section 1.12 to derive Stokes’ theorem. Whenever
the curl of a vectorV vanishes,

∇×V= 0, (1.78)

V is labeledirrotational. The most important physical examples of irrotational vectors are
the gravitational and electrostatic forces. In each case

V= C
r̂
r2
= C

r
r3

, (1.79)

whereC is a constant and̂r is the unit vector in the outward radial direction. For the
gravitational case we haveC =−Gm1m2, given by Newton’s law of universal gravitation.
If C = q1q2/4πε0, we have Coulomb’s law of electrostatics (mks units). The forceV

18Here,Vy(x0 + dx, y0) = Vy(x0, y0) + (
∂Vy
∂x

)x0y0 dx + · · · . The higher-order terms will drop out in the limit asdx → 0.
A correction term for the variation ofVy with y is canceled by the corresponding term in the fourth integral.
19In fluid dynamics∇×V is called the “vorticity.”
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given in Eq. (1.79) may be shown to be irrotational by direct expansion into Cartesian
components, as we did in Example 1.8.1. Another approach is developed in Chapter 2, in
which we express∇×, the curl, in terms of spherical polar coordinates. In Section 1.13 we
shall see that whenever a vector is irrotational, the vector may be written as the (negative)
gradient of a scalar potential. In Section 1.16 we shall prove that a vector field may be
resolved into an irrotational part and a solenoidal part (subject to conditions at infinity).
In terms of the electromagnetic field this corresponds to the resolution into an irrotational
electric field and a solenoidal magnetic field.

For waves in an elastic medium, if the displacementu is irrotational,∇ × u= 0, plane
waves (or spherical waves at large distances) become longitudinal. Ifu is solenoidal,
∇ · u = 0, then the waves become transverse. A seismic disturbance will produce a dis-
placement that may be resolved into a solenoidal part and an irrotational part (compare
Section 1.16). The irrotational part yields the longitudinalP (primary) earthquake waves.
The solenoidal part gives rise to the slower transverseS (secondary) waves.

Using the gradient, divergence, and curl, and of course theBAC–CAB rule, we may
construct or verify a large number of useful vector identities. For verification, complete
expansion into Cartesian components is always a possibility. Sometimes if we use insight
instead of routine shuffling of Cartesian components, the verification process can be short-
ened drastically.

Remember that∇ is a vector operator, a hybrid creature satisfying two sets of rules:

1. vector rules, and
2. partial differentiation rules — including differentiation of a product.

Example 1.8.3 GRADIENT OF A DOT PRODUCT

Verify that

∇(A ·B)= (B ·∇)A+ (A ·∇)B+B× (∇×A)+A× (∇×B). (1.80)

This particular example hinges on the recognition that∇(A · B) is the type of term that
appears in theBAC–CAB expansion of a triple vector product, Eq. (1.55). For instance,

A× (∇×B)=∇(A ·B)− (A ·∇)B,

with the ∇ differentiating onlyB, not A. From the commutativity of factors in a scalar
product we may interchangeA andB and write

B× (∇×A)=∇(A ·B)− (B ·∇)A,

now with ∇ differentiating onlyA, not B. Adding these two equations, we obtain∇ dif-
ferentiating the productA · B and the identity, Eq. (1.80). This identity is used frequently
in electromagnetic theory. Exercise 1.8.13 is a simple illustration. �
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Example 1.8.4 INTEGRATION BY PARTS OF CURL

Let us prove the formula
∫

C(r) · (∇ ×A(r)) d3r = ∫ A(r) · (∇ ×C(r)) d3r , whereA or
C or both vanish at infinity.

To show this, we proceed, as in Examples 1.6.3 and 1.7.3, by integration by parts after
writing the inner product and the curl in Cartesian coordinates. Because the integrated
terms vanish at infinity we obtain∫

C(r) · (∇×A(r)
)
d3r

=
∫ [

Cz

(
∂Ay

∂x
− ∂Ax

∂y

)
+Cx

(
∂Az

∂y
− ∂Ay

∂z

)
+Cy

(
∂Ax

∂z
− ∂Az

∂x

)]
d3r

=
∫ [

Ax

(
∂Cz

∂y
− ∂Cy

∂z

)
+Ay

(
∂Cx

∂z
− ∂Cz

∂x

)
+Az

(
∂Cy

∂x
− ∂Cx

∂y

)]
d3r

=
∫

A(r) · (∇×C(r)
)
d3r,

just rearranging appropriately the terms after integration by parts. �

Exercises

1.8.1 Show, by rotating the coordinates, that the components of the curl of a vector transform
as a vector.
Hint. The direction cosine identities of Eq. (1.46) are available as needed.

1.8.2 Show thatu× v is solenoidal ifu andv are each irrotational.

1.8.3 If A is irrotational, show thatA× r is solenoidal.

1.8.4 A rigid body is rotating with constant angular velocityω. Show that the linear velocity
v is solenoidal.

1.8.5 If a vector functionf(x, y, z) is not irrotational but the product off and a scalar function
g(x, y, z) is irrotational, show that then

f ·∇× f= 0.

1.8.6 If (a) V= x̂Vx(x, y)+ ŷVy(x, y) and (b)∇×V 
= 0, prove that∇×V is perpendicular
to V.

1.8.7 Classically, orbital angular momentum is given byL = r × p, wherep is the linear
momentum. To go from classical mechanics to quantum mechanics, replacep by the
operator−i∇ (Section 15.6). Show that the quantum mechanical angular momentum
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operator has Cartesian components (in units ofh̄)

Lx = −i
(
y
∂

∂z
− z

∂

∂y

)
,

Ly = −i
(
z
∂

∂x
− x

∂

∂z

)
,

Lz = −i
(
x
∂

∂y
− y

∂

∂x

)
.

1.8.8 Using the angular momentum operators previously given, show that they satisfy com-
mutation relations of the form

[Lx,Ly] ≡ LxLy −LyLx = iLz

and hence

L×L= iL.

These commutation relations will be taken later as the defining relations of an angular
momentum operator — Exercise 3.2.15 and the following one and Chapter 4.

1.8.9 With the commutator bracket notation[Lx,Ly] = LxLy − LyLx , the angular momen-
tum vectorL satisfies[Lx,Ly] = iLz, etc., orL×L= iL.
If two other vectorsa and b commute with each other and withL, that is, [a,b] =
[a,L] = [b,L] = 0, show that

[a ·L,b ·L] = i(a× b) ·L.
1.8.10 For A= x̂Ax(x, y, z) andB= x̂Bx(x, y, z) evaluate each term in the vector identity

∇(A ·B)= (B ·∇)A+ (A ·∇)B+B× (∇×A)+A× (∇×B)

and verify that the identity is satisfied.

1.8.11 Verify the vector identity

∇× (A×B)= (B ·∇)A− (A ·∇)B−B(∇ ·A)+A(∇ ·B).
1.8.12 As an alternative to the vector identity of Example 1.8.3 show that

∇(A ·B)= (A×∇)×B+ (B×∇)×A+A(∇ ·B)+B(∇ ·A).

1.8.13 Verify the identity

A× (∇×A)= 1

2
∇(A2)− (A ·∇)A.

1.8.14 If A andB are constant vectors, show that

∇(A ·B× r)=A×B.
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1.8.15 A distribution of electric currents creates a constant magnetic momentm= const. The
force onm in an external magnetic inductionB is given by

F=∇× (B×m).

Show that

F= (m ·∇)B.

Note. Assuming no time dependence of the fields, Maxwell’s equations yield∇×B= 0.
Also, ∇ ·B= 0.

1.8.16 An electric dipole of momentp is located at the origin. The dipole creates an electric
potential atr given by

ψ(r)= p · r
4πε0r3

.

Find the electric field,E=−∇ψ at r.

1.8.17 The vector potentialA of a magnetic dipole, dipole momentm, is given byA(r) =
(µ0/4π)(m× r/r3). Show that the magnetic inductionB=∇×A is given by

B= µ0

4π

3r̂(r̂ ·m)−m
r3

.

Note. The limiting process leading to point dipoles is discussed in Section 12.1 for
electric dipoles, in Section 12.5 for magnetic dipoles.

1.8.18 The velocity of a two-dimensional flow of liquid is given by

V= x̂u(x, y)− ŷv(x, y).

If the liquid is incompressible and the flow is irrotational, show that

∂u

∂x
= ∂v

∂y
and

∂u

∂y
=− ∂v

∂x
.

These are the Cauchy–Riemann conditions of Section 6.2.

1.8.19 The evaluation in this section of the four integrals for the circulation omitted Taylor
series terms such as∂Vx/∂x, ∂Vy/∂y and all second derivatives. Show that∂Vx/∂x,
∂Vy/∂y cancel out when the four integrals are added and that the second derivative
terms drop out in the limit asdx→ 0, dy→ 0.
Hint. Calculate the circulation per unit area and then take the limitdx→ 0, dy→ 0.

1.9 SUCCESSIVE APPLICATIONS OF ∇
We have now defined gradient, divergence, and curl to obtain vector, scalar, and vector
quantities, respectively. Letting∇ operate on each of these quantities, we obtain

(a)∇ ·∇ϕ (b) ∇×∇ϕ (c) ∇∇ ·V
(d) ∇ ·∇×V (e)∇× (∇×V)
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all five expressions involving second derivatives and all five appearing in the second-order
differential equations of mathematical physics, particularly in electromagnetic theory.

The first expression,∇ ·∇ϕ, the divergence of the gradient, is named the Laplacian ofϕ.
We have

∇ ·∇ϕ =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(

x̂
∂ϕ

∂x
+ ŷ

∂ϕ

∂y
+ ẑ

∂ϕ

∂z

)
= ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
. (1.81a)

Whenϕ is the electrostatic potential, we have

∇ ·∇ϕ = 0 (1.81b)

at points where the charge density vanishes, which is Laplace’s equation of electrostatics.
Often the combination∇ ·∇ is written∇2, or� in the European literature.

Example 1.9.1 LAPLACIAN OF A POTENTIAL

Calculate∇ ·∇V (r).
Referring to Examples 1.6.1 and 1.7.2,

∇ ·∇V (r)=∇ · r̂dV
dr
= 2

r

dV

dr
+ d2V

dr2
,

replacingf (r) in Example 1.7.2 by 1/r · dV/dr . If V (r)= rn, this reduces to

∇ ·∇rn = n(n+ 1)rn−2.

This vanishes forn= 0 [V (r)= constant] and forn=−1; that is,V (r)= 1/r is a solution
of Laplace’s equation,∇2V (r) = 0. This is forr 
= 0. At r = 0, a Dirac delta function is
involved (see Eq. (1.169) and Section 9.7). �

Expression (b) may be written

∇×∇ϕ =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

∣∣∣∣∣∣∣ .
By expanding the determinant, we obtain

∇×∇ϕ = x̂
(

∂2ϕ

∂y ∂z
− ∂2ϕ

∂z ∂y

)
+ ŷ

(
∂2ϕ

∂z ∂x
− ∂2ϕ

∂x ∂z

)
+ ẑ

(
∂2ϕ

∂x ∂y
− ∂2ϕ

∂y ∂x

)
= 0, (1.82)

assuming that the order of partial differentiation may be interchanged. This is true as long
as these second partial derivatives ofϕ are continuous functions. Then, from Eq. (1.82),
the curl of a gradient is identically zero. All gradients, therefore, are irrotational. Note that



1.9 Successive Applications of ∇ 51

the zero in Eq. (1.82) comes as a mathematical identity, independent of any physics. The
zero in Eq. (1.81b) is a consequence of physics.

Expression (d) is a triple scalar product that may be written

∇ ·∇×V=

∣∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣∣ . (1.83)

Again, assuming continuity so that the order of differentiation is immaterial, we obtain

∇ ·∇×V= 0. (1.84)

The divergence of a curl vanishes or all curls are solenoidal. In Section 1.16 we shall see
that vectors may be resolved into solenoidal and irrotational parts by Helmholtz’s theorem.

The two remaining expressions satisfy a relation

∇× (∇×V)=∇∇ ·V−∇ ·∇V, (1.85)

valid in Cartesian coordinates (but not in curved coordinates). This follows immediately
from Eq. (1.55), theBAC–CAB rule, which we rewrite so thatC appears at the extreme
right of each term. The term∇ ·∇V was not included in our list, but it may bedefined by
Eq. (1.85).

Example 1.9.2 ELECTROMAGNETIC WAVE EQUATION

One important application of this vector relation (Eq. (1.85)) is in the derivation of the
electromagnetic wave equation. In vacuum Maxwell’s equations become

∇ ·B = 0, (1.86a)

∇ ·E = 0, (1.86b)

∇×B = ε0µ0
∂E
∂t

, (1.86c)

∇×E = −∂B
∂t

. (1.86d)

HereE is the electric field,B is the magnetic induction,ε0 is the electric permittivity,
andµ0 is the magnetic permeability (SI units), soε0µ0 = 1/c2, c being the velocity of
light. The relation has important consequences. Becauseε0, µ0 can be measured in any
frame, the velocity of light is the same in any frame.

Suppose we eliminateB from Eqs. (1.86c) and (1.86d). We may do this by taking the
curl of both sides of Eq. (1.86d) and the time derivative of both sides of Eq. (1.86c). Since
the space and time derivatives commute,

∂

∂t
∇×B=∇× ∂B

∂t
,

and we obtain

∇× (∇×E)=−ε0µ0
∂2E
∂t2

.
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Application of Eqs. (1.85) and (1.86b) yields

∇ ·∇E= ε0µ0
∂2E
∂t2

, (1.87)

the electromagnetic vector wave equation. Again, ifE is expressed in Cartesian coor-
dinates, Eq. (1.87) separates into three scalar wave equations, each involving the scalar
Laplacian.

When external electric charge and current densities are kept as driving terms in
Maxwell’s equations, similar wave equations are valid for the electric potential and the
vector potential. To show this, we solve Eq. (1.86a) by writingB=∇×A as a curl of the
vector potential. This expression is substituted into Faraday’s induction law in differential
form, Eq. (1.86d), to yield∇× (E+ ∂A

∂t
)= 0. The vanishing curl implies thatE+ ∂A

∂t
is a

gradient and, therefore, can be written as−∇ϕ, whereϕ(r, t) is defined as the (nonstatic)
electric potential. These results for theB andE fields,

B=∇×A, E=−∇ϕ − ∂A
∂t

, (1.88)

solve the homogeneous Maxwell’s equations.
We now show that the inhomogeneous Maxwell’s equations,

Gauss’ law: ∇ ·E= ρ/ε0, Oersted’s law: ∇×B− 1

c2

∂E
∂t
= µ0J (1.89)

in differential form lead to wave equations for the potentialsϕ andA, provided that∇ ·A is
determined by the constraint1

c2
∂ϕ
∂t
+∇ ·A= 0. This choice of fixing the divergence of the

vector potential, called theLorentz gauge, serves to uncouple the differential equations of
both potentials. This gauge constraint is not a restriction; it has no physical effect.

Substituting our electric field solution into Gauss’ law yields

ρ

ε0
=∇ ·E=−∇2ϕ − ∂

∂t
∇ ·A=−∇2ϕ + 1

c2

∂2ϕ

∂t2
, (1.90)

the wave equation for the electric potential. In the last step we have used the Lorentz
gauge to replace the divergence of the vector potential by the time derivative of the electric
potential and thus decoupleϕ from A.

Finally, we substituteB=∇×A into Oersted’s law and use Eq. (1.85), which expands
∇2 in terms of a longitudinal (the gradient term) and a transverse component (the curl
term). This yields

µ0J+ 1

c2

∂E
∂t
=∇× (∇×A)=∇(∇ ·A)−∇2A= µ0J− 1

c2

(
∇ ∂ϕ

∂t
+ ∂2A

∂t2

)
,

where we have used the electric field solution (Eq. (1.88)) in the last step. Now we see that
the Lorentz gauge condition eliminates the gradient terms, so the wave equation

1

c2

∂2A
∂t2

−∇2A= µ0J (1.91)
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for the vector potential remains.
Finally, looking back at Oersted’s law, taking the divergence of Eq. (1.89), dropping

∇ · (∇×B)= 0, and substituting Gauss’ law for∇ ·E= ρ/ε0, we findµ0∇ ·J=− 1
ε0c

2
∂ρ
∂t
,

whereε0µ0= 1/c2, that is, the continuity equation for the current density. This step justi-
fies the inclusion of Maxwell’s displacement current in the generalization of Oersted’s law
to nonstationary situations. �

Exercises

1.9.1 Verify Eq. (1.85),

∇× (∇×V)=∇∇ ·V−∇ ·∇V,

by direct expansion in Cartesian coordinates.

1.9.2 Show that the identity

∇× (∇×V)=∇∇ ·V−∇ ·∇V

follows from theBAC–CAB rule for a triple vector product. Justify any alteration of the
order of factors in theBAC andCAB terms.

1.9.3 Prove that∇× (ϕ∇ϕ)= 0.

1.9.4 You are given that the curl ofF equals the curl ofG. Show thatF andG may differ by
(a) a constant and (b) a gradient of a scalar function.

1.9.5 The Navier–Stokes equation of hydrodynamics contains a nonlinear term(v ·∇)v. Show
that the curl of this term may be written as−∇× [v× (∇× v)].

1.9.6 From the Navier–Stokes equation for the steady flow of an incompressible viscous fluid
we have the term

∇× [v× (∇× v)
]
,

wherev is the fluid velocity. Show that this term vanishes for the special case

v= x̂v(y, z).

1.9.7 Prove that(∇u)× (∇v) is solenoidal, whereu andv are differentiable scalar functions.

1.9.8 ϕ is a scalar satisfying Laplace’s equation,∇2ϕ = 0. Show that∇ϕ is both solenoidal
and irrotational.

1.9.9 With ψ a scalar (wave) function, show that

(r×∇) · (r×∇)ψ = r2∇2ψ − r2∂
2ψ

∂r2
− 2r

∂ψ

∂r
.

(This can actually be shown more easily in spherical polar coordinates, Section 2.5.)
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1.9.10 In a (nonrotating) isolated mass such as a star, the condition for equilibrium is

∇P + ρ∇ϕ = 0.

HereP is the total pressure,ρ is the density, andϕ is the gravitational potential. Show
that at any given point the normals to the surfaces of constant pressure and constant
gravitational potential are parallel.

1.9.11 In the Pauli theory of the electron, one encounters the expression

(p− eA)× (p− eA)ψ,

whereψ is a scalar (wave) function.A is the magnetic vector potential related to the
magnetic inductionB by B = ∇ × A. Given thatp = −i∇, show that this expression
reduces toieBψ . Show that this leads to the orbitalg-factorgL = 1 upon writing the
magnetic moment asµ= gLL in units of Bohr magnetons andL=−ir×∇. See also
Exercise 1.13.7.

1.9.12 Show that any solution of the equation

∇× (∇×A)− k2A= 0

automatically satisfies the vector Helmholtz equation

∇2A+ k2A= 0

and the solenoidal condition

∇ ·A= 0.

Hint. Let ∇· operate on the first equation.

1.9.13 The theory of heat conduction leads to an equation

∇2� = k|∇�|2,

where� is a potential satisfying Laplace’s equation:∇2�= 0. Show that a solution of
this equation is

� = 1

2
k�2.

1.10 VECTOR INTEGRATION

The next step after differentiating vectors is to integrate them. Let us start with line integrals
and then proceed to surface and volume integrals. In each case the method of attack will be
to reduce the vector integral to scalar integrals with which the reader is assumed familiar.
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Line Integrals

Using an increment of lengthdr= x̂dx+ ŷdy+ ẑdz, we may encounter the line integrals∫
C

ϕ dr, (1.92a)∫
C

V · dr, (1.92b)∫
C

V× dr, (1.92c)

in each of which the integral is over some contourC that may be open (with starting point
and ending point separated) or closed (forming a loop). Because of its physical interpreta-
tion that follows, the second form, Eq. (1.92b) is by far the most important of the three.

With ϕ, a scalar, the first integral reduces immediately to∫
C

ϕ dr= x̂
∫
C

ϕ(x, y, z) dx + ŷ
∫
C

ϕ(x, y, z) dy + ẑ
∫
C

ϕ(x, y, z) dz. (1.93)

This separation has employed the relation∫
x̂ϕ dx = x̂

∫
ϕ dx, (1.94)

which is permissible because the Cartesian unit vectorsx̂, ŷ, and ẑ are constant in both
magnitude and direction. Perhaps this relation is obvious here, but it will not be true in the
non-Cartesian systems encountered in Chapter 2.

The three integrals on the right side of Eq. (1.93) are ordinary scalar integrals and, to
avoid complications, we assume that they are Riemann integrals. Note, however, that the
integral with respect tox cannot be evaluated unlessy and z are known in terms ofx
and similarly for the integrals with respect toy andz. This simply means that the path
of integrationC must be specified. Unless the integrand has special properties so that
the integral depends only on the value of the end points, the value will depend on the
particular choice of contourC. For instance, if we choose the very special caseϕ = 1,
Eq. (1.92a) is just the vector distance from the start of contourC to the endpoint, in this
case independent of the choice of path connecting fixed endpoints. Withdr= x̂dx+ ŷdy+
ẑdz, the second and third forms also reduce to scalar integrals and, like Eq. (1.92a), are
dependent, in general, on the choice of path. The form (Eq. (1.92b)) is exactly the same
as that encountered when we calculate the work done by a force that varies along the
path,

W =
∫

F · dr=
∫

Fx(x, y, z) dx +
∫

Fy(x, y, z) dy +
∫

Fz(x, y, z) dz. (1.95a)

In this expressionF is the force exerted on a particle.
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FIGURE 1.25 A path of integration.

Example 1.10.1 PATH-DEPENDENT WORK

The force exerted on a body isF=−x̂y + ŷx. The problem is to calculate the work done
going from the origin to the point(1,1):

W =
∫ 1,1

0,0
F · dr=

∫ 1,1

0,0
(−y dx + x dy). (1.95b)

Separating the two integrals, we obtain

W =−
∫ 1

0
y dx +

∫ 1

0
x dy. (1.95c)

The first integral cannot be evaluated until we specify the values ofy asx ranges from 0
to 1. Likewise, the second integral requiresx as a function ofy. Consider first the path
shown in Fig. 1.25. Then

W =−
∫ 1

0
0dx +

∫ 1

0
1dy = 1, (1.95d)

sincey = 0 along the first segment of the path andx = 1 along the second. If we select the
path[x = 0,0 � y � 1] and[0 � x � 1, y = 1], then Eq. (1.95c) givesW =−1. For this
force the work done depends on the choice of path. �

Surface Integrals

Surface integrals appear in the same forms as line integrals, the element of area also being
a vector,dσ .20 Often this area element is writtenndA, in whichn is a unit (normal) vector
to indicate the positive direction.21 There are two conventions for choosing the positive
direction. First, if the surface is a closed surface, we agree to take the outward normal
as positive. Second, if the surface is an open surface, the positive normal depends on the
direction in which the perimeter of the open surface is traversed. If the right-hand fingers

20Recall that in Section 1.4 the area (of a parallelogram) is represented by a cross-productvector.
21Althoughn always has unit length, its direction may well be a function of position.
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FIGURE 1.26 Right-hand rule for
the positive normal.

are placed in the direction of travel around the perimeter, the positive normal is indicated by
the thumb of the right hand. As an illustration, a circle in thexy-plane (Fig. 1.26) mapped
out from x to y to −x to −y and back tox will have its positive normal parallel to the
positivez-axis (for the right-handed coordinate system).

Analogous to the line integrals, Eqs. (1.92a) to (1.92c), surface integrals may appear in
the forms ∫

ϕ dσ ,

∫
V · dσ ,

∫
V× dσ .

Again, the dot product is by far the most commonly encountered form. The surface integral∫
V · dσ may be interpreted as a flow or flux through the given surface. This is really what

we did in Section 1.7 to obtain the significance of the term divergence. This identification
reappears in Section 1.11 as Gauss’ theorem. Note that both physically and from the dot
product the tangential components of the velocity contribute nothing to the flow through
the surface.

Volume Integrals

Volume integrals are somewhat simpler, for the volume elementdτ is a scalar quantity.22

We have ∫
V

Vdτ = x̂
∫
V

Vx dτ + ŷ
∫
V

Vy dτ + ẑ
∫
V

Vz dτ, (1.96)

again reducing the vector integral to a vector sum of scalar integrals.

22Frequently the symbolsd3r andd3x are used to denote a volume element in coordinate (xyz or x1x2x3) space.
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FIGURE 1.27 Differential rectangular parallelepiped (origin at center).

Integral Definitions of Gradient, Divergence, and Curl

One interesting and significant application of our surface and volume integrals is their use
in developing alternate definitions of our differential relations. We find

∇ϕ = lim∫
dτ→0

∫
ϕ dσ∫
dτ

, (1.97)

∇ ·V = lim∫
dτ→0

∫
V · dσ∫
dτ

, (1.98)

∇×V = lim∫
dτ→0

∫
dσ ×V∫

dτ
. (1.99)

In these three equations
∫
dτ is the volume of a small region of space anddσ is the vector

area element of this volume. The identification of Eq. (1.98) as the divergence ofV was
carried out in Section 1.7. Here we show that Eq. (1.97) is consistent with our earlier
definition of ∇ϕ (Eq. (1.60)). For simplicity we choosedτ to be the differential volume
dx dy dz (Fig. 1.27). This time we place the origin at the geometric center of our volume
element. The area integral leads to six integrals, one for each of the six faces. Remembering
thatdσ is outward,dσ · x̂=−|dσ | for surfaceEFHG, and+|dσ | for surfaceABDC, we
have ∫

ϕ dσ = −x̂
∫

EFHG

(
ϕ − ∂ϕ

∂x

dx

2

)
dy dz+ x̂

∫
ABDC

(
ϕ + ∂ϕ

∂x

dx

2

)
dy dz

− ŷ
∫

AEGC

(
ϕ − ∂ϕ

∂y

dy

2

)
dx dz+ ŷ

∫
BFHD

(
ϕ + ∂ϕ

∂y

dy

2

)
dx dz

− ẑ
∫

ABFE

(
ϕ − ∂ϕ

∂z

dz

2

)
dx dy + ẑ

∫
CDHG

(
ϕ + ∂ϕ

∂z

dz

2

)
dx dy.
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Using the total variations, we evaluate each integrand at the origin with a correction in-
cluded to correct for the displacement (±dx/2, etc.) of the center of the face from the
origin. Having chosen the total volume to be of differential size(

∫
dτ = dx dy dz), we

drop the integral signs on the right and obtain∫
ϕ dσ =

(
x̂
∂ϕ

∂x
+ ŷ

∂ϕ

∂y
+ ẑ

∂ϕ

∂z

)
dx dy dz. (1.100)

Dividing by ∫
dτ = dx dy dz,

we verify Eq. (1.97).
This verification has been oversimplified in ignoring other correction terms beyond the

first derivatives. These additional terms, which are introduced in Section 5.6 when the
Taylor expansion is developed, vanish in the limit∫

dτ → 0 (dx→ 0, dy→ 0, dz→ 0).

This, of course, is the reason for specifying in Eqs. (1.97), (1.98), and (1.99) that this limit
be taken. Verification of Eq. (1.99) follows these same lines exactly, using a differential
volumedx dy dz.

Exercises

1.10.1 The force field acting on a two-dimensional linear oscillator may be described by

F=−x̂kx − ŷky.

Compare the work done moving against this force field when going from(1,1) to (4,4)
by the following straight-line paths:

(a) (1,1)→ (4,1)→ (4,4)
(b) (1,1)→ (1,4)→ (4,4)
(c) (1,1)→ (4,4) alongx = y.

This means evaluating

−
∫ (4,4)

(1,1)
F · dr

along each path.

1.10.2 Find the work done going around a unit circle in thexy-plane:

(a) counterclockwise from 0 toπ ,
(b) clockwise from 0 to−π , doing workagainst a force field given by

F= −x̂y
x2+ y2

+ ŷx
x2+ y2

.

Note that the work done depends on the path.
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1.10.3 Calculate the work you do in going from point(1,1) to point(3,3). The forceyou exert
is given by

F= x̂(x − y)+ ŷ(x + y).

Specify clearly the path you choose. Note that this force field is nonconservative.

1.10.4 Evaluate
∮

r · dr.
Note. The symbol

∮
means that the path of integration is a closed loop.

1.10.5 Evaluate

1

3

∫
s

r · dσ

over the unit cube defined by the point(0,0,0) and the unit intercepts on the positive
x-, y-, andz-axes. Note that (a)r · dσ is zero for three of the surfaces and (b) each of
the three remaining surfaces contributes the same amount to the integral.

1.10.6 Show, by expansion of the surface integral, that

lim∫
dτ→0

∫
s
dσ ×V∫
dτ

=∇×V.

Hint. Choose the volume
∫
dτ to be a differential volumedx dy dz.

1.11 GAUSS’ THEOREM

Here we derive a useful relation between a surface integral of a vector and the volume inte-
gral of the divergence of that vector. Let us assume that the vectorV and its first derivatives
are continuous over the simply connected region (that does not have any holes, such as a
donut) of interest. Then Gauss’ theorem states that∫∫

©
∂V

V · dσ =
∫∫∫

V

∇ ·Vdτ. (1.101a)

In words, the surface integral of a vector over a closed surface equals the volume integral
of the divergence of that vector integrated over the volume enclosed by the surface.

Imagine that volumeV is subdivided into an arbitrarily large number of tiny (differen-
tial) parallelepipeds. For each parallelepiped∑

six surfaces

V · dσ =∇ ·Vdτ (1.101b)

from the analysis of Section 1.7, Eq. (1.66), withρv replaced byV. The summation is
over the six faces of the parallelepiped. Summing over all parallelepipeds, we find that the
V · dσ terms cancel (pairwise) for allinterior faces; only the contributions of theexterior
surfaces survive (Fig. 1.28). Analogous to the definition of a Riemann integral as the limit
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FIGURE 1.28 Exact
cancellation ofdσ ’s on
interior surfaces. No
cancellation on the
exterior surface.

of a sum, we take the limit as the number of parallelepipeds approaches infinity(→∞)

and the dimensions of each approach zero(→ 0):∑
exterior surfaces

V · dσ =
∑

volumes
∇ ·Vdτ

∫
S

V · dσ =
∫
V

∇ ·Vdτ.

The result is Eq. (1.101a), Gauss’ theorem.
From a physical point of view Eq. (1.66) has established∇ · V as the net outflow of

fluid per unit volume. The volume integral then gives the total net outflow. But the surface
integral

∫
V ·dσ is just another way of expressing this same quantity, which is the equality,

Gauss’ theorem.

Green’s Theorem

A frequently useful corollary of Gauss’ theorem is a relation known as Green’s theorem. If
u andv are two scalar functions, we have the identities

∇ · (u∇v) = u∇ ·∇v + (∇u) · (∇v), (1.102)

∇ · (v∇u) = v∇ ·∇u+ (∇v) · (∇u). (1.103)

Subtracting Eq. (1.103) from Eq. (1.102), integrating over a volume (u,v, and their
derivatives, assumed continuous), and applying Eq. (1.101a) (Gauss’ theorem), we obtain∫∫∫

V

(u∇ ·∇v − v∇ ·∇u)dτ =
∫∫
©

∂V

(u∇v− v∇u) · dσ . (1.104)
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This is Green’s theorem. We use it for developing Green’s functions in Chapter 9. An
alternate form of Green’s theorem, derived from Eq. (1.102) alone, is∫∫

©
∂V

u∇v · dσ =
∫∫∫

V

u∇ ·∇v dτ +
∫∫∫

V

∇u ·∇v dτ. (1.105)

This is the form of Green’s theorem used in Section 1.16.

Alternate Forms of Gauss’ Theorem

Although Eq. (1.101a) involving the divergence is by far the most important form of Gauss’
theorem, volume integrals involving the gradient and the curl may also appear. Suppose

V(x, y, z)= V (x, y, z)a, (1.106)

in which a is a vector with constant magnitude and constant but arbitrary direction. (You
pick the direction, but once you have chosen it, hold it fixed.) Equation (1.101a) becomes

a ·
∫∫
©

∂V

V dσ =
∫∫∫

V

∇ · aV dτ = a ·
∫∫∫

V

∇V dτ (1.107)

by Eq. (1.67b). This may be rewritten

a ·
[∫∫
©

∂V

V dσ −
∫∫∫

V

∇V dτ

]
= 0. (1.108)

Since|a| 
= 0 and its direction is arbitrary, meaning that the cosine of the included angle
cannotalways vanish, the terms in brackets must be zero.23 The result is∫∫

©
∂V

V dσ =
∫∫∫

V

∇V dτ. (1.109)

In a similar manner, usingV= a× P in which a is a constant vector, we may show∫∫
©

∂V

dσ × P=
∫∫∫

V

∇× Pdτ. (1.110)

These last two forms of Gauss’ theorem are used in the vector form of Kirchoff diffraction
theory. They may also be used to verify Eqs. (1.97) and (1.99). Gauss’ theorem may also
be extended to tensors (see Section 2.11).

Exercises

1.11.1 Using Gauss’ theorem, prove that ∫∫
©

S

dσ = 0

if S = ∂V is a closed surface.

23This exploitation of thearbitrary nature of a part of a problem is a valuable and widely used technique. The arbitrary vector
is used again in Sections 1.12 and 1.13. Other examples appear in Section 1.14 (integrands equated) and in Section 2.8, quotient
rule.
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1.11.2 Show that

1

3

∫∫
©

S

r · dσ = V,

whereV is the volume enclosed by the closed surfaceS = ∂V .
Note. This is a generalization of Exercise 1.10.5.

1.11.3 If B=∇×A, show that ∫∫
©

S

B · dσ = 0

for any closed surfaceS.

1.11.4 Over some volumeV let ψ be a solution of Laplace’s equation (with the derivatives
appearing there continuous). Prove that the integral over any closed surface inV of the
normal derivative ofψ (∂ψ/∂n, or ∇ψ · n) will be zero.

1.11.5 In analogy to the integral definition of gradient, divergence, and curl of Section 1.10,
show that

∇2ϕ = lim∫
dτ→0

∫ ∇ϕ · dσ∫
dτ

.

1.11.6 The electric displacement vectorD satisfies the Maxwell equation∇ ·D= ρ, whereρ
is the charge density (per unit volume). At the boundary between two media there is a
surface charge densityσ (per unit area). Show that a boundary condition forD is

(D2−D1) · n= σ.

n is a unit vector normal to the surface and out of medium 1.
Hint. Consider a thin pillbox as shown in Fig. 1.29.

1.11.7 From Eq. (1.67b), withV the electric fieldE andf the electrostatic potentialϕ, show
that, for integration over all space,∫

ρϕ dτ = ε0

∫
E2dτ.

This corresponds to a three-dimensional integration by parts.
Hint. E = −∇ϕ,∇ · E = ρ/ε0. You may assume thatϕ vanishes at larger at least as
fast asr−1.

FIGURE 1.29 Pillbox.
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1.11.8 A particular steady-state electric current distribution is localized in space. Choosing a
bounding surface far enough out so that the current densityJ is zero everywhere on the
surface, show that ∫∫∫

Jdτ = 0.

Hint. Take one component ofJ at a time. With∇ · J= 0, show thatJi =∇ · (xiJ) and
apply Gauss’ theorem.

1.11.9 The creation of alocalized system of steady electric currents (current densityJ) and
magnetic fields may be shown to require an amount of work

W = 1

2

∫∫∫
H ·Bdτ.

Transform this into

W = 1

2

∫∫∫
J ·Adτ.

HereA is the magnetic vector potential:∇×A= B.
Hint. In Maxwell’s equations take the displacement current term∂D/∂t = 0. If the fields
and currents are localized, a bounding surface may be taken far enough out so that the
integrals of the fields and currents over the surface yield zero.

1.11.10 Prove the generalization of Green’s theorem:∫∫∫
V

(vLu− uLv)dτ =
∫∫
©

∂V

p(v∇u− u∇v) · dσ .

HereL is the self-adjoint operator (Section 10.1),

L=∇ · [p(r)∇]+ q(r)

andp,q,u, andv are functions of position,p andq having continuous first derivatives
andu andv having continuous second derivatives.
Note. This generalized Green’s theorem appears in Section 9.7.

1.12 STOKES’ THEOREM

Gauss’ theorem relates the volume integral of a derivative of a function to an integral of
the function over the closed surface bounding the volume. Here we consider an analogous
relation between the surface integral of a derivative of a function and the line integral of
the function, the path of integration being the perimeter bounding the surface.

Let us take the surface and subdivide it into a network of arbitrarily small rectangles.
In Section 1.8 we showed that the circulation about such a differential rectangle (in the
xy-plane) is∇×V|z dx dy. From Eq. (1.76) applied toone differential rectangle,∑

four sides

V · dλ=∇×V · dσ . (1.111)
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FIGURE 1.30 Exact cancellation on
interior paths. No cancellation on the

exterior path.

We sum over all the little rectangles, as in the definition of a Riemann integral. The surface
contributions (right-hand side of Eq. (1.111)) are added together. The line integrals (left-
hand side of Eq. (1.111)) of allinterior line segments cancel identically. Only the line
integral around the perimeter survives (Fig. 1.30). Taking the usual limit as the number of
rectangles approaches infinity whiledx→ 0, dy→ 0, we have∑

exterior line
segments

V · dλ =
∑

rectangles
∇×V · dσ (1.112)

∮
V · dλ=

∫
S

∇×V · dσ .

This is Stokes’ theorem. The surface integral on the right is over the surface bounded
by the perimeter or contour, for the line integral on the left. The direction of the vector
representing the area is out of the paper plane toward the reader if the direction of traversal
around the contour for the line integral is in the positive mathematical sense, as shown in
Fig. 1.30.

This demonstration of Stokes’ theorem is limited by the fact that we used a Maclaurin
expansion ofV(x, y, z) in establishing Eq. (1.76) in Section 1.8. Actually we need only
demand that the curl ofV(x, y, z) exist and that it be integrable over the surface. A proof
of the Cauchy integral theorem analogous to the development of Stokes’ theorem here but
using these less restrictive conditions appears in Section 6.3.

Stokes’ theorem obviously applies to an open surface. It is possible to consider a closed
surface as a limiting case of an open surface, with the opening (and therefore the perimeter)
shrinking to zero. This is the point of Exercise 1.12.7.
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Alternate Forms of Stokes’ Theorem

As with Gauss’ theorem, other relations between surface and line integrals are possible.
We find ∫

S

dσ ×∇ϕ =
∮
∂S

ϕ dλ (1.113)

and ∫
S

(dσ ×∇)× P=
∮
∂S

dλ× P. (1.114)

Equation (1.113) may readily be verified by the substitutionV= aϕ, in which a is a vec-
tor of constant magnitude and of constant direction, as in Section 1.11. Substituting into
Stokes’ theorem, Eq. (1.112),∫

S

(∇× aϕ) · dσ = −
∫
S

a×∇ϕ · dσ

= −a ·
∫
S

∇ϕ × dσ . (1.115)

For the line integral, ∮
∂S

aϕ · dλ= a ·
∮
∂S

ϕ dλ, (1.116)

and we obtain

a ·
(∮

∂S

ϕ dλ+
∫
S

∇ϕ × dσ

)
= 0. (1.117)

Since the choice of direction ofa is arbitrary, the expression in parentheses must vanish,
thus verifying Eq. (1.113). Equation (1.114) may be derived similarly by usingV= a×P,
in which a is again a constant vector.

We can use Stokes’ theorem to derive Oersted’s and Faraday’s laws from two of
Maxwell’s equations, and vice versa, thus recognizing that the former are an integrated
form of the latter.

Example 1.12.1 OERSTED’S AND FARADAY’S LAWS

Consider the magnetic field generated by a long wire that carries a stationary currentI .
Starting from Maxwell’s differential law∇×H= J, Eq. (1.89) (with Maxwell’s displace-
ment current∂D/∂t = 0 for a stationary current case by Ohm’s law), we integrate over a
closed areaS perpendicular to and surrounding the wire and apply Stokes’ theorem to get

I =
∫
S

J · dσ =
∫
S

(∇×H) · dσ =
∮
∂S

H · dr,

which is Oersted’s law. Here the line integral is along∂S, the closed curve surrounding the
cross-sectional areaS.
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Similarly, we can integrate Maxwell’s equation for∇×E, Eq. (1.86d), to yield Faraday’s
induction law. Imagine moving a closed loop(∂S) of wire (of areaS) across a magnetic
induction fieldB. We integrate Maxwell’s equation and use Stokes’ theorem, yielding∫

∂S

E · dr=
∫
S

(∇×E) · dσ =− d

dt

∫
S

B · dσ =−d�

dt
,

which is Faraday’s law. The line integral on the left-hand side represents the voltage in-
duced in the wire loop, while the right-hand side is the change with time of the magnetic
flux � through the moving surfaceS of the wire. �

Both Stokes’ and Gauss’ theorems are of tremendous importance in a wide variety of
problems involving vector calculus. Some idea of their power and versatility may be ob-
tained from the exercises of Sections 1.11 and 1.12 and the development of potential theory
in Sections 1.13 and 1.14.

Exercises

1.12.1 Given a vectort=−x̂y + ŷx, show, with the help of Stokes’ theorem, that the integral
around a continuous closed curve in thexy-plane

1

2

∮
t · dλ= 1

2

∮
(x dy − y dx)=A,

the area enclosed by the curve.

1.12.2 The calculation of the magnetic moment of a current loop leads to the line integral∮
r× dr.

(a) Integrate around the perimeter of a current loop (in thexy-plane) and show that
the scalar magnitude of this line integral is twice the area of the enclosed surface.

(b) The perimeter of an ellipse is described byr= x̂a cosθ + ŷb sinθ . From part (a)
show that the area of the ellipse isπab.

1.12.3 Evaluate
∮

r× dr by using the alternate form of Stokes’ theorem given by Eq. (1.114):∫
S

(dσ ×∇)× P=
∮

dλ× P.

Take the loop to be entirely in thexy-plane.

1.12.4 In steady state the magnetic fieldH satisfies the Maxwell equation∇×H= J, whereJ
is the current density (per square meter). At the boundary between two media there is a
surface current densityK. Show that a boundary condition onH is

n× (H2−H1)=K.

n is a unit vector normal to the surface and out of medium 1.
Hint. Consider a narrow loop perpendicular to the interface as shown in Fig. 1.31.
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FIGURE 1.31
Integration path
at the boundary
of two media.

1.12.5 From Maxwell’s equations,∇×H= J, with J here the current density andE= 0. Show
from this that ∮

H · dr= I,

whereI is the net electric current enclosed by the loop integral. These are the differential
and integral forms of Ampère’s law of magnetism.

1.12.6 A magnetic inductionB is generated by electric current in a ring of radiusR. Show that
themagnitude of the vector potentialA (B=∇×A) at the ring can be

|A| = ϕ

2πR
,

whereϕ is the total magnetic flux passing through the ring.
Note. A is tangential to the ring and may be changed by adding the gradient of a scalar
function.

1.12.7 Prove that ∫
S

∇×V · dσ = 0,

if S is a closed surface.

1.12.8 Evaluate
∮

r · dr (Exercise 1.10.4) by Stokes’ theorem.

1.12.9 Prove that ∮
u∇v · dλ=−

∮
v∇u · dλ.

1.12.10 Prove that ∮
u∇v · dλ=

∫
S

(∇u)× (∇v) · dσ .

1.13 POTENTIAL THEORY

Scalar Potential

If a force over a given simply connected region of spaceS (which means that it has no
holes) can be expressed as the negative gradient of a scalar functionϕ,

F=−∇ϕ, (1.118)
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we callϕ a scalar potential that describes the force by one function instead of three. A scalar
potential is only determined up to an additive constant, which can be used to adjust its value
at infinity (usually zero) or at some other point. The forceF appearing as the negative
gradient of a single-valued scalar potential is labeled aconservative force. We want to
know when a scalar potential function exists. To answer this question we establish two
other relations as equivalent to Eq. (1.118). These are

∇× F= 0 (1.119)

and ∮
F · dr= 0, (1.120)

for every closed path in our simply connected regionS. We proceed to show that each of
these three equations implies the other two. Let us start with

F=−∇ϕ. (1.121)

Then

∇× F=−∇×∇ϕ = 0 (1.122)

by Eq. (1.82) or Eq. (1.118) implies Eq. (1.119). Turning to the line integral, we have∮
F · dr=−

∮
∇ϕ · dr=−

∮
dϕ, (1.123)

using Eq. (1.118). Now,dϕ integrates to giveϕ. Since we have specified a closed loop,
the end points coincide and we get zero for every closed path in our regionS for which
Eq. (1.118) holds. It is important to note the restriction here that the potential be single-
valued and that Eq. (1.118) hold forall points inS. This problem may arise in using a scalar
magnetic potential, a perfectly valid procedure as long as no net current is encircled. As
soon as we choose a path in space that encircles a net current, the scalar magnetic potential
ceases to be single-valued and our analysis no longer applies.

Continuing this demonstration of equivalence, let us assume that Eq. (1.120) holds. If∮
F · dr = 0 for all paths inS, we see that the value of the integral joining two distinct

pointsA andB is independent of the path (Fig. 1.32). Our premise is that∮
ACBDA

F · dr= 0. (1.124)

Therefore ∫
ACB

F · dr=−
∫

BDA
F · dr=

∫
ADB

F · dr, (1.125)

reversing the sign by reversing the direction of integration. Physically, this means that
the work done in going fromA to B is independent of the path and that the work done in
going around a closed path is zero. This is the reason for labeling such a force conservative:
Energy is conserved.
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FIGURE 1.32 Possible paths for doing work.

With the result shown in Eq. (1.125), we have the work done dependent only on the
endpointsA andB. That is,

work done by force=
∫ B

A

F · dr= ϕ(A)− ϕ(B). (1.126)

Equation (1.126) defines a scalar potential (strictly speaking, the difference in potential
between pointsA andB) and provides a means of calculating the potential. If pointB

is taken as a variable, say,(x, y, z), then differentiation with respect tox, y, andz will
recover Eq. (1.118).

The choice of sign on the right-hand side is arbitrary. The choice here is made to achieve
agreement with Eq. (1.118) and to ensure that water will run downhill rather than uphill.
For pointsA andB separated by a lengthdr, Eq. (1.126) becomes

F · dr=−dϕ =−∇ϕ · dr. (1.127)

This may be rewritten

(F+∇ϕ) · dr= 0, (1.128)

and sincedr is arbitrary, Eq. (1.118) must follow. If∮
F · dr= 0, (1.129)

we may obtain Eq. (1.119) by using Stokes’ theorem (Eq. (1.112)):∮
F · dr=

∫
∇× F · dσ . (1.130)

If we take the path of integration to be the perimeter of an arbitrary differential areadσ ,
the integrand in the surface integral must vanish. Hence Eq. (1.120) implies Eq. (1.119).

Finally, if ∇ × F = 0, we need only reverse our statement of Stokes’ theorem
(Eq. (1.130)) to derive Eq. (1.120). Then, by Eqs. (1.126) to (1.128), the initial statement
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FIGURE 1.33 Equivalent formulations of a conservative force.

FIGURE 1.34 Potential energy versus distance (gravitational,
centrifugal, and simple harmonic oscillator).

F = −∇ϕ is derived. The triple equivalence is demonstrated (Fig. 1.33). To summarize,
a single-valued scalar potential functionϕ exists if and only ifF is irrotational or the work
done around every closed loop is zero. The gravitational and electrostatic force fields given
by Eq. (1.79) are irrotational and therefore are conservative. Gravitational and electrostatic
scalar potentials exist. Now, by calculating the work done (Eq. (1.126)), we proceed to
determine three potentials (Fig. 1.34).
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Example 1.13.1 GRAVITATIONAL POTENTIAL

Find the scalar potential for the gravitational force on a unit massm1,

FG =−Gm1m2r̂
r2

=−kr̂
r2

, (1.131)

radially inward. By integrating Eq. (1.118) from infinity in to positionr, we obtain

ϕG(r)− ϕG(∞)=−
∫ r

∞
FG · dr=+

∫ ∞

r
FG · dr. (1.132)

By use ofFG = −Fapplied, a comparison with Eq. (1.95a) shows that the potential is the
work done in bringing the unit mass in from infinity. (We can define only potential dif-
ference. Here we arbitrarily assign infinity to be a zero of potential.) The integral on the
right-hand side of Eq. (1.132) is negative, meaning thatϕG(r) is negative. SinceFG is
radial, we obtain a contribution toϕ only whendr is radial, or

ϕG(r)=−
∫ ∞

r

k dr

r2
=−k

r
=−Gm1m2

r
.

The final negative sign is a consequence of the attractive force of gravity. �

Example 1.13.2 CENTRIFUGAL POTENTIAL

Calculate the scalar potential for thecentrifugal force per unit mass,FC = ω2r r̂, radially
outward. Physically, you might feel this on a large horizontal spinning disk at an amuse-
ment park. Proceeding as in Example 1.13.1 but integrating from the origin outward and
takingϕC(0)= 0, we have

ϕC(r)=−
∫ r

0
FC · dr=−ω2r2

2
.

If we reverse signs, takingFSHO= −kr, we obtainϕSHO= 1
2kr

2, the simple harmonic
oscillator potential.

The gravitational, centrifugal, and simple harmonic oscillator potentials are shown in
Fig. 1.34. Clearly, the simple harmonic oscillator yields stability and describes a restoring
force. The centrifugal potential describes an unstable situation. �

Thermodynamics — Exact Differentials

In thermodynamics, which is sometimes called a search for exact differentials, we en-
counter equations of the form

df = P(x, y) dx +Q(x,y)dy. (1.133a)

The usual problem is to determine whether
∫
(P (x, y) dx +Q(x,y)dy) depends only on

the endpoints, that is, whetherdf is indeed an exact differential. The necessary and suffi-
cient condition is that

df = ∂f

∂x
dx + ∂f

∂y
dy (1.133b)
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or that

P(x, y)= ∂f/∂x,

Q(x, y)= ∂f/∂y.
(1.133c)

Equations (1.133c) depend on satisfying the relation

∂P (x, y)

∂y
= ∂Q(x, y)

∂x
. (1.133d)

This, however, is exactly analogous to Eq. (1.119), the requirement thatF be irrotational.
Indeed, thez-component of Eq. (1.119) yields

∂Fx

∂y
= ∂Fy

∂x
, (1.133e)

with

Fx = ∂f

∂x
, Fy = ∂f

∂y
.

Vector Potential

In some branches of physics, especially electrodynamics, it is convenient to introduce a
vector potentialA such that a (force) fieldB is given by

B=∇×A. (1.134)

Clearly, if Eq. (1.134) holds,∇ · B = 0 by Eq. (1.84) andB is solenoidal. Here we want
to develop a converse, to show that whenB is solenoidal a vector potentialA exists. We
demonstrate the existence ofA by actually calculating it. SupposeB = x̂b1 + ŷb2 + ẑb3

and our unknownA= x̂a1+ ŷa2+ ẑa3. By Eq. (1.134),

∂a3

∂y
− ∂a2

∂z
= b1, (1.135a)

∂a1

∂z
− ∂a3

∂x
= b2, (1.135b)

∂a2

∂x
− ∂a1

∂y
= b3. (1.135c)

Let us assume that the coordinates have been chosen so thatA is parallel to theyz-plane;
that is,a1= 0.24 Then

b2=−∂a3

∂x

b3= ∂a2

∂x
.

(1.136)

24Clearly, this can be done at any one point. It is not at all obvious that this assumption will hold at all points; that is,A will be
two-dimensional. The justification for the assumption is that it works; Eq. (1.141) satisfies Eq. (1.134).
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Integrating, we obtain

a2=
∫ x

x0

b3dx + f2(y, z),

a3=−
∫ x

x0

b2dx + f3(y, z),

(1.137)

wheref2 and f3 are arbitrary functions ofy and z but not functions ofx. These two
equations can be checked by differentiating and recovering Eq. (1.136). Equation (1.135a)
becomes25

∂a3

∂y
− ∂a2

∂z
= −

∫ x

x0

(
∂b2

∂y
+ ∂b3

∂z

)
dx + ∂f3

∂y
− ∂f2

∂z

=
∫ x

x0

∂b1

∂x
dx + ∂f3

∂y
− ∂f2

∂z
, (1.138)

using∇ ·B= 0. Integrating with respect tox, we obtain

∂a3

∂y
− ∂a2

∂z
= b1(x, y, z)− b1(x0, y, z)+ ∂f3

∂y
− ∂f2

∂z
. (1.139)

Remembering thatf3 andf2 are arbitrary functions ofy andz, we choose

f2= 0,

f3=
∫ y

y0

b1(x0, y, z) dy,
(1.140)

so that the right-hand side of Eq. (1.139) reduces tob1(x, y, z), in agreement with
Eq. (1.135a). Withf2 andf3 given by Eq. (1.140), we can constructA:

A= ŷ
∫ x

x0

b3(x, y, z) dx + ẑ
[∫ y

y0

b1(x0, y, z) dy −
∫ x

x0

b2(x, y, z) dx

]
. (1.141)

However, this is not quite complete. We may add any constant sinceB is a derivative ofA.
What is much more important, we may add any gradient of a scalar function∇ϕ without
affecting B at all. Finally, the functionsf2 andf3 are not unique. Other choices could
have been made. Instead of settinga1 = 0 to get Eq. (1.136) any cyclic permutation of
1,2,3, x, y, z, x0, y0, z0 would also work.

Example 1.13.3 A MAGNETIC VECTOR POTENTIAL FOR A CONSTANT MAGNETIC FIELD

To illustrate the construction of a magnetic vector potential, we take the special but still
important case of a constant magnetic induction

B= ẑBz, (1.142)

25Leibniz’ formula in Exercise 9.6.13 is useful here.
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in whichBz is a constant. Equations (1.135a to c) become

∂a3

∂y
− ∂a2

∂z
= 0,

∂a1

∂z
− ∂a3

∂x
= 0, (1.143)

∂a2

∂x
− ∂a1

∂y
= Bz.

If we assume thata1= 0, as before, then by Eq. (1.141)

A= ŷ
∫ x

Bz dx = ŷxBz, (1.144)

setting a constant of integration equal to zero. It can readily be seen that thisA satisfies
Eq. (1.134).

To show that the choicea1= 0 was not sacred or at least not required, let us try setting
a3= 0. From Eq. (1.143)

∂a2

∂z
= 0, (1.145a)

∂a1

∂z
= 0, (1.145b)

∂a2

∂x
− ∂a1

∂y
= Bz. (1.145c)

We seea1 anda2 are independent ofz, or

a1= a1(x, y), a2= a2(x, y). (1.146)

Equation (1.145c) is satisfied if we take

a2= p

∫ x

Bz dx = pxBz (1.147)

and

a1= (p− 1)
∫ y

Bz dy = (p− 1)yBz, (1.148)

with p any constant. Then

A= x̂(p− 1)yBz + ŷpxBz. (1.149)

Again, Eqs. (1.134), (1.142), and (1.149) are seen to be consistent. Comparison of Eqs.
(1.144) and (1.149) shows immediately thatA is not unique. The difference between
Eqs. (1.144) and (1.149) and the appearance of the parameterp in Eq. (1.149) may be
accounted for by rewriting Eq. (1.149) as

A = −1

2
(x̂y − ŷx)Bz +

(
p− 1

2

)
(x̂y + ŷx)Bz

= −1

2
(x̂y − ŷx)Bz +

(
p− 1

2

)
Bz∇ϕ (1.150)
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with

ϕ = xy. (1.151)

�
The first term inA corresponds to the usual form

A= 1

2
(B× r) (1.152)

for B, a constant.
Adding a gradient of a scalar function,� say, to the vector potentialA does not affect

B, by Eq. (1.82); this is known as a gauge transformation (see Exercises 1.13.9 and 4.6.4):

A→A′ =A+∇�. (1.153)

Suppose now that the wave functionψ0 solves the Schrödinger equation of quantum
mechanics without magnetic induction fieldB,{

1

2m
(−ih̄∇)2+ V −E

}
ψ0= 0, (1.154)

describing a particle with massm and chargee. WhenB is switched on, the wave equation
becomes {

1

2m
(−ih̄∇− eA)2+ V −E

}
ψ = 0. (1.155)

Its solutionψ picks up a phase factor that depends on the coordinates in general,

ψ(r)= exp

[
ie

h̄

∫ r
A(r′) · dr′

]
ψ0(r). (1.156)

From the relation

(−ih̄∇− eA)ψ = exp

[
ie

h̄

∫
A · dr′

]{
(−ih̄∇− eA)ψ0− ih̄ψ0

ie

h̄
A
}

= exp

[
ie

h̄

∫
A · dr′

]
(−ih̄∇ψ0), (1.157)

it is obvious thatψ solves Eq. (1.155) ifψ0 solves Eq. (1.154). Thegauge covariant deriv-
ative ∇− i(e/h̄)A describes the coupling of a charged particle with the magnetic field. It is
often calledminimal substitution and plays a central role in quantum electromagnetism,
the first and simplest gauge theory in physics.

To summarize this discussion of the vector potential: When a vector B is solenoidal, a
vector potential A exists such that B = ∇ × A. A is undetermined to within an additive
gradient. This corresponds to the arbitrary zero of a potential, a constant of integration for
the scalar potential.

In many problems the magnetic vector potentialA will be obtained from the current
distribution that produces the magnetic inductionB. This means solving Poisson’s (vector)
equation (see Exercise 1.14.4).
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Exercises

1.13.1 If a forceF is given by

F= (x2+ y2+ z2)n(x̂x + ŷy + ẑz),

find

(a) ∇ · F.
(b) ∇× F.
(c) A scalar potentialϕ(x, y, z) so thatF=−∇ϕ.
(d) For what value of the exponentn does the scalar potential diverge at both the origin

and infinity?

ANS. (a)(2n+ 3)r2n, (b) 0,
(c)− 1

2n+2r
2n+2, n 
= −1, (d)n=−1,

ϕ =− ln r.

1.13.2 A sphere of radiusa is uniformly charged (throughout its volume). Construct the elec-
trostatic potentialϕ(r) for 0� r <∞.
Hint. In Section 1.14 it is shown that the Coulomb force on a test charge atr = r0

depends only on the charge at distances less thanr0 and is independent of the charge
at distances greater thanr0. Note that this applies to aspherically symmetric charge
distribution.

1.13.3 The usual problem in classical mechanics is to calculate the motion of a particle given
the potential. For a uniform density (ρ0), nonrotating massive sphere, Gauss’ law of
Section 1.14 leads to a gravitational force on a unit massm0 at a pointr0 produced by
the attraction of the mass atr � r0. The mass atr > r0 contributes nothing to the force.

(a) Show thatF/m0=−(4πGρ0/3)r, 0� r � a, wherea is the radius of the sphere.
(b) Find the corresponding gravitational potential, 0� r � a.

(c) Imagine a vertical hole running completely through the center of the Earth and out
to the far side. Neglecting the rotation of the Earth and assuming a uniform density
ρ0= 5.5 gm/cm3, calculate the nature of the motion of a particle dropped into the
hole. What is its period?

Note. F∝ r is actually a very poor approximation. Because of varying density,
the approximationF = constant along the outer half of a radial line andF ∝ r
along the inner half is a much closer approximation.

1.13.4 The origin of the Cartesian coordinates is at the Earth’s center. The moon is on thez-
axis, a fixed distanceR away (center-to-center distance). The tidal force exerted by the
moon on a particle at the Earth’s surface (pointx, y, z) is given by

Fx =−GMm
x

R3
, Fy =−GMm

y

R3
, Fz =+2GMm

z

R3
.

Find the potential that yields this tidal force.
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ANS.−GMm

R3

(
z2− 1

2
x2− 1

2
y2
)

.

In terms of the Legendre polynomials of
Chapter 12 this becomes

−GMm

R3
r2P2(cosθ).

1.13.5 A long, straight wire carrying a currentI produces a magnetic inductionB with com-
ponents

B= µ0I

2π

(
− y

x2+ y2
,

x

x2+ y2
,0

)
.

Find a magnetic vector potentialA.

ANS. A=−ẑ(µ0I/4π) ln(x2+ y2). (This solution is not unique.)

1.13.6 If

B= r̂
r2
=
(
x

r3
,
y

r3
,
z

r3

)
,

find a vectorA such that∇×A= B. One possible solution is

A= x̂yz
r(x2+ y2)

− ŷxz
r(x2+ y2)

.

1.13.7 Show that the pair of equations

A= 1

2
(B× r), B=∇×A

is satisfied by any constant magnetic inductionB.

1.13.8 VectorB is formed by the product of two gradients

B= (∇u)× (∇v),

whereu andv are scalar functions.

(a) Show thatB is solenoidal.
(b) Show that

A= 1

2
(u∇v− v∇u)

is a vector potential forB, in that

B=∇×A.

1.13.9 The magnetic inductionB is related to the magnetic vector potentialA by B=∇ ×A.

By Stokes’ theorem ∫
B · dσ =

∮
A · dr.
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Show that each side of this equation is invariant under thegauge transformation, A→
A+∇ϕ.
Note. Take the functionϕ to be single-valued. The complete gauge transformation is
considered in Exercise 4.6.4.

1.13.10 With E the electric field andA the magnetic vector potential, show that[E+ ∂A/∂t] is
irrotational and that therefore we may write

E =−∇ϕ − ∂A
∂t

.

1.13.11 The total force on a chargeq moving with velocityv is

F= q(E+ v×B).

Using the scalar and vector potentials, show that

F= q

[
−∇ϕ − dA

dt
+∇(A · v)

]
.

Note that we now have a total time derivative ofA in place of the partial derivative of
Exercise 1.13.10.

1.14 GAUSS’ LAW, POISSON’S EQUATION

Gauss’ Law

Consider a point electric chargeq at the origin of our coordinate system. This produces an
electric fieldE given by26

E= q r̂
4πε0r2

. (1.158)

We now derive Gauss’ law, which states that the surface integral in Fig. 1.35 isq/ε0 if the
closed surfaceS = ∂V includes the origin (whereq is located) and zero if the surface does
not include the origin. The surfaceS is any closed surface; it need not be spherical.

Using Gauss’ theorem, Eqs. (1.101a) and (1.101b) (and neglecting theq/4πε0), we
obtain ∫

S

r̂ · dσ

r2
=
∫
V

∇ ·
(

r̂
r2

)
dτ = 0 (1.159)

by Example 1.7.2, provided the surfaceS does not include the origin, where the integrands
are not defined. This proves the second part of Gauss’ law.

The first part, in which the surfaceS must include the origin, may be handled by sur-
rounding the origin with a small sphereS′ = ∂V ′ of radiusδ (Fig. 1.36). So that there
will be no question what is inside and what is outside, imagine the volume outside the
outer surfaceS and the volume inside surfaceS′(r < δ) connected by a small hole. This

26The electric fieldE is defined as the force per unit charge on a small stationary test chargeqt: E= F/qt . From Coulomb’s law
the force onqt due toq is F= (qqt /4πε0)(r̂/r2). When we divide byqt , Eq. (1.158) follows.
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FIGURE 1.35 Gauss’ law.

FIGURE 1.36 Exclusion of the origin.

joins surfacesS andS′, combining them into one single simply connected closed surface.
Because the radius of the imaginary hole may be made vanishingly small, there is no ad-
ditional contribution to the surface integral. The inner surface is deliberately chosen to be
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spherical so that we will be able to integrate over it. Gauss’ theorem now applies to the
volume betweenS andS′ without any difficulty. We have∫

S

r̂ · dσ

r2
+
∫
S′

r̂ · dσ ′

δ2
= 0. (1.160)

We may evaluate the second integral, fordσ ′ = −r̂δ2d�, in which d� is an element of
solid angle. The minus sign appears because we agreed in Section 1.10 to have the positive
normal r̂′ outward from the volume. In this case the outwardr̂′ is in the negative radial
direction,r̂′ = −r̂. By integrating over all angles, we have∫

S′
r̂ · dσ ′

δ2
=−

∫
S′

r̂ · r̂δ2d�

δ2
=−4π, (1.161)

independent of the radiusδ. With the constants from Eq. (1.158), this results in∫
S

E · dσ = q

4πε0
4π = q

ε0
, (1.162)

completing the proof of Gauss’ law. Notice that although the surfaceS may be spherical,
it need not be spherical. Going just a bit further, we consider a distributed charge so that

q =
∫
V

ρ dτ. (1.163)

Equation (1.162) still applies, withq now interpreted as the total distributed charge en-
closed by surfaceS: ∫

S

E · dσ =
∫
V

ρ

ε0
dτ. (1.164)

Using Gauss’ theorem, we have∫
V

∇ ·Edτ =
∫
V

ρ

ε0
dτ. (1.165)

Since our volume is completely arbitrary, the integrands must be equal, or

∇ ·E= ρ

ε0
, (1.166)

one of Maxwell’s equations. If we reverse the argument, Gauss’ law follows immediately
from Maxwell’s equation.

Poisson’s Equation

If we replaceE by−∇ϕ, Eq. (1.166) becomes

∇ ·∇ϕ =− ρ

ε0
, (1.167a)
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which is Poisson’s equation. For the conditionρ = 0 this reduces to an even more famous
equation,

∇ ·∇ϕ = 0, (1.167b)

Laplace’s equation. We encounter Laplace’s equation frequently in discussing various co-
ordinate systems (Chapter 2) and the special functions of mathematical physics that appear
as its solutions. Poisson’s equation will be invaluable in developing the theory of Green’s
functions (Section 9.7).

From direct comparison of the Coulomb electrostatic force law and Newton’s law of
universal gravitation,

FE = 1

4πε0

q1q2

r2
r̂, FG =−Gm1m2

r2
r̂.

All of the potential theory of this section applies equally well to gravitational potentials.
For example, the gravitational Poisson equation is

∇ ·∇ϕ =+4πGρ, (1.168)

with ρ now a mass density.

Exercises

1.14.1 Develop Gauss’ law for the two-dimensional case in which

ϕ =−q lnρ

2πε0
, E=−∇ϕ = q

ρ̂

2πε0ρ
.

Hereq is the charge at the origin or the line charge per unit length if the two-dimensional
system is a unit thickness slice of a three-dimensional (circular cylindrical) system. The
variableρ is measured radially outward from the line charge.ρ̂ is the corresponding
unit vector (see Section 2.4).

1.14.2 (a) Show that Gauss’ law follows from Maxwell’s equation

∇ ·E= ρ

ε0
.

Hereρ is the usual charge density.
(b) Assuming that the electric field of a point chargeq is spherically symmetric, show

that Gauss’ law implies the Coulomb inverse square expression

E= q r̂
4πε0r2

.

1.14.3 Show that the value of the electrostatic potentialϕ at any pointP is equal to the average
of the potential over any spherical surface centered onP . There are no electric charges
on or within the sphere.
Hint. Use Green’s theorem, Eq. (1.104), withu−1= r , the distance fromP , andv = ϕ.
Also note Eq. (1.170) in Section 1.15.



1.15 Dirac Delta Function 83

1.14.4 Using Maxwell’s equations, show that for a system (steady current) the magnetic vector
potentialA satisfies a vector Poisson equation,

∇2A=−µ0J,

provided we require∇ ·A= 0.

1.15 DIRAC DELTA FUNCTION

From Example 1.6.1 and the development of Gauss’ law in Section 1.14,∫
∇ ·∇

(
1

r

)
dτ =−

∫
∇ ·

(
r̂
r2

)
dτ =

{−4π
0,

(1.169)

depending on whether or not the integration includes the originr= 0. This result may be
conveniently expressed by introducing the Dirac delta function,

∇2
(

1

r

)
=−4πδ(r)≡−4πδ(x)δ(y)δ(z). (1.170)

This Dirac delta function isdefined by its assigned properties

δ(x)= 0, x 
= 0 (1.171a)

f (0)=
∫ ∞

−∞
f (x)δ(x) dx, (1.171b)

wheref (x) is any well-behaved function and the integration includes the origin. As a
special case of Eq. (1.171b), ∫ ∞

−∞
δ(x) dx = 1. (1.171c)

From Eq. (1.171b),δ(x) must be an infinitely high, infinitely thin spike atx = 0, as in the
description of an impulsive force (Section 15.9) or the charge density for a point charge.27

The problem is thatno such function exists, in the usual sense of function. However, the
crucial property in Eq. (1.171b) can be developed rigorously as the limit of asequence
of functions, a distribution. For example, the delta function may be approximated by the

27The delta function is frequently invoked to describe very short-range forces, such as nuclear forces. It also appears in the
normalization of continuum wave functions of quantum mechanics. Compare Eq. (1.193c) for plane-wave eigenfunctions.
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FIGURE 1.37 δ-Sequence
function.

FIGURE 1.38 δ-Sequence
function.

sequences of functions, Eqs. (1.172) to (1.175) and Figs. 1.37 to 1.40:

δn(x) =


0, x <− 1
2n

n, − 1
2n < x < 1

2n
0, x > 1

2n

(1.172)

δn(x) = n√
π

exp
(−n2x2) (1.173)

δn(x) = n

π
· 1

1+ n2x2
(1.174)

δn(x) = sinnx

πx
= 1

2π

∫ n

−n
eixt dt. (1.175)
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FIGURE 1.39 δ-Sequence function.

FIGURE 1.40 δ-Sequence function.

These approximations have varying degrees of usefulness. Equation (1.172) is useful in
providing a simple derivation of the integral property, Eq. (1.171b). Equation (1.173)
is convenient to differentiate. Its derivatives lead to the Hermite polynomials. Equa-
tion (1.175) is particularly useful in Fourier analysis and in its applications to quantum
mechanics. In the theory of Fourier series, Eq. (1.175) often appears (modified) as the
Dirichlet kernel:

δn(x)= 1

2π

sin[(n+ 1
2)x]

sin(1
2x)

. (1.176)

In using these approximations in Eq. (1.171b) and later, we assume thatf (x) is well be-
haved — it offers no problems at largex.
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For most physical purposes such approximations are quite adequate. From a mathemat-
ical point of view the situation is still unsatisfactory: The limits

lim
n→∞ δn(x)

do not exist.
A way out of this difficulty is provided by the theory of distributions. Recognizing that

Eq. (1.171b) is the fundamental property, we focus our attention on it rather than onδ(x)

itself. Equations (1.172) to (1.175) withn= 1,2,3, . . . may be interpreted assequences of
normalized functions: ∫ ∞

−∞
δn(x) dx = 1. (1.177)

The sequence of integrals has the limit

lim
n→∞

∫ ∞

−∞
δn(x)f (x) dx = f (0). (1.178)

Note that Eq. (1.178) is the limit of a sequence of integrals. Again, the limit ofδn(x),
n→∞, does not exist. (The limits for all four forms ofδn(x) diverge atx = 0.)

We may treatδ(x) consistently in the form∫ ∞

−∞
δ(x)f (x) dx = lim

n→∞

∫ ∞

−∞
δn(x)f (x) dx. (1.179)

δ(x) is labeled a distribution (not a function) defined by the sequencesδn(x) as indicated
in Eq. (1.179). We might emphasize that the integral on the left-hand side of Eq. (1.179) is
not a Riemann integral.28 It is a limit.

This distributionδ(x) is only one of an infinity of possible distributions, but it is the one
we are interested in because of Eq. (1.171b).

From these sequences of functions we see that Dirac’s delta function must be even inx,
δ(−x)= δ(x).

The integral property, Eq. (1.171b), is useful in cases where the argument of the delta
function is a functiong(x) with simple zeros on the real axis, which leads to the rules

δ(ax)= 1

a
δ(x), a > 0, (1.180)

δ
(
g(x)

)= ∑
a,

g(a)=0,
g′(a) 
=0

δ(x − a)

|g′(a)| . (1.181a)

Equation (1.180) may be written∫ ∞

−∞
f (x)δ(ax)dx = 1

a

∫ ∞

−∞
f

(
y

a

)
δ(y) dy = 1

a
f (0),

28It can be treated as a Stieltjes integral if desired.δ(x) dx is replaced bydu(x), whereu(x) is the Heaviside step function
(compare Exercise 1.15.13).
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applying Eq. (1.171b). Equation (1.180) may be written asδ(ax)= 1
|a|δ(x) for a < 0. To

prove Eq. (1.181a) we decompose the integral∫ ∞

−∞
f (x)δ

(
g(x)

)
dx =

∑
a

∫ a+ε

a−ε
f (x)δ

(
(x − a)g′(a)

)
dx (1.181b)

into a sum of integrals over small intervals containing the zeros ofg(x). In these intervals,
g(x) ≈ g(a)+ (x − a)g′(a) = (x − a)g′(a). Using Eq. (1.180) on the right-hand side of
Eq. (1.181b) we obtain the integral of Eq. (1.181a).

Using integration by parts we can alsodefine the derivative δ′(x) of the Dirac delta
function by the relation∫ ∞

−∞
f (x)δ′(x − x′) dx =−

∫ ∞

−∞
f ′(x)δ(x − x′) dx =−f ′(x′). (1.182)

We useδ(x) frequently and call it the Dirac delta function29 — for historical reasons.
Remember that it is not really a function. It is essentially a shorthand notation, defined
implicitly as the limit of integrals in a sequence,δn(x), according to Eq. (1.179). It should
be understood that our Dirac delta function has significance only as part of an integrand.
In this spirit, the linear operator

∫
dx δ(x − x0) operates onf (x) and yieldsf (x0):

L(x0)f (x)≡
∫ ∞

−∞
δ(x − x0)f (x) dx = f (x0). (1.183)

It may also be classified as a linear mapping or simply as a generalized function. Shift-
ing our singularity to the pointx = x′, we write the Dirac delta function asδ(x − x′).
Equation (1.171b) becomes∫ ∞

−∞
f (x)δ(x − x′) dx = f (x′). (1.184)

As a description of a singularity atx = x′, the Dirac delta function may be written as
δ(x− x′) or asδ(x′ − x). Going to three dimensions and using spherical polar coordinates,
we obtain∫ 2π

0

∫ π

0

∫ ∞

0
δ(r)r2dr sinθ dθ dϕ =

∫∫∫ ∞

−∞
δ(x)δ(y)δ(z) dx dy dz= 1. (1.185)

This corresponds to a singularity (or source) at the origin. Again, if our source is atr= r1,
Eq. (1.185) becomes ∫∫∫

δ(r2− r1)r
2
2 dr2 sinθ2dθ2dϕ2= 1. (1.186)

29Dirac introduced the delta function to quantum mechanics. Actually, the delta function can be traced back to Kirchhoff, 1882.
For further details see M. Jammer,The Conceptual Development of Quantum Mechanics. New York: McGraw–Hill (1966),
p. 301.
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Example 1.15.1 TOTAL CHARGE INSIDE A SPHERE

Consider the total electric flux
∮

E · dσ out of a sphere of radiusR around the origin
surroundingn chargesej , located at the pointsrj with rj < R, that is, inside the sphere.
The electric field strengthE=−∇ϕ(r), where the potential

ϕ =
n∑

j=1

ej

|r− rj | =
∫

ρ(r′)
|r− r′|d

3r ′

is the sum of the Coulomb potentials generated by each charge and the total charge density
is ρ(r)=∑j ej δ(r− rj ). The delta function is used here as an abbreviation of a pointlike
density. Now we use Gauss’ theorem for∮

E · dσ =−
∮

∇ϕ · dσ =−
∫

∇2ϕ dτ =
∫

ρ(r)
ε0

dτ =
∑

j ej

ε0

in conjunction with the differential form of Gauss’s law,∇ ·E=−ρ/ε0, and∑
j

ej

∫
δ(r− rj ) dτ =

∑
j

ej .

�

Example 1.15.2 PHASE SPACE

In the scattering theory of relativistic particles using Feynman diagrams, we encounter the
following integral over energy of the scattered particle (we set the velocity of lightc= 1):∫

d4pδ
(
p2−m2)f (p) ≡ ∫ d3p

∫
dp0 δ

(
p2

0− p2−m2)f (p)
=
∫
E>0

d3pf (E,p)

2
√
m2+ p2

+
∫
E<0

d3pf (E,p)

2
√
m2+ p2

,

where we have used Eq. (1.181a) at the zerosE = ±√m2+ p2 of the argument of the
delta function. The physical meaning ofδ(p2 − m2) is that the particle of massm and
four-momentumpµ = (p0,p) is on its mass shell, becausep2=m2 is equivalent toE =
±√m2+ p2. Thus, the on-mass-shell volume element in momentum space is the Lorentz

invariant d3p
2E , in contrast to the nonrelativisticd3p of momentum space. The fact that

a negative energy occurs is a peculiarity of relativistic kinematics that is related to the
antiparticle. �

Delta Function Representation by Orthogonal
Functions

Dirac’s delta function30 can be expanded in terms of any basis of real orthogonal functions
{ϕn(x), n = 0,1,2, . . .}. Such functions will occur in Chapter 10 as solutions of ordinary
differential equations of the Sturm–Liouville form.

30This section is optional here. It is not needed until Chapter 10.
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They satisfy the orthogonality relations∫ b

a

ϕm(x)ϕn(x) dx = δmn, (1.187)

where the interval(a, b) may be infinite at either end or both ends. [For convenience we
assume thatϕn has been defined to include(w(x))1/2 if the orthogonality relations contain
an additional positive weight functionw(x).] We use theϕn to expand the delta function
as

δ(x − t)=
∞∑
n=0

an(t)ϕn(x), (1.188)

where the coefficientsan are functions of the variablet . Multiplying by ϕm(x) and inte-
grating over the orthogonality interval (Eq. (1.187)), we have

am(t)=
∫ b

a

δ(x − t)ϕm(x)dx = ϕm(t) (1.189)

or

δ(x − t)=
∞∑
n=0

ϕn(t)ϕn(x)= δ(t − x). (1.190)

This series is assuredly not uniformly convergent (see Chapter 5), but it may be used as
part of an integrand in which the ensuing integration will make it convergent (compare
Section 5.5).

Suppose we form the integral
∫
F(t)δ(t − x)dx, where it is assumed thatF(t) can be

expanded in a series of orthogonal functionsϕp(t), a property calledcompleteness. We
then obtain ∫

F(t)δ(t − x)dt =
∫ ∞∑

p=0

apϕp(t)

∞∑
n=0

ϕn(x)ϕn(t) dt

=
∞∑
p=0

apϕp(x)= F(x), (1.191)

the cross products
∫
ϕpϕn dt (n 
= p) vanishing by orthogonality (Eq. (1.187)). Referring

back to the definition of the Dirac delta function, Eq. (1.171b), we see that our series
representation, Eq. (1.190), satisfies the defining property of the Dirac delta function and
therefore is a representation of it. This representation of the Dirac delta function is called
closure. The assumption of completeness of a set of functions for expansion ofδ(x − t)

yields the closure relation. The converse, that closure implies completeness, is the topic of
Exercise 1.15.16.
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Integral Representations for the Delta Function

Integral transforms, such as the Fourier integral

F(ω)=
∫ ∞

−∞
f (t)exp(iωt) dt

of Chapter 15, lead to the corresponding integral representations of Dirac’s delta function.
For example, take

δn(t − x)= sinn(t − x)

π(t − x)
= 1

2π

∫ n

−n
exp

(
iω(t − x)

)
dω, (1.192)

using Eq. (1.175). We have

f (x)= lim
n→∞

∫ ∞

−∞
f (t)δn(t − x)dt, (1.193a)

whereδn(t − x) is the sequence in Eq. (1.192) defining the distributionδ(t − x). Note that
Eq. (1.193a) assumes thatf (t) is continuous att = x. If we substitute Eq. (1.192) into
Eq. (1.193a) we obtain

f (x)= lim
n→∞

1

2π

∫ ∞

−∞
f (t)

∫ n

−n
exp

(
iω(t − x)

)
dωdt. (1.193b)

Interchanging the order of integration and then taking the limit asn→∞, we have the
Fourier integral theorem, Eq. (15.20).

With the understanding that it belongs under an integral sign, as in Eq. (1.193a), the
identification

δ(t − x)= 1

2π

∫ ∞

−∞
exp

(
iω(t − x)

)
dω (1.193c)

provides a very useful integral representation of the delta function.
When the Laplace transform (see Sections 15.1 and 15.9)

Lδ(s)=
∫ ∞

0
exp(−st)δ(t − t0)= exp(−st0), t0 > 0 (1.194)

is inverted, we obtain the complex representation

δ(t − t0)= 1

2πi

∫ γ+i∞

γ−i∞
exp

(
s(t − t0)

)
ds, (1.195)

which is essentially equivalent to the previous Fourier representation of Dirac’s delta func-
tion.
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Exercises

1.15.1 Let

δn(x)=


0, x <− 1
2n ,

n, − 1
2n < x < 1

2n ,

0, 1
2n < x.

Show that

lim
n→∞

∫ ∞

−∞
f (x)δn(x) dx = f (0),

assuming thatf (x) is continuous atx = 0.

1.15.2 Verify that the sequenceδn(x), based on the function

δn(x)=
{

0, x < 0,
ne−nx, x > 0,

is a delta sequence (satisfying Eq. (1.178)). Note that the singularity is at+0, the posi-
tive side of the origin.
Hint. Replace the upper limit (∞) by c/n, wherec is large but finite, and use the mean
value theorem of integral calculus.

1.15.3 For

δn(x)= n

π
· 1

1+ n2x2
,

(Eq. (1.174)), show that ∫ ∞

−∞
δn(x) dx = 1.

1.15.4 Demonstrate thatδn = sinnx/πx is a delta distribution by showing that

lim
n→∞

∫ ∞

−∞
f (x)

sinnx

πx
dx = f (0).

Assume thatf (x) is continuous atx = 0 and vanishes asx→±∞.
Hint. Replacex by y/n and take limn→∞ before integrating.

1.15.5 Fejer’s method of summing series is associated with the function

δn(t)= 1

2πn

[
sin(nt/2)

sin(t/2)

]2

.

Show thatδn(t) is a delta distribution, in the sense that

lim
n→∞

1

2πn

∫ ∞

−∞
f (t)

[
sin(nt/2)

sin(t/2)

]2

dt = f (0).
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1.15.6 Prove that

δ
[
a(x − x1)

]= 1

a
δ(x − x1).

Note. If δ[a(x − x1)] is considered even, relative tox1, the relation holds for negativea
and 1/a may be replaced by 1/|a|.

1.15.7 Show that

δ
[
(x − x1)(x − x2)

]= [δ(x − x1)+ δ(x − x2)
]
/|x1− x2|.

Hint. Try using Exercise 1.15.6.

1.15.8 Using the Gauss error curve delta sequence (δn = n√
π
e−n2x2

), show that

x
d

dx
δ(x)=−δ(x),

treatingδ(x) and its derivative as in Eq. (1.179).

1.15.9 Show that ∫ ∞

−∞
δ′(x)f (x) dx =−f ′(0).

Here we assume thatf ′(x) is continuous atx = 0.

1.15.10 Prove that

δ
(
f (x)

)= ∣∣∣∣df (x)dx

∣∣∣∣−1

x=x0

δ(x − x0),

wherex0 is chosen so thatf (x0)= 0.
Hint. Note thatδ(f ) df = δ(x) dx.

1.15.11 Show that in spherical polar coordinates(r,cosθ,ϕ) the delta functionδ(r1− r2) be-
comes

1

r2
1

δ(r1− r2)δ(cosθ1− cosθ2)δ(ϕ1− ϕ2).

Generalize this to the curvilinear coordinates(q1, q2, q3) of Section 2.1 with scale fac-
torsh1, h2, andh3.

1.15.12 A rigorous development of Fourier transforms31 includes as a theorem the relations

lim
a→∞

2

π

∫ x2

x1

f (u+ x)
sinax

x
dx

=


f (u+ 0)+ f (u− 0), x1 < 0< x2
f (u+ 0), x1= 0< x2
f (u− 0), x1 < 0= x2
0, x1 < x2 < 0 or 0< x1 < x2.

Verify these results using the Dirac delta function.

31I. N. Sneddon,Fourier Transforms. New York: McGraw-Hill (1951).
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FIGURE 1.41 1
2[1+ tanhnx] and the Heaviside unit step

function.

1.15.13 (a) If we define a sequenceδn(x)= n/(2 cosh2nx), show that∫ ∞

−∞
δn(x) dx = 1, independent ofn.

(b) Continuing this analysis, show that32∫ x

−∞
δn(x) dx = 1

2
[1+ tanhnx] ≡ un(x),

lim
n→∞un(x)=

{
0, x < 0,
1, x > 0.

This is the Heaviside unit step function (Fig. 1.41).

1.15.14 Show that the unit step functionu(x) may be represented by

u(x)= 1

2
+ 1

2πi
P

∫ ∞

−∞
eixt

dt

t
,

whereP means Cauchy principal value (Section 7.1).

1.15.15 As a variation of Eq. (1.175), take

δn(x)= 1

2π

∫ ∞

−∞
eixt−|t |/n dt.

Show that this reduces to(n/π)1/(1+ n2x2), Eq. (1.174), and that∫ ∞

−∞
δn(x) dx = 1.

Note. In terms of integral transforms, the initial equation here may be interpreted as
either a Fourier exponential transform ofe−|t |/n or a Laplace transform ofeixt .

32Many other symbols are used for this function. This is the AMS-55 (see footnote 4 on p. 330 for the reference) notation:u for
unit.
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1.15.16 (a) The Dirac delta function representation given by Eq. (1.190),

δ(x − t)=
∞∑
n=0

ϕn(x)ϕn(t),

is often called theclosure relation. For an orthonormal set of real functions,
ϕn, show that closure implies completeness, that is, Eq. (1.191) follows from
Eq. (1.190).

Hint. One can take

F(x)=
∫

F(t)δ(x − t) dt.

(b) Following the hint of part (a) you encounter the integral
∫
F(t)ϕn(t) dt . How do

you know that this integral is finite?

1.15.17 For the finite interval(−π,π) write the Dirac delta functionδ(x − t) as a series of
sines and cosines: sinnx,cosnx,n = 0,1,2, . . . . Note that although these functions
are orthogonal, they are not normalized to unity.

1.15.18 In the interval(−π,π), δn(x)= n√
π

exp(−n2x2).

(a) Writeδn(x) as a Fourier cosine series.
(b) Show that your Fourier series agrees with a Fourier expansion ofδ(x) in the limit

asn→∞.
(c) Confirm the delta function nature of your Fourier series by showing that for any

f (x) that is finite in the interval[−π,π] and continuous atx = 0,∫ π

−π
f (x)

[
Fourier expansion ofδ∞(x)

]
dx = f (0).

1.15.19 (a) Writeδn(x)= n√
π

exp(−n2x2) in the interval(−∞,∞) as a Fourier integral and
compare the limitn→∞ with Eq. (1.193c).

(b) Write δn(x)= nexp(−nx) as a Laplace transform and compare the limitn→∞
with Eq. (1.195).

Hint. See Eqs. (15.22) and (15.23) for (a) and Eq. (15.212) for (b).

1.15.20 (a) Show that the Dirac delta functionδ(x − a), expanded in a Fourier sine series in
the half-interval(0,L), (0< a <L), is given by

δ(x − a)= 2

L

∞∑
n=1

sin

(
nπa

L

)
sin

(
nπx

L

)
.

Note that this series actually describes

−δ(x + a)+ δ(x − a) in the interval(−L,L).
(b) By integrating both sides of the preceding equation from 0 tox, show that the

cosine expansion of the square wave

f (x)=
{

0, 0� x < a

1, a < x < L,



1.16 Helmholtz’s Theorem 95

is, for 0� x < L,

f (x)= 2

π

∞∑
n=1

1

n
sin

(
nπa

L

)
− 2

π

∞∑
n=1

1

n
sin

(
nπa

L

)
cos

(
nπx

L

)
.

(c) Verify that the term

2

π

∞∑
n=1

1

n
sin

(
nπa

L

)
is

〈
f (x)

〉≡ 1

L

∫ L

0
f (x)dx.

1.15.21 Verify the Fourier cosine expansion of the square wave, Exercise 1.15.20(b), by direct
calculation of the Fourier coefficients.

1.15.22 We may define a sequence

δn(x)=
{
n, |x|< 1/2n,
0, |x|> 1/2n.

(This is Eq. (1.172).) Expressδn(x) as a Fourier integral (via the Fourier integral theo-
rem, inverse transform, etc.). Finally, show that we may write

δ(x)= lim
n→∞ δn(x)= 1

2π

∫ ∞

−∞
e−ikx dk.

1.15.23 Using the sequence

δn(x)= n√
π

exp
(−n2x2),

show that

δ(x)= 1

2π

∫ ∞

−∞
e−ikx dk.

Note. Remember thatδ(x) is defined in terms of its behavior as part of an integrand —
especially Eqs. (1.178) and (1.189).

1.15.24 Derive sine and cosine representations ofδ(t−x) that are comparable to the exponential
representation, Eq. (1.193c).

ANS. 2
π

∫∞
0 sinωt sinωx dω, 2

π

∫∞
0 cosωt cosωx dω.

1.16 HELMHOLTZ’S THEOREM

In Section 1.13 it was emphasized that the choice of a magnetic vector potentialA was not
unique. The divergence ofA was still undetermined. In this section two theorems about the
divergence and curl of a vector are developed. The first theorem is as follows:

A vector is uniquely specified by giving its divergence and its curl within a simply con-
nected region (without holes) and its normal component over the boundary.
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Note that the subregions, where the divergence and curl are defined (often in terms of
Dirac delta functions), are part of our region and are not supposed to be removed here or
in Helmholtz’s theorem, which follows. Let us take

∇ ·V1= s,

∇×V1= c,
(1.196)

wheres may be interpreted as a source (charge) density andc as a circulation (current)
density. Assuming also that the normal componentV1n on the boundary is given, we want
to show thatV1 is unique. We do this by assuming the existence of a second vector,V2,
which satisfies Eq. (1.196) and has the same normal component over the boundary, and
then showing thatV1−V2= 0. Let

W=V1−V2.

Then

∇ ·W= 0 (1.197)

and

∇×W= 0. (1.198)

SinceW is irrotational we may write (by Section (1.13))

W=−∇ϕ. (1.199)

Substituting this into Eq. (1.197), we obtain

∇ ·∇ϕ = 0, (1.200)

Laplace’s equation.
Now we draw upon Green’s theorem in the form given in Eq. (1.105), lettingu andv

each equalϕ. Since

Wn = V1n − V2n = 0 (1.201)

on the boundary, Green’s theorem reduces to∫
V

(∇ϕ) · (∇ϕ)dτ =
∫
V

W ·Wdτ = 0. (1.202)

The quantityW ·W=W2 is nonnegative and so we must have

W=V1−V2= 0 (1.203)

everywhere. ThusV1 is unique, proving the theorem.
For our magnetic vector potentialA the relationB = ∇ × A specifies the curl ofA.

Often for convenience we set∇ ·A= 0 (compare Exercise 1.14.4). Then (with boundary
conditions)A is fixed.

This theorem may be written as a uniqueness theorem for solutions of Laplace’s equa-
tion, Exercise 1.16.1. In this form, this uniqueness theorem is of great importance in solv-
ing electrostatic and other Laplace equation boundary value problems. If we can find a
solution of Laplace’s equation that satisfies the necessary boundary conditions, then our
solution is the complete solution. Such boundary value problems are taken up in Sec-
tions 12.3 and 12.5.
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Helmholtz’s Theorem

The second theorem we shall prove is Helmholtz’s theorem.
A vector V satisfying Eq. (1.196)with both source and circulation densities vanishing

at infinity may be written as the sum of two parts, one of which is irrotational, the other of
which is solenoidal.

Note that our region is simply connected, being all of space, for simplicity. Helmholtz’s
theorem will clearly be satisfied if we may writeV as

V=−∇ϕ +∇×A, (1.204a)

−∇ϕ being irrotational and∇×A being solenoidal. We proceed to justify Eq. (1.204a).
V is a known vector. We take the divergence and curl

∇ ·V = s(r) (1.204b)

∇×V = c(r) (1.204c)

with s(r) andc(r) now known functions of position. From these two functions we construct
a scalar potentialϕ(r1),

ϕ(r1)= 1

4π

∫
s(r2)

r12
dτ2, (1.205a)

and a vector potentialA(r1),

A(r1)= 1

4π

∫
c(r2)

r12
dτ2. (1.205b)

If s = 0, thenV is solenoidal and Eq. (1.205a) impliesϕ = 0. From Eq. (1.204a),V =
∇ × A, with A as given in Eq. (1.141), which is consistent with Section 1.13. Further,
if c = 0, thenV is irrotational and Eq. (1.205b) impliesA = 0, and Eq. (1.204a) implies
V=−∇ϕ, consistent with scalar potential theory of Section 1.13.

Here the argumentr1 indicates(x1, y1, z1), the field point;r2, the coordinates of the
source point (x2, y2, z2), whereas

r12=
[
(x1− x2)

2+ (y1− y2)
2+ (z1− z2)

2]1/2
. (1.206)

When a direction is associated withr12, the positive direction is taken to be away from
the source and toward the field point. Vectorially,r12= r1 − r2, as shown in Fig. 1.42.
Of course,s andc must vanish sufficiently rapidly at large distance so that the integrals
exist. The actual expansion and evaluation of integrals such as Eqs. (1.205a) and (1.205b)
is treated in Section 12.1.

From the uniqueness theorem at the beginning of this section,V is uniquely specified
by its divergence,s, and curl,c (and boundary conditions). Returning to Eq. (1.204a), we
have

∇ ·V=−∇ ·∇ϕ, (1.207a)

the divergence of the curl vanishing, and

∇×V=∇× (∇×A), (1.207b)
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FIGURE 1.42 Source and field points.

the curl of the gradient vanishing. If we can show that

−∇ ·∇ϕ(r1)= s(r1) (1.207c)

and

∇× (∇×A(r1)
)= c(r1), (1.207d)

thenV as given in Eq. (1.204a) will have the proper divergence and curl. Our description
will be internally consistent and Eq. (1.204a) justified.33

First, we consider the divergence ofV:

∇ ·V=−∇ ·∇ϕ =− 1

4π
∇ ·∇

∫
s(r2)

r12
dτ2. (1.208)

The Laplacian operator,∇ ·∇, or ∇2, operates on the field coordinates(x1, y1, z1) and so
commutes with the integration with respect to(x2, y2, z2). We have

∇ ·V=− 1

4π

∫
s(r2)∇2

1

(
1

r12

)
dτ2. (1.209)

We must make two minor modifications in Eq. (1.169) before applying it. First, our source
is atr2, not at the origin. This means that a nonzero result from Gauss’ law appears if and
only if the surfaceS includes the pointr= r2. To show this, we rewrite Eq. (1.170):

∇2
(

1

r12

)
=−4πδ(r1− r2). (1.210)

33Alternatively, we could solve Eq. (1.207c), Poisson’s equation, and compare the solution with the constructed potential,
Eq. (1.205a). The solution of Poisson’s equation is developed in Section 9.7.
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This shift of the source tor2 may be incorporated in the defining equation (1.171b) as

δ(r1− r2)= 0, r1 
= r2, (1.211a)∫
f (r1)δ(r1− r2) dτ1= f (r2). (1.211b)

Second, noting that differentiatingr−1
12 twice with respect tox2, y2, z2 is the same as

differentiatingtwice with respect tox1, y1, z1, we have

∇2
1

(
1

r12

)
= ∇2

2

(
1

r12

)
=−4πδ(r1− r2)

= −4πδ(r2− r1). (1.212)

Rewriting Eq. (1.209) and using the Dirac delta function, Eq. (1.212), we may integrate to
obtain

∇ ·V = − 1

4π

∫
s(r2)∇2

2

(
1

r12

)
dτ2

= − 1

4π

∫
s(r2)(−4π)δ(r2− r1) dτ2

= s(r1). (1.213)

The final step follows from Eq. (1.211b), with the subscripts 1 and 2 exchanged. Our
result, Eq. (1.213), shows that the assumed forms ofV and of the scalar potentialϕ are in
agreement with the given divergence (Eq. (1.204b)).

To complete the proof of Helmholtz’s theorem, we need to show that our assumptions are
consistent with Eq. (1.204c), that is, that the curl ofV is equal toc(r1). From Eq. (1.204a),

∇×V = ∇× (∇×A)

= ∇∇ ·A−∇2A. (1.214)

The first term,∇∇ ·A, leads to

4π∇∇ ·A=
∫

c(r2) ·∇1∇1

(
1

r12

)
dτ2 (1.215)

by Eq. (1.205b). Again replacing the second derivatives with respect tox1, y1, z1 by second
derivatives with respect tox2, y2, z2, we integrate each component34 of Eq. (1.215) by
parts:

4π∇∇ ·A|x =
∫

c(r2) ·∇2
∂

∂x2

(
1

r12

)
dτ2

=
∫

∇2 ·
[

c(r2)
∂

∂x2

(
1

r12

)]
dτ2

−
∫ [∇2 · c(r2)

] ∂

∂x2

(
1

r12

)
dτ2. (1.216)

34This avoids creating thetensor c(r2)∇2.
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The second integral vanishes because the circulation densityc is solenoidal.35 The first
integral may be transformed to a surface integral by Gauss’ theorem. Ifc is bounded in
space or vanishes faster that 1/r for large r , so that the integral in Eq. (1.205b) exists,
then by choosing a sufficiently large surface the first integral on the right-hand side of
Eq. (1.216) also vanishes.

With ∇∇ ·A= 0, Eq. (1.214) now reduces to

∇×V=−∇2A=− 1

4π

∫
c(r2)∇2

1

(
1

r12

)
dτ2. (1.217)

This is exactly like Eq. (1.209) except that the scalars(r2) is replaced by the vector circu-
lation densityc(r2). Introducing the Dirac delta function, as before, as a convenient way
of carrying out the integration, we find that Eq. (1.217) reduces to Eq. (1.196). We see that
our assumed forms ofV, given by Eq. (1.204a), and of the vector potentialA, given by
Eq. (1.205b), are in agreement with Eq. (1.196) specifying the curl ofV.

This completes the proof of Helmholtz’s theorem, showing that a vector may be re-
solved into irrotational and solenoidal parts. Applied to the electromagnetic field, we have
resolved our field vectorV into an irrotational electric fieldE, derived from a scalar po-
tentialϕ, and a solenoidal magnetic induction fieldB, derived from a vector potentialA.
The source densitys(r) may be interpreted as an electric charge density (divided by elec-
tric permittivity ε), whereas the circulation densityc(r) becomes electric current density
(times magnetic permeabilityµ).

Exercises

1.16.1 Implicit in this section is a proof that a functionψ(r) is uniquely specified by requiring
it to (1) satisfy Laplace’s equation and (2) satisfy a complete set of boundary conditions.
Develop this proof explicitly.

1.16.2 (a) Assuming thatP is a solution of the vector Poisson equation,∇2
1P(r1)=−V(r1),

develop an alternate proof of Helmholtz’s theorem, showing thatV may be written
as

V=−∇ϕ +∇×A,

where

A=∇× P,

and

ϕ =∇ · P.
(b) Solving the vector Poisson equation, we find

P(r1)= 1

4π

∫
V

V(r2)

r12
dτ2.

Show that this solution substituted intoϕ andA of part (a) leads to the expressions
given forϕ andA in Section 1.16.

35Remember,c=∇×V is known.
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CHAPTER 2

VECTOR ANALYSIS IN
CURVED COORDINATES

AND TENSORS

In Chapter 1 we restricted ourselves almost completely to rectangular or Cartesian coordi-
nate systems. A Cartesian coordinate system offers the unique advantage that all three unit
vectors,x̂, ŷ, andẑ, are constant in direction as well as in magnitude. We did introduce the
radial distancer , but even this was treated as a function ofx, y, andz. Unfortunately, not
all physical problems are well adapted to a solution in Cartesian coordinates. For instance,
if we have a central force problem,F= r̂F(r), such as gravitational or electrostatic force,
Cartesian coordinates may be unusually inappropriate. Such a problem demands the use of
a coordinate system in which the radial distance is taken to be one of the coordinates, that
is, spherical polar coordinates.

The point is that the coordinate system should be chosen to fit the problem, to exploit
any constraint or symmetry present in it. Then it is likely to be more readily soluble than if
we had forced it into a Cartesian framework.

Naturally, there is a price that must be paid for the use of a non-Cartesian coordinate
system. We have not yet written expressions for gradient, divergence, or curl in any of the
non-Cartesian coordinate systems. Such expressions are developed in general form in Sec-
tion 2.2. First, we develop a system of curvilinear coordinates, a general system that may
be specialized to any of the particular systems of interest. We shall specialize to circular
cylindrical coordinates in Section 2.4 and to spherical polar coordinates in Section 2.5.

2.1 ORTHOGONAL COORDINATES IN R3

In Cartesian coordinates we deal with three mutually perpendicular families of planes:
x = constant,y = constant, andz= constant. Imagine that we superimpose on this system

103
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three other families of surfacesqi(x, y, z), i = 1,2,3. The surfaces of any one familyqi
need not be parallel to each other and they need not be planes. If this is difficult to visualize,
the figure of a specific coordinate system, such as Fig. 2.3, may be helpful. The three new
families of surfaces need not be mutually perpendicular, but for simplicity we impose this
condition (Eq. (2.7)) because orthogonal coordinates are common in physical applications.
This orthogonality has many advantages: Orthogonal coordinates are almost like Cartesian
coordinates where infinitesimal areas and volumes are products of coordinate differentials.

In this section we develop the general formalism of orthogonal coordinates, derive from
the geometry the coordinate differentials, and use them for line, area, and volume elements
in multiple integrals and vector operators. We may describe any point(x, y, z) as the inter-
section of three planes in Cartesian coordinates or as the intersection of the three surfaces
that form our new, curvilinear coordinates. Describing the curvilinear coordinate surfaces
by q1= constant,q2= constant,q3= constant, we may identify our point by(q1, q2, q3)

as well as by(x, y, z):

General curvilinear coordinates
q1, q2, q3

Circular cylindrical coordinates
ρ,ϕ, z

x = x(q1, q2, q3)

y = y(q1, q2, q3)

z = z(q1, q2, q3)

−∞ < x = ρ cosϕ <∞
−∞ < y = ρ sinϕ <∞
−∞ < z= z <∞

(2.1)

specifyingx, y, z in terms ofq1, q2, q3 and the inverse relations

q1= q1(x, y, z) 0 � ρ = (x2+ y2
)1/2

<∞
q2= q2(x, y, z) 0 � ϕ = arctan(y/x) < 2π
q3= q3(x, y, z) −∞ < z= z <∞.

(2.2)

As a specific illustration of the general, abstractq1, q2, q3, the transformation equations
for circular cylindrical coordinates (Section 2.4) are included in Eqs. (2.1) and (2.2). With
each family of surfacesqi = constant, we can associate a unit vectorq̂i normal to the
surfaceqi = constant and in the direction of increasingqi . In general, these unit vectors
will depend on the position in space. Then a vectorV may be written

V= q̂1V1+ q̂2V2+ q̂3V3, (2.3)

but the coordinate or position vector is different in general,

r 
= q̂1q1+ q̂2q2+ q̂3q3,

as the special casesr = r r̂ for spherical polar coordinates andr = ρρ̂ + zẑ for cylindri-
cal coordinates demonstrate. Theq̂i are normalized tôq2

i = 1 and form a right-handed
coordinate system with volumêq1 · (q̂2× q̂3) > 0.

Differentiation ofx in Eqs. (2.1) leads to the total variation or differential

dx = ∂x

∂q1
dq1+ ∂x

∂q2
dq2+ ∂x

∂q3
dq3, (2.4)

and similarly for differentiation ofy and z. In vector notationdr =∑
i
∂r
∂qi

dqi . From
the Pythagorean theorem in Cartesian coordinates the square of the distance between two
neighboring points is

ds2= dx2+ dy2+ dz2.
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Substitutingdr shows that in our curvilinear coordinate space the square of the distance
element can be written as a quadratic form in the differentialsdqi :

ds2 = dr · dr= dr2=
∑
ij

∂r
∂qi

· ∂r
∂qj

dqi dqj

= g11dq
2
1 + g12dq1dq2+ g13dq1dq3

+ g21dq2dq1+ g22dq
2
2 + g23dq2dq3

+ g31dq3dq1+ g32dq3dq2+ g33dq
2
3

=
∑
ij

gij dqi dqj , (2.5)

where nonzero mixed termsdqi dqj with i 
= j signal that these coordinates are not or-
thogonal, that is, that the tangential directionsq̂i are not mutually orthogonal. Spaces for
which Eq. (2.5) is a legitimate expression are calledmetric or Riemannian.

Writing Eq. (2.5) more explicitly, we see that

gij (q1, q2, q3)= ∂x

∂qi

∂x

∂qj
+ ∂y

∂qi

∂y

∂qj
+ ∂z

∂qi

∂z

∂qj
= ∂r

∂qi
· ∂r
∂qj

(2.6)

are scalar products of thetangent vectors ∂r
∂qi

to the curvesr for qj = const., j 
= i. These
coefficient functionsgij , which we now proceed to investigate, may be viewed as speci-
fying the nature of the coordinate system(q1, q2, q3). Collectively these coefficients are
referred to as themetric and in Section 2.10 will be shown to form a second-rank sym-
metric tensor.1 In general relativity the metric components are determined by the proper-
ties of matter; that is, thegij are solutions of Einstein’s field equations with the energy–
momentum tensor as driving term; this may be articulated as “geometry is merged with
physics.”

At usual we limit ourselves to orthogonal (mutually perpendicular surfaces) coordinate
systems, which means (see Exercise 2.1.1)2

gij = 0, i 
= j, (2.7)

and q̂i · q̂j = δij . (Nonorthogonal coordinate systems are considered in some detail in
Sections 2.10 and 2.11 in the framework of tensor analysis.) Now, to simplify the notation,
we writegii = h2

i > 0, so

ds2= (h1dq1)
2+ (h2dq2)

2+ (h3dq3)
2=

∑
i

(hi dqi)
2. (2.8)

1The tensor nature of the set ofgij ’s follows from the quotient rule (Section 2.8). Then the tensor transformation law yields
Eq. (2.5).
2In relativistic cosmology the nondiagonal elements of the metricgij are usually set equal to zero as a consequence of physical
assumptions such as no rotation, as fordϕ dt, dθ dt .
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The specific orthogonal coordinate systems are described in subsequent sections by spec-
ifying these (positive) scale factorsh1, h2, andh3. Conversely, the scale factors may be
conveniently identified by the relation

dsi = hi dqi,
∂r
∂qi

= hi q̂i (2.9)

for any givendqi , holding all otherq constant. Here,dsi is a differential length along the
directionq̂i . Note that the three curvilinear coordinatesq1, q2, q3 need not be lengths. The
scale factorshi may depend onq and they may have dimensions. Theproduct hi dqi must
have a dimension of length. The differential distance vectordr may be written

dr= h1dq1 q̂1+ h2dq2 q̂2+ h3dq3 q̂3=
∑
i

hi dqi q̂i .

Using this curvilinear component form, we find that a line integral becomes

∫
V · dr=

∑
i

∫
Vihi dqi.

From Eqs. (2.9) we may immediately develop the area and volume elements

dσij = dsi dsj = hihj dqi dqj (2.10)

and

dτ = ds1ds2ds3= h1h2h3dq1dq2dq3. (2.11)

The expressions in Eqs. (2.10) and (2.11) agree, of course, with the results of using
the transformation equations, Eq. (2.1), and Jacobians (described shortly; see also Exer-
cise 2.1.5).

From Eq. (2.10) an area element may be expanded:

dσ = ds2ds3 q̂1+ ds3ds1 q̂2+ ds1ds2 q̂3

= h2h3dq2dq3 q̂1+ h3h1dq3dq1 q̂2

+ h1h2dq1dq2 q̂3.

A surface integral becomes

∫
V · dσ =

∫
V1h2h3dq2dq3+

∫
V2h3h1dq3dq1

+
∫

V3h1h2dq1dq2.

(Examples of such line and surface integrals appear in Sections 2.4 and 2.5.)
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In anticipation of the new forms of equations for vectorcalculus that appear in the
next section, let us emphasize that vectoralgebra is the same in orthogonal curvilinear
coordinates as in Cartesian coordinates. Specifically, for the dot product,

A ·B =
∑
ik

Ai q̂i · q̂kBk =
∑
ik

AiBkδik

=
∑
i

AiBi =A1B1+A2B2+A3B3, (2.12)

where the subscripts indicate curvilinear components. For the cross product,

A×B=
∣∣∣∣∣∣

q̂1 q̂2 q̂3
A1 A2 A3
B1 B2 B3

∣∣∣∣∣∣ , (2.13)

as in Eq. (1.40).
Previously, we specialized to locally rectangular coordinates that are adapted to special

symmetries. Let us now briefly look at the more general case, where the coordinates are
not necessarily orthogonal. Surface and volume elements are part of multiple integrals,
which are common in physical applications, such as center of mass determinations and
moments of inertia. Typically, we choose coordinates according to the symmetry of the
particular problem. In Chapter 1 we used Gauss’ theorem to transform a volume integral
into a surface integral and Stokes’ theorem to transform a surface integral into a line in-
tegral. For orthogonal coordinates, the surface and volume elements are simply products
of the line elementshi dqi (see Eqs. (2.10) and (2.11)). For the general case, we use the
geometric meaning of∂r/∂qi in Eq. (2.5) as tangent vectors. We start with the Cartesian
surface elementdx dy, which becomes an infinitesimal rectangle in the new coordinates
q1, q2 formed by the two incremental vectors

dr1 = r(q1+ dq1, q2)− r(q1, q2)= ∂r
∂q1

dq1,

dr2 = r(q1, q2+ dq2)− r(q1, q2)= ∂r
∂q2

dq2, (2.14)

whose area is thez-component of their cross product, or

dx dy = dr1 × dr2
∣∣
z
=
[
∂x

∂q1

∂y

∂q2
− ∂x

∂q2

∂y

∂q1

]
dq1dq2

=
∣∣∣∣∣
∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

∣∣∣∣∣dq1dq2. (2.15)

The transformation coefficient in determinant form is called theJacobian.
Similarly, the volume elementdx dy dz becomes the triple scalar product of the three in-

finitesimal displacement vectorsdri = dqi
∂r
∂qi

along theqi directionsq̂i, which, according
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to Section 1.5, takes on the form

dx dy dz=

∣∣∣∣∣∣∣
∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

∣∣∣∣∣∣∣dq1dq2dq3. (2.16)

Here the determinant is also called the Jacobian, and so on in higher dimensions.
For orthogonal coordinates the Jacobians simplify to products of the orthogonal vec-

tors in Eq. (2.9). It follows that they are just products of thehi ; for example, the volume
Jacobian becomes

h1h2h3(q̂1× q̂2) · q̂3= h1h2h3,

and so on.

Example 2.1.1 JACOBIANS FOR POLAR COORDINATES

Let us illustrate the transformation of the Cartesian two-dimensional volume elementdx dy

to polar coordinatesρ,ϕ, with x = ρ cosϕ, y = ρ sinϕ. (See also Section 2.4.) Here,

dxdy =
∣∣∣∣∣
∂x
∂ρ

∂x
∂ϕ

∂y
∂ρ

∂y
∂ϕ

∣∣∣∣∣dρ dϕ =
∣∣∣∣cosϕ −ρ sinϕ
sinϕ ρ cosϕ

∣∣∣∣dρ dϕ = ρ dρ dϕ.

Similarly, in spherical coordinates (see Section 2.5) we get, fromx = r sinθ cosϕ, y =
r sinθ sinϕ, z= r cosθ , the Jacobian

J =

∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ

∣∣∣∣∣∣∣=
∣∣∣∣∣∣
sinθ cosϕ r cosθ cosϕ −r sinθ sinϕ
sinθ sinϕ r cosθ sinϕ r sinθ cosϕ

cosθ −r sinθ 0

∣∣∣∣∣∣
= cosθ

∣∣∣∣ r cosθ cosϕ −r sinθ sinϕ
r cosθ sinϕ r sinθ cosϕ

∣∣∣∣+ r sinθ

∣∣∣∣sinθ cosϕ −r sinθ sinϕ
sinθ sinϕ r sinθ cosϕ

∣∣∣∣
= r2(cos2 θ sinθ + sin3 θ

)= r2 sinθ

by expanding the determinant along the third line. Hence the volume element becomes
dx dy dz= r2dr sinθ dθ dϕ. The volume integral can be written as∫

f (x, y, z) dx dy dz=
∫

f
(
x(r, θ,ϕ), y(r, θ,ϕ), z(r, θ,ϕ)

)
r2dr sinθ dθ dϕ. �

In summary, we have developed the general formalism for vector analysis in orthogonal
curvilinear coordinates in R3. For most applications, locally orthogonal coordinates can
be chosen for which surface and volume elements in multiple integrals are products of line
elements. For the general nonorthogonal case, Jacobian determinants apply.
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Exercises

2.1.1 Show that limiting our attention to orthogonal coordinate systems implies thatgij = 0
for i 
= j (Eq. (2.7)).
Hint. Construct a triangle with sidesds1, ds2, andds2. Equation (2.9) must hold regard-
less of whethergij = 0. Then compareds2 from Eq. (2.5) with a calculation using the
law of cosines. Show that cosθ12= g12/

√
g11g22.

2.1.2 In the spherical polar coordinate system,q1 = r , q2 = θ , q3 = ϕ. The transformation
equations corresponding to Eq. (2.1) are

x = r sinθ cosϕ, y = r sinθ sinϕ, z= r cosθ.

(a) Calculate the spherical polar coordinate scale factors:hr , hθ , andhϕ .
(b) Check your calculated scale factors by the relationdsi = hi dqi .

2.1.3 Theu-, v-, z-coordinate system frequently used in electrostatics and in hydrodynamics
is defined by

xy = u, x2− y2= v, z= z.

Thisu-, v-, z-system is orthogonal.

(a) In words, describe briefly the nature of each of the three families of coordinate
surfaces.

(b) Sketch the system in thexy-plane showing the intersections of surfaces of constant
u and surfaces of constantv with thexy-plane.

(c) Indicate the directions of the unit vectorû andv̂ in all four quadrants.
(d) Finally, is thisu-, v-, z-system right-handed(û× v̂=+ẑ) or left-handed(û× v̂=

−ẑ)?

2.1.4 The elliptic cylindrical coordinate system consists of three families of surfaces:

1)
x2

a2 cosh2u
+ y2

a2 sinh2u
= 1; 2)

x2

a2 cos2 v
− y2

a2 sin2 v
= 1; 3) z= z.

Sketch the coordinate surfacesu= constant andv = constant as they intersect the first
quadrant of thexy-plane. Show the unit vectorŝu andv̂. The range ofu is 0� u <∞.
The range ofv is 0� v � 2π .

2.1.5 A two-dimensional orthogonal system is described by the coordinatesq1 andq2. Show
that the Jacobian

J

(
x, y

q1, q2

)
≡ ∂(x, y)

∂(q1, q2)
≡ ∂x

∂q1

∂y

∂q2
− ∂x

∂q2

∂y

∂q1
= h1h2

is in agreement with Eq. (2.10).
Hint. It’s easier to work with the square of each side of this equation.
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2.1.6 In Minkowski space we definex1= x, x2= y, x3= z, andx0= ct . This is done so that
the metric interval becomesds2 = dx2

0 –dx2
1 –dx2

2 –dx2
3 (with c = velocity of light).

Show that the metric in Minkowski space is

(gij )=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

We use Minkowski space in Sections 4.5 and 4.6 for describing Lorentz transformations.

2.2 DIFFERENTIAL VECTOR OPERATORS

We return to our restriction to orthogonal coordinate systems.

Gradient

The starting point for developing the gradient, divergence, and curl operators in curvilinear
coordinates is the geometric interpretation of the gradient as the vector having the mag-
nitude and direction of the maximum space rate of change (compare Section 1.6). From
this interpretation the component of∇ψ(q1, q2, q3) in the direction normal to the family
of surfacesq1= constant is given by3

q̂1 ·∇ψ =∇ψ |1= ∂ψ

∂s1
= 1

h1

∂ψ

∂q1
, (2.17)

since this is the rate of change ofψ for varyingq1, holdingq2 andq3 fixed. The quantity
ds1 is a differential length in the direction of increasingq1 (compare Eqs. (2.9)). In Sec-
tion 2.1 we introduced a unit vectorq̂1 to indicate this direction. By repeating Eq. (2.17)
for q2 and again forq3 and adding vectorially, we see that the gradient becomes

∇ψ(q1, q2, q3) = q̂1
∂ψ

∂s1
+ q̂2

∂ψ

∂s2
+ q̂3

∂ψ

∂s3

= q̂1
1

h1

∂ψ

∂q1
+ q̂2

1

h2

∂ψ

∂q2
+ q̂3

1

h3

∂ψ

∂q3

=
∑
i

q̂i

1

hi

∂ψ

∂qi
. (2.18)

Exercise 2.2.4 offers a mathematical alternative independent of this physical interpretation
of the gradient. The total variation of a function,

dψ =∇ψ · dr=
∑
i

1

hi

∂ψ

∂qi
dsi =

∑
i

∂ψ

∂qi
dqi

is consistent with Eq. (2.18), of course.

3Here the use ofϕ to label a function is avoided because it is conventional to use this symbol to denote an azimuthal coordinate.
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Divergence

The divergence operator may be obtained from the second definition (Eq. (1.98)) of Chap-
ter 1 or equivalently from Gauss’ theorem, Section 1.11. Let us use Eq. (1.98),

∇ ·V(q1, q2, q3)= lim∫
dτ→0

∫
V · dσ∫
dτ

, (2.19)

with a differential volumeh1h2h3dq1dq2dq3 (Fig. 2.1). Note that the positive directions
have been chosen so that(q̂1, q̂2, q̂3) form a right-handed set,̂q1× q̂2= q̂3.

The difference of area integrals for the two facesq1= constant is given by[
V1h2h3+ ∂

∂q1
(V1h2h3) dq1

]
dq2dq3− V1h2h3dq2dq3

= ∂

∂q1
(V1h2h3) dq1dq2dq3, (2.20)

exactly as in Sections 1.7 and 1.10.4 Here,Vi = V · q̂i is the projection ofV onto the
q̂i -direction. Adding in the similar results for the other two pairs of surfaces, we obtain∫

V(q1, q2, q3) · dσ

=
[

∂

∂q1
(V1h2h3)+ ∂

∂q2
(V2h3h1)+ ∂

∂q3
(V3h1h2)

]
dq1dq2dq3.

FIGURE 2.1 Curvilinear volume element.
4Since we take the limitdq1, dq2, dq3→ 0, the second- and higher-order derivatives will drop out.
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Now, using Eq. (2.19), division by our differential volume yields

∇ ·V(q1, q2, q3)= 1

h1h2h3

[
∂

∂q1
(V1h2h3)+ ∂

∂q2
(V2h3h1)+ ∂

∂q3
(V3h1h2)

]
. (2.21)

We may obtain the Laplacian by combining Eqs. (2.18) and (2.21), usingV =
∇ψ(q1, q2, q3). This leads to

∇ ·∇ψ(q1, q2, q3)

= 1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+ ∂

∂q2

(
h3h1

h2

∂ψ

∂q2

)
+ ∂

∂q3

(
h1h2

h3

∂ψ

∂q3

)]
. (2.22)

Curl

Finally, to develop∇ × V, let us apply Stokes’ theorem (Section 1.12) and, as with the
divergence, take the limit as the surface area becomes vanishingly small. Working on one
component at a time, we consider a differential surface element in the curvilinear surface
q1= constant. From ∫

s

∇×V · dσ = q̂1 · (∇×V)h2h3dq2dq3 (2.23)

(mean value theorem of integral calculus), Stokes’ theorem yields

q̂1 · (∇×V)h2h3dq2dq3=
∮

V · dr, (2.24)

with the line integral lying in the surfaceq1= constant. Following the loop (1, 2, 3, 4) of
Fig. 2.2, ∮

V(q1, q2, q3) · dr = V2h2dq2+
[
V3h3+ ∂

∂q2
(V3h3) dq2

]
dq3

−
[
V2h2+ ∂

∂q3
(V2h2)dq3

]
dq2− V3h3dq3

=
[

∂

∂q2
(h3V3)− ∂

∂q3
(h2V2)

]
dq2dq3. (2.25)

We pick up a positive sign when going in the positive direction on parts 1 and 2 and
a negative sign on parts 3 and 4 because here we are going in the negative direction.
(Higher-order terms in Maclaurin or Taylor expansions have been omitted. They will van-
ish in the limit as the surface becomes vanishingly small (dq2→ 0, dq3→ 0).)

From Eq. (2.24),

∇×V|1= 1

h2h3

[
∂

∂q2
(h3V3)− ∂

∂q3
(h2V2)

]
. (2.26)
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FIGURE 2.2 Curvilinear surface element withq1= constant.

The remaining two components of∇ ×V may be picked up by cyclic permutation of the
indices. As in Chapter 1, it is often convenient to write the curl in determinant form:

∇×V= 1

h1h2h3

∣∣∣∣∣∣∣∣∣
q̂1h1 q̂2h2 q̂3h3

∂

∂q1

∂

∂q2

∂

∂q3
h1V1 h2V2 h3V3

∣∣∣∣∣∣∣∣∣ . (2.27)

Remember that, because of the presence of the differential operators, this determinant must
be expanded from the top down. Note that this equation isnot identical with the form for
the cross product of two vectors, Eq. (2.13).∇ is not an ordinary vector; it is a vector
operator.

Our geometric interpretation of the gradient and the use of Gauss’ and Stokes’ theorems
(or integral definitions of divergence and curl) have enabled us to obtain these quantities
without having to differentiate the unit vectors q̂i . There exist alternate ways to deter-
mine grad, div, and curl based on direct differentiation of theq̂i . One approach resolves the
q̂i of a specific coordinate system into its Cartesian components (Exercises 2.4.1 and 2.5.1)
and differentiates this Cartesian form (Exercises 2.4.3 and 2.5.2). The point here is that the
derivatives of the Cartesian̂x, ŷ, and ẑ vanish sincêx, ŷ, and ẑ are constant in direction
as well as in magnitude. A second approach [L. J. Kijewski,Am. J. Phys. 33: 816 (1965)]
assumes the equality of∂2r/∂qi ∂qj and∂2r/∂qj ∂qi and develops the derivatives ofq̂i in
a general curvilinear form. Exercises 2.2.3 and 2.2.4 are based on this method.

Exercises

2.2.1 Develop arguments to show that dot and cross products (not involving∇) in orthogonal
curvilinear coordinates inR3 proceed, as in Cartesian coordinates,with no involvement
of scale factors.

2.2.2 With q̂1 a unit vector in the direction of increasingq1, show that
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(a) ∇ · q̂1= 1

h1h2h3

∂(h2h3)

∂q1

(b) ∇× q̂1= 1

h1

[
q̂2

1

h3

∂h1

∂q3
− q̂3

1

h2

∂h1

∂q2

]
.

Note that even thougĥq1 is a unit vector, its divergence and curldo not necessarily
vanish.

2.2.3 Show that the orthogonal unit vectorsq̂j may be defined by

q̂i = 1

hi

∂r
∂qi

. (a)

In particular, show that̂qi · q̂i = 1 leads to an expression forhi in agreement with
Eqs. (2.9).
Equation (a) may be taken as a starting point for deriving

∂q̂i

∂qj
= q̂j

1

hi

∂hj

∂qi
, i 
= j

and

∂q̂i

∂qi
=−

∑
j 
=i

q̂j

1

hj

∂hi

∂qj
.

2.2.4 Derive

∇ψ = q̂1
1

h1

∂ψ

∂q1
+ q̂2

1

h2

∂ψ

∂q2
+ q̂3

1

h3

∂ψ

∂q3

by direct application of Eq. (1.97),

∇ψ = lim∫
dτ→0

∫
ψ dσ∫
dτ

.

Hint. Evaluation of the surface integral will lead to terms like(h1h2h3)
−1(∂/∂q1) ×

(q̂1h2h3). The results listed in Exercise 2.2.3 will be helpful. Cancellation of unwanted
terms occurs when the contributions of all three pairs of surfaces are added together.

2.3 SPECIAL COORDINATE SYSTEMS: INTRODUCTION

There are at least 11 coordinate systems in which the three-dimensional Helmholtz equa-
tion can be separated into three ordinary differential equations. Some of these coordinate
systems have achieved prominence in the historical development of quantum mechanics.
Other systems, such as bipolar coordinates, satisfy special needs. Partly because the needs
are rather infrequent but mostly because the development of computers and efficient pro-
gramming techniques reduce the need for these coordinate systems, the discussion in this
chapter is limited to (1) Cartesian coordinates, (2) spherical polar coordinates, and (3) cir-
cular cylindrical coordinates. Specifications and details of the other coordinate systems
will be found in the first two editions of this work and in Additional Readings at the end of
this chapter (Morse and Feshbach, Margenau and Murphy).
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2.4 CIRCULAR CYLINDER COORDINATES

In the circular cylindrical coordinate system the three curvilinear coordinates(q1, q2, q3)

are relabeled(ρ,ϕ, z). We are usingρ for the perpendicular distance from thez-axis and
savingr for the distance from the origin. The limits onρ, ϕ andz are

0� ρ <∞, 0� ϕ � 2π, and −∞< z <∞.

Forρ = 0, ϕ is not well defined. The coordinate surfaces, shown in Fig. 2.3, are:

1. Right circular cylinders having thez-axis as a common axis,

ρ = (x2+ y2)1/2= constant.

2. Half-planes through thez-axis,

ϕ = tan−1
(
y

x

)
= constant.

3. Planes parallel to thexy-plane, as in the Cartesian system,

z= constant.

FIGURE 2.3 Circular cylinder coordinates.
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FIGURE 2.4 Circular cylindrical
coordinate unit vectors.

Inverting the preceding equations forρ andϕ (or going directly to Fig. 2.3), we obtain
the transformation relations

x = ρ cosϕ, y = ρ sinϕ, z= z. (2.28)

The z-axis remains unchanged. This is essentially a two-dimensional curvilinear system
with a Cartesianz-axis added on to form a three-dimensional system.

According to Eq. (2.5) or from the length elementsdsi , the scale factors are

h1= hρ = 1, h2= hϕ = ρ, h3= hz = 1. (2.29)

The unit vectorŝq1, q̂2, q̂3 are relabeled(ρ̂, ϕ̂, ẑ), as in Fig. 2.4. The unit vector̂ρ is normal
to the cylindrical surface, pointing in the direction of increasing radiusρ. The unit vector
ϕ̂ is tangential to the cylindrical surface, perpendicular to the half planeϕ = constant and
pointing in the direction of increasing azimuth angleϕ. The third unit vector,̂z, is the usual
Cartesian unit vector. They are mutually orthogonal,

ρ̂ · ϕ̂ = ϕ̂ · ẑ= ẑ · ρ̂ = 0,

and the coordinate vector and a general vectorV are expressed as

r= ρ̂ρ + ẑz, V= ρ̂Vρ + ϕ̂Vϕ + ẑVz.

A differential displacementdr may be written

dr = ρ̂ dsρ + ϕ̂ dsϕ + ẑdz

= ρ̂ dρ + ϕ̂ρ dϕ + ẑdz. (2.30)

Example 2.4.1 AREA LAW FOR PLANETARY MOTION

First we derive Kepler’s law in cylindrical coordinates, saying that the radius vector sweeps
out equal areas in equal time, from angular momentum conservation.
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We consider the sun at the origin as a source of thecentral gravitational forceF= f (r)r̂.
Then the orbital angular momentumL =mr× v of a planet of massm and velocityv is
conserved, because the torque

dL
dt
=m

dr
dt
× dr

dt
+ r×m

dv
dt
= r× F= f (r)

r
r× r= 0.

HenceL = const. Now we can choose thez-axis to lie along the direction of the orbital
angular momentum vector,L= Lẑ, and work in cylindrical coordinatesr= (ρ,ϕ, z)= ρρ̂

with z= 0. The planet moves in thexy-plane becauser andv are perpendicular toL. Thus,
we expand its velocity as follows:

v= dr
dt
= ρ̇ρ̂ + ρ

dρ̂

dt
.

From

ρ̂ = (cosϕ,sinϕ),
∂ρ̂

dϕ
= (−sinϕ,cosϕ)= ϕ̂,

we find thatdρ̂
dt
= dρ̂

dϕ
dϕ
dt
= ϕ̇ϕ̂ using the chain rule, sov= ρ̇ρ̂ + ρ

dρ̂
dt
= ρ̇ρ̂ + ρϕ̇ϕ̂. When

we substitute the expansions ofρ̂ andv in polar coordinates, we obtain

L=mρ × v=mρ(ρϕ̇)(ρ̂ × ϕ̂)=mρ2ϕ̇ẑ= constant.

The triangular area swept by the radius vectorρ in the timedt (area law), when inte-
grated over one revolution, is given by

A= 1

2

∫
ρ(ρ dϕ)= 1

2

∫
ρ2ϕ̇ dt = L

2m

∫
dt = Lτ

2m
, (2.31)

if we substitutemρ2ϕ̇ = L= const. Hereτ is the period, that is, the time for one revolution
of the planet in its orbit.

Kepler’s first law says that the orbit is an ellipse. Now we derive the orbit equation
ρ(ϕ) of the ellipse in polar coordinates, where in Fig. 2.5 the sun is at one focus, which is
the origin of our cylindrical coordinates. From the geometrical construction of the ellipse
we know thatρ′ + ρ = 2a, wherea is the major half-axis; we shall show that this is
equivalent to the conventional form of the ellipse equation. The distance between both foci
is 0< 2aε < 2a, where 0< ε < 1 is called the eccentricity of the ellipse. For a circleε = 0
because both foci coincide with the center. There is an angle, as shown in Fig. 2.5, where
the distancesρ′ = ρ = a are equal, and Pythagoras’ theorem applied to this right triangle

FIGURE 2.5 Ellipse in polar coordinates.
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givesb2+ a2ε2= a2. As a result,
√

1− ε2= b/a is the ratio of the minor half-axis (b) to
the major half-axis,a.

Now consider the triangle with the sides labeled byρ′, ρ, 2aε in Fig. 2.5 and angle
oppositeρ′ equal toπ − ϕ. Then, applying the law of cosines, gives

ρ′2= ρ2+ 4a2ε2+ 4ρaε cosϕ.

Now substitutingρ′ = 2a − ρ, cancelingρ2 on both sides and dividing by 4a yields

ρ(1+ ε cosϕ)= a
(
1− ε2)≡ p, (2.32)

theKepler orbit equation in polar coordinates.
Alternatively, we revert to Cartesian coordinates to find, from Eq. (2.32) withx =

ρ cosϕ, that

ρ2= x2+ y2= (p− xε)2= p2+ x2ε2− 2pxε,

so the familiar ellipse equation in Cartesian coordinates,

(
1− ε2)(x + pε

1− ε2

)2

+ y2= p2+ p2ε2

1− ε2
= p2

1− ε2
,

obtains. If we compare this result with the standard form of the ellipse,

(x − x0)
2

a2
+ y2

b2
= 1,

we confirm that

b= p√
1− ε2

= a
√

1− ε2, a = p

1− ε2
,

and that the distancex0 between the center and focus isaε, as shown in Fig. 2.5. �

The differential operations involving∇ follow from Eqs. (2.18), (2.21), (2.22), and
(2.27):

∇ψ(ρ,ϕ, z) = ρ̂
∂ψ

∂ρ
+ ϕ̂

1

ρ

∂ψ

∂ϕ
+ ẑ

∂ψ

∂z
, (2.33)

∇ ·V = 1

ρ

∂

∂ρ
(ρVρ)+ 1

ρ

∂Vϕ

∂ϕ
+ ∂Vz

∂z
, (2.34)

∇2ψ = 1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1

ρ2

∂2ψ

∂ϕ2
+ ∂2ψ

∂z2
, (2.35)

∇×V = 1

ρ

∣∣∣∣∣∣∣∣∣
ρ̂ ρϕ̂ ẑ

∂

∂ρ

∂

∂ϕ

∂

∂z
Vρ ρVϕ Vz

∣∣∣∣∣∣∣∣∣ . (2.36)
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Finally, for problems such as circular wave guides and cylindrical cavity resonators the
vector Laplacian∇2V resolved in circular cylindrical coordinates is

∇2V|ρ = ∇2Vρ − 1

ρ2
Vρ − 2

ρ2

∂Vϕ

∂ϕ
,

∇2V|ϕ = ∇2Vϕ − 1

ρ2
Vϕ + 2

ρ2

∂Vρ

∂ϕ
, (2.37)

∇2V|z = ∇2Vz,

which follow from Eq. (1.85). The basic reason for this particular form of thez-component
is that thez-axis is a Cartesian axis; that is,

∇2(ρ̂Vρ + ϕ̂Vϕ + ẑVz) = ∇2(ρ̂Vρ + ϕ̂Vϕ)+ ẑ∇2Vz

= ρ̂f (Vρ,Vϕ)+ ϕ̂g(Vρ,Vϕ)+ ẑ∇2Vz.

Finally, the operator∇2 operating on thêρ, ϕ̂ unit vectors stays in thêρϕ̂-plane.

Example 2.4.2 A NAVIER–STOKES TERM

The Navier–Stokes equations of hydrodynamics contain a nonlinear term

∇× [v× (∇× v)
]
,

wherev is the fluid velocity. For fluid flowing through a cylindrical pipe in thez-direction,

v= ẑv(ρ).

From Eq. (2.36),

∇× v = 1

ρ

∣∣∣∣∣∣∣∣∣
ρ̂ ρϕ̂ ẑ

∂

∂ρ

∂

∂ϕ

∂

∂z
0 0 v(ρ)

∣∣∣∣∣∣∣∣∣=−ϕ̂
∂v

∂ρ

v× (∇× v) =

∣∣∣∣∣∣∣∣
ρ̂ ϕ̂ ẑ
0 0 v

0 −∂v

∂ρ
0

∣∣∣∣∣∣∣∣= ρ̂v(ρ)
∂v

∂ρ
.

Finally,

∇× (v× (∇× v)
)= 1

ρ

∣∣∣∣∣∣∣∣∣∣

ρ̂ ρϕ̂ ẑ

∂

∂ρ

∂

∂ϕ

∂

∂z

v
∂v

∂ρ
0 0

∣∣∣∣∣∣∣∣∣∣
= 0,

so, for this particular case, the nonlinear term vanishes. �
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Exercises

2.4.1 Resolve the circular cylindrical unit vectors into their Cartesian components (Fig. 2.6).

ANS. ρ̂ = x̂ cosϕ + ŷ sinϕ,
ϕ̂ = −x̂ sinϕ + ŷ cosϕ,
ẑ = ẑ.

2.4.2 Resolve the Cartesian unit vectors into their circular cylindrical components (Fig. 2.6).

ANS. x̂ = ρ̂ cosϕ − ϕ̂ sinϕ,
ŷ = ρ̂ sinϕ + ϕ̂ cosϕ,
ẑ = ẑ.

2.4.3 From the results of Exercise 2.4.1 show that

∂ρ̂

∂ϕ
= ϕ̂,

∂ϕ̂

∂ϕ
=−ρ̂

and that all other first derivatives of the circular cylindrical unit vectors with respect to
the circular cylindrical coordinates vanish.

2.4.4 Compare∇ ·V (Eq. (2.34)) with the gradient operator

∇ = ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ ẑ

∂

∂z

(Eq. (2.33)) dotted intoV. Note that the differential operators of∇ differentiateboth
the unit vectors and the components ofV.
Hint. ϕ̂(1/ρ)(∂/∂ϕ) · ρ̂Vρ becomeŝϕ · 1

ρ
∂
∂ϕ

(ρ̂Vρ) and doesnot vanish.

2.4.5 (a) Show thatr= ρ̂ρ + ẑz.

FIGURE 2.6 Plane polar coordinates.
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(b) Working entirely in circular cylindrical coordinates, show that

∇ · r= 3 and ∇× r= 0.

2.4.6 (a) Show that the parity operation (reflection through the origin) on a point(ρ,ϕ, z)

relative tofixed x-, y-, z-axes consists of the transformation

ρ→ ρ, ϕ→ ϕ ± π, z→−z.
(b) Show thatρ̂ and ϕ̂ have odd parity (reversal of direction) and thatẑ has even

parity.
Note. The Cartesian unit vectorŝx, ŷ, andẑ remain constant.

2.4.7 A rigid body is rotating about a fixed axis with a constant angular velocityω. Takeω to
lie along thez-axis. Express the position vectorr in circular cylindrical coordinates and
using circular cylindrical coordinates,
(a) calculatev= ω× r, (b) calculate∇× v.

ANS. (a) v= ϕ̂ωρ,

(b) ∇× v= 2ω.

2.4.8 Find the circular cylindrical components of the velocity and acceleration of a moving
particle,

vρ = ρ̇, aρ = ρ̈ − ρϕ̇2,

vϕ = ρϕ̇, aϕ = ρϕ̈ + 2ρ̇ϕ̇,
vz = ż, az = z̈.

Hint.

r(t) = ρ̂(t)ρ(t)+ ẑz(t)

= [x̂ cosϕ(t)+ ŷ sinϕ(t)
]
ρ(t)+ ẑz(t).

Note. ρ̇ = dρ/dt , ρ̈ = d2ρ/dt2, and so on.

2.4.9 Solve Laplace’s equation,∇2ψ = 0, in cylindrical coordinates forψ =ψ(ρ).

ANS.ψ = k ln
ρ

ρ0
.

2.4.10 In right circular cylindrical coordinates a particular vector function is given by

V(ρ,ϕ)= ρ̂Vρ(ρ,ϕ)+ ϕ̂Vϕ(ρ,ϕ).

Show that∇×V has only az-component. Note that this result will hold for any vector
confined to a surfaceq3 = constant as long as the productsh1V1 andh2V2 are each
independent ofq3.

2.4.11 For the flow of an incompressible viscous fluid the Navier–Stokes equations lead to

−∇× (v× (∇× v)
)= η

ρ0
∇2(∇× v).

Hereη is the viscosity andρ0 is the density of the fluid. For axial flow in a cylindrical
pipe we take the velocityv to be

v= ẑv(ρ).



122 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

From Example 2.4.2,

∇× (v× (∇× v)
)= 0

for this choice ofv.
Show that

∇2(∇× v)= 0

leads to the differential equation

1

ρ

d

dρ

(
ρ
d2v

dρ2

)
− 1

ρ2

dv

dρ
= 0

and that this is satisfied by

v = v0+ a2ρ
2.

2.4.12 A conducting wire along thez-axis carries a currentI . The resulting magnetic vector
potential is given by

A= ẑ
µI

2π
ln

(
1

ρ

)
.

Show that the magnetic inductionB is given by

B= ϕ̂
µI

2πρ
.

2.4.13 A force is described by

F=−x̂
y

x2+ y2
+ ŷ

x

x2+ y2
.

(a) ExpressF in circular cylindrical coordinates.

Operating entirely in circular cylindrical coordinates for (b) and (c),

(b) calculate the curl ofF and
(c) calculate the work done byF in travers the unit circle once counterclockwise.
(d) How do you reconcile the results of (b) and (c)?

2.4.14 A transverse electromagnetic wave (TEM) in a coaxial waveguide has an electric field
E= E(ρ,ϕ)ei(kz−ωt) and a magnetic induction field ofB= B(ρ,ϕ)ei(kz−ωt). Since the
wave is transverse, neitherE norB has az component. The two fields satisfy thevector
Laplacian equation

∇2E(ρ,ϕ) = 0

∇2B(ρ,ϕ) = 0.

(a) Show thatE= ρ̂E0(a/ρ)e
i(kz−ωt) andB= ϕ̂B0(a/ρ)e

i(kz−ωt) are solutions. Here
a is the radius of the inner conductor andE0 andB0 are constant amplitudes.
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(b) Assuming a vacuum inside the waveguide, verify that Maxwell’s equations are
satisfied with

B0/E0= k/ω= µ0ε0(ω/k)= 1/c.

2.4.15 A calculation of the magnetohydrodynamic pinch effect involves the evaluation of
(B ·∇)B. If the magnetic inductionB is taken to beB= ϕ̂Bϕ(ρ), show that

(B ·∇)B=−ρ̂B2
ϕ/ρ.

2.4.16 The linear velocity of particles in a rigid body rotating with angular velocityω is given
by

v= ϕ̂ρω.

Integrate
∮

v · dλ around a circle in thexy-plane and verify that∮
v · dλ

area
=∇× v|z.

2.4.17 A proton of massm, charge+e, and (asymptotic) momentump = mv is incident on
a nucleus of charge+Ze at an impact parameterb. Determine the proton’s distance of
closest approach.

2.5 SPHERICAL POLAR COORDINATES

Relabeling(q1, q2, q3) as(r, θ,ϕ), we see that the spherical polar coordinate system con-
sists of the following:

1. Concentric spheres centered at the origin,

r = (x2+ y2+ z2)1/2= constant.

2. Right circular cones centered on thez-(polar) axis, vertices at the origin,

θ = arccos
z

(x2+ y2+ z2)1/2
= constant.

3. Half-planes through thez-(polar) axis,

ϕ = arctan
y

x
= constant.

By our arbitrary choice of definitions ofθ , the polar angle, andϕ, the azimuth angle, the
z-axis is singled out for special treatment. The transformation equations corresponding to
Eq. (2.1) are

x = r sinθ cosϕ, y = r sinθ sinϕ, z= r cosθ, (2.38)
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FIGURE 2.7 Spherical polar coordinate area
elements.

measuringθ from the positivez-axis andϕ in thexy-plane from the positivex-axis. The
ranges of values are 0� r <∞, 0 � θ � π , and 0� ϕ � 2π . At r = 0, θ andϕ are
undefined. From differentiation of Eq. (2.38),

h1 = hr = 1,

h2 = hθ = r, (2.39)

h3 = hϕ = r sinθ.

This gives a line element

dr= r̂dr + θ̂r dθ + ϕ̂r sinθ dϕ,

so

ds2= dr · dr= dr2+ r2dθ2+ r2 sin2 θ dϕ2,

the coordinates being obviously orthogonal. In this spherical coordinate system the area
element (forr = constant) is

dA= dσθϕ = r2 sinθ dθ dϕ, (2.40)

the light, unshaded area in Fig. 2.7. Integrating over the azimuthϕ, we find that the area
element becomes a ring of widthdθ ,

dAθ = 2πr2 sinθ dθ. (2.41)

This form will appear repeatedly in problems in spherical polar coordinates with azimuthal
symmetry, such as the scattering of an unpolarized beam of particles. By definition of solid
radians, or steradians, an element of solid angled� is given by

d�= dA

r2
= sinθ dθ dϕ. (2.42)
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FIGURE 2.8 Spherical polar coordinates.

Integrating over the entire spherical surface, we obtain∫
d�= 4π.

From Eq. (2.11) the volume element is

dτ = r2dr sinθ dθ dϕ = r2dr d�. (2.43)

The spherical polar coordinate unit vectors are shown in Fig. 2.8.
It must be emphasized thatthe unit vectors r̂, θ̂ , and ϕ̂ vary in direction as the angles

θ and ϕ vary. Specifically, theθ andϕ derivatives of these spherical polar coordinate unit
vectors do not vanish (Exercise 2.5.2). When differentiating vectors in spherical polar (or
in any non-Cartesian system), this variation of the unit vectors with position must not be
neglected. In terms of the fixed-direction Cartesian unit vectorsx̂, ŷ andẑ (cp. Eq. (2.38)),

r̂ = x̂ sinθ cosϕ + ŷ sinθ sinϕ + ẑ cosθ,

θ̂ = x̂ cosθ cosϕ + ŷ cosθ sinϕ − ẑ sinθ = ∂ r̂
∂θ

, (2.44)

ϕ̂ = −x̂ sinϕ + ŷ cosϕ = 1

sinθ

∂ r̂
∂ϕ

,

which follow from

0= ∂ r̂2

∂θ
= 2r̂ · ∂ r̂

∂θ
, 0= ∂ r̂2

∂ϕ
= 2r̂ · ∂ r̂

∂ϕ
.
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Note that Exercise 2.5.5 gives the inverse transformation and that a given vector can
now be expressed in a number of different (but equivalent) ways. For instance, the position
vectorr may be written

r = r̂r = r̂
(
x2+ y2+ z2)1/2

= x̂x + ŷy + ẑz

= x̂r sinθ cosϕ + ŷr sinθ sinϕ + ẑr cosθ. (2.45)

Select the form that is most useful for your particular problem.
From Section 2.2, relabeling the curvilinear coordinate unit vectorsq̂1, q̂2, andq̂3 asr̂,

θ̂ , andϕ̂ gives

∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ ϕ̂

1

r sinθ

∂ψ

∂ϕ
, (2.46)

∇ ·V = 1

r2 sinθ

[
sinθ

∂

∂r
(r2Vr)+ r

∂

∂θ
(sinθVθ )+ r

∂Vϕ

∂ϕ

]
, (2.47)

∇ ·∇ψ = 1

r2 sinθ

[
sinθ

∂

∂r

(
r2∂ψ

∂r

)
+ ∂

∂θ

(
sinθ

∂ψ

∂θ

)
+ 1

sinθ

∂2ψ

∂ϕ2

]
, (2.48)

∇×V = 1

r2 sinθ

∣∣∣∣∣∣∣∣∣
r̂ r θ̂ r sinθ ϕ̂

∂

∂r

∂

∂θ

∂

∂ϕ
Vr rVθ r sinθVϕ

∣∣∣∣∣∣∣∣∣ . (2.49)

Occasionally, the vector Laplacian∇2V is needed in spherical polar coordinates. It is
best obtained by using the vector identity (Eq. (1.85)) of Chapter 1. For reference

∇2V|r =
(
− 2

r2
+ 2

r

∂

∂r
+ ∂2

∂r2
+ cosθ

r2 sinθ

∂

∂θ
+ 1

r2

∂2

∂θ2
+ 1

r2 sin2 θ

∂2

∂ϕ2

)
Vr

+
(
− 2

r2

∂

∂θ
− 2 cosθ

r2 sinθ

)
Vθ +

(
− 2

r2 sinθ

∂

∂ϕ

)
Vϕ

= ∇2Vr − 2

r2
Vr − 2

r2

∂Vθ

∂θ
− 2 cosθ

r2 sinθ
Vθ − 2

r2 sinθ

∂Vϕ

∂ϕ
, (2.50)

∇2V|θ = ∇2Vθ − 1

r2 sin2 θ
Vθ + 2

r2

∂Vr

∂θ
− 2 cosθ

r2 sin2 θ

∂Vϕ

∂ϕ
, (2.51)

∇2V|ϕ = ∇2Vϕ − 1

r2 sin2 θ
Vϕ + 2

r2 sinθ

∂Vr

∂ϕ
+ 2 cosθ

r2 sin2 θ

∂Vθ

∂ϕ
. (2.52)

These expressions for the components of∇2V are undeniably messy, but sometimes they
are needed.
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Example 2.5.1 ∇, ∇ · , ∇× FOR A CENTRAL FORCE

Using Eqs. (2.46) to (2.49), we can reproduce by inspection some of the results derived in
Chapter 1 by laborious application of Cartesian coordinates.

From Eq. (2.46),

∇f (r) = r̂
df

dr
,

∇rn = r̂nrn−1.

(2.53)

For the Coulomb potentialV = Ze/(4πε0r), the electric field isE=−∇V = Ze

4πε0r
2 r̂.

From Eq. (2.47),

∇ · r̂f (r) = 2

r
f (r)+ df

dr
,

∇ · r̂rn = (n+ 2)rn−1.

(2.54)

For r > 0 the charge density of the electric field of the Coulomb potential isρ =∇ · E=
Ze

4πε0
∇ · r̂

r2 = 0 becausen=−2.
From Eq. (2.48),

∇2f (r) = 2

r

df

dr
+ d2f

dr2
, (2.55)

∇2rn = n(n+ 1)rn−2, (2.56)

in contrast to the ordinary radial second derivative ofrn involving n− 1 instead ofn+ 1.
Finally, from Eq. (2.49),

∇× r̂f (r)= 0. (2.57)

�

Example 2.5.2 MAGNETIC VECTOR POTENTIAL

The computation of the magnetic vector potential of a single current loop in thexy-plane
uses Oersted’s law,∇×H= J, in conjunction withµ0H= B=∇×A (see Examples 1.9.2
and 1.12.1), and involves the evaluation of

µ0J=∇× [∇× ϕ̂Aϕ(r, θ)
]
.

In spherical polar coordinates this reduces to

µ0J = ∇× 1

r2 sinθ

∣∣∣∣∣∣∣∣∣
r̂ r θ̂ r sinθ ϕ̂

∂

∂r

∂

∂θ

∂

∂ϕ
0 0 r sinθAϕ(r, θ)

∣∣∣∣∣∣∣∣∣
= ∇× 1

r2 sinθ

[
r̂
∂

∂θ
(r sinθAϕ)− r θ̂

∂

∂r
(r sinθAϕ)

]
.



128 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

Taking the curl a second time, we obtain

µ0J= 1

r2 sinθ

∣∣∣∣∣∣∣∣∣∣
r̂ r θ̂ r sinθ ϕ̂

∂

∂r

∂

∂θ

∂

∂ϕ
1

r2 sinθ

∂

∂θ
(r sinθAϕ) − 1

r sinθ

∂

∂r
(r sinθAϕ) 0

∣∣∣∣∣∣∣∣∣∣
.

By expanding the determinant along the top row, we have

µ0J = −ϕ̂

{
1

r

∂2

∂r2
(rAϕ)+ 1

r2

∂

∂θ

[
1

sinθ

∂

∂θ
(sinθAϕ)

]}
= −ϕ̂

[
∇2Aϕ(r, θ)− 1

r2 sin2 θ
Aϕ(r, θ)

]
. (2.58)

�

Exercises

2.5.1 Express the spherical polar unit vectors in Cartesian unit vectors.

ANS. r̂ = x̂ sinθ cosϕ + ŷ sinθ sinϕ + ẑ cosθ,
θ̂ = x̂ cosθ cosϕ + ŷ cosθ sinϕ − ẑ sinθ,
ϕ̂ = −x̂ sinϕ + ŷ cosϕ.

2.5.2 (a) From the results of Exercise 2.5.1, calculate the partial derivatives ofr̂, θ̂ , andϕ̂

with respect tor , θ , andϕ.
(b) With ∇ given by

r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sinθ

∂

∂ϕ

(greatest space rate of change), use the results of part (a) to calculate∇ ·∇ψ . This
is an alternate derivation of the Laplacian.

Note. The derivatives of the left-hand∇ operate on the unit vectors of the right-hand∇
before the unit vectors are dotted together.

2.5.3 A rigid body is rotating about a fixed axis with a constant angular velocityω. Takeω to
be along thez-axis. Using spherical polar coordinates,

(a) Calculate

v= ω× r.

(b) Calculate

∇× v.

ANS. (a) v= ϕ̂ωr sinθ,
(b) ∇× v= 2ω.
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2.5.4 The coordinate system(x, y, z) is rotated through an angle� counterclockwise about an
axis defined by the unit vectorn into system(x′, y′, z′). In terms of the new coordinates
the radius vector becomes

r′ = r cos�+ r× n sin�+ n(n · r)(1− cos�).

(a) Derive this expression from geometric considerations.
(b) Show that it reduces as expected forn= ẑ. The answer, in matrix form, appears in

Eq. (3.90).
(c) Verify thatr ′2= r2.

2.5.5 Resolve the Cartesian unit vectors into their spherical polar components:

x̂ = r̂ sinθ cosϕ + θ̂ cosθ cosϕ − ϕ̂ sinϕ,

ŷ = r̂ sinθ sinϕ + θ̂ cosθ sinϕ + ϕ̂ cosϕ,

ẑ = r̂ cosθ − θ̂ sinθ.

2.5.6 The direction of one vector is given by the anglesθ1 andϕ1. For a second vector the
corresponding angles areθ2 andϕ2. Show that the cosine of the included angleγ is
given by

cosγ = cosθ1 cosθ2+ sinθ1 sinθ2 cos(ϕ1− ϕ2).

See Fig. 12.15.

2.5.7 A certain vectorV has no radial component. Its curl has no tangential components.
What does this imply about the radial dependence of the tangential components ofV?

2.5.8 Modern physics lays great stress on the property of parity — whether a quantity remains
invariant or changes sign under an inversion of the coordinate system. In Cartesian
coordinates this meansx→−x, y→−y, andz→−z.

(a) Show that the inversion (reflection through the origin) of a point(r, θ,ϕ) relative
to fixed x-, y-, z-axes consists of the transformation

r→ r, θ→ π − θ, ϕ→ ϕ ± π.

(b) Show that̂r andϕ̂ have odd parity (reversal of direction) and thatθ̂ has even parity.

2.5.9 With A any vector,

A ·∇r=A.

(a) Verify this result in Cartesian coordinates.
(b) Verify this result using spherical polar coordinates. (Equation (2.46) provides∇.)
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2.5.10 Find the spherical coordinate components of the velocity and acceleration of a moving
particle:

vr = ṙ ,

vθ = rθ̇ ,

vϕ = r sinθϕ̇,

ar = r̈ − rθ̇2− r sin2 θϕ̇2,

aθ = rθ̈ + 2ṙ θ̇ − r sinθ cosθϕ̇2,

aϕ = r sinθϕ̈ + 2ṙ sinθϕ̇ + 2r cosθ θ̇ ϕ̇.

Hint.

r(t) = r̂(t)r(t)

= [x̂ sinθ(t)cosϕ(t)+ ŷ sinθ(t)sinϕ(t)+ ẑ cosθ(t)
]
r(t).

Note. Using the Lagrangian techniques of Section 17.3, we may obtain these results
somewhat more elegantly. The dot inṙ , θ̇ , ϕ̇ means time derivative,̇r = dr/dt, θ̇ =
dθ/dt, ϕ̇ = dϕ/dt . The notation was originated by Newton.

2.5.11 A particlem moves in response to a central force according to Newton’s second law,

mr̈= r̂f (r).

Show thatr × ṙ = c, a constant, and that the geometric interpretation of this leads to
Kepler’s second law.

2.5.12 Express∂/∂x, ∂/∂y, ∂/∂z in spherical polar coordinates.

ANS.
∂

∂x
= sinθ cosϕ

∂

∂r
+ cosθ cosϕ

1

r

∂

∂θ
− sinϕ

r sinθ

∂

∂ϕ
,

∂

∂y
= sinθ sinϕ

∂

∂r
+ cosθ sinϕ

1

r

∂

∂θ
+ cosϕ

r sinθ

∂

∂ϕ
,

∂

∂z
= cosθ

∂

∂r
− sinθ

1

r

∂

∂θ
.

Hint. Equate∇xyz and∇rθϕ .

2.5.13 From Exercise 2.5.12 show that

−i
(
x
∂

∂y
− y

∂

∂x

)
=−i ∂

∂ϕ
.

This is the quantum mechanical operator corresponding to thez-component of orbital
angular momentum.

2.5.14 With the quantum mechanical orbital angular momentum operator defined asL =
−i(r×∇), show that

(a) Lx + iLy = eiϕ
(

∂

∂θ
+ i cotθ

∂

∂ϕ

)
,
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(b) Lx − iLy =−e−iϕ
(

∂

∂θ
− i cotθ

∂

∂ϕ

)
.

(These are the raising and lowering operators of Section 4.3.)

2.5.15 Verify that L × L = iL in spherical polar coordinates.L = −i(r × ∇), the quantum
mechanical orbital angular momentum operator.
Hint. Use spherical polar coordinates forL but Cartesian components for the cross
product.

2.5.16 (a) From Eq. (2.46) show that

L=−i(r×∇)= i

(
θ̂

1

sinθ

∂

∂ϕ
− ϕ̂

∂

∂θ

)
.

(b) Resolvingθ̂ andϕ̂ into Cartesian components, determineLx , Ly , andLz in terms
of θ , ϕ, and their derivatives.

(c) FromL2= L2
x +L2

y +L2
z show that

L2 = − 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2

= −r2∇2+ ∂

∂r

(
r2 ∂

∂r

)
.

This latter identity is useful in relating orbital angular momentum and Legendre’s dif-
ferential equation, Exercise 9.3.8.

2.5.17 With L=−ir×∇, verify the operator identities

(a) ∇ = r̂
∂

∂r
− i

r×L
r2

,

(b) r∇2−∇
(

1+ r
∂

∂r

)
= i∇×L.

2.5.18 Show that the following three forms (spherical coordinates) of∇2ψ(r) are equivalent:

(a)
1

r2

d

dr

[
r2dψ(r)

dr

]
; (b)

1

r

d2

dr2

[
rψ(r)

]
; (c)

d2ψ(r)

dr2
+ 2

r

dψ(r)

dr
.

The second form is particularly convenient in establishing a correspondence between
spherical polar and Cartesian descriptions of a problem.

2.5.19 One model of the solar corona assumes that the steady-state equation of heat flow,

∇ · (k∇T )= 0,

is satisfied. Here,k, the thermal conductivity, is proportional toT 5/2. Assuming that
the temperatureT is proportional torn, show that the heat flow equation is satisfied by
T = T0(r0/r)

2/7.
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2.5.20 A certain force field is given by

F= r̂
2P cosθ

r3
+ θ̂

P

r3
sinθ, r � P/2

(in spherical polar coordinates).

(a) Examine∇× F to see if a potential exists.
(b) Calculate

∮
F · dλ for a unit circle in the planeθ = π/2. What does this indicate

about the force being conservative or nonconservative?
(c) If you believe thatF may be described byF = −∇ψ , find ψ . Otherwise simply

state that no acceptable potential exists.

2.5.21 (a) Show thatA=−ϕ̂ cotθ/r is a solution of∇×A= r̂/r2.
(b) Show that this spherical polar coordinate solution agrees with the solution given

for Exercise 1.13.6:

A= x̂
yz

r(x2+ y2)
− ŷ

xz

r(x2+ y2)
.

Note that the solution diverges forθ = 0,π corresponding tox, y = 0.
(c) Finally, show thatA=−θ̂ϕ sinθ/r is a solution. Note that although this solution

does not diverge(r 
= 0), it is no longer single-valued for all possible azimuth
angles.

2.5.22 A magnetic vector potential is given by

A= µ0

4π

m× r
r3

.

Show that this leads to the magnetic inductionB of a point magnetic dipole with dipole
momentm.

ANS. for m = ẑm,

∇×A = r̂
µ0

4π

2mcosθ

r3
+ θ̂

µ0

4π

msinθ

r3
.

Compare Eqs. (12.133) and (12.134)

2.5.23 At large distances from its source, electric dipole radiation has fields

E= aE sinθ
ei(kr−ωt)

r
θ̂ , B= aB sinθ

ei(kr−ωt)

r
ϕ̂.

Show that Maxwell’s equations

∇×E=−∂B
∂t

and ∇×B= ε0µ0
∂E
∂t

are satisfied, if we take

aE

aB
= ω

k
= c= (ε0µ0)

−1/2.

Hint. Sincer is large, terms of orderr−2 may be dropped.
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2.5.24 The magnetic vector potential for a uniformly charged rotating spherical shell is

A=

ϕ̂
µ0a

4σω

3
· sinθ

r2
, r > a

ϕ̂
µ0aσω

3
· r cosθ, r < a.

(a = radius of spherical shell,σ = surface charge density, andω = angular velocity.)
Find the magnetic inductionB=∇×A.

ANS. Br(r, θ) = 2µ0a
4σω

3
· cosθ

r3
, r > a,

Bθ (r, θ) = µ0a
4σω

3
· sinθ

r3
, r > a,

B = ẑ
2µ0aσω

3
, r < a.

2.5.25 (a) Explain why∇2 in plane polar coordinates follows from∇2 in circular cylindrical
coordinates withz= constant.

(b) Explain why taking∇2 in spherical polar coordinates and restrictingθ toπ/2 does
not lead to the plane polar form of∇.

Note.

∇2(ρ,ϕ)= ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2
.

2.6 TENSOR ANALYSIS

Introduction, Definitions

Tensors are important in many areas of physics, including general relativity and electrody-
namics. Scalars and vectors are special cases of tensors. In Chapter 1, a quantity that did not
change under rotations of the coordinate system in three-dimensional space, an invariant,
was labeled a scalar. Ascalar is specified by one real number and is atensor of rank 0.
A quantity whose components transformed under rotations like those of the distance of a
point from a chosen origin (Eq. (1.9), Section 1.2) was called a vector. The transformation
of the components of the vector under a rotation of the coordinates preserves the vector as
a geometric entity (such as an arrow in space), independent of the orientation of the refer-
ence frame. In three-dimensional space, avector is specified by 3= 31 real numbers, for
example, its Cartesian components, and is atensor of rank 1. A tensor of rank n has 3n

components that transform in a definite way.5 This transformation philosophy is of central
importance for tensor analysis and conforms with the mathematician’s concept of vector
and vector (or linear) space and the physicist’s notion that physical observables must not
depend on the choice of coordinate frames. There is a physical basis for such a philosophy:
We describe the physical world by mathematics, but any physical predictions we make

5In N -dimensional space a tensor of rankn hasNn components.
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must be independent of our mathematical conventions, such as a coordinate system with
its arbitrary origin and orientation of its axes.

There is a possible ambiguity in the transformation law of a vector

A′i =
∑
j

aijAj , (2.59)

in whichaij is the cosine of the angle between thex′i -axis and thexj -axis.
If we start with a differential distance vectordr, then, takingdx′i to be a function of the

unprimed variables,

dx′i =
∑
j

∂x′i
∂xj

dxj (2.60)

by partial differentiation. If we set

aij = ∂x′i
∂xj

, (2.61)

Eqs. (2.59) and (2.60) are consistent. Any set of quantitiesAj transforming according to

A′ i =
∑
j

∂x′i
∂xj

Aj (2.62a)

is defined as acontravariant vector, whose indices we write assuperscript; this includes
the Cartesian coordinate vectorxi = xi from now on.

However, we have already encountered a slightly different type of vector transformation.
The gradient of a scalar∇ϕ, defined by

∇ϕ = x̂
∂ϕ

∂x1
+ ŷ

∂ϕ

∂x2
+ ẑ

∂ϕ

∂x3
(2.63)

(usingx1, x2, x3 for x, y, z), transforms as

∂ϕ′

∂x′ i
=
∑
j

∂ϕ

∂xj

∂xj

∂x′ i
, (2.64)

usingϕ = ϕ(x, y, z) = ϕ(x′, y′, z′) = ϕ′, ϕ defined as a scalar quantity. Notice that this
differs from Eq. (2.62) in that we have∂xj /∂x′ i instead of∂x′ i/∂xj . Equation (2.64)
is taken as the definition of acovariant vector, with the gradient as the prototype. The
covariant analog of Eq. (2.62a) is

A′i =
∑
j

∂xj

∂x′ i
Aj . (2.62b)

Only in Cartesian coordinates is

∂xj

∂x′ i
= ∂x′ i

∂xj
= aij (2.65)
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so that there no difference between contravariant and covariant transformations. In other
systems, Eq. (2.65) in general does not apply, and the distinction between contravariant
and covariant is real and must be observed. This is of prime importance in the curved
Riemannian space of general relativity.

In the remainder of this section the components of anycontravariant vector are denoted
by a superscript, Ai , whereas asubscript is used for the components of acovariant
vectorAi .6

Definition of Tensors of Rank 2

Now we proceed to definecontravariant, mixed, and covariant tensors of rank 2 by the
following equations for their components under coordinate transformations:

A′ij =
∑
kl

∂x′ i

∂xk

∂x′ j

∂xl
Akl,

B ′ i j =
∑
kl

∂x′ i

∂xk

∂xl

∂x′ j
Bk

l, (2.66)

C′ij =
∑
kl

∂xk

∂x′ i
∂xl

∂x′ j
Ckl.

Clearly, the rank goes as the number of partial derivatives (or direction cosines) in the de-
finition: 0 for a scalar, 1 for a vector, 2 for a second-rank tensor, and so on. Each index
(subscript or superscript) ranges over the number of dimensions of the space. The number
of indices (equal to the rank of tensor) is independent of the dimensions of the space. We
see thatAkl is contravariant with respect to both indices,Ckl is covariant with respect to
both indices, andBk

l transforms contravariantly with respect to the first indexk but covari-
antly with respect to the second indexl. Once again, if we are using Cartesian coordinates,
all three forms of the tensors of second rank contravariant, mixed, and covariant are — the
same.

As with the components of a vector, the transformation laws for the components of a
tensor, Eq. (2.66), yield entities (and properties) that are independent of the choice of ref-
erence frame. This is what makes tensor analysis important in physics. The independence
of reference frame (invariance) is ideal for expressing and investigating universal physical
laws.

The second-rank tensorA (componentsAkl) may be conveniently represented by writing
out its components in a square array (3× 3 if we are in three-dimensional space):

A=
A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (2.67)

This does not mean that any square array of numbers or functions forms a tensor. The
essential condition is that the components transform according to Eq. (2.66).

6This means that the coordinates(x, y, z) are written(x1, x2, x3) sincer transforms as a contravariant vector. The ambiguity of
x2 representing bothx squared andy is the price we pay.



136 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

In the context of matrix analysis the preceding transformation equations become (for
Cartesian coordinates) an orthogonal similarity transformation; see Section 3.3. A geomet-
rical interpretation of a second-rank tensor (the inertia tensor) is developed in Section 3.5.

In summary, tensors are systems of components organized by one or more indices that
transform according to specific rules under a set of transformations. The number of in-
dices is called the rank of the tensor. If the transformations are coordinate rotations in
three-dimensional space, then tensor analysis amounts to what we did in the sections on
curvilinear coordinates and in Cartesian coordinates in Chapter 1. In four dimensions of
Minkowski space–time, the transformations are Lorentz transformations, and tensors of
rank 1 are called four-vectors.

Addition and Subtraction of Tensors

The addition and subtraction of tensors is defined in terms of the individual elements, just
as for vectors. If

A+B=C, (2.68)

then

Aij +Bij = Cij .

Of course,A andB must be tensors of the same rank and both expressed in a space of the
same number of dimensions.

Summation Convention

In tensor analysis it is customary to adopt a summation convention to put Eq. (2.66) and
subsequent tensor equations in a more compact form. As long as we are distinguishing
between contravariance and covariance, let us agree that when an index appears on one side
of an equation, once as a superscript and once as a subscript (except for the coordinates
where both are subscripts), we automatically sum over that index. Then we may write the
second expression in Eq. (2.66) as

B ′ i j = ∂x′ i

∂xk

∂xl

∂x′ j
Bk

l, (2.69)

with the summation of the right-hand side overk andl implied. This is Einstein’s summa-
tion convention.7 The indexi is superscript because it is associated with the contravariant
x′ i ; likewisej is subscript because it is related to the covariant gradient.

To illustrate the use of the summation convention and some of the techniques of tensor
analysis, let us show that the now-familiar Kronecker delta,δkl , is really a mixed tensor

7In this context∂x′ i /∂xk might better be written asai
k

and∂xl/∂x′ j asbl
j
.
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of rank 2,δkl .8 The question is: Doesδkl transform according to Eq. (2.66)? This is our
criterion for calling it a tensor. We have, using the summation convention,

δkl
∂x′ i

∂xk

∂xl

∂x′ j
= ∂x′ i

∂xk

∂xk

∂x′ j
(2.70)

by definition of the Kronecker delta. Now,

∂x′ i

∂xk

∂xk

∂x′ j
= ∂x′ i

∂x′ j
(2.71)

by direct partial differentiation of the right-hand side (chain rule). However,x′ i andx′ j
are independent coordinates, and therefore the variation of one with respect to the other
must be zero if they are different, unity if they coincide; that is,

∂x′ i

∂x′ j
= δ′ i j . (2.72)

Hence

δ′ i j = ∂x′ i

∂xk

∂xl

∂x′ j
δkl,

showing that theδkl are indeed the components of a mixed second-rank tensor. Notice that
this result is independent of the number of dimensions of our space. The reason for the
upper indexi and lower indexj is the same as in Eq. (2.69).

The Kronecker delta has one further interesting property. It has the same components in
all of our rotated coordinate systems and is therefore calledisotropic. In Section 2.9 we
shall meet a third-rank isotropic tensor and three fourth-rank isotropic tensors. No isotropic
first-rank tensor (vector) exists.

Symmetry–Antisymmetry

The order in which the indices appear in our description of a tensor is important. In general,
Amn is independent ofAnm, but there are some cases of special interest. If, for allm andn,

Amn =Anm, (2.73)

we call the tensorsymmetric. If, on the other hand,

Amn =−Anm, (2.74)

the tensor isantisymmetric. Clearly, every (second-rank) tensor can be resolved into sym-
metric and antisymmetric parts by the identity

Amn = 1
2

(
Amn +Anm

)+ 1
2

(
Amn −Anm

)
, (2.75)

the first term on the right being a symmetric tensor, the second, an antisymmetric tensor.
A similar resolution of functions into symmetric and antisymmetric parts is of extreme
importance to quantum mechanics.

8It is common practice to refer to a tensorA by specifying a typical component,Aij . As long as the reader refrains from writing
nonsense such asA=Aij , no harm is done.
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Spinors

It was once thought that the system of scalars, vectors, tensors (second-rank), and so on
formed a complete mathematical system, one that is adequate for describing a physics
independent of the choice of reference frame. But the universe and mathematical physics
are not that simple. In the realm of elementary particles, for example, spin zero particles9

(π mesons,α particles) may be described with scalars, spin 1 particles (deuterons) by
vectors, and spin 2 particles (gravitons) by tensors. This listing omits the most common
particles: electrons, protons, and neutrons, all with spin1

2. These particles are properly
described byspinors. A spinor is not a scalar, vector, or tensor. A brief introduction to
spinors in the context of group theory(J = 1/2) appears in Section 4.3.

Exercises

2.6.1 Show that if all the components of any tensor of any rank vanish in one particular
coordinate system, they vanish in all coordinate systems.
Note. This point takes on special importance in the four-dimensional curved space of
general relativity. If a quantity, expressed as a tensor, exists in one coordinate system, it
exists in all coordinate systems and is not just a consequence of achoice of a coordinate
system (as are centrifugal and Coriolis forces in Newtonian mechanics).

2.6.2 The components of tensorA are equal to the corresponding components of tensorB in
one particular coordinate system, denoted by the superscript 0; that is,

A0
ij = B0

ij .

Show that tensorA is equal to tensorB, Aij = Bij , in all coordinate systems.

2.6.3 The last three components of a four-dimensional vector vanish in each of two reference
frames. If the second reference frame is not merely a rotation of the first about thex0
axis, that is, if at least one of the coefficientsai0 (i = 1,2,3) 
= 0, show that the zeroth
component vanishes in all reference frames. Translated into relativistic mechanics this
means that if momentum is conserved in two Lorentz frames, then energy is conserved
in all Lorentz frames.

2.6.4 From an analysis of the behavior of a general second-rank tensor under 90◦ and 180◦
rotations about the coordinate axes, show that an isotropic second-rank tensor in three-
dimensional space must be a multiple ofδij .

2.6.5 The four-dimensional fourth-rank Riemann–Christoffel curvature tensor of general rel-
ativity, Riklm, satisfies the symmetry relations

Riklm =−Rikml =−Rkilm.

With the indices running from 0 to 3, show that the number of independent components
is reduced from 256 to 36 and that the condition

Riklm =Rlmik

9The particle spin is intrinsic angular momentum (in units ofh̄). It is distinct from classical, orbital angular momentum due to
motion.



2.7 Contraction, Direct Product 139

further reduces the number of independent components to 21. Finally, if the components
satisfy an identityRiklm + Rilmk + Rimkl = 0, show that the number of independent
components is reduced to 20.
Note. The final three-term identity furnishes new information only if all four indices are
different. Then it reduces the number of independent components by one-third.

2.6.6 Tiklm is antisymmetric with respect to all pairs of indices. How many independent com-
ponents has it (in three-dimensional space)?

2.7 CONTRACTION, DIRECT PRODUCT

Contraction

When dealing with vectors, we formed a scalar product (Section 1.3) by summing products
of corresponding components:

A ·B=AiBi (summation convention). (2.76)

The generalization of this expression in tensor analysis is a process known as contraction.
Two indices, one covariant and the other contravariant, are set equal to each other, and then
(as implied by the summation convention) we sum over this repeated index. For example,
let us contract the second-rank mixed tensorB ′ i j ,

B ′ i i = ∂x′ i

∂xk

∂xl

∂x′ i
Bk

l = ∂xl

∂xk
Bk

l (2.77)

using Eq. (2.71), and then by Eq. (2.72)

B ′ i i = δlkB
k
l = Bk

k. (2.78)

Our contracted second-rank mixed tensor is invariant and therefore a scalar.10 This is ex-
actly what we obtained in Section 1.3 for the dot product of two vectors and in Section 1.7
for the divergence of a vector. In general, the operation of contraction reduces the rank of
a tensor by 2. An example of the use of contraction appears in Chapter 4.

Direct Product

The components of a covariant vector (first-rank tensor)ai and those of a contravariant vec-
tor (first-rank tensor)bj may be multiplied component by component to give the general
termaib

j . This, by Eq. (2.66) is actually a second-rank tensor, for

a′ib′ j =
∂xk

∂x′ i
ak

∂x′ j

∂xl
bl = ∂xk

∂x′ i
∂x′ j

∂xl

(
akb

l
)
. (2.79)

Contracting, we obtain

a′ib′ i = akb
k, (2.80)

10In matrix analysis this scalar is thetrace of the matrix, Section 3.2.
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as in Eqs. (2.77) and (2.78), to give the regular scalar product.
The operation of adjoining two vectorsai andbj as in the last paragraph is known as

forming thedirect product. For the case of two vectors, the direct product is a tensor of
second rank. In this sense we may attach meaning to∇E, which was not defined within
the framework of vector analysis. In general, the direct product of two tensors is a tensor
of rank equal to the sum of the two initial ranks; that is,

Ai
jB

kl = Ci
j
kl, (2.81a)

whereCi
j
kl is a tensor of fourth rank. From Eqs. (2.66),

C′ i j kl = ∂x′ i

∂xm

∂xn

∂x′ j
∂x′k

∂xp

∂x′l

∂xq
Cm

n
pq. (2.81b)

The direct product is a technique for creating new, higher-rank tensors. Exer-
cise 2.7.1 is a form of the direct product in which the first factor is∇. Applications appear
in Section 4.6.

When T is an nth-rank Cartesian tensor,(∂/∂xi)Tjkl . . . , a component of∇T, is a
Cartesian tensor of rankn+ 1 (Exercise 2.7.1). However,(∂/∂xi)Tjkl . . . is not a tensor
in more general spaces. In non-Cartesian systems∂/∂x′ i will act on the partial derivatives
∂xp/∂x′q and destroy the simple tensor transformation relation (see Eq. (2.129)).

So far the distinction between a covariant transformation and a contravariant transfor-
mation has been maintained because it does exist in non-Euclidean space and because it is
of great importance in general relativity. In Sections 2.10 and 2.11 we shall develop differ-
ential relations for general tensors. Often, however, because of the simplification achieved,
we restrict ourselves to Cartesian tensors. As noted in Section 2.6, the distinction between
contravariance and covariance disappears.

Exercises

2.7.1 If T···i is a tensor of rankn, show that∂T···i/∂xj is a tensor of rankn+ 1 (Cartesian
coordinates).
Note. In non-Cartesian coordinate systems the coefficientsaij are, in general, functions
of the coordinates, and the simple derivative of a tensor of rankn is not a tensor except
in the special case ofn = 0. In this case the derivative does yield a covariant vector
(tensor of rank 1) by Eq. (2.64).

2.7.2 If Tijk··· is a tensor of rankn, show that
∑

j ∂Tijk···/∂xj is a tensor of rankn − 1
(Cartesian coordinates).

2.7.3 The operator

∇2− 1

c2

∂2

∂t2

may be written as

4∑
i=1

∂2

∂x2
i

,
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usingx4 = ict . This is the four-dimensional Laplacian, sometimes called the d’Alem-
bertian and denoted by�2. Show that it is ascalar operator, that is, is invariant under
Lorentz transformations.

2.8 QUOTIENT RULE

If Ai andBj are vectors, as seen in Section 2.7, we can easily show thatAiBj is a second-
rank tensor. Here we are concerned with a variety of inverse relations. Consider such equa-
tions as

KiAi = B (2.82a)

KijAj = Bi (2.82b)

KijAjk = Bik (2.82c)

KijklAij = Bkl (2.82d)

KijAk = Bijk. (2.82e)

Inline with our restriction to Cartesian systems, we write all indices as subscripts and,
unless specified otherwise, sum repeated indices.

In each of these expressionsA andB are known tensors of rank indicated by the number
of indices andA is arbitrary. In each caseK is an unknown quantity. We wish to establish
the transformation properties ofK . The quotient rule asserts that if the equation of interest
holds in all (rotated) Cartesian coordinate systems,K is a tensor of the indicated rank. The
importance in physical theory is that the quotient rule can establish the tensor nature of
quantities. Exercise 2.8.1 is a simple illustration of this. The quotient rule (Eq. (2.82b))
shows that the inertia matrix appearing in the angular momentum equationL= Iω, Sec-
tion 3.5, is a tensor.

In proving the quotient rule, we consider Eq. (2.82b) as a typical case. In our primed
coordinate system

K ′ijA′j = B ′i = aikBk, (2.83)

using the vector transformation properties ofB. Since the equation holds in all rotated
Cartesian coordinate systems,

aikBk = aik(KklAl). (2.84)

Now, transformingA back into the primed coordinate system11 (compare Eq. (2.62)), we
have

K ′ijA′j = aikKklajlA
′
j . (2.85)

Rearranging, we obtain

(K ′ij − aikajlKkl)A
′
j = 0. (2.86)

11Note the order of the indices of the direction cosineajl in this inverse transformation. We have

Al =
∑
j

∂xl

∂x′
j

A′j =
∑
j

ajlA
′
j .
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This must hold for each value of the indexi and for every primed coordinate system. Since
theA′j is arbitrary,12 we conclude

K ′ij = aikajlKkl, (2.87)

which is our definition of second-rank tensor.
The other equations may be treated similarly, giving rise to other forms of the quotient

rule. One minor pitfall should be noted: The quotient rule does not necessarily apply ifB

is zero. The transformation properties of zero are indeterminate.

Example 2.8.1 EQUATIONS OF MOTION AND FIELD EQUATIONS

In classical mechanics, Newton’s equations of motionmv̇ = F tell us on the basis of the
quotient rule that, if the mass is a scalar and the force a vector, then the accelerationa≡ v̇
is a vector. In other words, the vector character of the force as the driving term imposes its
vector character on the acceleration, provided the scale factorm is scalar.

The wave equation of electrodynamics∂2Aµ = Jµ involves the four-dimensional ver-

sion of the Laplacian∂2= ∂2

c2∂t2
−∇2, a Lorentz scalar, and the external four-vector current

Jµ as its driving term. From the quotient rule, we infer that the vector potentialAµ is a
four-vector as well. If the driving current is a four-vector, the vector potential must be of
rank 1 by the quotient rule. �

The quotient rule is a substitute for the illegal division of tensors.

Exercises

2.8.1 The double summationKijAiBj is invariant for any two vectorsAi andBj . Prove that
Kij is a second-rank tensor.
Note. In the formds2 (invariant)= gij dx

i dxj , this result shows that the matrixgij is
a tensor.

2.8.2 The equationKijAjk = Bik holds for all orientations of the coordinate system. IfA and
B are arbitrary second-rank tensors, show thatK is a second-rank tensor also.

2.8.3 The exponential in a plane wave is exp[i(k ·r−ωt)]. We recognizexµ = (ct, x1, x2, x3)

as a prototype vector in Minkowski space. Ifk ·r−ωt is a scalar under Lorentz transfor-
mations (Section 4.5), show thatkµ = (ω/c, k1, k2, k3) is a vector in Minkowski space.
Note. Multiplication by h̄ yields(E/c,p) as a vector in Minkowski space.

2.9 PSEUDOTENSORS, DUAL TENSORS

So far our coordinate transformations have been restricted to pure passive rotations. We
now consider the effect of reflections or inversions.

12We might, for instance, takeA′1 = 1 andA′m = 0 for m 
= 1. Then the equationK ′
i1 = aika1lKkl follows immediately. The

rest of Eq. (2.87) comes from other special choices of the arbitraryA′
j
.
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FIGURE 2.9 Inversion of Cartesian coordinates — polar vector.

If we have transformation coefficientsaij =−δij , then by Eq. (2.60)

xi =−x′ i , (2.88)

which is an inversion or parity transformation. Note that this transformation changes our
initial right-handed coordinate system into a left-handed coordinate system.13 Our proto-
type vectorr with components(x1, x2, x3) transforms to

r′ = (x′1, x′2, x′3)= (−x1,−x2,−x3).
This new vectorr′ has negative components, relative to the new transformed set of axes.
As shown in Fig. 2.9, reversing the directions of the coordinate axes and changing the
signs of the components givesr′ = r. The vector (an arrow in space) stays exactly as it
was before the transformation was carried out. The position vectorr and all other vectors
whose components behave this way (reversing sign with a reversal of the coordinate axes)
are calledpolar vectors and have odd parity.

A fundamental difference appears when we encounter a vector defined as the cross prod-
uct of two polar vectors. LetC = A × B, where bothA and B are polar vectors. From
Eq. (1.33), the components ofC are given by

C1=A2B3−A3B2 (2.89)

and so on. Now, when the coordinate axes are inverted,Ai →−A′ i , Bj →−B ′j , but from

its definitionCk →+C′k ; that is, our cross-product vector, vectorC, doesnot behave like
a polar vector under inversion. To distinguish, we label it a pseudovector or axial vector
(see Fig. 2.10) that has even parity. The termaxial vector is frequently used because these
cross products often arise from a description of rotation.

13This is an inversion of the coordinate system or coordinate axes, objects in the physical world remaining fixed.
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FIGURE 2.10 Inversion of Cartesian coordinates — axial vector.

Examples are

angular velocity, v= ω× r,

orbital angular momentum, L= r× p,

torque, force= F, N= r× F,

magnetic induction fieldB,
∂B
∂t
= −∇×E.

In v = ω × r, the axial vector is the angular velocityω, andr andv = dr/dt are polar
vectors. Clearly, axial vectors occur frequently in physics, although this fact is usually
not pointed out. In a right-handed coordinate system an axial vectorC has a sense of
rotation associated with it given by a right-hand rule (compare Section 1.4). In the inverted
left-handed system the sense of rotation is a left-handed rotation. This is indicated by the
curved arrows in Fig. 2.10.

The distinction between polar and axial vectors may also be illustrated by a reflection.
A polar vector reflects in a mirror like a real physical arrow, Fig. 2.11a. In Figs. 2.9 and 2.10
the coordinates are inverted; the physical world remains fixed. Here the coordinate axes
remain fixed; the world is reflected — as in a mirror in thexz-plane. Specifically, in this
representation we keep the axes fixed and associate a change of sign with the component
of the vector. For a mirror in thexz-plane,Py →−Py . We have

P = (Px,Py,Pz)

P′ = (Px,−Py,Pz) polar vector.

An axial vector such as a magnetic fieldH or a magnetic momentµ (= current× area
of current loop) behaves quite differently under reflection. Consider the magnetic field
H and magnetic momentµ to be produced by an electric charge moving in a circular path
(Exercise 5.8.4 and Example 12.5.3). Reflection reverses the sense of rotation of the charge.
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a

b

FIGURE 2.11 (a) Mirror in xz-plane; (b) mirror
in xz-plane.

The two current loops and the resulting magnetic moments are shown in Fig. 2.11b. We
have

µ = (µx,µy,µz)

µ′ = (−µx,µy,−µz) reflected axial vector.
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If we agree that the universe does not care whether we use a right- or left-handed coor-
dinate system, then it does not make sense to add an axial vector to a polar vector. In the
vector equationA = B, bothA andB are either polar vectors or axial vectors.14 Similar
restrictions apply to scalars and pseudoscalars and, in general, to the tensors and pseudoten-
sors considered subsequently.

Usually, pseudoscalars, pseudovectors, and pseudotensors will transform as

S′ = JS, C′i = JaijCj , A′ij = JaikajlAkl, (2.90)

whereJ is the determinant15 of the array of coefficientsamn, the Jacobian of the parity
transformation. In our inversion the Jacobian is

J =
∣∣∣∣∣∣
−1 0 0
0 −1 0
0 0 −1

∣∣∣∣∣∣=−1. (2.91)

For a reflection of one axis, thex-axis,

J =
∣∣∣∣∣∣
−1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣=−1, (2.92)

and again the JacobianJ =−1. On the other hand, for all pure rotations, the JacobianJ is
always+1. Rotation matrices discussed further in Section 3.3.

In Chapter 1 the triple scalar productS = A × B · C was shown to be a scalar (un-
der rotations). Now by considering the parity transformation given by Eq. (2.88), we see
that S →−S, proving that the triple scalar product is actually a pseudoscalar: This be-
havior was foreshadowed by the geometrical analogy of a volume. If all three parameters
of the volume — length, depth, and height — change from positive distances to negative
distances, the product of the three will be negative.

Levi-Civita Symbol

For future use it is convenient to introduce the three-dimensional Levi-Civita symbolεijk ,
defined by

ε123= ε231= ε312= 1,

ε132= ε213= ε321= −1, (2.93)

all otherεijk = 0.

Note thatεijk is antisymmetric with respect to all pairs of indices. Suppose now that we
have a third-rank pseudotensorδijk , which in one particular coordinate system is equal to
εijk . Then

δ′ijk = |a|aipajqakrεpqr (2.94)

14The big exception to this is in beta decay, weak interactions. Here the universe distinguishes between right- and left-handed
systems, and we add polar and axial vector interactions.
15Determinants are described in Section 3.1.
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by definition of pseudotensor. Now,

a1pa2qa3rεpqr = |a| (2.95)

by direct expansion of the determinant, showing thatδ′123= |a|2 = 1= ε123. Considering
the other possibilities one by one, we find

δ′ijk = εijk (2.96)

for rotations and reflections. Henceεijk is a pseudotensor.16,17 Furthermore, it is seen to
be an isotropic pseudotensor with the same components in all rotated Cartesian coordinate
systems.

Dual Tensors

With anyantisymmetric second-rank tensorC (in three-dimensional space) we may asso-
ciate a dual pseudovectorCi defined by

Ci = 1

2
εijkC

jk. (2.97)

Here the antisymmetricC may be written

C=
 0 C12 −C31

−C12 0 C23

C31 −C23 0

 . (2.98)

We know thatCi must transform as a vector under rotations from the double contraction of
the fifth-rank (pseudo) tensorεijkCmn but that it is really a pseudovector from the pseudo
nature ofεijk . Specifically, the components ofC are given by

(C1,C2,C3)=
(
C23,C31,C12). (2.99)

Notice the cyclic order of the indices that comes from the cyclic order of the components
of εijk . Eq. (2.99) means that our three-dimensional vector product may literally be taken
to be either a pseudovector or an antisymmetric second-rank tensor, depending on how we
choose to write it out.

If we take three (polar) vectorsA, B, andC, we may define the direct product

V ijk =AiBjCk. (2.100)

By an extension of the analysis of Section 2.6,V ijk is a tensor of third rank. The dual
quantity

V = 1

3!εijkV
ijk (2.101)

16The usefulness ofεpqr extends far beyond this section. For instance, the matricesMk of Exercise 3.2.16 are derived from
(Mr )pq =−iεpqr . Much of elementary vector analysis can be written in a very compact form by usingεijk and the identity of
Exercise 2.9.4 See A. A. Evett, Permutation symbol approach to elementary vector analysis.Am. J. Phys. 34: 503 (1966).
17The numerical value ofεpqr is given by the triple scalar product of coordinate unit vectors:

x̂p · x̂q × x̂r .

From this point of view each element ofεpqr is a pseudoscalar, but theεpqr collectively form a third-rank pseudotensor.
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is clearly a pseudoscalar. By expansion it is seen that

V =
∣∣∣∣∣∣
A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣ (2.102)

is our familiar triple scalar product.
For use in writing Maxwell’s equations in covariant form, Section 4.6, we want to extend

this dual vector analysis to four-dimensional space and, in particular, to indicate that the
four-dimensional volume elementdx0dx1dx2dx3 is a pseudoscalar.

We introduce the Levi-Civita symbolεijkl , the four-dimensional analog ofεijk . This
quantityεijkl is defined as totally antisymmetric in all four indices. If(ijkl) is an even
permutation18 of (0, 1, 2, 3), thenεijkl is defined as+1; if it is an odd permutation,
thenεijkl is−1, and 0 if any two indices are equal. The Levi-Civitaεijkl may be proved a
pseudotensor of rank 4 by analysis similar to that used for establishing the tensor nature of
εijk . Introducing the direct product of four vectors as fourth-rank tensor with components

Hijkl =AiBjCkDl, (2.103)

built from the polar vectorsA, B, C, andD, we may define the dual quantity

H = 1

4!εijklH
ijkl, (2.104)

a pseudoscalar due to the quadruple contraction with the pseudotensorεijkl . Now we let
A, B, C, andD be infinitesimal displacements along the four coordinate axes (Minkowski
space),

A = (dx0,0,0,0
)

B = (0, dx1,0,0
)
, and so on,

(2.105)

and

H = dx0dx1dx2dx3. (2.106)

The four-dimensional volume element is now identified as a pseudoscalar. We use this
result in Section 4.6. This result could have been expected from the results of the special
theory of relativity. The Lorentz–Fitzgerald contraction ofdx1dx2dx3 just balances the
time dilation ofdx0.

We slipped into this four-dimensional space as a simple mathematical extension of the
three-dimensional space and, indeed, we could just as easily have discussed 5-, 6-, orN -
dimensional space. This is typical of the power of the component analysis. Physically, this
four-dimensional space may be taken as Minkowski space,(

x0, x1, x2, x3)= (ct, x, y, z), (2.107)

wheret is time. This is the merger of space and time achieved in special relativity. The
transformations that describe the rotations in four-dimensional space are the Lorentz trans-
formations of special relativity. We encounter these Lorentz transformations in Section 4.6.

18A permutation is odd if it involves an odd number of interchanges of adjacent indices, such as(0 1 2 3)→ (0 2 1 3). Even
permutations arise from an even number of transpositions of adjacent indices. (Actually the wordadjacent is unnecessary.)
ε0123=+1.
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Irreducible Tensors

For some applications, particularly in the quantum theory of angular momentum, our Carte-
sian tensors are not particularly convenient. In mathematical language our general second-
rank tensorAij is reducible, which means that it can be decomposed into parts of lower
tensor rank. In fact, we have already done this. From Eq. (2.78),

A=Ai
i (2.108)

is a scalar quantity, the trace ofAij .19

The antisymmetric portion,

Bij = 1
2(Aij −Aji), (2.109)

has just been shown to be equivalent to a (pseudo) vector, or

Bij = Ck cyclic permutation ofi, j, k. (2.110)

By subtracting the scalarA and the vectorCk from our original tensor, we have an irre-
ducible, symmetric, zero-trace second-rank tensor,Sij , in which

Sij = 1
2(Aij +Aji)− 1

3Aδij , (2.111)

with five independent components. Then, finally, our original Cartesian tensor may be writ-
ten

Aij = 1
3Aδij +Ck + Sij . (2.112)

The three quantitiesA, Ck , andSij form spherical tensors of rank 0, 1, and 2, respec-
tively, transforming like the spherical harmonicsYM

L (Chapter 12) forL = 0, 1, and 2.
Further details of such spherical tensors and their uses will be found in Chapter 4 and the
books by Rose and Edmonds cited there.

A specific example of the preceding reduction is furnished by the symmetric electric
quadrupole tensor

Qij =
∫ (

3xixj − r2δij
)
ρ(x1, x2, x3) d

3x.

The−r2δij term represents a subtraction of the scalar trace (the threei = j terms). The
resultingQij has zero trace.

Exercises

2.9.1 An antisymmetric square array is given by 0 C3 −C2
−C3 0 C1
C2 −C1 0

=
 0 C12 C13

−C12 0 C23

−C13 −C23 0

 ,

19An alternate approach, using matrices, is given in Section 3.3 (see Exercise 3.3.9).
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where(C1,C2,C3) form a pseudovector. Assuming that the relation

Ci = 1

2!εijkC
jk

holds in all coordinate systems, prove thatCjk is a tensor. (This is another form of the
quotient theorem.)

2.9.2 Show that the vector product is unique to three-dimensional space; that is, only in three
dimensions can we establish a one-to-one correspondence between the components of
an antisymmetric tensor (second-rank) and the components of a vector.

2.9.3 Show that inR3

(a) δii = 3,
(b) δij εijk = 0,
(c) εipqεjpq = 2δij ,
(d) εijkεijk = 6.

2.9.4 Show that inR3

εijkεpqk = δipδjq − δiqδjp.

2.9.5 (a) Express the components of a cross-product vectorC, C=A× B, in terms ofεijk
and the components ofA andB.

(b) Use the antisymmetry ofεijk to show thatA ·A×B= 0.

ANS. (a) Ci = εijkAjBk .

2.9.6 (a) Show that the inertia tensor (matrix) may be written

Iij =m(xixj δij − xixj )

for a particle of massm at (x1, x2, x3).
(b) Show that

Iij =−MilMlj =−mεilkxkεljmxm,

whereMil =m1/2εilkxk . This is the contraction of two second-rank tensors and is
identical with the matrix product of Section 3.2.

2.9.7 Write ∇ ·∇×A and∇×∇ϕ in tensor (index) notation inR3 so that it becomes obvious
that each expression vanishes.

ANS. ∇ ·∇×A = εijk
∂

∂xi

∂

∂xj
Ak,

(∇×∇ϕ)i = εijk
∂

∂xj

∂

∂xk
ϕ.

2.9.8 Expressing cross products in terms of Levi-Civita symbols(εijk), derive theBAC–CAB
rule, Eq. (1.55).
Hint. The relation of Exercise 2.9.4 is helpful.
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2.9.9 Verify that each of the following fourth-rank tensors is isotropic, that is, that it has the
same form independent of any rotation of the coordinate systems.

(a) Aijkl = δij δkl ,
(b) Bijkl = δikδjl + δilδjk ,
(c) Cijkl = δikδjl − δilδjk .

2.9.10 Show that the two-index Levi-Civita symbolεij is a second-rank pseudotensor (in two-
dimensional space). Does this contradict the uniqueness ofδij (Exercise 2.6.4)?

2.9.11 Representεij by a 2×2 matrix, and using the 2×2 rotation matrix of Section 3.3 show
thatεij is invariant under orthogonal similarity transformations.

2.9.12 GivenAk = 1
2εijkB

ij with Bij =−Bji , antisymmetric, show that

Bmn = εmnkAk.

2.9.13 Show that the vector identity

(A×B) · (C×D)= (A ·C)(B ·D)− (A ·D)(B ·C)

(Exercise 1.5.12) follows directly from the description of a cross product withεijk and
the identity of Exercise 2.9.4.

2.9.14 Generalize the cross product of two vectors ton-dimensional space forn = 4,5, . . . .
Check the consistency of your construction and discuss concrete examples. See Exer-
cise 1.4.17 for the casen= 2.

2.10 GENERAL TENSORS

The distinction between contravariant and covariant transformations was established in
Section 2.6. Then, for convenience, we restricted our attention to Cartesian coordinates
(in which the distinction disappears). Now in these two concluding sections we return to
non-Cartesian coordinates and resurrect the contravariant and covariant dependence. As in
Section 2.6, a superscript will be used for an index denoting contravariant and a subscript
for an index denoting covariant dependence. The metric tensor of Section 2.1 will be used
to relate contravariant and covariant indices.

The emphasis in this section is on differentiation, culminating in the construction of
the covariant derivative. We saw in Section 2.7 that the derivative of a vector yields a
second-rank tensor — in Cartesian coordinates. In non-Cartesian coordinate systems, it is
the covariant derivative of a vector rather than the ordinary derivative that yields a second-
rank tensor by differentiation of a vector.

Metric Tensor

Let us start with the transformation of vectors from one set of coordinates(q1, q2, q3)

to anotherr = (x1, x2, x3). The new coordinates are (in generalnonlinear) functions
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xi(q1, q2, q3) of the old, such as spherical polar coordinates(r, θ,φ). But their differ-
entials obey thelinear transformation law

dxi = ∂xi

∂qj
dqj , (2.113a)

or

dr= εj dq
j (2.113b)

in vector notation. For convenience we take the basis vectorsε1 = ( ∂x
1

∂q1 ,
∂x1

∂q2 ,
∂x1

∂q3 ), ε2,
andε3 to form a right-handed set. These vectors are not necessarily orthogonal. Also, a
limitation to three-dimensional space will be required only for the discussions of cross
products and curls. Otherwise theseεi may be inN -dimensional space, including the
four-dimensional space–time of special and general relativity. The basis vectorsεi may
be expressed by

εi = ∂r
∂qi

, (2.114)

as in Exercise 2.2.3. Note, however, that theεi here donot necessarily have unit magnitude.
From Exercise 2.2.3, the unit vectors are

ei = 1

hi

∂r
∂qi

(no summation),

and therefore

εi = hiei (no summation). (2.115)

Theεi are related to the unit vectorsei by the scale factorshi of Section 2.2. Theei have no
dimensions; theεi have the dimensions ofhi . In spherical polar coordinates, as a specific
example,

εr = er = r̂, εθ = reθ = r θ̂ , εϕ = r sinθeϕ = r sinθ ϕ̂. (2.116)

In Euclidean spaces, or in Minkowski space of special relativity, the partial derivatives in
Eq. (2.113) are constants that define the new coordinates in terms of the old ones. We used
them to define the transformation laws of vectors in Eq. (2.59) and (2.62) and tensors in
Eq. (2.66). Generalizing, we define acontravariant vectorV i undergeneral coordinate
transformations if its components transform according to

V ′ i = ∂xi

∂qj
V j , (2.117a)

or

V′ = V jεj (2.117b)

in vector notation. Forcovariant vectors we inspect the transformation of the gradient
operator

∂

∂xi
= ∂qj

∂xi

∂

∂qj
(2.118)
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using the chain rule. From

∂xi

∂qj

∂qj

∂xk
= δik (2.119)

it is clear that Eq. (2.118) is related to theinverse transformation of Eq. (2.113),

dqj = ∂qj

∂xi
dxi. (2.120)

Hence we define acovariant vectorVi if

V ′i =
∂qj

∂xi
Vj (2.121a)

holds or, in vector notation,

V′ = Vjε
j , (2.121b)

whereεj are the contravariant vectorsgjiεi = εj .
Second-rank tensors are defined as in Eq. (2.66),

A′ij = ∂xi

∂qk

∂xj

∂ql
Akl, (2.122)

and tensors of higher rank similarly.
As in Section 2.1, we construct the square of a differential displacement

(ds)2= dr · dr= (εi dqi)2= εi · εj dqi dqj . (2.123)

Comparing this with(ds)2 of Section 2.1, Eq. (2.5), we identifyεi · εj as the covariant
metric tensor

εi · εj = gij . (2.124)

Clearly,gij is symmetric. The tensor nature ofgij follows from the quotient rule, Exer-
cise 2.8.1. We take the relation

gikgkj = δij (2.125)

to define the corresponding contravariant tensorgik . Contravariantgik enters as the in-
verse20 of covariantgkj . We use this contravariantgik to raise indices, converting a co-
variant index into a contravariant index, as shown subsequently. Likewise the covariantgkj
will be used to lower indices. The choice ofgik andgkj for this raising–lowering operation
is arbitrary. Any second-rank tensor (and its inverse) would do. Specifically, we have

gijεj = εi relating covariant and
contravariant basis vectors,

gijFj = F i relating covariant and
contravariant vector components.

(2.126)

20If the tensorgkj is written as a matrix, the tensorgik is given by the inverse matrix.
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Then

gijε
j = εi as the corresponding index

gijF
j = Fi lowering relations.

(2.127)

It should be emphasized again that theεi andεj do not have unit magnitude. This may
be seen in Eqs. (2.116) and in the metric tensorgij for spherical polar coordinates and its
inversegij :

(gij )=
1 0 0

0 r2 0
0 0 r2 sin2 θ

 (
gij
)=


1 0 0

0
1

r2
0

0 0
1

r2 sin2 θ

 .

Christoffel Symbols

Let us form the differential of a scalarψ ,

dψ = ∂ψ

∂qi
dqi. (2.128)

Since thedqi are the components of a contravariant vector, the partial derivatives
∂ψ/∂qi must form a covariant vector — by the quotient rule. The gradient of a scalar be-
comes

∇ψ = ∂ψ

∂qi
εi . (2.129)

Note that∂ψ/∂qi are not the gradient components of Section 2.2 — becauseεi 
= ei of
Section 2.2.

Moving on to the derivatives of a vector, we find that the situation is much more compli-
cated because the basis vectorsεi are in general not constant. Remember, we are no longer
restricting ourselves to Cartesian coordinates and the nice, convenientx̂, ŷ, ẑ! Direct dif-
ferentiation of Eq. (2.117a) yields

∂V ′k

∂qj
= ∂xk

∂qi

∂V i

∂qj
+ ∂2xk

∂qj ∂qi
V i, (2.130a)

or, in vector notation,

∂V′

∂qj
= ∂V i

∂qj
εi + V i ∂εi

∂qj
. (2.130b)

The right side of Eq. (2.130a) differs from the transformation law for a second-rank mixed
tensor by the second term, which contains second derivatives of the coordinatesxk . The
latter are nonzero for nonlinear coordinate transformations.

Now, ∂εi/∂qj will be some linear combination of theεk , with the coefficient depending
on the indicesi andj from the partial derivative and indexk from the base vector. We
write

∂εi

∂qj
= �k

ijεk. (2.131a)
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Multiplying by εm and usingεm · εk = δmk from Exercise 2.10.2, we have

�m
ij = εm · ∂εi

∂qj
. (2.131b)

The�k
ij is a Christoffel symbol of thesecond kind. It is also called acoefficient of con-

nection. These�k
ij are not third-rank tensors and the∂V i/∂qj of Eq. (2.130a) are not

second-rank tensors. Equations (2.131) should be compared with the results quoted in Ex-
ercise 2.2.3 (remembering that in generalεi 
= ei ). In Cartesian coordinates,�k

ij = 0 for all
values of the indicesi, j , andk. These Christoffel three-index symbols may be computed
by the techniques of Section 2.2. This is the topic of Exercise 2.10.8. Equation (2.138)
offers an easier method. Using Eq. (2.114), we obtain

∂εi

∂qj
= ∂2r

∂qj ∂qi
= ∂εj

∂qi
= �k

jiεk. (2.132)

Hence these Christoffel symbols are symmetric in the two lower indices:

�k
ij = �k

ji . (2.133)

Christoffel Symbols as Derivatives of the Metric Tensor

It is often convenient to have an explicit expression for the Christoffel symbols in terms of
derivatives of the metric tensor. As an initial step, we define the Christoffel symbol of the
first kind [ij, k] by

[ij, k] ≡ gmk�
m
ij , (2.134)

from which the symmetry[ij, k] = [ji, k] follows. Again, this[ij, k] is not a third-rank
tensor. From Eq. (2.131b),

[ij, k] = gmkε
m · ∂εi

∂qj

= εk · ∂εi
∂qj

. (2.135)

Now we differentiategij = εi · εj , Eq. (2.124):

∂gij

∂qk
= ∂εi

∂qk
· εj + εi · ∂εj

∂qk

= [ik, j ] + [jk, i] (2.136)

by Eq. (2.135). Then

[ij, k] = 1

2

{
∂gik

∂qj
+ ∂gjk

∂qi
− ∂gij

∂qk

}
, (2.137)

and

�s
ij = gks[ij, k]

= 1

2
gks
{
∂gik

∂qj
+ ∂gjk

∂qi
− ∂gij

∂qk

}
. (2.138)
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These Christoffel symbols are applied in the next section.

Covariant Derivative

With the Christoffel symbols, Eq. (2.130b) may be rewritten

∂V′

∂qj
= ∂V i

∂qj
εi + V i�k

ijεk. (2.139)

Now, i andk in the last term are dummy indices. Interchangingi andk (in this one term),
we have

∂V′

∂qj
=
(
∂V i

∂qj
+ V k�i

kj

)
εi . (2.140)

The quantity in parenthesis is labeled acovariant derivative, V i
;j . We have

V i
;j ≡

∂V i

∂qj
+ V k�i

kj . (2.141)

The;j subscript indicates differentiation with respect toqj . The differentialdV′ becomes

dV′ = ∂V′

∂qj
dqj = [V i

;j dq
j ]εi . (2.142)

A comparison with Eq. (2.113) or (2.122) shows that the quantity in square brackets is
theith contravariant component of a vector. Sincedqj is thej th contravariant component
of a vector (again, Eq. (2.113)),V i

;j must be theij th component of a (mixed) second-rank
tensor (quotient rule). The covariant derivatives of the contravariant components of a vector
form a mixed second-rank tensor,V i

;j .
Since the Christoffel symbols vanish in Cartesian coordinates, the covariant derivative

and the ordinary partial derivative coincide:

∂V i

∂qj
= V i

;j (Cartesian coordinates). (2.143)

The covariant derivative of a covariant vectorVi is given by (Exercise 2.10.9)

Vi;j = ∂Vi

∂qj
− Vk�

k
ij . (2.144)

Like V i
;j , Vi;j is a second-rank tensor.

The physical importance of the covariant derivative is that “A consistent replacement
of regular partial derivatives by covariant derivatives carries the laws of physics (in com-
ponent form) from flat space–time into the curved (Riemannian) space–time of general
relativity. Indeed, this substitution may be taken as a mathematical statement of Einstein’s
principle of equivalence.”21

21C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation. San Francisco: W. H. Freeman (1973), p. 387.
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Geodesics, Parallel Transport

The covariant derivative of vectors, tensors, and the Christoffel symbols may also be ap-
proached from geodesics. A geodesic in Euclidean space is a straight line. In general, it is
the curve of shortest length between two points and the curve along which a freely falling
particle moves. The ellipses of planets are geodesics around the sun, and the moon is in
free fall around the Earth on a geodesic. Since we can throw a particle in any direction, a
geodesic can have any direction through a given point. Hence the geodesic equation can
be obtained from Fermat’s variational principle of optics (see Chapter 17 for Euler’s equa-
tion),

δ

∫
ds = 0, (2.145)

whereds2 is the metric, Eq. (2.123), of our space. Using the variation ofds2,

2ds δ ds = dqi dqj δ gij + gij dq
i δ dqj + gij dq

j δ dqi (2.146)

in Eq. (2.145) yields

1

2

∫ [
dqi

ds

dqj

ds
δgij + gij

dqi

ds

d

ds
δ dqj + gij

dqj

ds

d

ds
δ dqi

]
ds = 0, (2.147)

whereds measures the length on the geodesic. Expressing the variations

δgij = ∂gij

∂qk
δ dqk ≡ (∂kgij )δ dq

k

in terms of theindependent variations δ dqk , shifting their derivatives in the other two
terms of Eq. (2.147) upon integrating by parts, and renaming dummy summation indices,
we obtain

1

2

∫ [
dqi

ds

dqj

ds
∂kgij − d

ds

(
gik

dqi

ds
+ gkj

dqj

ds

)]
δ dqk ds = 0. (2.148)

The integrand of Eq. (2.148), set equal to zero, is the geodesic equation. It is the Euler
equation of our variational problem. Upon expanding

dgik

ds
= (∂j gik)

dqj

ds
,

dgkj

ds
= (∂igkj )

dqi

ds
(2.149)

along the geodesic we find

1

2

dqi

ds

dqj

ds
(∂kgij − ∂jgik − ∂igkj )− gik

d2qi

ds2
= 0. (2.150)

Multiplying Eq. (2.150) withgkl and using Eq. (2.125), we find thegeodesic equation

d2ql

ds2
+ dqi

ds

dqj

ds

1

2
gkl(∂igkj + ∂jgik − ∂kgij )= 0, (2.151)

where the coefficient of the velocities is the Christoffel symbol�l
ij of Eq. (2.138).

Geodesics are curves that are independent of the choice of coordinates. They can be
drawn through any point in space in various directions. Since the lengthds measured along
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the geodesic is a scalar, the velocitiesdqi/ds (of a freely falling particle along the geodesic,
for example) form a contravariant vector. HenceVk dq

k/ds is a well-defined scalar on
any geodesic, which we can differentiate in order to define the covariant derivative of any
covariant vectorVk . Using Eq. (2.151) we obtain from the scalar

d

ds

(
Vk

dqk

ds

)
= dVk

ds

dqk

ds
+ Vk

d2qk

ds2

= ∂Vk

∂qi

dqi

ds

dqk

ds
− Vk�

k
ij

dqi

ds

dqj

ds
(2.152)

= dqi

ds

dqk

ds

(
∂Vk

∂qi
− �l

ikVl

)
.

When the quotient theorem is applied to Eq. (2.152) it tells us that

Vk;i = ∂Vk

∂qi
− �l

ikVl (2.153)

is a covariant tensor that defines the covariant derivative ofVk , consistent with Eq. (2.144).
Similarly, higher-order tensors may be derived.

The second term in Eq. (2.153) defines theparallel transport or displacement,

δVk = �l
kiVlδq

i, (2.154)

of the covariant vectorVk from the point with coordinatesqi to qi + δqi . The parallel
transport,δUk , of a contravariant vectorUk may be found from the invariance of the scalar
productUkVk under parallel transport,

δ(UkVk)= δUkVk +UkδVk = 0, (2.155)

in conjunction with the quotient theorem.
In summary, when we shift a vector to a neighboring point, parallel transport prevents it

from sticking out of our space. This can be clearly seen on the surface of a sphere in spher-
ical geometry, where a tangent vector is supposed to remain a tangent upon translating it
along some path on the sphere. This explains why the covariant derivative of a vector or
tensor is naturally defined by translating it along a geodesic in the desired direction.

Exercises

2.10.1 Equations (2.115) and (2.116) use the scale factorhi , citing Exercise 2.2.3. In Sec-
tion 2.2 we had restricted ourselves to orthogonal coordinate systems, yet Eq. (2.115)
holds for nonorthogonal systems. Justify the use of Eq. (2.115) for nonorthogonal sys-
tems.

2.10.2 (a) Show thatεi · εj = δij .
(b) From the result of part (a) show that

F i = F · εi and Fi = F · εi .
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2.10.3 For the special case of three-dimensional space (ε1, ε2, ε3 defining a right-handed co-
ordinate system, not necessarily orthogonal), show that

εi = εj × εk

εj × εk · εi , i, j, k = 1, 2, 3 and cyclic permutations.

Note. These contravariant basis vectorsεi define the reciprocal lattice space of Sec-
tion 1.5.

2.10.4 Prove that the contravariant metric tensor is given by

gij = εi · εj .
2.10.5 If the covariant vectorsεi are orthogonal, show that

(a) gij is diagonal,
(b) gii = 1/gii (no summation),
(c) |εi | = 1/|εi |.

2.10.6 Derive the covariant and contravariant metric tensors for circular cylindrical coordi-
nates.

2.10.7 Transform the right-hand side of Eq. (2.129),

∇ψ = ∂ψ

∂qi
εi ,

into theei basis, and verify that this expression agrees with the gradient developed in
Section 2.2 (for orthogonal coordinates).

2.10.8 Evaluate∂εi/∂qj for spherical polar coordinates, and from these results calculate�k
ij

for spherical polar coordinates.
Note. Exercise 2.5.2 offers a way of calculating the needed partial derivatives. Remem-
ber,

ε1= r̂ but ε2= r θ̂ and ε3= r sinθ ϕ̂.

2.10.9 Show that the covariant derivative of a covariant vector is given by

Vi;j ≡ ∂Vi

∂qj
− Vk�

k
ij .

Hint. Differentiate

εi · εj = δij .

2.10.10 Verify thatVi;j = gikV
k
;j by showing that

∂Vi

∂qj
− Vs�

s
ij = gik

{
∂V k

∂qj
+ Vm�k

mj

}
.

2.10.11 From the circular cylindrical metric tensorgij , calculate the�k
ij for circular cylindrical

coordinates.
Note. There are only three nonvanishing�.
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2.10.12 Using the�k
ij from Exercise 2.10.11, write out the covariant derivativesV i

;j of a vector
V in circular cylindrical coordinates.

2.10.13 A triclinic crystal is described using an oblique coordinate system. The three covariant
base vectors are

ε1 = 1.5x̂,

ε2 = 0.4x̂+ 1.6ŷ,

ε3 = 0.2x̂+ 0.3ŷ+ 1.0ẑ.

(a) Calculate the elements of the covariant metric tensorgij .
(b) Calculate the Christoffel three-index symbols,�k

ij . (This is a “by inspection” cal-
culation.)

(c) From the cross-product form of Exercise 2.10.3 calculate the contravariant base
vectorε3.

(d) Using the explicit formsε3 andεi , verify thatε3 · εi = δ3
i .

Note. If it were needed, the contravariant metric tensor could be determined by finding
the inverse ofgij or by finding theεi and usinggij = εi · εj .

2.10.14 Verify that

[ij, k] = 1

2

{
∂gik

∂qj
+ ∂gjk

∂qi
− ∂gij

∂qk

}
.

Hint. Substitute Eq. (2.135) into the right-hand side and show that an identity results.

2.10.15 Show that for the metric tensorgij ;k = 0, gij ;k = 0.

2.10.16 Show that parallel displacementδ dqi = d2qi along a geodesic. Construct a geodesic
by parallel displacement ofδ dqi .

2.10.17 Construct the covariant derivative of a vectorV i by parallel transport starting from the
limiting procedure

lim
dqj→0

V i(qj + dqj )− V i(qj )

dqj
.

2.11 TENSOR DERIVATIVE OPERATORS

In this section the covariant differentiation of Section 2.10 is applied to rederive the vector
differential operations of Section 2.2 in general tensor form.

Divergence

Replacing the partial derivative by the covariant derivative, we take the divergence to be

∇ ·V= V i
;i =

∂V i

∂qi
+ V k�i

ik. (2.156)
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Expressing�i
ik by Eq. (2.138), we have

�i
ik =

1

2
gim

{
∂gim

∂qk
+ ∂gkm

∂qi
− ∂gik

∂qm

}
. (2.157)

When contracted withgim the last two terms in the curly bracket cancel, since

gim
∂gkm

∂qi
= gmi ∂gki

∂qm
= gim

∂gik

∂qm
. (2.158)

Then

�i
ik =

1

2
gim

∂gim

∂qk
. (2.159)

From the theory of determinants, Section 3.1,

∂g

∂qk
= ggim

∂gim

∂qk
, (2.160)

where g is the determinant of the metric,g = det(gij ). Substituting this result into
Eq. (2.158), we obtain

�i
ik =

1

2g

∂g

∂qk
= 1

g1/2

∂g1/2

∂qk
. (2.161)

This yields

∇ ·V= V i
;i =

1

g1/2

∂

∂qk

(
g1/2V k

)
. (2.162)

To compare this result with Eq. (2.21), note thath1h2h3 = g1/2 andV i (contravariant
coefficient ofεi ) = Vi/hi (no summation), whereVi is Section 2.2 coefficient ofei .

Laplacian

In Section 2.2, replacement of the vectorV in ∇ ·V by ∇ψ led to the Laplacian∇ ·∇ψ .
Here we have a contravariantV i . Using the metric tensor to create a contravariant∇ψ , we
make the substitution

V i → gik
∂ψ

∂qk
.

Then the Laplacian∇ ·∇ψ becomes

∇ ·∇ψ = 1

g1/2

∂

∂qi

(
g1/2gik

∂ψ

∂qk

)
. (2.163)

For theorthogonal systems of Section 2.2 the metric tensor is diagonal and the contravari-
antgii (no summation) becomes

gii = (hi)
−2.
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Equation (2.163) reduces to

∇ ·∇ψ = 1

h1h2h3

∂

∂qi

(
h1h2h3

h2
i

∂ψ

∂qi

)
,

in agreement with Eq. (2.22).

Curl

The difference of derivatives that appears in the curl (Eq. (2.27)) will be written

∂Vi

∂qj
− ∂Vj

∂qi
.

Again, remember that the componentsVi here are coefficients of the contravariant
(nonunit) base vectorsεi . TheVi of Section 2.2 are coefficients of unit vectorsei . Adding
and subtracting, we obtain

∂Vi

∂qj
− ∂Vj

∂qi
= ∂Vi

∂qj
− Vk�

k
ij −

∂Vj

∂qi
+ Vk�

k
ji

= Vi;j − Vj ;i (2.164)

using the symmetry of the Christoffel symbols. The characteristic difference of derivatives
of the curl becomes a difference of covariant derivatives and therefore is a second-rank
tensor (covariant in both indices). As emphasized in Section 2.9, the special vector form of
the curl exists only in three-dimensional space.

From Eq. (2.138) it is clear that all the Christoffel three index symbols vanish in
Minkowski space and in the real space–time of special relativity with

gλµ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Here

x0= ct, x1= x, x2= y, and x3= z.

This completes the development of the differential operators in general tensor form. (The
gradient was given in Section 2.10.) In addition to the fields of elasticity and electromag-
netism, these differentials find application in mechanics (Lagrangian mechanics, Hamil-
tonian mechanics, and the Euler equations for rotation of rigid body); fluid mechanics; and
perhaps most important of all, the curved space–time of modern theories of gravity.

Exercises

2.11.1 Verify Eq. (2.160),

∂g

∂qk
= ggim

∂gim

∂qk
,

for the specific case of spherical polar coordinates.



2.11 Additional Readings 163

2.11.2 Starting with the divergence in tensor notation, Eq. (2.162), develop the divergence of a
vector in spherical polar coordinates, Eq. (2.47).

2.11.3 The covariant vectorAi is the gradient of a scalar. Show that the difference of covariant
derivativesAi;j −Aj ;i vanishes.

Additional Readings

Dirac, P. A. M.,General Theory of Relativity. Princeton, NJ: Princeton University Press (1996).

Hartle, J. B.,Gravity, San Francisco: Addison-Wesley (2003). This text uses a minimum of tensor analysis.

Jeffreys, H.,Cartesian Tensors. Cambridge: Cambridge University Press (1952). This is an excellent discussion
of Cartesian tensors and their application to a wide variety of fields of classical physics.

Lawden, D. F.,An Introduction to Tensor Calculus, Relativity and Cosmology, 3rd ed. New York: Wiley (1982).

Margenau, H., and G. M. Murphy,The Mathematics of Physics and Chemistry, 2nd ed. Princeton, NJ: Van Nos-
trand (1956). Chapter 5 covers curvilinear coordinates and 13 specific coordinate systems.

Misner, C. W., K. S. Thorne, and J. A. Wheeler,Gravitation. San Francisco: W. H. Freeman (1973), p. 387.

Moller, C., The Theory of Relativity. Oxford: Oxford University Press (1955). Reprinted (1972). Most texts on
general relativity include a discussion of tensor analysis. Chapter 4 develops tensor calculus, including the
topic of dual tensors. The extension to non-Cartesian systems, as required by general relativity, is presented in
Chapter 9.

Morse, P. M., and H. Feshbach,Methods of Theoretical Physics. New York: McGraw-Hill (1953). Chapter 5 in-
cludes a description of several different coordinate systems. Note that Morse and Feshbach are not above using
left-handed coordinate systems even for Cartesian coordinates. Elsewhere in this excellent (and difficult) book
there are many examples of the use of the various coordinate systems in solving physical problems. Eleven ad-
ditional fascinating but seldom-encountered orthogonal coordinate systems are discussed in the second (1970)
edition ofMathematical Methods for Physicists.

Ohanian, H. C., and R. Ruffini,Gravitation and Spacetime, 2nd ed. New York: Norton & Co. (1994). A well-
written introduction to Riemannian geometry.

Sokolnikoff, I. S.,Tensor Analysis — Theory and Applications, 2nd ed. New York: Wiley (1964). Particularly
useful for its extension of tensor analysis to non-Euclidean geometries.

Weinberg, S.,Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity. New
York: Wiley (1972). This book and the one by Misner, Thorne, and Wheeler are the two leading texts on
general relativity and cosmology (with tensors in non-Cartesian space).

Young, E. C.,Vector and Tensor Analysis, 2nd ed. New York: Marcel Dekker (1993).
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CHAPTER 3

DETERMINANTS AND
MATRICES

3.1 DETERMINANTS

We begin the study of matrices by solving linear equations that will lead us to determi-
nants and matrices. The concept ofdeterminant and the notation were introduced by the
renowned German mathematician and philosopher Gottfried Wilhelm von Leibniz.

Homogeneous Linear Equations

One of the major applications of determinants is in the establishment of a condition for
the existence of a nontrivial solution for a set of linear homogeneous algebraic equations.
Suppose we have three unknownsx1, x2, x3 (or n equations withn unknowns):

a1x1+ a2x2+ a3x3= 0,

b1x1+ b2x2+ b3x3= 0, (3.1)

c1x1+ c2x2+ c3x3= 0.

The problem is to determine under what conditions there is any solution, apart from
the trivial onex1 = 0, x2 = 0, x3 = 0. If we use vector notationx = (x1, x2, x3) for the
solution and three rowsa= (a1, a2, a3), b= (b1, b2, b3), c= (c1, c2, c3) of coefficients,
then the three equations, Eqs. (3.1), become

a · x= 0, b · x= 0, c · x= 0. (3.2)

These three vector equations have thegeometrical interpretation thatx is orthogonal to
a, b, andc. If the volume spanned bya, b, c given by the determinant (or triple scalar

165



166 Chapter 3 Determinants and Matrices

product, see Eq. (1.50) of Section 1.5)

D3= (a× b) · c= det(a,b, c)=
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ (3.3)

is not zero, then there is only the trivial solutionx= 0.
Conversely, if the aforementioned determinant of coefficients vanishes, then one of the

row vectors is a linear combination of the other two. Let us assume thatc lies in the plane
spanned bya and b, that is, that the third equation is a linear combination of the first
two and not independent. Thenx is orthogonal to that plane so thatx ∼ a × b. Since
homogeneous equations can be multiplied by arbitrary numbers, only ratios of thexi are
relevant, for which we then obtain ratios of 2× 2 determinants

x1

x3
= a2b3− a3b2

a1b2− a2b1

x2

x3
=−a1b3− a3b1

a1b2− a2b1

(3.4)

from the components of the cross producta× b, providedx3 ∼ a1b2− a2b1 
= 0. This is
Cramer’s rule for three homogeneous linear equations.

Inhomogeneous Linear Equations

The simplest case of two equations with two unknowns,

a1x1+ a2x2= a3, b1x1+ b2x2= b3, (3.5)

can be reduced to the previous case by imbedding it in three-dimensional space with a so-
lution vectorx= (x1, x2,−1) and row vectorsa= (a1, a2, a3), b= (b1, b2, b3). As before,
Eqs. (3.5) in vector notation,a · x= 0 andb · x= 0, imply thatx∼ a× b, so the analog of
Eqs. (3.4) holds. For this to apply, though, the third component ofa× b must not be zero,
that is,a1b2 − a2b1 
= 0, because the third component ofx is −1 
= 0. This yields thexi
as

(3.6a)x1 = a3b2− b3a2

a1b2− a2b1
=

∣∣∣∣a3 a2
b3 b2

∣∣∣∣∣∣∣∣a1 a2
b1 b2

∣∣∣∣ ,

x2 = a1b3− a3b1

a1b2− a2b1
=

∣∣∣∣a1 a3
b1 b3

∣∣∣∣∣∣∣∣a1 a2
b1 b2

∣∣∣∣ . (3.6b)

The determinant in the numerator ofx1(x2) is obtained from the determinant of the co-
efficients

∣∣a1 a2
b2 b2

∣∣ by replacing the first (second) column vector by the vector
(
a3
b3

)
of the

inhomogeneous side of Eq. (3.5). This isCramer’s rule for a set of two inhomogeneous
linear equations with two unknowns.
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These solutions of linear equations in terms of determinants can be generalized ton

dimensions. The determinant is a square array

Dn =

∣∣∣∣∣∣∣∣
a1 a2 · · · an
b1 b2 · · · bn
c1 c2 · · · cn
· · · · · ·

∣∣∣∣∣∣∣∣ (3.7)

of numbers (or functions), the coefficients ofn linear equations in our case here. The
numbern of columns (and of rows) in the array is sometimes called theorder of the
determinant. The generalization of the expansion in Eq. (1.48) of the triple scalar product
(of row vectors of three linear equations) leads to the following value of the determinant
Dn in n dimensions,

Dn =
∑

i,j,k,...

εijk···aibj ck · · · , (3.8)

whereεijk···, analogous to the Levi-Civita symbol of Section 2.9, is+1 for even permuta-
tions1 (ijk · · · ) of (123· · ·n),−1 for odd permutations, and zero if any index is repeated.

Specifically, for the third-order determinantD3 of Eq. (3.3), Eq. (3.8) leads to

D3=+a1b2c3− a1b3c2− a2b1c3+ a2b3c1+ a3b1c2− a3b2c1. (3.9)

The third-order determinant, then, is this particular linear combination of products. Each
product contains one and only one element from each row and from each column. Each
product is added if the columns (indices) represent an even permutation of (123) and sub-
tracted if we have an odd permutation. Equation (3.3) may be considered shorthand no-
tation for Eq. (3.9). The number of terms in the sum (Eq. (3.8)) is 24 for a fourth-order
determinant,n! for an nth-order determinant. Because of the appearance of the negative
signs in Eq. (3.9) (and possibly in the individual elements as well), there may be consider-
able cancellation. It is quite possible that a determinant of large elements will have a very
small value.

Several useful properties of thenth-order determinants follow from Eq. (3.8). Again, to
be specific, Eq. (3.9) for third-order determinants is used to illustrate these properties.

Laplacian Development by Minors

Equation (3.9) may be written

D3 = a1(b2c3− b3c2)− a2(b1c3− b3c1)+ a3(b1c2− b2c1)

= a1

∣∣∣∣∣b2 b3

c2 c3

∣∣∣∣∣− a2

∣∣∣∣∣b1 b3

c1 c3

∣∣∣∣∣+ a3

∣∣∣∣∣b1 b2

c1 c2

∣∣∣∣∣ . (3.10)

In general, thenth-order determinant may be expanded as a linear combination of the
products of the elements of any row (or any column) and the(n− 1)th-order determinants

1In a linear sequenceabcd · · · , any single, simple transposition of adjacent elements yields anodd permutation of the original
sequence:abcd→ bacd . Two such transpositions yield an even permutation. In general, an odd number of such interchanges of
adjacent elements results in an odd permutation; an even number of such transpositions yields an even permutation.
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formed by striking out the row and column of the original determinant in which the element
appears. This reduced array (2×2 in this specific example) is called aminor. If the element
is in theith row and thej th column, the sign associated with the product is(−1)i+j . The
minor with this sign is called thecofactor. If Mij is used to designate the minor formed by
omitting theith row and thej th column andCij is the corresponding cofactor, Eq. (3.10)
becomes

D3=
3∑

j=1

(−1)j+1ajM1j =
3∑

j=1

ajC1j . (3.11)

In this case, expanding along the first row, we havei = 1 and the summation overj , the
columns.

This Laplace expansion may be used to advantage in the evaluation of high-order de-
terminants in which a lot of the elements are zero. For example, to find the value of the
determinant

D =

∣∣∣∣∣∣∣∣
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

∣∣∣∣∣∣∣∣ , (3.12)

we expand across the top row to obtain

D = (−1)1+2 · (1)
∣∣∣∣∣∣
−1 0 0
0 0 1
0 −1 0

∣∣∣∣∣∣ . (3.13)

Again, expanding across the top row, we get

D = (−1) · (−1)1+1 · (−1)

∣∣∣∣ 0 1
−1 0

∣∣∣∣= ∣∣∣∣ 0 1
−1 0

∣∣∣∣= 1. (3.14)

(This determinantD (Eq. (3.12)) is formed from one of the Dirac matrices appearing in
Dirac’s relativistic electron theory in Section 3.4.)

Antisymmetry

The determinant changes sign if any two rows are interchanged or if any two columns are
interchanged. This follows from the even–odd character of the Levi-Civitaε in Eq. (3.8)
or explicitly from the form of Eqs. (3.9) and (3.10).2

This property was used in Section 2.9 to develop a totally antisymmetric linear combina-
tion. It is also frequently used in quantum mechanics in the construction of a many-particle
wave function that, in accordance with the Pauli exclusion principle, will be antisymmetric
under the interchange of any two identical spin1

2 particles (electrons, protons, neutrons,
etc.).

2The sign reversal is reasonably obvious for the interchange of two adjacent rows (or columns), this clearly being an odd
permutation. Show that the interchange ofany two rows is still an odd permutation.
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• As a special case of antisymmetry, any determinant with two rows equal or two
columns equal equals zero.

• If each element in a row or each element in a column is zero, the determinant is equal
to zero.

• If each element in a row or each element in a column is multiplied by a constant, the
determinant is multiplied by that constant.

• The value of a determinant is unchanged if a multiple of one row is added (column by
column) to another row or if a multiple of one column is added (row by row) to another
column.3

We have ∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣=
∣∣∣∣∣∣
a1+ ka2 a2 a3
b1+ kb2 b2 b3
c1+ kc2 c2 c3

∣∣∣∣∣∣ . (3.15)

Using the Laplace development on the right-hand side, we obtain∣∣∣∣∣∣
a1+ ka2 a2 a3
b1+ kb2 b2 b3
c1+ kc2 c2 c3

∣∣∣∣∣∣=
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣+ k

∣∣∣∣∣∣
a2 a2 a3
b2 b2 b3
c2 c2 c3

∣∣∣∣∣∣ , (3.16)

then by the property of antisymmetry the second determinant on the right-hand side of
Eq. (3.16) vanishes, verifying Eq. (3.15).

As a special case, a determinant is equal to zero if any two rows are proportional or any
two columns are proportional.

Some useful relations involving determinants or matrices appear in Exercises of Sec-
tions 3.2 and 3.4.

Returning to the homogeneous Eqs. (3.1) and multiplying the determinant of the coef-
ficients byx1, then addingx2 times the second column andx3 times the third column, we
can directly establish the condition for the presence of a nontrivial solution for Eqs. (3.1):

x1

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a1x1 a2 a3
b1x1 b2 b3
c1x1 c2 c3

∣∣∣∣∣∣=
∣∣∣∣∣∣
a1x1+ a2x2+ a3x3 a2 a3
b1x1+ b2x2+ b3x3 b2 b3
c1x1+ c2x2+ c3x3 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣∣∣
0 a2 a3
0 b2 b3
0 c2 c3

∣∣∣∣∣∣= 0. (3.17)

Thereforex1 (andx2 andx3) must be zerounless the determinant of the coefficients
vanishes. Conversely (see text below Eq. (3.3)), we can show that if the determinant of the
coefficients vanishes, a nontrivial solution does indeed exist. This is used in Section 9.6 to
establish the linear dependence or independence of a set of functions.

3This derives from the geometric meaning of the determinant as the volume of the parallelepiped spanned by its column vectors.
Pulling it to the side without changing its height leaves the volume unchanged.
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If our linear equations areinhomogeneous, that is, as in Eqs. (3.5) if the zeros on
the right-hand side of Eqs. (3.1) are replaced bya4, b4, andc4, respectively, then from
Eq. (3.17) we obtain, instead,

x1=

∣∣∣∣∣∣
a4 a2 a3
b4 b2 b3
c4 c2 c3

∣∣∣∣∣∣∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
, (3.18)

which generalizes Eq. (3.6a) ton= 3 dimensions, etc. If the determinant of the coefficients
vanishes, the inhomogeneous set of equations has no solution — unless the numerators also
vanish. In this case solutions may exist but they are not unique (see Exercise 3.1.3 for
a specific example).

For numerical work, this determinant solution, Eq. (3.18), is exceedingly unwieldy. The
determinant may involve large numbers with alternate signs, and in the subtraction of two
large numbers the relative error may soar to a point that makes the result worthless. Also,
although the determinant method is illustrated here with three equations and three un-
knowns, we might easily have 200 equations with 200 unknowns, which, involving up to
200! terms in each determinant, pose a challenge even to high-speed computers. There
must be a better way.

In fact, there are better ways. One of the best is a straightforward process often called
Gauss elimination. To illustrate this technique, consider the following set of equations.

Example 3.1.1 GAUSS ELIMINATION

Solve

3x + 2y + z = 11

2x + 3y + z = 13 (3.19)

x + y + 4z = 12.

The determinant of the inhomogeneous linear equations (3.19) is 18, so a solution exists.
For convenience and for the optimum numerical accuracy, the equations are rearranged

so that the largest coefficients run along the main diagonal (upper left to lower right). This
has already been done in the preceding set.

The Gauss technique is to use the first equation to eliminate the first unknown,x, from
the remaining equations. Then the (new) second equation is used to eliminatey from the
last equation. In general, we work down through the set of equations, and then, with one
unknown determined, we work back up to solve for each of the other unknowns in succes-
sion.

Dividing each row by its initial coefficient, we see that Eqs. (3.19) become

x + 2
3y + 1

3z = 11
3

x + 3
2y + 1

2z = 13
2 (3.20)

x + y + 4z = 12.
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Now, using the first equation, we eliminatex from the second and third equations:

x + 2
3y + 1

3z = 11
3

5
6y + 1

6z = 17
6 (3.21)

1
3y + 11

3 z = 25
3

and

x + 2
3y + 1

3z = 11
3

y + 1
5z = 17

5 (3.22)

y + 11z = 25.

Repeating the technique, we use the new second equation to eliminatey from the third
equation:

x + 2
3y + 1

3z = 11
3

y + 1
5z = 17

5 (3.23)

54z = 108,

or

z= 2.

Finally, working back up, we get

y + 1
5 × 2= 17

5 ,

or

y = 3.

Then withz andy determined,

x + 2
3 × 3+ 1

3 × 2= 11
3 ,

and

x = 1.

The technique may not seem so elegant as Eq. (3.18), but it is well adapted to computers
and is far faster than the time spent with determinants.

This Gauss technique may be used to convert a determinant into triangular form:

D =
∣∣∣∣∣∣
a1 b1 c1
0 b2 c2
0 0 c3

∣∣∣∣∣∣
for a third-order determinant whose elements are not to be confused with those in Eq. (3.3).
In this form D = a1b2c3. For annth-order determinant the evaluation of the triangular
form requires onlyn − 1 multiplications, compared with then! required for the general
case.
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A variation of this progressive elimination is known as Gauss–Jordan elimination. We
start as with the preceding Gauss elimination, but each new equation considered is used to
eliminate a variable fromall the other equations, not just those below it. If we had used
this Gauss–Jordan elimination, Eq. (3.23) would become

x + 1
5z = 7

5

y + 1
5z = 17

5 (3.24)

z = 2,

using the second equation of Eqs. (3.22) to eliminatey from both the first and third equa-
tions. Then the third equation of Eqs. (3.24) is used to eliminatez from the first and second,
giving

x = 1

y = 3 (3.25)

z = 2.

We return to this Gauss–Jordan technique in Section 3.2 for inverting matrices.
Another technique suitable for computer use is the Gauss–Seidel iteration technique.

Each technique has its advantages and disadvantages. The Gauss and Gauss–Jordan meth-
ods may have accuracy problems for large determinants. This is also a problem for ma-
trix inversion (Section 3.2). The Gauss–Seidel method, as an iterative method, may have
convergence problems. The IBM Scientific Subroutine Package (SSP) uses Gauss and
Gauss–Jordan techniques. The Gauss–Seidel iterative method and the Gauss and Gauss–
Jordan elimination methods are discussed in considerable detail by Ralston and Wilf and
also by Pennington.4 Computer codes in FORTRAN and other programming languages
and extensive literature for the Gauss–Jordan elimination and others are also given by
Presset al.5 �

Linear Dependence of Vectors

Two nonzero two-dimensional vectors

a1=
(
a11
a12

)

= 0, a2=

(
a21
a22

)

= 0

are defined to belinearly dependent if two numbersx1, x2 can be found that are not both
zero so that the linear relationx1a1 + x2a2 = 0 holds. They arelinearly independent if
x1= 0= x2 is the only solution of this linear relation. Writing it in Cartesian components,
we obtain two homogeneous linear equations

a11x1+ a21x2= 0, a12x1+ a22x2= 0

4A. Ralston and H. Wilf, eds.,Mathematical Methods for Digital Computers. New York: Wiley (1960); R. H. Pennington,
Introductory Computer Methods and Numerical Analysis. New York: Macmillan (1970).
5W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes, 2nd ed. Cambridge, UK: Cambridge
University Press (1992), Chapter 2.
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from which we extract the following criterion for linear independence of two vectors using
Cramer’s rule.If a1, a2 span a nonzero area, that is,their determinant

∣∣a11 a21
a12 a22

∣∣ 
= 0,
then the set of homogeneous linear equations has only the solution x1 = 0= x2. If
the determinant is zero, then there is a nontrivial solution x1, x2, andour vectors are
linearly dependent. In particular, the unit vectors in thex- andy-directions are linearly
independent, the linear relationx1x̂1 + x2x̂2 =

(
x1
x2

) = (00) having only the trivial solution
x1= 0= x2.

Three or more vectors in two-dimensional space are always linearly dependent. Thus,
the maximum number of linearly independent vectors in two-dimensional space is 2. For
example, givena1, a2, a3, the linear relationx1a1+ x2a2+ x3a3= 0 always has nontrivial
solutions. If one of the vectors is zero, linear dependence is obvious because the coefficient
of the zero vector may be chosen to be nonzero and that of the others as zero. So we assume
all of them as nonzero. Ifa1 anda2 are linearly independent, we write the linear relation

a11x1+ a21x2=−a31x3, a12x1+ a22x2=−a32x3,

as a set of two inhomogeneous linear equations and apply Cramer’s rule. Since the determi-
nant is nonzero, we can find a nontrivial solutionx1, x2 for any nonzerox3. This argument
goes through for any pair of linearly independent vectors. If all pairs are linearly depen-
dent, any of these linear relations is a linear relation among the three vectors, and we are
finished. If there are more than three vectors, we pick any three of them and apply the fore-
going reasoning and put the coefficients of the other vectors,xj = 0, in the linear relation.

• Mutually orthogonal vectors are linearly independent.

Assume a linear relation
∑

i civi = 0. Dotting vj into this usingvj · vi = 0 for j 
= i, we
obtaincjvj · vj = 0, so everycj = 0 becausev2

j 
= 0.
It is straightforward to extend these theorems ton or more vectors inn-dimensional

Euclidean space. Thus,the maximum number of linearly independent vectors in
n-dimensional space is n. The coordinate unit vectors are linearly independent be-
cause they span a nonzero parallelepiped inn-dimensional space and their determinant
is unity.

Gram–Schmidt Procedure

In ann-dimensional vector space with an inner (or scalar) product, we can always construct
an orthonormal basis ofn vectorswi with wi ·wj = δij starting fromn linearly independent
vectorsvi , i = 0,1, . . . , n− 1.

We start by normalizingv0 to unity, definingw0 = v0√
v0

2 . Then we projectv0 from v1,

forming u1 = v1 + a10w0, with the admixture coefficienta10 chosen so thatv0 · u1 = 0.
Dottingv0 into u1 yieldsa10=− v0·v1√

v2
0

=−v1 ·w0. Again, we normalizeu1 definingw1=
u1√
u2

1

. Here,u2
1 
= 0 becausev0, v1 are linearly independent. This first step generalizes to

uj = vj + aj0w0+ aj1w1+ · · · + ajj−1wj−1,

with coefficientsaji =−vj ·wi . Normalizingwj = uj√
u2
j

completes our construction.
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It will be noticed that although this Gram–Schmidt procedure is one possible way of
constructing an orthogonal or orthonormal set, the vectorswi are not unique. There is an
infinite number of possible orthonormal sets.

As an illustration of the freedom involved, consider two (nonparallel) vectorsA andB
in the xy-plane. We may normalizeA to unit magnitude and then formB′ = aA+ B so
that B′ is perpendicular toA. By normalizingB′ we have completed the Gram–Schmidt
orthogonalization for two vectors. But any two perpendicular unit vectors, such asx̂ andŷ,
could have been chosen as our orthonormal set. Again, with an infinite number of possible
rotations ofx̂ andŷ about thez-axis, we have an infinite number of possible orthonormal
sets.

Example 3.1.2 VECTORS BY GRAM–SCHMIDT ORTHOGONALIZATION

To illustrate the method, we consider two vectors

v0=
(

1
1

)
, v1=

(
1
−2

)
,

which are neither orthogonal nor normalized. Normalizing the first vectorw0 = v0/
√

2,
we then constructu1= v1+ a10w0 so as to be orthogonal tov0. This yields

u1 · v0= 0= v1 · v0+ a10√
2

v2
0=−1+ a10

√
2,

so the adjustable admixture coefficienta10= 1/
√

2. As a result,

u1=
(

1
−2

)
+ 1

2

(
1
1

)
= 3

2

(
1
−1

)
,

so the second orthonormal vector becomes

w1= 1√
2

(
1
−1

)
.

We check thatw0 · w1 = 0. The two vectorsw0, w1 form an orthonormal set of vectors,
a basis of two-dimensional Euclidean space. �

Exercises

3.1.1 Evaluate the following determinants:

(a)

∣∣∣∣∣∣
1 0 1
0 1 0
1 0 0

∣∣∣∣∣∣ , (b)

∣∣∣∣∣∣
1 2 0
3 1 2
0 3 1

∣∣∣∣∣∣ , (c)
1√
2

∣∣∣∣∣∣∣∣
0

√
3 0 0√

3 0 2 0
0 2 0

√
3

0 0
√

3 0

∣∣∣∣∣∣∣∣ .
3.1.2 Test the set of linear homogeneous equations

x + 3y + 3z= 0, x − y + z= 0, 2x + y + 3z= 0

to see if it possesses a nontrivial solution, and find one.
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3.1.3 Given the pair of equations

x + 2y = 3, 2x + 4y = 6,

(a) Show that the determinant of the coefficients vanishes.
(b) Show that the numerator determinants (Eq. (3.18)) also vanish.
(c) Find at least two solutions.

3.1.4 Express thecomponents of A×B as 2×2 determinants. Then show that the dot product
A · (A×B) yields a Laplacian expansion of a 3× 3 determinant. Finally, note that two
rows of the 3× 3 determinant are identical and hence thatA · (A×B)= 0.

3.1.5 If Cij is the cofactor of elementaij (formed by striking out theith row andj th column
and including a sign(−1)i+j ), show that

(a)
∑

i aijCij =∑i ajiCji = |A|, where|A| is the determinant with the elementsaij ,
(b)

∑
i aijCik =∑i ajiCki = 0, j 
= k.

3.1.6 A determinant with all elements of order unity may be surprisingly small. The Hilbert
determinantHij = (i + j − 1)−1, i, j = 1,2, . . . , n is notorious for its small values.

(a) Calculate the value of the Hilbert determinants of ordern for n= 1, 2, and 3.
(b) If an appropriate subroutine is available, find the Hilbert determinants of ordern

for n= 4, 5, and 6.

ANS. n Det(Hn)

1 1.
2 8.33333× 10−2

3 4.62963× 10−4

4 1.65344× 10−7

5 3.74930× 10−12

6 5.36730× 10−18

3.1.7 Solve the following set of linear simultaneous equations. Give the results to five decimal
places.

1.0x1+ 0.9x2+ 0.8x3+ 0.4x4+ 0.1x5 = 1.0

0.9x1+ 1.0x2+ 0.8x3+ 0.5x4+ 0.2x5+ 0.1x6 = 0.9

0.8x1+ 0.8x2+ 1.0x3+ 0.7x4+ 0.4x5+ 0.2x6 = 0.8

0.4x1+ 0.5x2+ 0.7x3+ 1.0x4+ 0.6x5+ 0.3x6 = 0.7

0.1x1+ 0.2x2+ 0.4x3+ 0.6x4+ 1.0x5+ 0.5x6 = 0.6

0.1x2+ 0.2x3+ 0.3x4+ 0.5x5+ 1.0x6 = 0.5.

Note. These equations may also be solved by matrix inversion, Section 3.2.
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3.1.8 Solve the linear equationsa · x = c, a × x + b = 0 for x = (x1, x2, x3) with constant
vectorsa 
= 0,b and constantc.

ANS. x= c

a2 a+ (a× b)/a2.

3.1.9 Solve the linear equationsa ·x= d , b ·x= e, c ·x= f, for x= (x1, x2, x3) with constant
vectorsa, b, c and constantsd , e, f such that(a× b) · c 
= 0.

ANS. [(a× b) · c]x= d(b× c)+ e(c× a)+ f (a× b).

3.1.10 Express in vector form the solution(x1, x2, x3) of ax1+bx2+cx3+d= 0 with constant
vectorsa, b, c, d so that(a× b) · c 
= 0.

3.2 MATRICES

Matrix analysis belongs to linear algebra because matrices are linear operators or maps
such as rotations. Suppose, for instance, we rotate the Cartesian coordinates of a two-
dimensional space, as in Section 1.2, so that, in vector notation,(

x′1
x′2

)
=
(

x1 cosϕ + x2 sinϕ
−x2 sinϕ + x2 cosϕ

)
=
(∑

j a1j xj∑
j a2j xj

)
. (3.26)

We label the array of elements
(
a11 a12
a21 a22

)
a 2× 2 matrixA consisting of two rows and two

columns and consider the vectorsx, x′ as 2× 1 matrices.We take the summation of
products in Eq. (3.26) as a definition of matrix multiplication involving the scalar
product of each row vector of A with the column vector x. Thus, in matrix notation
Eq. (3.26) becomes

x′ = Ax. (3.27)

To extend this definition of multiplication of a matrix times a column vector to the prod-
uct of two 2×2 matrices, let the coordinate rotation be followed by a second rotation given
by matrixB such that

x′′ = Bx′. (3.28)

In component form,

x′′i =
∑
j

bij x
′
j =

∑
j

bij
∑
k

ajkxk =
∑
k

(∑
j

bij ajk

)
xk. (3.29)

The summation overj is matrix multiplication defining a matrixC= BA such that

x′′i =
∑
k

cikxk, (3.30)

or x′′ = Cx in matrix notation. Again, this definition involves the scalar products of row
vectors ofB with column vectors ofA. This definition of matrix multiplication generalizes
to m× n matrices and is found useful; indeed,this usefulness is the justification for its
existence. The geometrical interpretation is that the matrix product of the two matricesBA
is the rotation that carries the unprimed system directly into the double-primed coordinate
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system. Before passing to formal definitions, the your should note that operatorA is de-
scribed by its effect on the coordinates or basis vectors. The matrix elementsaij constitute
a representation of the operator, a representation that depends on the choice of a basis.

The special case where a matrix has one column andn rows is called a column vector,
|x〉, with componentsxi , i = 1,2, . . . , n. If A is ann × n matrix, |x〉 an n-component
column vector,A|x〉 is defined as in Eqs. (3.27) and (3.26). Similarly, if a matrix has one
row andn columns, it is called a row vector,〈x| with componentsxi , i = 1,2, . . . , n.
Clearly,〈x| results from|x〉 by interchanging rows and columns, a matrix operation called
transposition, and transposition for any matrixA, Ã is called6 “A transpose” with matrix
elements(Ã)ik = Aki . Transposing a product of matricesAB reverses the order and gives
B̃Ã; similarly A|x〉 transpose is〈x|A. The scalar product takes the form〈x|y〉 =∑i xiyi
(x∗i in a complex vector space). ThisDirac bra-ket notation is used in quantum mechanics
extensively and in Chapter 10 and here subsequently.

More abstractly, we can define thedual space Ṽ of linear functionals F on a vector
spaceV , where each linear functionalF of Ṽ assigns a numberF(v) so that

F(c1v1+ c2v2)= c1F(v1)+ c2F(v2)

for any vectorsv1, v2 from our vector spaceV and numbersc1, c2. If we define the sum
of two functionals by linearity as

(F1+ F2)(v)= F1(v)+ F2(v),

thenṼ is a linear space by construction.
Riesz’ theorem says that there is a one-to-one correspondence between linear function-

alsF in Ṽ and vectorsf in a vector spaceV that has an inner (or scalar) product〈f|v〉
defined for any pair of vectorsf, v.

The proof relies on the scalar product by defining a linear functionalF for any vectorf
of V asF(v)= 〈f|v〉 for anyv of V . The linearity of the scalar product inf shows that these
functionals form a vector space (contained inṼ necessarily). Note that a linear functional
is completely specified when it is defined for every vectorv of a given vector space.

On the other hand, starting from any nontrivial linear functionalF of Ṽ we now con-
struct a unique vectorf of V so thatF(v) = f · v is given by an inner product. We start
from an orthonormal basiswi of vectors inV using the Gram–Schmidt procedure (see
Section 3.2). Take any vectorv from V and expand it asv =∑

i wi · vwi . Then the
linear functionalF(v) =∑

i wi · vF(wi ) is well defined onV . If we define the spe-
cific vector f =∑i F (wi )wi , then its inner product with an arbitrary vectorv is given
by 〈f|v〉 = f · v=∑i F (wi )wi · v= F(v), which proves Riesz’ theorem.

Basic Definitions

A matrix is defined as a square or rectangular array of numbers or functions that obeys
certain laws. This is a perfectly logical extension of familiar mathematical concepts. In
arithmetic we deal with single numbers. In the theory of complex variables (Chapter 6) we
deal with ordered pairs of numbers,(1,2)= 1+2i, in which the ordering is important. We

6Some texts (including ours sometimes) denoteA transpose byAT .
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now consider numbers (or functions) ordered in a square or rectangular array. For conve-
nience in later work the numbers are distinguished by two subscripts, the first indicating
the row (horizontal) and the second indicating the column (vertical) in which the number
appears. For instance,a13 is the matrix element in the first row, third column. Hence, ifA
is a matrix withm rows andn columns,

A=


a11 a12 · · · a1n
a21 a22 · · · a2n

· · · · · · ·
am1 am2 · · · amn

 . (3.31)

Perhaps the most important fact to note is that the elementsaij are not combined with
one another. A matrix is not a determinant. It is an ordered array of numbers, not a single
number.

The matrixA, so far just an array of numbers, has the properties we assign to it. Literally,
this means constructing a new form of mathematics. We define that matricesA, B, andC,
with elementsaij , bij , andcij , respectively, combine according to the following rules.

Rank

Looking back at the homogeneous linear Eqs. (3.1), we note that the matrix of coefficients,
A, is made up of three row vectors that each represent one linear equation of the set. If
their triple scalar product is not zero, than they span a nonzero volume and are linearly
independent, and the homogeneous linear equations have only the trivial solution. In this
case the matrix is said to haverank 3. In n dimensions the volume represented by the
triple scalar product becomes the determinant, det(A), for a square matrix. If det(A) 
= 0,
then× n matrix A hasrank n. The case of Eqs. (3.1), where the vectorc lies in the plane
spanned bya andb, corresponds to rank 2 of the matrix of coefficients, because only two
of its row vectors (a, b corresponding to two equations) are independent. In general, the
rank r of a matrix is the maximal number of linearly independent row or column
vectors it has, with 0≤ r ≤ n.

Equality

Matrix A = Matrix B if and only if aij = bij for all values ofi andj . This, of course,
requires thatA andB each bem× n arrays (m rows,n columns).

Addition, Subtraction

A± B= C if and only if aij ± bij = cij for all values ofi andj , the elements combining
according to the laws of ordinary algebra (or arithmetic if they are simple numbers). This
means thatA+ B= B+ A, commutation. Also, an associative law is satisfied(A+ B)+
C= A+ (B+ C). If all elements are zero, the matrix, called thenull matrix, is denoted
by O. For allA,

A+O=O+A= A,
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with

O=


0 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
· · · · · ·

 . (3.32)

Suchm× n matrices form a linear space with respect to addition and subtraction.

Multiplication (by a Scalar)

The multiplication of matrixA by the scalar quantityα is defined as

αA= (αA), (3.33)

in which the elements ofαA areαaij ; that is, each element of matrixA is multiplied by the
scalar factor. This is in striking contrast to the behavior of determinants in which the factor
α multiplies only one column or one row and not every element of the entire determinant.
A consequence of this scalar multiplication is that

αA= Aα, commutation.

If A is a square matrix, then

det(αA)= αn det(A).

Matrix Multiplication, Inner Product

AB=C if and only if7 cij =
∑
k

aikbkj . (3.34)

The ij element ofC is formed as a scalar product of theith row of A with thej th column
of B (which demands thatA have the same number of columns (n) asB has rows). The
dummy indexk takes on all values 1,2, . . . , n in succession; that is,

cij = ai1b1j + ai2b2j + ai3b3j (3.35)

for n = 3. Obviously, the dummy indexk may be replaced by any other symbol that is
not already in use without altering Eq. (3.34). Perhaps the situation may be clarified by
stating that Eq. (3.34) defines the method of combining certain matrices. This method of
combination, to give it a label, is calledmatrix multiplication. To illustrate, consider two
(so-called Pauli) matrices

σ1=
(

0 1
1 0

)
and σ3=

(
1 0
0 −1

)
. (3.36)

7Some authors follow the summation convention here (compare Section 2.6).
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The11 element of the product,(σ1σ3)11 is given by the sum of the products of elements of
the firstrow of σ1 with the corresponding elements of the firstcolumn of σ3:(

0 1

1 0

) 1 0

0 −1

→ 0 · 1+ 1 · 0= 0.

Continuing, we have

σ1σ3=
(

0 · 1+ 1 · 0 0· 0+ 1 · (−1)
1 · 1+ 0 · 0 1· 0+ 0 · (−1)

)
=
(

0 −1
1 0

)
. (3.37)

Here

(σ1σ3)ij = σ1i1σ31j + σ1i2σ32j .

Direct application of the definition of matrix multiplication shows that

σ3σ1=
(

0 1
−1 0

)
(3.38)

and by Eq. (3.37)

σ3σ1=−σ1σ3. (3.39)

Except in special cases, matrix multiplication is not commutative:8

AB 
= BA. (3.40)

However, from the definition of matrix multiplication we can show9 that an associative law
holds,(AB)C= A(BC). There is also a distributive law,A(B+C)= AB+AC.

The unit matrix 1 has elementsδij , Kronecker delta, and the property that 1A= A1= A
for all A,

1=


1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
· · · · · · ·

 . (3.41)

It should be noted that it is possible for the product of two matrices to be the null matrix
without either one being the null matrix. For example, if

A=
(

1 1
0 0

)
and B=

(
1 0
−1 0

)
,

AB = O. This differs from the multiplication of real or complex numbers, which form
a field, whereas the additive and multiplicative structure of matrices is called aring by
mathematicians. See also Exercise 3.2.6(a), from which it is evident that, ifAB = 0, at

8Commutation or the lack of it is conveniently described by the commutator bracket symbol,[A,B] = AB−BA. Equation (3.40)
becomes[A,B] 
= 0.
9Note that the basic definitions of equality, addition, and multiplication are given in terms of the matrix elements, theaij . All our
matrix operations can be carried out in terms of the matrix elements. However, we can also treat a matrix as a single algebraic
operator, as in Eq. (3.40). Matrix elements and single operators each have their advantages, as will be seen in the following
section. We shall use both approaches.
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least one of the matrices must have a zero determinant (that is, be singular as defined after
Eq. (3.50) in this section).

If A is an n × n matrix with determinant|A| 
= 0, then it has a unique inverseA−1

satisfyingAA−1 = A−1A = 1. If B is also ann × n matrix with inverseB−1, then the
productAB has the inverse

(AB)−1= B−1A−1 (3.42)

becauseABB−1A−1= 1= B−1A−1AB (see also Exercises 3.2.31 and 3.2.32).
Theproduct theorem, which says that the determinant of the product,|AB|, of twon×n

matricesA andB is equal to the product of the determinants,|A||B|, links matrices with de-
terminants. To prove this, consider then column vectorsck = (

∑
j aij bjk, i = 1,2, . . . , n)

of the product matrixC = AB for k = 1,2, . . . , n. Eachck =∑jk
bjkkajk is a sum ofn

column vectorsajk = (aijk , i = 1,2, . . . , n). Note that we are now using a different prod-
uct summation indexjk for each columnck . Since any determinantD(b1a1 + b2a2) =
b1D(a1)+ b2D(a2) is linear in its column vectors, we can pull out the summation sign in
front of the determinant from each column vector inC together with the common column
factorbjkk so that

|C| =
∑
j ′ks

bj11bj22 · · ·bjnn det(aj1aj2, . . . ,ajn). (3.43)

If we rearrange the column vectorsajk of the determinant factor in Eq. (3.43) in the proper
order, then we can pull the common factor det(a1,a2, . . . ,an)= |A| in front of then sum-
mation signs in Eq. (3.43). These column permutations generate just the right signεj1j2···jn
to produce in Eq. (3.43) the expression in Eq. (3.8) for|B| so

|C| = |A|
∑
j ′ks

εj1j2···jnbj11bj22 · · ·bjnn = |A||B|, (3.44)

which proves the product theorem.

Direct Product

A second procedure for multiplying matrices, known as thedirect tensor or Kronecker
product, follows. If A is anm×m matrix andB is ann×n matrix, then the direct product
is

A⊗B=C. (3.45)

C is anmn×mn matrix with elements

Cαβ =AijBkl, (3.46)

with

α =m(i − 1)+ k, β = n(j − 1)+ l.
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For instance, ifA andB are both 2× 2 matrices,

A⊗B =
(
a11B a12B
a21B a22B

)

=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 . (3.47)

The direct product is associative but not commutative. As an example of the direct prod-
uct, the Dirac matrices of Section 3.4 may be developed as direct products of the Pauli
matrices and the unit matrix. Other examples appear in the construction of groups (see
Chapter 4) and in vector or Hilbert space in quantum theory.

Example 3.2.1 DIRECT PRODUCT OF VECTORS

The direct product of two two-dimensional vectors is a four-component vector,

(
x0
x1

)
⊗
(
y0
y1

)
=


x0y0
x0y1
x1y0
x1y1

 ;
while the direct product of three such vectors,

(
x0
x1

)
⊗
(
y0
y1

)
⊗
(
z0
z1

)
=



x0y0z0
x0y0z1
x0y1z0
x0y1z1
x1y0z0
x1y0z1
x1y1z0
x1y1z1


,

is a(23= 8)-dimensional vector. �

Diagonal Matrices

An important special type of matrix is the square matrix in which all the nondiagonal
elements are zero. Specifically, if a 3× 3 matrixA is diagonal, then

A=
a11 0 0

0 a22 0
0 0 a33

 .

A physical interpretation of such diagonal matrices and the method of reducing matrices to
this diagonal form are considered in Section 3.5. Here we simply note a significant property
of diagonal matrices — multiplication of diagonal matrices is commutative,

AB= BA, if A andB are each diagonal.
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Multiplication by a diagonal matrix[d1, d2, . . . , dn] that has only nonzero elements in the
diagonal is particularly simple:(

1 0
0 2

)(
1 2
3 4

)
=
(

1 2
2 · 3 2· 4

)
=
(

1 2
6 8

)
;

while the opposite order gives(
1 2
3 4

)(
1 0
0 2

)
=
(

1 2· 2
3 2· 4

)
=
(

1 4
3 8

)
.

Thus,a diagonal matrix does not commute with another matrix unless both are diag-
onal, or the diagonal matrix is proportional to the unit matrix. This is borne out by the
more general form

[d1, d2, . . . , dn]A =


d1 0 · · · 0
0 d2 · · · 0
· · · · · · ·
0 0 · · · dn



a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · ·

an1 an2 · · · ann



=


d1a11 d1a12 · · · d1a1n
d2a21 d2a22 · · · d2a2n

· · · · · · ·
dnan1 dnan2 · · · dnann

 ,

whereas

A[d1, d2, . . . , dn] =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · ·

an1 an2 · · · ann



d1 0 · · · 0
0 d2 · · · 0
· · · · · · ·
0 0 · · · dn



=


d1a11 d2a12 · · · dna1n
d1a21 d2a22 · · · dna2n

· · · · · · ·
d1an1 d2an2 · · · dnann

 .

Here we have denoted by[d1, . . . , dn] a diagonal matrix with diagonal elementsd1, . . . , dn.
In the special case of multiplying two diagonal matrices, we simply multiply the corre-
sponding diagonal matrix elements, which obviously is commutative.

Trace

In any square matrix the sum of the diagonal elements is called thetrace.
Clearly the trace is a linear operation:

trace(A−B)= trace(A)− trace(B).
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One of its interesting and useful properties is that the trace of a product of two matricesA
andB is independent of the order of multiplication:

trace(AB) =
∑
i

(AB)ii =
∑
i

∑
j

aij bji

=
∑
j

∑
i

bjiaij =
∑
j

(BA)jj (3.48)

= trace(BA).

This holds even thoughAB 
= BA. Equation (3.48) means that the trace of any commutator
[A,B] = AB−BA is zero. From Eq. (3.48) we obtain

trace(ABC)= trace(BCA)= trace(CAB),

which shows that the trace is invariant under cyclic permutation of the matrices in a prod-
uct.

For a real symmetric or a complex Hermitian matrix (see Section 3.4) the trace is the
sum, and the determinant the product, of its eigenvalues, and both are coefficients of the
characteristic polynomial. In Exercise 3.4.23 the operation of taking the trace selects one
term out of a sum of 16 terms. The trace will serve a similar function relative to matrices
as orthogonality serves for vectors and functions.

In terms of tensors (Section 2.7) the trace is a contraction and, like the contracted second-
rank tensor, is a scalar (invariant).

Matrices are used extensively to represent the elements of groups (compare Exer-
cise 3.2.7 and Chapter 4). The trace of the matrix representing the group element is known
in group theory as thecharacter. The reason for the special name and special attention
is that, the trace or character remains invariant under similarity transformations (compare
Exercise 3.3.9).

Matrix Inversion

At the beginning of this section matrixA is introduced as the representation of an operator
that (linearly) transforms the coordinate axes. A rotation would be one example of such
a linear transformation. Now we look for the inverse transformationA−1 that will restore
the original coordinate axes. This means, as either a matrix or an operator equation,10

AA−1= A−1A= 1. (3.49)

With (A−1)ij ≡ a
(−1)
ij ,

a
(−1)
ij ≡ Cji

|A| , (3.50)

10Here and throughout this chapter our matrices have finite rank. IfA is an infinite-rank matrix (n× n with n→∞), then life is
more difficult. ForA−1 to be the inverse we must demand that both

AA−1= 1 and A−1A= 1.

one relation no longer implies the other.
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with Cji the cofactor (see discussion preceding Eq. (3.11)) ofaij and the assumption that
the determinant ofA, |A| 
= 0. If it is zero, we labelA singular. No inverse exists.

There is a wide variety of alternative techniques. One of the best and most commonly
used is the Gauss–Jordan matrix inversion technique. The theory is based on the results of
Exercises 3.2.34 and 3.2.35, which show that there exist matricesML such that the product
MLA will be A but with

a. one row multiplied by a constant, or

b. one row replaced by the original row minus a multiple of another row, or

c. rows interchanged.

Other matricesMR operating on the right(AMR) can carry out the same operations on
thecolumns of A.

This means that the matrix rows and columns may be altered (by matrix multiplication)
as though we were dealing with determinants, so we can apply the Gauss–Jordan elimina-
tion techniques of Section 3.1 to the matrix elements. Hence there exists a matrixML (or
MR) such that11

MLA= 1. (3.51)

ThenML = A−1. We determineML by carrying out the identical elimination operations on
the unit matrix. Then

ML1=ML. (3.52)

To clarify this, we consider a specific example.

Example 3.2.2 GAUSS–JORDAN MATRIX INVERSION

We want to invert the matrix

A=
3 2 1

2 3 1
1 1 4

 . (3.53)

For convenience we writeA and 1 side by side and carry out the identical operations on
each: 3 2 1

2 3 1
1 1 4

 and

1 0 0
0 1 0
0 0 1

 . (3.54)

To be systematic, we multiply each row to getak1= 1,1 2
3

1
3

1 3
2

1
2

1 1 4

 and


1
3 0 0

0 1
2 0

0 0 1

 . (3.55)

11Remember that det(A) 
= 0.
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Subtracting the first row from the second and third rows, we obtain1 2
3

1
3

0 5
6

1
6

0 1
3

11
3

 and


1
3 0 0

−1
3

1
2 0

−1
3 0 1

 . (3.56)

Then we divide the second row (ofboth matrices) by5
6 and subtract23 times it from the

first row and1
3 times it from the third row. The results for both matrices are1 0 1

5

0 1 1
5

0 0 18
5

 and


3
5 −2

5 0

−2
5

3
5 0

−1
5 −1

5 1

 . (3.57)

We divide the third row (ofboth matrices) by18
5 . Then as the last step15 times the third

row is subtracted from each of the first two rows (of both matrices). Our final pair is1 0 0
0 1 0
0 0 1

 and A−1=


11
18 − 7

18 − 1
18

− 7
18

11
18 − 1

18

− 1
18 − 1

18
5
18

 . (3.58)

The check is to multiply the originalA by the calculatedA−1 to see if we really do get
the unit matrix 1. �

As with the Gauss–Jordan solution of simultaneous linear algebraic equations, this tech-
nique is well adapted to computers. Indeed, this Gauss–Jordan matrix inversion technique
will probably be available in the program library as a subroutine (see Sections 2.3 and 2.4
of Presset al., loc. cit.).

For matrices of special form, the inverse matrix can be given in closed form. For
example, for

A=
a b c

b d b

c b e

 , (3.59)

the inverse matrix has a similar but slightly more general form,

A−1=
 α β1 γ

β1 δ β2
γ β2 ε

 , (3.60)

with matrix elements given by

Dα = ed − b2, Dγ =−(cd − b2), Dβ1= (c− e)b, Dβ2= (c− a)b,

Dδ = ae− c2, Dε = ad − b2, D = b2(2c− a − e)+ d
(
ae− c2),

whereD = det(A) is the determinant of the matrixA. If e= a in A, then the inverse matrix
A−1 also simplifies to

β1= β2, ε = α, D = (a2− c2)d + 2(c− a)b2.
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As a check, let us work out the 11-matrix element of the productAA−1= 1. We find

aα+ bβ1+ cγ = 1

D

[
a
(
ed − b2)+ b2(c− e)− c

(
cd − b2)]

= 1

D

(− ab2+ aed + 2b2c− b2e− c2d
)= D

D
= 1.

Similarly we check that the 12-matrix element vanishes,

aβ1+ bδ+ cβ2= 1

D

[
ab(c− e)+ b

(
ae− c2)+ cb(c− a)

]= 0,

and so on.
Note though that we cannot always find an inverse ofA−1 by solving for the matrix

elementsa, b, . . . of A, because not every inverse matrixA−1 of the form in Eq. (3.60) has
a correspondingA of the special form in Eq. (3.59), as Example 3.2.2 clearly shows.

Matrices are square or rectangular arrays of numbers that define linear transformations,
such as rotations of a coordinate system. As such, they are linear operators. Square matri-
ces may be inverted when their determinant is nonzero. When a matrix defines a system of
linear equations, the inverse matrix solves it. Matrices with the same number of rows and
columns may be added and subtracted. They form what mathematicians call a ring with
a unit and a zero matrix. Matrices are also useful for representing group operations and
operators in Hilbert spaces.

Exercises

3.2.1 Show that matrix multiplication is associative,(AB)C= A(BC).

3.2.2 Show that

(A+B)(A−B)= A2−B2

if and only if A andB commute,

[A,B] = 0.

3.2.3 Show that matrixA is a linear operator by showing that

A(c1r1+ c2r2)= c1Ar1+ c2Ar2.

It can be shown that ann × n matrix is themost general linear operator in ann-
dimensional vector space. This means that every linear operator in thisn-dimensional
vector space is equivalent to a matrix.

3.2.4 (a) Complex numbers,a + ib, with a andb real, may be represented by (or are iso-
morphic with) 2× 2 matrices:

a + ib↔
(

a b

−b a

)
.

Show that this matrix representation is valid for (i) addition and (ii) multiplication.
(b) Find the matrix corresponding to(a + ib)−1.
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3.2.5 If A is ann× n matrix, show that

det(−A)= (−1)n detA.

3.2.6 (a) The matrix equationA2 = 0 does not implyA = 0. Show that the most general
2× 2 matrix whose square is zero may be written as(

ab b2

−a2 −ab
)
,

wherea andb are real or complex numbers.
(b) If C= A+B, in general

detC 
= detA+ detB.

Construct a specific numerical example to illustrate this inequality.

3.2.7 Given the three matrices

A=
(−1 0

0 −1

)
, B=

(
0 1
1 0

)
, C=

(
0 −1
−1 0

)
,

find all possible products ofA,B, andC, two at a time, including squares. Express your
answers in terms ofA, B, andC, and 1, the unit matrix. These three matrices, together
with the unit matrix, form a representation of a mathematical group, thevierergruppe
(see Chapter 4).

3.2.8 Given

K=
 0 0 i

−i 0 0
0 −1 0

 ,

show that

Kn = KKK · · · (n factors)= 1

(with the proper choice ofn,n 
= 0).

3.2.9 Verify the Jacobi identity,[
A, [B,C]]= [B, [A,C]]− [C, [A,B]].

This is useful in matrix descriptions of elementary particles (see Eq. (4.16)). As a
mnemonic aid, the you might note that the Jacobi identity has the same form as the
BAC–CAB rule of Section 1.5.

3.2.10 Show that the matrices

A=
0 1 0

0 0 0
0 0 0

 , B=
0 0 0

0 0 1
0 0 0

 , C=
0 0 1

0 0 0
0 0 0


satisfy the commutation relations

[A,B] =C, [A,C] = 0, and [B,C] = 0.
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3.2.11 Let

i=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , j=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

and

k=


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

Show that

(a) i2= j2= k2=−1, where 1 is the unit matrix.
(b) ij=−ji= k,

jk=−kj= i,
ki=−ik= j.

These three matrices (i, j, andk) plus the unit matrix 1 form a basis forquaternions.
An alternate basis is provided by the four 2× 2 matrices,iσ1, iσ2, −iσ3, and 1, where
theσ are the Pauli spin matrices of Exercise 3.2.13.

3.2.12 A matrix with elementsaij = 0 for j < i may be called upper right triangular. The
elements in the lower left (below and to the left of the main diagonal) vanish. Examples
are the matrices in Chapters 12 and 13, Exercise 13.1.21, relating power series and
eigenfunction expansions.
Show that the product of two upper right triangular matrices is an upper right triangular
matrix.

3.2.13 The three Pauli spin matrices are

σ1=
(

0 1
1 0

)
, σ2=

(
0 −i
i 0

)
, and σ3=

(
1 0
0 −1

)
.

Show that

(a) (σi)
2= 12,

(b) σjσk = iσl , (j, k, l)= (1,2,3), (2,3,1), (3,1,2) (cyclic permutation),
(c) σiσj + σjσi = 2δij12; 12 is the 2× 2 unit matrix.

These matrices were used by Pauli in the nonrelativistic theory of electron spin.

3.2.14 Using the Pauliσi of Exercise 3.2.13, show that

(σ · a)(σ · b)= a · b 12+ iσ · (a× b).

Here

σ ≡ x̂σ1+ ŷσ2+ ẑσ3,

a andb are ordinary vectors, and 12 is the 2× 2 unit matrix.
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3.2.15 One description of spin 1 particles uses the matrices

Mx = 1√
2

0 1 0
1 0 1
0 1 0

 , My = 1√
2

0 −i 0
i 0 −i
0 i 0

 ,

and

Mz =
1 0 0

0 0 0
0 0 −1

 .

Show that

(a) [Mx,My] = iMz, and so on12 (cyclic permutation of indices). Using the Levi-
Civita symbol of Section 2.9, we may write

[Mp,Mq ] = iεpqrMr .

(b) M2≡M2
x +M2

y +M2
z = 2 13, where 13 is the 3× 3 unit matrix.

(c) [M2,Mi] = 0,
[Mz,L+] = L+,
[L+,L−] = 2Mz,
where
L+ ≡Mx + iMy ,
L− ≡Mx − iMy .

3.2.16 Repeat Exercise 3.2.15 using an alternate representation,

Mx =
0 0 0

0 0 −i
0 i 0

 , My =
 0 0 i

0 0 0
−i 0 0

 ,

and

Mz =
0 −i 0

i 0 0
0 0 0

 .

In Chapter 4 these matrices appear as thegenerators of the rotation group.

3.2.17 Show that the matrix–vector equation(
M ·∇+ 13

1

c

∂

∂t

)
ψ = 0

reproduces Maxwell’s equations in vacuum. Hereψ is a column vector with compo-
nentsψj = Bj − iEj /c, j = x, y, z. M is a vector whose elements are the angular
momentummatrices of Exercise 3.2.16. Note thatε0µ0 = 1/c2, 13 is the 3× 3 unit
matrix.

12[A,B] = AB−BA.
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From Exercise 3.2.15(b),

M2ψ = 2ψ.

A comparison with the Dirac relativistic electron equation suggests that the “particle”
of electromagnetic radiation, the photon, has zero rest mass and a spin of 1 (in units
of h).

3.2.18 Repeat Exercise 3.2.15, using the matrices for a spin of 3/2,

Mx = 1

2


0

√
3 0 0√

3 0 2 0
0 2 0

√
3

0 0
√

3 0

 , My = i

2


0 −√3 0 0√
3 0 −2 0

0 2 0 −√3
0 0

√
3 0

 ,

and

Mz = 1

2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 .

3.2.19 An operatorP commutes withJx andJy , thex andy components of an angular momen-
tum operator. Show thatP commutes with the third component of angular momentum,
that is, that

[P,Jz] = 0.

Hint. The angular momentum components must satisfy the commutation relation of
Exercise 3.2.15(a).

3.2.20 The L+ andL− matrices of Exercise 3.2.15 areladder operators (see Chapter 4):L+
operating on a system of spin projectionm will raise the spin projection tom+1 if m is
below its maximum.L+ operating onmmax yields zero.L− reduces the spin projection
in unit steps in a similar fashion. Dividing by

√
2, we have

L+ =
0 1 0

0 0 1
0 0 0

 , L− =
0 0 0

1 0 0
0 1 0

 .

Show that

L+|−1〉 = |0〉,L−|−1〉 = null column vector,

L+|0〉 = |1〉,L−|0〉 = |−1〉,
L+|1〉 = null column vector, L−|1〉 = |0〉,

where

|−1〉 =
0

0
1

 , |0〉 =
0

1
0

 , and |1〉 =
1

0
0


represent states of spin projection−1,0, and 1, respectively.
Note. Differential operator analogs of these ladder operators appear in Exercise 12.6.7.
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3.2.21 VectorsA andB are related by the tensorT,

B= TA.

GivenA andB, show that there isno unique solution for the components ofT. This is
why vector divisionB/A is undefined (apart from the special case ofA andB parallel
andT then a scalar).

3.2.22 We might ask for a vectorA−1, an inverse of a given vectorA in the sense that

A ·A−1=A−1 ·A= 1.

Show that this relation does not suffice to defineA−1 uniquely;A would then have an
infinite number of inverses.

3.2.23 If A is a diagonal matrix, with all diagonal elements different, andA andB commute,
show thatB is diagonal.

3.2.24 If A andB are diagonal, show thatA andB commute.

3.2.25 Show that trace(ABC)= trace(CBA) if any two of the three matrices commute.

3.2.26 Angular momentum matrices satisfy a commutation relation

[Mj ,Mk] = iMl , j, k, l cyclic.

Show that the trace of each angular momentum matrix vanishes.

3.2.27 (a) The operator trace replaces a matrixA by its trace; that is,

trace(A)=
∑
i

aii .

Show that trace is alinear operator.
(b) The operator det replaces a matrixA by its determinant; that is,

det(A)= determinant ofA.

Show that det isnot a linear operator.

3.2.28 A and B anticommute:BA = −AB. Also, A2 = 1, B2 = 1. Show that trace(A) =
trace(B)= 0.
Note. The Pauli and Dirac (Section 3.4) matrices are specific examples.

3.2.29 With |x〉 anN -dimensional column vector and〈y| anN -dimensional row vector, show
that

trace
(|x〉〈y|)= 〈y|x〉.

Note. |x〉〈y| means direct product of column vector|x〉 with row vector〈y|. The result
is a squareN ×N matrix.

3.2.30 (a) If two nonsingular matrices anticommute, show that the trace of each one is zero.
(Nonsingular means that the determinant of the matrix nonzero.)

(b) For the conditions of part (a) to hold,A andB must ben×n matrices withn even.
Show that ifn is odd, a contradiction results.
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3.2.31 If a matrix has an inverse, show that the inverse is unique.

3.2.32 If A−1 has elements (
A−1)

ij
= a

(−1)
ij = Cji

|A| ,

whereCji is thejith cofactor of|A|, show that

A−1A= 1.

HenceA−1 is the inverse ofA (if |A| 
= 0).

3.2.33 Show that detA−1= (detA)−1.
Hint. Apply the product theorem of Section 3.2.
Note. If detA is zero, thenA has no inverse.A is singular.

3.2.34 Find the matricesML such that the productMLA will be A but with:

(a) theith row multiplied by a constantk (aij → kaij , j = 1,2,3, . . .);
(b) the ith row replaced by the originalith row minus a multiple of themth row

(aij → aij −Kamj , i = 1,2,3, . . .);
(c) theith andmth rows interchanged(aij → amj , amj → aij , j = 1,2,3, . . .).

3.2.35 Find the matricesMR such that the productAMR will be A but with:

(a) theith column multiplied by a constantk (aji → kaji , j = 1,2,3, . . .);
(b) the ith column replaced by the originalith column minus a multiple of themth

column(aji → aji − kajm, j = 1,2,3, . . .);
(c) theith andmth columns interchanged(aji → ajm, ajm→ aji , j = 1, 2, 3,. . .).

3.2.36 Find the inverse of

A=
3 2 1

2 2 1
1 1 4

 .

3.2.37 (a) Rewrite Eq. (2.4) of Chapter 2 (and the corresponding equations fordy anddz) as
a single matrix equation

|dxk〉 = J|dqj 〉.
J is a matrix of derivatives, theJacobian matrix. Show that

〈dxk|dxk〉 = 〈dqi |G|dqj 〉,
with the metric (matrix)G having elementsgij given by Eq. (2.6).

(b) Show that

det(J) dq1dq2dq3= dx dy dz,

with det(J) the usual Jacobian.
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3.2.38 Matrices are far too useful to remain the exclusive property of physicists. They may ap-
pear wherever there are linear relations. For instance, in a study of population movement
the initial fraction of a fixed population in each ofn areas (or industries or religions, etc.)
is represented by ann-component column vectorP. The movement of people from one
area to another in a given time is described by ann× n (stochastic) matrixT. HereTij
is the fraction of the population in thej th area that moves to theith area. (Those not
moving are covered byi = j .) With P describing the initial population distribution, the
final population distribution is given by the matrix equationTP=Q.
From its definition,

∑n
i=1Pi = 1.

(a) Show that conservation of people requires that
n∑

i=1

Tij = 1, j = 1,2, . . . , n.

(b) Prove that
n∑

i=1

Qi = 1

continues the conservation of people.

3.2.39 Given a 6× 6 matrix A with elementsaij = 0.5|i−j |, i = 0,1,2, . . . ,5; i = 0,1,
2, . . . ,5, findA−1. List its matrix elements to five decimal places.

ANS. A−1= 1

3


4 −2 0 0 0 0
−2 5 −2 0 0 0
0 −2 5 −2 0 0
0 0 −2 5 −2 0
0 0 0 −2 5 −2
0 0 0 0 −2 4

 .

3.2.40 Exercise 3.1.7 may be written in matrix form:

AX=C.

Find A−1 and calculateX asA−1C.

3.2.41 (a) Write asubroutine that will multiply complex matrices. Assume that the complex
matrices are in a general rectangular form.

(b) Test your subroutine by multiplying pairs of the Dirac 4×4 matrices, Section 3.4.

3.2.42 (a) Write a subroutine that will call the complex matrix multiplication subroutine of
Exercise 3.2.41 and will calculate the commutator bracket of two complex matri-
ces.

(b) Test your complex commutator bracket subroutine with the matrices of Exer-
cise 3.2.16.

3.2.43 Interpolating polynomial is the name given to the(n−1)-degree polynomial determined
by (and passing through)n points,(xi, yi) with all the xi distinct. This interpolating
polynomial forms a basis for numerical quadratures.
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(a) Show that the requirement that an(n − 1)-degree polynomial inx pass through
each of then points(xi, yi) with all xi distinct leads ton simultaneous equations
of the form

n−1∑
j=0

ajx
j
i = yi, i = 1,2, . . . , n.

(b) Write a computer program that will read inn data points and return then coeffi-
cientsaj . Use a subroutine to solve the simultaneous equations if such a subroutine
is available.

(c) Rewrite the set of simultaneous equations as a matrix equation

XA=Y.

(d) Repeat the computer calculation of part (b), but this time solve for vectorA by
inverting matrixX (again, using a subroutine).

3.2.44 A calculation of the values of electrostatic potential inside a cylinder leads to

V (0.0)= 52.640 V (0.6)= 25.844

V (0.2)= 48.292 V (0.8)= 12.648

V (0.4)= 38.270 V (1.0)= 0.0.

The problem is to determine the values of the argument for whichV = 10, 20, 30, 40,
and 50. ExpressV (x) as a series

∑5
n=0a2nx

2n. (Symmetry requirements in the original
problem require thatV (x) be an even function ofx.) Determine the coefficientsa2n.
With V (x) now a known function ofx, find the root ofV (x) − 10= 0, 0≤ x ≤ 1.
Repeat forV (x)− 20, and so on.

ANS. a0= 52.640,
a2=−117.676,
V (0.6851)= 20.

3.3 ORTHOGONAL MATRICES

Ordinary three-dimensional space may be described with the Cartesian coordinates
(x1, x2, x3). We consider a second set of Cartesian coordinates(x′1, x′2, x′3), whose ori-
gin and handedness coincides with that of the first set but whose orientation is different
(Fig. 3.1). We can say that the primed coordinateaxes have beenrotated relative to the
initial, unprimed coordinate axes. Since this rotation is alinear operation, we expect a
matrix equation relating the primed basis to the unprimed basis.

This section repeats portions of Chapters 1 and 2 in a slightly different context and
with a different emphasis. Previously, attention was focused on the vector or tensor. In
the case of the tensor, transformation properties were strongly stressed and were critical.
Here emphasis is placed on the description of the coordinate rotation itself — the matrix.
Transformation properties, the behavior of the matrix when the basis is changed, appear
at the end of this section. Sections 3.4 and 3.5 continue with transformation properties in
complex vector spaces.
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FIGURE 3.1 Cartesian coordinate systems.

Direction Cosines

A unit vector along thex′1-axis (x̂′1) may be resolved into components along thex1-, x2-,
andx3-axes by the usual projection technique:

x̂′1= x̂1 cos(x′1, x1)+ x̂2 cos(x′1, x2)+ x̂3 cos(x′1, x3). (3.61)

Equation (3.61) is a specific example of the linear relations discussed at the beginning of
Section 3.2.

For convenience these cosines, which are the direction cosines, are labeled

cos(x′1, x1) = x̂′1 · x̂1= a11,

cos(x′1, x2) = x̂′1 · x̂2= a12, (3.62a)

cos(x′1, x3) = x̂′1 · x̂3= a13.

Continuing, we have

cos(x′2, x1) = x̂′2 · x̂1= a21,
(3.62b)

cos(x′2, x2) = x̂′2 · x̂2= a22,

and so on, wherea21 
= a12 in general. Now, Eq. (3.62) may be rewritten

x̂′1= x̂1a11+ x̂2a12+ x̂3a13, (3.62c)

and also

x̂′2 = x̂1a21+ x̂2a22+ x̂3a23,
(3.62d)

x̂′3 = x̂1a31+ x̂2a32+ x̂3a33.
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We may also go the other way by resolvingx̂1, x̂2, andx̂3 into components in the primed
system. Then

x̂1 = x̂′1a11+ x̂′2a21+ x̂′3a31,

x̂2 = x̂′1a12+ x̂′2a22+ x̂′3a32, (3.63)

x̂3 = x̂′1a13+ x̂′2a23+ x̂′3a33.

Associatingx̂1 and x̂′1 with the subscript 1,̂x2 and x̂′2 with the subscript 2,̂x3 and x̂′3
with the subscript 3, we see that in each case the first subscript ofaij refers to the primed
unit vector(x̂′1, x̂′2, x̂′3), whereas the second subscript refers to the unprimed unit vector
(x̂1, x̂2, x̂3).

Applications to Vectors

If we consider a vector whose components are functions of the position in space, then

V(x1, x2, x3) = x̂1V1+ x̂2V2+ x̂3V3,
(3.64)

V′(x′1, x′2, x′3) = x̂′1V ′1+ x̂′2V ′2+ x̂′3V ′3,

since the point may be given both by the coordinates(x1, x2, x3) and by the coordinates
(x′1, x′2, x′3). Note thatV andV′ are geometrically the same vector (but with different com-
ponents). The coordinate axes are being rotated; the vector stays fixed. Using Eqs. (3.62)
to eliminatex̂1, x̂2, andx̂3, we may separate Eq. (3.64) into three scalar equations,

V ′1 = a11V1+ a12V2+ a13V3,

V ′2 = a21V1+ a22V2+ a23V3, (3.65)

V ′3 = a31V1+ a32V2+ a33V3.

In particular, these relations will hold for the coordinates of a point(x1, x2, x3) and
(x′1, x′2, x′3), giving

x′1 = a11x1+ a12x2+ a13x3,

x′2 = a21x1+ a22x2+ a23x3, (3.66)

x′3 = a31x1+ a32x2+ a33x3,

and similarly for the primed coordinates. In this notation the set of three equations (3.66)
may be written as

x′i =
3∑

j=1

aij xj , (3.67)

wherei takes on the values 1, 2, and 3 and the result is threeseparate equations.
Now let us set aside these results and try a different approach to the same problem. We

consider two coordinate systems(x1, x2, x3) and (x′1, x′2, x′3) with a common origin and
one point(x1, x2, x3) in the unprimed system,(x′1, x′2, x′3) in the primed system. Note the
usual ambiguity. The same symbolx denotes both the coordinate axis and a particular
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distance along that axis. Since our system is linear,x′i must be a linear combination of
thexi . Let

x′i =
3∑

j=1

aij xj . (3.68)

Theaij may be identified as the direction cosines. This identification is carried out for the
two-dimensional case later.

If we have two sets of quantities(V1,V2,V3) in the unprimed system and(V ′1,V ′2,V ′3) in
the primed system, related in the same way as the coordinates of a point in the two different
systems (Eq. (3.68)),

V ′i =
3∑

j=1

aijVj , (3.69)

then, as in Section 1.2, the quantities(V1,V2,V3) are defined as the components of a vector
that stays fixed while the coordinates rotate; that is, a vector is defined in terms of trans-
formation properties of its components under a rotation of the coordinate axes. In a sense
the coordinates of a point have been taken as a prototype vector. The power and useful-
ness of this definition became apparent in Chapter 2, in which it was extended to define
pseudovectors and tensors.

From Eq. (3.67) we can derive interesting information about theaij that describe the
orientation of coordinate system(x′1, x′2, x′3) relative to the system(x1, x2, x3). The length
from the origin to the point is the same in both systems. Squaring, for convenience,13∑

i

x2
i =

∑
i

x′2i =
∑
i

(∑
j

aij xj

)(∑
k

aikxk

)

=
∑
j,k

xj xk
∑
i

aij aik. (3.70)

This can be true for all points if and only if∑
i

aij aik = δjk, j, k = 1,2,3. (3.71)

Note that Eq. (3.71) is equivalent to the matrix equation (3.83); see also Eqs. (3.87a)
to (3.87d).

Verification of Eq. (3.71), if needed, may be obtained by returning to Eq. (3.70) and
settingr = (x1, x2, x3) = (1,0,0), (0,1,0), (0,0,1), (1,1,0), and so on to evaluate the
nine relations given by Eq. (3.71). This process is valid, since Eq. (3.70) must hold for allr
for a given set ofaij . Equation (3.71), a consequence of requiring that the length remain
constant (invariant) under rotation of the coordinate system, is called theorthogonality
condition. Theaij , written as a matrixA subject to Eq. (3.71), form an orthogonal matrix,
a first definition of an orthogonal matrix. Note that Eq. (3.71) isnot matrix multiplication.
Rather, it is interpreted later as a scalar product of two columns ofA.

13Note thattwo independent indicesj andk are used.
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In matrix notation Eq. (3.67) becomes

|x′〉 = A|x〉. (3.72)

Orthogonality Conditions — Two-Dimensional Case

A better understanding of theaij and the orthogonality condition may be gained by consid-
ering rotation in two dimensions in detail. (This can be thought of as a three-dimensional
system with thex1-, x2-axes rotated aboutx3.) From Fig. 3.2,

x′1= x1 cosϕ + x2 sinϕ,

x′2=−x1 sinϕ + x2 cosϕ.
(3.73)

Therefore by Eq. (3.72)

A=
(

cosϕ sinϕ
−sinϕ cosϕ

)
. (3.74)

Notice thatA reduces to the unit matrix forϕ = 0. Zero angle rotation means nothing has
changed. It is clear from Fig. 3.2 that

a11= cosϕ = cos(x′1, x1),
(3.75)

a12= sinϕ = cos
(
π
2 − ϕ

)= cos(x′1, x2),

and so on, thus identifying the matrix elementsaij as the direction cosines. Equation (3.71),
the orthogonality condition, becomes

sin2ϕ + cos2ϕ = 1,
(3.76)

sinϕ cosϕ − sinϕ cosϕ = 0.

FIGURE 3.2 Rotation of coordinates.
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The extension to three dimensions (rotation of the coordinates through an angleϕ coun-
terclockwise aboutx3) is simply

A=
 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1

 . (3.77)

Thea33= 1 expresses the fact thatx′3= x3, since the rotation has been about thex3-axis.
The zeros guarantee thatx′1 andx′2 do not depend onx3 and thatx′3 does not depend onx1
andx2.

Inverse Matrix, A−1

Returning to the general transformation matrixA, the inverse matrixA−1 is defined such
that

|x〉 = A−1|x′〉. (3.78)

That is,A−1 describes the reverse of the rotation given byA and returns the coordinate
system to its original position. Symbolically, Eqs. (3.72) and (3.78) combine to give

|x〉 = A−1A|x〉, (3.79)

and since|x〉 is arbitrary,

A−1A= 1, (3.80)

the unit matrix. Similarly,

AA−1= 1, (3.81)

using Eqs. (3.72) and (3.78) and eliminating|x〉 instead of|x′〉.

Transpose Matrix, Ã

We can determine the elements of our postulated inverse matrixA−1 by employing the
orthogonality condition. Equation (3.71), the orthogonality condition, does not conform to
our definition of matrix multiplication, but it can be put in the required form bydefining a
new matrixÃ such that

ãj i = aij . (3.82)

Equation (3.71) becomes

ÃA= 1. (3.83)

This is a restatement of the orthogonality condition and may be taken as the constraint
defining an orthogonal matrix, a second definition of an orthogonal matrix. Multiplying
Eq. (3.83) byA−1 from the right and using Eq. (3.81), we have

Ã= A−1, (3.84)
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a third definition of an orthogonal matrix. This important result, that the inverse equals
the transpose, holds only for orthogonal matrices and indeed may be taken as a further
restatement of the orthogonality condition.

Multiplying Eq. (3.84) byA from the left, we obtain

AÃ= 1 (3.85)

or ∑
i

ajiaki = δjk, (3.86)

which is still another form of the orthogonality condition.
Summarizing, the orthogonality condition may be stated in several equivalent ways:∑

i

aij aik = δjk, (3.87a)

∑
i

ajiaki = δjk, (3.87b)

ÃA= AÃ= 1, (3.87c)

Ã= A−1. (3.87d)

Any one of these relations is a necessary and a sufficient condition forA to be orthogonal.
It is now possible to see and understand why the termorthogonal is appropriate for

these matrices. We have the general form

A=
a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

a matrix of direction cosines in whichaij is the cosine of the angle betweenx′i andxj .
Thereforea11, a12, a13 are the direction cosines ofx′1 relative tox1, x2, x3. These three
elements ofA define a unit length alongx′1, that is, a unit vector̂x′1,

x̂′1= x̂1a11+ x̂2a12+ x̂3a13.

The orthogonality relation (Eq. (3.86)) is simply a statement that the unit vectorsx̂′1, x̂′2,
andx̂′3 are mutually perpendicular, or orthogonal. Our orthogonal transformation matrixA
transforms one orthogonal coordinate system into a second orthogonal coordinate system
by rotation and/or reflection.

As an example of the use of matrices, the unit vectors in spherical polar coordinates may
be written as  r̂

θ̂

ϕ̂

=C

 x̂
ŷ
ẑ

 , (3.88)
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whereC is given in Exercise 2.5.1. This is equivalent to Eqs. (3.62) withx′1, x′2, andx′3
replaced bŷr, θ̂ , andϕ̂. From the preceding analysisC is orthogonal. Therefore the inverse
relation becomes  x̂

ŷ
ẑ

=C−1

 r̂
θ̂

ϕ̂

= C̃

 r̂
θ̂

ϕ̂

 , (3.89)

and Exercise 2.5.5 is solved by inspection. Similar applications of matrix inverses appear in
connection with the transformation of a power series into a series of orthogonal functions
(Gram–Schmidt orthogonalization in Section 10.3) and the numerical solution of integral
equations.

Euler Angles

Our transformation matrixA contains nine direction cosines. Clearly, only three of these
are independent, Eq. (3.71) providing six constraints. Equivalently, we may say that two
parameters (θ andϕ in spherical polar coordinates) are required to fix the axis of rotation.
Then one additional parameter describes the amount of rotation about the specified axis.
(In the Lagrangian formulation of mechanics (Section 17.3) it is necessary to describe
A by using some set of three independent parameters rather than the redundant direction
cosines.) The usual choice of parameters is the Euler angles.14

The goal is to describe the orientation of a final rotated system(x′′′1 , x′′′2 , x′′′3 ) relative to
some initial coordinate system(x1, x2, x3). The final system is developed in three steps,
with each step involving one rotation described by one Euler angle (Fig. 3.3):

1. The coordinates are rotated about thex3-axis through an angleα counterclockwise
into new axes denoted byx′1-, x′2-, x′3. (Thex3- andx′3-axes coincide.)

FIGURE 3.3 (a) Rotation aboutx3 through angleα; (b) rotation aboutx′2 through
angleβ; (c) rotation aboutx′′3 through angleγ .

14There are almost as many definitions of the Euler angles as there are authors. Here we follow the choice generally made by
workers in the area of group theory and the quantum theory of angular momentum (compare Sections 4.3, 4.4).



3.3 Orthogonal Matrices 203

2. The coordinates are rotated about thex′2-axis15 through an angleβ counterclockwise
into new axes denoted byx′′1-, x′′2-, x′′3 . (Thex′2- andx′′2-axes coincide.)

3. The third and final rotation is through an angleγ counterclockwise about thex′′3-axis,
yielding thex′′′1 , x′′′2 , x′′′3 system. (Thex′′3- andx′′′3 -axes coincide.)

The three matrices describing these rotations are

Rz(α)=
 cosα sinα 0
−sinα cosα 0

0 0 1

 , (3.90)

exactly like Eq. (3.77),

Ry(β)=
cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

 (3.91)

and

Rz(γ )=
 cosγ sinγ 0
−sinγ cosγ 0

0 0 1

 . (3.92)

The total rotation is described by the triple matrix product,

A(α,β, γ )=Rz(γ )Ry(β)Rz(α). (3.93)

Note the order:Rz(α) operates first, thenRy(β), and finallyRz(γ ). Direct multiplication
gives

A(α,β, γ )

=
 cosγ cosβ cosα − sinγ sinα cosγ cosβ sinα + sinγ cosα −cosγ sinβ
−sinγ cosβ cosα − cosγ sinα −sinγ cosβ sinα + cosγ cosα sinγ sinβ

sinβ cosα sinβ sinα cosβ


(3.94)

EquatingA(aij ) with A(α,β, γ ), element by element, yields the direction cosines in terms
of the three Euler angles. We could use this Euler angle identification to verify the direction
cosine identities, Eq. (1.46) of Section 1.4, but the approach of Exercise 3.3.3 is much more
elegant.

Symmetry Properties

Our matrix description leads to the rotation groupSO(3) in three-dimensional spaceR3,
and the Euler angle description of rotations forms a basis for developing the rotation
group in Chapter 4. Rotations may also be described by the unitary groupSU(2) in two-
dimensional spaceC2 over the complex numbers. The concept of groups such asSU(2)
and its generalizations and group theoretical techniques are often encountered in modern

15Some authors choose this second rotation to be about thex′1-axis.
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particle physics, where symmetry properties play an important role. TheSU(2) group is
also considered in Chapter 4. The power and flexibility of matrices pushed quaternions into
obscurity early in the 20th century.16

It will be noted that matrices have been handled in two ways in the foregoing discussion:
by their components and as single entities. Each technique has its own advantages and both
are useful.

The transpose matrix is useful in a discussion of symmetry properties. If

A= Ã, aij = aji, (3.95)

the matrix is calledsymmetric, whereas if

A=−Ã, aij =−aji, (3.96)

it is calledantisymmetric or skewsymmetric. The diagonal elements vanish. It is easy to
show that any (square) matrix may be written as the sum of a symmetric matrix and an
antisymmetric matrix. Consider the identity

A= 1
2[A+ Ã] + 1

2[A− Ã]. (3.97)

[A + Ã] is clearly symmetric, whereas[A − Ã] is clearly antisymmetric. This is the
matrix analog of Eq. (2.75), Chapter 2, for tensors. Similarly, a function may be broken up
into its even and odd parts.

So far we have interpreted the orthogonal matrix as rotating the coordinate system. This
changes the components of a fixed vector (not rotating with the coordinates) (Fig. 1.6,
Chapter 1). However, an orthogonal matrixA may be interpreted equally well as a rotation
of thevector in theopposite direction (Fig. 3.4).

These two possibilities, (1) rotating the vector keeping the coordinates fixed and (2)
rotating the coordinates (in the opposite sense) keeping the vector fixed, have a direct
analogy in quantum theory. Rotation (a time transformation) of the state vector gives the
Schrödinger picture. Rotation of the basis keeping the state vector fixed yields the Heisen-
berg picture.

FIGURE 3.4 Fixed coordinates —
rotated vector.

16R. J. Stephenson, Development of vector analysis from quaternions.Am. J. Phys. 34: 194 (1966).
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Suppose we interpret matrixA as rotating avector r into the position shown byr1; that
is, in a particular coordinate system we have a relation

r1= Ar. (3.98)

Now let us rotate thecoordinates by applying matrixB, which rotates(x, y, z) into
(x′, y′, z′),

r′1 = Br1= BAr= (Ar)′ = BA
(
B−1B

)
r

= (BAB−1)Br= (BAB−1)r′. (3.99)

Br1 is just r1 in the new coordinate system, with a similar interpretation holding forBr.
Hencein this new system (Br) is rotated into position(Br1) by the matrixBAB−1:

Br1 = (BAB−1) Br

r′1 = A′ r′

In the new system the coordinates have been rotated by matrixB; A has the formA′, in
which

A′ = BAB−1. (3.100)

A′ operates in thex′, y′, z′ space asA operates in thex, y, z space.
The transformation defined by Eq. (3.100) withB any matrix, not necessarily orthogo-

nal, is known as asimilarity transformation. In component form Eq. (3.100) becomes

a′ij =
∑
k,l

bikakl
(
B−1)

lj
. (3.101)

Now, if B is orthogonal, (
B−1)

lj
= (B̃)lj = bjl, (3.102)

and we have

a′ij =
∑
k,l

bikbjlakl . (3.103)

It may be helpful to think ofA again as an operator, possibly as rotating coordinate axes,
relating angular momentum and angular velocity of a rotating solid (Section 3.5). MatrixA
is the representation in a given coordinate system — or basis. But there are directions asso-
ciated withA — crystal axes, symmetry axes in the rotating solid, and so on — so that the
representationA depends on the basis. The similarity transformation shows just how the
representation changes with a change of basis.
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Relation to Tensors

Comparing Eq. (3.103) with the equations of Section 2.6, we see that it is the definition
of a tensor of second rank. Hence a matrix that transforms by anorthogonal similarity
transformation is, by definition, a tensor. Clearly, then, anyorthogonal matrix A, inter-
preted as rotating a vector (Eq. (3.98)), may be called a tensor. If, however, we consider
the orthogonal matrix as a collection of fixed direction cosines, giving the new orientation
of a coordinate system, there is no tensor property involved.

The symmetry and antisymmetry properties defined earlier are preserved underorthog-
onal similarity transformations. LetA be a symmetric matrix,A= Ã, and

A′ = BAB−1. (3.104)

Now,

Ã′ = B̃−1ÃB̃= BÃB−1, (3.105)

sinceB is orthogonal. ButA= Ã. Therefore

Ã′ = BAB−1= A′, (3.106)

showing that the property of symmetry is invariant under an orthogonal similarity transfor-
mation. In general, symmetry isnot preserved under a nonorthogonal similarity transfor-
mation.

Exercises

Note. Assume all matrix elements are real.

3.3.1 Show that the product of two orthogonal matrices is orthogonal.
Note. This is a key step in showing that alln × n orthogonal matrices form a group
(Section 4.1).

3.3.2 If A is orthogonal, show that its determinant=±1.

3.3.3 If A is orthogonal and detA=+1, show that(detA)aij = Cij , whereCij is thecofactor
of aij . This yields the identities of Eq. (1.46), used in Section 1.4 to show that a cross
product of vectors (in three-space) is itself a vector.
Hint. Note Exercise 3.2.32.

3.3.4 Another set of Euler rotations in common use is

(1) a rotation about thex3-axis through an angleϕ, counterclockwise,

(2) a rotation about thex′1-axis through an angleθ , counterclockwise,

(3) a rotation about thex′′3-axis through an angleψ , counterclockwise.

If

α = ϕ − π/2 ϕ = α + π/2
β = θ θ = β

γ =ψ + π/2 ψ = γ − π/2,

show that the final systems are identical.
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3.3.5 Suppose the Earth is moved (rotated) so that the north pole goes to 30◦ north, 20◦ west
(original latitude and longitude system) and the 10◦ west meridian points due south.

(a) What are the Euler angles describing this rotation?
(b) Find the corresponding direction cosines.

ANS. (b)A=
0.9551 −0.2552 −0.1504

0.0052 0.5221 −0.8529
0.2962 0.8138 0.5000

.

3.3.6 Verify that the Euler angle rotation matrix, Eq. (3.94), is invariant under the transforma-
tion

α→ α + π, β→−β, γ → γ − π.

3.3.7 Show that the Euler angle rotation matrixA(α,β, γ ) satisfies the following relations:

(a) A−1(α,β, γ )= Ã(α,β, γ ),
(b) A−1(α,β, γ )= A(−γ,−β,−α).

3.3.8 Show that the trace of the product of a symmetric and an antisymmetric matrix is zero.

3.3.9 Show that the trace of a matrix remains invariant under similarity transformations.

3.3.10 Show that the determinant of a matrix remains invariant under similarity transforma-
tions.
Note. Exercises (3.3.9) and (3.3.10) show that the trace and the determinant are inde-
pendent of the Cartesian coordinates. They are characteristics of the matrix (operator)
itself.

3.3.11 Show that the property of antisymmetry is invariant under orthogonal similarity trans-
formations.

3.3.12 A is 2× 2 and orthogonal. Find the most general form of

A=
(
a b

c d

)
.

Compare with two-dimensional rotation.

3.3.13 |x〉 and |y〉 are column vectors. Under an orthogonal transformationS, |x′〉 = S|x〉,
|y′〉 = S|y〉. Show that the scalar product〈x | y〉 is invariant under this orthogonal trans-
formation.
Note. This is equivalent to the invariance of the dot product of two vectors, Section 1.3.

3.3.14 Show that the sum of the squares of the elements of a matrix remains invariant under
orthogonal similarity transformations.

3.3.15 As a generalization of Exercise 3.3.14, show that∑
jk

SjkTjk =
∑
l,m

S′lmT ′lm,
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where the primed and unprimed elements are related by an orthogonal similarity trans-
formation. This result is useful in deriving invariants in electromagnetic theory (com-
pare Section 4.6).
Note. This productMjk =∑ SjkTjk is sometimes called aHadamard product. In the
framework of tensor analysis, Chapter 2, this exercise becomes a double contraction of
two second-rank tensors and therefore is clearly a scalar (invariant).

3.3.16 A rotation ϕ1 + ϕ2 about thez-axis is carried out as two successive rotationsϕ1 and
ϕ2, each about thez-axis. Use the matrix representation of the rotations to derive the
trigonometric identities

cos(ϕ1+ ϕ2)= cosϕ1 cosϕ2− sinϕ1 sinϕ2,

sin(ϕ1+ ϕ2)= sinϕ1 cosϕ2+ cosϕ1 sinϕ2.

3.3.17 A column vectorV has componentsV1 andV2 in an initial (unprimed) system. Calculate
V ′1 andV ′2 for a

(a) rotation of the coordinates through an angle ofθ counterclockwise,
(b) rotation of the vector through an angle ofθ clockwise.

The results for parts (a) and (b) should be identical.

3.3.18 Write a subroutine that will test whether a realN ×N matrix is symmetric. Symmetry
may be defined as

0≤ |aij − aji | ≤ ε,

whereε is some small tolerance (which allows for truncation error, and so on in the
computer).

3.4 HERMITIAN MATRICES, UNITARY MATRICES

Definitions

Thus far it has generally been assumed that our linear vector space is a real space and
that the matrix elements (the representations of the linear operators) are real. For many
calculations in classical physics, real matrix elements will suffice. However, in quantum
mechanics complex variables are unavoidable because of the form of the basic commuta-
tion relations (or the form of the time-dependent Schrödinger equation). With this in mind,
we generalize to the case of complex matrix elements. To handle these elements, let us
define, or label, some new properties.

1. Complex conjugate,A∗, formed by taking the complex conjugate(i→−i) of each
element, wherei =√−1.

2. Adjoint, A†, formed by transposingA∗,

A†= Ã∗ = Ã∗. (3.107)
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3. Hermitian matrix: The matrixA is labeledHermitian (or self-adjoint) if

A= A†. (3.108)

If A is real, thenA† = Ã and real Hermitian matrices are real symmetric matrices.
In quantum mechanics (or matrix mechanics) matrices are usually constructed to be
Hermitian, or unitary.

4. Unitary matrix: MatrixU is labeledunitary if

U†=U−1. (3.109)

If U is real, thenU−1 = Ũ, so real unitary matrices are orthogonal matrices. This
represents a generalization of the concept of orthogonal matrix (compare Eq. (3.84)).

5. (AB)∗ = A∗B∗, (AB)†= B†A†.

If the matrix elements are complex, the physicist is almost always concerned with Her-
mitian and unitary matrices. Unitary matrices are especially important in quantum me-
chanics because they leave the length of a (complex) vector unchanged — analogous to the
operation of an orthogonal matrix on a real vector. It is for this reason that the S matrix
of scattering theory is a unitary matrix. One important exception to this interest in unitary
matrices is the group of Lorentz matrices, Chapter 4. Using Minkowski space, we see that
these matrices are not unitary.

In a complexn-dimensional linear space the square of the length of a pointx̃ =
xT (x1, x2, . . . , xn), or the square of its distance from the origin 0, is defined asx†x =∑

x∗i xi =
∑ |xi |2. If a coordinate transformationy = Ux leaves the distance unchanged,

then x†x = y†y = (Ux)†Ux = x†U†Ux. Sincex is arbitrary it follows thatU†U = 1n;
that is,U is a unitaryn× n matrix. If x′ = Ax is a linear map, then its matrix in the new
coordinates becomes the unitary (analog of a similarity) transformation

A′ =UAU†, (3.110)

becauseUx′ = y′ =UAx =UAU−1y =UAU†y.

Pauli and Dirac Matrices

The set of three 2× 2 Pauli matricesσ ,

σ1=
(

0 1
1 0

)
, σ2=

(
0 −i
i 0

)
, σ3=

(
1 0
0 −1

)
, (3.111)

were introduced by W. Pauli to describe a particle of spin 1/2 in nonrelativistic quantum
mechanics. It can readily be shown that (compare Exercises 3.2.13 and 3.2.14) the Pauliσ

satisfy

σiσj + σjσi = 2δij12, anticommutation (3.112)

σiσj = iσk, i, j, k a cyclic permutation of 1, 2, 3 (3.113)

(σi)
2 = 12, (3.114)
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where 12 is the 2× 2 unit matrix. Thus, the vectorσ/2 satisfies the same commutation
relations,

[σi, σj ] ≡ σiσj − σjσi = 2iεijkσk, (3.115)

as the orbital angular momentumL (L× L= iL, see Exercise 2.5.15 and theSO(3) and
SU(2) groups in Chapter 4).

The three Pauli matricesσ and the unit matrix form a complete set, so any Hermitian
2× 2 matrixM may be expanded as

M=m012+m1σ1+m2σ2+m3σ3=m0+m · σ , (3.116)

where themi form a constant vectorm. Using(σi)2= 12 and trace(σi)= 0 we obtain from
Eq. (3.116) the expansion coefficientsmi by forming traces,

2m0= trace(M), 2mi = trace(Mσi), i = 1,2,3. (3.117)

Adding and multiplying such 2× 2 matrices we generate the Pauli algebra.17 Note that
trace(σi)= 0 for i = 1,2,3.

In 1927 P. A. M. Dirac extended this formalism to fast-moving particles of spin1
2,

such as electrons (and neutrinos). To include special relativity he started from Einstein’s
energy,E2 = p2c2 + m2c4, instead of the nonrelativistic kinetic and potential energy,
E = p2/2m+ V . The key to the Dirac equation is to factorize

E2− p2c2=E2− (cσ · p)2= (E − cσ · p)(E + cσ · p)=m2c4 (3.118)

using the 2× 2 matrix identity

(σ · p)2= p212. (3.119)

The 2× 2 unit matrix 12 is not written explicitly in Eq. (3.118), and Eq. (3.119) follows
from Exercise 3.2.14 fora= b= p. Equivalently, we can introduce two matricesγ ′ andγ
to factorizeE2− p2c2 directly:[

Eγ ′ ⊗ 12− c(γ ⊗ σ ) · p]2
=E2γ ′2⊗ 12+ c2γ 2⊗ (σ · p)2−Ec(γ ′γ + γ γ ′)⊗ σ · p
=E2− p2c2=m2c4. (3.119′)

For Eq. (3.119′) to hold, the conditions

γ ′2= 1=−γ 2, γ ′γ + γ γ ′ = 0 (3.120)

must be satisfied. Thus, the matricesγ ′ andγ anticommute, just like the three Pauli ma-
trices; therefore they cannot be real or complex numbers. Because the conditions (3.120)
can be met by 2× 2 matrices, we have written direct product signs (see Example 3.2.1) in
Eq. (3.119′) becauseγ ′, γ are multiplied by 12, σ matrices, respectively, with

γ ′ =
(

1 0
0 −1

)
, γ =

(
0 1
−1 0

)
. (3.121)

17For its geometrical significance, see W. E. Baylis, J. Huschilt, and Jiansu Wei,Am. J. Phys. 60: 788 (1992).
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The direct-product 4× 4 matrices in Eq. (3.119′) are the four conventional Dirac
γ -matrices,

γ 0 = γ ′ ⊗ 12=
(

12 0
0 −12

)
=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

γ 1 = γ ⊗ σ1=
(

0 σ1
−σ1 0

)
=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ 3 = γ ⊗ σ3=
(

0 σ3
−σ3 0

)
=


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , (3.122)

and similarly for γ 2 = γ ⊗ σ2. In vector notationγ = γ ⊗ σ is a vector with three
components, each a 4× 4 matrix, a generalization of the vector of Pauli matrices to a
vector of 4× 4 matrices. The four matricesγ i are the components of the four-vector
γ µ = (γ 0, γ 1, γ 2, γ 3). If we recognize in Eq. (1.119′)

Eγ ′ ⊗ 12− c(γ ⊗ σ ) · p= γ µpµ = γ · p = (γ0,γ ) · (E, cp) (3.123)

as a scalar product of two four-vectorsγ µ andpµ (see Lorentz group in Chapter 4), then
Eq. (3.119′) with p2= p · p =E2− p2c2 may be regarded as a four-vector generalization
of Eq. (3.119).

Summarizing the relativistic treatment of a spin 1/2 particle, it leads to 4× 4 matrices,
while the spin 1/2 of a nonrelativistic particle is described by the 2× 2 Pauli matrices σ .

By analogy with the Pauli algebra, we can form products of the basicγ µ matrices
and linear combinations of them and the unit matrix 1= 14, thereby generating a 16-
dimensional (so-calledClifford18) algebra. A basis (with convenient Lorentz transforma-
tion properties, see Chapter 4) is given (in 2× 2 matrix notation of Eq. (3.122)) by

14, γ5= iγ 0γ 1γ 2γ 3=
(

0 12
12 0

)
, γ µ, γ 5γ µ,σµν = i

(
γ µγ ν − γ νγ µ

)
/2. (3.124)

Theγ -matrices anticommute; that is, their symmetric combinations

γ µγ ν + γ νγ µ = 2gµν14, (3.125)

whereg00= 1=−g11=−g22=−g33, andgµν = 0 for µ 
= ν, are zero or proportional
to the 4× 4 unit matrix 14, while the six antisymmetric combinations in Eq. (3.124) give
new basis elements that transform like a tensor under Lorentz transformations (see Chap-
ter 4). Any 4× 4 matrix can be expanded in terms of these 16 elements, and the expan-
sion coefficients are given by forming traces similar to the 2× 2 case in Eq. (3.117) us-

18D. Hestenes and G. Sobczyk,loc.cit.; D. Hestenes,Am. J. Phys. 39: 1013 (1971); andJ. Math. Phys. 16: 556 (1975).
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ing trace(14)= 4, trace(γ5)= 0, trace(γ µ)= 0= trace(γ5γ
µ), trace(σµν)= 0 for µ,ν =

0,1,2,3 (see Exercise 3.4.23). In Chapter 4 we show thatγ5 is odd under parity, soγ5γ
µ

transform like an axial vector that has even parity.
The spin algebra generated by the Pauli matrices is just a matrix representation of the

four-dimensional Clifford algebra, while Hestenes and coworkers (loc. cit.) have developed
in their geometric calculus a representation-free (that is, “coordinate-free”) algebra that
contains complex numbers, vectors, the quaternion subalgebra, and generalized cross prod-
ucts as directed areas (calledbivectors). This algebraic-geometric framework is tailored to
nonrelativistic quantum mechanics, where spinors acquire geometric aspects and the Gauss
and Stokes theorems appear as components of a unified theorem. Their geometric algebra
corresponding to the 16-dimensional Clifford algebra of Diracγ -matrices is the appropri-
ate coordinate-free framework for relativistic quantum mechanics and electrodynamics.

The discussion of orthogonal matrices in Section 3.3 and unitary matrices in this sec-
tion is only a beginning. Further extensions are of vital concern in “elementary” particle
physics. With the Pauli and Dirac matrices, we can developspinor wave functions for elec-
trons, protons, and other (relativistic) spin1

2 particles. The coordinate system rotations lead
to Dj (α,β, γ ), the rotation group usually represented by matrices in which the elements
are functions of the Euler angles describing the rotation. The special unitary groupSU(3)
(composed of 3×3 unitary matrices with determinant+1) has been used with considerable
success to describe mesons and baryons involved in the strong interactions, a gauge theory
that is now calledquantum chromodynamics. These extensions are considered further in
Chapter 4.

Exercises

3.4.1 Show that

det(A∗)= (detA)∗ = det
(
A†).

3.4.2 Three angular momentum matrices satisfy the basic commutation relation

[Jx,Jy] = iJz

(and cyclic permutation of indices). If two of the matrices have real elements, show that
the elements of the third must be pure imaginary.

3.4.3 Show that(AB)†= B†A†.

3.4.4 A matrix C= S†S. Show that the trace is positive definite unlessS is the null matrix,
in which case trace(C)= 0.

3.4.5 If A and B are Hermitian matrices, show that(AB + BA) and i(AB − BA) are also
Hermitian.

3.4.6 The matrixC is not Hermitian. Show that thenC+C† andi(C− C†) are Hermitian.
This means that a non-Hermitian matrix may be resolved into two Hermitian parts,

C= 1

2

(
C+C†)+ 1

2i
i
(
C−C†).

This decomposition of a matrix into two Hermitian matrix parts parallels the decompo-
sition of a complex numberz into x + iy, wherex = (z+ z∗)/2 andy = (z− z∗)/2i.
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3.4.7 A andB are two noncommuting Hermitian matrices:

AB−BA= iC.

Prove thatC is Hermitian.

3.4.8 Show that a Hermitian matrix remains Hermitian under unitary similarity transforma-
tions.

3.4.9 Two matricesA andB are each Hermitian. Find a necessary and sufficient condition for
their productAB to be Hermitian.

ANS. [A,B] = 0.

3.4.10 Show that the reciprocal (that is, inverse) of a unitary matrix is unitary.

3.4.11 A particular similarity transformation yields

A′ = UAU−1,

A′† = UA†U−1.

If the adjoint relationship is preserved(A†′ = A
′†) and detU= 1, show thatU must be

unitary.

3.4.12 Two matricesU andH are related by

U= eiaH,

with a real. (The exponential function is defined by a Maclaurin expansion. This will
be done in Section 5.6.)

(a) If H is Hermitian, show thatU is unitary.
(b) If U is unitary, show thatH is Hermitian. (H is independent ofa.)

Note. With H the Hamiltonian,

ψ(x, t)=U(x, t)ψ(x,0)= exp(−itH/h̄)ψ(x,0)

is a solution of the time-dependent Schrödinger equation.U(x, t)= exp(−itH/h̄) is the
“evolution operator.”

3.4.13 An operatorT (t + ε, t) describes the change in the wave function fromt to t + ε. Forε
real and small enough so thatε2 may be neglected,

T (t + ε, t)= 1− i

h̄
εH(t).

(a) If T is unitary, show thatH is Hermitian.
(b) If H is Hermitian, show thatT is unitary.

Note. WhenH(t) is independent of time, this relation may be put in exponential form —
Exercise 3.4.12.
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3.4.14 Show that an alternate form,

T (t + ε, t)= 1− iεH(t)/2h̄

1+ iεH(t)/2h̄
,

agrees with theT of part (a) of Exercise 3.4.13, neglectingε2, and is exactly unitary
(for H Hermitian).

3.4.15 Prove that the direct product of two unitary matrices is unitary.

3.4.16 Show thatγ5 anticommutes with all fourγ µ.

3.4.17 Use the four-dimensional Levi-Civita symbolελµνρ with ε0123= −1 (generalizing
Eqs. (2.93) in Section 2.9 to four dimensions) and show that (i) 2γ5σµν =−iεµναβσαβ

using the summation convention of Section 2.6 and (ii)γλγµγν = gλµγν − gλνγµ +
gµνγλ + iελµνργ

ργ5. Defineγµ = gµνγ
ν usinggµν = gµν to raise and lower indices.

3.4.18 Evaluate the following traces: (see Eq. (3.123) for the notation)

(i) trace(γ · aγ · b)= 4a · b,
(ii) trace(γ · aγ · bγ · c)= 0,

(iii) trace(γ · aγ · bγ · cγ · d)= 4(a · bc · d − a · cb · d + a · db · c),
(iv) trace(γ5γ · aγ · bγ · cγ · d)= 4iεαβµνaαbβcµdν .

3.4.19 Show that (i)γµγ αγ µ = −2γ α , (ii) γµγ
αγ βγ µ = 4gαβ , and (iii) γµγ αγ βγ νγ µ =

−2γ νγ βγ α .

3.4.20 If M= 1
2(1+ γ5), show that

M2=M.

Note thatγ5 may be replaced by any other Dirac matrix (any�i of Eq. (3.124)). IfM is
Hermitian, then this result,M2=M, is the defining equation for a quantum mechanical
projection operator.

3.4.21 Show that

α× α = 2iσ ⊗ 12,

whereα = γ0γ is a vector

α = (α1, α2, α3).

Note that ifα is a polar vector (Section 2.4), thenσ is an axial vector.

3.4.22 Prove that the 16 Dirac matrices form a linearly independent set.

3.4.23 If we assume that a given 4× 4 matrixA (with constant elements) can be written as a
linear combination of the 16 Dirac matrices

A=
16∑
i=1

ci�i,

show that

ci ∼ trace(A�i).
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3.4.24 If C = iγ 2γ 0 is the charge conjugation matrix, show thatCγ µC−1 = −γ̃ µ, where
˜ indicates transposition.

3.4.25 Let x′µ =�ν
µxν be a rotation by an angleθ about the 3-axis,

x′0 = x0, x′1= x1 cosθ + x2 sinθ,

x′2 = −x1 sinθ + x2 cosθ, x′3= x3.

Use R = exp(iθσ 12/2) = cosθ/2 + iσ 12sinθ/2 (see Eq. (3.170b)) and show that
the γ ’s transform just like the coordinatesxµ, that is,�ν

µγν = R−1γµR. (Note that
γµ = gµνγ

ν and that theγ µ are well defined only up to a similarity transformation.)
Similarly, if x′ =�x is a boost (pure Lorentz transformation) along the 1-axis, that is,

x′0= x0 coshζ − x1 sinhζ, x′1=−x0 sinhζ + x1 coshζ,

x′2= x2, x′3= x3,

with tanhζ = v/c and B = exp(−iζσ 01/2) = coshζ/2 − iσ 01sinhζ/2 (see
Eq. (3.170b)), show that�ν

µγν = BγµB
−1.

3.4.26 (a) Givenr′ = Ur, with U a unitary matrix andr a (column) vector with complex
elements, show that the norm (magnitude) ofr is invariant under this operation.

(b) The matrixU transforms any column vectorr with complex elements intor′,
leaving the magnitude invariant:r†r= r′†r′. Show thatU is unitary.

3.4.27 Write a subroutine that will test whether a complexn × n matrix is self-adjoint. In
demanding equality of matrix elementsaij = a

†
ij , allow some small toleranceε to com-

pensate for truncation error of the computer.

3.4.28 Write a subroutine that will form the adjoint of a complexM ×N matrix.

3.4.29 (a) Write a subroutine that will take a complexM×N matrixA and yield the product
A†A.
Hint. This subroutine can call the subroutines of Exercises 3.2.41 and 3.4.28.

(b) Test your subroutine by takingA to be one or more of the Dirac matrices,
Eq. (3.124).

3.5 DIAGONALIZATION OF MATRICES

Moment of Inertia Matrix

In many physical problems involving real symmetric or complex Hermitian matrices it is
desirable to carry out a (real) orthogonal similarity transformation or a unitary transfor-
mation (corresponding to a rotation of the coordinate system) to reduce the matrix to a
diagonal form, nondiagonal elements all equal to zero. One particularly direct example
of this is the moment of inertia matrixI of a rigid body. From the definition of angular
momentumL we have

L= Iω, (3.126)



216 Chapter 3 Determinants and Matrices

ω being the angular velocity.19 The inertia matrixI is found to have diagonal components

Ixx =
∑
i

mi

(
r2
i − x2

i

)
, and so on, (3.127)

the subscripti referring to massmi located atri = (xi, yi, zi). For the nondiagonal com-
ponents we have

Ixy =−
∑
i

mixiyi = Iyx. (3.128)

By inspection, matrixI is symmetric. Also, sinceI appears in a physical equation of the
form (3.126), which holds for all orientations of the coordinate system, it may be consid-
ered to be a tensor (quotient rule, Section 2.3).

The key now is to orient the coordinate axes (along a body-fixed frame) so that the
Ixy and the other nondiagonal elements will vanish. As a consequence of this orientation
and an indication of it, if the angular velocity is along one such realignedprincipal axis,
the angular velocity and the angular momentum will be parallel. As an illustration, the
stability of rotation is used by football players when they throw the ball spinning about its
long principal axis.

Eigenvectors, Eigenvalues

It is instructive to consider a geometrical picture of this problem. If the inertia matrixI is
multiplied from each side by a unit vector of variable direction,n̂= (α,β, γ ), then in the
Dirac bracket notation of Section 3.2,

〈n̂|I|n̂〉 = I, (3.129)

whereI is the moment of inertia about the directionn̂ and a positive number (scalar).
Carrying out the multiplication, we obtain

I = Ixxα
2+ Iyyβ

2+ Izzγ
2+ 2Ixyαβ + 2Ixzαγ + 2Iyzβγ, (3.130)

a positive definite quadratic form that must be an ellipsoid (see Fig. 3.5). From analytic
geometry it is known that the coordinate axes can always be rotated to coincide with the
axes of our ellipsoid. In many elementary cases, especially when symmetry is present, these
new axes, called theprincipal axes, can be found by inspection. We can find the axes by
locating the local extrema of the ellipsoid in terms of the variable components ofn, subject
to the constraint̂n2= 1. To deal with the constraint, we introduce a Lagrange multiplierλ

(Section 17.6). Differentiating〈n̂|I|n̂〉 − λ〈n̂|n̂〉,
∂

∂nj

(〈n̂|I|n̂〉 − λ〈n̂|n̂〉)= 2
∑
k

Ijknk − 2λnj = 0, j = 1,2,3 (3.131)

yields the eigenvalue equations

I|n̂〉 = λ|n̂〉. (3.132)

19The moment of inertia matrix may also be developed from the kinetic energy of a rotating body,T = 1/2〈ω|I|ω〉.
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FIGURE 3.5 Moment of inertia ellipsoid.

The same result can be found by purely geometric methods. We now proceed to develop
a general method of finding the diagonal elements and the principal axes.

If R−1 = R̃ is the real orthogonal matrix such thatn′ = Rn, or |n′〉 = R|n〉 in Dirac
notation, are the new coordinates, then we obtain, using〈n′|R= 〈n| in Eq. (3.132),

〈n|I|n〉 = 〈n′|RIR̃|n′〉 = I ′1n′21 + I ′2n′22 + I ′3n′23 , (3.133)

where theI ′i > 0 are the principal moments of inertia. The inertia matrixI′ in Eq. (3.133)
is diagonal in the new coordinates,

I′ =RIR̃=
I ′1 0 0

0 I ′2 0
0 0 I ′3

 . (3.134)

If we rewrite Eq. (3.134) usingR−1= R̃ in the form

R̃I′ = IR̃ (3.135)

and takeR̃= (v1,v2,v3) to consist of three column vectors, then Eq. (3.135) splits up into
three eigenvalue equations,

Ivi = I ′ivi , i = 1,2,3 (3.136)

with eigenvalues I ′i andeigenvectors vi . The names were introduced from the German
literature on quantum mechanics. Because these equations are linear and homogeneous
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(for fixed i), by Section 3.1 their determinants have to vanish:∣∣∣∣∣∣
I11− I ′i I12 I13
I12 I22− I ′i I23
I13 I23 I33− I ′i

∣∣∣∣∣∣= 0. (3.137)

Replacing the eigenvalueI ′i by a variableλ times the unit matrix1, we may rewrite
Eq. (3.136) as

(I− λ1)|v〉 = 0. (3.136′)

The determinant set to zero,

|I− λ1| = 0, (3.137′)

is a cubic polynomial inλ; its three roots, of course, are theI ′i . Substituting one root at
a time back into Eq. (3.136) (or (3.136′)), we can find the corresponding eigenvectors.
Because of its applications in astronomical theories, Eq. (3.137) (or (3.137′)) is known as
thesecular equation.20 The same treatment applies to any real symmetric matrixI, except
that its eigenvalues need not all be positive. Also, the orthogonality condition in Eq. (3.87)
for R say that, in geometric terms, the eigenvectorsvi are mutually orthogonal unit vectors.
Indeed they form the new coordinate system. The fact that any two eigenvectorsvi ,vj are
orthogonal ifI ′i 
= I ′j follows from Eq. (3.136) in conjunction with the symmetry ofI by
multiplying with vi andvj , respectively,

〈vj |I|vi〉 = I ′ivj · vi = 〈vi |I|vj 〉 = I ′jvi · vj . (3.138a)

SinceI ′i 
= I ′j and Eq. (3.138a) implies that(I ′j − I ′i )vi · vj = 0, sovi · vj = 0.
We can write the quadratic forms in Eq. (3.133) as a sum of squares in the original

coordinates|n〉,

〈n|I|n〉 = 〈n′|RIR̃|n′〉 =
∑
i

I ′i (n · vi )2, (3.138b)

because the rows of the rotation matrix inn′ =Rn, orn′1
n′2
n′3

=
v1 · n

v2 · n
v3 · n


componentwise, are made up of the eigenvectorsvi . The underlying matrix identity,

I=
∑
i

I ′i |vi〉〈vi |, (3.138c)

20Equation (3.126) will take on this form whenω is along one of the principal axes. ThenL= λω andIω = λω. In the mathe-
matics literatureλ is usually called acharacteristic value, ω a characteristic vector.
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may be viewed as thespectral decomposition of the inertia tensor (or any real symmetric
matrix). Here, the wordspectral is just another term for expansion in terms of its eigen-
values. When we multiply this eigenvalue expansion by〈n| on the left and|n〉 on the right
we reproduce the previous relation between quadratic forms. The operatorPi = |vi〉〈vi | is
a projection operator satisfyingP 2

i = Pi that projects theith componentwi of any vector
|w〉 =∑j wj |vj 〉 that is expanded in terms of the eigenvector basis|vj 〉. This is verified
by

Pi |w〉 =
∑
j

wj |vi〉〈vi |vj 〉 =wi |vi〉 = vi ·w|vi〉.

Finally, the identity ∑
i

|vi〉〈vi | = 1

expresses the completeness of the eigenvector basis according to which any vector|w〉 =∑
i wi |vi〉 can be expanded in terms of the eigenvectors. Multiplying the completeness

relation by|w〉 proves the expansion|w〉 =∑i〈vi |w〉|vi〉.
An important extension of the spectral decomposition theorem applies to commuting

symmetric (or Hermitian) matricesA,B: If [A,B] = 0, then there is an orthogonal (unitary)
matrix that diagonalizes bothA andB; that is, both matrices have common eigenvectors if
the eigenvalues are nondegenerate. The reverse of thistheorem is also valid.

To prove this theorem we diagonalizeA : Avi = aivi . Multiplying each eigenvalue equa-
tion by B we obtainBAvi = aiBvi = A(Bvi ), which says thatBvi is an eigenvector ofA
with eigenvalueai . HenceBvi = bivi with realbi . Conversely, if the vectorsvi are com-
mon eigenvectors ofA andB, thenABvi = Abivi = aibivi = BAvi . Since the eigenvec-
torsvi are complete, this impliesAB= BA.

Hermitian Matrices

For complex vector spaces, Hermitian and unitary matrices play the same role as symmetric
and orthogonal matrices over real vector spaces, respectively. First, let us generalize the
important theorem about the diagonal elements and the principal axes for the eigenvalue
equation

A|r〉 = λ|r〉, (3.139)

We now show that ifA is a Hermitian matrix,21 its eigenvalues are real and its eigenvectors
orthogonal.

Let λi andλj be two eigenvalues and|ri〉 and|rj 〉, the corresponding eigenvectors ofA,
a Hermitian matrix. Then

A|ri〉 = λi |ri〉, (3.140)

A|rj 〉 = λj |rj 〉. (3.141)

21If A is real, the Hermitian requirement reduces to a requirement of symmetry.
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Equation (3.140) is multiplied by〈rj |:
〈rj |A|ri〉 = λi〈rj |ri〉. (3.142)

Equation (3.141) is multiplied by〈ri | to give

〈ri |A|rj 〉 = λj 〈ri |rj 〉. (3.143)

Taking the adjoint22 of this equation, we have

〈rj |A†|ri〉 = λ∗j 〈rj |ri〉, (3.144)

or

〈rj |A|ri〉 = λ∗j 〈rj |ri〉 (3.145)

sinceA is Hermitian. Subtracting Eq. (3.145) from Eq. (3.142), we obtain

(λi − λ∗j )〈rj |ri〉 = 0. (3.146)

This is a general result for all possible combinations ofi and j . First, let j = i. Then
Eq. (3.146) becomes

(λi − λ∗i )〈ri |ri〉 = 0. (3.147)

Since〈ri |ri〉 = 0 would be a trivial solution of Eq. (3.147), we conclude that

λi = λ∗i , (3.148)

or λi is real, for alli.
Second, fori 
= j andλi 
= λj ,

(λi − λj )〈rj |ri〉 = 0, (3.149)

or

〈rj |ri〉 = 0, (3.150)

which means that the eigenvectors ofdistinct eigenvalues are orthogonal, Eq. (3.150) being
our generalization of orthogonality in this complex space.23

If λi = λj (degenerate case),|ri〉 is not automatically orthogonal to|rj 〉, but it may be
made orthogonal.24 Consider the physical problem of the moment of inertia matrix again.
If x1 is an axis of rotational symmetry, then we will find thatλ2= λ3. Eigenvectors|r2〉 and
|r3〉 are each perpendicular to the symmetry axis,|r1〉, but they lie anywhere in the plane
perpendicular to|r1〉; that is, any linear combination of|r2〉 and|r3〉 is also an eigenvector.
Consider(a2|r2〉 + a3|r3〉) with a2 anda3 constants. Then

A
(
a2|r2〉 + a3|r3〉

) = a2λ2|r2〉 + a3λ3|r3〉
= λ2

(
a2|r2〉 + a3|r3〉

)
, (3.151)

22Note〈rj | = |rj 〉† for complex vectors.
23The corresponding theory for differential operators (Sturm–Liouville theory) appears in Section 10.2. The integral equation
analog (Hilbert–Schmidt theory) is given in Section 16.4.
24We are assuming here that the eigenvectors of then-fold degenerateλi span the correspondingn-dimensional space. This
may be shown by including a parameterε in the original matrix to remove the degeneracy and then lettingε approach zero
(compare Exercise 3.5.30). This is analogous to breaking a degeneracy in atomic spectroscopy by applying an external magnetic
field (Zeeman effect).
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as is to be expected, forx1 is an axis of rotational symmetry. Therefore, if|r1〉 and |r2〉
are fixed,|r3〉 may simply be chosen to lie in the plane perpendicular to|r1〉 and also
perpendicular to|r2〉. A general method of orthogonalizing solutions, the Gram–Schmidt
process (Section 3.1), is applied to functions in Section 10.3.

The set ofn orthogonal eigenvectors|ri〉 of our n × n Hermitian matrixA forms a
complete set, spanning then-dimensional (complex) space,

∑
i |ri〉〈ri | = 1. This fact is

useful in a variational calculation of the eigenvalues, Section 17.8.
The spectral decomposition of any Hermitian matrixA is proved by analogy with real

symmetric matrices

A=
∑
i

λi |ri〉〈ri |,

with real eigenvaluesλi and orthonormal eigenvectors|ri〉.
Eigenvalues and eigenvectors are not limited to Hermitian matrices. All matrices have

at least one eigenvalue and eigenvector. However, only Hermitian matrices have all eigen-
vectors orthogonal and all eigenvalues real.

Anti-Hermitian Matrices

Occasionally in quantum theory we encounter anti-Hermitian matrices:

A†=−A.

Following the analysis of the first portion of this section, we can show that

a. The eigenvalues are pure imaginary (or zero).
b. The eigenvectors corresponding to distinct eigenvalues are orthogonal.

The matrixR formed from the normalized eigenvectors is unitary. This anti-Hermitian
property is preserved under unitary transformations.

Example 3.5.1 EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX

Let

A=
0 1 0

1 0 0
0 0 0

 . (3.152)

The secular equation is ∣∣∣∣∣∣
−λ 1 0
1 −λ 0
0 0 −λ

∣∣∣∣∣∣= 0, (3.153)

or

−λ(λ2− 1
)= 0, (3.154)
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expanding by minors. The roots areλ=−1,0,1. To find the eigenvector corresponding to
λ=−1, we substitute this value back into the eigenvalue equation, Eq. (3.139),−λ 1 0

1 −λ 0
0 0 −λ

x

y

z

=
0

0
0

 . (3.155)

With λ=−1, this yields

x + y = 0, z= 0. (3.156)

Within an arbitrary scale factor and an arbitrary sign (or phase factor),〈r1| = (1,−1,0).
Note that (for real|r〉 in ordinary space) the eigenvector singles out a line in space. The
positive or negative sense is not determined. This indeterminancy could be expected if we
noted that Eq. (3.139) is homogeneous in|r〉. For convenience we will require that the
eigenvectors be normalized to unity,〈r1|r1〉 = 1. With this condition,

〈r1| =
(

1√
2
,
−1√

2
,0

)
(3.157)

is fixed except for an overall sign. Forλ= 0, Eq. (3.139) yields

y = 0, x = 0, (3.158)

〈r2| = (0,0,1) is a suitable eigenvector. Finally, forλ= 1, we get

−x + y = 0, z= 0, (3.159)

or

〈r3| =
(

1√
2
,

1√
2
,0

)
. (3.160)

The orthogonality ofr1, r2, andr3, corresponding to three distinct eigenvalues, may be
easily verified.

The corresponding spectral decomposition gives

A = (−1)

(
1√
2
,− 1√

2
,0

)
1√
2

− 1√
2

0

+ (+1)

(
1√
2
,

1√
2
,0

)
1√
2

1√
2

0

+ 0(0,0,1)

0
0
1



= −


1
2 −1

2 0

−1
2

1
2 0

0 0 0

+


1
2

1
2 0

1
2

1
2 0

0 0 0

=
0 1 0

1 0 0
0 0 0

 .

�
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Example 3.5.2 DEGENERATE EIGENVALUES

Consider

A=
1 0 0

0 0 1
0 1 0

 . (3.161)

The secular equation is ∣∣∣∣∣∣
1− λ 0 0

0 −λ 1
0 1 −λ

∣∣∣∣∣∣= 0 (3.162)

or

(1− λ)
(
λ2− 1

)= 0, λ=−1,1,1, (3.163)

a degenerate case. Ifλ=−1, the eigenvalue equation (3.139) yields

2x = 0, y + z= 0. (3.164)

A suitable normalized eigenvector is

〈r1| =
(

0,
1√
2
,
−1√

2

)
. (3.165)

Forλ= 1, we get

−y + z= 0. (3.166)

Any eigenvector satisfying Eq. (3.166) is perpendicular tor1. We have an infinite number
of choices. Suppose, as one possible choice,r2 is taken as

〈r2| =
(

0,
1√
2
,

1√
2

)
, (3.167)

which clearly satisfies Eq. (3.166). Thenr3 must be perpendicular tor1 and may be made
perpendicular tor2 by25

r3= r1× r2= (1,0,0). (3.168)

The corresponding spectral decomposition gives

A = −
(

0,
1√
2
,− 1√

2

) 0
1√
2

− 1√
2

+(0,
1√
2
,

1√
2

) 0
1√
2

1√
2

+ (1,0,0)

1
0
0



= −
0 0 0

0 1
2 −1

2

0 −1
2

1
2

+
0 0 0

0 1
2

1
2

0 1
2

1
2

+
1 0 0

0 0 0
0 0 0

=
1 0 0

0 0 1
0 1 0

 .

�

25The use of the cross product is limited to three-dimensional space (see Section 1.4).
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Functions of Matrices

Polynomials with one or more matrix arguments are well defined and occur often. Power
series of a matrix may also be defined, provided the series converge (see Chapter 5) for
each matrix element. For example, ifA is anyn× n matrix, then the power series

exp(A) =
∞∑
j=0

1

j !A
j , (3.169a)

sin(A) =
∞∑
j=0

(−1)j

(2j + 1)!A
2j+1, (3.169b)

cos(A) =
∞∑
j=0

(−1)j

(2j)! A2j (3.169c)

are well definedn×n matrices. For the Pauli matricesσk theEuler identity for realθ and
k = 1, 2, or 3

exp(iσkθ)= 12 cosθ + iσk sinθ, (3.170a)

follows from collecting all even and odd powers ofθ in separate series usingσ 2
k = 1. For

the 4× 4 Dirac matricesσ jk = 1 with (σ jk)2= 1 if j 
= k = 1,2 or 3 we obtain similarly
(without writing the obvious unit matrix14 anymore)

exp
(
iσ jkθ

)= cosθ + iσ jk sinθ, (3.170b)

while

exp
(
iσ 0kζ

)= coshζ + iσ 0k sinhζ (3.170c)

holds for realζ because(iσ 0k)2= 1 for k = 1, 2, or 3.
For a Hermitian matrixA there is a unitary matrixU that diagonalizes it; that is,UAU†=

[a1, a2, . . . , an]. Then thetrace formula

det
(
exp(A)

)= exp
(
trace(A)

)
(3.171)

is obtained (see Exercises 3.5.2 and 3.5.9) from

det
(
exp(A)

) = det
(
U exp(A)U†)= det

(
exp

(
UAU†))

= detexp[a1, a2, . . . , an] = det
[
ea1, ea2, . . . , ean

]
=
∏

eai = exp
(∑

ai

)
= exp

(
trace(A)

)
,

usingUAiU†= (UAU†)i in the power series Eq. (3.169a) for exp(UAU†) and the product
theorem for determinants in Section 3.2.
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This trace formula is a special case of thespectral decomposition law for any (infinitely
differentiable) functionf (A) for HermitianA:

f (A)=
∑
i

f (λi)|ri〉〈ri |,

where|ri〉 are the common eigenvectors ofA andAj . This eigenvalue expansion follows
from Aj |ri〉 = λ

j
i |ri〉, multiplied by f (j)(0)/j ! and summed overj to form the Taylor

expansion off (λi) and yieldf (A)|ri〉 = f (λi)|ri〉. Finally, summing overi and using
completeness we obtainf (A)

∑
i |ri〉〈ri | =

∑
i f (λi)|ri〉〈ri | = f (A), q.e.d.

Example 3.5.3 EXPONENTIAL OF A DIAGONAL MATRIX

If the matrixA is diagonal like

σ3=
(

1 0
0 −1

)
,

then itsnth power is also diagonal with its diagonal, matrix elements raised to thenth
power:

(σ3)
n =

(
1 0
0 (−1)n

)
.

Then summing the exponential series, element for element, yields

eσ3 =
(∑∞

n=0
1
n! 0

0
∑∞

n=0
(−1)n

n!

)
=
(
e 0

0 1
e

)
.

If we write the general diagonal matrix asA= [a1, a2, . . . , an] with diagonal elementsaj ,
thenAm = [am1 , am2 , . . . , amn ], and summing the exponentials elementwise again we obtain
eA = [ea1, ea2, . . . , ean].

Using the spectral decomposition law we obtain directly

eσ3 = e+1(1,0)

(
1

0

)
+ e−1(0,1)

(
0

1

)
=
(
e 0
0 e−1

)
. �

Another important relation is theBaker–Hausdorff formula,

exp(iG)H exp(−iG)=H+ [iG,H] + 1

2

[
iG, [iG,H]]+ · · · , (3.172)

which follows from multiplying the power series for exp(iG) and collecting the terms with
the same powers ofiG. Here we define

[G,H] =GH−HG

as thecommutator of G andH.
The preceding analysis has the advantage of exhibiting and clarifying conceptual rela-

tionships in the diagonalization of matrices. However, for matrices larger than 3× 3, or
perhaps 4× 4, the process rapidly becomes so cumbersome that we turn to computers and
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iterative techniques.26 One such technique is the Jacobi method for determining eigenval-
ues and eigenvectors of real symmetric matrices. This Jacobi technique for determining
eigenvalues and eigenvectors and the Gauss–Seidel method of solving systems of simulta-
neous linear equations are examples of relaxation methods. They are iterative techniques
in which the errors may decrease or relax as the iterations continue. Relaxation methods
are used extensively for the solution of partial differential equations.

Exercises

3.5.1 (a) Starting with the orbital angular momentum of theith element of mass,

Li = ri × pi =miri × (ω× ri ),

derive the inertia matrix such thatL= Iω, |L〉 = I|ω〉.
(b) Repeat the derivation starting with kinetic energy

Ti = 1

2
mi(ω× ri )2

(
T = 1

2
〈ω|I|ω〉

)
.

3.5.2 Show that the eigenvalues of a matrix are unaltered if the matrix is transformed by a
similarity transformation.
This property is not limited to symmetric or Hermitian matrices. It holds for any ma-
trix satisfying the eigenvalue equation, Eq. (3.139). If our matrix can be brought into
diagonal form by a similarity transformation, then two immediate consequences are

1. The trace (sum of eigenvalues) is invariant under a similarity transformation.
2. The determinant (product of eigenvalues) is invariant under a similarity transfor-

mation.

Note. The invariance of the trace and determinant are often demonstrated by using the
Cayley–Hamilton theorem: A matrix satisfies its own characteristic (secular) equation.

3.5.3 As a converse of the theorem that Hermitian matrices have real eigenvalues and that
eigenvectors corresponding to distinct eigenvalues are orthogonal, show that if

(a) the eigenvalues of a matrix are real and
(b) the eigenvectors satisfyr†

i rj = δij = 〈ri |rj 〉,

then the matrix is Hermitian.

3.5.4 Show that a real matrix that is not symmetric cannot be diagonalized by an orthogonal
similarity transformation.
Hint. Assume that the nonsymmetric real matrix can be diagonalized and develop a
contradiction.

26In higher-dimensional systems the secular equation may be strongly ill-conditioned with respect to the determination of its
roots (the eigenvalues). Direct solution by computer may be very inaccurate. Iterative techniques for diagonalizing the original
matrix are usually preferred. See Sections 2.7 and 2.9 of Presset al., loc. cit.
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3.5.5 The matrices representing the angular momentum componentsJx , Jy , andJz are all
Hermitian. Show that the eigenvalues ofJ2, whereJ2 = J 2

x + J 2
y + J 2

z , are real and
nonnegative.

3.5.6 A has eigenvaluesλi and corresponding eigenvectors|xi〉. Show thatA−1 has the same
eigenvectors but with eigenvaluesλ−1

i .

3.5.7 A square matrix with zero determinant is labeledsingular.

(a) If A is singular, show that there is at least one nonzero column vectorv such that

A|v〉 = 0.

(b) If there is a nonzero vector|v〉 such that

A|v〉 = 0,

show thatA is a singular matrix. This means that if a matrix (or operator) has zero
as an eigenvalue, the matrix (or operator) has no inverse and its determinant is
zero.

3.5.8 The same similarity transformation diagonalizes each of two matrices. Show that the
original matrices must commute. (This is particularly important in the matrix (Heisen-
berg) formulation of quantum mechanics.)

3.5.9 Two Hermitian matricesA andB have the same eigenvalues. Show thatA andB are
related by a unitary similarity transformation.

3.5.10 Find the eigenvalues and an orthonormal (orthogonal and normalized) set of eigenvec-
tors for the matrices of Exercise 3.2.15.

3.5.11 Show that the inertia matrix for a single particle of massm at (x, y, z) has a zero de-
terminant. Explain this result in terms of the invariance of the determinant of a matrix
under similarity transformations (Exercise 3.3.10) and a possible rotation of the coordi-
nate system.

3.5.12 A certain rigid body may be represented by three point masses:m1 = 1 at (1,1,−2),
m2= 2 at(−1,−1,0), andm3= 1 at(1,1,2).

(a) Find the inertia matrix.
(b) Diagonalize the inertia matrix, obtaining the eigenvalues and the principal axes (as

orthonormal eigenvectors).

3.5.13 Unit masses are placed as shown in Fig. 3.6.

(a) Find the moment of inertia matrix.
(b) Find the eigenvalues and a set of orthonormal eigenvectors.
(c) Explain the degeneracy in terms of the symmetry of the system.

ANS. I=
 4 −1 −1
−1 4 −1
−1 −1 4

 λ1= 2
r1= (1/

√
3,1/

√
3,1/

√
3)

λ2= λ3= 5.
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FIGURE 3.6 Mass sites for inertia tensor.

3.5.14 A massm1 = 1/2 kg is located at(1,1,1) (meters), a massm2 = 1/2 kg is at
(−1,−1,−1). The two masses are held together by an ideal (weightless, rigid) rod.

(a) Find the inertia tensor of this pair of masses.
(b) Find the eigenvalues and eigenvectors of this inertia matrix.
(c) Explain the meaning, the physical significance of theλ = 0 eigenvalue. What is

the significance of the corresponding eigenvector?
(d) Now that you have solved this problem by rather sophisticated matrix techniques,

explain how you could obtain

(1) λ= 0 andλ=? — by inspection (that is, using common sense).
(2) rλ=0=? — by inspection (that is, using freshman physics).

3.5.15 Unit masses are at the eight corners of a cube(±1,±1,±1). Find the moment of inertia
matrix and show that there is a triple degeneracy. This means that so far as moments of
inertia are concerned, the cubic structure exhibits spherical symmetry.
Find the eigenvalues and corresponding orthonormal eigenvectors of the following ma-
trices (as a numerical check, note that the sum of the eigenvalues equals the sum of the
diagonal elements of the original matrix, Exercise 3.3.9). Note also the correspondence
between detA= 0 and the existence ofλ= 0, as required by Exercises 3.5.2 and 3.5.7.

3.5.16 A=
1 0 1

0 1 0
1 0 1

.

ANS. λ= 0,1,2.

3.5.17 A=
 1

√
2 0√

2 0 0
0 0 0

.

ANS.λ=−1,0,2.
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3.5.18 A=
1 1 0

1 0 1
0 1 1

.

ANS.λ=−1,1,2.

3.5.19 A=
 1

√
8 0√

8 1
√

8
0

√
8 1

.

ANS.λ=−3,1,5.

3.5.20 A=
1 0 0

0 1 1
0 1 1

.

ANS. λ= 0,1,2.

3.5.21 A=
1 0 0

0 1
√

2
0
√

2 0

.

ANS.λ=−1,1,2.

3.5.22 A=
0 1 0

1 0 1
0 1 0

.

ANS. λ=−√2,0,
√

2.

3.5.23 A=
2 0 0

0 1 1
0 1 1

.

ANS. λ= 0,2,2.

3.5.24 A=
0 1 1

1 0 1
1 1 0

.

ANS. λ=−1,−1,2.

3.5.25 A=
 1 −1 −1
−1 1 −1
−1 −1 1

.

ANS.λ=−1,2,2.

3.5.26 A=
1 1 1

1 1 1
1 1 1

.

ANS. λ= 0,0,3.
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3.5.27 A=
5 0 2

0 1 0
2 0 2

.

ANS. λ= 1,1,6.

3.5.28 A=
1 1 0

1 1 0
0 0 0

.

ANS. λ= 0,0,2.

3.5.29 A=
 5 0

√
3

0 3 0√
3 0 3

.

ANS. λ= 2,3,6.

3.5.30 (a) Determine the eigenvalues and eigenvectors of(
1 ε

ε 1

)
.

Note that the eigenvalues are degenerate forε = 0 but that the eigenvectors are
orthogonal for allε 
= 0 andε→ 0.

(b) Determine the eigenvalues and eigenvectors of(
1 1
ε2 1

)
.

Note that the eigenvalues are degenerate forε = 0 and that for this (nonsymmetric)
matrix the eigenvectors(ε = 0) do not span the space.

(c) Find the cosine of the angle between the two eigenvectors as a function ofε for
0≤ ε ≤ 1.

3.5.31 (a) Take the coefficients of the simultaneous linear equations of Exercise 3.1.7 to be
the matrix elementsaij of matrix A (symmetric). Calculate the eigenvalues and
eigenvectors.

(b) Form a matrixR whose columns are the eigenvectors ofA, and calculate the triple
matrix productR̃AR.

ANS. λ= 3.33163.

3.5.32 Repeat Exercise 3.5.31 by using the matrix of Exercise 3.2.39.

3.5.33 Describe the geometric properties of the surface

x2+ 2xy + 2y2+ 2yz+ z2= 1.

How is it oriented in three-dimensional space? Is it a conic section? If so, which kind?
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Table 3.1

Matrix Eigenvalues Eigenvectors
(for different eigenvalues)

Hermitian Real Orthogonal
Anti-Hermitian Pure imaginary (or zero) Orthogonal
Unitary Unit magnitude Orthogonal
Normal If A has eigenvalueλ, Orthogonal

A† has eigenvalueλ∗ A andA† have the
same eigenvectors

3.5.34 For a Hermitiann × n matrix A with distinct eigenvaluesλj and a functionf , show
that the spectral decomposition law may be expressed as

f (A)=
n∑

j=1

f (λj )

∏
i 
=j (A− λi)∏
i 
=j (λj − λi)

.

This formula is due to Sylvester.

3.6 NORMAL MATRICES

In Section 3.5 we concentrated primarily on Hermitian or real symmetric matrices and
on the actual process of finding the eigenvalues and eigenvectors. In this section27 we
generalize to normal matrices, with Hermitian and unitary matrices as special cases. The
physically important problem of normal modes of vibration and the numerically important
problem of ill-conditioned matrices are also considered.

A normal matrix is a matrix that commutes with its adjoint,[
A,A†]= 0.

Obvious and important examples are Hermitian and unitary matrices. We will show that
normal matrices have orthogonal eigenvectors (see Table 3.1). We proceed in two steps.

I. Let A have an eigenvector|x〉 and corresponding eigenvalueλ. Then

A|x〉 = λ|x〉 (3.173)

or

(A− λ1)|x〉 = 0. (3.174)

For convenience the combinationA − λ1 will be labeled B. Taking the adjoint of
Eq. (3.174), we obtain

〈x|(A− λ1)†= 0= 〈x|B†. (3.175)

Because [
(A− λ1)†, (A− λ1)

]= [A,A†]= 0,

27Normal matrices are the largest class of matrices that can be diagonalized by unitary transformations. For an extensive discus-
sion of normal matrices, see P. A. Macklin, Normal matrices for physicists.Am. J. Phys. 52: 513 (1984).
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we have [
B,B†]= 0. (3.176)

The matrixB is also normal.
From Eqs. (3.174) and (3.175) we form

〈x|B†B|x〉 = 0. (3.177)

This equals

〈x|BB†|x〉 = 0 (3.178)

by Eq. (3.176). Now Eq. (3.178) may be rewritten as(
B†|x〉)†(B†|x〉)= 0. (3.179)

Thus

B†|x〉 = (A†− λ∗1
)|x〉 = 0. (3.180)

We see that for normal matrices,A† has the same eigenvectors asA but the complex con-
jugate eigenvalues.

II. Now, considering more than one eigenvector–eigenvalue, we have

A|xi〉 = λi |xi〉, (3.181)

A|xj 〉 = λj |xj 〉. (3.182)

Multiplying Eq. (3.182) from the left by〈xi | yields

〈xi |A|xj 〉 = λj 〈xi |xj 〉. (3.183)

Taking the transpose of Eq. (3.181), we obtain

〈xi |A=
(
A†|xi〉

)†
. (3.184)

From Eq. (3.180), withA† having the same eigenvectors asA but the complex conjugate
eigenvalues, (

A†|xi〉
)†= (λ∗i |xi〉)†= λi〈xi |. (3.185)

Substituting into Eq. (3.183) we have

λi〈xi |xj 〉 = λj 〈xi |xj 〉
or

(λi − λj )〈xi |xj 〉 = 0. (3.186)

This is the same as Eq. (3.149).
Forλi 
= λj ,

〈xj |xi〉 = 0.

The eigenvectors corresponding to different eigenvalues of a normal matrix areorthogo-
nal. This means that a normal matrix may be diagonalized by a unitary transformation. The
required unitary matrix may be constructed from the orthonormal eigenvectors as shown
earlier, in Section 3.5.

The converse of this result is also true. IfA can be diagonalized by a unitary transfor-
mation, thenA is normal.
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Normal Modes of Vibration

We consider the vibrations of a classical model of the CO2 molecule. It is an illustration of
the application of matrix techniques to a problem that does not start as a matrix problem. It
also provides an example of the eigenvalues and eigenvectors of an asymmetric real matrix.

Example 3.6.1 NORMAL MODES

Consider three masses on thex-axis joined by springs as shown in Fig. 3.7. The spring
forces are assumed to be linear (small displacements, Hooke’s law), and the mass is con-
strained to stay on thex-axis.

Using a different coordinate for each mass, Newton’s second law yields the set of equa-
tions

ẍ1 = − k

M
(x1− x2)

ẍ2 = − k

m
(x2− x1)− k

m
(x2− x3) (3.187)

ẍ3 = − k

M
(x3− x2).

The system of masses is vibrating. We seek the common frequencies,ω, such that all
masses vibrate at this same frequency. These are thenormal modes. Let

xi = xi0e
iωt , i = 1,2,3.

Substituting this set into Eq. (3.187), we may rewrite it as
k
M

− k
M

0

− k
m

2k
m

− k
m

0 − k
M

k
M


x1
x2
x3

=+ω2

x1
x2
x3

 , (3.188)

with the common factoreiωt divided out. We have a matrix–eigenvalue equation with the
matrix asymmetric. The secular equation is∣∣∣∣∣∣∣

k
M
−ω2 − k

M
0

− k
m

2k
m
−ω2 − k

m

0 − k
M

k
M
−ω2

∣∣∣∣∣∣∣= 0. (3.189)

FIGURE 3.7 Double oscillator.
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This leads to

ω2
(

k

M
−ω2

)(
ω2− 2k

m
− k

M

)
= 0.

The eigenvalues are

ω2= 0,
k

M
,

k

M
+ 2k

m
,

all real.
The corresponding eigenvectors are determined by substituting the eigenvalues back into

Eq. (3.188) one eigenvalue at a time. Forω2= 0, Eq. (3.188), yields

x1− x2= 0, −x1+ 2x2− x3= 0, −x2+ x3= 0.

Then we get

x1= x2= x3.

This describes pure translation with no relative motion of the masses and no vibration.
Forω2= k/M , Eq. (3.188) yields

x1=−x3, x2= 0.

The two outer masses are moving in opposite direction. The central mass is stationary.
Forω2= k/M + 2k/m, the eigenvector components are

x1= x3, x2=−2M

m
x1.

The two outer masses are moving together. The central mass is moving opposite to the two
outer ones. The net momentum is zero.

Any displacement of the three masses along thex-axis can be described as a linear
combination of these three types of motion: translation plus two forms of vibration.�

Ill-Conditioned Systems

A system of simultaneous linear equations may be written as

A|x〉 = |y〉 or A−1|y〉 = |x〉, (3.190)

with A and|y〉 known and|x〉 unknown. When a small error in|y〉 results in a larger error
in |x〉, then the matrixA is calledill-conditioned. With |δx〉 an error in|x〉 and|δx〉 an error
in |y〉, the relative errors may be written as[ 〈δx|δx〉

〈x|x〉
]1/2

≤K(A)
[ 〈δy|δy〉
〈y|y〉

]1/2

. (3.191)

HereK(A), a property of matrixA, is labeled thecondition number. ForA Hermitian one
form of the condition number is given by28

K(A)= |λ|max

|λ|min
. (3.192)

28G. E. Forsythe, and C. B. Moler,Computer Solution of Linear Algebraic Systems. Englewood Cliffs, NJ, Prentice Hall (1967).
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An approximate form due to Turing29 is

K(A)= n[Aij ]max
[
A−1
ij

]
max, (3.193)

in whichn is the order of the matrix and[Aij ]max is the maximum element inA.

Example 3.6.1 AN ILL-CONDITIONED MATRIX

A common example of an ill-conditioned matrix is the Hilbert matrix,Hij = (i+ j −1)−1.
The Hilbert matrix of order 4,H4, is encountered in a least-squares fit of data to a third-
degree polynomial. We have

H4=


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 . (3.194)

The elements of the inverse matrix (ordern) are given by(
H−1
n

)
ij
= (−1)i+j

i + j − 1
· (n+ i − 1)!(n+ j − 1)!
[(i − 1)!(j − 1)!]2(n− i)!(n− j)! . (3.195)

Forn= 4,

H−1
4 =


16 −120 240 −140
−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800

 . (3.196)

From Eq. (3.193) the Turing estimate of the condition number forH4 becomes

KTuring= 4× 1× 6480

= 2.59× 104.

This is a warning that an input error may be multiplied by 26,000 in the calculation
of the output result. It is a statement thatH4 is ill-conditioned. If you encounter a highly
ill-conditioned system, you have two alternatives (besides abandoning the problem).

(a) Try a different mathematical attack.
(b) Arrange to carry more significant figures and push through by brute force.

As previously seen, matrix eigenvector–eigenvalue techniques are not limited to the so-
lution of strictly matrix problems. A further example of the transfer of techniques from one
area to another is seen in the application of matrix techniques to the solution of Fredholm
eigenvalue integral equations, Section 16.3. In turn, these matrix techniques are strength-
ened by a variational calculation of Section 17.8. �

29Compare J. Todd,The Condition of the Finite Segments of the Hilbert Matrix, Applied Mathematics Series No. 313. Washing-
ton, DC: National Bureau of Standards.
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Exercises

3.6.1 Show that every 2× 2 matrix has two eigenvectors and corresponding eigenvalues. The
eigenvectors are not necessarily orthogonal and may be degenerate. The eigenvalues are
not necessarily real.

3.6.2 As an illustration of Exercise 3.6.1, find the eigenvalues and corresponding eigenvectors
for (

2 4
1 2

)
.

Note that the eigenvectors arenot orthogonal.

ANS.λ1= 0, r1= (2,−1);
λ2= 4, r2= (2,1).

3.6.3 If A is a 2× 2 matrix, show that its eigenvaluesλ satisfy the secular equation

λ2− λ trace(A)+ detA= 0.

3.6.4 Assuming a unitary matrixU to satisfy an eigenvalue equationUr= λr, show that the
eigenvalues of the unitary matrix have unit magnitude. This same result holds for real
orthogonal matrices.

3.6.5 Since an orthogonal matrix describing a rotation in real three-dimensional space is a
special case of a unitary matrix, such an orthogonal matrix can be diagonalized by a
unitary transformation.

(a) Show that the sum of the three eigenvalues is 1+ 2 cosϕ, whereϕ is the net angle
of rotation about a single fixed axis.

(b) Given that one eigenvalue is 1, show that the other two eigenvalues must beeiϕ

ande−iϕ .

Our orthogonal rotation matrix (real elements) has complex eigenvalues.

3.6.6 A is annth-order Hermitian matrix with orthonormal eigenvectors|xi〉 and real eigen-
valuesλ1≤ λ2≤ λ3≤ · · · ≤ λn. Show that for a unit magnitude vector|y〉,

λ1≤ 〈y|A|y〉 ≤ λn.

3.6.7 A particular matrix is both Hermitian and unitary. Show that its eigenvalues are all±1.
Note. The Pauli and Dirac matrices are specific examples.

3.6.8 For his relativistic electron theory Dirac required a set offour anticommuting matrices.
Assume that these matrices are to be Hermitian and unitary. If these aren× n matrices,
show thatn must be even. With 2×2 matrices inadequate (why?), this demonstrates that
the smallest possible matrices forming a set of four anticommuting, Hermitian, unitary
matrices are 4× 4.
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3.6.9 A is a normal matrix with eigenvaluesλn and orthonormal eigenvectors|xn〉. Show that
A may be written as

A=
∑
n

λn|xn〉〈xn|.

Hint. Show that both this eigenvector form ofA and the originalA give the same result
acting on an arbitrary vector|y〉.

3.6.10 A has eigenvalues 1 and−1 and corresponding eigenvectors
(1

0

)
and

(0
1

)
. ConstructA.

ANS. A=
(

1 0
0 −1

)
.

3.6.11 A non-Hermitian matrixA has eigenvaluesλi and corresponding eigenvectors|ui〉. The
adjoint matrixA† has the same set of eigenvalues butdifferent corresponding eigen-
vectors,|vi〉. Show that the eigenvectors form abiorthogonal set, in the sense that

〈vi |uj 〉 = 0 for λ∗i 
= λj .

3.6.12 You are given a pair of equations:

A|fn〉 = λn|gn〉
Ã|gn〉 = λn|fn〉 with A real.

(a) Prove that|fn〉 is an eigenvector of(ÃA) with eigenvalueλ2
n.

(b) Prove that|gn〉 is an eigenvector of(AÃ) with eigenvalueλ2
n.

(c) State how you know that

(1) The|fn〉 form an orthogonal set.
(2) The|gn〉 form an orthogonal set.
(3) λ2

n is real.

3.6.13 Prove thatA of the preceding exercise may be written as

A=
∑
n

λn|gn〉〈fn|,

with the |gn〉 and〈fn| normalized to unity.
Hint. Expand your arbitrary vector as a linear combination of|fn〉.

3.6.14 Given

A= 1√
5

(
2 2
1 −4

)
,

(a) Construct the transposeÃ and the symmetric forms̃AA andAÃ.
(b) FromAÃ|gn〉 = λ2

n|gn〉 find λn and|gn〉. Normalize the|gn〉.
(c) FromÃA|fn〉 = λ2

n|gn〉 find λn [same as (b)] and|fn〉. Normalize the|fn〉.
(d) Verify thatA|fn〉 = λn|gn〉 andÃ|gn〉 = λn|fn〉.
(e) Verify thatA=∑n λn|gn〉〈fn|.
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3.6.15 Given the eigenvaluesλ1= 1, λ2=−1 and the corresponding eigenvectors

|f1〉=
(

1
0

)
, |g1〉= 1√

2

(
1
1

)
, |f2〉=

(
0
1

)
, and |g2〉= 1√

2

(
1
−1

)
,

(a) constructA;
(b) verify thatA|fn〉 = λn|gn〉;
(c) verify thatÃ|gn〉 = λn|fn〉.

ANS. A= 1√
2

(
1 −1
1 1

)
.

3.6.16 This is a continuation of Exercise 3.4.12, where the unitary matrixU and the Hermitian
matrix H are related by

U= eiaH.

(a) If traceH= 0, show that detU=+1.
(b) If detU=+1, show that traceH= 0.

Hint. H may be diagonalized by a similarity transformation. Then interpreting the ex-
ponential by a Maclaurin expansion,U is also diagonal. The corresponding eigenvalues
are given byuj = exp(iahj ).
Note. These properties, and those of Exercise 3.4.12, are vital in the development of the
concept of generators in group theory — Section 4.2.

3.6.17 An n× n matrix A hasn eigenvaluesAi . If B = eA, show thatB has the same eigen-
vectors asA, with the corresponding eigenvaluesBi given byBi = exp(Ai).
Note. eA is defined by the Maclaurin expansion of the exponential:

eA = 1+A+ A2

2! +
A3

3! + · · · .
3.6.18 A matrix P is a projection operator (see the discussion following Eq. (3.138c)) satisfying

the condition

P2= P.

Show that the corresponding eigenvalues(ρ2)λ andρλ satisfy the relation(
ρ2)

λ
= (ρλ)

2= ρλ.

This means that the eigenvalues ofP are 0 and 1.

3.6.19 In thematrix eigenvector–eigenvalue equation

A|ri〉 = λi |ri〉,
A is ann × n Hermitian matrix. For simplicity assume that itsn real eigenvalues are
distinct,λ1 being the largest. If|r〉 is an approximation to|r1〉,

|r〉 = |r1〉 +
n∑

i=2

δi |ri〉,
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FIGURE 3.8 Triple oscillator.

show that

〈r|A|r〉
〈r|r〉 ≤ λ1

and that the error inλ1 is of the order|δi |2. Take|δi | � 1.
Hint. Then |ri〉 form acomplete orthogonal set spanning then-dimensional (complex)
space.

3.6.20 Two equal masses are connected to each other and to walls by springs as shown in
Fig. 3.8. The masses are constrained to stay on a horizontal line.

(a) Set up the Newtonian acceleration equation for each mass.
(b) Solve the secular equation for the eigenvectors.
(c) Determine the eigenvectors and thus the normal modes of motion.

3.6.21 Given a normal matrixA with eigenvaluesλj , show thatA† has eigenvaluesλ∗j , its

real part(A + A†)/2 has eigenvalues�(λj ), and its imaginary part(A − A†)/2i has
eigenvalues�(λj ).

Additional Readings

Aitken, A. C.,Determinants and Matrices. New York: Interscience (1956). Reprinted, Greenwood (1983). A read-
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Bickley, W. G., and R. S. H. G. Thompson,Matrices — Their Meaning and Manipulation. Princeton, NJ: Van
Nostrand (1964). A comprehensive account of matrices in physical problems, their analytic properties, and
numerical techniques.

Brown, W. C.,Matrices and Vector Spaces. New York: Dekker (1991).

Gilbert, J. and L.,Linear Algebra and Matrix Theory. San Diego: Academic Press (1995).

Heading, J.,Matrix Theory for Physicists. London: Longmans, Green and Co. (1958). A readable introduction to
determinants and matrices, with applications to mechanics, electromagnetism, special relativity, and quantum
mechanics.

Vein, R., and P. Dale,Determinants and Their Applications in Mathematical Physics. Berlin: Springer (1998).

Watkins, D. S.,Fundamentals of Matrix Computations. New York: Wiley (1991).
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CHAPTER 4

GROUP THEORY

Disciplined judgment, about what is neat
and symmetrical and elegant has time and
time again proved an excellent guide to
how nature works

MURRAY GELL-MANN

4.1 INTRODUCTION TO GROUP THEORY

In classical mechanics thesymmetry of a physical system leads toconservation laws.
Conservation of angular momentum is a direct consequence of rotational symmetry, which
meansinvariance under spatial rotations. In the first third of the 20th century, Wigner and
others realized that invariance was a key concept in understanding the new quantum phe-
nomena and in developing appropriate theories. Thus, in quantum mechanics the concept
of angular momentum and spin has become even more central. Its generalizations,isospin
in nuclear physics and theflavor symmetry in particle physics, are indispensable tools
in building and solving theories. Generalizations of the concept ofgauge invariance of
classical electrodynamics to the isospin symmetry lead to the electroweak gauge theory.

In each case the set of these symmetry operations forms a group. Group theory is the
mathematical tool to treat invariants and symmetries. It brings unification and formalization
of principles, such as spatial reflections, or parity, angular momentum, and geometry, that
are widely used by physicists.

In geometry the fundamental role of group theory was recognized more than a cen-
tury ago by mathematicians (e.g., Felix Klein’s Erlanger Program). In Euclidean geometry
the distance between two points, the scalar product of two vectors or metric, does not
change under rotations or translations. These symmetries are characteristic of this geom-
etry. In special relativity the metric, or scalar product of four-vectors, differs from that of

241



242 Chapter 4 Group Theory

Euclidean geometry in that it is no longer positive definite and is invariant under Lorentz
transformations.

For a crystal the symmetry group contains only a finite number of rotations at discrete
values of angles or reflections. The theory of suchdiscrete or finite groups, developed
originally as a branch of pure mathematics, now is a useful tool for the development of
crystallography and condensed matter physics. A brief introduction to this area appears in
Section 4.7. When the rotations depend on continuously varying angles (the Euler angles
of Section 3.3) the rotation groups have an infinite number of elements. Such continuous
(or Lie1) groups are the topic of Sections 4.2–4.6. In Section 4.8 we give an introduction
to differential forms, with applications to Maxwell’s equations and topics of Chapters 1
and 2, which allows seeing these topics from a different perspective.

Definition of a Group

A groupG may be defined as a set of objects or operations, rotations, transformations,
called the elements ofG, that may be combined, or “multiplied,” to form a well-defined
product inG, denoted by a *, that satisfies the following four conditions.

1. If a andb are any two elements ofG, then the producta ∗ b is also an element ofG,
whereb acts beforea; or (a, b)→ a ∗ b associates (or maps) an elementa ∗ b of G
with the pair(a, b) of elements ofG. This property is known as “G is closed under
multiplication of its own elements.”

2. This multiplication is associative:(a ∗ b) ∗ c= a ∗ (b ∗ c).
3. There is a unit element2 1 in G such that 1∗ a = a ∗ 1= a for every elementa in G.

The unit is unique: 1= 1′ ∗ 1= 1′.
4. There is an inverse, or reciprocal, of each elementa of G, labeleda−1, such that

a ∗ a−1= a−1 ∗ a = 1. The inverse is unique: Ifa−1 anda′−1 are both inverses ofa,
thena′−1= a′−1 ∗ (a ∗ a′−1)= (a′−1 ∗ a) ∗ a−1= a−1.

Since the * for multiplication is tedious to write, it is customary to drop it and simply let it
be understood. From now on, we writeab instead ofa ∗ b .

• If a subsetG′ of G is closed under multiplication, it is a group and called asubgroup
of G; that is,G′ is closed under the multiplication ofG. The unit ofG always forms a
subgroup ofG.

• If gg′g−1 is an element ofG′ for any g of G andg′ of G′, thenG′ is called anin-
variant subgroup of G. The subgroup consisting of the unit is invariant. If the group
elements are square matrices, thengg′g−1 corresponds to a similarity transformation
(see Eq. (3.100)).

• If ab = ba for all a, b of G, the group is calledabelian, that is, the order in products
does not matter; commutative multiplication is often denoted by a+ sign. Examples are
vector spaces whose unit is the zero vector and−a is the inverse ofa for all elements
a in G.

1After the Norwegian mathematician Sophus Lie.
2Following E. Wigner, the unit element of a group is often labeledE, from the GermanEinheit, that is, unit, or just 1, orI for
identity.
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Example 4.1.1 ORTHOGONAL AND UNITARY GROUPS

Orthogonaln× n matrices form the groupO(n), andSO(n) if their determinants are+1
(S stands for “special”). IfÕi = O−1

i for i = 1 and 2 (see Section 3.3 for orthogonal
matrices) are elements ofO(n), then the product

Õ1O2= Õ2Õ1=O−1
2 O−1

1 = (O1O2)
−1

is also an orthogonal matrix inO(n), thus proving closure under (matrix) multiplication.
The inverse is the transpose (orthogonal) matrix. The unit of the group is then-dimensional
unit matrix 1n. A real orthogonaln × n matrix hasn(n − 1)/2 independent parameters.
For n= 2, there is only one parameter: one angle. Forn= 3, there are three independent
parameters: the three Euler angles of Section 3.3.

If Õi =O−1
i (for i = 1 and 2) are elements ofSO(n), then closure requires proving in

addition that their product has determinant+1, which follows from the product theorem in
Chapter 3.

Likewise, unitaryn× n matrices form the groupU(n), andSU(n) if their determinants
are+1. If U†

i =U−1
i (see Section 3.4 for unitary matrices) are elements ofU(n), then

(U1U2)
†=U†

2U†
1=U−1

2 U−1
1 = (U1U2)

−1,

so the product is unitary and an element ofU(n), thus proving closure under multiplication.
Each unitary matrix has an inverse (its Hermitian adjoint), which again is unitary.

If U†
i =U−1

i are elements ofSU(n), then closure requires us to prove that their product
also has determinant+1, which follows from the product theorem in Chapter 3. �

• Orthogonal groups are calledLie groups; that is, they depend on continuously varying
parameters (the Euler angles and their generalization for higher dimensions); they are
compact because the angles vary over closed, finite intervals (containing the limit of
any converging sequence of angles). Unitary groups are also compact. Translations
form a noncompact group because the limit of translations with distanced→∞ is not
part of the group. The Lorentz group is not compact either.

Homomorphism, Isomorphism

There may be a correspondence between the elements of two groups: one-to-one, two-to-
one, or many-to-one. If this correspondence preserves the group multiplication, we say
that the two groups arehomomorphic. A most important homomorphic correspondence
between the rotation groupSO(3) and the unitary groupSU(2) is developed in Section 4.2.
If the correspondence is one-to-one, still preserving the group multiplication,3 then the
groups areisomorphic.

• If a groupG is homomorphic to a group of matricesG′, thenG′ is called arepresen-
tation of G. If G andG′ are isomorphic, the representation is calledfaithful. There
are many representations of groups; they are not unique.

3Suppose the elements of one group are labeledgi , the elements of a second grouphi . Thengi ↔ hi is a one-to-one correspon-
dence for all values ofi. If gigj = gk andhihj = hk , thengk andhk must be the corresponding group elements.
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Example 4.1.2 ROTATIONS

Another instructive example for a group is the set of counterclockwise coordinate rotations
of three-dimensional Euclidean space about itsz-axis. From Chapter 3 we know that such a
rotation is described by a linear transformation of the coordinates involving a 3× 3 matrix
made up of three rotations depending on the Euler angles. If thez-axis is fixed, the linear
transformation is through an angleϕ of thexy-coordinate system to a new orientation in
Eq. (1.8), Fig. 1.6, and Section 3.3:x′

y′
z′

=Rz(ϕ)

x

y

z

≡
 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1

x

y

z

 (4.1)

involves only one angle of the rotation about thez-axis. As shown in Chapter 3, the linear
transformation of two successive rotations involves the product of the matrices correspond-
ing to the sum of the angles. The product corresponds to two rotations,Rz(ϕ1)Rz(ϕ2), and
is defined by rotating first by the angleϕ2 and then byϕ1. According to Eq. (3.29), this
corresponds to the product of the orthogonal 2× 2 submatrices,(

cosϕ1 sinϕ1

−sinϕ1 cosϕ1

)(
cosϕ2 sinϕ2

−sinϕ2 cosϕ2

)

=
(

cos(ϕ1+ ϕ2) sin(ϕ1+ ϕ2)

−sin(ϕ1+ ϕ2) cos(ϕ1+ ϕ2)

)
,

(4.2)

using the addition formulas for the trigonometric functions. The unity in the lower right-
hand corner of the matrix in Eq. (4.1) is also reproduced upon multiplication. The product is
clearly a rotation, represented by the orthogonal matrix with angleϕ1+ϕ2. The associative
group multiplication corresponds to the associative matrix multiplication. It iscommuta-
tive, or abelian, because the order in which these rotations are performed does not matter.
The inverse of the rotation with angleϕ is that with angle−ϕ. The unit corresponds to the
angleϕ = 0. Striking off the coordinate vectors in Eq. (4.1), we can associate the matrix
of the linear transformation with each rotation, which is a group multiplication preserving
one-to-one mapping, an isomorphism: The matrices form a faithful representation of the
rotation group. The unity in the right-hand corner is superfluous as well, like the coordinate
vectors, and may be deleted. This defines another isomorphism and representation by the
2× 2 submatrices:

Rz(ϕ)=
 cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1

→R(ϕ)=
(

cosϕ sinϕ

−sinϕ cosϕ

)
. (4.3)

The group’s name isSO(2), if the angleϕ varies continuously from 0 to 2π ; SO(2) has
infinitely many elements and is compact.

The group of rotationsRz is obviously isomorphic to the group of rotations in Eq. (4.3).
The unity with angleϕ = 0 and the rotation withϕ = π form a finite subgroup. The finite
subgroups with angles 2πm/n,n an integer andm= 0,1, . . . , n− 1 arecyclic; that is, the
rotationsR(2πm/n)=R(2π/n)m. �
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In the following we shall discuss only the rotation groupsSO(n) and unitary groups
SU(n) among the classical Lie groups. (More examples of finite groups will be given in
Section 4.7.)

Representations — Reducible and Irreducible

The representation of group elements by matrices is a very powerful technique and has
been almost universally adopted by physicists. The use of matrices imposes no significant
restriction. It can be shown that the elements of any finite group and of the continuous
groups of Sections 4.2–4.4 may be represented by matrices. Examples are the rotations
described in Eq. (4.3).

To illustrate how matrix representations arise from a symmetry, consider the station-
ary Schrödinger equation (or some other eigenvalue equation, such asIvi = Iivi for the
principal moments of inertia of a rigid body in classical mechanics, say),

Hψ =Eψ. (4.4)

Let us assume that the HamiltonianH stays invariant under a groupG of transformations
R in G (coordinate rotations, for example, for a central potentialV (r) in the Hamiltonian
H ); that is,

HR =RHR−1=H, RH =HR. (4.5)

Now take a solutionψ of Eq. (4.4) and “rotate” it:ψ → Rψ . ThenRψ has thesame
energy E because multiplying Eq. (4.4) byR and using Eq. (4.5) yields

RHψ =E(Rψ)= (RHR−1)Rψ =H(Rψ). (4.6)

In other words, all rotated solutionsRψ aredegenerate in energy or form what physicists
call a multiplet. For example, the spin-up and -down states of a bound electron in the
ground state of hydrogen form a doublet, and the states with projection quantum numbers
m = −l,−l + 1, . . . , l of orbital angular momentuml form a multiplet with 2l + 1 basis
states.

Let us assume that this vector spaceVψ of transformed solutions has a finite dimen-
sion n. Let ψ1,ψ2, . . . ,ψn be a basis. SinceRψj is a member of the multiplet, we can
expand it in terms of its basis,

Rψj =
∑
k

rjkψk. (4.7)

Thus, with eachR in G we can associate a matrix(rjk). Just as in Example 4.1.2, two
successive rotations correspond to the product of their matrices, so this mapR→ (rjk) is a
representation ofG. It is necessary for a representation to beirreducible that we can take
any element ofVψ and, by rotating withall elementsR of G, transform it intoall other
elements ofVψ . If not all elements ofVψ are reached, thenVψ splits into a direct sum of
two or more vector subspaces,Vψ = V1 ⊕ V2 ⊕ · · · , which are mapped into themselves
by rotating their elements. For example, the 2s state and 2p states of principal quantum
numbern= 2 of the hydrogen atom have the same energy (that is, are degenerate) and form
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a reducible representation, because the 2s state cannot be rotated into the 2p states, and
vice versa (angular momentum is conserved under rotations). In this case the representation
is calledreducible. Then we can find a basis inVψ (that is, there is a unitary matrixU) so
that

U(rjk)U†=


r1 0 · · ·
0 r2 · · ·
...

...

 (4.8)

for all R of G, andall matrices(rjk) havesimilar block-diagonal shape. Herer1, r2, . . .

are matrices of lower dimension than(rjk) that are lined up along the diagonal and the0’s
are matrices made up of zeros. We may say that the representation has been decomposed
into r1+ r2+ · · · along withVψ = V1⊕ V2⊕ · · · .

The irreducible representations play a role in group theory that is roughly analogous to
the unit vectors of vector analysis. They are the simplest representations; all others can be
built from them. (See Section 4.4 on Clebsch–Gordan coefficients and Young tableaux.)

Exercises

4.1.1 Show that ann× n orthogonal matrix hasn(n− 1)/2 independent parameters.
Hint. The orthogonality condition, Eq. (3.71), provides constraints.

4.1.2 Show that ann× n unitary matrix hasn2− 1 independent parameters.
Hint. Each element may be complex, doubling the number of possible parameters. Some
of the constraint equations are likewise complex and count as two constraints.

4.1.3 The special linear groupSL(2) consists of all 2× 2 matrices (with complex elements)
having a determinant of+1. Show that such matrices form a group.
Note. TheSL(2) group can be related to the full Lorentz group in Section 4.4, much as
theSU(2) group is related toSO(3).

4.1.4 Show that the rotations about thez-axis form a subgroup ofSO(3). Is it an invariant
subgroup?

4.1.5 Show that ifR,S,T are elements of a groupG so thatRS = T andR→ (rik), S→
(sik) is a representation according to Eq. (4.7), then

(rik)(sik)=
(
tik =

∑
n

rinsnk

)
,

that is, group multiplication translates into matrix multiplication for any group repre-
sentation.

4.2 GENERATORS OF CONTINUOUS GROUPS

A characteristic property of continuous groups known as Lie groups is that the parameters
of a product element are analytic functions4 of the parameters of the factors. The analytic

4Analytic here means having derivatives of all orders.
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nature of the functions (differentiability) allows us to develop the concept of generator and
to reduce the study of the whole group to a study of the group elements in the neighborhood
of the identity element.

Lie’s essential idea was to study elementsR in a groupG that are infinitesimally close
to the unity ofG. Let us consider theSO(2) group as a simple example. The 2× 2 ro-
tation matrices in Eq. (4.2) can be written in exponential form using the Euler identity,
Eq. (3.170a), as

R(ϕ)=
(

cosϕ sinϕ

−sinϕ cosϕ

)
= 12 cosϕ + iσ2 sinϕ = exp(iσ2ϕ). (4.9)

From the exponential form it is obvious that multiplication of these matrices is equivalent
to addition of the arguments

R(ϕ2)R(ϕ1)= exp(iσ2ϕ2)exp(iσ2ϕ1)= exp
(
iσ2(ϕ1+ ϕ2)

)=R(ϕ1+ ϕ2).

Rotations close to 1 have small angleϕ ≈ 0.
This suggests that we look for an exponential representation

R= exp(iεS)= 1+ iεS+O
(
ε2), ε→ 0, (4.10)

for group elementsR in G close to the unity 1. The infinitesimal transformations areεS,
and theS are called generators ofG. They form a linear space because multiplication
of the group elementsR translates into addition of generatorsS. The dimension of this
vector space (over the complex numbers) is theorder of G, that is, the number of linearly
independent generators of the group.

If R is a rotation, it does not change the volume element of the coordinate space that it
rotates, that is, det(R)= 1, and we may use Eq. (3.171) to see that

det(R)= exp
(
trace(lnR)

)= exp
(
iε trace(S)

)= 1

impliesε trace(S)= 0 and, upon dividing by the small but nonzero parameterε, thatgen-
erators are traceless,

trace(S)= 0. (4.11)

This is the case not only for the rotation groupsSO(n) but also for unitary groupsSU(n).
If R of G in Eq. (4.10) is unitary, thenS† = S is Hermitian, which is also the case for

SO(n) andSU(n). This explains why the extrai has been inserted in Eq. (4.10).
Next we go around the unity in four steps, similar to parallel transport in differential

geometry. We expand the group elements

Ri = exp(iεiSi )= 1+ iεiSi − 1
2ε

2
i S2

i + · · · ,
R−1
i = exp(−iεiSi )= 1− iεiSi − 1

2ε
2
i S2

i + · · · ,
(4.12)

to second order in the small group parameterεi because the linear terms and several
quadratic terms all cancel in the product (Fig. 4.1)

R−1
i R−1

j RiRj = 1+ εiεj [Sj ,Si] + · · · ,

= 1+ εiεj
∑
k

ckjiSk + · · · , (4.13)
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FIGURE 4.1 Illustration of Eq. (4.13).

when Eq. (4.12) is substituted into Eq. (4.13). The last line holds because the product in
Eq. (4.13) is again a group element,Rij , close to the unity in the groupG. Hence its
exponent must be a linear combination of the generatorsSk , and its infinitesimal group
parameter has to be proportional to the productεiεj . Comparing both lines in Eq. (4.13)
we find theclosure relation of the generators of the Lie groupG,

[Si ,Sj ] =
∑
k

ckijSk. (4.14)

The coefficientsckij are the structure constants of the groupG. Since the commutator in
Eq. (4.14) is antisymmetric ini andj , so are the structure constants in the lower indices,

ckij =−ckji . (4.15)

If the commutator in Eq. (4.14) is taken as a multiplication law of generators, we see
that the vector space of generators becomes an algebra, theLie algebra G of the groupG.
An algebra has two group structures, a commutative product denoted by a+ symbol (this
is the addition of infinitesimal generators of a Lie group) and a multiplication (the commu-
tator of generators). Often an algebra is a vector space with a multiplication, such as a ring
of square matrices. ForSU(l+ 1) the Lie algebra is calledAl , for SO(2l+ 1) it is Bl , and
for SO(2l) it is Dl , wherel = 1,2, . . . is a positive integer, later called therank of the Lie
groupG or of its algebraG.

Finally, theJacobi identity holds for all double commutators[[Si ,Sj ],Sk

]+ [[Sj ,Sk],Si

]+ [[Sk,Si],Sj

]= 0, (4.16)

which is easily verified using the definition of any commutator[A,B] ≡AB −BA. When
Eq. (4.14) is substituted into Eq. (4.16) we find another constraint on structure constants,∑

m

{
cmij [Sm,Sk] + cmjk[Sm,Si] + cmki[Sm,Sj ]

}= 0. (4.17)

Upon inserting Eq. (4.14) again, Eq. (4.17) implies that∑
mn

{
cmij c

n
mkSn + cmjkc

n
miSn + cmkic

n
mjSn

}= 0, (4.18)
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where the common factorSn (and the sum overn) may be dropped because the generators
are linearly independent. Hence∑

m

{
cmij c

n
mk + cmjkc

n
mi + cmkic

n
mj

}= 0. (4.19)

The relations (4.14), (4.15), and (4.19) form the basis of Lie algebras from which finite
elements of the Lie group near its unity can be reconstructed.

Returning to Eq. (4.5), the inverse ofR is R−1= exp(−iεS). We expandHR according
to the Baker–Hausdorff formula, Eq. (3.172),

H =HR = exp(iεS)H exp(−iεS)=H + iε[S,H ] − 1
2ε

2[S[S,H ]]+ · · · (4.20)

We dropH from Eq. (4.20), divide by the small (but nonzero),ε, and letε→ 0. Then
Eq. (4.20) implies that the commutator

[S,H ] = 0. (4.21)

If S andH are Hermitian matrices, Eq. (4.21) implies thatS andH can be simultaneously
diagonalized and have common eigenvectors (for matrices, see Section 3.5; for operators,
see Schur’s lemma in Section 4.3). IfS andH are differential operators like the Hamil-
tonian and orbital angular momentum in quantum mechanics, then Eq. (4.21) implies that
S andH have common eigenfunctions and that the degenerate eigenvalues ofH can be
distinguished by the eigenvalues of the generatorsS. These eigenfunctions and eigenval-
ues,s, are solutions of separate differential equations,Sψs = sψs , so group theory (that
is, symmetries) leads to a separation of variables for a partial differential equation that is
invariant under the transformations of the group.

For example, let us take the single-particle Hamiltonian

H =− h̄2

2m

1

r2

∂

∂r
r2 ∂

∂r
+ h̄2

2mr2
L2+ V (r)

that is invariant underSO(3) and, therefore, a function of the radial distancer , the radial
gradient, and the rotationally invariant operatorL2 of SO(3). Upon replacing the orbital
angular momentum operatorL2 by its eigenvaluel(l+1) we obtain the radial Schrödinger
equation (ODE),

HRl(r)=
[
− h̄2

2m

1

r2

d

dr
r2 d

dr
+ h̄2l(l + 1)

2mr2
+ V (r)

]
Rl(r)=ElRl(r),

whereRl(r) is the radial wave function.
For cylindrical symmetry, the invariance ofH under rotations about thez-axis would

requireH to be independent of the rotation angleϕ, leading to the ODE

HRm(z,ρ)=EmRm(z,ρ),

with m the eigenvalue ofLz =−i∂/∂ϕ, thez-component of the orbital angular momentum
operator. For more examples, see the separation of variables method for partial differen-
tial equations in Section 9.3 and special functions in Chapter 12. This is by far the most
important application of group theory in quantum mechanics.

In the next subsections we shall study orthogonal and unitary groups as examples to
understand better the general concepts of this section.
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Rotation Groups SO(2) and SO(3)

ForSO(2) as defined by Eq. (4.3) there is only one linearly independent generator,σ2, and
the order ofSO(2) is 1. We getσ2 from Eq. (4.9) by differentiation at the unity ofSO(2),
that is,ϕ = 0,

−idR(ϕ)/dϕ|ϕ=0=−i
(−sinϕ cosϕ

−cosϕ −sinϕ

)∣∣∣∣
ϕ=0

=−i
(

0 1

−1 0

)
= σ2. (4.22)

For the rotationsRz(ϕ) about thez-axis described by Eq. (4.1), the generator is given
by

−idRz(ϕ)/dϕ|ϕ=0= Sz =
0 −i 0

i 0 0

0 0 0

 , (4.23)

where the factori is inserted to makeSz Hermitian. The rotationRz(δϕ) through an infin-
itesimal angleδϕ may then be expanded to first order in the smallδϕ as

Rz(δϕ)= 13+ iδϕSz. (4.24)

A finite rotationR(ϕ) may be compounded of successive infinitesimal rotations

Rz(δϕ1+ δϕ2)= (1+ iδϕ1Sz)(1+ iδϕ2Sz). (4.25)

Let δϕ = ϕ/N for N rotations, withN→∞. Then

Rz(ϕ)= lim
N→∞

[
1+ (iϕ/N)Sz

]N = exp(iϕSz). (4.26)

This form identifiesSz as the generator of the groupRz, an abelian subgroup ofSO(3),
the group of rotations in three dimensions with determinant+1. Each 3× 3 matrixRz(ϕ)

is orthogonal, hence unitary, and trace(Sz)= 0, in accord with Eq. (4.11).
By differentiation of the coordinate rotations

Rx(ψ)=
1 0 0

0 cosψ sinψ

0 −sinψ cosψ

 , Ry(θ)=
cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

 , (4.27)

we get the generators

Sx =
0 0 0

0 0 −i
0 i 0

 , Sy =
 0 0 i

0 0 0

−i 0 0

 (4.28)

of Rx(Ry), the subgroup of rotations about thex- (y-)axis.
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Rotation of Functions and Orbital Angular Momentum

In the foregoing discussion the group elements are matrices that rotate the coordinates.
Any physical system being described is held fixed. Now let us hold the coordinates fixed
and rotate a functionψ(x, y, z) relative to our fixed coordinates. WithR to rotate the
coordinates,

x′ =Rx, (4.29)

we defineR onψ by

Rψ(x, y, z)=ψ ′(x, y, z)≡ψ(x′). (4.30)

In words,R operates on the functionψ , creating anew function ψ ′ that is numerically
equal toψ(x′), wherex′ are the coordinates rotated byR. If R rotates the coordinates
counterclockwise, the effect ofR is to rotate the pattern of the functionψ clockwise.

Returning to Eqs. (4.30) and (4.1), consider an infinitesimal rotation again,ϕ → δϕ.
Then, usingRz Eq. (4.1), we obtain

Rz(δϕ)ψ(x, y, z)=ψ(x + yδϕ, y − xδϕ, z). (4.31)

The right side may be expanded to first order in the smallδϕ to give

Rz(δϕ)ψ(x, y, z) = ψ(x, y, z)− δϕ{x∂ψ/∂y − y∂ψ/∂x} +O(δϕ)2

= (1− iδϕLz)ψ(x, y, z), (4.32)

the differential expression in curly brackets being the orbital angular momentumiLz (Ex-
ercise 1.8.7). Since a rotation of firstϕ and thenδϕ about thez-axis is given by

Rz(ϕ + δϕ)ψ =Rz(δϕ)Rz(ϕ)ψ = (1− iδϕLz)Rz(ϕ)ψ, (4.33)

we have (as an operator equation)

dRz

dϕ
= lim

δϕ→0

Rz(ϕ + δϕ)−Rz(ϕ)

δϕ
=−iLzRz(ϕ). (4.34)

In this form Eq. (4.34) integrates immediately to

Rz(ϕ)= exp(−iϕLz). (4.35)

Note thatRz(ϕ) rotates functions (clockwise) relative to fixed coordinates and thatLz is
thez component of the orbital angular momentumL. The constant of integration is fixed
by the boundary conditionRz(0)= 1.

As suggested by Eq. (4.32),Lz is connected toSz by

Lz = (x, y, z)Sz

∂/∂x

∂/∂y

∂/∂z

=−i(x ∂

∂y
− y

∂

∂x

)
, (4.36)

soLx,Ly , andLz satisfy the same commutation relations,

[Li,Lj ] = iεijkLk, (4.37)

asSx,Sy , andSz and yield the same structure constantsiεijk of SO(3).
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SU(2) — SO(3) Homomorphism

Since unitary 2× 2 matrices transform complex two-dimensional vectors preserving their
norm, they represent the most general transformations of (a basis in the Hilbert space of)
spin 1

2 wave functions in nonrelativistic quantum mechanics. The basis states of this system
are conventionally chosen to be

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
,

corresponding to spin12 up and down states, respectively. We can show that thespecial
unitary groupSU(2) of unitary 2× 2 matrices with determinant+1 has all three Pauli
matricesσi as generators (while the rotations of Eq. (4.3) form a one-dimensional abelian
subgroup). SoSU(2) is of order 3 and depends on three real continuous parametersξ, η, ζ ,
which are often called theCayley–Klein parameters. To construct its general element, we
start with the observation that orthogonal 2× 2 matrices are real unitary matrices, so they
form a subgroup ofSU(2). We also see that(

eiα 0

0 e−iα

)
is unitary for real angleα with determinant+1. So these simple and manifestly unitary ma-
trices form another subgroup ofSU(2) from which we can obtain all elements ofSU(2),
that is, the general 2× 2 unitary matrix of determinant+1. For a two-component spin12
wave function of quantum mechanics this diagonal unitary matrix corresponds to multipli-
cation of the spin-up wave function with a phase factoreiα and the spin-down component
with the inverse phase factor. Using the real angleη instead ofϕ for the rotation matrix
and then multiplying by the diagonal unitary matrices, we construct a 2× 2 unitary matrix
that depends on three parameters and clearly is a more general element ofSU(2):(

eiα 0

0 e−iα

)(
cosη sinη

−sinη cosη

)(
eiβ 0

0 e−iβ

)

=
(

eiα cosη eiα sinη

−e−iα sinη e−iα cosη

)(
eiβ 0

0 e−iβ

)

=
(

ei(α+β) cosη ei(α−β) sinη

−e−i(α−β) sinη e−i(α+β) cosη

)
.

Definingα+ β ≡ ξ,α− β ≡ ζ , we have in fact constructed the general element ofSU(2):

U(ξ, η, ζ )=
(

eiξ cosη eiζ sinη

−e−iζ sinη e−iξ cosη

)
=
(

a b

−b∗ a∗

)
. (4.38)

To see this, we write the generalSU(2) element asU = (
a b
c d

)
with complex numbers

a, b, c, d so that det(U) = 1. Writing unitarity, U† = U−1, and using Eq. (3.50) for the
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inverse we obtain (
a∗ c∗

b∗ d∗

)
=
(

d −b
−c a

)
,

implying c=−b∗, d = a∗, as shown in Eq. (4.38). It is easy to check that the determinant
det(U)= 1 and thatU†U= 1=UU† hold.

To get the generators, we differentiate (and drop irrelevant overall factors):

−i∂U/∂ξ|ξ=0,η=0=
(

1 0

0 −1

)
= σ3, (4.39a)

−i∂U/∂η|η=0,ζ=0=
(

0 −i
i 0

)
= σ2. (4.39b)

To avoid a factor 1/sinη for η→ 0 upon differentiating with respect toζ , we use in-
stead the right-hand side of Eq. (4.38) forU for pure imaginaryb = iβ with β → 0, so
a =√1− β2 from |a|2 + |b|2 = a2+ β2 = 1. Differentiating such aU, we get the third
generator,

−i ∂

∂β

(√
1− β2 iβ

iβ
√

1− β2

)∣∣∣∣
β=0

=−i
− β√

1−β2
i

− i
β√

1−β2

∣∣∣∣
β=0

=
(

0 1

1 0

)
= σ1.

(4.39c)
The Pauli matrices are all traceless and Hermitian.

With the Pauli matrices as generators, the elementsU1,U2,U3 of SU(2) may be gener-
ated by

U1= exp(ia1σ1/2), U2= exp(ia2σ2/2), U3= exp(ia3σ3/2). (4.40)

The three parametersai are real. The extra factor 1/2 is present in the exponents to make
Si = σi/2 satisfy the same commutation relations,

[Si ,Sj ] = iεijkSk, (4.41)

as the angular momentum in Eq. (4.37).
To connect and compare our results, Eq. (4.3) gives a rotation operator for rotat-

ing the Cartesian coordinates in the three-spaceR3. Using the angular momentum ma-
trix S3, we have as the corresponding rotation operator in two-dimensional (complex)
spaceRz(ϕ)= exp(iϕσ3/2). For rotating the two-component vector wave function (spinor)
or a spin 1/2 particle relative to fixed coordinates, the corresponding rotation operator is
Rz(ϕ)= exp(−iϕσ3/2) according to Eq. (4.35).

More generally, using in Eq. (4.40) the Euler identity, Eq. (3.170a), we obtain

Uj = cos

(
aj

2

)
+ iσj sin

(
aj

2

)
. (4.42)

Here the parameteraj appears as an angle, the coefficient of an angular momentum matrix-
like ϕ in Eq. (4.26). The selection of Pauli matrices corresponds to the Euler angle rotations
described in Section 3.3.
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FIGURE 4.2 Illustration of
M′ =UMU† in Eq. (4.43).

As just seen, the elements ofSU(2) describe rotations in a two-dimensional complex
space that leave|z1|2+|z2|2 invariant. The determinant is+1. There are three independent
real parameters. Our real orthogonal groupSO(3) clearly describes rotations in ordinary
three-dimensional space with the important characteristic of leavingx2+ y2+ z2 invari-
ant. Also, there are three independent real parameters. The rotation interpretations and the
equality of numbers of parameters suggest the existence of some correspondence between
the groupsSU(2) andSO(3). Here we develop this correspondence.

The operation ofSU(2) on a matrix is given by a unitary transformation, Eq. (4.5), with
R=U and Fig. 4.2:

M′ =UMU†. (4.43)

Taking M to be a 2× 2 matrix, we note that any 2× 2 matrix may be written as a linear
combination of the unit matrix and the three Pauli matrices of Section 3.4. LetM be the
zero-trace matrix,

M= xσ1+ yσ2+ zσ3=
(

z x − iy

x + iy −z

)
, (4.44)

the unit matrix not entering. Since the trace is invariant under a unitary similarity transfor-
mation (Exercise 3.3.9),M′ must have the same form,

M′ = x′σ1+ y′σ2+ z′σ3=
(

z′ x′ − iy′

x′ + iy′ −z′
)
. (4.45)

The determinant is also invariant under a unitary transformation (Exercise 3.3.10). There-
fore

−(x2+ y2+ z2)=−(x′2+ y′2+ z′2
)
, (4.46)

or x2+ y2+ z2 is invariant under this operation ofSU(2), just as withSO(3). Operations
of SU(2) on M must produce rotations of the coordinatesx, y, z appearing therein. This
suggests thatSU(2) andSO(3) may be isomorphic or at least homomorphic.
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We approach the problem of what this operation ofSU(2) corresponds to by considering
special cases. Returning to Eq. (4.38), leta = eiξ andb= 0, or

U3=
(
eiξ 0

0 e−iξ

)
. (4.47)

In anticipation of Eq. (4.51), thisU is given a subscript 3.
Carrying out a unitary similarity transformation, Eq. (4.43), on each of the three Pauli

σ ’s of SU(2), we have

U3σ1U†
3 =

(
eiξ 0

0 e−iξ

)(
0 1

1 0

)(
e−iξ 0

0 eiξ

)

=
(

0 e2iξ

e−2iξ 0

)
. (4.48)

We reexpress this result in terms of the Pauliσi , as in Eq. (4.44), to obtain

U3xσ1U†
3= xσ1 cos2ξ − xσ2 sin 2ξ. (4.49)

Similarly,

U3yσ2U†
3 = yσ1 sin 2ξ + yσ2 cos2ξ,

U3zσ3U†
3 = zσ3. (4.50)

From these double angle expressions we see that we should start with a
halfangle: ξ = α/2. Then, adding Eqs. (4.49) and (4.50) and comparing with Eqs. (4.44)
and (4.45), we obtain

x′ = x cosα + y sinα

y′ = −x sinα + y cosα (4.51)

z′ = z.

The 2× 2 unitary transformation usingU3(α) is equivalent to the rotation operatorR(α)

of Eq. (4.3).
The correspondence of

U2(β)=
(

cosβ/2 sinβ/2

−sinβ/2 cosβ/2

)
(4.52)

andRy(β) and of

U1(ϕ)=
(

cosϕ/2 i sinϕ/2

i sinϕ/2 cosϕ/2

)
(4.53)

andR1(ϕ) follow similarly. Note thatUk(ψ) has the general form

Uk(ψ)= 12 cosψ/2+ iσk sinψ/2, (4.54)

wherek = 1,2,3.
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The correspondence

U3(α)=
(
eiα/2 0

0 e−iα/2

)
↔
 cosα sinα 0

−sinα cosα 0

0 0 1

=Rz(α) (4.55)

is not a simple one-to-one correspondence. Specifically, asα in Rz ranges from 0 to 2π ,
the parameter inU3, α/2, goes from 0 toπ . We find

Rz(α + 2π) = Rz(α)

U3(α + 2π) =
(−eiα/2 0

0 −e−iα/2

)
=−U3(α). (4.56)

Thereforeboth U3(α) andU3(α + 2π) = −U3(α) correspond toRz(α). The correspon-
dence is 2 to 1, orSU(2) andSO(3) arehomomorphic. This establishment of the corre-
spondence between the representations ofSU(2) and those ofSO(3) means that the known
representations ofSU(2) automatically provide us with the representations ofSO(3).

Combining the various rotations, we find that a unitary transformation using

U(α,β, γ )=U3(γ )U2(β)U3(α) (4.57)

corresponds to the general Euler rotationRz(γ )Ry(β)Rz(α). By direct multiplication,

U(α,β, γ ) =
(
eiγ /2 0

0 e−iγ /2

)(
cosβ/2 sinβ/2

−sinβ/2 cosβ/2

)(
eiα/2 0

0 e−iα/2

)

=
(

ei(γ+α)/2 cosβ/2 ei(γ−α)/2 sinβ/2

−e−i(γ−α)/2 sinβ/2 e−i(γ+α)/2 cosβ/2

)
. (4.58)

This is our alternate general form, Eq. (4.38), with

ξ = (γ + α)/2, η= β/2, ζ = (γ − α)/2. (4.59)

Thus, from Eq. (4.58) we may identify the parameters of Eq. (4.38) as

a = ei(γ+α)/2 cosβ/2

b = ei(γ−α)/2 sinβ/2. (4.60)

SU(2)-Isospin and SU(3)-Flavor Symmetry

The application of group theory to “elementary” particles has been labeled by Wigner
the third stage of group theory and physics. The first stage was the search for the 32
crystallographic point groups and the 230 space groups giving crystal symmetries —
Section 4.7. The second stage was a search for representations such as ofSO(3) and
SU(2) — Section 4.2. Now in this stage, physicists are back to a search for groups.

In the 1930s to 1960s the study of strongly interacting particles of nuclear and high-
energy physics led to theSU(2) isospin group and theSU(3) flavor symmetry. In the 1930s,
after the neutron was discovered, Heisenberg proposed that the nuclear forces were charge
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Table 4.1 Baryons with Spin1
2 Even Parity

Mass (MeV) Y I I3

�− 1321.32 − 1
2

� −1 1
2

�0 1314.9 + 1
2

�− 1197.43 −1
� �0 1192.55 0 1 0

�+ 1189.37 +1
� � 1115.63 0 0 0

n 939.566 − 1
2

N 1 1
2

p 938.272 + 1
2

independent. The neutron mass differs from that of the proton by only 1.6%. If this tiny
mass difference is ignored, the neutron and proton may be considered as two charge (or
isospin) states of a doublet, called thenucleon. The isospinI hasz-projectionI3 = 1/2
for the proton andI3 = −1/2 for the neutron. Isospin has nothing to do with spin (the
particle’s intrinsic angular momentum), but the two-component isospin state obeys the
same mathematical relations as the spin 1/2 state. For the nucleon,I= τ/2 are the usual
Pauli matrices and the±1/2 isospin states are eigenvectors of the Pauli matrixτ3=

( 1 0
0 −1

)
.

Similarly, the three charge states of the pion (π+,π0,π−) form a triplet. The pion is the
lightest of all strongly interacting particles and is the carrier of the nuclear force at long
distances, much like the photon is that of the electromagnetic force. The strong interaction
treats alike members of these particle families, or multiplets, and conserves isospin. The
symmetry is theSU(2) isospin group.

By the 1960s particles produced as resonances by accelerators had proliferated. The
eight shown in Table 4.1 attracted particular attention.5 The relevant conserved quantum
numbers that are analogs and generalizations ofLz andL2 from SO(3) areI3 andI2 for
isospin andY for hypercharge. Particles may be grouped into charge or isospin multiplets.
Then the hypercharge may be taken as twice the average charge of the multiplet. For the
nucleon, that is, the neutron–proton doublet,Y = 2 · 1

2(0+ 1) = 1. The hypercharge and
isospin values are listed in Table 4.1 for baryons like the nucleon and its (approximately
degenerate) partners. They form an octet, as shown in Fig. 4.3, after which the corre-
sponding symmetry is called theeightfold way. In 1961 Gell-Mann, and independently
Ne’eman, suggested that the strong interaction should be (approximately) invariant under
a three-dimensional special unitary group,SU(3), that is, hasSU(3) flavor symmetry.

The choice ofSU(3) was based first on the two conserved and independent quantum
numbers,H1= I3 andH2= Y (that is, generators with[I3, Y ] = 0, not Casimir invariants;
see the summary in Section 4.3) that call for a group of rank 2. Second, the group had
to have an eight-dimensional representation to account for the nearly degenerate baryons
and four similar octets for the mesons. In a sense,SU(3) is the simplest generalization of
SU(2) isospin. Three of its generators are zero-trace Hermitian 3× 3 matrices that contain

5All masses are given in energy units, 1 MeV= 106 eV.



258 Chapter 4 Group Theory

FIGURE 4.3 Baryon octet weight
diagram forSU(3).

the 2× 2 isospin Pauli matricesτi in the upper left corner,

λi =
τi 0

0

0 0 0

 , i = 1,2,3. (4.61a)

Thus, theSU(2)-isospin group is a subgroup ofSU(3)-flavor with I3 = λ3/2. Four other
generators have the off-diagonal 1’s ofτ1, and−i, i of τ2 in all other possible locations to
form zero-trace Hermitian 3× 3 matrices,

λ4=
0 0 1

0 0 0

1 0 0

 , λ5=
0 0 −i

0 0 0

i 0 0

 ,

λ6=
0 0 0

0 0 1

0 1 0

 , λ7=
0 0 0

0 0 −i
0 i 0

 .

(4.61b)

The second diagonal generator has the two-dimensional unit matrix 12 in the upper left
corner, which makes it clearly independent of theSU(2)-isospin subgroup because of its
nonzero trace in that subspace, and−2 in the third diagonal place to make it traceless,

λ8= 1√
3

1 0 0

0 1 0

0 0 −2

 . (4.61c)
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FIGURE 4.4 Baryon mass splitting.

Altogether there are 32− 1= 8 generators forSU(3), which has order 8. From the com-
mutators of these generators the structure constants ofSU(3) can easily be obtained.

Returning to theSU(3) flavor symmetry, we imagine the Hamiltonian for our eight
baryons to be composed of three parts:

H =Hstrong+Hmedium+Helectromagnetic. (4.62)

The first part,Hstrong, has theSU(3) symmetry and leads to the eightfold degeneracy.
Introduction of the symmetry-breaking term,Hmedium, removes part of the degeneracy,
giving the four isospin multiplets(�−,�0), (�−,�0,�+),�, andN = (p,n) different
masses. These are still multiplets becauseHmedium hasSU(2)-isospin symmetry. Finally,
the presence of charge-dependent forces splits the isospin multiplets and removes the last
degeneracy. This imagined sequence is shown in Fig. 4.4.

The octet representation is not the simplestSU(3) representation. The simplest repre-
sentations are the triangular ones shown in Fig. 4.5, from which all others can be generated
by generalized angular momentum coupling (see Section 4.4 on Young tableaux). The
fundamental representation in Fig. 4.5a contains theu (up), d (down), ands (strange)
quarks, and Fig. 4.5b contains the corresponding antiquarks. Since the meson octets can
be obtained from the quark representations asqq̄, with 32 = 8+ 1 states, this suggests
that mesons contain quarks (and antiquarks) as their constituents (see Exercise 4.4.3). The
resulting quark model gives a successful description of hadronic spectroscopy. The reso-
lution of its problem with the Pauli exclusion principle eventually led to theSU(3)-color
gauge theory of thestrong interaction calledquantum chromodynamics (QCD).

To keep group theory and its very real accomplishment in proper perspective, we should
emphasize that group theory identifies and formalizes symmetries. It classifies (and some-
times predicts) particles. But aside from saying that one part of the Hamiltonian hasSU(2)
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FIGURE 4.5 (a) Fundamental representation ofSU(3), the weight diagram for
theu, d , s quarks; (b) weight diagram for the antiquarksū, d̄, s̄.

symmetry and another part hasSU(3) symmetry, group theory says nothing about the par-
ticle interaction. Remember that the statement that the atomic potential is spherically sym-
metric tells us nothing about the radial dependence of the potential or of the wave function.
In contrast, in a gauge theory the interaction is mediated by vector bosons (like the photon
in quantum electrodynamics) and uniquely determined by the gauge covariant derivative
(see Section 1.13).

Exercises

4.2.1 (i) Show that the Pauli matrices are the generators ofSU(2) without using the para-
meterization of the general unitary 2× 2 matrix in Eq. (4.38). (ii) Derive the eight
independent generatorsλi of SU(3) similarly. Normalize them so that tr(λiλj )= 2δij .
Then determine the structure constants ofSU(3).
Hint. Theλi are traceless and Hermitian 3× 3 matrices.
(iii) Construct the quadratic Casimir invariant ofSU(3).
Hint. Work by analogy withσ 2

1 + σ 2
2 + σ 2

3 of SU(2) or L2 of SO(3).

4.2.2 Prove that the general form of a 2× 2 unitary, unimodular matrix is

U=
(

a b

−b∗ a∗

)
with a∗a + b∗b= 1.

4.2.3 Determine threeSU(2) subgroups ofSU(3).

4.2.4 A translation operatorT (a) convertsψ(x) to ψ(x + a),

T (a)ψ(x)=ψ(x + a).
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In terms of the (quantum mechanical) linear momentum operatorpx =−id/dx, show
thatT (a)= exp(iapx), that is,px is the generator of translations.
Hint. Expandψ(x + a) as a Taylor series.

4.2.5 Consider the generalSU(2) element Eq. (4.38) to be built up of three Euler rotations:
(i) a rotation ofa/2 about thez-axis, (ii) a rotation ofb/2 about the newx-axis, and
(iii) a rotation ofc/2 about the newz-axis. (All rotations are counterclockwise.) Using
the Pauliσ generators, show that these rotation angles are determined by

a = ξ − ζ + π
2 = α+ π

2

b= 2η = β

c= ξ + ζ − π
2 = γ − π

2 .

Note. The anglesa andb here are not thea andb of Eq. (4.38).

4.2.6 Rotate a nonrelativistic wave functioñψ = (ψ↑,ψ↓) of spin 1/2 about thez-axis by
a small angledθ . Find the corresponding generator.

4.3 ORBITAL ANGULAR MOMENTUM

The classical concept of angular momentum,Lclass= r × p, is presented in Section 1.4
to introduce the cross product. Following the usual Schrödinger representation of quantum
mechanics, the classical linear momentump is replaced by the operator−i∇. The quantum
mechanical orbital angular momentumoperator becomes6

LQM =−ir×∇. (4.63)

This is used repeatedly in Sections 1.8, 1.9, and 2.4 to illustrate vector differential oper-
ators. From Exercise 1.8.8 the angular momentum components satisfy the commutation
relations

[Li,Lj ] = iεijkLk. (4.64)

Theεijk is the Levi-Civita symbol of Section 2.9. A summation over the indexk is under-
stood.

The differential operator corresponding to the square of the angular momentum

L2= L ·L= L2
x +L2

y +L2
z (4.65)

may be determined from

L ·L= (r× p) · (r× p), (4.66)

which is the subject of Exercises 1.9.9 and 2.5.17(b). SinceL2 as a scalar product is in-
variant under rotations, that is, a rotational scalar, we expect[L2,Li] = 0, which can also
be verified directly.

Equation (4.64) presents the basic commutation relations of the components of the quan-
tum mechanical angular momentum. Indeed, within the framework of quantum mechanics
and group theory, these commutation relations define an angular momentum operator. We
shall use them now to construct the angular momentum eigenstates and find the eigenval-
ues. For the orbital angular momentum these are the spherical harmonics of Section 12.6.

6For simplicity,h̄ is set equal to 1. This means that the angular momentum is measured in units ofh̄.
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Ladder Operator Approach

Let us start with a general approach, where the angular momentumJ we consider may rep-
resent an orbital angular momentumL, a spinσ/2, or a total angular momentumL+ σ/2,
etc. We assume that

1. J is an Hermitian operator whose components satisfy the commutation relations

[Ji, Jj ] = iεijkJk,
[
J2, Ji

]= 0. (4.67)

OtherwiseJ is arbitrary. (See Exercise 4.3.l.)
2. |λM〉 is simultaneously a normalized eigenfunction (or eigenvector) ofJz with eigen-

valueM and an eigenfunction7 of J2,

Jz|λM〉 =M|λM〉, J2|λM〉 = λ|λM〉, 〈λM|λM〉 = 1. (4.68)

We shall show thatλ= J (J + 1) and then find other properties of the|λM〉. The treat-
ment will illustrate the generality and power of operator techniques, particularly the use of
ladder operators.8

Theladder operators are defined as

J+ = Jx + iJy, J− = Jx − iJy. (4.69)

In terms of these operatorsJ2 may be rewritten as

J2= 1
2(J+J− + J−J+)+ J 2

z . (4.70)

From the commutation relations, Eq. (4.67), we find

[Jz, J+] =+J+, [Jz, J−] =−J−, [J+, J−] = 2Jz. (4.71)

SinceJ+ commutes withJ2 (Exercise 4.3.1),

J2(J+|λM〉)= J+
(
J2|λM〉)= λ

(
J+|λM〉

)
. (4.72)

Therefore,J+|λM〉 is still an eigenfunction ofJ2 with eigenvalueλ, and similarly for
J−|λM〉. But from Eq. (4.71),

JzJ+ = J+(Jz + 1), (4.73)

or

Jz
(
J+|λM〉

)= J+(Jz + 1)|λM〉 = (M + 1)J+|λM〉. (4.74)

7That |λM〉 can be an eigenfunction ofboth Jz andJ2 follows from [Jz,J2] = 0 in Eq. (4.67). ForSU(2), 〈λM|λM〉 is the
scalar product (of the bra and ket vector or spinors) in the bra-ket notation introduced in Section 3.1. ForSO(3), |λM〉 is a

functionY (θ,ϕ) and|λM ′〉 is a functionY ′(θ,ϕ) and the matrix element〈λM|λM ′〉 ≡ ∫ 2π
ϕ=0

∫ π
θ=0Y

∗(θ,ϕ)Y ′(θ,ϕ)sinθ dθ dϕ
is their overlap. However, in our algebraic approach only the norm in Eq. (4.68) is used and matrix elements of the angular
momentum operators are reduced to the norm by means of the eigenvalue equation forJz, Eq. (4.68), and Eqs. (4.83) and (4.84).
8Ladder operators can be developed for other mathematical functions. Compare the next subsection, on other Lie groups, and
Section 13.1, for Hermite polynomials.
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Therefore,J+|λM〉 is still an eigenfunction ofJz but with eigenvalueM+1.J+ has raised
the eigenvalue by 1 and so is called araising operator. Similarly,J− lowers the eigenvalue
by 1 and is called alowering operator.

Taking expectation values and usingJ †
x = Jx, J

†
y = Jy , we get

〈λM|J2− J 2
z |λM〉 = 〈λM|J 2

x + J 2
y |λM〉 =

∣∣Jx |λM〉∣∣2+ ∣∣Jy |λM〉∣∣2
and see thatλ −M2 ≥ 0, soM is bounded. LetJ be thelargest M . ThenJ+|λJ 〉 = 0,
which impliesJ−J+|λJ 〉 = 0. Hence, combining Eqs. (4.70) and (4.71) to get

J2= J−J+ + Jz(Jz + 1), (4.75)

we find from Eq. (4.75) that

0= J−J+|λJ 〉 =
(
J2− J 2

z − Jz
)|λJ 〉 = (λ− J 2− J

)|λJ 〉.
Therefore

λ= J (J + 1)≥ 0, (4.76)

with nonnegativeJ . We now relabel the states|λM〉 ≡ |JM〉. Similarly, let J ′ be the
smallest M . ThenJ−|JJ ′〉 = 0. From

J2= J+J− + Jz(Jz − 1), (4.77)

we see that

0= J+J−|JJ ′〉 =
(
J2+ Jz − J 2

z

)|JJ ′〉 = (λ+ J ′ − J ′2
)|JJ ′〉. (4.78)

Hence

λ= J (J + 1)= J ′(J ′ − 1)= (−J )(−J − 1).

SoJ ′ = −J , andM runs ininteger steps from−J to+J ,

−J ≤M ≤ J. (4.79)

Starting from|JJ 〉 and applyingJ− repeatedly, we reach all other states|JM〉. Hence the
|JM〉 form an irreducible representation ofSO(3) orSU(2); M varies andJ is fixed.

Then using Eqs. (4.67), (4.75), and (4.77) we obtain

J−J+|JM〉 =
[
J (J + 1)−M(M + 1)

]|JM〉 = (J −M)(J +M + 1)|JM〉,
J+J−|JM〉 =

[
J (J + 1)−M(M − 1)

]|JM〉 = (J +M)(J −M + 1)|JM〉. (4.80)

BecauseJ+ andJ− are Hermitian conjugates,9

J
†
+ = J−, J

†
− = J+, (4.81)

the eigenvalues in Eq. (4.80) must be positive or zero.10 Examples of Eq. (4.81) are pro-
vided by the matrices of Exercise 3.2.13 (spin 1/2), 3.2.15 (spin 1), and 3.2.18 (spin 3/2).

9The Hermitian conjugation or adjoint operation is defined for matrices in Section 3.5, and for operators in general in Sec-
tion 10.1.
10For an excellent discussion of adjoint operators and Hilbert space see A. Messiah,Quantum Mechanics. New York: Wiley
1961, Chapter 7.
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For the orbital angular momentum ladder operators,L+, andL−, explicit forms are given
in Exercises 2.5.14 and 12.6.7. You can now show (see also Exercise 12.7.2) that

〈JM|J−
(
J+|JM〉

)= (J+|JM〉)†J+|JM〉. (4.82)

SinceJ+ raises the eigenvalueM to M + 1, we relabel the resultant eigenfunction
|JM + 1〉. The normalization is given by Eq. (4.80) as

J+|JM〉 =
√
(J −M)(J +M + 1)|JM + 1〉 =√J (J + 1)−M(M + 1)|JM + 1〉,

(4.83)
taking the positive square root and not introducing any phase factor. By the same argu-
ments,

J−|JM〉 =
√
(J +M)(J −M + 1)|JM − 1〉 =√(J (J + 1)−M(M − 1)|JM − 1〉.

(4.84)
ApplyingJ+ to Eq. (4.84), we obtain the second line of Eq. (4.80) and verify that Eq. (4.84)
is consistent with Eq. (4.83).

Finally, sinceM ranges from−J to+J in unit steps, 2J must be an integer;J is either
an integer or half of an odd integer. As seen later, ifJ is an orbital angular momentumL,
the set|LM〉 for all M is a basis defining a representation ofSO(3) andL will then be
integral. In spherical polar coordinatesθ,ϕ, the functions|LM〉 become the spherical har-
monicsYM

L (θ,ϕ) of Section 12.6. The sets of|JM〉 states with half-integralJ define rep-
resentations ofSU(2) that are not representations ofSO(3); we getJ = 1/2,3/2,5/2, . . . .
Our angular momentum is quantized, essentially as a result of the commutation relations.
All these representations are irreducible, as an application of the raising and lowering op-
erators suggests.

Summary of Lie Groups and Lie Algebras

The general commutation relations, Eq. (4.14) in Section 4.2, for a classical Lie group
[SO(n) andSU(n) in particular] can be simplified to look more like Eq. (4.71) forSO(3)
andSU(2) in this section. Here we merely review and, as a rule, do not provide proofs for
various theorems that we explain.

First we choose linearly independent and mutually commuting generatorsHi which are
generalizations ofJz for SO(3) andSU(2). Let l be the maximum number of suchHi with

[Hi,Hk] = 0. (4.85)

Thenl is called therank of the Lie groupG or its Lie algebraG. The rank and dimension,
or order, of some Lie groups are given in Table 4.2. All other generatorsEα can be shown
to be raising and lowering operators with respect to all theHi , so

[Hi,Eα] = αiEα, i = 1,2, . . . , l. (4.86)

The set of so-calledroot vectors (α1, α2, . . . , αl) form theroot diagram of G.
When theHi commute, they can be simultaneously diagonalized (for symmetric (or

Hermitian) matrices see Chapter 3; for operators see Chapter 10). TheHi provide us with
a set of eigenvaluesm1,m2, . . . ,ml [projection or additive quantum numbers generalizing
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Table 4.2 Rank and Order of Unitary and Rotational
Groups

Lie algebra Al Bl Dl

Lie group SU(l + 1) SO(2l + 1) SO(2l)
Rank l l l

Order l(l + 2) l(2l + 1) l(2l − 1)

M of Jz in SO(3) andSU(2)]. The set of so-calledweight vectors (m1,m2, . . . ,ml) for
an irreducible representation (multiplet) form aweight diagram.

There arel invariant operatorsCi , called Casimir operators, that commute with all
generators and are generalizations ofJ2,

[Ci,Hj ] = 0, [Ci,Eα] = 0, i = 1,2, . . . , l. (4.87)

The first one,C1, is a quadratic function of the generators; the others are more complicated.
Since theCj commute with allHj , they can be simultaneously diagonalized with theHj .
Their eigenvaluesc1, c2, . . . , cl characterize irreducible representations and stay constant
while the weight vector varies over any particular irreducible representation. Thus the gen-
eral eigenfunction may be written as∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
, (4.88)

generalizing the multiplet|JM〉 of SO(3) andSU(2). Their eigenvalue equations are

Hi

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉=mi

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
(4.89a)

Ci

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉= ci
∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
. (4.89b)

We can now show thatEα|(c1, c2, . . . , cl)m1,m2, . . . ,ml〉 has the weight vector
(m1 + α1,m2 + α2, . . . ,ml + αl) using the commutation relations, Eq. (4.86), in con-
junction with Eqs. (4.89a) and (4.89b):

HiEα

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
= (EαHi + [Hi,Eα]

)∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
= (mi + αi)Eα

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
. (4.90)

Therefore

Eα

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉∼ ∣∣(c1, . . . , cl)m1+ α1, . . . ,ml + αl
〉
,

the generalization of Eqs. (4.83) and (4.84) fromSO(3). These changes of eigenvalues by
the operatorEα are called itsselection rules in quantum mechanics. They are displayed in
the root diagram of a Lie algebra.

Examples of root diagrams are given in Fig. 4.6 forSU(2) andSU(3). If we attach the
roots denoted by arrows in Fig. 4.6b to a weight in Figs. 4.3 or 4.5a, b, we can reach any
other state (represented by a dot in the weight diagram).

HereSchur’s lemma applies: An operatorH that commutes with all group operators,
and therefore with all generatorsHi of a (classical) Lie groupG in particular, has as eigen-
vectors all states of a multiplet and is degenerate with the multiplet. As a consequence,
such an operator commutes with all Casimir invariants,[H,Ci] = 0.
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FIGURE 4.6 Root diagram for (a)SU(2) and
(b) SU(3).

The last result is clear because the Casimir invariants are constructed from the generators
and raising and lowering operators of the group. To prove the rest, letψ be an eigenvector,
Hψ = Eψ . Then, for any rotationR of G, we haveHRψ = ERψ , which says thatRψ

is an eigenstate with the same eigenvalueE along withψ . Since[H,Ci] = 0, all Casimir
invariants can be diagonalized simultaneously withH and an eigenstate ofH is an eigen-
state of all theCi . Since[Hi,Ci] = 0, the rotated eigenstatesRψ are eigenstates ofCi ,
along withψ belonging to the same multiplet characterized by the eigenvaluesci of Ci .

Finally, such an operatorH cannot induce transitions between different multiplets of the
group because〈

(c′1, c′2, . . . , c′l )m′1,m′2, . . . ,m′l
∣∣H ∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉= 0.

Using[H,Cj ] = 0 (for anyj ) we have

0= 〈(c′1, c′2, . . . , c′l )m′1,m′2, . . . ,m′l∣∣[H,Cj ]
∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
= (cj − c′j )

〈
(c′1, c′2, . . . , c′l )m′1,m′2, . . . ,m′l

∣∣H ∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
.

If c′j 
= cj for somej , then the previous equation follows.

Exercises

4.3.1 Show that (a)[J+,J2] = 0, (b) [J−,J2] = 0.

4.3.2 Derive the root diagram ofSU(3) in Fig. 4.6b from the generatorsλi in Eq. (4.61).
Hint. Work out first theSU(2) case in Fig. 4.6a from the Pauli matrices.

4.4 ANGULAR MOMENTUM COUPLING

In many-body systems of classical mechanics, the total angular momentum is the sum
L=∑i Li of the individual orbital angular momenta. Any isolated particle has conserved
angular momentum. In quantum mechanics, conserved angular momentum arises when
particles move in a central potential, such as the Coulomb potential in atomic physics,
a shell model potential in nuclear physics, or a confinement potential of a quark model in
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particle physics. In the relativistic Dirac equation, orbital angular momentum is no longer
conserved, butJ= L+S is conserved, the total angular momentum of a particle consisting
of its orbital and intrinsic angular momentum, called spinS= σ/2, in units ofh̄.

It is readily shown that the sum of angular momentum operators obeys the same com-
mutation relations in Eq. (4.37) or (4.41) as the individual angular momentum operators,
provided those from different particles commute.

Clebsch–Gordan Coefficients: SU(2)–SO(3)

Clearly, combining two commuting angular momentaJi to form their sum

J= J1+ J2, [J1i , J2i] = 0, (4.91)

occurs often in applications, andJ satisfies the angular momentum commutation relations

[Jj , Jk] = [J1j + J2j , J1k + J2k] = [J1j , J1k] + [J2j , J2k] = iεjkl(J1l + J2l )= iεjklJl.

For a single particle with spin 1/2, for example, an electron or a quark, the total angular
momentum is a sum of orbital angular momentum and spin. For two spinless particles
their total orbital angular momentumL= L1+L2. ForJ2 andJz of Eq. (4.91) to be both
diagonal,[J2, Jz] = 0 has to hold. To show this we use the obvious commutation relations
[Jiz,J2

j ] = 0, and

J2= J2
1+ J2

2+ 2J1 · J2= J2
1+ J2

2+ J1+J2− + J1−J2+ + 2J1zJ2z (4.91′)
in conjunction with Eq. (4.71), for bothJi , to obtain[

J2, Jz
] = [J1−J2+ + J1+J2−, J1z + J2z]
= [J1−, J1z]J2+ + J1−[J2+, J2z] + [J1+, J1z]J2− + J1+[J2−, J2z]
= J1−J2+ − J1−J2+ − J1+J2− + J1+J2− = 0.

Similarly [J2,J2
i ] = 0 is proved. Hence the eigenvalues ofJ2

i ,J2, Jz can be used to label
the total angular momentum states|J1J2JM〉.

The product states|J1m1〉|J2m2〉 obviously satisfy the eigenvalue equations

Jz|J1m1〉|J2m2〉 = (J1z + J2z)|J1m1〉|J2m2〉 = (m1+m2)|J1m1〉|J2m2〉
=M|J1m1〉|J2m2〉, (4.92)

J2
i |J1m1〉|J2m2〉 = Ji(Ji + 1)|J1m1〉|J2m2〉,

but will not have diagonalJ2 except for the maximally stretched states withM =
±(J1+ J2) andJ = J1+ J2 (see Fig. 4.7a). To see this we use Eq. (4.91′) again in con-
junction with Eqs. (4.83) and (4.84) in

J2|J1m1〉J2m2〉 =
{
J1(J1+ 1)+ J2(J2+ 1)+ 2m1m2

}|J1m1〉|J2m2〉
+ {J1(J1+ 1)−m1(m1+ 1)

}1/2{
J2(J2+ 1)−m2(m2− 1)

}1/2

× |J1m1+ 1〉|J2m2− 1〉 + {J1(J1+ 1)−m1(m1− 1)
}1/2

× {J2(J2+ 1)−m2(m2+ 1)
}1/2|J1m1− 1〉|J2m2+ 1〉. (4.93)
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FIGURE 4.7 Coupling of two angular momenta:
(a) parallel stretched, (b) antiparallel, (c) general

case.

The last two terms in Eq. (4.93) vanish only whenm1= J1 andm2= J2 or m1=−J1 and
m2=−J2. In both casesJ = J1+ J2 follows from the first line of Eq. (4.93). In general,
therefore, we have to form appropriate linear combinations of product states

|J1J2JM〉 =
∑
m1,m2

C
(
J1J2J |m1m2M

)|J1m1〉|J2m2〉, (4.94)

so thatJ2 has eigenvalueJ (J + 1). The quantitiesC(J1J2J |m1m2M) in Eq. (4.94) are
calledClebsch–Gordan coefficients. From Eq. (4.92) we see that they vanish unlessM =
m1+m2, reducing the double sum to a single sum. ApplyingJ± to |JM〉 shows that the
eigenvaluesM of Jz satisfy the usual inequalities−J ≤M ≤ J .

Clearly, the maximalJmax= J1+ J2 (see Fig. 4.7a). In this case Eq. (4.93) reduces to a
pure product state

|J1J2J = J1+ J2M = J1+ J2〉 = |J1J1〉|J2J2〉, (4.95a)

so the Clebsch–Gordan coefficient

C(J1J2J = J1+ J2|J1J2J1+ J2)= 1. (4.95b)

The minimalJ = J1− J2 (if J1 > J2, see Fig. 4.7b) andJ = J2− J1 for J2 > J1 follow if
we keep in mind that there are just as many product states as|JM〉 states; that is,

Jmax∑
J=Jmin

(2J + 1) = (Jmax− Jmin+ 1)(Jmax+ Jmin+ 1)

= (2J1+ 1)(2J2+ 1). (4.96)

This condition holds because the|J1J2JM〉 states merely rearrange all product states into
irreducible representations of total angular momentum. It is equivalent to thetriangle rule:

�(J1J2J )= 1, if |J1− J2| ≤ J ≤ J1+ J2;
�(J1J2J )= 0, else.

(4.97)
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This indicates that one complete multiplet of eachJ value fromJmin to Jmax accounts
for all the states and that all the|JM〉 states are necessarily orthogonal. In other words,
Eq. (4.94) defines a unitary transformation from the orthogonal basis set of products of
single-particle states|J1m1;J2m2〉 = |J1m1〉|J2m2〉 to the two-particle states|J1J2JM〉.
The Clebsch–Gordan coefficients are just the overlap matrix elements

C(J1J2J |m1m2M)≡ 〈J1J2JM|J1m1;J2m2〉. (4.98)

The explicit construction in what follows shows that they are all real. The states in
Eq. (4.94) are orthonormalized, provided that the constraints∑

m1,m2, m1+m2=M
C(J1J2J |m1m2M)C(J1J2J

′|m1m2M
′〉

= 〈J1J2JM|J1J2J
′M ′〉 = δJJ ′δMM ′

(4.99a)

∑
J,M

C(J1J2J |m1m2M)C(J1J2J |m′1m′2M)

= 〈J1m1|J1m
′
1〉〈J2m2|J2m

′
2〉 = δm1m

′
1
δm2m

′
2

(4.99b)

hold.
Now we are ready to construct more directly the total angular momentum states starting

from |Jmax= J1+ J2 M = J1+ J2〉 in Eq. (4.95a) and using the lowering operatorJ− =
J1− + J2− repeatedly. In the first step we use Eq. (4.84) for

Ji−|JiJi〉 =
{
Ji(Ji + 1)− Ji(Ji − 1)

}1/2|JiJi − 1〉 = (2Ji)
1/2|JiJi − 1〉,

which we substitute into(J1− + J2−〉|J1J1)|J2J2〉. Normalizing the resulting state with
M = J1+ J2− 1 properly to 1, we obtain

|J1J2J1+ J2J1+ J2− 1〉 = {J1/(J1+ J2)
}1/2|J1J1− 1〉|J2J2〉

+ {J2/(J1+ J2)
}1/2|J1J1〉|J2J2− 1〉. (4.100)

Equation (4.100) yields the Clebsch–Gordan coefficients

C(J1J2J1+ J2|J1− 1 J2 J1+ J2− 1) = {J1/(J1+ J2)
}1/2

,

C(J1J2J1+ J2|J1 J2− 1 J1+ J2− 1) = {J2/(J1+ J2)
}1/2

.

(4.101)

Then we applyJ− again and normalize the states obtained until we reach|J1J2 J1+J2M〉
with M = −(J1 + J2). The Clebsch–Gordan coefficientsC(J1J2J1 + J2|m1m2M) may
thus be calculated step by step, and they are all real.

The next step is to realize that the only other state withM = J1+J2−1 is the top of the
next lower tower of|J1+J2−1M〉 states. Since|J1+J2−1 J1+J2−1〉 is orthogonal to
|J1+ J2J1+ J2− 1〉 in Eq. (4.100), it must be the other linear combination with a relative
minus sign,

|J1+ J2− 1 J1+ J2− 1〉 = −{J2/(J1+ J2)
}1/2|J1J1− 1〉|J2J2〉

+ {J1/(J1+ J2)
}1/2|J1J1〉|J2J2− 1〉, (4.102)

up to an overall sign.
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Hence we have determined the Clebsch–Gordan coefficients (forJ2≥ J1)

C(J1J2 J1+ J2− 1|J1− 1 J2 J1+ J2− 1)=−{J2/(J1+ J2)
}1/2

,

C(J1J2 J1+ J2− 1|J1 J2− 1 J1+ J2− 1)= {J1/(J1+ J2)
}1/2

.

(4.103)

Again we continue usingJ− until we reachM =−(J1+J2−1), and we keep normalizing
the resulting states|J1+ J2− 1M〉 of theJ = J1+ J2− 1 tower.

In order to get to the top of the next tower,|J1+ J2− 2M〉 with M = J1+ J2− 2, we
remember that we have already constructed two states with thatM . Both |J1 + J2J1 +
J2− 2〉 and|J1+ J2− 1 J1+ J2− 2〉 are known linear combinations of the three product
states|J1J1〉|J2J2 − 2〉, |J1J1 − 1〉 × |J2J2 − 1〉, and |J1J1 − 2〉|J2J2〉. The third linear
combination is easy to find from orthogonality to these two states, up to an overall phase,
which is chosen by theCondon–Shortley phase conventions11 so that the coefficient
C(J1J2 J1+J2−2|J1 J2−2J1+J2−2) of the last product state is positive for|J1J2 J1+
J2− 2 J1+ J2− 2〉. It is straightforward, though a bit tedious, to determine the rest of the
Clebsch–Gordan coefficients.

Numerous recursion relations can be derived from matrix elements of various angular
momentum operators, for which we refer to the literature.12

The symmetry properties of Clebsch–Gordan coefficients are best displayed in the more
symmetric Wigner’s 3j -symbols, which are tabulated:12

(
J1J2J3

m1m2m3

)
= (−1)J1−J2−m3

(2J3+ 1)1/2
C(J1J2J3|m1m2,−m3), (4.104a)

obeying the symmetry relations(
J1J2J3

m1m2m3

)
= (−1)J1+J2+J3

(
JkJlJn

mkmlmn

)
(4.104b)

for (k, l, n) an odd permutation of(1,2,3). One of the most important places where
Clebsch–Gordan coefficients occur is in matrix elements of tensor operators, which are
governed by the Wigner–Eckart theorem discussed in the next section, on spherical ten-
sors. Another is coupling of operators or state vectors to total angular momentum, such
as spin-orbit coupling. Recoupling of operators and states in matrix elements leads to 6j -
and 9j -symbols.12 Clebsch–Gordan coefficients can and have been calculated for other
Lie groups, such asSU(3).

11E. U. Condon and G. H. Shortley,Theory of Atomic Spectra. Cambridge, UK: Cambridge University Press (1935).
12There is a rich literature on this subject, e.g., A. R. Edmonds,Angular Momentum in Quantum Mechanics. Princeton, NJ:
Princeton University Press (1957); M. E. Rose,Elementary Theory of Angular Momentum. New York: Wiley (1957); A. de-Shalit
and I. Talmi,Nuclear Shell Model. New York: Academic Press (1963); Dover (2005). Clebsch–Gordan coefficients are tabulated
in M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr.,The 3j- and 6j-Symbols. Cambridge, MA: Massachusetts
Institute of Technology Press (1959).
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Spherical Tensors

In Chapter 2 the properties of Cartesian tensors are defined using the group of nonsin-
gular general linear transformations, which contains the three-dimensional rotations as a
subgroup. A tensor of a given rank that is irreducible with respect to the full group may
well become reducible for the rotation groupSO(3). To explain this point, consider the
second-rank tensor with componentsTjk = xjyk for j, k = 1,2,3. It contains the symmet-
ric tensorSjk = (xj yk + xkyj )/2 and the antisymmetric tensorAjk = (xj yk − xkyj )/2, so
Tjk = Sjk +Ajk . This reducesTjk in SO(3). However, under rotations the scalar product
x · y is invariant and is therefore irreducible inSO(3). Thus,Sjk can be reduced by sub-
traction of the multiple ofx · y that makes it traceless. This leads to theSO(3)-irreducible
tensor

S′jk = 1
2(xj yk + xkyj )− 1

3x · yδjk.
Tensors of higher rank may be treated similarly. When we form tensors from products of
the components of the coordinate vectorr then, in polar coordinates that are tailored to
SO(3) symmetry, we end up with the spherical harmonics of Chapter 12.

The form of the ladder operators forSO(3) in Section 4.3 leads us to introduce the
spherical components (note the different normalization and signs, though, prescribed by
theYlm) of a vectorA:

A+1=− 1√
2
(Ax + iAy), A−1= 1√

2
(Ax − iAy), A0=Az. (4.105)

Then we have for the coordinate vectorr in polar coordinates,

r+1=− 1√
2
r sinθeiϕ = r

√
4π
3 Y11, r−1= 1√

2
r sinθe−iϕ = r

√
4π
3 Y1,−1,

r0= r

√
4π
3 Y10,

(4.106)

whereYlm(θ,ϕ) are the spherical harmonics of Chapter 12. Again, the sphericaljm com-
ponents of tensorsTjm of higher rankj may be introduced similarly.

An irreduciblespherical tensor operator Tjm of rank j has 2j + 1 components, just
as for spherical harmonics, andm runs from−j to +j . Under a rotationR(α), whereα
stands for the Euler angles, theYlm transform as

Ylm(r̂′)=
∑
m′

Ylm′(r̂)D
l
m′m(R), (4.107a)

wherer̂′ = (θ ′, ϕ′) are obtained from̂r= (θ,ϕ) by the rotationR and are the angles of the
same point in the rotated frame, and

DJ
m′m(α,β, γ )= 〈Jm|exp(iαJz)exp(iβJy)exp(iγ Jz)|Jm′〉

are the rotation matrices. So, for the operatorTjm, we define

RTjmR−1=
∑
m′

Tjm′D
j

m′m(α). (4.107b)



272 Chapter 4 Group Theory

For an infinitesimal rotation (see Eq. (4.20) in Section 4.2 on generators) the left side of
Eq. (4.107b) simplifies to a commutator and the right side to the matrix elements ofJ, the
infinitesimal generator of the rotationR:

[Jn,Tjm] =
∑
m′

Tjm′ 〈jm′|Jn|jm〉. (4.108)

If we substitute Eqs. (4.83) and (4.84) for the matrix elements ofJm we obtain the alterna-
tive transformation laws of a tensor operator,

[J0, Tjm] =mTjm, [J±, Tjm] = Tjm±1
{
(j −m)(j ±m+ 1)

}1/2
. (4.109)

We can use the Clebsch–Gordan coefficients of the previous subsection to couple two
tensors of given rank to another rank. An example is the cross or vector product of two
vectorsa andb from Chapter 1. Let us write both vectors in spherical components,am and
bm. Then we verify that the tensorCm of rank 1 defined as

Cm ≡
∑
m1m2

C(111|m1m2m)am1bm2 =
i√
2
(a× b)m. (4.110)

SinceCm is a spherical tensor of rank 1 that is linear in the components ofa andb, it must
be proportional to the cross product,Cm =N(a× b)m. The constantN can be determined
from a special case,a= x̂,b= ŷ, essentially writinĝx× ŷ= ẑ in spherical components as
follows. Using

(ẑ)0= 1; (x̂)1=−1/
√

2, (x̂)−1= 1/
√

2;
(ŷ)1=−i/

√
2, (ŷ)−1=−i/

√
2,

Eq. (4.110) form= 0 becomes

C(111|1,−1,0)
[
(x̂)1(ŷ)−1− (x̂)−1(ŷ)1

]=N
(
(ẑ)0

)=N

= 1√
2

[
− 1√

2

(
− i√

2

)
− 1√

2

(
− i√

2

)]
= i√

2
,

where we have usedC(111|101) = 1√
2

from Eq. (4.103) forJ1 = 1= J2, which implies

C(111|1,−1,0)= 1√
2

using Eqs. (4.104a,b):(
1 1 1

1 0 −1

)
=− 1√

3
C(111|101)=−1

6
=−

(
1 1 1

1 −1 0

)
=− 1√

3
C(111|1,−1,0).

A bit simpler is the usual scalar product of two vectors in Chapter 1, in whicha andb
are coupled to zero angular momentum:

a · b≡−(ab)0
√

3≡−√3
∑
m

C(110|m,−m,0)amb−m. (4.111)

Again, the rank zero of our tensor product impliesa · b = n(ab)0. The constantn can
be determined from a special case, essentially writingẑ2 = 1 in spherical components:
ẑ2= 1= nC(110|000)=− n√

3
.



4.4 Angular Momentum Coupling 273

Another often-used application of tensors is therecoupling that involves6j-symbols for
three operators and 9j for four operators.12 An example is the following scalar product,
for which it can be shown12 that

σ 1 · rσ 2 · r= 1

3
r2σ 1 · σ 2+ (σ 1σ 2)2 · (rr)2, (4.112)

but which can also be rearranged by elementary means. Here the tensor operators are de-
fined as

(σ 1σ 2)2m =
∑
m1m2

C(112|m1m2m)σ1m1σ2m2, (4.113)

(rr)2m =
∑
m

C(112|m1m2m)rm1rm2 =
√

8π

15
r2Y2m(r̂), (4.114)

and the scalar product of tensors of rank 2 as

(σ 1σ 2)2 · (rr)2=
∑
m

(−1)m(σ 1σ 2)2m(rr)2,−m =
√

5
(
(σ 1σ 2)2(rr)2

)
0. (4.115)

One of the most important applications of spherical tensor operators is theWigner–
Eckart theorem. It says that a matrix element of a spherical tensor operatorTkm of rankk
between states of angular momentumj andj ′ factorizes into a Clebsch–Gordan coefficient
and a so-calledreduced matrix element, denoted by double bars, that no longer has any
dependence on the projection quantum numbersm,m′, n:

〈j ′m′|Tkn|jm〉 = C(kjj ′|nmm′)(−1)k−j+j ′ 〈j ′‖Tk‖j 〉/
√
(2j ′ + 1). (4.116)

In other words, such a matrix element factors into a dynamic part, the reduced matrix
element, and a geometric part, the Clebsch–Gordan coefficient that contains the rotational
properties (expressed by the projection quantum numbers) from theSO(3) invariance. To
see this we coupleTkn with the initial state to total angular momentumj ′:

|j ′m′〉0≡
∑
nm

C(kjj ′|nmm′)Tkn|jm〉. (4.117)

Under rotations the state|j ′m′〉0 transforms just like|j ′m′〉. Thus, the overlap matrix ele-
ment〈j ′m′|j ′m′〉0 is a rotational scalar that has nom′ dependence, so we can average over
the projections,

〈JM|j ′m′〉0= δJj ′δMm′

2j ′ + 1

∑
µ

〈j ′µ|j ′µ〉0. (4.118)

Next we substitute our definition, Eq. (4.117), into Eq. (4.118) and invert the relation
Eq. (4.117) using orthogonality, Eq. (4.99b), to find that

〈JM|Tkn|jm〉 =
∑
j ′m′

C(kjj ′|nmm′)
δJj ′δMm′

2J + 1

∑
µ

〈Jµ|Jµ〉0, (4.119)

which proves the Wigner–Eckart theorem, Eq. (4.116).13

13The extra factor(−1)k−j+j ′/
√
(2j ′ + 1) in Eq. (4.116) is just a convention that varies in the literature.
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As an application, we can write the Pauli matrix elements in terms of Clebsch–Gordan
coefficients. We apply the Wigner–Eckart theorem to〈1

2γ
∣∣σα∣∣1

2β
〉= (σα)γβ =− 1√

2
C
(
11

2
1
2

∣∣αβγ )〈12∥∥σ∥∥1
2

〉
. (4.120)

Since〈1
2

1
2|σ0|12 1

2〉 = 1 with σ0= σ3 andC(11
2

1
2 | 01

2
1
2)=−1/

√
3, we find〈1

2

∥∥σ∥∥1
2

〉=√6, (4.121)

which, substituted into Eq. (4.120), yields

(σα)γβ =−
√

3C
(
11

2
1
2

∣∣αβγ ). (4.122)

Note that theα =±1,0 denote the spherical components of the Pauli matrices.

Young Tableaux for SU(n)

Young tableaux (YT) provide a powerful and elegant method for decomposing products
of SU(n) group representations into sums of irreducible representations. The YT provide
the dimensions and symmetry types of the irreducible representations in this so-called
Clebsch–Gordan series, though not the Clebsch–Gordan coefficients by which the prod-
uct states are coupled to the quantum numbers of each irreducible representation of the
series (see Eq. (4.94)).

Products of representations correspond to multiparticle states. In this context, permuta-
tions of particles are important when we deal with several identical particles. Permutations
of n identical objects form thesymmetric group Sn. A close connection between irre-
ducible representations ofSn, which are the YT, and those ofSU(n) is provided by this
theorem: EveryN -particle state ofSn that is made up of single-particle states of the fun-
damentaln-dimensionalSU(n) multiplet belongs to an irreducibleSU(n) representation.
A proof is in Chapter 22 of Wybourne.14

For SU(2) the fundamental representation is a box that stands for the spin+1
2 (up) and

−1
2 (down) states and has dimension 2. ForSU(3) the box comprises the three quark states

in the triangle of Fig. 4.5a; it has dimension 3.
An array of boxes shown in Fig. 4.8 withλ1 boxes in the first row,λ2 boxes in the

second row,. . . , andλn−1 boxes in the last row is called a Young tableau (YT), denoted
by [λ1, . . . , λn−1], and represents an irreducible representation ofSU(n) if and only if

λ1≥ λ2≥ · · · ≥ λn−1. (4.123)

Boxes in the same row are symmetric representations; those in the same column are anti-
symmetric. A YT consisting of one row is totally symmetric. A YT consisting of a single
column is totally antisymmetric.

There are at mostn− 1 rows forSU(n) YT because a column ofn boxes is the totally
antisymmetric (Slater determinant of single-particle states) singlet representation that
may be struck from the YT.

An array ofN boxes is anN -particle state whose boxes may be labeled by positive
integers so that the (particle labels or) numbers in one row of the YT do not decrease from

14B. G. Wybourne,Classical Groups for Physicists. New York: Wiley (1974).
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FIGURE 4.8 Young tableau (YT) forSU(n).

left to right and those in any one column increase from top to bottom. In contrast to the
possible repetitions of row numbers, the numbers in any column must be different because
of the antisymmetry of these states.

The product of a YT with a single box,[1], is the sum of YT formed when the box is
put at the end of each row of the YT, provided the resulting YT is legitimate, that is, obeys
Eq. (4.123). ForSU(2) the product of two boxes, spin 1/2 representations of dimension 2,
generates

[1] ⊗ [1] = [2] ⊕ [1,1], (4.124)

the symmetric spin 1 representation of dimension 3 and the antisymmetric singlet of di-
mension 1 mentioned earlier.

The column ofn− 1 boxes is the conjugate representation of the fundamental represen-
tation; its product with a single box contains the column ofn boxes, which is the singlet.
For SU(3) the conjugate representation of the single box,[1] or fundamental quark repre-
sentation, is the inverted triangle in Fig. 4.5b,[1,1], which represents the three antiquarks
ū, d̄, s̄, obviously of dimension 3 as well.

The dimension of a YT is given by the ratio

dimYT= N

D
. (4.125)

The numeratorN is obtained by writing ann in all boxes of the YT along the diagonal,
(n+1) in all boxes immediately above the diagonal,(n−1) immediately below the diago-
nal, etc.N is the product of all the numbers in the YT. An example is shown in Fig. 4.9a for
the octet representation ofSU(3), whereN = 2 · 3 · 4= 24. There is a closed formula that
is equivalent to Eq. (4.125).15 The denominatorD is the product of allhooks.16 A hook is
drawn through each box of the YT by starting a horizontal line from the right to the box in
question and then continuing it vertically out of the YT. The number of boxes encountered
by the hook-line is the hook-number of the box.D is the product of all hook-numbers of

15See, for example, M. Hamermesh,Group Theory and Its Application to Physical Problems. Reading, MA: Addison-Wesley
(1962).
16F. Close,Introduction to Quarks and Partons. New York: Academic Press (1979).
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(a)

(b)

FIGURE 4.9 Illustration
of (a)N and (b)D in

Eq. (4.125) for the octet
Young tableau ofSU(3).

the YT. An example is shown in Fig. 4.9b for the octet ofSU(3), whose hook-number is
D = 1 · 3 · 1= 3. Hence the dimension of theSU(3) octet is 24/3= 8, whence its name.

Now we can calculate the dimensions of the YT in Eq. (4.124). ForSU(2) they are
2× 2= 3+ 1= 4. ForSU(3) they are 3· 3= 3 · 4/(1 · 2)+ 3 · 2/(2 · 1)= 6+ 3= 9. For
the product of the quark times antiquark YT ofSU(3) we get

[1,1] ⊗ [1] = [2,1] ⊕ [1,1,1], (4.126)

that is, octet and singlet, which are precisely the meson multiplets considered in the sub-
section on the eightfold way, theSU(3) flavor symmetry, which suggest mesons are bound
states of a quark and an antiquark,qq̄ configurations. For the product of three quarks we
get ([1] ⊗ [1])⊗ [1] = ([2] ⊕ [1,1])⊗ [1] = [3] ⊕ 2[2,1] ⊕ [1,1,1], (4.127)

that is, decuplet, octet, and singlet, which are the observed multiplets for the baryons,
which suggests they are bound states of three quarks,q3 configurations.

As we have seen, YT describe the decomposition of a product of SU(n) irreducible repre-
sentations into irreducible representations of SU(n), which is called the Clebsch–Gordan
series, while the Clebsch–Gordan coefficients considered earlier allow construction of the
individual states in this series.
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Exercises

4.4.1 Derive recursion relations for Clebsch–Gordan coefficients. Use them to calculate
C(11J |m1m2M) for J = 0,1,2.
Hint. Use the known matrix elements ofJ+ = J1++J2+, Ji+, andJ2= (J1+J2)

2, etc.

4.4.2 Show that(Ylχ)JM =∑
C(l 1

2J |mlmsM)Ylml
χms , whereχ±1/2 are the spin up and

down eigenfunctions ofσ3= σz, transforms like a spherical tensor of rankJ .

4.4.3 When the spin of quarks is taken into account, theSU(3) flavor symmetry is replaced by
the SU(6) symmetry. Why? Obtain the Young tableau for the antiquark configuration
q̄. Then decompose the productqq̄. WhichSU(3) representations are contained in the
nontrivialSU(6) representation for mesons?
Hint. Determine the dimensions of all YT.

4.4.4 For l = 1, Eq. (4.107a) becomes

Ym
1 (θ ′, ϕ′)=

1∑
m′=−1

D1
m′m(α,β, γ )Y

m′
1 (θ,ϕ).

Rewrite these spherical harmonics in Cartesian form. Show that the resulting Cartesian
coordinate equations are equivalent to the Euler rotation matrixA(α,β, γ ), Eq. (3.94),
rotating the coordinates.

4.4.5 Assuming thatDj(α,β, γ ) is unitary, show that

l∑
m=−l

Ym∗
l (θ1, ϕ1)Y

m
l (θ2, ϕ2)

is a scalar quantity (invariant under rotations). This is a spherical tensor analog of a
scalar product of vectors.

4.4.6 (a) Show that theα andγ dependence ofDj (α,β, γ ) may be factored out such that

Dj (α,β, γ )= Aj (α)dj (β)Cj (γ ).

(b) Show thatAj (α) andCj (γ ) are diagonal. Find the explicit forms.
(c) Show thatdj (β)=Dj (0, β,0).

4.4.7 The angular momentum–exponential form of the Euler angle rotation operators is

R = Rz′′(γ )Ry′(β)Rz(α)

= exp(−iγ Jz′′)exp(−iβJy′)exp(−iαJz).
Show that in terms of the original axes

R= exp(iαJz)exp(−iβJy)exp(−iγ Jz).
Hint. The R operators transform as matrices. The rotation about they′-axis (second
Euler rotation) may be referred to the originaly-axis by

exp(−iβJy′)= exp(−iαJz)exp(−iβJy)exp(iαJz).
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4.4.8 Using the Wigner–Eckart theorem, prove the decomposition theorem for a spherical
vector operator〈j ′m′|T1m|jm〉 = 〈jm′|J·T1|jm〉

j (j+1) δjj ′ .

4.4.9 Using the Wigner–Eckart theorem, prove the factorization
〈j ′m′|JMJ ·T1|jm〉 = 〈jm′|JM |jm〉δj ′j 〈jm|J ·T1|jm〉.

4.5 HOMOGENEOUS LORENTZ GROUP

Generalizing the approach to vectors of Section 1.2, in special relativity we demand that
our physical laws be covariant17 under

a. space and time translations,
b. rotations in real, three-dimensional space, and
c. Lorentz transformations.

The demand for covariance under translations is based on the homogeneity of space and
time. Covariance under rotations is an assertion of the isotropy of space. The requirement
of Lorentz covariance follows from special relativity. All three of these transformations
together form the inhomogeneous Lorentz group or the Poincaré group. When we exclude
translations, the space rotations and the Lorentz transformations together form a group —
the homogeneous Lorentz group.

We first generate a subgroup, the Lorentz transformations in which the relative velocity
v is along thex = x1-axis. The generator may be determined by considering space–time
reference frames moving with a relative velocityδv, an infinitesimal.18 The relations are
similar to those for rotations in real space, Sections 1.2, 2.6, and 3.3, except that here the
angle of rotation is pure imaginary (compare Section 4.6).

Lorentz transformations are linear not only in the space coordinatesxi but in the timet
as well. They originate from Maxwell’s equations of electrodynamics, which are invariant
under Lorentz transformations, as we shall see later. Lorentz transformations leave the
quadratic formc2t2 − x2

1 − x2
2 − x2

3 = x2
0 − x2

1 − x2
2 − x2

3 invariant, wherex0 = ct . We
see this if we switch on a light source at the origin of the coordinate system. At timet

light has traveled the distancect =
√∑

x2
i , soc2t2− x2

1 − x2
2 − x2

3 = 0. Special relativity
requires that in all (inertial) frames that move with velocityv ≤ c in any direction relative
to thexi -system and have the same origin at timet = 0, c2t ′2− x′21 − x′22 − x′23 = 0 holds
also. Four-dimensional space–time with the metricx ·x = x2= x2

0−x2
1−x2

2−x2
3 is called

Minkowski space, with the scalar product of two four-vectors defined asa ·b= a0b0−a ·b.
Using the metric tensor

(gµν)=
(
gµν

)=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (4.128)

17To be covariant means to have the same form in different coordinate systems so that there is no preferred reference system
(compare Sections 1.2 and 2.6).
18This derivation, with a slightly different metric, appears in an article by J. L. Strecker,Am. J. Phys. 35: 12 (1967).
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we can raise and lower the indices of a four-vector, such as the coordinatesxµ = (x0,x),
so thatxµ = gµνx

ν = (x0,−x) andxµgµνxν = x2
0 − x2, Einstein’s summation convention

being understood. For the gradient,∂µ = (∂/∂x0,−∇)= ∂/∂xµ and∂µ = (∂/∂x0,∇), so
∂2= ∂µ∂µ = (∂/∂x0)

2−∇2 is a Lorentz scalar, just like the metricx2= x2
0 − x2.

Forv� c, in the nonrelativistic limit, a Lorentz transformation must be Galilean. Hence,
to derive the form of a Lorentz transformation along thex1-axis, we start with a Galilean
transformation for infinitesimal relative velocityδv:

x′1= x1− δvt = x1− x0δβ. (4.129)

Here,β = v/c. By symmetry we also write

x′0= x0+ aδβx1, (4.129′)

with the parametera chosen so thatx2
0 − x2

1 is invariant,

x′20 − x′21 = x2
0 − x2

1. (4.130)

Remember,xµ = (x0,x) is the prototype four-dimensional vector in Minkowski space.
Thus Eq. (4.130) is simply a statement of the invariance of the square of the magnitude of
the “distance” vector under Lorentz transformation in Minkowski space. Here is where the
special relativity is brought into our transformation. Squaring and subtracting Eqs. (4.129)
and (4.129′) and discarding terms of order(δβ)2, we finda =−1. Equations (4.129) and
(4.129′) may be combined as a matrix equation,(

x′0

x′1

)
= (12− δβσ1)

(
x0

x1

)
; (4.131)

σ1 happens to be the Pauli matrix,σ1, and the parameterδβ represents an infinitesimal
change. Using the same techniques as in Section 4.2, we repeat the transformationN times
to develop a finite transformation with the velocity parameterρ =Nδβ. Then(

x′0

x′1

)
=
(

12− ρσ1

N

)N
(
x0

x1

)
. (4.132)

In the limit asN→∞,

lim
N→∞

(
12− ρσ1

N

)N

= exp(−ρσ1). (4.133)

As in Section 4.2, the exponential is interpreted by a Maclaurin expansion,

exp(−ρσ1)= 12− ρσ1+ 1

2! (ρσ1)
2− 1

3! (ρσ1)
3+ · · · . (4.134)

Noting that(σ1)
2= 12,

exp(−ρσ1)= 12 coshρ − σ1 sinhρ. (4.135)

Hence our finite Lorentz transformation is(
x′0

x′1

)
=
(

coshρ −sinhρ

−sinhρ coshρ

)(
x0

x1

)
. (4.136)
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σ1 has generated the representations of this pure Lorentz transformation. The quantities
coshρ and sinhρ may be identified by considering the origin of the primed coordinate
system,x′1= 0, orx1= vt . Substituting into Eq. (4.136), we have

0= x1 coshρ − x0 sinhρ. (4.137)

With x1= vt andx0= ct ,

tanhρ = β = v

c
.

Note that therapidity ρ 
= v/c, except in the limit asv→ 0. The rapidity is the additive
parameter for pure Lorentz transformations (“boosts”) along the same axis that corresponds
to angles for rotations about the same axis. Using 1− tanh2ρ = (cosh2ρ)−1,

coshρ = (1− β2)−1/2≡ γ, sinhρ = βγ. (4.138)

The group of Lorentz transformations is not compact, because the limit of a sequence of
rapidities going to infinity is no longer an element of the group.

The preceding special case of the velocity parallel to one space axis is easy, but it illus-
trates the infinitesimal velocity-exponentiation-generator technique. Now, this exact tech-
nique may be applied to derive the Lorentz transformation for the relative velocityv not
parallel to any space axis. The matrices given by Eq. (4.136) for the case ofv= x̂vx form
a subgroup. The matrices in the general case do not. The product of two Lorentz transfor-
mation matricesL(v1) andL(v2) yields a third Lorentz matrix,L(v3), if the two velocities
v1 andv2 are parallel. The resultant velocity,v3, is related tov1 andv2 by the Einstein
velocity addition law, Exercise 4.5.3. Ifv1 andv2 are not parallel, no such simple relation
exists. Specifically, consider three reference framesS,S′, andS′′, with S andS′ related by
L(v1) andS′ andS′′ related byL(v2). If the velocity ofS′′ relative to the original systemS
is v3, S′′ is not obtained fromS by L(v3)= L(v2)L(v1). Rather, we find that

L(v3)=RL(v2)L(v1), (4.139)

whereR is a 3× 3 space rotation matrix embedded in our four-dimensional space–time.
With v1 andv2 not parallel, the final system,S′′, is rotated relative toS. This rotation
is the origin of the Thomas precession involved in spin-orbit coupling terms in atomic
and nuclear physics. Because of its presence, the pure Lorentz transformationsL(v) by
themselves do not form a group.

Kinematics and Dynamics in Minkowski Space–Time

We have seen that the propagation of light determines the metric

r2− c2t2= 0= r′2− c2t ′2,

wherexµ = (ct, r) is the coordinate four-vector. For a particle moving with velocityv, the
Lorentz invariant infinitesimal version

c dτ ≡√dxµ dxµ =
√
c2dt2− dr2= dt

√
c2− v2

defines the invariant proper timeτ on its track. Because of time dilation in moving frames,
a proper-time clock rides with the particle (in its rest frame) and runs at the slowest possible
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rate compared to any other inertial frame (of an observer, for example). The four-velocity
of the particle can now be defined properly as

dxµ

dτ
= uµ =

(
c√

c2− v2
,

v√
c2− v2

)
,

sou2= 1, and the four-momentumpµ = cmuµ = (E
c
,p) yields Einstein’s famous energy

relation

E = mc2√
1− v2/c2

=mc2+ m

2
v2± · · · .

A consequence ofu2 = 1 and its physical significance is that the particle is on its mass
shellp2=m2c2.

Now we formulate Newton’s equation for asingle particle of massm in special relativity
as dpµ

dτ
= Kµ, with Kµ denoting the force four-vector, so its vector part of the equation

coincides with the usual form. Forµ= 1,2,3 we usedτ = dt
√

1− v2/c2 and find

1√
1− v2/c2

dp
dt
= F√

1− v2/c2
=K,

determiningK in terms of the usual forceF. We need to findK0. We proceed by analogy
with the derivation of energy conservation, multiplying the force equation into the four-
velocity

muν
duν

dτ
= m

2

du2

dτ
= 0,

becauseu2= 1= const. The other side of Newton’s equation yields

0= 1

c
u ·K = K0√

1− v2/c2
− F · v/c√

1− v2/c22
,

soK0= F·v/c√
1−v2/c2

is related to the rate of work done by the force on the particle.

Now we turn to two-body collisions, in which energy–momentum conservation takes
the formp1+ p2= p3+ p4, wherepµ

i are the particle four-momenta. Because the scalar
product of any four-vector with itself is an invariant under Lorentz transformations, it is
convenient to define the Lorentz invariant energy squareds = (p1 + p2)

2 = P 2, where
Pµ is the total four-momentum, and to use units where the velocity of lightc = 1. The
laboratory system (lab) is defined as the rest frame of the particle with four-momentum
p
µ
2 = (m2,0) and the center of momentum frame (cms) by the total four-momentumPµ =

(E1+E2,0). When the incident lab energyEL
1 is given, then

s = p2
1+ p2

2+ 2p1 · p2=m2
1+m2

2+ 2m2E
L
1

is determined. Now, the cms energies of the four particles are obtained from scalar products

p1 · P =E1(E1+E2)=E1
√
s,
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so

E1= p1 · (p1+ p2)√
s

= m2
1+ p1 · p2√

s
= m2

1−m2
2+ s

2
√
s

,

E2= p2 · (p1+ p2)√
s

= m2
2+ p1 · p2√

s
= m2

2−m2
1+ s

2
√
s

,

E3= p3 · (p3+ p4)√
s

= m2
3+ p3 · p4√

s
= m2

3−m2
4+ s

2
√
s

,

E4= p4 · (p3+ p4)√
s

= m2
4+ p3 · p4√

s
= m2

4−m2
3+ s

2
√
s

,

by substituting

2p1 · p2= s −m2
1−m2

2, 2p3 · p4= s −m2
3−m2

4.

Thus, all cms energiesEi depend only on the incident energy but not on the scattering
angle. For elastic scattering,m3 = m1, m4 = m2, so E3 = E1, E4 = E2. The Lorentz
invariant momentum transfer squared

t = (p1− p3)
2=m2

1+m2
3− 2p1 · p3

depends linearly on the cosine of the scattering angle.

Example 4.5.1 KAON DECAY AND PION PHOTOPRODUCTION THRESHOLD

Find the kinetic energies of the muon of mass 106 MeV and massless neutrino into which
a K meson of mass 494 MeV decays in its rest frame.

Conservation of energy and momentum givesmK =Eµ+Eν =√s. Applying the rela-
tivistic kinematics described previously yields

Eµ = pµ · (pµ + pν)

mK

= m2
µ + pµ · pν

mK

,

Eν = pν · (pµ + pν)

mK

= pµ · pν

mK

.

Combining both results we obtainm2
K =m2

µ + 2pµ · pν , so

Eµ = Tµ +mµ =
m2

K +m2
µ

2mK

= 258.4 MeV,

Eν = Tν =
m2

K −m2
µ

2mK

= 235.6 MeV.

As another example, in the production of a neutral pion by an incident photon according to
γ + p→ π0+ p′ at threshold, the neutral pion and proton are created at rest in the cms.
Therefore,

s = (pγ + p)2=m2
p + 2mpE

L
γ = (pπ + p′)2= (mπ +mp)

2,
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soEL
γ =mπ + m2

π

2mp
= 144.7 MeV. �

Exercises

4.5.1 Two Lorentz transformations are carried out in succession:v1 along thex-axis, then
v2 along they-axis. Show that the resultant transformation (given by the product of
these two successive transformations)cannot be put in the form of a single Lorentz
transformation.
Note. The discrepancy corresponds to a rotation.

4.5.2 Rederive the Lorentz transformation, working entirely in the real space(x0, x1, x2, x3)

with x0 = x0 = ct . Show that the Lorentz transformation may be writtenL(v) =
exp(ρσ ), with

σ =


0 −λ −µ −ν
−λ 0 0 0

−µ 0 0 0

−ν 0 0 0


andλ,µ, ν the direction cosines of the velocityv.

4.5.3 Using the matrix relation, Eq. (4.136), let the rapidityρ1 relate the Lorentz reference
frames(x′0, x′1) and (x0, x1). Let ρ2 relate(x′′0, x′′1) and (x′0, x′1). Finally, let ρ
relate(x′′0, x′′1) and(x0, x1). Fromρ = ρ1+ ρ2 derive the Einstein velocity addition
law

v = v1+ v2

1+ v1v2/c2
.

4.6 LORENTZ COVARIANCE OF MAXWELL’S EQUATIONS

If a physical law is to hold for all orientations of our (real) coordinates (that is, to be in-
variant under rotations), the terms of the equation must be covariant under rotations (Sec-
tions 1.2 and 2.6). This means that we write the physical laws in the mathematical form
scalar= scalar, vector= vector, second-rank tensor= second-rank tensor, and so on. Sim-
ilarly, if a physical law is to hold for all inertial systems, the terms of the equation must be
covariant under Lorentz transformations.

Using Minkowski space (ct = x0; x = x1, y = x2, z= x3), we have a four-dimensional
space with the metricgµν (Eq. (4.128), Section 4.5). The Lorentz transformations are linear
in space and time in this four-dimensional real space.19

19A group theoretic derivation of the Lorentz transformation in Minkowski space appears in Section 4.5. See also H. Goldstein,
Classical Mechanics. Cambridge, MA: Addison-Wesley (1951), Chapter 6. The metric equationx2

0 − x2 = 0, independent of
reference frame, leads to the Lorentz transformations.
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Here we consider Maxwell’s equations,

∇×E = −∂B
∂t

, (4.140a)

∇×H = ∂D
∂t
+ ρv, (4.140b)

∇ ·D = ρ, (4.140c)

∇ ·B = 0, (4.140d)

and the relations

D= ε0E, B= µ0H. (4.141)

The symbols have their usual meanings as given in Section 1.9. For simplicity we assume
vacuum (ε = ε0, µ= µ0).

We assume that Maxwell’s equations hold in all inertial systems; that is, Maxwell’s
equations are consistent with special relativity. (The covariance of Maxwell’s equations
under Lorentz transformations was actually shown by Lorentz and Poincaré before Ein-
stein proposed his theory of special relativity.) Our immediate goal is to rewrite Maxwell’s
equations as tensor equations in Minkowski space. This will make the Lorentz covariance
explicit, or manifest.

In terms of scalar,ϕ, and magnetic vector potentials,A, we may solve20 Eq. (4.140d)
and then (4.140a) by

B = ∇×A

E = −∂A
∂t
−∇ϕ. (4.142)

Equation (4.142) specifies the curl ofA; the divergence ofA is still undefined (compare
Section 1.16). We may, and for future convenience we do, impose a further gauge restric-
tion on the vector potentialA:

∇ ·A+ ε0µ0
∂ϕ

∂t
= 0. (4.143)

This is the Lorentz gauge relation. It will serve the purpose of uncoupling the differential
equations forA andϕ that follow. The potentialsA andϕ are not yet completely fixed.
The freedom remaining is the topic of Exercise 4.6.4.

Now we rewrite the Maxwell equations in terms of the potentialsA and ϕ. From
Eqs. (4.140c) for∇ ·D, (4.141) and (4.142),

∇2ϕ +∇ · ∂A
∂t
=− ρ

ε0
, (4.144)

whereas Eqs. (4.140b) for∇×H and (4.142) and Eq. (1.86c) of Chapter 1 yield

∂2A
∂t2

+∇ ∂ϕ

∂t
+ 1

ε0µ0

{∇∇ ·A−∇2A
}= ρv

ε0
. (4.145)

20Compare Section 1.13, especially Exercise 1.13.10.
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Using the Lorentz relation, Eq. (4.143), and the relationε0µ0= 1/c2, we obtain[
∇2− 1

c2

∂2

∂t2

]
A = −µ0ρv,[

∇2− 1

c2

∂2

∂t2

]
ϕ = − ρ

ε0
. (4.146)

Now, the differential operator (see also Exercise 2.7.3)

∇2− 1

c2

∂2

∂t2
≡−∂2≡−∂µ∂µ

is a four-dimensional Laplacian, usually called the d’Alembertian and also sometimes de-
noted by�. It is a scalar by construction (see Exercise 2.7.3).

For convenience we define

A1≡ Ax

µ0c
= cε0Ax, A3≡ Az

µ0c
= cε0Az,

A2≡ Ay

µ0c
= cε0Ay, A0≡ ε0ϕ =A0.

(4.147)

If we further define a four-vector current density

ρvx

c
≡ j1,

ρvy

c
≡ j2,

ρvz

c
≡ j3, ρ ≡ j0= j0, (4.148)

then Eq. (4.146) may be written in the form

∂2Aµ = jµ. (4.149)

The wave equation (4.149) looks like a four-vector equation, but looks do not constitute
proof. To prove that it is a four-vector equation, we start by investigating the transformation
properties of the generalized currentjµ.

Since an electric charge elementde is an invariant quantity, we have

de= ρdx1dx2dx3, invariant. (4.150)

We saw in Section 2.9 that the four-dimensional volume elementdx0dx1dx2dx3 was also
invariant, a pseudoscalar. Comparing this result, Eq. (2.106), with Eq. (4.150), we see that
the charge densityρ must transform the same way asdx0, the zeroth component of a four-
dimensional vectordxλ. We putρ = j0, with j0 now established as the zeroth component
of a four-vector. The other parts of Eq. (4.148) may be expanded as

j1= ρvx

c
= ρ

c

dx1

dt
= j0dx

1

dx0
. (4.151)

Since we have just shown thatj0 transforms asdx0, this means thatj1 transforms asdx1.
With similar results forj2 andj3, We havejλ transforming asdxλ, proving thatjλ is a
four-vector in Minkowski space.

Equation (4.149), which follows directly from Maxwell’s equations, Eqs. (4.140), is
assumed to hold in all Cartesian systems (all Lorentz frames). Then, by the quotient rule,
Section 2.8,Aµ is also a vector and Eq. (4.149) is a legitimate tensor equation.
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Now, working backward, Eq. (4.142) may be written

ε0Ej = −∂Aj

∂x0
− ∂A0

∂xj
, j = 1,2,3,

(4.152)
1

µ0c
Bi = ∂Ak

∂xj
− ∂Aj

∂xk
, (i, j, k)= cyclic (1,2,3).

We define a new tensor,

∂µAλ − ∂λAµ = ∂Aλ

∂xµ
− ∂Aµ

∂xλ
≡ Fµλ =−Fλµ (µ,λ= 0,1,2,3),

an antisymmetric second-rank tensor, sinceAλ is a vector. Written out explicitly,

Fµλ

ε0
=


0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0

 ,
Fµλ

ε0
=


0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0

 .

(4.153)

Notice that in our four-dimensional Minkowski spaceE andB are no longer vectors but to-
gether form a second-rank tensor. With this tensor we may write the two nonhomogeneous
Maxwell equations ((4.140b) and (4.140c)) combined as a tensor equation,

∂Fλµ

∂xµ
= jλ. (4.154)

The left-hand side of Eq. (4.154) is a four-dimensional divergence of a tensor and therefore
a vector. This, of course, is equivalent to contracting a third-rank tensor∂Fλµ/∂xν (com-
pare Exercises 2.7.1 and 2.7.2). The two homogeneous Maxwell equations — (4.140a) for
∇×E and (4.140d) for∇ ·B — may be expressed in the tensor form

∂F23

∂x1
+ ∂F31

∂x2
+ ∂F12

∂x3
= 0 (4.155)

for Eq. (4.140d) and three equations of the form

−∂F30

∂x2
− ∂F02

∂x3
+ ∂F23

∂x0
= 0 (4.156)

for Eq. (4.140a). (A second equation permutes 120, a third permutes 130.) Since

∂λFµν = ∂Fµν

∂xλ
≡ tλµν

is a tensor (of third rank), Eqs. (4.140a) and (4.140d) are given by the tensor equation

tλµν + tνλµ + tµνλ = 0. (4.157)

From Eqs. (4.155) and (4.156) you will understand that the indicesλ,µ, andν are supposed
to be different. Actually Eq. (4.157) automatically reduces to 0= 0 if any two indices
coincide. An alternate form of Eq. (4.157) appears in Exercise 4.6.14.



4.6 Lorentz Covariance of Maxwell’s Equations 287

Lorentz Transformation of E and B

The construction of the tensor equations ((4.154) and (4.157)) completes our initial goal of
rewriting Maxwell’s equations in tensor form.21 Now we exploit the tensor properties of
our four vectors and the tensorFµν .

For the Lorentz transformation corresponding to motion along thez(x3)-axis with ve-
locity v, the “direction cosines” are given by22

x′0= γ
(
x0− βx3

)
x′3= γ

(
x3− βx0

)
,

(4.158)

where

β = v

c

and

γ = (1− β2)−1/2
. (4.159)

Using the tensor transformation properties, we may calculate the electric and magnetic
fields in the moving system in terms of the values in the original reference frame. From
Eqs. (2.66), (4.153), and (4.158) we obtain

E′x =
1√

1− β2

(
Ex − v

c2
By

)
,

E′y =
1√

1− β2

(
Ey + v

c2
Bx

)
, (4.160)

E′z = Ez

and

B ′x =
1√

1− β2

(
Bx + v

c2
Ey

)
,

B ′y =
1√

1− β2

(
By − v

c2
Ex

)
, (4.161)

B ′z = Bz.

This coupling ofE andB is to be expected. Consider, for instance, the case of zero electric
field in the unprimed system

Ex =Ey =Ez = 0.

21Modern theories of quantum electrodynamics and elementary particles are often written in this “manifestly covariant” form
to guarantee consistency with special relativity. Conversely, the insistence on such tensor form has been a useful guide in the
construction of these theories.
22A group theoretic derivation of the Lorentz transformation appears in Section 4.5. See also Goldstein,loc. cit., Chapter 6.
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Clearly, there will be no force on a stationary charged particle. When the particle is in
motion with a small velocityv along thez-axis,23 an observer on the particle sees fields
(exerting a force on his charged particle) given by

E′x = −vBy,

E′y = vBx,

whereB is a magnetic induction field in the unprimed system. These equations may be put
in vector form,

E′ = v×B

or (4.162)

F= qv×B,

which is usually taken as the operational definition of the magnetic inductionB.

Electromagnetic Invariants

Finally, the tensor (or vector) properties allow us to construct a multitude of invariant
quantities. A more important one is the scalar product of the two four-dimensional vectors
or four-vectorsAλ andjλ. We have

Aλjλ = −cε0Ax

ρvx

c
− cε0Ay

ρvy

c
− cε0Az

ρvz

c
+ ε0ϕρ

= ε0(ρϕ −A · J), invariant, (4.163)

with A the usual magnetic vector potential andJ the ordinary current density. The first
term,ρϕ, is the ordinary static electric coupling, with dimensions of energy per unit vol-
ume. Hence our newly constructed scalar invariant is an energy density. The dynamic in-
teraction of field and current is given by the productA · J. This invariantAλjλ appears in
the electromagnetic Lagrangians of Exercises 17.3.6 and 17.5.1.

Other possible electromagnetic invariants appear in Exercises 4.6.9 and 4.6.11.
The Lorentz group is the symmetry group of electrodynamics, of the electroweak gauge

theory, and of the strong interactions described by quantum chromodynamics: It governs
special relativity. The metric of Minkowski space–time is Lorentz invariant and expresses
the propagation of light; that is, the velocity of light is the same in all inertial frames.
Newton’s equations of motion are straightforward to extend to special relativity. The kine-
matics of two-body collisions are important applications of vector algebra in Minkowski
space–time.

23If the velocity is not small, a relativistic transformation of force is needed.
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Exercises

4.6.1 (a) Show that every four-vector in Minkowski space may be decomposed into an or-
dinary three-space vector and a three-space scalar. Examples:(ct, r), (ρ,ρv/c),
(ε0ϕ, cε0A), (E/c,p), (ω/c,k).
Hint. Consider a rotation of the three-space coordinates with time fixed.

(b) Show that the converse of (a) isnot true — every three-vector plus scalar doesnot
form a Minkowski four-vector.

4.6.2 (a) Show that

∂µjµ = ∂ · j = ∂jµ

∂xµ
= 0.

(b) Show how the previous tensor equation may be interpreted as a statement of con-
tinuity of charge and current in ordinary three-dimensional space and time.

(c) If this equation is known to hold in all Lorentz reference frames, why can we not
conclude thatjµ is a vector?

4.6.3 Write the Lorentz gauge condition (Eq. (4.143)) as a tensor equation in Minkowski
space.

4.6.4 A gauge transformation consists of varying the scalar potentialϕ1 and the vector poten-
tial A1 according to the relation

ϕ2 = ϕ1+ ∂χ

∂t
,

A2 = A1−∇χ.

The new functionχ is required to satisfy the homogeneous wave equation

∇2χ − 1

c2

∂2χ

∂t2
= 0.

Show the following:

(a) The Lorentz gauge relation is unchanged.
(b) The new potentials satisfy the same inhomogeneous wave equations as did the

original potentials.
(c) The fieldsE andB are unaltered.

The invariance of our electromagnetic theory under this transformation is calledgauge
invariance.

4.6.5 A charged particle, chargeq, massm, obeys the Lorentz covariant equation

dpµ

dτ
= q

ε0mc
Fµνpν,

wherepν is the four-momentum vector(E/c;p1,p2,p3), τ is the proper time,dτ =
dt
√

1− v2/c2, a Lorentz scalar. Show that the explicit space–time forms are

dE

dt
= qv ·E; dp

dt
= q(E+ v×B).
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4.6.6 From the Lorentz transformation matrix elements (Eq. (4.158)) derive the Einstein ve-
locity addition law

u′ = u− v

1− (uv/c2)
or u= u′ + v

1+ (u′v/c2)
,

whereu= c dx3/dx0 andu′ = c dx′3/dx′0.
Hint. If L12(v) is the matrix transforming system 1 into system 2,L23(u

′) the matrix
transforming system 2 into system 3,L13(u) the matrix transforming system 1 directly
into system 3, thenL13(u) = L23(u

′)L12(v). From this matrix relation extract the Ein-
stein velocity addition law.

4.6.7 The dual of a four-dimensional second-rank tensorB may be defined bỹB, where the
elements of the dual tensor are given by

B̃ij = 1

2!ε
ijklBkl .

Show thatB̃ transforms as

(a) a second-rank tensor under rotations,
(b) a pseudotensor under inversions.

Note. The tilde here doesnot mean transpose.

4.6.8 ConstructF̃, the dual ofF, whereF is the electromagnetic tensor given by Eq. (4.153).

ANS. F̃µν = ε0


0 −cBx −cBy −cBz

cBx 0 Ez −Ey

cBy −Ez 0 Ex

cBz Ey −Ex 0

 .

This corresponds to

cB→−E,

E→ cB.

This transformation, sometimes called adual transformation, leaves Maxwell’s equa-
tions in vacuum(ρ = 0) invariant.

4.6.9 Because the quadruple contraction of a fourth-rank pseudotensor and two second-rank
tensorsεµλνσFµλF νσ is clearly a pseudoscalar, evaluate it.

ANS.−8ε2
0cB ·E.

4.6.10 (a) If an electromagnetic field is purely electric (or purely magnetic) in one particular
Lorentz frame, show thatE andB will be orthogonal in other Lorentz reference
systems.

(b) Conversely, ifE andB are orthogonal in one particular Lorentz frame, there exists
a Lorentz reference system in whichE (or B) vanishes. Find that reference system.
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4.6.11 Show thatc2B2−E2 is a Lorentz scalar.

4.6.12 Since(dx0, dx1, dx2, dx3) is a four-vector,dxµ dxµ is a scalar. Evaluate this scalar
for a moving particle in two different coordinate systems: (a) a coordinate system fixed
relative to you (lab system), and (b) a coordinate system moving with a moving particle
(velocity v relative to you). With the time increment labeleddτ in the particle system
anddt in the lab system, show that

dτ = dt

√
1− v2/c2.

τ is the proper time of the particle, a Lorentz invariant quantity.

4.6.13 Expand the scalar expression

− 1

4ε0
FµνF

µν + 1

ε0
jµA

µ

in terms of the fields and potentials. The resulting expression is the Lagrangian density
used in Exercise 17.5.1.

4.6.14 Show that Eq. (4.157) may be written

εαβγ δ
∂Fαβ

∂xγ
= 0.

4.7 DISCRETE GROUPS

Here we consider groups with a finite number of elements. In physics, groups usually ap-
pear as a set of operations that leave a system unchanged, invariant. This is an expression
of symmetry. Indeed, a symmetry may be defined as the invariance of the Hamiltonian of a
system under a group of transformations. Symmetry in this sense is important in classical
mechanics, but it becomes even more important and more profound in quantum mechan-
ics. In this section we investigate the symmetry properties of sets of objects (atoms in a
molecule or crystal). This provides additional illustrations of the group concepts of Sec-
tion 4.1 and leads directly to dihedral groups. The dihedral groups in turn open up the study
of the 32 crystallographic point groups and 230 space groups that are of such importance
in crystallography and solid-state physics. It might be noted that it was through the study
of crystal symmetries that the concepts of symmetry and group theory entered physics. In
physics, the abstract group conditions often take on direct physical meaning in terms of
transformations of vectors, spinors, and tensors.

As a simple, but not trivial, example of a finite group, consider the set 1, a, b, c that
combine according to the group multiplication table24 (see Fig. 4.10). Clearly, the four
conditions of the definition of “group” are satisfied. The elementsa, b, c, and 1 are ab-
stract mathematical entities, completely unrestricted except for the multiplication table of
Fig. 4.10.

Now, for a specific representation of these group elements, let

1→ 1, a→ i, b→−1, c→−i, (4.164)

24The order of the factors is row–column:ab= c in the indicated previous example.
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FIGURE 4.10 Group
multiplication table.

combining by ordinary multiplication. Again, the four group conditions are satisfied, and
these four elements form a group. We label this groupC4. Since the multiplication of
the group elements is commutative, the group is labeledcommutative, or abelian. Our
group is also acyclic group, in that the elements may be written as successive powers of
one element, in this casein, n = 0,1,2,3. Note that in writing out Eq. (4.164) we have
selected a specific faithful representation for this group of four objects,C4.

We recognize that the group elements 1, i,−1,−i may be interpreted as successive 90◦
rotations in the complex plane. Then, from Eq. (3.74), we create the set of four 2×2 matri-
ces (replacingϕ by−ϕ in Eq. (3.74) to rotate a vector rather than rotate the coordinates):

R(ϕ)=
(

cosϕ −sinϕ

sinϕ cosϕ

)
,

and forϕ = 0,π/2,π , and 3π/2 we have

1=
(

1 0

0 1

)
A=

(
0 −1

1 0

)

B=
(−1 0

0 −1

)
C=

(
0 1

−1 0

)
.

(4.165)

This set of four matrices forms a group, with the law of combination being matrix multipli-
cation. Here is a second faithful representation. By matrix multiplication one verifies that
this representation is also abelian and cyclic. Clearly, there is a one-to-one correspondence
of the two representations

1↔ 1↔ 1 a↔ i↔ A b↔−1↔ B c↔−i↔C. (4.166)

In the groupC4 the two representations(1, i,−1,−i) and(1,A,B,C) are isomorphic.
In contrast to this, there is no such correspondence between either of these representa-

tions of groupC4 and another group of four objects, the vierergruppe (Exercise 3.2.7). The

Table 4.3

1 V1 V2 V3

1 1 V1 V2 V3
V1 V1 1 V3 V2
V2 V2 V3 1 V1
V3 V3 V2 V1 1
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vierergruppe has the multiplication table shown in Table 4.3. Confirming the lack of cor-
respondence between the group represented by(1, i,−1,−i) or the matrices(1,A,B,C)

of Eq. (4.165), note that although the vierergruppe is abelian, it is not cyclic. The cyclic
groupC4 and the vierergruppe are not isomorphic.

Classes and Character

Consider a group elementx transformed into a group elementy by a similarity transform
with respect togi , an element of the group

gixg
−1
i = y. (4.167)

The group elementy is conjugate to x. A class is a set of mutually conjugate group ele-
ments. In general, this set of elements forming a class does not satisfy the group postulates
and is not a group. Indeed, the unit element 1, which is always in a class by itself, is the
only class that is also a subgroup. All members of a given class are equivalent, in the sense
that any one element is a similarity transform of any other element. Clearly, if a group is
abelian, every element is a class by itself. We find that

1. Every element of the original group belongs to one and only one class.
2. The number of elements in a class is a factor of the order of the group.

We get a possible physical interpretation of the concept of class by noting thaty is a
similarity transform ofx. If gi represents a rotation of the coordinate system, theny is the
same operation asx but relative to the new, related coordinates.

In Section 3.3 we saw that a real matrix transforms under rotation of the coordinates
by an orthogonal similarity transformation. Depending on the choice of reference frame,
essentially the same matrix may take on an infinity of different forms. Likewise, our group
representations may be put in an infinity of different forms by using unitary transforma-
tions. But each such transformed representation is isomorphic with the original. From Ex-
ercise 3.3.9 the trace of each element (each matrix of our representation) is invariant under
unitary transformations. Just because it is invariant, the trace (relabeled thecharacter) as-
sumes a role of some importance in group theory, particularly in applications to solid-state
physics. Clearly, all members of a given class (in a given representation) have the same
character. Elements of different classes may have the same character, but elements with
different characters cannot be in the same class.

The concept of class is important (1) because of the trace or character and (2) because
the number of nonequivalent irreducible representations of a group is equal to the
number of classes.

Subgroups and Cosets

Frequently a subset of the group elements (including the unit elementI ) will by itself
satisfy the four group requirements and therefore is a group. Such a subset is called asub-
group. Every group has two trivial subgroups: the unit element alone and the group itself.
The elements 1 andb of the four-element groupC4 discussed earlier form a nontrivial
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subgroup. In Section 4.1 we considerSO(3), the (continuous) group of all rotations in or-
dinary space. The rotations about any single axis form a subgroup ofSO(3). Numerous
other examples of subgroups appear in the following sections.

Consider a subgroupH with elementshi and a group elementx not inH . Thenxhi and
hix are not in subgroupH . The sets generated by

xhi, i = 1,2, . . . and hix, i = 1,2, . . .

are calledcosets, respectively the left and right cosets of subgroupH with respect tox. It
can be shown (assume the contrary and prove a contradiction) that the coset of a subgroup
has the same number of distinct elements as the subgroup. Extending this result we may
express the original groupG as the sum ofH and cosets:

G=H + x1H + x2H + · · · .
Then the order of any subgroup is a divisor of the order of the group. It is this result
that makes the concept of coset significant. In the next section the six-element groupD3

(order 6) has subgroups of order 1, 2, and 3.D3 cannot (and does not) have subgroups of
order 4 or 5.

The similarity transform of a subgroupH by a fixed group elementx not in H,xHx−1,
yields a subgroup — Exercise 4.7.8. If this new subgroup is identical withH for all x, that
is,

xHx−1=H,

thenH is called aninvariant, normal, or self-conjugate subgroup. Such subgroups are
involved in the analysis of multiplets of atomic and nuclear spectra and the particles dis-
cussed in Section 4.2. All subgroups of a commutative (abelian) group are automatically
invariant.

Two Objects — Twofold Symmetry Axis

Consider first the two-dimensional system of two identical atoms in thexy-plane at (1,
0) and (−1, 0), Fig. 4.11. What rotations25 can be carried out (keeping both atoms in the
xy-plane) that will leave this system invariant? The first candidate is, of course, the unit
operator 1. A rotation ofπ radians about thez-axis completes the list. So we have a rather
uninteresting group of two members (1,−1). Thez-axis is labeled a twofold symmetry
axis — corresponding to the two rotation angles, 0 andπ , that leave the system invariant.

Our system becomes more interesting in three dimensions. Now imagine a molecule
(or part of a crystal) with atoms of elementX at±a on thex-axis, atoms of elementY
at±b on they-axis, and atoms of elementZ at±c on thez-axis, as show in Fig. 4.12.
Clearly, each axis is now a twofold symmetry axis. UsingRx(π) to designate a rotation of
π radians about thex-axis, we may

25Here we deliberately exclude reflections and inversions. They must be brought in to develop the full set of 32 crystallographic
point groups.
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FIGURE 4.11 Diatomic molecules H2, N2, O2,
Cl2.

FIGURE 4.12 D2 symmetry.

set up a matrix representation of the rotations as in Section 3.3:

Rx(π) =
1 0 0

0 −1 0

0 0 −1

 , Ry(π) =
−1 0 0

0 1 0

0 0 −1

 ,

Rz(π) =
−1 0 0

0 −1 0

0 0 1

 , 1 =
1 0 0

0 1 0

0 0 1

 .

(4.168)

These four elements[1,Rx(π),Ry(π),Rz(π)] form an abelian group, with the group mul-
tiplication table shown in Table 4.4.

The products shown in Table 4.4 can be obtained in either of two distinct ways:
(1) We may analyze the operations themselves — a rotation ofπ about thex-axis fol-
lowed by a rotation ofπ about they-axis is equivalent to a rotation ofπ about thez-axis:
Ry(π)Rx(π)= Rz(π). (2) Alternatively, once a faithful representation is established, we
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Table 4.4

1 Rx(π) Ry(π) Rz(π)

1 1 Rx Ry Rx

Rx(π) Rx 1 Rz Ry

Ry(π) Ry Rz 1 Rx

Rz(π) Rz Ry Rx 1

can obtain the products by matrix multiplication. This is where the power of mathematics
is shown — when the system is too complex for a direct physical interpretation.

Comparison with Exercises 3.2.7, 4.7.2, and 4.7.3 shows that this group is the vier-
ergruppe. The matrices of Eq. (4.168) are isomorphic with those of Exercise 3.2.7. Also,
they are reducible, being diagonal. The subgroups are(1,Rx), (1,Ry), and(1,Rz). They
are invariant. It should be noted that a rotation ofπ about they-axis and a rotation ofπ
about thez-axis is equivalent to a rotation ofπ about thex-axis: Rz(π)Ry(π) = Rx(π).
In symmetry terms, ify andz are twofold symmetry axes,x is automatically a twofold
symmetry axis.

This symmetry group,26 the vierergruppe, is often labeledD2, theD signifying a dihe-
dral group and the subscript 2 signifying a twofold symmetry axis (and no higher symmetry
axis).

Three Objects — Threefold Symmetry Axis

Consider now three identical atoms at the vertices of an equilateral triangle, Fig. 4.13.
Rotations of thetriangle of 0,2π/3, and 4π/3 leave the triangle invariant. In matrix form,
we have27

1 = Rz(0)=
(

1 0

0 1

)

A = Rz(2π/3)=
(

cos2π/3 − sin2π/3

sin2π/3 cos2π/3

)
=
(−1/2 −√3/2√

3/2 −1/2

)

B = Rz(4π/3)=
( −1/2

√
3/2

−√3/2 −1/2

)
. (4.169)

Thez-axis is a threefold symmetry axis.(1,A,B) form a cyclic group, a subgroup of the
complete six-element group that follows.

In the xy-plane there are three additional axes of symmetry — each atom (vertex) and
the geometric center defining an axis. Each of these is a twofold symmetry axis. These rota-
tions may most easily be described within our two-dimensional framework by introducing

26A symmetry group is a group of symmetry-preserving operations, that is, rotations, reflections, and inversions. Asymmetric
group is the group of permutations ofn distinct objects — of ordern!.
27Note that here we are rotating thetriangle counterclockwise relative to fixed coordinates.
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FIGURE 4.13 Symmetry operations on an
equilateral triangle.

reflections. The rotation ofπ about theC- (or y-) axis, which means the interchanging of
(structureless) atomsa andc, is just a reflection of thex-axis:

C=RC(π)=
(−1 0

0 1

)
. (4.170)

We may replace the rotation about theD-axis by a rotation of 4π/3 (about ourz-axis)
followed by a reflection of thex-axis(x→−x) (Fig. 4.14):

D = RD(π)=CB

=
(−1 0

0 1

)( −1/2
√

3/2

−√3/2 − 1/2

)

=
(

1/2 −√3/2

−√3/2 − 1/2

)
. (4.171)

FIGURE 4.14 The triangle on the right is the triangle on
the left rotated 180◦ about theD-axis.D=CB.
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In a similar manner, the rotation ofπ about theE-axis, interchanginga andb, is replaced
by a rotation of 2π/3(A) and then a reflection28 of thex-axis:

E = RE(π)=CA

=
(−1 0

0 1

)(−1/2 −√3/2√
3/2 − 1/2

)

=
(

1/2
√

3/2√
3/2 − 1/2

)
. (4.172)

The complete group multiplication table is

1 A B C D E
1 1 A B C D E
A A B 1 D E C
B B 1 A E C D
C C E D 1 B A
D D C E A 1 B
E E D C B A 1

Notice that each element of the group appears only once in each row and in each column, as
required by the rearrangement theorem, Exercise 4.7.4. Also, from the multiplication table
the group is not abelian. We have constructed a six-element group and a 2× 2 irreducible
matrix representation of it. The only other distinct six-element group is the cyclic group
[1,R,R2,R3,R4,R5], with

R = e2πi/6 or R= e−πiσ2/3=
(

1/2 −√3/2√
3/2 1/2

)
. (4.173)

Our group[1,A,B,C,D,E] is labeledD3 in crystallography, the dihedral group with a
threefold axis of symmetry. The three axes (C,D, andE) in the xy-plane automatically
become twofold symmetry axes. As a consequence,(1,C), (1,D), and (1,E) all form
two-element subgroups. None of these two-element subgroups ofD3 is invariant.

A general and most important result for finite groups ofh elements is that∑
i

n2
i = h, (4.174)

whereni is the dimension of the matrices of theith irreducible representation. This equal-
ity, sometimes called thedimensionality theorem, is very useful in establishing the irre-
ducible representations of a group. Here forD3 we have 12 + 12 + 22 = 6 for our three
representations. No other irreducible representations of this symmetry group of three ob-
jects exist. (The other representations are the identity and±1, depending upon whether a
reflection was involved.)

28Note that, as a consequence of these reflections, det(C) = det(D) = det(E) = −1. The rotationsA andB, of course, have a
determinant of+1.
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FIGURE 4.15 Ruthenocene.

Dihedral Groups, Dn

A dihedral groupDn with ann-fold symmetry axis impliesn axes with angular separation
of 2π/n radians,n is a positive integer, but otherwise unrestricted. If we apply the symme-
try arguments tocrystal lattices, thenn is limited to 1, 2, 3, 4, and 6. The requirement of
invariance of the crystal lattice under translations in the plane perpendicular to then-fold
axis excludesn = 5,7, and higher values. Try to cover a plane completely with identical
regular pentagons and with no overlapping.29 For individual molecules, this constraint does
not exist, although the examples withn > 6 are rare.n= 5 is a real possibility. As an ex-
ample, the symmetry group for ruthenocene,(C5H5)2Ru, illustrated in Fig. 4.15, isD5.30

Crystallographic Point and Space Groups

The dihedral groups just considered are examples of the crystallographic point groups.
A point group is composed of combinations of rotations and reflections (including inver-
sions) that will leave some crystal lattice unchanged. Limiting the operations to rotations
and reflections (including inversions) means that one point — the origin — remainsfixed,
hence the termpoint group. Including the cyclic groups, two cubic groups (tetrahedron
and octahedron symmetries), and the improper forms (involving reflections), we come to a
total of 32 crystallographic point groups.

29ForD6 imagine a plane covered with regular hexagons and the axis of rotation through the geometric center of one of them.
30Actually the full technical label isD5h, with h indicating invariance under areflection of the fivefold axis.
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If, to the rotation and reflection operations that produced the point groups, we add the
possibility of translations and still demand that some crystal lattice remain invariant, we
come to the space groups. There are 230 distinct space groups, a number that is appalling
except, possibly, to specialists in the field. For details (which can cover hundreds of pages)
see the Additional Readings.

Exercises

4.7.1 Show that the matrices1,A,B, andC of Eq. (4.165) are reducible. Reduce them.
Note. This means transformingA andC to diagonal form (by the same unitary transfor-
mation).
Hint. A andC are anti-Hermitian. Their eigenvectors will be orthogonal.

4.7.2 Possible operations on a crystal lattice includeAπ (rotation byπ ), m (reflection), andi
(inversion). These three operations combine as

A2
π = m2= i2= 1,

Aπ ·m = i, m · i =Aπ, and i ·Aπ =m.

Show that the group(1,Aπ ,m, i) is isomorphic with the vierergruppe.

4.7.3 Four possible operations in thexy-plane are:

1. no change

{
x→ x

y→ y

2. inversion

{
x→−x
y→−y

3. reflection

{
x→−x
y→ y

4. reflection

{
x→ x

y→−y.

(a) Show that these four operations form a group.
(b) Show that this group is isomorphic with the vierergruppe.
(c) Set up a 2× 2 matrix representation.

4.7.4 Rearrangement theorem: Given a group of n distinct elements(I, a, b, c, . . . , n), show
that the set of products(aI, a2, ab, ac . . . an) reproduces then distinct elements in a
new order.

4.7.5 Using the 2× 2 matrix representation of Exercise 3.2.7 for the vierergruppe,

(a) Show that there are four classes, each with one element.
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(b) Calculate the character (trace) of each class. Note that two different classes may
have the same character.

(c) Show that there are three two-element subgroups. (The unit element by itself al-
ways forms a subgroup.)

(d) For any one of the two-element subgroups show that the subgroup and a single
coset reproduce the original vierergruppe.

Note that subgroups, classes, and cosets are entirely different.

4.7.6 Using the 2× 2 matrix representation, Eq. (4.165), ofC4,

(a) Show that there are four classes, each with one element.
(b) Calculate the character (trace) of each class.
(c) Show that there is one two-element subgroup.
(d) Show that the subgroup and a single coset reproduce the original group.

4.7.7 Prove that the number of distinct elements in a coset of a subgroup is the same as the
number of elements in the subgroup.

4.7.8 A subgroupH has elementshi . Let x be a fixed element of the original groupG and
not a member ofH . The transform

xhix
−1, i = 1,2, . . .

generates aconjugate subgroup xHx−1. Show that this conjugate subgroup satisfies
each of the four group postulates and therefore is a group.

4.7.9 (a) A particular group is abelian. A second group is created by replacinggi by g−1
i

for each element in the original group. Show that the two groups are isomorphic.
Note. This means showing that ifaibi = ci , thena−1

i b−1
i = c−1

i .
(b) Continuing part (a), if the two groups are isomorphic, show that each must be

abelian.

4.7.10 (a) Once you have a matrix representation of any group, a one-dimensional represen-
tation can be obtained by taking the determinants of the matrices. Show that the
multiplicative relations are preserved in this determinant representation.

(b) Use determinants to obtain a one-dimensional representative ofD3.

4.7.11 Explain how the relation ∑
i

n2
i = h

applies to the vierergruppe(h= 4) and to the dihedral groupD3 with h= 6.

4.7.12 Show that the subgroup(1,A,B) of D3 is an invariant subgroup.

4.7.13 The groupD3 may be discussed as apermutation group of three objects. MatrixB, for
instance, rotates vertexa (originally in location 1) to the position formerly occupied byc
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(location 3). Vertexb moves from location 2 to location 1, and so on. As a permutation
(abc)→ (bca). In three dimensions0 1 0

0 0 1

1 0 0


a

b

c

=
b

c

a

 .

(a) Develop analogous 3× 3 representations for the other elements ofD3.
(b) Reduce your 3× 3 representation to the 2× 2 representation of this section.

(This 3× 3 representation must be reducible or Eq. (4.174) would be violated.)
Note. The actual reduction of a reducible representation may be awkward. It is often
easier to develop directly a new representation of the required dimension.

4.7.14 (a) The permutation group of four objectsP4 has 4! = 24 elements. Treating the four
elements of the cyclic groupC4 as permutations, set up a 4× 4 matrix representa-
tion of C4. C4 that becomes a subgroup ofP4.

(b) How do you know that this 4× 4 matrix representation ofC4 must be reducible?
Note. C4 is abelian and every abelian group ofh objects has onlyh one-dimensional
irreducible representations.

4.7.15 (a) The objects(abcd) are permuted to(dacb). Write out a 4×4 matrix representation
of this one permutation.

(b) Is the permutation(abdc)→ (dacb) odd or even?
(c) Is this permutation a possible member of theD4 group? Why or why not?

4.7.16 The elements of the dihedral groupDn may be written in the form

SλRµ
z (2π/n), λ= 0,1

µ= 0,1, . . . , n− 1,

whereRz(2π/n) represents a rotation of 2π/n about then-fold symmetry axis, whereas
S represents a rotation ofπ about an axis through the center of the regular polygon and
one of its vertices.
For S= E show that this form may describe the matricesA,B,C, andD of D3.
Note. The elementsRz andS are called the generators of this finite group. Similarly,
i is the generator of the group given by Eq. (4.164).

4.7.17 Show that the cyclic group ofn objects, Cn, may be represented byrm,m =
0,1,2, . . . , n− 1. Herer is a generator given by

r = exp(2πis/n).

The parameters takes on the valuess = 1,2,3, . . . , n, each value ofs yielding a differ-
ent one-dimensional (irreducible) representation ofCn.

4.7.18 Develop the irreducible 2×2 matrix representation of the group of operations (rotations
and reflections) that transform a square into itself. Give the group multiplication table.
Note. This is the symmetry group of a square and also the dihedral groupD4. (See
Fig. 4.16.)
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FIGURE 4.16
Square.

FIGURE 4.17 Hexagon.

4.7.19 The permutation group of four objects contains 4! = 24 elements. From Exercise 4.7.18,
D4, the symmetry group for a square, has far fewer than 24 elements. Explain the rela-
tion betweenD4 and the permutation group of four objects.

4.7.20 A plane is covered with regular hexagons, as shown in Fig. 4.17.

(a) Determine the dihedral symmetry of an axis perpendicular to the plane through the
common vertex of three hexagons(A). That is, if the axis hasn-fold symmetry,
show (with careful explanation) whatn is. Write out the 2× 2 matrix describing
the minimum (nonzero) positive rotation of the array of hexagons that is a member
of yourDn group.

(b) Repeat part (a) for an axis perpendicular to the plane through the geometric center
of one hexagon(B).

4.7.21 In a simple cubic crystal, we might have identical atoms atr = (la,ma,na), with l,m,
andn taking on all integral values.

(a) Show that each Cartesian axis is a fourfold symmetry axis.
(b) The cubic group will consist of all operations (rotations, reflections, inversion) that

leave the simple cubic crystal invariant. From a consideration of the permutation
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FIGURE 4.18
Multiplication table.

of the positive and negative coordinate axes, predict how many elements this cubic
group will contain.

4.7.22 (a) From theD3 multiplication table of Fig. 4.18 construct a similarity transform table
showingxyx−1, wherex andy each range over all six elements ofD3:

(b) Divide the elements ofD3 into classes. Using the 2× 2 matrix representation of
Eqs. (4.169)–(4.172) note the trace (character) of each class.

4.8 DIFFERENTIAL FORMS

In Chapters 1 and 2 we adopted the view that, inn dimensions, a vector is ann-tuple of real
numbers and that its components transform properly under changes of the coordinates. In
this section we start from the alternative view, in which a vector is thought of as a directed
line segment, an arrow. The point of the idea is this: Although the concept of a vector as
a line segment does not generalize to curved space–time (manifolds of differential geom-
etry), except by working in the flat tangent space requiring embedding in auxiliary extra
dimensions, Elie Cartan’s differential forms are natural in curved space–time and a very
powerful tool. Calculus can be based on differential forms, as Edwards has shown by his
classic textbook (see the Additional Readings). Cartan’s calculus leads to a remarkable
unification of concepts and theorems of vector analysis that is worth pursuing. In differ-
ential geometry and advanced analysis (on manifolds) the use of differential forms is now
widespread.

Cartan’s notion of vector is based on the one-to-one correspondence between the linear
spaces of displacement vectors and directional differential operators (components of the
gradient form a basis). A crucial advantage of the latter is that they can be generalized to
curved space–time. Moreover, describing vectors in terms of directional derivatives along
curves uniquely specifies the vector at a given point without the need to invoke coordinates.
Ultimately, since coordinates are needed to specify points, the Cartan formalism, though
an elegant mathematical tool for the efficient derivation of theorems on tensor analysis, has
in principle no advantage over the component formalism.

1-Forms

We definedx, dy, dz in three-dimensional Euclidean space as functions assigning to a
directed line segmentPQ from the pointP to the pointQ the corresponding change in
x, y, z. The symboldx represents “oriented length of the projection of a curve on the
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x-axis,” etc. Note thatdx, dy, dz can be, but need not be, infinitesimally small, andthey
must not be confused with the ordinary differentials that we associate with integrals
and differential quotients. A function of the type

Adx +B dy +C dz, A,B,C real numbers (4.175)

is defined as aconstant 1-form.

Example 4.8.1 CONSTANT 1-FORM

For a constant forceF = (A,B,C), the work done along the displacement fromP =
(3,2,1) to Q= (4,5,6) is therefore given by

W =A(4− 3)+B(5− 2)+C(6− 1)=A+ 3B + 5C.

If F is a force field, then its rectangular componentsA(x,y, z),B(x, y, z),C(x, y, z)

will depend on the location and the (nonconstant) 1-form dW = F · dr corresponds to
the concept of work done against the force fieldF(r) alongdr on a space curve. A finite
amount of work

W =
∫
C

[
A(x,y, z) dx +B(x, y, z) dy +C(x, y, z) dz

]
(4.176)

involves the familiar line integral along an oriented curveC, where the 1-formdW de-
scribes the amount of work for small displacements (segments on the pathC). In this light,
the integrandf (x)dx of an integral

∫ b

a
f (x) dx consisting of the functionf and of the

measuredx as the oriented length is here considered to be a 1-form. The value of the
integral is obtained from the ordinary line integral. �

2-Forms

Consider a unit flow of mass in thez-direction, that is, a flow in the direction of increasing
z so that a unit mass crosses a unit square of thexy-plane in unit time. The orientation
symbolized by the sequence of points in Fig. 4.19,

(0,0,0)→ (1,0,0)→ (1,1,0)→ (0,1,0)→ (0,0,0),

will be calledcounterclockwise, as usual. A unit flow in thez-direction is defined by the
functiondx dy31 assigning to oriented rectangles in space the oriented area of their projec-
tions on thexy-plane. Similarly, a unit flow in thex-direction is described bydy dz and a
unit flow in they-direction bydzdx. The reverse order,dzdx, is dictated by the orienta-
tion convention, anddzdx =−dx dz by definition. This antisymmetry is consistent with
the cross product of two vectors representing oriented areas in Euclidean space. This no-
tion generalizes to polygons and curved differentiable surfaces approximated by polygons
and volumes.

31Many authors denote this wedge product asdx ∧ dy with dy ∧ dx = −dx ∧ dy. Note that the productdx dy = dy dx for
ordinary differentials.
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FIGURE 4.19
Counterclockwise-oriented

rectangle.

Example 4.8.2 MAGNETIC FLUX ACROSS AN ORIENTED SURFACE

If B= (A,B,C) is a constant magnetic induction, then the constant2-form

Ady dz+B dzdx +C dx dy

describes the magnetic flux across an oriented rectangle. IfB is a magnetic induction field
varying across a surfaceS, then the flux

�=
∫
S

[
Bx(r) dy dz+By(r) dz dx +Bz(r) dx dy

]
(4.177)

across the oriented surfaceS involves the familiar (Riemann) integration over approximat-
ing small oriented rectangles from whichS is pieced together. �

The definition of
∫
ω relies on decomposingω=∑i ωi , where the differential formsωi

are each nonzero only in a small patch of the surfaceS that covers the surface. Then it can
be shown that

∑
i

∫
ωi converges, as the patches become smaller and more numerous, to

the limit
∫
ω, which is independent of these decompositions. For more details and proofs,

we refer the reader to Edwards in the Additional Readings.

3-Forms

A 3-form dx dy dz represents an oriented volume. For example, the determinant of three
vectors in Euclidean space changes sign if we reverse the order of two vectors. The
determinant measures the oriented volume spanned by the three vectors. In particular,∫
V
ρ(x, y, z) dx dy dz represents the total charge inside the volumeV if ρ is the charge

density. Higher-dimensional differential forms in higher-dimensional spaces are defined
similarly and are calledk-forms, withk = 0,1,2, . . . .

If a 3-form

ω=A(x1, x2, x3) dx1dx2dx3=A′(x′1, x′2, x′3) dx′1dx′2dx′3 (4.178)
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on a 3-dimensional manifold is expressed in terms of new coordinates, then there is a one-
to-one, differentiable mapx′i = x′i (x1, x2, x3) between these coordinates with Jacobian

J = ∂(x′1, x′2, x′3)
∂(x1, x2, x3)

= 1,

andA=A′J =A′ so that∫
V

ω=
∫
V

Adx1dx2dx3=
∫
V ′

A′ dx′1dx′2dx′3. (4.179)

This statement spells out the parameter independence of integrals over differential forms,
since parameterizations are essentially arbitrary. The rules governing integration of differ-
ential forms are defined on manifolds. These are continuous if we can move continuously
(actually we assume them differentiable) from point to point, oriented if the orientation of
curves generalizes to surfaces and volumes up to the dimension of the whole manifold. The
rules on differential forms are:

• If ω= aω1+ a′ω′1, with a, a′ real numbers, then
∫
S
ω= a

∫
S
ω1+ a′

∫
S
ω′1, whereS is

a compact, oriented, continuous manifold with boundary.

• If the orientation is reversed, then the integral
∫
S
ω changes sign.

Exterior Derivative

We now introduce theexterior derivative d of a functionf , a 0-form:

df ≡ ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz= ∂f

∂xi
dxi, (4.180)

generating a 1-formω1 = df , the differential off (or exterior derivative), the gradient
in standard vector analysis. Upon summing over the coordinates, we have used and will
continue to use Einstein’s summation convention. Applying the exterior derivatived to a
1-form we define

d(Adx +B dy +C dz)= dAdx + dB dy + dC dz (4.181)

with functionsA,B,C. This definition in conjunction withdf as just given ties vectors
to differential operators∂i = ∂

∂xi
. Similarly, we extendd to k-forms. However, applying

d twice gives zero,ddf = 0, because

d(df ) = d
∂f

∂x
dx + d

∂f

∂y
dy

=
(
∂2f

∂x2
dx + ∂2f

∂x ∂y
dy

)
dx +

(
∂2f

∂y∂x
dx + ∂2f

∂y2
dy

)
dy

=
(

∂2f

∂y ∂x
− ∂2f

∂x ∂y

)
dx dy = 0. (4.182)

This follows from the fact that in mixed partial derivatives their order does not matter
provided all functions are sufficiently differentiable. Similarly we can showddω1= 0 for
a 1-formω1, etc.
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The rules governing differential forms, withωk denoting ak-form, that we have used so
far are

• dx dx = 0= dy dy = dzdz, dx2
i = 0;

• dx dy =−dy dx, dxi dxj =−dxj dxi , i 
= j ,

• dx1dx2 · · ·dxk is totally antisymmetric in thedxi , i = 1,2, . . . , k.

• df = ∂f
∂xi

dxi;
• d(ωk +�k)= dωk + d�k , linearity;

• ddωk = 0.

Now we apply the exterior derivatived to products of differential forms, starting with
functions (0-forms). We have

d(fg)= ∂(fg)

∂xi
dxi =

(
f
∂g

∂xi
+ ∂f

∂xi
g

)
dxi = f dg+ dfg. (4.183)

If ω1= ∂g
∂xi

dxi is a 1-form andf is a function, then

d(fω1) = d

(
f
∂g

∂xi
dxi

)
= d

(
f
∂g

∂xi

)
dxi

= ∂
(
f

∂g
∂xi

)
∂xj

dxj dxi =
(

∂f

∂xj

∂g

∂xi
+ f

∂2g

∂xi ∂xj

)
dxj dxi

= dfω1+ f dω1, (4.184)

as expected. But ifω′1= ∂f
∂xj

dxj is another 1-form, then

d(ω1ω
′
1) = d

(
∂g

∂xi
dxi

∂f

∂xj
dxj

)
= d

(
∂g

∂xi

∂f

∂xj

)
dxi dxj

=
∂
(

∂g
∂xi

∂f
∂xj

)
∂xk

dxk dxi dxj

= ∂2g

∂xi∂xk
dxk dxi

∂f

∂xj
dxj − ∂g

∂xi
dxi

∂2f

∂xj ∂xk
dxk dxj

= dω1ω
′
1−ω1dω

′
1. (4.185)

This proof is valid for more general 1-formsω = fi dxi with functionsfi . In general,
therefore, we define fork-forms:

d(ωkω
′
k)= (dωk)ω

′
k + (−1)kωk(dω

′
k). (4.186)

In general, the exterior derivative of ak-form is a(k + 1)-form.



4.8 Differential Forms 309

Example 4.8.3 POTENTIAL ENERGY

As an application in two dimensions (for simplicity), consider the potentialV (r), a 0-form,
anddV , its exterior derivative. IntegratingV along an oriented pathC from r1 to r2 gives

V (r2)− V (r1)=
∫
C

dV =
∫
C

(
∂V

∂x
dx + ∂V

∂y
dy

)
=
∫
C

∇V · dr, (4.187)

where the last integral is the standard formula for the potential energy difference that forms
part of the energy conservation theorem. The path and parameterization independence are
manifest in this special case. �

Pullbacks

If a linear mapL2 from theuv-plane to thexy-plane has the form

x = au+ bv+ c, y = eu+ f v+ g, (4.188)

oriented polygons in theuv-plane are mapped onto similar polygons in thexy-plane, pro-
vided the determinantaf − be of the mapL2 is nonzero. The 2-form

dx dy = (a du+ b dv)(e du+ f dv)= (af − be)dudv (4.189)

can be pulled back from thexy- to theuv-plane. That is to say, an integral over a simply
connected surfaceS becomes∫

L2(S)

dx dy = (af − be)

∫
S

dudv, (4.190)

and(af − be)dudv is the pullback ofdx dy, opposite to the direction of the mapL2 from
theuv-plane to thexy-plane. Of course, the determinantaf − be of the mapL2 is simply
the Jacobian, generated without effort by the differential forms in Eq. (4.189).

Similarly, a linear mapL3 from theu1u2u3-space to thex1x2x3-space

xi = aijuj + bi, i = 1,2,3, (4.191)

automatically generates its Jacobian from the 3-form

dx1dx2dx3 =
( 3∑

j=1

a1j duj

)( 3∑
j=1

a2j duj

)( 3∑
j=1

a3j duj

)
= (a11a22a33− a12a21a33± · · · )du1du2du3

= det

a11 a12 a13
a21 a22 a23
a31 a32 a33

du1du2du3. (4.192)

Thus, differential forms generate the rules governing determinants.
Given two linear maps in a row, it is straightforward to prove that the pullback under

a composed map is the pullback of the pullback. This theorem is the differential-forms
analog of matrix multiplication.
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Let us now consider a curveC defined by a parametert in contrast to a curve defined
by an equation. For example, the circle{(cost,sint);0≤ t ≤ 2π} is a parameterization
by t , whereas the circle{(x, y);x2+ y2= 1} is a definition by an equation. Then the line
integral ∫

C

[
A(x,y)dx +B(x, y) dy

]= ∫ tf

ti

[
A
dx

dt
+B

dy

dt

]
dt (4.193)

for continuous functionsA,B,dx/dt, dy/dt becomes a one-dimensional integral over the
oriented intervalti ≤ t ≤ tf . Clearly, the 1-form[Adx

dt
+B

dy
dt
]dt on thet-line is obtained

from the 1-formAdx + B dy on thexy-plane via the mapx = x(t), y = y(t) from the
t-line to the curveC in thexy-plane. The 1-form[Adx

dt
+B

dy
dt
]dt is called the pullback of

the 1-formAdx + B dy under the mapx = x(t), y = y(t). Using pullbacks we can show
that integrals over 1-forms are independent of the parameterization of the path.

In this sense, the differential quotientdy
dx

can be considered as the coefficient ofdx in the
pullback ofdy under the functiony = f (x), or dy = f ′(x) dx. This concept of pullback
readily generalizes to maps in three or more dimensions and tok-forms with k > 1. In
particular, the chain rule can be seen to be a pullback: If

yi = fi(x1, x2, . . . , xn), i = 1,2, . . . , l and

zj = gj (y1, y2, . . . , yl), j = 1,2, . . . ,m (4.194)

are differentiable maps fromRn→ Rl andRl → Rm, then the composed mapRn→ Rm

is differentiable and the pullback of anyk-form under the composed map is equal to the
pullback of the pullback. This theorem is useful for establishing that integrals ofk-forms
are parameter independent.

Similarly, we define the differentialdf as the pullback of the 1-formdz under the func-
tion z= f (x, y):

dz= df = ∂f

∂x
dx + ∂f

∂y
dy. (4.195)

Example 4.8.4 STOKES’ THEOREM

As another application let us first sketch the standard derivation of the simplest version
of Stokes’ theorem for a rectangleS = [a ≤ x ≤ b, c ≤ y ≤ d] oriented counterclockwise,
with ∂S its boundary∫

∂S

(Adx +B dy) =
∫ b

a

A(x, c) dx +
∫ d

c

B(b, y) dy +
∫ a

b

A(x, d) dx +
∫ c

d

B(a, y) dy

=
∫ d

c

[
B(b, y)−B(a, y)

]
dy −

∫ b

a

[
A(x,d)−A(x, c)

]
dx

=
∫ d

c

∫ b

a

∂B

∂x
dx dy −

∫ b

a

∫ d

c

∂A

∂y
dy dx

=
∫
S

(
∂B

∂x
− ∂A

∂y

)
dx dy, (4.196)
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which holds for any simply connected surfaceS that can be pieced together by rectangles.
Now we demonstrate the use of differential forms to obtain the same theorem (again in

two dimensions for simplicity):

d(Adx +B dy)= dAdx + dB dy

=
(
∂A

∂x
dx + ∂A

∂y
dy

)
dx +

(
∂B

∂x
dx + ∂B

∂y
dy

)
dy =

(
∂B

∂x
− ∂A

∂y

)
dx dy,

(4.197)

using the rules highlighted earlier. Integrating over a surfaceS and its boundary∂S, re-
spectively, we obtain∫

∂S

(Adx +B dy)=
∫
S

d(Adx +B dy)=
∫
S

(
∂B

∂x
− ∂A

∂y

)
dx dy. (4.198)

Here contributions to the left-hand integral from inner boundaries cancel as usual because
they are oriented in opposite directions on adjacent rectangles. For each oriented inner
rectangle that makes up the simply connected surfaceS we have used,∫

R

ddx =
∫
∂R

dx = 0. (4.199)

Note that the exterior derivative automatically generates thez component of the curl.
In three dimensions, Stokes’ theorem derives from the differential-form identity involv-

ing the vector potentialA and magnetic inductionB=∇×A,

d(Ax dx +Ay dy +Az dz)= dAx dx + dAy dy + dAz dz

=
(
∂Ax

∂x
dx + ∂Ax

∂y
dy + ∂Ax

∂z
dz

)
dx + · · ·

=
(
∂Az

∂y
− ∂Ay

∂z

)
dy dz+

(
∂Ax

∂z
− ∂Az

∂x

)
dzdx +

(
∂Ay

∂x
− ∂Ax

∂y

)
dx dy,

(4.200)

generating all components of the curl in three-dimensional space. This identity is integrated
over each oriented rectangle that makes up the simply connected surfaceS (which has no
holes, that is, where every curve contracts to a point of the surface) and then is summed
over all adjacent rectangles to yield the magnetic flux acrossS,

� =
∫
S

[Bx dy dz+By dzdx +Bz dx dy]

=
∫
∂S

[Ax dx +Ay dy +Az dz], (4.201)

or, in the standard notation of vector analysis (Stokes’ theorem, Chapter 1),∫
S

B · da=
∫
S

(∇×A) · da=
∫
∂S

A · dr. (4.202)

�
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Example 4.8.5 GAUSS’ THEOREM

Consider Gauss’ law, Section 1.14. We integrate the electric densityρ = 1
ε0

∇ · E over
the volume of a single parallelepipedV = [a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ f ] oriented by
dx dy dz (right-handed), the sidex = b of V is oriented bydy dz (counterclockwise, as
seen fromx > b), and so on. Using

Ex(b, y, z)−Ex(a, y, z)=
∫ b

a

∂Ex

∂x
dx, (4.203)

we have, in the notation of differential forms, summing over all adjacent parallelepipeds
that make up the volumeV ,∫

∂V
Ex dy dz=

∫
V

∂Ex

∂x
dx dy dz. (4.204)

Integrating the electric flux (2-form) identity

d(Ex dy dz+Ey dzdx +Ez dx dy)= dEx dy dz+ dEy dzdx + dEz dx dy

=
(
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

)
dx dy dz (4.205)

across the simply connected surface∂V we have Gauss’ theorem,∫
∂V

(Ex dy dz+Ey dzdx +Ez dx dy)=
∫
V

(
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

)
dx dy dz, (4.206)

or, in standard notation of vector analysis,∫
∂V

E · da=
∫
V

∇ ·E d3r = q

ε0
. (4.207)

�
These examples are different cases of a single theorem on differential forms. To explain

why, let us begin with some terminology, a preliminarydefinition of a differentiable
manifold M: It is a collection of points (m-tuples of real numbers) that are smoothly (that
is, differentiably) connected with each other so that the neighborhood of each point looks
like a simply connected piece of anm-dimensional Cartesian space “close enough” around
the point and containing it. Here,m, which stays constant from point to point, is called the
dimension of the manifold. Examples are them-dimensional Euclidean spaceRm and the
m-dimensional sphere

Sm =
[(
x1, . . . , xm+1); m+1∑

i=1

(
xi
)2= 1

]
.

Any surface with sharp edges, corners, or kinks is not a manifold in our sense, that
is, is not differentiable. In differential geometry, all movements, such as translation and
parallel displacement, are local, that is, are defined infinitesimally. If we apply the exterior
derivatived to a functionf (x1, . . . , xm) on M, we generate basic 1-forms:

df = ∂f

∂xi
dxi, (4.208)
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wherexi(P ) are coordinate functions. As before we haved(df )= 0 because

d(df ) = d

(
∂f

∂xi

)
dxi = ∂2f

∂xj ∂xi
dxj dxi

=
∑
j<i

(
∂2f

∂xj ∂xi
− ∂2f

∂xi ∂xj

)
dxj dxi = 0 (4.209)

because the order of derivatives does not matter. Any 1-form is a linear combinationω =∑
i ωi dx

i with functionsωi .

Generalized Stokes’ Theorem on Differential Forms

Letω be a continuous(k−1)-form in x1x2 · · ·xn-space defined everywhere on a compact,
oriented, differentiablek-dimensional manifoldS with boundary∂S in x1x2 · · ·xn-space.
Then ∫

∂S

ω=
∫
S

dω. (4.210)

Here

dω= d(Adx1dx2 · · ·dxk−1+ · · · )= dAdx1dx2 · · ·dxk−1+ · · · . (4.211)

The potential energy in Example 4.8.3 given this theorem for the potentialω= V , a 0-form;
Stokes’ theorem in Example 4.8.4 is this theorem for the vector potential 1-form

∑
i Ai dxi

(for Euclidean spacesdxi = dxi ); and Gauss’ theorem in Example 4.8.5 is Stokes’ theorem
for the electric flux 2-form in three-dimensional Euclidean space.

The method of integration by parts can be generalized to differential forms using
Eq. (4.186): ∫

S

dω1ω2=
∫
∂S

ω1ω2− (−1)k1

∫
S

ω1dω2. (4.212)

This is proved by integrating the identity

d(ω1ω2)= dω1ω2+ (−1)k1ω1dω2, (4.213)

with the integrated term
∫
S
d(ω1ω2)=

∫
∂S

ω1ω2.
Our next goal is to cast Sections 2.10 and 2.11 in the language of differential forms. So

far we have worked in two- or three-dimensional Euclidean space.

Example 4.8.6 RIEMANN MANIFOLD

Let us look at the curved Riemann space–time of Sections 2.10–2.11 and reformulate
some of this tensor analysis in curved spaces in the language of differential forms. Re-
call that dishinguishing between upper and lower indices is important here. The metricgij
in Eq. (2.123) can be written in terms of tangent vectors, Eq. (2.114), as follows:

gij = ∂xl

∂qi

∂xl

∂qj
, (4.214)
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where the sum over the indexl denotes the inner product of the tangent vectors. (Here
we continue to use Einstein’s summation convention over repeated indices. As before, the
metric tensor is used to raise and lower indices.) The key concept of connection involves
the Christoffel symbols, which we address first. The exterior derivative of a tangent vector
can be expanded in terms of the basis of tangent vectors (compare Eq. (2.131a)),

d

(
∂xl

∂qi

)
= �k

ij

∂xl

∂qk
dqj , (4.215)

thus introducing the Christoffel symbols of the second kind. Applyingd to Eq. (4.214) we
obtain

dgij = ∂gij

∂qm
dqm = d

(
∂xl

∂qi

)
∂xl

∂qj
+ ∂xl

∂qi
d

(
∂xl

∂qj

)
(4.216)

=
(
�k

im

∂xl

∂qk

∂xl

∂qj
+ �k

jm

∂xl

∂qi

∂xl

∂qk

)
dqm = (�k

imgkj + �k
jmgik

)
dqm.

Comparing the coefficients ofdqm yields

∂gij

∂qm
= �k

imgkj + �k
jmgik. (4.217)

Using the Christoffel symbol of the first kind,

[ij,m] = gkm�
k
ij , (4.218)

we can rewrite Eq. (4.217) as

∂gij

∂qm
= [im, j ] + [jm, i], (4.219)

which corresponds to Eq. (2.136) and implies Eq. (2.137). We check that

[ij,m] = 1

2

(
∂gim

∂qj
+ ∂gjm

∂qi
− ∂gij

∂qm

)
(4.220)

is the unique solution of Eq. (4.219) and that

�k
ij = gmk[ij,m] = 1

2
gmk

(
∂gim

∂qj
+ ∂gjm

∂qi
− ∂gij

∂qm

)
(4.221)

follows. �

Hodge ∗ Operator

The differentialsdxi , i = 1,2, . . . ,m, form a basis of a vector space that is (seen to be)
dual to the derivatives∂i = ∂

∂xi
; they are basic 1-forms. For example, the vector spaceV =

{(a1, a2, a3)} is dual to the vector space of planes (linear functionsf ) in three-dimensional
Euclidean spaceV∗ = {f ≡ a1x1+ a2x2+ a3x3− d = 0}. The gradient

∇f =
(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
= (a1, a2, a3) (4.222)
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provides a one-to-one, differentiable map fromV∗ to V . Such dual relationships are gener-
alized by the Hodge∗ operator, based on the Levi-Civita symbol of Section 2.9.

Let the unit vectorŝxi be an oriented orthonormal basis of three-dimensional Euclidean
space. Then the Hodge∗ of scalars is defined by the basis element

∗1≡ 1

3!ε
ijk x̂i x̂j x̂k = x̂1x̂2x̂3, (4.223)

which corresponds to(x̂1× x̂2) · x̂3 in standard vector notation. Herex̂i x̂j x̂k is the totally
antisymmetric exterior product of the unit vectors that corresponds to(x̂i × x̂j ) · x̂k in
standard vector notation. For vectors,∗ is defined for the basis of unit vectors as

∗x̂i ≡ 1

2!εi
jk x̂j x̂k. (4.224)

In particular,

∗x̂1= x̂2x̂3, ∗x̂2= x̂3x̂1, ∗x̂3= x̂1x̂2. (4.225)

For oriented areas,∗ is defined on basis area elements as

∗(x̂i x̂j )≡ εkij x̂k, (4.226)

so

∗(x̂1x̂2) = ε3
12x̂3= x̂3, ∗(x̂1x̂3)= ε2

13x̂2=−x̂2,

∗(x̂2x̂3) = ε1
23x̂1= x̂1. (4.227)

For volumes,∗ is defined as

∗(x̂1x̂2x̂3)≡ ε123= 1. (4.228)

Example 4.8.7 CROSS PRODUCT OF VECTORS

The exterior product of two vectors

a=
3∑

i=1

ai x̂i , b=
3∑

i=1

bi x̂i (4.229)

is given by

ab=
( 3∑

i=1

ai x̂i

)( 3∑
j=1

bi x̂j

)
=
∑
i<j

(
aibj − ajbi

)
x̂i x̂j , (4.230)

whereas Eq. (4.224) implies that

∗(ab)= a× b. (4.231)

�
Next, let us analyze Sections 2.1–2.2 on curvilinear coordinates in the language of dif-

ferential forms.
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Example 4.8.8 LAPLACIAN IN ORTHOGONAL COORDINATES

Consider orthogonal coordinates where the metric (Eq. (2.5)) leads to length elements

dsi = hi dqi, not summed. (4.232)

Here thedqi are ordinary differentials. The 1-forms associated with the directionsq̂i are

εi = hidqi, not summed. (4.233)

Then the gradient is defined by the 1-form

df = ∂f

∂qi
dqi =

(
1

hi

∂f

∂qi

)
εi . (4.234)

We apply the hodge star operator todf , generating the 2-form

∗df =
(

1

hi

∂f

∂qi

)
∗ εi =

(
1

h1

∂f

∂q1

)
ε2ε3+

(
1

h2

∂f

∂q2

)
ε3ε1+

(
1

h3

∂f

∂q3

)
ε1ε2

=
(
h2h3

h1

∂f

∂q1

)
dq2dq3+

(
h1h3

h2

∂f

∂q2

)
dq3dq1+

(
h1h2

h3

∂f

∂q3

)
dq1dq2.

(4.235)

Applying another exterior derivatived , we get the Laplacian

d(∗df ) = ∂

∂q1

(
h2h3

h1

∂f

∂q1

)
dq1dq2dq3+ ∂

∂q2

(
h1h3

h2

∂f

∂q2

)
dq2dq1dq2dq3

+ ∂

∂q3

(
h1h2

h3

∂f

∂q3

)
dq3dq1dq2dq3

= 1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂f

∂q1

)
+ ∂

∂q2

(
h1h3

h2

∂f

∂q2

)
+ ∂

∂q3

(
h1h2

h3

∂f

∂q3

)]
· ε1ε2ε3=∇2f dq1dq2dq3. (4.236)

Dividing by the volume element gives Eq. (2.22). Recall that the volume elementsdx dy dz

andε1ε2ε3 must be equal becauseεi anddx, dy, dz are orthonormal 1-forms and the map
from thexyz to theqi coordinates is one-to-one. �

Example 4.8.9 MAXWELL’S EQUATIONS

We now work in four-dimensional Minkowski space, the homogeneous, flat space–time of
special relativity, to discuss classical electrodynamics in terms of differential forms. We
start by introducing the electromagnetic field 2-form (field tensor in standard relativistic
notation):

F = −Ex dt dx −Ey dt dy −Ez dt dz+Bx dy dz+By dzdx +Bz dx dy

= 1

2
Fµν dx

µ dxν, (4.237)
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which contains the electric 1-formE = Ex dx + Ey dy + Ez dz and the magnetic flux
2-form. Here, terms with 1-forms in opposite order have been combined. (For Eq. (4.237)
to be valid, the magnetic induction is in units ofc; that is,Bi → cBi , with c the velocity of
light; or we work in units wherec = 1. Also,F is in units of 1/ε0, the dielectric constant
of the vacuum. Moreover, the vector potential is defined asA0 = ε0φ, with the nonstatic
electric potentialφ andA1= Ax

µ0c
, . . . ; see Section 4.6 for more details.) The field 2-form

F encompasses Faraday’s induction law that a moving charge is acted on by magnetic
forces.

Applying the exterior derivatived generates Maxwell’s homogeneous equations auto-
matically fromF :

dF = −
(
∂Ex

∂y
dy + ∂Ex

∂z
dz

)
dt dx −

(
∂Ey

∂x
dx + ∂Ey

∂z
dz

)
dt dy

−
(
∂Ez

∂x
dx + ∂Ez

∂y
dy

)
dt dz+

(
∂Bx

∂x
dx + ∂Bx

∂t
dt

)
dy dz

+
(
∂By

∂t
dt + ∂By

∂y
dy

)
dzdx +

(
∂Bz

∂t
dt + ∂Bz

∂z
dz

)
dx dy

=
(
−∂Ex

∂y
+ ∂Ey

∂x
+ ∂Bz

∂t

)
dt dx dy +

(
−∂Ex

∂z
+ ∂Ez

∂x
− ∂By

∂t

)
dt dx dz

+
(
−∂Ey

∂z
+ ∂Ez

∂y
+ ∂Bx

∂t

)
dt dy dz= 0 (4.238)

which, in standard notation of vector analysis, takes the familiar vector form of Maxwell’s
homogeneous equations,

∇×E+ ∂B
∂t
= 0. (4.239)

SincedF = 0, that is, there is no driving term so thatF is closed, there must be a 1-form
ω=Aµ dxµ so thatF = dω. Now,

dω= ∂νAµ dxν dxµ, (4.240)

which, in standard notation, leads to the conventional relativistic form of the electromag-
netic field tensor,

Fµν = ∂µAν − ∂νAµ. (4.241)

Maxwell’s homogeneous equations,dF = 0, are thus equivalent to∂νFµν = 0.
In order to derive similarly the inhomogeneous Maxwell’s equations, we introduce the

dual electromagnetic field tensor

F̃ µν = 1

2
εµναβFαβ, (4.242)

and, in terms of differential forms,

∗F = ∗(Fµν dx
µ dxν

)= Fµν ∗
(
dxµ dxν

)= 1

2
Fµνε

µν
αβ dx

α dxβ. (4.243)
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Applying the exterior derivative yields

d(∗F)= 1

2
εµναβ(∂γ Fµν) dx

γ dxα dxβ, (4.244)

the left-hand side of Maxwell’s inhomogeneous equations, a 3-form. Its driving term is the
dual of the electric current density, a 3-form:

∗J = Jα
(∗dxα)= Jαε

α
µνλ dx

µ dxν dxλ

= ρ dx dy dz− Jx dt dy dz− Jy dt dz dx − Jz dt dx dy. (4.245)

Altogether Maxwell’s inhomogeneous equations take the elegant form

d(∗F)= ∗J. (4.246)

�

The differential-form framework has brought considerable unification to vector algebra
and to tensor analysis on manifolds more generally, such as uniting Stokes’ and Gauss’
theorems and providing an elegant reformulation of Maxwell’s equations and an efficient
derivation of the Laplacian in curved orthogonal coordinates, among others.

Exercises

4.8.1 Evaluate the 1-forma dx + 2b dy + 4c dz on the line segmentPQ, with P = (3,5,7),
Q= (7,5,3).

4.8.2 If the force field is constant and moving a particle from the origin to(3,0,0) requiresa
units of work, from(−1,−1,0) to (−1,1,0) takesb units of work, and from(0,0,4)
to (0,0,5) c units of work, find the 1-form of the work.

4.8.3 Evaluate the flow described by the 2-formdx dy+2dy dz+3dzdx across the oriented
trianglePQR with corners at

P = (3,1,4), Q= (−2,1,4), R = (1,4,1).

4.8.4 Are the points, in this order,

(0,1,1), (3,−1,−2), (4,2,−2), (−1,0,1)

coplanar, or do they form an oriented volume (right-handed or left-handed)?

4.8.5 Write Oersted’s law, ∫
∂S

H · dr=
∫
S

∇×H · da∼ I,

in differential form notation.

4.8.6 Describe the electric field by the 1-formE1dx+E2dy+E3dz and the magnetic induc-
tion by the 2-formB1dy dz+B2dzdx+B3dx dy. Then formulate Faraday’s induction
law in terms of these forms.
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4.8.7 Evaluate the 1-form

x dy

x2+ y2
− y dx

x2+ y2

on the unit circle about the origin oriented counterclockwise.

4.8.8 Find the pullback ofdx dz underx = ucosv, y = u− v, z= usinv.

4.8.9 Find the pullback of the 2-formdy dz+ dzdx + dx dy under the mapx = sinθ cosϕ,
y = sinθ sinϕ, z= cosθ .

4.8.10 Parameterize the surface obtained by rotating the circle(x − 2)2+ z2= 1, y = 0, about
thez-axis in a counterclockwise orientation, as seen from outside.

4.8.11 A 1-form Adx + B dy is defined asclosed if ∂A
∂y
= ∂B

∂x
. It is calledexact if there is a

functionf so that∂f
∂x
= A and ∂f

∂y
= B. Determine which of the following 1-forms are

closed, or exact, and find the corresponding functionsf for those that are exact:

y dx + x dy,
y dx + x dy

x2+ y2
,

[
ln(xy)+ 1

]
dx + x

y
dy,

− y dx

x2+ y2
+ x dy

x2+ y2
, f (z) dz with z= x + iy.

4.8.12 Show that
∑n

i=1x
2
i = a2 defines a differentiable manifold of dimensionD = n− 1 if

a 
= 0 andD = 0 if a = 0.

4.8.13 Show that the set of orthogonal 2× 2 matrices form a differentiable manifold, and
determine its dimension.

4.8.14 Determine the value of the 2-formAdy dz + B dzdx + C dx dy on a parallelogram
with sidesa,b.

4.8.15 Prove Lorentz invariance of Maxwell’s equations in the language of differential forms.

Additional Readings

Buerger, M. J.,Elementary Crystallography. New York: Wiley (1956). A comprehensive discussion of crystal
symmetries. Buerger develops all 32 point groups and all 230 space groups. Related books by this author in-
cludeContemporary Crystallography. New York: McGraw-Hill (1970);Crystal Structure Analysis. New York:
Krieger (1979) (reprint, 1960); andIntroduction to Crystal Geometry. New York: Krieger (1977) (reprint,
1971).

Burns, G., and A. M. Glazer,Space Groups for Solid-State Scientists. New York: Academic Press (1978). A well-
organized, readable treatment of groups and their application to the solid state.

de-Shalit, A., and I. Talmi,Nuclear Shell Model. New York: Academic Press (1963). We adopt the Condon–
Shortley phase conventions of this text.

Edmonds, A. R.,Angular Momentum in Quantum Mechanics. Princeton, NJ: Princeton University Press (1957).

Edwards, H. M.,Advanced Calculus: A Differential Forms Approach. Boston: Birkhäuser (1994).

Falicov, L. M., Group Theory and Its Physical Applications. Notes compiled by A. Luehrmann. Chicago: Uni-
versity of Chicago Press (1966). Group theory, with an emphasis on applications to crystal symmetries and
solid-state physics.
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Gell-Mann, M., and Y. Ne’eman,The Eightfold Way. New York: Benjamin (1965). A collection of reprints of
significant papers onSU(3) and the particles of high-energy physics. Several introductory sections by Gell-
Mann and Ne’eman are especially helpful.

Greiner, W., and B. Müller,Quantum Mechanics Symmetries. Berlin: Springer (1989). We refer to this textbook
for more details and numerous exercises that are worked out in detail.

Hamermesh, M.,Group Theory and Its Application to Physical Problems. Reading, MA: Addison-Wesley (1962).
A detailed, rigorous account of both finite and continuous groups. The 32 point groups are developed. The
continuous groups are treated, with Lie algebra included. A wealth of applications to atomic and nuclear
physics.

Hassani, S.,Foundations of Mathematical Physics. Boston: Allyn and Bacon (1991).

Heitler, W.,The Quantum Theory of Radiation, 2nd ed. Oxford: Oxford University Press (1947). Reprinted, New
York: Dover (1983).

Higman, B.,Applied Group-Theoretic and Matrix Methods. Oxford: Clarendon Press (1955). A rather complete
and unusually intelligible development of matrix analysis and group theory.

Jackson, J. D.,Classical Electrodynamics, 3rd ed. New York: Wiley (1998).

Messiah, A.,Quantum Mechanics, Vol. II. Amsterdam: North-Holland (1961).

Panofsky, W. K. H., and M. Phillips,Classical Electricity and Magnetism, 2nd ed. Reading, MA: Addison-Wesley
(1962). The Lorentz covariance of Maxwell’s equations is developed for both vacuum and material media.
Panofsky and Phillips use contravariant and covariant tensors.

Park, D., Resource letter SP-1 on symmetry in physics.Am. J. Phys. 36: 577–584 (1968). Includes a large selection
of basic references on group theory and its applications to physics: atoms, molecules, nuclei, solids, and
elementary particles.

Ram, B., Physics of theSU(3) symmetry model.Am. J. Phys. 35: 16 (1967). An excellent discussion of the
applications ofSU(3) to the strongly interacting particles (baryons). For a sequel to this see R. D. Young,
Physics of the quark model.Am. J. Phys. 41: 472 (1973).

Rose, M. E.,Elementary Theory of Angular Momentum. New York: Wiley (1957). Reprinted. New York: Dover
(1995). As part of the development of the quantum theory of angular momentum, Rose includes a detailed and
readable account of the rotation group.

Wigner, E. P.,Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (translated by
J. J. Griffin). New York: Academic Press (1959). This is the classic reference on group theory for the physicist.
The rotation group is treated in considerable detail. There is a wealth of applications to atomic physics.



CHAPTER 5

INFINITE SERIES

5.1 FUNDAMENTAL CONCEPTS

Infinite series, literally summations of an infinite number of terms, occur frequently in both
pure and applied mathematics. They may be used by the pure mathematician to define func-
tions as a fundamental approach to the theory of functions, as well as for calculating ac-
curate values of transcendental constants and transcendental functions. In the mathematics
of science and engineering infinite series are ubiquitous, for they appear in the evaluation
of integrals (Sections 5.6 and 5.7), in the solution of differential equations (Sections 9.5
and 9.6), and as Fourier series (Chapter 14) and compete with integral representations for
the description of a host of special functions (Chapters 11, 12, and 13). In Section 16.3 the
Neumann series solution for integral equations provides one more example of the occur-
rence and use of infinite series.

Right at the start we face the problem of attaching meaning to the sum of an infinite
number of terms. The usual approach is by partial sums. If we have an infinite sequence of
termsu1, u2, u3, u4, u5, . . . , we define theith partial sum as

si =
i∑

n=1

un. (5.1)

This is a finite summation and offers no difficulties. If the partial sumssi converge to a
(finite) limit as i→∞,

lim
i→∞ si = S, (5.2)

the infinite series
∑∞

n=1un is said to beconvergent and to have the valueS. Note that we
reasonably, plausibly, but still arbitrarilydefine the infinite series as equal toS and that a
necessary condition for this convergence to a limit is that limn→∞ un = 0. This condition,
however, is not sufficient to guarantee convergence. Equation (5.2) is usually written in
formal mathematical notation:

321
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The condition for the existence of a limitS is that for eachε > 0, there is a fixed
N =N(ε) such that

|S − si |< ε, for i > N.

This condition is often derived from the Cauchy criterion applied to the partial sumssi .
TheCauchy criterion is:

A necessary and sufficient condition that a sequence(si ) converge is that for eachε > 0
there is a fixed numberN such that

|sj − si |< ε, for all i, j > N.

This means that the individual partial sums must cluster together as we move far out in
the sequence.

The Cauchy criterion may easily be extended to sequences of functions. We see it in this
form in Section 5.5 in the definition of uniform convergence and in Section 10.4 in the
development of Hilbert space. Our partial sumssi may not converge to a single limit but
may oscillate, as in the case

∞∑
n=1

un = 1− 1+ 1− 1+ 1+ · · · − (−1)n + · · · .

Clearly, si = 1 for i odd butsi = 0 for i even. There is no convergence to a limit, and
series such as this one are labeledoscillatory. Whenever the sequence of partial sums
diverges (approaches±∞), the infinite series is said todiverge. Often the termdivergent
is extended to include oscillatory series as well. Because we evaluate the partial sums
by ordinary arithmetic, the convergent series, defined in terms of a limit of the partial
sums, assumes a position of supreme importance. Two examples may clarify the nature of
convergence or divergence of a series and will also serve as a basis for a further detailed
investigation in the next section.

Example 5.1.1 THE GEOMETRIC SERIES

The geometrical sequence, starting witha and with a ratior (= an+1/an independent ofn),
is given by

a + ar + ar2+ ar3+ · · · + arn−1+ · · · .
Thenth partial sum is given by1

sn = a
1− rn

1− r
. (5.3)

Taking the limit asn→∞,

lim
n→∞ sn = a

1− r
, for |r|< 1. (5.4)

1Multiply and dividesn =∑n−1
m=0 ar

m by 1− r .
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Hence, by definition, the infinite geometric series converges for|r|< 1 and is given by

∞∑
n=1

arn−1= a

1− r
. (5.5)

On the other hand, if|r| ≥ 1, the necessary conditionun→ 0 is not satisfied and the infinite
series diverges. �

Example 5.1.2 THE HARMONIC SERIES

As a second and more involved example, we consider the harmonic series

∞∑
n=1

1

n
= 1+ 1

2
+ 1

3
+ 1

4
+ · · · + 1

n
+ · · · . (5.6)

We have the limn→∞ un = limn→∞ 1/n= 0, but this is not sufficient to guarantee conver-
gence. If we group the terms (no change in order) as

1+ 1
2 +

(1
3 + 1

4

)+ (1
5 + 1

6 + 1
7 + 1

8

)+ (1
9 + · · · + 1

16

)+ · · · , (5.7)

each pair of parentheses enclosesp terms of the form

1

p+ 1
+ 1

p+ 2
+ · · · + 1

p+ p
>

p

2p
= 1

2
. (5.8)

Forming partial sums by adding the parenthetical groups one by one, we obtain

s1= 1, s4 >
5

2
,

s2= 3

2
, s5 >

6

2
, · · ·

s3 >
4

2
, sn >

n+ 1

2
.

(5.9)

The harmonic series considered in this way is certainly divergent.2 An alternate and inde-
pendent demonstration of its divergence appears in Section 5.2. �

If the un > 0 are monotonically decreasing to zero, that is, un > un+1 for all n, then∑
n un is converging to S if, and only if, sn − nun converges to S. As the partial sumssn

converge toS, this theorem implies thatnun→ 0, for n→∞.

To prove thistheorem, we start by concluding from 0< un+1 < un and

sn+1− (n+ 1)un+1= sn − nun+1= sn − nun + n(un − un+1) > sn − nun

that sn − nun increases asn→∞. As a consequence ofsn − nun < sn ≤ S, sn − nun
converges to a values ≤ S. Deleting the tail of positive termsui − un from i = ν + 1 ton,

2The (finite) harmonic series appears in an interesting note on the maximum stable displacement of a stack of coins. P. R. John-
son, The Leaning Tower of Lire.Am. J. Phys. 23: 240 (1955).
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we infer fromsn− nun > u0+ (u1− un)+ · · · + (uν − un)= sν − νun thatsn− nun ≥ sν
for n→∞. Hence alsos ≥ S, sos = S andnun→ 0.

When this theorem is applied to theharmonic series
∑

n
1
n

with n 1
n
= 1 it implies that

it does not converge; it diverges to+∞.

Addition, Subtraction of Series

If we have two convergent series
∑

n un → s and
∑

n vn → S, their sum and difference
will also converge tos ± S because their partial sums satisfy∣∣sj ± Sj − (si ± Si)

∣∣= ∣∣sj − si ± (Sj − Si)
∣∣≤ |sj − si | + |Sj − Si |< 2ε

using the triangle inequality

|a| − |b| ≤ |a + b| ≤ |a| + |b|
for a = sj − si , b= Sj − Si.

A convergent series
∑

n un→ S may be multiplied termwise by a real numbera. The
new series will converge toaS because

|asj − asi | =
∣∣a(sj − si)

∣∣= |a||sj − si |< |a|ε.
This multiplication by a constant can be generalized to a multiplication by termscn of a
bounded sequence of numbers.

If
∑

n un converges to S and 0< cn ≤M are bounded, then
∑

n uncn is convergent. If∑
n un is divergent and cn >M > 0, then

∑
n uncn diverges.

To prove thistheorem we takei, j sufficiently large so that|sj − si |< ε. Then

j∑
i+1

uncn ≤M

j∑
i+1

un =M|sj − si |<Mε.

The divergent case follows from∑
n

uncn >M
∑
n

un→∞.

Using the binomial theorem3 (Section 5.6), we may expand the function(1+ x)−1:

1

1+ x
= 1− x + x2− x3+ · · · + (−x)n−1+ · · · . (5.10)

If we let x→ 1, this series becomes

1− 1+ 1− 1+ 1− 1+ · · · , (5.11)

a series that we labeled oscillatory earlier in this section. Although it does not converge
in the usual sense, meaning can be attached to this series. Euler, for example, assigned a
value of 1/2 to this oscillatory sequence on the basis of the correspondence between this
series and the well-defined function(1+ x)−1. Unfortunately, such correspondence be-
tween series and function is not unique, and this approach must be refined. Other methods

3Actually Eq. (5.10) may be verified by multiplying both sides by 1+ x.
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of assigning a meaning to a divergent or oscillatory series, methods of defining a sum,
have been developed. See G. H. Hardy,Divergent Series, Chelsea Publishing Co. 2nd ed.
(1992). In general, however, this aspect of infinite series is of relatively little interest to the
scientist or the engineer. An exception to this statement, the very important asymptotic or
semiconvergent series, is considered in Section 5.10.

Exercises

5.1.1 Show that
∞∑
n=1

1

(2n− 1)(2n+ 1)
= 1

2
.

Hint. Show (by mathematical induction) thatsm =m/(2m+ 1).

5.1.2 Show that
∞∑
n=1

1

n(n+ 1)
= 1.

Find the partial sumsm and verify its correctness by mathematical induction.
Note. The method of expansion in partial fractions, Section 15.8, offers an alternative
way of solving Exercises 5.1.1 and 5.1.2.

5.2 CONVERGENCE TESTS

Although nonconvergent series may be useful in certain special cases (compare Sec-
tion 5.10), we usually insist, as a matter of convenience if not necessity, that our series be
convergent. It therefore becomes a matter of extreme importance to be able to tell whether
a given series is convergent. We shall develop a number of possible tests, starting with the
simple and relatively insensitive tests and working up to the more complicated but quite
sensitive tests. For the present let us consider aseries of positive terms an ≥ 0, postponing
negative terms until the next section.

Comparison Test

If term by term a series of terms 0≤ un ≤ an, in which thean form a convergent series,
the series

∑
n un is also convergent. Ifun ≤ an for all n, then

∑
n un ≤

∑
n an and

∑
n un

therefore isconvergent. If term by term a series of termsvn ≥ bn, in which thebn, form a
divergent series, the series

∑
n vn is alsodivergent. Note that comparisons ofun with bn

or vn with an yield no information. Ifvn ≥ bn for all n, then
∑

n vn ≥
∑

n bn and
∑

n vn
therefore is divergent.

For the convergent seriesan we already have the geometric series, whereas the harmonic
series will serve as the divergent comparison seriesbn. As other series are identified as
either convergent or divergent, they may be used for the known series in this comparison
test. All tests developed in this section are essentially comparison tests. Figure 5.1 exhibits
these tests and the interrelationships.



326 Chapter 5 Infinite Series

FIGURE 5.1 Comparison tests.

Example 5.2.1 A DIRICHLET SERIES

Test
∑∞

n=1n
−p,p = 0.999, for convergence. Sincen−0.999> n−1 andbn = n−1 forms the

divergent harmonic series, the comparison test shows that
∑

n n
−0.999 is divergent. Gener-

alizing,
∑

n n
−p is seen to be divergent for allp ≤ 1 but convergent forp > 1 (see Exam-

ple 5.2.3). �

Cauchy Root Test

If (an)
1/n ≤ r < 1 for all sufficiently largen, with r independent ofn, then

∑
n an is

convergent. If(an)1/n ≥ 1 for all sufficiently largen, then
∑

n an is divergent.
The first part of this test is verified easily by raising(an)1/n ≤ r to thenth power. We

get

an ≤ rn < 1.

Sincern is just thenth term in a convergent geometric series,
∑

n an is convergent by the
comparison test. Conversely, if(an)1/n ≥ 1, thenan ≥ 1 and the series must diverge. This
root test is particularly useful in establishing the properties of power series (Section 5.7).

D’Alembert (or Cauchy) Ratio Test

If an+1/an ≤ r < 1 for all sufficiently largen and r is independent ofn, then
∑

n an is
convergent. Ifan+1/an ≥ 1 for all sufficiently largen, then

∑
n an is divergent.

Convergence is proved by direct comparison with the geometric series(1+r+r2+· · · ).
In the second part,an+1≥ an and divergence should be reasonably obvious. Although not
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quite so sensitive as the Cauchy root test, this D’Alembert ratio test is one of the easiest to
apply and is widely used. An alternate statement of the ratio test is in the form of a limit: If

lim
n→∞

an+1

an
< 1, convergence,

> 1, divergence, (5.12)

= 1, indeterminate.

Because of this final indeterminate possibility, the ratio test is likely to fail at crucial points,
and more delicate, sensitive tests are necessary. The alert reader may wonder how this
indeterminacy arose. Actually it was concealed in the first statement,an+1/an ≤ r < 1.
We might encounteran+1/an < 1 for all finite n but be unable to choose anr < 1 and
independent of n such thatan+1/an ≤ r for all sufficiently largen. An example is provided
by the harmonic series

an+1

an
= n

n+ 1
< 1. (5.13)

Since

lim
n→∞

an+1

an
= 1, (5.14)

no fixed ratior < 1 exists and the ratio test fails.

Example 5.2.2 D’ALEMBERT RATIO TEST

Test
∑

n n/2
n for convergence.

an+1

an
= (n+ 1)/2n+1

n/2n
= 1

2
· n+ 1

n
. (5.15)

Since

an+1

an
≤ 3

4
for n≥ 2, (5.16)

we have convergence. Alternatively,

lim
n→∞

an+1

an
= 1

2
(5.17)

and again — convergence. �

Cauchy (or Maclaurin) Integral Test

This is another sort of comparison test, in which we compare a series with an integral.
Geometrically, we compare the area of a series of unit-width rectangles with the area under
a curve.
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FIGURE 5.2 (a) Comparison of integral and sum-blocks leading.
(b) Comparison of integral and sum-blocks lagging.

Let f (x) be a continuous,monotonic decreasing function in which f (n) = an. Then∑
n an converges if

∫∞
1 f (x)dx is finite and diverges if the integral is infinite. For theith

partial sum,

si =
i∑

n=1

an =
i∑

n=1

f (n). (5.18)

But

si >

∫ i+1

1
f (x)dx (5.19)

from Fig. 5.2a,f (x) being monotonic decreasing. On the other hand, from Fig. 5.2b,

si − a1 <

∫ i

1
f (x)dx, (5.20)

in which the series is represented by the inscribed rectangles. Taking the limit asi→∞,
we have ∫ ∞

1
f (x)dx ≤

∞∑
n=1

an ≤
∫ ∞

1
f (x)dx + a1. (5.21)

Hence the infinite series converges or diverges as the corresponding integral converges or
diverges. This integral test is particularly useful in setting upper and lower bounds on the
remainder of a series after some number of initial terms have been summed. That is,

∞∑
n=1

an =
N∑
n=1

an +
∞∑

n=N+1

an,

where ∫ ∞

N+1
f (x)dx ≤

∞∑
n=N+1

an ≤
∫ ∞

N+1
f (x)dx + aN+1.
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To free the integral test from the quite restrictive requirement that the interpolating func-
tion f (x) be positive and monotonic, we show for any functionf (x) with a continuous
derivative that

Nf∑
n=Ni+1

f (n)=
∫ Nf

Ni

f (x) dx +
∫ Nf

Ni

(
x − [x])f ′(x) dx (5.22)

holds. Here[x] denotes the largest integer belowx, sox−[x] varies sawtoothlike between
0 and 1. To derive Eq. (5.22) we observe that∫ Nf

Ni

xf ′(x) dx =Nf f (Nf )−Nif (Ni)−
∫ Nf

Ni

f (x) dx, (5.23)

using integration by parts. Next we evaluate the integral∫ Nf

Ni

[x]f ′(x) dx =
Nf−1∑
n=Ni

n

∫ n+1

n

f ′(x) dx =
Nf−1∑
n=Ni

n
{
f (n+ 1)− f (n)

}

= −
Nf∑

n=Ni+1

f (n)−Nif (Ni)+Nf f (Nf ). (5.24)

Subtracting Eq. (5.24) from (5.23) we arrive at Eq. (5.22). Note thatf (x) may go up or
down and even change sign, so Eq. (5.22) applies to alternating series (see Section 5.3) as
well. Usuallyf ′(x) falls faster thanf (x) for x→∞, so the remainder term in Eq. (5.22)
converges better. It is easy to improve Eq. (5.22) by replacingx−[x] by x−[x]− 1

2, which
varies between−1

2 and 1
2:∑

Ni<n≤Nf

f (n) =
∫ Nf

Ni

f (x) dx +
∫ Nf

Ni

(
x − [x] − 1

2

)
f ′(x) dx

+ 1
2

{
f (Nf )− f (Ni)

}
. (5.25)

Then thef ′(x)-integral becomes even smaller, iff ′(x) does not change sign too often. For
an application of this integral test to an alternating series see Example 5.3.1.

Example 5.2.3 RIEMANN ZETA FUNCTION

The Riemann zeta function is defined by

ζ(p)=
∞∑
n=1

n−p, (5.26)

provided the series converges. We may takef (x)= x−p, and then∫ ∞

1
x−p dx = x−p+1

−p+ 1

∣∣∣∣∞
1
, p 
= 1

= lnx |∞x=1, p = 1. (5.27)
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The integral and therefore the series are divergent forp ≤ 1, convergent forp > 1. Hence
Eq. (5.26) should carry the conditionp > 1. This, incidentally, is an independent proof
that the harmonic series(p = 1) diverges logarithmically. The sum of the first million
terms

∑1,000,000
n−1 is only 14.392 726. . . . �

This integral comparison may also be used to set an upper limit to the Euler–Mascheroni
constant,4 defined by

γ = lim
n→∞

( n∑
m=1

m−1− lnn

)
. (5.28)

Returning to partial sums, Eq. (5.20) yields

sn =
n∑

m=1

m−1− lnn≤
∫ n

1

dx

x
− lnn+ 1. (5.29)

Evaluating the integral on the right,sn < 1 for all n and thereforeγ ≤ 1. Exer-
cise 5.2.12 leads to more restrictive bounds. Actually the Euler–Mascheroni constant is
0.57721566. . . .

Kummer’s Test

This is the first of three tests that are somewhat more difficult to apply than the preceding
tests. Their importance lies in their power and sensitivity. Frequently, at least one of the
three will work when the simpler, easier tests are indecisive. It must be remembered, how-
ever, that these tests, like those previously discussed, are ultimately based on comparisons.
It can be shown that there is no most slowly converging series and no most slowly diverg-
ing series. This means that all convergence tests given here, including Kummer’s, may fail
sometime.

We consider a series of positive termsui and a sequence of finite positive constantsai .
If

an
un

un+1
− an+1≥ C > 0 (5.30)

for all n≥N , whereN is some fixed number,5 then
∑∞

i=1ui converges. If

an
un

un+1
− an+1≤ 0 (5.31)

and
∑∞

i=1a
−1
i diverges, then

∑∞
i=1ui diverges.

4This is the notation of National Bureau of Standards,Handbook of Mathematical Functions, Applied Mathematics Series-55
(AMS-55). New York: Dover (1972).
5With um finite, the partial sumsN will always be finite forN finite. The convergence or divergence of a series depends on the
behavior of the last infinity of terms, not on the firstN terms.
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The proof of this powerful test is remarkably simple. From Eq. (5.30), withC some
positive constant,

CuN+1≤ aNuN − aN+1uN+1
CuN+2≤ aN+1uN+1− aN+2uN+2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Cun ≤ an−1un−1− anun.

(5.32)

Adding and dividing byC (and recalling thatC 
= 0), we obtain

n∑
i=N+1

ui ≤ aNuN

C
− anun

C
. (5.33)

Hence for the partial sumsn,

sn ≤
N∑
i=1

ui + aNuN

C
− anun

C

<

N∑
i=1

ui + aNuN

C
, a constant, independent ofn. (5.34)

The partial sums therefore have an upper bound. With zero as an obvious lower bound, the
series

∑
ui must converge.

Divergence is shown as follows. From Eq. (5.31) forun+1 > 0,

anun ≥ an−1un−1≥ · · · ≥ aNuN, n > N. (5.35)

Thus, foran > 0,

un ≥ aNuN

an
(5.36)

and
∞∑

i=N+1

ui ≥ aNuN

∞∑
i=N+1

a−1
i . (5.37)

If
∑∞

i=1a
−1
i diverges, then by the comparison test

∑
i ui diverges. Equations (5.30) and

(5.31) are often given in a limit form:

lim
n→∞

(
an

un

un+1
− an+1

)
= C. (5.38)

Thus forC > 0 we have convergence, whereas forC < 0 (and
∑

i a
−1
i divergent) we have

divergence. It is perhaps useful to show the close relation of Eq. (5.38) and Eqs. (5.30) and
(5.31) and to show why indeterminacy creeps in when the limitC = 0. From the definition
of limit, ∣∣∣∣an un

un+1
− an+1−C

∣∣∣∣< ε (5.39)
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for all n≥N and allε > 0, no matter how smallε may be. When the absolute value signs
are removed,

C − ε < an
un

un+1
− an+1 <C + ε. (5.40)

Now, if C > 0, Eq. (5.30) follows fromε sufficiently small. On the other hand, ifC < 0,
Eq. (5.31) follows. However, ifC = 0, the center term,an(un/un+1)−an+1, may be either
positive or negative and the proof fails. The primary use of Kummer’s test is to prove other
tests, such as Raabe’s (compare also Exercise 5.2.3).

If the positive constantsan of Kummer’s test are chosenan = n, we have Raabe’s test.

Raabe’s Test

If un > 0 and if

n

(
un

un+1
− 1

)
≥ P > 1 (5.41)

for all n≥N , whereN is a positive integer independent ofn, then
∑

i ui converges. Here,
P = C + 1 of Kummer’s test. If

n

(
un

un+1
− 1

)
≤ 1, (5.42)

then
∑

i ui diverges (as
∑

n n
−1 diverges). The limit form of Raabe’s test is

lim
n→∞n

(
un

un+1
− 1

)
= P. (5.43)

We have convergence forP > 1, divergence forP < 1, and no conclusion forP = 1,
exactly as with the Kummer test. This indeterminacy is pointed up by Exercise 5.2.4, which
presents a convergent series and a divergent series, with both series yieldingP = 1 in
Eq. (5.43).

Raabe’s test is more sensitive than the d’Alembert ratio test (Exercise 5.2.3) because∑∞
n=1n

−1 diverges more slowly than
∑∞

n=1 1. We obtain a more sensitive test (and one
that is still fairly easy to apply) by choosingan = n lnn. This is Gauss’ test.

Gauss’ Test

If un > 0 for all finiten and

un

un+1
= 1+ h

n
+ B(n)

n2
, (5.44)

in whichB(n) is a bounded function ofn for n→∞, then
∑

i ui converges forh > 1 and
diverges forh≤ 1: There is no indeterminate case here.
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The Gauss test is an extremely sensitive test of series convergence. It will work for all
series the physicist is likely to encounter. Forh > 1 or h < 1 the proof follows directly
from Raabe’s test

lim
n→∞n

[
1+ h

n
+ B(n)

n2
− 1

]
= lim

n→∞

[
h+ B(n)

n

]
= h. (5.45)

If h= 1, Raabe’s test fails. However, if we return to Kummer’s test and usean = n lnn,
Eq. (5.38) leads to

lim
n→∞

{
n lnn

[
1+ 1

n
+ B(n)

n2

]
− (n+ 1) ln(n+ 1)

}
= lim

n→∞

[
n lnn · n+ 1

n
− (n+ 1) ln(n+ 1)

]
= lim

n→∞(n+ 1)

[
lnn− lnn− ln

(
1+ 1

n

)]
. (5.46)

Borrowing a result from Section 5.6 (which is not dependent on Gauss’ test), we have

lim
n→∞−(n+ 1) ln

(
1+ 1

n

)
= lim

n→∞−(n+ 1)

(
1

n
− 1

2n2
+ 1

3n3
· · ·
)

= −1< 0. (5.47)

Hence we have divergence forh = 1. This is an example of a successful application of
Kummer’s test when Raabe’s test had failed.

Example 5.2.4 LEGENDRE SERIES

The recurrence relation for the series solution of Legendre’s equation (Exercise 9.5.5) may
be put in the form

a2j+2

a2j
= 2j (2j + 1)− l(l + 1)

(2j + 1)(2j + 2)
. (5.48)

For uj = a2j andB(j) = O(1/j2)→ 0 (that is, |B(j)j2| ≤ C, C > 0, a constant) as
j→∞ in Gauss’ test we apply Eq. (5.45). Then, forj � l,6

uj

uj+1
→ (2j + 1)(2j + 2)

2j (2j + 1)
= 2j + 2

2j
= 1+ 1

j
. (5.49)

By Eq. (5.44) the series is divergent. �

6The l dependence entersB(j) but does not affecth in Eq. (5.45).
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Improvement of Convergence

This section so far has been concerned with establishing convergence as an abstract math-
ematical property. In practice, therate of convergence may be of considerable importance.
Here we present one method of improving the rate of convergence of a convergent series.
Other techniques are given in Sections 5.4 and 5.9.

The basic principle of this method, due to Kummer, is to form a linear combination of
our slowly converging series and one or more series whose sum is known. For the known
series the collection

α1=
∞∑
n=1

1

n(n+ 1)
= 1

α2=
∞∑
n=1

1

n(n+ 1)(n+ 2)
= 1

4

α3=
∞∑
n=1

1

n(n+ 1)(n+ 2)(n+ 3)
= 1

18

...
...

...

αp =
∞∑
n=1

1

n(n+ 1) · · · (n+ p)
= 1

p · p!
is particularly useful.7 The series are combined term by term and the coefficients in the
linear combination chosen to cancel the most slowly converging terms.

Example 5.2.5 RIEMANN ZETA FUNCTION, ζ (3)

Let the series to be summed be
∑∞

n=1n
−3. In Section 5.9 this is identified as the Riemann

zeta function,ζ (3). We form a linear combination
∞∑
n=1

n−3+ a2α2=
∞∑
n=1

n−3+ a2

4
.

α1 is not included since it converges more slowly thanζ (3). Combining terms, we obtain
on the left-hand side

∞∑
n=1

{
1

n3
+ a2

n(n+ 1)(n+ 2)

}
=

∞∑
n=1

n2(1+ a2)+ 3n+ 2

n3(n+ 1)(n+ 2)
.

If we choosea2=−1, the preceding equations yield

ζ(3)=
∞∑
n=1

n−3= 1

4
+

∞∑
n=1

3n+ 2

n3(n+ 1)(n+ 2)
. (5.50)

7These series sums may be verified by expanding the forms by partial fractions, writing out the initial terms, and inspecting the
pattern of cancellation of positive and negative terms.
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The resulting series may not be beautiful but it does converge asn−4, faster thann−3.
A more convenient form comes from Exercise 5.2.21. There, the symmetry leads to con-
vergence asn−5. �

The method can be extended, includinga3α3 to get convergence asn−5, a4α4 to get
convergence asn−6, and so on. Eventually, you have to reach a compromise between how
much algebra you do and how much arithmetic the computer does. As computers get faster,
the balance is steadily shifting to less algebra for you and more arithmetic for them.

Exercises

5.2.1 (a) Prove that if

lim
n→∞npun =A<∞, p > 1,

the series
∑∞

n=1un converges.
(b) Prove that if

lim
n→∞nun =A> 0,

the series diverges. (The test fails forA= 0.)
These two tests, known aslimit tests, are often convenient for establishing the conver-
gence of a series. They may be treated as comparison tests, comparing with∑

n

n−q, 1≤ q < p.

5.2.2 If

lim
n→∞

bn

an
=K,

a constant with 0<K <∞, show that
∑

n bn converges or diverges with
∑

an.
Hint. If

∑
an converges, useb′n = 1

2K bn. If
∑

n an diverges, useb′′n = 2
K
bn.

5.2.3 Show that the complete d’Alembert ratio test follows directly from Kummer’s test with
ai = 1.

5.2.4 Show that Raabe’s test is indecisive forP = 1 by establishing thatP = 1 for the series

(a) un = 1

n lnn
and that this series diverges.

(b) un = 1

n(lnn)2
and that this series converges.

Note. By direct addition
∑100,000

2 [n(lnn)2]−1 = 2.02288. The remainder of the series
n > 105 yields 0.08686 by the integral comparison test. The total, then, 2 to∞, is
2.1097.
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5.2.5 Gauss’ test is often given in the form of a test of the ratio

un

un+1
= n2+ a1n+ a0

n2+ b1n+ b0
.

For what values of the parametersa1 andb1 is there convergence? divergence?

ANS. Convergent fora1− b1 > 1,
divergent fora1− b1≤ 1.

5.2.6 Test for convergence

(a)
∞∑
n=2

(lnn)−1 (d)
∞∑
n=1

[
n(n+ 1)

]−1/2

(b)
∞∑
n=1

n!
10n

(e)
∞∑
n=0

1

2n+ 1
.

(c)
∞∑
n=1

1

2n(2n+ 1)

5.2.7 Test for convergence

(a)
∞∑
n=1

1

n(n+ 1)
(d)

∞∑
n=1

ln

(
1+ 1

n

)

(b)
∞∑
n=2

1

n lnn
(e)

∞∑
n=1

1

n · n1/n
.

(c)
∞∑
n=1

1

n2n

5.2.8 For what values ofp andq will the following series converge?
∑∞

n=2
1

np(lnn)q
.

ANS. Convergent for

{
p > 1, all q,

p = 1, q > 1,
divergent for

{
p < 1, all q,

p = 1, q ≤ 1.

5.2.9 Determine the range of convergence for Gauss’shypergeometric series

F(α,β, γ ;x)= 1+ αβ

1!γ x + α(α + 1)β(β + 1)

2!γ (γ + 1)
x2+ · · · .

Hint. Gauss developed his test for the specific purpose of establishing the convergence
of this series.

ANS. Convergent for−1< x < 1 andx =±1 if γ > α + β.

5.2.10 A pocket calculator yields

100∑
n=1

n−3= 1.202 007.
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Show that

1.202 056≤
∞∑
n=1

n−3≤ 1.202 057.

Hint. Use integrals to set upper and lower bounds on
∑∞

n=101n
−3.

Note. A more exact value for summation ofζ(3) =∑∞
n=1n

−3 is 1.202 056 903. . . ;
ζ(3) is known to be an irrational number, but it is not linked to known constants such as
e,π, γ, ln2.

5.2.11 Set upper and lower bounds on
∑1,000,000

n=1 n−1, assuming that

(a) the Euler–Mascheroni constant is known.

ANS. 14.392 726<
1,000,000∑

n=1

n−1 < 14.392 727.

(b) The Euler–Mascheroni constant is unknown.

5.2.12 Given
∑1,000

n=1 n−1= 7.485 470. . . set upper and lower bounds on the Euler–Mascheroni
constant.

ANS. 0.5767< γ < 0.5778.

5.2.13 (From Olbers’ paradox.) Assume a static universe in which the stars are uniformly
distributed. Divide all space into shells of constant thickness; the stars in any one shell
by themselves subtend a solid angle ofω0. Allowing for the blocking out of distant
stars by nearer stars, show that the total net solid angle subtended by all stars, shells
extending to infinity, isexactly 4π . [Therefore the night sky should be ablaze with
light. For more details, see E. Harrison,Darkness at Night: A Riddle of the Universe.
Cambridge, MA: Harvard University Press (1987).]

5.2.14 Test for convergence

∞∑
n=1

[
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
]2

= 1

4
+ 9

64
+ 25

256
+ · · · .

5.2.15 The Legendre series
∑

j evenuj (x) satisfies the recurrence relations

uj+2(x)= (j + 1)(j + 2)− l(l + 1)

(j + 2)(j + 3)
x2uj (x),

in which the indexj is even andl is some constant (but, in this problem,not a non-
negative odd integer). Find the range of values ofx for which this Legendre series is
convergent. Test the endpoints.

ANS.−1< x < 1.
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5.2.16 A series solution (Section 9.5) of the Chebyshev equation leads to successive terms
having the ratio

uj+2(x)

uj (x)
= (k + j)2− n2

(k + j + 1)(k + j + 2)
x2,

with k = 0 andk = 1. Test for convergence atx =±1.

ANS. Convergent.

5.2.17 A series solution for the ultraspherical (Gegenbauer) functionCα
n (x) leads to the recur-

rence

aj+2= aj
(k + j)(k + j + 2α)− n(n+ 2α)

(k + j + 1)(k + j + 2)
.

Investigate the convergence of each of these series atx =±1 as a function of the para-
meterα.

ANS. Convergent forα < 1,
divergent forα ≥ 1.

5.2.18 A series expansion of the incomplete beta function (Section 8.4) yields

Bx(p,q) = xp
{

1

p
+ 1− q

p+ 1
x + (1− q)(2− q)

2!(p+ 2)
x2+ · · ·

+ (1− q)(2− q) · · · (n− q)

n!(p+ n)
xn + · · ·

}
.

Given that 0≤ x ≤ 1,p > 0, andq > 0, test this series for convergence. What happens
atx = 1?

5.2.19 Show that the following series is convergent.

∞∑
s=0

(2s − 1)!!
(2s)!!(2s + 1)

.

Note. (2s−1)!! = (2s−1)(2s−3) · · ·3·1 with (−1)!! = 1; (2s)!! = (2s)(2s−2) · · ·4·2
with 0!! = 1. The series appears as a series expansion of sin−1(1) and equalsπ/2, and
sin−1x ≡ arcsinx 
= (sinx)−1.

5.2.20 Show how to combineζ(2)=∑∞
n=1n

−2 with α1 andα2 to obtain a series converging
asn−4.
Note. ζ(2) is known:ζ(2)= π2/6 (see Section 5.9).

5.2.21 The convergence improvement of Example 5.2.5 may be carried out more expediently
(in this special case) by puttingα2 into a more symmetric form: Replacingn by n− 1,
we have

α′2=
∞∑
n=2

1

(n− 1)n(n+ 1)
= 1

4
.
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(a) Combineζ(3) andα′2 to obtain convergence asn−5.
(b) Letα′4 beα4 with n→ n− 2. Combineζ(3), α′2, andα′4 to obtain convergence as

n−7.
(c) If ζ(3) is to be calculated to six= decimal= place accuracy (error 5×10−7), how

many terms are required forζ(3) alone? combined as in part (a)? combined as in
part (b)?

Note. The error may be estimated using the corresponding integral.

ANS. (a)ζ(3)= 5

4
−

∞∑
n=2

1

n3(n2− 1)
.

5.2.22 Catalan’s constant(β(2) of M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical Tables (AMS-55), Wash, D. C.
National Bureau of Standards (1972); reprinted Dover (1974), Chapter 23) is defined
by

β(2)=
∞∑
k=0

(−1)k(2k + 1)−2= 1

12
− 1

32
+ 1

52
· · · .

Calculateβ(2) to six-digit accuracy.
Hint. The rate of convergence is enhanced by pairing the terms:

(4k − 1)−2− (4k+ 1)−2= 16k

(16k2− 1)2
.

If you have carried enough digits in your series summation,
∑

1≤k≤N 16k/(16k2− 1)2,
additional significant figures may be obtained by setting upper and lower bounds on the
tail of the series,

∑∞
k=N+1. These bounds may be set by comparison with integrals, as

in the Maclaurin integral test.

ANS. β(2)= 0.9159 6559 4177. . . .

5.3 ALTERNATING SERIES

In Section 5.2 we limited ourselves to series of positive terms. Now, in contrast, we con-
sider infinite series in which the signs alternate. The partial cancellation due to alternating
signs makes convergence more rapid and much easier to identify. We shall prove the Leib-
niz criterion, a general condition for the convergence of an alternating series. For series
with more irregular sign changes, like Fourier series of Chapter 14 (see Example 5.3.1),
the integral test of Eq. (5.25) is often helpful.

Leibniz Criterion

Consider the series
∑∞

n=1(−1)n+1an with an > 0. If an, is monotonically decreasing (for
sufficiently largen) and limn→∞ an = 0, then the series converges. To prove this theorem,
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we examine the even partial sums

s2n = a1− a2+ a3− · · · − a2n,

s2n+2 = s2n + (a2n+1− a2n+2).
(5.51)

Sincea2n+1 > a2n+2, we have

s2n+2 > s2n. (5.52)

On the other hand,

s2n+2= a1− (a2− a3)− (a4− a5)− · · · − a2n+2. (5.53)

Hence, with each pair of termsa2p − a2p+1 > 0,

s2n+2 < a1. (5.54)

With the even partial sums boundeds2n < s2n+2 < a1 and the termsan decreasing
monotonically and approaching zero, this alternating series converges.

One further important result can be extracted from the partial sums of the same alternat-
ing series. From the difference between the series limitS and the partial sumsn,

S − sn = an+1− an+2+ an+3− an+4+ · · ·
= an+1− (an+2− an+3)− (an+4− an+5)− · · · , (5.55)

or

S − sn < an+1. (5.56)

Equation (5.56) says that the error in cutting off an alternating series whose terms are
monotonically decreasing aftern terms is less thanan+1, the first term dropped. A knowl-
edge of the error obtained this way may be of great practical importance.

Absolute Convergence

Given a series of termsun in whichun may vary in sign, if
∑ |un| converges, then

∑
un is

said to be absolutely convergent. If
∑

un converges but
∑ |un| diverges, the convergence

is calledconditional.
The alternating harmonic series is a simple example of this conditional convergence. We

have
∞∑
n=1

(−1)n−1n−1= 1− 1

2
+ 1

3
− 1

4
+ · · · + (−1)n−1

n
+ · · · , (5.57)

convergent by the Leibniz criterion; but

∞∑
n=1

n−1= 1+ 1

2
+ 1

3
+ 1

4
+ · · · + 1

n
+ · · ·

has been shown to be divergent in Sections 5.1 and 5.2.
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Note that most tests developed in Section 5.2 assume a series of positive terms. Therefore
these tests in that section guarantee absolute convergence.

Example 5.3.1 SERIES WITH IRREGULAR SIGN CHANGES

For 0< x < 2π the Fourier series (see Chapter 14.1)

∞∑
n=1

cos(nx)

n
=− ln

(
2 sin

x

2

)
(5.58)

converges, having coefficients that change sign often, but not so that the Leibniz conver-
gence criterion applies easily. Let us apply the integral test of Eq. (5.22). Using integration
by parts we see immediately that∫ ∞

1

cos(nx)

n
dn=

[
sin(nx)

nx

]∞
1
+ 1

x

∫ ∞

n=1

sin(nx)

n2
dn

converges, and the integral on the right-hand side even converges absolutely. The derivative
term in Eq. (5.22) has the form∫ ∞

1

(
n− [n]){−x

n
sin(nx)− cos(nx)

n2

}
dn,

where the second term converges absolutely and need not be considered further. Next we
observe thatg(N)= ∫ N

1 (n−[n])sin(nx)dn is bounded forN→∞, just as
∫ N sin(nx)dn

is bounded because of the periodic nature of sin(nx) and its regular sign changes. Using
integration by parts again,∫ ∞

1

g′(n)
n

dn=
[
g(n)

n

]∞
n=1

+
∫ ∞

1

g(n)

n2
dn,

we see that the second term is absolutely convergent and that the first goes to zero at the
upper limit. Hence the series in Eq. (5.58) converges, which is hard to see from other
convergence tests.

Alternatively, we may apply theq = 1 case of the Euler–Maclaurin integration formula
in Eq. (5.168b),

n∑
ν=1

f (ν) =
∫ n

1
f (x)dx + 1

2

{
f (n)+ f (1)

}+ 1

12

{
f ′(n)− f ′(1)

}

− 1

2

∫ 1

0

(
x2− x + 1

6

) n−1∑
ν=1

f ′′(x + ν)dx,

which is straightforward but more tedious because of the second derivative. �
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Exercises

5.3.1 (a) From the electrostatic two-hemisphere problem (Exercise 12.3.20) we obtain the
series

∞∑
s=0

(−1)s(4s + 3)
(2s − 1)!!
(2s + 2)!! .

Test it for convergence.
(b) The corresponding series for the surface charge density is

∞∑
s=0

(−1)s(4s + 3)
(2s − 1)!!
(2s)!! .

Test it for convergence.
The !! notation is explained in Section 8.1 and Exercise 5.2.19.

5.3.2 Show by direct numerical computation that the sum of the first 10 terms of

lim
x→1

ln(1+ x)= ln2=
∞∑
n=1

(−1)n−1n−1

differs from ln2 by less than the eleventh term: ln 2= 0.69314 71806. . . .

5.3.3 In Exercise 5.2.9 the hypergeometric series is shown convergent forx = ±1, if γ >

α + β. Show that there is conditional convergence forx = −1 for γ down to γ >

α + β − 1.
Hint. The asymptotic behavior of the factorial function is given by Stirling’s series,
Section 8.3.

5.4 ALGEBRA OF SERIES

The establishment of absolute convergence is important because it can be proved that ab-
solutely convergent series may be reordered according to the familiar rules of algebra or
arithmetic.

• If an infinite series is absolutely convergent, the series sum is independent of the order
in which the terms are added.

• The series may be multiplied with another absolutely convergent series. The limit of the
product will be the product of the individual series limits. The product series, a double
series, will also converge absolutely.

No such guarantees can be given for conditionally convergent series. Again consider the
alternating harmonic series. If we write

1− 1
2 + 1

3 − 1
4 + · · · = 1− (1

2 − 1
3

)− (1
4 − 1

5

)− · · · , (5.59)
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it is clear that the sum
∞∑
n=1

(−1)n−1n−1 < 1. (5.60)

However, if we rearrange the terms slightly, we may make the alternating harmonic series
converge to3

2. We regroup the terms of Eq. (5.59), taking(
1+ 1

3 + 1
5

)− (1
2

)+ (1
7 + 1

9 + 1
11+ 1

13+ 1
15

)− (1
4

)
+ ( 1

17+ · · · + 1
25

)− (1
6

)+ ( 1
27+ · · · + 1

35

)− (1
8

)+ · · · . (5.61)

Treating the terms grouped in parentheses as single terms for convenience, we obtain the
partial sums

s1= 1.5333 s2= 1.0333
s3= 1.5218 s4= 1.2718
s5= 1.5143 s6= 1.3476
s7= 1.5103 s8= 1.3853
s9= 1.5078 s10= 1.4078.

From this tabulation ofsn and the plot ofsn versusn in Fig. 5.3, the convergence to
3
2 is fairly clear. We have rearranged the terms, taking positive terms until the partial sum
was equal to or greater than32 and then adding in negative terms until the partial sum just
fell below 3

2 and so on. As the series extends to infinity, all original terms will eventually
appear, but the partial sums of this rearranged alternating harmonic series converge to3

2.
By a suitable rearrangement of terms, a conditionally convergent series may be made

to converge to any desired value or even to diverge. This statement is sometimes given

FIGURE 5.3 Alternating harmonic series — terms
rearranged to give convergence to 1.5.
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asRiemann’s theorem. Obviously, conditionally convergent series must be treated with
caution.

Absolutely convergent series can be multiplied without problems. This follows as a
special case from the rearrangement of double series. However, conditionally convergent
series cannot always be multiplied to yield convergent series, as the following example
shows.

Example 5.4.1 SQUARE OF A CONDITIONALLY CONVERGENT SERIES MAY DIVERGE

The series
∑∞

n=1
(−1)n−1√

n
converges, by the Leibniz criterion. Its square,

[∑
n

(−1)n−1

√
n

]2

=
∑
n

(−1)n
[

1√
1

1√
n− 1

+ 1√
2

1√
n− 2

+ · · · + 1√
n− 1

1√
1

]
,

has the general term in brackets consisting ofn−1 additive terms, each of which is greater
than 1√

n−1
√
n−1

, so the product term in brackets is greater thann−1
n−1 and does not go to

zero. Hence this product oscillates and therefore diverges. �

Hence for a product of two series to converge, we have to demand as a sufficient con-
dition that at least one of them converge absolutely. To prove thisproduct convergence
theorem that if

∑
n un converges absolutely toU ,

∑
n vn converges toV, then

∑
n

cn, cn =
n∑

m=0

umvn−m

converges toUV, it is sufficient to show that the difference termsDn ≡ c0 + c1 + · · · +
c2n −UnVn→ 0 for n→∞, whereUn, Vn are the partial sums of our series. As a result,
the partial sum differences

Dn = u0v0+ (u0v1+ u1v0)+ · · · + (u0v2n + u1v2n−1+ · · · + u2nv0)

− (u0+ u1+ · · · + un)(v0+ v1+ · · · + vn)

= u0(vn+1+ · · · + v2n)+ u1(vn+1+ · · · + v2n−1)+ · · · + un+1vn+1

+ vn+1(v0+ · · · + vn−1)+ · · · + u2nv0,

so for all sufficiently largen,

|Dn|< ε
(|u0| + · · · + |un−1|

)+M
(|un+1| + · · · + |u2n|

)
< ε(a +M),

because|vn+1+ vn+2+ · · · + vn+m|< ε for sufficiently largen and all positive integersm
as
∑

vn converges, and the partial sumsVn < B of
∑

n vn are bounded byM, because the
sum converges. Finally we call

∑
n |un| = a, as

∑
un converges absolutely.

Two series can be multiplied, provided one of them converges absolutely. Addition and
subtraction of series is also valid termwise if one series converges absolutely.
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Improvement of Convergence,
Rational Approximations

The series

ln(1+ x)=
∞∑
n=1

(−1)n−1x
n

n
, −1< x ≤ 1, (5.61a)

converges very slowly asx approaches+1. Therate of convergence may be improved
substantially by multiplying both sides of Eq. (5.61a) by a polynomial and adjusting the
polynomial coefficients to cancel the more slowly converging portions of the series. Con-
sider the simplest possibility: Multiply ln(1+ x) by 1+ a1x:

(1+ a1x) ln(1+ x)=
∞∑
n=1

(−1)n−1x
n

n
+ a1

∞∑
n=1

(−1)n−1x
n+1

n
.

Combining the two series on the right, term by term, we obtain

(1+ a1x) ln(1+ x) = x +
∞∑
n=2

(−1)n−1
(

1

n
− a1

n− 1

)
xn

= x +
∞∑
n=2

(−1)n−1n(1− a1)− 1

n(n− 1)
xn.

Clearly, if we takea1 = 1, then in the numerator disappears and our combined series
converges asn−2.

Continuing this process, we find that(1+ 2x + x2) ln(1+ x) vanishes asn−3 and that
(1+ 3x + 3x2 + x3) ln(1+ x) vanishes asn−4. In effect we are shifting from a simple
series expansion of Eq. (5.61a) to a rational fraction representation in which the function
ln(1+ x) is represented by the ratio of a series and a polynomial:

ln(1+ x)= x +∑∞
n=2(−1)nxn/[n(n− 1)]

1+ x
.

Such rational approximations may be both compact and accurate.

Rearrangement of Double Series

Another aspect of the rearrangement of series appears in the treatment of double series
(Fig. 5.4):

∞∑
m=0

∞∑
n=0

an,m.

Let us substitute

n= q ≥ 0, m= p− q ≥ 0 (q ≤ p).
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FIGURE 5.4 Double
series — summation overn
indicated by vertical dashed

lines.

This results in the identity

∞∑
m=0

∞∑
n=0

an,m =
∞∑
p=0

p∑
q=0

aq,p−q . (5.62)

The summation overp andq of Eq. (5.62) is illustrated in Fig. 5.5. The substitution

n= s ≥ 0, m= r − 2s ≥ 0

(
s ≤ r

2

)
leads to

∞∑
m=0

∞∑
n=0

an,m =
∞∑
r=0

[r/2]∑
s=0

as,r−2s , (5.63)

FIGURE 5.5 Double series
— again, the first summation

is represented by vertical
dashed lines, but these

vertical lines correspond to
diagonals in Fig. 5.4.
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FIGURE 5.6 Double series. The
summation overs corresponds to a

summation along the almost-horizontal
dashed lines in Fig. 5.4.

with [r/2] = r/2 for r even and(r − 1)/2 for r odd. The summation overr and s of
Eq. (5.63) is shown in Fig. 5.6. Equations (5.62) and (5.63) are clearly rearrangements of
the array of coefficientsanm, rearrangements that are valid as long as we have absolute
convergence.

The combination of Eqs. (5.62) and (5.63),

∞∑
p=0

p∑
q=0

aq,p−q =
∞∑
r=0

[r/2]∑
s=0

as,r−2s , (5.64)

is used in Section 12.1 in the determination of the series form of the Legendre polynomials.

Exercises

5.4.1 Given the series (derived in Section 5.6)

ln(1+ x)= x − x2

2
+ x3

3
− x4

4
· · · , −1< x ≤ 1,

show that

ln

(
1+ x

1− x

)
= 2

(
x + x3

3
+ x5

5
+ · · ·

)
, −1< x < 1.

The original series, ln(1+ x), appears in an analysis of binding energy in crystals. It
is 1

2 the Madelung constant(2 ln2) for a chain of atoms. The second series is useful
in normalizing the Legendre polynomials (Section 12.3) and in developing a second
solution for Legendre’s differential equation (Section 12.10).

5.4.2 Determine the values of the coefficientsa1, a2, and a3 that will make
(1+ a1x + a2x

2+ a3x
3) ln(1+ x) converge asn−4. Find the resulting series.

5.4.3 Show that

(a)
∞∑
n=2

[
ζ(n)− 1

]= 1, (b)
∞∑
n=2

(−1)n
[
ζ(n)− 1

]= 1
2,

whereζ(n) is the Riemann zeta function.



348 Chapter 5 Infinite Series

5.4.4 Write a program that will rearrange the terms of the alternating harmonic series to make
the series converge to 1.5. Group your terms as indicated in Eq. (5.61). List the first 100
successive partial sums that just climb above 1.5 or just drop below 1.5, and list the new
terms included in each such partial sum.

ANS.
n 1 2 3 4 5
sn 1.5333 1.0333 1.5218 1.2718 1.5143

5.5 SERIES OF FUNCTIONS

We extend our concept of infinite series to include the possibility that each termun may be
a function of some variable,un = un(x). Numerous illustrations of such series of functions
appear in Chapters 11–14. The partial sums become functions of the variablex,

sn(x)= u1(x)+ u2(x)+ · · · + un(x), (5.65)

as does the series sum, defined as the limit of the partial sums:
∞∑
n=1

un(x)= S(x)= lim
n→∞ sn(x). (5.66)

So far we have concerned ourselves with the behavior of the partial sums as a function
of n. Now we consider how the foregoing quantities depend onx. The key concept here is
that of uniform convergence.

Uniform Convergence

If for any smallε > 0 there exists a numberN , independent of x in the interval[a, b] (that
is, a ≤ x ≤ b) such that∣∣S(x)− sn(x)

∣∣< ε, for all n≥N, (5.67)

then the series is said to be uniformly convergent in the interval[a, b]. This says that for
our series to be uniformly convergent, it must be possible to find a finiteN so that the tail
of the infinite series,|∑∞

i=N+1ui(x)|, will be less than an arbitrarily smallε for all x in
the given interval.

This condition, Eq. (5.67), which defines uniform convergence, is illustrated in Fig. 5.7.
The point is that no matter how smallε is taken to be, we can always choosen large enough
so that the absolute magnitude of the difference betweenS(x) andsn(x) is less thanε for
all x, a ≤ x ≤ b. If this cannot be done, then

∑
un(x) is not uniformly convergent in[a, b].

Example 5.5.1 NONUNIFORM CONVERGENCE

∞∑
n=1

un(x)=
∞∑
n=1

x

[(n− 1)x + 1][nx + 1] . (5.68)



5.5 Series of Functions 349

FIGURE 5.7 Uniform convergence.

The partial sumsn(x)= nx(nx+1)−1, as may be verified bymathematical induction.
By inspection this expression forsn(x) holds forn= 1,2. We assume it holds forn terms
and then prove it holds forn+ 1 terms:

sn+1(x) = sn(x)+ x

[nx + 1][(n+ 1)x + 1]
= nx

[nx + 1] +
x

[nx + 1][(n+ 1)x + 1]
= (n+ 1)x

(n+ 1)x + 1
,

completing the proof.
Lettingn approach infinity, we obtain

S(0) = lim
n→∞ sn(0)= 0,

S(x 
= 0) = lim
n→∞ sn(x 
= 0)= 1.

We have a discontinuity in our series limit atx = 0. However,sn(x) is a continuous func-
tion of x,0≤ x ≤ 1, for all finite n. No matter how smallε may be, Eq. (5.67) will be
violated for all sufficiently smallx. Our series does not converge uniformly. �

Weierstrass M (Majorant) Test

The most commonly encountered test for uniform convergence is the WeierstrassM test.
If we can construct a series of numbers

∑∞
1 Mi , in which Mi ≥ |ui(x)| for all x in the

interval [a, b] and
∑∞

1 Mi is convergent, our seriesui(x) will be uniformly convergent
in [a, b].
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The proof of this WeierstrassM test is direct and simple. Since
∑

i Mi converges, some
numberN exists such that forn+ 1≥N ,

∞∑
i=n+1

Mi < ε. (5.69)

This follows from our definition of convergence. Then, with|ui(x)| ≤Mi for all x in the
intervala ≤ x ≤ b,

∞∑
i=n+1

∣∣ui(x)∣∣< ε. (5.70)

Hence ∣∣S(x)− sn(x)
∣∣= ∣∣∣∣ ∞∑

i=n+1

ui(x)

∣∣∣∣< ε, (5.71)

and by definition
∑∞

i=1ui(x) is uniformly convergent in[a, b]. Since we have specified
absolute values in the statement of the WeierstrassM test, the series

∑∞
i=1ui(x) is also

seen to beabsolutely convergent.
Note that uniform convergence and absolute convergence are independent properties.

Neither implies the other. For specific examples,

∞∑
n=1

(−1)n

n+ x2
, −∞< x <∞, (5.72)

and
∞∑
n=1

(−1)n−1x
n

n
= ln(1+ x), 0≤ x ≤ 1, (5.73)

converge uniformly in the indicated intervals but do not converge absolutely. On the other
hand,

∞∑
n=0

(1− x)xn = 1, 0≤ x < 1

= 0, x = 1, (5.74)

converges absolutely but does not converge uniformly in[0,1].
From the definition of uniform convergence we may show that any series

f (x)=
∞∑
n=1

un(x) (5.75)

cannot converge uniformly in any interval that includes a discontinuity off (x) if all un(x)
are continuous.

Since the WeierstrassM test establishes both uniform and absolute convergence, it will
necessarily fail for series that are uniformly but conditionally convergent.
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Abel’s Test

A somewhat more delicate test for uniform convergence has been given by Abel. If

un(x) = anfn(x),∑
an = A, convergent

and the functionsfn(x) are monotonic[fn+1(x) ≤ fn(x)] and bounded, 0≤ fn(x) ≤M ,
for all x in [a, b], then

∑
n un(x) converges uniformly in [a, b].

This test is especially useful in analyzing power series (compare Section 5.7). Details of
the proof of Abel’s test and other tests for uniform convergence are given in the Additional
Readings listed at the end of this chapter.

Uniformly convergent series have three particularly useful properties.

1. If the individual termsun(x) are continuous, the series sum

f (x)=
∞∑
n=1

un(x) (5.76)

is also continuous.
2. If the individual termsun(x) are continuous, the series may be integrated term by

term. The sum of the integrals is equal to the integral of the sum.∫ b

a

f (x) dx =
∞∑
n=1

∫ b

a

un(x) dx. (5.77)

3. The derivative of the series sumf (x) equals the sum of the individual term deriva-
tives:

d

dx
f (x)=

∞∑
n=1

d

dx
un(x), (5.78)

provided the following conditions are satisfied:

un(x) and
dun(x)

dx
are continuous in[a, b].

∞∑
n=1

dun(x)

dx
is uniformly convergent in[a, b].

Term-by-term integration of a uniformly convergent series8 requires only continuity of
the individual terms. This condition is almost always satisfied in physical applications.
Term-by-term differentiation of a series is often not valid because more restrictive condi-
tions must be satisfied. Indeed, we shall encounter Fourier series in Chapter 14 in which
term-by-term differentiation of a uniformly convergent series leads to a divergent series.

8Term-by-term integration may also be valid in the absence of uniform convergence.
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Exercises

5.5.1 Find the range ofuniform convergence of the Dirichlet series

(a)
∞∑
n=1

(−1)n−1

nx
, (b) ζ(x)=

∞∑
n=1

1

nx
.

ANS. (a) 0< s ≤ x <∞.
(b) 1< s ≤ x <∞.

5.5.2 For what range ofx is the geometric series
∑∞

n=0x
n uniformly convergent?

ANS.−1<−s ≤ x ≤ s < 1.

5.5.3 For what range of positive values ofx is
∑∞

n=0 1/(1+ xn)

(a) convergent? (b) uniformly convergent?

5.5.4 If the series of the coefficients
∑

an and
∑

bn are absolutely convergent, show that the
Fourier series ∑

(an cosnx + bn sinnx)

is uniformly convergent for−∞< x <∞.

5.6 TAYLOR’S EXPANSION

This is an expansion of a function into an infinite series of powers of a variablex or into
a finite series plus a remainder term. The coefficients of the successive terms of the series
involve the successive derivatives of the function. We have already used Taylor’s expansion
in the establishment of a physical interpretation of divergence (Section 1.7) and in other
sections of Chapters 1 and 2. Now we derive the Taylor expansion.

We assume that our functionf (x) has a continuousnth derivative9 in the intervala ≤
x ≤ b. Then, integrating thisnth derivativen times,∫ x

a

f (n)(x1) dx1 = f (n−1)(x1)

∣∣∣x
a
= f (n−1)(x)− f (n−1)(a),∫ x

a

dx2

∫ x2

a

dx1f
(n)(x1) =

∫ x

a

dx2
[
f (n−1)(x2)− f (n−1)(a)

]
(5.79)

= f (n−2)(x)− f (n−2)(a)− (x − a)f (n−1)(a).

Continuing, we obtain∫ x

a

dx3

∫ x3

a

dx2

∫ x2

a

dx1f
(n)(x1) = f (n−3)(x)− f (n−3)(a)− (x − a)f (n−2)(a)

− (x − a)2

2! f (n−1)(a). (5.80)

9Taylor’s expansion may be derived under slightly less restrictive conditions; compare H. Jeffreys and B. S. Jeffreys,Methods
of Mathematical Physics, 3rd ed. Cambridge: Cambridge University Press (1956), Section 1.133.
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Finally, on integrating for thenth time,∫ x

a

dxn · · ·
∫ x2

a

dx1f
(n)(x1) = f (x)− f (a)− (x − a)f ′(a)− (x − a)2

2! f ′′(a)

− · · · − (x − a)n−1

(n− 1)! f (n−1)(a). (5.81)

Note that this expression is exact. No terms have been dropped, no approximations made.
Now, solving forf (x), we have

f (x) = f (a)+ (x − a)f ′(a)

+ (x − a)2

2! f ′′(a)+ · · · + (x − a)n−1

(n− 1)! f (n−1)(a)+Rn.
(5.82)

The remainder,Rn, is given by then-fold integral

Rn =
∫ x

a

dxn · · ·
∫ x2

a

dx1f
(n)(x1). (5.83)

This remainder, Eq. (5.83), may be put into a perhaps more practical form by using the
mean value theorem of integral calculus:∫ x

a

g(x) dx = (x − a)g(ξ), (5.84)

with a ≤ ξ ≤ x. By integratingn times we get the Lagrangian form10 of the remainder:

Rn = (x − a)n

n! f (n)(ξ). (5.85)

With Taylor’s expansion in this form we are not concerned with any questions of infinite
series convergence. This series is finite, and the only questions concern the magnitude of
the remainder.

When the functionf (x) is such that

lim
n→∞Rn = 0, (5.86)

Eq. (5.82) becomes Taylor’s series:

f (x) = f (a)+ (x − a)f ′(a)+ (x − a)2

2! f ′′(a)+ · · ·

=
∞∑
n=0

(x − a)n

n! f (n)(a).11 (5.87)

10An alternate form derived by Cauchy is

Rn = (x − ζ )n−1(x − a)

(n− 1)! f (n)(ζ ),

with a ≤ ζ ≤ x.
11Note that 0! = 1 (compare Section 8.1).
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Our Taylor series specifies the value of a function at one point,x, in terms of the value
of the function and its derivatives at a reference pointa. It is an expansion in powers of the
change in the variable,�x = x − a in this case. The notation may be varied at the user’s
convenience. With the substitutionx→ x + h anda→ x we have an alternate form,

f (x + h)=
∞∑
n=0

hn

n! f
(n)(x).

When we use theoperator D = d/dx, the Taylor expansion becomes

f (x + h)=
∞∑
n=0

hnDn

n! f (x)= ehDf (x).

(The transition to the exponential form anticipates Eq. (5.90), which follows.) An equiva-
lent operator form of this Taylor expansion appears in Exercise 4.2.4. A derivation of the
Taylor expansion in the context of complex variable theory appears in Section 6.5.

Maclaurin Theorem

If we expand about the origin(a = 0), Eq. (5.87) is known as Maclaurin’s series:

f (x)= f (0)+ xf ′(0)+ x2

2! f
′′(0)+ · · · =

∞∑
n=0

xn

n! f
(n)(0). (5.88)

An immediate application of the Maclaurin series (or the Taylor series) is in the expan-
sion of various transcendental functions into infinite (power) series.

Example 5.6.1 EXPONENTIAL FUNCTION

Let f (x)= ex . Differentiating, we have

f (n)(0)= 1 (5.89)

for all n,n= 1,2,3, . . . . Then, with Eq. (5.88), we have

ex = 1+ x + x2

2! +
x3

3! + · · · =
∞∑
n=0

xn

n! . (5.90)

This is the series expansion of the exponential function. Some authors use this series to
define the exponential function.

Although this series is clearly convergent for allx, we should check the remainder term,
Rn. By Eq. (5.85) we have

Rn = xn

n! f
(n)(ξ)= xn

n! e
ξ , 0≤ |ξ | ≤ x. (5.91)
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Therefore

|Rn| ≤ xnex

n! (5.92)

and

lim
n→∞Rn = 0 (5.93)

for all finite values ofx, which indicates that this Maclaurin expansion ofex converges
absolutely over the range−∞< x <∞. �

Example 5.6.2 LOGARITHM

Let f (x)= ln(1+ x). By differentiating, we obtain

f ′(x) = (1+ x)−1,

f (n)(x) = (−1)n−1(n− 1)!(1+ x)−n. (5.94)

The Maclaurin expansion (Eq. (5.88)) yields

ln(1+ x) = x − x2

2
+ x3

3
− x4

4
+ · · · +Rn

=
n∑

p=1

(−1)p−1x
p

p
+Rn. (5.95)

In this case our remainder is given by

Rn = xn

n! f
(n)(ξ), 0≤ ξ ≤ x

≤ xn

n
, 0≤ ξ ≤ x ≤ 1. (5.96)

Now, the remainder approaches zero asn is increased indefinitely, provided 0≤ x ≤ 1.12

As an infinite series,

ln(1+ x)=
∞∑
n=1

(−1)n−1x
n

n
(5.97)

converges for−1< x ≤ 1. The range−1< x < 1 is easily established by the d’Alembert
ratio test (Section 5.2). Convergence atx = 1 follows by the Leibniz criterion (Section 5.3).
In particular, atx = 1 we have

ln2= 1− 1

2
+ 1

3
− 1

4
+ 1

5
− · · · =

∞∑
n=1

(−1)n−1n−1, (5.98)

the conditionally convergent alternating harmonic series. �

12This range can easily be extended to−1< x ≤ 1 but not tox =−1.



356 Chapter 5 Infinite Series

Binomial Theorem

A second, extremely important application of the Taylor and Maclaurin expansions is the
derivation of the binomial theorem for negative and/or nonintegral powers.

Let f (x)= (1+ x)m, in whichm may be negative and is not limited to integral values.
Direct application of Eq. (5.88) gives

(1+ x)m = 1+mx + m(m− 1)

2! x2+ · · · +Rn. (5.99)

For this function the remainder is

Rn = xn

n! (1+ ξ)m−nm(m− 1) · · · (m− n+ 1) (5.100)

and ξ lies between 0 andx,0≤ ξ ≤ x. Now, for n > m, (1+ ξ)m−n is a maximum for
ξ = 0. Therefore

Rn ≤ xn

n!m(m− 1) · · · (m− n+ 1). (5.101)

Note that them dependent factors do not yield a zero unlessm is a nonnegative integer;Rn

tends to zero asn→∞ if x is restricted to the range 0≤ x < 1. The binomial expansion
therefore is shown to be

(1+ x)m = 1+mx + m(m− 1)

2! x2+ m(m− 1)(m− 2)

3! x3+ · · · . (5.102)

In other, equivalent notation,

(1+ x)m =
∞∑
n=0

m!
n!(m− n)!x

n =
∞∑
n=0

(
m

n

)
xn. (5.103)

The quantity
(
m
n

)
, which equalsm!/[n!(m− n)!], is called abinomial coefficient. Al-

though we have only shown that the remainder vanishes,

lim
n→∞Rn = 0,

for 0≤ x < 1, the series in Eq. (5.102) actually may be shown to be convergent for the
extended range−1< x < 1. Form an integer,(m− n)! = ±∞ if n >m (Section 8.1) and
the series automatically terminates atn=m.

Example 5.6.3 RELATIVISTIC ENERGY

The total relativistic energy of a particle of massm and velocityv is

E =mc2
(

1− v2

c2

)−1/2

. (5.104)

Compare this expression with the classical kinetic energy,mv2/2.
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By Eq. (5.102) withx =−v2/c2 andm=−1/2 we have

E = mc2
[
1− 1

2

(
−v2

c2

)
+ (−1/2)(−3/2)

2!
(
−v2

c2

)2

+ (−1/2)(−3/2)(−5/2)

3!
(
−v2

c2

)3

+ · · ·
]
,

or

E =mc2+ 1

2
mv2+ 3

8
mv2 · v

2

c2
+ 5

16
mv2 ·

(
v2

c2

)2

+ · · · . (5.105)

The first term,mc2, is identified as the rest mass energy. Then

Ekinetic= 1

2
mv2

[
1+ 3

4

v2

c2
+ 5

8

(
v2

c2

)2

+ · · ·
]
. (5.106)

For particle velocityv � c, the velocity of light, the expression in the brackets reduces
to unity and we see that the kinetic portion of the total relativistic energy agrees with the
classical result. �

For polynomials we can generalize the binomial expansion to

(a1+ a2+ · · · + am)
n =

∑ n!
n1!n2! · · ·nm!a

n1
1 a

n2
2 · · ·anmm ,

where the summation includes all different combinations ofn1, n2, . . . , nm with∑m
i=1ni = n. Hereni andn are all integral. This generalization finds considerable use

in statistical mechanics.
Maclaurin series may sometimes appear indirectly rather than by direct use of Eq. (5.88).

For instance, the most convenient way to obtain the series expansion

sin−1x =
∞∑
n=0

(2n− 1)!!
(2n)!! · x2n+1

(2n+ 1)
= x + x3

6
+ 3x5

40
+ · · · , (5.106a)

is to make use of the relation (from siny = x, getdy/dx = 1/
√

1− x2 )

sin−1x =
∫ x

0

dt

(1− t2)1/2
.

We expand(1− t2)−1/2 (binomial theorem) and then integrate term by term. This term-
by-term integration is discussed in Section 5.7. The result is Eq. (5.106a). Finally, we may
take the limit asx→ 1. The series converges by Gauss’ test, Exercise 5.2.5.
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Taylor Expansion — More Than One Variable

If the functionf has more than one independent variable, say,f = f (x, y), the Taylor
expansion becomes

f (x, y) = f (a, b)+ (x − a)
∂f

∂x
+ (y − b)

∂f

∂y

+ 1

2!
[
(x − a)2

∂2f

∂x2
+ 2(x − a)(y − b)

∂2f

∂x∂y
+ (y − b)2

∂2f

∂y2

]
+ 1

3!
[
(x − a)3

∂3f

∂x3
+ 3(x − a)2(y − b)

∂3f

∂x2∂y

+ 3(x − a)(y − b)2
∂3f

∂x∂y2
+ (y − b)3

∂3f

∂y3

]
+ · · · , (5.107)

with all derivatives evaluated at the point(a, b). Usingαj t = xj − xj0, we may write the
Taylor expansion form independent variables in the symbolic form

f (x1, . . . , xm)=
∞∑
n=0

tn

n!
( m∑

i=1

αi
∂

∂xi

)n

f (x1, . . . , xm)

∣∣∣
(xk=xk0,k=1,...,m)

. (5.108)

A convenient vector form form= 3 is

ψ(r+ a)=
∞∑
n=0

1

n! (a ·∇)nψ(r). (5.109)

Exercises

5.6.1 Show that

(a) sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)! ,

(b) cosx =
∞∑
n=0

(−1)n
x2n

(2n)! .

In Section 6.1,eix is defined by a series expansion such that

eix = cosx + i sinx.

This is the basis for the polar representation of complex quantities. As a special case we
find, with x = π , the intriguing relation

eiπ =−1.
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5.6.2 Derive a series expansion of cotx in increasing powers ofx by dividing cosx by sinx.
Note. The resultant series that starts with 1/x is actually a Laurent series (Section 6.5).
Although the two series for sinx and cosx were valid for allx, the convergence of the
series for cotx is limited by the zeros of the denominator, sinx (see Analytic Continu-
ation in Section 6.5).

5.6.3 The Raabe test for
∑

n(n lnn)−1 leads to

lim
n→∞n

[
(n+ 1) ln(n+ 1)

n lnn
− 1

]
.

Show that this limit is unity (which means that the Raabe test here is indeterminate).

5.6.4 Show by series expansion that

1

2
ln

η0+ 1

η0− 1
= coth−1η0, |η0|> 1.

This identity may be used to obtain a second solution for Legendre’s equation.

5.6.5 Show thatf (x)= x1/2 (a) has no Maclaurin expansion but (b) has a Taylor expansion
about any pointx0 
= 0. Find the range of convergence of the Taylor expansion about
x = x0.

5.6.6 Let x be an approximation for a zero off (x) and�x be the correction. Show that by
neglecting terms of order(�x)2,

�x =− f (x)

f ′(x)
.

This is Newton’s formula for finding a root. Newton’s method has the virtues of illus-
trating series expansions and elementary calculus but is very treacherous.

5.6.7 Expand a function�(x,y, z) by Taylor’s expansion about(0,0,0) to O(a3). Evaluate
�̄, the average value of�, averaged over a small cube of sidea centered on the origin
and show that the Laplacian of� is a measure of deviation of� from �(0,0,0).

5.6.8 The ratio of two differentiable functionsf (x) andg(x) takes on the indeterminate form
0/0 atx = x0. Using Taylor expansions proveL’Hôpital’s rule,

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)
g′(x)

.

5.6.9 With n > 1, show that

(a)
1

n
− ln

(
n

n− 1

)
< 0, (b)

1

n
− ln

(
n+ 1

n

)
> 0.

Use these inequalities to show that the limit defining the Euler–Mascheroni constant,
Eq. (5.28), is finite.

5.6.10 Expand(1−2tz+ t2)−1/2 in powers oft . Assume thatt is small. Collect the coefficients
of t0, t1, andt2.
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ANS. a0= P0(z)= 1,
a1= P1(z)= z,
a2= P2(z)= 1

2(3z
2− 1),

where an = Pn(z), thenth Legendre polynomial.

5.6.11 Using the double factorial notation of Section 8.1, show that

(1+ x)−m/2=
∞∑
n=0

(−1)n
(m+ 2n− 2)!!
2nn!(m− 2)!! x

n,

for m= 1,2,3, . . . .

5.6.12 Using binomial expansions, compare the three Doppler shift formulas:

(a) ν′ = ν

(
1∓ v

c

)−1

moving source;

(b) ν′ = ν

(
1± v

c

)
moving observer;

(c) ν′ = ν

(
1± v

c

)(
1− v2

c2

)−1/2

relativistic.

Note. The relativistic formula agrees with the classical formulas if terms of orderv2/c2

can be neglected.

5.6.13 In the theory of general relativity there are various ways of relating (defining) a velocity
of recession of a galaxy to its red shift,δ. Milne’s model (kinematic relativity) gives

(a) v1= cδ

(
1+ 1

2
δ

)
,

(b) v2= cδ

(
1+ 1

2
δ

)
(1+ δ)−2,

(c) 1+ δ =
[

1+ v3/c

1− v3/c

]1/2

.

1. Show that forδ� 1 (andv3/c� 1) all three formulas reduce tov = cδ.
2. Compare the three velocities through terms of orderδ2.
Note. In special relativity (withδ replaced byz), the ratio of observed wavelengthλ to
emitted wavelengthλ0 is given by

λ

λ0
= 1+ z=

(
c+ v

c− v

)1/2

.

5.6.14 The relativistic sumw of two velocitiesu andv is given by

w

c
= u/c+ v/c

1+ uv/c2
.
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If
v

c
= u

c
= 1− α,

where 0≤ α ≤ 1, findw/c in powers ofα through terms inα3.

5.6.15 The displacementx of a particle of rest massm0, resulting from a constant forcem0g

along thex-axis, is

x = c2

g

{[
1+

(
g
t

c

)2]1/2

− 1

}
,

including relativistic effects. Find the displacementx as a power series in timet . Com-
pare with the classical result,

x = 1
2gt

2.

5.6.16 By use of Dirac’s relativistic theory, the fine structure formula of atomic spectroscopy
is given by

E =mc2
[
1+ γ 2

(s + n− |k|)2
]−1/2

,

where

s = (|k|2− γ 2)1/2
, k =±1,±2,±3, . . . .

Expand in powers ofγ 2 through orderγ 4 (γ 2= Ze2/4πε0h̄c, with Z the atomic num-
ber). This expansion is useful in comparing the predictions of the Dirac electron theory
with those of a relativistic Schrödinger electron theory. Experimental results support the
Dirac theory.

5.6.17 In a head-on proton–proton collision, the ratio of the kinetic energy in the center of mass
system to the incident kinetic energy is

R = [√2mc2
(
Ek + 2mc2

)− 2mc2]/Ek.

Find the value of this ratio of kinetic energies for

(a) Ek �mc2 (nonrelativistic)
(b) Ek �mc2 (extreme-relativistic).

ANS. (a) 1
2, (b) 0. The latter answer is a sort of law

of diminishing returns for high-energy particle
accelerators (with stationary targets).

5.6.18 With binomial expansions

x

1− x
=

∞∑
n=1

xn,
x

x − 1
= 1

1− x−1
=

∞∑
n=0

x−n.

Adding these two series yields
∑∞

n=−∞ xn = 0.
Hopefully, we can agree that this is nonsense, but what has gone wrong?
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5.6.19 (a) Planck’s theory of quantized oscillators leads to an average energy

〈ε〉 =
∑∞

n=1nε0 exp(−nε0/kT )∑∞
n=0 exp(−nε0/kT )

,

whereε0 is a fixed energy. Identify the numerator and denominator as binomial
expansions and show that the ratio is

〈ε〉 = ε0

exp(ε0/kT )− 1
.

(b) Show that the〈ε〉 of part (a) reduces tokT , the classical result, forkT � ε0.

5.6.20 (a) Expand by the binomial theorem and integrate term by term to obtain the Gregory
series fory = tan−1x (note that tany = x):

tan−1x =
∫ x

0

dt

1+ t2
=
∫ x

0

{
1− t2+ t4− t6+ · · ·}dt

=
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, −1≤ x ≤ 1.

(b) By comparing series expansions, show that

tan−1x = i

2
ln

(
1− ix

1+ ix

)
.

Hint. Compare Exercise 5.4.1.

5.6.21 In numerical analysis it is often convenient to approximated2ψ(x)/dx2 by

d2

dx2
ψ(x)≈ 1

h2

[
ψ(x + h)− 2ψ(x)+ψ(x − h)

]
.

Find the error in this approximation.

ANS. Error= h2

12
ψ(4)(x).

5.6.22 You have a functiony(x) tabulated at equally spaced values of the argument{
yn = y(xn)

xn = x + nh.

Show that the linear combination

1

12h
{−y2+ 8y1− 8y−1+ y−2}

yields

y′0−
h4

30
y
(5)
0 + · · · .

Hence this linear combination yieldsy′0 if (h4/30)y(5)0 and higher powers ofh and
higher derivatives ofy(x) are negligible.
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5.6.23 In a numerical integration of a partial differential equation, the three-dimensional Lapla-
cian is replaced by

∇2ψ(x, y, z)→ h−2[ψ(x + h,y, z)+ψ(x − h,y, z)

+ψ(x, y + h, z)+ψ(x, y − h, z)+ψ(x, y, z+ h)

+ψ(x, y, z− h)− 6ψ(x, y, z)
]
.

Determine the error in this approximation. Hereh is the step size, the distance between
adjacent points in thex-, y-, or z-direction.

5.6.24 Using double precision, calculatee from its Maclaurin series.
Note. This simple, direct approach is the best way of calculatinge to high accuracy.
Sixteen terms givee to 16 significant figures. The reciprocal factorials give very rapid
convergence.

5.7 POWER SERIES

The power series is a special and extremely useful type of infinite series of the form

f (x)= a0+ a1x + a2x
2+ a3x

3+ · · · =
∞∑
n=0

anx
n, (5.110)

where the coefficientsai are constants, independent ofx.13

Convergence

Equation (5.110) may readily be tested for convergence by either the Cauchy root test or
the d’Alembert ratio test (Section 5.2). If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣=R−1, (5.111)

the series converges for−R < x < R. This is the interval or radius of convergence. Since
the root and ratio tests fail when the limit is unity, the endpoints of the interval require
special attention.

For instance, ifan = n−1, thenR = 1 and, from Sections 5.1, 5.2, and 5.3, the series
converges forx = −1 but diverges forx = +1. If an = n!, thenR = 0 and the series
diverges for allx 
= 0.

Uniform and Absolute Convergence

Suppose our power series (Eq. (5.110)) has been found convergent for−R < x < R; then
it will be uniformly and absolutely convergent in anyinterior interval,−S ≤ x ≤ S, where
0< S <R.

This may be proved directly by the WeierstrassM test (Section 5.5).

13Equation (5.110) may be generalized toz= x + iy, replacingx. The following two chapters will then yield uniform conver-
gence, integrability, and differentiability in a region of a complex plane in place of an interval on thex-axis.
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Continuity

Since each of the termsun(x) = anx
n is a continuous function ofx andf (x) =∑anx

n

converges uniformly for−S ≤ x ≤ S,f (x) must be a continuous function in the interval
of uniform convergence.

This behavior is to be contrasted with the strikingly different behavior of the Fourier se-
ries (Chapter 14), in which the Fourier series is used frequently to represent discontinuous
functions such as sawtooth and square waves.

Differentiation and Integration

With un(x) continuous and
∑

anx
n uniformly convergent, we find that the differentiated

series is a power series with continuous functions and the same radius of convergence as
the original series. The new factors introduced by differentiation (or integration) do not
affect either the root or the ratio test. Therefore our power series may be differentiated or
integrated as often as desired within the interval of uniform convergence (Exercise 5.7.13).

In view of the rather severe restrictions placed on differentiation (Section 5.5), this is
a remarkable and valuable result.

Uniqueness Theorem

In the preceding section, using the Maclaurin series, we expandedex and ln(1+ x) into
infinite series. In the succeeding chapters, functions are frequently represented or perhaps
defined by infinite series. We now establish that the power-series representation is unique.

If

f (x) =
∞∑
n=0

anx
n, −Ra < x < Ra

=
∞∑
n=0

bnx
n, −Rb < x < Rb, (5.112)

with overlapping intervals of convergence, including the origin, then

an = bn (5.113)

for all n; that is, we assume two (different) power-series representations and then proceed
to show that the two are actually identical.

From Eq. (5.112),

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n, −R < x <R, (5.114)

whereR is the smaller ofRa,Rb. By settingx = 0 to eliminate all but the constant terms,
we obtain

a0= b0. (5.115)
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Now, exploiting the differentiability of our power series, we differentiate Eq. (5.114), get-
ting

∞∑
n=1

nanx
n−1=

∞∑
n=1

nbnx
n−1. (5.116)

We again setx = 0, to isolate the new constant terms, and find

a1= b1. (5.117)

By repeating this processn times, we get

an = bn, (5.118)

which shows that the two series coincide. Therefore our power-series representation is
unique.

This will be a crucial point in Section 9.5, in which we use a power series to develop
solutions of differential equations. This uniqueness of power series appears frequently in
theoretical physics. The establishment of perturbation theory in quantum mechanics is one
example. The power-series representation of functions is often useful in evaluating indeter-
minate forms, particularly when l’Hôpital’s rule may be awkward to apply (Exercise 5.7.9).

Example 5.7.1 L’HÔPITAL’S RULE

Evaluate

lim
x→0

1− cosx

x2
. (5.119)

Replacing cosx by its Maclaurin-series expansion, we obtain

1− cosx

x2
= 1− (1− 1

2!x
2+ 1

4!x
4− · · · )

x2
= 1

2! −
x2

4! + · · · .

Lettingx→ 0, we have

lim
x→0

1− cosx

x2
= 1

2
. (5.120)

The uniqueness of power series means that the coefficientsan may be identified with the
derivatives in a Maclaurin series. From

f (x)=
∞∑
n=0

anx
n =

∞∑
n=0

1

n!f
(n)(0)xn

we have

an = 1

n!f
(n)(0). �
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Inversion of Power Series

Suppose we are given a series

y − y0= a1(x − x0)+ a2(x − x0)
2+ · · · =

∞∑
n=1

an(x − x0)
n. (5.121)

This gives(y − y0) in terms of(x − x0). However, it may be desirable to have an explicit
expression for(x − x0) in terms of(y − y0). We may solve Eq. (5.121) forx − x0 by
inversion of our series. Assume that

x − x0=
∞∑
n=1

bn(y − y0)
n, (5.122)

with thebn to be determined in terms of the assumed knownan. A brute-force approach,
which is perfectly adequate for the first few coefficients, is simply to substitute Eq. (5.121)
into Eq. (5.122). By equating coefficients of(x − x0)

n on both sides of Eq. (5.122), since
the power series is unique, we obtain

b1 = 1

a1
,

b2 = −a2

a3
1

,

b3 = 1

a5
1

(
2a2

2 − a1a3
)
, (5.123)

b4 = 1

a7
1

(
5a1a2a3− a2

1a4− 5a3
2

)
, and so on.

Some of the higher coefficients are listed by Dwight.14 A more general and much more
elegant approach is developed by the use of complex variables in the first and second
editions of Mathematical Methods for Physicists.

Exercises

5.7.1 The classical Langevin theory of paramagnetism leads to an expression for the magnetic
polarization,

P(x)= c

(
coshx

sinhx
− 1

x

)
.

ExpandP(x) as a power series for smallx (low fields, high temperature).

14H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed. New York: Macmillan (1961). (Compare Formula
No. 50.)
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5.7.2 The depolarizing factorL for an oblate ellipsoid in a uniform electric field parallel to
the axis of rotation is

L= 1

ε0

(
1+ ζ 2

0

)(
1− ζ0 cot−1 ζ0

)
,

whereζ0 defines an oblate ellipsoid in oblate spheroidal coordinates(ξ, ζ,ϕ). Show that

lim
ζ0→∞

L= 1

3ε0
(sphere), lim

ζ0→0
L= 1

ε0
(thin sheet).

5.7.3 The depolarizing factor (Exercise 5.7.2) for a prolate ellipsoid is

L= 1

ε0

(
η2

0− 1
)(1

2
η0 ln

η0+ 1

η0− 1
− 1

)
.

Show that

lim
η0→∞

L= 1

3ε0
(sphere), lim

η0→0
L= 0 (long needle).

5.7.4 The analysis of the diffraction pattern of a circular opening involves∫ 2π

0
cos(c cosϕ)dϕ.

Expand the integrand in a series and integrate by using∫ 2π

0
cos2n ϕ dϕ = (2n)!

22n(n!)2 · 2π,
∫ 2π

0
cos2n+1ϕ dϕ = 0.

The result is 2π times the Bessel functionJ0(c).

5.7.5 Neutrons are created (by a nuclear reaction) inside a hollow sphere of radiusR. The
newly created neutrons are uniformly distributed over the spherical volume. Assuming
that all directions are equally probable (isotropy), what is the average distance a neutron
will travel before striking the surface of the sphere? Assume straight-line motion and
no collisions.

(a) Show that

r̄ = 3
2R

∫ 1

0

∫ π

0

√
1− k2 sin2 θk2dk sinθ dθ.

(b) Expand the integrand as a series and integrate to obtain

r̄ =R

[
1− 3

∞∑
n=1

1

(2n− 1)(2n+ 1)(2n+ 3)

]
.

(c) Show that the sum of this infinite series is 1/12, giving r̄ = 3
4R.

Hint. Show thatsn = 1/12− [4(2n+ 1)(2n+ 3)]−1 by mathematical induction. Then
let n→∞.
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5.7.6 Given that ∫ 1

0

dx

1+ x2
= tan−1x

∣∣∣1
0
= π

4
,

expand the integrand into a series and integrate term by term obtaining15

π

4
= 1− 1

3
+ 1

5
− 1

7
+ 1

9
− · · · + (−1)n

1

2n+ 1
+ · · · ,

which is Leibniz’s formula forπ . Compare the convergence of the integrand series and
the integrated series atx = 1. See also Exercise 5.7.18.

5.7.7 Expand the incomplete factorial function

γ (n+ 1, x)≡
∫ x

0
e−t tn dt

in a series of powers ofx. What is the range of convergence of the resulting series?

ANS.
∫ x

0
e−t tn dt = xn+1

[
1

n+ 1
− x

n+ 2
+ x2

2!(n+ 3)

− · · · (−1)pxp

p!(n+ p+ 1)
+ · · ·

]
.

5.7.8 Derive the series expansion of the incomplete beta function

Bx(p,q) =
∫ x

0
tp−1(1− t)q−1dt

= xp
{

1

p
+ 1− q

p+ 1
x + · · · + (1− q) · · · (n− q)

n!(p+ n)
xn + · · ·

}
for 0≤ x ≤ 1,p > 0, andq > 0 (if x = 1).

5.7.9 Evaluate

(a) lim
x→0

[
sin(tanx)− tan(sinx)

]
x−7, (b) lim

x→0
x−njn(x), n= 3,

wherejn(x) is a spherical Bessel function (Section 11.7), defined by

jn(x)= (−1)nxn
(

1

x

d

dx

)n(sinx

x

)
.

ANS. (a)− 1

30
, (b)

1

1 · 3 · 5 · · · (2n+ 1)
→ 1

105
for n= 3.

15The series expansion of tan−1 x (upper limit 1 replaced byx) was discovered by James Gregory in 1671, 3 years before
Leibniz. See Peter Beckmann’s entertaining book,A History of Pi, 2nd ed., Boulder, CO: Golem Press (1971) and L. Berggren,
J. and P. Borwein,Pi: A Source Book, New York: Springer (1997).
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5.7.10 Neutron transport theory gives the following expression for the inverse neutron diffusion
length ofk:

a − b

k
tanh−1

(
k

a

)
= 1.

By series inversion or otherwise, determinek2 as a series of powers ofb/a. Give the
first two terms of the series.

ANS. k2= 3ab

(
1− 4

5

b

a

)
.

5.7.11 Develop a series expansion ofy = sinh−1x (that is, sinhy = x) in powers ofx by

(a) inversion of the series for sinhy,

(b) a direct Maclaurin expansion.

5.7.12 A functionf (z) is represented by adescending power series

f (z)=
∞∑
n=0

anz
−n, R ≤ z <∞.

Show that this series expansion is unique; that is, iff (z) = ∑∞
n=0bnz

−n,
R ≤ z <∞, thenan = bn for all n.

5.7.13 A power series converges for−R < x < R. Show that the differentiated series and
the integrated series have the same interval of convergence. (Do not bother about the
endpointsx =±R.)

5.7.14 Assuming thatf (x) may be expanded in a power series about the origin,f (x) =∑∞
n=0anx

n, with some nonzero range of convergence. Use the techniques employed
in proving uniqueness of series to show that your assumed series is a Maclaurin series:

an = 1

n!f
(n)(0).

5.7.15 The Klein–Nishina formula for the scattering of photons by electrons contains a term
of the form

f (ε)= (1+ ε)

ε2

[
2+ 2ε

1+ 2ε
− ln(1+ 2ε)

ε

]
.

Hereε = hν/mc2, the ratio of the photon energy to the electron rest mass energy. Find

lim
ε→0

f (ε).

ANS. 4
3.

5.7.16 The behavior of a neutron losing energy by colliding elastically with nuclei of massA

is described by a parameterξ1,

ξ1= 1+ (A− 1)2

2A
ln

A− 1

A+ 1
.
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An approximation, good for largeA, is

ξ2= 2

A+ 2/3
.

Expandξ1 andξ2 in powers ofA−1. Show thatξ2 agrees withξ1 through(A−1)2. Find
the difference in the coefficients of the(A−1)3 term.

5.7.17 Show that each of these two integrals equals Catalan’s constant:

(a)
∫ 1

0
arc tant

dt

t
, (b)−

∫ 1

0
lnx

dx

1+ x2
.

Note. Seeβ(2) in Section 5.9 for the value of Catalan’s constant.

5.7.18 Calculateπ (double precision) by each of the following arc tangent expressions:

π = 16 tan−1(1/5)− 4 tan−1(1/239)

π = 24 tan−1(1/8)+ 8 tan−1(1/57)+ 4 tan−1(1/239)

π = 48 tan−1(1/18)+ 32 tan−1(1/57)− 20 tan−1(1/239).

Obtain 16 significant figures. Verify the formulas using Exercise 5.6.2.
Note. These formulas have been used in some of the more accurate calculations ofπ .16

5.7.19 An analysis of the Gibbs phenomenon of Section 14.5 leads to the expression

2

π

∫ π

0

sinξ

ξ
dξ.

(a) Expand the integrand in a series and integrate term by term. Find the numerical
value of this expression to four significant figures.

(b) Evaluate this expression by the Gaussian quadrature if available.

ANS. 1.178980.

5.8 ELLIPTIC INTEGRALS

Elliptic integrals are included here partly as an illustration of the use of power series and
partly for their own intrinsic interest. This interest includes the occurrence of elliptic inte-
grals in physical problems (Example 5.8.1 and Exercise 5.8.4) and applications in mathe-
matical problems.

Example 5.8.1 PERIOD OF A SIMPLE PENDULUM

For small-amplitude oscillations, our pendulum (Fig. 5.8) has simple harmonic motion with
a periodT = 2π(l/g)1/2 . For a maximum amplitudeθM large enough so that sinθM 
= θM ,
Newton’s second law of motion and Lagrange’s equation (Section 17.7) lead to a nonlinear
differential equation (sinθ is a nonlinear function ofθ ), so we turn to a different approach.

16D. Shanks and J. W. Wrench, Computation ofπ to 100 000 decimals.Math. Comput. 16: 76 (1962).
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FIGURE 5.8 Simple
pendulum.

The swinging massm has a kinetic energy ofml2(dθ/dt)2/2 and a potential energy of
−mgl cosθ(θ = π/2 taken for the arbitrary zero of potential energy). Sincedθ/dt = 0 at
θ = θM , conservation of energy gives

1

2
ml2

(
dθ

dt

)2

−mgl cosθ =−mgl cosθM. (5.124)

Solving fordθ/dt we obtain

dθ

dt
=±

(
2g

l

)1/2

(cosθ − cosθM)1/2, (5.125)

with the massm canceling out. We taket to be zero whenθ = 0 anddθ/dt > 0. An
integration fromθ = 0 to θ = θM yields∫ θM

0
(cosθ − cosθM)−1/2dθ =

(
2g

l

)1/2∫ t

0
dt =

(
2g

l

)1/2

t. (5.126)

This is 1
4 of a cycle, and therefore the timet is 1

4 of the periodT . We note thatθ ≤ θM ,
and with a bit of clairvoyance we try the half-angle substitution

sin

(
θ

2

)
= sin

(
θM

2

)
sinϕ. (5.127)

With this, Eq. (5.126) becomes

T = 4

(
l

g

)1/2∫ π/2

0

(
1− sin2

(
θM

2

)
sin2ϕ

)−1/2

dϕ. (5.128)

Although not an obvious improvement over Eq. (5.126), the integral now defines the com-
plete elliptic integral of the first kind,K(sin2 θM/2). From the series expansion, the period
of our pendulum may be developed as a power series — powers of sinθM/2:

T = 2π

(
l

g

)1/2{
1+ 1

4
sin2 θM

2
+ 9

64
sin4 θM

2
+ · · ·

}
. (5.129)

�
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Definitions

Generalizing Example 5.8.1 to include the upper limit as a variable, theelliptic integral of
the first kind is defined as

F(ϕ\α)=
∫ ϕ

0

(
1− sin2α sin2 θ

)−1/2
dθ, (5.130a)

or

F(x|m)=
∫ x

0

[(
1− t2

)(
1−mt2

)]−1/2
dt, 0≤m< 1. (5.130b)

(This is the notation of AMS-55 see footnote 4 for the reference.) Forϕ = π/2, x = 1, we
have thecomplete elliptic integral of the first kind,

K(m) =
∫ π/2

0

(
1−msin2 θ

)−1/2
dθ

=
∫ 1

0

[(
1− t2

)(
1−mt2

)]−1/2
dt, (5.131)

with m= sin2α, 0≤m< 1.
Theelliptic integral of the second kind is defined by

E(ϕ\α)=
∫ ϕ

0

(
1− sin2α sin2 θ

)1/2
dθ (5.132a)

or

E(x|m)=
∫ x

0

(
1−mt2

1− t2

)1/2

dt, 0≤m≤ 1. (5.132b)

Again, for the caseϕ = π/2, x = 1, we have thecomplete elliptic integral of the second
kind:

E(m) =
∫ π/2

0

(
1−msin2 θ

)1/2
dθ

=
∫ 1

0

(
1−mt2

1− t2

)1/2

dt, 0≤m≤ 1. (5.133)

Exercise 5.8.1 is an example of its occurrence. Figure 5.9 shows the behavior ofK(m) and
E(m). Extensive tables are available in AMS-55 (see Exercise 5.2.22 for the reference).

Series Expansion

For our range 0≤ m < 1, the denominator ofK(m) may be expanded by the binomial
series (

1−msin2 θ
)−1/2 = 1+ 1

2
msin2 θ + 3

8
m2 sin4 θ + · · ·

=
∞∑
n=0

(2n− 1)!!
(2n)!! mn sin2n θ. (5.134)



5.8 Elliptic Integrals 373

FIGURE 5.9 Complete elliptic integrals,
K(m) andE(m).

For any closed interval[0,mmax],mmax< 1, this series is uniformly convergent and may
be integrated term by term. From Exercise 8.4.9,∫ π/2

0
sin2n θ dθ = (2n− 1)!!

(2n)!! · π
2
. (5.135)

Hence

K(m)= π

2

{
1+

∞∑
n=1

[
(2n− 1)!!
(2n)!!

]2

mn

}
. (5.136)

Similarly,

E(m)= π

2

{
1−

∞∑
n=1

[
(2n− 1)!!
(2n)!!

]2
mn

2n− 1

}
(5.137)

(Exercise 5.8.2). In Section 13.5 these series are identified as hypergeometric functions,
and we have

K(m)= π

2
2F1

(
1

2
,

1

2
;1;m

)
(5.138)

E(m)= π

2
2F1

(
−1

2
,

1

2
;1;m

)
. (5.139)
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Limiting Values

From the series Eqs. (5.136) and (5.137), or from the defining integrals,

lim
m→0

K(m)= π

2
, (5.140)

lim
m→0

E(m)= π

2
. (5.141)

Form→ 1 the series expansions are of little use. However, the integrals yield

lim
m→1

K(m)=∞, (5.142)

the integral diverging logarithmically, and

lim
m→1

E(m)= 1. (5.143)

The elliptic integrals have been used extensively in the past for evaluating integrals. For
instance, integrals of the form

I =
∫ x

0
R
(
t,
√
a4t4+ a3t3+ a2t2+ a1t1+ a0

)
dt,

whereR is a rational function oft and of the radical, may be expressed in terms of elliptic
integrals. Jahnke and Emde,Tables of Functions with Formulae and Curves. New York:
Dover (1943), Chapter 5, give pages of such transformations. With computers available
for direct numerical evaluation, interest in these elliptic integral techniques has declined.
However, elliptic integrals still remain of interest because of their appearance in physical
problems — see Exercises 5.8.4 and 5.8.5.

For an extensive account of elliptic functions, integrals, and Jacobi theta functions, you
are directed to Whittaker and Watson’s treatiseA Course in Modern Analysis, 4th ed. Cam-
bridge, UK: Cambridge University Press (1962).

Exercises

5.8.1 The ellipsex2/a2+ y2/b2 = 1 may be represented parametrically byx = a sinθ, y =
b cosθ . Show that the length of arc within the first quadrant is

a

∫ π/2

0

(
1−msin2 θ

)1/2
dθ = aE(m).

Here 0≤m= (a2− b2)/a2≤ 1.

5.8.2 Derive the series expansion

E(m)= π

2

{
1−

(
1

2

)2
m

1
−
(

1 · 3
2 · 4

)2
m2

3
− · · ·

}
.

5.8.3 Show that

lim
m→0

(K −E)

m
= π

4
.
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FIGURE 5.10 Circular wire loop.

5.8.4 A circular loop of wire in thexy-plane, as shown in Fig. 5.10, carries a currentI . Given
that the vector potential is

Aϕ(ρ,ϕ, z)= aµ0I

2π

∫ π

0

cosα dα

(a2+ ρ2+ z2− 2aρ cosα)1/2
,

show that

Aϕ(ρ,ϕ, z)= µ0I

πk

(
a

ρ

)1/2[(
1− k2

2

)
K
(
k2)−E

(
k2)],

where

k2= 4aρ

(a + ρ)2+ z2
.

Note. For extension of Exercise 5.8.4 toB, see Smythe, p. 270.17

5.8.5 An analysis of the magnetic vector potential of a circular current loop leads to the ex-
pression

f
(
k2)= k−2[(2− k2)K(k2)− 2E

(
k2)],

whereK(k2) andE(k2) are the complete elliptic integrals of the first and second kinds.
Show that fork2� 1 (r� radius of loop)

f
(
k2)≈ πk2

16
.

17W. R. Smythe,Static and Dynamic Electricity, 3rd ed. New York: McGraw-Hill (1969).
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5.8.6 Show that

(a)
dE(k2)

dk
= 1

k
(E −K),

(b)
dK(k2)

dk
= E

k(1− k2)
− K

k
.

Hint. For part (b) show that

E
(
k2)= (1− k2)∫ π/2

0

(
1− k sin2 θ

)−3/2
dθ

by comparing series expansions.

5.8.7 (a) Write a function subroutine that will computeE(m) from the series expansion,
Eq. (5.137).

(b) Test your function subroutine by using it to calculateE(m) over the range
m= 0.0(0.1)0.9 and comparing the result with the values given by AMS-55 (see
Exercise 5.2.22 for the reference).

5.8.8 Repeat Exercise 5.8.7 forK(m).
Note. These series forE(m), Eq. (5.137), andK(m), Eq. (5.136), converge only very
slowly for m near 1. More rapidly converging series forE(m) andK(m) exist. See
Dwight’s Tables of Integrals:18 No. 773.2 and 774.2. Your computer subroutine for
computingE andK probably uses polynomial approximations: AMS-55, Chapter 17.

5.8.9 A simple pendulum is swinging with a maximum amplitude ofθM . In the limit as
θM → 0, the period is 1 s. Using the elliptic integral,K(k2), k = sin(θM/2), calculate
the periodT for θM = 0 (10◦) 90◦.
Caution. Some elliptic integral subroutines requirek =m1/2 as an input parameter, not
m itself.

Check values.
θM 10◦ 50◦ 90◦

T (sec) 1.00193 1.05033 1.18258

5.8.10 Calculate the magnetic vector potentialA(ρ,ϕ, z)= ϕ̂Aϕ(ρ,ϕ, z) of a circular current
loop (Exercise 5.8.4) for the rangesρ/a = 2,3,4, andz/a = 0,1,2,3,4.
Note. This elliptic integral calculation of the magnetic vector potential may be checked
by an associated Legendre function calculation, Example 12.5.1.

Check value. Forρ/a = 3 andz/a = 0; Aϕ = 0.029023µ0I .

5.9 BERNOULLI NUMBERS,
EULER–MACLAURIN FORMULA

The Bernoulli numbers were introduced by Jacques (James, Jacob) Bernoulli. There are
several equivalent definitions, but extreme care must be taken, for some authors introduce

18H. B. Dwight,Tables of Integrals and Other Mathematical Data. New York: Macmillan (1947).
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variations in numbering or in algebraic signs. One relatively simple approach is to define
the Bernoulli numbers by the series19

x

ex − 1
=

∞∑
n=0

Bnx
n

n! , (5.144)

which converges for|x| < 2π by the ratio test substitut Eq. (5.153) (see also Exam-
ple 7.1.7). By differentiating this power series repeatedly and then settingx = 0, we obtain

Bn =
[
dn

dxn

(
x

ex − 1

)]
x=0

. (5.145)

Specifically,

B1= d

dx

(
x

ex − 1

)∣∣∣∣
x=0

= 1

ex − 1
− xex

(ex − 1)2

∣∣∣∣
x=0

=−1

2
, (5.146)

as may be seen by series expansion of the denominators. UsingB0= 1 andB1=−1
2, it is

easy to verify that the function

x

ex − 1
− 1+ x

2
=

∞∑
n=2

Bn

xn

n! = −
x

e−x − 1
− 1− x

2
(5.147)

is even inx, so allB2n+1= 0.
To derive a recursion relation for the Bernoulli numbers, we multiply

ex − 1

x

x

ex − 1
= 1=

{ ∞∑
m=0

xm

(m+ 1)!
}{

1− x

2
+

∞∑
n=1

B2n
x2n

(2n)!
}

= 1+
∞∑

m=1

xm
{

1

(m+ 1)! −
1

2m!
}

+
∞∑

N=2

xN
∑

1≤n≤N/2

B2n

(2n)!(N − 2n+ 1)! . (5.148)

ForN > 0 the coefficient ofxN is zero, so Eq. (5.148) yields

1

2
(N + 1)− 1=

∑
1≤n≤N/2

B2n

(
N + 1

2n

)
= 1

2
(N − 1), (5.149)

19The functionx/(ex − 1) may be considered agenerating function since it generates the Bernoulli numbers. Generating
functions of the special functions of mathematical physics appear in Chapters 11, 12, and 13.
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Table 5.1 Bernoulli Numbers

n Bn Bn

0 1 1.000000000
1 − 1

2 −0.500000000

2 1
6 0.166666667

4 − 1
30 −0.033333333

6 1
42 0.023809524

8 − 1
30 −0.033333333

10 5
66 0.075757576

Note. Further values are given in National Bureau of Stan-
dards,Handbook of Mathematical Functions (AMS-55).
See footnote 4 for the reference.

which is equivalent to

N − 1

2
=

N∑
n=1

B2n

(
2N + 1

2n

)
,

N − 1=
N−1∑
n=1

B2n

(
2N

2n

)
.

(5.150)

From Eq. (5.150) the Bernoulli numbers in Table 5.1 are readily obtained. If the variablex

in Eq. (5.144) is replaced by 2ix we obtain an alternate (and equivalent) definition ofB2n
(B1 is set equal to−1

2 by Eq. (5.146)) by the expression

x cotx =
∞∑
n=0

(−1)nB2n
(2x)2n

(2n)! , −π < x < π. (5.151)

Using the method of residues (Section 7.1) or working from the infinite product represen-
tation of sinx (Section 5.11), we find that

B2n = (−1)n−12(2n)!
(2π)2n

∞∑
p=1

p−2n, n= 1,2,3, . . . . (5.152)

This representation of the Bernoulli numbers was discovered by Euler. It is readily seen
from Eq. (5.152) that|B2n| increases without limit asn→∞. Numerical values have been
calculated by Glaisher.20 Illustrating the divergent behavior of the Bernoulli numbers, we
have

B20= −5.291× 102

B200= −3.647× 10215.

20J. W. L. Glaisher, table of the first 250 Bernoulli’s numbers (to nine figures) and their logarithms (to ten figures).Trans.
Cambridge Philos. Soc. 12: 390 (1871–1879).
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Some authors prefer to define the Bernoulli numbers with a modified version of Eq. (5.152)
by using

Bn = 2(2n)!
(2π)2n

∞∑
p=1

p−2n, (5.153)

the subscript being just half of our subscript and all signs positive. Again, when using other
texts or references, you must check to see exactly how the Bernoulli numbers are defined.

The Bernoulli numbers occur frequently in number theory. The von Staudt–Clausen the-
orem states that

B2n =An − 1

p1
− 1

p2
− 1

p3
− · · · − 1

pk

, (5.154)

in whichAn is an integer andp1,p2, . . . , pk are prime numbers so thatpi − 1 is a divisor
of 2n. It may readily be verified that this holds for

B6(A3= 1, p = 2,3,7),

B8(A4= 1, p = 2,3,5), (5.155)

B10(A5= 1, p = 2,3,11),

and other special cases.
The Bernoulli numbers appear in the summation of integral powers of the integers,

N∑
j=1

jp, p integral,

and in numerous series expansions of the transcendental functions, including tanx, cotx,
ln |sinx|, (sinx)−1, ln |cosx|, ln | tanx|, (coshx)−1, tanhx, and cothx. For example,

tanx = x + x3

3
+ 2

15
x5+ · · · + (−1)n−122n(22n − 1)B2n

(2n)! x2n−1+ · · · . (5.156)

The Bernoulli numbers are likely to come in such series expansions because of the defining
equations (5.144), (5.150), and (5.151) and because of their relation to the Riemann zeta
function,

ζ(2n)=
∞∑
p=1

p−2n. (5.157)

Bernoulli Polynomials

If Eq. (5.144) is generalized slightly, we have

xexs

ex − 1
=

∞∑
n=0

Bn(s)
xn

n! (5.158)
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Table 5.2 Bernoulli Polynomials

B0= 1
B1= x − 1

2

B2= x2− x + 1
6

B3= x3− 3
2x

2+ 1
2x

B4= x4− 2x3+ x2− 1
30

B5= x5− 5
2x

4+ 5
3x

3− 1
6x

B6= x6− 3x5+ 5
2x

4− 1
2x

2+ 1
42

Bn(0)= Bn, Bernoulli number

defining theBernoulli polynomials, Bn(s). The first seven Bernoulli polynomials are
given in Table 5.2.

From the generating function, Eq. (5.158),

Bn(0)= Bn, n= 0,1,2, . . . , (5.159)

the Bernoulli polynomial evaluated at zero equals the corresponding Bernoulli number.
Two particularly important properties of the Bernoulli polynomials follow from the defin-
ing relation, Eq, (5.158): a differentiation relation

d

ds
Bn(s)= nBn−1(s), n= 1,2,3, . . . , (5.160)

and a symmetry relation (replacex→−x in Eq. (5.158) and then sets = 1)

Bn(1)= (−1)nBn(0), n= 1,2,3, . . . . (5.161)

These relations are used in the development of the Euler–Maclaurin integration formula.

Euler–Maclaurin Integration
Formula

One use of the Bernoulli functions is in the derivation of the Euler–Maclaurin integration
formula. This formula is used in Section 8.3 for the development of an asymptotic expres-
sion for the factorial function — Stirling’s series.

The technique is repeated integration by parts, using Eq. (5.160) to create new deriva-
tives. We start with ∫ 1

0
f (x)dx =

∫ 1

0
f (x)B0(x) dx. (5.162)

From Eq. (5.160) and Exercise 5.9.2,

B ′1(x)= B0(x)= 1. (5.163)
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SubstitutingB ′1(x) into Eq. (5.162) and integrating by parts, we obtain∫ 1

0
f (x)dx = f (1)B1(1)− f (0)B1(0)−

∫ 1

0
f ′(x)B1(x) dx

= 1

2

[
f (1)+ f (0)

]− ∫ 1

0
f ′(x)B1(x) dx. (5.164)

Again using Eq. (5.160), we have

B1(x)= 1

2
B ′2(x), (5.165)

and integrating by parts we get∫ 1

0
f (x)dx = 1

2

[
f (1)+ f (0)

]− 1

2!
[
f ′(1)B2(1)− f ′(0)B2(0)

]
+ 1

2!
∫ 1

0
f (2)(x)B2(x) dx. (5.166)

Using the relations

B2n(1) = B2n(0)= B2n, n= 0,1,2, . . .
(5.167)

B2n+1(1) = B2n+1(0)= 0, n= 1,2,3, . . .

and continuing this process, we have∫ 1

0
f (x)dx = 1

2

[
f (1)+ f (0)

]− q∑
p=1

1

(2p)!B2p
[
f (2p−1)(1)− f (2p−1)(0)

]
+ 1

(2q)!
∫ 1

0
f (2q)(x)B2q(x) dx. (5.168a)

This is the Euler–Maclaurin integration formula. It assumes that the functionf (x) has the
required derivatives.

The range of integration in Eq. (5.168a) may be shifted from[0,1] to [1,2] by replacing
f (x) by f (x + 1). Adding such results up to[n− 1, n], we obtain∫ n

0
f (x)dx = 1

2
f (0)+ f (1)+ f (2)+ · · · + f (n− 1)+ 1

2
f (n)

−
q∑

p=1

1

(2p)!B2p
[
f (2p−1)(n)− f (2p−1)(0)

]

+ 1

(2q)!
∫ 1

0
B2q(x)

n−1∑
ν=0

f (2q)(x + ν)dx. (5.168b)

The terms1
2f (0)+ f (1)+ · · · + 1

2f (n) appear exactly as in trapezoidal integration, or
quadrature. The summation overp may be interpreted as a correction to the trapezoidal
approximation. Equation (5.168b) may be seen as a generalization of Eq. (5.22); it is the
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Table 5.3 Riemann Zeta Function

s ζ(s)

2 1.6449340668
3 1.2020569032
4 1.0823232337
5 1.0369277551
6 1.0173430620
7 1.0083492774
8 1.0040773562
9 1.0020083928

10 1.0009945751

form used in Exercise 5.9.5 for summing positive powers of integers and in Section 8.3 for
the derivation of Stirling’s formula.

The Euler–Maclaurin formula is often useful in summing series by converting them to
integrals.21

Riemann Zeta Function

This series,
∑∞

p=1p
−2n, was used as a comparison series for testing convergence (Sec-

tion 5.2) and in Eq. (5.152) as one definition of the Bernoulli numbers,B2n. It also serves
to define the Riemann zeta function by

ζ(s)≡
∞∑
n=1

n−s , s > 1. (5.169)

Table 5.3 lists the values ofζ(s) for integrals, s = 2,3, . . . ,10. Closed forms for evens
appear in Exercise 5.9.6. Figure 5.11 is a plot ofζ(s)− 1. An integral expression for this
Riemann zeta function appears in Exercise 8.2.21 as part of the development of the gamma
function, and the functional relation is given in Section 14.3.

The celebrated Euler prime number product for the Riemann zeta function may be de-
rived as

ζ(s)
(
1− 2−s

)= 1+ 1

2s
+ 1

3s
+ · · · −

(
1

2s
+ 1

4s
+ 1

6s
+ · · ·

)
; (5.170)

eliminating all then−s , wheren is a multiple of 2. Then

ζ(s)
(
1− 2−s

)(
1− 3−s

) = 1+ 1

3s
+ 1

5s
+ 1

7s
+ 1

9s
+ · · ·

−
(

1

3s
+ 1

9s
+ 1

15s
+ · · ·

)
; (5.171)

21See R. P. Boas and C. Stutz, Estimating sums with integrals.Am. J. Phys. 39: 745 (1971), for a number of examples.
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FIGURE 5.11 Riemann zeta function,ζ(s)− 1
versuss.

eliminating all the remaining terms in whichn is a multiple of 3. Continuing, we have
ζ(s)(1− 2−s)(1− 3−s)(1− 5−s) · · · (1−P−s), whereP is a prime number, and all terms
n−s , in whichn is a multiple of any integer up throughP , are canceled out. AsP →∞,

ζ(s)
(
1− 2−s

)(
1− 3−s

) · · · (1− P−s
)→ ζ(s)

∞∏
P(prime)=2

(
1− P−s

)= 1. (5.172)

Therefore

ζ(s)=
∞∏

P(prime)=2

(
1− P−s

)−1
, (5.173)

giving ζ(s) as an infinite product.22

This cancellation procedure has a clear application in numerical computation. Equa-
tion (5.170) will giveζ(s)(1− 2−s) to the same accuracy as Eq. (5.169) givesζ(s), but

22This is the starting point for the extensive applications of the Riemann zeta function to analytic number theory. See H. M. Ed-
wards,Riemann’s Zeta Function. New York: Academic Press (1974); A. Ivić, The Riemann Zeta Function. New York: Wiley
(1985); S. J. Patterson,Introduction to the Theory of the Riemann Zeta Function. Cambridge, UK: Cambridge University Press
(1988).
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with only half as many terms. (In either case, a correction would be made for the neglected
tail of the series by the Maclaurin integral test technique — replacing the series by an inte-
gral, Section 5.2.)

Along with the Riemann zeta function, AMS-55 (Chapter 23. See Exercise 5.2.22 for
the reference.) defines three other Dirichlet series related toζ(s):

η(s) =
∞∑
n=1

(−1)n−1n−s = (1− 21−s)ζ(s),
λ(s) =

∞∑
n=0

(2n+ 1)−s = (1− 2−s
)
ζ(s),

and

β(s)=
∞∑
n=0

(−1)n(2n+ 1)−s .

From the Bernoulli numbers (Exercise 5.9.6) or Fourier series (Example 14.3.3 and Exer-
cise 14.3.13) special values are

ζ(2) = 1+ 1

22
+ 1

32
+ · · · = π2

6

ζ(4) = 1+ 1

24
+ 1

34
+ · · · = π4

90

η(2) = 1− 1

22
+ 1

32
+ · · · = π2

12

η(4) = 1− 1

24
+ 1

34
+ · · · = 7π4

720

λ(2) = 1+ 1

32
+ 1

52
+ · · · = π2

8

λ(4) = 1+ 1

34
+ 1

54
+ · · · = π4

96

β(1) = 1− 1

3
+ 1

5
− · · · = π

4

β(3) = 1− 1

33
+ 1

53
− · · · = π3

32
.

Catalan’s constant,

β(2)= 1− 1

32
+ 1

52
− · · · = 0.91596559. . . ,

is the topic of Exercise 5.2.22.
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Improvement of Convergence

If we are required to sum a convergent series
∑∞

n=1an whose terms are rational functions
of n, the convergence may be improved dramatically by introducing the Riemann zeta
function.

Example 5.9.1 IMPROVEMENT OF CONVERGENCE

The problem is to evaluate the series
∑∞

n=1 1/(1 + n2). Expanding (1 + n2)−1 =
n−2(1+ n−2)−1 by direct division, we have

(
1+ n2)−1 = n−2

(
1− n−2+ n−4− n−6

1+ n−2

)
= 1

n2
− 1

n4
+ 1

n6
− 1

n8+ n6
.

Therefore
∞∑
n=1

1

1+ n2
= ζ(2)− ζ(4)+ ζ(6)−

∞∑
n=1

1

n8+ n6
.

Theζ values are tabulated and the remainder series converges asn−8. Clearly, the process
can be continued as desired. You make a choice between how much algebra you will do and
how much arithmetic the computer will do. Other methods for improving computational
effectiveness are given at the end of Sections 5.2 and 5.4. �

Exercises

5.9.1 Show that

tanx =
∞∑
n=1

(−1)n−122n(22n − 1)B2n

(2n)! x2n−1, −π

2
< x <

π

2
.

Hint. tanx = cotx − 2 cot2x.

5.9.2 Show that the first Bernoulli polynomials are

B0(s) = 1

B1(s) = s − 1
2

B2(s) = s2− s + 1
6.

Note thatBn(0)= Bn, the Bernoulli number.

5.9.3 Show thatB ′n(s)= nBn−1(s), n= 1,2,3, . . . .
Hint. Differentiate Eq. (5.158).
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5.9.4 Show that

Bn(1)= (−1)nBn(0).

Hint. Go back to the generating function, Eq. (5.158), or Exercise 5.9.2.

5.9.5 The Euler–Maclaurin integration formula may be used for the evaluation of finite series:

n∑
m=1

f (m)=
∫ n

0
f (x)dx + 1

2
f (1)+ 1

2
f (n)+ B2

2!
[
f ′(n)− f ′(1)

]+ · · · .
Show that

(a)
n∑

m=1

m= 1

2
n(n+ 1).

(b)
n∑

m=1

m2= 1

6
n(n+ 1)(2n+ 1).

(c)
n∑

m=1

m3= 1

4
n2(n+ 1)2.

(d)
n∑

m=1

m4= 1

30
n(n+ 1)(2n+ 1)

(
3n2+ 3n− 1

)
.

5.9.6 From

B2n = (−1)n−1 2(2n)!
(2π)2n

ζ(2n),

show that

(a) ζ(2) = π2

6
(d) ζ(8)= π8

9450

(b) ζ(4) = π4

90
(e) ζ(10)= π10

93,555
.

(c) ζ(6) = π6

945

5.9.7 Planck’s blackbody radiation law involves the integral∫ ∞

0

x3dx

ex − 1
.

Show that this equals 6ζ(4). From Exercise 5.9.6,

ζ(4)= π4

90
.

Hint. Make use of the gamma function, Chapter 8.
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5.9.8 Prove that ∫ ∞

0

xnex dx

(ex − 1)2
= n!ζ(n).

Assumingn to be real, show that each side of the equation diverges ifn = 1. Hence
the preceding equation carries the conditionn > 1. Integrals such as this appear in the
quantum theory of transport effects — thermal and electrical conductivity.

5.9.9 The Bloch–Gruneissen approximation for the resistance in a monovalent metal is

ρ = C
T 5

�6

∫ �/T

0

x5dx

(ex − 1)(1− e−x)
,

where� is the Debye temperature characteristic of the metal.

(a) ForT →∞, show that

ρ ≈ C

4
· T

�2
.

(b) ForT → 0, show that

ρ ≈ 5!ζ(5)C T 5

�6
.

5.9.10 Show that

(a)
∫ 1

0

ln(1+ x)

x
dx = 1

2
ζ(2), (b) lim

a→1

∫ a

0

ln(1− x)

x
dx = ζ(2).

From Exercise 5.9.6,ζ(2)= π2/6. Note that the integrand in part (b) diverges fora = 1
but that theintegrated series is convergent.

5.9.11 The integral ∫ 1

0

[
ln(1− x)

]2dx
x

appears in the fourth-order correction to the magnetic moment of the electron. Show
that it equals 2ζ(3).
Hint. Let 1− x = e−t .

5.9.12 Show that ∫ ∞

0

(ln z)2

1+ z2
dz= 4

(
1− 1

33
+ 1

53
− 1

73
+ · · ·

)
.

By contour integration (Exercise 7.1.17), this may be shown equal toπ3/8.

5.9.13 For “small” values ofx,

ln(x!)=−γ x +
∞∑
n=2

(−1)n
ζ(n)

n
xn,

whereγ is the Euler–Mascheroni constant andζ(n) is the Riemann zeta function. For
what values ofx does this series converge?

ANS.−1< x ≤ 1.
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Note that ifx = 1, we obtain

γ =
∞∑
n=2

(−1)n
ζ(n)

n
,

a series for the Euler–Mascheroni constant. The convergence of this series is exceed-
ingly slow. For actual computation ofγ , other, indirect approaches are far superior (see
Exercises 5.10.11, and 8.5.16).

5.9.14 Show that the series expansion of ln(x!) (Exercise 5.9.13) may be written as

(a) ln(x!)= 1

2
ln

(
πx

sinπx

)
− γ x −

∞∑
n=1

ζ(2n+ 1)

2n+ 1
x2n+1,

(b) ln(x!)= 1

2
ln

(
πx

sinπx

)
− 1

2
ln

(
1+ x

1− x

)
+ (1− γ )x

−
∞∑
n=1

[
ζ(2n+ 1)− 1

] x2n+1

2n+ 1
.

Determine the range of convergence of each of these expressions.

5.9.15 Show that Catalan’s constant,β(2), may be written as

β(2)= 2
∞∑
k=1

(4k − 3)−2− π2

8
.

Hint. π2= 6ζ(2).

5.9.16 Derive the following expansions of the Debye functions forn≥ 1:∫ x

0

tn dt

et − 1
= xn

[
1

n
− x

2(n+ 1)
+

∞∑
k=1

B2kx
2k

(2k+ n)(2k)!
]
, |x|< 2π;

∫ ∞

x

tn dt

et − 1
=

∞∑
k=1

e−kx
[
xn

k
+ nxn−1

k2
+ n(n− 1)xn−2

k3
+ · · · + n!

kn+1

]
for x > 0. The complete integral(0,∞) equalsn!ζ(n+ 1), Exercise 8.2.15.

5.9.17 (a) Show that the equation ln 2=∑∞
s=1(−1)s+1s−1 (Exercise 5.4.1) may be rewritten

as

ln 2=
∞∑
s=2

2−sζ(s)+
∞∑
p=1

(2p)−n−1
[
1− 1

2p

]−1

.

Hint. Take the terms in pairs.
(b) Calculate ln 2 to six significant figures.
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5.9.18 (a) Show that the equationπ/4=∑∞
n=1(−1)n+1(2n− 1)−1 (Exercise 5.7.6) may be

rewritten as

π

4
= 1− 2

∞∑
s=1

4−2sζ(2s)− 2
∞∑
p=1

(4p)−2n−2
[
1− 1

(4p)2

]−1

.

(b) Calculateπ/4 to six significant figures.

5.9.19 Write a function subprogram ZETA(N) that will calculate the Riemann zeta function
for integer argument. Tabulateζ(s) for s = 2,3,4, . . . ,20. Check your values against
Table 5.3 and AMS-55, Chapter 23. (See Exercise 5.2.22 for the reference.).
Hint. If you supply the function subprogram with the known values ofζ(2), ζ(3), and
ζ(4), you avoid the more slowly converging series. Calculation time may be further
shortened by using Eq. (5.170).

5.9.20 Calculate the logarithm (base 10) of|B2n|, n= 10,20, . . . ,100.
Hint. Programζ(n) as a function subprogram, Exercise 5.9.19.

Check values. log|B100| = 78.45
log|B200| = 215.56.

5.10 ASYMPTOTIC SERIES

Asymptotic series frequently occur in physics. In numerical computations they are em-
ployed for the accurate computation of a variety of functions. We consider here two types
of integrals that lead to asymptotic series: first, an integral of the form

I1(x)=
∫ ∞

x

e−uf (u)du,

where the variablex appears as the lower limit of an integral. Second, we consider the
form

I2(x)=
∫ ∞

0
e−uf

(
u

x

)
du,

with the functionf to be expanded as a Taylor series (binomial series). Asymptotic se-
ries often occur as solutions of differential equations. An example of this appears in Sec-
tion 11.6 as a solution of Bessel’s equation.

Incomplete Gamma Function

The nature of an asymptotic series is perhaps best illustrated by a specific example. Sup-
pose that we have the exponential integral function23

Ei(x)=
∫ x

−∞
eu

u
du, (5.174)

23This function occurs frequently in astrophysical problems involving gas with a Maxwell–Boltzmann energy distribution.
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or

−Ei(−x)=
∫ ∞

x

e−u

u
du=E1(x), (5.175)

to be evaluated for large values ofx. Or let us take a generalization of the incomplete
factorial function (incomplete gamma function),24

I (x,p)=
∫ ∞

x

e−uu−p du= �(1− p,x), (5.176)

in whichx andp are positive. Again, we seek to evaluate it for large values ofx.
Integrating by parts, we obtain

I (x,p) = e−x

xp
− p

∫ ∞

x

e−uu−p−1du

= e−x

xp
− pe−x

xp+1
+ p(p+ 1)

∫ ∞

x

e−uu−p−2du. (5.177)

Continuing to integrate by parts, we develop the series

I (x,p) = e−x
(

1

xp
− p

xp+1
+ p(p+ 1)

xp+2
− · · · + (−1)n−1 (p+ n− 2)!

(p− 1)!xp+n−1

)
+ (−1)n

(p+ n− 1)!
(p− 1)!

∫ ∞

x

e−uu−p−n du. (5.178)

This is a remarkable series. Checking the convergence by the d’Alembert ratio test, we
find

lim
n→∞

|un+1|
|un| = lim

n→∞
(p+ n)!

(p+ n− 1)! ·
1

x
= lim

n→∞
p+ n

x
=∞ (5.179)

for all finite values ofx. Therefore our series as an infinite series diverges everywhere!
Before discarding Eq. (5.178) as worthless, let us see how well a given partial sum approx-
imates the incomplete factorial function,I (x,p):

I (x,p)− sn(x,p)= (−1)n+1 (p+ n)!
(p− 1)!

∫ ∞

x

e−uu−p−n−1du=Rn(x,p). (5.180)

In absolute value∣∣I (x,p)− sn(x,p)
∣∣≤ (p+ n)!

(p− 1)!
∫ ∞

x

e−uu−p−n−1du.

When we substituteu= v+ x, the integral becomes∫ ∞

x

e−uu−p−n−1du = e−x
∫ ∞

0
e−v(v + x)−p−n−1dv

= e−x

xp+n+1

∫ ∞

0
e−v

(
1+ v

x

)−p−n−1

dv.

24See also Section 8.5.
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FIGURE 5.12 Partial sums ofexE1(x)|x=5.

For largex the final integral approaches 1 and∣∣I (x,p)− sn(x,p)
∣∣≈ (p+ n)!

(p− 1)! ·
e−x

xp+n+1
. (5.181)

This means that if we takex large enough, our partial sumsn is an arbitrarily good approx-
imation to the functionI (x,p). Our divergent series (Eq. (5.178)) therefore is perfectly
good for computations of partial sums. For this reason it is sometimes called asemicon-
vergent series. Note that the power ofx in the denominator of the remainder(p+ n+ 1)
is higher than the power ofx in the last term included insn(x,p), (p+ n).

Since the remainderRn(x,p) alternates in sign, the successive partial sums give alter-
nately upper and lower bounds forI (x,p). The behavior of the series (withp = 1) as a
function of the number of terms included is shown in Fig. 5.12. We have

exE1(x) = ex
∫ ∞

x

e−u

u
du

∼= sn(x)= 1

x
− 1!

x2
+ 2!

x2
− 3!

x4
+ · · · + (−1)n

n!
xn+1

, (5.182)

which is evaluated atx = 5. The optimum determination ofexE1(x) is given by the closest
approach of the upper and lower bounds, that is, betweens4= s6= 0.1664 ands5= 0.1741
for x = 5. Therefore

0.1664≤ exE1(x)
∣∣
x=5≤ 0.1741. (5.183)

Actually, from tables,

exE1(x)
∣∣
x=5= 0.1704, (5.184)
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within the limits established by our asymptotic expansion. Note that inclusion of additional
terms in the series expansion beyond the optimum point literally reduces the accuracy of
the representation. Asx is increased, the spread between the lowest upper bound and the
highest lower bound will diminish. By takingx large enough, one may computeexE1(x)

to any desired degree of accuracy. Other properties ofE1(x) are derived and discussed in
Section 8.5.

Cosine and Sine Integrals

Asymptotic series may also be developed from definite integrals — if the integrand has the
required behavior. As an example, the cosine and sine integrals (Section 8.5) are defined
by

Ci(x)=−
∫ ∞

x

cost

t
dt, (5.185)

si(x)=−
∫ ∞

x

sint

t
dt. (5.186)

Combining these with regular trigonometric functions, we may define

f (x) =Ci(x)sinx − si(x)cosx =
∫ ∞

0

siny

y + x
dy,

g(x) =−Ci(x)cosx − si(x)sinx =
∫ ∞

0

cosy

y + x
dy,

(5.187)

with the new variabley = t − x. Going to complex variables, Section 6.1, we have

g(x)+ if (x) =
∫ ∞

0

eiy

y + x
dy =

∫ ∞

0

ie−xu

1+ iu
du, (5.188)

in which u = −iy/x. The limits of integration, 0 to∞, rather than 0 to−i∞, may be
justified by Cauchy’s theorem, Section 6.3. Rationalizing the denominator and equating
real part to real part and imaginary part to imaginary part, we obtain

g(x)=
∫ ∞

0

ue−xu

1+ u2
du, f (x)=

∫ ∞

0

e−xu

1+ u2
du. (5.189)

For convergence of the integrals we must require that�(x) > 0.25

25�(x)= real part of (complex)x (compare Section 6.1).
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Now, to develop the asymptotic expansions, letv = xu and expand the preceding factor
[1+ (v/x)2]−1 by the binomial theorem.26 We have

f (x) ≈ 1

x

∫ ∞

0
e−v

∑
0≤n≤N

(−1)n
v2n

x2n
dv = 1

x

∑
0≤n≤N

(−1)n
(2n)!
x2n

, (5.190)

g(x) ≈ 1

x2

∫ ∞

0
e−v

∑
0≤n≤N

(−1)n
v2n+1

x2n
dv = 1

x2

∑
0≤n≤N

(−1)n
(2n+ 1)!

x2n
.

From Eqs. (5.187) and (5.190),

Ci(x) ≈ sinx

x

∑
0≤n≤N

(−1)n
(2n)!
x2n

− cosx

x2

∑
0≤n≤N

(−1)n
(2n+ 1)!

x2n
,

si(x) ≈ −cosx

x

∑
0≤n≤N

(−1)n
(2n)!
x2n

− sinx

x2

∑
0≤n≤N

(−1)n
(2n+ 1)!

x2n

(5.191)

are the desired asymptotic expansions.
This technique of expanding the integrand of a definite integral and integrating term

by term is applied in Section 11.6 to develop an asymptotic expansion of the modified
Bessel functionKν and in Section 13.5 for expansions of the two confluent hypergeometric
functionsM(a, c;x) andU(a, c;x).

Definition of Asymptotic Series

The behavior of these series (Eqs. (5.178) and (5.191)), is consistent with the defining
properties of an asymptotic series.27 Following Poincaré, we take28

xnRn(x)= xn
[
f (x)− sn(x)

]
, (5.192)

where

sn(x)= a0+ a1

x
+ a2

x2
+ · · · + an

xn
. (5.193)

The asymptotic expansion off (x) has the properties that

lim
x→∞xnRn(x)= 0, for fixedn, (5.194)

and

lim
n→∞xnRn(x)=∞, for fixedx.29 (5.195)

26This step is valid forv ≤ x. The contributions fromv ≥ x will be negligible (for largex) because of the negative exponential.
It is because the binomial expansion does not converge forv ≥ x that our final series is asymptotic rather than convergent.
27It is not necessary that the asymptotic series be a power series. The required property is that the remainderRn(x) be of higher
order than the last term kept — as in Eq. (5.194).
28Poincaré’s definition allows (or neglects) exponentially decreasing functions. The refinement of Poincaré’s definition is of
considerable importance for the advanced theory of asymptotic expansions, particularly for extensions into the complex plane.
However, for purposes of an introductory treatment and especially for numerical computation withx real and positive, Poincaré’s
approach is perfectly satisfactory.
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See Eqs. (5.178) and (5.179) for an example of these properties. For power series, as as-
sumed in the form ofsn(x),Rn(x)∼ x−n−1. With conditions (5.194) and (5.195) satisfied,
we write

f (x)≈
∞∑
n=0

anx
−n. (5.196)

Note the use of≈ in place of=. The functionf (x) is equal to the series only in the limit
asx→∞ and a finite number of terms in the series.

Asymptotic expansions of two functions may be multiplied together, and the result will
be an asymptotic expansion of the product of the two functions.

The asymptotic expansion of a given functionf (t) may be integrated term by term (just
as in a uniformly convergent series of continuous functions) fromx ≤ t <∞, and the result
will be an asymptotic expansion of

∫∞
x

f (t) dt . Term-by-term differentiation, however, is
valid only under very special conditions.

Some functions do not possess an asymptotic expansion;ex is an example of such a
function. However, if a function has an asymptotic expansion, it has only one. The corre-
spondence is not one to one; many functions may have the same asymptotic expansion.

One of the most useful and powerful methods of generating asymptotic expansions, the
method of steepest descents, will be developed in Section 7.3. Applications include the
derivation of Stirling’s formula for the (complete) factorial function (Section 8.3) and the
asymptotic forms of the various Bessel functions (Section 11.6). Asymptotic series occur
fairly often in mathematical physics. One of the earliest and still important approximations
of quantum mechanics, theWKB expansion, is an asymptotic series.

Exercises

5.10.1 Stirling’s formula for the logarithm of the factorial function is

ln(x!)= 1

2
ln2π +

(
x + 1

2

)
lnx − x −

N∑
n=1

B2n

2n(2n− 1)
x1−2n.

The B2n are the Bernoulli numbers (Section 5.9). Show that Stirling’s formula is an
asymptotic expansion.

5.10.2 Integrating by parts, develop asymptotic expansions of the Fresnel integrals.

(a)C(x)=
∫ x

0
cos

πu2

2
du, (b) s(x)=

∫ x

0
sin

πu2

2
du.

These integrals appear in the analysis of a knife-edge diffraction pattern.

5.10.3 Rederive the asymptotic expansions of Ci(x) and si(x) by repeated integration by parts.

Hint. Ci(x)+ i si(x)=− ∫∞
x

eit

t
dt.

29This excludes convergent series of inverse powers ofx. Some writers feel that this exclusion is artificial and unnecessary.
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5.10.4 Derive the asymptotic expansion of the Gauss error function

erf(x) = 2√
π

∫ x

0
e−t2 dt

≈ 1− e−x2

√
πx

(
1− 1

2x2
+ 1 · 3

22x4
− 1 · 3 · 5

23x6
+ · · · + (−1)n

(2n− 1)!!
2nx2n

)
.

Hint: erf(x)= 1− erfc(x)= 1− 2√
π

∫∞
x

e−t2 dt .
Normalized so that erf(∞) = 1, this function plays an important role in probability
theory. It may be expressed in terms of the Fresnel integrals (Exercise 5.10.2), the in-
complete gamma functions (Section 8.5), and the confluent hypergeometric functions
(Section 13.5).

5.10.5 The asymptotic expressions for the various Bessel functions, Section 11.6, contain the
series

Pν(z)∼ 1+
∞∑
n=1

(−1)n
∏2n

s=1[4ν2− (2s − 1)2]
(2n)!(8z)2n ,

Qν(z)∼
∞∑
n=1

(−1)n+1

∏2n−1
s=1 [4ν2− (2s − 1)2]
(2n− 1)!(8z)2n−1

.

Show that these two series are indeed asymptotic series.

5.10.6 Forx > 1,

1

1+ x
=

∞∑
n=0

(−1)n
1

xn+1
.

Test this series to see if it is an asymptotic series.

5.10.7 Derive the following Bernoulli number asymptotic series for the Euler–Mascheroni con-
stant:

γ =
n∑

s=1

s−1− lnn− 1

2n
+

N∑
k=1

B2k

(2k)n2k
.

Hint. Apply the Euler–Maclaurin integration formula tof (x) = x−1 over the interval
[1, n] for N = 1,2, . . . .

5.10.8 Develop an asymptotic series for∫ ∞

0
e−xv

(
1+ v2)−2

dv.

Takex to be real and positive.

ANS.
1

x
− 2!

x3
+ 4!

x5
− · · · + (−1)n(2n)!

x2n+1
.
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5.10.9 Calculate partial sums ofexE1(x) for x = 5,10, and 15 to exhibit the behavior shown in
Fig. 5.11. Determine the width of the throat forx = 10 and 15, analogous to Eq. (5.183).

ANS. Throat width:n= 10, 0.000051
n= 15, 0.0000002.

5.10.10 The knife-edge diffraction pattern is described by

I = 0.5I0
{[
C(u0)+ 0.5

]2+ [S(u0)+ 0.5
]2}

,

whereC(u0) and S(u0) are the Fresnel integrals of Exercise 5.10.2. HereI0 is the
incident intensity andI is the diffracted intensity;u0 is proportional to the distance
away from the knife edge (measured at right angles to the incident beam). Calculate
I/I0 for u0 varying from−1.0 to+4.0 in steps of 0.1. Tabulate your results and, if a
plotting routine is available, plot them.

Check value. u0= 1.0, I/I0= 1.259226.

5.10.11 The Euler–Maclaurin integration formula of Section 5.9 provides a way of calculating
the Euler–Mascheroni constantγ to high accuracy. Usingf (x)= 1/x in Eq. (5.168b)
(with interval[1, n]) and the definition ofγ (Eq. 5.28), we obtain

γ =
n∑

s=1

s−1− lnn− 1

2n
+

N∑
k=1

B2k

(2k)n2k
.

Using double-precision arithmetic, calculateγ for N = 1,2, . . . .
Note. D. E. Knuth, Euler’s constant to 1271 places.Math. Comput. 16: 275 (1962). An
even more precise calculation appears in Exercise 8.5.16.

ANS. Forn= 1000,N = 2
γ = 0.5772 1566 4901.

5.11 INFINITE PRODUCTS

Consider a succession of positive factorsf1 · f2 · f3 · f4 · · ·fn(fi > 0). Using capital pi
(
∏

) to indicate product, as capital sigma(
∑

) indicates a sum, we have

f1 · f2 · f3 · · ·fn =
n∏

i=1

fi. (5.197)

We definepn, a partial product, in analogy withsn the partial sum,

pn =
n∏

i=1

fi (5.198)

and then investigate the limit,

lim
n→∞pn = P. (5.199)

If P is finite (but not zero), we say the infinite product is convergent. IfP is infinite or
zero, the infinite product is labeled divergent.
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Since the product will diverge to infinity if

lim
n→∞fn > 1 (5.200)

or to zero for

lim
n→∞fn < 1 (and> 0), (5.201)

it is convenient to write our infinite products as

∞∏
n=1

(1+ an).

The conditionan→ 0 is then a necessary (but not sufficient) condition for convergence.
The infinite product may be related to an infinite series by the obvious method of taking

the logarithm,

ln
∞∏
n=1

(1+ an)=
∞∑
n=1

ln(1+ an). (5.202)

A more useful relationship is stated by the following theorem.

Convergence of Infinite Product

If 0 ≤ an < 1, the infinite products
∏∞

n=1(1+ an) and
∏∞

n=1(1− an) converge if
∑∞

n=1an
converges and diverge if

∑∞
n=1an diverges.

Considering the term 1+ an, we see from Eq. (5.90) that

1+ an ≤ ean . (5.203)

Therefore for the partial productpn, with sn the partial sum of theai ,

pn ≤ esn, (5.204)

and lettingn→∞,

∞∏
n=1

(1+ an)≤ exp
∞∑
n=1

an, (5.205)

thus establishing an upper bound for the infinite product.
To develop a lower bound, we note that

pn = 1+
n∑

i=1

ai +
n∑

i=1

n∑
j=1

aiaj + · · · ≥ sn, (5.206)

sinceai ≥ 0. Hence

∞∏
n=1

(1+ an)≥
∞∑
n=1

an. (5.207)
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If the infinite sum remains finite, the infinite product will also. If the infinite sum diverges,
so will the infinite product.

The case of
∏
(1− an) is complicated by the negative signs, but a proof that depends

on the foregoing proof may be developed by noting that foran <
1
2 (rememberan→ 0 for

convergence),

(1− an)≤ (1+ an)
−1

and

(1− an)≥ (1+ 2an)
−1. (5.208)

Sine, Cosine, and Gamma Functions

An nth-order polynomialPn(x) with n real roots may be written as a product ofn factors
(see Section 6.4, Gauss’ fundamental theorem of algebra):

Pn(x)= (x − x1)(x − x2) · · · (x − xn)=
n∏

i=1

(x − xi). (5.209)

In much the same way we may expect that a function with an infinite number of roots
may be written as an infinite product, one factor for each root. This is indeed the case for
the trigonometric functions. We have two very useful infinite product representations,

sinx = x

∞∏
n=1

(
1− x2

n2π2

)
, (5.210)

cosx =
∞∏
n=1

[
1− 4x2

(2n− 1)2π2

]
. (5.211)

The most convenient and perhaps most elegant derivation of these two expressions is by
the use of complex variables.30 By our theorem of convergence, Eqs. (5.210) and (5.211)
are convergent for all finite values ofx. Specifically, for the infinite product for sinx, an =
x2/n2π2,

∞∑
n=1

an = x2

π2

∞∑
n=1

n−2= x2

π2
ζ(2)= x2

6
(5.212)

by Exercise 5.9.6. The series corresponding to Eq. (5.211) behaves in a similar manner.
Equation (5.210) leads to two interesting results. First, if we setx = π/2, we obtain

1= π

2

∞∏
n=1

[
1− 1

(2n)2

]
= π

2

∞∏
n=1

[
(2n)2− 1

(2n)2

]
. (5.213)

30See Eqs. (7.25) and (7.26).
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Solving forπ/2, we have

π

2
=

∞∏
n=1

[
(2n)2

(2n− 1)(2n+ 1)

]
= 2 · 2

1 · 3 ·
4 · 4
3 · 5 ·

6 · 6
5 · 7 · · · , (5.214)

which is Wallis’ famous formula forπ/2.
The second result involves the gamma or factorial function (Section 8.1). One definition

of the gamma function is

�(x)=
[
xeγx

∞∏
r=1

(
1+ x

r

)
e−x/r

]−1

, (5.215)

whereγ is the usual Euler–Mascheroni constant (compare Section 5.2). If we take the
product of�(x) and�(−x), Eq. (5.215) leads to

�(x)�(−x) = −
[
xeγx

∞∏
r=1

(
1+ x

r

)
e−x/rxe−γ x

∞∏
r=1

(
1− x

r

)
ex/r

]−1

= − 1

x2

∞∏
r=1

(
1− x2

r2

)−1

. (5.216)

Using Eq. (5.210) withx replaced byπx, we obtain

�(x)�(−x)=− π

x sinπx
. (5.217)

Anticipating a recurrence relation developed in Section 8.1, we have−x�(−x)= �(1−x).
Equation (5.217) may be written as

�(x)�(1− x)= π

sinπx
. (5.218)

This will be useful in treating the gamma function (Chapter 8).
Strictly speaking, we should check the range ofx for which Eq. (5.215) is convergent.

Clearly, individual factors will vanish forx = 0,−1,−2, . . . . The proof that the infinite
product converges for all other (finite) values ofx is left as Exercise 5.11.9.

These infinite products have a variety of uses in mathematics. However, because of rather
slow convergence, they are not suitable for precise numerical work in physics.

Exercises

5.11.1 Using

ln
∞∏
n=1

(1± an)=
∞∑
n=1

ln(1± an)

and the Maclaurin expansion of ln(1±an), show that the infinite product
∏∞

n=1(1±an)

converges or diverges with the infinite series
∑∞

n=1an.
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5.11.2 An infinite product appears in the form

∞∏
n=1

(
1+ a/n

1+ b/n

)
,

wherea andb are constants. Show that this infinite product converges only ifa = b.

5.11.3 Show that the infinite product representations of sinx and cosx are consistent with the
identity 2 sinx cosx = sin 2x.

5.11.4 Determine the limit to which
∞∏
n=2

(
1+ (−1)n

n

)
converges.

5.11.5 Show that
∞∏
n=2

[
1− 2

n(n+ 1)

]
= 1

3
.

5.11.6 Prove that
∞∏
n=2

(
1− 1

n2

)
= 1

2
.

5.11.7 Using the infinite product representations of sinx, show that

x cotx = 1− 2
∞∑

m,n=1

(
x

nπ

)2m

,

hence that the Bernoulli number

B2n = (−1)n−1 2(2n)!
(2π)2n

ζ(2n).

5.11.8 Verify the Euler identity

∞∏
p=1

(
1+ zp

)= ∞∏
q=1

(
1− z2q−1)−1

, |z|< 1.

5.11.9 Show that
∏∞

r=1(1 + x/r)e−x/r converges for all finitex (except for the zeros of
1+ x/r).
Hint. Write thenth factor as 1+ an.

5.11.10 Calculate cosx from its infinite product representation, Eq. (5.211), using (a) 10,
(b) 100, and (c) 1000 factors in the product. Calculate the absolute error. Note how
slowly the partial products converge–making the infinite product quite unsuitable for
precise numerical work.

ANS. For 1000 factors, cosπ =−1.00051.
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Additional Readings

The topic of infinite series is treated in many texts on advanced calculus.

Bender, C. M., and S. Orszag,Advanced Mathematical Methods for Scientists and Engineers. New York:
McGraw-Hill (1978). Particularly recommended for methods of accelerating convergence.

Davis, H. T.,Tables of Higher Mathematical Functions. Bloomington, IN: Principia Press (1935). Volume II
contains extensive information on Bernoulli numbers and polynomials.
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CHAPTER 6

FUNCTIONS OF A COMPLEX
VARIABLE I

ANALYTIC PROPERTIES, MAPPING

The imaginary numbers are a wonderful flight of God’s spirit;
they are almost an amphibian between being and not being.

GOTTFRIED WILHELM VON LEIBNIZ, 1702

We turn now to a study of functions of a complex variable. In this area we develop some
of the most powerful and widely useful tools in all of analysis. To indicate, at least partly,
why complex variables are important, we mention briefly several areas of application.

1. For many pairs of functionsu andv, bothu andv satisfy Laplace’s equation,

∇2ψ = ∂2ψ(x, y)

∂x2
+ ∂2ψ(x, y)

∂y2
= 0.

Hence eitheru or v may be used to describe a two-dimensional electrostatic potential. The
other function, which gives a family of curves orthogonal to those of the first function, may
then be used to describe the electric fieldE. A similar situation holds for the hydrodynamics
of an ideal fluid in irrotational motion. The functionu might describe the velocity potential,
whereas the functionv would then be the stream function.

In many cases in which the functionsu andv are unknown, mapping or transforming
in the complex plane permits us to create a coordinate system tailored to the particular
problem.

2. In Chapter 9 we shall see that the second-order differential equations of interest in
physics may be solved by power series. The same power series may be used in the complex
plane to replacex by the complex variablez. The dependence of the solutionf (z) at a
givenz0 on the behavior off (z) elsewhere gives us greater insight into the behavior of our
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404 Chapter 6 Functions of a Complex Variable I

solution and a powerful tool (analytic continuation) for extending the region in which the
solution is valid.

3. The change of a parameterk from real to imaginary,k→ ik, transforms the Helmholtz
equation into the diffusion equation. The same change transforms the Helmholtz equa-
tion solutions (Bessel and spherical Bessel functions) into the diffusion equation solutions
(modified Bessel and modified spherical Bessel functions).

4. Integrals in the complex plane have a wide variety of useful applications:

• Evaluating definite integrals;
• Inverting power series;
• Forming infinite products;
• Obtaining solutions of differential equations for large values of the variable (asymptotic

solutions);
• Investigating the stability of potentially oscillatory systems;

• Inverting integral transforms.

5. Many physical quantities that were originally real become complex as a simple phys-
ical theory is made more general. The real index of refraction of light becomes a complex
quantity when absorption is included. The real energy associated with an energy level be-
comes complex when the finite lifetime of the level is considered.

6.1 COMPLEX ALGEBRA

A complex number is nothing more than an ordered pair of two real numbers,(a, b). Sim-
ilarly, a complex variable is an ordered pair of two real variables,1

z≡ (x, y). (6.1)

The ordering is significant. In general(a, b) is not equal to(b, a) and(x, y) is not equal
to (y, x). As usual, we continue writing a real number(x,0) simply asx, and we call
i ≡ (0,1) the imaginary unit.

All our complex variable analysis can be developed in terms of ordered pairs of numbers
(a, b), variables(x, y), and functions(u(x, y), v(x, y)).

We now defineaddition of complex numbers in terms of their Cartesian components
as

z1+ z2= (x1, y1)+ (x2, y2)= (x1+ x2, y1+ y2), (6.2a)

that is, two-dimensional vector addition. In Chapter 1 the points in thexy-plane are
identified with the two-dimensional displacement vectorr = x̂x + ŷy. As a result, two-
dimensional vector analogs can be developed for much of our complex analysis. Exer-
cise 6.1.2 is one simple example; Cauchy’s theorem, Section 6.3, is another.

Multiplication of complex numbers is defined as

z1z2= (x1, y1) · (x2, y2)= (x1x2− y1y2, x1y2+ x2y1). (6.2b)

1This is precisely how a computer does complex arithmetic.
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Using Eq. (6.2b) we verify thati2= (0,1) · (0,1)= (−1,0)=−1, so we can also identify
i =√−1, as usual and further rewrite Eq. (6.1) as

z= (x, y)= (x,0)+ (0, y)= x + (0,1) · (y,0)= x + iy. (6.2c)

Clearly, thei is not necessary here but it is convenient. It serves to keep pairs in order —
somewhat like the unit vectors of Chapter 1.2

Permanence of Algebraic Form

All our elementary functions,ez,sinz, and so on, can be extended into the complex plane
(compare Exercise 6.1.9). For instance, they can be defined by power-series expansions,
such as

ez = 1+ z

1! +
z2

2! + · · · =
∞∑
n=0

zn

n! (6.3)

for the exponential. Such definitions agree with the real variable definitions along the real
x-axis and extend the corresponding real functions into the complex plane. This result is
often calledpermanence of the algebraic form.

It is convenient to employ a graphical representation of the complex variable. By plotting
x — the real part ofz— as the abscissa andy — the imaginary part ofz— as the ordinate,
we have the complex plane, or Argand plane, shown in Fig. 6.1. If we assign specific
values tox andy, thenz corresponds to a point(x, y) in the plane. In terms of the ordering
mentioned before, it is obvious that the point(x, y) does not coincide with the point(y, x)
except for the special case ofx = y. Further, from Fig. 6.1 we may write

x = r cosθ, y = r sinθ (6.4a)

FIGURE 6.1 Complex
plane — Argand diagram.

2The algebra of complex numbers,(a, b), is isomorphic with that of matrices of the form(
a b

−b a

)
(compare Exercise 3.2.4).
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and

z= r(cosθ + i sinθ). (6.4b)

Using a result that is suggested (but not rigorously proved)3 by Section 5.6 and Exer-
cise 5.6.1, we have the useful polar representation

z= r(cosθ + i sinθ)= reiθ . (6.4c)

In order to prove this identity, we usei3 =−i, i4 = 1, . . . in the Taylor expansion of the
exponential and trigonometric functions and separate even and odd powers in

eiθ =
∞∑
n=0

(iθ)n

n! =
∞∑
ν=0

(iθ)2ν

(2ν)! +
∞∑
ν=0

(iθ)2ν+1

(2ν + 1)!

=
∞∑
ν=0

(−1)ν
θ2ν

(2ν)! + i

∞∑
ν=0

(−1)ν
θ2ν+1

(2ν + 1)! = cosθ + i sinθ.

For the special valuesθ = π/2 andθ = π, we obtain

eiπ/2= cos
π

2
+ i sin

π

2
= i, eiπ = cos(π)=−1,

intriguing connections betweene, i, andπ. Moreover, the exponential functioneiθ is peri-
odic with period 2π, just like sinθ and cosθ .

In this representationr is called themodulus or magnitude of z (r = |z| = (x2+y2)1/2)
and the angleθ (= tan−1(y/x)) is labeled the argument orphase of z. (Note that the arctan
function tan−1(y/x) has infinitely many branches.)

The choice of polar representation, Eq. (6.4c), or Cartesian representation, Eqs. (6.1) and
(6.2c), is a matter of convenience. Addition and subtraction of complex variables are easier
in the Cartesian representation, Eq. (6.2a). Multiplication, division, powers, and roots are
easier to handle in polar form, Eq. (6.4c).

Analytically or graphically, using the vector analogy, we may show that the modulus of
the sum of two complex numbers is no greater than the sum of the moduli and no less than
the difference, Exercise 6.1.3,

|z1| − |z2| ≤ |z1+ z2| ≤ |z1| + |z2|. (6.5)

Because of the vector analogy, these are called thetriangle inequalities.
Using the polar form, Eq. (6.4c), we find that the magnitude of a product is the product

of the magnitudes:

|z1 · z2| = |z1| · |z2|. (6.6)

Also,

arg(z1 · z2)= argz1+ argz2. (6.7)

3Strictly speaking, Chapter 5 was limited to real variables. The development of power-series expansions for complex functions
is taken up in Section 6.5 (Laurent expansion).
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FIGURE 6.2 The functionw(z)= u(x, y)+ iv(x, y) maps points in thexy-plane
into points in theuv-plane.

From our complex variablez complex functionsf (z) orw(z) may be constructed. These
complex functions may then be resolved into real and imaginary parts,

w(z)= u(x, y)+ iv(x, y), (6.8)

in which the separate functionsu(x, y) andv(x, y) are pure real. For example, iff (z)= z2,
we have

f (z)= (x + iy)2= (x2− y2)+ i2xy.

Thereal part of a functionf (z) will be labeled�f (z), whereas theimaginary part will
be labeled�f (z). In Eq. (6.8)

�w(z)=Re(w)= u(x, y), �w(z)= Im(w)= v(x, y).

The relationship between the independent variablez and the dependent variablew is
perhaps best pictured as a mapping operation. A givenz = x + iy means a given point in
thez-plane. The complex value ofw(z) is then a point in thew-plane. Points in thez-plane
map into points in thew-plane and curves in thez-plane map into curves in thew-plane,
as indicated in Fig. 6.2.

Complex Conjugation

In all these steps, complex number, variable, and function, the operation of replacingi by
–i is called “taking the complex conjugate.” The complex conjugate ofz is denoted byz∗,
where4

z∗ = x − iy. (6.9)

4The complex conjugate is often denoted byz̄ in the mathematical literature.
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FIGURE 6.3 Complex conjugate points.

The complex variablez and its complex conjugatez∗ are mirror images of each other
reflected in thex-axis, that is, inversion of they-axis (compare Fig. 6.3). The productzz∗
leads to

zz∗ = (x + iy)(x − iy)= x2+ y2= r2. (6.10)

Hence

(zz∗)1/2= |z|,
themagnitude of z.

Functions of a Complex Variable

All the elementary functions of real variables may be extended into the complex plane —
replacing the real variablex by the complex variablez. This is an example of the analytic
continuation mentioned in Section 6.5. The extremely important relation of Eq. (6.4c) is
an illustration. Moving into the complex plane opens up new opportunities for analysis.

Example 6.1.1 DE MOIVRE’S FORMULA

If Eq. (6.4c) (settingr = 1) is raised to thenth power, we have

einθ = (cosθ + i sinθ)n. (6.11)

Expanding the exponential now with argumentnθ , we obtain

cosnθ + i sinnθ = (cosθ + i sinθ)n. (6.12)

De Moivre’s formula is generated if the right-hand side of Eq. (6.12) is expanded by the bi-
nomial theorem; we obtain cosnθ as a series of powers of cosθ and sinθ , Exercise 6.1.6.�

Numerous other examples of relations among the exponential, hyperbolic, and trigono-
metric functions in the complex plane appear in the exercises.

Occasionally there are complications. The logarithm of a complex variable may be ex-
panded using the polar representation

ln z= ln reiθ = ln r + iθ. (6.13a)
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This is not complete. To the phase angle,θ , we may add any integral multiple of 2π without
changingz. Hence Eq. (6.13a) should read

ln z= ln rei(θ+2nπ) = ln r + i(θ + 2nπ). (6.13b)

The parametern may be any integer. This means that lnz is amultivalued function having
an infinite number of values for a single pair of real valuesr andθ . To avoid ambiguity,
the simplest choice isn = 0 and limitation of the phase to an interval of length 2π , such
as(−π,π).5 The line in thez-plane that is not crossed, the negative real axis in this case,
is labeled acut line or branch cut. The value of lnz with n = 0 is called theprincipal
value of ln z. Further discussion of these functions, including the logarithm, appears in
Section 6.7.

Exercises

6.1.1 (a) Find the reciprocal ofx + iy, working entirely in the Cartesian representation.
(b) Repeat part (a), working in polar form but expressing the final result in Cartesian

form.

6.1.2 The complex quantitiesa = u + iv andb = x + iy may also be represented as two-
dimensional vectorsa= x̂u+ ŷv, b= x̂x + ŷy. Show that

a∗b= a · b+ iẑ · a× b.

6.1.3 Prove algebraically that for complex numbers,

|z1| − |z2| ≤ |z1+ z2| ≤ |z1| + |z2|.
Interpret this result in terms of two-dimensional vectors. Prove that

|z− 1|< ∣∣√z2− 1
∣∣< |z+ 1|, for �(z) > 0.

6.1.4 We may define a complex conjugation operatorK such thatKz = z∗. Show thatK is
not a linear operator.

6.1.5 Show that complex numbers have square roots and that the square roots are contained
in the complex plane. What are the square roots ofi?

6.1.6 Show that

(a) cosnθ = cosn θ − ( n2)cosn−2 θ sin2 θ + ( n4)cosn−4 θ sin4 θ − · · · .
(b) sinnθ = ( n1)cosn−1 θ sinθ − ( n3)cosn−3 θ sin3 θ + · · · .

Note. The quantities
( n
m

)
are binomial coefficients:

( n
m

)= n!/[(n−m)!m!].
6.1.7 Prove that

(a)
N−1∑
n=0

cosnx = sin(Nx/2)

sinx/2
cos(N − 1)

x

2
,

5There is no standard choice of phase; the appropriate phase depends on each problem.
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(b)
N−1∑
n=0

sinnx = sin(Nx/2)

sinx/2
sin(N − 1)

x

2
.

These series occur in the analysis of the multiple-slit diffraction pattern. Another appli-
cation is the analysis of the Gibbs phenomenon, Section 14.5.
Hint. Parts (a) and (b) may be combined to form a geometric series (compare Sec-
tion 5.1).

6.1.8 For−1<p < 1 prove that

(a)
∞∑
n=0

pn cosnx = 1− p cosx

1− 2p cosx + p2
,

(b)
∞∑
n=0

pn sinnx = p sinx

1− 2p cosx + p2
.

These series occur in the theory of the Fabry–Perot interferometer.

6.1.9 Assume that the trigonometric functions and the hyperbolic functions are defined for
complex argument by the appropriate power series

sinz=
∞∑

n=1,odd

(−1)(n−1)/2z
n

n! =
∞∑
s=0

(−1)s
z2s+1

(2s + 1)! ,

cosz=
∞∑

n=0,even

(−1)n/2z
n

n! =
∞∑
s=0

(−1)s
z2s

(2s)! ,

sinhz=
∞∑

n=1,odd

zn

n! =
∞∑
s=0

z2s+1

(2s + 1)! ,

coshz=
∞∑

n=0,even

zn

n! =
∞∑
s=0

z2s

(2s)! .

(a) Show that

i sinz= sinhiz, siniz= i sinhz,
cosz= coshiz, cosiz= coshz.

(b) Verify that familiar functional relations such as

coshz= ez+e−z
2 ,

sin(z1+ z2)= sinz1 cosz2+ sinz2 cosz1,

still hold in the complex plane.
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6.1.10 Using the identities

cosz= eiz + e−iz

2
, sinz= eiz − e−iz

2i
,

established from comparison of power series, show that

(a) sin(x + iy)= sinx coshy + i cosx sinhy,

cos(x + iy)= cosx coshy − i sinx sinhy,

(b) |sinz|2= sin2x + sinh2y, |cosz|2= cos2x + sinh2y.

This demonstrates that we may have|sinz|, |cosz|> 1 in the complex plane.

6.1.11 From the identities in Exercises 6.1.9 and 6.1.10 show that

(a) sinh(x + iy)= sinhx cosy + i coshx siny,

cosh(x + iy)= coshx cosy + i sinhx siny,

(b) |sinhz|2= sinh2x + sin2y, |coshz|2= cosh2x + sin2y.

6.1.12 Prove that

(a) |sinz| ≥ |sinx| (b) |cosz| ≥ |cosx|.
6.1.13 Show that the exponential functionez is periodic with a pure imaginary period of 2πi.

6.1.14 Show that

(a) tanh
z

2
= sinhx + i siny

coshx + cosy
, (b) coth

z

2
= sinhx − i siny

coshx − cosy
.

6.1.15 Find all the zeros of

(a) sinz, (b) cosz, (c) sinhz, (d) coshz.

6.1.16 Show that

(a) sin−1 z=−i ln
(
iz±

√
1− z2

)
, (d) sinh−1 z= ln

(
z+

√
z2+ 1

)
,

(b) cos−1 z=−i ln
(
z±

√
z2− 1

)
, (e) cosh−1 z= ln

(
z+

√
z2− 1

)
,

(c) tan−1 z= i

2
ln

(
i + z

i − z

)
, (f) tanh−1 z= 1

2
ln

(
1+ z

1− z

)
.

Hint. 1. Express the trigonometric and hyperbolic functions in terms of exponentials.
2. Solve for the exponential and then for the exponent.

6.1.17 In the quantum theory of the photoionization we encounter the identity(
ia − 1

ia + 1

)ib

= exp
(−2b cot−1a

)
,

in whicha andb are real. Verify this identity.
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6.1.18 A plane wave of light of angular frequencyω is represented by

eiω(t−nx/c).

In a certain substance the simple real index of refractionn is replaced by the complex
quantityn− ik. What is the effect ofk on the wave? What doesk correspond to phys-
ically? The generalization of a quantity from real to complex form occurs frequently
in physics. Examples range from the complex Young’s modulus of viscoelastic materi-
als to the complex (optical) potential of the “cloudy crystal ball” model of the atomic
nucleus.

6.1.19 We see that for the angular momentum components defined in Exercise 2.5.14,

Lx − iLy 
= (Lx + iLy)
∗.

Explain why this occurs.

6.1.20 Show that thephase of f (z)= u+ iv is equal to the imaginary part of the logarithm of
f (z). Exercise 8.2.13 depends on this result.

6.1.21 (a) Show thateln z always equalsz.
(b) Show that lnez does not always equalz.

6.1.22 The infinite product representations of Section 5.11 hold when the real variablex is
replaced by the complex variablez. From this, develop infinite product representations
for
(a) sinhz, (b) coshz.

6.1.23 The equation of motion of a massm relative to a rotating coordinate system is

m
d2r
dt2

= F−mω× (ω× r)− 2m

(
ω× dr

dt

)
−m

(
dω

dt
× r

)
.

Consider the caseF = 0, r = x̂x + ŷy, andω = ωẑ, with ω constant. Show that the
replacement ofr= x̂x + ŷy by z= x + iy leads to

d2z

dt2
+ i2ω

dz

dt
−ω2z= 0.

Note. This ODE may be solved by the substitutionz= f e−iωt .

6.1.24 Using the complex arithmetic available in FORTRAN, write a program that will cal-
culate the complex exponentialez from its series expansion (definition). Calculateez

for z= einπ/6, n= 0,1,2, . . . ,12. Tabulate the phase angle(θ = nπ/6),�z, �z,�(ez),
�(ez), |ez|, and the phase ofez.

Check value. n= 5, θ = 2.61799,�(z)=−0.86602,
�z= 0.50000,�(ez)= 0.36913,�(ez)= 0.20166,
|ez| = 0.42062, phase(ez)= 0.50000.

6.1.25 Using the complex arithmetic available in FORTRAN, calculate and tabulate�(sinhz),
�(sinhz), |sinhz|, and phase(sinhz) for x = 0.0(0.1)1.0 andy = 0.0(0.1)1.0.
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Hint. Beware of dividing by zero when calculating an angle as an arc tangent.

Check value. z= 0.2+ 0.1i,�(sinhz)= 0.20033,
�(sinhz)= 0.10184, |sinhz| = 0.22473,
phase(sinhz)= 0.47030.

6.1.26 Repeat Exercise 6.1.25 for coshz.

6.2 CAUCHY–RIEMANN CONDITIONS

Having established complex functions of a complex variable, we now proceed to differen-
tiate them. The derivative off (z), like that of a real function, is defined by

lim
δz→0

f (z+ δz)− f (z)

z+ δz− z
= lim

δz→0

δf (z)

δz
= df

dz
= f ′(z), (6.14)

provided that the limit isindependent of the particular approach to the pointz. For real
variables we require that the right-hand limit (x→ x0 from above) and the left-hand limit
(x→ x0 from below) be equal for the derivativedf (x)/dx to exist atx = x0. Now, with z

(or z0) some point in a plane, our requirement that the limit be independent of the direction
of approach is very restrictive.

Consider incrementsδx andδy of the variablesx andy, respectively. Then

δz= δx + iδy. (6.15)

Also,

δf = δu+ iδv, (6.16)

so that
δf

δz
= δu+ iδv

δx + iδy
. (6.17)

Let us take the limit indicated by Eq. (6.14) by two different approaches, as shown in
Fig. 6.4. First, withδy = 0, we letδx→ 0. Equation (6.14) yields

lim
δz→0

δf

δz
= lim

δx→0

(
δu

δx
+ i

δv

δx

)
= ∂u

∂x
+ i

∂v

∂x
, (6.18)

FIGURE 6.4 Alternate
approaches toz0.
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assuming the partial derivatives exist. For a second approach, we setδx = 0 and then let
δy→ 0. This leads to

lim
δz→0

δf

δz
= lim

δy→0

(
−i δu

δy
+ δv

δy

)
=−i ∂u

∂y
+ ∂v

∂y
. (6.19)

If we are to have a derivativedf/dz, Eqs. (6.18) and (6.19) must be identical. Equating
real parts to real parts and imaginary parts to imaginary parts (like components of vectors),
we obtain

∂u

∂x
= ∂v

∂y
,

∂u

∂y
=− ∂v

∂x
. (6.20)

These are the famousCauchy–Riemann conditions. They were discovered by Cauchy and
used extensively by Riemann in his theory of analytic functions. These Cauchy–Riemann
conditions are necessary for the existence of a derivative off (z); that is, if df/dz exists,
the Cauchy–Riemann conditions must hold.

Conversely, if the Cauchy–Riemann conditions are satisfied and the partial derivatives
of u(x, y) andv(x, y) are continuous, the derivativedf/dz exists. This may be shown by
writing

δf =
(
∂u

∂x
+ i

∂v

∂x

)
δx +

(
∂u

∂y
+ i

∂v

∂y

)
δy. (6.21)

The justification for this expression depends on the continuity of the partial derivatives of
u andv. Dividing by δz, we have

δf

δz
= (∂u/∂x + i(∂v/∂x))δx + (∂u/∂y + i(∂v/∂y))δy

δx + iδy

= (∂u/∂x + i(∂v/∂x))+ (∂u/∂y + i(∂v/∂y))δy/δx

1+ i(δy/δx)
. (6.22)

If δf/δz is to have a unique value, the dependence onδy/δx must be eliminated. Apply-
ing the Cauchy–Riemann conditions to they derivatives, we obtain

∂u

∂y
+ i

∂v

∂y
=− ∂v

∂x
+ i

∂u

∂x
. (6.23)

Substituting Eq. (6.23) into Eq. (6.22), we may cancel out theδy/δx dependence and

δf

δz
= ∂u

∂x
+ i

∂v

∂x
, (6.24)

which shows that limδf/δz is independent of the direction of approach in the complex
plane as long as the partial derivatives are continuous. Thus,df

dz
exists andf is analytic

at z.
It is worthwhile noting that the Cauchy–Riemann conditions guarantee that the curves

u= c1 will be orthogonal to the curvesv = c2 (compare Section 2.1). This is fundamental
in application to potential problems in a variety of areas of physics. Ifu = c1 is a line of
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electric force, thenv = c2 is an equipotential line (surface), and vice versa. To see this, let
us write the Cauchy–Riemann conditions as a product of ratios of partial derivatives,

ux

uy
· vx
vy
=−1, (6.25)

with the abbreviations

∂u

∂x
≡ ux,

∂u

∂y
≡ uy,

∂v

∂x
≡ vx,

∂v

∂y
≡ vy.

Now recall the geometric meaning of−ux/uy as the slope of the tangent of each curve
u(x, y) = const. and similarly forv(x, y) = const. This means that theu = const. and
v = const. curves are mutually orthogonal at each intersection. Alternatively,

ux dx + uy dy = 0= vy dx − vx dy

says that, if(dx, dy) is tangent to theu-curve, then the orthogonal(−dy, dx) is tangent to
thev-curve at the intersection point,z= (x, y). Or equivalently,uxvx + uyvy = 0 implies
that thegradient vectors (ux,uy) and(vx, vy) are perpendicular. A further implication
for potential theory is developed in Exercise 6.2.1.

Analytic Functions

Finally, if f (z) is differentiable atz= z0 and in some small region aroundz0, we say that
f (z) is analytic6 atz= z0. If f (z) is analytic everywhere in the (finite) complex plane, we
call it anentire function. Our theory of complex variables here is one of analytic functions
of a complex variable, which points up the crucial importance of the Cauchy–Riemann
conditions. The concept of analyticity carried on in advanced theories of modern physics
plays a crucial role in dispersion theory (of elementary particles). Iff ′(z) does not exist
at z = z0, thenz0 is labeled a singular point and consideration of it is postponed until
Section 6.6.

To illustrate the Cauchy–Riemann conditions, consider two very simple examples.

Example 6.2.1 z2 IS ANALYTIC

Let f (z)= z2. Then the real partu(x, y)= x2− y2 and the imaginary partv(x, y)= 2xy.
Following Eq. (6.20),

∂u

∂x
= 2x = ∂v

∂y
,

∂u

∂y
=−2y =− ∂v

∂x
.

We see thatf (z) = z2 satisfies the Cauchy–Riemann conditions throughout the complex
plane. Since the partial derivatives are clearly continuous, we conclude thatf (z) = z2 is
analytic. �

6Some writers use the termholomorphic or regular.
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Example 6.2.2 z∗ IS NOT ANALYTIC

Let f (z) = z∗. Now u = x andv = −y. Applying the Cauchy–Riemann conditions, we
obtain

∂u

∂x
= 1 
= ∂v

∂y
=−1.

The Cauchy–Riemann conditions are not satisfied andf (z)= z∗ is not an analytic function
of z. It is interesting to note thatf (z)= z∗ is continuous, thus providing an example of a
function that is everywhere continuous but nowhere differentiable in the complex plane.

The derivative of a real function of a real variable is essentially a local characteristic, in
that it provides information about the function only in a local neighborhood — for instance,
as a truncated Taylor expansion. The existence of a derivative of a function of a complex
variable has much more far-reaching implications. The real and imaginary parts of our an-
alytic function must separately satisfy Laplace’s equation. This is Exercise 6.2.1. Further,
our analytic function is guaranteed derivatives of all orders, Section 6.4. In this sense the
derivative not only governs the local behavior of the complex function, but controls the
distant behavior as well. �

Exercises

6.2.1 The functionsu(x, y) andv(x, y) are the real and imaginary parts, respectively, of an
analytic functionw(z).

(a) Assuming that the required derivatives exist, show that

∇2u=∇2v = 0.

Solutions of Laplace’s equation such asu(x, y) andv(x, y) are calledharmonic
functions.

(b) Show that

∂u

∂x

∂u

∂y
+ ∂v

∂x

∂v

∂y
= 0,

and give a geometric interpretation.
Hint. The technique of Section 1.6 allows you to construct vectors normal to the curves
u(x, y)= ci andv(x, y)= cj .

6.2.2 Show whether or not the functionf (z)=�(z)= x is analytic.

6.2.3 Having shown that the real partu(x, y) and the imaginary partv(x, y) of an analytic
functionw(z) each satisfy Laplace’s equation, show thatu(x, y) andv(x, y) cannot
both have either a maximum or a minimum in the interior of any region in which
w(z) is analytic. (They can have saddle points only.)
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6.2.4 Let A = ∂2w/∂x2,B = ∂2w/∂x∂y,C = ∂2w/∂y2. From the calculus of functions of
two variables,w(x,y), we have asaddle point if

B2−AC > 0.

With f (z)= u(x, y)+ iv(x, y), apply the Cauchy–Riemann conditions and show that
neither u(x, y) nor v(x, y) has a maximum or a minimum in a finite region of the
complex plane. (See also Section 7.3.)

6.2.5 Find the analytic function

w(z)= u(x, y)+ iv(x, y)

if (a) u(x, y)= x3− 3xy2, (b) v(x, y)= e−y sinx.

6.2.6 If there is some common region in whichw1 = u(x, y) + iv(x, y) andw2 = w∗1 =
u(x, y)− iv(x, y) are both analytic, prove thatu(x, y) andv(x, y) are constants.

6.2.7 The functionf (z)= u(x, y)+ iv(x, y) is analytic. Show thatf ∗(z∗) is also analytic.

6.2.8 Using f (reiθ ) = R(r, θ)ei�(r,θ), in which R(r, θ) and�(r, θ) are differentiable real
functions ofr andθ , show that the Cauchy–Riemann conditions in polar coordinates
become

(a)
∂R

∂r
= R

r

∂�

∂θ
, (b)

1

r

∂R

∂θ
=−R∂�

∂r
.

Hint. Set up the derivative first withδz radial and then withδz tangential.

6.2.9 As an extension of Exercise 6.2.8 show that�(r, θ) satisfies Laplace’s equation in polar
coordinates. Equation (2.35) (without the final term and set to zero) is the Laplacian in
polar coordinates.

6.2.10 Two-dimensional irrotational fluid flow is conveniently described by a complex poten-
tial f (z) = u(x, v) + iv(x, y). We label the real part,u(x, y), the velocity potential
and the imaginary part,v(x, y), the stream function. The fluid velocityV is given by
V=∇u. If f (z) is analytic,

(a) Show thatdf/dz= Vx − iVy ;
(b) Show that∇ ·V= 0 (no sources or sinks);
(c) Show that∇×V= 0 (irrotational, nonturbulent flow).

6.2.11 A proof of the Schwarz inequality (Section 10.4) involves minimizing an expression,

f =ψaa + λψab + λ∗ψ∗ab + λλ∗ψbb ≥ 0.

Theψ are integrals of products of functions;ψaa andψbb are real,ψab is complex and
λ is a complex parameter.

(a) Differentiate the preceding expression with respect toλ∗, treatingλ as an indepen-
dent parameter, independent ofλ∗. Show that setting the derivative∂f/∂λ∗ equal
to zero yields

λ=−ψ∗ab
ψbb

.
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(b) Show that∂f/∂λ= 0 leads to the same result.
(c) Let λ = x + iy, λ∗ = x − iy. Set thex andy derivatives equal to zero and show

that again

λ=−ψ∗ab
ψbb

.

This independence ofλ andλ∗ appears again in Section 17.7.

6.2.12 The functionf (z) is analytic. Show that the derivative off (z) with respect toz∗ does
not exist unlessf (z) is a constant.
Hint. Use the chain rule and takex = (z+ z∗)/2, y = (z− z∗)/2i.
Note. This result emphasizes that our analytic functionf (z) is not just a complex func-
tion of two real variablesx andy. It is a function of the complex variablex + iy.

6.3 CAUCHY’S INTEGRAL THEOREM

Contour Integrals

With differentiation under control, we turn to integration. The integral of a complex vari-
able over a contour in the complex plane may be defined in close analogy to the (Riemann)
integral of a real function integrated along the realx-axis.

We divide the contour fromz0 to z′0 into n intervals by pickingn−1 intermediate points
z1, z2, . . . on the contour (Fig. 6.5). Consider the sum

Sn =
n∑

j=1

f (ζj )(zj − zj−1), (6.26)

FIGURE 6.5 Integration path.
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whereζj is a point on the curve betweenzj andzj−1. Now letn→∞ with

|zj − zj−1| → 0

for all j . If the limn→∞ Sn exists and is independent of the details of choosing the points
zj andζj , then

lim
n→∞

n∑
j=1

f (ζj )(zj − zj−1)=
∫ z′0

z0

f (z) dz. (6.27)

The right-hand side of Eq. (6.27) is called the contour integral off (z) (along the specified
contourC from z= z0 to z= z′0).

The preceding development of the contour integral is closely analogous to the Riemann
integral of a real function of a real variable. As an alternative, the contour integral may be
defined by∫ z2

z1

f (z)dz =
∫ x2,y2

x1,y1

[
u(x, y)+ iv(x, y)

][dx + idy]

=
∫ x2,y2

x1,y1

[
u(x, y) dx − v(x, y) dy

]+ i

∫ x2,y2

x1,y1

[
v(x, y) dx + u(x, y) dy

]
with the path joining(x1, y1) and(x2, y2) specified. This reduces the complex integral to
the complex sum of real integrals. It is somewhat analogous to the replacement of a vector
integral by the vector sum of scalar integrals, Section 1.10.

An important example is the contour integral
∫
C
zn dz, whereC is a circle of radius

r > 0 around the originz = 0 in the positive mathematical sense (counterclockwise). In
polar coordinates of Eq. (6.4c) we parameterize the circle asz = reiθ anddz = ireiθ dθ .
Forn 
= −1, n an integer, we then obtain

1

2πi

∫
C

zn dz = rn+1

2π

∫ 2π

0
exp

[
i(n+ 1)θ

]
dθ

= [2πi(n+ 1)
]−1

rn+1[ei(n+1)θ ]∣∣2π
0 = 0 (6.27a)

because 2π is a period ofei(n+1)θ , while for n=−1

1

2πi

∫
C

dz

z
= 1

2π

∫ 2π

0
dθ = 1, (6.27b)

again independent ofr .
Alternatively, we canintegrate around a rectangle with the cornersz1, z2, z3, z4 to

obtain forn 
= −1∫
zn dz= zn+1

n+ 1

∣∣∣∣z2

z1

+ zn+1

n+ 1

∣∣∣∣z3

z2

+ zn+1

n+ 1

∣∣∣∣z4

z3

+ zn+1

n+ 1

∣∣∣∣z1

z4

= 0,

because each corner point appears once as an upper and a lower limit that cancel. For
n=−1 the corresponding real parts of the logarithms cancel similarly, but their imaginary
parts involve the increasing arguments of the points fromz1 to z4 and, when we come back
to the first cornerz1, its argument has increased by 2π due to the multivaluedness of the
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logarithm, so 2πi is left over as the value of the integral. Thus,the value of the integral
involving a multivalued function must be that which is reached in a continuous fash-
ion on the path being taken. These integrals are examples of Cauchy’s integral theorem,
which we consider in the next section.

Stokes’ Theorem Proof

Cauchy’s integral theorem is the first of two basic theorems in the theory of the behavior of
functions of a complex variable. First, we offer a proof under relatively restrictive condi-
tions — conditions that are intolerable to the mathematician developing a beautiful abstract
theory but that are usually satisfied in physical problems.

If a functionf (z) is analytic, that is, if its partial derivatives are continuous throughout
somesimply connected region R,7 for every closed pathC (Fig. 6.6) inR, and if it is
single-valued (assumed for simplicity here), the line integral off (z) aroundC is zero, or∫

C

f (z) dz=
∮
C

f (z) dz= 0. (6.27c)

Recall that in Section 1.13 such a functionf (z), identified as a force, was labeled conser-
vative. The symbol

∮
is used to emphasize that the path is closed. Note that the interior

of the simply connected region bounded by a contour is that region lying to the left when
moving in the direction implied by the contour; as a rule, a simply connected region is
bounded by a single closed curve.

In this form the Cauchy integral theorem may be proved by direct application of Stokes’
theorem (Section 1.12). Withf (z)= u(x, y)+ iv(x, y) anddz= dx + idy,∮

C

f (z) dz =
∮
C

(u+ iv)(dx + idy)

=
∮
C

(udx − v dy)+ i

∮
(v dx + udy). (6.28)

These two line integrals may be converted to surface integrals by Stokes’ theorem, a proce-
dure that is justified if the partial derivatives are continuous withinC. In applying Stokes’
theorem, note that the final two integrals of Eq. (6.28) are real. Using

V= x̂Vx + ŷVy,

Stokes’ theorem says that∮
C

(Vx dx + Vy dy)=
∫ (

∂Vy

∂x
− ∂Vx

∂y

)
dx dy. (6.29)

For the first integral in the last part of Eq. (6.28) letu= Vx andv =−Vy .8 Then

7Any closed simple curve (one that does not intersect itself) inside a simply connected region or domain may be contracted to a
single point that still belongs to the region. If a region is not simply connected, it is called multiply connected. As an example of
a multiply connected region, consider thez-plane with the interior of the unit circleexcluded.
8In the proof of Stokes’ theorem, Section 1.12,Vx andVy are any two functions (with continuous partial derivatives).
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FIGURE 6.6 A closed contourC
within a simply connected regionR.∮

C

(udx − v dy) =
∮
C

(Vx dx + Vy dy)

=
∫ (

∂Vy

∂x
− ∂Vx

∂y

)
dx dy =−

∫ (
∂v

∂x
+ ∂u

∂y

)
dx dy. (6.30)

For the second integral on the right side of Eq. (6.28) we letu = Vy andv = Vx . Using
Stokes’ theorem again, we obtain∮

(v dx + udy)=
∫ (

∂u

∂x
− ∂v

∂y

)
dx dy. (6.31)

On application of the Cauchy–Riemann conditions, which must hold, sincef (z) is as-
sumed analytic, each integrand vanishes and∮

f (z) dz=−
∫ (

∂v

∂x
+ ∂u

∂y

)
dx dy + i

∫ (
∂u

∂x
− ∂v

∂y

)
dx dy = 0. (6.32)

Cauchy–Goursat Proof

This completes the proof of Cauchy’s integral theorem. However, the proof is marred from
a theoretical point of view by the need for continuity of the first partial derivatives. Actually,
as shown by Goursat, this condition is not necessary. An outline of the Goursat proof is as
follows. We subdivide the region inside the contourC into a network of small squares, as
indicated in Fig. 6.7. Then ∮

C

f (z) dz=
∑
j

∮
Cj

f (z) dz, (6.33)

all integrals along interior lines canceling out. To estimate the
∮
Cj

f (z) dz, we construct
the function

δj (z, zj )= f (z)− f (zj )

z− zj
− df (z)

dz

∣∣∣∣
z=zj

, (6.34)

with zj an interior point of thej th subregion. Note that[f (z) − f (zj )]/(z − zj ) is an
approximation to the derivative atz = zj . Equivalently, we may note that iff (z) had
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FIGURE 6.7 Cauchy–Goursat contours.

a Taylor expansion (which we have not yet proved), thenδj (z, zj ) would be of orderz−zj ,
approaching zero as the network was made finer. But sincef ′(zj ) exists, that is, is finite,
we may make ∣∣δj (z, zj )∣∣< ε, (6.35)

whereε is an arbitrarily chosen small positive quantity. Solving Eq. (6.34) forf (z) and
integrating aroundCj , we obtain∮

Cj

f (z) dz=
∮
Cj

(z− zj )δj (z, zj ) dz, (6.36)

the integrals of the other terms vanishing.9 When Eqs. (6.35) and (6.36) are combined, one
shows that ∣∣∣∣∑

j

∮
Cj

f (z) dz

∣∣∣∣<Aε, (6.37)

whereA is a term of the order of the area of the enclosed region. Sinceε is arbitrary, we
let ε→ 0 and conclude that if a functionf (z) is analytic on and within a closed pathC,∮

C

f (z) dz= 0. (6.38)

Details of the proof of this significantly more general and more powerful form can be found
in Churchill in the Additional Readings. Actually we can still prove the theorem forf (z)

analytic within the interior ofC and only continuous onC.
The consequence of the Cauchy integral theorem is that for analytic functions the line

integral is a function only of its endpoints, independent of the path of integration,∫ z2

z1

f (z) dz= F(z2)− F(z1)=−
∫ z1

z2

f (z) dz, (6.39)

again exactly like the case of a conservative force, Section 1.13.

9∮ dz and
∮
z dz= 0 by Eq. (6.27a).
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Multiply Connected Regions

The original statement of Cauchy’s integral theorem demanded a simply connected region.
This restriction may be relaxed by the creation of a barrier, a contour line. The purpose of
the following contour-line construction is to permit, within a multiply connected region,
the identification of curves that can be shrunk to a point within the region, that is, the
construction of a subregion that is simply connected.

Consider the multiply connected region of Fig. 6.8, in whichf (z) is not defined for the
interior, R′. Cauchy’s integral theorem is not valid for the contourC, as shown, but we
can construct a contourC′ for which the theorem holds. We draw a line from the interior
forbidden region,R′, to the forbidden region exterior toR and then run a new contour,C′,
as shown in Fig. 6.9.

The new contour,C′, throughABDEFGA never crosses the contour line that literally
convertsR into a simply connected region. The three-dimensional analog of this technique
was used in Section 1.14 to prove Gauss’ law. By Eq. (6.39),∫ A

G

f (z) dz=−
∫ D

E

f (z) dz, (6.40)

FIGURE 6.8 A closed contourC in a
multiply connected region.

FIGURE 6.9 Conversion of a multiply
connected region into a simply connected

region.



424 Chapter 6 Functions of a Complex Variable I

with f (z) having been continuous across the contour line and line segmentsDE andGA
arbitrarily close together. Then∮

C′
f (z) dz=

∫
ABD

f (z) dz+
∫

EFG
f (z) dz= 0 (6.41)

by Cauchy’s integral theorem, with regionR now simply connected. Applying Eq. (6.39)
once again withABD→ C′1 andEFG→−C′2, we obtain∮

C′1
f (z) dz=

∮
C′2

f (z) dz, (6.42)

in which C′1 andC′2 are both traversed in the same (counterclockwise, that is, positive)
direction.

Let us emphasize that the contour line here is a matter of mathematical convenience, to
permit the application of Cauchy’s integral theorem. Sincef (z) is analytic in the annular
region, it is necessarily single-valued and continuous across any such contour line.

Exercises

6.3.1 Show that
∫ z2
z1

f (z) dz=− ∫ z1
z2

f (z) dz.

6.3.2 Prove that ∣∣∣∣ ∫
C

f (z) dz

∣∣∣∣≤ |f |max ·L,

where|f |max is the maximum value of|f (z)| along the contourC andL is the length
of the contour.

6.3.3 Verify that ∫ 1,1

0,0
z∗ dz

depends on the path by evaluating the integral for the two paths shown in Fig. 6.10.
Recall thatf (z)= z∗ is not an analytic function ofz and that Cauchy’s integral theorem
therefore does not apply.

6.3.4 Show that ∮
C

dz

z2+ z
= 0,

in which the contourC is a circle defined by|z| =R > 1.
Hint. Direct use of the Cauchy integral theorem is illegal. Why? The integral may be
evaluated by transforming to polar coordinates and using tables. This yields 0 forR > 1
and 2πi for R < 1.
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FIGURE 6.10 Contour.

6.4 CAUCHY’S INTEGRAL FORMULA

As in the preceding section, we consider a functionf (z) that is analytic on a closed contour
C and within the interior region bounded byC. We seek to prove that

1

2πi

∮
C

f (z)

z− z0
dz= f (z0), (6.43)

in which z0 is any point in the interior region bounded byC. This is the second of the
two basic theorems mentioned in Section 6.3. Note that sincez is on the contourC while
z0 is in the interior,z− z0 
= 0 and the integral Eq. (6.43) is well defined. Althoughf (z)

is assumed analytic, the integrand isf (z)/(z − z0) and is not analytic atz = z0 unless
f (z0) = 0. If the contour is deformed as shown in Fig. 6.11 (or Fig. 6.9, Section 6.3),
Cauchy’s integral theorem applies. By Eq. (6.42),∮

C

f (z)

z− z0
dz−

∮
C2

f (z)

z− z0
dz= 0, (6.44)

whereC is the original outer contour andC2 is the circle surrounding the pointz0 traversed
in acounterclockwise direction. Letz= z0+ reiθ , using the polar representation because
of the circular shape of the path aroundz0. Herer is small and will eventually be made to
approach zero. We have (withdz= ireirθ dθ from Eq. (6.27a))∮

C2

f (z)

z− z0
dz=

∮
C2

f (z0+ reiθ )

reiθ
rieiθ dθ.

Taking the limit asr→ 0, we obtain∮
C2

f (z)

z− z0
dz = if (z0)

∫
C2

dθ = 2πif (z0), (6.45)
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FIGURE 6.11 Exclusion of a
singular point.

sincef (z) is analytic and therefore continuous atz= z0. This proves the Cauchy integral
formula.

Here is a remarkable result. The value of an analytic functionf (z) is given at an interior
point z= z0 once the values on the boundaryC are specified. This is closely analogous to
a two-dimensional form of Gauss’ law (Section 1.14) in which the magnitude of an interior
line charge would be given in terms of the cylindrical surface integral of the electric fieldE.

A further analogy is the determination of a function in real space by an integral of the
function and the corresponding Green’s function (and their derivatives) over the bounding
surface. Kirchhoff diffraction theory is an example of this.

It has been emphasized thatz0 is an interior point. What happens ifz0 is exterior toC?
In this case the entire integrand is analytic on and withinC. Cauchy’s integral theorem,
Section 6.3, applies and the integral vanishes. We have

1

2πi

∮
C

f (z) dz

z− z0
=
{
f (z0), z0 interior

0, z0 exterior.

Derivatives

Cauchy’s integral formula may be used to obtain an expression for the derivative off (z).
From Eq. (6.43), withf (z) analytic,

f (z0+ δz0)− f (z0)

δz0
= 1

2πiδz0

(∮
f (z)

z− z0− δz0
dz−

∮
f (z)

z− z0
dz

)
.

Then, by definition of derivative (Eq. (6.14)),

f ′(z0) = lim
δz0→0

1

2πiδz0

∮
δz0f (z)

(z− z0− δz0)(z− z0)
dz

= 1

2πi

∮
f (z)

(z− z0)2
dz. (6.46)

This result could have been obtained by differentiating Eq. (6.43) under the integral sign
with respect toz0. This formal, or turning-the-crank, approach is valid, but the justification
for it is contained in the preceding analysis.
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This technique for constructing derivatives may be repeated. We writef ′(z0 + δz0)

andf ′(z0), using Eq. (6.46). Subtracting, dividing byδz0, and finally taking the limit as
δz0→ 0, we have

f (2)(z0)= 2

2πi

∮
f (z) dz

(z− z0)3
.

Note thatf (2)(z0) is independent of the direction ofδz0, as it must be. Continuing, we
get10

f (n)(z0)= n!
2πi

∮
f (z) dz

(z− z0)n+1
; (6.47)

that is, the requirement thatf (z) be analytic guarantees not only a first derivative but
derivatives ofall orders as well! The derivatives off (z) are automatically analytic. Notice
that this statement assumes the Goursat version of the Cauchy integral theorem. This is also
why Goursat’s contribution is so significant in the development of the theory of complex
variables.

Morera’s Theorem

A further application of Cauchy’s integral formula is in the proof of Morera’stheorem,
which is the converse of Cauchy’s integral theorem. The theorem states the following:

If a function f (z) is continuous in a simply connected region R and∮
C
f (z) dz = 0 for every closed contour C within R, then f (z) is analytic

throughout R.

Let us integratef (z) from z1 to z2. Since every closed-path integral off (z) vanishes,
the integral is independent of path and depends only on its endpoints. We label the result
of the integrationF(z), with

F(z2)− F(z1)=
∫ z2

z1

f (z) dz. (6.48)

As an identity,

F(z2)− F(z1)

z2− z1
− f (z1)=

∫ z2
z1
[f (t)− f (z1)]dt

z2− z1
, (6.49)

usingt as another complex variable. Now we take the limit asz2→ z1:

lim
z2→z1

∫ z2
z1
[f (t)− f (z1)]dt

z2− z1
= 0, (6.50)

10This expression is the starting point for defining derivatives offractional order. See A. Erdelyi (ed.),Tables of Integral
Transforms, Vol. 2. New York: McGraw-Hill (1954). For recent applications to mathematical analysis, see T. J. Osler, An integral
analogue of Taylor’s series and its use in computing Fourier transforms.Math. Comput. 26: 449 (1972), and references therein.
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sincef (t) is continuous.11 Therefore

lim
z2→z1

F(z2)− F(z1)

z2− z1
= F ′(z)

∣∣
z=z1

= f (z1) (6.51)

by definition of derivative (Eq. (6.14)). We have proved thatF ′(z) at z = z1 exists and
equalsf (z1). Sincez1 is any point inR, we see thatF(z) is analytic. Then by Cauchy’s
integral formula (compare Eq. (6.47)),F ′(z) = f (z) is also analytic, proving Morera’s
theorem.

Drawing once more on our electrostatic analog, we might usef (z) to represent the
electrostatic fieldE. If the net charge within every closed region inR is zero (Gauss’
law), the charge density is everywhere zero inR. Alternatively, in terms of the analysis of
Section 1.13,f (z) represents a conservative force (by definition of conservative), and then
we find that it is always possible to express it as the derivative of a potential functionF(z).

An important application of Cauchy’s integral formula is the followingCauchy inequal-
ity. If f (z) =∑ anz

n is analytic and bounded,|f (z)| ≤M on a circle of radiusr about
the origin, then

|an|rn ≤M (Cauchy’s inequality) (6.52)

gives upper bounds for the coefficients of its Taylor expansion. To prove Eq. (6.52) let us
defineM(r)=max|z|=r |f (z)| and use the Cauchy integral foran:

|an| = 1

2π

∣∣∣∣∫|z|=r f (z)zn+1
dz

∣∣∣∣≤M(r)
2πr

2πrn+1
.

An immediate consequence of the inequality (6.52) isLiouville’s theorem: If f (z) is
analytic and bounded in the entire complex plane it is a constant. In fact, if|f (z)| ≤M for
all z, then Cauchy’s inequality (6.52) gives|an| ≤Mr−n→ 0 asr→∞ for n > 0. Hence
f (z)= a0.

Conversely, the slightest deviation of an analytic function from a constant value implies
that there must be at least one singularity somewhere in the infinite complex plane. Apart
from the trivial constant functions, then, singularities are a fact of life, and we must learn
to live with them. But we shall do more than that. We shall next expand a function in a
Laurent series at a singularity, and we shall use singularities to develop the powerful and
useful calculus of residues in Chapter 7.

A famous application of Liouville’s theorem yields thefundamental theorem of alge-
bra (due to C. F. Gauss), which says that any polynomialP(z) =∑n

ν=0aνz
ν with n > 0

andan 
= 0 hasn roots. To prove this, supposeP(z) has no zero. Then 1/P (z) is analytic
and bounded as|z| →∞. HenceP(z) is a constant by Liouville’s theorem, q.e.a. Thus,
P(z) has at least one root that we can divide out. Then we repeat the process for the re-
sulting polynomial of degreen− 1. This leads to the conclusion thatP(z) has exactlyn
roots.

11We quote the mean value theorem of calculus here.
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Exercises

6.4.1 Show that ∮
C

(z− z0)
n dz=

{
2πi, n=−1,

0, n 
= −1,

where the contourC encircles the pointz = z0 in a positive (counterclockwise) sense.
The exponentn is an integer. See also Eq. (6.27a). The calculus of residues, Chapter 7,
is based on this result.

6.4.2 Show that
1

2πi

∮
zm−n−1dz, m andn integers

(with the contour encircling the origin once counterclockwise) is a representation of the
Kroneckerδmn.

6.4.3 Solve Exercise 6.3.4 by separating the integrand into partial fractions and then applying
Cauchy’s integral theorem for multiply connected regions.
Note. Partial fractions are explained in Section 15.8 in connection with Laplace trans-
forms.

6.4.4 Evaluate ∮
C

dz

z2− 1
,

whereC is the circle|z| = 2.

6.4.5 Assuming thatf (z) is analytic on and within a closed contourC and that the pointz0
is within C, show that ∮

C

f ′(z)
z− z0

dz=
∮
C

f (z)

(z− z0)2
dz.

6.4.6 You know thatf (z) is analytic on and within a closed contourC. You suspect that the
nth derivativef (n)(z0) is given by

f (n)(z0)= n!
2πi

∮
C

f (z)

(z− z0)n+1
dz.

Using mathematical induction, prove that this expression is correct.

6.4.7 (a) A functionf (z) is analytic within a closed contourC (and continuous onC). If
f (z) 
= 0 within C and|f (z)| ≤M onC, show that∣∣f (z)∣∣≤M

for all points withinC.
Hint. Considerw(z)= 1/f (z).

(b) If f (z) = 0 within the contourC, show that the foregoing result does not hold
and that it is possible to have|f (z)| = 0 at one or more points in the interior with
|f (z)|> 0 over the entire bounding contour. Cite a specific example of an analytic
function that behaves this way.
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6.4.8 Using the Cauchy integral formula for thenth derivative, convert the following Ro-
drigues formulas into the corresponding so-called Schlaefli integrals.

(a) Legendre:

Pn(x)= 1

2nn!
dn

dxn

(
x2− 1

)n
.

ANS.
(−1)n

2n
· 1

2πi

∮
(1− z2)n

(z− x)n+1
dz.

(b) Hermite:

Hn(x)= (−1)nex
2 dn

dxn
e−x2

.

(c) Laguerre:

Ln(x)= ex

n!
dn

dxn

(
xne−x

)
.

Note. From the Schlaefli integral representations one can develop generating functions
for these special functions. Compare Sections 12.4, 13.1, and 13.2.

6.5 LAURENT EXPANSION

Taylor Expansion

The Cauchy integral formula of the preceding section opens up the way for another deriva-
tion of Taylor’s series (Section 5.6), but this time for functions of a complex variable.
Suppose we are trying to expandf (z) aboutz= z0 and we havez= z1 as the nearest point
on the Argand diagram for whichf (z) is not analytic. We construct a circleC centered at
z = z0 with radius less than|z1− z0| (Fig. 6.12). Sincez1 was assumed to be the nearest
point at whichf (z) was not analytic,f (z) is necessarily analytic on and withinC.

From Eq. (6.43), the Cauchy integral formula,

f (z) = 1

2πi

∮
C

f (z′) dz′

z′ − z

= 1

2πi

∮
C

f (z′) dz′

(z′ − z0)− (z− z0)

= 1

2πi

∮
C

f (z′) dz′

(z′ − z0)[1− (z− z0)/(z′ − z0)] . (6.53)

Herez′ is a point on the contourC andz is any point interior toC. It is not legal yet to
expand the denominator of the integrand in Eq. (6.53) by the binomial theorem, for we have
not yet proved the binomial theorem for complex variables. Instead, we note the identity

1

1− t
= 1+ t + t2+ t3+ · · · =

∞∑
n=0

tn, (6.54)
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FIGURE 6.12 Circular domain for Taylor
expansion.

which may easily be verified by multiplying both sides by 1− t . The infinite series, fol-
lowing the methods of Section 5.2, is convergent for|t |< 1.

Now, for a pointz interior toC, |z − z0| < |z′ − z0|, and, using Eq. (6.54), Eq. (6.53)
becomes

f (z)= 1

2πi

∮
C

∞∑
n=0

(z− z0)
nf (z′) dz′

(z′ − z0)n+1
. (6.55)

Interchanging the order of integration and summation (valid because Eq. (6.54) is uni-
formly convergent for|t |< 1), we obtain

f (z)= 1

2πi

∞∑
n=0

(z− z0)
n

∮
C

f (z′) dz′

(z′ − z0)n+1
. (6.56)

Referring to Eq. (6.47), we get

f (z)=
∞∑
n=0

(z− z0)
n f

(n)(z0)

n! , (6.57)

which is our desired Taylor expansion. Note that it is based only on the assumption that
f (z) is analytic for|z− z0|< |z1− z0|. Just as for real variable power series (Section 5.7),
this expansion is unique for a givenz0.

From the Taylor expansion forf (z) a binomial theorem may be derived (Exercise 6.5.2).

Schwarz Reflection Principle

From the binomial expansion ofg(z) = (z − x0)
n for integraln it is easy to see that the

complex conjugate of the functiong is the function of the complex conjugate for realx0:

g∗(z)= [(z− x0)
n
]∗ = (z∗ − x0)

n = g(z∗). (6.58)
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FIGURE 6.13 Schwarz reflection.

This leads us to the Schwarz reflection principle:

If a function f (z) is (1) analytic over some region including the real axis and
(2) real when z is real, then

f ∗(z)= f (z∗). (6.59)

(See Fig. 6.13.)
Expandingf (z) about some (nonsingular) pointx0 on the real axis,

f (z)=
∞∑
n=0

(z− x0)
n f

(n)(x0)

n! (6.60)

by Eq. (6.56). Sincef (z) is analytic atz= x0, this Taylor expansion exists. Sincef (z) is
real whenz is real,f (n)(x0) must be real for alln. Then when we use Eq. (6.58), Eq. (6.59),
the Schwarz reflection principle, follows immediately. Exercise 6.5.6 is another form of this
principle. This completes the proof within a circle of convergence. Analytic continuation
then permits extending this result to the entire region of analyticity.

Analytic Continuation

It is natural to think of the valuesf (z) of an analytic functionf as a single entity, which is
usually defined in some restricted regionS1 of the complex plane, for example, by a Taylor
series (see Fig. 6.14). Thenf is analytic inside thecircle of convergence C1, whose radius
is given by the distancer1 from the center ofC1 to thenearest singularity of f at z1 (in
Fig. 6.14). A singularity is any point wheref is not analytic. If we choose a point insideC1
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FIGURE 6.14 Analytic continuation.

that is farther thanr1 from the singularityz1 and make a Taylor expansion off about it (z2
in Fig. 6.14), then the circle of convergence,C2 will usually extend beyond the first circle,
C1. In the overlap region of both circles,C1,C2, the functionf is uniquely defined. In
the region of the circleC2 that extends beyondC1, f (z) is uniquely defined by the Taylor
series about the center ofC2 and is analytic there, although the Taylor series about the
center ofC1 is no longer convergent there. After Weierstrass this process is calledanalytic
continuation. It defines the analytic functions in terms of its original definition (inC1,
say) and all its continuations.

A specific example is the function

f (z)= 1

1+ z
, (6.61)

which has a (simple) pole atz = −1 and is analytic elsewhere. The geometric series ex-
pansion

1

1+ z
= 1− z+ z2+ · · · =

∞∑
n=0

(−z)n (6.62)

converges for|z|< 1, that is, inside the circleC1 in Fig. 6.14.
Suppose we expandf (z) aboutz= i, so

f (z) = 1

1+ z
= 1

1+ i + (z− i)
= 1

(1+ i)(1+ (z− i)/(1+ i))

=
[
1− z− i

1+ i
+ (z− i)2

(1+ i)2
− · · ·

]
1

1+ i
(6.63)

converges for|z − i| < |1+ i| = √2. Our circle of convergence isC2 in Fig. 6.14. Now
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FIGURE 6.15 |z′ − z0|C1 > |z− z0|; |z′ − z0|C2 < |z− z0|.

f (z) is defined by the expansion (6.63) inS2, which overlapsS1 and extends further out
in the complex plane.12 This extension is an analytic continuation, and when we have
only isolated singular points to contend with, the function can be extended indefinitely.
Equations (6.61), (6.62), and (6.63) are three different representations of the same function.
Each representation has its own domain of convergence. Equation (6.62) is a Maclaurin
series. Equation (6.63) is a Taylor expansion aboutz= i and from the following paragraphs
Eq. (6.61) is seen to be a one-term Laurent series.

Analytic continuation may take many forms, and the series expansion just considered
is not necessarily the most convenient technique. As an alternate technique we shall use a
functional relation in Section 8.1 to extend the factorial function around the isolated sin-
gular pointsz=−n, n= 1,2,3, . . . . As another example, the hypergeometric equation is
satisfied by the hypergeometric function defined by the series, Eq. (13.115), for|z| < 1.
The integral representation given in Exercise 13.4.7 permits a continuation into the com-
plex plane.

12One of the most powerful and beautiful results of the more abstract theory of functions of a complex variable is that if two
analytic functions coincide in any region, such as the overlap ofS1 andS2, or coincide on any line segment, they are the same
function, in the sense that they will coincide everywhere as long as they are both well defined. In this case the agreement of the
expansions (Eqs. (6.62) and (6.63)) over the region common toS1 andS2 would establish the identity of the functions these
expansions represent. Then Eq. (6.63) would represent an analytic continuation or extension off (z) into regions not covered
by Eq. (6.62). We could equally well say thatf (z)= 1/(1+ z) is itself an analytic continuation of either of the series given by
Eqs. (6.62) and (6.63).
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Laurent Series

We frequently encounter functions that are analytic and single-valued in an annular region,
say, of inner radiusr and outer radiusR, as shown in Fig. 6.15. Drawing an imaginary
contour line to convert our region into a simply connected region, we apply Cauchy’s
integral formula, and for two circlesC2 andC1 centered atz= z0 and with radiir2 andr1,
respectively, wherer < r2 < r1 <R, we have13

f (z)= 1

2πi

∮
C1

f (z′) dz′

z′ − z
− 1

2πi

∮
C2

f (z′) dz′

z′ − z
. (6.64)

Note that in Eq. (6.64) an explicit minus sign has been introduced so that the contour
C2 (like C1) is to be traversed in the positive (counterclockwise) sense. The treatment of
Eq. (6.64) now proceeds exactly like that of Eq. (6.53) in the development of the Taylor
series. Each denominator is written as(z′ − z0)− (z− z0) and expanded by the binomial
theorem, which now follows from the Taylor series (Eq. (6.57)).

Noting that forC1, |z′ − z0|> |z− z0| while for C2, |z′ − z0|< |z− z0|, we find

f (z) = 1

2πi

∞∑
n=0

(z− z0)
n

∮
C1

f (z′) dz′

(z′ − z0)n+1

+ 1

2πi

∞∑
n=1

(z− z0)
−n
∮
C2

(z′ − z0)
n−1f (z′) dz′. (6.65)

The minus sign of Eq. (6.64) has been absorbed by the binomial expansion. Labeling the
first seriesS1 and the secondS2 we have

S1= 1

2πi

∞∑
n=0

(z− z0)
n

∮
C1

f (z′) dz′

(z′ − z0)n+1
, (6.66)

which is the regular Taylor expansion, convergent for|z− z0|< |z′ − z0| = r1, that is, for
all z interior to the larger circle,C1. For the second series in Eq. (6.65) we have

S2= 1

2πi

∞∑
n=1

(z− z0)
−n
∮
C2

(z′ − z0)
n−1f (z′) dz′, (6.67)

convergent for|z− z0|> |z′ − z0| = r2, that is, for allz exterior to the smaller circle,C2.
Remember,C2 now goes counterclockwise.

These two series are combined into one series14 (a Laurent series) by

f (z)=
∞∑

n=−∞
an(z− z0)

n, (6.68)

13We may taker2 arbitrarily close tor andr1 arbitrarily close toR, maximizing the area enclosed betweenC1 andC2.
14Replacen by−n in S2 and add.



436 Chapter 6 Functions of a Complex Variable I

where

an = 1

2πi

∮
C

f (z′) dz′

(z′ − z0)n+1
. (6.69)

Since, in Eq. (6.69), convergence of a binomial expansion is no longer a problem,C may
be any contour within the annular regionr < |z− z0|<R encirclingz0 once in a counter-
clockwise sense. If we assume that such an annular region of convergence does exist, then
Eq. (6.68) is the Laurent series, or Laurent expansion, off (z).

The use of the contour line (Fig. 6.15) is convenient in converting the annular region
into a simply connected region. Since our function is analytic in this annular region (and
single-valued), the contour line is not essential and, indeed, does not appear in the final
result, Eq. (6.69).

Laurent series coefficients need not come from evaluation of contour integrals (which
may be very intractable). Other techniques, such as ordinary series expansions, may pro-
vide the coefficients.

Numerous examples of Laurent series appear in Chapter 7. We limit ourselves here to
one simple example to illustrate the application of Eq. (6.68).

Example 6.5.1 LAURENT EXPANSION

Let f (z) = [z(z − 1)]−1. If we choosez0 = 0, thenr = 0 andR = 1, f (z) diverging at
z= 1. A partial fraction expansion yields the Laurent series

1

z(z− 1)
=− 1

1− z
− 1

z
=−1

z
− 1− z− z2− z3− · · · = −

∞∑
n=−1

zn. (6.70)

From Eqs. (6.70), (6.68), and (6.69) we then have

an = 1

2πi

∮
dz′

(z′)n+2(z′ − 1)
=
{
−1 for n≥−1,

0 for n <−1.
(6.71)

The integrals in Eq. (6.71) can also be directly evaluated by substituting the geometric-
series expansion of(1− z′)−1 used already in Eq. (6.70) for(1− z)−1:

an = −1

2πi

∮ ∞∑
m=0

(z′)m dz′

(z′)n+2
. (6.72)

Upon interchanging the order of summation and integration (uniformly convergent series),
we have

an =− 1

2πi

∞∑
m=0

∮
dz′

(z′)n+2−m . (6.73)
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If we employ the polar form, as in Eq. (6.47) (or compare Exercise 6.4.1),

an = − 1

2πi

∞∑
m=0

∮
rieiθ dθ

rn+2−mei(n+2−m)θ

= − 1

2πi
· 2πi

∞∑
m=0

δn+2−m,1, (6.74)

which agrees with Eq. (6.71). �
The Laurent series differs from the Taylor series by the obvious feature of negative

powers of(z− z0). For this reason the Laurent series will always diverge at least atz= z0
and perhaps as far out as some distancer (Fig. 6.15).

Exercises

6.5.1 Develop the Taylor expansion of ln(1+ z).

ANS.
∞∑
n=1

(−1)n−1z
n

n
.

6.5.2 Derive the binomial expansion

(1+ z)m = 1+mz+ m(m− 1)

1 · 2 z2+ · · · =
∞∑
n=0

(
m

n

)
zn

for m any real number. The expansion is convergent for|z|< 1. Why?

6.5.3 A function f (z) is analytic on and within the unit circle. Also,|f (z)| < 1 for |z| ≤ 1
andf (0)= 0. Show that|f (z)|< |z| for |z| ≤ 1.
Hint. One approach is to show thatf (z)/z is analytic and then to express[f (z0)/z0]n
by the Cauchy integral formula. Finally, consider absolute magnitudes and take thenth
root. This exercise is sometimes called Schwarz’s theorem.

6.5.4 If f (z) is a real function of the complex variablez = x + iy, that is, iff (x)= f ∗(x),
and the Laurent expansion about the origin,f (z) =∑ anz

n, hasan = 0 for n < −N ,
show that all of the coefficientsan are real.
Hint. Show thatzNf (z) is analytic (via Morera’s theorem, Section 6.4).

6.5.5 A functionf (z)= u(x, y)+ iv(x, y) satisfies the conditions for the Schwarz reflection
principle. Show that
(a)u is an even function ofy. (b) v is an odd function ofy.

6.5.6 A function f (z) can be expanded in a Laurent series about the origin with the coeffi-
cientsan real. Show that the complex conjugate of this function ofz is the same function
of the complex conjugate ofz; that is,

f ∗(z)= f (z∗).
Verify this explicitly for
(a)f (z)= zn, n an integer, (b)f (z)= sinz.
If f (z)= iz (a1= i), show that the foregoing statement does not hold.
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6.5.7 The functionf (z) is analytic in a domain that includes the real axis. Whenz is real
(z= x), f (x) is pure imaginary.

(a) Show that

f (z∗)=−[f (z)]∗.
(b) For the specific casef (z) = iz, develop the Cartesian forms off (z), f (z∗), and

f ∗(z). Do not quote the general result of part (a).

6.5.8 Develop the first three nonzero terms of the Laurent expansion of

f (z)= (ez − 1
)−1

about the origin. Notice the resemblance to the Bernoulli number–generating function,
Eq. (5.144) of Section 5.9.

6.5.9 Prove that the Laurent expansion of a given function about a given point is unique; that
is, if

f (z)=
∞∑

n=−N
an(z− z0)

n =
∞∑

n=−N
bn(z− z0)

n,

show thatan = bn for all n.
Hint. Use the Cauchy integral formula.

6.5.10 (a) Develop a Laurent expansion off (z) = [z(z− 1)]−1 about the pointz = 1 valid
for small values of|z − 1|. Specify the exact range over which your expansion
holds. This is an analytic continuation of Eq. (6.70).

(b) Determine the Laurent expansion off (z) aboutz= 1 but for |z− 1| large.
Hint. Partial fraction this function and use the geometric series.

6.5.11 (a) Givenf1(z)=
∫∞

0 e−zt dt (with t real), show that the domain in whichf1(z) exists
(and is analytic) is�(z) > 0.

(b) Show thatf2(z) = 1/z equalsf1(z) over�(z) > 0 and is therefore an analytic
continuation off1(z) over the entirez-plane except forz= 0.

(c) Expand 1/z about the pointz= i. You will havef3(z)=∑∞
n=0an(z− i)n. What

is the domain off3(z)?

ANS.
1

z
=−i

∞∑
n=0

in(z− i)n, |z− i|< 1.

6.6 SINGULARITIES

The Laurent expansion represents a generalization of the Taylor series in the presence of
singularities. We define the pointz0 as anisolated singular point of the functionf (z) if
f (z) is not analytic atz= z0 but is analytic at all neighboring points.
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Poles

In the Laurent expansion off (z) aboutz0,

f (z)=
∞∑

m=−∞
am(z− z0)

m, (6.75)

if am = 0 for m<−n < 0 anda−n 
= 0, we say thatz0 is a pole of ordern. For instance, if
n= 1, that is, ifa−1/(z− z0) is the first nonvanishing term in the Laurent series, we have
a pole of order 1, often called asimple pole.

If, on the other hand, the summation continues tom = −∞, thenz0 is a pole of infi-
nite order and is called anessential singularity. These essential singularities have many
pathological features. For instance, we can show that in any small neighborhood of an
essential singularity off (z) the functionf (z) comes arbitrarily close to any (and there-
fore every) preselected complex quantityw0.15 Here, the entirew-plane is mapped by
f into the neighborhood of the pointz0. One point of fundamental difference between a
pole of finite ordern and an essential singularity is that by multiplyingf (z) by (z− z0)

n,
f (z)(z − z0)

n is no longer singular atz0. This obviously cannot be done for an essential
singularity.

The behavior off (z) asz→∞ is defined in terms of the behavior off (1/t) ast→ 0.
Consider the function

sinz=
∞∑
n=0

(−1)nz2n+1

(2n+ 1)! . (6.76)

As z→∞, we replace thez by 1/t to obtain

sin

(
1

t

)
=

∞∑
n=0

(−1)n

(2n+ 1)!t2n+1
. (6.77)

From the definition, sinz has an essential singularity at infinity. This result could be antic-
ipated from Exercise 6.1.9 since

sinz= siniy = i sinhy, whenx = 0,

which approaches infinity exponentially asy→∞. Thus, although the absolute value of
sinx for realx is equal to or less than unity, the absolute value of sinz is not bounded.

A function that is analytic throughout the finite complex planeexcept for isolated poles
is calledmeromorphic, such as ratios of two polynomials or tanz, cotz. Examples are
alsoentire functions that have no singularities in the finite complex plane, such as exp(z),
sinz, cosz (see Sections 5.9, 5.11).

15This theorem is due to Picard. A proof is given by E. C. Titchmarsh,The Theory of Functions, 2nd ed. New York: Oxford
University Press (1939).
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Branch Points

There is another sort of singularity that will be important in Chapter 7. Consider

f (z)= za,

in whicha is not an integer.16 As z moves around the unit circle frome0 to e2πi ,

f (z)→ e2πai 
= e0·a = 1,

for nonintegrala. We have a branch point at the origin and another at infinity. If we set
z = 1/t, a similar analysis off (z) for t → 0 shows thatt = 0; that is,z =∞ is also a
branch point. The pointse0i ande2πi in thez-plane coincide, but thesecoincident points
lead to different values of f (z); that is,f (z) is a multivalued function. The problem
is resolved by constructing acut line joining both branch points so thatf (z) will be
uniquely specified for a given point in thez-plane. Forza, the cut line can go out at any
angle. Note that the point at infinity must be included here; that is, the cut line may join
finite branch points via the point at infinity. The next example is a case in point. Ifa = p/q

is a rational number, thenq is called the order of the branch point, because one needs to go
around the branch pointq times before coming back to the starting point. Ifa is irrational,
then the order of the branch point is infinite, just as for the logarithm.

Note that a function with a branch point and a required cut line will not be continuous
across the cut line. Often there will be a phase difference on opposite sides of this cut line.
Hence line integrals on opposite sides of this branch point cut line will not generally cancel
each other. Numerous examples of this case appear in the exercises.

The contour line used to convert a multiply connected region into a simply connected
region (Section 6.3) is completely different. Our function is continuous across that contour
line, and no phase difference exists.

Example 6.6.1 BRANCH POINTS OF ORDER 2

Consider the function

f (z)= (z2− 1
)1/2= (z+ 1)1/2(z− 1)1/2. (6.78)

The first factor on the right-hand side,(z+1)1/2, has a branch point atz=−1. The second
factor has a branch point atz = +1. At infinity f (z) has a simple pole. This is best seen
by substitutingz= 1/t and making a binomial expansion att = 0:

(
z2− 1

)1/2= 1

t

(
1− t2

)1/2= 1

t

∞∑
n=0

(
1/2

n

)
(−1)nt2n = 1

t
− 1

2
t − 1

8
t3+ · · · .

The cut line has to connect both branch points, so it is not possible to encircle either branch
point completely. To check on the possibility of taking the line segment joiningz=+1 and

16z= 0 is a singular point, forza has only a finite number of derivatives, whereas an analytic function is guaranteed an infinite
number of derivatives (Section 6.4). The problem is thatf (z) is not single-valued as we encircle the origin. The Cauchy integral
formula may not be applied.
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FIGURE 6.16 Branch cut and phases of Table 6.1.

Table 6.1 Phase Angle

Point θ ϕ
θ+ϕ

2

1 0 0 0

2 0 π π
2

3 0 π π
2

4 π π π

5 2π π 3π
2

6 2π π 3π
2

7 2π 2π 2π

z = −1 as a cut line, let us follow the phases of these two factors as we move along the
contour shown in Fig. 6.16.

For convenience in following the changes of phase letz+ 1= reiθ andz− 1= ρeiϕ .
Then the phase off (z) is (θ +ϕ)/2. We start at point 1, where bothz+1 andz−1 have a
phase of zero. Moving from point 1 to point 2,ϕ, the phase ofz−1= ρeiϕ , increases byπ .
(z− 1 becomes negative.)ϕ then stays constant until the circle is completed, moving from
6 to 7.θ , the phase ofz+1= reiθ , shows a similar behavior, increasing by 2π as we move
from 3 to 5. The phase of the functionf (z)= (z+ 1)1/2(z− 1)1/2= r1/2ρ1/2ei(θ+ϕ)/2 is
(θ + ϕ)/2. This is tabulated in the final column of Table 6.1.

Two features emerge:
1. The phase at points 5 and 6 is not the same as the phase at points 2 and 3. This

behavior can be expected at a branch cut.
2. The phase at point 7 exceeds that at point 1 by 2π , and the functionf (z)= (z2−1)1/2

is thereforesingle-valued for the contour shown, encirclingboth branch points.
If we take thex-axis,−1≤ x ≤ 1, as a cut line,f (z) is uniquely specified. Alternatively,

the positivex-axis forx > 1 and the negativex-axis forx <−1 may be taken as cut lines.
The branch points cannot be encircled, and the function remains single-valued. These two
cut lines are, in fact, one branch cut from−1 to+1 via the point at infinity. �

Generalizing from this example, we have that the phase of a function

f (z)= f1(z) · f2(z) · f3(z) · · ·
is the algebraic sum of the phase of its individual factors:

argf (z)= argf1(z)+ argf2(z)+ argf3(z)+ · · · .
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The phase of an individual factor may be taken as the arctangent of the ratio of its imaginary
part to its real part (choosing the appropriate branch of the arctan function tan−1y/x, which
has infinitely many branches),

argfi(z)= tan−1
(
vi

ui

)
.

For the case of a factor of the form

fi(z)= (z− z0),

the phase corresponds to the phase angle of a two-dimensional vector from+z0 to z, the
phase increasing by 2π as the point+z0 is encircled. Conversely, the traversal of any
closed loop not encirclingz0 does not change the phase ofz− z0.

Exercises

6.6.1 The functionf (z) expanded in a Laurent series exhibits a pole of orderm at z = z0.
Show that the coefficient of(z− z0)

−1, a−1, is given by

a−1= 1

(m− 1)!
dm−1

dzm−1

[
(z− z0)

mf (z)
]
z=z0

,

with

a−1=
[
(z− z0)f (z)

]
z=z0

,

when the pole is a simple pole(m= 1). These equations fora−1 are extremely useful
in determining the residue to be used in the residue theorem of Section 7.1.
Hint. The technique that was so successful in proving the uniqueness of power series,
Section 5.7, will work here also.

6.6.2 A functionf (z) can be represented by

f (z)= f1(z)

f2(z)
,

in which f1(z) and f2(z) are analytic. The denominator,f2(z), vanishes atz = z0,
showing thatf (z) has a pole atz = z0. However,f1(z0) 
= 0, f ′2(z0) 
= 0. Show that
a−1, the coefficient of(z− z0)

−1 in a Laurent expansion off (z) at z= z0, is given by

a−1= f1(z0)

f ′2(z0)
.

(This result leads to the Heaviside expansion theorem, Exercise 15.12.11.)

6.6.3 In analogy with Example 6.6.1, consider in detail the phase of each factor and the resul-
tant overall phase off (z)= (z2+ 1)1/2 following a contour similar to that of Fig. 6.16
but encircling the new branch points.

6.6.4 The Legendre function of the second kind,Qν(z), has branch points atz = ±1. The
branch points are joined by a cut line along the real(x) axis.
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(a) Show thatQ0(z)= 1
2 ln((z+ 1)/(z− 1)) is single-valued (with the real axis−1≤

x ≤ 1 taken as a cut line).
(b) For real argumentx and|x|< 1 it is convenient to take

Q0(x)= 1

2
ln

1+ x

1− x
.

Show that

Q0(x)= 1

2

[
Q0(x + i0)+Q0(x − i0)

]
.

Herex + i0 indicates thatz approaches the real axis from above, andx − i0 indi-
cates an approach from below.

6.6.5 As an example of an essential singularity, considere1/z asz approaches zero. For any
complex numberz0, z0 
= 0, show that

e1/z = z0

has an infinite number of solutions.

6.7 MAPPING

In the preceding sections we have defined analytic functions and developed some of their
main features. Here we introduce some of the more geometric aspects of functions of com-
plex variables, aspects that will be useful in visualizing the integral operations in Chapter 7
and that are valuable in their own right in solving Laplace’s equation in two-dimensional
systems.

In ordinary analytic geometry we may takey = f (x) and then ploty versusx. Our
problem here is more complicated, forz is a function of two variables,x andy. We use the
notation

w = f (z)= u(x, y)+ iv(x, y). (6.79)

Then for a point in thez-plane (specific values forx andy) there may correspond specific
values foru(x, y) and v(x, y) that then yield a point in thew-plane. As points in the
z-plane transform, or are mapped into points in thew-plane, lines or areas in thez-plane
will be mapped into lines or areas in thew-plane. Our immediate purpose is to see how
lines and areas map from thez-plane to thew-plane for a number of simple functions.

Translation

w = z+ z0. (6.80)

The functionw is equal to the variablez plus a constant,z0= x0+ iy0. By Eqs. (6.1) and
(6.79),

u= x + x0, v = y + y0, (6.81)

representing a pure translation of the coordinate axes, as shown in Fig. 6.17.
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FIGURE 6.17 Translation.

Rotation

w = zz0. (6.82)

Here it is convenient to return to the polar representation, using

w = ρeiϕ, z= reiθ , and z0= r0e
iθ0, (6.83)

then

ρeiϕ = rr0e
i(θ+θ0), (6.84)

or

ρ = rr0, ϕ = θ + θ0. (6.85)

Two things have occurred. First, the modulusr has been modified, either expanded or
contracted, by the factorr0. Second, the argumentθ has been increased by the additive
constantθ0 (Fig. 6.18). This represents a rotation of the complex variable through an angle
θ0. For the special case ofz0= i, we have a pure rotation throughπ/2 radians.

FIGURE 6.18 Rotation.
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Inversion

w = 1

z
. (6.86)

Again, using the polar form, we have

ρeiϕ = 1

reiθ
= 1

r
e−iθ , (6.87)

which shows that

ρ = 1

r
, ϕ =−θ. (6.88)

The first part of Eq. (6.87) shows that inversion clearly. The interior of the unit circle
is mapped onto the exterior and vice versa (Fig. 6.19). In addition, the second part of
Eq. (6.87) shows that the polar angle is reversed in sign. Equation (6.88) therefore also
involves a reflection of they-axis, exactly like the complex conjugate equation.

To see how curves in thez-plane transform into thew-plane, we return to the Cartesian
form:

u+ iv = 1

x + iy
. (6.89)

Rationalizing the right-hand side by multiplying numerator and denominator byz∗ and
then equating the real parts and the imaginary parts, we have

u= x

x2+ y2
, x = u

u2+ v2
,

v =− y

x2+ y2
, y =− v

u2+ v2
.

(6.90)

FIGURE 6.19 Inversion.
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A circle centered at the origin in thez-plane has the form

x2+ y2= r2 (6.91)

and by Eqs. (6.90) transforms into

u2

(u2+ v2)2
+ v2

(u2+ v2)2
= r2. (6.92)

Simplifying Eq. (6.92), we obtain

u2+ v2= 1

r2
= ρ2, (6.93)

which describes a circle in thew-plane also centered at the origin.
The horizontal liney = c1 transforms into

−v
u2+ v2

= c1, (6.94)

or

u2+
(
v+ 1

2c1

)2

= 1

(2c1)2
, (6.95)

which describes a circle in thew-plane of radius(1/2c1) and centered atu= 0, v =− 1
2c1

(Fig. 6.20).
We pick up the other three possibilities,x =±c1, y =−c1, by rotating thexy-axes. In

general, any straight line or circle in thez-plane will transform into a straight line or a
circle in thew-plane (compare Exercise 6.7.1).

FIGURE 6.20 Inversion, line↔ circle.
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Branch Points and Multivalent Functions

The three transformations just discussed have all involved one-to-one correspondence of
points in thez-plane to points in thew-plane. Now to illustrate the variety of transfor-
mations that are possible and the problems that can arise, we introduce first a two-to-one
correspondence and then a many-to-one correspondence. Finally, we take up the inverses
of these two transformations.

Consider first the transformation

w = z2, (6.96)

which leads to

ρ = r2, ϕ = 2θ. (6.97)

Clearly, our transformation is nonlinear, for the modulus is squared, but the significant
feature of Eq. (6.96) is that the phase angle or argument is doubled. This means that the

• first quadrant ofz, 0≤ θ <
π

2
,→ upper half-plane ofw, 0≤ ϕ < π ,

• upper half-plane ofz, 0≤ θ < π ,→ whole plane ofw, 0≤ ϕ < 2π .

The lower half-plane ofz maps into the already covered entire plane ofw, thus covering
the w-plane a second time. This is our two-to-one correspondence, that is, two distinct
points in thez-plane,z0 andz0e

iπ =−z0, corresponding to the single pointw = z2
0.

In Cartesian representation,

u+ iv = (x + iy)2= x2− y2+ i2xy, (6.98)

leading to

u= x2− y2, v = 2xy. (6.99)

Hence the linesu= c1, v = c2 in thew-plane correspond tox2− y2= c1,2xy = c2, rec-
tangular (and orthogonal) hyperbolas in thez-plane (Fig. 6.21). To every point on the
hyperbolax2− y2= c1 in the right half-plane,x > 0, one point on the lineu= c1 corre-
sponds, and vice versa. However, every point on the lineu= c1 also corresponds to a point
on the hyperbolax2− y2= c1 in the left half-plane,x < 0, as already explained.

It will be shown in Section 6.8 that if lines in thew-plane are orthogonal, the corre-
sponding lines in thez-plane are also orthogonal, as long as the transformation is analytic.
Sinceu = c1 andv = c2 are constructed perpendicular to each other, the corresponding
hyperbolas in thez-plane are orthogonal. We have constructed a new orthogonal system of
hyperbolic lines (or surfaces if we add an axis perpendicular tox andy). Exercise 2.1.3
was an analysis of this system. It might be noted that if the hyperbolic lines are electric
or magnetic lines of force, then we have a quadrupole lens useful in focusing beams of
high-energy particles.

The inverse of the fourth transformation (Eq. (6.96)) is

w = z1/2. (6.100)
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FIGURE 6.21 Mapping — hyperbolic coordinates.

From the relation

ρeiϕ = r1/2eiθ/2 (6.101)

and

2ϕ = θ, (6.102)

we now have two points in thew-plane (argumentsϕ andϕ + π ) corresponding to one
point in thez-plane (except for the pointz = 0). Or, to put it another way,θ andθ + 2π
correspond toϕ andϕ+π , two distinct points in thew-plane. This is the complex variable
analog of the simple real variable equationy2 = x, in which two values ofy, plus and
minus, correspond to each value ofx.

The important point here is that we can make the functionw of Eq. (6.100) a single-
valued function instead of a double-valued function if we agree to restrictθ to a range such
as 0≤ θ < 2π . This may be done by agreeing never to cross the lineθ = 0 in thez-plane
(Fig. 6.22). Such a line of demarcation is called acut line or branch cut. Note that branch
points occur in pairs.

Thecut line joins the two branch point singularities, here at 0 and∞ (for the latter,
transformz = 1/t for t → 0). Any line fromz = 0 to infinity would serve equally well.
The purpose of the cut line is to restrict the argument ofz. The pointsz andzexp(2πi)
coincide in thez-plane but yield different pointsw and−w = w exp(πi) in thew-plane.
Hence in the absence of a cut line, the functionw = z1/2 is ambiguous. Alternatively, since
the functionw = z1/2 is double-valued, we can also glue two sheets of the complexz-
plane together along the branch cut so that arg(z) increases beyond 2π along the branch
cut and continues from 4π on the second sheet to reach the same function values forz

as for ze−4πi, that is, the start on the first sheet again. This construction is called the
Riemann surface of w = z1/2. We shall encounter branch points and cut lines (branch
cuts) frequently in Chapter 7.

The transformation

w = ez (6.103)

leads to

ρeiϕ = ex+iy, (6.104)
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FIGURE 6.22 A cut line.

or

ρ = ex, ϕ = y. (6.105)

If y ranges from 0≤ y < 2π (or −π < y ≤ π ), thenϕ covers the same range. But this is
the wholew-plane. In other words, a horizontal strip in thez-plane of width 2π maps into
the entirew-plane. Further, any pointx+ i(y+ 2nπ), in whichn is any integer, maps into
the same point (by Eq. (6.104)) in thew-plane. We have a many-(infinitely many)-to-one
correspondence.

Finally, as the inverse of the fifth transformation (Eq. (6.103)), we have

w = ln z. (6.106)

By expanding it, we obtain

u+ iv = ln reiθ = ln r + iθ. (6.107)

For a given pointz0 in thez-plane the argumentθ is unspecified within an integral multiple
of 2π . This means that

v = θ + 2nπ, (6.108)

and, as in the exponential transformation, we have an infinitely many-to-one correspon-
dence.

Equation (6.108) has a nice physical representation. If we go around the unit circle in
thez-plane,r = 1, and by Eq. (6.107),u= ln r = 0; butv = θ , andθ is steadily increasing
and continues to increase asθ continues past 2π .

The cut line joins the branch point at the origin with infinity. Asθ increases past 2π
we glue a new sheet of the complexz-plane along the cut line, etc. Going around the unit
circle in thez-plane is like the advance of a screw as it is rotated or the ascent of a person
walking up a spiral staircase (Fig. 6.23), which is theRiemann surface of w = ln z.

As in the preceding example, we can also make the correspondence unique (and
Eq. (6.106) unambiguous) by restrictingθ to a range such as 0≤ θ < 2π by taking the
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FIGURE 6.23 This is the Riemann
surface for lnz, a multivalued

function.

line θ = 0 (positive real axis) as a cut line. This is equivalent to taking one and only one
complete turn of the spiral staircase.

The concept of mapping is a very broad and useful one in mathematics. Our mapping
from a complexz-plane to a complexw-plane is a simple generalization of one definition
of function: a mapping ofx (from one set) intoy in a second set. A more sophisticated
form of mapping appears in Section 1.15 where we use the Dirac delta functionδ(x − a)

to map a functionf (x) into its value at the pointa. Then in Chapter 15 integral transforms
are used to map one functionf (x) in x-space into a second (related) functionF(t) in
t-space.

Exercises

6.7.1 How do circles centered on the origin in thez-plane transform for

(a) w1(z)= z+ 1

z
, (b) w2(z)= z− 1

z
, for z 
= 0?

What happens when|z| → 1?

6.7.2 What part of thez-plane corresponds to the interior of the unit circle in thew-plane if

(a)w = z− 1

z+ 1
, (b)w = z− i

z+ i
?

6.7.3 Discuss the transformations

(a)w(z)= sinz, (c)w(z)= sinhz,

(b) w(z)= cosz, (d)w(z)= coshz.

Show how the linesx = c1, y = c2 map into thew-plane. Note that the last three trans-
formations can be obtained from the first one by appropriate translation and/or rotation.
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FIGURE 6.24 Bessel function integration contour.

6.7.4 Show that the function

w(z)= (z2− 1
)1/2

is single-valued if we take−1≤ x ≤ 1, y = 0 as a cut line.

6.7.5 Show that negative numbers have logarithms in the complex plane. In particular, find
ln(−1).

ANS. ln(−1)= iπ .

6.7.6 An integral representation of the Bessel function follows the contour in thet-plane
shown in Fig. 6.24. Map this contour into theθ -plane with t = eθ . Many additional
examples of mapping are given in Chapters 11, 12, and 13.

6.7.7 For nonintegerm, show that the binomial expansion of Exercise 6.5.2 holds only for a
suitably defined branch of the function(1+ z)m. Show how thez-plane is cut. Explain
why |z|< 1 may be taken as the circle of convergence for the expansion of this branch,
in light of the cut you have chosen.

6.7.8 The Taylor expansion of Exercises 6.5.2 and 6.7.7 isnot suitable for branches other
than the one suitably defined branch of the function(1+ z)m for nonintegerm. [Note
that other branches cannot have the same Taylor expansion since they must be distin-
guishable.] Using the same branch cut of the earlier exercises for all other branches,
find the corresponding Taylor expansions, detailing the phase assignments and Taylor
coefficients.

6.8 CONFORMAL MAPPING

In Section 6.7 hyperbolas were mapped into straight lines and straight lines were mapped
into circles. Yet in all these transformations one feature stayed constant. This constancy
was a result of the fact that all the transformations of Section 6.7 were analytic.

As long asw = f (z) is an analytic function, we have

df

dz
= dw

dz
= lim

�z→0

�w

�z
. (6.109)
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FIGURE 6.25 Conformal mapping — preservation of angles.

Assuming that this equation is in polar form, we may equate modulus to modulus and
argument to argument. For the latter (assuming thatdf/dz 
= 0),

arg lim
�z→0

�w

�z
= lim

�z→0
arg

�w

�z

= lim
�z→0

arg�w− lim
�z→0

arg�z= arg
df

dz
= α, (6.110)

whereα, the argument of the derivative, may depend onz but is a constant for a fixedz, in-
dependent of the direction of approach. To see the significance of this, consider two curves
Cz in the z-plane and the corresponding curveCw in thew-plane (Fig. 6.25). The incre-
ment�z is shown at an angle ofθ relative to the real(x) axis, whereas the corresponding
increment�w forms an angle ofϕ with the real(u) axis. From Eq. (6.110),

ϕ = θ + α, (6.111)

or any line in thez-plane is rotated through an angleα in thew-plane as long asw is an
analytic transformation and the derivative is not zero.17

Since this result holds for any line throughz0, it will hold for a pair of lines. Then for
the angle between these two lines,

ϕ2− ϕ1= (θ2+ α)− (θ1+ α)= θ2− θ1, (6.112)

which shows that the included angle is preserved under an analytic transformation. Such
angle-preserving transformations are calledconformal. The rotation angleα will, in gen-
eral, depend onz. In addition|f ′(z)| will usually be a function ofz.

Historically, these conformal transformations have been of great importance to scientists
and engineers in solving Laplace’s equation for problems of electrostatics, hydrodynam-
ics, heat flow, and so on. Unfortunately, the conformal transformation approach, however
elegant, is limited to problems that can be reduced to two dimensions. The method is often
beautiful if there is a high degree of symmetry present but often impossible if the sym-
metry is broken or absent. Because of these limitations and primarily because electronic
computers offer a useful alternative (iterative solution of the partial differential equation),
the details and applications of conformal mappings are omitted.

17If df/dz= 0, its argument or phase is undefined and the (analytic) transformation will not necessarily preserve angles.
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Exercises

6.8.1 Expandw(x) in a Taylor series about the pointz = z0, wheref ′(z0)= 0. (Angles are
not preserved.) Show that if the firstn − 1 derivatives vanish butf (n)(z0) 
= 0, then
angles in thez-plane with vertices atz= z0 appear in thew-plane multiplied byn.

6.8.2 Develop the transformations that create each of the four cylindrical coordinate systems:

(a) Circular cylindrical: x = ρ cosϕ,
y = ρ sinϕ.

(b) Elliptic cylindrical: x = a coshucosv,
y = a sinhusinv.

(c) Parabolic cylindrical: x = ξη,

y = 1
2

(
η2− ξ2

)
.

(d) Bipolar: x = a sinhη

coshη− cosξ
,

y = a sinξ

coshη− cosξ
.

Note. These transformations are not necessarily analytic.

6.8.3 In the transformation

ez = a −w

a +w
,

how do the coordinate lines in thez-plane transform? What coordinate system have you
constructed?

Additional Readings

Ahlfors, L. V., Complex Analysis, 3rd ed. New York: McGraw-Hill (1979). This text is detailed, thorough, rigor-
ous, and extensive.

Churchill, R. V., J. W. Brown, and R. F. Verkey,Complex Variables and Applications, 5th ed. New York: McGraw-
Hill (1989). This is an excellent text for both the beginning and advanced student. It is readable and quite
complete. A detailed proof of the Cauchy–Goursat theorem is given in Chapter 5.

Greenleaf, F. P.,Introduction to Complex Variables. Philadelphia: Saunders (1972). This very readable book has
detailed, careful explanations.

Kurala, A.,Applied Functions of a Complex Variable. New York: Wiley (Interscience) (1972). An intermediate-
level text designed for scientists and engineers. Includes many physical applications.

Levinson, N., and R. M. Redheffer,Complex Variables. San Francisco: Holden-Day (1970). This text is written
for scientists and engineers who are interested in applications.

Morse, P. M., and H. Feshbach,Methods of Theoretical Physics. New York: McGraw-Hill (1953). Chapter 4 is
a presentation of portions of the theory of functions of a complex variable of interest to theoretical physicists.

Remmert, R.,Theory of Complex Functions. New York: Springer (1991).

Sokolnikoff, I. S., and R. M. Redheffer,Mathematics of Physics and Modern Engineering, 2nd ed. New York:
McGraw-Hill (1966). Chapter 7 covers complex variables.

Spiegel, M. R.,Complex Variables. New York: McGraw-Hill (1985). An excellent summary of the theory of
complex variables for scientists.

Titchmarsh, E. C.,The Theory of Functions, 2nd ed. New York: Oxford University Press (1958). A classic.
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Watson, G. N.,Complex Integration and Cauchy’s Theorem. New York: Hafner (orig. 1917, reprinted 1960).
A short work containing a rigorous development of the Cauchy integral theorem and integral formula. Appli-
cations to the calculus of residues are included.Cambridge Tracts in Mathematics, and Mathematical Physics,
No. 15.

Other references are given at the end of Chapter 15.



CHAPTER 7

FUNCTIONS OF A COMPLEX
VARIABLE II

In this chapter we return to the analysis that started with the Cauchy–Riemann conditions
in Chapter 6 and develop the residue theorem, with major applications to the evaluation
of definite and principal part integrals of interest to scientists and asymptotic expansion
of integrals by the method of steepest descent. We also develop further specific analytic
functions, such as pole expansions of meromorphic functions and product expansions of
entire functions. Dispersion relations are included because they represent an important
application of complex variable methods for physicists.

7.1 CALCULUS OF RESIDUES

Residue Theorem

If the Laurent expansion of a functionf (z) =∑∞
n=−∞ an(z− z0)

n is integrated term by
term by using a closed contour that encircles one isolated singular pointz0 once in a coun-
terclockwise sense, we obtain (Exercise 6.4.1)

an

∮
(z− z0)

n dz= an
(z− z0)

n+1

n+ 1

∣∣∣∣z1

z1

= 0, n 
= −1. (7.1)

However, ifn=−1,

a−1

∮
(z− z0)

−1dz= a−1

∮
ireiθ dθ

reiθ
= 2πia−1. (7.2)

Summarizing Eqs. (7.1) and (7.2), we have

1

2πi

∮
f (z) dz= a−1. (7.3)

455
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FIGURE 7.1 Excluding isolated
singularities.

The constanta−1, the coefficient of(z − z0)
−1 in the Laurent expansion, is called the

residue off (z) at z= z0.
A set of isolated singularities can be handled by deforming our contour as shown in

Fig. 7.1. Cauchy’s integral theorem (Section 6.3) leads to∮
C

f (z) dz+
∮
C0

f (z) dz+
∮
C1

f (z) dz+
∮
C2

f (z) dz+ · · · = 0. (7.4)

The circular integral around any given singular point is given by Eq. (7.3),∮
Ci

f (z) dz=−2πia−1,zi , (7.5)

assuming a Laurent expansion about the singular pointz = zi . The negative sign comes
from the clockwise integration, as shown in Fig. 7.1. Combining Eqs. (7.4) and (7.5), we
have ∮

C

f (z) dz= 2πi(a−1z0 + a−1z1 + a−1z2 + · · · )

= 2πi × (sum of enclosed residues). (7.6)

This is theresidue theorem. The problem of evaluating one or more contour integrals is
replaced by the algebraic problem of computing residues at the enclosed singular points.

We first use this residue theorem to develop the concept of the Cauchy principal value.
Then in the remainder of this section we apply the residue theorem to a wide variety of
definite integrals of mathematical and physical interest.

Using the transformationz= 1/w for w approaching 0, we can find the nature of a sin-
gularity atz going to∞ and the residue of a functionf (z) with just isolated singularities
and no branch points. In such cases we know that∑

{residues in the finitez-plane} + {residue atz→∞}= 0.
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Cauchy Principal Value

Occasionally an isolated pole will be directly on the contour of integration, causing the
integral to diverge. Let us illustrate a physical case.

Example 7.1.1 FORCED CLASSICAL OSCILLATOR

The inhomogeneous differential equation for a classical, undamped, driven harmonic os-
cillator,

ẍ(t)+ω2
0 x(t)= f (t), (7.7)

may be solved by representing the driving forcef (t)= ∫ δ(t ′ − t)f (t ′) dt ′ as a superpo-
sition of impulses by analogy with an extended charge distribution in electrostatics.1 If we
solve first the simpler differential equation

G̈+ω2
0G= δ(t − t ′) (7.8)

for G(t, t ′), which is independent of the driving termf (model dependent), thenx(t) =∫
G(t, t ′)f (t ′) dt ′ solves the original problem. First, we verify this by substituting the in-

tegrals forx(t) and its time derivatives into the differential equation forx(t) using the dif-
ferential equation forG. Then we look forG(t, t ′)= ∫ G̃(ω)eiωt dω2π in terms of an integral

weighted byG̃, which is suggested by a similar integral form forδ(t − t ′)= ∫ eiω(t−t ′) dω2π
(see Eq. (1.193c) in Section 1.15).

Upon substitutingG andG̈ into the differential equation forG, we obtain∫ [(
ω2

0−ω2)G̃− e−iωt ′
]
eiωt dω= 0. (7.9)

Because this integral is zero for allt, the expression in brackets must vanish for allω.

This relation is no longer a differential equation but an algebraic relation that we can solve
for G̃:

G̃(ω)= e−iωt ′

ω2
0−ω2

= e−iωt ′

2ω0(ω+ω0)
− e−iωt ′

2ω0(ω−ω0)
. (7.10)

SubstitutingG̃ into the integral forG yields

G(t, t ′)= 1

4πω0

∫ ∞

−∞

[
eiω(t−t ′)

ω+ω0
− eiω(t−t ′)

ω−ω0

]
dω. (7.11)

Here, the dependence ofG on t − t ′ in the exponential is consistent with the same depen-
dence ofδ(t − t ′), its driving term. Now, the problem is that this integral diverges because
the integrand blows up atω=±ω0, since the integration goes right through the first-order
poles. To explain why this happens, we note that theδ-function driving term forG in-
cludes all frequencies with the same amplitude. Next, we see that the equation forG̃ at
t ′ = 0 has its driving term equal to unity for all frequenciesω, including the resonantω0.

1Adapted from A. Yu. Grosberg, priv. comm.
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We know from physics that forcing an oscillator at resonance leads to an indefinitely grow-
ing amplitude when there is no friction. With friction, the amplitude remains finite, even
at resonance. This suggests including a small friction term in the differential equations for
x(t) andG.

With a small friction termηĠ, η > 0, in the differential equation forG(t, t ′) (andηẋ for
x(t)), we can still solve the algebraic equation(

ω2
0−ω2+ iηω

)
G̃= e−iωt ′ (7.12)

for G̃ with friction. The solution is

G̃ = e−iωt ′

ω2
0−ω2+ iηω

= e−iωt ′

2�

(
1

ω−ω−
− 1

ω−ω+

)
, (7.13)

ω± = ±�+ iη

2
, �= ω0

√
1−

(
η

2ω0

)2

. (7.14)

For small friction, 0< η� ω0, � is nearly equal toω0 and real, whereasω± each pick up
a small imaginary part. This means that the integration of the integral forG,

G(t, t ′)= 1

4π�

∫ ∞

−∞

[
eiω(t−t ′)

ω−ω−
− eiω(t−t ′)

ω−ω+

]
dω, (7.15)

no longer encounters a pole and remains finite. �
This treatment of an integral with a pole moves the pole off the contour and then con-

siders the limiting behavior as it is brought back, as in Example 7.1.1 forη→ 0. This
example also suggests treatingω as a complex variable in case the singularity is a first-
order pole, deforming the integration path to avoid the singularity, which is equivalent to
adding a small imaginary part to the pole position, and evaluating the integral by means of
the residue theorem.

Therefore, if the integration path of an integral
∫

dz
z−x0

for realx0 goes right through the
polex0, we may deform the contour to include or exclude the residue, as desired, by includ-
ing a semicircular detour ofinfinitesimal radius. This is shown in Fig. 7.2. The integration
over the semicircle then gives, withz− x0= δeiϕ, dz= i δeiϕ dϕ (see Eq. (6.27a)),∫

dz

z− x0
= i

∫ 2π

π

dϕ = iπ, i.e.,πia−1 if counterclockwise,∫
dz

z− x0
= i

∫ 0

π

dϕ =−iπ, i.e., − πia−1 if clockwise.

This contribution,+ or −, appears on the left-hand side of Eq. (7.6). If our detour were
clockwise, the residue would not be enclosed and there would be no corresponding term
on the right-hand side of Eq. (7.6).

However, if our detour were counterclockwise, this residue would be enclosed by the
contourC and a term 2πia−1 would appear on the right-hand side of Eq. (7.6).

The net result for either clockwise or counterclockwise detour is that a simple pole on
the contour is counted as one-half of what it would be if it were within the contour. This
corresponds to taking the Cauchy principal value.
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FIGURE 7.2 Bypassing singular points.

FIGURE 7.3 Closing the contour
with an infinite-radius semicircle.

For instance, let us suppose thatf (z) with a simple pole atz= x0 is integrated over the
entire real axis. The contour is closed with an infinite semicircle in the upper half-plane
(Fig. 7.3). Then∮

f (z) dz =
∫ x0−δ

−∞
f (x)dx +

∫
Cx0

f (z) dz

+
∫ ∞

x0+δ
f (x) dx +

∫
C

infinite semicircle

= 2πi
∑

enclosed residues. (7.16)

If the small semicircleCx0, includesx0 (by going below thex-axis, counterclockwise),x0

is enclosed, and its contribution appearstwice — asπia−1 in
∫
Cx0

and as 2πia−1 in the

term 2πi
∑

enclosed residues — for a net contribution ofπia−1. If the upper small semi-
circle is selected,x0 is excluded. The only contribution is from theclockwise integration
overCx0, which yields−πia−1. Moving this to the extreme right of Eq. (7.16), we have
+πia−1, as before.

The integrals along thex-axis may be combined and the semicircle radius permitted to
approach zero. We therefore define

lim
δ→0

{∫ x0−δ

−∞
f (x)dx +

∫ ∞

x0+δ
f (x) dx

}
= P

∫ ∞

−∞
f (x)dx. (7.17)

P indicates the Cauchyprincipal value and represents the preceding limiting process.
Note that the Cauchy principal value is a balancing (or canceling) process. In the vicinity
of our singularity atz= x0,

f (x)≈ a−1

x − x0
. (7.18)
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FIGURE 7.4 Cancellation at a simple pole.

This is odd, relative tox0. The symmetric or even interval (relative tox0) provides cancel-
lation of the shaded areas, Fig. 7.4. The contribution of the singularity is in the integration
about the semicircle.

In general, if a functionf (x) has a singularityx0 somewhere inside the intervala ≤
x0 ≤ b and is integrable over every portion of this interval that does not contain the point
x0, then wedefine∫ b

a

f (x) dx = lim
δ1→0

∫ x0−δ1

a

f (x) dx + lim
δ2→0

∫ b

x0+δ2

f (x)dx,

when the limit exists asδj → 0 independently, else the integral is said to diverge. If this
limit does not exist but the limitδ1 = δ2 = δ→ 0 exists, it is defined to be the principal
value of the integral.

This same limiting technique is applicable to the integration limits±∞. We define∫ ∞

−∞
f (x)dx = lim

a→−∞,b→∞

∫ b

a

f (x) dx, (7.19a)

if the integral exists witha, b approaching their limits independently, else the integral di-
verges. In case the integral diverges but

lim
a→∞

∫ a

−a
f (x) dx = P

∫ ∞

−∞
f (x)dx (7.19b)

exist, it is defined as its principal value.
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Pole Expansion of Meromorphic Functions

Analytic functionsf (z) that have only isolated poles as singularities are calledmeromor-
phic. Examples are cotz [from d

dz
ln sinz in Eq. (5.210)] and ratios of polynomials. For

simplicity we assume that these poles at finitez = an with 0 < |a1| < |a2| < · · · are all
simple with residuesbn. Then an expansion off (z) in terms ofbn(z− an)

−1 depends in
a systematic way on all singularities off (z), in contrast to the Taylor expansion about
an arbitrarily chosen analytic pointz0 of f (z) or the Laurent expansion about one of the
singular points off (z).

Let us consider a series of concentric circlesCn about the origin so thatCn includes
a1, a2, . . . , an but no other poles, its radiusRn→∞ asn→∞. To guarantee convergence
we assume that|f (z)| < εRn for any small positive constantε and allz onCn. Then the
series

f (z)= f (0)+
∞∑
n=1

bn
{
(z− an)

−1+ a−1
n

}
(7.20)

converges tof (z). To prove thistheorem (due to Mittag–Leffler) we use the residue theo-
rem to evaluate the contour integral forz insideCn:

In = 1

2πi

∫
Cn

f (w)

w(w− z)
dw

=
n∑

m=1

bm

am(am − z)
+ f (z)− f (0)

z
. (7.21)

OnCn we have, forn→∞,

|In| ≤ 2πRn

maxw on Cn |f (w)|
2πRn(Rn − |z|) <

εRn

Rn − |z| → ε

for Rn� |z|. UsingIn→ 0 in Eq. (7.21) proves Eq. (7.20).
If |f (z)|< εR

p+1
n , then we evaluate similarly the integral

In = 1

2πi

∫
f (w)

wp+1(w− z)
dw→ 0 asn→∞

and obtain the analogous pole expansion

f (z)= f (0)+ zf ′(0)+ · · · + zpf (p)(0)

p! +
∞∑
n=1

bnz
p+1/a

p+1
n

z− an
. (7.22)

Note that the convergence of the series in Eqs. (7.20) and (7.22) is implied by the bound of
|f (z)| for |z| →∞.
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Product Expansion of Entire Functions

A functionf (z) that is analytic for all finitez is called anentire function. The logarithmic
derivativef ′/f is a meromorphic function with a pole expansion.

If f (z) has a simple zero atz = an, thenf (z) = (z − an)g(z) with analyticg(z) and
g(an) 
= 0. Hence the logarithmic derivative

f ′(z)
f (z)

= (z− an)
−1+ g′(z)

g(z)
(7.23)

has a simple pole atz= an with residue 1, andg′/g is analytic there. Iff ′/f satisfies the
conditions that lead to the pole expansion in Eq. (7.20), then

f ′(z)
f (z)

= f ′(0)
f (0)

+
∞∑
n=1

[
1

an
+ 1

z− an

]
(7.24)

holds. Integrating Eq. (7.24) yields∫ z

0

f ′(z)
f (z)

dz = lnf (z)− lnf (0)

= zf ′(0)
f (0)

+
∞∑
n=1

{
ln(z− an)− ln(−an)+ z

an

}
,

and exponentiating we obtain the product expansion

f (z)= f (0)exp

(
zf ′(0)
f (0)

) ∞∏
1

(
1− z

an

)
ez/an . (7.25)

Examples are the product expansions (see Chapter 5) for

sinz= z

∞∏
n=−∞
n
=0

(
1− z

nπ

)
ez/nπ = z

∞∏
n=1

(
1− z2

n2π2

)
,

cosz=
∞∏
n=1

{
1− z2

(n− 1/2)2π2

}
.

(7.26)

Another example is the product expansion of the gamma function, which will be discussed
in Chapter 8.

As a consequence of Eq. (7.23) the contour integral of the logarithmic derivative may be
used to count the numberNf of zeros (including their multiplicities) of the functionf (z)
inside the contourC:

1

2πi

∫
C

f ′(z)
f (z)

dz=Nf . (7.27)
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Moreover, using ∫
f ′(z)
f (z)

dz= lnf (z)= ln
∣∣f (z)∣∣+ i argf (z), (7.28)

we see that the real part in Eq. (7.28) does not change asz moves once around the contour,
while the corresponding change in argf must be

�C arg(f )= 2πNf . (7.29)

This leads toRouché’s theorem: If f (z) and g(z) are analytic inside and on a closed
contour C and |g(z)|< |f (z)| on C then f (z) and f (z)+ g(z) have the same number of
zeros inside C.

To show this we use

2πNf+g =�C arg(f + g)=�C arg(f )+�C arg

(
1+ g

f

)
.

Since|g|< |f | onC, the pointw = 1+ g(z)/f (z) is always an interior point of the circle
in thew-plane with center at 1 and radius 1. Hence arg(1+g/f ) must return to its original
value whenz moves aroundC (it does not circle the origin); it cannot decrease or increase
by a multiple of 2π so that�C arg(1+ g/f )= 0.

Rouché’s theorem may be used for an alternative proof of the fundamental theorem of
algebra: A polynomial

∑n
m=0amz

m with an 
= 0 hasn zeros. We definef (z)= anz
n. Then

f has ann-fold zero at the origin and no other zeros. Letg(z) =∑n−1
m=0amz

m. We apply
Rouché’s theorem to a circleC with center at the origin and radiusR > 1. OnC, |f (z)| =
|an|Rn and

∣∣g(z)∣∣≤ |a0| + |a1|R + · · · + |an−1|Rn−1≤
(n−1∑
m=0

|am|
)
Rn−1.

Hence|g(z)| < |f (z)| for z on C, providedR > (
∑n−1

m=0 |am|)/|an|. For all sufficiently
large circlesC therefore,f +g =∑n

m=0amz
m hasn zeros insideC according to Rouché’s

theorem.

Evaluation of Definite Integrals

Definite integrals appear repeatedly in problems of mathematical physics as well as in pure
mathematics. Three moderately general techniques are useful in evaluating definite inte-
grals: (1) contour integration, (2) conversion to gamma or beta functions (Chapter 8), and
(3) numerical quadrature. Other approaches include series expansion with term-by-term
integration and integral transforms. As will be seen subsequently, the method of contour
integration is perhaps the most versatile of these methods, since it is applicable to a wide
variety of integrals.
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Definite Integrals:
∫ 2π

0 f (sin θ, cos θ)dθ

The calculus of residues is useful in evaluating a wide variety of definite integrals in both
physical and purely mathematical problems. We consider, first, integrals of the form

I =
∫ 2π

0
f (sinθ,cosθ) dθ, (7.30)

wheref is finite for all values ofθ . We also requiref to be a rational function of sinθ and
cosθ so that it will be single-valued. Let

z= eiθ , dz= ieiθ dθ.

From this,

dθ =−i dz
z
, sinθ = z− z−1

2i
, cosθ = z+ z−1

2
. (7.31)

Our integral becomes

I =−i
∮

f

(
z− z−1

2i
,
z+ z−1

2

)
dz

z
, (7.32)

with the path of integration the unit circle. By the residue theorem, Eq. (7.16),

I = (−i)2πi
∑

residues within the unit circle. (7.33)

Note that we are after the residues off/z. Illustrations of integrals of this type are provided
by Exercises 7.1.7–7.1.10.

Example 7.1.2 INTEGRAL OF COS IN DENOMINATOR

Our problem is to evaluate the definite integral

I =
∫ 2π

0

dθ

1+ ε cosθ
, |ε|< 1.

By Eq. (7.32) this becomes

I = −i
∮

unit circle

dz

z[1+ (ε/2)(z+ z−1)]
= −i 2

ε

∮
dz

z2+ (2/ε)z+ 1
.

The denominator has roots

z− =−1

ε
− 1

ε

√
1− ε2 and z+ =−1

ε
+ 1

ε

√
1− ε2,

wherez+ is within the unit circle andz− is outside. Then by Eq. (7.33) and Exercise 6.6.1,

I =−i 2

ε
· 2πi 1

2z+ 2/ε

∣∣∣∣
z=−1/ε+(1/ε)

√
1−ε2

.
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We obtain ∫ 2π

0

dθ

1+ ε cosθ
= 2π√

1− ε2
, |ε|< 1. �

Evaluation of Definite Integrals:
∫ ∞
−∞ f (x)dx

Suppose that our definite integral has the form

I =
∫ ∞

−∞
f (x)dx (7.34)

and satisfies the two conditions:

• f (z) is analytic in the upper half-plane except for a finite number of poles. (It will be
assumed that there are no poles on the real axis. If poles are present on the real axis,
they may be included or excluded as discussed earlier in this section.)

• f (z) vanishes as strongly2 as 1/z2 for |z| →∞, 0≤ argz≤ π .

With these conditions, we may take as a contour of integration the real axis and a semi-
circle in the upper half-plane, as shown in Fig. 7.5. We let the radiusR of the semicircle
become infinitely large. Then∮

f (z) dz = lim
R→∞

∫ R

−R
f (x)dx + lim

R→∞

∫ π

0
f
(
Reiθ

)
iReiθ dθ

= 2πi
∑

residues (upper half-plane). (7.35)

From the second condition the second integral (over the semicircle) vanishes and∫ ∞

−∞
f (x)dx = 2πi

∑
residues (upper half-plane). (7.36)

FIGURE 7.5 Half-circle
contour.

2We could usef (z) vanishes faster than 1/z, and we wish to havef (z) single-valued.
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Example 7.1.3 INTEGRAL OF MEROMORPHIC FUNCTION

Evaluate

I =
∫ ∞

−∞
dx

1+ x2
. (7.37)

From Eq. (7.36), ∫ ∞

−∞
dx

1+ x2
= 2πi

∑
residues (upper half-plane).

Here and in every other similar problem we have the question: Where are the poles? Rewrit-
ing the integrand as

1

z2+ 1
= 1

z+ i
· 1

z− i
, (7.38)

we see that there are simple poles (order 1) atz= i andz=−i.
A simple pole atz= z0 indicates (and is indicated by) a Laurent expansion of the form

f (z)= a−1

z− z0
+ a0+

∞∑
n=1

an(z− z0)
n. (7.39)

The residuea−1 is easily isolated as (Exercise 6.6.1)

a−1= (z− z0)f (z)|z=z0. (7.40)

Using Eq. (7.40), we find that the residue atz= i is 1/2i, whereas that atz=−i is−1/2i.
Then ∫ ∞

−∞
dx

1+ x2
= 2πi · 1

2i
= π. (7.41)

Here we have useda−1= 1/2i for the residue of the one included pole atz= i. Note that
it is possible to use the lower semicircle and that this choice will lead to the same result,
I = π . A somewhat more delicate problem is provided by the next example. �

Evaluation of Definite Integrals:
∫ ∞
−∞ f (x)eiax dx

Consider the definite integral

I =
∫ ∞

−∞
f (x)eiax dx, (7.42)

with a real and positive. (This is a Fourier transform, Chapter 15.) We assume the two
conditions:

• f (z) is analytic in the upper half-plane except for a finite number of poles.
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• lim|z|→∞f (z)= 0, 0≤ argz≤ π. (7.43)

Note that this is a less restrictive condition than the second condition imposed onf (z) for
integrating

∫∞
−∞ f (x)dx previously.

We employ the contour shown in Fig. 7.5. The application of the calculus of residues
is the same as the one just considered, but here we have to work harder to show that the
integral over the (infinite) semicircle goes to zero. This integral becomes

IR =
∫ π

0
f
(
Reiθ

)
eiaR cosθ−aR sinθ iReiθ dθ. (7.44)

Let R be so large that|f (z)| = |f (Reiθ )|< ε. Then

|IR| ≤ εR

∫ π

0
e−aR sinθ dθ = 2εR

∫ π/2

0
e−aR sinθ dθ. (7.45)

In the range[0,π/2],
2

π
θ ≤ sinθ.

Therefore (Fig. 7.6)

|IR| ≤ 2εR
∫ π/2

0
e−2aRθ/π dθ. (7.46)

Now, integrating by inspection, we obtain

|IR| ≤ 2εR
1− e−aR

2aR/π
.

Finally,

lim
R→∞|IR| ≤

π

a
ε. (7.47)

From Eq. (7.43),ε→ 0 asR→∞ and

lim
R→∞|IR| = 0. (7.48)

FIGURE 7.6 (a)y = (2/π)θ , (b) y = sinθ .
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This useful result is sometimes calledJordan’s lemma. With it, we are prepared to tackle
Fourier integrals of the form shown in Eq. (7.42).

Using the contour shown in Fig. 7.5, we have∫ ∞

−∞
f (x)eiax dx + lim

R→∞ IR = 2πi
∑

residues (upper half-plane).

Since the integral over the upper semicircleIR vanishes asR→∞ (Jordan’s lemma),∫ ∞

−∞
f (x)eiax dx = 2πi

∑
residues (upper half-plane) (a > 0). (7.49)

Example 7.1.4 SIMPLE POLE ON CONTOUR OF INTEGRATION

The problem is to evaluate

I =
∫ ∞

0

sinx

x
dx. (7.50)

This may be taken as the imaginary part3 of

I2= P

∫ ∞

−∞
eizdz

z
. (7.51)

Now the only pole is a simple pole atz= 0 and the residue there by Eq. (7.40) isa−1= 1.
We choose the contour shown in Fig. 7.7 (1) to avoid the pole, (2) to include the real axis,
and (3) to yield a vanishingly small integrand forz= iy, y→∞. Note that in this case a
large (infinite) semicircle in the lower half-plane would be disastrous. We have∮

eiz dz

z
=
∫ −r

−R
eix

dx

x
+
∫
C1

eiz dz

z
+
∫ R

r

eix dx

x
+
∫
C2

eiz dz

z
= 0, (7.52)

FIGURE 7.7 Singularity on contour.

3One can use
∫ [(eiz − e−iz)/2iz]dz, but then two different contours will be needed for the two exponentials (compare Exam-

ple 7.1.5).
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the final zero coming from the residue theorem (Eq. (7.6)). By Jordan’s lemma∫
C2

eiz dz

z
= 0, (7.53)

and ∮
eiz dz

z
=
∫
C1

eiz dz

z
+ P

∫ ∞

−∞
eix dx

x
= 0. (7.54)

The integral over the small semicircle yields(−)πi times the residue of 1, and minus, as a
result of going clockwise. Taking the imaginary part,4 we have∫ ∞

−∞
sinx

x
dx = π (7.55)

or ∫ ∞

0

sinx

x
dx = π

2
. (7.56)

The contour of Fig. 7.7, although convenient, is not at all unique. Another choice of
contour for evaluating Eq. (7.50) is presented as Exercise 7.1.15. �

Example 7.1.5 QUANTUM MECHANICAL SCATTERING

The quantum mechanical analysis of scattering leads to the function

I (σ )=
∫ ∞

−∞
x sinx dx

x2− σ 2
, (7.57)

whereσ is real and positive. This integral is divergent and therefore ambiguous. From the
physical conditions of the problem there is a further requirement:I (σ ) is to have the form
eiσ so that it will represent an outgoing scattered wave.

Using

sinz= 1

i
sinhiz= 1

2i
eiz − 1

2i
e−iz, (7.58)

we write Eq. (7.57) in the complex plane as

I (σ )= I1+ I2, (7.59)

with

I1 = 1

2i

∫ ∞

−∞
zeiz

z2− σ 2
dz,

I2 = − 1

2i

∫ ∞

−∞
ze−iz

z2− σ 2
dz. (7.60)

4Alternatively, we may combine the integrals of Eq. (7.52) as∫ −r
−R

eix
dx

x
+
∫ R

r
eix

dx

x
=
∫ R

r

(
eix − e−ix

) dx
x
= 2i

∫ R

r

sinx

x
dx.
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FIGURE 7.8 Contours.

IntegralI1 is similar to Example 7.1.4 and, as in that case, we may complete the contour by
an infinite semicircle in the upper half-plane, as shown in Fig. 7.8a. ForI2 the exponential
is negative and we complete the contour by an infinite semicircle in the lower half-plane,
as shown in Fig. 7.8b. As in Example 7.1.4, neither semicircle contributes anything to the
integral — Jordan’s lemma.

There is still the problem of locating the poles and evaluating the residues. We find poles
at z =+σ andz =−σ on the contour of integration. The residues are (Exercises 6.6.1
and 7.1.1)

z= σ z=−σ
I1

eiσ

2

e−iσ

2

I2
e−iσ

2

eiσ

2

Detouring around the poles, as shown in Fig. 7.8 (it matters little whether we go above or
below), we find that the residue theorem leads to

PI1− πi

(
1

2i

)
e−iσ

2
+ πi

(
1

2i

)
eiσ

2
= 2πi

(
1

2i

)
eiσ

2
, (7.61)

for we have enclosed the singularity atz = σ but excluded the one atz = −σ . In similar
fashion, but noting that the contour forI2 is clockwise,

PI2− πi

(−1

2i

)
eiσ

2
+ πi

(−1

2i

)
e−iσ

2
=−2πi

(−1

2i

)
eiσ

2
. (7.62)

Adding Eqs. (7.61) and (7.62), we have

PI (σ )= PI1+ PI2= π

2

(
eiσ + e−iσ

)= π coshiσ = π cosσ. (7.63)

This is a perfectly good evaluation of Eq. (7.57), but unfortunately the cosine dependence
is appropriate for a standing wave and not for the outgoing scattered wave as specified.
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To obtain the desired form, we try a different technique (compare Example 7.1.1). In-
stead of dodging around the singular points, let us move them off the real axis. Specifically,
letσ → σ + iγ,−σ →−σ − iγ , whereγ is positive but small and will eventually be made
to approach zero; that is, forI1 we include one pole and forI2 the other one,

I+(σ )= lim
γ→0

I (σ + iγ ). (7.64)

With this simple substitution, the first integralI1 becomes

I1(σ + iγ )= 2πi

(
1

2i

)
ei(σ+iγ )

2
(7.65)

by direct application of the residue theorem. Also,

I2(σ + iγ )=−2πi

(−1

2i

)
ei(σ+iγ )

2
. (7.66)

Adding Eqs. (7.65) and (7.66) and then lettingγ → 0, we obtain

I+(σ ) = lim
γ→0

[
I1(σ + iγ )+ I2(σ + iγ )

]
= lim

γ→0
πei(σ+iγ ) = πeiσ , (7.67)

a result that does fit the boundary conditions of our scattering problem.
It is interesting to note that the substitutionσ → σ − iγ would have led to

I−(σ )= πe−iσ , (7.68)

which could represent an incoming wave. Our earlier result (Eq. (7.63)) is seen to be the
arithmetic average of Eqs. (7.67) and (7.68). This average is the Cauchy principal value of
the integral. Note that we have these possibilities (Eqs. (7.63), (7.67), and (7.68)) because
our integral is not uniquely defined until we specify the particular limiting process (or
average) to be used. �

Evaluation of Definite Integrals: Exponential Forms

With exponential or hyperbolic functions present in the integrand, life gets somewhat more
complicated than before. Instead of a general overall prescription, the contour must be cho-
sen to fit the specific integral. These cases are also opportunities to illustrate the versatility
and power of contour integration.

As an example, we consider an integral that will be quite useful in developing a relation
between�(1+ z) and�(1− z). Notice how the periodicity along the imaginary axis is
exploited.
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FIGURE 7.9 Rectangular contour.

Example 7.1.6 FACTORIAL FUNCTION

We wish to evaluate

I =
∫ ∞

−∞
eax

1+ ex
dx, 0< a < 1. (7.69)

The limits ona are sufficient (but not necessary) to prevent the integral from diverging as
x→±∞. This integral (Eq. (7.69)) may be handled by replacing the real variablex by
the complex variablez and integrating around the contour shown in Fig. 7.9. If we take
the limit asR→∞, the real axis, of course, leads to the integral we want. The return path
alongy = 2π is chosen to leave the denominator of the integral invariant, at the same time
introducing a constant factorei2πa in the numerator. We have, in the complex plane,∮

eaz

1+ ez
dz = lim

R→∞

(∫ R

−R
eax

1+ ex
dx − ei2πa

∫ R

−R
eax

1+ ex
dx

)
= (1− ei2πa

)∫ ∞

−∞
eax

1+ ex
dx. (7.70)

In addition there are two vertical sections(0≤ y ≤ 2π), which vanish (exponentially) as
R→∞.

Now where are the poles and what are the residues? We have a pole when

ez = exeiy =−1. (7.71)

Equation (7.71) is satisfied atz= 0+ iπ . By a Laurent expansion5 in powers of(z− iπ)

the pole is seen to be a simple pole with a residue of−eiπa . Then, applying the residue
theorem, (

1− ei2πa
)∫ ∞

−∞
eax

1+ ex
dx = 2πi

(−eiπa). (7.72)

This quickly reduces to∫ ∞

−∞
eax

1+ ex
dx = π

sinaπ
, 0< a < 1. (7.73)

51+ ez = 1+ ez−iπ eiπ = 1− ez−iπ =−(z− iπ)(1+ z−iπ
2! + (z−iπ)2

3! + · · · ).
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Using the beta function (Section 8.4), we can show the integral to be equal to the product
�(a)�(1− a). This results in the interesting and useful factorial function relation

�(a + 1)�(1− a)= πa

sinπa
. (7.74)

Although Eq. (7.73) holds for reala,0< a < 1, Eq. (7.74) may be extended by analytic
continuation to all values ofa, real and complex, excluding only real integral values.�

As a final example of contour integrals of exponential functions, we consider Bernoulli
numbers again.

Example 7.1.7 BERNOULLI NUMBERS

In Section 5.9 the Bernoulli numbers were defined by the expansion

x

ex − 1
=

∞∑
n=0

Bn

n! x
n. (7.75)

Replacingx with z (analytic continuation), we have a Taylor series (compare Eq. (6.47))
with

Bn = n!
2πi

∮
C0

z

ez − 1

dz

zn+1
, (7.76)

where the contourC0 is around the origin counterclockwise with|z| < 2π to avoid the
poles at 2πin.

Forn= 0 we have a simple pole atz= 0 with a residue of+1. Hence by Eq. (7.25),

B0= 0!
2πi

· 2πi(1)= 1. (7.77)

Forn= 1 the singularity atz= 0 becomes a second-order pole. The residue may be shown
to be−1

2 by series expansion of the exponential, followed by a binomial expansion. This
results in

B1= 1!
2πi

· 2πi
(
−1

2

)
=−1

2
. (7.78)

For n ≥ 2 this procedure becomes rather tedious, and we resort to a different means of
evaluating Eq. (7.76). The contour is deformed, as shown in Fig. 7.10.

The new contourC still encircles the origin, as required, but now it also encircles
(in a negative direction) an infinite series of singular points along the imaginary axis at
z = ±p2πi,p = 1,2,3, . . . . The integration back and forth along thex-axis cancels out,
and forR→∞ the integration over the infinite circle yields zero. Remember thatn ≥ 2.
Therefore ∮

C0

z

ez − 1

dz

zn+1
=−2πi

∞∑
p=1

residues (z=±p2πi). (7.79)
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FIGURE 7.10 Contour of
integration for Bernoulli numbers.

At z= p2πi we have a simple pole with a residue(p2πi)−n. Whenn is odd, the residue
from z = p2πi exactly cancels that fromz =−p2πi andBn = 0, n= 3,5,7, and so on.
Forn even the residues add, giving

Bn = n!
2πi

(−2πi)2
∞∑
p=1

1

pn(2πi)n

= − (−1)n/22n!
(2π)n

∞∑
p=1

p−n =− (−1)n/22n!
(2π)n

ζ(n) (n even), (7.80)

whereζ(n) is the Riemann zeta function introduced in Section 5.9. Equation (7.80) corre-
sponds to Eq. (5.152) of Section 5.9. �

Exercises

7.1.1 Determine the nature of the singularities of each of the following functions and evaluate
the residues(a > 0).

(a)
1

z2+ a2
. (b)

1

(z2+ a2)2
.

(c)
z2

(z2+ a2)2
. (d)

sin 1/z

z2+ a2
.

(e)
ze+iz

z2+ a2
. (f)

ze+iz

z2− a2
.

(g)
e+iz

z2− a2
. (h)

z−k

z+ 1
, 0< k < 1.

Hint. For the point at infinity, use the transformationw = 1/z for |z| → 0. For the
residue, transformf (z) dz into g(w)dw and look at the behavior ofg(w).
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7.1.2 Locate the singularities and evaluate the residues of each of the following functions.

(a) z−n(ez − 1)−1, z 
= 0,

(b)
z2ez

1+ e2z
.

(c) Find a closed-form expression (that is, not a sum) for the sum of the finite-plane
singularities.

(d) Using the result in part (c), what is the residue at|z| →∞?

Hint. See Section 5.9 for expressions involving Bernoulli numbers. Note that Eq. (5.144)
cannot be used to investigate the singularity atz→∞, since this series is only valid for
|z|< 2π .

7.1.3 The statement that the integral halfway around a singular point is equal to one-half the
integral all the way around was limited to simple poles. Show, by a specific example,
that ∫

Semicircle
f (z) dz= 1

2

∮
Circle

f (z) dz

does not necessarily hold if the integral encircles a pole of higher order.
Hint. Try f (z)= z−2.

7.1.4 A function f (z) is analytic along the real axis except for a third-order pole atz = x0.
The Laurent expansion aboutz= x0 has the form

f (z)= a−3

(z− x0)3
+ a−1

z− x0
+ g(z),

with g(z) analytic atz= x0. Show that the Cauchy principal value technique is applica-
ble, in the sense that

(a) lim
δ→0

{∫ x0−δ

−∞
f (x)dx +

∫ ∞

x0+δ
f (x) dx

}
is finite.

(b)
∫
Cx0

f (z) dz=±iπa−1,

whereCx0 denotes asmall semicircle aboutz= x0.

7.1.5 The unit step function is defined as (compare Exercise 1.15.13)

u(s − a)=
{

0, s < a

1, s > a.

Show thatu(s) has the integral representations

(a) u(s)= lim
ε→0+

1

2πi

∫ ∞

−∞
eixs

x − iε
dx,
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(b) u(s)= 1

2
+ 1

2πi
P

∫ ∞

−∞
eixs

x
dx.

Note. The parameters is real.

7.1.6 Most of the special functions of mathematical physics may be generated (defined) by
a generating function of the form

g(t, x)=
∑
n

fn(x)t
n.

Given the following integral representations, derive the corresponding generating func-
tion:

(a) Bessel:

Jn(x)= 1

2πi

∮
e(x/2)(t−1/t)t−n−1dt.

(b) Modified Bessel:

In(x)= 1

2πi

∮
e(x/2)(t+1/t)t−n−1dt.

(c) Legendre:

Pn(x)= 1

2πi

∮ (
1− 2tx + t2

)−1/2
t−n−1dt.

(d) Hermite:

Hn(x)= n!
2πi

∮
e−t2+2tx t−n−1dt.

(e) Laguerre:

Ln(x)= 1

2πi

∮
e−xt/(1−t)

(1− t)tn+1
dt.

(f) Chebyshev:

Tn(x)= 1

4πi

∮
(1− t2)t−n−1

(1− 2tx + t2)
dt.

Each of the contours encircles the origin and no other singular points.

7.1.7 Generalizing Example 7.1.2, show that∫ 2π

0

dθ

a ± b cosθ
=
∫ 2π

0

dθ

a ± b sinθ
= 2π

(a2− b2)1/2
, for a > |b|.

What happens if|b|> |a|?
7.1.8 Show that ∫ π

0

dθ

(a + cosθ)2
= πa

(a2− 1)3/2
, a > 1.
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7.1.9 Show that ∫ 2π

0

dθ

1− 2t cosθ + t2
= 2π

1− t2
, for |t |< 1.

What happens if|t |> 1? What happens if|t | = 1?

7.1.10 With the calculus of residues show that∫ π

0
cos2n θ dθ = π

(2n)!
22n(n!)2 = π

(2n− 1)!!
(2n)!! , n= 0,1,2, . . . .

(The double factorial notation is defined in Section 8.1.)
Hint. cosθ = 1

2(e
iθ + e−iθ )= 1

2(z+ z−1), |z| = 1.

7.1.11 Evaluate ∫ ∞

−∞
cosbx − cosax

x2
dx, a > b > 0.

ANS.π(a − b).

7.1.12 Prove that ∫ ∞

−∞
sin2x

x2
dx = π

2
.

Hint. sin2x = 1
2(1− cos2x).

7.1.13 A quantum mechanical calculation of a transition probability leads to the function
f (t,ω)= 2(1− cosωt)/ω2. Show that∫ ∞

−∞
f (t,ω)dω= 2πt.

7.1.14 Show that(a > 0)

(a)
∫ ∞

−∞
cosx

x2+ a2
dx = π

a
e−a .

How is the right side modified if cosx is replaced by coskx?

(b)
∫ ∞

−∞
x sinx

x2+ a2
dx = πe−a .

How is the right side modified if sinx is replaced by sinkx?

These integrals may also be interpreted as Fourier cosine and sine transforms —
Chapter 15.

7.1.15 Use the contour shown (Fig. 7.11) withR→∞ to prove that∫ ∞

−∞
sinx

x
dx = π.
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FIGURE 7.11 Large square
contour.

7.1.16 In the quantum theory of atomic collisions we encounter the integral

I =
∫ ∞

−∞
sint

t
eipt dt,

in whichp is real. Show that

I = 0, |p|> 1
I = π, |p|< 1.

What happens ifp =±1?

7.1.17 Evaluate ∫ ∞

0

(lnx)2

1+ x2
dx

(a) by appropriate series expansion of the integrand to obtain

4
∞∑
n=0

(−1)n(2n+ 1)−3,

(b) and by contour integration to obtain

π3

8
.

Hint. x→ z= et . Try the contour shown in Fig. 7.12, lettingR→∞.

7.1.18 Show that ∫ ∞

0

xa

(x + 1)2
dx = πa

sinπa
,

FIGURE 7.12 Small square
contour.
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FIGURE 7.13 Contour avoiding
branch point and pole.

where−1< a < 1. Here is still another way of deriving Eq. (7.74).
Hint. Use the contour shown in Fig. 7.13, noting thatz = 0 is a branch point and the
positivex-axis is a cut line. Note also the comments on phases following Example 6.6.1.

7.1.19 Show that ∫ ∞

0

x−a

x + 1
dx = π

sinaπ
,

where 0< a < 1. This opens up another way of deriving the factorial function relation
given by Eq. (7.74).
Hint. You have a branch point and you will need a cut line. Recall thatz−a =w in polar
form is [

rei(θ+2πn)]−a = ρeiϕ,

which leads to−aθ−2anπ = ϕ. You must restrictn to zero (or any other single integer)
in order thatϕ may be uniquely specified. Try the contour shown in Fig. 7.14.

FIGURE 7.14 Alternative contour
avoiding branch point.
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FIGURE 7.15 Angle contour.

7.1.20 Show that ∫ ∞

0

dx

(x2+ a2)2
= π

4a3
, a > 0.

7.1.21 Evaluate ∫ ∞

−∞
x2

1+ x4
dx.

ANS.π/
√

2.

7.1.22 Show that ∫ ∞

0
cos
(
t2
)
dt =

∫ ∞

0
sin
(
t2
)
dt =

√
π

2
√

2
.

Hint. Try the contour shown in Fig. 7.15.
Note. These are the Fresnel integrals for the special case of infinity as the upper limit.
For the general case of a varying upper limit, asymptotic expansions of the Fresnel
integrals are the topic of Exercise 5.10.2. Spherical Bessel expansions are the subject of
Exercise 11.7.13.

7.1.23 Several of the Bromwich integrals, Section 15.12, involve a portion that may be approx-
imated by

I (y)=
∫ a+iy

a−iy
ezt

z1/2
dz.

Herea andt are positive and finite. Show that

lim
y→∞ I (y)= 0.
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FIGURE 7.16 Sector contour.

7.1.24 Show that ∫ ∞

0

1

1+ xn
dx = π/n

sin(π/n)
.

Hint. Try the contour shown in Fig. 7.16.

7.1.25 (a) Show that

f (z)= z4− 2 cos2θz2+ 1

has zeros ateiθ , e−iθ ,−eiθ , and−e−iθ .
(b) Show that∫ ∞

−∞
dx

x4− 2 cos2θx2+ 1
= π

2 sinθ
= π

21/2(1− cos2θ)1/2
.

Exercise 7.1.24(n= 4) is a special case of this result.

7.1.26 Show that ∫ ∞

−∞
x2dx

x4− 2 cos2θx2+ 1
= π

2 sinθ
= π

21/2(1− cos2θ)1/2
.

Exercise 7.1.21 is a special case of this result.

7.1.27 Apply the techniques of Example 7.1.5 to the evaluation of the improper integral

I =
∫ ∞

−∞
dx

x2− σ 2
.

(a) Letσ → σ + iγ .
(b) Letσ → σ − iγ .
(c) Take the Cauchy principal value.
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7.1.28 The integral in Exercise 7.1.17 may be transformed into∫ ∞

0
e−y y2

1+ e−2y
dy = π3

16
.

Evaluate this integral by the Gauss–Laguerre quadrature and compare your result with
π3/16.

ANS. Integral= 1.93775 (10 points).

7.2 DISPERSION RELATIONS

The concept of dispersion relations entered physics with the work of Kronig and Kramers
in optics. The namedispersion comes from optical dispersion, a result of the dependence
of the index of refraction on wavelength, or angular frequency. The index of refraction
n may have a real part determined by the phase velocity and a (negative) imaginary part
determined by the absorption — see Eq. (7.94). Kronig and Kramers showed in 1926–
1927 that the real part of(n2− 1) could be expressed as an integral of the imaginary part.
Generalizing this, we shall apply the labeldispersion relations to any pair of equations
giving the real part of a function as an integral of its imaginary part and the imaginary part
as an integral of its real part — Eqs. (7.86a) and (7.86b), which follow. The existence of
such integral relations might be suspected as an integral analog of the Cauchy–Riemann
differential relations, Section 6.2.

The applications in modern physics are widespread. For instance, the real part of the
function might describe the forward scattering of a gamma ray in a nuclear Coulomb field
(a dispersive process). Then the imaginary part would describe the electron–positron pair
production in that same Coulomb field (the absorptive process). As will be seen later, the
dispersion relations may be taken as a consequence of causality and therefore are indepen-
dent of the details of the particular interaction.

We consider a complex functionf (z) that is analytic in the upper half-plane and on the
real axis. We also require that

lim|z|→∞
∣∣f (z)∣∣= 0, 0≤ argz≤ π, (7.81)

in order that the integral over an infinite semicircle will vanish. The point of these condi-
tions is that we may expressf (z) by the Cauchy integral formula, Eq. (6.43),

f (z0)= 1

2πi

∮
f (z)

z− z0
dz. (7.82)

The integral over the upper semicircle6 vanishes and we have

f (z0)= 1

2πi

∫ ∞

−∞
f (x)

x − z0
dx. (7.83)

The integral over the contour shown in Fig. 7.17 has become an integral along thex-axis.
Equation (7.83) assumes thatz0 is in the upper half-plane — interior to the closed con-

tour. If z0 were in the lower half-plane, the integral would yield zero by the Cauchy integral

6The use of a semicircle to close the path of integration is convenient, not mandatory. Other paths are possible.
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FIGURE 7.17 Semicircle contour.

theorem, Section 6.3. Now, either lettingz0 approach the real axis from above(z0 − x0)

or placing it on the real axis and taking an average of Eq. (7.83) and zero, we find that
Eq. (7.83) becomes

f (x0)= 1

πi
P

∫ ∞

−∞
f (x)

x − x0
dx, (7.84)

whereP indicates the Cauchy principal value. Splitting Eq. (7.84) into real and imaginary
parts7 yields

f (x0) = u(x0)+ iv(x0)

= 1

π
P

∫ ∞

−∞
v(x)

x − x0
dx − i

π
P

∫ ∞

−∞
u(x)

x − x0
dx. (7.85)

Finally, equating real part to real part and imaginary part to imaginary part, we obtain

u(x0) = 1

π
P

∫ ∞

−∞
v(x)

x − x0
dx (7.86a)

v(x0) = − 1

π
P

∫ ∞

−∞
u(x)

x − x0
dx. (7.86b)

These are the dispersion relations. The real part of our complex function is expressed as
an integral over the imaginary part. The imaginary part is expressed as an integral over
the real part. The real and imaginary parts areHilbert transforms of each other. Note that
these relations are meaningful only whenf (x) is a complex function of the real variablex.
Compare Exercise 7.2.1.

From a physical point of viewu(x) and/orv(x) represent some physical measurements.
Thenf (z) = u(z)+ iv(z) is an analytic continuation over the upper half-plane, with the
value on the real axis serving as a boundary condition.

7The second argument,y = 0, is dropped:u(x0,0)→ u(x0).
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Symmetry Relations

On occasionf (x) will satisfy a symmetry relation and the integral from−∞ to +∞
may be replaced by an integral over positive values only. This is of considerable physical
importance because the variablex might represent a frequency and only zero and positive
frequencies are available for physical measurements. Suppose8

f (−x)= f ∗(x). (7.87)

Then

u(−x)+ iv(−x)= u(x)− iv(x). (7.88)

The real part off (x) is even and the imaginary part is odd.9 In quantum mechanical
scattering problems these relations (Eq. (7.88)) are called crossing conditions. To exploit
thesecrossing conditions, we rewrite Eq. (7.86a) as

u(x0)= 1

π
P

∫ 0

−∞
v(x)

x − x0
dx + 1

π
P

∫ ∞

0

v(x)

x − x0
dx. (7.89)

Letting x→−x in the first integral on the right-hand side of Eq. (7.89) and substituting
v(−x)=−v(x) from Eq. (7.88), we obtain

u(x0) = 1

π
P

∫ ∞

0
v(x)

{
1

x + x0
+ 1

x − x0

}
dx

= 2

π
P

∫ ∞

0

xv(x)

x2− x2
0

dx. (7.90)

Similarly,

v(x0)=− 2

π
P

∫ ∞

0

x0u(x)

x2− x2
0

dx. (7.91)

The original Kronig–Kramers optical dispersion relations were in this form. The asymp-
totic behavior(x0→∞) of Eqs. (7.90) and (7.91) lead to quantum mechanicalsum rules,
Exercise 7.2.4.

Optical Dispersion

The function exp[i(kx −ωt)] describes an electromagnetic wave moving along thex-axis
in the positive direction with velocityv = ω/k; ω is the angular frequency,k the wave
number or propagation vector, andn = ck/ω the index of refraction. From Maxwell’s

8This is not just a happy coincidence. It ensures that the Fourier transform off (x) will be real. In turn, Eq. (7.87) is a conse-
quence of obtainingf (x) as the Fourier transform of a real function.
9u(x,0)= u(−x,0), v(x,0)=−v(−x,0). Compare these symmetry conditions with those that follow from the Schwarz reflec-
tion principle, Section 6.5.
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equations, electric permittivityε, and Ohm’s law with conductivityσ , the propagation
vectork for a dielectric becomes10

k2= ε
ω2

c2

(
1+ i

4πσ

ωε

)
(7.92)

(with µ, the magnetic permeability, taken to be unity). The presence of the conductivity
(which means absorption) gives rise to an imaginary part. The propagation vectork (and
therefore the index of refractionn) have become complex.

Conversely, the (positive) imaginary part implies absorption. For poor conductivity
(4πσ/ωε� 1) a binomial expansion yields

k =√ε
ω

c
+ i

2πσ

c
√
ε

and

ei(kx−ωt) = eiω(x
√
ε/c−t)e−2πσx/c

√
ε,

an attenuated wave.
Returning to the general expression fork2, Eq. (7.92), we find that the index of refraction

becomes

n2= c2k2

ω2
= ε+ i

4πσ

ω
. (7.93)

We taken2 to be a function of thecomplex variableω (with ε andσ depending onω).
However,n2 does not vanish asω→∞ but instead approaches unity. So to satisfy the
condition, Eq. (7.81), one works withf (ω) = n2(ω) − 1. The original Kronig–Kramers
optical dispersion relations were in the form of

�[n2(ω0)− 1
] = 2

π
P

∫ ∞

0

ω�[n2(ω)− 1]
ω2−ω2

0

dω,

(7.94)

�[n2(ω0)− 1
] = − 2

π
P

∫ ∞

0

ω0�[n2(ω)− 1]
ω2−ω2

0

dω.

Knowledge of the absorption coefficient at all frequencies specifies the real part of the
index of refraction, and vice versa.

The Parseval Relation

When the functionsu(x) and v(x) are Hilbert transforms of each other (given by
Eqs. (7.86)) and each is square integrable,11 the two functions are related by∫ ∞

−∞
∣∣u(x)∣∣2dx = ∫ ∞

−∞
∣∣v(x)∣∣2dx. (7.95)

10See J. D. Jackson,Classical Electrodynamics, 3rd ed. New York: Wiley (1999), Sections 7.7 and 7.10. Equation (7.92) is in
Gaussian units.
11This means that

∫∞
−∞ |u(x)|2 dx and

∫∞
−∞ |v(x)|2 dx are finite.
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This is the Parseval relation.
To derive Eq. (7.95), we start with∫ ∞

−∞
∣∣u(x)∣∣2dx = ∫ ∞

−∞
1

π

∫ ∞

−∞
v(s) ds

s − x

1

π

∫ ∞

−∞
v(t) dt

t − x
dx,

using Eq. (7.86a) twice. Integrating first with respect tox, we have∫ ∞

−∞
∣∣u(x)∣∣2dx = ∫ ∞

−∞
v(s) ds

∫ ∞

−∞
v(t) dt

π2

∫ ∞

−∞
dx

(s − x)(t − x)
. (7.96)

From Exercise 7.2.8, thex integration yields a delta function:

1

π2

∫ ∞

−∞
dx

(s − x)(t − x)
= δ(s − t).

We have ∫ ∞

−∞
∣∣u(x)∣∣2dx = ∫ ∞

−∞
v(t) dt

∫ ∞

−∞
v(s)δ(s − t) ds. (7.97)

Then thes integration is carried out by inspection, using the defining property of the delta
function: ∫ ∞

−∞
v(s)δ(s − t) ds = v(t). (7.98)

Substituting Eq. (7.98) into Eq. (7.97), we have Eq. (7.95), the Parseval relation. Again, in
terms of optics, the presence of refraction over some frequency range(n 
= 1) implies the
existence of absorption, and vice versa.

Causality

The real significance of dispersion relations in physics is that they are a direct consequence
of assuming that the particular physical system obeys causality. Causality is awkward to
define precisely, but the general meaning is that the effect cannot precede the cause. A scat-
tered wave cannot be emitted by the scattering center before the incident wave has arrived.
For linear systems the most general relation between an input functionG (the cause) and
an output functionH (the effect) may be written as

H(t)=
∫ ∞

−∞
F(t − t ′)G(t ′) dt ′. (7.99)

Causality is imposed by requiring that

F(t − t ′)= 0 for t − t ′ < 0.

Equation (7.99) gives the time dependence. The frequency dependence is obtained by tak-
ing Fourier transforms. By the Fourier convolution theorem, Section 15.5,

h(ω)= f (ω)g(ω),

wheref (ω) is the Fourier transform ofF(t), and so on. Conversely,F(t) is the Fourier
transform off (ω).
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The connection with the dispersion relations is provided by the Titchmarshtheorem.12

This states that iff (ω) is square integrable over the realω-axis, then any one of the fol-
lowing three statements implies the other two.

1. The Fourier transform off (ω) is zero fort < 0: Eq. (7.99).
2. Replacingω by z, the functionf (z) is analytic in the complexz-plane fory > 0 and

approachesf (x) almost everywhere asy→ 0. Further,∫ ∞

−∞
∣∣f (x + iy)

∣∣2dx <K for y > 0;

that is, the integral is bounded.
3. The real and imaginary parts off (z) are Hilbert transforms of each other: Eqs. (7.86a)

and (7.86b).

The assumption that the relationship between the input and the output of our linear
system is causal (Eq. (7.99)) means that the first statement is satisfied. Iff (ω) is square
integrable, then the Titchmarsh theorem has the third statement as a consequence and we
have dispersion relations.

Exercises

7.2.1 The functionf (z) satisfies the conditions for the dispersion relations. In addition,
f (z)= f ∗(z∗), the Schwarz reflection principle, Section 6.5. Show thatf (z) is identi-
cally zero.

7.2.2 For f (z) such that we may replace the closed contour of the Cauchy integral formula
by an integral over the real axis we have

f (x0)= 1

2πi

{∫ x0−δ

−∞
f (x)

x − x0
dx +

∫ ∞

x0+δ
f (x)

x − x0
dx

}
+ 1

2πi

∫
Cx0

f (x)

x − x0
dx.

HereCx0 designates a small semicircle aboutx0 in the lower half-plane. Show that this
reduces to

f (x0)= 1

πi
P

∫ ∞

−∞
f (x)

x − x0
dx,

which is Eq. (7.84).

7.2.3 (a) Forf (z)= eiz, Eq. (7.81) does not hold at the endpoints, argz= 0,π . Show, with
the help of Jordan’s lemma, Section 7.1, that Eq. (7.82) still holds.

(b) Forf (z)= eiz verify the dispersion relations, Eq. (7.89) or Eqs. (7.90) and (7.91),
by direct integration.

7.2.4 With f (x)= u(x)+ iv(x) andf (x)= f ∗(−x), show that asx0→∞,

12Refer to E. C. Titchmarsh,Introduction to the Theory of Fourier Integrals, 2nd ed. New York: Oxford University Press (1937).
For a more informal discussion of the Titchmarsh theorem and further details on causality see J. Hilgevoord,Dispersion Relations
and Causal Description. Amsterdam: North-Holland (1962).
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(a) u(x0)∼− 2

πx2
0

∫ ∞

0
xv(x) dx,

(b) v(x0)∼ 2

πx0

∫ ∞

0
u(x)dx.

In quantum mechanics relations of this form are often calledsum rules.

7.2.5 (a) Given the integral equation

1

1+ x2
0

= 1

π
P

∫ ∞

−∞
u(x)

x − x0
dx,

use Hilbert transforms to determineu(x0).
(b) Verify that the integral equation of part (a) is satisfied.
(c) Fromf (z)|y=0= u(x)+ iv(x), replacex by z and determinef (z). Verify that the

conditions for the Hilbert transforms are satisfied.
(d) Are the crossing conditions satisfied?

ANS. (a)u(x0)= x0

1+ x2
0

, (c) f (z)= (z+ i)−1.

7.2.6 (a) If the real part of the complex index of refraction (squared) is constant (no optical
dispersion), show that the imaginary part is zero (no absorption).

(b) Conversely, if there is absorption, show that there must be dispersion. In other
words, if the imaginary part ofn2− 1 is not zero, show that the real part ofn2− 1
is not constant.

7.2.7 Givenu(x) = x/(x2+ 1) andv(x)=−1/(x2+ 1), show by direct evaluation of each
integral that ∫ ∞

−∞
∣∣u(x)∣∣2dx = ∫ ∞

−∞
∣∣v(x)∣∣2dx.

ANS.
∫ ∞

−∞
∣∣u(x)∣∣2dx = ∫ ∞

−∞
∣∣v(x)∣∣2dx = π

2
.

7.2.8 Takeu(x) = δ(x), a delta function, andassume that the Hilbert transform equations
hold.

(a) Show that

δ(w)= 1

π2

∫ ∞

−∞
dy

y(y −w)
.

(b) With changes of variablesw = s− t andx = s− y, transform theδ representation
of part (a) into

δ(s − t)= 1

π2

∫ ∞

−∞
dx

(x − s)(s − t)
.

Note. Theδ function is discussed in Section 1.15.
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7.2.9 Show that

δ(x)= 1

π2

∫ ∞

−∞
dt

t (t − x)

is a valid representation of the delta function in the sense that∫ ∞

−∞
f (x)δ(x) dx = f (0).

Assume thatf (x) satisfies the condition for the existence of a Hilbert transform.
Hint. Apply Eq. (7.84) twice.

7.3 METHOD OF STEEPEST DESCENTS

Analytic Landscape

In analyzing problems in mathematical physics, one often finds it desirable to know the
behavior of a function for large values of the variable or some parameters, that is, the
asymptotic behavior of the function. Specific examples are furnished by the gamma func-
tion (Chapter 8) and various Bessel functions (Chapter 11). All these analytic functions are
defined by integrals

I (s)=
∫
C

F(z, s) dz, (7.100)

whereF is analytic inz and depends on a real parameters. We write F(z) whenever
possible.

So far we have evaluated such definite integrals of analytic functions along the real axis
by deforming the pathC to C′ in the complex plane, so|F | becomes small for allz onC′.
This method succeeds as long as only isolated poles occur in the area betweenC andC′.
The poles are taken into account by applying the residue theorem of Section 7.1. The
residues give a measure of the simple poles, where|F | →∞, which usually dominate and
determine the value of the integral.

The behavior of the integral in Eq. (7.100) clearly depends on the absolute value|F | of
the integrand. Moreover, the contours of|F | often become more pronounced ass becomes
large. Let us focus on a plot of|F(x+ iy)|2=U2(x, y)+V 2(x, y), rather than the real part
�F =U and the imaginary part�F = V separately. Such a plot of|F |2 over the complex
plane is called theanalytic landscape, after Jensen, who, in 1912, proved that it hasonly
saddle points and troughs but no peaks. Moreover, the troughs reach down all the way
to the complex plane. In the absence of (simple) poles,saddle points are next in line to
dominate the integral in Eq. (7.100). Hence the namesaddle point method. At a saddle
point the real (or imaginary) partU of F has a local maximum, which implies that

∂U

∂x
= ∂U

∂y
= 0,

and therefore by the use of the Cauchy–Riemann conditions of Section 6.2,

∂V

∂x
= ∂V

∂y
= 0,
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so V has a minimum, or vice versa, andF ′(z) = 0. Jensen’s theorem preventsU and
V from having either a maximum or a minimum. See Fig. 7.18 for a typical shape (and
Exercises 6.2.3 and 6.2.4).Our strategy will be to choose the path C so that it runs over
the saddle point, which gives the dominant contribution, and in the valleys elsewhere.
If there are several saddle points, we treat each alike, and their contributions will add to
I (s→∞).

To prove that there are no peaks, assume there is one atz0. That is,|F(z0)|2 > |F(z)|2
for all z of a neighborhood|z− z0| ≤ r . If

F(z)=
∞∑
n=0

an(z− z0)
n

is the Taylor expansion atz0, the mean valuem(F) on the circlez = z0 + r exp(iϕ) be-
comes

m(F) ≡ 1

2π

∫ 2π

0

∣∣F (z0+ reiϕ
)∣∣2dϕ

= 1

2π

∫ 2π

0

∞∑
m,n=0

a∗manrm+nei(n−m)ϕ dϕ

=
∞∑
n=0

|an|2r2n ≥ |a0|2=
∣∣F(z0)

∣∣2, (7.101)

using orthogonality,12π
∫ 2π

0 expi(n−m)ϕ dϕ = δnm. Sincem(F) is the mean value of|F |2
on the circle of radiusr , there must be a pointz1 on it so that|F(z1)|2≥m(F)≥ |F(z0)|2,
which contradicts our assumption. Hence there can be no such peak.

Next, let us assume there is a minimum atz0 so that 0< |F(z0)|2 < |F(z)|2 for all z of
a neighborhood ofz0. In other words, the dip in the valley does not go down to the complex
plane. Then|F(z)|2 > 0 and, since 1/F (z) is analytic there, it has a Taylor expansion and
z0 would be a peak of 1/|F(z)|2, which is impossible. This proves Jensen’s theorem. We
now turn our attention back to the integral in Eq. (7.100).

Saddle Point Method

Since each saddle pointz0 necessarily lies above the complex plane, that is,|F(z0)|2 > 0,
we write F in exponential form,ef (z,s), in its vicinity without loss of generality. Note
that having no zero in the complex plane is a characteristic property of the exponential
function. Moreover, any saddle point withF(z)= 0 becomes a trough of|F(z)|2 because
|F(z)|2 ≥ 0. A case in point is the functionz2 at z = 0, whered(z2)/dz = 2z = 0. Here
z2= (x+ iy)2= x2− y2+2ixy, and 2xy has a saddle point atz= 0, and so hasx2− y2,

but |z|4 has a trough there.
At z0 the tangential plane is horizontal; that is,∂F

∂z
|z=z0 = 0, or equivalently∂f

∂z
|z=z0 = 0.

This condition locates the saddle point. Our next goal is to determine thedirection of
steepest descent. At z0, f has a power series

f (z)= f (z0)+ 1

2
f ′′(z0)(z− z0)

2+ · · · , (7.102)
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FIGURE 7.18 A saddle point.

or

f (z)= f (z0)+ 1

2

(
f ′′(z0)+ ε

)
(z− z0)

2, (7.103)

upon collecting all higher powers in the (small)ε. Let us takef ′′(z0) 
= 0 for simplicity.
Then

f ′′(z0)(z− z0)
2=−t2, t real, (7.104)

defines a line throughz0 (saddle pointaxis in Fig. 7.18). Atz0, t = 0. Along the axis
�f ′′(z0)(z − z0)

2 is zero andv = �f (z) ≈ �f (z0) is constant ifε in Eq. (7.103) is ne-
glected. Equation (7.104) can also be expressed in terms of angles,

arg(z− z0)= π

2
− 1

2
argf ′′(z0)= constant. (7.105)

Since|F(z)|2 = exp(2�f ) varies monotonically with�f , |F(z)|2 ≈ exp(−t2) falls off
exponentially from its maximum att = 0 along this axis. Hence the namesteepest descent.
The line throughz0 defined by

f ′′(z0)(z− z0)
2=+t2 (7.106)

is orthogonal to this axis (dashed in Fig. 7.18), which is evident from its angle,

arg(z− z0)=−1

2
argf ′′(z0)= constant, (7.107)

when compared with Eq. (7.105). Here|F(z)|2 grows exponentially.
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The curves�f (z) = �f (z0) go throughz0, so �[(f ′′(z0) + ε)(z − z0)
2] = 0, or

(f ′′(z0)+ ε)(z− z0)
2= it for real t . Expressing this in angles as

arg(z− z0) = π

4
− 1

2
arg
(
f ′′(z0)+ ε

)
, t > 0, (7.108a)

arg(z− z0) = −π

4
− 1

2
arg
(
f ′′(z0)+ ε

)
, t < 0, (7.108b)

and comparing with Eqs. (7.105) and (7.107) we note that these curves (dot-dashed in
Fig. 7.18) divide the saddle point region into four sectors, two with�f (z) > �f (z0)

(hence|F(z)| > |F(z0)|), shown shaded in Fig. 7.18, and two with�f (z) < �f (z0)

(hence|F(z)|< |F(z0)|). They are at±π
4 angles from the axis. Thus, the integration path

has to avoid the shaded areas, where|F | rises. If a path is chosen to run up the slopes above
the saddle point, the large imaginary part off (z) leads to rapid oscillations ofF(z)= ef (z)

and cancelling contributions to the integral.
So far, ourtreatment has been general, except forf ′′(z0) 
= 0, which can be relaxed.

Now we are ready tospecialize the integrand F further in order to tie up the path selection
with the asymptotic behavior ass→∞.

We assume thats appears linearly in the exponent, that is, we replace expf (z, s)→
exp(sf (z)). This dependence ons ensures that the saddle point contribution atz0 grows
with s→∞ providing steep slopes, as is the case in most applications in physics. In order
to account for the region far away from the saddle point that is not influenced bys, we
include another analytic function,g(z), which varies slowly near the saddle point and is
independent ofs.

Altogether, then,our integral has the more appropriate and specific form

I (s)=
∫
C

g(z)esf (z) dz. (7.109)

The path of steepest descent is the saddle point axis when we neglect the higher-order
terms,ε, in Eq. (7.103). Withε, the path of steepest descent is the curve close to the axis
within the unshaded sectors, wherev = �f (z) is strictly constant, while�f (z) is only
approximately constant on the axis. We approximateI (s) by the integral along the piece
of the axis inside the patch in Fig. 7.18, where (compare with Eq. (7.104))

z= z0+ xeiα, α = π

2
− 1

2
argf ′′(z0), a ≤ x ≤ b. (7.110)

We find

I (s)≈ eiα
∫ b

a

g
(
z0+ xeiα

)
exp

[
sf
(
z0+ xeiα

)]
dx, (7.111a)

and the omitted part is small and can be estimated because�(f (z)− f (z0)) has an upper
negative bound,−R say, that depends on the size of the saddle point patch in Fig. 7.18
(that is, the values ofa, b in Eq. (7.110)) that we choose. In Eq. (7.111) we use the power
expansions

f
(
z0+ xeiα

) = f (z0)+ 1

2
f ′′(z0)e

2iαx2+ · · · ,
(7.111b)

g
(
z0+ xeiα

) = g(z0)+ g′(z0)e
iαx + · · · ,



7.3 Method of Steepest Descents 493

and recall from Eq. (7.110) that

1

2
f ′′(z0)e

2iα =−1

2

∣∣f ′′(z0)
∣∣< 0.

We find for the leading term fors→∞:

I (s)= g(z0)e
sf (z0)+iα

∫ b

a

e−
1
2s|f ′′(z0)|x2

dx. (7.112)

Since the integrand in Eq. (7.112) is essentially zero whenx departs appreciably from
the origin, we letb→∞ anda→−∞. The small error involved is straightforward to
estimate. Noting that the remaining integral is just a Gauss error integral,∫ ∞

−∞
e−

1
2a

2x2
dx = 1

a

∫ ∞

−∞
e−

1
2x

2
dx =

√
2π

a
,

we finally obtain

I (s)=
√

2πg(z0)e
sf (z0)eiα

|sf ′′(z0)|1/2
, (7.113)

where the phaseα was introduced in Eqs. (7.110) and (7.105).
A note of warning: We assumed that the only significant contribution to the integral

came from the immediate vicinity of the saddle point(s)z = z0. This condition must be
checked for each new problem (Exercise 7.3.5).

Example 7.3.1 ASYMPTOTIC FORM OF THE HANKEL FUNCTION H
(1)
ν (s)

In Section 11.4 it is shown that the Hankel functions, which satisfy Bessel’s equation, may
be defined by

H(1)
ν (s) = 1

πi

∫ ∞eiπ

C1,0
e(s/2)(z−1/z) dz

zν+1
, (7.114)

H(2)
ν (s) = 1

πi

∫ 0

C2,∞e−iπ
e(s/2)(z−1/z) dz

zν+1
. (7.115)

The contourC1 is the curve in the upper half-plane of Fig. 7.19. The contourC2 is in the
lower half-plane. We apply the method of steepest descents to the first Hankel function,
H

(1)
ν (s), which is conveniently in the form specified by Eq. (7.109), withf (z) given by

f (z)= 1

2

(
z− 1

z

)
. (7.116)

By differentiating, we obtain

f ′(z)= 1

2
+ 1

2z2
. (7.117)
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FIGURE 7.19 Hankel function contours.

Settingf ′(z)= 0, we obtain

z= i,−i. (7.118)

Hence there are saddle points atz=+i andz=−i. At z= i, f ′′(i)=−i, or argf ′′(i)=
−π/2, so the saddle point direction is given by Eq. (7.110) asα = π

2 + π
4 = 3

4π. For the

integral forH(1)
ν (s) we must choose the contour through the pointz=+i so that it starts at

the origin, moves out tangentially to the positive real axis, and then moves around through
the saddle point atz=+i in the direction given by the angleα = 3π/4 and then on out to
minus infinity, asymptotic with the negative real axis. The path of steepest ascent, which we
must avoid, has the phase−1

2 argf ′′(i)= π
4 , according to Eq. (7.107), and is orthogonal

to the axis, our path of steepest descent.
Direct substitution into Eq. (7.113) withα = 3π/4 now yields

H(1)
ν (s) = 1

πi

√
2πi−ν−1e(s/2)(i−1/i)e3πi/4

|(s/2)(−2/i3)|1/2

=
√

2

πs
e(iπ/2)(−ν−2)eisei(3π/4). (7.119)

By combining terms, we obtain

H(1)
ν (s)≈

√
2

πs
ei(s−ν(π/2)−π/4) (7.120)

as the leading term of the asymptotic expansion of the Hankel functionH
(1)
ν (s). Additional

terms, if desired, may be picked up from the power series off andg in Eq. (7.111b). The
other Hankel function can be treated similarly using the saddle point atz=−i. �

Example 7.3.2 ASYMPTOTIC FORM OF THE FACTORIAL FUNCTION �(1+ s)

In many physical problems, particularly in the field of statistical mechanics, it is desir-
able to have an accurate approximation of the gamma or factorial function of very large
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numbers. As developed in Section 8.1, the factorial function may be defined by the Euler
integral

�(1+ s)=
∫ ∞

0
ρse−ρ dρ = ss+1

∫ ∞

0
es(ln z−z) dz. (7.121)

Here we have made the substitutionρ = zs in order to convert the integral to the form
required by Eq. (7.109). As before, we assume thats is real and positive, from which it fol-
lows that the integrand vanishes at the limits 0 and∞. By differentiating thez-dependence
appearing in the exponent, we obtain

df (z)

dz
= d

dz
(ln z− z)= 1

z
− 1, f ′′(z)=− 1

z2
, (7.122)

which shows that the pointz= 1 is a saddle point and argf ′′(1)= arg(−1)= π. According
to Eq. (7.109) we let

z− 1= xeiα, α = π

2
− 1

2
argf ′′(1)= π

2
− π

2
= 0, (7.123)

with x small, to describe the contour in the vicinity of the saddle point. From this we see
that the direction of steepest descent is along the real axis, a conclusion that we could have
reached more or less intuitively.

Direct substitution into Eq. (7.113) withα = 0 now gives

�(1+ s)≈
√

2πss+1e−s

|s(−1−2)|1/2
. (7.124)

Thus the first term in the asymptotic expansion of the factorial function is

�(1+ s)≈√2πssse−s . (7.125)

This result is the first term in Stirling’s expansion of the factorial function. The method of
steepest descent is probably the easiest way of obtaining this first term. If more terms in
the expansion are desired, then the method of Section 8.3 is preferable. �

In the foregoing example the calculation was carried out by assumings to be real. This
assumption is not necessary. We may show (Exercise 7.3.6) that Eq. (7.125) also holds
when s is replaced by the complex variablew, provided only that the real part ofw be
required to be large and positive.

Asymptotic limits of integral representations of functions are extremely important in
many approximations and applications in physics:∫

C

g(z)esf (z) dz∼
√

2πg(z0)e
sf (z0)eiα√|sf ′′(z0)|

, f ′(z0)= 0.

The saddle point method is one method of choice for deriving them and belongs in the
toolkit of every physicist and engineer.
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Exercises

7.3.1 Using the method of steepest descents, evaluate the second Hankel function, given by

H(2)
ν (s)= 1

πi

∫ 0

−∞C2

e(s/2)(z−1/z) dz

zν+1
,

with contourC2 as shown in Fig. 7.19.

ANS.H(2)
ν (s)≈

√
2

πs
e−i(s−π/4−νπ/2).

7.3.2 Find the steepest path and leading asymptotic expansion for the Fresnel integrals∫ s

0 cosx2dx,
∫ s

0 sinx2dx.

Hint. Use
∫ 1

0 eisz
2
dz.

7.3.3 (a) In applying the method of steepest descent to the Hankel functionH
(1)
ν (s), show

that

�[f (z)]<�[f (z0)
]= 0

for z on the contourC1 but away from the pointz= z0= i.
(b) Show that

�[f (z)]> 0 for 0< r < 1,


π

2
< θ ≤ π

−π ≤ θ <
π

2

and

�[f (z)]< 0 for r > 1, −π

2
< θ <

π

2

(Fig. 7.20). This is whyC1 may not be deformed to pass through the second saddle
point,z=−i. Compare with and verify the dot-dashed lines in Fig. 7.18 for this case.

FIGURE 7.20
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7.3.4 Determine the asymptotic dependence of the modified Bessel functionsIν(x), given

Iν(x)= 1

2πi

∫
C

e(x/2)(t+1/t) dt

tν+1
.

The contour starts and ends att =−∞, encircling the origin in a positive sense. There
are two saddle points. Only the one atz=+1 contributes significantly to the asymptotic
form.

7.3.5 Determine the asymptotic dependence of the modified Bessel function of the second
kind,Kν(x), by using

Kν(x)= 1

2

∫ ∞

0
e(−x/2)(s+1/s) ds

s1−ν .

7.3.6 Show that Stirling’s formula,

�(1+ s)≈√2πssse−s ,

holds for complex values ofs (with �(s) large and positive).
Hint. This involves assigning a phase tos and then demanding that�[sf (z)] = constant
in the vicinity of the saddle point.

7.3.7 AssumeH(1)
ν (s) to have a negative power-series expansion of the form

H(1)
ν (s)=

√
2

πs
ei(s−ν(π/2)−π/4)

∞∑
n=0

a−ns−n,

with the coefficient of the summation obtained by the method of steepest descent. Sub-
stitute into Bessel’s equation and show that you reproduce the asymptotic series for
H

(1)
ν (s) given in Section 11.6.

Additional Readings

Nussenzveig, H. M.,Causality and Dispersion Relations, Mathematics in Science and Engineering Series,
Vol. 95. New York: Academic Press (1972). This is an advanced text covering causality and dispersion re-
lations in the first chapter and then moving on to develop the implications in a variety of areas of theoretical
physics.

Wyld, H. W., Mathematical Methods for Physics. Reading, MA: Benjamin/Cummings (1976), Perseus Books
(1999). This is a relatively advanced text that contains an extensive discussion of the dispersion relations.
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CHAPTER 8

THE GAMMA FUNCTION
(FACTORIAL FUNCTION)

The gamma function appears occasionally in physical problems such as the normalization
of Coulomb wave functions and the computation of probabilities in statistical mechanics.
In general, however, it has less direct physical application and interpretation than, say, the
Legendre and Bessel functions of Chapters 11 and 12. Rather, its importance stems from its
usefulness in developing other functions that have direct physical application. The gamma
function, therefore, is included here.

8.1 DEFINITIONS, SIMPLE PROPERTIES

At least three different, convenient definitions of the gamma function are in common use.
Our first task is to state these definitions, to develop some simple, direct consequences, and
to show the equivalence of the three forms.

Infinite Limit (Euler)

The first definition, named after Euler, is

�(z)≡ lim
n→∞

1 · 2 · 3 · · ·n
z(z+ 1)(z+ 2) · · · (z+ n)

nz, z 
= 0,−1,−2,−3, . . . . (8.1)

This definition of�(z) is useful in developing the Weierstrass infinite-product form of
�(z), Eq. (8.16), and in obtaining the derivative of ln�(z) (Section 8.2). Here and else-

499
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where in this chapterz may be either real or complex. Replacingz with z+ 1, we have

�(z+ 1) = lim
n→∞

1 · 2 · 3 · · ·n
(z+ 1)(z+ 2)(z+ 3) · · · (z+ n+ 1)

nz+1

= lim
n→∞

nz

z+ n+ 1
· 1 · 2 · 3 · · ·n
z(z+ 1)(z+ 2) · · · (z+ n)

nz

= z�(z). (8.2)

This is the basic functional relation for the gamma function. It should be noted that it
is a difference equation. It has been shown that the gamma function is one of a general
class of functions that do not satisfy any differential equation with rational coefficients.
Specifically, the gamma function is one of the very few functions of mathematical physics
that does not satisfy either the hypergeometric differential equation (Section 13.4) or the
confluent hypergeometric equation (Section 13.5).

Also, from the definition,

�(1)= lim
n→∞

1 · 2 · 3 · · ·n
1 · 2 · 3 · · ·n(n+ 1)

n= 1. (8.3)

Now, application of Eq. (8.2) gives

�(2) = 1,

�(3) = 2�(2)= 2, . . . (8.4)

�(n) = 1 · 2 · 3 · · · (n− 1)= (n− 1)!.

Definite Integral (Euler)

A second definition, also frequently called the Euler integral, is

�(z)≡
∫ ∞

0
e−t t z−1dt, �(z) > 0. (8.5)

The restriction onz is necessary to avoid divergence of the integral. When the gamma
function does appear in physical problems, it is often in this form or some variation, such
as

�(z) = 2
∫ ∞

0
e−t2t2z−1dt, �(z) > 0. (8.6)

�(z) =
∫ 1

0

[
ln

(
1

t

)]z−1

dt, �(z) > 0. (8.7)

Whenz= 1
2, Eq. (8.6) is just the Gauss error integral, and we have the interesting result

�
(1

2

)=√π. (8.8)

Generalizations of Eq. (8.6), the Gaussian integrals, are considered in Exercise 8.1.11. This
definite integral form of�(z), Eq. (8.5), leads to the beta function, Section 8.4.
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To show the equivalence of these two definitions, Eqs. (8.1) and (8.5), consider the
function of two variables

F(z,n)=
∫ n

0

(
1− t

n

)n

tz−1dt, �(z) > 0, (8.9)

with n a positive integer.1 Since

lim
n→∞

(
1− t

n

)n

≡ e−t , (8.10)

from the definition of the exponential

lim
n→∞F(z,n)= F(z,∞)=

∫ ∞

0
e−t t z−1dt ≡ �(z) (8.11)

by Eq. (8.5).
Returning toF(z,n), we evaluate it in successive integrations by parts. For convenience

let u= t/n. Then

F(z,n)= nz
∫ 1

0
(1− u)nuz−1du. (8.12)

Integrating by parts, we obtain

F(z,n)

nz
= (1− u)n

uz

z

∣∣∣∣1
0
+ n

z

∫ 1

0
(1− u)n−1uz du. (8.13)

Repeating this with the integrated part vanishing at both endpoints each time, we finally
get

F(z,n) = nz
n(n− 1) · · ·1

z(z+ 1) · · · (z+ n− 1)

∫ 1

0
uz+n−1du

= 1 · 2 · 3 · · ·n
z(z+ 1)(z+ 2) · · · (z+ n)

nz. (8.14)

This is identical with the expression on the right side of Eq. (8.1). Hence

lim
n→∞F(z,n)= F(z,∞)≡ �(z), (8.15)

by Eq. (8.1), completing the proof.

Infinite Product (Weierstrass)

The third definition (Weierstrass’ form) is

1

�(z)
≡ zeγ z

∞∏
n=1

(
1+ z

n

)
e−z/n, (8.16)

1The form ofF(z,n) is suggested by the beta function (compare Eq. (8.60)).
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whereγ is the Euler–Mascheroni constant,

γ = 0.5772156619. . . . (8.17)

This infinite-product form may be used to develop the reflection identity, Eq. (8.23), and
applied in the exercises, such as Exercise 8.1.17. This form can be derived from the original
definition (Eq. (8.1)) by rewriting it as

�(z)= lim
n→∞

1 · 2 · 3 · · ·n
z(z+ 1) · · · (z+ n)

nz = lim
n→∞

1

z

n∏
m=1

(
1+ z

m

)−1

nz. (8.18)

Inverting Eq. (8.18) and using

n−z = e(− lnn)z, (8.19)

we obtain

1

�(z)
= z lim

n→∞ e(− lnn)z

n∏
m=1

(
1+ z

m

)
. (8.20)

Multiplying and dividing by

exp

[(
1+ 1

2
+ 1

3
+ · · · + 1

n

)
z

]
=

n∏
m=1

ez/m, (8.21)

we get

1

�(z)
= z

{
lim
n→∞exp

[(
1+ 1

2
+ 1

3
+ · · · + 1

n
− lnn

)
z

]}

×
[

lim
n→∞

n∏
m=1

(
1+ z

m

)
e−z/m

]
. (8.22)

As shown in Section 5.2, the parenthesis in the exponent approaches a limit, namelyγ , the
Euler–Mascheroni constant. Hence Eq. (8.16) follows.

It was shown in Section 5.11 that the Weierstrass infinite-product definition of�(z) led
directly to an important identity,

�(z)�(1− z)= π

sinzπ
. (8.23)

Alternatively, we can start from the product of Euler integrals,

�(z+ 1)�(1− z) =
∫ ∞

0
sze−sds

∫ ∞

0
t−ze−t dt

=
∫ ∞

0
vz

dv

(v + 1)2

∫ ∞

0
e−uudu= πz

sinπz
,

transforming from the variabless, t to u= s + t, v = s/t , as suggested by combining the
exponentials and the powers in the integrands. The Jacobian is

J =−
∣∣∣∣ 1 1

1
t
− s

t2

∣∣∣∣= s + t

t2
= (v+ 1)2

u
,
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where(v + 1)t = u. The integral
∫∞

0 e−uudu = 1, while that overv may be derived by
contour integration, giving πz

sinπz .
This identity may also be derived by contour integration (Example 7.1.6 and Exer-

cises 7.1.18 and 7.1.19) and the beta function, Section 8.4. Settingz = 1
2 in Eq. (8.23),

we obtain

�
(1

2

)=√π (8.24a)

(taking the positive square root), in agreement with Eq. (8.8).
Similarly one can establishLegendre’s duplication formula,

�(1+ z)�
(
z+ 1

2

)= 2−2z√π�(2z+ 1). (8.24b)

The Weierstrass definition shows immediately that�(z) has simple poles atz =
0,−1,−2,−3, . . . and that[�(z)]−1 has no poles in the finite complex plane, which means
that�(z) has no zeros. This behavior may also be seen in Eq. (8.23), in which we note that
π/(sinπz) is never equal to zero.

Actually the infinite-product definition of�(z) may be derived from the Weierstrass
factorization theorem with the specification that[�(z)]−1 have simple zeros atz =
0,−1,−2,−3, . . . . The Euler–Mascheroni constant is fixed by requiring�(1) = 1. See
also the products expansions of entire functions in Section 7.1.

In probability theory the gamma distribution (probability density) is given by

f (x)=


1

βα�(α)
xα−1e−x/β, x > 0

0, x ≤ 0.
(8.24c)

The constant[βα�(α)]−1 is chosen so that the total (integrated) probability will be unity.
Forx→E, kinetic energy,α→ 3

2, andβ→ kT , Eq. (8.24c) yields the classical Maxwell–
Boltzmann statistics.

Factorial Notation

So far this discussion has been presented in terms of the classical notation. As pointed out
by Jeffreys and others, the−1 of thez− 1 exponent in our second definition (Eq. (8.5)) is
a continual nuisance. Accordingly, Eq. (8.5) is sometimes rewritten as∫ ∞

0
e−t t z dt ≡ z!, �(z) >−1, (8.25)

to define a factorial functionz!. Occasionally we may still encounter Gauss’ notation,∏
(z), for the factorial function:∏

(z)= z! = �(z+ 1). (8.26)

The� notation is due to Legendre. The factorial function of Eq. (8.25) is related to the
gamma function by

�(z)= (z− 1)! or �(z+ 1)= z!. (8.27)
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FIGURE 8.1 The factorial
function — extension to negative

arguments.

If z= n, a positive integer (Eq. (8.4)) shows that

z! = n! = 1 · 2 · 3 · · ·n, (8.28)

the familiar factorial. However, it should be noted that sincez! is now defined by Eq. (8.25)
(or equivalently by Eq. (8.27)) the factorial function is no longer limited to positive integral
values of the argument (Fig. 8.1). The difference relation (Eq. (8.2)) becomes

(z− 1)! = z!
z
. (8.29)

This shows immediately that

0! = 1 (8.30)

and

n! = ±∞ for n, a negative integer. (8.31)

In terms of the factorial, Eq. (8.23) becomes

z!(−z)! = πz

sinπz
. (8.32)

By restricting ourselves to the real values of the argument, we find that�(x+1) defines
the curves shown in Figs. 8.1 and 8.2. The minimum of the curve is

�(x + 1)= x! = (0.46163. . .)! = 0.88560. . . . (8.33a)
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FIGURE 8.2 The factorial function and the first two derivatives of
ln(�(x + 1)).

Double Factorial Notation

In many problems of mathematical physics, particularly in connection with Legendre poly-
nomials (Chapter 12), we encounter products of the odd positive integers and products of
the even positive integers. For convenience these are given special labels as double facto-
rials:

1 · 3 · 5 · · · (2n+ 1) = (2n+ 1)!!
2 · 4 · 6 · · · (2n) = (2n)!!. (8.33b)

Clearly, these are related to the regular factorial functions by

(2n)!! = 2nn! and (2n+ 1)!! = (2n+ 1)!
2nn! . (8.33c)

We also define(−1)!! = 1, a special case that does not follow from Eq. (8.33c).

Integral Representation

An integral representation that is useful in developing asymptotic series for the Bessel
functions is ∫

C

e−zzν dz= (e2πiν − 1
)
�(ν + 1), (8.34)

whereC is the contour shown in Fig. 8.3. This contour integral representation is only
useful whenν is not an integer,z= 0 then being abranch point. Equation (8.34) may be
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FIGURE 8.3 Factorial function contour.

FIGURE 8.4 The contour of Fig. 8.3 deformed.

readily verified forν > −1 by deforming the contour as shown in Fig. 8.4. The integral
from∞ into the origin yields−(ν!), placing the phase ofz at 0. The integral out to∞ (in
the fourth quadrant) then yieldse2πiνν!, the phase ofz having increased to 2π . Since the
circle around the origin contributes nothing whenν >−1, Eq. (8.34) follows.

It is often convenient to cast this result into a more symmetrical form:∫
C

e−z(−z)ν dz= 2i�(ν + 1)sin(νπ). (8.35)

This analysis establishes Eqs. (8.34) and (8.35) forν > −1. It is relatively simple to
extend the range to include all nonintegralν. First, we note that the integral exists for
ν < −1 as long as we stay away from the origin. Second, integrating by parts we find
that Eq. (8.35) yields the familiar difference relation (Eq. (8.29)). If we take the difference
relation to define the factorial function ofν <−1, then Eqs. (8.34) and (8.35) are verified
for all ν (except negative integers).

Exercises

8.1.1 Derive the recurrence relations

�(z+ 1)= z�(z)

from the Euler integral (Eq. (8.5)),

�(z)=
∫ ∞

0
e−t t z−1dt.
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8.1.2 In a power-series solution for the Legendre functions of the second kind we encounter
the expression

(n+ 1)(n+ 2)(n+ 3) · · · (n+ 2s − 1)(n+ 2s)

2 · 4 · 6 · 8 · · · (2s − 2)(2s) · (2n+ 3)(2n+ 5)(2n+ 7) · · · (2n+ 2s + 1)
,

in which s is a positive integer. Rewrite this expression in terms of factorials.

8.1.3 Show that, ass − n→ negative integer,

(s − n)!
(2s − 2n)! →

(−1)n−s(2n− 2s)!
(n− s)! .

Heres andn are integers withs < n. This result can be used to avoid negative facto-
rials, such as in the series representations of the spherical Neumann functions and the
Legendre functions of the second kind.

8.1.4 Show that�(z) may be written

�(z) = 2
∫ ∞

0
e−t2t2z−1dt, �(z) > 0,

�(z) =
∫ 1

0

[
ln

(
1

t

)]z−1

dt, �(z) > 0.

8.1.5 In a Maxwellian distribution the fraction of particles with speed betweenv andv + dv

is

dN

N
= 4π

(
m

2πkT

)3/2

exp

(
−mv2

2kT

)
v2dv,

N being the total number of particles. The average or expectation value ofvn is defined
as〈vn〉 =N−1

∫
vn dN . Show that

〈
vn
〉= (2kT

m

)n/2�
(
n+3

2

)
�(3/2)

.

8.1.6 By transforming the integral into a gamma function, show that

−
∫ 1

0
xk lnx dx = 1

(k + 1)2
, k >−1.

8.1.7 Show that ∫ ∞

0
e−x4

dx = �

(
5

4

)
.

8.1.8 Show that

lim
x→0

(ax − 1)!
(x − 1)! =

1

a
.

8.1.9 Locate the poles of�(z). Show that they are simple poles and determine the residues.

8.1.10 Show that the equationx! = k, k 
= 0, has an infinite number of real roots.

8.1.11 Show that
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(a)
∫ ∞

0
x2s+1 exp

(−ax2)dx = s!
2as+1

.

(b)
∫ ∞

0
x2s exp

(−ax2)dx = (s − 1
2)!

2as+1/2
= (2s − 1)!!

2s+1as

√
π

a
.

These Gaussian integrals are of major importance in statistical mechanics.

8.1.12 (a) Develop recurrence relations for(2n)!! and for(2n+ 1)!!.
(b) Use these recurrence relations to calculate (or to define) 0!! and(−1)!!.

ANS. 0!! = 1, (−1)!! = 1.

8.1.13 For s a nonnegative integer, show that

(−2s − 1)!! = (−1)s

(2s − 1)!! =
(−1)s2ss!

(2s)! .

8.1.14 Express the coefficient of thenth term of the expansion of(1+ x)1/2

(a) in terms of factorials of integers,
(b) in terms of the double factorial (!!) functions.

ANS. an = (−1)n+1 (2n− 3)!
22n−2n!(n− 2)! = (−1)n+1 (2n− 3)!!

(2n)!! , n= 2,3, . . . .

8.1.15 Express the coefficient of thenth term of the expansion of(1+ x)−1/2

(a) in terms of the factorials of integers,
(b) in terms of the double factorial (!!) functions.

ANS. an = (−1)n
(2n)!

22n(n!)2 = (−1)n
(2n− 1)!!
(2n)!! , n= 1,2,3, . . . .

8.1.16 The Legendre polynomial may be written as

Pn(cosθ) = 2
(2n− 1)!!
(2n)!!

{
cosnθ + 1

1
· n

2n− 1
cos(n− 2)θ

+ 1 · 3
1 · 2

n(n− 1)

(2n− 1)(2n− 3)
cos(n− 4)θ

+ 1 · 3 · 5
1 · 2 · 3

n(n− 1)(n− 2)

(2n− 1)(2n− 3)(2n− 5)
cos(n− 6)θ + · · ·

}
.

Let n= 2s + 1. Then

Pn(cosθ)= P2s+1(cosθ)=
s∑

m=0

am cos(2m+ 1)θ.

Findam in terms of factorials and double factorials.
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8.1.17 (a) Show that

�
(1

2 − n
)
�
(1

2 + n
)= (−1)nπ,

wheren is an integer.
(b) Express�(1

2 + n) and�(1
2 − n) separately in terms ofπ1/2 and a!! function.

ANS.�(1
2 + n)= (2n− 1)!!

2n
π1/2.

8.1.18 From one of the definitions of the factorial or gamma function, show that∣∣(ix)!∣∣2= πx

sinhπx
.

8.1.19 Prove that ∣∣�(α + iβ)
∣∣= ∣∣�(α)∣∣ ∞∏

n=0

[
1+ β2

(α + n)2

]−1/2

.

This equation has been useful in calculations of beta decay theory.

8.1.20 Show that ∣∣(n+ ib)!∣∣= ( πb

sinhπb

)1/2 n∏
s=1

(
s2+ b2)1/2

for n, a positive integer.

8.1.21 Show that

|x!| ≥ ∣∣(x + iy)!∣∣
for all x. The variablesx andy are real.

8.1.22 Show that ∣∣�(1
2 + iy

)∣∣2= π

coshπy
.

8.1.23 The probability density associated with the normal distribution of statistics is given by

f (x)= 1

σ(2π)1/2
exp

[
− (x −µ)2

2σ 2

]
,

with (−∞,∞) for the range ofx. Show that

(a) the mean value ofx, 〈x〉 is equal toµ,
(b) the standard deviation(〈x2〉 − 〈x〉2)1/2 is given byσ .

8.1.24 From the gamma distribution

f (x)=


1

βα�(α)
xα−1e−x/β, x > 0,

0, x ≤ 0,

show that

(a) 〈x〉 (mean)= αβ, (b) σ 2 (variance)≡ 〈x2〉 − 〈x〉2= αβ2.
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8.1.25 The wave function of a particle scattered by a Coulomb potential isψ(r, θ). At the
origin the wave function becomes

ψ(0)= e−πγ/2�(1+ iγ ),

whereγ = Z1Z2e
2/h̄v. Show that∣∣ψ(0)

∣∣2= 2πγ

e2πγ − 1
.

8.1.26 Derive the contour integral representation of Eq. (8.34),

2iν!sinνπ =
∫
C

e−z(−z)ν dz.

8.1.27 Write a function subprogramFACT(N) (fixed-point independent variable) that will cal-
culateN !. Include provision for rejection and appropriate error message ifN is nega-
tive.
Note. For small integerN , direct multiplication is simplest. For largeN , Eq. (8.55),
Stirling’s series would be appropriate.

8.1.28 (a) Write a function subprogram to calculate the double factorial ratio(2N − 1)!!/
(2N)!!. Include provision forN = 0 and for rejection and an error message ifN is
negative. Calculate and tabulate this ratio forN = 1(1)100.

(b) Check your function subprogram calculation of 199!!/200!! against the value ob-
tained from Stirling’s series (Section 8.3).

ANS.
199!!
200!! = 0.056348.

8.1.29 Using either the FORTRAN-supplied GAMMA or a library-supplied subroutine for
x! or �(x), determine the value ofx for which �(x) is a minimum(1≤ x ≤ 2) and
this minimum value of�(x). Notice that although the minimum value of�(x) may be
obtained to about six significant figures (single precision), the corresponding value ofx

is much less accurate. Why this relatively low accuracy?

8.1.30 The factorial function expressed in integral form can be evaluated by the Gauss–
Laguerre quadrature. For a 10-point formula the resultantx! is theoretically exact for
x an integer, 0 up through 19. What happens ifx is not an integer? Use the Gauss–
Laguerre quadrature to evaluatex!, x = 0.0(0.1)2.0. Tabulate the absolute error as a
function ofx.

Check value. x!exact− x!quadrature= 0.00034 for x = 1.3.

8.2 DIGAMMA AND POLYGAMMA FUNCTIONS

Digamma Functions

As may be noted from the three definitions in Section 8.1, it is inconvenient to deal with
the derivatives of the gamma or factorial function directly. Instead, it is customary to take
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the natural logarithm of the factorial function (Eq. (8.1)), convert the product to a sum, and
then differentiate; that is,

�(z+ 1)= z�(z)= lim
n→∞

n!
(z+ 1)(z+ 2) · · · (z+ n)

nz (8.36)

and

ln�(z+ 1) = lim
n→∞

[
ln(n!)+ z lnn− ln(z+ 1)

− ln(z+ 2)− · · · − ln(z+ n)
]
, (8.37)

in which the logarithm of the limit is equal to the limit of the logarithm. Differentiating
with respect toz, we obtain

d

dz
ln�(z+ 1)≡ψ(z+ 1)= lim

n→∞

(
lnn− 1

z+ 1
− 1

z+ 2
− · · · − 1

z+ n

)
, (8.38)

which definesψ(z + 1), the digamma function. From the definition of the Euler–
Mascheroni constant,2 Eq. (8.38) may be rewritten as

ψ(z+ 1) = −γ −
∞∑
n=1

(
1

z+ n
− 1

n

)

= −γ +
∞∑
n=1

z

n(n+ z)
. (8.39)

One application of Eq. (8.39) is in the derivation of the series form of the Neumann function
(Section 11.3). Clearly,

ψ(1)=−γ =−0.577 215 664 901. . . .3 (8.40)

Another, perhaps more useful, expression forψ(z) is derived in Section 8.3.

Polygamma Function

The digamma function may be differentiated repeatedly, giving rise to the polygamma
function:

ψ(m)(z+ 1) ≡ dm+1

dzm+1
ln(z!)

= (−1)m+1m!
∞∑
n=1

1

(z+ n)m+1
, m= 1,2,3, . . . . (8.41)

2Compare Sections 5.2 and 5.9. We add and substract
∑n

s=1 s
−1.

3γ has been computed to 1271 places by D. E. Knuth,Math. Comput. 16: 275 (1962), and to 3566 decimal places by
D. W. Sweeney,ibid. 17: 170 (1963). It may be of interest that the fraction 228/395 givesγ accurate to six places.
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A plot of ψ(x + 1) andψ ′(x + 1) is included in Fig. 8.2. Since the series in Eq. (8.41)
defines the Riemann zeta function4 (with z= 0),

ζ(m)≡
∞∑
n=1

1

nm
, (8.42)

we have

ψ(m)(1)= (−1)m+1m!ζ(m+ 1), m= 1,2,3, . . . . (8.43)

The values of the polygamma functions of positive integral argument,ψ(m)(n+ 1), may
be calculated by using Exercise 8.2.6.

In terms of the perhaps more common� notation,

dn+1

dzn+1
ln�(z)= dn

dzn
ψ(z)=ψ(n)(z). (8.44a)

Maclaurin Expansion, Computation

It is now possible to write a Maclaurin expansion for ln�(z+ 1):

ln�(z+ 1)=
∞∑
n=1

zn

n!ψ
(n−1)(1)=−γ z+

∞∑
n=2

(−1)n
zn

n
ζ(n) (8.44b)

convergent for|z| < 1; for z = x, the range is−1< x ≤ 1. Alternate forms of this series
appear in Exercise 5.9.14. Equation (8.44b) is a possible means of computing�(z+ 1) for
real or complexz, but Stirling’s series (Section 8.3) is usually better, and in addition, an
excellent table of values of the gamma function for complex arguments based on the use
of Stirling’s series and the recurrence relation (Eq. (8.29)) is now available.5

Series Summation

The digamma and polygamma functions may also be used in summing series. If the general
term of the series has the form of a rational fraction (with the highest power of the index in
the numerator at least two less than the highest power of the index in the denominator), it
may be transformed by the method of partial fractions (compare Section 15.8). The infinite
series may then be expressed as a finite sum of digamma and polygamma functions. The
usefulness of this method depends on the availability of tables of digamma and polygamma
functions. Such tables and examples of series summation are given in AMS-55, Chapter 6
(see Additional Readings for the reference).

4See Section 5.9. Forz 
= 0 this series may be used to define a generalized zeta function.
5Table of the Gamma Function for Complex Arguments, Applied Mathematics Series No. 34. Washington, DC: National Bureau
of Standards (1954).
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Example 8.2.1 CATALAN’S CONSTANT

Catalan’s constant, Exercise 5.2.22, orβ(2) of Section 5.9 is given by

K = β(2)=
∞∑
k=0

(−1)k

(2k + 1)2
. (8.44c)

Grouping the positive and negative terms separately and starting with unit index (to match
the form ofψ(1), Eq. (8.41)), we obtain

K = 1+
∞∑
n=1

1

(4n+ 1)2
− 1

9
−

∞∑
n=1

1

(4n+ 3)2
.

Now, quoting Eq. (8.41), we get

K = 8
9 + 1

16ψ
(1)
(
1+ 1

4

)− 1
16ψ

(1)
(
1+ 3

4

)
. (8.44d)

Using the values ofψ(1) from Table 6.1 of AMS-55 (see Additional Readings for the
reference), we obtain

K = 0.91596559. . . .

Compare this calculation of Catalan’s constant with the calculations of Chapter 5, either
direct summation or a modification using Riemann zeta function values. �

Exercises

8.2.1 Verify that the following two forms of the digamma function,

ψ(x + 1)=
x∑

r=1

1

r
− γ

and

ψ(x + 1)=
∞∑
r=1

x

r(r + x)
− γ,

are equal to each other (forx a positive integer).

8.2.2 Show thatψ(z+ 1) has the series expansion

ψ(z+ 1)=−γ +
∞∑
n=2

(−1)nζ(n)zn−1.

8.2.3 For a power-series expansion of ln(z!), AMS-55 (see Additional Readings for reference)
lists

ln(z!)=− ln(1+ z)+ z(1− γ )+
∞∑
n=2

(−1)n
[ζ(n)− 1]zn

n
.
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(a) Show that this agrees with Eq. (8.44b) for|z|< 1.
(b) What is the range of convergence of this new expression?

8.2.4 Show that

1

2
ln

(
πz

sinπz

)
=

∞∑
n=1

ζ(2n)

2n
z2n, |z|< 1.

Hint. Try Eq. (8.32).

8.2.5 Write out a Weierstrass infinite-product definition of ln(z!). Without differentiating,
show that this leads directly to the Maclaurin expansion of ln(z!), Eq. (8.44b).

8.2.6 Derive the difference relation for the polygamma function

ψ(m)(z+ 2)=ψ(m)(z+ 1)+ (−1)m
m!

(z+ 1)m+1
, m= 0,1,2, . . . .

8.2.7 Show that if

�(x + iy)= u+ iv,

then

�(x − iy)= u− iv.

This is a special case of the Schwarz reflection principle, Section 6.5.

8.2.8 The Pochhammer symbol(a)n is defined as

(a)n = a(a + 1) · · · (a + n− 1), (a)0= 1

(for integraln).

(a) Express(a)n in terms of factorials.
(b) Find(d/da)(a)n in terms of(a)n and digamma functions.

ANS.
d

da
(a)n = (a)n

[
ψ(a + n)−ψ(a)

]
.

(c) Show that

(a)n+k = (a + n)k · (a)n.

8.2.9 Verify the following special values of theψ form of the di- and polygamma functions:

ψ(1)=−γ, ψ(1)(1)= ζ(2), ψ(2)(1)=−2ζ(3).

8.2.10 Derive the polygamma function recurrence relation

ψ(m)(1+ z)=ψ(m)(z)+ (−1)mm!/zm+1, m= 0,1,2, . . . .

8.2.11 Verify

(a)
∫ ∞

0
e−r ln r dr =−γ .
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(b)
∫ ∞

0
re−r ln r dr = 1− γ .

(c)
∫ ∞

0
rne−r ln r dr = (n− 1)! + n

∫ ∞

0
rn−1e−r ln r dr, n= 1,2,3, . . . .

Hint. These may be verified by integration by parts, three parts, or differentiating the
integral form ofn! with respect ton.

8.2.12 Dirac relativistic wave functions for hydrogen involve factors such as[2(1−α2Z2)1/2]!
where α, the fine structure constant, is1137 and Z is the atomic number. Expand
[2(1− α2Z2)1/2]! in a series of powers ofα2Z2.

8.2.13 The quantum mechanical description of a particle in a Coulomb field requires a knowl-
edge of the phase of the complex factorial function. Determine the phase of(1+ ib)!
for smallb.

8.2.14 The total energy radiated by a blackbody is given by

u= 8πk4T 4

c3h3

∫ ∞

0

x3

ex − 1
dx.

Show that the integral in this expression is equal to 3!ζ(4).
[ζ(4)= π4/90= 1.0823. . .] The final result is the Stefan–Boltzmann law.

8.2.15 As a generalization of the result in Exercise 8.2.14, show that∫ ∞

0

xs dx

ex − 1
= s!ζ(s + 1), �(s) > 0.

8.2.16 The neutrino energy density (Fermi distribution) in the early history of the universe is
given by

ρν = 4π

h3

∫ ∞

0

x3

exp(x/kT )+ 1
dx.

Show that

ρν = 7π5

30h3
(kT )4.

8.2.17 Prove that ∫ ∞

0

xs dx

ex + 1
= s!(1− 2−s

)
ζ(s + 1), �(s) > 0.

Exercises 8.2.15 and 8.2.17 actually constitute Mellin integral transforms (compare Sec-
tion 15.1).

8.2.18 Prove that

ψ(n)(z)= (−1)n+1
∫ ∞

0

tne−zt

1− e−t
dt, �(z) > 0.
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8.2.19 Using di- and polygamma functions, sum the series

(a)
∞∑
n=1

1

n(n+ 1)
, (b)

∞∑
n=2

1

n2− 1
.

Note. You can use Exercise 8.2.6 to calculate the needed digamma functions.

8.2.20 Show that

∞∑
n=1

1

(n+ a)(n+ b)
= 1

(b− a)

{
ψ(1+ b)−ψ(1+ a)

}
,

wherea 
= b and neithera nor b is a negative integer. It is of some interest to compare
this summation with the corresponding integral,

∫ ∞

1

dx

(x + a)(x + b)
= 1

b− a

{
ln(1+ b)− ln(1+ a)

}
.

The relation betweenψ(x) and lnx is made explicit in Eq. (8.51) in the next section.

8.2.21 Verify the contour integral representation ofζ(s),

ζ(s)=− (−s)!
2πi

∫
C

(−z)s−1

ez − 1
dz.

The contourC is the same as that for Eq. (8.35). The pointsz=±2nπi, n= 1,2,3, . . . ,
are all excluded.

8.2.22 Show thatζ(s) is analytic in the entire finite complex plane except ats = 1, where it
has a simple pole with a residue of+1.
Hint. The contour integral representation will be useful.

8.2.23 Using the complex variable capability of FORTRAN calculate�(1+ ib)!, �(1+ ib)!,
|(1+ ib)!| and phase(1+ ib)! for b= 0.0(0.1)1.0. Plot the phase of(1+ ib)! versusb.
Hint. Exercise 8.2.3 offers a convenient approach. You will need to calculateζ(n).

8.3 STIRLING’S SERIES

For computation of ln(z!) for very largez (statistical mechanics) and for numerical com-
putations at nonintegral values ofz, a series expansion of ln(z!) in negative powers ofz is
desirable. Perhaps the most elegant way of deriving such an expansion is by the method of
steepest descents (Section 7.3). The following method, starting with a numerical integra-
tion formula, does not require knowledge of contour integration and is particularly direct.
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Derivation from Euler–Maclaurin Integration Formula

The Euler–Maclaurin formula for evaluating a definite integral6 is∫ n

0
f (x)dx = 1

2f (0)+ f (1)+ f (2)+ · · · + 1
2f (n)

− b2
[
f ′(n)− f ′(0)

]− b4
[
f ′′′(n)− f ′′′(0)

]− · · · , (8.45)

in which theb2n are related to the Bernoulli numbersB2n (compare Section 5.9) by

(2n)!b2n = B2n, (8.46)

B0= 1, B6 = 1
42,

B2= 1
6, B8 =− 1

30,

B4=− 1
30, B10= 5

66, and so on.

(8.47)

By applying Eq. (8.45) to the definite integral∫ ∞

0

dx

(z+ x)2
= 1

z
(8.48)

(for z not on the negative real axis), we obtain

1

z
= 1

2z2
+ψ(1)(z+ 1)− 2!b2

z3
− 4!b4

z5
− · · · . (8.49)

This is the reason for using Eq. (8.48). The Euler–Maclaurin evaluation yieldsψ(1)(z+1),
which isd2 ln�(z+ 1)/dz2.

Using Eq. (8.46) and solving forψ(1)(z+ 1), we have

ψ(1)(z+ 1)= d

dz
ψ(z+ 1) = 1

z
− 1

2z2
+ B2

z3
+ B4

z5
+ · · ·

= 1

z
− 1

2z2
+

∞∑
n=1

B2n

z2n+1
. (8.50)

Since the Bernoulli numbers diverge strongly, this series does not converge. It is a semi-
convergent, or asymptotic, series, useful if one retains a small enough number of terms
(compare Section 5.10).

Integrating once, we get the digamma function

ψ(z+ 1) = C1+ ln z+ 1

2z
− B2

2z2
− B4

4z4
− · · ·

= C1+ ln z+ 1

2z
−

∞∑
n=1

B2n

2nz2n
. (8.51)

Integrating Eq. (8.51) with respect toz from z−1 toz and then lettingz approach infinity,
C1, the constant of integration, may be shown to vanish. This gives us a second expression
for the digamma function, often more useful than Eq. (8.38) or (8.44b).

6This is obtained by repeated integration by parts, Section 5.9.
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Stirling’s Series

The indefinite integral of the digamma function (Eq. (8.51)) is

ln�(z+ 1)= C2+
(
z+ 1

2

)
ln z− z+ B2

2z
+ · · · + B2n

2n(2n− 1)z2n−1
+ · · · , (8.52)

in which C2 is another constant of integration. To fixC2 we find it convenient to use the
doubling, or Legendre duplication, formula derived in Section 8.4,

�(z+ 1)�
(
z+ 1

2

)= 2−2zπ1/2�(2z+ 1). (8.53)

This may be proved directly whenz is a positive integer by writing�(2z+ 1) as a product
of even terms times a product of odd terms and extracting a factor of 2 from each term
(Exercise 8.3.5). Substituting Eq. (8.52) into the logarithm of the doubling formula, we
find thatC2 is

C2= 1
2 ln 2π, (8.54)

giving

ln�(z+ 1)= 1

2
ln 2π +

(
z+ 1

2

)
ln z− z+ 1

12z
− 1

360z3
+ 1

1260z5
− · · · . (8.55)

This is Stirling’s series, an asymptotic expansion. The absolute value of the error is less
than the absolute value of the first term omitted.

The constants of integrationC1 andC2 may also be evaluated by comparison with the
first term of the series expansion obtained by the method of “steepest descent.” This is
carried out in Section 7.3.

To help convey a feeling of the remarkable precision of Stirling’s series for�(s + 1),
the ratio of the first term of Stirling’s approximation to�(s + 1) is plotted in Fig. 8.5.
A tabulation gives the ratio of the first term in the expansion to�(s + 1) and the ratio of
the first two terms in the expansion to�(s + 1) (Table 8.1). The derivation of these forms
is Exercise 8.3.1.

Exercises

8.3.1 Rewrite Stirling’s series to give�(z+ 1) instead of ln�(z+ 1).

ANS.�(z+ 1)=√2πzz+1/2e−z
(

1+ 1

12z
+ 1

288z2
− 139

51,840z3
+ · · ·

)
.

8.3.2 Use Stirling’s formula to estimate 52!, the number of possible rearrangements of cards
in a standard deck of playing cards.

8.3.3 By integrating Eq. (8.51) fromz− 1 to z and then lettingz→∞, evaluate the constant
C1 in the asymptotic series for the digamma functionψ(z).

8.3.4 Show that the constantC2 in Stirling’s formula equals12 ln2π by using the logarithm of
the doubling formula.
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FIGURE 8.5 Accuracy of Stirling’s formula.

Table 8.1

s
1

�(s + 1)

√
2πss+1/2e−s 1

�(s + 1)

√
2πss+1/2e−s

(
1+ 1

12s

)
1 0.92213 0.99898
2 0.95950 0.99949
3 0.97270 0.99972
4 0.97942 0.99983
5 0.98349 0.99988
6 0.98621 0.99992
7 0.98817 0.99994
8 0.98964 0.99995
9 0.99078 0.99996

10 0.99170 0.99998

8.3.5 By direct expansion, verify the doubling formula forz= n+ 1
2; n is an integer.

8.3.6 Without using Stirling’s series show that

(a) ln(n!) <
∫ n+1

1
lnx dx, (b) ln(n!) >

∫ n

1
lnx dx; n is an integer≥ 2.

Notice that the arithmetic mean of these two integrals gives a good approximation for
Stirling’s series.

8.3.7 Test for convergence

∞∑
p=0

[
(p− 1

2)!
p!

]2

× 2p+ 1

2p+ 2
= π

∞∑
p=0

(2p− 1)!!(2p+ 1)!!
(2p)!!(2p+ 2)!! .
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This series arises in an attempt to describe the magnetic field created by and enclosed
by a current loop.

8.3.8 Show that

lim
x→∞xb−a (x + a)!

(x + b)! = 1.

8.3.9 Show that

lim
n→∞

(2n− 1)!!
(2n)!! n1/2= π−1/2.

8.3.10 Calculate the binomial coefficient
(2n
n

)
to six significant figures forn= 10, 20, and 30.

Check your values by

(a) a Stirling series approximation through terms inn−1,
(b) a double precision calculation.

ANS.
(20

10

)= 1.84756× 105,
(40

20

)= 1.37846× 1011,(60
30

)= 1.18264× 1017.

8.3.11 Write a program (or subprogram) that will calculate log10(x!) directly from Stirling’s
series. Assume thatx ≥ 10. (Smaller values could be calculated via the factorial re-
currence relation.) Tabulate log10(x!) versusx for x = 10(10)300. Check your results
against AMS-55 (see Additional Readings for this reference) or by direct multiplication
(for n= 10, 20, and 30).

Check value. log10(100!)= 157.97.

8.3.12 Using the complex arithmetic capability of FORTRAN, write a subroutine that will cal-
culate ln(z!) for complexz based on Stirling’s series. Include a test and an appropriate
error message ifz is too close to a negative real integer. Check your subroutine against
alternate calculations forz real,z pure imaginary, andz= 1+ ib (Exercise 8.2.23).

Check values. |(i0.5)!| = 0.82618
phase(i0.5)! = −0.24406.

8.4 THE BETA FUNCTION

Using the integral definition (Eq. (8.25)), we write the product of two factorials as the
product of two integrals. To facilitate a change in variables, we take the integrals over a
finite range:

m!n! = lim
a2→∞

∫ a2

0
e−uum du

∫ a2

0
e−vvn dv, �(m) >−1,

�(n) >−1.
(8.56a)

Replacingu with x2 andv with y2, we obtain

m!n! = lim
a→∞4

∫ a

0
e−x2

x2m+1dx

∫ a

0
e−y2

y2n+1dy. (8.56b)
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FIGURE 8.6 Transformation from
Cartesian to polar coordinates.

Transforming to polar coordinates gives us

m!n! = lim
a→∞4

∫ a

0
e−r2

r2m+2n+3dr

∫ π/2

0
cos2m+1 θ sin2n+1 θ dθ

= (m+ n+ 1)!2
∫ π/2

0
cos2m+1 θ sin2n+1 θ dθ. (8.57)

Here the Cartesian area elementdx dy has been replaced byr dr dθ (Fig. 8.6). The last
equality in Eq. (8.57) follows from Exercise 8.1.11.

The definite integral, together with the factor 2, has been named the beta function:

B(m+ 1, n+ 1) ≡ 2
∫ π/2

0
cos2m+1 θ sin2n+1 θ dθ

= m!n!
(m+ n+ 1)! . (8.58a)

Equivalently, in terms of the gamma function and noting its symmetry,

B(p,q)= �(p)�(q)

�(p+ q)
, B(q,p)= B(p,q). (8.58b)

The only reason for choosingm+ 1 andn+ 1, rather thanm andn, as the arguments ofB
is to be in agreement with the conventional, historical beta function.

Definite Integrals, Alternate Forms

The beta function is useful in the evaluation of a wide variety of definite integrals. The
substitutiont = cos2 θ converts Eq. (8.58a) to7

B(m+ 1, n+ 1)= m!n!
(m+ n+ 1)! =

∫ 1

0
tm(1− t)n dt. (8.59a)

7The Laplace transform convolution theorem provides an alternate derivation of Eq. (8.58a), compare Exercise 15.11.2.



522 Chapter 8 Gamma–Factorial Function

Replacingt by x2, we obtain

m!n!
2(m+ n+ 1)! =

∫ 1

0
x2m+1(1− x2)n dx. (8.59b)

The substitutiont = u/(1+ u) in Eq. (8.59a) yields still another useful form,

m!n!
(m+ n+ 1)! =

∫ ∞

0

um

(1+ u)m+n+2
du. (8.60)

The beta function as a definite integral is useful in establishing integral representations of
the Bessel function (Exercise 11.1.18) and the hypergeometric function (Exercise 13.4.10).

Verification of πα/ sinπα Relation

If we takem= a, n=−a,−1< a < 1, then∫ ∞

0

ua

(1+ u)2
du= a!(−a)!. (8.61)

By contour integration this integral may be shown to be equal toπa/sinπa (Exer-
cise 7.1.18), thus providing another method of obtaining Eq. (8.32).

Derivation of Legendre Duplication Formula

The form of Eq. (8.58a) suggests that the beta function may be useful in deriving the
doubling formula used in the preceding section. From Eq. (8.59a) withm = n = z and
�(z) >−1,

z!z!
(2z+ 1)! =

∫ 1

0
tz(1− t)z dt. (8.62)

By substitutingt = (1+ s)/2, we have

z!z!
(2z+ 1)! = 2−2z−1

∫ 1

−1

(
1− s2)z ds = 2−2z

∫ 1

0

(
1− s2)z ds. (8.63)

The last equality holds because the integrand is even. Evaluating this integral as a beta
function (Eq. (8.59b)), we obtain

z!z!
(2z+ 1)! = 2−2z−1 z!(−1

2)!
(z+ 1

2)!
. (8.64)

Rearranging terms and recalling that(−1
2)! = π1/2, we reduce this equation to one form

of the Legendre duplication formula,

z!(z+ 1
2

)! = 2−2z−1π1/2(2z+ 1)!. (8.65a)

Dividing by (z+ 1
2), we obtain an alternate form of the duplication formula:

z!(z− 1
2

)! = 2−2zπ1/2(2z)!. (8.65b)
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Although the integrals used in this derivation are defined only for�(z) >−1, the results
(Eqs. (8.65a) and (8.65b) hold for all regular pointsz by analytic continuation.8

Using the double factorial notation (Section 8.1), we may rewrite Eq. (8.65a) (withz=
n, an integer) as (

n+ 1
2

)! = π1/2(2n+ 1)!!/2n+1. (8.65c)

This is often convenient for eliminating factorials of fractions.

Incomplete Beta Function

Just as there is an incomplete gamma function (Section 8.5), there is also an incomplete
beta function,

Bx(p,q)=
∫ x

0
tp−1(1− t)q−1dt, 0≤ x ≤ 1, p > 0, q > 0 (if x = 1). (8.66)

Clearly,Bx=1(p, q) becomes the regular (complete) beta function, Eq. (8.59a). A power-
series expansion ofBx(p,q) is the subject of Exercises 5.2.18 and 5.7.8. The relation to
hypergeometric functions appears in Section 13.4.

The incomplete beta function makes an appearance in probability theory in calculating
the probability of at mostk successes inn independent trials.9

Exercises

8.4.1 Derive the doubling formula for the factorial function by integrating(sin 2θ)2n+1 =
(2 sinθ cosθ)2n+1 (and using the beta function).

8.4.2 Verify the following beta function identities:

(a) B(a, b)= B(a + 1, b)+B(a, b+ 1),

(b) B(a, b)= a + b

b
B(a, b+ 1),

(c) B(a, b)= b− 1

a
B(a + 1, b− 1),

(d) B(a, b)B(a + b, c)= B(b, c)B(a, b+ c).

8.4.3 (a) Show that∫ 1

−1

(
1− x2)1/2

x2n dx =

π/2, n= 0

π
(2n− 1)!!
(2n+ 2)!! , n= 1,2,3, . . . .

8If 2z is a negative integer, we get the valid but unilluminating result∞=∞.
9W. Feller,An Introduction to Probability Theory and Its Applications, 3rd ed. New York: Wiley (1968), Section VI.10.
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(b) Show that∫ 1

−1

(
1− x2)−1/2

x2n dx =

π, n= 0

π
(2n− 1)!!
(2n)!! , n= 1,2,3, . . . .

8.4.4 Show that

∫ 1

−1

(
1− x2)n dx =


22n+1 n!n!

(2n+ 1)! , n >−1

2
(2n)!!

(2n+ 1)!! , n= 0,1,2, . . . .

8.4.5 Evaluate
∫ 1
−1(1+ x)a(1− x)b dx in terms of the beta function.

ANS. 2a+b+1B(a + 1, b+ 1).

8.4.6 Show, by means of the beta function, that∫ z

t

dx

(z− x)1−α(x − t)α
= π

sinπα
, 0< α < 1.

8.4.7 Show that the Dirichlet integral∫∫
xpyq dx dy = p!q!

(p+ q + 2)! =
B(p+ 1, q + 1)

p+ q + 2
,

where the range of integration is the triangle bounded by the positivex- andy-axes and
the linex + y = 1.

8.4.8 Show that ∫ ∞

0

∫ ∞

0
e−(x2+y2+2xy cosθ) dx dy = θ

2 sinθ
.

What are the limits onθ?
Hint. Consider obliquexy-coordinates.

ANS.−π < θ < π .

8.4.9 Evaluate (using the beta function)

(a) ∫ π/2

0
cos1/2 θ dθ = (2π)3/2

16[(1
4)!]2

,

(b) ∫ π/2

0
cosn θ dθ =

∫ π/2

0
sinn θ dθ =

√
π[(n− 1)/2]!

2(n/2)!

=


(n− 1)!!

n!! for n odd,

π

2
· (n− 1)!!

n!! for n even.
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8.4.10 Evaluate
∫ 1

0 (1− x4)−1/2dx as a beta function.

ANS.
[(1

4)!]2 · 4
(2π)1/2

= 1.311028777.

8.4.11 Given

Jν(z)= 2

π1/2(ν − 1
2)!
(
z

2

)ν ∫ π/2

0
sin2ν θ cos(zcosθ) dθ, �(ν) >−1

2,

show, with the aid of beta functions, that this reduces to the Bessel series

Jν(z)=
∞∑
s=0

(−1)s
1

s!(s + ν)!
(
z

2

)2s+ν
,

identifying the initialJν as an integral representation of the Bessel function,Jν (Sec-
tion 11.1).

8.4.12 Given the associated Legendre function

Pm
m (x)= (2m− 1)!!(1− x2)m/2

,

Section 12.5, show that

(a)
∫ 1

−1

[
Pm
m (x)

]2
dx = 2

2m+ 1
(2m)!, m= 0,1,2, . . . ,

(b)
∫ 1

−1

[
Pm
m (x)

]2 dx

1− x2
= 2 · (2m− 1)!, m= 1,2,3, . . . .

8.4.13 Show that

(a)
∫ 1

0
x2s+1(1− x2)−1/2

dx = (2s)!!
(2s + 1)!! ,

(b)
∫ 1

0
x2p(1− x2)q dx = 1

2

(p− 1
2)!q!

(p+ q + 1
2)!

.

8.4.14 A particle of massm moving in a symmetric potential that is well described byV (x)=
A|x|n has a total energy12m(dx/dt)2+ V (x)= E. Solving fordx/dt and integrating
we find that the period of motion is

τ = 2
√

2m
∫ xmax

0

dx

(E −Axn)1/2
,

wherexmax is a classical turning point given byAxnmax=E. Show that

τ = 2

n

√
2πm

E

(
E

A

)1/n
�(1/n)

�(1/n+ 1
2)

.

8.4.15 Referring to Exercise 8.4.14,
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(a) Determine the limit asn→∞ of

2

n

√
2πm

E

(
E

A

)1/n
�(1/n)

�(1/n+ 1
2)

.

(b) Find lim
n→∞ τ from the behavior of the integrand(E −Axn)−1/2.

(c) Investigate the behavior of the physical system (potential well) asn→∞. Obtain
the period from inspection of this limiting physical system.

8.4.16 Show that ∫ ∞

0

sinhα x

coshβ x
dx = 1

2
B

(
α+ 1

2
,
β − α

2

)
, −1< α < β.

Hint. Let sinh2x = u.

8.4.17 The beta distribution of probability theory has a probability density

f (x)= �(α + β)

�(α)�(β)
xα−1(1− x)β−1,

with x restricted to the interval (0, 1). Show that

(a) 〈x〉(mean)= α

α + β
.

(b) σ 2(variance)≡ 〈x2〉 − 〈x〉2= αβ

(α + β)2(α + β + 1)
.

8.4.18 From

lim
n→∞

∫ π/2
0 sin2n θ dθ∫ π/2

0 sin2n+1 θ dθ
= 1

derive the Wallis formula forπ :

π

2
= 2 · 2

1 · 3 ·
4 · 4
3 · 5 ·

6 · 6
5 · 7 · · · .

8.4.19 Tabulate the beta functionB(p,q) for p andq = 1.0(0.1)2.0 independently.

Check value. B(1.3,1.7)= 0.40774.

8.4.20 (a) Write a subroutine that will calculate the incomplete beta functionBx(p,q). For
0.5< x ≤ 1 you will find it convenient to use the relation

Bx(p,q)= B(p,q)−B1−x(q,p).

(b) TabulateBx(
3
2,

3
2). Spot check your results by using the Gauss–Legendre quadra-

ture.
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8.5 THE INCOMPLETE GAMMA FUNCTIONS AND RELATED
FUNCTIONS

Generalizing the Euler definition of the gamma function (Eq. (8.5)), we define the incom-
plete gamma functions by the variable limit integrals

γ (a, x)=
∫ x

0
e−t ta−1dt, �(a) > 0

and

�(a, x)=
∫ ∞

x

e−t ta−1dt. (8.67)

Clearly, the two functions are related, for

γ (a, x)+ �(a, x)= �(a). (8.68)

The choice of employingγ (a, x) or �(a, x) is purely a matter of convenience. If the para-
metera is a positive integer, Eq. (8.67) may be integrated completely to yield

γ (n, x) = (n− 1)!
(

1− e−x
n−1∑
s=0

xs

s!
)

�(n,x) = (n− 1)!e−x
n−1∑
s=0

xs

s! , n= 1,2, . . . .

(8.69)

For nonintegrala, a power-series expansion ofγ (a, x) for smallx and an asymptotic ex-
pansion of�(a, x) (denoted asI (x,p)) are developed in Exercise 5.7.7 and Section 5.10:

γ (a, x) = xa
∞∑
n=0

(−1)n
xn

n!(a + n)
, |x| ∼ 1 (smallx),

�(a, x) = xa−1e−x
∞∑
n=0

(a − 1)!
(a − 1− n)! ·

1

xn
(8.70)

= xa−1e−x
∞∑
n=0

(−1)n
(n− a)!
(−a)! ·

1

xn
, x� 1 (largex).

These incomplete gamma functions may also be expressed quite elegantly in terms of con-
fluent hypergeometric functions (compare Section 13.5).

Exponential Integral

Although the incomplete gamma function�(a, x) in its general form (Eq. (8.67)) is only
infrequently encountered in physical problems, a special case is quite common and very
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FIGURE 8.7 The exponential integral,
E1(x)=−Ei(−x).

useful. We define the exponential integral by10

−Ei(−x)≡
∫ ∞

x

e−t

t
dt =E1(x). (8.71)

(See Fig. 8.7.) Caution is needed here, for the integral in Eq. (8.71) diverges logarithmically
asx→ 0. To obtain a series expansion for smallx, we start from

E1(x)= �(0, x)= lim
a→0

[
�(a)− γ (a, x)

]
. (8.72)

We may split the divergent term in the series expansion forγ (a, x),

E1(x)= lim
a→0

[
a�(a)− xa

a

]
−

∞∑
n=1

(−1)nxn

n · n! . (8.73)

Using l’Hôpital’s rule (Exercise 5.6.8) and

d

da

{
a�(a)

}= d

da
a! = d

da
eln(a!) = a!ψ(a + 1), (8.74)

and then Eq. (8.40),11 we obtain the rapidly converging series

E1(x)=−γ − lnx −
∞∑
n=1

(−1)nxn

n · n! . (8.75)

An asymptotic expansionE1(x) ≈ e−x[ 1
x
− 1!

x2 + · · · ] for x →∞ is developed in Sec-
tion 5.10.

10The appearance of the two minus signs in−Ei(−x) is a historical monstrosity. AMS-55, Chapter 5, denotes this integral as
E1(x). See Additional Readings for the reference.
11dxa/da = xa lnx.
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FIGURE 8.8 Sine and cosine integrals.

Further special forms related to the exponential integral are the sine integral, cosine
integral (Fig. 8.8), and logarithmic integral, defined by12

si(x) = −
∫ ∞

x

sint

t
dt

Ci(x) = −
∫ ∞

x

cost

t
dt (8.76)

li(x) =
∫ x

0

du

lnu
= Ei(lnx)

for their principal branch, with the branch cut conventionally chosen to be along the nega-
tive real axis from the branch point at zero. By transforming from real to imaginary argu-
ment, we can show that

si(x)= 1

2i

[
Ei(ix)−Ei(−ix)]= 1

2i

[
E1(ix)−E1(−ix)

]
, (8.77)

whereas

Ci(x)= 1

2

[
Ei(ix)+Ei(−ix)]=−1

2

[
E1(ix)+E1(−ix)

]
, |argx|< π

2
. (8.78)

Adding these two relations, we obtain

Ei(ix)=Ci(x)+ isi(x), (8.79)

to show that the relation among these integrals is exactly analogous to that amongeix ,
cosx, and sinx. Reference to Eqs. (8.71) and (8.78) shows that Ci(x) agrees with the
definitions of AMS-55 (see Additional Readings for the reference). In terms ofE1,

E1(ix)=−Ci(x)+ isi(x).

Asymptotic expansions of Ci(x) and si(x) are developed in Section 5.10. Power-series
expansions about the origin for Ci(x), si(x), and li(x) may be obtained from those for

12Another sine integral is given by Si(x)= si(x)+ π/2.
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FIGURE 8.9 Error function, erfx.

the exponential integral,E1(x), or by direct integration, Exercise 8.5.10. The exponential,
sine, and cosine integrals are tabulated in AMS-55, Chapter 5, (see Additional Readings
for the reference) and can also be accessed by symbolic software such as Mathematica,
Maple, Mathcad, and Reduce.

Error Integrals

The error integrals

erfz= 2√
π

∫ z

0
e−t2 dt, erfcz= 1− erfz= 2√

π

∫ ∞

z

e−t2 dt (8.80a)

(normalized so that erf∞= 1) are introduced in Exercise 5.10.4 (Fig. 8.9). Asymptotic
forms are developed there. From the general form of the integrands and Eq. (8.6) we ex-
pect that erfz and erfcz may be written as incomplete gamma functions witha = 1

2. The
relations are

erfz= π−1/2γ
(1

2, z
2), erfcz= π−1/2�

(1
2, z

2). (8.80b)

The power-series expansion of erfz follows directly from Eq. (8.70).

Exercises

8.5.1 Show that

γ (a, x)= e−x
∞∑
n=0

(a − 1)!
(a + n)!x

a+n

(a) by repeatedly integrating by parts.
(b) Demonstrate this relation by transforming it into Eq. (8.70).

8.5.2 Show that

(a)
dm

dxm

[
x−aγ (a, x)

]= (−1)mx−a−mγ (a +m,x),
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(b)
dm

dxm

[
exγ (a, x)

]= ex
�(a)

�(a −m)
γ (a −m,x).

8.5.3 Show thatγ (a, x) and�(a, x) satisfy the recurrence relations

(a) γ (a + 1, x)= aγ (a, x)− xae−x ,
(b) �(a + 1, x)= a�(a, x)+ xae−x .

8.5.4 The potential produced by a 1S hydrogen electron (Exercise 12.8.6) is given by

V (r)= q

4πε0a0

{
1

2r
γ (3,2r)+ �(2,2r)

}
.

(a) Forr� 1, show that

V (r)= q

4πε0a0

{
1− 2

3
r2+ · · ·

}
.

(b) Forr� 1, show that

V (r)= q

4πε0a0
· 1

r
.

Herer is expressed in units ofa0, the Bohr radius.
Note. For computation at intermediate values ofr , Eqs. (8.69) are convenient.

8.5.5 The potential of a 2P hydrogen electron is found to be (Exercise 12.8.7)

V (r) = 1

4πε0
· q

24a0

{
1

r
γ (5, r)+ �(4, r)

}
− 1

4πε0
· q

120a0

{
1

r3
γ (7, r)+ r2�(2, r)

}
P2(cosθ).

Herer is expressed in units ofa0, the Bohr radius.P2(cosθ) is a Legendre polynomial
(Section 12.1).

(a) Forr� 1, show that

V (r)= 1

4πε0
· q
a0

{
1

4
− 1

120
r2P2(cosθ)+ · · ·

}
.

(b) Forr� 1, show that

V (r)= 1

4πε0
· q

a0r

{
1− 6

r2
P2(cosθ)+ · · ·

}
.

8.5.6 Prove that the exponential integral has the expansion∫ ∞

x

e−t

t
dt =−γ − lnx −

∞∑
n=1

(−1)nxn

n · n! ,

whereγ is the Euler–Mascheroni constant.
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8.5.7 Show thatE1(z) may be written as

E1(z)= e−z
∫ ∞

0

e−zt

1+ t
dt.

Show also that we must impose the condition|argz| ≤ π/2.

8.5.8 Related to the exponential integral (Eq. (8.71)) by a simple change of variable is the
function

En(x)=
∫ ∞

1

e−xt

tn
dt.

Show thatEn(x) satisfies the recurrence relation

En+1(x)= 1

n
e−x − x

n
En(x), n= 1,2,3, . . . .

8.5.9 With En(x) as defined in Exercise 8.5.8, show thatEn(0)= 1/(n− 1), n > 1.

8.5.10 Develop the following power-series expansions:

(a) si(x)=−π

2
+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)(2n+ 1)! ,

(b) Ci(x)= γ + lnx +
∞∑
n=1

(−1)nx2n

2n(2n)! .

8.5.11 An analysis of a center-fed linear antenna leads to the expression∫ x

0

1− cost

t
dt.

Show that this is equal toγ + lnx −Ci(x).

8.5.12 Using the relation

�(a)= γ (a, x)+ �(a, x),

show that ifγ (a, x) satisfies the relations of Exercise 8.5.2, then�(a, x) must satisfy
the same relations.

8.5.13 (a) Write a subroutine that will calculate the incomplete gamma functionsγ (n, x) and
�(n,x) for n a positive integer. Spot check�(n,x) by Gauss–Laguerre quadratures.

(b) Tabulateγ (n, x) and�(n,x) for x = 0.0(0.1)1.0 andn= 1, 2, 3.

8.5.14 Calculate the potential produced by a 1S hydrogen electron (Exercise 8.5.4) (Fig. 8.10).
TabulateV (r)/(q/4πε0a0) for x = 0.0(0.1)4.0. Check your calculations forr� 1 and
for r� 1 by calculating the limiting forms given in Exercise 8.5.4.

8.5.15 Using Eqs. (5.182) and (8.75), calculate the exponential integralE1(x) for

(a)x = 0.2(0.2)1.0, (b)x = 6.0(2.0)10.0.

Program your own calculation but check each value, using a library subroutine if avail-
able. Also check your calculations at each point by a Gauss–Laguerre quadrature.
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FIGURE 8.10 Distributed charge potential produced
by a 1S hydrogen electron, Exercise 8.5.14.

You’ll find that the power-series converges rapidly and yields high precision for small
x. The asymptotic series, even forx = 10, yields relatively poor accuracy.

Check values. E1(1.0) = 0.219384
E1(10.0) = 4.15697× 10−6.

8.5.16 The two expressions forE1(x), (1) Eq. (5.182), an asymptotic series and (2) Eq. (8.75),
a convergent power series, provide a means of calculating the Euler–Mascheroni con-
stantγ to high accuracy. Using double precision, calculateγ from Eq. (8.75), with
E1(x) evaluated by Eq. (5.182).
Hint. As a convenient choice takex in the range 10 to 20. (Your choice ofx will set
a limit on the accuracy of your result.) To minimize errors in the alternating series of
Eq. (8.75), accumulate the positive and negative terms separately.

ANS. Forx = 10 and “double precision,”γ = 0.57721566.

Additional Readings

Abramowitz, M., and I. A. Stegun, eds.,Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables (AMS-55). Washington, DC: National Bureau of Standards (1972), reprinted, Dover
(1974). Contains a wealth of information about gamma functions, incomplete gamma functions, exponential
integrals, error functions, and related functions — Chapters 4 to 6.

Artin, E.,The Gamma Function (translated by M. Butler). New York: Holt, Rinehart and Winston (1964). Demon-
strates that if a functionf (x) is smooth (log convex) and equal to(n − 1)! whenx = n = integer, it is the
gamma function.

Davis, H. T.,Tables of the Higher Mathematical Functions. Bloomington, IN: Principia Press (1933). Volume I
contains extensive information on the gamma function and the polygamma functions.

Gradshteyn, I. S., and I. M. Ryzhik,Table of Integrals, Series, and Products. New York: Academic Press (1980).

Luke, Y. L., The Special Functions and Their Approximations, Vol. 1. New York: Academic Press (1969).

Luke, Y. L., Mathematical Functions and Their Approximations. New York: Academic Press (1975). This is
an updated supplement toHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables (AMS-55). Chapter 1 deals with the gamma function. Chapter 4 treats the incomplete gamma function
and a host of related functions.
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CHAPTER 9

DIFFERENTIAL EQUATIONS

9.1 PARTIAL DIFFERENTIAL EQUATIONS

Introduction

In physics the knowledge of the force in an equation of motion usually leads to a differen-
tial equation. Thus, almost all the elementary and numerous advanced parts of theoretical
physics are formulated in terms of differential equations. Sometimes these are ordinary
differential equations in one variable (abbreviatedODEs). More often the equations are
partial differential equations (PDEs) in two or more variables.

Let us recall from calculus that the operation of taking an ordinary or partial derivative
is alinear operation (L),1

d(aϕ(x)+ bψ(x))

dx
= a

dϕ

dx
+ b

dψ

dx
,

for ODEs involving derivatives in one variablex only and no quadratic,(dψ/dx)2, or
higher powers. Similarly, for partial derivations,

∂(aϕ(x, y)+ bψ(x, y))

∂x
= a

∂ϕ(x, y)

∂x
+ b

∂ψ(x, y)

∂x
.

In general

L(aϕ + bψ)= aL(ϕ)+ bL(ψ).

Thus, ODEs and PDEs appear as linear operator equations,

Lψ = F, (9.1)

1We are especially interested in linear operators because in quantum mechanics physical quantities are represented by linear
operators operating in a complex, infinite-dimensional Hilbert space.
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whereF is a known (source) function of one (for ODEs) or more variables (for PDEs),L is
a linear combination of derivatives, andψ is the unknown function or solution. Any linear
combination of solutions is again a solution ifF = 0; this is thesuperposition principle
for homogeneous PDEs.

Since the dynamics of many physical systems involve just two derivatives, for exam-
ple, acceleration in classical mechanics and the kinetic energy operator,∼ ∇2, in quan-
tum mechanics, differential equations of second order occur most frequently in physics.
(Maxwell’s and Dirac’s equations are first order but involve two unknown functions. Elim-
inating one unknown yields a second-order differential equation for the other (compare
Section 1.9).)

Examples of PDEs

Among the most frequently encountered PDEs are the following:

1. Laplace’s equation,∇2ψ = 0.
This very common and very important equation occurs in studies of

a. electromagnetic phenomena, including electrostatics, dielectrics, steady currents,
and magnetostatics,

b. hydrodynamics (irrotational flow of perfect fluid and surface waves),
c. heat flow,
d. gravitation.

2. Poisson’s equation,∇2ψ =−ρ/ε0.
In contrast to the homogeneous Laplace equation, Poisson’s equation is nonhomo-

geneous with a source term−ρ/ε0.
3. The wave (Helmholtz) and time-independent diffusion equations,∇2ψ ± k2ψ = 0.

These equations appear in such diverse phenomena as

a. elastic waves in solids, including vibrating strings, bars, membranes,
b. sound, or acoustics,
c. electromagnetic waves,
d. nuclear reactors.

4. The time-dependent diffusion equation

∇2ψ = 1

a2

∂ψ

∂t

and the corresponding four-dimensional forms involving the d’Alembertian, a four-
dimensional analog of the Laplacian in Minkowski space,

∂µ∂µ = ∂2= 1

c2

∂2

∂t2
−∇2.

5. The time-dependent wave equation,∂2ψ = 0.
6. The scalar potential equation,∂2ψ = ρ/ε0.

Like Poisson’s equation, this equation is nonhomogeneous with a source term
ρ/ε0.
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7. The Klein–Gordon equation,∂2ψ =−µ2ψ , and the corresponding vector equations,
in which the scalar functionψ is replaced by a vector function. Other, more compli-
cated forms are common.

8. The Schrödinger wave equation,

− h̄2

2m
∇2ψ + Vψ = ih̄

∂ψ

∂t

and

− h̄2

2m
∇2ψ + Vψ =Eψ

for the time-independent case.
9. The equations for elastic waves and viscous fluids and the telegraphy equation.

10. Maxwell’s coupled partial differential equations for electric and magnetic fields and
those of Dirac for relativistic electron wave functions. For Maxwell’s equations see
the Introduction and also Section 1.9.

Some general techniques for solving second-order PDEs are discussed in this section.

1. Separation of variables, where the PDE is split into ODEs that are related by com-
mon constants that appear as eigenvalues of linear operators,Lψ = lψ , usually in one
variable. This method is closely related tosymmetries of the PDE and a group of
transformations (see Section 4.2). The Helmholtz equation, listed example 3, has this
form, where the eigenvaluek2 may arise by separation of the timet from the spatial
variables. Likewise, in example 8 the energyE is the eigenvalue that arises in the
separation oft from r in the Schrödinger equation. This is pursued in Chapter 10 in
greater detail. Section 9.2 serves as introduction. ODEs may be attacked by Frobenius’
power-series method in Section 9.5. It does not always work but is often the simplest
method when it does.

2. Conversion of a PDE into an integral equation usingGreen’s functions applies to
inhomogeneous PDEs, such as examples 2 and 6 given above. An introduction to the
Green’s function technique is given in Section 9.7.

3. Other analytical methods, such as the use of integral transforms, are developed and
applied in Chapter 15.

Occasionally, we encounter equations of higher order. In both the theory of the slow
motion of a viscous fluid and the theory of an elastic body we find the equation(∇2)2ψ = 0.

Fortunately, these higher-order differential equations are relatively rare and are not dis-
cussed here.

Although not so frequently encountered and perhaps not so important as second-order
ODEs, first-order ODEs do appear in theoretical physics and are sometimes intermediate
steps for second-order ODEs. The solutions of some more important types of first-order
ODEs are developed in Section 9.2. First-order PDEs can always be reduced to ODEs.
This is a straightforward but lengthy process and involves a search for characteristics that
are briefly introduced in what follows; for more details we refer to the literature.
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Classes of PDEs and Characteristics

Second-order PDEs form three classes: (i) Elliptic PDEs involve∇2 or c−2∂2/∂t2 +∇2

(ii) parabolic PDEs,a∂/∂t +∇2; (iii) hyperbolic PDEs,c−2∂2/∂t2−∇2. These canonical
operators come about by a change of variablesξ = ξ(x, y), η= η(x, y) in a linear operator
(for two variables just for simplicity)

L= a
∂2

∂x2
+ 2b

∂2

∂x∂y
+ c

∂2

∂y2
+ d

∂

∂x
+ e

∂

∂y
+ f, (9.2)

which can be reduced to the canonical forms (i), (ii), (iii) according to whether the dis-
criminantD = ac− b2 > 0,= 0, or< 0. If ξ(x, y) is determined from the first-order, but
nonlinear, PDE

a

(
∂ξ

∂x

)2

+ 2b

(
∂ξ

∂x

)(
∂ξ

∂y

)
+ c

(
∂ξ

∂y

)2

= 0, (9.3)

then the coefficient of∂2/∂ξ2 in L (that is, Eq. (9.3)) is zero. Ifη is an independent solution
of the same Eq. (9.3), then the coefficient of∂2/∂η2 is also zero. The remaining operator,
∂2/∂ξ∂η, in L is characteristic of the hyperbolic case (iii) withD < 0 (a = 0= c leads to
D =−b2 < 0), where the quadratic formaλ2+2bλ+ c factorizes and, therefore, Eq. (9.3)
has two independent solutionsξ(x, y), η(x, y). In the elliptic case (i) withD > 0, the
two solutionsξ , η are complex conjugate, which, when substituted into Eq. (9.2), remove
the mixed second-order derivative instead of the other second-order terms, yielding the
canonical form (i). In the parabolic case (ii) withD = 0, only∂2/∂ξ2 remains inL, while
the coefficients of the other two second-order derivatives vanish.

If the coefficientsa, b, c in L are functions of the coordinates, then this classification is
only local; that is, its type may change as the coordinates vary.

Let us illustrate the physics underlying thehyperbolic case by looking at the wave
equation, Eq. (9.2) (in 1+ 1 dimensions for simplicity)(

1

c2

∂2

∂t2
− ∂2

∂x2

)
ψ = 0.

Since Eq. (9.3) now becomes(
∂ξ

∂t

)2

− c2
(
∂ξ

∂x

)2

=
(
∂ξ

∂t
− c

∂ξ

∂x

)(
∂ξ

∂t
+ c

∂ξ

∂x

)
= 0

and factorizes, we determine the solution of∂ξ/∂t − c∂ξ/∂x = 0. This is an arbitrary
functionξ = F(x + ct), andξ =G(x − ct) solves∂ξ/∂t + c∂ξ/∂x = 0, which is readily
verified. By linear superposition a general solution of the wave equation isψ = F(x+ct)+
G(x − ct). For periodic functionsF,G we recognize the linesx + ct andx − ct as the
phases of plane waves or wave fronts, where not all second-order derivatives ofψ in the
wave equation are well defined. Normal to the wave fronts are the rays of geometric optics.
Thus, the lines that are solutions of Eq. (9.3) and are calledcharacteristics or sometimes
bicharacteristics (for second-order PDEs) in the mathematical literature correspond to the
wave fronts of the geometric optics solution of the wave equation.
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For theelliptic case let us consider Laplace’s equation,

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0,

for a potentialψ of two variables. Here the characteristics equation,(
∂ξ

∂x

)2

+
(
∂ξ

∂y

)2

=
(
∂ξ

∂x
+ i

∂ξ

∂y

)(
∂ξ

∂x
− i

∂ξ

∂y

)
= 0,

has complex conjugate solutions:ξ = F(x + iy) for ∂ξ/∂x + i(∂ξ/∂y) = 0 and ξ =
G(x− iy) for ∂ξ/∂x− i(∂ξ/∂y)= 0. A general solution of Laplace’s equation is therefore
ψ = F(x+ iy)+G(x− iy), as well as the real and imaginary parts ofψ , which are called
harmonic functions, while polynomial solutions are calledharmonic polynomials.

In quantum mechanics the Wentzel–Kramers–Brillouin (WKB) formψ = exp(−iS/h̄)
for the solution of the Schrödinger equation, a complex parabolic PDE,(

− h̄2

2m
∇2+ V

)
ψ = ih̄

∂ψ

∂t
,

leads to the Hamilton–Jacobi equation of classical mechanics,

1

2m
(∇S)2+ V = ∂S

∂t
, (9.4)

in the limit h̄→ 0. The classical actionS obeys the Hamilton–Jacobi equation, which is the
analog of Eq. (9.3) of the Schrödinger equation. Substituting∇ψ =−iψ∇S/h̄, ∂ψ/∂t =
−iψ(∂S/∂t)/h̄ into the Schrödinger equation, dropping the overall nonvanishing factorψ ,
and taking the limit of the resulting equation ash̄→ 0, we indeed obtain Eq. (9.4).

Finding solutions of PDEs by solving for the characteristics is one of several general
techniques. For more examples we refer to H. Bateman,Partial Differential Equations
of Mathematical Physics, New York: Dover (1944); K. E. Gustafson,Partial Differential
Equations and Hilbert Space Methods, 2nd ed., New York: Wiley (1987), reprinted Dover
(1998).

In order to derive and appreciate more the mathematical method behind these solutions
of hyperbolic, parabolic, and elliptic PDEs let us reconsider the PDE (9.2) with constant
coefficients and, at first,d = e = f = 0 for simplicity. In accordance with the form of the
wave front solutions, we seek a solutionψ = F(ξ) of Eq. (9.2) with a functionξ = ξ(t, x)

using the variablest , x instead ofx, y. Then the partial derivatives become

∂ψ

∂x
= ∂ξ

∂x

dF

dξ
,

∂ψ

∂t
= ∂ξ

∂t

dF

dξ
,

∂2ψ

∂x2
= ∂2ξ

∂x2

dF

dξ
+
(
∂ξ

∂x

)2
d2F

dξ2
,

and

∂2ψ

∂x∂t
= ∂2ξ

∂x∂t

dF

dξ
+ ∂ξ

∂x

∂ξ

∂t

d2F

dξ2
,

∂2ψ

∂t2
= ∂2ξ

∂t2

dF

dξ
+
(
∂ξ

∂t

)2
d2F

dξ2
,

using the chain rule of differentiation. Whenξ depends onx andt linearly, these partial
derivatives ofψ yield a single term only and solve our PDE (9.2) as a consequence. From
the linearξ = αx + βt we obtain

∂2ψ

∂x2
= α2d

2F

dξ2
,

∂2ψ

∂x∂t
= αβ

d2F

dξ2
,

∂2ψ

∂t2
= β2d

2F

dξ2
,
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and our PDE (9.2) becomes equivalent to the analog of Eq. (9.3),

(
α2a + 2αβb+ β2c

)d2F

dξ2
= 0. (9.5)

A solution of d
2F

dξ2 = 0 only leads to the trivialψ = k1x + k2t + k3 with constantki that is

linear in the coordinates and for which all second derivatives vanish. Fromα2a + 2αβb+
β2c= 0, on the other hand, we get the ratios

β

α
= 1

c

[−b± (b2− ac
)1/2]≡ r1,2 (9.6)

as solutions of Eq. (9.5) withd
2F

dξ2 
= 0 in general. The linesξ1= x + r1t andξ2= x + r2t

will solve the PDE (9.2), withψ(x, t)= F(ξ1)+G(ξ2) corresponding to the generalization
of our previous hyperbolic and elliptic PDE examples.

For the parabolic case, whereb2 = ac, there is only one ratio from Eq. (9.6),β/α =
r = −b/c, and one solution,ψ(x, t) = F(x − bt/c). In order to find the second gen-
eral solution of our PDE (9.2) we make the Ansatz (trial solution)ψ(x, t) = ψ0(x, t) ·
G(x − bt/c). Substituting this into Eq. (9.2) we find

a
∂2ψ0

∂x2
+ 2b

∂2ψ0

∂x∂t
+ c

∂2ψ0

∂t2
= 0

for ψ0 since, upon replacingF → G, G solves Eq. (9.5) withd2G/dξ2 
= 0 in general.
The solutionψ0 can be any solution of our PDE (9.2), including the trivial ones such as
ψ0= x andψ0= t . Thus we obtain thegeneral parabolic solution,

ψ(x, t)= F

(
x − b

c
t

)
+ψ0(x, t)G

(
x − b

c
t

)
,

with ψ0= x or ψ0= t , etc.
With the same Ansatz one finds solutions of our PDE (9.2) with a source term, for

example,f 
= 0, but stilld = e= 0 and constanta, b, c.
Next we determine the characteristics, that is, curves where the second order derivatives

of the solutionψ are not well defined. These are the wave fronts along which the solutions
of our hyperbolic PDE (9.2) propagate. We solve our PDE with a source termf 
= 0 and
Cauchy boundary conditions (see Table 9.1) that are appropriate for hyperbolic PDEs,
whereψ and its normal derivative∂ψ/∂n are specified on an open curve

C : x = x(s), t = t (s),

with the parameters the length onC. Thendr= (dx, dt) is tangent and̂nds = (dt,−dx)
is normal to the curveC, and the first-order tangential and normal derivatives are given by
the chain rule

dψ

ds
= ∇ψ · dr

ds
= ∂ψ

∂x

dx

ds
+ ∂ψ

∂t

dt

ds
,

dψ

dn
= ∇ψ · n̂= ∂ψ

∂x

dt

ds
− ∂ψ

∂t

dx

ds
.
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From these two linear equations,∂ψ/∂t and∂ψ/∂x can be determined onC, provided∣∣∣∣∣ dxds dt
ds

dt
ds

− dx
ds

∣∣∣∣∣=−
(
dx

ds

)2

−
(
dt

ds

)2


= 0.

For the second derivatives we use the chain rule again:

d

ds

∂ψ

∂x
= dx

ds

∂2ψ

∂x2
+ dt

ds

∂2ψ

∂x∂t
, (9.7a)

d

ds

∂ψ

∂t
= dx

ds

∂2ψ

∂x∂t
+ dt

ds

∂2ψ

∂t2
. (9.7b)

From our PDE (9.2), and Eqs. (9.7a,b), which are linear in the second-order derivatives,
they cannot be calculated when the determinant vanishes, that is,∣∣∣∣∣∣∣∣

a 2b c

dx
ds

dt
ds

0

0 dx
ds

dt
ds

∣∣∣∣∣∣∣∣= a

(
dt

ds

)2

− 2b
dx

ds

dt

ds
+ c

(
dx

ds

)2

= 0. (9.8)

From Eq. (9.8), which defines the characteristics, we find that the tangent ratiodx/dt obeys

c

(
dx

dt

)2

− 2b
dx

dt
+ a = 0,

so

dx

dt
= 1

c

[
b± (b2− ac

)1/2]
. (9.9)

For the earlier hyperbolic wave (and elliptic potential) equation examples, b= 0 and a, c

are constants, so the solutions ξi = x+ tri from Eq. (9.6)coincide with the characteristics
of Eq. (9.9).

Nonlinear PDEs

Nonlinear ODEs and PDEs are a rapidly growing and important field. We encountered
earlier the simplest linear wave equation,

∂ψ

∂t
+ c

∂ψ

∂x
= 0,

as the first-order PDE of the wave fronts of the wave equation. The simplest nonlinear wave
equation,

∂ψ

∂t
+ c(ψ)

∂ψ

∂x
= 0, (9.10)

results if the local speed of propagation,c, is not constant but depends on the waveψ .
When a nonlinear equation has a solution of the formψ(x, t) = Acos(kx − ωt), where



542 Chapter 9 Differential Equations

ω(k) varies withk so thatω′′(k) 
= 0, then it is calleddispersive. Perhaps the best-known
nonlinear dispersive equation is theKorteweg–deVries equation,

∂ψ

∂t
+ψ

∂ψ

∂x
+ ∂3ψ

∂x3
= 0, (9.11)

which models the lossless propagation of shallow water waves and other phenomena. It is
widely known for itssoliton solutions. A soliton is a traveling wave with the property of
persisting through an interaction with another soliton: After they pass through each other,
they emerge in the same shape and with the same velocity and acquire no more than a
phase shift. Letψ(ξ = x − ct) be such a traveling wave. When substituted into Eq. (9.11)
this yields the nonlinear ODE

(ψ − c)
dψ

dξ
+ d3ψ

dξ3
= 0, (9.12)

which can be integrated to yield

d2ψ

dξ2
= cψ − ψ2

2
. (9.13)

There is no additive integration constant in Eq. (9.13) to ensure thatd2ψ/dξ2 → 0 with
ψ → 0 for largeξ , soψ is localized at the characteristicξ = 0, or x = ct . Multiplying
Eq. (9.13) bydψ/dξ and integrating again yields(

dψ

dξ

)2

= cψ2− ψ3

3
, (9.14)

wheredψ/dξ → 0 for largeξ . Taking the root of Eq. (9.14) and integrating once more
yields the soliton solution

ψ(x − ct)= 3c

cosh2
(√

c x−ct2

) . (9.15)

Some nonlinear topics, for example, the logistic equation and the onset of chaos, are re-
viewed in Chapter 18. For more details and literature, see J. Guckenheimer, P. Holmes, and
F. John,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, rev.
ed., New York: Springer-Verlag (1990).

Boundary Conditions

Usually, when we know a physical system at some time and the law governing the physical
process, then we are able to predict the subsequent development. Such initial values are
the most common boundary conditions associated with ODEs and PDE. Finding solutions
that match given points, curves, or surfaces corresponds to boundary value problems. So-
lutions usually are required to satisfy certain imposed (for example, asymptotic) boundary
conditions. These boundary conditions may take three forms:

1. Cauchy boundary conditions. The value of a function and normal derivative specified
on the boundary. In electrostatics this would meanϕ, the potential, andEn, the normal
component of the electric field.
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Table 9.1

Boundary Type of partial differential equation

conditions Elliptic Hyperbolic Parabolic

Laplace, Poisson Wave equation in Diffusion equation
in (x, y) (x, t) in (x, t)

Cauchy
Open surface Unphysical results Unique, stable Too restrictive

(instability) solution
Closed surface Too restrictive Too restrictive Too restrictive
Dirichlet
Open surface Insufficient Insufficient Unique, stable

solution in one
direction

Closed surface Unique, stable Solution not unique Too restrictive
solution

Neumann
Open surface Insufficient Insufficient Unique, stable

solution in one
direction

Closed surface Unique, stable Solution not unique Too restrictive
solution

2. Dirichlet boundary conditions. The value of a function specified on the boundary.
3. Neumann boundary conditions. The normal derivative (normal gradient) of a func-

tion specified on the boundary. In the electrostatic case this would beEn and there-
foreσ , the surface charge density.

A summary of the relation of these three types of boundary conditions to the three types
of two-dimensional partial differential equations is given in Table 9.1. For extended dis-
cussions of these partial differential equations the reader may consult Morse and Feshbach,
Chapter 6 (see Additional Readings).

Parts of Table 9.1 are simply a matter of maintaining internal consistency or of common
sense. For instance, for Poisson’s equation with a closed surface, Dirichlet conditions lead
to a unique, stable solution. Neumann conditions, independent of the Dirichlet conditions,
likewise lead to a unique stable solution independent of the Dirichlet solution. Therefore
Cauchy boundary conditions (meaning Dirichlet plus Neumann) could lead to an inconsis-
tency.

The termboundary conditions includes as a special case the concept ofinitial con-
ditions. For instance, specifying the initial positionx0 and the initial velocityv0 in some
dynamical problem would correspond to the Cauchy boundary conditions. The only differ-
ence in the present usage of boundary conditions in these one-dimensional problems is that
we are going to apply the conditions onboth ends of the allowed range of the variable.

9.2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Physics involves some first-order differential equations. For completeness (and review) it
seems desirable to touch on them briefly. We consider here differential equations of the
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general form

dy

dx
= f (x, y)=−P(x, y)

Q(x, y)
. (9.16)

Equation (9.16) is clearly a first-order, ordinary differential equation. It isfirst order be-
cause it contains the first and no higher derivatives. It isordinary because the only deriva-
tive, dy/dx, is an ordinary, or total, derivative. Equation (9.16) may or may not belinear,
although we shall treat the linear case explicitly later, Eq. (9.25).

Separable Variables

Frequently Eq. (9.16) will have the special form

dy

dx
= f (x, y)=−P(x)

Q(y)
. (9.17)

Then it may be rewritten as

P(x)dx +Q(y)dy = 0.

Integrating from(x0, y0) to (x, y) yields∫ x

x0

P(x)dx +
∫ y

y0

Q(y)dy = 0.

Since the lower limits,x0 andy0, contribute constants, we may ignore the lower limits of
integration and simply add a constant of integration. Note that this separation of variables
technique doesnot require that the differential equation be linear.

Example 9.2.1 PARACHUTIST

We want to find the velocity of the falling parachutist as a function of time and are partic-
ularly interested in the constant limiting velocity,v0, that comes about by air drag, taken,
to be quadratic,−bv2, and opposing the force of the gravitational attraction,mg, of the
Earth. We choose a coordinate system in which the positive direction is downward so that
the gravitational force is positive. For simplicity we assume that the parachute opens im-
mediately, that is, at timet = 0, wherev(t = 0) = 0, our initial condition. Newton’s law
applied to the falling parachutist gives

mv̇ =mg − bv2,

wherem includes the mass of the parachute.
The terminal velocity,v0, can be found from the equation of motion ast →∞; when

there is no acceleration,v̇ = 0, so

bv2
0 =mg, or v0=

√
mg

b
.
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The variablest andv separate

dv

g− b
m
v2
= dt,

which we integrate by decomposing the denominator into partial fractions. The roots of the
denominator are atv =±v0. Hence(

g− b

m
v2
)−1

= m

2v0b

(
1

v + v0
− 1

v − v0

)
.

Integrating both terms yields∫ v dV

g− b
m
V 2
= 1

2

√
m

gb
ln

v0+ v

v0− v
= t.

Solving for the velocity yields

v = e2t/T − 1

e2t/T + 1
v0= v0

sinh t
T

cosh t
T

= v0 tanh
t

T
,

whereT =
√

m
gb

is the time constant governing the asymptotic approach of the velocity to

the limiting velocity,v0.

Putting in numerical values,g = 9.8 m/s2 and takingb = 700 kg/m, m= 70 kg, gives
v0 = √9.8/10∼ 1 m/s∼ 3.6 km/h∼ 2.23 mi/h, the walking speed of a pedestrian at

landing, andT =
√

m
bg
= 1/

√
10· 9.8 ∼ 0.1 s. Thus, the constant speedv0 is reached

within a second. Finally, becauseit is always important to check the solution, we verify
that our solution satisfies

v̇ = cosht/T

cosht/T

v0

T
− sinh2 t/T

cosh2 t/T

v0

T
= v0

T
− v2

T v0
= g − b

m
v2,

that is, Newton’s equation of motion. The more realistic case, where the parachutist is in
free fall with an initial speedvi = v(0) > 0 before the parachute opens, is addressed in
Exercise 9.2.18. �

Exact Differential Equations

We rewrite Eq. (9.16) as

P(x, y) dx +Q(x,y)dy = 0. (9.18)

This equation is said to beexact if we can match the left-hand side of it to a differentialdϕ,

dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy. (9.19)

Since Eq. (9.18) has a zero on the right, we look for an unknown functionϕ(x, y) =
constant anddϕ = 0.
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We have (if such a functionϕ(x, y) exists)

P(x, y) dx +Q(x,y)dy = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy (9.20a)

and

∂ϕ

∂x
= P(x, y),

∂ϕ

∂y
=Q(x,y). (9.20b)

The necessary and sufficient condition for our equation to be exact is that the second,
mixed partial derivatives ofϕ(x, y) (assumed continuous) are independent of the order of
differentiation:

∂2ϕ

∂y∂x
= ∂P (x, y)

∂y
= ∂Q(x, y)

∂x
= ∂2ϕ

∂x∂y
. (9.21)

Note the resemblance to Eqs. (1.133a) of Section 1.13, “Potential Theory.” If Eq. (9.18)
corresponds to a curl (equal to zero), then a potential,ϕ(x, y), must exist.

If ϕ(x, y) exists, then from Eqs. (9.18) and (9.20a) our solution is

ϕ(x, y)= C.

We may constructϕ(x, y) from its partial derivatives just as we constructed a magnetic
vector potential in Section 1.13 from its curl. See Exercises 9.2.7 and 9.2.8.

It may well turn out that Eq. (9.18) is not exact and that Eq. (9.21) is not satisfied.
However, there always exists at least one and perhaps an infinity of integrating factors
α(x, y) such that

α(x, y)P (x, y) dx + α(x, y)Q(x, y) dy = 0

is exact. Unfortunately, an integrating factor is not always obvious or easy to find. Unlike
the case of the linear first-order differential equation to be considered next, there is no
systematic way to develop an integrating factor for Eq. (9.18).

A differential equation in which the variables have been separated is automatically exact.
An exact differential equation is not necessarily separable.

The wave front method of Section 9.1 also works for a first-order PDE:

a(x, y)
∂ψ

∂x
+ b(x, y)

∂ψ

∂y
= 0. (9.22a)

We look for a solution of the formψ = F(ξ), whereξ(x, y)= constant for varyingx and
y defines the wave front. Hence

dξ = ∂ξ

∂x
dx + ∂ξ

∂y
dy = 0, (9.22b)

while the PDE yields (
a
∂ξ

∂x
+ b

∂ξ

∂y

)
dF

dξ
= 0 (9.23a)

with dF/dξ 
= 0 in general. Comparing Eqs. (9.22b) and (9.23a) yields

dx

a
= dy

b
, (9.23b)
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which reduces the PDE to a first-order ODE for the tangentdy/dx of the wave front
functionξ(x, y).

When there is an additional source term in the PDE,

a
∂ψ

∂x
+ b

∂ψ

∂y
+ cψ = 0, (9.23c)

then we use the Ansatzψ =ψ0(x, y)F (ξ), which converts our PDE to

F

(
a
∂ψ0

∂x
+ b

∂ψ0

∂y
+ cψ0

)
+ψ0

dF

dξ

(
a
∂ξ

∂x
+ b

∂ξ

∂y

)
= 0. (9.24)

If we can guess a solutionψ0 of Eq. (9.23c), then Eq. (9.24) reduces to our previous
equation, Eq. (9.23a), from which the ODE of Eq. (9.23b) follows.

Linear First-Order ODEs

If f (x, y) in Eq. (9.16) has the form−p(x)y + q(x), then Eq. (9.16) becomes

dy

dx
+ p(x)y = q(x). (9.25)

Equation (9.25) is the most generallinear first-order ODE. Ifq(x) = 0, Eq. (9.25) is
homogeneous (iny). A nonzeroq(x) may represent asource or a driving term. Equa-
tion (9.25) islinear; each term is linear iny or dy/dx. There are no higher powers, that
is, y2, and no products,y(dy/dx). Note that the linearity refers to they anddy/dx; p(x)
andq(x) need not be linear inx. Equation (9.25), the most important of these first-order
ODEs for physics, may be solved exactly.

Let us look for anintegrating factor α(x) so that

α(x)
dy

dx
+ α(x)p(x)y = α(x)q(x) (9.26)

may be rewritten as

d

dx

[
α(x)y

]= α(x)q(x). (9.27)

The purpose of this is to make the left-hand side of Eq. (9.25) a derivative so that it can
be integrated — by inspection. It also, incidentally, makes Eq. (9.25) exact. Expanding
Eq. (9.27), we obtain

α(x)
dy

dx
+ dα

dx
y = α(x)q(x).

Comparison with Eq. (9.26) shows that we must require

dα

dx
= α(x)p(x). (9.28)

Here is a differential equation forα(x), with the variablesα andx separable. We separate
variables, integrate, and obtain

α(x)= exp

[∫ x

p(x) dx

]
(9.29)
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as our integrating factor.
With α(x) known we proceed to integrate Eq. (9.27). This, of course, was the point of

introducingα in the first place. We have∫ x d

dx

[
α(x)y(x)

]
dx =

∫ x

α(x)q(x) dx.

Now integrating by inspection, we have

α(x)y(x)=
∫ x

α(x)q(x) dx +C.

The constants from a constant lower limit of integration are lumped into the constantC.
Dividing by α(x), we obtain

y(x)= [α(x)]−1
{∫ x

α(x)q(x) dx +C

}
.

Finally, substituting in Eq. (9.29) forα yields

y(x)= exp

[
−
∫ x

p(t) dt

]{∫ x

exp

[∫ s

p(t) dt

]
q(s) ds +C

}
. (9.30)

Here the (dummy) variables of integration have been rewritten to make them unambigu-
ous. Equation (9.30) is the complete general solution of the linear, first-order differential
equation, Eq. (9.25). The portion

y1(x)= C exp

[
−
∫ x

p(t) dt

]
(9.31)

corresponds to the caseq(x)= 0 and is a general solution of the homogeneous differential
equation. The other term in Eq. (9.30),

y2(x)= exp

[
−
∫ x

p(t) dt

]∫ x

exp

[∫ s

p(t) dt

]
q(s) ds, (9.32)

is aparticular solution corresponding to the specific source term q(x).
Note that if our linear first-order differential equation is homogeneous(q = 0), then it

is separable. Otherwise, apart from special cases such asp = constant,q = constant, and
q(x)= ap(x), Eq. (9.25) is not separable.

Let us summarize this solution of the inhomogeneous ODE in terms of amethod called
variation of the constant as follows. In the first step, we solve the homogeneous ODE by
separation of variables as before, giving

y′

y
=−p, lny =−

∫ x

p(X)dX+ lnC, y(x)= Ce−
∫ x

p(X)dX.

In the second step, we let the integration constant becomex-dependent, that is,C→ C(x).
This is the “variation of the constant” used to solve the inhomogeneous ODE. Differenti-
atingy(x) we obtain

y′ = −pCe−
∫
p(x)dx +C′(x)e−

∫
p(x)dx =−py(x)+C′(x)e−

∫
p(x)dx .
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Comparing with the inhomogeneous ODE we find the ODE forC:

C′e−
∫
p(x)dx = q, or C(x)=

∫ x

e
∫ X

p(Y )dY q(X)dX.

Substituting thisC into y = C(x)e−
∫ x

p(X)dX reproduces Eq. (9.32).

Example 9.2.2 RL CIRCUIT

For a resistance-inductance circuit Kirchhoff’s law leads to

L
dI (t)

dt
+RI (t)= V (t)

for the currentI (t), whereL is the inductance andR is the resistance, both constant.V (t)

is the time-dependent input voltage.
From Eq. (9.29) our integrating factorα(t) is

α(t)= exp
∫ t R

L
dt = eRt/L.

Then by Eq. (9.30),

I (t)= e−Rt/L

[∫ t

eRt/L V (t)

L
dt +C

]
,

with the constantC to be determined by an initial condition (a boundary condition).
For the special caseV (t)= V0, a constant,

I (t)= e−Rt/L

[
V0

L
· L
R
eRt/L +C

]
= V0

R
+Ce−Rt/L.

If the initial condition isI (0)= 0, thenC =−V0/R and

I (t)= V0

R

[
1− e−Rt/L

]
.

�
Now we prove thetheorem thatthe solution of the inhomogeneous ODE is unique up

to an arbitrary multiple of the solution of the homogeneous ODE.
To show this, supposey1, y2 both solve the inhomogeneous ODE, Eq. (9.25); then

y′1− y′2+ p(x)(y1− y2)= 0

follows by subtracting the ODEs and says thaty1− y2 is a solution of the homogeneous
ODE. The solution of the homogeneous ODE can always be multiplied by an arbitrary
constant.

We also prove thetheorem thata first-order homogeneous ODE has only one linearly
independent solution. This is meant in the following sense. If two solutions arelinearly
dependent, by definition they satisfyay1(x)+by2(x)= 0 with nonzero constantsa, b for
all values ofx. If the only solution of this linear relation isa = 0= b, then our solutions
y1 andy2 are said to belinearly independent.
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To prove this theorem, supposey1, y2 both solve the homogeneous ODE. Then

y′1
y1
=−p(x)= y′2

y2
implies W(x)≡ y′1y2− y1y

′
2≡ 0. (9.33)

The functional determinantW is called theWronskian of the pair y1, y2. We now show
thatW ≡ 0 is the condition for them to be linearly dependent. Assuming linear dependence,
that is,

ay1(x)+ by2(x)= 0

with nonzero constantsa, b for all values ofx, we differentiate this linear relation to get
another linear relation,

ay′1(x)+ by′2(x)= 0.

The condition for these two homogeneous linear equations in the unknownsa, b to have a
nontrivial solution is that their determinant be zero, which isW = 0.

Conversely, fromW = 0, there follows linear dependence, because we can find a non-
trivial solution of the relation

y′1
y1
= y′2

y2

by integration, which gives

lny1= lny2+ lnC, or y1= Cy2.

Linear dependence and the Wronskian are generalized to three or more functions in Sec-
tion 9.6.

Exercises

9.2.1 From Kirchhoff’s law the currentI in anRC (resistance–capacitance) circuit (Fig. 9.1)
obeys the equation

R
dI

dt
+ 1

C
I = 0.

(a) FindI (t).
(b) For a capacitance of 10,000 µF charged to 100 V and discharging through a resis-

tance of 1 M�, find the currentI for t = 0 and fort = 100 seconds.

Note. The initial voltage isI0R or Q/C, whereQ= ∫∞0 I (t) dt .

9.2.2 The Laplace transform of Bessel’s equation(n= 0) leads to(
s2+ 1

)
f ′(s)+ sf (s)= 0.

Solve forf (s).
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FIGURE 9.1 RC circuit.

9.2.3 The decay of a population by catastrophic two-body collisions is described by

dN

dt
=−kN2.

This is a first-order,nonlinear differential equation. Derive the solution

N(t)=N0

(
1+ t

τ0

)−1

,

whereτ0= (kN0)
−1. This implies an infinite population att =−τ0.

9.2.4 The rate of a particular chemical reactionA+B→ C is proportional to the concentra-
tions of the reactantsA andB:

dC(t)

dt
= α

[
A(0)−C(t)

][
B(0)−C(t)

]
.

(a) FindC(t) for A(0) 
= B(0).
(b) FindC(t) for A(0)= B(0).

The initial condition is thatC(0)= 0.

9.2.5 A boat, coasting through the water, experiences a resisting force proportional tovn, v
being the boat’s instantaneous velocity. Newton’s second law leads to

m
dv

dt
=−kvn.

With v(t = 0) = v0, x(t = 0) = 0, integrate to findv as a function of time andv as a
function of distance.

9.2.6 In the first-order differential equationdy/dx = f (x, y) the functionf (x, y) is a func-
tion of the ratioy/x:

dy

dx
= g(y/x).

Show that the substitution ofu= y/x leads to a separable equation inu andx.
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9.2.7 The differential equation

P(x, y) dx +Q(x,y)dy = 0

is exact. Construct a solution

ϕ(x, y)=
∫ x

x0

P(x, y) dx +
∫ y

y0

Q(x0, y) dy = constant.

9.2.8 The differential equation

P(x, y) dx +Q(x,y)dy = 0

is exact. If

ϕ(x, y)=
∫ x

x0

P(x, y) dx +
∫ y

y0

Q(x0, y) dy,

show that

∂ϕ

∂x
= P(x, y),

∂ϕ

∂y
=Q(x,y).

Henceϕ(x, y)= constant is a solution of the original differential equation.

9.2.9 Prove that Eq. (9.26) is exact in the sense of Eq. (9.21), provided thatα(x) satisfies
Eq. (9.28).

9.2.10 A certain differential equation has the form

f (x)dx + g(x)h(y) dy = 0,

with none of the functionsf (x), g(x), h(y) identically zero. Show that a necessary and
sufficient condition for this equation to be exact is thatg(x)= constant.

9.2.11 Show that

y(x)= exp

[
−
∫ x

p(t) dt

]{∫ x

exp

[∫ s

p(t) dt

]
q(s) ds +C

}
is a solution of

dy

dx
+ p(x)y(x)= q(x)

by differentiating the expression fory(x) and substituting into the differential equation.

9.2.12 The motion of a body falling in a resisting medium may be described by

m
dv

dt
=mg − bv

when the retarding force is proportional to the velocity,v. Find the velocity. Evaluate
the constant of integration by demanding thatv(0)= 0.
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9.2.13 Radioactive nuclei decay according to the law

dN

dt
=−λN,

N being the concentration of a given nuclide andλ, the particular decay constant. In a
radioactive series ofn different nuclides, starting withN1,

dN1

dt
= −λ1N1,

dN2

dt
= λ1N1− λ2N2, and so on.

FindN2(t) for the conditionsN1(0)=N0 andN2(0)= 0.

9.2.14 The rate of evaporation from a particular spherical drop of liquid (constant density) is
proportional to its surface area. Assuming this to be the sole mechanism of mass loss,
find the radius of the drop as a function of time.

9.2.15 In the linear homogeneous differential equation

dv

dt
=−av

the variables are separable. When the variables are separated, the equation is exact.
Solve this differential equation subject tov(0)= v0 by the following three methods:

(a) Separating variables and integrating.
(b) Treating the separated variable equation as exact.
(c) Using the result for a linear homogeneous differential equation.

ANS. v(t)= v0e
−at .

9.2.16 Bernoulli’s equation,

dy

dx
+ f (x)y = g(x)yn,

is nonlinear forn 
= 0 or 1. Show that the substitutionu = y1−n reduces Bernoulli’s
equation to a linear equation. (See Section 18.4.)

ANS.
du

dx
+ (1− n)f (x)u= (1− n)g(x).

9.2.17 Solve the linear, first-order equation, Eq. (9.25), by assumingy(x)= u(x)v(x), where
v(x) is a solution of the corresponding homogeneous equation[q(x) = 0]. This is the
method ofvariation of parameters due to Lagrange. We apply it to second-order equa-
tions in Exercise 9.6.25.

9.2.18 (a) Solve Example 9.2.1 for an initial velocityvi = 60 mi/h, when the parachute opens.
Find v(t). (b) For a skydiver in free fall use the friction coefficientb = 0.25 kg/m and
massm= 70 kg. What is the limiting velocity in this case?
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9.3 SEPARATION OF VARIABLES

The equations of mathematical physics listed in Section 9.1 are all partial differential equa-
tions. Our first technique for their solution splits the partial differential equation ofn vari-
ables inton ordinary differential equations. Each separation introduces an arbitrary con-
stant of separation. If we haven variables, we have to introducen−1 constants, determined
by the conditions imposed in the problem being solved.

Cartesian Coordinates
In Cartesian coordinates the Helmholtz equation becomes

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
+ k2ψ = 0, (9.34)

using Eq. (2.27) for the Laplacian. For the present letk2 be a constant. Perhaps the simplest
way of treating a partial differential equation such as Eq. (9.34) is to split it into a set of
ordinary differential equations. This may be done as follows. Let

ψ(x, y, z)=X(x)Y (y)Z(z) (9.35)

and substitute back into Eq. (9.34). How do we know Eq. (9.35) is valid? When the differ-
ential operators in various variables are additive in the PDE, that is, when there are no prod-
ucts of differential operators in different variables, the separation method usually works.
We are proceeding in the spirit of let’s try and see if it works. If our attempt succeeds, then
Eq. (9.35) will be justified. If it does not succeed, we shall find out soon enough and then
we shall try another attack, such as Green’s functions, integral transforms, or brute-force
numerical analysis. Withψ assumed given by Eq. (9.35), Eq. (9.34) becomes

YZ
d2X

dx2
+XZ

d2Y

dy2
+XY

d2Z

dz2
+ k2XYZ = 0. (9.36)

Dividing by ψ =XYZ and rearranging terms, we obtain

1

X

d2X

dx2
=−k2− 1

Y

d2Y

dy2
− 1

Z

d2Z

dz2
. (9.37)

Equation (9.37) exhibits one separation of variables. The left-hand side is a function ofx

alone, whereas the right-hand side depends only ony andz and not onx. But x, y, andz
are all independent coordinates. The equality of both sides depending on different variables
means that the behavior ofx as an independent variable is not determined byy and z.
Therefore, each side must be equal to a constant, a constant of separation. We choose2

1

X

d2X

dx2
= −l2, (9.38)

−k2− 1

Y

d2Y

dy2
− 1

Z

d2Z

dz2
= −l2. (9.39)

2The choice of sign, completely arbitrary here, will be fixed in specific problems by the need to satisfy specific boundary
conditions.
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Now, turning our attention to Eq. (9.39), we obtain

1

Y

d2Y

dy2
=−k2+ l2− 1

Z

d2Z

dz2
, (9.40)

and a second separation has been achieved. Here we have a function ofy equated to a
function ofz, as before. We resolve it, as before, by equating each side to another constant
of separation,2 −m2,

1

Y

d2Y

dy2
= −m2, (9.41)

1

Z

d2Z

dz2
= −k2+ l2+m2=−n2, (9.42)

introducing a constantn2 by k2= l2+m2+ n2 to produce a symmetric set of equations.
Now we have three ODEs ((9.38), (9.41), and (9.42)) to replace Eq. (9.34). Our assumption
(Eq. (9.35)) has succeeded and is thereby justified.

Our solution should be labeled according to the choice of our constantsl,m, andn; that
is,

ψlm(x, y, z)=Xl(x)Ym(y)Zn(z). (9.43)

Subject to the conditions of the problem being solved and to the conditionk2 = l2 +
m2+ n2, we may choosel, m, andn as we like, and Eq. (9.43) will still be a solution of
Eq. (9.34), providedXl(x) is a solution of Eq. (9.38), and so on. We may developthe most
general solution of Eq. (9.34) by taking alinear combination of solutions ψlm,

� =
∑
l,m

almψlm. (9.44)

The constant coefficientsalm are finally chosen to permit� to satisfy the boundary condi-
tions of the problem, which, as a rule, lead to a discrete set of valuesl,m.

Circular Cylindrical Coordinates

With our unknown functionψ dependent onρ,ϕ, andz, the Helmholtz equation becomes
(see Section 2.4 for∇2)

∇2ψ(ρ,ϕ, z)+ k2ψ(ρ,ϕ, z)= 0, (9.45)

or

1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1

ρ2

∂2ψ

∂ϕ2
+ ∂2ψ

∂z2
+ k2ψ = 0. (9.46)

As before, we assume a factored form forψ ,

ψ(ρ,ϕ, z)= P(ρ)�(ϕ)Z(z). (9.47)

Substituting into Eq. (9.46), we have

�Z

ρ

d

dρ

(
ρ
dP

dρ

)
+ PZ

ρ2

d2�

dϕ2
+ P�

d2Z

dz2
+ k2P�Z = 0. (9.48)
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All the partial derivatives have become ordinary derivatives. Dividing byP�Z and moving
thez derivative to the right-hand side yields

1

ρP

d

dρ

(
ρ
dP

dρ

)
+ 1

ρ2�

d2�

dϕ2
+ k2=− 1

Z

d2Z

dz2
. (9.49)

Again, a function ofz on the right appears to depend on a function ofρ andϕ on the
left. We resolve this by setting each side of Eq. (9.49) equal to the same constant. Let us
choose3 −l2. Then

d2Z

dz2
= l2Z (9.50)

and

1

ρP

d

dρ

(
ρ
dP

dρ

)
+ 1

ρ2�

d2�

dϕ2
+ k2=−l2. (9.51)

Settingk2+ l2= n2, multiplying byρ2, and rearranging terms, we obtain

ρ

P

d

dρ

(
ρ
dP

dρ

)
+ n2ρ2=− 1

�

d2�

dϕ2
. (9.52)

We may set the right-hand side tom2 and

d2�

dϕ2
=−m2�. (9.53)

Finally, for theρ dependence we have

ρ
d

dρ

(
ρ
dP

dρ

)
+ (n2ρ2−m2)P = 0. (9.54)

This is Bessel’s differential equation. The solutions and their properties are presented in
Chapter 11. The separation of variables of Laplace’s equation in parabolic coordinates also
gives rise to Bessel’s equation. It may be noted that the Bessel equation is notorious for the
variety of disguises it may assume. For an extensive tabulation of possible forms the reader
is referred toTables of Functions by Jahnke and Emde.4

The original Helmholtz equation, a three-dimensional PDE, has been replaced by three
ODEs, Eqs. (9.50), (9.53), and (9.54). A solution of the Helmholtz equation is

ψ(ρ,ϕ, z)= P(ρ)�(ϕ)Z(z). (9.55)

Identifying the specificP,�,Z solutions by subscripts, we see that the most general solu-
tion of the Helmholtz equation is a linear combination of the product solutions:

�(ρ,ϕ, z)=
∑
m,n

amnPmn(ρ)�m(ϕ)Zn(z). (9.56)

3The choice of sign of the separation constant is arbitrary. However, a minus sign is chosen for the axial coordinatez in expec-
tation of a possible exponential dependence onz (from Eq. (9.50)). A positive sign is chosen for the azimuthal coordinateϕ in
expectation of a periodic dependence onϕ (from Eq. (9.53)).
4E. Jahnke and F. Emde,Tables of functions, 4th rev. ed., New York: Dover (1945), p. 146; also, E. Jahnke, F. Emde, and
F. Lösch,Tables of Higher Functions, 6th ed., New York: McGraw-Hill (1960).
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Spherical Polar Coordinates

Let us try to separate the Helmholtz equation, again withk2 constant, in spherical polar
coordinates. Using Eq. (2.48), we obtain

1

r2 sinθ

[
sinθ

∂

∂r

(
r2∂ψ

∂r

)
+ ∂

∂θ

(
sinθ

∂ψ

∂θ

)
+ 1

sinθ

∂2ψ

∂ϕ2

]
=−k2ψ. (9.57)

Now, in analogy with Eq. (9.35) we try

ψ(r, θ,ϕ)=R(r)�(θ)�(ϕ). (9.58)

By substituting back into Eq. (9.57) and dividing byR��, we have

1

Rr2

d

dr

(
r2dR

dr

)
+ 1

�r2 sinθ

d

dθ

(
sinθ

d�

dθ

)
+ 1

�r2 sin2 θ

d2�

dϕ2
=−k2. (9.59)

Note that all derivatives are now ordinary derivatives rather than partials. By multiplying
by r2 sin2 θ , we can isolate(1/�)(d2�/dϕ2) to obtain5

1

�

d2�

dϕ2
= r2 sin2 θ

[
−k2− 1

r2R

d

dr

(
r2dR

dr

)
− 1

r2 sinθ�

d

dθ

(
sinθ

d�

dθ

)]
. (9.60)

Equation (9.60) relates a function ofϕ alone to a function ofr andθ alone. Sincer, θ ,
andϕ are independent variables, we equate each side of Eq. (9.60) to a constant. In almost
all physical problemsϕ will appear as an azimuth angle. This suggests a periodic solution
rather than an exponential. With this in mind, let us use−m2 as the separation constant,
which, then, must be an integer squared. Then

1

�

d2�(ϕ)

dϕ2
=−m2 (9.61)

and

1

r2R

d

dr

(
r2dR

dr

)
+ 1

r2 sinθ�

d

dθ

(
sinθ

d�

dθ

)
− m2

r2 sin2 θ
=−k2. (9.62)

Multiplying Eq. (9.62) byr2 and rearranging terms, we obtain

1

R

d

dr

(
r2dR

dr

)
+ r2k2=− 1

sinθ�

d

dθ

(
sinθ

d�

dθ

)
+ m2

sin2 θ
. (9.63)

Again, the variables are separated. We equate each side to a constant,Q, and finally obtain

1

sinθ

d

dθ

(
sinθ

d�

dθ

)
− m2

sin2 θ
�+Q�= 0, (9.64)

1

r2

d

dr

(
r2dR

dr

)
+ k2R − QR

r2
= 0. (9.65)

5The order in which the variables are separated here is not unique. Many quantum mechanics texts show ther dependence split
off first.
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Once more we have replaced a partial differential equation of three variables by three
ODEs. The solutions of these ODEs are discussed in Chapters 11 and 12. In Chapter 12, for
example, Eq. (9.64) is identified as the associated Legendre equation, in which the constant
Q becomesl(l + 1); l is a non-negative integer becauseθ is an angular variable. Ifk2 is
a (positive) constant, Eq. (9.65) becomes the spherical Bessel equation of Section 11.7.

Again, our most general solution may be written

ψQm(r, θ,ϕ)=
∑
Q,m

aQmRQ(r)�Qm(θ)�m(ϕ). (9.66)

The restriction thatk2 be a constant is unnecessarily severe. The separation process will
still be possible fork2 as general as

k2= f (r)+ 1

r2
g(θ)+ 1

r2 sin2 θ
h(ϕ)+ k′2. (9.67)

In the hydrogen atom problem, one of the most important examples of the Schrödinger
wave equation with a closed form solution isk2 = f (r), with k2 independent ofθ,ϕ.
Equation (9.65) for the hydrogen atom becomes the associated Laguerre equation.

The great importance of this separation of variables in spherical polar coordinates stems
from the fact that the casek2= k2(r) covers a tremendous amount of physics: a great deal
of the theories of gravitation, electrostatics, and atomic, nuclear, and particle physics. And
with k2 = k2(r), the angular dependence is isolated in Eqs. (9.61) and (9.64),which can
be solved exactly.

Finally, as an illustration of how the constantm in Eq. (9.61) is restricted, we note that
ϕ in cylindrical and spherical polar coordinates is an azimuth angle. If this is a classical
problem, we shall certainly require that the azimuthal solution�(ϕ) be single-valued; that
is,

�(ϕ + 2π)=�(ϕ). (9.68)

This is equivalent to requiring the azimuthal solution to have a period of 2π .6 Thereforem
must be an integer. Which integer it is depends on the details of the problem. If the integer
|m|> 1, then� will have the period 2π/m. Whenever a coordinate corresponds to an axis
of translation or to an azimuth angle, the separated equation always has the form

d2�(ϕ)

dϕ2
=−m2�(ϕ)

for ϕ, the azimuth angle, and

d2Z(z)

dz2
=±a2Z(z) (9.69)

for z, an axis of translation of the cylindrical coordinate system. The solutions, of course,
are sinaz and cosaz for −a2 and the corresponding hyperbolic function (or exponentials)
sinhaz and coshaz for +a2.

6This also applies in most quantum mechanical problems, but the argument is much more involved. Ifm is not an integer,
rotation group relations and ladder operator relations (Section 4.3) are disrupted. Compare E. Merzbacher, Single valuedness of
wave functions.Am. J. Phys. 30: 237 (1962).
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Table 9.2 Solutions in Spherical Polar Coordinatesa

ψ =
∑
l,m

almψlm

1. ∇2ψ = 0 ψlm =
{

rl

r−l−1

}{
Pm
l
(cosθ)

Qm
l
(cosθ)

}{
cosmϕ

sinmϕ

}
b

2. ∇2ψ + k2ψ = 0 ψlm =
{
jl(kr)

nl(kr)

}{
Pm
l
(cosθ)

Qm
l
(cosθ)

}{
cosmϕ

sinmϕ

}
b

3. ∇2ψ − k2ψ = 0 ψlm =
{
il (kr)

kl (kr)

}{
Pm
l
(cosθ)

Qm
l
(cosθ)

}{
cosmϕ

sinmϕ

}
b

aReferences for some of the functions arePm
l
(cosθ),m= 0, Section 12.1;m 
= 0, Sec-

tion 12.5;Qm
l
(cosθ), Section 12.10;jl (kr), nl (kr), il (kr), andkl (kr), Section 11.7.

bcosmϕ andsinmϕ may be replaced bye±imϕ .

Other occasionally encountered ODEs include the Laguerre and associated Laguerre
equations from the supremely important hydrogen atom problem in quantum mechanics:

x
d2y

dx2
+ (1− x)

dy

dx
+ αy = 0, (9.70)

x
d2y

dx2
+ (1+ k − x)

dy

dx
+ αy = 0. (9.71)

From the quantum mechanical theory of the linear oscillator we have Hermite’s equation,

d2y

dx2
− 2x

dy

dx
+ 2αy = 0. (9.72)

Finally, from time to time we find the Chebyshev differential equation,(
1− x2)d2y

dx2
− x

dy

dx
+ n2y = 0. (9.73)

For convenient reference, the forms of the solutions of Laplace’s equation, Helmholtz’s
equation, and the diffusion equation for spherical polar coordinates are collected in Ta-
ble 9.2. The solutions of Laplace’s equation in circular cylindrical coordinates are pre-
sented in Table 9.3.

General properties following from the form of the differential equations are discussed in
Chapter 10. The individual solutions are developed and applied in Chapters 11–13.

The practicing physicist may and probably will meet other second-order ODEs, some of
which may possibly be transformed into the examples studied here. Some of these ODEs
may be solved by the techniques of Sections 9.5 and 9.6. Others may require a computer
for a numerical solution.

We refer to the second edition of this text for other important coordinate systems.

• To put the separation method of solving PDEs in perspective, let us review it as a conse-
quence of a symmetry of the PDE. Take the stationary Schrödinger equationHψ =Eψ

as an example, with a potentialV (r) depending only on the radial distancer . Then this
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Table 9.3 Solutions in Circular Cylindrical Coordinatesa

ψ =
∑
m,α

amαψmα

a. ∇2ψ + α2ψ = 0 ψmα =
{
Jm(αρ)

Nm(αρ)

}{
cosmϕ

sinmϕ

}{
e−αz

eαz

}

b. ∇2ψ − α2ψ = 0 ψmα =
{

Im(αρ)

Km(αρ)

}{
cosmϕ

sinmϕ

}{
cosαz

sinαz

}

c. ∇2ψ = 0 ψm =
{

ρm

ρ−m

}{
cosmϕ

sinmϕ

}

aReferences for the radial functions areJm(αρ), Section 11.1;Nm(αρ), Section 11.3;
Im(αρ) andKm(αρ), Section 11.5.

PDE is invariant under rotations that comprise the groupSO(3). Its diagonal genera-
tor is the orbital angular momentum operatorLz =−i ∂

∂ϕ
, and its quadratic (Casimir)

invariant isL2. Since both commute withH (see Section 4.3), we end up with three
separate eigenvalue equations:

Hψ =Eψ, L2ψ = l(l + 1)ψ, Lzψ =mψ.

Upon replacingL2
z in L2 by its eigenvaluem2, theL2 PDE becomes Legendre’s ODE,

and similarlyHψ =Eψ becomes the radial ODE of the separation method in spherical
polar coordinates.

• For cylindrical coordinates the PDE is invariant under rotations about thez-axis only,
which form a subgroup ofSO(3). This invariance yields the generatorLz = −i∂/∂ϕ
and separate azimuthal ODELzψ =mψ , as before. If the potentialV is invariant under
translations along thez-axis, then the generator−i∂/∂z gives the separate ODE in the
z variable.

• In general (see Section 4.3), there aren mutually commuting generatorsHi with eigen-
valuesmi of the (classical) Lie groupG of rankn and the corresponding Casimir in-
variantsCi with eigenvaluesci (Chapter 4), which yield the separate ODEs

Hiψ =miψ, Ciψ = ciψ

in addition to the (by now) radial ODEHψ =Eψ .

Exercises

9.3.1 By letting the operator∇2+ k2 act on the general forma1ψ1(x, y, z)+ a2ψ2(x, y, z),
show that it is linear, that is, that(∇2 + k2)(a1ψ1 + a2ψ2) = a1(∇2 + k2)ψ1 +
a2(∇2+ k2)ψ2.

9.3.2 Show that the Helmholtz equation,

∇2ψ + k2ψ = 0,
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is still separable in circular cylindrical coordinates ifk2 is generalized tok2+ f (ρ)+
(1/ρ2)g(ϕ)+ h(z).

9.3.3 Separate variables in the Helmholtz equation in spherical polar coordinates, splitting off
the radial dependencefirst. Show that your separated equations have the same form as
Eqs. (9.61), (9.64), and (9.65).

9.3.4 Verify that

∇2ψ(r, θ,ϕ)+
[
k2+ f (r)+ 1

r2
g(θ)+ 1

r2 sin2 θ
h(ϕ)

]
ψ(r, θ,ϕ)= 0

is separable (in spherical polar coordinates). The functionsf,g, andh are functions
only of the variables indicated;k2 is a constant.

9.3.5 An atomic (quantum mechanical) particle is confined inside a rectangular box of sides
a, b, andc. The particle is described by a wave functionψ that satisfies the Schrödinger
wave equation

− h̄2

2m
∇2ψ =Eψ.

The wave function is required to vanish at each surface of the box (but not to be identi-
cally zero). This condition imposes constraints on the separation constants and therefore
on the energyE. What is the smallest value ofE for which such a solution can be ob-
tained?

ANS.E = π2h̄2

2m

(
1

a2
+ 1

b2
+ 1

c2

)
.

9.3.6 For a homogeneous spherical solid with constant thermal diffusivity,K , and no heat
sources, the equation of heat conduction becomes

∂T (r, t)

∂t
=K∇2T (r, t).

Assume a solution of the form

T =R(r)T (t)

and separate variables. Show that the radial equation may take on the standard form

r2d
2R

dr2
+ 2r

dR

dr
+ [α2r2− n(n+ 1)

]
R = 0; n= integer.

The solutions of this equation are calledspherical Bessel functions.

9.3.7 Separate variables in the thermal diffusion equation of Exercise 9.3.6 in circular cylin-
drical coordinates. Assume that you can neglect end effects and takeT = T (ρ, t).

9.3.8 The quantum mechanical angular momentum operator is given byL=−i(r×∇). Show
that

L ·Lψ = l(l + 1)ψ

leads to the associated Legendre equation.
Hint. Exercises 1.9.9 and 2.5.16 may be helpful.
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9.3.9 The one-dimensional Schrödinger wave equation for a particle in a potential fieldV =
1
2kx

2 is

− h̄2

2m

d2ψ

dx2
+ 1

2
kx2ψ =Eψ(x).

(a) Usingξ = ax and a constantλ, we have

a =
(
mk

h̄2

)1/4

, λ= 2E

h̄

(
m

k

)1/2

;
show that

d2ψ(ξ)

dξ2
+ (λ− ξ2)ψ(ξ)= 0.

(b) Substituting

ψ(ξ)= y(ξ)e−ξ2/2,

show thaty(ξ) satisfies the Hermite differential equation.

9.3.10 Verify that the following are solutions of Laplace’s equation:

(a)ψ1= 1/r , r 
= 0, (b)ψ2= 1

2r
ln

r + z

r − z
.

Note. The z derivatives of 1/r generate the Legendre polynomials,Pn(cosθ), Exer-
cise 12.1.7. Thez derivatives of(1/2r) ln[(r + z)/(r − z)] generate the Legendre func-
tions,Qn(cosθ).

9.3.11 If � is a solution of Laplace’s equation,∇2� = 0, show that∂�/∂z is also a solution.

9.4 SINGULAR POINTS

In this section the concept of a singular point, or singularity (as applied to a differential
equation), is introduced. The interest in this concept stems from its usefulness in (1) clas-
sifying ODEs and (2) investigating the feasibility of a series solution. This feasibility is the
topic of Fuchs’ theorem, Sections 9.5 and 9.6.

All the ODEs listed in Section 9.3 may be solved ford2y/dx2. Using the notation
d2y/dx2= y′′, we have7

y′′ = f (x, y, y′). (9.74)

If we write our second-order homogeneous differential equation (iny) as

y′′ + P(x)y′ +Q(x)y = 0, (9.75)

we are ready to define ordinary and singular points. If the functionsP(x) andQ(x) remain
finite at x = x0, point x = x0 is an ordinary point. However, if eitherP(x) or Q(x) (or

7This prime notation,y′ = dy/dx, was introduced by Lagrange in the late 18th century as an abbreviation for Leibniz’s more
explicit but more cumbersomedy/dx.
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both) diverges asx→ x0, pointx0 is a singular point. Using Eq. (9.75), we may distinguish
between two kinds of singular points.

1. If eitherP(x) or Q(x) diverges asx→ x0 but (x − x0)P (x) and
(x − x0)

2Q(x) remain finite asx→ x0, thenx = x0 is called aregular, or nonessen-
tial, singular point.

2. If P(x) diverges faster than 1/(x−x0) so that(x−x0)P (x) goes to infinity asx→ x0,
or Q(x) diverges faster than 1/(x − x0)

2 so that(x − x0)
2Q(x) goes to infinity as

x→ x0, then pointx = x0 is labeled anirregular, or essential, singularity.

These definitions hold for all finite values ofx0. The analysis of pointx→∞ is similar
to the treatment of functions of a complex variable (Section 6.6). We setx = 1/z, substitute
into the differential equation, and then letz→ 0. By changing variables in the derivatives,
we have

dy(x)

dx
= dy(z−1)

dz

dz

dx
=− 1

x2

dy(z−1)

dz
=−z2dy(z

−1)

dz
, (9.76)

d2y(x)

dx2
= d

dz

[
dy(x)

dx

]
dz

dx
= (−z2)[−2z

dy(z−1)

dz
− z2d

2y(z−1)

dz2

]
= 2z3dy(z

−1)

dz
+ z4d

2y(z−1)

dz2
. (9.77)

Using these results, we transform Eq. (9.75) into

z4d
2y

dz2
+ [2z3− z2P

(
z−1)]dy

dz
+Q

(
z−1)y = 0. (9.78)

The behavior atx =∞(z= 0) then depends on the behavior of the new coefficients,

2z− P(z−1)

z2
and

Q(z−1)

z4
,

asz→ 0. If these two expressions remain finite, pointx =∞ is an ordinary point. If they
diverge no more rapidly than 1/z and 1/z2, respectively, pointx =∞ is a regular singular
point; otherwise it is an irregular singular point (an essential singularity).

Example 9.4.1

Bessel’s equation is

x2y′′ + xy′ + (x2− n2)y = 0. (9.79)

Comparing it with Eq. (9.75) we have

P(x)= 1

x
, Q(x)= 1− n2

x2
,

which shows that pointx = 0 is a regular singularity. By inspection we see that there are
no other singular points in the finite range. Asx→∞(z→ 0), from Eq. (9.78) we have
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Table 9.4

Regular Irregular
singularity singularity

Equation x = x =
1. Hypergeometric 0,1,∞ –

x(x − 1)y′′ + [(1+ a + b)x − c]y′ + aby = 0.
2. Legendrea −1,1,∞ –

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0.
3. Chebyshev −1,1,∞ –

(1− x2)y′′ − xy′ + n2y = 0.
4. Confluent hypergeometric 0 ∞

xy′′ + (c− x)y′ − ay = 0.
5. Bessel 0 ∞

x2y′′ + xy′ + (x2− n2)y = 0.
6. Laguerrea 0 ∞

xy′′ + (1− x)y′ + ay = 0.
7. Simple harmonic oscillator – ∞

y′′ +ω2y = 0.
8. Hermite – ∞

y′′ − 2xy′ + 2αy = 0.

aThe associated equations have the same singular points.

the coefficients

2z− z

z2
and

1− n2z2

z4
.

Since the latter expression diverges asz4, pointx =∞ is an irregular, or essential, singu-
larity. �

The ordinary differential equations of Section 9.3, plus two others, the hypergeometric
and the confluent hypergeometric, have singular points, as shown in Table 9.4.

It will be seen that the first three equations in Table 9.4, hypergeometric, Legendre, and
Chebyshev, all have three regular singular points. The hypergeometric equation, with regu-
lar singularities at 0, 1, and∞ is taken as the standard, the canonical form. The solutions of
the other two may then be expressed in terms of its solutions, the hypergeometric functions.
This is done in Chapter 13.

In a similar manner, the confluent hypergeometric equation is taken as the canonical
form of a linear second-order differential equation with one regular and one irregular sin-
gular point.

Exercises

9.4.1 Show that Legendre’s equation has regular singularities atx =−1, 1, and∞.

9.4.2 Show that Laguerre’s equation, like the Bessel equation, has a regular singularity at
x = 0 and an irregular singularity atx =∞.



9.5 Series Solutions — Frobenius’ Method 565

9.4.3 Show that the substitution

x→ 1− x

2
, a =−l, b= l + 1, c= 1

converts the hypergeometric equation into Legendre’s equation.

9.5 SERIES SOLUTIONS — FROBENIUS’ METHOD

In this section we develop a method of obtaining one solution of the linear, second-order,
homogeneous ODE. The method, a series expansion, will always work, provided the point
of expansion is no worse than a regular singular point. In physics this very gentle condition
is almost always satisfied.

A linear, second-order, homogeneous ODE may be put in the form

d2y

dx2
+ P(x)

dy

dx
+Q(x)y = 0. (9.80)

The equation ishomogeneous because each term containsy(x) or a derivative;linear
because eachy, dy/dx, or d2y/dx2 appears as the first power — and no products. In this
section we develop (at least) one solution of Eq. (9.80). In Section 9.6 we develop the
second, independent solution and prove that no third, independent solution exists.
Therefore themost general solution of Eq. (9.80) may be written as

y(x)= c1y1(x)+ c2y2(x). (9.81)

Our physical problem may lead to anonhomogeneous, linear, second-order ODE,

d2y

dx2
+ P(x)

dy

dx
+Q(x)y = F(x). (9.82)

The function on the right,F(x), represents a source (such as electrostatic charge) or a
driving force (as in a driven oscillator). Specific solutions of this nonhomogeneous equa-
tion are touched on in Exercise 9.6.25. They are explored in some detail, using Green’s
function techniques, in Sections 9.7 and 10.5, and with a Laplace transform technique in
Section 15.11. Calling this solutionyp, we may add to it any solution of the corresponding
homogeneous equation (Eq. (9.80)). Hence themost general solution of Eq. (9.82) is

y(x)= c1y1(x)+ c2y2(x)+ yp(x). (9.83)

The constantsc1 andc2 will eventually be fixed by boundary conditions.
For the present, we assume thatF(x)= 0 and that our differential equation is homoge-

neous. We shall attempt to develop a solution of our linear, second-order, homogeneous
differential equation, Eq. (9.80), by substituting in a power series with undetermined coef-
ficients. Also available as a parameter is the power of the lowest nonvanishing term of the
series. To illustrate, we apply the method to two important differential equations, first the
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linear (classical) oscillator equation

d2y

dx2
+ω2y = 0, (9.84)

with known solutionsy = sinωx,cosωx.
We try

y(x) = xk
(
a0+ a1x + a2x

2+ a3x
3+ · · · )

=
∞∑
λ=0

aλx
k+λ, a0 
= 0, (9.85)

with the exponentk and all the coefficientsaλ still undetermined. Note thatk need not be
an integer. By differentiating twice, we obtain

dy

dx
=

∞∑
λ=0

aλ(k + λ)xk+λ−1,

d2y

dx2
=

∞∑
λ=0

aλ(k + λ)(k + λ− 1)xk+λ−2.

By substituting into Eq. (9.84), we have

∞∑
λ=0

aλ(k + λ)(k + λ− 1)xk+λ−2+ω2
∞∑
λ=0

aλx
k+λ = 0. (9.86)

From our analysis of the uniqueness of power series (Chapter 5), the coefficients of each
power ofx on the left-hand side of Eq. (9.86) must vanish individually.

The lowest power ofx appearing in Eq. (9.86) isxk−2, for λ= 0 in the first summation.
The requirement that the coefficient vanish8 yields

a0k(k − 1)= 0.

We had chosena0 as the coefficient of the lowest nonvanishing terms of the series
(Eq. (9.85)), hence, by definition,a0 
= 0. Therefore we have

k(k − 1)= 0. (9.87)

This equation, coming from the coefficient of the lowest power ofx, we call theindicial
equation. The indicial equation and its roots are of critical importance to our analysis.
If k = 1, the coefficienta1(k + 1)k of xk−1 must vanish so thata1 = 0. Clearly, in this
example we must require either thatk = 0 or k = 1.

Before considering these two possibilities fork, we return to Eq. (9.86) and demand that
the remaining net coefficients, say, the coefficient ofxk+j (j ≥ 0), vanish. We setλ= j +2
in the first summation andλ= j in the second. (They are independent summations andλ

is a dummy index.) This results in

aj+2(k + j + 2)(k + j + 1)+ω2aj = 0

8See the uniqueness of power series, Section 5.7.
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or

aj+2=−aj ω2

(k + j + 2)(k + j + 1)
. (9.88)

This is a two-termrecurrence relation.9 Givenaj , we may computeaj+2 and thenaj+4,
aj+6, and so on up as far as desired. Note that for this example, if we start witha0,
Eq. (9.88) leads to the even coefficientsa2, a4, and so on, and ignoresa1, a3, a5, and
so on. Sincea1 is arbitrary ifk = 0 and necessarily zero ifk = 1, let us set it equal to zero
(compare Exercises 9.5.3 and 9.5.4) and then by Eq. (9.88)

a3= a5= a7= · · · = 0,

and all the odd-numbered coefficients vanish. The odd powers ofx will actually reappear
when thesecond root of the indicial equation is used.

Returning to Eq. (9.87) our indicial equation, we first try the solutionk = 0. The recur-
rence relation (Eq. (9.88)) becomes

aj+2=−aj ω2

(j + 2)(j + 1)
, (9.89)

which leads to

a2 = −a0
ω2

1 · 2 =−
ω2

2! a0,

a4 = −a2
ω2

3 · 4 =+
ω4

4! a0,

a6 = −a4
ω2

5 · 6 =−
ω6

6! a0, and so on.

By inspection (and mathematical induction),

a2n = (−1)n
ω2n

(2n)!a0, (9.90)

and our solution is

y(x)k=0= a0

[
1− (ωx)2

2! + (ωx)4

4! − (ωx)6

6! + · · ·
]
= a0 cosωx. (9.91)

If we choose the indicial equation rootk = 1 (Eq. (9.88)), the recurrence relation becomes

aj+2=−aj ω2

(j + 3)(j + 2)
. (9.92)

9The recurrence relation may involve three terms, that is,aj+2, depending onaj andaj−2. Equation (13.2) for the Hermite
functions provides an example of this behavior.
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Substituting inj = 0,2,4, successively, we obtain

a2 = −a0
ω2

2 · 3 =−
ω2

3! a0,

a4 = −a2
ω2

4 · 5 =+
ω4

5! a0,

a6 = −a4
ω2

6 · 7 =−
ω6

7! a0, and so on.

Again, by inspection and mathematical induction,

a2n = (−1)n
ω2n

(2n+ 1)!a0. (9.93)

For this choice,k = 1, we obtain

y(x)k=1 = a0x

[
1− (ωx)2

3! + (ωx)4

5! − (ωx)6

7! + · · ·
]

= a0

ω

[
(ωx)− (ωx)3

3! + (ωx)5

5! − (ωx)7

7! + · · ·
]

= a0

ω
sinωx. (9.94)

To summarize this approach, we may write Eq. (9.86)schematically as shown in Fig. 9.2.
From the uniqueness of power series (Section 5.7), the total coefficient of each power of x
must vanish — all by itself. The requirement that the first coefficient (1) vanish leads to
the indicial equation, Eq. (9.87).The second coefficient is handled by setting a1= 0. The
vanishing of the coefficient of xk (and higher powers, taken one at a time) leads to the
recurrence relation, Eq. (9.88).

This series substitution, known as Frobenius’ method, has given us two series solutions
of the linear oscillator equation. However, there are two points about such series solutions
that must be strongly emphasized:

1. The series solution should always be substituted back into the differential equation, to
see if it works, as a precaution against algebraic and logical errors. If it works, it is
a solution.

2. The acceptability of a series solution depends on its convergence (including asymptotic
convergence). It is quite possible for Frobenius’ method to give a series solution that
satisfies the original differential equation when substituted in the equation but that does

FIGURE 9.2 Recurrence relation from power series expansion.
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not converge over the region of interest. Legendre’s differential equation illustrates this
situation.

Expansion About x0

Equation (9.85) is an expansion about the origin,x0= 0. It is perfectly possible to replace
Eq. (9.85) with

y(x)=
∞∑
λ=0

aλ(x − x0)
k+λ, a0 
= 0. (9.95)

Indeed, for the Legendre, Chebyshev, and hypergeometric equations the choicex0= 1 has
some advantages. The pointx0 should not be chosen at an essential singularity — or our
Frobenius method will probably fail. The resultant series (x0 an ordinary point or regular
singular point) will be valid where it converges. You can expect a divergence of some sort
when|x − x0| = |zs − x0|, wherezs is the closest singularity tox0 (in the complex plane).

Symmetry of Solutions

Let us note that we obtained one solution of even symmetry,y1(x)= y1(−x), and one of
odd symmetry,y2(x)=−y2(−x). This is not just an accident but a direct consequence of
the form of the ODE. Writing a general ODE as

L(x)y(x)= 0, (9.96)

in which L(x) is the differential operator, we see that for the linear oscillator equation
(Eq. (9.84)),L(x) is even under parity; that is,

L(x)= L(−x). (9.97)

Whenever the differential operator has a specific parity or symmetry, either even or odd,
we may interchange+x and−x, and Eq. (9.96) becomes

±L(x)y(−x)= 0, (9.98)

+ if L(x) is even,− if L(x) is odd. Clearly, ify(x) is a solution of the differential equation,
y(−x) is also a solution. Then any solution may be resolved into even and odd parts,

y(x)= 1
2

[
y(x)+ y(−x)]+ 1

2

[
y(x)− y(−x)], (9.99)

the first bracket on the right giving an even solution, the second an odd solution.
If we refer back to Section 9.4, we can see that Legendre, Chebyshev, Bessel, simple

harmonic oscillator, and Hermite equations (or differential operators) all exhibit this even
parity; that is, theirP(x) in Eq. (9.80) is odd andQ(x) even. Solutions of all of them
may be presented as series of even powers ofx and separate series of odd powers ofx.
The Laguerre differential operator has neither even nor odd symmetry; hence its solutions
cannot be expected to exhibit even or odd parity. Our emphasis on parity stems primarily
from the importance of parity in quantum mechanics. We find that wave functions usually
are either even or odd, meaning that they have a definite parity. Most interactions (beta
decay is the big exception) are also even or odd, and the result is that parity is conserved.
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Limitations of Series Approach — Bessel’s Equation

This attack on the linear oscillator equation was perhaps a bit too easy. By substituting
the power series (Eq. (9.85)) into the differential equation (Eq. (9.84)), we obtained two
independent solutions with no trouble at all.

To get some idea of what can happen we try to solve Bessel’s equation,

x2y′′ + xy′ + (x2− n2)y = 0, (9.100)

usingy′ for dy/dx andy′′ for d2y/dx2. Again, assuming a solution of the form

y(x)=
∞∑
λ=0

aλx
k+λ,

we differentiate and substitute into Eq. (9.100). The result is
∞∑
λ=0

aλ(k + λ)(k + λ− 1)xk+λ +
∞∑
λ=0

aλ(k + λ)xk+λ

+
∞∑
λ=0

aλx
k+λ+2−

∞∑
λ=0

aλn
2xk+λ = 0. (9.101)

By settingλ = 0, we get the coefficient ofxk , the lowest power ofx appearing on the
left-hand side,

a0
[
k(k − 1)+ k− n2]= 0, (9.102)

and againa0 
= 0 by definition. Equation (9.102) therefore yields theindicial equation

k2− n2= 0 (9.103)

with solutionsk =±n.
It is of some interest to examine the coefficient ofxk+1 also. Here we obtain

a1
[
(k + 1)k+ k+ 1− n2]= 0,

or

a1(k + 1− n)(k + 1+ n)= 0. (9.104)

For k =±n, neitherk+ 1− n nor k+ 1+ n vanishes and wemust requirea1= 0.10

Proceeding to the coefficient ofxk+j for k = n, we setλ = j in the first, second, and
fourth terms of Eq. (9.101) andλ = j − 2 in the third term. By requiring the resultant
coefficient ofxk+1 to vanish, we obtain

aj
[
(n+ j)(n+ j − 1)+ (n+ j)− n2]+ aj−2= 0.

Whenj is replaced byj + 2, this can be rewritten forj ≥ 0 as

aj+2=−aj 1

(j + 2)(2n+ j + 2)
, (9.105)

10k =±n=− 1
2 are exceptions.
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which is the desired recurrence relation. Repeated application of this recurrence relation
leads to

a2 = −a0
1

2(2n+ 2)
=− a0n!

221!(n+ 1)! ,

a4 = −a2
1

4(2n+ 4)
= a0n!

242!(n+ 2)! ,

a6 = −a4
1

6(2n+ 6)
=− a0n!

263!(n+ 3)! , and so on,

and in general,

a2p = (−1)p
a0n!

22pp!(n+ p)! . (9.106)

Inserting these coefficients in our assumed series solution, we have

y(x)= a0x
n

[
1− n!x2

221!(n+ 1)! +
n!x4

242!(n+ 2)! − · · ·
]
. (9.107)

In summation form

y(x) = a0

∞∑
j=0

(−1)j
n!xn+2j

22j j !(n+ j)!

= a02nn!
∞∑
j=0

(−1)j
1

j !(n+ j)!
(
x

2

)n+2j

. (9.108)

In Chapter 11 the final summation is identified as the Bessel functionJn(x). Notice that
this solution,Jn(x), has either even or odd symmetry,11 as might be expected from the
form of Bessel’s equation.

Whenk = −n andn is not an integer, we may generate a second distinct series, to be
labeledJ−n(x). However, when−n is a negative integer, trouble develops. The recurrence
relation for the coefficientsaj is still given by Eq. (9.105), but with 2n replaced by−2n.
Then, whenj + 2= 2n or j = 2(n − 1), the coefficientaj+2 blows up and we have no
series solution. This catastrophe can be remedied in Eq. (9.108), as it is done in Chapter 11,
with the result that

J−n(x)= (−1)nJn(x), n an integer. (9.109)

The second solution simply reproduces the first. We have failed to construct a second in-
dependent solution for Bessel’s equation by this series technique whenn is an integer.

By substituting in an infinite series, we have obtained two solutions for the linear oscil-
lator equation and one for Bessel’s equation (two ifn is not an integer). To the questions
“Can we always do this? Will this method always work?” the answer is no, we cannot
always do this. This method of series solution will not always work.

11Jn(x) is an even function ifn is an even integer, an odd function ifn is an odd integer. For nonintegraln thexn has no such
simple symmetry.
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Regular and Irregular Singularities

The success of the series substitution method depends on the roots of the indicial equation
and the degree of singularity of the coefficients in the differential equation. To understand
better the effect of the equation coefficients on this naive series substitution approach,
consider four simple equations:

y′′ − 6

x2
y = 0, (9.110a)

y′′ − 6

x3
y = 0, (9.110b)

y′′ + 1

x
y′ − a2

x2
y = 0, (9.110c)

y′′ + 1

x2
y′ − a2

x2
y = 0. (9.110d)

The reader may show easily that for Eq. (9.110a) the indicial equation is

k2− k− 6= 0,

giving k = 3,−2. Since the equation is homogeneous inx (countingd2/dx2 asx−2), there
is no recurrence relation. However,we are left with two perfectly good solutions,x3 and
x−2.

Equation (9.110b) differs from Eq. (9.110a) by only one power ofx, but this sends the
indicial equation to

−6a0= 0,

with no solution at all, for we have agreed thata0 
= 0. Our series substitution worked for
Eq. (9.110a), which had only a regular singularity, but broke down at Eq. (9.110b), which
has an irregular singular point at the origin.

Continuing with Eq. (9.110c), we have added a termy′/x. The indicial equation is

k2− a2= 0,

but again, there is no recurrence relation. The solutions arey = xa, x−a , both perfectly
acceptable one-term series.

When we change the power ofx in the coefficient ofy′ from −1 to−2, Eq. (9.110d),
there is a drastic change in the solution. The indicial equation (with only they′ term con-
tributing) becomes

k = 0.

There is a recurrence relation,

aj+1=+aj a
2− j (j − 1)

j + 1
.
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Unless the parametera is selected to make the series terminate, we have

lim
j→∞

∣∣∣∣aj+1

aj

∣∣∣∣ = lim
j→∞

j (j + 1)

j + 1

= lim
j→∞

j2

j
=∞.

Hence our series solution diverges for allx 
= 0. Again, our method worked for
Eq. (9.110c) with a regular singularity but failed when we had the irregular singularity
of Eq. (9.110d).

Fuchs’ Theorem

The answer to the basic question when the method of series substitution can be expected
to work is given by Fuchs’ theorem, which asserts that we can always obtain at least one
power-series solution, provided we are expanding about a point that is an ordinary point or
at worst a regular singular point.

If we attempt an expansion about an irregular or essential singularity, our method may
fail, as it did for Eqs. (9.110b) and (9.110d). Fortunately, the more important equations
of mathematical physics, listed in Section 9.4, have no irregular singularities in the finite
plane. Further discussion of Fuchs’ theorem appears in Section 9.6.

From Table 9.4, Section 9.4, infinity is seen to be a singular point for all equations
considered. As a further illustration of Fuchs’ theorem, Legendre’s equation (with infinity
as a regular singularity) has a convergent-series solution in negative powers of the argument
(Section 12.10). In contrast, Bessel’s equation (with an irregular singularity at infinity)
yields asymptotic series (Sections 5.10 and 11.6). These asymptotic solutions are extremely
useful.

Summary

If we are expanding about an ordinary point or at worst about a regular singularity, the
series substitution approach will yield at least one solution (Fuchs’ theorem).

Whether we get one or two distinct solutions depends on the roots of the indicial equa-
tion.

1. If the two roots of the indicial equation are equal, we can obtain only one solution by
this series substitution method.

2. If the two roots differ by a nonintegral number, two independent solutions may be
obtained.

3. If the two roots differ by an integer, the larger of the two will yield a solution.

The smaller may or may not give a solution, depending on the behavior of the coeffi-
cients. In the linear oscillator equation we obtain two solutions; for Bessel’s equation, we
get only one solution.
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The usefulness of the series solution in terms of what the solution is (that is, numbers)
depends on the rapidity of convergence of the series and the availability of the coefficients.
Many ODEs will not yield nice, simple recurrence relations for the coefficients. In general,
the available series will probably be useful for|x| (or |x − x0|) very small. Computers
can be used to determine additional series coefficients using a symbolic language, such
as Mathematica,12 Maple,13 or Reduce.14 Often, however, for numerical work a direct
numerical integration will be preferred.

Exercises

9.5.1 Uniqueness theorem. The functiony(x) satisfies a second-order, linear, homogeneous
differential equation. Atx = x0, y(x)= y0 anddy/dx = y′0. Show thaty(x) is unique,
in that no other solution of this differential equation passes through the points(x0, y0)

with a slope ofy′0.
Hint. Assume a second solution satisfying these conditions and compare the Taylor
series expansions.

9.5.2 A series solution of Eq. (9.80) is attempted, expanding about the pointx = x0. If x0 is
an ordinary point, show that the indicial equation has rootsk = 0, 1.

9.5.3 In the development of a series solution of the simple harmonic oscillator (SHO) equa-
tion, the second series coefficienta1 was neglected except to set it equal to zero. From
the coefficient of the next-to-the-lowest power ofx, xk−1, develop a second indicial-
type equation.

(a) (SHO equation withk = 0). Show thata1, may be assigned any finite value (in-
cluding zero).

(b) (SHO equation withk = 1). Show thata1 must be set equal to zero.

9.5.4 Analyze the series solutions of the following differential equations to see whena1 may
be set equal to zero without irrevocably losing anything and whena1 must be set equal
to zero.
(a) Legendre, (b) Chebyshev, (c) Bessel, (d) Hermite.

ANS. (a) Legendre, (b) Chebyshev, and (d) Hermite: Fork = 0, a1
may be set equal to zero; fork = 1, a1 must be set equal
to zero.

(c) Bessel:a1 must be set equal to zero (except for
k =±n=−1

2).

9.5.5 Solve the Legendre equation(
1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

by direct series substitution.

12S. Wolfram,Mathematica, A System for Doing Mathematics by Computer, New York: Addison Wesley (1991).
13A. Heck,Introduction to Maple, New York: Springer (1993).
14G. Rayna,Reduce Software for Algebraic Computation, New York: Springer (1987).
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(a) Verify that the indicial equation is

k(k − 1)= 0.

(b) Usingk = 0, obtain a series of even powers ofx (a1= 0).

yeven= a0

[
1− n(n+ 1)

2! x2+ n(n− 2)(n+ 1)(n+ 3)

4! x4+ · · ·
]
,

where

aj+2= j (j + 1)− n(n+ 1)

(j + 1)(j + 2)
aj .

(c) Usingk = 1, develop a series of odd powers ofx (a1= 1).

yodd= a1

[
x − (n− 1)(n+ 2)

3! x3+ (n− 1)(n− 3)(n+ 2)(n+ 4)

5! x5+ · · ·
]
,

where

aj+2= (j + 1)(j + 2)− n(n+ 1)

(j + 2)(j + 3)
aj .

(d) Show that both solutions,yevenandyodd, diverge forx =±1 if the series continue
to infinity.

(e) Finally, show that by an appropriate choice ofn, one series at a time may be con-
verted into a polynomial, thereby avoiding the divergence catastrophe. In quantum
mechanics this restriction ofn to integral values corresponds toquantization of
angular momentum.

9.5.6 Develop series solutions for Hermite’s differential equation

(a) y′′ − 2xy′ + 2αy = 0.

ANS. k(k − 1)= 0, indicial equation.

For k = 0,

aj+2 = 2aj
j − α

(j + 1)(j + 2)
(j even),

yeven= a0

[
1+ 2(−α)x2

2! + 22(−α)(2− α)x4

4! + · · ·
]
.

For k = 1,

aj+2 = 2aj
j + 1− α

(j + 2)(j + 3)
(j even),

yodd= a1

[
x + 2(1− α)x3

3! + 22(1− α)(3− α)x5

5! + · · ·
]
.
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(b) Show that both series solutions are convergent for allx, the ratio of successive
coefficients behaving, for large index, like the corresponding ratio in the expansion
of exp(x2).

(c) Show that by appropriate choice ofα the series solutions may be cut off and con-
verted to finite polynomials. (These polynomials, properly normalized, become
the Hermite polynomials in Section 13.1.)

9.5.7 Laguerre’s ODE is

xL′′n(x)+ (1− x)L′n(x)+ nLn(x)= 0.

Develop a series solution selecting the parametern to make your series a polynomial.

9.5.8 Solve the Chebyshev equation(
1− x2)T ′′n − xT ′n + n2Tn = 0,

by series substitution. What restrictions are imposed onn if you demand that the series
solution converge forx =±1?

ANS. The infinite series does converge forx =±1 and no
restriction onn exists (compare Exercise 5.2.16).

9.5.9 Solve (
1− x2)U ′′n (x)− 3xU ′n(x)+ n(n+ 2)Un(x)= 0,

choosing the root of the indicial equation to obtain a series ofodd powers ofx. Since
the series will diverge forx = 1, choosen to convert it into a polynomial.

k(k − 1)= 0.

For k = 1,

aj+2= (j + 1)(j + 3)− n(n+ 2)

(j + 2)(j + 3)
aj .

9.5.10 Obtain a series solution of the hypergeometric equation

x(x − 1)y′′ + [(1+ a + b)x − c
]
y′ + aby = 0.

Test your solution for convergence.

9.5.11 Obtain two series solutions of the confluent hypergeometric equation

xy′′ + (c− x)y′ − ay = 0.

Test your solutions for convergence.

9.5.12 A quantum mechanical analysis of the Stark effect (parabolic coordinates) leads to the
differential equation

d

dξ

(
ξ
du

dξ

)
+
(

1

2
Eξ + α − m2

4ξ
− 1

4
Fξ2

)
u= 0.

Hereα is a separation constant,E is the total energy, andF is a constant, whereFz is
the potential energy added to the system by the introduction of an electric field.
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Using the larger root of the indicial equation, develop a power-series solution about
ξ = 0. Evaluate the first three coefficients in terms ofao.

Indicial equation k2− m2

4
= 0,

u(ξ)= a0ξ
m/2
{

1− α

m+ 1
ξ +

[
α2

2(m+ 1)(m+ 2)
− E

4(m+ 2)

]
ξ2+ · · ·

}
.

Note that the perturbationF does not appear untila3 is included.

9.5.13 For the special case of no azimuthal dependence, the quantum mechanical analysis of
the hydrogen molecular ion leads to the equation

d

dη

[(
1− η2)du

dη

]
+ αu+ βη2u= 0.

Develop a power-series solution foru(η). Evaluate the first three nonvanishing coeffi-
cients in terms ofa0.

Indicial equation k(k − 1)= 0,

uk=1= a0η

{
1+ 2− α

6
η2+

[
(2− α)(12− α)

120
− β

20

]
η4+ · · ·

}
.

9.5.14 To a good approximation, the interaction of two nucleons may be described by a
mesonic potential

V = Ae−ax

x
,

attractive forA negative. Develop a series solution of the resultant Schrödinger wave
equation

h̄2

2m

d2ψ

dx2
+ (E − V )ψ = 0

through the first three nonvanishing coefficients.

ψ = a0
{
x + 1

2A
′x2+ 1

6

[1
2A

′2−E′ − aA′
]
x3+ · · ·},

where the prime indicates multiplication by 2m/h̄2.

9.5.15 Near the nucleus of a complex atom the potential energy of one electron is given by

V = Ze2

r

(
1+ b1r + b2r

2),
where the coefficientsb1 andb2 arise from screening effects. For the case of zero angu-
lar momentum show that the first three terms of the solution of the Schrödinger equation
have the same form as those of Exercise 9.5.14. By appropriate translation of coeffi-
cients or parameters, write out the first three terms in a series expansion of the wave
function.
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9.5.16 If the parametera2 in Eq. (9.110d) is equal to 2, Eq. (9.110d) becomes

y′′ + 1

x2
y′ − 2

x2
y = 0.

From the indicial equation and the recurrence relationderive a solutiony = 1+ 2x +
2x2. Verify that this is indeed a solution by substituting back into the differential equa-
tion.

9.5.17 The modified Bessel functionI0(x) satisfies the differential equation

x2 d2

dx2
I0(x)+ x

d

dx
I0(x)− x2I0(x)= 0.

From Exercise 7.3.4 the leading term in an asymptotic expansion is found to be

I0(x)∼ ex√
2πx

.

Assume a series of the form

I0(x)∼ ex√
2πx

{
1+ b1x

−1+ b2x
−2+ · · ·}.

Determine the coefficientsb1 andb2.

ANS. b1= 1
8, b2= 9

128.

9.5.18 The even power-series solution of Legendre’s equation is given by Exercise 9.5.5. Take
a0 = 1 andn not an even integer, sayn = 0.5. Calculate the partial sums of the series
throughx200, x400, x600, . . . , x2000 for x = 0.95(0.01)1.00. Also, write out the individ-
ual term corresponding to each of these powers.
Note. This calculation doesnot constitute proof of convergence atx = 0.99 or diver-
gence atx = 1.00, but perhaps you can see the difference in the behavior of the sequence
of partial sums for these two values ofx.

9.5.19 (a) The odd power-series solution of Hermite’s equation is given by Exercise 9.5.6.
Takea0 = 1. Evaluate this series forα = 0, x = 1,2,3. Cut off your calculation
after the last term calculated has dropped below the maximum term by a factor of
106 or more. Set an upper bound to the error made in ignoring the remaining terms
in the infinite series.

(b) As a check on the calculation of part (a), show that the Hermite seriesyodd(α = 0)
corresponds to

∫ x

0 exp(x2) dx.
(c) Calculate this integral forx = 1,2,3.

9.6 A SECOND SOLUTION

In Section 9.5 a solution of a second-order homogeneous ODE was developed by substi-
tuting in a power series. By Fuchs’ theorem this is possible, provided the power series is
an expansion about an ordinary point or a nonessential singularity.15 There is no guarantee

15This is why the classification of singularities in Section 9.4 is of vital importance.
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that this approach will yield the two independent solutions we expect from a linear second-
order ODE. In fact, we shall prove that such an ODE has at most two linearly independent
solutions. Indeed, the technique gave only one solution for Bessel’s equation (n an integer).
In this section we also develop two methods of obtaining a second independent solution:
an integral method and a power series containing a logarithmic term. First, however, we
consider the question of independence of a set of functions.

Linear Independence of Solutions

Given a set of functionsϕλ, the criterion for linear dependence is the existence of a relation
of the form ∑

λ

kλϕλ = 0, (9.111)

in which not all the coefficientskλ are zero. On the other hand, if the only solution of
Eq. (9.111) iskλ = 0 for all λ, the set of functionsϕλ is said to be linearlyindependent.

It may be helpful to think of linear dependence of vectors. ConsiderA, B, andC in
three-dimensional space, withA ·B×C 
= 0. Then no nontrivial relation of the form

aA+ bB+ cC= 0 (9.112)

exists.A, B, andC are linearly independent. On the other hand, any fourth vector,D, may
be expressed as a linear combination ofA, B, andC (see Section 3.1). We can always write
an equation of the form

D− aA− bB− cC= 0, (9.113)

and the four vectors arenot linearly independent. The three noncoplanar vectorsA, B,
andC span our real three-dimensional space.

If a set of vectors or functions are mutually orthogonal, then they are automatically lin-
early independent. Orthogonality implies linear independence. This can easily be demon-
strated by taking inner products (scalar or dot product for vectors, orthogonality integral of
Section 10.2 for functions).

Let us assume that the functionsϕλ are differentiable as needed. Then, differentiating
Eq. (9.111) repeatedly, we generate a set of equations∑

λ

kλϕ
′
λ = 0, (9.114)

∑
λ

kλϕ
′′
λ = 0, (9.115)

and so on. This gives us a set of homogeneous linear equations in whichkλ are the un-
known quantities. By Section 3.1 there is a solutionkλ 
= 0 only if the determinant of the
coefficients of thekλ’ vanishes. This means∣∣∣∣∣∣∣∣

ϕ1 ϕ2 · · · ϕn
ϕ′1 ϕ′2 · · · ϕ′n
· · · · · · · · · · · ·

ϕ
(n−1)
1 ϕ

(n−1)
2 · · · ϕ

(n−1)
n

∣∣∣∣∣∣∣∣= 0. (9.116)

This determinant is called theWronskian.
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1. If the Wronskian is not equal to zero, then Eq. (9.111) has no solution other than
kλ = 0. The set of functionsϕλ is therefore linearly independent.

2. If the Wronskian vanishes at isolated values of the argument, this does not necessarily
prove linear dependence (unless the set of functions has only two functions). However,
if the Wronskian is zero over the entire range of the variable, the functionsϕλ are
linearly dependent over this range16 (compare Exercise 9.5.2 for the simple case of
two functions).

Example 9.6.1 LINEAR INDEPENDENCE

The solutions of the linear oscillator equation (9.84) areϕ1 = sinωx,ϕ2 = cosωx. The
Wronskian becomes ∣∣∣∣ sinωx cosωx

ω cosωx −ω sinωx

∣∣∣∣=−ω 
= 0.

These two solutions,ϕ1 andϕ2, are therefore linearly independent. For just two functions
this means that one is not a multiple of the other, which is obviously true in this case.

You know that

sinωx =±(1− cos2ωx
)1/2

,

but this isnot a linear relation, of the form of Eq. (9.111). �

Examples 9.6.2 LINEAR DEPENDENCE

For an illustration of linear dependence, consider the solutions of the one-dimensional dif-
fusion equation. We haveϕ1= ex andϕ2= e−x , and we addϕ3= coshx, also a solution.
The Wronskian is ∣∣∣∣∣∣

ex e−x coshx
ex −e−x sinhx
ex e−x coshx

∣∣∣∣∣∣= 0.

The determinant vanishes for allx because the first and third rows are identical. Hence
ex, e−x , and coshx are linearly dependent, and, indeed, we have a relation of the form of
Eq. (9.111):

ex + e−x − 2 coshx = 0 with kλ 
= 0. �

Now we are ready to prove thetheorem that a second-order homogeneous ODE has
two linearly independent solutions.

Supposey1, y2, y3 are three solutions of the homogeneous ODE (9.80). Then we
form the WronskianWjk = yjy

′
k − y′j yk of any pair yj , yk of them and recall that

16Compare H. Lass,Elements of Pure and Applied Mathematics, New York: McGraw-Hill (1957), p. 187, for proof of this
assertion. It is assumed that the functions have continuous derivatives and that at least one of the minors of the bottom row of
Eq. (9.116) (Laplace expansion) does not vanish in[a, b], the interval under consideration.
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W ′
jk = yjy

′′
k − y′′j yk. We divide each ODE byy, getting−Q on their right-hand side,

so

y′′j
yj
+ P

y′j
yj
=−Q(x)= y′′k

yk
+ P

y′k
yk

.

Multiplying by yjyk , we find

(yj y
′′
k − y′′j yk)+ P(yjy

′
k − y′j yk)= 0, or W ′

jk =−PWjk (9.117)

for any pair of solutions. Finally we evaluate the Wronskian of all three solutions, expand-
ing it along the second row and using the ODEs for theWjk :

W =
∣∣∣∣∣∣
y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣=−y′1W ′
23+ y′2W ′

13− y′3W ′
12

= P(y′1W23− y′2W13+ y′3W12)=−P
∣∣∣∣∣∣
y1 y2 y3
y′1 y′2 y′3
y′1 y′2 y′3

∣∣∣∣∣∣= 0.

The vanishing Wronskian,W = 0, because of two identical rows, is just the condition for
linear dependence of the solutionsyj . Thus, there are at most two linearly independent
solutions of the homogeneous ODE. Similarly one can prove that a linear homogeneous
nth-order ODE hasn linearly independent solutionsyj , so the general solutiony(x) =∑

cj yj (x) is a linear combination of them.

A Second Solution

Returning to our linear, second-order, homogeneous ODE of the general form

y′′ + P(x)y′ +Q(x)y = 0, (9.118)

let y1 andy2 be two independent solutions. Then the Wronskian, by definition, is

W = y1y
′
2− y′1y2. (9.119)

By differentiating the Wronskian, we obtain

W ′ = y′1y′2+ y1y
′′
2 − y′′1y2− y′1y′2

= y1
[−P(x)y′2−Q(x)y2

]− y2
[−P(x)y′1−Q(x)y1

]
= −P(x)(y1y

′
2− y′1y2).

The expression in parentheses is justW , the Wronskian, and we have

W ′ = −P(x)W. (9.120)

In the special case thatP(x)= 0, that is,

y′′ +Q(x)y = 0, (9.121)

the Wronskian

W = y1y
′
2− y′1y2= constant. (9.122)
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Since our original differential equation is homogeneous, we may multiply the solutionsy1
andy2 by whatever constants we wish and arrange to have the Wronskian equal to unity
(or−1). This case,P(x)= 0, appears more frequently than might be expected. Recall that
the portion of∇2(

ψ
r
) in spherical polar coordinates involving radial derivatives contains

no first radial derivative. Finally, every linear second-order differential equation can be
transformed into an equation of the form of Eq. (9.121) (compare Exercise 9.6.11).

For the general case, let us now assume that we have one solution of Eq. (9.118) by
a series substitution (or by guessing). We now proceed to develop a second, independent
solution for whichW 
= 0. Rewriting Eq. (9.120) as

dW

W
=−P dx,

we integrate over the variablex, from a to x, to obtain

ln
W(x)

W(a)
=−

∫ x

a

P (x1) dx1,

or17

W(x)=W(a)exp

[
−
∫ x

a

P (x1) dx1

]
. (9.123)

But

W(x)= y1y
′
2− y′1y2= y2

1
d

dx

(
y2

y1

)
. (9.124)

By combining Eqs. (9.123) and (9.124), we have

d

dx

(
y2

y1

)
=W(a)

exp[− ∫ x

a
P (x1) dx1]
y2

1

. (9.125)

Finally, by integrating Eq. (9.125) fromx2= b to x2= x we get

y2(x)= y1(x)W(a)

∫ x

b

exp[− ∫ x2
a

P (x1)dx1]
[y1(x2)]2 dx2. (9.126)

Herea andb are arbitrary constants and a termy1(x)y2(b)/y1(b) has been dropped, for it
leads to nothing new. SinceW(a), the Wronskian evaluated atx = a, is a constant and our
solutions for the homogeneous differential equation always contain an unknown normaliz-
ing factor, we setW(a)= 1 and write

y2(x)= y1(x)

∫ x exp[− ∫ x2 P(x1) dx1]
[y1(x2)]2 dx2. (9.127)

Note that the lower limitsx1= a andx2= b have been omitted. If they are retained, they
simply make a contribution equal to a constant times the known first solution,y1(x), and

17If P(x) remains finite in the domain of interest,W(x) 
= 0 unlessW(a) = 0. That is, the Wronskian of our two solutions is
either identically zero or never zero. However, ifP(x) does not remain finite in our interval, thenW(x) can have isolated zeros
in that domain and one must be careful to choosea so thatW(a) 
= 0.
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hence add nothing new. If we have the important special case ofP(x) = 0, Eq. (9.127)
reduces to

y2(x)= y1(x)

∫ x dx2

[y1(x2)]2 . (9.128)

This means that by using either Eq. (9.127) or Eq. (9.128) we can take one known solu-
tion and by integrating can generate a second, independent solution of Eq. (9.118). This
technique is used in Section 12.10 to generate a second solution of Legendre’s differential
equation.

Example 9.6.3 A SECOND SOLUTION FOR THE LINEAR OSCILLATOR EQUATION

From d2y/dx2 + y = 0 with P(x) = 0 let one solution bey1 = sinx. By applying
Eq. (9.128), we obtain

y2(x)= sinx
∫ x dx2

sin2x2
= sinx(−cotx)=−cosx,

which is clearly independent (not a linear multiple) of sinx. �

Series Form of the Second Solution

Further insight into the nature of the second solution of our differential equation may be
obtained by the following sequence of operations.

1. ExpressP(x) andQ(x) in Eq. (9.118) as

P(x)=
∞∑

i=−1

pix
i, Q(x)=

∞∑
j=−2

qjx
j . (9.129)

The lower limits of the summations are selected to create the strongest possiblereg-
ular singularity (at the origin). These conditions just satisfy Fuchs’ theorem and thus
help us gain a better understanding of Fuchs’ theorem.

2. Develop the first few terms of a power-series solution, as in Section 9.5.
3. Using this solution asy1, obtain a second series type solution,y2, with Eq. (9.127),

integrating term by term.

Proceeding with Step 1, we have

y′′ + (p−1x
−1+ p0+ p1x + · · ·

)
y′ + (q−2x

−2+ q−1x
−1+ · · · )y = 0, (9.130)

in which pointx = 0 is at worst a regular singular point. Ifp−1= q−1= q−2= 0, it reduces
to an ordinary point. Substituting

y =
∞∑
λ=0

aλx
k+λ
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(Step 2), we obtain

∞∑
λ=0

(k + λ)(k + λ− 1)aλx
k+λ−2+

∞∑
i=−1

pix
i
∞∑
λ=0

(k + λ)aλx
k+λ−1

+
∞∑

j=−2

qjx
j

∞∑
λ=0

aλx
k+λ = 0. (9.131)

Assuming thatp−1 
= 0, q−2 
= 0, our indicial equation is

k(k − 1)+ p−1k + q−2= 0,

which sets the net coefficient ofxk−2 equal to zero. This reduces to

k2+ (p−1− 1)k + q−2= 0. (9.132)

We denote the two roots of this indicial equation byk = α andk = α − n, wheren is zero
or a positive integer. (Ifn is not an integer, we expect two independent series solutions by
the methods of Section 9.5 and we are done.) Then

(k − α)(k − α + n)= 0, (9.133)

or

k2+ (n− 2α)k + α(α − n)= 0,

and equating coefficients ofk in Eqs. (9.132) and (9.133), we have

p−1− 1= n− 2α. (9.134)

The known series solution corresponding to the larger rootk = α may be written as

y1= xα
∞∑
λ=0

aλx
λ.

Substituting this series solution into Eq. (9.127) (Step 3), we are faced with

y2(x)= y1(x)

∫ x exp(− ∫ x2
a

∑∞
i=−1pix

i
1dx1)

x2α
2 (
∑∞

λ=0aλx
λ
2)

2
dx2, (9.135)

where the solutionsy1 and y2 have been normalized so that the WronskianW(a) = 1.
Tackling the exponential factor first, we have∫ x2

a

∞∑
i=−1

pix
i
1dx1= p−1 lnx2+

∞∑
k=0

pk

k+ 1
xk+1

2 + f (a) (9.136)
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with f (a) an integration constant that may depend ona. Hence,

exp

(
−
∫ x2

a

∑
i

pix
i
1dx1

)

= exp
[−f (a)]x−p−1

2 exp

(
−

∞∑
k=0

pk

k + 1
xk+1

2

)

= exp
[−f (a)]x−p−1

2

[
1−

∞∑
k=0

pk

k+ 1
xk+1

2 + 1

2!
(
−

∞∑
k=0

pk

k + 1
xk+1

2

)2

+ · · ·
]
.

(9.137)

This final series expansion of the exponential is certainly convergent if the original expan-
sion of the coefficientP(x) was uniformly convergent.

The denominator in Eq. (9.135) may be handled by writing

[
x2α

2

( ∞∑
λ=0

aλx
λ
2

)2]−1

= x−2α
2

( ∞∑
λ=0

aλx
λ
2

)−2

= x−2α
2

∞∑
λ=0

bλx
λ
2 . (9.138)

Neglecting constant factors, which will be picked up anyway by the requirement that
W(a)= 1, we obtain

y2(x)= y1(x)

∫ x

x
−p−1−2α
2

( ∞∑
λ=0

cλx
λ
2

)
dx2. (9.139)

By Eq. (9.134),

x
−p−1−2α
2 = x−n−1

2 , (9.140)

and we have assumed here thatn is an integer. Substituting this result into Eq. (9.139), we
obtain

y2(x)= y1(x)

∫ x(
c0x

−n−1
2 + c1x

−n
2 + c2x

−n+1
2 + · · · + cnx

−1
2 + · · · )dx2. (9.141)

The integration indicated in Eq. (9.141) leads to a coefficient ofy1(x) consisting of two
parts:

1. A power series starting withx−n.
2. A logarithm term from the integration ofx−1 (whenλ= n). This term always appears

whenn is an integer,unless cn fortuitously happens to vanish.18

18For parity considerations, lnx is taken to be ln|x|, even.
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Example 9.6.4 A SECOND SOLUTION OF BESSEL’S EQUATION

From Bessel’s equation, Eq. (9.100) (divided byx2 to agree with Eq. (9.118)), we have

P(x)= x−1 Q(x)= 1 for the casen= 0.

Hencep−1= 1, q0= 1; all otherpi andqj vanish. The Bessel indicial equation is

k2= 0

(Eq. (9.103) withn= 0). Hence we verify Eqs. (9.132) to (9.134) withn andα = 0.
Our first solution is available from Eq. (9.108). Relabeling it to agree with Chapter 11

(and usinga0= 1), we obtain19

y1(x)= J0(x)= 1− x2

4
+ x4

64
−O

(
x6). (9.142a)

Now, substituting all this into Eq. (9.127), we have the specific case corresponding to
Eq. (9.135):

y2(x)= J0(x)

∫ x exp[− ∫ x2 x−1
1 dx1]

[1− x2
2/4+ x4

2/64− · · · ]2dx2. (9.142b)

From the numerator of the integrand,

exp

[
−
∫ x2 dx1

x1

]
= exp[− lnx2] = 1

x2
.

This corresponds to thex−p−1
2 in Eq. (9.137). From the denominator of the integrand, using

a binomial expansion, we obtain[
1− x2

2

4
+ x4

2

64

]−2

= 1+ x2
2

2
+ 5x4

2

32
+ · · · .

Corresponding to Eq. (9.139), we have

y2(x) = J0(x)

∫ x 1

x2

[
1+ x2

2

2
+ 5x4

2

32
+ · · ·

]
dx2

= J0(x)

{
lnx + x2

4
+ 5x4

128
+ · · ·

}
. (9.142c)

Let us check this result. From Eqs. (11.62) and (11.64), which give the standard form of
the second solution (higher-order terms are needed)

N0(x)= 2

π
[lnx − ln 2+ γ ]J0(x)+ 2

π

{
x2

4
− 3x4

128
+ · · ·

}
. (9.142d)

Two points arise: (1) Since Bessel’s equation is homogeneous, we may multiplyy2(x) by
any constant. To matchN0(x), we multiply oury2(x) by 2/π . (2) To our second solution,

19The capitalO (order of) as written here means terms proportional tox6 and possibly higher powers ofx.
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(2/π)y2(x), we may add any constant multiple of the first solution. Again, to matchN0(x)

we add
2

π
[− ln2+ γ ]J0(x),

whereγ is the usual Euler–Mascheroni constant (Section 5.2).20 Our new, modified second
solution is

y2(x)= 2

π
[lnx − ln2+ γ ]J0(x)+ 2

π
J0(x)

{
x2

4
+ 5x4

128
+ · · ·

}
. (9.142e)

Now the comparison withN0(x) becomes a simple multiplication ofJ0(x) from
Eq. (9.142a) and the curly bracket of Eq. (9.142c). The multiplication checks, through
terms of orderx2 andx4, which is all we carried. Our second solution from Eqs. (9.127)
and (9.135) agrees with the standard second solution, the Neumann function,N0(x).

From the preceding analysis, the second solution of Eq. (9.118),y2(x), may be written
as

y2(x)= y1(x) lnx +
∞∑

j=−n
dj x

j+α, (9.142f)

the first solution times lnx and another power series, this one starting withxα−n, which
means that we may look for a logarithmic term when the indicial equation of Sec-
tion 9.5 gives only one series solution. With the form of the second solution specified
by Eq. (9.142f), we can substitute Eq. (9.142f) into the original differential equation and
determine the coefficientsdj exactly as in Section 9.5. It may be worth noting that no se-
ries expansion of lnx is needed. In the substitution, lnx will drop out; its derivatives will
survive. �

The second solution will usually diverge at the origin because of the logarithmic factor
and the negative powers ofx in the series. For this reasony2(x) is often referred to as
the irregular solution. The first series solution,y1(x), which usually converges at the
origin, is called theregular solution. The question of behavior at the origin is discussed in
more detail in Chapters 11 and 12, in which we take up Bessel functions, modified Bessel
functions, and Legendre functions.

Summary

The two solutions of both sections (together with the exercises) provide acomplete solu-
tion of our linear, homogeneous, second-order ODE — assuming that the point of expan-
sion is no worse than a regular singularity. At least one solution can always be obtained
by series substitution (Section 9.5). Asecond, linearly independent solution can be con-
structed by theWronskian double integral, Eq. (9.127). This is all there are:No third,
linearly independent solution exists (compare Exercise 9.6.10).

Thenonhomogeneous, linear, second-order ODE will have anadditional solution: the
particular solution. This particular solution may be obtained by the method of variation
of parameters, Exercise 9.6.25, or by techniques such as Green’s function, Section 9.7.

20The Neumann functionN0 is defined as it is in order to achieve convenient asymptotic properties, Sections 11.3 and 11.6.
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Exercises

9.6.1 You know that the three unit vectorsx̂, ŷ, andẑ are mutually perpendicular (orthogonal).
Show that̂x, ŷ, andẑ are linearly independent. Specifically, show that no relation of the
form of Eq. (9.111) exists for̂x, ŷ, andẑ.

9.6.2 The criterion for the linearindependence of three vectorsA, B, andC is that the equa-
tion

aA+ bB+ cC= 0

(analogous to Eq. (9.111)) has no solution other than the triviala = b = c = 0. Using
componentsA= (A1,A2,A3), and so on, set up the determinant criterion for the exis-
tence or nonexistence of a nontrivial solution for the coefficientsa, b, andc. Show that
your criterion is equivalent to the triple scalar productA ·B×C 
= 0.

9.6.3 Using the Wronskian determinant, show that the set of functions{
1,

xn

n! (n= 1,2, . . . ,N)

}
is linearly independent.

9.6.4 If the Wronskian of two functionsy1 andy2 is identically zero, show by direct integra-
tion that

y1= cy2,

that is, thaty1 andy2 are dependent. Assume the functions have continuous derivatives
and that at least one of the functions does not vanish in the interval under consideration.

9.6.5 The Wronskian of two functions is found to be zero atx0−ε ≤ x ≤ x0+ε for arbitrarily
small ε > 0. Show that this Wronskian vanishes for allx and that the functions are
linearly dependent.

9.6.6 The three functions sinx, ex , ande−x are linearly independent. No one function can be
written as a linear combination of the other two. Show that the Wronskian of sinx, ex ,
ande−x vanishes but only at isolated points.

ANS.W = 4 sinx,
W = 0 for x =±nπ, n= 0,1,2, . . . .

9.6.7 Consider two functionsϕ1= x andϕ2= |x| = x sgnx (Fig. 9.3). The function sgnx is
the sign ofx. Sinceϕ′1 = 1 andϕ′2 = sgnx, W(ϕ1, ϕ2) = 0 for any interval, including
[−1,+1]. Does the vanishing of the Wronskian over[−1,+1] prove thatϕ1 andϕ2 are
linearly dependent? Clearly, they are not. What is wrong?

9.6.8 Explain thatlinear independence does not mean the absence of any dependence. Illus-
trate your argument with coshx andex .

9.6.9 Legendre’s differential equation(
1− x2)y′′ − 2xy′ + n(n+ 1)y = 0
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FIGURE 9.3 x and|x|.

has a regular solutionPn(x) and an irregular solutionQn(x). Show that the Wronskian
of Pn andQn is given by

Pn(x)Q
′
n(x)− P ′n(x)Qn(x)= An

1− x2
,

with An independent of x.

9.6.10 Show, by means of the Wronskian, that a linear, second-order, homogeneous ODE of
the form

y′′(x)+ P(x)y′(x)+Q(x)y(x)= 0

cannot have three independent solutions. (Assume a third solution and show that the
Wronskian vanishes for allx.)

9.6.11 Transform our linear, second-order ODE

y′′ + P(x)y′ +Q(x)y = 0

by the substitution

y = zexp

[
−1

2

∫ x

P (t) dt

]
and show that the resulting differential equation forz is

z′′ + q(x)z= 0,

where

q(x)=Q(x)− 1
2P

′(x)− 1
4P

2(x).

Note. This substitution can be derived by the technique of Exercise 9.6.24.

9.6.12 Use the result of Exercise 9.6.11 to show that the replacement ofϕ(r) by rϕ(r) may be
expected to eliminate the first derivative from the Laplacian in spherical polar coordi-
nates. See also Exercise 2.5.18(b).
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9.6.13 By direct differentiation and substitution show that

y2(x)= y1(x)

∫ x exp[− ∫ s
P (t) dt]

[y1(s)]2 ds

satisfies (likey1(x)) the ODE

y′′2(x)+ P(x)y′2(x)+Q(x)y2(x)= 0.

Note. The Leibniz formula for the derivative of an integral is

d

dα

∫ h(α)

g(α)

f (x,α)dx =
∫ h(α)

g(α)

∂f (x,α)

∂α
dx + f

[
h(α),α

]dh(α)
dα

− f
[
g(α),α

]dg(α)
dα

.

9.6.14 In the equation

y2(x)= y1(x)

∫ x exp[− ∫ s
P (t) dt]

[y1(s)]2 ds

y1(x) satisfies

y′′1 + P(x)y′1+Q(x)y1= 0.

The functiony2(x) is a linearly independent second solution of the same equation.
Show that the inclusion of lower limits on the two integrals leads to nothing new, that
is, that it generates only an overall constant factor and a constant multiple of the known
solutiony1(x).

9.6.15 Given that one solution of

R′′ + 1

r
R′ − m2

r2
R = 0

is R = rm, show that Eq. (9.127) predicts a second solution,R = r−m.

9.6.16 Usingy1(x)=∑∞
n=0(−1)nx2n+1/(2n+ 1)! as a solution of the linear oscillator equa-

tion, follow the analysis culminating in Eq. (9.142f) and show thatc1 = 0 so that the
second solution does not, in this case, contain a logarithmic term.

9.6.17 Show that whenn is not an integer in Bessel’s ODE, Eq. (9.100), the second solution
of Bessel’s equation, obtained from Eq. (9.127), doesnot contain a logarithmic term.

9.6.18 (a) One solution of Hermite’s differential equation

y′′ − 2xy′ + 2αy = 0

for α = 0 isy1(x)= 1. Find a second solution,y2(x), using Eq. (9.127). Show that
your second solution is equivalent toyodd (Exercise 9.5.6).

(b) Find a second solution forα = 1, wherey1(x)= x, using Eq. (9.127). Show that
your second solution is equivalent toyeven(Exercise 9.5.6).

9.6.19 One solution of Laguerre’s differential equation

xy′′ + (1− x)y′ + ny = 0

for n= 0 is y1(x)= 1. Using Eq. (9.127), develop a second, linearly independent solu-
tion. Exhibit the logarithmic term explicitly.
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9.6.20 For Laguerre’s equation withn= 0,

y2(x)=
∫ x es

s
ds.

(a) Writey2(x) as a logarithm plus a power series.
(b) Verify that the integral form ofy2(x), previously given, is a solution of Laguerre’s

equation(n= 0) by direct differentiation of the integral and substitution into the
differential equation.

(c) Verify that the series form ofy2(x), part (a), is a solution by differentiating the
series and substituting back into Laguerre’s equation.

9.6.21 One solution of the Chebyshev equation(
1− x2)y′′ − xy′ + n2y = 0

for n= 0 isy1= 1.

(a) Using Eq. (9.127), develop a second, linearly independent solution.
(b) Find a second solution by direct integration of the Chebyshev equation.

Hint. Let v = y′ and integrate. Compare your result with the second solution given in
Section 13.3.

ANS. (a)y2= sin−1x.
(b) The second solution,Vn(x), is not defined forn= 0.

9.6.22 One solution of the Chebyshev equation(
1− x2)y′′ − xy′ + n2y = 0

for n = 1 is y1(x) = x. Set up the Wronskian double integral solution and derive a
second solution,y2(x).

ANS. y2=−
(
1− x2

)1/2.

9.6.23 The radial Schrödinger wave equation has the form{
− h̄2

2m

d2

dr2
+ l(l + 1)

h̄2

2mr2
+ V (r)

]
y(r)=Ey(r).

The potential energyV (r) may be expanded about the origin as

V (r)= b−1

r
+ b0+ b1r + · · · .

(a) Show that there is one (regular) solution starting withrl+1.
(b) From Eq. (9.128) show that the irregular solution diverges at the origin asr−l .

9.6.24 Show that if a second solution,y2, is assumed to have the formy2(x) = y1(x)f (x),
substitution back into the original equation

y′′2 + P(x)y′2+Q(x)y2= 0
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leads to

f (x)=
∫ x exp[− ∫ s

P (t)dt]
[y1(s)]2 ds,

in agreement with Eq. (9.127).

9.6.25 If our linear, second-order ODE is nonhomogeneous, that is, of the form of Eq. (9.82),
themost general solution is

y(x)= y1(x)+ y2(x)+ yp(x).

(y1 andy2 are independent solutions of the homogeneous equation.)
Show that

yp(x)= y2(x)

∫ x y1(s)F (s) ds

W {y1(s), y2(s)} − y1(x)

∫ x y2(s)F (s) ds

W {y1(s), y2(s)} ,
with W {y1(x), y2(x)} the Wronskian ofy1(s) andy2(s).
Hint. As in Exercise 9.6.24, letyp(x)= y1(x)v(x) and develop a first-order differential
equation forv′(x).

9.6.26 (a) Show that

y′′ + 1− α2

4x2
y = 0

has two solutions:

y1(x) = a0x
(1+α)/2,

y2(x) = a0x
(1−α)/2.

(b) Forα = 0 the two linearly independent solutions of part (a) reduce toy10= a0x
1/2.

Using Eq. (9.128) derive a second solution,

y20(x)= a0x
1/2 lnx.

Verify thaty20 is indeed a solution.
(c) Show that the second solution from part (b) may be obtained as a limiting case from
the two solutions of part (a):

y20(x)= lim
α→0

(
y1− y2

α

)
.

9.7 NONHOMOGENEOUS EQUATION — GREEN’S FUNCTION

The series substitution of Section 9.5 and the Wronskian double integral of Section 9.6
provide the most general solution of thehomogeneous, linear, second-order ODE. The
specific solution,yp, linearly dependent on the source term (F(x) of Eq. (9.82)) may be
cranked out by the variation of parameters method, Exercise 9.6.25. In this section we turn
to a different method of solution — Green’s function.

For a brief introduction to Green’s function method, as applied to the solution of a non-
homogeneous PDE, it is helpful to use the electrostatic analog. In the presence of charges
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the electrostatic potentialψ satisfies Poisson’s nonhomogeneous equation (compare Sec-
tion 1.14),

∇2ψ =− ρ

ε0
(mks units), (9.143)

and Laplace’s homogeneous equation,

∇2ψ = 0, (9.144)

in the absence of electric charge(ρ = 0). If the charges are point chargesqi , we know that
the solution is

ψ = 1

4πε0

∑
i

qi

ri
, (9.145)

a superposition of single-point charge solutions obtained from Coulomb’s law for the force
between two point chargesq1 andq2,

F= q1q2r̂
4πε0r2

. (9.146)

By replacement of the discrete point charges with a smeared-out distributed charge, charge
densityρ, Eq. (9.145) becomes

ψ(r = 0)= 1

4πε0

∫
ρ(r)
r

dτ (9.147)

or, for the potential atr= r1 away from the origin and the charge atr= r2,

ψ(r1)= 1

4πε0

∫
ρ(r2)

|r1− r2|dτ2. (9.148)

We useψ as the potential corresponding to the given distribution of charge and there-
fore satisfying Poisson’s equation (9.143), whereas a functionG, which we label Green’s
function, is required to satisfy Poisson’s equation with a point source at the point defined
by r2:

∇2G=−δ(r1− r2). (9.149)

Physically, then,G is the potential atr1 corresponding to a unit source atr2. By Green’s
theorem (Section 1.11, Eq. (11.104))∫ (

ψ∇2G−G∇2ψ
)
dτ2=

∫
(ψ∇G−G∇ψ) · dσ . (9.150)

Assuming that the integrand falls off faster thanr−2 we may simplify our problem by
taking the volume so large that the surface integral vanishes, leaving∫

ψ∇2Gdτ2=
∫

G∇2ψ dτ2, (9.151)

or, by substituting in Eqs. (9.143) and (9.149), we have

−
∫

ψ(r2)δ(r1− r2) dτ2=−
∫

G(r1, r2)ρ(r2)

ε0
dτ2. (9.152)
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Integration by employing the defining property of the Dirac delta function (Eq. (1.171b))
produces

ψ(r1)= 1

ε0

∫
G(r1, r2)ρ(r2) dτ2. (9.153)

Note that we have used Eq. (9.149) to eliminate∇2G but that the functionG itself is
still unknown. In Section 1.14, Gauss law, we found that∫

∇2
(

1

r

)
dτ =

{
0,
−4π,

(9.154)

0 if the volume did not include the origin and−4π if the origin were included. This result
from Section 1.14 may be rewritten as in Eq. (1.170), or

∇2
(

1

4πr

)
=−δ(r), or ∇2

(
1

4πr12

)
=−δ(r1− r2), (9.155)

corresponding to a shift of the electrostatic charge from the origin to the positionr= r2.
Here r12 = |r1 − r2|, and the Dirac delta functionδ(r1 − r2) vanishes unlessr1 = r2.
Therefore in a comparison of Eqs. (9.149) and (9.155) the functionG (Green’s function)
is given by

G(r1, r2)= 1

4π |r1− r2| . (9.156)

The solution of our differential equation (Poisson’s equation) is

ψ(r1)= 1

4πε0

∫
ρ(r2)

|r1− r2|dτ2, (9.157)

in complete agreement with Eq. (9.148). Actuallyψ(r1), Eq. (9.157), is the particular
solution of Poisson’s equation. We may add solutions of Laplace’s equation (compare
Eq. (9.83)). Such solutions could describe an external field.

These results will be generalized to the second-order, linear, but nonhomogeneous dif-
ferential equation

Ly(r1)=−f (r1), (9.158)

whereL is a linear differential operator. The Green’s function is taken to be a solution of

LG(r1, r2)=−δ(r1− r2), (9.159)

analogous to Eq. (9.149). The Green’s function depends on boundary conditions that may
no longer be those of electrostatics in a region of infinite extent. Then the particular solution
y(r1) becomes

y(r1)=
∫

G(r1, r2)f (r2) dτ2. (9.160)
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(There may also be an integral over a bounding surface, depending on the conditions spec-
ified.)

In summary, Green’s function, often written G(r1, r2) as a reminder of the name, is a
solution of Eq. (9.149) or Eq. (9.159) more generally. It enters in an integral solution
of our differential equation, as in Eqs. (9.148) and (9.153). For the simple, but impor-
tant, electrostatic case we obtain Green’s function, G(r1, r2), by Gauss’ law, comparing
Eqs. (9.149) and (9.155). Finally, from the final solution (Eq. (9.157)) it is possible to
develop a physical interpretation of Green’s function. It occurs as a weighting function or
propagator function that enhances or reduces the effect of the charge element ρ(r2) dτ2
according to its distance from the field point r1. Green’s function, G(r1, r2), gives the ef-
fect of a unit point source at r2 in producing a potential at r1. This is how it was introduced
in Eq. (9.149); this is how it appears in Eq. (9.157).

Symmetry of Green’s Function

An important property of Green’s function is the symmetry of its two variables; that is,

G(r1, r2)=G(r2, r1). (9.161)

Although this is obvious in the electrostatic case just considered, it can be proved under
more general conditions. In place of Eq. (9.149), let us require thatG(r, r1) satisfy21

∇ · [p(r)∇G(r, r1)
]+ λq(r)G(r, r1)=−δ(r− r1), (9.162)

corresponding to a mathematical point source atr= r1. Here the functionsp(r) andq(r)
are well-behaved but otherwise arbitrary functions ofr. The Green’s function,G(r, r2),
satisfies the same equation, but the subscript 1 is replaced by subscript 2. The Green’s
functions,G(r, r1) andG(r, r2), have the same values over a given surfaceS of some
volume of finite or infinite extent, and their normal derivatives have the same values over
the surfaceS, or these Green’s functions vanish onS (Dirichlet boundary conditions, Sec-
tion 9.1).22 ThenG(r, r2) is a sort of potential atr, created by a unit point source atr2.

We multiply the equation forG(r, r1) by G(r, r2) and the equation forG(r, r2) by
G(r, r1) and then subtract the two:

G(r, r2)∇ ·
[
p(r)∇G(r, r1)

]−G(r, r1)∇ ·
[
p(r)∇G(r, r2)

]
=−G(r, r2)δ(r− r1)+G(r, r1)δ(r− r2). (9.163)

The first term in Eq. (9.163),

G(r, r2)∇ ·
[
p(r)∇G(r, r1)

]
,

may be replaced by

∇ · [G(r, r2)p(r)∇G(r, r1)
]−∇G(r, r2) · p(r)∇G(r, r1).

21Equation (9.162) is a three-dimensional, inhomogeneous version of theself-adjoint eigenvalue equation, Eq. (10.8).
22Any attempt to demand that the normal derivatives vanish at the surface (Neumann’s conditions, Section 9.1) leads to trouble
with Gauss’ law. It is like demanding that

∫
E · dσ = 0 when you know perfectly well that there is some electric charge inside

the surface.
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A similar transformation is carried out on the second term. Then integrating over the vol-
ume whose surface isS and using Green’s theorem, we obtain a surface integral:∫

S

[
G(r, r2)p(r)∇G(r, r1)−G(r, r1)p(r)∇G(r, r2)

] · dσ

=−G(r1, r2)+G(r2, r1). (9.164)

The terms on the right-hand side appear when we use the Dirac delta functions in
Eq. (9.163) and carry out the volume integration. With the boundary conditions earlier
imposed on the Green’s function, the surface integral vanishes and

G(r1, r2)=G(r2, r1), (9.165)

which shows that Green’s function is symmetric. If the eigenfunctions are complex, bound-
ary conditions corresponding to Eqs. (10.19) to (10.20) are appropriate. Equation (9.165)
becomes

G(r1, r2)=G∗(r2, r1). (9.166)

Note that this symmetry property holds for Green’s functions in every equation in the
form of Eq. (9.162). In Chapter 10 we shall call equations in this formself-adjoint. The
symmetry is the basis of various reciprocity theorems; the effect of a charge atr2 on the
potential atr1 is the same as the effect of a charge atr1 on the potential atr2.

This use of Green’s functions is a powerful technique for solving many of the more
difficult problems of mathematical physics.

Form of Green’s Functions

Let us assume thatL is a self-adjoint differential operator of the general form23

L1=∇1 ·
[
p(r1)∇1

]+ q(r1). (9.167)

Here the subscript 1 onL emphasizes thatL operates onr1. Then, as a simple generaliza-
tion of Green’s theorem, Eq. (1.104), we have∫

(vL2u− uL2v)dτ2=
∫

p(v∇2u− u∇2v) · dσ 2, (9.168)

in which all quantities haver2 as their argument. (To verify Eq. (9.168), take the divergence
of the integrand of the surface integral.) We letu(r2) = y(r2) so that Eq. (9.158) applies
and v(r2) = G(r1, r2) so that Eq. (9.159) applies. (Remember,G(r1, r2) = G(r2, r1).)
Substituting into Green’s theorem we get∫ {−G(r1, r2)f (r2)+ y(r2)δ(r1− r2)

}
dτ2

=
∫

p(r2)
{
G(r1, r2)∇2y(r2)− y(r2)∇2G(r1, r2)

} · dσ 2. (9.169)

23L1 may be in 1, 2, or 3 dimensions (with appropriate interpretation of∇1).
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When we integrate over the Dirac delta function

y(r1) =
∫

G(r1, r2)f (r2) dτ2

+
∫

p(r2)
{
G(r1, r2)∇2y(r2)− y(r2)∇2G(r1, r2)

} · dσ 2, (9.170)

our solution to Eq. (9.158) appears as a volume integral plus a surface integral. Ify and
G both satisfy Dirichlet boundary conditions or if both satisfy Neumann boundary con-
ditions, the surface integral vanishes and we regain Eq. (9.160). The volume integral is a
weighted integral over the source termf (r2) with our Green’s functionG(r1, r2) as the
weighting function.

For the special case ofp(r1)= 1 andq(r1)= 0,L is ∇2, the Laplacian. Let us integrate

∇2
1G(r1, r2)=−δ(r1− r2) (9.171)

over a small volume including the point source. Then∫
∇1 ·∇1G(r1, r2) dτ1=−

∫
δ(r1− r2) dτ1=−1. (9.172)

The volume integral on the left may be transformed by Gauss’ theorem, as in the develop-
ment of Gauss’ law — Section 1.14. We find that∫

∇1G(r1, r2) · dσ 1=−1. (9.173)

This shows, incidentally, that it may not be possible to impose a Neumann boundary con-
dition, that the normal derivative of the Green’s function,∂G/∂n, vanishes over the entire
surface.

If we are in three-dimensional space, Eq. (9.173) is satisfied by taking

∂

∂r12
G(r1, r2)=− 1

4π
· 1

|r1− r2|2 , r12= |r1− r2|. (9.174)

The integration is over the surface of a sphere centered atr2. The integral of Eq. (9.174) is

G(r1, r2)= 1

4π
· 1

|r1− r2| , (9.175)

in agreement with Section 1.14.
If we are in two-dimensional space, Eq. (9.173) is satisfied by taking

∂

∂ρ12
G(ρ1,ρ2)=

1

2π
· 1

|ρ1− ρ2|
, (9.176)

with r being replaced byρ, ρ = (x2+y2)1/2, and the integration being over the circumfer-
ence of a circle centered onρ2. Hereρ12= |ρ1− ρ2|. Integrating Eq. (9.176), we obtain

G(ρ1,ρ2)=−
1

2π
ln |ρ1− ρ2|. (9.177)

To G(ρ1,ρ2) (and toG(r1, r2)) we may add any multiple of the regular solution of the
homogeneous (Laplace’s) equation as needed to satisfy boundary conditions.
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Table 9.5 Green’s Functionsa

Laplace Helmholtz Modified Helmholtz
∇2 ∇2+ k2 ∇2− k2

One-dimensional space No solution
i

2k
exp(ik|x1− x2|) 1

2k
exp(−k|x1− x2|)

for (−∞,∞)

Two-dimensional space − 1

2π
ln |ρ1− ρ2|

i

4
H

(1)
0 (k|ρ1− ρ2|)

1

2π
K0(k|ρ1− ρ2|)

Three-dimensional space
1

4π
· 1

|r1− r2|
exp(ik|r1− r2|)

4π |r1− r2|
exp(−k|r1− r2|)

4π |r1− r2|

aThese are the Green’s functions satisfying the boundary conditionG(r1, r2) = 0 as r1 →∞ for the Laplace and modified

Helmholtz operators. For the Helmholtz operator,G(r1, r2) corresponds to an outgoing wave.H
(1)
0 is the Hankel function of

Section 11.4.K0 is he modified Bessel function of Section 11.5.

The behavior of the Laplace operator Green’s function in the vicinity of the source point
r1 = r2 shown by Eqs. (9.175) and (9.177) facilitates the identification of the Green’s
functions for the other cases, such as the Helmholtz and modified Helmholtz equations.

1. Forr1 
= r2, G(r1, r2) must satisfy thehomogeneous differential equation

L1G(r1, r2)= 0, r1 
= r2. (9.178)

2. Asr1→ r2 (or ρ1→ ρ2),

G(ρ1,ρ2) ≈ −
1

2π
ln |ρ1− ρ2|, two-dimensional space, (9.179)

G(r1, r2) ≈ 1

4π
· 1

|r1− r2| , three-dimensional space. (9.180)

The term±k2 in the operator does not affect the behavior ofG near the singular point
r1= r2. For convenience, the Green’s functions for the Laplace, Helmholtz, and modified
Helmholtz operators are listed in Table 9.5.

Spherical Polar Coordinate Expansion24

As an alternate determination of the Green’s function of the Laplace operator, let us assume
a spherical harmonic expansion of the form

G(r1, r2)=
∞∑
l=0

l∑
m=−l

gl(r1, r2)Y
m
l (θ1, ϕ1)Y

m∗
l (θ2, ϕ2), (9.181)

where the summation indexl is the same for the spherical harmonics, as a consequence
of the symmetry of the Green’s function. We will now determine the radial functions

24This section is optional here and may be postponed to Chapter 12.
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gl(r1, r2). From Exercises 1.15.11 and 12.6.6,

δ(r1− r2) = 1

r2
1

δ(r1− r2)δ(cosθ1− cosθ2)δ(ϕ1− ϕ2)

= 1

r2
1

δ(r1− r2)

∞∑
l=0

l∑
m=−l

Ym
l (θ1, ϕ1)Y

m∗
l (θ2, ϕ2). (9.182)

Substituting Eqs. (9.181) and (9.182) into the Green’s function differential equation,
Eq. (9.171), and making use of the orthogonality of the spherical harmonics, we obtain
a radial equation:

r1
d2

dr2
1

[
r1gl(r1, r2)

]− l(l + 1)gl(r1, r2)=−δ(r1− r2). (9.183)

This is now a one-dimensional problem. The solutions25 of the corresponding homoge-
neous equation arerl1 andr−l−1

1 . If we demand thatgl remain finite asr1→ 0 and vanish
asr1→∞, the technique of Section 10.5 leads to

gl(r1, r2)= 1

2l + 1


rl1

rl+1
2

, r1 < r2,

rl2

rl+1
1

, r1 > r2,

(9.184)

or

gl(r1, r2)= 1

2l + 1
· rl<

rl+1
>

. (9.185)

Hence our Green’s function is

G(r1, r2)=
∞∑
l=0

l∑
m=−l

1

2l + 1

rl<

rl+1
>

Ym
l (θ1, ϕ1)Y

m∗
l (θ2, ϕ2). (9.186)

Since we already haveG(r1, r2) in closed form, Eq. (9.175), we may write

1

4π
· 1

|r1− r2| =
∞∑
l=0

l∑
m=−l

1

2l + 1

rl<

rl+1
>

Ym
l (θ1, ϕ1)Y

m∗
l (θ2, ϕ2). (9.187)

One immediate use for this spherical harmonic expansion of the Green’s function is
in the development of an electrostatic multipole expansion. The potential for an arbitrary
charge distribution is

ψ(r1)= 1

4πε0

∫
ρ(r2)

|r1− r2|dτ2

25Compare Table 9.2.
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(which is Eq. (9.148)). Substituting Eq. (9.187), we get

ψ(r1) = 1

ε0

∞∑
l=0

l∑
m=−l

{
1

2l + 1

Ym
l (θ1, ϕ1)

rl+1
1

·
∫

ρ(r2)Y
m∗
l (θ2, ϕ2)r

l
2dϕ2 sinθ2dθ2 r

2
2 dr2

}
, for r1 > r2.

This is themultipole expansion. The relative importance of the various terms in the double
sum depends on the form of the source,ρ(r2).

Legendre Polynomial Addition Theorem26

From the generating expression for Legendre polynomials, Eq. (12.4a),

1

4π
· 1

|r1− r2| =
1

4π

∞∑
l=0

rl<

rl+1
>

Pl(cosγ ), (9.188)

whereγ is the angle included between vectorsr1 andr2, Fig. 9.4. Equating Eqs. (9.187)
and (9.188), we have the Legendre polynomial addition theorem:

Pl(cosγ )= 4π

2l + 1

l∑
m=−l

Ym
l (θ1, ϕ1)Y

m∗
l (θ2, ϕ2). (9.189)

FIGURE 9.4 Spherical polar coordinates.

26This section is optional here and may be postponed to Chapter 12.
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It is instructive to compare this derivation with the relatively cumbersome derivation of
Section 12.8 leading to Eq. (12.177).

Circular Cylindrical Coordinate Expansion27

In analogy with the preceding spherical polar coordinate expansion, we write

δ(r1− r2) = 1

ρ1
δ(ρ1− ρ2)δ(ϕ1− ϕ2)δ(z1− z2)

= 1

ρ1
δ(ρ1− ρ2)

1

4π2

∞∑
m=−∞

eim(ϕ1−ϕ2)

∫ ∞

−∞
eik(z1−z2) dk, (9.190)

using Exercise 12.6.5 and Eq. (1.193c) and the Cauchy principal value. But why a summa-
tion for theϕ-dependence and an integration for thez-dependence? The requirement that
the azimuthal dependence be single-valued quantizesm, hence the summation. No such
restriction applies tok.

To avoid problems later with negative values ofk, we rewrite Eq. (9.190) as

δ(r1− r2)= 1

ρ1
δ(ρ1− ρ2)

1

2π

∞∑
m=−∞

eim(ϕ1−ϕ2)
1

π

∫ ∞

0
cosk(z1− z2) dk. (9.191)

We assume a similar expansion of the Green’s function,

G(r1, r2)= 1

2π2

∞∑
m=−∞

gm(ρ1, ρ2)e
im(ϕ1−ϕ2)

∫ ∞

0
cosk(z1− z2) dk, (9.192)

with the ρ-dependent coefficientsgm(ρ1, ρ2) to be determined. Substituting into
Eq. (9.171), now in circular cylindrical coordinates, we find that ifg(ρ1, ρ2) satisfies

d

dρ1

[
ρ1

dgm

dρ1

]
−
[
k2ρ1+ m2

ρ1

]
gm =−δ(ρ1− ρ2), (9.193)

then Eq. (9.171) is satisfied.
The operator in Eq. (9.193) is identified as the modified Bessel operator (in self-

adjoint form). Hence the solutions of the corresponding homogeneous equation areu1 =
Im(kρ),u2 = Km(kρ). As in the spherical polar coordinate case, we demand thatG be
finite atρ1= 0 and vanish asρ1→∞. Then the technique of Section 10.5 yields

gm(ρ1, ρ2)=− 1

A
Im(kρ<)Km(kρ>). (9.194)

This corresponds to Eq. (9.155). The constantA comes from the Wronskian (see
Eq. (9.120)):

Im(kρ)K
′
m(kρ)− I ′m(kρ)Km(kρ)= A

P(kρ)
. (9.195)

27This section is optional here and may be postponed to Chapter 11.
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From Exercise 11.5.10,A=−1 and

gm(ρ1, ρ2)= Im(kρ<)Km(kρ>). (9.196)

Therefore our circular cylindrical coordinate Green’s function is

G(r1, r2) = 1

4π
· 1

|r1− r2|

= 1

2π2

∞∑
m=−∞

∫ ∞

0
Im(kρ<)Km(kρ>)e

im(ϕ1−ϕ2) cosk(z1− z2) dk.

(9.197)

Exercise 9.7.14 is a special case of this result.

Example 9.7.1 QUANTUM MECHANICAL SCATTERING — NEUMANN SERIES SOLUTION

The quantum theory of scattering provides a nice illustration of integral equation tech-
niques and an application of a Green’s function. Our physical picture of scattering is as
follows. A beam of particles moves along the negativez-axis toward the origin. A small
fraction of the particles is scattered by the potentialV (r) and goes off as an outgoing
spherical wave. Our wave functionψ(r) must satisfy the time-independent Schrödinger
equation

− h̄2

2m
∇2ψ(r)+ V (r)ψ(r)=Eψ(r), (9.198a)

or

∇2ψ(r)+ k2ψ(r)=−
[
−2m

h̄2
V (r)ψ(r)

]
, k2= 2mE

h̄2
. (9.198b)

From the physical picture just presented we look for a solution having anasymptotic
form

ψ(r)∼ eik0·r + fk(θ,ϕ)
eikr

r
. (9.199)

Hereeik0·r is the incident plane wave28 with k0 the propagation vector carrying the sub-
script 0 to indicate that it is in theθ = 0 (z-axis) direction. The magnitudesk0 andk are
equal (ignoring recoil), andeikr/r is the outgoing spherical wave with an angular (and
energy) dependent amplitude factorfk(θ,ϕ).29 Vectork has the direction of the outgoing
scattered wave. In quantum mechanics texts it is shown that the differential probability of
scattering,dσ/d�, the scattering cross section per unit solid angle, is given by|fk(θ,ϕ|2.

Identifying [−(2m/h̄2)V (r)ψ(r)] with f (r) of Eq. (9.158), we have

ψ(r1)=−
∫

2m

h̄2
V (r2)ψ(r2)G(r1, r2) d

3r2 (9.200)

28For simplicity we assume a continuous incident beam. In a more sophisticated and more realistic treatment, Eq. (9.199) would
be one component of a Fourier wave packet.
29If V (r) represents a central force,fk will be a function ofθ only, independent of azimuth.
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by Eq. (9.170). This does not have the desired asymptotic form of Eq. (9.199), but we may
add to Eq. (9.200)eik0·r1 , a solution of the homogeneous equation, and putψ(r) into the
desired form:

ψ(r1)= eik0·r1 −
∫

2m

h̄2
V (r2)ψ(r2)G(r1, r2) d

3r2. (9.201)

Our Green’s function is the Green’s function of the operatorL = ∇2 + k2 (Eq. (9.198)),
satisfying the boundary condition that it describe an outgoing wave. Then, from Table 9.5,
G(r1, r2)= exp(ik|r1− r2|)/(4π |r1− r2|) and

ψ(r1)= eik0·r1 −
∫

2m

h̄2
V (r2)ψ(r2)

eik|r1−r2|

4π |r1− r2|d
3r2. (9.202)

This integral equation analog of the original Schrödinger wave equation isexact. Employ-
ing the Neumann series technique of Section 16.3 (remember, the scattering probability is
very small), we have

ψ0(r1)= eik0·r1, (9.203a)

which has the physical interpretation of no scattering.
Substitutingψ0(r2)= eik0·r2 into the integral, we obtain the first correction term,

ψ1(r1)= eik0·r1 −
∫

2m

h̄2
V (r2)

eik|r1−r2|

4π |r1− r2|e
ik0·r2 d3r2. (9.203b)

This is the famousBorn approximation. It is expected to be most accurate for weak poten-
tials and high incident energy. If a more accurate approximation is desired, the Neumann
series may be continued.30 �

Example 9.7.2 QUANTUM MECHANICAL SCATTERING — GREEN’S FUNCTION

Again, we consider the Schrödinger wave equation (Eq. (9.198b)) for the scattering prob-
lem. This time we use Fourier transform techniques and derive the desired form of the
Green’s function by contour integration. Substituting the desired asymptotic form of the
solution (withk replaced byk0),

ψ(r)∼ eik0z + fk0(θ,ϕ)
eik0r

r
= eik0z +�(r), (9.204)

into the Schrödinger wave equation, Eq. (9.198b), yields(∇2+ k2
0

)
�(r)=U(r)eik0z +U(r)�(r). (9.205a)

Here

h̄2

2m
U(r)= V (r),

30This assumes the Neumann series is convergent. In some physical situations it is not convergent and then other techniques are
needed.
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the scattering (perturbing) potential. Since the probability of scattering is much less than 1,
the second term on the right-hand side of Eq. (9.205a) is expected to be negligible (relative
to the first term on the right-hand side) and thus we drop it. Note that we areapproximat-
ing our differential equation with(∇2+ k2

0

)
�(r)=U(r)eik0z. (9.205b)

We now proceed to solve Eq. (9.205b), a nonhomogeneous PDE. The differential oper-
ator∇2 generates a continuous set of eigenfunctions

∇2ψk(r)=−k2ψk(r), (9.206)

where

ψk(r)= (2π)−3/2eik·r.

These plane-wave eigenfunctions form a continuous but orthonormal set, in the sense that∫
ψ∗k1

(r)ψk2(r) d
3r = δ(k1− k2)

(compare Eq. (15.21d)).31 We use these eigenfunctions to derive a Green’s function.
We expand the unknown function�(r1) in these eigenfunctions,

�(r1)=
∫

Ak1ψk1(r1) d
3k1, (9.207)

a Fourier integral withAk1, the unknown coefficients. Substituting Eq. (9.207) into
Eq. (9.205b) and using Eq. (9.206), we obtain∫

Ak
(
k2

0 − k2)ψk(r) d3k =U(r)eik0z. (9.208)

Using the now-familiar technique of multiplying byψ∗k2
(r) and integrating over the space

coordinates, we have∫
Ak1

(
k2

0 − k2
1

)
d3k1

∫
ψ∗k2

(r)ψk1(r) d
3r = Ak2

(
k2

0 − k2
2

)
=
∫

ψ∗k2
(r)U(r)eik0z d3r. (9.209)

Solving forAk2 and substituting into Eq. (9.207) we have

�(r2)=
∫ [(

k2
0 − k2

2

)−1
∫

ψ∗k2
(r1)U(r1)e

ik0z1 d3r1

]
ψk2(r2) d

3k2. (9.210)

Hence

�(r1)=
∫

ψk1(r1)
(
k2

0 − k2
1

)−1
d3k1

∫
ψ∗k1

(r2)U(r2)e
ik0z2 d3r2, (9.211)

31d3r = dx dy dz, a (three-dimensional) volume element inr-space.
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replacingk2 by k1 andr1 by r2 to agree with Eq. (9.207). Reversing the order of integra-
tion, we have

�(r1)=−
∫

Gk0(r1, r2)U(r2)e
ik0z2 d3r2, (9.212)

whereGk0(r1, r2), our Green’s function, is given by

Gk0(r1, r2)=
∫

ψ∗k1
(r2)ψk1(r1)

k2
1 − k2

0

d3k1, (9.213)

analogous to Eq. (10.90) of Section 10.5 for discrete eigenfunctions. Equation (9.212)
should be compared with the Green’s function solution of Poisson’s equation (9.157).

It is perhaps worth evaluating this integral to emphasize once more the vital role played
by the boundary conditions. Using the eigenfunctions from Eq. (9.206) and

d3k = k2dk sinθ dθ dϕ,

we obtain

Gk0(r1, r2)= 1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

eikρ cosθ

k2− k2
0

dϕ sinθ dθ k2dk. (9.214)

Herekρ cosθ has replacedk · (r1 − r2), with ρ = r1− r2 indicating the polar axis ink-
space. Integrating overϕ by inspection, we pick up a 2π . The θ -integration then leads
to

Gk0(r1, r2)= 1

4π2ρi

∫ ∞

0

eikρ − e−ikρ

k2− k2
0

k dk, (9.215)

and since the integrand is an even function ofk, we may set

Gk0(r1, r2)= 1

8π2ρi

∫ ∞

−∞
(eiκ − e−iκ )
κ2− σ 2

κ dκ. (9.216)

The latter step is taken in anticipation of the evaluation ofGk(r1, r2) as a contour integral.
The symbolsκ andσ(σ > 0) representkρ andk0ρ, respectively.

If the integral in Eq. (9.216) is interpreted as a Riemann integral, the integral does not
exist. This implies thatL−1 does not exist, and in a literal sense it does not.L=∇2+ k2

is singular since there exist nontrivial solutionsψ for which the homogeneous equation
Lψ = 0. We avoid this problem by introducing a parameterγ , defining a different opera-
tor L−1

γ , and taking the limit asγ → 0.
Splitting the integral into two parts so that each part may be written as a suitable contour

integral gives us

G(r1, r2)= 1

8π2ρi

∮
C1

κeiκ dκ

κ2− σ 2
+ 1

8π2ρi

∮
C2

κe−iκ dκ
κ2− σ 2

. (9.217)

ContourC1 is closed by a semicircle in the upper half-plane,C2 by a semicircle in
the lower half-plane. These integrals were evaluated in Chapter 7 by using appropriately
chosen infinitesimal semicircles to go around the singular pointsκ =±σ . As an alternative
procedure, let us first displace the singular points from the real axis by replacingσ by
σ + iγ and then, after evaluation, taking the limit asγ → 0 (Fig. 9.5).
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FIGURE 9.5 Possible Green’s
function contours of integration.

For γ positive, contourC1 encloses the singular pointκ = σ + iγ and the first integral
contributes

2πi · 1

2
ei(σ+iγ ).

From the second integral we also obtain

2πi · 1

2
ei(σ+iγ ),

the enclosed singularity beingκ =−(σ + iγ ). Returning to Eq. (9.217) and lettingγ → 0,
we have

G(r1, r2)= 1

4πρ
eiσ = eik0|r1−r2|

4π |r1− r2| , (9.218)

in full agreement with Exercise 9.7.16. This result depends on starting withγ positive. Had
we chosenγ negative, our Green’s function would have includede−iσ , which corresponds
to anincoming wave. The choice of positiveγ is dictated by the boundary conditions we
wish to satisfy.

Equations (9.212) and (9.218) reproduce the scattered wave in Eq. (9.203b) and consti-
tute an exact solution of the approximate Eq. (9.205b). Exercises 9.7.18 and 9.7.20 extend
these results. �
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Exercises

9.7.1 Verify Eq. (9.168),∫
(vL2u− uL2v)dτ2=

∫
p(v∇2u− u∇2v) · dσ 2.

9.7.2 Show that the terms+k2 in the Helmholtz operator and−k2 in the modified Helmholtz
operator do not affect the behavior ofG(r1, r2) in the immediate vicinity of the singular
point r1= r2. Specifically, show that

lim|r1−r2|→0

∫
k2G(r1, r2) dτ2= 1.

9.7.3 Show that

exp(ik|r1− r2|)
4π |r1− r2|

satisfies the two appropriate criteria and therefore is a Green’s function for the
Helmholtz equation.

9.7.4 (a) Find the Green’s function for the three-dimensional Helmholtz equation, Exer-
cise 9.7.3, when the wave is a standing wave.

(b) How is this Green’s function related to the spherical Bessel functions?

9.7.5 The homogeneous Helmholtz equation

∇2ϕ + λ2ϕ = 0

has eigenvaluesλ2
i and eigenfunctionsϕi . Show that the corresponding Green’s function

that satisfies

∇2G(r1, r2)+ λ2G(r1, r2)=−δ(r1− r2)

may be written as

G(r1, r2)=
∞∑
i=1

ϕi(r1)ϕi(r2)

λ2
i − λ2

.

An expansion of this form is called abilinear expansion. If the Green’s function is
available inclosed form, this provides a means of generating functions.

9.7.6 An electrostatic potential (mks units) is

ϕ(r)= Z

4πε0
· e
−ar

r
.

Reconstruct the electrical charge distribution that will produce this potential. Note that
ϕ(r) vanishes exponentially for larger , showing that the net charge is zero.

ANS. ρ(r)= Zδ(r)− Za2

4π

e−ar

r
.
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9.7.7 Transform the ODE

d2y(r)

dr2
− k2y(r)+ V0

e−r

r
y(r)= 0

and the boundary conditionsy(0)= y(∞)= 0 into a Fredholm integral equation of the
form

y(r)= λ

∫ ∞

0
G(r, t)

e−t

t
y(t) dt.

The quantitiesV0= λ andk2 are constants. The ODE is derived from the Schrödinger
wave equation with a mesonic potential:

G(r, t) =


1

k
e−kt sinhkr, 0≤ r < t,

1

k
e−kr sinhkt, t < r <∞.

9.7.8 A charged conducting ring of radiusa (Example 12.3.3) may be described by

ρ(r)= q

2πa2
δ(r − a)δ(cosθ).

Using the known Green’s function for this system, Eq. (9.187) find the electrostatic
potential.
Hint. Exercise 12.6.3 will be helpful.

9.7.9 Changing a separation constant fromk2 to−k2 and putting the discontinuity of the first
derivative into thez-dependence, show that

1

4π |r1− r2| =
1

4π

∞∑
m=−∞

∫ ∞

0
eim(ϕ1−ϕ2)Jm(kρ1)Jm(kρ2)e

−k|z1−z2| dk.

Hint. The requiredδ(ρ1− ρ2) may be obtained from Exercise 15.1.2.

9.7.10 Derive the expansion

exp[ik|r1− r2|]
4π |r1− r2| = ik

∞∑
l=0


jl(kr1)h

(1)
l (kr2), r1 < r2

jl(kr2)h
(1)
l (kr1), r1 > r2


×

l∑
m=−l

Ym
l (θ1, ϕ1)Y

m∗
l (θ2, ϕ2).

Hint. The left side is a known Green’s function. Assume a spherical harmonic expansion
and work on the remaining radial dependence. The spherical harmonic closure relation,
Exercise 12.6.6, covers the angular dependence.

9.7.11 Show that the modified Helmholtz operator Green’s function

exp(−k|r1− r2|)
4π |r1− r2|
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has the spherical polar coordinate expansion

exp(−k|r1− r2|)
4π |r1− r2| = k

∞∑
l=0

il(kr<)kl(kr>)

l∑
m=−l

Ym
l (θ1, ϕ1)Y

m∗
l (θ2, ϕ2).

Note. The modified spherical Bessel functionsil(kr) andkl(kr) are defined in Exer-
cise 11.7.15.

9.7.12 From the spherical Green’s function of Exercise 9.7.10, derive the plane-wave expan-
sion

eik·r =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cosγ ),

whereγ is the angle included betweenk andr. This is the Rayleigh equation of Exer-
cise 12.4.7.
Hint. Taker2� r1 so that

|r1− r2|→ r2− r20 · r1= r2− k · r1

k
.

Let r2→∞ and cancel a factor ofeikr2/r2.

9.7.13 From the results of Exercises 9.7.10 and 9.7.12, show that

eix =
∞∑
l=0

il(2l + 1)jl(x).

9.7.14 (a) From the circular cylindrical coordinate expansion of the Laplace Green’s function
(Eq. (9.197)), show that

1

(ρ2+ z2)1/2
= 2

π

∫ ∞

0
K0(kρ)coskz dk.

This same result is obtained directly in Exercise 15.3.11.
(b) As a special case of part (a) show that∫ ∞

0
K0(k) dk = π

2
.

9.7.15 Noting that

ψk(r)= 1

(2π)3/2
eik·r

is an eigenfunction of (∇2+ k2)ψk(r)= 0

(Eq. (9.206)), show that the Green’s function ofL=∇2 may be expanded as

1

4π |r1− r2| =
1

(2π)3

∫
eik·(r1−r2)

d3k

k2
.
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9.7.16 Using Fourier transforms, show that the Green’s function satisfying the nonhomoge-
neous Helmholtz equation(∇2+ k2

0

)
G(r1, r2)=−δ(r1− r2)

is

G(r1, r2)= 1

(2π)3

∫
eik·(r1−r2)

k2− k2
0

d3k,

in agreement with Eq. (9.213).

9.7.17 The basic equation of the scalar Kirchhoff diffraction theory is

ψ(r1)= 1

4π

∫
S2

[
eikr

r
∇ψ(r2)−ψ(r2)∇

(
eikr

r

)]
· dσ 2,

whereψ satisfies the homogeneous Helmholtz equation andr = |r1− r2|. Derive this
equation. Assume thatr1 is interior to the closed surfaceS2.
Hint. Use Green’s theorem.

9.7.18 The Born approximation for the scattered wave is given by Eq. (9.203b) (and
Eq. (9.211)). From the asymptotic form, Eq. (9.199),

fk(θ,ϕ)
eikr

r
=−2m

h̄2

∫
V (r2)

eik|r−r2|

4π |r− r2|e
ik0·r2 d3r2.

For a scattering potentialV (r2) that is independent of angles and forr� r2, show that

fk(θ,ϕ)=−2m

h̄2

∫ ∞

0
r2V (r2)

sin(|k0− k|r2)

|k0− k| dr2.

Herek0 is in theθ = 0 (originalz-axis) direction, whereask is in the(θ,ϕ) direction.
The magnitudes are equal:|k0| = |k|; m is the reduced mass.
Hint. You have Exercise 9.7.12 to simplify the exponential and Exercise 15.3.20 to
transform the three-dimensional Fourier exponential transform into a one-dimensional
Fourier sine transform.

9.7.19 Calculate the scattering amplitudefk(θ,ϕ) for a mesonic potentialV(r)= V0(e
−αr/αr).

Hint. This particular potential permits the Born integral, Exercise 9.7.18, to be evaluated
as a Laplace transform.

ANS. fk(θ,ϕ)=−2mV0

h̄2α

1

α2+ (k0− k)2
.

9.7.20 The mesonic potentialV (r)= V0(e
−αr/αr) may be used to describe the Coulomb scat-

tering of two chargesq1 andq2. We letα→ 0 andV0→ 0 but take the ratioV0/α to
beq1q2/4πε0. (For Gaussian units omit the 4πε0.) Show that the differential scattering
cross sectiondσ/d�= |fk(θ,ϕ)|2 is given by

dσ

d�
=
(
q1q2

4πε0

)2 1

16E2 sin4(θ/2)
, E = p2

2m
= h̄2k2

2m
.

It happens (coincidentally) that this Born approximation is in exact agreement with both
the exact quantum mechanical calculations and the classical Rutherford calculation.
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9.8 HEAT FLOW, OR DIFFUSION, PDE

Here we return to a special PDE to develop fairly general methods to adapt a special solu-
tion of a PDE to boundary conditions by introducing parameters that apply to other second-
order PDEs with constant coefficients as well. To some extent, they are complementary to
the earlier basic separation method for finding solutions in a systematic way.

We select the full time-dependent diffusion PDE for an isotropic medium. Assuming
isotropy actually is not much of a restriction because, in case we have different (constant)
rates of diffusion in different directions, for example in wood, our heat flow PDE takes the
form

∂ψ

∂t
= a2∂

2ψ

∂x2
+ b2∂

2ψ

∂y2
+ c2∂

2ψ

∂z2
, (9.219)

if we put the coordinate axes along the principal directions of anisotropy. Now we sim-
ply rescale the coordinates using the substitutionsx = aξ, y = bη, z = cζ to get back the
original isotropic form of Eq. (9.219),

∂�

∂t
= ∂2�

∂ξ2
+ ∂2�

∂η2
+ ∂2�

∂ζ 2
(9.220)

for the temperature distribution function�(ξ,η, ζ, t)=ψ(x, y, z, t).
For simplicity, we first solve the time-dependent PDE for a homogeneous one-

dimensional medium, a long metal rod in thex-direction, say,

∂ψ

∂t
= a2∂

2ψ

∂x2
, (9.221)

where the constanta measures the diffusivity, or heat conductivity, of the medium. We
attempt to solve this linear PDE with constant coefficients with the relevantexponential
product Ansatz ψ = eαx · eβt , which, when substituted into Eq. (9.221), solves the PDE
with the constraintβ = a2α2 for the parameters. We seek exponentially decaying solutions
for large times, that is, solutions with negativeβ values, and therefore setα = iω, α2 =
−ω2 for realω and have

ψ(x, t)= eiωxe−ω2a2t = (cosωx + i sinωx)e−ω2a2t .

Forming real linear combinations we obtain the solution

ψ(x, t)= (Acosωx +B sinωx)e−ω2a2t ,

for any choice ofA,B,ω, which are introduced to satisfy boundary conditions. Upon sum-
ming over multiplesnω of the basic frequency for periodic boundary conditions orinte-
grating over the parameter ω for general (nonperiodic boundary conditions), we find a
solution,

ψ(x, t)=
∫ [

A(ω)cosωx +B(ω)sinωx
]
e−a2ω2t dω, (9.222)

that is general enough to be adapted to boundary conditions att = 0, say. When the bound-
ary condition gives a nonzero temperatureψ0, as for our rod, then the summation method
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applies (Fourier expansion of the boundary condition). If the space is unrestricted (as for
an infinitely extended rod), the Fourier integral applies.

• This summation or integration over parameters is one of the standard methods for gen-
eralizing specific PDE solutions in order to adapt them to boundary conditions.

Example 9.8.1 A SPECIFIC BOUNDARY CONDITION

Let us solve a one-dimensional case explicitly, where the temperature at timet = 0 is
ψ0(x) = 1= const. in the interval betweenx = +1 andx = −1 and zero forx > 1 and
x < 1. At the ends,x =±1, the temperature is always held at zero.

For a finite interval we choose the cos(lπx/2) spatial solutions of Eq. (9.221) for integer
l, because they vanish atx =±1. Thus, att = 0 our solution is a Fourier series,

ψ(x,0)=
∞∑
l=1

al cos
πlx

2
= 1, −1< x < 1

with coefficients (see Section 14.1.)

al =
∫ 1

−1
1 · cos

πlx

2
= 2

lπ
sin

πlx

2

∣∣∣∣1
x=−1

= 4

πl
sin

lπ

2
= 4(−1)m

(2m+ 1)π
, l = 2m+ 1;

al = 0, l = 2m.

Including its time dependence, the full solution is given by the series

ψ(x, t)= 4

π

∞∑
m=0

(−1)m

2m+ 1
cos

[
(2m+ 1)

πx

2

]
e−t ((2m+1)πa/2)2, (9.223)

which converges absolutely fort > 0 but only conditionally att = 0, as a result of the
discontinuity atx =±1.

Without the restriction to zero temperature at the endpoints of the given finite interval,
the Fourier series is replaced by a Fourier integral. The general solution is then given by
Eq. (9.222). Att = 0 the given temperature distributionψ0 = 1 gives the coefficients as
(see Section 15.3)

A(ω)= 1

π

∫ 1

−1
cosωx dx = 1

π

sinωx

ω

∣∣∣∣1
x=−1

= 2 sinω

πω
, B(ω)= 0.

Therefore

ψ(x, t)= 2

π

∫ ∞

0

sinω

ω
cos(ωx)e−a2ω2t dω. (9.224)

�
In three dimensions the corresponding exponential Ansatzψ = eik·r/a+βt leads to a

solution with the relationβ = −k2 = −k2 for its parameter, and the three-dimensional
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form of Eq. (9.221) becomes

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
+ k2ψ = 0, (9.225)

which is theHelmholtz equation, which may be solved by the separation method just
like the earlier Laplace equation in Cartesian, cylindrical, or spherical coordinates under
appropriately generalized boundary conditions.

In Cartesian coordinates, with the product Ansatz of Eq. (9.35), the separatedx- andy-
ODEs from Eq. (9.221) are the same as Eqs. (9.38) and (9.41), while thez-ODE, Eq. (9.42),
generalizes to

1

Z

d2Z

dz2
=−k2+ l2+m2= n2 > 0, (9.226)

where we introduce another separation constant,n2, constrained by

k2= l2+m2− n2 (9.227)

to produce a symmetric set of equations. Now, our solution of Helmholtz’s Eq. (9.225)
is labeled according to the choice of all three separation constantsl,m,n subject to the
constraint Eq. (9.227). As before thez-ODE, Eq. (9.226), yields exponentially decaying
solutions∼ e−nz. The boundary condition atz= 0 fixes the expansion coefficientsalm, as
in Eq. (9.44).

In cylindrical coordinates, we now use the separation constantl2 for thez-ODE, with an
exponentially decaying solution in mind,

d2Z

dz2
= l2Z > 0, (9.228)

so Z ∼ e−lz, because the temperature goes to zero at largez. If we set k2 + l2 = n2,
Eqs. (9.53) to (9.54) stay the same, so we end up with the same Fourier–Bessel expansion,
Eq. (9.56), as before.

In spherical coordinates with radial boundary conditions, the separation method leads to
the same angular ODEs in Eqs. (9.61) and (9.64), and the radial ODE now becomes

1

r2

d

dr

(
r2dR

dr

)
+ k2R − QR

r2
= 0, Q= l(l + 1), (9.229)

that is, of Eq. (9.65), whose solutions are the spherical Bessel functions of Section 11.7.
They are listed in Table 9.2.

The restriction thatk2 be a constant is unnecessarily severe. The separation process will
still work with Helmholtz’s PDE fork2 as general as

k2= f (r)+ 1

r2
g(θ)+ 1

r2 sin2 θ
h(ϕ)+ k′2. (9.230)

In the hydrogen atom we havek2= f (r) in the Schrödinger wave equation, and this leads
to a closed-form solution involving Laguerre polynomials.
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Alternate Solutions

In a new approach to the heat flow PDE suggested by experiments, we now return
to the one-dimensional PDE, Eq. (9.221), seeking solutions of a new functional form
ψ(x, t)= u(x/

√
t ), which is suggested by Example 15.1.1. Substitutingu(ξ), ξ = x/

√
t ,

into Eq. (9.221) using

∂ψ

∂x
= u′√

t
,

∂2ψ

∂x2
= u′′

t
,

∂ψ

∂t
=− x

2
√
t3
u′ (9.231)

with the notationu′(ξ)≡ du
dξ

, the PDE is reduced to the ODE

2a2u′′(ξ)+ ξu′(ξ)= 0. (9.232)

Writing this ODE as

u′′

u′
= − ξ

2a2
,

we can integrate it once to get lnu′ = − ξ2

4a2 + lnC1, with an integration constantC1. Ex-
ponentiating and integrating again we find the solution

u(ξ)= C1

∫ ξ

0
e
− ξ2

4a2 dξ +C2, (9.233)

involving two integration constantsCi . Normalizing this solution at timet = 0 to temper-
ature+1 for x > 0 and−1 for x < 0, our boundary conditions, fixes the constantsCi ,
so

ψ = 1

a
√
π

∫ x√
t

0
e
− ξ2

4a2 dξ = 2√
π

∫ x

2a
√
t

0
e−v2

dv =�

(
x

2a
√
t

)
, (9.234)

where� denotes Gauss’ error function (see Exercise 5.10.4). See Example 15.1.1 for a
derivation using a Fourier transform. We need to generalize this specific solution to adapt
it to boundary conditions.

To this end we now generatenew solutions of the PDE with constant coefficients
by differentiating a special solution, Eq. (9.234). In other words, ifψ(x, t) solves the
PDE in Eq. (9.221), so do∂ψ

∂t
and ∂ψ

∂x
, because these derivatives and the differentiations

of the PDE commute; that is, the order in which they are carried out does not matter. Note
carefully that this method no longer works if any coefficient of the PDE depends ont

or x explicitly. However, PDEs with constant coefficients dominate in physics. Examples
are Newton’s equations of motion (ODEs) in classical mechanics, the wave equations of
electrodynamics, and Poisson’s and Laplace’s equations in electrostatics and gravity. Even
Einstein’s nonlinear field equations of general relativity take on this special form in local
geodesic coordinates.

Therefore, by differentiating Eq. (9.234) with respect tox, we find the simpler, more
basic solution

ψ1(x, t)= 1

a
√
tπ

e
− x2

4a2t , (9.235)
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and, repeating the process, another basic solution,

ψ2(x, t)= x

2a3
√
t3π

e
− x2

4a2t . (9.236)

Again, these solutions have to be generalized to adapt them to boundary conditions. And
there is yet another method of generating new solutions of a PDE with constant coeffi-
cients: We cantranslate a given solution, for example,ψ1(x, t)→ψ1(x − α, t), and then
integrate over the translation parameter α. Therefore

ψ(x, t)= 1

2a
√
tπ

∫ ∞

−∞
C(α)e

− (x−α)2
4a2t dα (9.237)

is again a solution, which we rewrite using the substitution

ξ = x − α

2a
√
t
, α = x − 2aξ

√
t, dα =−2a dξ

√
t . (9.238)

Thus, we find that

ψ(x, t)= 1√
π

∫ ∞

−∞
C(x − 2aξ

√
t )e−ξ2

dξ (9.239)

is a solution of our PDE. In this form we recognize the significance of the weight function
C(x) from the translation method because, att = 0, ψ(x,0) = C(x) = ψ0(x) is deter-
mined by the boundary condition, and

∫∞
−∞ e−ξ2

dξ = √π . Therefore, we can also write
the solution as

ψ(x, t)= 1√
π

∫ ∞

−∞
ψ0(x − 2aξ

√
t )e−ξ2

dξ, (9.240)

displaying the role of the boundary condition explicitly. From Eq. (9.240) we see that
the initial temperature distribution,ψ0(x), spreads out over time and is damped by the
Gaussian weight function.

Example 9.8.2 SPECIAL BOUNDARY CONDITION AGAIN

Let us express the solution of Example 9.8.1 in terms of the error function solution of
Eq. (9.234). The boundary condition att = 0 is ψ0(x) = 1 for −1 < x < 1 and zero
for |x| > 1. From Eq. (9.240) we find the limits on the integration variableξ by setting
x − 2aξ

√
t = ±1. This yields the integration endpointsξ = (±1+ x)/2a

√
t . Therefore

our solution becomes

ψ(x, t)= 1√
π

∫ x+1
2a
√
t

x−1
2a
√
t

e−ξ2
dξ.

Using the error function defined in Eq. (9.234) we can also write this solution as follows

ψ(x, t)= 1

2

[
erf

(
x + 1

2a
√
t

)
− erf

(
x − 1

2a
√
t

)]
. (9.241)
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Comparing this form of our solution with that from Example 9.8.1 we see that we can
express Eq. (9.241) as the Fourier integral of Example 9.8.1, an identity that gives the
Fourier integral, Eq. (9.224), in closed form of the tabulated error function. �

Finally, we consider the heat flow case for an extendedspherically symmetric medium
centered at the origin, which prescribes polar coordinatesr, θ,ϕ. We expect a solution of
the formψ(r, t)= u(r, t). Using Eq. (2.48) we find the PDE

∂u

∂t
= a2

(
∂2u

∂r2
+ 2

r

∂u

∂r

)
, (9.242)

which we transform to the one-dimensional heat flow PDE by the substitution

u= v(r, t)

r
,

∂u

∂r
= 1

r

∂v

∂r
− v

r2
,

∂u

∂t
= 1

r

∂v

∂t
,

∂2u

∂r2
= 1

r

∂2v

∂r2
− 2

r2

∂v

∂r
+ 2v

r3
. (9.243)

This yields the PDE

∂v

∂t
= a2∂

2v

∂r2
. (9.244)

Example 9.8.3 SPHERICALLY SYMMETRIC HEAT FLOW

Let us apply the one-dimensional heat flow PDE with the solution Eq. (9.234) to a spheri-
cally symmetric heat flow under fairly common boundary conditions, wherex is released
by the radial variable. Initially we have zero temperature everywhere. Then, at timet = 0,
a finite amount of heat energyQ is released at the origin, spreading evenly in all directions.
What is the resulting spatial and temporal temperature distribution?

Inspecting our special solution in Eq. (9.236) we see that, fort→ 0, the temperature

v(r, t)

r
= C√

t3
e
− r2

4a2t (9.245)

goes to zero for allr 
= 0, so zero initial temperature is guaranteed. Ast→∞, the temper-
aturev/r→ 0 for all r including the origin, which is implicit in our boundary conditions.
The constantC can be determined from energy conservation, which gives the constraint

Q= σρ

∫
v

r
d3r = 4πσρC√

t3

∫ ∞

0
r2e

− r2

4a2t dr = 8
√
π3σρa3C, (9.246)

whereρ is the constant density of the medium andσ is its specific heat. Here we have
rescaled the integration variable and integrated by parts to get∫ ∞

0
e
− r2

4a2t r2dr = (2a
√
t )3

∫ ∞

0
e−ξ2

ξ2dξ,∫ ∞

0
e−ξ2

ξ2dξ = −ξ

2
e−ξ2

∣∣∣∣∞
0
+ 1

2

∫ ∞

0
e−ξ2

dξ =
√
π

4
.
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The temperature, as given by Eq. (9.245) at any moment, which is at fixedt , is a Gaussian
distribution that flattens out as time increases, because its width is proportional to

√
t . As

a function of time the temperature is proportional tot−3/2e−T/t , with T ≡ r2/4a2, which
rises from zero to a maximum and then falls off to zero again for large times. To find the
maximum, we set

d

dt

(
t−3/2e−T/t

)= t−5/2e−T/t
(
T

t
− 3

2

)
= 0, (9.247)

from which we findt = 2T/3. �
In the case ofcylindrical symmetry (in the planez = 0 in plane polar coordinates

ρ =√x2+ y2, ϕ) we look for a temperatureψ = u(ρ, t) that then satisfies the ODE (using
Eq. (2.35) in the diffusion equation)

∂u

∂t
= a2

(
∂2u

∂ρ2
+ 1

ρ

∂u

∂ρ

)
, (9.248)

which is the planar analog of Eq. (9.244). This ODE also has solutions with the functional
dependenceρ/

√
t ≡ r . Upon substituting

u= v

(
ρ√
t

)
,

∂u

∂t
=− ρv′

2t3/2
,

∂u

∂ρ
= v′√

t
,

∂2u

∂ρ2
= v′

t
(9.249)

into Eq. (9.248) with the notationv′ ≡ dv
dr

, we find the ODE

a2v′′ +
(
a2

r
+ r

2

)
v′ = 0. (9.250)

This is a first-order ODE forv′, which we can integrate when we separate the variablesv

andr as

v′′

v′
= −

(
1

r
+ r

2a2

)
. (9.251)

This yields

v(r)= C

r
e
− r2

4a2 = C

√
t

ρ
e
− ρ2

4a2t . (9.252)

This special solution for cylindrical symmetry can be similarly generalized and adapted to
boundary conditions, as for the spherical case. Finally, thez-dependence can be factored
in, becausez separates from the plane polar radial variableρ.

In summary, PDEs can be solved with initial conditions, just like ODEs, or with bound-
ary conditions prescribing the value of the solution or its derivative on boundary surfaces,
curves, or points. When the solution is prescribed on the boundary, the PDE is called a
Dirichlet problem; if the normal derivative of the solution is prescribed on the boundary,
the PDE is called a Neumann problem.

When the initial temperature is prescribed for the one-dimensional or three-dimensional
heat equation (with spherical or cylindrical symmetry) it becomes a weight function of the
solution, in terms of an integral over the generic Gaussian solution. The three-dimensional
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heat equation, with spherical or cylindrical boundary conditions, is solved by separation
of the variables, leading to eigenfunctions in each separated variable and eigenvalues as
separation constants. For finite boundary intervals in each spatial coordinate, the sum over
separation constants leads to a Fourier-series solution, while infinite boundary conditions
lead to a Fourier-integral solution. The separation of variables method attempts to solve
a PDE by writing the solution as a product of functions of one variable each. General
conditions for the separation method to work are provided by the symmetry properties of
the PDE, to which continuous group theory applies.

Additional Readings

Bateman, H.,Partial Differential Equations of Mathematical Physics. New York: Dover (1944), 1st ed. (1932).
A wealth of applications of various partial differential equations in classical physics. Excellent examples of
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Cohen, H.,Mathematics for Scientists and Engineers. Englewood Cliffs, NJ: Prentice-Hall (1992).

Courant, R., and D. Hilbert,Methods of Mathematical Physics, Vol. 1 (English edition). New York: Interscience
(1953), Wiley (1989). This is one of the classic works of mathematical physics. Originally published in Ger-
man in 1924, the revised English edition is an excellent reference for a rigorous treatment of Green’s functions
and for a wide variety of other topics on mathematical physics.

Davis, P. J., and P. Rabinowitz,Numerical Integration. Waltham, MA: Blaisdell (1967). This book covers a great
deal of material in a relatively easy-to-read form. Appendix 1 (On the Practical Evaluation of Integrals by
M. Abramowitz) is excellent as an overall view.

Garcia, A. L.,Numerical Methods for Physics. Englewood Cliffs, NJ: Prentice-Hall (1994).

Hamming, R. W.,Numerical Methods for Scientists and Engineers, 2nd ed. New York: McGraw-Hill (1973),
reprinted Dover (1987). This well-written text discusses a wide variety of numerical methods from zeros of
functions to the fast Fourier transform. All topics are selected and developed with a modern computer in mind.

Hubbard, J., and B. H. West,Differential Equations. Berlin: Springer (1995).

Ince, E. L.,Ordinary Differential Equations. New York: Dover (1956). The classic work in the theory of ordinary
differential equations.

Lapidus, L., and J. H. Seinfeld,Numerical Solutions of Ordinary Differential Equations. New York: Academic
Press (1971). A detailed and comprehensive discussion of numerical techniques, with emphasis on the Runge–
Kutta and predictor–corrector methods. Recent work on the improvement of characteristics such as stability is
clearly presented.

Margenau, H., and G. M. Murhpy,The Mathematics of Physics and Chemistry, 2nd ed. Princeton, NJ: Van Nos-
trand (1956). Chapter 5 covers curvilinear coordinates and 13 specific coordinate systems.

Miller, R. K., and A.N. Michel,Ordinary Differential Equations. New York: Academic Press (1982).

Morse, P. M., and H. Feshbach,Methods of Theoretical Physics. New York: McGraw-Hill (1953). Chapter 5
includes a description of several different coordinate systems. Note that Morse and Feshbach are not above
using left-handed coordinate systems even for Cartesian coordinates. Elsewhere in this excellent (and difficult)
book are many examples of the use of the various coordinate systems in solving physical problems. Chapter 7
is a particularly detailed, complete discussion of Green’s functions from the point of view of mathematical
physics. Note, however, that Morse and Feshbach frequently choose a source of 4πδ(r− r′) in place of our
δ(r− r′). Considerable attention is devoted to bounded regions.

Murphy, G. M.,Ordinary Differential Equations and Their Solutions. Princeton, NJ: Van Nostrand (1960). A thor-
ough, relatively readable treatment of ordinary differential equations, both linear and nonlinear.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes, 2nd ed. Cambridge, UK:
Cambridge University Press (1992).

Ralston, A., and H. Wilf, eds.,Mathematical Methods for Digital Computers. New York: Wiley (1960).
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Ritger, P. D., and N. J. Rose,Differential Equations with Applications. New York: McGraw-Hill (1968).

Stakgold, I.,Green’s Functions and Boundary Value Problems, 2nd ed. New York: Wiley (1997).

Stoer, J., and R. Burlirsch,Introduction to Numerical Analysis. New York: Springer-Verlag (1992).

Stroud, A. H.,Numerical Quadrature and Solution of Ordinary Differential Equations, Applied Mathematics
Series, Vol. 10. New York: Springer-Verlag (1974). A balanced, readable, and very helpful discussion of var-
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CHAPTER 10

STURM–LIOUVILLE
THEORY — ORTHOGONAL

FUNCTIONS

In the preceding chapter we developed two linearly independent solutions of the second-
order linear homogeneous differential equation and proved that no third, linearly inde-
pendent solution existed. In this chapter the emphasis shifts from solving the differential
equation to developing and understanding general properties of the solutions. There is a
close analogy between the concepts in this chapter and those of linear algebra in Chap-
ter 3. Functions here play the role of vectors there, and linear operators that of matri-
ces in Chapter 3. The diagonalization of a real symmetric matrix in Chapter 3 corre-
sponds here to the solution of an ODE defined by aself-adjoint operatorL in terms
of its eigenfunctions, which are the “continuous” analog of the eigenvectors in Chap-
ter 3. Examples for the corresponding analogy between Hermitian matrices and Her-
mitian operators are Hamiltonians in quantum mechanics and their energy eigenfunc-
tions.

In Section 10.1 the concepts of self-adjoint operator, eigenfunction, eigenvalue, and Her-
mitian operator are presented. The concept of adjoint operator, given first in terms of dif-
ferential equations, is then redefined in accordance with usage in quantum mechanics,
where eigenfunctions take complex values. The vital properties of reality of eigenvalues
and orthogonality of eigenfunctions are derived in Section 10.2. In Section 10.3 we dis-
cuss the Gram–Schmidt procedure for systematically constructuring sets of orthogonal
functions. Finally, the general property of the completeness of a set of eigenfunctions is
explored in Section 10.4, and Green’s functions from Chapter 9 are continued in Sec-
tion 10.5.

621
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10.1 SELF-ADJOINT ODES

In Chapter 9 we studied, classified, and solved linear, second-order ODEs corresponding
to linear, second-order differential operators of the general form

Lu(x)= p0(x)
d2

dx2
u(x)+ p1(x)

d

dx
u(x)+ p2(x)u(x). (10.1)

The coefficientsp0(x),p1(x), andp2(x) are real functions ofx, and over the region
of interest,a ≤ x ≤ b, the first 2− i derivatives ofpi(x) are continuous. Reference to
Eq. (9.118) shows thatP(x)= p1(x)/p0(x) andQ(x)= p2(x)/p0(x). Hence,p0(x) must
not vanish fora < x < b. Now, the zeros ofp0(x) are singular points (Section 9.4), and
the preceding statement means that our interval[a, b] must be given so that there are no
singular points in the interior of the interval. There may be and often are singular points on
the boundaries.

For a linear operatorL, the analog of a quadratic form for a matrix in Chapter 3 is the
integral

〈u|L|u〉 ≡ 〈u|Lu〉 ≡
∫ b

a

u(x)Lu(x)dx

=
∫ b

a

u{p0u
′′ + p1u

′ + p2u}dx, (10.2)

where the primes on the real functionu(x) denote derivatives, as usual, and, for simplicity,
u(x) is taken to be real. If we shift the derivatives to the first factor,u, in Eq. (10.2) by
integrating by parts once or twice, we are led to the equivalent expression,

〈u|L|u〉 = [u(x)(p1− p′0)u(x)
]b
x=a

+
∫ b

a

{
d2

dx2
[p0u] − d

dx
[p1u] + p2u

}
udx. (10.3)

If we require that the integrals in Eqs. (10.2) and (10.3) be identicalfor all (twice differ-
entiable) functions u, then the integrands have to be equal. The comparison then yields

u(p′′0 − p′1)u+ 2u(p′0− p1)u
′ = 0,

or

p′0(x)= p1(x), (10.4)

and, as a bonus, the terms at the boundariesx = a andx = b in Eq. (10.3) then also vanish.
Because of the analogy with the transposed matrix in Chapter 3, it is convenient to define

the linear operator in Eq. (10.3),

L̄u = d2

dx2
[p0u] − d

dx
[p1u] + p2u

= p0
d2u

dx2
+ (2p′0− p1)

du

dx
+ (p′′0 − p′1+ p2)u, (10.5)
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as theadjoint1 operator L̄. We have defined the adjoint operatorL̄ and have shown that if
Eq. (10.4) is satisfied,〈L̄u|u〉 = 〈u|Lu〉. Following the same procedure we can show more
generally that〈v|Lu〉 = 〈Lv|u〉. When this condition is satisfied,

L̄u= Lu= d

dx

[
p(x)

du(x)

dx

]
+ q(x)u(x), (10.6)

the operatorL is said to beself-adjoint. Here, for the self-adjoint case,p0(x) is replaced
by p(x) andp2(x) by q(x) to avoid unnecessary subscripts. The form of Eq. (10.6) al-
lows carrying out two integrations by parts in Eq. (10.3) (and Eq. (10.22) and following)
without integrated terms.2 Note that a given operator is not inherently self-adjoint; its self-
adjointness depends on the properties of the function space in which it acts and on the
boundary conditions.

In a survey of the ODEs introduced in Section 9.3, Legendre’s equation and the linear
oscillator equation are self-adjoint, but others, such as the Laguerre and Hermite equations,
are not. However, the theory of linear, second-order, self-adjoint differential equations is
perfectly general because we canalways transform the non-self-adjoint operator into the
required self-adjoint form. Consider Eq. (10.1) withp′0 
= p1. If we multiply L by3

1

p0(x)
exp

[∫ x p1(t)

p0(t)
dt

]
,

we obtain

1

p0(x)
exp

[∫ x p1(t)

p0(t)
dt

]
Lu(x) = d

dx

{
exp

[∫ x p1(t)

p0(t)
dt

]
du(x)

dx

}
+ p2(x)

p0(x)
· exp

[∫ x p1(t)

p0(t)
dt

]
u, (10.7)

which is clearly self-adjoint (see Eq. (10.6)). Notice thep0(x) in the denominator. This is
why we requirep0(x) 
= 0, a < x < b. In the following development we assume thatL has
been put into self-adjoint form.

1The adjoint operator bears a somewhat forced relationship to theadjoint matrix. A better justification for the nomenclature
is found in a comparison of theself-adjoint operator (plus appropriate boundary conditions) with theself-adjoint matrix. The
significant properties are developed in Section 10.2. Because of these properties, we are interested inself-adjoint operators.
2The full importance of the self-adjoint form (plus boundary conditions) will become apparent in Section 10.2. In addition,
self-adjoint forms will be required for developing Green’s functions in Section 10.5.
3If we multiply L by f (x)/p0(x) and then demand that

f ′(x)= fp1

p0
,

so that the new operator will be self-adjoint, we obtain

f (x)= exp

[∫ x p1(t)

p0(t)
dt

]
.
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Eigenfunctions, Eigenvalues

Schrödinger’s wave equation

Hψ(x)=Eψ(x)

is the major example of an eigenvalue equation in physics; here the differential operator
L is defined by the HamiltonianH and may no longer be real, and the eigenvalue be-
comes the total energyE of the system. The eigenfunctionψ(x) may be complex and is
usually called awave function. A variational formulation of this Schrödinger equation
appears in Section 17.7. Based on spherical, cylindrical, or some other symmetry prop-
erties, a three- or four-dimensional PDE or eigenvalue equation such as the Schrödinger
equation may separate into eigenvalue equations in a single variable each. Examples are
Eqs. (9.41), (9.42), (9.50), and (9.53). However, sometimes an eigenvalue equation takes
the more general self-adjoint form

Lu(x)+ λw(x)u(x)= 0, (10.8)

where the constantλ is the eigenvalue4 andw(x) is a known weight or density func-
tion; w(x) > 0 except possibly at isolated points at whichw(x) = 0. (In Section 10.1,
w(x)≡ 1.) For a given choice of the parameterλ, a function uλ(x), which satisfies
Eq. (10.8)and the imposed boundary conditions, is called aneigenfunction correspond-
ing toλ. The constantλ is then called aneigenvalue by mathematicians. There is no guar-
antee that an eigenfunctionuλ(x) will exist for an arbitrary choice of the parameterλ.
Indeed, the requirement that there be an eigenfunction often restricts the acceptable values
of λ to a discrete set. Examples of this for the Legendre, Hermite, and Chebyshev equa-
tions appear in the exercises of Section 9.5. Here we have the mathematical approach to
the process of quantization in quantum mechanics.

The inner product of two functions,〈v|u〉 = ∫ b

a
v∗(x)w(x)u(x) dx, depends on the

weight function and generalizes our previous definition, wherew(x) ≡ 1. The weight
function also modifies the definition oforthogonality of two eigenfunctions: They are
orthogonal if their inner product〈uλ′ |uλ〉 = 0. The extra weight functionw(x) appears
sometimes as an asymptotic wave functionψ∞ that is a common factor in all solutions
of a PDE such as the Schrödinger equation, for example, when the potentialV (x)→ 0 as
x →∞ in H = T + V . We can findψ∞ when we setV = 0 in the Schrödinger equa-
tion. Another source forw(x) may be a nonzero angular momentum barrierl(l + 1)/x2

in a PDE or separated ODE Eq. (9.65) that has a regular singularity and dominates at
x → 0. In such a case the indicial equation, such as Eq. (9.87) or (9.103), shows that
the wave function hasxl as an overall factor. Since the wave function enters twice in
matrix elements and orthogonality relations, the weight functions in Table 10.1 come
from these common factors in both radial wave functions. This is how the exp(−x) for
Laguerre polynomials arises andxk exp(−x) for associated Laguerre polynomials in Ta-
ble 10.1.

4Note that this mathematical definition of the eigenvalue differs by a sign from the usage in physics.
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Table 10.1

Equation p(x) q(x) λ w(x)

Legendrea 1− x2 0 l(l + 1) 1
Shifted Legendrea x(1− x) 0 l(l + 1) 1
Associated Legendrea 1− x2 −m2/(1− x2) l(l + 1) 1
Chebyshev I (1− x2)1/2 0 n2 (1− x2)−1/2

Shifted Chebyshev I [x(1− x)]1/2 0 n2 [x(1− x)]−1/2

Chebyshev II (1− x2)3/2 0 n(n+ 2) (1− x2)1/2

Ultraspherical (Gegenbauer) (1− x2)α+1/2 0 n(n+ 2α) (1− x2)α−1/2

Besselb, 0≤ x ≤ a x −n2/x a2 x

Laguerre, 0≤ x <∞ xe−x 0 α e−x
Associated Laguerrec xk+1e−x 0 α− k xke−x
Hermite, 0≤ x <∞ e−x2

0 2α e−x2

Simple harmonic oscillatord 1 0 n2 1

a l = 0,1, . . . ,−l ≤m≤ l are integers and−1≤ x ≤ 1, 0≤ x ≤ 1 for shifted Legendre.
bOrthogonality of Bessel functions is rather special. Compare Section 11.2. for details. A second type of orthogonality
is developed in Eq. (11.174).
ck is a non-negative integer. For more details, see Table 10.2.
dThis will form the basis for Chapter 14, Fourier series.

Example 10.1.1 LEGENDRE’S EQUATION

Legendre’s equation is given by(
1− x2)u′′ − 2xu′ + n(n+ 1)u= 0, −1≤ x ≤ 1. (10.9)

From Eqs. (10.1), (10.8), and (10.9),

p0(x) = 1− x2= p, w(x)= 1,

p1(x) = −2x = p′, λ= n(n+ 1),

p2(x) = 0= q.

Recall that our series solutions of Legendre’s equation (Exercise 9.5.5)5 diverged unlessn
was restricted to one of the integers. This represents a quantization of the eigenvalueλ. �

When the equations of Chapter 9 are transformed into the self-adjoint form, we find
the following values of the coefficients and parameters (Table 10.1). The coefficientp(x)

is the coefficient of the second derivative of the eigenfunction. The eigenvalueλ is the
parameter that is available in a term of the formλw(x)u(x); anyx dependence apart from
the eigenfunction becomes the weighting functionw(x). If there is another term containing
the eigenfunction (not the derivatives), the coefficient of the eigenfunction in this additional
term is identified asq(x). If no such term is present,q(x) is zero.

5Compare also Exercise 5.2.15 and 12.10.
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Example 10.1.2 DEUTERON

Further insight into the concepts of eigenfunction and eigenvalue may be provided by an
extremely simple model of the deuteron, a bound state of a neutron and proton. From
experiment, the binding energy of about 2 MeV�Mc2, with M =Mp =Mn, the common
neutron and proton mass whose small mass difference we neglect. Due to the short range
of the nuclear force, the deuteron properties do not depend much on the detailed shape of
the interaction potential. Thus, the neutron–proton nuclear interaction may be modeled by
a spherically symmetric square well potential:V = V0 < 0 for 0≤ r < a,V = 0 for r > a.
The Schrödinger wave equation is

− h̄2

M
∇2ψ + Vψ =Eψ, (10.10)

where the energy eigenvalueE < 0 for a bound state. For the ground state the orbital angu-
lar momentuml = 0 because forl 
= 0 there is the additional positive angular momentum
barrier. So, withψ = ψ(r), we may writeu(r) = rψ(r), and, using Exercise 2.5.18, the
wave equation becomes

d2u

dr2
+ k2

1u= 0, (10.11)

with

k2
1 =

M

h̄2
(E − V0) > 0 (10.12)

for the interior range, 0≤ r < a. Fora < r <∞, we have

d2u

dr2
− k2

2u= 0, (10.13)

with

k2
2 =−

ME

h̄2
> 0. (10.14)

The boundary condition thatψ remain finite atr = 0 impliesu(0)= 0 and

u1(r)= sink1r, 0≤ r < a. (10.15)

In the range outside the potential well, we have a linear combination of the two exponen-
tials,

u2(r)=Aexpk2r +B exp(−k2r), a < r <∞. (10.16)

Continuity of particle and current density demand thatu1(a) = u2(a) and thatu′1(a) =
u′2(a). Thesejoining, or matching, conditions give

sink1a =Aexpk2a +B exp(−k2a),

k1 cosk1a = k2Aexpk2a − k2B exp(−k2a).
(10.17)

The condition that we actually have a bound proton–neutron combination is that∫∞
0 u2(r) dr = 1. This constraint can be met if we impose a boundary condition thatψ(r)
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FIGURE 10.1 A deuteron eigenfunction.

remain finite asr→∞. And this, in turn, means thatA= 0. Dividing the preceding pair
of equations (to cancelB), we obtain

tank1a =−k1

k2
=−

√
E − V0

−E , (10.18)

a transcendental equation for the energyE with only certain discrete solutions. IfE is such
that Eq. (10.18) can be satisfied, our solutionsu1(r) andu2(r) can satisfy the boundary
conditions. If Eq. (10.18) is not satisfied,no acceptable solution exists. The values of
E for which Eq. (10.18) is satisfied are the eigenvalues; the corresponding functionsu1
andu2 (orψ ) are the eigenfunctions. For the deuteron, problem there is one (and only one)
negative value ofE satisfying Eq. (10.18); that is, the deuteron has one and only one bound
state.

Now, what happens ifE does not satisfy Eq. (10.18), that is, ifE 
= E0 is not an
eigenvalue? In graphical form, imagine thatE and thereforek1 are varied slightly. For
E =E1 <E0, k1 is reduced and sink1a has not turned down enough to match exp(−k2a).
The joining conditions, Eq. (10.17), requireA> 0 and the wave function goes to+∞ ex-
ponentially. ForE = E2 > E0, k1 is larger, sink1a peaks sooner and has descended more
rapidly atr = a. The joining conditions demandA< 0, and the wave function goes to−∞
exponentially. Only forE = E0, an eigenvalue, will the wave function have the required
negative exponential asymptotic behavior (see Fig. 10.1). �

Boundary Conditions

In the foregoing definition of eigenfunction, it was noted that the eigenfunctionuλ(x) was
required to satisfy certain imposed boundary conditions. The termboundary conditions
includes as a special case the concept ofinitial conditions. For instance, specifying the
initial positionx0 and the initial velocityv0 in some dynamical problem would correspond
to the Cauchy boundary conditions. The only difference in the present usage of boundary
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conditions in these one-dimensional problems is that we are going to apply the conditions
on both ends of the allowed range of the variable.

Usually the form of the differential equation or the boundary conditions on the solutions
will guarantee that at the ends of our interval (that is, at the boundary, as suggested by
Eq. (10.3)) the following products will vanish:

p(x)v∗(x)du(x)
dx

∣∣∣∣
x=a

= 0 and p(x)v∗(x)du(x)
dx

∣∣∣∣
x=b

= 0. (10.19)

Hereu(x) andv(x) are solutions of the particular ODE (Eq. (10.8)) being considered.
A reason for this particular form of Eq. (10.19) is suggested shortly. If we recall the radial
wave functionu of the hydrogen atom withu(0)= 0 anddu/dr ∼ e−kr → 0 asr→∞,

then both boundary conditions are satisfied. Similarly in the deuteron Example 10.1.2,
sink1r → 0 asr → 0 andd(e−k2r )/dr → 0 asr →∞, both boundary conditions are
obeyed. We can, however, work with a somewhat less restrictive set of boundary condi-
tions,

v∗pu′
∣∣
x=a = v∗pu′

∣∣
x=b, (10.20)

in whichu(x) andv(x) are solutions of the differential equation corresponding to the same
or to different eigenvalues. Equation (10.20) might well be satisfied if we were dealing with
a periodic physical system, such as a crystal lattice.

Equations (10.19) and (10.20) are written in terms ofv∗, complex conjugate. When the
solutions are real,v = v∗ and the asterisk may be ignored. However, in Fourier exponential
expansions and in quantum mechanics the functions will be complex and the complex
conjugate will be needed.

Example 10.1.3 INTEGRATION INTERVAL [a,b]

ForL= d2/dx2, a possible eigenvalue equation is

d2

dx2
u(x)+ n2u(x)= 0, (10.21)

with eigenfunctions

un = cosnx, vm = sinmx.

Equation (10.20) becomes

−nsinmx sinnx
∣∣b
a
= 0, or mcosmx cosnx

∣∣b
a
= 0,

interchangingun andvm. Since sinmx and cosnx are periodic with period 2π (for n and
m integral), Eq. (10.20) is clearly satisfied ifa = x0 andb = x0 + 2π . If a problem pre-
scribes a different interval, the eigenfunctions and eigenvalues will change along with the
boundary conditions. The functions must always be chosen so that the boundary condi-
tions (Eq. (10.20) etc.) are satisfied. For this case (Fourier series) the usual choices are
x0 = 0 leading to(0,2π) andx0 =−π leading to(−π,π). Here and throughout the fol-
lowing several chaptersthe orthogonality interval is so that the boundary conditions
(Eq. (10.20))will be satisfied. The interval[a, b] and the weighting factorw(x) for the
most commonly encountered second-order differential equations are listed in Table 10.2.�
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Table 10.2

Equation a b w(x)

Legendre −1 1 1
Shifted Legendre 0 1 1
Associated Legendre −1 1 1
Chebyshev I −1 1 (1− x2)−1/2

Shifted Chebyshev I 0 1 [x(1− x)]−1/2

Chebyshev II −1 1 (1− x2)1/2

Laguerre 0 ∞ e−x
Associated Laguerre 0 ∞ xke−x
Hermite −∞ ∞ e−x2

Simple harmonic oscillator 0 2π 1
−π π 1

1. The orthogonality interval[a, b] is determined by the boundary condi-
tions of Section 10.1.
2. The weighting function is established by putting the ODE in self-
adjoint form.

Hermitian Operators

We now prove an important property of the self-adjoint, second-order differential operator
(Eq. (10.8)), in conjunction with solutionsu(x) andv(x) that satisfy boundary conditions
given by Eq. (10.20). This is motivated by applications in quantum mechanics.

By integratingv∗ (complex conjugate) times the second-order self-adjoint differential
operatorL (operating onu) over the rangea ≤ x ≤ b, we obtain∫ b

a

v∗Ludx =
∫ b

a

v∗(pu′)′ dx +
∫ b

a

v∗qudx (10.22)

using Eq. (10.6). Integrating by parts, we have∫ b

a

v∗(pu′)′ dx = v∗pu′
∣∣b
a
−
∫ b

a

v∗ ′pu′ dx. (10.23)

The integrated part vanishes on application of the boundary conditions (Eq. (10.20)). Inte-
grating the remaining integral by parts a second time, we have

−
∫ b

a

v∗ ′pu′ dx =−v∗′pu∣∣b
a
+
∫ b

a

u(pv∗ ′)′ dx. (10.24)

Again, the integrated part vanishes in an application of Eq. (10.20). A combination of
Eqs. (10.22) to (10.24) gives us∫ b

a

v∗Ludx =
∫ b

a

u(Lv)∗ dx. (10.25)

This property, given by Eq. (10.25), is expressed by saying that the operatorL is Her-
mitian with respect to the functionsu(x) andv(x), which satisfy the boundary conditions
specified by Eq. (10.20). Note that if this Hermitian property follows from self-adjointness
in a Hilbert space, then it includes that boundary conditions are imposed on all functions
of that space.
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Hermitian Operators in Quantum Mechanics

The proceeding development in this section has focused on the classical second-order dif-
ferential operators of mathematical physics. Generalizing our Hermitian operator theory
as required in quantum mechanics, we have an extension: The operators need be neither
second-order differential operators nor real.px =−ih̄(∂/∂x) will be a Hermitian operator.
We simply assume (as is customary in quantum mechanics) that the wave functions satisfy
appropriate boundary conditions: vanishing sufficiently strongly at infinity or having peri-
odic behavior (as in a crystal lattice, or unit intensity for scattering problems). The operator
L is calledHermitian if ∫

ψ∗1Lψ2dτ =
∫

(Lψ1)
∗ψ2dτ. (10.26)

Apart from the simple extension to complex quantities, this definition is identical with
Eq. (10.25).

Theadjoint A† of an operatorA is defined by∫
ψ∗1A†ψ2dτ ≡

∫
(Aψ1)

∗ψ2dτ. (10.27)

This generalizes our classical, second-derivative-operator–oriented definition, Eq. (10.5).
Here the adjoint is defined in terms of the resultant integral, with theA† as part of the
integrand. Clearly, ifA = A† (self-adjoint) and satisfies the aforementioned boundary
conditions, thenA is Hermitian.

Theexpectation value of an operatorL is defined as

〈L〉 =
∫

ψ∗Lψ dτ. (10.28a)

In the framework of quantum mechanics〈L〉 corresponds to the result of a measurement
of the physical quantity represented byL when the physical system is in a state described
by the wave functionψ . If we requireL to be Hermitian, it is easy to show that〈L〉 is
real (as would be expected from a measurement in a physical theory). Taking the complex
conjugate of Eq. (10.28a), we obtain

〈L〉∗ =
[∫

ψ∗Lψ dτ

]∗
=
∫

ψL∗ψ∗ dτ.

Rearranging the factors in the integrand, we have

〈L〉∗ =
∫

(Lψ)∗ψ dτ.

Then, applying our definition of Hermitian operator, Eq. (10.26), we get

〈L〉∗ =
∫

ψ∗Lψ dτ = 〈L〉, (10.28b)

or 〈L〉 is real. It is worth noting thatψ is not necessarily an eigenfunction ofL.
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Exercises

10.1.1 Show that Laguerre’s ODE, Eq. (13.52), may be put into self-adjoint form by multiply-
ing by e−x and thatw(x)= e−x is the weighting function.

10.1.2 Show that the Hermite ODE, Eq. (13.10), may be put into self-adjoint form by multi-
plying by e−x2

and that this givesw(x)= e−x2
as the appropriate density function.

10.1.3 Show that the Chebyshev (type I) ODE, Eq. (13.100), may be put into self-adjoint form
by multiplying by (1− x2)−1/2 and that this givesw(x)= (1− x2)−1/2 as the appro-
priate density function.

10.1.4 Show the following when the linear second-order differential equation is expressed in
self-adjoint form:

(a) The Wronskian is equal to a constant divided by the initial coefficientp:

W(x)= C

p(x)
.

(b) A second solution is given by

y2(x)= Cy1(x)

∫ x dt

p(t)[y1(t)]2 .

10.1.5 Un(x), the Chebyshev polynomial (type II), satisfies the ODE, Eq. (13.101),(
1− x2)U ′′n (x)− 3xU ′n(x)+ n(n+ 2)Un(x)= 0.

(a) Locate the singular points that appear in the finite plane, and show whether they
are regular or irregular.

(b) Put this equation in self-adjoint form.
(c) Identify the complete eigenvalue.
(d) Identify the weighting function.

10.1.6 For the very special caseλ = 0 andq(x) = 0 the self-adjoint eigenvalue equation be-
comes

d

dx

[
p(x)

du(x)

dx

]
= 0,

satisfied by

du

dx
= 1

p(x)
.

Use this to obtain a “second” solution of the following:

(a) Legendre’s equation,
(b) Laguerre’s equation,
(c) Hermite’s equation.
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ANS. (a)u2(x)= 1

2
ln

1+ x

1− x
,

(b) u2(x)− u2(x0)=
∫ x

x0

et
dt

t
,

(c) u2(x)=
∫ x

0
et

2
dt .

These second solutions illustrate the divergent behavior usually found in a second solu-
tion.
Note. In all three casesu1(x)= 1.

10.1.7 Given that Lu = 0 and gLu is self-adjoint, show that for the adjoint operator
L̄, L̄(gu)= 0.

10.1.8 For a second-order differential operatorL that is self-adjoint show that∫ b

a

[y2Ly1− y1Ly2]dx = p(y′1y2− y1y
′
2)
∣∣b
a
.

10.1.9 Show that if a functionψ is required to satisfy Laplace’s equation in a finite region
of space and to satisfy Dirichlet boundary conditions over the entire closed bounding
surface, thenψ is unique.
Hint. One of the forms of Green’s theorem, Section 1.11, will be helpful.

10.1.10 Consider the solutions of the Legendre, Chebyshev, Hermite, and Laguerre equations to
be polynomials. Show that the ranges of integration that guarantee that the Hermitian
operator boundary conditions will be satisfied are

(a) Legendre[−1,1], (b) Chebyshev[−1,1],
(c) Hermite(−∞,∞), (d) Laguerre[0,∞).

10.1.11 Within the framework of quantum mechanics (Eqs. (10.26) and following), show that
the following are Hermitian operators:

(a) momentump=−ih̄∇ ≡−i h

2π
∇

(b) angular momentumL=−ih̄r×∇ ≡−i h
2π r×∇.

Hint. In Cartesian formL is a linear combination of noncommuting Hermitian opera-
tors.

10.1.12 (a) A is a non-Hermitian operator. In the sense of Eqs. (10.26) and (10.27), show that

A+A† and i(A−A†)

are Hermitian operators.
(b) Using the preceding result, show that every non-Hermitian operator may be written

as a linear combination of two Hermitian operators.
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10.1.13 U and V are two arbitrary operators, not necessarily Hermitian. In the sense of
Eq. (10.27), show that

(UV )†= V †U†.

Note the resemblance to Hermitian adjoint matrices.
Hint. Apply the definition of adjoint operator, Eq. (10.27).

10.1.14 Prove that the product of two Hermitian operators is Hermitian (Eq. (10.26)) if and only
if the two operators commute.

10.1.15 A andB are noncommuting quantum mechanical operators:

AB −BA= iC.

Show thatC is Hermitian. Assume that appropriate boundary conditions are satisfied.

10.1.16 The operatorL is Hermitian. Show that〈L2〉 ≥ 0.

10.1.17 A quantum mechanical expectation value is defined by

〈A〉 =
∫

ψ∗(x)Aψ(x)dx,

whereA is a linear operator. Show that demanding that〈A〉 be real means thatA must
be Hermitian — with respect toψ(x).

10.1.18 From the definition of adjoint, Eq. (10.27), show thatA†† = A in the sense that∫
ψ∗1A††ψ2dτ =

∫
ψ∗1Aψ2dτ . The adjoint of the adjoint is the original operator.

Hint. The functionsψ1 andψ2 of Eq. (10.27) represent a class of functions. The sub-
scripts 1 and 2 may be interchanged or replaced by other subscripts.

10.1.19 The Schrödinger wave equation for the deuteron (with a Woods–Saxon potential) is

− h̄2

2M
∇2ψ + V0

1+ exp[(r − r0)/a]ψ =Eψ.

HereE = −2.224 MeV, a is a “thickness parameter,” 0.4× 10−13 cm. Expressing
lengths in fermis (10−13 cm) and energies in million electron volts (MeV), we may
rewrite the wave equation as

d2

dr2
(rψ)+ 1

41.47

[
E − V0

1+ exp((r − r0)/a)

]
(rψ)= 0.

E is assumed known from experiment. The goal is to findV0 for a specified value of
r0 (say,r0 = 2.1). If we let y(r) = rψ(r), theny(0) = 0 and we takey′(0) = 1. Find
V0 such thaty(20.0) = 0. (This should bey(∞), but r = 20 is far enough beyond the
range of nuclear forces to approximate infinity.)

ANS. Fora = 0.4 andr0= 2.1 fm,V0=−34.159 MeV.

10.1.20 Determine the nuclear potential well parameterV0 of Exercise 10.1.19 as a function of
r0 for r = 2.00(0.05)2.25 fermis. Express your results as a power law

|V0|rν0 = k.

Determine the exponentν and the constantk. This power-law formulation is useful for
accurate interpolation.
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10.1.21 In Exercise 10.1.19 it was assumed that 20 fermis was a good approximation to infinity.
Check on this by calculatingV0 for rψ(r)= 0 at (a)r = 15, (b)r = 20, (c)r = 25, and
(d) r = 30. Sketch your results. Taker0= 2.10 anda = 0.4 (fermis).

10.1.22 For a quantum particle moving in a potential well,V (x) = 1
2mω2x2, the Schrödinger

wave equation is

− h̄2

2m

d2ψ(x)

dx2
+ 1

2
mω2x2ψ(x)=Eψ(x),

or

d2ψ(z)

dz2
− z2ψ(z)=−2E

h̄ω
ψ(z),

wherez = (mω/h̄)1/2x. Since this operator is even, we expect solutions of definite
parity. For the initial conditions that follow, integrate out from the origin and determine
the minimum constant 2E/h̄ω that will lead toψ(∞)= 0 in each case. (You may take
z= 6 as an approximation of infinity.)

(a) For an even eigenfunction,

ψ(0)= 1, ψ ′(0)= 0.

(b) For an odd eigenfunction,

ψ(0)= 0, ψ ′(0)= 1.

Note. Analytical solutions appear in Section 13.1.

10.2 HERMITIAN OPERATORS

Hermitian, or self-adjoint, operators with appropriate boundary conditions have three prop-
erties that are of extreme importance in physics, both classical and quantum.

1. The eigenvalues of a Hermitian operator are real.
2. A Hermitian operator possesses an orthogonal set of eigenfunctions.
3. The eigenfunctions of a Hermitian operator form a complete set.6

Real Eigenvalues

We proceed to prove the first two of these three properties. Let

Lui + λiwui = 0. (10.29)

6This third property is not universal. Itdoes hold for our linear, second-order differential operators in Sturm–Liouville (self-
adjoint) form. Completeness is defined and discussed in Section 10.4. A proof that the eigenfunctions of our linear, second-order,
self-adjoint, differential equations form a complete set may be developed from the calculus of variations of Section 17.8.
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Assuming the existence of a second eigenvalue and eigenfunction,

Luj + λjwuj = 0. (10.30)

Then, taking the complex conjugate, we obtain

L∗u∗j + λ∗jwu∗j = 0. (10.31)

Herew(x) ≥ 0 is a real function. But we permitλk , the eigenvalues, anduk , the eigen-
functions, to be complex. Multiplying Eq. (10.29) byu∗j and Eq. (10.31) byui and then
subtracting, we have

u∗jLui − uiL∗u∗j = (λ∗j − λi)wuiu
∗
j . (10.32)

We integrate over the rangea ≤ x ≤ b:∫ b

a

u∗jLui dx −
∫ b

a

uiL∗u∗j dx = (λ∗j − λi)

∫ b

a

uiu
∗
jw dx. (10.33)

SinceL is Hermitian, the left-hand side vanishes by Eq. (10.26) and

(λ∗j − λi)

∫ b

a

uiu
∗
jw dx = 0. (10.34)

If i = j , the integral cannot vanish [w(x) > 0, apart from isolated points], except in the
trivial caseui = 0. Hence the coefficient(λ∗i − λi) must be zero,

λ∗i = λi, (10.35)

which says that the eigenvalue is real. Sinceλi can represent any one of the eigenvalues,
this proves the first property. This is an exact analog of the nature of the eigenvalues of real
symmetric (and of Hermitian) matrices (compare Section 3.5).

The analog of the spectral decomposition of a real symmetric matrix in Section 3.5 for
a Hermitian operatorL with a discrete set of eigenvaluesλi takes the form

L=
∑
i

λi |ui〉〈ui |, f (L)=
∑
i

f (λi)|ui〉〈ui |

with eigenvectors|ui〉 and any infinitely differentiable functionf .
Real eigenvalues of Hermitian operators have a fundamental significance in quantum

mechanics. In quantum mechanics the eigenvalues correspond to precisely measurable
quantities, such as energy and angular momentum. With the theory formulated in terms
of Hermitian operators, this proof of real eigenvalues guarantees that the theory will pre-
dict real numbers for these measurable physical quantities. In Section 17.8 it will be seen
that the set of real eigenvalues has a lower bound (for nonrelativistic problems).
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Orthogonal Eigenfunctions

If we now takei 
= j and if λi 
= λj in Eq. (10.34), the integral of the product of the two
different eigenfunctions must vanish:∫ b

a

uiu
∗
jw dx = 0. (10.36)

This condition, calledorthogonality, is the continuum analog of the vanishing of a scalar
product of two vectors.7 We say that the eigenfunctionsui(x) anduj (x) are orthogonal
with respect to the weighting functionw(x) over the interval[a, b]. Equation (10.36) con-
stitutes a partial proof of the second property of our Hermitian operators. Again, the precise
analogy with matrix analysis should be noted. Indeed, we can establish a one-to-one corre-
spondence between this Sturm–Liouville theory of differential equations and the treatment
of Hermitian matrices. Historically, this correspondence has been significant in establishing
the mathematical equivalence of matrix mechanics developed by Heisenberg and wave me-
chanics developed by Schrödinger. Today, the two diverse approaches are merged into the
theory of quantum mechanics, and the mathematical formulation that is more convenient
for a particular problem is used for that problem. Actually the mathematical alternatives do
not end here. Integral equations, Chapter 16, form a third equivalent and sometimes more
convenient or more powerful approach.

This proof of orthogonality is not quite complete. There is a loophole, because we may
haveui 
= uj but still haveλi = λj . Such a case is labeleddegenerate. Illustrations of
degeneracy are given at the end of this section. Ifλi = λj , the integral in Eq. (10.34) need
not vanish. This means that linearly independent eigenfunctions corresponding to the same
eigenvalue are not automatically orthogonal and that some other method must be sought
to obtain an orthogonal set. Although the eigenfunctions in this degenerate case may not
be orthogonal, they can always be made orthogonal. One method is developed in the next
section. See also Eq. (4.21) for degeneracy due to symmetry.

We shall see in succeeding chapters that it is just as desirable to have a given set of
functions orthogonal as it is to have an orthogonal coordinate system. We can work with
nonorthogonal functions, but they are likely to prove as messy as an oblique coordinate
system.

Example 10.2.1 FOURIER SERIES — ORTHOGONALITY

To continue Example 10.1.3, the eigenvalue equation, Eq. (10.21),

d2

dx2
y(x)+ n2y(x)= 0,

7From the definition of Riemann integral, ∫ b

a
f (x)g(x)dx = lim

N→∞

( N∑
i=1

f (xi )g(xi )�x

)
,

wherex0= a, xN = b, andxi − xi−1=�x. If we interpretf (xi ) andg(xi ) as theith components of anN -component vector,
then this sum (and therefore this integral) corresponds directly to a scalar product of vectors, Eq. (1.24). The vanishing of the
scalar product is the condition fororthogonality of the vectors — or functions.
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may describe a quantum mechanical particle in a box, or perhaps a vibrating violin
string, a classical harmonic oscillator with degenerate eigenfunctions — cosnx,sinnx —
and eigenvaluesn2, n an integer.

With n real (here taken to be integral), the orthogonality integrals become

(a)
∫ x0+2π

x0

sinmx sinnx dx = Cnδnm,

(b)
∫ x0+2π

x0

cosmx cosnx dx =Dnδnm,

(c)
∫ x0+2π

x0

sinmx cosnx dx = 0.

For an interval of 2π the preceding analysis guarantees the Kronecker delta in (a) and
(b) but not the zero in (c) because (c) may involve degenerate eigenfunctions. However,
inspection shows that (c) always vanishes for all integralm andn.

Our Sturm–Liouville theory says nothing about the values ofCn andDn because homo-
geneous ODEs have solutions whose scaling is arbitrary. Actual calculation yields

Cn =
{
π, n 
= 0,

0, n= 0,
Dn =

{
π, n 
= 0,

2π, n= 0.

These orthogonality integrals form the basis of the Fourier series developed in Chap-
ter 14. �

Example 10.2.2 EXPANSION IN ORTHOGONAL EIGENFUNCTIONS—SQUARE WAVE

The property of completeness (see Eq. (1.190) and Section 10.4) means that certain classes
of functions (for example, sectionally or piecewise continuous) may be represented by a
series of orthogonal eigenfunctions. Consider the square-wave shape

f (x)=


h

2
, 0< x < π,

−h

2
, −π < x < 0.

(10.37)

This function may be expanded in any of a variety of eigenfunctions — Legendre, Hermite,
Chebyshev, and so on. The choice of eigenfunction is made on the basis of convenience or
an application. To illustrate the expansion technique, let us choose the eigenfunctions of
Example 10.2.1, cosnx and sinnx.

The eigenfunction series is conveniently (and conventionally) written as

f (x)= a0

2
+

∞∑
m=1

(am cosmx + bm sinmx).

Upon multiplyingf (t) by cosnt or sinnt and integrating, only thenth term survives, by
the orthogonality integrals of Example 10.2.1, thus yielding the coefficients

an = 1

π

∫ π

−π
f (t)cosnt dt, bn = 1

π

∫ π

−π
f (t)sinnt dt, n= 0,1,2 . . . .
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Direct substitution of±h/2 for f (t) yields

an = 0,

which is expected here because of the antisymmetry,f (−x)=−f (x), and

bn = h

nπ
(1− cosnπ)=


0, n even,

2h

nπ
, n odd.

Hence the eigenfunction (Fourier) expansion of the square wave is

f (x)= 2h

π

∞∑
n=0

sin(2n+ 1)x

2n+ 1
. (10.38)

Additional examples, using other eigenfunctions, appear in Chapters 11 and 12. �

Degeneracy

The concept of degeneracy was introduced earlier. IfN linearly independent eigenfunc-
tions correspond to the same eigenvalue, the eigenvalue is said to beN -fold degenerate.
A particularly simple illustration is provided by the eigenvalues and eigenfunctions of the
classical harmonic oscillator equation, Example 10.2.1. For each eigenvaluen2, there are
two possible solutions: sinnx and cosnx (and any linear combination,n an integer). We
say the eigenfunctions are degenerate or the eigenvalue is degenerate.

A more involved example is furnished by the physical system of an electron in an atom
(nonrelativistic treatment, spin neglected). From the Schrödinger equation, Eq. (13.84) for
hydrogen, the total energy of the electron is our eigenvalue. We may label itEnLM by using
the quantum numbersn,L, andM as subscripts. For each distinct set of quantum numbers
(n,L,M) there is a distinct, linearly independent eigenfunctionψnLM(r, θ,ϕ). For hydro-
gen, the energyEnLM is independent ofL andM , reflecting the spherical (andSO(4))
symmetry of the Coulomb potential. With 0≤ L ≤ n − 1 and−L ≤M ≤ L, the eigen-
value isn2-fold degenerate (including the electron spin would raise this to 2n2). In atoms
with more than one electron, the electrostatic potential is no longer a simpler−1 potential.
The energy depends onL as well as onn, althoughnot onM;EnLM is still (2L+ 1)-fold
degenerate. This degeneracy — due to rotational invariance of the potential — may be re-
moved by applying an external magnetic field, breaking spherical symmetry and giving rise
to the Zeeman effect. As a rule, the eigenfunctions form a Hilbert space, that is, a complete
vector space of functions with a metric defined by the inner product (see Section 10.4 for
more details and examples).

Often an underlying symmetry, such as rotational invariance, is causing the degenera-
cies. States belonging to the same energy eigenvalue then will form a multiplet or repre-
sentation of the symmetry group. The powerful group-theoretical methods are treated in
Chapter 4 in some detail.
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Exercises

10.2.1 The functionsu1(x) andu2(x) are eigenfunctions of the same Hermitian operator but
for distinct eigenvaluesλ1 andλ2. Prove thatu1(x) andu2(x) are linearly independent.

10.2.2 (a) The vectorsen are orthogonal to each other:en · em = 0 for n 
=m. Show that they
are linearly independent.

(b) The functionsψn(x) are orthogonal to each other over the interval[a, b] and with
respect to the weighting functionw(x). Show that theψn(x) are linearly indepen-
dent.

10.2.3 Given that

P1(x)= x and Q0(x)= 1

2
ln

(
1+ x

1− x

)
are solutions of Legendre’s differential equation corresponding to different eigenval-
ues:

(a) Evaluate their orthogonality integral∫ 1

−1

x

2
ln

(
1+ x

1− x

)
dx.

(b) Explain why these two functions are not orthogonal, that is, why the proof of
orthogonality does not apply.

10.2.4 T0(x)= 1 andV1(x)= (1− x2)1/2 are solutions of the Chebyshev differential equation
corresponding to different eigenvalues. Explain, in terms of the boundary conditions,
why these two functions are not orthogonal.

10.2.5 (a) Show that the first derivatives of the Legendre polynomials satisfy a self-adjoint
differential equation with eigenvalueλ= n(n+ 1)− 2.

(b) Show that these Legendre polynomial derivatives satisfy an orthogonality relation∫ 1

−1
P ′m(x)P ′n(x)

(
1− x2)dx = 0, m 
= n.

Note. In Section 12.5,(1− x2)1/2P ′n(x) will be labeled an associated Legendre polyno-
mial,P 1

n (x).

10.2.6 A set of functionsun(x) satisfies the Sturm–Liouville equation

d

dx

[
p(x)

d

dx
un(x)

]
+ λnw(x)un(x)= 0.

The functionsum(x) andun(x) satisfy boundary conditions that lead to orthogonality.
The corresponding eigenvaluesλm andλn are distinct. Prove that for appropriate bound-
ary conditions,u′m(x) andu′n(x) are orthogonal withp(x) as a weighting function.
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10.2.7 A linear operatorA hasn distinct eigenvalues andn corresponding eigenfunctions:
Aψi = λiψi . Show that then eigenfunctions are linearly independent.A is not neces-
sarily Hermitian.
Hint. Assume linear dependence — thatψn =∑n−1

i=1 aiψi . Use this relation and the
operator–eigenfunction equation first in one order and then in the reverse order. Show
that a contradiction results.

10.2.8 (a) Show that the Liouville substitution

u(x)= v(ξ)
[
p(x)w(x)

]−1/4
, ξ =

∫ x

a

[
w(t)

p(t)

]1/2

dt

transforms

d

dx

[
p(x)

d

dx
u

]
+ [λw(x)− q(x)

]
u(x)= 0

into

d2v

dξ2
+ [λ−Q(ξ)

]
v(ξ)= 0,

where

Q(ξ)= q(x(ξ))

w(x(ξ))
+ [p(x(ξ))w(x(ξ))]−1/4 d2

dξ2
(pw)1/4.

(b) If v1(ξ) andv2(ξ) are obtained fromu1(x) andu2(x), respectively, by a Liouville
substitution, show that

∫ b

a
w(x)u1u2dx is transformed into

∫ c

0 v1(ξ)v2(ξ) dξ with

c= ∫ b

a
[w
p
]1/2dx.

10.2.9 The ultraspherical polynomialsC(α)
n (x) are solutions of the differential equation{

(1− x2)
d2

dx2
− (2α + 1)x

d

dx
+ n(n+ 2α)

}
C(α)
n (x)= 0.

(a) Transform this differential equation into self-adjoint form.
(b) Show that theC(α)

n (x) are orthogonal for differentn. Specify the interval of inte-
gration and the weighting factor.

Note. Assume that your solutions are polynomials.

10.2.10 With L not self-adjoint,

Lui + λiwui = 0

and

L̄vj + λjwvj = 0.
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(a) Show that ∫ b

a

vjLui dx =
∫ b

a

uiL̄vj dx,

provided

uip0v
′
j

∣∣b
a
= vjp0u

′
i

∣∣b
a

and

ui(p1− p′0)vj
∣∣b
a
= 0.

(b) Show that the orthogonality integral for the eigenfunctionsui andvj becomes∫ b

a

uivjw dx = 0 (λi 
= λj ).

10.2.11 In Exercise 9.5.8 the series solution of the Chebyshev equation is found to be convergent
for all eigenvaluesn. Thereforen is not quantized by the argument used for Legendre’s
(Exercise 9.5.5). Calculate the sum of the indicial equationk = 0 Chebyshev series for
n= v = 0.8,0.9, and 1.0 and forx = 0.0(0.1)0.9.
Note. The Chebyshev series recurrence relation is given in Exercise 5.2.16.

10.2.12 (a) Evaluate then = ν = 0.9, indicial equationk = 0 Chebyshev series forx =
0.98,0.99, and 1.00. The series converges very slowly atx = 1.00. You may wish
to use double precision. Upper bounds to the error in your calculation can be set
by comparison with theν = 1.0 case, which corresponds to(1− x2)1/2.

(b) These series solutions for eigenvalueν = 0.9 and forν = 1.0 are obviouslynot
orthogonal, despite the fact that they satisfy a self-adjoint eigenvalue equation with
different eigenvalues. From the behavior of the solutions in the vicinity ofx = 1.00
try to formulate a hypothesis as to why the proof of orthogonality does not apply.

10.2.13 The Fourier expansion of the (asymmetric) square wave is given by Eq. (10.38). With
h= 2, evaluate this series forx = 0(π/18)π/2, using the first (a) 10 terms, (b) 100 terms
of the series.
Note. For 10 terms andx = π/18, or 10◦, your Fourier representation has a sharp hump.
This is the Gibbs phenomenon of Section 14.5. For 100 terms this hump has been shifted
over to about 1◦.

10.2.14 Thesymmetric square wave

f (x)=
1, |x|< π

2
−1,

π

2
< |x|< π

has a Fourier expansion

f (x)= 4

π

∞∑
n=0

(−1)n
cos(2n+ 1)x

2n+ 1
.

Evaluate this series forx = 0(π/18)π/2 using the first
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(a) 10 terms, (b) 100 terms of the series.

Note. As in Exercise 10.2.13, the Gibbs phenomenon appears at the discontinuity. This
means that a Fourier series is not suitable for precise numerical work in the vicinity of
a discontinuity.

10.3 GRAM–SCHMIDT ORTHOGONALIZATION

The Gram–Schmidt orthogonalization is a method that takes a nonorthogonal set of lin-
early independent vectors (see Section 3.1) or functions8 and constructs an orthogonal set
of vectors or functions over an arbitrary interval and with respect to an arbitrary weight
or density factor. In the language of linear algebra, the process is equivalent to a matrix
transformation relating an orthogonal set of basis vectors (functions) to a nonorthogonal
set. A specific example of this matrix transformation appears in Exercise 12.2.1.

Next we apply the Gram–Schmidt procedure to a set of functions. The functions in-
volved may be real or complex. Here for convenience they are assumed to be real. The
generalization to the complex case offers no difficulty.

Before taking up orthogonalization, we should consider normalization of functions. So
far no normalization has been specified. This means that∫ b

a

ϕ2
i w dx =N2

i ,

but no attention has been paid to the value ofNi . Since our basic equation (Eq. (10.8)) is
linear and homogeneous, we may multiply our solution by any constant and it will still be
a solution. We now demand that each solutionϕi(x) be multiplied byN−1

i so that the new
(normalized)ϕi will satisfy ∫ b

a

ϕ2
i (x)w(x)dx = 1 (10.39)

and ∫ b

a

ϕi(x)ϕj (x)w(x)dx = δij . (10.40)

Equation (10.39) says that we have normalized to unity. Including the property of orthog-
onality, we have Eq. (10.40). Functions satisfying this equation are said to beorthonor-
mal (orthogonal plus unit normalization). Other normalizations are certainly possible, and
indeed, by historical convention, each of the special functions of mathematical physics
treated in Chapters 12 and 13 will be normalized differently.

We consider three sets of functions: an original, linearly independent given set
un(x), n = 0,1,2, . . . ; an orthogonalized setψn(x) to be constructed; and a final set

8Such a set of functions might well arise from the solutions of a PDE in which the eigenvalue was independent of one or more
of the constants of separation. As an example, we have the hydrogen atom problem (Sections 10.2 and 13.2). The eigenvalue
(energy) is independent of both the electron orbital angular momentum and its projection on thez-axis,m. Note, however, that
the origin of the set of functions is irrelevant to the Gram–Schmidt orthogonalization procedure.
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of functionsϕn(x), which are the normalizedψn. The originalun may be degenerate
eigenfunctions, but this is not necessary. We shall have the following properties:

un(x) ψn(x) ϕn(x)

Linearly independent Linearly independent Linearly independent
Nonorthogonal Orthogonal Orthogonal
Unnormalized Unnormalized Normalized (orthonormal)

The Gram–Schmidt procedure takes thenth ψ function (ψn) to beun(x) plus an un-
known linear combination of the previousϕ. The presence of the newun(x) will guarantee
linear independence. The requirement thatψn(x) be orthogonal to each of the previous
ϕ yields just enough constraints to determine each of the unknown coefficients. Then the
fully determinedψn will be normalized to unity, yieldingϕn(x). Then the sequence of
steps is repeated forψn+1(x).

We start withn= 0, letting

ψ0(x)= u0(x), (10.41)

with no “previous”ϕ to worry about. Then we normalize

ϕ0(x)= ψ0(x)

[∫ ψ2
0wdx]1/2

. (10.42)

Forn= 1, let

ψ1(x)= u1(x)+ a1,0ϕ0(x). (10.43)

We demand thatψ1(x) be orthogonal toϕ0(x). (At this stage the normalization ofψ1(x)

is irrelevant.) This orthogonality leads to∫
ψ1ϕ0wdx =

∫
u1ϕ0wdx + a1,0

∫
ϕ2

0wdx = 0. (10.44)

Sinceϕ0 is normalized to unity (Eq. (10.42)), we have

a1,0=−
∫

u1ϕ0wdx, (10.45)

fixing the value ofa1,0. Normalizing, we define

ϕ1(x)= ψ1(x)

(
∫
ψ2

1wdx)1/2
. (10.46)

Finally, we generalize so that

ϕi(x)= ψi(x)

(
∫
ψ2
i (x)w(x)dx)1/2

, (10.47)

where

ψi(x)= ui + ai,0ϕ0+ ai,1ϕ1+ · · · + ai,i−1ϕi−1. (10.48)

The coefficientsai,j are given by

ai,j =−
∫

uiϕjw dx. (10.49)
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Equation (10.49) holds for unit normalization. If some other normalization is selected,∫ b

a

[
ϕj (x)

]2
w(x)dx =N2

j ,

then Eq. (10.47) is replaced by

ϕi(x)=Ni

ψi(x)

(
∫
ψ2
i w dx)1/2

. (10.47a)

andai,j becomes

ai,j =−
∫
uiϕjw dx

N2
j

. (10.49a)

Equations (10.48) and (10.49) may be rewritten in terms of projection operators,Pj . If
we consider theϕn(x) to form a linear vector space, then the integral in Eq. (10.49) may
be interpreted as the projection ofui into theϕj “coordinate,” or thej th component ofui .
With

Pjui(x)=
{∫

ui(t)ϕj (t)w(t) dt

}
ϕj (x),

Eq. (10.48) becomes

ψi(x)=
{

1−
i−1∑
j=1

Pj

}
ui(x). (10.48a)

Subtracting off the components,j = 1 to i − 1, leavesψi(x) orthogonal to all theϕj (x).
It will be noticed that although this Gram–Schmidt procedure is one possible way of

constructing an orthogonal or orthonormal set, the functionsϕi(x) are not unique. There
is an infinite number of possible orthonormal sets for a given interval and a given density
function.

As an illustration of the freedom involved, consider two (nonparallel) vectorsA andB
in the xy-plane. We may normalizeA to unit magnitude and then formB′ = aA+ B so
that B′ is perpendicular toA. By normalizingB′ we have completed the Gram–Schmidt
orthogonalization for two vectors. But any two perpendicular unit vectors, such asx̂ andŷ,
could have been chosen as our orthonormal set. Again, with an infinite number of possible
rotations ofx̂ andŷ about thez-axis, we have an infinite number of possible orthonormal
sets.

Example 10.3.1 LEGENDRE POLYNOMIALS BY GRAM–SCHMIDT ORTHOGONALIZATION

Let us form an orthonormal set from the set of functionsun(x)= xn,n= 0,1,2 . . . . The
interval is−1≤ x ≤ 1 and the density function isw(x)= 1.

In accordance with the Gram–Schmidt orthogonalization process described,

u0= 1, hence ϕ0= 1√
2
. (10.50)
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Then

ψ1(x)= x + a1,0
1√
2

(10.51)

and

a1,0=−
∫ 1

−1

x√
2
dx = 0 (10.52)

by symmetry. We normalizeψ1 to obtain

ϕ1(x)=
√

3

2
x. (10.53)

Then we continue the Gram–Schmidt procedure with

ψ2(x)= x2+ a2,0
1√
2
+ a2,1

√
3

2
x, (10.54)

where

a2,0=−
∫ 1

−1

x2

√
2
dx =−

√
2

3
, (10.55)

a2,1=−
∫ 1

−1

√
3

2
x3dx = 0, (10.56)

again by symmetry. Therefore

ψ2(x)= x2− 1

3
, (10.57)

and, on normalizing to unity, we have

ϕ2(x)=
√

5

2
· 1

2

(
3x2− 1

)
. (10.58)

The next function,ϕ3(x), becomes

ϕ3(x)=
√

7

2
· 1

2

(
5x3− 3x

)
. (10.59)

Reference to Chapter 12 will show that

ϕn(x)=
√

2n+ 1

2
Pn(x), (10.60)

wherePn(x) is thenth-order Legendre polynomial. Our Gram–Schmidt process provides
a possible but very cumbersome method of generating the Legendre polynomials. It il-
lustrates how a power-series expansion inun(x) = xn, which is not orthogonal, can be
converted into an orthogonal series. �
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The equations for Gram–Schmidt orthogonalization tend to be ill-conditioned because
of the subtractions, Eqs. (10.48) and (10.49). A technique for avoiding this difficulty using
the polynomial recurrence relation is discussed by Hamming.9

In Example 10.3.1 we have specified an orthogonality interval[−1,1], a unit weighting
function, and a set of functionsxn to be taken one at a time in increasing order. Given
all these specifications, the Gram–Schmidt procedure is unique (to within a normaliza-
tion factor and an overall sign, as discussed subsequently). Our resulting orthogonal set,
the Legendre polynomials,P0 up throughPn, form a complete set for the description of
polynomials of order≤ n over [−1,1]. This concept of completeness is taken up in detail
in Section 10.4. Expansions of functions in series of Legendre polynomials are found in
Section 12.3.

Orthogonal Polynomials

Example 10.3.1 has been chosen strictly to illustrate the Gram–Schmidt procedure. Al-
though it has the advantage of introducing the Legendre polynomials, the initial functions
un = xn are not degenerate eigenfunctions and are not solutions of Legendre’s equation.
They are simply a set of functions that we have here rearranged to create an orthonor-
mal set for the given interval and given weighting function. The fact that we obtained the
Legendre polynomials is not quite black magic but a direct consequence of the choice of in-
terval and weighting function. The use ofun(x)= xn but with other choices of interval and

Table 10.3 Orthogonal Polynomials Generated by Gram–Schmidt Orthogonalization
of un(x)= xn,n= 0,1,2, . . .

Weighting
Polynomials Interval functionw(x) Standard normalization

Legendre −1≤ x ≤ 1 1
∫ 1

−1
[Pn(x)]2 dx = 2

2n+ 1

Shifted Legendre 0≤ x ≤ 1 1
∫ 1

0
[P ∗n (x)]2 dx =

1

2n+ 1

Chebyshev I −1≤ x ≤ 1 (1− x2)−1/2
∫ 1

−1

[Tn(x)]2
(1− x2)1/2

dx =
{
π/2, n 
= 0
π, n= 0

Shifted Chebyshev I 0≤ x ≤ 1 [x(1− x)]−1/2
∫ 1

0

[T ∗n (x)]2
[x(1− x)]1/2

dx =
{
π/2, n > 0
π, n= 0

Chebyshev II −1≤ x ≤ 1 (1− x2)1/2
∫ 1

−1
[Un(x)]2(1− x2)1/2 dx = π

2

Laguerre 0≤ x <∞ e−x
∫ ∞

0
[Ln(x)]2e−x dx = 1

Associated Laguerre 0≤ x <∞ xke−x
∫ ∞

0
[Lk

n(x)]2xke−x dx =
(n+ k)!

n!
Hermite −∞< x <∞ e−x2

∫ ∞
−∞

[Hn(x)]2e−x2
dx = 2nπ1/2n!

9R. W. Hamming,Numerical Methods for Scientists and Engineers, 2nd ed., New York: McGraw-Hill (1973). See Section 27.2
and references given there.
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weighting function leads to other sets of orthogonal polynomials, as shown in Table 10.3.
We consider these polynomials in detail in Chapters 12 and 13 as solutions of particular
differential equations.

An examination of this orthogonalization process will reveal two arbitrary features. First,
as emphasized before, it is not necessary to normalize the functions to unity. In the example
just given we could have required∫ 1

−1
ϕn(x)ϕm(x)dx = 2

2n+ 1
δnm, (10.61)

and the resulting set would have been the actual Legendre polynomials. Second, the sign of
ϕn is always indeterminate. In the example we chose the sign by requiring the coefficient
of the highest power ofx in the polynomial to be positive. For the Laguerre polynomials,
on the other hand, we would require the coefficient of the highest power to be(−1)n/n!

Exercises

10.3.1 Rework Example 10.3.1 by replacingϕn(x) by the conventional Legendre polynomial,
Pn(x): ∫ 1

−1

[
Pn(x)

]2
dx = 2

2n+ 1
.

Using Eqs. (10.47a), and (10.49a), constructP0,P1(x), andP2(x).

ANS.P0= 1, P1= x, P2= 3
2x

2− 1
2.

10.3.2 Following the Gram–Schmidt procedure, construct a set of polynomialsP ∗n (x) orthog-
onal (unit weighting factor) over the range[0,1] from the set[1, x]. Normalize so that
P ∗n (1)= 1.

ANS.P ∗n (x)= 1,
P ∗1 (x)= 2x − 1,
P ∗2 (x)= 6x2− 6x + 1,
P ∗3 (x)= 20x3− 30x2+ 12x − 1.

These are the first fourshifted Legendre polynomials.
Note. The “*” is the standard notation for “shifted”:[0,1] instead of[−1,1]. It doesnot
mean complex conjugate.

10.3.3 Apply the Gram–Schmidt procedure to form the first three Laguerre polynomials

un(x)= xn, n= 0,1,2, . . . , 0≤ x <∞, w(x)= e−x.

The conventional normalization is∫ ∞

0
Lm(x)Ln(x)e

−x dx = δmn.

ANS.L0= 1, L1= (1− x), L2= 2− 4x + x2

2
.
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10.3.4 You are given

(a) a set of functionsun(x)= xn,n= 0,1,2, . . . ,
(b) an interval(0,∞),
(c) a weighting functionw(x)= xe−x . Use the Gram–Schmidt procedure to construct

the firstthree orthonormal functions from the setun(x) for this interval and this
weighting function.

ANS. ϕ0(x)= 1, ϕ1(x)= (x − 2)/
√

2, ϕ2(x)=
(
x2− 6x + 6

)
/2
√

3.

10.3.5 Using the Gram–Schmidt orthogonalization procedure, construct the lowest three Her-
mite polynomials:

un(x)= xn, n= 0,1,2, . . . , −∞< x <∞, w(x)= e−x2
.

For this set of polynomials the usual normalization is∫ ∞

−∞
Hm(x)Hn(x)w(x)dx = δmn2mm!π1/2.

ANS.H0= 1, H1= 2x, H2= 4x2− 2.

10.3.6 Use the Gram–Schmidt orthogonalization scheme to construct the first three Chebyshev
polynomials (type I):

un(x)= xn, n= 0,1,2, . . . , −1≤ x ≤ 1, w(x)= (1− x2)−1/2
.

Take the normalization∫ 1

−1
Tm(x)Tn(x)w(x)dx = δmn


π, m= n= 0,

π

2
, m= n≥ 1.

Hint. The needed integrals are given in Exercise 8.4.3.

ANS. T0= 1, T1= x, T2= 2x2− 1 (T3= 4x3− 3x).

10.3.7 Use the Gram–Schmidt orthogonalization scheme to construct the first three Chebyshev
polynomials (type II):

un(x)= xn, n= 0,1,2, . . . , −1≤ x ≤ 1, w(x)= (1− x2)+1/2
.

Take the normalization to be∫ 1

−1
Um(x)Un(x)w(x)dx = δmn

π

2
.

Hint. ∫ 1

−1

(
1− x2)1/2

x2n dx = π

2
× 1 · 3 · 5 · · · (2n− 1)

4 · 6 · 8 · · · (2n+ 2)
, n= 1,2,3, . . .

= π

2
, n= 0.

ANS.U0= 1, U1= 2x, U2= 4x2− 1.
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10.3.8 As a modification of Exercise 10.3.5, apply the Gram–Schmidt orthogonalization pro-
cedure to the setun(x) = xn,n = 0,1,2, . . . ,0≤ x <∞. Takew(x) to be exp[−x2].
Find the first two nonvanishing polynomials. Normalize so that the coefficient of the
highest power ofx is unity. In Exercise 10.3.5 the interval(−∞,∞) led to the Hermite
polynomials. These are certainly not the Hermite polynomials.

ANS. ϕ0= 1, ϕ1= x − π−1/2.

10.3.9 Form an orthogonal set over the interval 0≤ x < ∞, using un(x) = e−nx, n =
1,2,3, . . . . Take the weighting factor,w(x), to be unity. These functions are solutions
of u′′n− n2un = 0, which is clearly already in Sturm–Liouville (self-adjoint) form. Why
doesn’t the Sturm–Liouville theory guarantee the orthogonality of these functions?

10.4 COMPLETENESS OF EIGENFUNCTIONS

The third important property of an Hermitian operator is that its eigenfunctions form a
complete set. This completeness means that any well-behaved (at least piecewise continu-
ous) functionF(x) can be approximated by a series

F(x)=
∞∑
n=0

anϕn(x) (10.62)

to any desired degree of accuracy.10 More precisely, the setϕn(x) is calledcomplete11 if
the limit of the mean square error vanishes:

lim
m→∞

∫ b

a

[
F(x)−

m∑
n=0

anϕn(x)

]2

w(x)dx = 0. (10.63)

Technically, the integral here is a Lebesgue integral. We have not required that the error
vanish identically in[a, b] but only that the integral of the error squared go to zero.

This convergence in the mean, Eq. (10.63), should be compared with uniform conver-
gence (Section 5.5, Eq. (5.67)). Clearly, uniform convergence implies convergence in the
mean, but the converse does not hold; convergence in the mean is less restrictive. Specifi-
cally, Eq. (10.63) is not upset by piecewise continuous functions with only a finite number
of finite discontinuities. A relevant example is the Gibbs phenomenon of discontinuous
Fourier series discussed in Section 14.5, which occurs for other eigenfunction series as
well.

Equation (10.63) is perfectly adequate for our purposes and is far more convenient than
Eq. (5.67). Indeed, since we frequently use eigenfunctions to describe discontinuous func-
tions, convergence in the mean is all we can expect.

In Eq. (10.62) the expansion coefficientsam may be determined by

am =
∫ b

a

F (x)ϕ∗m(x)w(x)dx. (10.64)

10If we have a finite set, as with vectors, the summation is over the number of linearly independent members of the set.
11Many authors use the termclosed here.
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This follows from multiplying Eq. (10.62) byϕ∗m(x)w(x) and integrating. From the or-
thogonality of the eigenfunctionsϕn(x), only themth term survives. Here we see the value
of orthogonality. Equation (10.64) may be compared with the dot or inner product of vec-
tors, Section 1.3, andam interpreted as themth projection of the functionF(x). Often the
coefficientam is called ageneralized Fourier coefficient.

For a known functionF(x), Eq. (10.64) givesam as adefinite integral that can always
be evaluated, by computer if not analytically.

In the language of linear algebra, we have a linear space, a function vector space.
The linearly independent, orthonormal functionsϕn(x) form the basis for this (infinite-
dimensional) space. Equation (10.62) is a statement that the functionsϕn(x) span this
linear space. With an inner product defined by Eq. (10.64), our linear space is aHilbert
space.

Setting the weight functionw(x)= 1 for simplicity, completeness in operator form for
a discrete set of eigenfunctions|ϕi〉 becomes∑

i

|ϕi〉〈ϕi | = 1.

Multiplying the completeness relation by|F 〉 we obtain the eigenfunction expansion

|F 〉 =
∑
i

|ϕi〉〈ϕi |F 〉

with the generalized Fourier coefficientai = 〈ϕi |F 〉. Equivalently in coordinate represen-
tation, ∑

i

ϕ∗i (y)ϕi(x)= δ(x − y)

implies

F(x)=
∫

F(y)δ(x − y)dy =
∑
i

ϕi(x)

∫
ϕ∗i (y)F (y) dy.

Without proof, we state that the spectrum of a linear operatorA that maps a Hilbert
spaceH into itself may be divided into a discrete (or point) spectrum with eigenvectors of
finite length, a continuous spectrum so that the eigenvalue equationAv = λv with v in H

does not have a unique bounded inverse(A− λ)−1 in a dense domain ofH and a residual
spectrum where(A− λ)−1 is unbounded in a domain not dense inH.

The question of completeness of a set of functions is often determined by comparison
with a Laurent series, Section 6.5. In Section 14.1 this is done for Fourier series, thus
establishing the completeness of Fourier series. For all orthogonal polynomials mentioned
in Section 10.3 it is possible to find a polynomial expansion of each power ofz,

zn =
n∑

i=0

aiPi(z), (10.65)
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wherePi(z) is theith polynomial. Exercises 12.4.6, 13.1.6, 13.2.5, and 13.3.22 are specific
examples of Eq. (10.65). Using Eq. (10.65), we may reexpress the Laurent expansion of
f (z) in terms of the polynomials, showing that the polynomial expansion exists (when it
exists, it is unique, Exercise 10.4.1). The limitation of this Laurent series development is
that it requires the function to be analytic. Equations (10.62) and (10.63) are more general.
F(x) may be only piecewise continuous. Numerous examples of the representation of such
piecewise continuous functions appear in Chapter 14 (Fourier series). A proof that our
Sturm–Liouville eigenfunctions form complete sets appears in Courant and Hilbert.12

For examples of particular eigenfunction expansions, see the following: Fourier series,
Section 10.2 and Chapter 14; Bessel and Fourier–Bessel expansions, Section 11.2; Legen-
dre series, Section 12.3; Laplace series, Section 12.6; Hermite series, Section 13.1; La-
guerre series, Section 13.2; and Chebyshev series, Section 13.3.

It may also happen that the eigenfunction expansion, Eq. (10.62), is the expansion of an
unknownF(x) in a series of known eigenfunctionsϕn(x) with unknown coefficientsan.
An example would be the quantum chemist’s attempt to describe an (unknown) mole-
cular wave function as a linear combination of known atomic wave functions. The un-
known coefficientsan would be determined by a variational technique — Rayleigh–Ritz,
Section 17.8.

Bessel’s inequality

If the set of functionsϕn(x) does not form a complete set, possibly because we simply
have not included the required infinite number of members of an infinite set, we are led
to Bessel’s inequality. First, consider the finite case from vector analysis. LetA be ann
component vector,

A= e1a1+ e2a2+ · · · + enan, (10.66)

in which ei is a unit vector andai is the corresponding component (projection) ofA; that
is,

ai =A · ei . (10.67)

Then (
A−

∑
i

eiai

)2

≥ 0. (10.68)

If we sum over alln components, the summation clearly, equalsA by Eq. (10.66) and
the equality holds. If, however, the summation does not include alln components, the
inequality results. By expanding Eq. (10.68) and choosing the unit vectors so as to satisfy
an orthogonality relation,

ei · ej = δij , (10.69)

12R. Courant and D. Hilbert,Methods of Mathematical Physics (English translation), Vol. 1, New York: Interscience (1953),
reprinted, Wiley (1989), Chapter 6, Section 3.
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we have

A2≥
∑
i

a2
i . (10.70)

This is Bessel’s inequality.
For real functions we consider the integral∫ b

a

[
f (x)−

∑
i

aiϕi(x)

]2

w(x)dx ≥ 0. (10.71)

This is the continuum analog of Eq. (10.68), lettingn→∞ and replacing the summation
by an integration. Again, with the weighting factorw(x) > 0, the integrand is nonnegative.
The integral vanishes by Eq. (10.62) if we have a complete set. Otherwise it is positive.
Expanding the squared term, we obtain∫ b

a

[
f (x)

]2
w(x)dx − 2

∑
i

ai

∫ b

a

f (x)ϕi(x)w(x)dx +
∑
i

a2
i ≥ 0. (10.72)

Applying Eq. (10.64), we have∫ b

a

[
f (x)

]2
w(x)dx ≥

∑
i

a2
i . (10.73)

Hence the sum of the squares of the expansion coefficientsai is less than or equal to the
weighted integral of[f (x)]2, the equality holding if and only if the expansion is exact, that
is, if the set of functionsϕn(x) is a complete set.

In later chapters, when we consider eigenfunctions that form complete sets (such as
Legendre polynomials), Eq. (10.73) with the equal sign holding will be called aParseval
relation.

Bessel’s inequality has a variety of uses, including proof of convergence of the Fourier
series.

Schwarz Inequality

The frequently used Schwarz inequality is similar to the Bessel inequality. Consider the
quadratic equation with unknownx:

n∑
i=1

(aix + bi)
2=

n∑
i=1

a2
i

(
x + bi

ai

)2

= 0 (10.74)

with realai, bi . If bi/ai = constant,c, that is, independent of the indexi, then the solution
is x =−c. If bi/ai is not a constant ini, all terms cannot vanish simultaneously for realx.
So the solution must be complex. Expanding, we find that

x2
n∑
i

a2
i + 2x

n∑
i

aibi +
n∑
i

b2
i = 0, (10.75)
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and sincex is complex (or=−bi/ai ), the quadratic formula13 for x leads to( n∑
i=1

aibi

)2

≤
( n∑

i=1

a2
i

)( n∑
i=1

b2
i

)
, (10.76)

the equality holding whenbi/ai equals a constant, independent ofi.
Once more, in terms of vectors, we have

(a · b)2= a2b2 cos2 θ ≤ a2b2, (10.77)

whereθ is the angle included betweena andb.
The analogous Schwarz inequality for complex functions has the form∣∣∣∣ ∫ b

a

f ∗(x)g(x) dx
∣∣∣∣2≤ ∫ b

a

f ∗(x)f (x) dx
∫ b

a

g∗(x)g(x) dx, (10.78)

the equality holding if and only ifg(x)= αf (x), α being a constant. To prove this function
form of the Schwarz inequality,14 consider a complex functionψ(x)= f (x)+ λg(x) with
λ a complex constant, wheref (x) andg(x) are any two square integrable functions (for
which the integrals on the right-hand side exist). Multiplying by the complex conjugate
and integrating, we obtain∫ b

a

ψ∗ψ dx ≡
∫ b

a

f ∗f dx + λ

∫ b

a

f ∗g dx + λ∗
∫ b

a

g∗f dx

+ λλ∗
∫ b

a

g∗g dx ≥ 0. (10.79)

The≥ 0 appears sinceψ∗ψ is nonnegative, the equal(=) sign holding only ifψ(x) is iden-
tically zero. Noting thatλ andλ∗ are linearly independent, we differentiate with respect to
one of them and set the derivative equal to zero to minimize

∫ b

a
ψ∗ψ dx:

∂

∂λ∗

∫ b

a

ψ∗ψ dx =
∫ b

a

g∗f dx + λ

∫ b

a

g∗g dx = 0.

This yields

λ=−
∫ b

a
g∗f dx∫ b

a
g∗g dx

. (10.80a)

Taking the complex conjugate, we obtain

λ∗ = −
∫ b

a
f ∗g dx∫ b

a
g∗g dx

. (10.80b)

Substituting these values ofλ andλ∗ back into Eq. (10.79), we obtain Eq. (10.78), the
Schwarz inequality.

13With negative (or zero) discriminant.
14An alternate derivation is provided by the inequality

∫∫ [f (x)g(y)− f (y)g(x)]∗[f (x)g(y)− f (y)g(x)]dx dy ≥ 0.
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In quantum mechanicsf (x) andg(x) might each represent a state or configuration of
a physical system, that is, a linear combination of wave functions. Then the Schwarz in-
equality gives an upper limit for the absolute value of the inner product

∫ b

a
f ∗(x)g(x) dx.

In some texts the Schwarz inequality is a key step in the derivation of the Heisenberg
uncertainty principle.

The function notation of Eqs. (10.78) and (10.79) is relatively cumbersome. In advanced
mathematical physics and especially in quantum mechanics it is common to use the Dirac
bra-ket notation. Using this notation, we simply understand the range of integration,(a, b),
and the presence of the weighting functionw(x)≥ 0. In this notation the Schwarz inequal-
ity takes the elegant form ∣∣〈f |g〉∣∣2≤ 〈f |f 〉〈g|g〉. (78a)

If g(x) is a normalized eigenfunction,ϕi(x), Eq. (10.78) yields (herew(x)= 1)

a∗i ai ≤
∫ b

a

f ∗(x)f (x) dx, (10.81)

a result that also follows from Eq. (10.73).
For useful representations of Dirac’s delta function in terms of orthogonal sets of func-

tions and the relation between closure and completeness we refer to the relevant subsection
of Section 1.15, including Exercise 1.15.16, and for coordinate versus momentum repre-
sentations in quantum mechanics to Section 15.6.

Summary — Vector Spaces, Completeness

Here we summarize some properties of vector spaces, first with the vectors taken to be
the familiar real vectors of Chapter 1 and then with the vectors taken to be ordinary func-
tions. The concept ofcompleteness has been developed for finite vector spaces (Chapter 1,
Eq. (1.5)) and carries over into infinite vector spaces. For example, in three-dimensional
Euclidean space every vector can be written in terms of a linear combination of the three
coordinate unit vectors (representing a basis) involving the vector’s Cartesian components
as the expansion coefficients. Or a periodic function of an infinite vector space can be ex-
panded in terms of the set of periodic functions sinnx,cosnx,n= 0,1,2, . . . , that form a
basis of this space. Since any periodic function with reasonable properties (spelled out in
Chapter 14) can be expanded in terms of these sine and cosine functions, they are complete
and form a basis of such a linear function space.

1v. We shall describe our vector space with a set ofn linearly independent vectorsei ,
i = 1,2, . . . , n. If n = 3, thene1 = x̂, e2 = ŷ, ande3 = ẑ. Thenei span the linear vector
space.

1f. We shall describe our vector (function) space with a set ofn linearly independent
functions,ϕi(x), i = 0,1, . . . , n− 1. The indexi starts with 0 to agree with the labeling
of the classical polynomials. Hereϕi(x) is assumed to be a polynomial of degreei. The
nϕi(x) span the linear vector (function) space.

2v. The vectors in our vector space satisfy the following relations (Section 1.2; the vector
components are numbers):
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a. Vector addition is commutative u+ v= v+ u
b. Vector addition is associative [u+ v] +w= u+ [v+w]
c. There is a null vector 0+ v= v
d. Multiplication by a scalar

Distributive a[u+ v] = au+ av
Distributive (a + b)u= au+ bu
Associative a[bu] = (ab)u

e. Multiplication
By unit scalar 1u= u
By zero 0u= 0

f. Negative vector (−1)u=−u.

2f. The functions in our linear function space satisfy the properties listed for vectors
(substitute “function” for “vector”):

f (x)+ g(x) = g(x)+ f (x)[
f (x)+ g(x)

]+ h(x) = f (x)+ [g(x)+ h(x)
]

0+ f (x) = f (x)

a
[
f (x)+ g(x)

] = af (x)+ ag(x)

(a + b)f (x) = af (x)+ bf (x)

a
[
bf (x)

] = (ab)f (x)

1 · f (x) = f (x)

0 · f (x) = 0

(−1) · f (x) = −f (x).
3v. In n-dimensional vector space an arbitrary vectorc is described by itsn components

(c1, c2, . . . , cn), or

c=
n∑

i=1

ciei .

Whennei (1) are linearly independent and (2) span then-dimensional vector space, then
theei form a basis and constitute acomplete set.

3f. In n-dimensional function space a polynomial of degreem≤ n− 1 is described by

f (x)=
n−1∑
i=0

ciϕi(x).

When thenϕi(x) (1) are linearly independent and (2) span then-dimensional function
space, then theϕi(x) form a basis and constitute acomplete set (for describing polynomi-
als of degreem≤ n− 1).

4v. An inner product (scalar, dot product) of a vector space is defined by

c · d=
n∑

i=1

cidi .
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If c andd have complex components in an orthogonal coordinate system, the inner product
is defined as

∑n
i=1 c

∗
i di . The inner product has the properties of

a. Distributive law of addition c · (d+ e)= c · d+ c · e
b. Scalar multiplication c · ad= ac · d
c. Complex conjugation c · d= (d · c)∗.

4f. An inner product of a linear space of functions is defined by

〈f |g〉 =
∫ b

a

f ∗(x)g(x)w(x)dx.

The choice of the weighting functionw(x) and the interval(a, b) follows from the dif-
ferential equation satisfied byϕi(x) and the boundary conditions — Section 10.1. In ma-
trix terminology, Section 3.2,|g〉 is a column vector and〈f | is a row vector, the adjoint
of |f 〉, where both may have infinitely many components. For example, if we expand
g(x)=∑i giϕi(x), then|g〉 has theith componentgi in a column vector and|f 〉 hasf ∗i
as itsith component in a row vector.

The inner product has the properties listed for vectors:

a. 〈f |g + h〉 = 〈f |g〉 + 〈f |h〉
b. 〈f |ag〉 = a〈f |g〉
c. 〈f |g〉 = 〈g|f 〉∗.

5v. Orthogonality:

ej · ej = 0, i 
= j.

If the nei are not already orthogonal, the Gram–Schmidt process may be used to create
an orthogonal set.

5f. Orthogonality:

〈ϕi |ϕj 〉 =
∫ b

a

ϕ∗i (x)ϕj (x)w(x)dx = 0, i 
= j.

If the nϕi(x) are not already orthogonal, the Gram–Schmidt process (Section 10.3) may be
used to create an orthogonal set.

6v. Definition of norm:

|c| = (c · c)1/2=
( n∑

i=1

c2
i

)1/2

.

The basis vectorsei are taken to have unit norm (length)ei · ei = 1. The components ofc
are given by

ci = ei · c, i = 1,2, . . . , n.

6f. Definition of norm:

‖f ‖ = 〈f |f 〉1/2=
[∫ b

a

∣∣f (x)∣∣2w(x)dx

]1/2

=
[n−1∑
i=0

|ci |2
]1/2

,
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Parseval’s identity. ‖f ‖ > 0 unlessf (x) is identically zero. The basis functionsϕi(x)
may be taken to have unit norm (unit normalization),

‖ϕi‖ = 1.

The expansion coefficients of our polynomialf (x) are given by

ci = 〈ϕi |f 〉, i = 0,1, . . . , n− 1.

7v. Bessel’s inequality:

c · c≥
∑
i

c2
i .

If the equals sign holds for allc, it indicates that theei span the vector space; that is, they
are complete.

7f. Bessel’s inequality:

〈f |f 〉 =
∫ b

a

∣∣f (x)∣∣2w(x)dx ≥
∑
i

|ci |2.

If the equals sign holds for all allowablef , it indicates that theϕi(x) span the function
space; that is, they are complete.

8v. Schwarz’ inequality:

|c · d| ≤ |c| · |d|.
The equals sign holds whenc is a multiple ofd. If the angle included betweenc andd is
θ , then|cosθ | ≤ 1.

8f. Schwarz’ inequality:∣∣〈f |g〉∣∣≤ 〈f |f 〉1/2〈g|g〉1/2= ‖f ‖ · ‖g‖.
The equals sign holds whenf (x) andg(x) are linearly dependent, that is, whenf (x) is a
multiple ofg(x).

Now, letn→∞, forming an infinite-dimensional linear vector space,l2.
9v. In an infinite-dimensional space our vectorc is

c=
∞∑
i=1

ciei .

We require that
∞∑
i=1

c2
i <∞.

The components ofc are given by

ci = ei · c, i = 1,2, . . . ,∞,

exactly as in a finite-dimensional vector space.
Then letn→∞, forming an infinite-dimensional vector (function) spaceL2. ThenL

stands for Lebesgue, the superscript 2 for the quadratic norm, that is, the 2 in|f (x)|2. Our
functions need no longer be polynomials, but we do require thatf (x) be at least piecewise
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continuous (Dirichlet conditions for Fourier series) and that〈f |f 〉 = ∫ b

a
|f (x)|2w(x)dx

exist. This latter condition is often stated as a requirement thatf (x) be square integrable.
9f. Cauchy sequence (generalized Fourier expansion): Expandf (x) =∑∞

i=0fiϕi(x)

and let

fn(x)=
n∑

i=0

fiϕi(x).

If ∥∥f (x)− fn(x)
∥∥→ 0 asn→∞

or

lim
n→∞

∫ ∣∣∣∣f (x)− n∑
i=0

fiϕi(x)

∣∣∣∣2w(x)dx = 0,

then we have convergence in the mean. This is analogous to the partial sum–Cauchy se-
quence criterion for the convergence of an infinite series, Section 5.1.

If every Cauchy sequence of allowable vectors (square integrable, piecewise continuous
functions) converges to a limit vector in our linear space, the space is said to be complete.
Then

f (x)=
∞∑
i=0

ciϕi(x) (almost everywhere)

in the sense of convergence in the mean. As noted before, this is a weaker requirement than
pointwise convergence (fixed value ofx) or uniform convergence.

Expansion Coefficients

For a functionf its expansion coefficients are defined as

ci = 〈ϕi |f 〉, i = 0,1, . . . ,∞,

exactly as in a finite-dimensional vector space. Hence

f (x)=
∑
i

〈ϕi |f 〉ϕi(x).

A linear space (finite- or infinite-dimensional) that (1) has an inner product defined
(〈f |g〉) and (2) is complete is aHilbert space.

Infinite-dimensional Hilbert space provides a natural mathematical frame-work for mod-
ern quantum mechanics. Away from quantum mechanics, Hilbert space retains its abstract
mathematical power and beauty and has many uses.
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Exercises

10.4.1 A functionf (x) is expanded in a series of orthonormal eigenfunctions

f (x)=
∞∑
n=0

anϕn(x).

Show that the series expansion is unique for a given set ofϕn(x). The functionsϕn(x)
are being taken here as thebasis vectors in an infinite-dimensional Hilbert space.

10.4.2 A functionf (x) is represented by a finite set of basis functionsϕi(x),

f (x)=
N∑
i=1

ciϕi(x).

Show that the componentsci are unique, that no different setc′i exists.
Note. Your basis functions are automatically linearly independent. They are not neces-
sarily orthogonal.

10.4.3 A function f (x) is approximated by a power series
∑n−1

i=0 cix
i over the interval[0,1].

Show that minimizing the mean square error leads to a set of linear equations

Ac= b,

where

Aij =
∫ 1

0
xi+j dx = 1

i + j + 1
, i, j = 0,1,2, . . . , n− 1

and

bi =
∫ 1

0
xif (x) dx, i = 0,1,2, . . . , n− 1.

Note. TheAij are the elements of the Hilbert matrix of ordern. The determinant of this
Hilbert matrix is a rapidly decreasing function ofn. Forn= 5,detA= 3.7×10−12 and
the set of equationsAc= b is becoming ill-conditioned and unstable.

10.4.4 In place of the expansion of a functionF(x) given by

F(x)=
∞∑
n=0

anϕn(x),

with

an =
∫ b

a

F (x)ϕn(x)w(x)dx,

take thefinite series approximation

F(x)≈
m∑

n=0

cnϕn(x).
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Show that the mean square error∫ b

a

[
F(x)−

m∑
n=0

cnϕn(x)

]2

w(x)dx

is minimized by takingcn = an.
Note. The values of the coefficients are independent of the number of terms in the finite
series. This independence is a consequence of orthogonality and would not hold for a
least-squares fit using powers ofx.

10.4.5 From Example 10.2.2,

f (x)=


h

2
, 0< x < π

−h

2
, −π < x < 0

= 2h

π

∞∑
n=0

sin(2n+ 1)x

2n+ 1
.

(a) Show that ∫ π

−π
[
f (x)

]2
dx = π

2
h2= 4h2

π

∞∑
n=0

(2n+ 1)−2.

For a finite upper limit this would be Bessel’s inequality. For the upper limit∞,
this is Parseval’s identity.

(b) Verify that

π

2
h2= 4h2

π

∞∑
n=0

(2n+ 1)−2

by evaluating the series.

Hint. The series can be expressed as the Riemann zeta function.

10.4.6 Differentiate Eq. (10.79),

〈ψ |ψ〉 = 〈f |f 〉 + λ〈f |g〉 + λ∗〈g|f 〉 + λλ∗〈g|g〉,
with respect toλ∗ and show that you get the Schwarz inequality, Eq. (10.78).

10.4.7 Derive the Schwarz inequality from the identity[∫ b

a

f (x)g(x) dx

]2

=
∫ b

a

[
f (x)

]2
dx

∫ b

a

[
g(x)

]2
dx

− 1

2

∫ b

a

∫ b

a

[
f (x)g(y)− f (y)g(x)

]2
dx dy.

10.4.8 If the functionsf (x) andg(x) of the Schwarz inequality, Eq. (10.78), may be expanded
in a series of eigenfunctionsϕi(x), show that Eq. (10.78) reduces to Eq. (10.76) (with
n possibly infinite).
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Note the description off (x) as a vector in a function space in whichϕi(x) corresponds
to the unit vectore1.

10.4.9 The operatorH is Hermitian and positive definite; that is, for allf :∫ b

a

f ∗Hf dx > 0.

Prove the generalized Schwarz inequality:∣∣∣∣ ∫ b

a

f ∗Hg dx

∣∣∣∣2≤ ∫ b

a

f ∗Hf dx

∫ b

a

g∗Hg dx.

10.4.10 A normalized wave functionψ(x)=∑∞
n=0anϕn(x). The expansion coefficientsan are

known as probability amplitudes. We may define a density matrixρ with elementsρij =
aia

∗
j . Show that (

ρ2)
ij
= ρij ,

or

ρ2= ρ.

This result, by definition, makesρ a projection operator.
Hint: Use ∫

ψ∗ψ dx = 1.

10.4.11 Show that

(a) the operator ∣∣ϕi(x)〉〈ϕi(t)∣∣
operating on

f (t)=
∑
j

cj
∣∣ϕj (t)〉

yields

ci
∣∣ϕi(x)〉.

(b)
∑
i

∣∣ϕi(x)〉〈ϕi(x)∣∣= 1.

This operator is aprojection operator projectingf (x) onto theith coordinate,
selectively picking out theith componentci |ϕi(x)〉 of f (x).

Hint. The operator operates via the well-defined inner product.
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10.5 GREEN’S FUNCTION — EIGENFUNCTION EXPANSION

A series somewhat similar to that representingδ(x− t) results when we expand the Green’s
function in the eigenfunctions of the corresponding homogeneous equation. In the inhomo-
geneous Helmholtz equation we have

∇2ψ(r)+ k2ψ(r)=−ρ(r). (10.82)

The homogeneous Helmholtz equation is satisfied by its orthonormal eigenfunctionsϕn,

∇2ϕn(r)+ k2
nϕn(r)= 0. (10.83)

As outlined in Section 9.7, the Green’s functionG(r1, r2) satisfies the point source equa-
tion

∇2G(r1, r2)+ k2G(r1, r2)=−δ(r1− r2) (10.84)

and the boundary conditions imposed on the solutions of the homogeneous equation. Be-
causeG is real, we expand the Green’s function in a series of real eigenfunctions of the
homogeneous equation (10.83); that is,

G(r1, r2)=
∞∑
n=0

an(r2)ϕn(r1), (10.85)

and by substituting into Eq. (10.84) we obtain

−
∞∑
n=0

an(r2)k
2
nϕn(r1)+ k2

∞∑
n=0

an(r2)ϕn(r1)=−
∞∑
n=0

ϕn(r1)ϕn(r2). (10.86)

Hereδ(r1− r2) has been replaced by its eigenfunction expansion, Eq. (1.190). When we
employ the orthogonality ofϕn(r1) to isolatean, this yields

∞∑
m=0

am(r2)
(
k2− k2

m

)∫
ϕn(r1)ϕm(r1) d

3r1=−
∞∑

m=0

ϕm(r2)

∫
ϕn(r1)ϕm(r1) d

3r1,

or

an(r2)
(
k2− k2

n

)=−ϕn(r2).

Then substituting this into Eq. (10.85), the Green’s function becomes

G(r1, r2)=
∞∑
n=0

ϕn(r1)ϕn(r2)

k2
n − k2

, (10.87)

a bilinear expansion, symmetric with respect tor1 andr2, as expected. Finally,ψ(r1), the
desired solution of the inhomogeneous equation, is given by

ψ(r1)=
∫

G(r1, r2)ρ(r2) dτ2. (10.88)
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If we generalize our inhomogeneous differential equation to

Lψ + λψ =−ρ, (10.89)

whereL is a Hermitian operator, we find that

G(r1, r2)=
∞∑
n=0

ϕn(r1)ϕn(r2)

λn − λ
, (10.90)

whereλn is thenth eigenvalue andϕn is the corresponding orthonormal eigenfunction of
the homogeneous differential equation

Lψ + λψ = 0. (10.91)

The eigenfunction expansion of the Green’s function in Eq. (10.90) makes the symmetry
propertyG(r1, r2)=G(r2, r1) explicit and is often useful when comparing with solutions
obtained by other means.

Green’s Functions — One-Dimensional

The development of the Green’s function for two- and three-dimensional systems was the
topic discussed in the preceding material and in Section 9.7. Here, for simplicity, we restrict
ourselves to one-dimensional cases and follow a somewhat different approach.

Defining Properties

In our one-dimensional analysis we consider first the inhomogeneous equation

Ly(x)+ f (x)= 0, (10.92)

in whichL is theself-adjoint differential operator

L= d

dx

(
p(x)

d

dx

)
+ q(x). (10.93)

As in Section 10.1,y(x) is required to satisfy certain boundary conditions at the endpoints
a andb of our interval[a, b].

We now proceed to define a rather strange and arbitrary functionG over the interval
[a, b]. At this stage the most that can be said in defense ofG is that the defining prop-
erties are legitimate, or mathematically acceptable. Later,G will appear as a reasonable
tool for obtaining solutions of the inhomogeneous ODE, Eq. (10.92); this role dictates its
properties.

1. The intervala ≤ x ≤ b is divided by a parametert . We labelG(x) =G1(x) for a ≤
x < t andG(x)=G2(x) for t < x ≤ b.

2. The functionsG1(x) andG2(x) each satisfy the homogeneous15 equation; that is,

LG1(x)= 0, a ≤ x < t,

LG2(x)= 0, t < x ≤ b.
(10.94)

15Homogeneous with respect to the unknown function. The functionf (x) in Eq. (10.92) is set equal to zero.
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3. At x = a,G1(x) satisfies the boundary conditions we impose ony(x), a solution of
the inhomogeneous ODE, Eq. (10.92). Atx = b,G2(x) satisfies the boundary condi-
tions imposed ony(x) at this endpoint of the interval. For convenience, the boundary
conditions are taken to be homogeneous; that is, atx = a,

y(a)= 0, or y′(a)= 0, or αy(a)+ βy′(a)= 0

and similarly atx = b.
4. We demand thatG(x) becontinuous,16

lim
x→t−

G1(x)= lim
x→t+

G2(x). (10.95)

5. We require thatG′(x) bediscontinuous, specifically that15

d

dx
G2(x)

∣∣
t
− d

dx
G1(x)

∣∣
t
=− 1

p(t)
, (10.96)

wherep(t) comes from the self-adjoint operator, Eq. (10.93). Note that with the first
derivative discontinuous, the second derivative does not exist.

These requirements, in effect, make G a function of two variables,G(x, t). Also, we
note thatG(x, t) depends on both the form of the differential operatorL and the boundary
conditions thaty(x) must satisfy. Note that we have described the properties of Green’s
functions for second-order differential equations. Note that for Green’s functions for first-
order differential equations, the discontinuities arise inG itself.

Now, assuming that we can find a functionG(x, t) that has these properties, we label it
a Green’s function and proceed to show that a solution of Eq. (10.92) is

y(x)=
∫ b

a

G(x, t)f (t) dt. (10.97)

To do this we first construct the Green’s functionG(x, t). Let u(x) be a solution of the
homogeneous equation that satisfies the boundary conditions atx = a, and letv(x) be a
solution that satisfies the boundary conditions atx = b. Then we may take17

G(x, t)=
{
c1u(x), a ≤ x < t,

c2v(x), t < x ≤ b.
(10.98)

Continuity atx = t (Eq. (10.95)) requires

c2v(t)− c1u(t)= 0. (10.99)

Finally, the discontinuity in the first derivative (Eq. (10.96)) becomes

c2v
′(t)− c1u

′(t)=− 1

p(t)
. (10.100)

16Strictly speaking, this is the limit asx→ t .
17The “constants”c1 andc2 are independent ofx, but they may (and do) depend on the other variable,t .
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There will be a unique solution for our unknown coefficientsc1 andc2 if the Wronskian
determinant ∣∣∣∣∣ u(t) v(t)

u′(t) v′(t)

∣∣∣∣∣= u(t)v′(t)− v(t)u′(t)

does not vanish. We have seen in Section 9.6 that the nonvanishing of this determinant is
a necessary condition for linear independence. Let us assumeu(x) andv(x) to be inde-
pendent. (Ifu(x) andv(x) are linearly dependent, the situation becomes more complicated
and is not considered here. See Courant and Hilbert in Additional Readings of Chapter 9.)
For independentu(x) andv(x) we have the Wronskian (again from Section 9.6 or Exer-
cise 10.1.4)

u(t)v′(t)− v(t)u′(t)= A

p(t)
, (10.101)

in whichA is a constant. Equation (10.101) is sometimes calledAbel’s formula. Numerous
examples have appeared in connection with Bessel and Legendre functions. Now, from
Eq. (10.100), we identify

c1=−v(t)

A
, c2=−u(t)

A
. (10.102)

Equation (10.99) is clearly satisfied. Substitution into Eq. (10.98) yields our Green’s func-
tion

G(x, t)=


− 1

A
u(x)v(t), a ≤ x < t,

− 1

A
u(t)v(x), t < x ≤ b.

(10.103)

Note thatG(x, t)=G(t, x). This is the symmetry property that was proved earlier in Sec-
tion 9.7. Its physical interpretation is given by the reciprocity principle (via our propagator
function) — a cause att yields the same effect atx as a cause atx produces att . In terms
of our electrostatic analogy this is obvious, the propagator function depending only on the
magnitude of the distance between the two points:

|r1− r2| = |r2− r1|.

Green’s Function Integral — Differential Equation

We have constructedG(x, t), but there still remains the task of showing that the integral
(Eq. (10.97)) with our new Green’s function is indeed a solution of the original differential
equation (10.92). This we do by direct substitution. WithG(x, t) given by Eq. (10.103),18

Eq. (10.97) becomes

y(x)=− 1

A

∫ x

a

v(x)u(t)f (t) dt − 1

A

∫ b

x

u(x)v(t)f (t) dt. (10.104)

18In the first integral,a ≤ t ≤ x. HenceG(x, t)=G2(x, t)=−(1/A)u(t)v(x). Similarly, the second integral requiresG=G1.
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Differentiating, we obtain

y′(x)=− 1

A

∫ x

a

v′(x)u(t)f (t) dt − 1

A

∫ b

x

u′(x)v(t)f (t) dt, (10.105)

the derivatives of the limits canceling. A second differentiation yields

y′′(x) = − 1

A

∫ x

a

v′′(x)u(t)f (t) dt − 1

A

∫ b

x

u′′(x)v(t)f (t) dt

− 1

A

[
u(x)v′(x)− v(x)u′(x)

]
f (x). (10.106)

By Eqs. (10.100) and (10.102) this may be rewritten as

y′′(x)=−v′′(x)
A

∫ x

a

u(t)f (t) dt − u′′(x)
A

∫ b

x

v(t)f (t) dt − f (x)

p(x)
. (10.107)

Now, by substituting into Eq. (10.93), we have

Ly(x)=−Lv(x)
A

∫ x

a

u(t)f (t) dt − Lu(x)
A

∫ b

x

v(t)f (t) dt − f (x). (10.108)

Sinceu(x) andv(x) were chosen to satisfy the homogeneous equation, theL-factors are
zero and the integral terms vanish, and we see that Eq. (10.92) is satisfied.

We must also check thaty(x) satisfies the required boundary conditions. At pointx = a,

y(a) = −u(a)

A

∫ b

a

v(t)f (t) dt = cu(a), (10.109)

y′(a) = −u′(a)
A

∫ b

a

v(t)f (t) dt = cu′(a), (10.110)

since the definite integral is a constant. We choseu(x) to satisfy

αu(a)+ βu′(a)= 0. (10.111)

Multiplying by the constantc, we verify thaty(x) also satisfies Eq. (10.111). This illus-
trates the utility of thehomogeneous boundary conditions: The normalization does not
matter. In quantum mechanical problems the boundary condition on the wave function is
often expressed in terms of the ratio

ψ ′(x)
ψ(x)

= d

dx
lnψ(x), compared to

d

dx
lnu(x)

∣∣
x=a =−

α

β
,

Eq. (10.111). The advantage is that the wave function need not be normalized yet.
Summarizing, we have Eq. (10.97),

y(x)=
∫ b

a

G(x, t)f (t) dt,

which satisfies the differential equation (Eq. (10.92)),

Ly(x)+ f (x)= 0,
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and the boundary conditions, these boundary conditions having been built into the Green’s
function,G(x, t).

Basically, what we have done is to use the solutions of the homogeneous equation
Eq. (10.94) to construct a solution of the inhomogeneous equation. Again, Poisson’s equa-
tion is an illustration. The solution (Eq. (9.148)) represents a weighted[ρ(r2)] combination
of solutions of the corresponding homogeneous Laplace’s equation. (We followed these
same steps early in this section.)

It should be noted that oury(x), Eq. (10.97), is actually theparticular solution of the
differential equation, Eq. (10.92). Our boundary conditions exclude the addition of so-
lutions of the homogeneous equation. In an actual physical problem we may well have
both types of solutions. In electrostatics, for instance (compare Section 9.7), the Green’s
function solution of Poisson’s equation gives the potential created by the given charge dis-
tribution. In addition, there may be external fields superimposed. These would be described
by solutions of the homogeneous equation, Laplace’s equation.

Eigenfunction, Eigenvalue Equation

The preceding analysis placed no special restrictions on ourf (x). Let us now assume that
f (x)= λρ(x)y(x).19 Then we have

y(x)= λ

∫ b

a

G(x, t)ρ(t)y(t) dt (10.112)

as a solution of

Ly(x)+ λρ(x)y(x)= 0 (10.113)

and its boundary conditions. Equation (10.112) is a homogeneous Fredholm integral equa-
tion of the second kind, and Eq. (10.113) is the homogeneous eigenvalue equation (with
the weighting functionw(x) replaced byρ(x)).

There is a change in the interpretation of our Green’s function. It started as a propagator
function, a weighting function giving the importance of the chargeρ(r2) in producing
the potentialϕ(r1). The chargeρ was the inhomogeneous term in the inhomogeneous
differential equation (10.92). Now the differential equation and the integral equation are
bothhomogeneous. G(x, t) has become a link relating the two equations, differential and
integral.

To complete the discussion of this differential equation–integral equation equivalence,
let us now show that Eq. (10.113) implies Eq. (10.112), that is, that a solution of our
differential equation (10.113) with its boundary conditions satisfies the integral equa-
tion (10.112). We multiply Eq. (10.113) byG(x, t), the appropriate Green’s function, and
integrate fromx = a to x = b to obtain∫ b

a

G(x, t)Ly(x) dx + λ

∫ b

a

G(x, t)ρ(x)y(x) dx = 0. (10.114)

19The functionρ(x) is some weighting function, not a charge density.
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The first integral is split in two(x < t, x > t), according to the construction of our Green’s
function, giving

−
∫ t

a

G1(x, t)Ly(x) dx −
∫ b

t

G2(x, t)Ly(x) dx = λ

∫ b

a

G(x, t)ρ(x)y(x) dx. (10.115)

Note thatt is the upper limit for theG1 integrals and the lower limit for theG2 integrals.
We are going to reduce the left-hand side of Eq. (10.115) toy(t). Then, withG(x, t) =
G(t, x), we have Eq. (10.112) (withx andt interchanged).

Applying Green’s theorem to the left-hand side or, equivalently, integrating by parts, we
obtain

−
∫ t

a

G1(t, x)

[
d

dx

(
p(x)

d

dx
y(x)

)
+ q(x)y(x)

]
dx

=−[G1(x, t)p(x)y
′(x)

]∣∣x=t
x=a +

∫ t

a

(
∂

∂x
G1(x, t)

)
p(x)y′(x) dx

−
∫ t

a

G1(x, t)q(x)y(x) dx, (10.116)

with an equivalent expression for the second integral. A second integration by parts yields

−
∫ t

a

G1(x, t)Ly(x) dx = −
∫ t

a

y(x)LG1(x, t) dx

− [G1(x, t)p(x)y
′(x)

]∣∣x=t
x=a

+ [G′1(x, t)p(x)y(x)]∣∣x=tx=a. (10.117)

The integral on the right vanishes becauseLG1 = 0. By combining the integrated terms
with those from integratingG2, we have

−p(t)
[
G1(t, t)y

′(t)− y(t)
∂

∂x
G1(x, t)

∣∣
x=t −G2(t, t)y

′(t)+ y(t)
∂

∂x
G2(x, t)

∣∣
x=t

]
+ p(a)

[
y′(a)G1(a, t)− y(a)

∂

∂x
G1(x, t)

∣∣
x=a

]
− p(b)

[
G2(b, t)y

′(b)− y(b)
∂

∂x
G2(x, t)

∣∣
x=b

]
. (10.118)

Each of the last two expressions vanishes, forG(x, t) andy(x) satisfy the same boundary
conditions. The first expression, with the help of Eqs. (10.95) and (10.96), reduces toy(t).
Substituting into Eq. (10.115), we have Eq. (10.112), thus completing the demonstration
of the equivalence of the integral equation and the differential equation plus boundary
conditions.

Example 10.5.1 LINEAR OSCILLATOR

As a simple example, consider the linear oscillator equation (for a vibrating string):

y′′(x)+ λy(x)= 0. (10.119)
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We impose the conditionsy(0)= y(1)= 0, which correspond to a string clamped at both
ends. Now, to construct our Green’s function, we need solutions of the homogeneous equa-
tionLy(x)= 0, which isy′′(x)= 0. To satisfy the boundary conditions, we must have one
solution vanish atx = 0, the other atx = 1. Such solutions (unnormalized) are

u(x)= x, v(x)= 1− x. (10.120)

We find that

uv′ − vu′ = −1 (10.121)

or, by Eq. (10.101) withp(x)= 1, A=−1. Our Green’s function becomes

G(x, t)=
{
x(1− t), 0≤ x < t,

t (1− x), t < x ≤ 1.
(10.122)

Hence by Eq. (10.112) our clamped vibrating string satisfies

y(x)= λ

∫ 1

0
G(x, t)y(t) dt. (10.123)

You may show that the known solutions of Eq. (10.119),

y = sinnπx, λ= n2π2,

do indeed satisfy Eq. (10.123). Note that our eigenvalueλ is not the wavelength. �

Green’s Function and the Dirac Delta Function

One more approach to the Green’s function may shed additional light on our formulation
and particularly on its relation to physical problems. Let us refer once more to Poisson’s
equation, this time for a point charge:

∇2ϕ(r)=−ρpoint

ε0
. (10.124)

The Green’s function solution of this equation was developed in Section 9.7. This time let
us take a one-dimensional analog

Ly(x)+ f (x)point= 0. (10.125)

Heref (x)point refers to a unit point “charge,” or a point force. We may represent it by a
number of forms, but perhaps the most convenient is

f (x)point=


1

2ε
, t − ε < x < t + ε,

0, elsewhere,
(10.126)

which is essentially the same as Eq. (1.172). Then, integrating Eq. (10.125), we have∫ t+ε

t−ε
Ly(x) dx =−

∫ t+ε

t−ε
f (x)pointdx =−1 (10.127)
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from the definition off (x). Let us examineLy(x) more closely. We have∫ t+ε

t−ε
d

dx

[
p(x)y′(x)

]
dx +

∫ t+ε

t−ε
q(x)y(x) dx

= ∣∣p(x)y′(x)∣∣t+ε
t−ε +

∫ t+ε

t−ε
q(x)y(x) dx =−1. (10.128)

In the limit ε→ 0 we may satisfy this relation bypermitting y′(x) to have a discontinu-
ity of −1/p(x) at x = t, y(x) itself remaining continuous.20 These, however, are just the
properties used to define our Green’s function,G(x, t). In addition, we note that in the
limit ε→ 0,

f (x)point= δ(x − t), (10.129)

in whichδ(x− t) is our Dirac delta function, defined in this manner in Section 1.15. Hence
Eq. (10.125) has become

LG(x, t)=−δ(x − t). (10.130)

This is a one-dimensional version of Eq. (9.159), which we exploit for the development of
Green’s functions in two and three dimensions — Section 9.7. It will be recalled that we
used this relation in Section 9.7 to determine our Green’s functions.

Equation (10.130) could have been expected since it is actually a consequence of our
differential equation, Eq. (10.92), and Green’s function integral solution, Eq. (10.97). If
we letLx (subscript to emphasize that it operates on thex-dependence) operate on both
sides of Eq. (10.97), then

Lxy(x)= Lx

∫ b

a

G(x, t)f (t) dt.

By Eq. (10.92) the left-hand side is just−f (x). On the rightLx , is independent of the
variable of integrationt , so we may write

−f (x)=
∫ b

a

{
LxG(x, t)

}
f (t) dt.

By definition of Dirac’s delta function, Eqs. (1.171b) and (1.183), we have Eq. (10.130).

Exercises

10.5.1 Show that

G(x, t)=
{
x, 0≤ x < t,

t, t < x ≤ 1,

is the Green’s function for the operatorL= d2/dx2 and the boundary conditions

y(0)= 0, y′(1)= 0.

20The functionsp(x) and q(x) appearing in the operatorL are continuous functions. Withy(x) remaining continuous,∫
q(x)y(x) dx is certainly continuous. Hence this integral over an interval 2ε (Eq. (10.128)) vanishes asε vanishes.
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10.5.2 Find the Green’s function for

(a) Ly(x)= d2y(x)

dx2
+ y(x),

{
y(0)= 0,

y′(1)= 0.

(b) Ly(x)= d2y(x)

dx2
− y(x), y(x) finite for−∞< x <∞.

10.5.3 Find the Green’s function for the operators

(a) Ly(x)= d

dx

(
x
dy(x)

dx

)
.

ANS.G(x, t)=
{− ln t, 0≤ x < t,

− lnx, t < x ≤ 1.

(b) Ly(x)= d

dx

(
x
dy(x)

dx

)
− n2

x
y(x), with y(0) finite andy(1)= 0.

ANS.G(x, t)=


1

2n

[(
x

t

)n

− (xt)n
]
, 0≤ x < t,

1

2n

[(
t

x

)n

− (xt)n
]
, t < x ≤ 1.

The combination of operator and interval specified in Exercise 10.5.3(a) is pathological,
in that one of the endpoints of the interval (zero) is a singular point of the operator. As
a consequence, the integrated part (the surface integral of Green’s theorem) does not
vanish. The next four exercises explore this situation.

10.5.4 (a) Show that the particular solution of

d

dx

[
x
d

dx
y(x)

]
=−1

is yP (x)=−x.
(b) Show that

yP (x)=−x 
=
∫ 1

0
G(x, t)(−1) dt,

whereG(x, t) is the Green’s function of Exercise 10.5.3(a).

10.5.5 Show that Green’s theorem, Eq. (1.104) in one dimension with a Sturm–Liouville-type
operator(d/dt)p(t)(d/dt) replacing∇ ·∇, may be rewritten as∫ b

a

[
u(t)

d

dt

(
p(t)

dv(t)

dt

)
− v(t)

d

dt

(
p(t)

du(t)

dt

)]
dt

=
[
u(t)p(t)

dv(t)

dt
− v(t)p(t)

du(t)

dt

]∣∣∣∣b
a

.
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10.5.6 Using the one-dimensional form of Green’s theorem of Exercise 10.5.5, let

v(t) = y(t) and
d

dt

(
p(t)

dy(t)

dt

)
=−f (t),

u(t) =G(x, t) and
d

dt

(
p(t)

∂G(x, t)

∂t

)
=−δ(x − t).

Show that Green’s theorem yields

y(x)=
∫ b

a

G(x, t)f (t) dt +
[
G(x, t)p(t)

dy(t)

dt
− y(t)p(t)

∂

∂t
G(x, t)

]∣∣∣∣t=b
t=a

.

10.5.7 Forp(t)= t, y(t)=−t ,

G(x, t)=
{− ln t, 0≤ x < t

− lnx, t < x ≤ 1,

verify that the integrated part does not vanish.

10.5.8 Construct the Green’s function for

x2d
2y

dx2
+ x

dy

dx
+ (k2x2− 1

)
y = 0,

subject to the boundary conditions

y(0)= 0, y(1)= 0.

10.5.9 Given that

L= (1− x2) d2

dx2
− 2x

d

dx

and

G(±1, t) remains finite,

show that no Green’s function can be constructed by the techniques of this section. (u(x)

andv(x) are linearly dependent.)

10.5.10 Construct the one-dimensional Green’s function for the Helmholtz equation(
d2

dx2
+ k2

)
ψ(x)= g(x).

The boundary conditions are those for a wave advancing in the positivex-direction —
assuming a time dependencee−iwt .

ANS.G(x1, x2)= i

2k
exp

(
ik|x1− x2|

)
.

10.5.11 Construct the one-dimensional Green’s function for the modified Helmholtz equation(
d2

dx2
− k2

)
ψ(x)= f (x).
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The boundary conditions are that the Green’s function must vanish forx →∞ and
x→−∞.

ANS.G(x1, x2)= 1

2k
exp

(−k|x1− x2|
)
.

10.5.12 From the eigenfunction expansion of the Green’s function show that

(a)
2

π2

∞∑
n=1

sin nπx sin nπt

n2
=
{
x(1− t), 0≤ x < t,

t (1− x), t < x ≤ 1.

(b)
2

π2

∞∑
n=0

sin(n+ 1
2)πx sin(n+ 1

2)πt

(n+ 1
2)

2
=
{
x, 0≤ x < t,

t, t < x ≤ 1.

Note. In Section 10.4 the Green’s function ofL+ λ is expanded in eigenfunctions. The
λ there is an adjustable parameter, not an eigenvalue.

10.5.13 In the Fredholm equation,

f (x)= λ2
∫ b

a

G(x, t)ϕ(t) dt,

G(x, t) is a Green’s function given by

G(x, t)=
∞∑
n=1

ϕn(x)ϕn(t)

λ2
n − λ2

.

Show that the solution is

ϕ(x)=
∞∑
n=1

λ2
n − λ2

λ2
ϕn(x)

∫ b

a

f (t)ϕn(t) dt.

10.5.14 Show that the Green’s function integral transform operator∫ b

a

G(x, t)[ ]dt

is equal to−L−1, in the sense that

(a) Lx

∫ b

a

G(x, t)y(t) dt =−y(x),

(b)
∫ b

a

G(x, t)Lt y(t) dt =−y(x).

Note. TakeLy(x)+ f (x)= 0, Eq. (10.92).

10.5.15 Substitute Eq. (10.87), the eigenfunction expansion of Green’s function, into Eq. (10.88)
and then show that Eq. (10.88) is indeed a solution of the inhomogeneous Helmholtz
equation (10.82).
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10.5.16 (a) Starting with a one-dimensional inhomogeneous differential equation (Eq. (10.89)),
assume thatψ(x) and ρ(x) may be represented by eigenfunction expansions.
Without any use of the Dirac delta function or its representations, show that

ψ(x)=
∞∑
n=0

∫ b

a
ρ(t)ϕn(t) dt

λn − λ
ϕn(x).

Note that (1) ifρ = 0, no solution exists unlessλ = λn and (2) if λ = λn, no
solution exists unlessρ is orthogonal toϕn. This same behavior will reappear with
integral equations in Section 16.4.

(b) Interchanging summation and integration, show that you have constructed the
Green’s function corresponding to Eq. (10.90).

10.5.17 The eigenfunctions of the Schrödinger equation are often complex. In this case the
orthogonality integral, Eq. (10.40), is replaced by∫ b

a

ϕ∗i (x)ϕj (x)w(x)dx = δij .

Instead of Eq. (1.189), we have

δ(r1− r2)=
∞∑
n=0

ϕn(r1)ϕ
∗
n(r2).

Show that the Green’s function, Eq. (10.87), becomes

G(r1, r2)=
∞∑
n=0

ϕn(r1)ϕ
∗
n(r2)

k2
n − k2

=G∗(r2, r1).
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Miller, K. S., Linear Differential Equations in the Real Domain. New York: Norton (1963).

Titchmarsh, E. C.,Eigenfunction Expansions Associated with Second-Order Differential Equations, 2nd ed.,
Vol. 1. London: Oxford University Press (1962), Vol. II (1958).



CHAPTER 11

BESSEL FUNCTIONS

11.1 BESSEL FUNCTIONS OF THE FIRST KIND, Jν(x)

Bessel functions appear in a wide variety of physical problems. In Section 9.3, separa-
tion of the Helmholtz, or wave, equation in circular cylindrical coordinates led to Bessel’s
equation. In Section 11.7 we will see that the Helmholtz equation in spherical polar co-
ordinates also leads to a form of Bessel’s equation. Bessel functions may also appear in
integral form — integral representations. This may result from integral transforms (Chap-
ter 15) or from the mathematical elegance of starting the study of Bessel functions with
Hankel functions, Section 11.4.

Bessel functions and closely related functions form a rich area of mathematical analysis
with many representations, many interesting and useful properties, and many interrela-
tions. Some of the major interrelations are developed in Section 11.1 and in succeeding
sections. Note that Bessel functions are not restricted to Chapter 11. The asymptotic forms
are developed in Section 7.3 as well as in Section 11.6. The confluent hypergeometric
representations appear in Section 13.5.

Generating Function for Integral Order

Although Bessel functions are of interest primarily as solutions of differential equations, it
is instructive and convenient to develop them from a completely different approach, that of
the generating function.1 This approach also has the advantage of focusing on the functions
themselves rather than on the differential equations they satisfy. Let us introduce a function
of two variables,

g(x, t)= e(x/2)(t−1/t). (11.1)

1Generating functions have already been used in Chapter 5. In Section 5.6 the generating function(1+ x)n was used to derive
the binomial coefficients. In Section 5.9 the generating functionx(ex − 1)−1 was used to derive the Bernoulli numbers.

675
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Expanding this function in a Laurent series (Section 6.5), we obtain

e(x/2)(t−1/t) =
∞∑

n=−∞
Jn(x)t

n. (11.2)

It is instructive to compare Eq. (11.2) with the equivalent Eqs. (11.23) and (11.25).
The coefficient oftn, Jn(x), is defined to be a Bessel function of the first kind, of integral

ordern. Expanding the exponentials, we have a product of Maclaurin series inxt/2 and
−x/2t , respectively,

ext/2 · e−x/2t =
∞∑
r=0

(
x

2

)r
t r

r!
∞∑
s=0

(−1)s
(
x

2

)s
t−s

s! . (11.3)

Here, the summation indexr is changed ton, with n= r− s and summation limitsn=−s
to ∞, and the order of the summations is interchanged, which is justified by absolute
convergence. The range of the summation overn becomes−∞ to∞, while the summation
overs extends from max(−n,0) to∞. For a givens we gettn(n≥ 0) from r = n+ s:(

x

2

)n+s
tn+s

(n+ s)! (−1)s
(
x

2

)s
t−s

s! . (11.4)

The coefficient oftn is then2

Jn(x)=
∞∑
s=0

(−1)s

s!(n+ s)!
(
x

2

)n+2s

= xn

2nn! −
xn+2

2n+2(n+ 1)! + · · · . (11.5)

This series form exhibits is behavior of the Bessel functionJn(x) for smallx and permits
numerical evaluation ofJn(x). The results forJ0, J1, andJ2 are shown in Fig. 11.1. From
Section 5.3 the error in using only a finite number of terms of this alternating series in
numerical evaluation is less than the first term omitted. For instance, if we wantJn(x)

FIGURE 11.1 Bessel functions,J0(x), J1(x), andJ2(x).

2From the steps leading to this series and from its convergence characteristics it should be clear that this series may be used with
x replaced byz and withz any point in the finite complex plane.
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to ±1% accuracy, the first term alone of Eq. (11.5) will suffice, provided the ratio of the
second term to the first is less than 1% (in magnitude) orx < 0.2(n+ 1)1/2. The Bessel
functions oscillate but arenot periodic — except in the limit asx→∞ (Section 11.6). The
amplitude ofJn(x) is not constant but decreases asymptotically asx−1/2. (See Eq.(11.137)
for this envelope.)

Forn < 0, Eq. (11.5) gives

J−n(x)=
∞∑
s=0

(−1)s

s!(s − n)!
(
x

2

)2s−n
. (11.6)

Sincen is an integer (here),(s − n)! →∞ for s = 0, . . . , (n− 1). Hence the series may be
considered to start withs = n. Replacings by s + n, we obtain

J−n(x)=
∞∑
s=0

(−1)s+n

s!(s + n)!
(
x

2

)n+2s

, (11.7)

showing immediately thatJn(x) andJ−n(x) are not independent but are related by

J−n(x)= (−1)nJn(x) (integraln). (11.8)

These series expressions (Eqs. (11.5) and (11.6)) may be used withn replaced byν to
define Jν(x) andJ−ν(x) for nonintegralν (compare Exercise 11.1.7).

Recurrence Relations

The recurrence relations forJn(x) and its derivatives may all be obtained by operating
on the series, Eq. (11.5), although this requires a bit of clairvoyance (or a lot of trial and
error). Verification of the known recurrence relations is straightforward, Exercise 11.1.7.
Here it is convenient to obtain them from the generating function,g(x, t). Differentiating
both sides of Eq. (11.1) with respect tot , we find that

∂

∂t
g(x, t) = 1

2
x

(
1+ 1

t2

)
e(x/2)(t−1/t)

=
∞∑

n=−∞
nJn(x)t

n−1, (11.9)

and substituting Eq. (11.2) for the exponential and equating the coefficients of like powers
of t ,3 we obtain

Jn−1(x)+ Jn+1(x)= 2n

x
Jn(x). (11.10)

This is a three-term recurrence relation. GivenJ0 andJ1, for example,J2 (and any other
integral orderJn) may be computed.

3This depends on the fact that the power-series representation is unique (Sections 5.7 and 6.5).
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Differentiating Eq. (11.1) with respect tox, we have

∂

∂x
g(x, t)= 1

2

(
t − 1

t

)
e(x/2)(t−1/t) =

∞∑
n=−∞

J ′n(x)tn. (11.11)

Again, substituting in Eq. (11.2) and equating the coefficients of like powers oft , we obtain
the result

Jn−1(x)− Jn+1(x)= 2J ′n(x). (11.12)

As a special case of this general recurrence relation,

J ′0(x)=−J1(x). (11.13)

Adding Eqs. (11.10) and (11.12) and dividing by 2, we have

Jn−1(x)= n

x
Jn(x)+ J ′n(x). (11.14)

Multiplying by xn and rearranging terms produces

d

dx

[
xnJn(x)

]= xnJn−1(x). (11.15)

Subtracting Eq. (11.12) from Eq. (11.10) and dividing by 2 yields

Jn+1(x)= n

x
Jn(x)− J ′n(x). (11.16)

Multiplying by x−n and rearranging terms, we obtain

d

dx

[
x−nJn(x)

]=−x−nJn+1(x). (11.17)

Bessel’s Differential Equation

Suppose we consider a set of functionsZν(x) that satisfies the basic recurrence relations
(Eqs. (11.10) and (11.12)), but withν not necessarily an integer andZν not necessarily
given by the series (Eq. (11.5)). Equation (11.14) may be rewritten(n→ ν) as

xZ′ν(x)= xZν−1(x)− νZν(x). (11.18)

On differentiating with respect tox, we have

xZ′′ν (x)+ (ν + 1)Z′ν − xZ′ν−1−Zν−1= 0. (11.19)

Multiplying by x and then subtracting Eq. (11.18) multiplied byν gives us

x2Z′′ν + xZ′ν − ν2Zν + (ν − 1)xZν−1− x2Z′ν−1= 0. (11.20)

Now we rewrite Eq. (11.16) and replacen by ν − 1:

xZ′ν−1= (ν − 1)Zν−1− xZν. (11.21)

Using Eq. (11.21) to eliminateZν−1 andZ′ν−1 from Eq. (11.20), we finally get

x2Z′′ν + xZ′ν +
(
x2− ν2

)
Zν = 0, (11.22)
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which is Bessel’s ODE. Hence any functionsZν(x) that satisfy the recurrence relations
(Eqs. (11.10) and (11.12), (11.14) and (11.16), or (11.15) and (11.17)) satisfy Bessel’s
equation; that is, the unknownZν are Bessel functions. In particular, we have shown that
the functionsJn(x), defined by our generating function, satisfy Bessel’s ODE. If the argu-
ment iskρ rather thanx, Eq. (11.22) becomes

ρ2 d2

dρ2
Zν(kρ)+ ρ

d

dρ
Zν(kρ)+

(
k2ρ2− ν2)Zν(kρ)= 0. (11.22a)

Integral Representation

A particularly useful and powerful way of treating Bessel functions employs integral rep-
resentations. If we return to the generating function (Eq. (11.2)), and substitutet = eiθ , we
get

eix sinθ = J0(x)+ 2
[
J2(x)cos 2θ + J4(x)cos4θ + · · · ]

+ 2i
[
J1(x)sinθ + J3(x)sin 3θ + · · · ], (11.23)

in which we have used the relations

J1(x)e
iθ + J−1(x)e

−iθ = J1(x)
(
eiθ − e−iθ

)
= 2iJ1(x)sinθ, (11.24)

J2(x)e
2iθ + J−2(x)e

−2iθ = 2J2(x)cos2θ,

and so on.
In summation notation,

cos(x sinθ) = J0(x)+ 2
∞∑
n=1

J2n(x)cos(2nθ),

(11.25)

sin(x sinθ) = 2
∞∑
n=1

J2n−1(x)sin
[
(2n− 1)θ

]
,

equating real and imaginary parts of Eq. (11.23).
By employing the orthogonality properties of cosine and sine,4∫ π

0
cosnθ cosmθ dθ = π

2
δnm, (11.26a)∫ π

0
sinnθ sinmθ dθ = π

2
δnm, (11.26b)

4They are eigenfunctions of a self-adjoint equation (linear oscillator equation) and satisfy appropriate boundary conditions
(compare Sections 10.2 and 14.1).
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in whichn andm arepositive integers (zero is excluded),5 we obtain

1

π

∫ π

0
cos(x sinθ)cosnθ dθ =

{
Jn(x), n even,
0, n odd,

(11.27)

1

π

∫ π

0
sin(x sinθ)sinnθ dθ =

{
0, n even,
Jn(x), n odd.

(11.28)

If these two equations are added together,

Jn(x) = 1

π

∫ π

0

[
cos(x sinθ)cosnθ + sin(x sinθ)sinnθ

]
dθ

= 1

π

∫ π

0
cos(nθ − x sinθ) dθ, n= 0,1,2,3, . . . . (11.29)

As a special case (integrate Eq. (11.25) over(0,π) to get)

J0(x)= 1

π

∫ π

0
cos(x sinθ) dθ. (11.30)

Noting that cos(x sinθ) repeats itself in all four quadrants, we may write Eq. (11.30)
as

J0(x)= 1

2π

∫ 2π

0
cos(x sinθ) dθ. (11.30a)

On the other hand, sin(x sinθ) reverses its sign in the third and fourth quadrants, so

1

2π

∫ 2π

0
sin(x sinθ) dθ = 0. (11.30b)

Adding Eq. (11.30a) andi times Eq. (11.30b), we obtain the complex exponential repre-
sentation

J0(x)= 1

2π

∫ 2π

0
eix sinθ dθ = 1

2π

∫ 2π

0
eix cosθ dθ. (11.30c)

This integral representation (Eq. (11.29)) may be obtained somewhat more directly by
employing contour integration (compare Exercise 11.1.16).6 Many other integral repre-
sentations exist (compare Exercise 11.1.18).

Example 11.1.1 FRAUNHOFER DIFFRACTION, CIRCULAR APERTURE

In the theory of diffraction through a circular aperture we encounter the integral

�∼
∫ a

0
r dr

∫ 2π

0
eibr cosθ dθ (11.31)

5Equations (11.26a) and (11.26b) hold for eitherm or n = 0. If both m andn = 0, the constant in (11.26a) becomesπ ; the
constant in Eq. (11.26b) becomes 0.
6Forn= 0 a simple integration overθ from 0 to 2π will convert Eq. (11.23) into Eq. (11.30c).
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FIGURE 11.2 Fraunhofer diffraction, circular aperture.

for �, the amplitude of the diffracted wave.7 Hereθ is an azimuth angle in the plane of the
circular aperture of radiusa, andα is the angle defined by a point on a screen below the
circular aperture relative to the normal through the center point. The parameterb is given
by

b= 2π

λ
sinα, (11.32)

with λ the wavelength of the incident wave. The other symbols are defined by Fig. 11.2.
From Eq. (11.30c) we get8

�∼ 2π
∫ a

0
J0(br)r dr. (11.33)

Equation (11.15) enables us to integrate Eq. (11.33) immediately to obtain

�∼ 2πab

b2
J1(ab)∼ λa

sinα
J1

(
2πa

λ
sinα

)
. (11.34)

Note here thatJ1(0)= 0. The intensity of the light in the diffraction pattern is proportional
to �2 and

�2∼
{
J1[(2πa/λ)sinα]

sinα

}2

. (11.35)

7The exponentibr cosθ gives the phase of the wave on the distant screen at angleα relative to the phase of the wave incident on
the aperture at the point(r, θ). The imaginary exponential form of this integrand means that the integral is technically a Fourier
transform, Chapter 15. In general, the Fraunhofer diffraction pattern is given by the Fourier transform of the aperture.
8We could also refer to Exercise 11.1.16(b).
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Table 11.1 Zeros of the Bessel Functions and Their First Derivatives

Number of zero J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

J ′0(x)a J ′1(x) J ′2(x) J ′3(x)

1 3.8317 1.8412 3.0542 4.2012
2 7.0156 5.3314 6.7061 8.0152
3 10.1735 8.5363 9.9695 11.3459

aJ ′0(x)=−J1(x).

From Table 11.1, which lists the zeros of the Bessel functions and their first derivatives,9

Eq. (11.35) will have a zero at

2πa

λ
sinα = 3.8317. . . , (11.36)

or

sinα = 3.8317λ

2πa
. (11.37)

For green light,λ= 5.5× 10−5 cm. Hence, ifa = 0.5 cm,

α ≈ sinα = 6.7× 10−5 (radian)≈ 14 seconds of arc, (11.38)

which shows that the bending or spreading of the light ray is extremely small. If this analy-
sis had been known in the seventeenth century, the arguments against the wave theory of
light would have collapsed. In mid-twentieth century this same diffraction pattern appears
in the scattering of nuclear particles by atomic nuclei — a striking demonstration of the
wave properties of the nuclear particles. �

A further example of the use of Bessel functions and their roots is provided by the
electromagnetic resonant cavity (Example 11.1.2) and the example and exercises of Sec-
tion 11.2.

Example 11.1.2 CYLINDRICAL RESONANT CAVITY

The propagation of electromagnetic waves in hollow metallic cylinders is important in
many practical devices. If the cylinder has end surfaces, it is called acavity. Resonant
cavities play a crucial role in many particle accelerators.

9Additional roots of the Bessel functions and their first derivatives may be found in C. L. Beattie, Table of first 700 zeros of
Bessel functions.Bell Syst. Tech. J. 37: 689 (1958), and Bell Monogr.3055. Roots may be accessed in Mathematica and other
symbolic software and are on the Web.
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FIGURE 11.3 Cylindrical resonant
cavity.

We take thez-axis along the center of the cavity with end surfaces atz= 0 andz= l and
use cylindrical coordinates suggested by the geometry. Its walls are perfect conductors, so
the tangential electric field vanishes on them (as in Fig. 11.3):

Ez = 0=Eϕ for ρ = a, Eρ = 0=Eϕ for z= 0, l.

Inside the cavity we have a vacuum, soε0µ0 = 1/c2. In the interior of a resonant cav-
ity, electromagnetic waves oscillate with harmonic time dependencee−iωt , which follows
from separating the time from the spatial variables in Maxwell’s equations (Section 1.9),
so

∇×∇×E=− 1

c2

∂2E
∂t2

= α2E, α = ω

c
.

With ∇ · E = 0 (vacuum, no charges) and Eq. (1.85), we obtain for the space part of the
electric field

∇2E+ α2E= 0,

which is called thevector Helmholtz PDE. Thez-component (Ez, space part only) satis-
fies the scalar Helmholtz equation,

∇2Ez + α2Ez = 0. (11.39)

The transverse electric field componentsE⊥ = (Eρ,Eϕ) obey the same PDE but different
boundary conditions, given earlier. OnceEz is known, Maxwell’s equations determineEϕ

fully. See Jackson,Electrodynamics in Additional Readings for details.
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We separate thez variable fromρ andϕ, because there are no mixed derivatives∂2Ez

∂z ∂ρ
,

etc. The product solution,Ez = v(ρ,ϕ)w(z), is substituted into the Helmholtz PDE forEz

using Eq. (2.35) for∇2 in cylindrical coordinates, and then we divide byvw, yielding

1

w(z)

d2w

dz2
+ 1

v

(
∂2v

∂ρ2
+ 1

ρ

∂v

∂ρ
+ 1

ρ2

∂2v

∂ϕ2
+ α2

)
v(ρ,ϕ)= 0.

This implies

− 1

w(z)

d2w

dz2
= 1

v(ρ,ϕ)

(
∂2v

∂ρ2
+ 1

ρ

∂v

∂ρ
+ 1

ρ2

∂2v

∂ϕ2
+ α2v

)
= k2.

Here,k2 is a separation constant, because the left- and right-hand sides depend on different
variables. Forw(z) we find the harmonic oscillator ODE with standing wave solution (not
transients) that we seek,

w(z)=Asinkz+B coskz,

with A,B constants. Forv(ρ,ϕ) we obtain

∂2v

∂ρ2
+ 1

ρ

∂v

∂ρ
+ 1

ρ2

∂2v

∂ϕ2
+ γ 2v = 0, γ 2= α2− k2.

In this PDE we can separate theρ andϕ variables, because there is no mixed term∂
2v

∂ρ ∂ϕ
.

The product formv = u(ρ)�(ϕ) yields

ρ2

u(ρ)

(
d2u

dρ2
+ 1

ρ

du

dρ
+ γ 2

)
=− 1

�(ϕ)

d2�

dϕ2
=m2,

where theseparation constant m2 must be an integer, because the angular solution�=
eimϕ of the ODE

d2�

dϕ2
+m2�= 0

must be periodic in the azimuthal angle.
This leaves us with the radial ODE

d2u

dρ2
+ 1

ρ

du

dρ
+
(
γ 2− m2

ρ2

)
u= 0.

Dimensional arguments suggest rescalingρ→ r = γρ and dividing byγ 2, which yields

d2u

dr2
+ 1

r

du

dr
+
(

1− m2

r2

)
u= 0.

This is Bessel’s ODE forν =m. We use the regular solutionJm(γρ) because the (irregular)
second independent solution is singular at the origin, which is unacceptable here. The
complete solution is

Ez = Jm(γρ)e
imϕ(Asinkz+B coskz), (11.40a)

where the constantγ is determined from theboundary condition Ez = 0 on the cavity sur-
faceρ = a, that is, thatγ a be a root of the Bessel functionJm (see Table 11.1). This gives
a discrete set of valuesγ = γmn, wheren designates thenth root ofJm (see Table 11.1).



11.1 Bessel Functions of the First Kind, Jν(x) 685

For the transverse magnetic or TM mode of oscillation withHz = 0 Maxwell’s equations
imply. (See againResonant Cavities in J. D. Jackson’sElectrodynamics in Additional
Readings.)

E⊥ ∼∇⊥ ∂Ez

∂z
, ∇⊥ =

(
∂

∂ρ
,

1

ρ

∂

∂ϕ

)
.

The form of this result suggestsEz ∼ coskz, that is, settingA= 0 so thatE⊥ ∼ sinkz= 0
at z= 0, l can be satisfied by

k = pπ

l
, p = 0,1,2, . . . . (11.41)

Thus, thetangential electric fieldsEρ andEϕ vanish atz= 0 andl. In other words,A= 0
corresponds todEz/dz= 0 atz= 0 andz= l for the TM mode. Altogether then, we have

γ 2= ω2

c2
− k2= ω2

c2
− p2π2

l2
, (11.42)

with

γ = γmn = αmn

a
, (11.43)

whereαmn is thenth zero ofJm. The general solution

Ez =
∑
m,n,p

Jm(γmnρ)e
±imϕBmnp cos

pπz

l
, (11.40b)

with constantsBmnp, now follows from the superposition principle.
The result of the two boundary conditions and the separation constantm2 is that the

angular frequency of our oscillation depends on three discrete parameters:

ωmnp = c

√
α2
mn

a2
+ p2π2

l2
,


m= 0,1,2, . . . ,

n= 1,2,3, . . . ,

p = 0,1,2 . . . .

(11.44)

These are the allowable resonant frequencies for our TM mode. The TE mode of oscillation
is the topic of Exercise 11.1.26. �

Alternate Approaches

Bessel functions are introduced here by means of a generating function, Eq. (11.2). Other
approaches are possible. Listing the various possibilities, we have:

1. Generating function (magic), Eq. (11.2).
2. Series solution of Bessel’s differential equation, Section 9.5.
3. Contour integrals: Some writers prefer to start with contour integral definitions of the

Hankel functions, Section 7.3 and 11.4, and develop the Bessel functionJν(x) from
the Hankel functions.
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4. Direct solution of physical problems: Example 11.1.1. Fraunhofer diffraction with a
circular aperture, illustrates this. Incidentally, Eq. (11.31) can be treated by series ex-
pansion, if desired. Feynman10 develops Bessel functions from a consideration of cav-
ity resonators.

In case the generating function seems too arbitrary, it can be derived from a contour inte-
gral, Exercise 11.1.16, or from the Bessel function recurrence relations, Exercise 11.1.6.
Note that the contour integral is not limited to integerν, thus providing a starting point for
developing Bessel functions.

Bessel Functions of Nonintegral Order

These different approaches are not exactly equivalent. The generating function approach
is very convenient for deriving two recurrence relations, Bessel’s differential equation,
integral representations, addition theorems (Exercise 11.1.2), and upper and lower bounds
(Exercise 11.1.1). However, you will probably have noticed that the generating function
defined only Bessel functions of integral order,J0, J1, J2, and so on. This is a limitation
of the generating function approach that can be avoided by using the contour integral in
Exercise 11.1.16 instead, thus leading to foregoing approach (3). But the Bessel function of
the first kind,Jν(x), may easily be defined for nonintegralν by using the series (Eq. (11.5))
as a new definition.

The recurrence relations may be verified by substituting in the series form ofJν(x) (Ex-
ercise 11.1.7). From these relations Bessel’s equation follows. In fact, ifν is not an integer,
there is actually an important simplification. It is found thatJν andJ−ν are independent,
for no relation of the form of Eq. (11.8) exists. On the other hand, forν = n, an integer, we
need another solution. The development of this second solution and an investigation of its
properties form the subject of Section 11.3.

Exercises

11.1.1 From the product of the generating functionsg(x, t) · g(x,−t) show that

1= [J0(x)
]2+ 2

[
J1(x)

]2+ 2
[
J2(x)

]2+ · · ·
and therefore that|J0(x)| ≤ 1 and|Jn(x)| ≤ 1/

√
2, n= 1,2,3, . . . .

Hint. Use uniqueness of power series, Section 5.7.

11.1.2 Using a generating functiong(x, t)= g(u+ v, t)= g(u, t) · g(v, t), show that

(a) Jn(u+ v)=
∞∑

s=−∞
Js(u) · Jn−s(v),

(b) J0(u+ v)= J0(u)J0(v)+ 2
∞∑
s=1

Js(u)J−s(v).

10R. P. Feynman, R. B. Leighton, and M. Sands,The Feynman Lectures on Physics, Vol. II. Reading, MA: Addison-Wesley
(1964), Chapter 23.
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These are addition theorems for the Bessel functions.

11.1.3 Using only the generating function

e(x/2)(t−1/t) =
∞∑

n=−∞
Jn(x)t

n

and not the explicit series form ofJn(x), show thatJn(x) has odd or even parity accord-
ing to whethern is odd or even, that is,11

Jn(x)= (−1)nJn(−x).
11.1.4 Derive the Jacobi–Anger expansion

eizcosθ =
∞∑

m=−∞
imJm(z)e

imθ .

This is an expansion of a plane wave in a series of cylindrical waves.

11.1.5 Show that

(a) cosx = J0(x)+ 2
∞∑
n=1

(−1)nJ2n(x),

(b) sinx = 2
∞∑
n=0

(−1)nJ2n+1(x).

11.1.6 To help remove the generating function from the realm of magic, show that it can be
derived from the recurrence relation, Eq. (11.10).
Hint.

(a) Assume a generating function of the form

g(x, t)=
∞∑

m=−∞
Jm(x)t

m.

(b) Multiply Eq. (11.10) bytn and sum overn.
(c) Rewrite the preceding result as(

t + 1

t

)
g(x, t)= 2t

x

∂g(x, t)

∂t
.

(d) Integrate and adjust the “constant” of integration (a function ofx) so that the
coefficient of the zeroth power,t0, is J0(x), as given by Eq. (11.5).

11.1.7 Show, by direct differentiation, that

Jν(x)=
∞∑
s=0

(−1)s

s!(s + ν)!
(
x

2

)ν+2s

11This is easily seen from the series form (Eq. (11.5)).
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satisfies the two recurrence relations

Jν−1(x)+ Jν+1(x) = 2ν

x
Jν(x),

Jν−1(x)− Jν+1(x) = 2J ′ν(x),

and Bessel’s differential equation

x2J ′′ν (x)+ xJ ′ν(x)+
(
x2− ν2)Jν(x)= 0.

11.1.8 Prove that

sinx

x
=
∫ π/2

0
J0(x cosθ)cosθ dθ,

1− cosx

x
=
∫ π/2

0
J1(x cosθ) dθ.

Hint. The definite integral∫ π/2

0
cos2s+1 θ dθ = 2 · 4 · 6 · · · (2s)

1 · 3 · 5 · · · (2s + 1)

may be useful.

11.1.9 Show that

J0(x)= 2

π

∫ 1

0

cosxt√
1− t2

dt.

This integral is a Fourier cosine transform (compare Section 15.3). The corresponding
Fourier sine transform,

J0(x)= 2

π

∫ ∞

1

sinxt√
t2− 1

dt,

is established in Section 11.4 (Exercise 11.4.6) using a Hankel function integral repre-
sentation.

11.1.10 Derive

Jn(x)= (−1)nxn
(

1

x

d

dx

)n

J0(x).

Hint. Try mathematical induction.

11.1.11 Show that between any two consecutive zeros ofJn(x) there is one and only one zero
of Jn+1(x).
Hint. Equations (11.15) and (11.17) may be useful.

11.1.12 An analysis of antenna radiation patterns for a system with a circular aperture involves
the equation

g(u)=
∫ 1

0
f (r)J0(ur)r dr.

If f (r)= 1− r2, show that

g(u)= 2

u2
J2(u).
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11.1.13 The differential cross section in a nuclear scattering experiment is given bydσ/d�=
|f (θ)|2 . An approximate treatment leads to

f (θ)= −ik
2π

∫ 2π

0

∫ R

0
exp[ikρ sinθ sinϕ]ρ dρ dϕ.

Hereθ is an angle through which the scattered particle is scattered.R is the nuclear
radius. Show that

dσ

d�
= (πR2) 1

π

[
J1(kR sinθ)

sinθ

]2

.

11.1.14 A set of functionsCn(x) satisfies the recurrence relations

Cn−1(x)−Cn+1(x) = 2n

x
Cn(x),

Cn−1(x)+Cn+1(x) = 2C′n(x).

(a) What linear second-order ODE does theCn(x) satisfy?
(b) By a change of variable transform your ODE into Bessel’s equation. This sug-

gests thatCn(x) may be expressed in terms of Bessel functions of transformed
argument.

11.1.15 A particle (massm) is contained in a right circular cylinder (pillbox) of radiusR and
heightH . The particle is described by a wave function satisfying the Schrödinger wave
equation

− h̄2

2m
∇2ψ(ρ,ϕ, z)=Eψ(ρ,ϕ, z)

and the condition that the wave function go to zero over the surface of the pillbox. Find
the lowest (zero point) permitted energy.

ANS.E = h̄2

2m

[(
zpq

R

)2

+
(
nπ

H

)2]
,

Emin= h̄2

2m

[(
2.405

R

)2

+
(
π

H

)2]
,

wherezpq is theqth zero ofJp and the indexp is fixed by the azimuthal dependence.

11.1.16 (a) Show by direct differentiation and substitution that

Jν(x)= 1

2πi

∫
C

e(x/2)(t−1/t)t−ν−1dt

or that the equivalent equation,

Jν(x)= 1

2πi

(
x

2

)ν ∫
es−x2/4ss−ν−1ds,

satisfies Bessel’s equation.C is the contour shown in Fig. 11.4. The negative real
axis is the cut line.
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FIGURE 11.4 Bessel function contour.

Hint. Show that the total integrand (after substituting in Bessel’s differential equa-
tion) may be written as a total derivative:

d

dt

{
exp

[
x

2

(
t − 1

t

)]
t−ν

[
ν + x

2

(
t + 1

t

)]}
.

(b) Show that the first integral (withn an integer) may be transformed into

Jn(x)= 1

2π

∫ 2π

0
ei(x sinθ−nθ) dθ = i−n

2π

∫ 2π

0
ei(x cosθ+nθ) dθ.

11.1.17 The contourC in Exercise 11.1.16 is deformed to the path−∞ to−1, unit circlee−iπ
to eiπ , and finally−1 to−∞. Show that

Jν(x)= 1

π

∫ π

0
cos(νθ − x sinθ) dθ − sinνπ

π

∫ ∞

0
e−νθ−x sinhθ dθ.

This is Bessel’s integral.
Hint. The negative values of the variable of integrationu may be handled by using

u= te±ix .

11.1.18 (a) Show that

Jν(x)= 2

π1/2(ν − 1
2)!
(
x

2

)ν ∫ π/2

0
cos(x sinθ)cos2ν θ dθ,

whereν >−1
2.

Hint. Here is a chance to use series expansion and term-by-term integration. The
formulas of Section 8.4 will prove useful.
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(b) Transform the integral in part (a) into

Jν(x) = 1

π1/2(ν − 1
2)!
(
x

2

)ν ∫ π

0
cos(x cosθ)sin2ν θ dθ

= 1

π1/2(ν − 1
2)!
(
x

2

)ν ∫ π

0
e±ix cosθ sin2ν θ dθ

= 1

π1/2(ν − 1
2)!
(
x

2

)ν ∫ 1

−1
e±ipx(1− p2)ν−1/2dp.

These are alternate integral representations ofJν(x).

11.1.19 (a) From

Jν(x)= 1

2πi

(
x

2

)ν ∫
t−ν−1et−x2/4t dt

derive the recurrence relation

J ′ν(x)=
ν

x
Jν(x)− Jν+1(x).

(b) From

Jν(x)= 1

2πi

∫
t−ν−1e(x/2)(t−1/t) dt

derive the recurrence relation

J ′ν(x)= 1
2

[
Jν−1(x)− Jν+1(x)

]
.

11.1.20 Show that the recurrence relation

J ′n(x)= 1
2

[
Jn−1(x)− Jn+1(x)

]
follows directly from differentiation of

Jn(x)= 1

π

∫ π

0
cos(nθ − x sinθ) dθ.

11.1.21 Evaluate ∫ ∞

0
e−axJ0(bx) dx, a, b > 0.

Actually the results hold fora ≥ 0,−∞< b <∞. This is a Laplace transform ofJ0.
Hint. Either an integral representation ofJ0 or a series expansion will be helpful.

11.1.22 Using trigonometric forms, verify that

J0(br)= 1

2π

∫ 2π

0
eibr sinθ dθ.

11.1.23 (a) Plot the intensity (�2 of Eq. (11.35)) as a function of(sinα/λ) along a diameter
of the circular diffraction pattern. Locate the first two minima.
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(b) What fraction of the total light intensity falls within the central maximum?
Hint. [J1(x)]2/x may be written as a derivative and the area integral of the intensity
integrated by inspection.

11.1.24 The fraction of light incident on a circular aperture (normal incidence) that is transmitted
is given by

T = 2
∫ 2ka

0
J2(x)

dx

x
− 1

2ka

∫ 2ka

0
J2(x) dx.

Herea is the radius of the aperture andk is the wave number, 2π/λ. Show that

(a) T = 1− 1

ka

∞∑
n=0

J2n+1(2ka), (b) T = 1− 1

2ka

∫ 2ka

0
J0(x) dx.

11.1.25 The amplitudeU(ρ,ϕ, t) of a vibrating circular membrane of radiusa satisfies the wave
equation

∇2U − 1

v2

∂2U

∂t2
= 0.

Herev is the phase velocity of the wave fixed by the elastic constants and whatever
damping is imposed.

(a) Show that a solution is

U(ρ,ϕ, t)= Jm(kρ)
(
a1e

imϕ + a2e
−imϕ

)(
b1e

iωt + b2e
−iωt).

(b) From the Dirichlet boundary condition,Jm(ka)= 0, find the allowable values of
the wavelengthλ(k = 2π/λ).

Note. There are other Bessel functions besidesJm, but they all diverge atρ = 0.
This is shown explicitly in Section 11.3. The divergent behavior is actually implicit
in Eq. (11.6).

11.1.26 Example 11.1.2 describes the TM modes of electromagnetic cavity oscillation. The
transverse electric (TE) modes differ, in that we work from thez component of the
magnetic inductionB:

∇2Bz + α2Bz = 0

with boundary conditions

Bz(0)= Bz(l)= 0 and
∂Bz

∂ρ

∣∣∣∣
ρ=0

= 0.

Show that the TE resonant frequencies are given by

ωmnp = c

√
β2
mn

a2
+ p2π2

l2
, p = 1,2,3, . . . .
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11.1.27 Plot the three lowest TM and the three lowest TE angular resonant frequencies,ωmnp,
as a function of the radius/length(a/ l) ratio for 0≤ a/l ≤ 1.5.
Hint. Try plottingω2 (in units ofc2/a2) versus(a/ l)2. Why this choice?

11.1.28 A thin conducting disk of radiusa carries a chargeq. Show that the potential is de-
scribed by

ϕ(r, z)= q

4πε0a

∫ ∞

0
e−k|z|J0(kr)

sinka

k
dk,

whereJ0 is the usual Bessel function andr andz are the familiar cylindrical coordi-
nates.
Note. This is a difficult problem. One approach is through Fourier transforms such as
Exercise 15.3.11. For a discussion of the physical problem see Jackson (Classical Elec-
trodynamics in Additional Readings).

11.1.29 Show that ∫ a

0
xmJn(x) dx, m≥ n≥ 0,

(a) is integrable in terms of Bessel functions and powers ofx (such asapJq(a)) for
m+ n odd;

(b) may be reduced to integrated terms plus
∫ a

0 J0(x)dx for m+ n even.

11.1.30 Show that ∫ α0n

0

(
1− y

α0n

)
J0(y)y dy = 1

α0n

∫ α0n

0
J0(y) dy.

Hereα0n is thenth root of J0(y). This relation is useful (see Exercise 11.2.11): The
expression on the right is easier and quicker to evaluate — and much more accurate.
Taking the difference of two terms in the expression on the left leads to a large relative
error.

11.1.31 The circular aperature diffraction amplitude� of Eq. (17.35) is proportional tof (z)=
J1(z)/z. The corresponding single slit diffraction amplitude is proportional tog(z) =
sinz/z.

(a) Calculate and plotf (z) andg(z) for z= 0.0(0.2)12.0.
(b) Locate the two lowest values ofz(z > 0) for whichf (z) takes on an extreme value.

Calculate the corresponding values off (z).
(c) Locate the two lowest values ofz(z > 0) for whichg(z) takes on an extreme value.

Calculate the corresponding values ofg(z).

11.1.32 Calculate the electrostatic potential of a charged diskϕ(r, z) from the integral
form of Exercise 11.1.28. Calculate the potential forr/a = 0.0(0.5)2.0 and z/a =
0.25(0.25)1.25. Why is z/a = 0 omitted? Exercise 12.3.17 is a spherical harmonic
version of this same problem.
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11.2 ORTHOGONALITY

If Bessel’s equation, Eq. (11.22a), is divided byρ, we see that it becomes self-adjoint, and
therefore, by the Sturm–Liouville theory, Section 10.2, the solutions are expected to be
orthogonal — if we can arrange to have appropriate boundary conditions satisfied. To take
care of the boundary conditions for a finite interval[0, a], we introduce parametersa and
ανm into the argument ofJν to getJν(ανmρ/a). Herea is the upper limit of the cylindrical
radial coordinateρ. From Eq. (11.22a),

ρ
d2

dρ2
Jν

(
ανm

ρ

a

)
+ d

dρ
Jν

(
ανm

ρ

a

)
+
(
α2
νmρ

a2
− ν2

ρ

)
Jν

(
ανm

ρ

a

)
= 0. (11.45)

Changing the parameterανm to ανn, we find thatJν(ανnρ/a) satisfies

ρ
d2

dρ2
Jν

(
ανn

ρ

a

)
+ d

dρ
Jν

(
ανn

ρ

a

)
+
(
α2
νnρ

a2
− ν2

ρ

)
Jν

(
ανn

ρ

a

)
= 0. (11.45a)

Proceeding as in Section 10.2, we multiply Eq. (11.45) byJν(ανnρ/a) and Eq. (11.45a)
by Jν(ανmρ/a) and subtract, obtaining

Jν

(
ανn

ρ

a

)
d

dρ

[
ρ

d

dρ
Jν

(
ανm

ρ

a

)]
− Jν

(
ανm

ρ

a

)
d

dρ

[
ρ

d

dρ
Jν

(
ανn

ρ

a

)]
= α2

νn − α2
νm

a2
ρJν

(
ανm

ρ

a

)
Jν

(
ανn

ρ

a

)
. (11.46)

Integrating fromρ = 0 toρ = a, we obtain∫ a

0
Jν

(
ανn

ρ

a

)
d

dρ

[
ρ

d

dρ
Jν

(
ανm

ρ

a

)]
dρ −

∫ a

0
Jν

(
ανm

ρ

a

)
d

dρ

[
ρ

d

dρ
Jν

(
ανn

ρ

a

)]
dρ

= α2
νn − α2

νm

a2

∫ a

0
Jν

(
ανm

ρ

a

)
Jν

(
ανn

ρ

a

)
ρ dρ. (11.47)

Upon integrating by parts, we see that the left-hand side of Eq. (11.47) becomes∣∣∣∣ρJν(ανn ρa
)

d

dρ
Jν

(
ανm

ρ

a

)∣∣∣∣a
0
−
∣∣∣∣ρJν(ανm ρ

a

)
d

dρ
Jν

(
ανn

ρ

a

)∣∣∣∣a
0
. (11.48)

For ν ≥ 0 the factorρ guarantees a zero at the lower limit,ρ = 0. Actually the lower
limit on the indexν may be extended down toν >−1, Exercise 11.2.4.12 At ρ = a, each
expression vanishes if we choose the parametersανn andανm to be zeros, or roots ofJν ;
that is,Jν(ανm)= 0. The subscripts now become meaningful:ανm is themth zero ofJν .

With this choice of parameters, the left-hand side vanishes (the Sturm–Liouville bound-
ary conditions are satisfied) and form 
= n,∫ a

0
Jν

(
ανm

ρ

a

)
Jν

(
ανn

ρ

a

)
ρ dρ = 0. (11.49)

This gives us orthogonality over the interval[0, a].
12The caseν =−1 reverts toν =+1, Eq. (11.8).
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Normalization

The normalization integral may be developed by returning to Eq. (11.48), settingανn =
ανm + ε, and taking the limitε→ 0 (compare Exercise 11.2.2). With the aid of the recur-
rence relation, Eq. (11.16), the result may be written as∫ a

0

[
Jν

(
ανm

ρ

a

)]2

ρ dρ = a2

2

[
Jν+1(ανm)

]2
. (11.50)

Bessel Series

If we assume that the set of Bessel functionsJν(ανmρ/a))(ν fixed, m = 1,2,3, . . .) is
complete, then any well-behaved but otherwise arbitrary functionf (ρ) may be expanded
in a Bessel series (Bessel–Fourier or Fourier–Bessel)

f (ρ)=
∞∑

m=1

cνmJν

(
ανm

ρ

a

)
, 0≤ ρ ≤ a, ν >−1. (11.51)

The coefficientscνm are determined by using Eq. (11.50),

cνm = 2

a2[Jν+1(ανm)]2
∫ a

0
f (ρ)Jν

(
ανm

ρ

a

)
ρ dρ. (11.52)

A similar series expansion involvingJν(βνmρ/a) with (d/dρ)Jν(βνmρ/a)|ρ=a = 0 is
included in Exercises 11.2.3 and 11.2.6(b).

Example 11.2.1 ELECTROSTATIC POTENTIAL IN A HOLLOW CYLINDER

From Table 9.3 of Section 9.3 (withα replaced byk), our solution of Laplace’s equation
in circular cylindrical coordinates is a linear combination of

ψkm(ρ,ϕ, z)= Jm(kρ)[am sinmϕ + bm cosmϕ][c1e
kz + c2e

−kz]. (11.53)

The particular linear combination is determined by the boundary conditions to be satisfied.
Our cylinder here has a radiusa and a heightl. The top end section has a potential distrib-
utionψ(ρ,ϕ). Elsewhere on the surface the potential is zero.13 The problem is to find the
electrostatic potential

ψ(ρ,ϕ, z)=
∑
k,m

ψkm(ρ,ϕ, z) (11.54)

everywhere in the interior.
For convenience, the circular cylindrical coordinates are placed as shown in Fig. 11.3.

Sinceψ(ρ,ϕ,0)= 0, we takec1=−c2= 1
2. Thez dependence becomes sinhkz, vanish-

ing at z = 0. The requirement thatψ = 0 on the cylindrical sides is met by requiring the
separation constantk to be

k = kmn = αmn

a
, (11.55)

13If ψ = 0 atz= 0, l, butψ 
= 0 for ρ = a, the modified Bessel functions, Section 11.5, are involved.
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where the first subscript,m, gives the index of the Bessel function, whereas the second
subscript identifies the particular zero ofJm.

The electrostatic potential becomes

ψ(ρ,ϕ, z) =
∞∑

m=0

∞∑
n=1

Jm

(
αmn

ρ

a

)

· [amn sinmϕ + bmn cosmϕ] · sinh

(
αmn

z

a

)
. (11.56)

Equation (11.56) is a double series: a Bessel series inρ and a Fourier series inϕ.
At z= l,ψ =ψ(ρ,ϕ), a known function ofρ andϕ. Therefore

ψ(ρ,ϕ) =
∞∑

m=0

∞∑
n=1

Jm

(
αmn

ρ

a

)

· [amn sinmϕ + bmn cosmϕ] · sinh

(
αmn

l

a

)
. (11.57)

The constantsamn andbmn are evaluated by using Eqs. (11.49) and (11.50) and the corre-
sponding equations for sinϕ and cosϕ (Example 10.2.1 and Eqs. (14.2), (14.3), (14.15) to
(14.17)). We find14

amn

bmn

}
= 2

[
πa2 sinh

(
αmn

l

a

)
J 2
m+1(αmn)

]−1

·
∫ 2π

0

∫ a

0
ψ(ρ,ϕ)Jm

(
αmn

ρ

a

){
sinmϕ

cosmϕ

}
ρ dρ dϕ. (11.58)

These are definite integrals, that is, numbers. Substituting back into Eq. (11.56), the series
is specified and the potentialψ(ρ,ϕ, z) is determined. �

Continuum Form

The Bessel series, Eq. (11.51), and Exercise 11.2.6 apply to expansions over the finite
interval [0, a]. If a→∞, then the series forms may be expected to go over into integrals.
The discrete rootsανm become a continuous variableα. A similar situation is encountered
in the Fourier series, Section 15.2. The development of the Bessel integral from the Bessel
series is left as Exercise 11.2.8.

For operations with a continuum of Bessel functions,Jν(αρ), a key relation is the Bessel
functionclosure equation,∫ ∞

0
Jν(αρ)Jν(α

′ρ)ρ dρ = 1

α
δ(α − α′), ν >−1

2
. (11.59)

This may be proved by the use of Hankel transforms, Section 15.1. An alternate approach,
starting from a relation similar to Eq. (10.82), is given by Morse and Feshbach, Section 6.3.
A second kind of orthogonality (varying the index) is developed for spherical Bessel func-
tions in Section 11.7.

14If m= 0, the factor 2 is omitted (compare Eq. (14.16)).
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Exercises

11.2.1 Show that(
a2− b2)∫ P

0
Jν(ax)Jν(bx)x dx = P

[
bJν(aP )J ′ν(bP )− aJ ′ν(aP )Jν(bP )

]
,

with

J ′ν(aP )= d

d(ax)
Jν(ax)

∣∣
x=P ,∫ P

0

[
Jν(ax)

]2
x dx = P 2

2

{[
J ′ν(aP )

]2+(1− ν2

a2P 2

)[
Jν(aP )

]2}
, ν >−1.

These two integrals are usually called thefirst and second Lommel integrals.
Hint. We have the development of the orthogonality of the Bessel functions as an anal-
ogy.

11.2.2 Show that ∫ a

0

[
Jν

(
ανm

ρ

a

)]2

ρ dρ = a2

2

[
Jν+1(ανm)

]2
, ν >−1.

Hereανm is themth zero ofJν .
Hint. With ανn = ανm+ ε, expandJν[(ανm+ ε)ρ/a] aboutανmρ/a by a Taylor expan-
sion.

11.2.3 (a) If βνm is themth zero of(d/dρ)Jν(βνmρ/a), show that the Bessel functions are
orthogonal over the interval[0, a] with an orthogonality integral∫ a

0
Jν

(
βνm

ρ

a

)
Jν

(
βνn

ρ

a

)
ρ dρ = 0, m 
= n, ν >−1.

(b) Derive the corresponding normalization integral(m= n).

ANS.
a2

2

(
1− ν2

β2
νm

)[
Jν(βνm)

]2
, ν >−1.

11.2.4 Verify that the orthogonality equation, Eq. (11.49), and the normalization equation,
Eq. (11.50), hold forν >−1.
Hint. Using power-series expansions, examine the behavior of Eq. (11.48) asρ→ 0.

11.2.5 From Eq. (11.49) develop a proof thatJν(z), ν > −1, has no complex roots (with
nonzero imaginary part).
Hint.

(a) Use the series form ofJν(z) to exclude pure imaginary roots.
(b) Assumeανm to be complex and takeανn to beα∗νm.

11.2.6 (a) In the series expansion

f (ρ)=
∞∑

m=1

cνmJν

(
ανm

ρ

a

)
, 0≤ ρ ≤ a, ν >−1,
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with Jν(ανm)= 0, show that the coefficients are given by

cνm = 2

a2[Jν+1(ανm)]2
∫ a

0
f (ρ)Jν

(
ανm

ρ

a

)
ρ dρ.

(b) In the series expansion

f (ρ)=
∞∑

m=1

dνmJν

(
βνm

ρ

a

)
, 0≤ ρ ≤ a, ν >−1,

with (d/dρ)Jν(βνmρ/a) |ρ=a= 0, show that the coefficients are given by

dνm = 2

a2(1− ν2/β2
νm)[Jν(βνm)]2

∫ a

0
f (ρ)Jν

(
βνm

ρ

a

)
ρ dρ.

11.2.7 A right circular cylinder has an electrostatic potential ofψ(ρ,ϕ) on both ends. The po-
tential on the curved cylindrical surface is zero. Find the potential at all interior points.
Hint. Choose your coordinate system and adjust yourz dependence to exploit the sym-
metry of your potential.

11.2.8 For the continuum case, show that Eqs. (11.51) and (11.52) are replaced by

f (ρ) =
∫ ∞

0
a(α)Jν(αρ)dα,

a(α) = α

∫ ∞

0
f (ρ)Jν(αρ)ρ dρ.

Hint. The corresponding case for sines and cosines is worked out in Section 15.2. These
are Hankel transforms. A derivation for the special caseν = 0 is the topic of Exer-
cise 15.1.1.

11.2.9 A functionf (x) is expressed as a Bessel series:

f (x)=
∞∑
n=1

anJm(αmnx),

with αmn thenth root ofJm. Prove the Parseval relation,∫ 1

0

[
f (x)

]2
x dx = 1

2

∞∑
n=1

a2
n

[
Jm+1(αmn)

]2
.

11.2.10 Prove that

∞∑
n=1

(αmn)
−2= 1

4(m+ 1)
.

Hint. Expandxm in a Bessel series and apply the Parseval relation.
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11.2.11 A right circular cylinder of lengthl has a potential

ψ

(
z=± l

2

)
= 100

(
1− ρ

a

)
,

where a is the radius. The potential over the curved surface (side) is zero. Using
the Bessel series from Exercise 11.2.7, calculate the electrostatic potential forρ/a =
0.0(0.2)1.0 andz/l = 0.0(0.1)0.5. Takea/l = 0.5.
Hint. From Exercise 11.1.30 you have∫ α0n

0

(
1− y

α0n

)
J0(y)y dy.

Show that this equals

1

α0n

∫ α0n

0
J0(y) dy.

Numerical evaluation of this latter form rather than the former is both faster and more
accurate.
Note. Forρ/a = 0.0 andz/l = 0.5 the convergence is slow, 20 terms giving only 98.4
rather than 100.

Check value. Forρ/a = 0.4 andz/l = 0.3,
ψ = 24.558.

11.3 NEUMANN FUNCTIONS, BESSEL FUNCTIONS
OF THE SECOND KIND

From the theory of ODEs it is known that Bessel’s equation has two independent solutions.
Indeed, for nonintegral orderν we have already found two solutions and labeled them
Jν(x) and J−ν(x), using the infinite series (Eq. (11.5)). The trouble is that whenν is
integral, Eq. (11.8) holds and we have but one independent solution. A second solution
may be developed by the methods of Section 9.6. This yields a perfectly good second
solution of Bessel’s equation but is not the standard form.

Definition and Series Form

As an alternate approach, we take the particular linear combination ofJν(x) andJ−ν(x)

Nν(x)= cosνπJν(x)− J−ν(x)
sinνπ

. (11.60)

This is the Neumann function (Fig. 11.5).15 For nonintegralν,Nν(x) clearly satisfies
Bessel’s equation, for it is a linear combination of known solutionsJν(x) and J−ν(x).

15In AMS-55 (see footnote 4 in Chapter 5 or Additional Readings of Chapter 8 p. for this ref.) and in most mathematics tables,
this is labeledYν(x).
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FIGURE 11.5 Neumann functionsN0(x), N1(x), andN2(x).

Substituting the power-series Eq. (11.6) forn→ ν (given in Exercise 11.1.7) yields

Nν(x)=− (ν − 1)!
π

(
2

x

)ν

+ · · · ,16 (11.61)

for ν > 0. However, for integralν, ν = n, Eq. (11.8) applies and Eq. (11.60)16 becomes in-
determinate. The definition ofNν(x) was chosen deliberately for this indeterminate prop-
erty. Again substituting the power series and evaluatingNν(x) for ν→ 0 by l’Hôpital’s
rule for indeterminate forms, we obtain the limiting value

N0(x)= 2

π
(lnx + γ − ln2)+O

(
x2) (11.62)

for n= 0 andx→ 0, using

ν!(−ν)! = πν

sinπν
(11.63)

from Eq. (8.32). The first and third terms in Eq. (11.62) come from using(d/dν)(x/2)ν =
(x/2)ν ln(x/2), while γ comes from(d/dν)ν! for ν→ 0 using Eqs. (8.38) and (8.40). For
n > 0 we obtain similarly

Nn(x)=− 1

π
(n− 1)!

(
2

x

)n

+ · · · + 2

π

(
x

2

)n 1

n! ln
(
x

2

)
+ · · · . (11.64)

Equations (11.62) and (11.64) exhibit the logarithmic dependence that was to be expected.
This, of course, verifies the independence ofJn andNn.

16Note that this limiting form applies to both integral and nonintegral values of the indexν.
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Other Forms

As with all the other Bessel functions,Nν(x) has integral representations. ForN0(x) we
have

N0(x)=− 2

π

∫ ∞

0
cos(x cosht) dt =− 2

π

∫ ∞

1

cos(xt)

(t2− 1)1/2
dt, x > 0.

These forms can be derived as the imaginary part of the Hankel representations of Exer-
cise 11.4.7. The latter form is a Fourier cosine transform.

To verify thatNν(x), our Neumann function (Fig. 11.5) or Bessel function of the second
kind, actually does satisfy Bessel’s equation for integraln, we may proceed as follows.
L’Hôpital’s rule applied to Eq. (11.60) yields

Nn(x) = (d/dν)[cosνπJν(x)− J−ν(x)]
(d/dν)sinνπ

∣∣∣∣
ν=n

= −π sinnπJn(x)+ [cosnπ∂Jν/∂ν − ∂J−ν/∂ν]|ν=n
π cosnπ

= 1

π

[
∂Jν(x)

∂ν
− (−1)n

∂J−ν(x)
∂ν

]∣∣∣∣
ν=n

. (11.65)

Differentiating Bessel’s equation forJ±ν(x) with respect toν, we have

x2 d2

dx2

(
∂J±ν
∂ν

)
+ x

d

dx

(
∂J±ν
∂ν

)
+ (x2− ν2)∂J±ν

∂ν
= 2νJ±ν. (11.66)

Multiplying the equation forJ−ν by (−1)ν , subtracting from the equation forJν (as sug-
gested by Eq. (11.65)), and taking the limitν→ n, we obtain

x2 d2

dx2
Nn + x

d

dx
Nn +

(
x2− n2)Nn = 2n

π

[
Jn − (−1)nJ−n

]
. (11.67)

For ν = n, an integer, the right-hand side vanishes by Eq. (11.8) andNn(x) is seen to be a
solution of Bessel’s equation. The most general solution for anyν can therefore be written
as

y(x)=AJν(x)+BNν(x). (11.68)

It is seen from Eqs. (11.62) and (11.64) thatNn diverges, at least logarithmically. Any
boundary condition that requires the solution to be finite at the origin (as in our vibrat-
ing circular membrane (Section 11.1)) automatically excludesNn(x). Conversely, in the
absence of such a requirement,Nn(x) must be considered.

To a certain extent the definition of the Neumann functionNn(x) is arbitrary. Equa-
tions (11.62) and (11.64) contain terms of the formanJn(x). Clearly, any finite value of
the constantan would still give us a second solution of Bessel’s equation. Why shouldan
have the particular value implicit in Eqs. (11.62) and (11.64)? The answer involves the as-
ymptotic dependence developed in Section 11.6. IfJn corresponds to a cosine wave, then
Nn corresponds to a sine wave. This simple and convenient asymptotic phase relationship
is a consequence of the particular admixture ofJn in Nn.
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Recurrence Relations

Substituting Eq. (11.60) forNν(x) (nonintegralν) into the recurrence relations (Eqs. (11.10)
and (11.12) forJn(x), we see immediately thatNν(x) satisfies these same recurrence rela-
tions. This actually constitutes another proof thatNν is a solution. Note that the converse
is not necessarily true. All solutions need not satisfy the same recurrence relations. An
example of this sort of trouble appears in Section 11.5.

Wronskian Formulas

From Section 9.6 and Exercise 10.1.4 we have the Wronskian formula17 for solutions of
the Bessel equation,

uν(x)v
′
ν(x)− u′ν(x)vν(x)=

Aν

x
, (11.69)

in which Aν is a parameter that depends on the particular Bessel functionsuν(x) and
vν(x) being considered.Aν is a constant in the sense that it is independent ofx. Consider
the special case

uν(x)= Jν(x), vν(x)= J−ν(x), (11.70)

JνJ
′−ν − J ′νJ−ν =

Aν

x
. (11.71)

SinceAν is a constant, it may be identified at any convenient point, such asx = 0. Using
the first terms in the series expansions (Eqs. (11.5) and (11.6)), we obtain

Jν → xν

2νν! , J−ν → 2νx−ν

(−ν)!

J ′ν →
νxν−1

2νν! , J ′−ν →−ν2νx−ν−1

(−ν)! . (11.72)

Substitution into Eq. (11.69) yields

Jν(x)J
′−ν(x)− J ′ν(x)J−ν(x)=

−2ν

xν!(−ν)! = −
2 sinνπ

πx
, (11.73)

using Eq. (8.32). Note thatAν vanishes for integralν, as it must, since the nonvanishing of
the Wronskian is a test of the independence of the two solutions. By Eq. (11.73),Jn and
J−n are clearly linearly dependent.

Using our recurrence relations, we may readily develop a large number of alternate
forms, among which are

JνJ−ν+1+ J−νJν−1= 2 sinνπ

πx
, (11.74)

17This result depends onP(x) of Section 9.5 being equal top′(x)/p(x), the corresponding coefficient of the self-adjoint form
of Section 10.1.
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JνJ−ν−1+ J−νJν+1=−2 sinνπ

πx
, (11.75)

JνN
′
ν − J ′νNν = 2

πx
, (11.76)

JνNν+1− Jν+1Nν =− 2

πx
. (11.77)

Many more will be found in the references given at chapter’s end.
You will recall that in Chapter 9 Wronskians were of great value in two respects: (1) in

establishing the linear independence or linear dependence of solutions of differential equa-
tions and (2) in developing an integral form of a second solution. Here the specific forms
of the Wronskians and Wronskian-derived combinations of Bessel functions are useful pri-
marily to illustrate the general behavior of the various Bessel functions. Wronskians are of
great use in checking tables of Bessel functions. In Section 10.5 Wronskians appeared in
connection with Green’s functions.

Example 11.3.1 COAXIAL WAVE GUIDES

We are interested in an electromagnetic wave confined between the concentric, conducting
cylindrical surfacesρ = a andρ = b. Most of the mathematics is worked out in Section 9.3
and Example 11.1.2. To go from the standing wave of these examples to the traveling wave
here, we letA= iB,A= amn,B = bmn in Eq. (11.40a) and obtain

Ez =
∑
m,n

bmnJm(γρ)e
±imϕei(kz−ωt). (11.78)

Additional properties of the components of the electromagnetic wave in the simple cylin-
drical wave guide are explored in Exercises 11.3.8 and 11.3.9. For the coaxial wave guide
one generalization is needed. The origin,ρ = 0, is now excluded(0< a ≤ ρ ≤ b). Hence
the Neumann functionNm(γρ) may not be excluded.Ez(ρ,ϕ, z, t) becomes

Ez =
∑
m,n

[
bmnJm(γρ)+ cmnNm(γρ)

]
e±imϕei(kz−ωt). (11.79)

With the condition

Hz = 0, (11.80)

we have the basic equations for a TM (transverse magnetic) wave.
The (tangential) electric field must vanish at the conducting surfaces (Dirichlet boundary

condition), or

bmnJm(γ a)+ cmnNm(γ a)= 0, (11.81)

bmnJm(γ b)+ cmnNm(γ b)= 0. (11.82)
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These transcendental equations may be solved forγ (γmn) and the ratiocmn/bmn. From
Example 11.1.2,

k2= ω2µ0ε0− γ 2= ω2

c2
− γ 2. (11.83)

Sincek2 must be positive for a real wave, the minimum frequency that will be propagated
(in this TM mode) is

ω= γ c, (11.84)

with γ fixed by the boundary conditions, Eqs. (11.81) and (11.82). This is the cutoff fre-
quency of the wave guide.

There is also a TE (transverse electric) mode, withEz = 0 andHz given by Eq. (11.79).
Then we have Neumann boundary conditions in place of Eqs. (11.81) and (11.82). Finally,
for the coaxial guide (not for the plain cylindrical guide,a = 0), a TEM (transverse elec-
tromagnetic) mode,Ez =Hz = 0, is possible. This corresponds to a plane wave, as in free
space.

The simpler cases (no Neumann functions, simpler boundary conditions) of a circular
wave guide are included as Exercises 11.3.8 and 11.3.9.

To conclude this discussion of Neumann functions, we introduce the Neumann function
Nν(x) for the following reasons:

1. It is a second, independent solution of Bessel’s equation, which completes the general
solution.

2. It is required for specific physical problems such as electromagnetic waves in coaxial
cables and quantum mechanical scattering theory.

3. It leads to a Green’s function for the Bessel equation (Sections 9.7 and 10.5).
4. It leads directly to the two Hankel functions (Section 11.4). �

Exercises

11.3.1 Prove that the Neumann functionsNn (with n an integer) satisfy the recurrence relations

Nn−1(x)+Nn+1(x) = 2n

x
Nn(x),

Nn−1(x)−Nn+1(x) = 2N ′n(x).

Hint. These relations may be proved by differentiating the recurrence relations forJν or
by using the limit form ofNν but not dividing everything by zero.

11.3.2 Show that

N−n(x)= (−1)nNn(x).

11.3.3 Show that

N ′0(x)=−N1(x).
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11.3.4 If Y andZ are any two solutions of Bessel’s equation, show that

Yν(x)Z
′
ν(x)− Y ′ν(x)Zν(x)= Aν

x
,

in whichAν may depend onν but is independent ofx. This is a special case of Exer-
cise 10.1.4.

11.3.5 Verify the Wronskian formulas

Jν(x)J−ν+1(x)+ J−ν(x)Jν−1(x) = 2 sinνπ

πx
,

Jν(x)N
′
ν(x)− J ′ν(x)Nν(x) = 2

πx
.

11.3.6 As an alternative to lettingx approach zero in the evaluation of the Wronskian constant,
we may invoke uniqueness of power series (Section 5.7). The coefficient ofx−1 in the
series expansion ofuν(x)v′ν(x)−u′ν(x)vν(x) is thenAν . Show by series expansion that
the coefficients ofx0 andx1 of Jν(x)J ′−ν(x)− J ′ν(x)J−ν(x) are each zero.

11.3.7 (a) By differentiating and substituting into Bessel’s ODE, show that∫ ∞

0
cos(x cosht) dt

is a solution.
Hint. You can rearrange the final integral as∫ ∞

0

d

dt

{
x sin(x cosht)sinht

}
dt.

(b) Show that

N0(x)=− 2

π

∫ ∞

0
cos(x cosht) dt

is linearly independent ofJ0(x).

11.3.8 A cylindrical wave guide has radiusr0. Find the nonvanishing components of the elec-
tric and magnetic fields for

(a) TM01, transverse magnetic wave(Hz =Hρ =Eϕ = 0),
(b) TE01, transverse electric wave(Ez =Eρ =Hϕ = 0).

The subscripts 01 indicate that the longitudinal component (Ez or Hz) involvesJ0 and
the boundary condition is satisfied by thefirst zero ofJ0 or J ′0.
Hint. All components of the wave have the same factor: expi(kz−ωt).

11.3.9 For a given mode of oscillation theminimum frequency that will be passed by a circular
cylindrical wave guide (radiusr0) is

νmin= c

λc
,
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in whichλc is fixed by the boundary condition

Jn

(
2πr0

λc

)
= 0 for TMnm mode,

J ′n
(

2πr0

λc

)
= 0 for TEnm mode.

The subscriptn denotes the order of the Bessel function andm indicates the zero
used. Find this cutoff wavelengthλc for the three TM and three TE modes with the
longest cutoff wavelengths. Explain your results in terms of the graph ofJ0, J1, andJ2
(Fig. 11.1).

11.3.10 Write a program that will compute successive roots of the Neumann functionNn(x),
that isαns , whereNn(αns) = 0. Tabulate the first five roots ofN0,N1, andN2. Check
your values for the roots against those listed in AMS-55 (see Additional Readings of
Chapter 8 for the full ref.).

Check value. α12= 5.42968.

11.3.11 For the casem= 0, a = 1, andb= 2, the coaxial wave guide boundary conditions lead
to

f (x)= J0(2x)

N0(2x)
− J0(x)

N0(x)

(Fig. 11.6).

(a) Calculatef (x) for x = 0.0(0.1)10.0 and plotf (x) versusx to find the approxi-
mate location of the roots.

FIGURE 11.6 f (x) of Exercise 11.3.11.
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(b) Call a root-finding subroutine to determine the first three roots to higher precision.

ANS. 3.1230, 6.2734, 9.4182.

Note. The higher roots can be expected to appear at intervals whose length approaches
n. Why? AMS-55 (see Additional Readings of Chapter 8 for the reference), gives an
approximate formula for the roots. The functiong(x)= J0(x)N0(2x)−J0(2x)N0(x) is
much better behaved thanf (x) previously discussed.

11.4 HANKEL FUNCTIONS

Many authors prefer to introduce the Hankel functions by means of integral representations
and then to use them to define the Neumann functionNν(z). An outline of this approach is
given at the end of this section.

Definitions

Because we have already obtained the Neumann function by more elementary (and less
powerful) techniques, we may use it to define the Hankel functionsH

(1)
ν (x) andH(2)

ν (x):

H(1)
ν (x)= Jν(x)+ iNν(x) (11.85)

and

H(2)
ν (x)= Jν(x)− iNν(x). (11.86)

This is exactly analogous to taking

e±iθ = cosθ ± i sinθ. (11.87)

For real arguments,H(1)
ν andH(2)

ν are complex conjugates. The extent of the analogy will
be seen even better when the asymptotic forms are considered (Section 11.6). Indeed, it is
their asymptotic behavior that makes the Hankel functions useful.

Series expansion ofH(1)
ν (x) andH(2)

ν (x) may be obtained by combining Eqs. (11.5) and
(11.63). Often only the first term is of interest; it is given by

H
(1)
0 (x)≈ i

2

π
lnx + 1+ i

2

π
(γ − ln2)+ · · · , (11.88)

H(1)
ν (x)≈−i (ν − 1)!

π

(
2

x

)ν

+ · · · , ν > 0, (11.89)

H
(2)
0 (x)≈−i 2

π
lnx + 1− i

2

π
(γ − ln2)+ · · · , (11.90)

H(2)
ν (x)≈ i

(ν − 1)!
π

(
2

x

)ν

+ · · · , ν > 0. (11.91)
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Since the Hankel functions are linear combinations (with constant coefficients) ofJν
andNν , they satisfy the same recurrence relations (Eqs. (11.10) and (11.12))

Hν−1(x)+Hν+1(x)= 2ν

x
Hν(x), (11.92)

Hν−1(x)−Hν+1(x)= 2H ′
ν(x), (11.93)

for bothH(1)
ν (x) andH(2)

ν (x).
A variety of Wronskian formulas can be developed:

H(2)
ν H

(1)
ν+1−H(1)

ν H
(2)
ν+1=

4

iπx
, (11.94)

Jν−1H
(1)
ν − JνH

(1)
ν−1=

2

iπx
, (11.95)

JνH
(2)
ν−1− Jν−1H

(2)
ν = 2

iπx
. (11.96)

Example 11.4.1 CYLINDRICAL TRAVELING WAVES

As an illustration of the use of Hankel functions, consider a two-dimensional wave problem
similar to the vibrating circular membrane of Exercise 11.1.25. Now imagine that the waves
are generated atr = 0 and move outward to infinity. We replace our standing waves by
traveling ones. The differential equation remains the same, but the boundary conditions
change. We now demand that for larger the wave behave like

U ∼ ei(kr−ωt) (11.97)

to describe an outgoing wave. As before,k is the wave number. This assumes, for sim-
plicity, that there is no azimuthal dependence, that is, no angular momentum, orm= 0. In
Sections 7.3 and 11.6,H(1)

0 (kr) is shown to have the asymptotic behavior (forr→∞)

H
(1)
0 (kr)∼ eikr . (11.98)

This boundary condition at infinity then determines our wave solution as

U(r, t)=H
(1)
0 (kr)e−iωt . (11.99)

This solution diverges asr→ 0, which is the behavior to be expected with a source at the
origin.

The choice of a two-dimensional wave problem to illustrate the Hankel functionH
(1)
0 (z)

is not accidental. Bessel functions may appear in a variety of ways, such as in the sepa-
ration of conical coordinates. However, they enter most commonly in the radial equations
from the separation of variables in the Helmholtz equation in cylindrical and in spheri-
cal polar coordinates. We have taken a degenerate form of cylindrical coordinates for this
illustration. Had we used spherical polar coordinates (spherical waves), we should have
encountered indexν = n+ 1

2, n an integer. These special values yield the spherical Bessel
functions to be discussed in Section 11.7. �
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Contour Integral Representation of
the Hankel Functions

The integral representation (Schlaefli integral)

Jν(x)= 1

2πi

∮
C

e(x/2)(t−1/t) dt

tν+1
(11.100)

may easily be established as a Cauchy integral forν = n, an integer (by recognizing that
the numerator is the generating function (Eq. (11.1)) and integrating around the origin).
If ν is not an integer, the integrand is not single-valued and a cut line is needed in our
complex plane. Choosing the negative real axis as the cut line and using the contour shown
in Fig. 11.7, we can extend Eq. (11.100) to nonintegralν. Substituting Eq. (11.100) into
Bessel’s ODE, we can represent the combined integrand by an exact differential that van-
ishes ast→∞e±iπ (compare Exercise 11.1.16).

We now deform the contour so that it approaches the origin along the positive real axis,
as shown in Fig. 11.8. Forx > 0, this particular approach guarantees that the exact differ-
ential mentioned will vanish ast→ 0 because of thee−x/2t → 0 factor. Hence each of the
separate portions (∞ e−iπ to 0) and (0 to∞ eiπ ) is a solution of Bessel’s equation. We
define

H(1)
ν (x)= 1

πi

∫ ∞eiπ

0
e(x/2)(t−1/t) dt

tν+1
, (11.101)

H(2)
ν (x)= 1

πi

∫ 0

∞e−iπ
e(x/2)(t−1/t) dt

tν+1
. (11.102)

These expressions are particularly convenient because they may be handled by the method
of steepest descents (Section 7.3).H

(1)
ν (x) has a saddle point att =+i, whereasH(2)

ν (x)

has a saddle point att =−i.

FIGURE 11.7 Bessel function contour.
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FIGURE 11.8 Hankel function contours.

The problem of relating Eqs. (11.101) and (11.102) to our earlier definition of the Hankel
function (Eqs. (11.85) and (11.86)) remains. Since Eqs. (11.100) to (11.102) combined
yield

Jν(x)= 1

2

[
H(1)

ν (x)+H(2)
ν (x)

]
(11.103)

by inspection, we need only show that

Nν(x)= 1

2i

[
H(1)

ν (x)−H(2)
ν (x)

]
. (11.104)

This may be accomplished by the following steps:

1. With the substitutionst = eiπ/s for H(1)
ν andt = e−iπ /s for H(2)

ν , we obtain

H(1)
ν (x)= e−iνπH (1)

−ν (x), (11.105)

H(2)
ν (x)= eiνπH

(2)
−ν (x). (11.106)

2. From Eqs. (11.103)(ν→−ν), (11.105), and (11.106),

J−ν(x)= 1

2

[
eiνπH(1)

ν (x)+ e−iνπH (2)
ν (x)

]
. (11.107)

3. Finally substituteJν (Eq. (11.103)) andJ−ν (Eq. (11.107)) into the defining equation
for Nν , Eq. (11.60). This leads to Eq. (11.104) and establishes the contour integrals
Eqs. (11.101) and (11.102) as the Hankel functions.

Integral representations have appeared before: Eq. (8.35) for�(z) and various representa-
tions ofJν(z) in Section 11.1. With these integral representations of the Hankel functions,
it is perhaps appropriate to ask why we are interested in integral representations. There
are at least four reasons. The first is simply aesthetic appeal. Second, the integral repre-
sentations help to distinguish between two linearly independent solutions. In Fig. 11.6, the
contoursC1 andC2 crossdifferent saddle points (Section 7.3). For the Legendre functions
the contour forPn(z) (Fig. 12.11) and that forQn(z) encircledifferent singular points.
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Third, the integral representations facilitate manipulations, analysis, and the develop-
ment of relations among the various special functions. Fourth, and probably most impor-
tant of all, the integral representations are extremely useful in developing asymptotic ex-
pansions. One approach, the method of steepest descents, appears in Section 7.3. A second
approach, the direct expansion of an integral representation is given in Section 11.6 for the
modified Bessel functionKν(z). This same technique may be used to obtain asymptotic
expansions of the confluent hypergeometric functionsM andU — Exercise 13.5.13.

In conclusion, the Hankel functions are introduced here for the following reasons:

• As analogs ofe±ix they are useful for describing traveling waves.

• They offer an alternate (contour integral) and a rather elegant definition of Bessel func-
tions.

• H
(1)
ν is used to define the modified Bessel functionKν of Section 11.5.

Exercises

11.4.1 Verify the Wronskian formulas

(a) Jν(x)H
(1)′
ν (x)− J ′ν(x)H

(1)
ν (x)= 2i

πx
,

(b) Jν(x)H
(2)′
ν (x)− J ′ν(x)H

(2)
ν (x)= −2i

πx
,

(c) Nν(x)H
(1)′
ν (x)−N ′ν(x)H

(1)
ν (x)= −2

πx
,

(d) Nν(x)H
(2)′
ν (x)−N ′ν(x)H

(2)
ν (x)= −2

πx
,

(e) H
(1)
ν (x)H

(2)′
ν (x)−H

(1)′
ν (x)H

(2)
ν (x)= −4i

πx
,

(f) H
(2)
ν (x)H

(1)
ν+1(x)−H

(1)
ν (x)H

(2)
ν+1(x)= 4

iπx
,

(g) Jν−1(x)H
(1)
ν (x)− Jν(x)H

(1)
ν−1(x)= 2

iπx
.

11.4.2 Show that the integral forms

(a)
1

iπ

∫ ∞eiπ

0C1

e(x/2)(t−1/t) dt

tν+1
=H(1)

ν (x),

(b)
1

iπ

∫ 0

∞e−iπC2

e(x/2)(t−1/t) dt

tν+1
=H(2)

ν (x)

satisfy Bessel’s ODE. The contoursC1 andC2 are shown in Fig. 11.8.

11.4.3 Using the integrals and contours given in problem 11.4.2, show that

1

2i

[
H(1)

ν (x)−H(2)
ν (x)

]=Nν(x).

11.4.4 Show that the integrals in Exercise 11.4.2 may be transformed to yield

(a) H
(1)
ν (x)= 1

πi

∫
C3

ex sinhγ−νγ dγ, (b) H(2)
ν (x)= 1

πi

∫
C4

ex sinhγ−νγ dγ
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FIGURE 11.9 Hankel function contours.

(see Fig. 11.9).

11.4.5 (a) TransformH(1)
0 (x), Eq. (11.101), into

H
(1)
0 (x)= 1

iπ

∫
C

eix coshs ds,

where the contourC runs from−∞− iπ/2 through the origin of thes-plane to
∞+ iπ/2.

(b) Justify rewritingH(1)
0 (x) as

H
(1)
0 (x)= 2

iπ

∫ ∞+iπ/2

0
eix coshs ds.

(c) Verify that this integral representation actually satisfies Bessel’s differential equa-
tion. (Theiπ/2 in the upper limit is not essential. It serves as a convergence factor.
We can replace it byiaπ/2 and take the limit.)

11.4.6 From

H
(1)
0 (x)= 2

iπ

∫ ∞

0
eix coshs ds

show that

(a) J0(x)= 2

π

∫ ∞

0
sin(x coshs) ds, (b) J0(x)= 2

π

∫ ∞

1

sin(xt)√
t2− 1

dt.

This last result is a Fourier sine transform.

11.4.7 From (see Exercises 11.4.4 and 11.4.5)

H
(1)
0 (x)= 2

iπ

∫ ∞

0
eix coshsds

show that

(a) N0(x)=− 2

π

∫ ∞

0
cos(x coshs) ds.
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(b) N0(x)=− 2

π

∫ ∞

1

cos(xt)√
t2− 1)

dt .

These are the integral representations in Section 11.3 (Other Forms).
This last result is a Fourier cosine transform.

11.5 MODIFIED BESSEL FUNCTIONS, Iν(x) AND Kν(x)

The Helmholtz equation,

∇2ψ + k2ψ = 0,

separated in circular cylindrical coordinates, leads to Eq. (11.22a), the Bessel equation.
Equation (11.22a) is satisfied by the Bessel and Neumann functionsJν(kρ) andNν(kρ)

and any linear combination, such as the Hankel functionsH
(1)
ν (kρ) andH(2)

ν (kρ). Now,
the Helmholtz equation describes the space part of wave phenomena. If instead we have a
diffusion problem, then the Helmholtz equation is replaced by

∇2ψ − k2ψ = 0. (11.108)

The analog to Eq. (11.22a) is

ρ2 d2

dρ2
Yν(kρ)+ ρ

d

dρ
Yν(kρ)−

(
k2ρ2+ ν2)Yν(kρ)= 0. (11.109)

The Helmholtz equation may be transformed into the diffusion equation by the trans-
formationk→ ik. Similarly, k→ ik changes Eq. (11.22a) into Eq. (11.109) and shows
that

Yν(kρ)= Zν(ikρ).

The solutions of Eq. (11.109) are Bessel functions of imaginary argument. To obtain a
solution that is regular at the origin, we takeZν as the regular Bessel functionJν . It is
customary (and convenient) to choose the normalization so that

Yν(x)= Iν(x)≡ i−νJν(ix). (11.110)

(Here the variablekρ is being replaced byx for simplicity.) The extrai−ν normalization
cancels theiν from each term and leavesIν(x) real. Often this is written as

Iν(x)= e−νπi/2Jν
(
xeiπ/2

)
. (11.111)

I0 andI1 are shown in Fig. 11.10.
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FIGURE 11.10 Modified Bessel
functions.

Series Form

In terms of infinite series this is equivalent to removing the(−1)s sign in Eq. (11.5) and
writing

Iν(x)=
∞∑
s=0

1

s!(s + ν)!
(
x

2

)2s+ν
, I−ν(x)=

∞∑
s=0

1

s!(s − ν)!
(
x

2

)2s−ν
. (11.112)

For integralν this yields

In(x)= I−n(x). (11.113)

Recurrence Relations

The recurrence relations satisfied byIν(x) may be developed from the series expansions,
but it is perhaps easier to work from the existing recurrence relations forJν(x). Let us
replacex by−ix and rewrite Eq. (11.110) as

Jν(x)= iνIν(−ix). (11.114)

Then Eq. (11.10) becomes

iν−1Iν−1(−ix)+ iν+1Iν+1(−ix)= 2ν

x
iνIν(−ix).

Replacingx by ix, we have a recurrence relation forIν(x),

Iν−1(x)− Iν+1(x)= 2ν

x
Iν(x). (11.115)
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Equation (11.12) transforms to

Iν−1(x)+ Iν+1(x)= 2I ′ν(x). (11.116)

These are the recurrence relations used in Exercise 11.1.14. It is worth emphasizing that al-
though two recurrence relations, Eqs. (11.115) and (11.116) or Exercise 11.5.7, specify the
second-order ODE, the converse is not true. The ODE does not uniquely fix the recurrence
relations. Equations (11.115) and (11.116) and Exercise 11.5.7 provide an example.

From Eq. (11.113) it is seen that we have but one independent solution whenν is an
integer, exactly as in the Bessel functionsJν . The choice of a second, independent solution
of Eq. (11.108) is essentially a matter of convenience. The second solution given here
is selected on the basis of its asymptotic behavior — as shown in the next section. The
confusion of choice and notation for this solution is perhaps greater than anywhere else
in this field.18 Many authors19 choose to define a second solution in terms of the Hankel
functionH(1)

ν (x) by

Kν(x)≡ π

2
iν+1H(1)

ν (ix)= π

2
iν+1[Jν(ix)+ iNν(ix)

]
. (11.117)

The factoriν+1 makesKν(x) real whenx is real. Using Eqs. (11.60) and (11.110), we may
transform Eq. (11.117) to20

Kν(x)= π

2

I−ν(x)− Iν(x)

sinνπ
, (11.118)

analogous to Eq. (11.60) forNν(x). The choice of Eq. (11.117) as a definition is somewhat
unfortunate in that the functionKν(x) does not satisfy the same recurrence relations as
Iν(x) (compare Exercises 11.5.7 and 11.5.8). To avoid this annoyance, other authors21

have included an additional factor of cosνπ . This permitsKν to satisfy the same recurrence
relations asIν , but it has the disadvantage of makingKν = 0 for ν = 1

2,
3
5,

5
2, . . . .

The series expansion ofKν(x) follows directly from the series form ofH(1)
ν (ix). The

lowest-order terms are (cf. Eqs. (11.61) and (11.62))

K0(x) = − lnx − γ + ln 2+ · · · ,
Kν(x) = 2ν−1(ν − 1)!x−ν + · · · . (11.119)

Because the modified Bessel functionIν is related to the Bessel functionJν , much as sinh
is related to sine,Iν and the second solutionKν are sometimes referred to as hyperbolic
Bessel functions.K0 andK1 are shown in Fig. 11.10.

I0(x) andK0(x) have the integral representations

I0(x)= 1

π

∫ π

0
cosh(x cosθ) dθ, (11.120)

K0(x)=
∫ ∞

0
cos(x sinht) dt =

∫ ∞

0

cos(xt) dt

(t2+ 1)1/2
, x > 0. (11.121)

18A discussion and comparison of notations will be found inMath. Tables Aids Comput. 1: 207–308 (1944).
19Watson, Morse and Feshbach, Jeffreys and Jeffreys (without theπ/2).
20For integral indexn we take the limit asν→ n.
21Whittaker and Watson, see Additional Readings of Chapter 13.
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Equation (11.120) may be derived from Eq. (11.30) forJ0(x) or may be taken as a special
case of Exercise 11.5.4,ν = 0. The integral representation ofK0, Eq. (11.121), is a Fourier
transform and may best be derived with Fourier transforms, Chapter 15, or with Green’s
functions Section 9.7. A variety of other forms of integral representations (includingν 
= 0)
appear in the exercises. These integral representations are useful in developing asymptotic
forms (Section 11.6) and in connection with Fourier transforms, Chapter 15.

To put the modified Bessel functionsIν(x) andKν(x) in proper perspective, we intro-
duce them here because:

• These functions are solutions of the frequently encountered modified Bessel equation.

• They are needed for specific physical problems, such as diffusion problems.

• Kν(x) provides a Green’s function, Section 9.7.

• Kν(x) leads to a convenient determination of asymptotic behavior (Section 11.6).

Exercises

11.5.1 Show that

e(x/2)(t+1/t) =
∞∑

n=−∞
In(x)t

n,

thus generating modified Bessel functions,In(x).

11.5.2 Verify the following identities

(a) 1= I0(x)+ 2
∞∑
n=1

(−1)nI2n(x),

(b) ex = I0(x)+ 2
∞∑
n=1

In(x),

(c) e−x = I0(x)+ 2
∞∑
n=1

(−1)nIn(x),

(d) coshx = I0(x)+ 2
∞∑
n=1

I2n(x),

(e) sinhx = 2
∞∑
n=1

I2n−1(x).

11.5.3 (a) From the generating function of Exercise 11.5.1 show that

In(x)= 1

2πi

∮
exp

[
(x/2)(t + 1/t)

] dt

tn+1
.
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(b) Forn= ν, not an integer, show that the preceding integral representation may be
generalized to

Iν(x)= 1

2πi

∫
C

exp
[
(x/2)(t + 1/t)

] dt

tν+1
.

The contourC is the same as that forJν(x), Fig. 11.7.

11.5.4 For ν >−1
2 show thatIν(z) may be represented by

Iν(z) = 1

π1/2(ν − 1
2)!
(
z

2

)ν ∫ π

0
e±zcosθ sin2ν θ dθ

= 1

π1/2(ν − 1
2)!
(
z

2

)ν ∫ 1

−1
e±zp

(
1− p2)ν−1/2

dp

= 2

π1/2(ν − 1
2)!
(
z

2

)ν ∫ π/2

0
cosh(zcosθ)sin2ν θ dθ.

11.5.5 A cylindrical cavity has a radiusa and heightl, Fig. 11.3. The ends,z= 0 andl, are at
zero potential. The cylindrical walls,ρ = a, have a potentialV = V (ϕ, z).

(a) Show that the electrostatic potential�(ρ,ϕ, z) has the functional form

�(ρ,ϕ, z)=
∞∑

m=0

∞∑
n=1

Im(knρ)sinknz · (amn sinmϕ + bmn cosmϕ),

wherekn = nπ/l.
(b) Show that the coefficientsamn andbmn are given by22

amn

bmn

}
= 2

πlIm(kna)

∫ 2π

0

∫ l

0
V (ϕ, z)sinknz ·

{
sinmϕ

cosmϕ

}
dzdϕ.

Hint. ExpandV (ϕ, z) as a double series and use the orthogonality of the trigonometric
functions.

11.5.6 Verify thatKν(x) is given by

Kν(x)= π

2

I−ν(x)− Iν(x)

sinνπ

and from this show that

Kν(x)=K−ν(x).

11.5.7 Show thatKν(x) satisfies the recurrence relations

Kν−1(x)−Kν+1(x) = −2ν

x
Kν(x),

Kν−1(x)+Kν+1(x) = −2K ′ν(x).

22Whenm= 0, the 2 in the coefficient is replaced by 1.
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11.5.8 If Kν = eνπiKν , show thatKν satisfies the same recurrence relations asIν .

11.5.9 For ν >−1
2 show thatKν(z) may be represented by

Kν(z) = π1/2

(ν − 1
2)!
(
z

2

)ν ∫ ∞

0
e−zcosht sinh2ν t dt, −π

2
< argz <

π

2

= π1/2

(ν − 1
2)!
(
z

2

)ν ∫ ∞

1
e−zp(p2− 1)ν−1/2dp.

11.5.10 Show thatIν(x) andKν(x) satisfy the Wronskian relation

Iν(x)K
′
ν(x)− I ′ν(x)Kν(x)=−1

x
.

This result is quoted in Section 9.7 in the development of a Green’s function.

11.5.11 If r = (x2+ y2)1/2, prove that

1

r
= 2

π

∫ ∞

0
cos(xt)K0(yt) dt.

This is a Fourier cosine transform ofK0.

11.5.12 (a) Verify that

I0(x)= 1

π

∫ π

0
cosh(x cosθ) dθ

satisfies the modified Bessel equation,ν = 0.
(b) Show that this integral contains no admixture ofK0(x), the irregular second solu-

tion.
(c) Verify the normalization factor 1/π .

11.5.13 Verify that the integral representations

In(z) = 1

π

∫ π

0
ezcost cos(nt) dt,

Kν(z) =
∫ ∞

0
e−zcosht cosh(νt) dt, �(z) > 0,

satisfy the modified Bessel equation by direct substitution into that equation. How can
you show that the first form does not contain an admixture ofKn and that the second
form does not contain an admixture ofIν? How can you check the normalization?

11.5.14 Derive the integral representation

In(x)= 1

π

∫ π

0
ex cosθ cos(nθ) dθ.

Hint. Start with the corresponding integral representation ofJn(x). Equation (11.120)
is a special case of this representation.
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11.5.15 Show that

K0(z)=
∫ ∞

0
e−zcosht dt

satisfies the modified Bessel equation. How can you establish that this form is linearly
independent ofI0(z)?

11.5.16 Show that

eax = I0(a)T0(x)+ 2
∞∑
n=1

In(a)Tn(x), −1≤ x ≤ 1.

Tn(x) is thenth-order Chebyshev polynomial, Section 13.3.
Hint. Assume a Chebyshev series expansion. Using the orthogonality and normalization
of theTn(x), solve for the coefficients of the Chebyshev series.

11.5.17 (a) Write a double precision subroutine to calculateIn(x) to 12-decimal-place accu-
racy forn= 0,1,2,3, . . . and 0≤ x ≤ 1. Check your results against the 10-place
values given in AMS-55, Table 9.11, see Additional Readings of Chapter 8 for the
reference.

(b) Referring to Exercise 11.5.16, calculate the coefficients in the Chebyshev expan-
sions of coshx and of sinhx.

11.5.18 The cylindrical cavity of Exercise 11.5.5 has a potential along the cylinder walls:

V (z)=
{

100z
l
, 0≤ z

l
≤ 1

2,

100
(
1− z

l

)
, 1

2 ≤ z
l
≤ 1.

With the radius–height ratioa/l = 0.5, calculate the potential forz/l = 0.1(0.1)0.5 and
ρ/a = 0.0(0.2)1.0.

Check value. For z/l = 0.3 andρ/a = 0.8,V = 26.396.

11.6 ASYMPTOTIC EXPANSIONS

Frequently in physical problems there is a need to know how a given Bessel or modified
Bessel function behaves for large values of the argument, that is, the asymptotic behavior.
This is one occasion when computers are not very helpful. One possible approach is to
develop a power-series solution of the differential equation, as in Section 9.5, but now using
negative powers. This is Stokes’ method, Exercise 11.6.5. The limitation is that starting
from some positive value of the argument (for convergence of the series), we do not know
what mixture of solutions or multiple of a given solution we have. The problem is to relate
the asymptotic series (useful for large values of the variable) to the power-series or related
definition (useful for small values of the variable). This relationship can be established by
introducing a suitableintegral representation and then using either the method of steepest
descent, Section 7.3, or the direct expansion as developed in this section.
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Expansion of an Integral Representation

As a direct approach, consider the integral representation (Exercise 11.5.9)

Kν(z)= π1/2

(ν − 1
2)!
(
z

2

)ν ∫ ∞

1
e−zx

(
x2− 1

)ν−1/2
dx, ν >−1

2
. (11.122)

For the present let us takez to be real, although Eq. (11.122) may be established for
−π/2< argz < π/2 (�(z) > 0). We have three tasks:

1. To show thatKν as given in Eq. (11.122) actually satisfies the modified Bessel equa-
tion (11.109).

2. To show that the regular solutionIν is absent.
3. To show that Eq. (11.122) has the proper normalization.

1. The fact that Eq. (11.122) is a solution of the modified Bessel equation may be verified
by direct substitution. We obtain

zν+1
∫ ∞

1

d

dx

[
e−zx

(
x2− 1

)ν+1/2]
dx = 0,

which transforms the combined integrand into the derivative of a function that vanishes at
both endpoints. Hence the integral is some linear combination ofIν andKν .

2. The rejection of the possibility that this solution containsIν constitutes Exer-
cise 11.6.1.

3. The normalization may be verified by showing that, in the limitz→ 0,Kν(z) is in
agreement with Eq. (11.119). By substitutingx = 1+ t/z,

π1/2

(ν − 1
2)!
(
z

2

)ν ∫ ∞

1
e−zx

(
x2− 1

)ν−1/2
dx

= π1/2

(ν − 1
2)!
(
z

2

)ν

e−z
∫ ∞

0
e−t

(
t2

z2
+ 2t

z

)ν−1/2
dt

z
(11.123a)

= π1/2

(ν − 1
2)!

e−z

2νzν

∫ ∞

0
e−t t2ν−1

(
1+ 2z

t

)ν−1/2

dt, (11.123b)

taking outt2/z2 as a factor. This substitution has changed the limits of integration to a more
convenient range and has isolated the negative exponential dependencee−z. The integral
in Eq. (11.123b) may be evaluated forz= 0 to yield(2ν−1)!. Then, using the duplication
formula (Section 8.4), we have

lim
z→0

Kν(z)= (ν − 1)!2ν−1

zν
, ν > 0, (11.124)

in agreement with Eq. (11.119), which thus checks the normalization.23

23For ν → 0 the integral diverges logarithmically, in agreement with the logarithmic divergence ofK0(z) for z→ 0 (Sec-
tion 11.5).
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Now, to develop an asymptotic series forKν(z), we may rewrite Eq. (11.123a) as

Kν(z)=
√

π

2z

e−z

(ν − 1
2)!

∫ ∞

0
e−t t ν−1/2

(
1+ t

2z

)ν−1/2

dt (11.125)

(taking out 2t/z as a factor).
We expand(1+ t/2z)ν−1/2 by the binomial theorem to obtain

Kν(z)=
√

π

2z

e−z

(ν − 1
2)!

∞∑
r=0

(ν − 1
2)!

r!(ν − r − 1
2)!

(2z)−r
∫ ∞

0
e−t t ν+r−1/2dt. (11.126)

Term-by-term integration (valid for asymptotic series) yields the desired asymptotic ex-
pansion ofKν(z):

Kν(z)∼
√

π

2z
e−z

[
1+ (4ν2− 12)

1!8z + (4ν2− 12)(4ν2− 32)

2!(8z)2 + · · ·
]
. (11.127)

Although the integral of Eq. (11.122), integrating along the real axis, was convergent only
for −π/2< argz < π/2, Eq. (11.127) may be extended to−3π/2< argz < 3π/2. Con-
sidered as an infinite series, Eq. (11.127) is actually divergent.24 However, this series is
asymptotic, in the sense that for large enoughz,Kν(z) may be approximated to any fixed
degree of accuracy with a small number of terms. (Compare Section 5.10 for a definition
and discussion of asymptotic series.)

It is convenient to rewrite Eq. (11.127) as

Kν(z)=
√

π

2z
e−z

[
Pν(iz)+ iQν(iz)

]
, (11.128)

where

Pν(z)∼ 1− (µ− 1)(µ− 9)

2!(8z)2 + (µ− 1)(µ− 9)(µ− 25)(µ− 49)

4!(8z)4 − · · · , (11.129a)

Qν(z)∼ µ− 1

1!(8z) −
(µ− 1)(µ− 9)(µ− 25)

3!(8z)3 + · · · , (11.129b)

and

µ= 4ν2.

It should be noted that althoughPν(z) of Eq. (11.129a) andQν(z) of Eq. (11.129b) have
alternating signs, the series forPν(iz) and Qν(iz) of Eq. (11.128) have all signs positive.
Finally, for z large,Pν dominates.

Then with the asymptotic form ofKν(z), Eq. (11.128), we can obtain expansions for all
other Bessel and hyperbolic Bessel functions by defining relations:

24Our binomial expansion is valid only fort < 2z and we have integratedt out to infinity. The exponential decrease of the
integrand prevents a disaster, but the resultant series is still only asymptotic, not convergent. By Table 9.3,z=∞ is an essential
singularity of the Bessel (and modified Bessel) equations. Fuchs’ theorem does not guarantee a convergent series and we do not
get a convergent series.
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1. From

π

2
iν+1H(1)

ν (iz)=Kν(z) (11.130)

we have

H(1)
ν (z) =

√
2

πz
exp

{
i

[
z−

(
ν + 1

2

)
π

2

]}
· [Pν(z)+ iQν(z)

]
, −π < argz < 2π. (11.131)

2. The second Hankel function is just the complex conjugate of the first (for real argu-
ment),

H(2)
ν (z) =

√
2

πz
exp

{
−i
[
z−

(
ν + 1

2

)
π

2

]}
· [Pν(z)− iQν(z)

]
, −2π < argz < π. (11.132)

An alternate derivation of the asymptotic behavior of the Hankel functions appears in
Section 7.3 as an application of the method of steepest descents.

3. SinceJν(z) is the real part ofH(1)
ν (z) for realz,

Jν(z) =
√

2

πz

{
Pν(z)cos

[
z−

(
ν + 1

2

)
π

2

]
−Qν(z)sin

[
z−

(
ν + 1

2

)
π

2

]}
, −π < argz < π, (11.133)

holds for realz, that is, argz = 0,π . Once Eq. (11.133) is established for realz, the
relation is valid for complexz in the given range of argument.

4. The Neumann function is the imaginary part ofH
(1)
ν (z) for realz, or

Nν(z) =
√

2

πz

{
Pν(z)sin

[
z−

(
ν + 1

2

)
π

2

]
+Qν(z)cos

[
z−

(
ν + 1

2

)
π

2

]}
, −π < argz < π. (11.134)

Initially, this relation is established for realz, but it may be extended to the complex
domain as shown.

5. Finally, the regular hyperbolic or modified Bessel functionIν(z) is given by

Iν(z)= i−νJν(iz) (11.135)

or

Iν(z)= ez√
2πz

[
Pν(iz)− iQν(iz)

]
, −π

2
< argz <

π

2
. (11.136)
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FIGURE 11.11 Asymptotic approximation ofJ0(x).

This completes our determination of the asymptotic expansions. However, it is perhaps
worth noting the primary characteristics. Apart from the ubiquitousz−1/2, Jν andNν be-
have as cosine and sine, respectively. The zeros arealmost evenly spaced at intervals of
π ; the spacing becomes exactlyπ in the limit asz→∞. The Hankel functions have been
defined to behave like the imaginary exponentials, and the modified Bessel functionsIν
andKν go into the positive and negative exponentials. This asymptotic behavior may be
sufficient to eliminate immediately one of these functions as a solution for a physical prob-
lem. We should also note that the asymptotic seriesPν(z) andQν(z), Eqs. (11.129a) and
(11.129b), terminate forν =±1/2,±3/2, . . . and become polynomials (in negative powers
of z). For these special values ofν the asymptotic approximations become exact solutions.

It is of some interest to consider the accuracy of the asymptotic forms, taking just the
first term, for example (Fig. 11.11),

Jn(x)≈
√

2

πx
cos

[
x −

(
n+ 1

2

)(
π

2

)]
. (11.137)

Clearly, the condition for the validity of Eq. (11.137) is that the sine term be negligible;
that is,

8x� 4n2− 1. (11.138)

Forn or ν > 1 the asymptotic region may be far out.
As pointed out in Section 11.3, the asymptotic forms may be used to evaluate the various

Wronskian formulas (compare Exercise 11.6.3).

Exercises

11.6.1 In checking the normalization of the integral representation ofKν(z) (Eq. (11.122)), we
assumed thatIν(z) was not present. How do we know that the integral representation
(Eq. (11.122)) does not yieldKν(z)+ εIν(z) with ε 
= 0?
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FIGURE 11.12 Modified Bessel function contours.

11.6.2 (a) Show that

y(z)= zν
∫

e−zt
(
t2− 1

)ν−1/2
dt

satisfies the modified Bessel equation, provided the contour is chosen so that

e−zt
(
t2− 1

)ν+1/2

has the same value at the initial and final points of the contour.
(b) Verify that the contours shown in Fig. 11.12 are suitable for this problem.

11.6.3 Use the asymptotic expansions to verify the following Wronskian formulas:

(a) Jν(x)J−ν−1(x)+ J−ν(x)Jν+1(x)=−2 sinνπ/πx,
(b) Jν(x)Nν+1(x)− Jν+1(x)Nν(x)=−2/πx,
(c) Jν(x)H

(2)
ν−1(x)− Jν−1(x)H

(2)
ν (x)= 2/iπx,

(d) Iν(x)K
′
ν(x)− I ′ν(x)Kν(x)=−1/x,

(e) Iν(x)Kν+1(x)+ Iν+1(x)Kν(x)= 1/x.

11.6.4 From the asymptotic form ofKν(z), Eq. (11.127), derive the asymptotic form of
H

(1)
ν (z), Eq. (11.131). Note particularly the phase,(ν + 1

2)π/2.

11.6.5 Stokes’ method.

(a) Replace the Bessel function in Bessel’s equation byx−1/2y(x) and show thaty(x)
satisfies

y′′(x)+
(

1− ν2− 1
4

x2

)
y(x)= 0.

(b) Develop a power-series solution with negative powers ofx starting with the as-
sumed form

y(x)= eix
∞∑
n=0

anx
−n.

Determine the recurrence relation givingan+1 in terms ofan. Check your result
against the asymptotic series, Eq. (11.131).

(c) From the results of Section 7.4 determine the initial coefficient,a0.
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11.6.6 Calculate the first 15 partial sums ofP0(x) andQ0(x), Eqs. (11.129a) and (11.129b).
Let x vary from 4 to 10 in unit steps. Determine the number of terms to be retained
for maximum accuracy and the accuracy achieved as a function ofx. Specifically, how
small mayx be without raising the error above 3× 10−6?

ANS. xmin= 6.

11.6.7 (a) Using the asymptotic series (partial sums)P0(x) andQ0(x) determined in Exer-
cise 11.6.6, write a function subprogram FCT(X) that will calculateJ0(x), x real,
for x ≥ xmin.

(b) Test your function by comparing it with theJ0(x) (tables or computer library
subroutine) forx = xmin(10)xmin+ 10.

Note. A more accurate and perhaps simpler asymptotic form forJ0(x) is given in AMS-
55, Eq. (9.4.3), see Additional Readings of Chapter 8 for the reference.

11.7 SPHERICAL BESSEL FUNCTIONS

When the Helmholtz equation is separated in spherical coordinates, the radial equation has
the form

r2d
2R

dr2
+ 2r

dR

dr
+ [k2r2− n(n+ 1)

]
R = 0. (11.139)

This is Eq. (9.65) of Section 9.3. The parameterk enters from the original Helmholtz
equation, whilen(n + 1) is a separation constant. From the behavior of the polar angle
function (Legendre’s equation, Sections 9.5 and 12.5), the separation constant must have
this form, with n a nonnegative integer. Equation (11.139) has the virtue of being self-
adjoint, but clearly it is not Bessel’s equation. However, if we substitute

R(kr)= Z(kr)

(kr)1/2
,

Equation (11.139) becomes

r2d
2Z

dr2
+ r

dZ

dr
+
[
k2r2−

(
n+ 1

2

)2]
Z = 0, (11.140)

which is Bessel’s equation.Z is a Bessel function of ordern+ 1
2 (n an integer). Because

of the importance of spherical coordinates, this combination, that is,

Zn+1/2(kr)

(kr)1/2
,

occurs quite often.
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Definitions

It is convenient to label these functions spherical Bessel functions with the following defin-
ing equations:

jn(x) =
√

π

2x
Jn+1/2(x),

nn(x) =
√

π

2x
Nn+1/2(x)= (−1)n+1

√
π

2x
J−n−1/2(x),

25

h
(1)
n (x) =

√
π

2x
H

(1)
n+1/2(x)= jn(x)+ inn(x),

h
(2)
n (x) =

√
π

2x
H

(2)
n+1/2(x)= jn(x)− inn(x).

(11.141)

These spherical Bessel functions (Figs. 11.13 and 11.14) can be expressed in series form
by using the series (Eq. (11.5)) forJn, replacingn with n+ 1

2:

Jn+1/2(x)=
∞∑
s=0

(−1)s

s!(s + n+ 1
2)!
(
x

2

)2s+n+1/2

. (11.142)

Using the Legendre duplication formula,

z!(z+ 1
2)! = 2−2z−1π1/2(2z+ 1)!, (11.143)

we have

jn(x) =
√

π

2x

∞∑
s=0

(−1)s22s+2n+1(s + n)!
π1/2(2s + 2n+ 1)!s!

(
x

2

)2s+n+1/2

= 2nxn
∞∑
s=0

(−1)s(s + n)!
s!(2s + 2n+ 1)!x

2s . (11.144)

Now,Nn+1/2(x)= (−1)n+1J−n−1/2(x) and from Eq. (11.5) we find that

J−n−1/2(x)=
∞∑
s=0

(−1)s

s!(s − n− 1
2)!
(
x

2

)2s−n−1/2

. (11.145)

This yields

nn(x)= (−1)n+1 2nπ1/2

xn+1

∞∑
s=0

(−1)s

s!(s − n− 1
2)!
(
x

2

)2s

. (11.146)

25This is possible because cos(n+ 1
2)π = 0, see Eq. (11.60).
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FIGURE 11.13 Spherical Bessel functions.

FIGURE 11.14 Spherical Neumann functions.
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The Legendre duplication formula can be used again to give

nn(x)= (−1)n+1

2nxn+1

∞∑
s=0

(−1)s(s − n)!
s!(2s − 2n)! x

2s . (11.147)

These series forms, Eqs. (11.144) and (11.147), are useful in three ways: (1) limiting values
asx→ 0, (2) closed-form representations forn = 0, and, as an extension of this, (3) an
indication that the spherical Bessel functions are closely related to sine and cosine.

For the special casen= 0 we find from Eq. (11.144) that

j0(x)=
∞∑
s=0

(−1)s

(2s + 1)!x
2s = sinx

x
, (11.148)

whereas forn0, Eq. (11.147) yields

n0(x)=−cosx

x
. (11.149)

From the definition of the spherical Hankel functions (Eq. (11.141)),

h
(1)
0 (x) = 1

x
(sinx − i cosx)=− i

x
eix,

h
(2)
0 (x) = 1

x
(sinx + i cosx)= i

x
e−ix . (11.150)

Equations (11.148) and (11.149) suggest expressing all spherical Bessel functions as
combinations of sine and cosine. The appropriate combinations can be developed from the
power-series solutions, Eqs. (11.144) and (11.147), but this approach is awkward. Actually
the trigonometric forms are already available as the asymptotic expansion of Section 11.6.
From Eqs. (11.131) and (11.129a),

h(1)n (x) =
√

π

2z
H

(1)
n+1/2(z)

= (−i)n+1e
iz

z

{
Pn+1/2(z)+ iQn+1/2(z)

}
. (11.151)

Now,Pn+1/2 andQn+1/2 arepolynomials. This means that Eq. (11.151) is mathematically
exact, not simply an asymptotic approximation. We obtain

h(1)n (z) = (−i)n+1e
iz

z

n∑
s=0

is

s!(8z)s
(2n+ 2s)!!
(2n− 2s)!!

= (−i)n+1e
iz

z

n∑
s=0

is

s!(2z)s
(n+ s)!
(n− s)! . (11.152)

Often a factor(−i)n = (e−iπ/2)n will be combined with theeiz to give ei(z−nπ/2). For
z real, jn(z) is the real part of this,nn(z) the imaginary part, andh(2)n (z) the complex
conjugate. Specifically,

h
(1)
1 (x)= eix

(
−1

x
− i

x2

)
, (11.153a)
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h
(1)
2 (x)= eix

(
i

x
− 3

x2
− 3i

x3

)
, (11.153b)

j1(x) = sinx

x2
− cosx

x
,

(11.154)

j2(x) =
(

3

x3
− 1

x

)
sinx − 3

x2
cosx,

n1(x) = −cosx

x2
− sinx

x
,

(11.155)

n2(x) = −
(

3

x3
− 1

x

)
cosx − 3

x2
sinx,

and so on.

Limiting Values

Forx� 1,26 Eqs. (11.144) and (11.147) yield

jn(x)≈ 2nn!
(2n+ 1)!x

n = xn

(2n+ 1)!! , (11.156)

nn(x) ≈ (−1)n+1

2n
· (−n)!
(−2n)!x

−n−1

= − (2n)!
2nn! x

−n−1=−(2n− 1)!!x−n−1. (11.157)

The transformation of factorials in the expressions fornn(x) employs Exercise 8.1.3. The
limiting values of the spherical Hankel functions go as±inn(x).

The asymptotic values ofjn, nn,h
(2)
n , andh(1)n may be obtained from the Bessel asymp-

totic forms, Section 11.6. We find

jn(x)∼ 1

x
sin

(
x − nπ

2

)
, (11.158)

nn(x)∼−1

x
cos

(
x − nπ

2

)
, (11.159)

h(1)n (x)∼ (−i)n+1e
ix

x
=−i e

i(x−nπ/2)

x
, (11.160a)

h(2)n (x)∼ in+1e
−ix

x
= i

e−i(x−nπ/2)

x
. (11.160b)

26The condition that the second term in the series be negligible compared to the first is actuallyx � 2[(2n + 2)(2n + 3)/
(n+ 1)]1/2 for jn(x).
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The condition for these spherical Bessel forms is thatx � n(n + 1)/2. From these as-
ymptotic values we see thatjn(x) andnn(x) are appropriate for a description ofstanding
spherical waves; h(1)n (x) andh(2)n (x) correspond totraveling spherical waves. If the time
dependence for the traveling waves is taken to bee−iωt , thenh(1)n (x) yields an outgoing
traveling spherical wave,h(2)n (x) an incoming wave. Radiation theory in electromagnetism
and scattering theory in quantum mechanics provide many applications.

Recurrence Relations

The recurrence relations to which we now turn provide a convenient way of developing the
higher-order spherical Bessel functions. These recurrence relations may be derived from
the series, but, as with the modified Bessel functions, it is easier to substitute into the known
recurrence relations (Eqs. (11.10) and (11.12)). This gives

fn−1(x)+ fn+1(x)= 2n+ 1

x
fn(x), (11.161)

nfn−1(x)− (n+ 1)fn+1(x)= (2n+ 1)f ′n(x). (11.162)

Rearranging these relations (or substituting into Eqs. (11.15) and (11.17)), we obtain

d

dx

[
xn+1fn(x)

]= xn+1fn−1(x), (11.163)

d

dx

[
x−nfn(x)

]=−x−nfn+1(x). (11.164)

Herefn may representjn, nn,h
(1)
n , or h(2)n .

The specific forms, Eqs. (11.154) and (11.155), may also be readily obtained from
Eq. (11.164).

By mathematical induction we may establish the Rayleigh formulas

jn(x)= (−1)nxn
(

1

x

d

dx

)n(sinx

x

)
, (11.165)

nn(x)=−(−1)nxn
(

1

x

d

dx

)n(cosx

x

)
, (11.166)

h(1)n (x) = −i(−1)nxn
(

1

x

d

dx

)n(
eix

x

)
,

(11.167)

h(2)n (x) = i(−1)nxn
(

1

x

d

dx

)n(
e−ix

x

)
.
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Orthogonality

We may take the orthogonality integral for the ordinary Bessel functions (Eqs. (11.49) and
(11.50)), ∫ a

0
Jν

(
ανp

ρ

a

)
Jν

(
ανq

ρ

a

)
ρ dρ = a2

2

[
Jν+1(ανp)

]2
δpq, (11.168)

and substitute in the expression forjn to obtain∫ a

0
jn

(
αnp

ρ

a

)
jn

(
αnq

ρ

a

)
ρ2dρ = a3

2

[
jn+1(αnp)

]2
δpq. (11.169)

Hereαnp andαnq are roots ofjn.
This represents orthogonality with respect to the roots of the Bessel functions. An illus-

tration of this sort of orthogonality is provided in Example 11.7.1, the problem of a particle
in a sphere. Equation (11.169) guarantees orthogonality of the wave functionsjn(r) for
fixedn. (If n varies, the accompanying spherical harmonic will provide orthogonality.)

Example 11.7.1 PARTICLE IN A SPHERE

An illustration of the use of the spherical Bessel functions is provided by the problem of
a quantum mechanical particle in a sphere of radiusa. Quantum theory requires that the
wave functionψ , describing our particle, satisfy

− h̄2

2m
∇2ψ =Eψ, (11.170)

and the boundary conditions (1)ψ(r ≤ a) remains finite, (2)ψ(a)= 0. This corresponds
to a square-well potentialV = 0, r ≤ a, andV =∞, r > a. Hereh̄ is Planck’s constant
divided by 2π,m is the mass of our particle, andE is, its energy. Let us determine the
minimum value of the energy for which our wave equation has an acceptable solution.
Equation (11.170) is Helmholtz’s equation with a radial part (compare Section 9.3 for
separation of variables):

d2R

dr2
+ 2

r

dR

dr
+
[
k2− n(n+ 1)

r2

]
R = 0, (11.171)

with k2= 2mE/h̄2. Hence by Eq. (11.139), withn= 0,

R =Aj0(kr)+Bn0(kr).

We choose the orbital angular momentum indexn= 0, for any angular dependence would
raise the energy. The spherical Neumann function is rejected because of its divergent be-
havior at the origin. To satisfy the second boundary condition (for all angles), we require

ka =
√

2mE

h̄
a = α, (11.172)
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whereα is a root ofj0, that is,j0(α) = 0. This has the effect of limiting the allowable
energies to a certain discrete set, or, in other words, application of boundary condition (2)
quantizes the energyE. The smallestα is the first zero ofj0,

α = π,

and

Emin= π2h̄2

2ma2
= h2

8ma2
, (11.173)

which means that for any finite sphere the particle energy will have a positive minimum
or zero-point energy. This is an illustration of the Heisenberg uncertainty principle for�p

with �r ≤ a.
In solid-state physics, astrophysics, and other areas of physics, we may wish to know

how many different solutions (energy states) correspond to energies less than or equal to
some fixed energyE0. For a cubic volume (Exercise 9.3.5) the problem is fairly simple.
The considerably more difficult spherical case is worked out by R. H. Lambert,Am. J.
Phys. 36: 417, 1169 (1968).

The relevant orthogonality relation for thejn(kr) can be derived from the integral given
in Exercise 11.7.23. �

Another form, orthogonality with respect to the indices, may be written as∫ ∞

−∞
jm(x)jn(x) dx = 0, m 
= n, m,n≥ 0. (11.174)

The proof is left as Exercise 11.7.10. Ifm= n (compare Exercise 11.7.11), we have∫ ∞

−∞
[
jn(x)

]2
dx = π

2n+ 1
. (11.175)

Most physical applications of orthogonal Bessel and spherical Bessel functions involve
orthogonality with varying roots and an interval[0, a] and Eqs. (11.168) and (11.169) and
Exercise 11.7.23 for continuous-energy eigenvalues.

The spherical Bessel functions will enter again in connection with spherical waves, but
further consideration is postponed until the corresponding angular functions, the Legendre
functions, have been introduced.

Exercises

11.7.1 Show that if

nn(x)=
√

π

2x
Nn+1/2(x),

it automatically equals

(−1)n+1
√

π

2x
J−n−1/2(x).
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11.7.2 Derive the trigonometric-polynomial forms ofjn(z) andnn(z).27

jn(z) = 1

z
sin

(
z− nπ

2

) [n/2]∑
s=0

(−1)s(n+ 2s)!
(2s)!(2z)2s (n− 2s)!

+ 1

z
cos

(
z− nπ

2

) [(n−1)/2]∑
s=0

(−1)s(n+ 2s + 1)!
(2s + 1)!(2z)2s(n− 2s − 1)! ,

nn(z) = (−1)n+1

z
cos

(
z+ nπ

2

) [n/2]∑
s=0

(−1)s(n+ 2s)!
(2s)!(2z)2s (n− 2s)!

+ (−1)n+1

z
sin

(
z+ nπ

2

) [(n−1)/2]∑
s=0

(−1)s(n+ 2s + 1)!
(2s + 1)!(2z)2s+1(n− 2s − 1)! .

11.7.3 Use the integral representation ofJν(x),

Jν(x)= 1

π1/2(ν − 1
2)!
(
x

2

)ν ∫ 1

−1
e±ixp

(
1− p2)ν−1/2

dp,

to show that the spherical Bessel functionsjn(x) are expressible in terms of trigono-
metric functions; that is, for example,

j0(x)= sinx

x
, j1(x)= sinx

x2
− cosx

x
.

11.7.4 (a) Derive the recurrence relations

fn−1(x)+ fn+1(x) = 2n+ 1

x
fn(x),

nfn−1(x)− (n+ 1)fn+1(x) = (2n+ 1)f ′n(x)

satisfied by the spherical Bessel functionsjn(x), nn(x),h
(1)
n (x), andh(2)n (x).

(b) Show, from these two recurrence relations, that the spherical Bessel functionfn(x)

satisfies the differential equation

x2f ′′n (x)+ 2xf ′n(x)+
[
x2− n(n+ 1)

]
fn(x)= 0.

11.7.5 Prove by mathematical induction that

jn(x)= (−1)nxn
(

1

x

d

dx

)n(sinx

x

)
for n an arbitrary nonnegative integer.

11.7.6 From the discussion of orthogonality of the spherical Bessel functions, show that a
Wronskian relation forjn(x) andnn(x) is

jn(x)n
′
n(x)− j ′n(x)nn(x)=

1

x2
.

27The upper limit on the summation[n/2] means the largestinteger that does not exceedn/2.
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11.7.7 Verify

h(1)n (x)h(2)
′

n (x)− h(1)
′

n (x)h(2)n (x)=− 2i

x2
.

11.7.8 Verify Poisson’s integral representation of the spherical Bessel function,

jn(z)= zn

2n+1n!
∫ π

0
cos(zcosθ)sin2n+1 θ dθ.

11.7.9 Show that ∫ ∞

0
Jµ(x)Jν(x)

dx

x
= 2

π

sin[(µ− ν)π/2]
µ2− ν2

, µ+ ν >−1.

11.7.10 Derive Eq. (11.174): ∫ ∞

−∞
jm(x)jn(x) dx = 0,

m 
= n

m,n≥ 0.

11.7.11 Derive Eq. (11.175): ∫ ∞

−∞
[
jn(x)

]2
dx = π

2n+ 1
.

11.7.12 Set up the orthogonality integral forjL(kr) in a sphere of radiusR with the boundary
condition

jL(kR)= 0.

The result is used in classifying electromagnetic radiation according to its angular mo-
mentum.

11.7.13 The Fresnel integrals (Fig. 11.15 and Exercise 5.10.2) occurring in diffraction theory
are given by

x(t)=
√
π

2
C

(√
π

2
t

)
=
∫ t

0
cos
(
v2)dv, y(t)=

√
π

2
S

(√
π

2
t

)
=
∫ t

0
sin
(
v2)dv.

Show that these integrals may be expanded in series of spherical Bessel functions

x(s) = 1

2

∫ s

0
j−1(u)u

1/2du= s1/2
∞∑
n=0

j2n(s),

y(s) = 1

2

∫ s

0
j0(u)u

1/2du= s1/2
∞∑
n=0

j2n+1(s).

Hint. To establish the equality of the integral and the sum, you may wish to work with
their derivatives. The spherical Bessel analogs of Eqs. (11.12) and (11.14) are helpful.

11.7.14 A hollow sphere of radiusa (Helmholtz resonator) contains standing sound waves. Find
the minimum frequency of oscillation in terms of the radiusa and the velocity of sound
v. The sound waves satisfy the wave equation

∇2ψ = 1

v2

∂2ψ

∂t2
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FIGURE 11.15 Fresnel integrals.

and the boundary condition

∂ψ

∂r
= 0, r = a.

This is a Neumann boundary condition. Example 11.7.1 has the same PDE but with a
Dirichlet boundary condition.

ANS. νmin= 0.3313v/a, λmax= 3.018a.

11.7.15 Defining the spherical modified Bessel functions (Fig. 11.16) by

in(x)=
√

π

2x
In+1/2(x), kn(x)=

√
2

πx
Kn+1/2(x),

show that

i0(x)= sinhx

x
, k0(x)= e−x

x
.

Note that the numerical factors in the definitions ofin andkn are not identical.

11.7.16 (a) Show that the parity ofin(x) is (−1)n.
(b) Show thatkn(x) has no definite parity.
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FIGURE 11.16 Spherical modified Bessel
functions.

11.7.17 Show that the spherical modified Bessel functions satisfy the following relations:

(a) in(x)= i−njn(ix),
kn(x)=−inh(1)n (ix),

(b) in+1(x)= xn
d

dx

(
x−nin

)
,

kn+1(x)=−xn d

dx

(
x−nkn

)
,

(c) in(x)= xn
(

1

x

d

dx

)n sinhx

x
,

kn(x)= (−1)nxn
(

1

x

d

dx

)n
e−x

x
.

11.7.18 Show that the recurrence relations forin(x) andkn(x) are

(a) in−1(x)− in+1(x)= 2n+ 1

x
in(x),

nin−1(x)+ (n+ 1)in+1(x)= (2n+ 1)i′n(x),
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(b) kn−1(x)− kn+1(x)=−2n+ 1

x
kn(x),

nkn−1(x)+ (n+ 1)kn+1(x)=−(2n+ 1)k′n(x).

11.7.19 Derive the limiting values for the spherical modified Bessel functions

(a)
in(x)≈ xn

(2n+ 1)!! , kn(x)≈ (2n− 1)!!
xn+1

, x� 1.

(b)
in(x)∼ ex

2x
, kn(x)∼ e−x

x
, x� 1

2
n(n+ 1).

11.7.20 Show that the Wronskian of the spherical modified Bessel functions is given by

in(x)k
′
n(x)− i′n(x)kn(x)=−

1

x2
.

11.7.21 A quantum particle of massM is trapped in a “square” well of radiusa. The Schrödinger
equation potential is

V (r)=
{
−V0, 0≤ r < a

0, r > a.

The particle’s energyE is negative (an eigenvalue).

(a) Show that the radial part of the wave function is given byjl(k1r) for 0≤ r < a

and kl(k2r) for r > a. (We require thatψ(0) be finite andψ(∞)→ 0.) Here
k2

1 = 2M(E + V0)/h̄
2, k2

2 = −2ME/h̄2, and l is the angular momentum (n in
Eq. (11.139)).

(b) The boundary condition atr = a is that the wave functionψ(r) and its first deriv-
ative be continuous. Show that this means

(d/dr)jl(k1r)

jl(k1r)

∣∣∣∣
r=a

= (d/dr)kl(k2r)

kl(k2r)

∣∣∣∣
r=a

.

This equation determines the energy eigenvalues.

Note. This is a generalization of Example 10.1.2.

11.7.22 The quantum mechanical radial wave function for a scattered wave is given by

ψk = sin(kr + δ0)

kr
,

wherek is the wave number,k =√2mE/h̄, andδ0 is the scattering phase shift. Show
that the normalization integral is∫ ∞

0
ψk(r)ψk′(r)r

2 dr = π

2k
δ(k − k′).

Hint. You can use a sine representation of the Dirac delta function. See Exercise 15.3.8.
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11.7.23 Derive the spherical Bessel function closure relation

2a2

π

∫ ∞

0
jn(ar)jn(br)r

2 dr = δ(a − b).

Note. An interesting derivation involving Fourier transforms, the Rayleigh plane-wave
expansion, and spherical harmonics has been given by P. Ugincius,Am. J. Phys. 40:
1690 (1972).

11.7.24 (a) Write a subroutine that will generate the spherical Bessel functions,jn(x), that is,
will generate the numerical value ofjn(x) givenx andn.
Note. One possibility is to use the explicit known forms ofj0 andj1 and to develop
the higher indexjn, by repeated application of the recurrence relation.

(b) Check your subroutine by an independent calculation, such as Eq. (11.154). If
possible, compare the machine time needed for this check with the time required
for your subroutine.

11.7.25 The wave function of a particle in a sphere (Example 11.7.1) with angular momen-
tum l is ψ(r, θ,ϕ) = Ajl((

√
2ME)r/h̄)Ym

l (θ,ϕ). The Ym
l (θ,ϕ) is a spherical har-

monic, described in Section 12.6. From the boundary conditionψ(a, θ,ϕ) = 0 or
jl((
√

2ME)a/h̄) = 0 calculate the 10 lowest-energy states. Disregard them degen-
eracy (2l + 1 values ofm for each choice ofl). Check your results against AMS-55,
Table 10.6, see Additional Readings for Chapter 8 for the reference.
Hint. You can use your spherical Bessel subroutine and a root-finding subroutine.

Check values. jl(αls) = 0,
α01= 3.1416
α11= 4.4934
α21= 5.7635
α02= 6.2832.

11.7.26 Let Example 11.7.1 be modified so that the potential is a finiteV0 outside(r > a).

(a) ForE < V0 show that

ψout(r, θ,ϕ)∼ kl

(
r

h̄

√
2M(V0−E)

)
.

(b) The new boundary conditions to be satisfied atr = a are

ψin(a, θ,ϕ) = ψout(a, θ,ϕ),

∂

∂r
ψin(a, θ,ϕ) = ∂

∂r
ψout(a, θ,ϕ)

or
1

ψin

∂ψin

∂r

∣∣∣∣
r=a

= 1

ψout

∂ψout

∂r

∣∣∣∣
r=a

.

For l = 0 show that the boundary condition atr = a leads to

f (E)= k

{
cotka − 1

ka

}
+ k′

{
1+ 1

k′a

}
= 0,

wherek =√2ME/h̄ andk′ = √2M(V0−E)/h̄.
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(c) With a = 4πε0h̄
2/Me2 (Bohr radius) andV0= 4Me4/2h̄2, compute the possible

bound states(0<E < V0).
Hint. Call a root-finding subroutine after you know the approximate location of
the roots of

f (E)= 0 (0≤E ≤ V0).

(d) Show that whena = 4πε0h̄
2/Me2 the minimum value ofV0 for which a bound

state exists isV0= 2.4674Me4/2h̄2.

11.7.27 In some nuclear stripping reactions the differential cross section is proportional to
jl(x)

2, wherel is the angular momentum. The location of the maximum on the curve of
experimental data permits a determination ofl, if the location of the (first) maximum of
jl(x) is known. Compute the location of the first maximum ofj1(x), j2(x), andj3(x).
Note. For better accuracy look for the first zero ofj ′l (x). Why is this more accurate than
direct location of the maximum?

Additional Readings

Jackson, J. D.,Classical Electrodynamics, 3rd ed., New York: J. Wiley (1999).

McBride, E. B.,Obtaining Generating Functions. New York: Springer-Verlag (1971). An introduction to methods
of obtaining generating functions.

Watson, G. N.,A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, UK: Cambridge University
Press (1952). This is the definitive text on Bessel functions and their properties. Although difficult reading, it
is invaluable as the ultimate reference.

Watson, G. N.,A Treatise on the Theory of Bessel Functions, 1st ed. Cambridge, UK: Cambridge University Press
(1922). See also the references listed at the end of Chapter 13.
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CHAPTER 12

LEGENDRE FUNCTIONS

12.1 GENERATING FUNCTION

Legendre polynomials appear in many different mathematical and physical situations.
(1) They may originate as solutions of the Legendre ODE which we have already en-
countered in the separation of variables (Section 9.3) for Laplace’s equation, Helmholtz’s
equation, and similar ODEs in spherical polar coordinates. (2) They enter as a consequence
of a Rodrigues’ formula (Section 12.4). (3) They arise as a consequence of demanding a
complete, orthogonal set of functions over the interval[−1,1] (Gram–Schmidt orthogo-
nalization, Section 10.3). (4) In quantum mechanics they (really the spherical harmonics,
Sections 12.6 and 12.7) represent angular momentum eigenfunctions. (5) They are gen-
erated by a generating function. We introduce Legendre polynomials here by way of a
generating function.

Physical Basis — Electrostatics

As with Bessel functions, it is convenient to introduce the Legendre polynomials by means
of a generating function, which here appears in a physical context. Consider an electric
chargeq placed on thez-axis atz= a. As shown in Fig. 12.1, the electrostatic potential of
chargeq is

ϕ = 1

4πε0
· q
r1

(SI units). (12.1)

We want to express the electrostatic potential in terms of the spherical polar coordinatesr

andθ (the coordinateϕ is absent because of symmetry about thez-axis). Using the law of
cosines in Fig. 12.1, we obtain

ϕ = q

4πε0

(
r2+ a2− 2ar cosθ

)−1/2
. (12.2)

741
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FIGURE 12.1 Electrostatic potential.
Chargeq displaced from origin.

Legendre Polynomials

Consider the case ofr > a or, more precisely,r2 > |a2 − 2ar cosθ |. The radical in
Eq. (12.2) may be expanded in a binomial series and then rearranged in powers of(a/r).
The Legendre polynomialPn(cosθ) (see Fig. 12.2) is defined as the coefficient of thenth
power in

ϕ = q

4πε0r

∞∑
n=0

Pn(cosθ)

(
a

r

)n

. (12.3)

FIGURE 12.2 Legendre
polynomialsP2(x), P3(x),

P4(x), andP5(x).
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Dropping the factorq/4πε0r and usingx andt instead of cosθ anda/r , respectively, we
have

g(t, x)= (1− 2xt + t2
)−1/2=

∞∑
n=0

Pn(x)t
n, |t |< 1. (12.4)

Equation (12.4) is our generating function formula. In the next section it is shown that
|Pn(cosθ)| ≤ 1, which means that the series expansion (Eq. (12.4)) is convergent for|t |<
1.1 Indeed, the series is convergent for|t | = 1 except for|x| = 1.

In physical applications Eq. (12.4) often appears in the vector form (see Section 9.7)

1

|r1− r2| =
1

r>

∞∑
n=0

(
r<

r>

)n

Pn(cosθ), (12.4a)

where

r> = |r1|
r< = |r2|

}
for |r1|> |r2|, (12.4b)

and

r> = |r2|
r< = |r1|

}
for |r2|> |r1|. (12.4c)

Using the binomial theorem (Section 5.6) and Exercise 8.1.15, we expand the generating
function as (compare Eq. (12.33))

(
1− 2xt + t2

)−1/2 =
∞∑
n=0

(2n)!
22n(n!)2

(
2xt − t2

)n
= 1+

∞∑
n=1

(2n− 1)!!
(2n)!!

(
2xt − t2

)n
. (12.5)

For the first few Legendre polynomials, say,P0,P1, andP2, we need the coefficients oft0,
t1, andt2. These powers oft appear only in the termsn= 0,1, and 2, and hence we may
limit our attention to the first three terms of the infinite series:

0!
20(0!)2

(
2xt − t2

)0+ 2!
22(1!)2

(
2xt − t2

)1+ 4!
24(2!)2

(
2xt − t2

)2
= 1t0+ xt1+

(
3

2
x2− 1

2

)
t2+O

(
t3
)
.

Then, from Eq. (12.4) (and uniqueness of power series),

P0(x)= 1, P1(x)= x, P2(x)= 3

2
x2− 1

2
.

We repeat this limited development in a vector framework later in this section.

1Note that the series in Eq. (12.3) is convergent forr > a, even though the binomial expansion involved is valid only for
r > (a2+ 2ar)1/2 and cosθ =−1, or r > a(1+√2).
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In employing a general treatment, we find that the binomial expansion of the(2xt− t2)n

factor yields the double series

(
1− 2xt + t2

)−1/2 =
∞∑
n=0

(2n)!
22n(n!)2 t

n

n∑
k=0

(−1)k
n!

k!(n− k)! (2x)
n−ktk

=
∞∑
n=0

n∑
k=0

(−1)k
(2n)!

22nn!k!(n− k)! · (2x)
n−ktn+k. (12.6)

From Eq. (5.64) of Section 5.4 (rearranging the order of summation), Eq. (12.6) becomes

(
1− 2xt + t2

)−1/2=
∞∑
n=0

[n/2]∑
k=0

(−1)k
(2n− 2k)!

22n−2kk!(n− k)!(n− 2k)! · (2x)
n−2ktn, (12.7)

with the tn independent of the indexk.2 Now, equating our two power series (Eqs. (12.4)
and (12.7)) term by term, we have3

Pn(x)=
[n/2]∑
k=0

(−1)k
(2n− 2k)!

2nk!(n− k)!(n− 2k)!x
n−2k. (12.8)

Hence, forn even,Pn has only even powers ofx and even parity (see Eq. (12.37)), and odd
powers and odd parity for oddn.

Linear Electric Multipoles

Returning to the electric charge on thez-axis, we demonstrate the usefulness and power
of the generating function by adding a charge−q at z = −a, as shown in Fig. 12.3. The

FIGURE 12.3 Electric dipole.

2[n/2] = n/2 for n even,(n− 1)/2 for n odd.
3Equation (12.8) starts withxn. By changing the index, we can transform it into a series that starts withx0 for n even andx1

for n odd. These ascending series are given as hypergeometric functions in Eqs. (13.138) and (13.139), Section 13.4.
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potential becomes

ϕ = q

4πε0

(
1

r1
− 1

r2

)
, (12.9)

and by using the law of cosines, we have

ϕ = q

4πε0r

{[
1− 2

(
a

r

)
cosθ +

(
a

r

)2]−1/2

−
[
1+ 2

(
a

r

)
cosθ +

(
a

r

)2]−1/2}
, (r > a).

Clearly, the second radical is like the first, except thata has been replaced by−a. Then,
using Eq. (12.4), we obtain

ϕ = q

4πε0r

[ ∞∑
n=0

Pn(cosθ)

(
a

r

)n

−
∞∑
n=0

Pn(cosθ)(−1)n
(
a

r

)n]

= 2q

4πε0r

[
P1(cosθ)

(
a

r

)
+ P3(cosθ)

(
a

r

)3

+ · · ·
]
. (12.10)

The first term (and dominant term forr� a) is

ϕ = 2aq

4πε0
· P1(cosθ)

r2
, (12.11)

which is theelectric dipole potential, and 2aq is the dipole moment (Fig. 12.3). This
analysis may be extended by placing additional charges on thez-axis so that theP1 term,
as well as theP0 (monopole) term, is canceled. For instance, charges ofq at z = a and
z=−a,−2q atz= 0 give rise to a potential whose series expansion starts withP2(cosθ).
This is a linear electric quadrupole. Two linear quadrupoles may be placed so that the
quadrupole term is canceled but theP3, the octupole term, survives.

Vector Expansion

We consider the electrostatic potential produced by a distributed chargeρ(r2):

ϕ(r1)= 1

4πε0

∫
ρ(r2)

|r1− r2|d
3r2. (12.12a)

This expression has already appeared in Sections 1.16 and 9.7. Taking the denominator
of the integrand, using first the law of cosines and then a binomial expansion, yields (see
Fig. 1.42)

1

|r1− r2| =
(
r2
1 − 2r1 · r2 + r2

2

)−1/2 (12.12b)

= 1

r1

[
1+

(
−2r1 · r2

r2
1

+ r2
2

r2
1

)]−1/2

, for r1 > r2

= 1

r1

[
1+ r1 · r2

r2
1

− 1

2

r2
2

r2
1

+ 3

2

(r1 · r2)
2

r4
1

+O
(
r2

r1

)3]
.
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(For r1 = 1, r2 = t , and r1 · r2 = xt , Eq. (12.12b) reduces to the generating function,
Eq. (12.4).)

The first term in the square bracket, 1, yields a potential

ϕ0(r1)= 1

4πε0

1

r1

∫
ρ(r2) d

3r2. (12.12c)

The integral is just the total charge. This part of the total potential is an electricmonopole.
The second term yields

ϕ1(r1)= 1

4πε0

r1·
r3
1

∫
r2ρ(r2) d

3r2, (12.12d)

where the integral is the dipole moment whose charge densityρ(r2) is weighted by a mo-
ment armr2. We have an electric dipole potential. For atomic or nuclear states of definite
parity,ρ(r2) is an even function and the dipole integral is identically zero.

The last two terms, both of order(r2/r1)
2, may be handled by using Cartesian coordi-

nates:

(r1 · r2)
2=

3∑
i=1

x1ix2i

3∑
j=1

x1j x2j .

Rearranging variables to take thex1 components outside the integral yields

ϕ2(r1)= 1

4πε0

1

2r5
1

3∑
i,j=1

x1ix1j

∫ [
3x2ix2j − δij r

2
2

]
ρ(r2) d

3r2. (12.12e)

This is the electricquadrupole term. We note that the square bracket in the integrand
forms a symmetric, zero-trace tensor.

A general electrostatic multipole expansion can also be developed by using Eq. (12.12a)
for the potentialϕ(r1) and replacing 1/(4π |r1−r2|) by Green’s function, Eq. (9.187). This
yields the potentialϕ(r1) as a (double) series of the spherical harmonicsYm

l (θ1, ϕ1) and
Ym
l (θ2, ϕ2).
Before leaving multipole fields, perhaps we should emphasize three points.

• First, an electric (or magnetic) multipole is isolated and well defined only if all lower-
order multipoles vanish. For instance, the potential of one chargeq at z = a was ex-
panded in a series of Legendre polynomials. Although we refer to theP1(cosθ) term
in this expansion as a dipole term, it should be remembered that this term exists only
because of our choice of coordinates. We also have a monopole,P0(cosθ).

• Second, in physical systems we do not encounter pure multipoles. As an example,
the potential of the finite dipole (q at z = a,−q at z = −a) contained aP3(cosθ)
term. These higher-order terms may be eliminated by shrinking the multipole to a point
multipole, in this case keeping the productqa constant(a→ 0, q→∞) to maintain
the same dipole moment.
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• Third, the multipole theory is not restricted to electrical phenomena. Planetary configu-
rations are described in terms of mass multipoles, Sections 12.3 and 12.6. Gravitational
radiation depends on the time behavior of mass quadrupoles. (The gravitational radia-
tion field is atensor field. The radiation quanta, gravitons, carry two units of angular
momentum.)

It might also be noted that a multipole expansion is actually a decomposition into the
irreducible representations of the rotation group (Section 4.2).

Extension to Ultraspherical Polynomials

The generating function used here,g(t, x), is actually a special case of a more general
generating function,

1

(1− 2xt + t2)α
=

∞∑
n=0

C(α)
n (x)tn. (12.13)

The coefficientsC(α)
n (x) are the ultraspherical polynomials (proportional to the Gegen-

bauer polynomials). Forα = 1/2 this equation reduces to Eq. (12.4); that is,C
(1/2)
n (x)=

Pn(x). The casesa = 0 andα = 1 are considered in Chapter 13 in connection with the
Chebyshev polynomials.

Exercises

12.1.1 Develop the electrostatic potential for the array of charges shown. This is a linear elec-
tric quadrupole (Fig. 12.4).

12.1.2 Calculate the electrostatic potential of the array of charges shown in Fig. 12.5. Here
is an example of two equal but oppositely directed dipoles. The dipole contributions
cancel. The octupole terms do not cancel.

12.1.3 Show that the electrostatic potential produced by a chargeq at z= a for r < a is

ϕ(r)= q

4πε0a

∞∑
n=0

(
r

a

)n

Pn(cosθ).

FIGURE 12.4 Linear electric quadrupole.
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FIGURE 12.5 Linear electric octupole.

FIGURE 12.6

12.1.4 Using E = −∇ϕ, determine the components of the electric field corresponding to the
(pure) electric dipole potential

ϕ(r)= 2aqP1(cosθ)

4πε0r2
.

Here it is assumed thatr� a.

ANS.Er =+4aq cosθ

4πε0r3
, Eθ =+2aq sinθ

4πε0r3
, Eϕ = 0.

12.1.5 A point electric dipole of strengthp(1) is placed atz= a; a second point electric dipole
of equal but opposite strength is at the origin. Keeping the productp(1)a constant, let
a→ 0. Show that this results in a point electric quadrupole.
Hint. Exercise 12.2.5 (when proved) will be helpful.

12.1.6 A point chargeq is in the interior of a hollow conducting sphere of radiusr0. The
chargeq is displaced a distancea from the center of the sphere. If the conducting
sphere is grounded, show that the potential in the interior produced byq and the dis-
tributed induced charge is the same as that produced byq and its image chargeq ′. The
image charge is at a distancea′ = r2

0/a from the center, collinear withq and the origin
(Fig. 12.6).
Hint. Calculate the electrostatic potential fora < r0 < a′. Show that the potential van-
ishes forr = r0 if we takeq ′ = −qr0/a.

12.1.7 Prove that

Pn(cosθ)= (−1)n
rn+1

n!
∂n

∂zn

(
1

r

)
.

Hint. Compare the Legendre polynomial expansion of the generating function (a→�z,
Fig. 12.1) with a Taylor series expansion of 1/r , wherez dependence ofr changes from
z to z−�z (Fig. 12.7).

12.1.8 By differentiation and direct substitution of the series form, Eq. (12.8), show thatPn(x)

satisfies the Legendre ODE. Note that there is no restriction uponx. We may have any
x,−∞< x <∞, and indeed anyz in the entire finite complex plane.
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FIGURE 12.7

12.1.9 The Chebyshev polynomials (type II) are generated by (Eq. (13.93), Section 13.3)

1

1− 2xt + t2
=

∞∑
n=0

Un(x)t
n.

Using the techniques of Section 5.4 for transforming series, develop a series represen-
tation ofUn(x).

ANS.Un(x)=
[n/2]∑
k=0

(−1)k
(n− k)!

k!(n− 2k)! (2x)
n−2k .

12.2 RECURRENCE RELATIONS AND SPECIAL PROPERTIES

Recurrence Relations

The Legendre polynomial generating function provides a convenient way of deriving the
recurrence relations4 and some special properties. If our generating function (Eq. (12.4))
is differentiated with respect tot , we obtain

∂g(t, x)

∂t
= x − t

(1− 2xt + t2)3/2
=

∞∑
n=0

nPn(x)t
n−1. (12.14)

By substituting Eq. (12.4) into this and rearranging terms, we have

(
1− 2xt + t2

) ∞∑
n=0

nPn(x)t
n−1+ (t − x)

∞∑
n=0

Pn(x)t
n = 0. (12.15)

The left-hand side is a power series int . Since this power series vanishes for all values of
t , the coefficient of each power oft is equal to zero; that is, our power series is unique
(Section 5.7). These coefficients are found by separating the individual summations and

4We can also apply the explicit series form Eq. (12.8) directly.
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using distinctive summation indices:

∞∑
m=0

mPm(x)t
m−1−

∞∑
n=0

2nxPn(x)t
n +

∞∑
s=0

sPs(x)t
s+1

+
∞∑
s=0

Ps(x)t
s+1−

∞∑
n=0

xPn(x)t
n = 0. (12.16)

Now, lettingm= n+ 1, s = n− 1, we find

(2n+ 1)xPn(x)= (n+ 1)Pn+1(x)+ nPn−1(x), n= 1,2,3, . . . . (12.17)

This is another three-term recurrence relation, similar to (but not identical with) the recur-
rence relation for Bessel functions. With this recurrence relation we may easily construct
the higher Legendre polynomials. If we taken = 1 and insert the easily found values of
P0(x) andP1(x) (Exercise 12.1.7 or Eq. (12.8)), we obtain

3xP1(x)= 2P2(x)+ P0(x), (12.18)

or

P2(x)= 1

2

(
3x2− 1

)
. (12.19)

This process may be continued indefinitely, the first few Legendre polynomials are listed
in Table 12.1.

As cumbersome as it may appear at first, this technique is actually more efficient for
a digital computer than is direct evaluation of the series (Eq. (12.8)). For greater stability (to
avoid undue accumulation and magnification of round-off error), Eq. (12.17) is rewritten
as

Pn+1(x)= 2xPn(x)− Pn−1(x)− 1

n+ 1

[
xPn(x)− Pn−1(x)

]
. (12.17a)

One starts withP0(x)= 1,P1(x)= x, and computes thenumerical values of all thePn(x)

for a given value ofx up to the desiredPN(x). The values ofPn(x),0 ≤ n < N , are
available as a fringe benefit.

Table 12.1 Legendre Polynomials

P0(x)= 1
P1(x)= x

P2(x)= 1
2(3x

2− 1)

P3(x)= 1
2(5x

3− 3x)

P4(x)= 1
8(35x4− 30x2+ 3)

P5(x)= 1
8(63x5− 70x3+ 15x)

P6(x)= 1
16(231x6− 315x4+ 105x2− 5)

P7(x)= 1
16(429x7− 693x5+ 315x3− 35x)

P8(x)= 1
128(6435x8− 12012x6+ 6930x4− 1260x2+ 35)
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Differential Equations

More information about the behavior of the Legendre polynomials can be obtained if we
now differentiate Eq. (12.4) with respect tox. This gives

∂g(t, x)

∂x
= t

(1− 2xt + t2)3/2
=

∞∑
n=0

P ′n(x)tn, (12.20)

or (
1− 2xt + t2

) ∞∑
n=0

P ′n(x)tn − t

∞∑
n=0

Pn(x)t
n = 0. (12.21)

As before, the coefficient of each power oft is set equal to zero and we obtain

P ′n+1(x)+ P ′n−1(x)= 2xP ′n(x)+ Pn(x). (12.22)

A more useful relation may be found by differentiating Eq. (12.17) with respect tox and
multiplying by 2. To this we add(2n+ 1) times Eq. (12.22), canceling theP ′n term. The
result is

P ′n+1(x)− P ′n−1(x)= (2n+ 1)Pn(x). (12.23)

From Eqs. (12.22) and (12.23) numerous additional equations may be developed,5 in-
cluding

P ′n+1(x) = (n+ 1)Pn(x)+ xP ′n(x), (12.24)

P ′n−1(x) = −nPn(x)+ xP ′n(x), (12.25)(
1− x2)P ′n(x) = nPn−1(x)− nxPn(x), (12.26)(
1− x2)P ′n(x) = (n+ 1)xPn(x)− (n+ 1)Pn+1(x). (12.27)

By differentiating Eq. (12.26) and using Eq. (12.25) to eliminateP ′n−1(x), we find that
Pn(x) satisfies the linear second-order ODE(

1− x2)P ′′n (x)− 2xP ′n(x)+ n(n+ 1)Pn(x)= 0. (12.28)

The previous equations, Eqs. (12.22) to (12.27), are all first-order ODEs, but with poly-
nomials of two different indices. The price for having all indices alike is a second-order

5Using the equation number in parentheses to denote the left-hand side of the equation, we may write the derivatives as

2 · d
dx

(12.17)+ (2n+ 1) · (12.22)⇒ (12.23),

1
2

{
(12.22)+ (12.23)

}⇒ (12.24),

1
2

{
(12.22)− (12.23)

}⇒ (12.25),

(12.24)n→n−1+ x · (12.25)⇒ (12.26),

d
dx

(12.26)+ n · (12.25)⇒ (12.28).
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differential equation. Equation (12.28) isLegendre’s ODE. We now see that the polynomi-
alsPn(x) generated by the power series for(1−2xt+ t2)−1/2 satisfy Legendre’s equation,
which, of course, is why they are called Legendre polynomials.

In Eq. (12.28) differentiation is with respect tox (x = cosθ). Frequently, we encounter
Legendre’s equation expressed in terms of differentiation with respect toθ :

1

sinθ

d

dθ

(
sinθ

dPn(cosθ)

dθ

)
+ n(n+ 1)Pn(cosθ)= 0. (12.29)

Special Values

Our generating function provides still more information about the Legendre polynomials.
If we setx = 1, Eq. (12.4) becomes

1

(1− 2t + t2)1/2
= 1

1− t
=

∞∑
n=0

tn, (12.30)

using a binomial expansion or the geometric series, Example 5.1.1. But Eq. (12.4) forx = 1
defines

1

(1− 2t + t2)1/2
=

∞∑
n=0

Pn(1)t
n.

Comparing the two series expansions (uniqueness of power series, Section 5.7), we have

Pn(1)= 1. (12.31)

If we let x =−1 in Eq. (12.4) and use

1

(1+ 2t + t2)1/2
= 1

1+ t
,

this shows that

Pn(−1)= (−1)n. (12.32)

For obtaining these results, we find that the generating function is more convenient than
the explicit series form, Eq. (12.8).

If we takex = 0 in Eq. (12.4), using the binomial expansion(
1+ t2

)−1/2= 1− 1

2
t2+ 3

8
t4+ · · · + (−1)n

1 · 3 · · · (2n− 1)

2nn! t2n + · · · , (12.33)

we have6

P2n(0) = (−1)n
1 · 3 · · · (2n− 1)

2nn! = (−1)n
(2n− 1)!!
(2n)!! = (−1)n(2n)!

22n(n!)2 (12.34)

P2n+1(0) = 0, n= 0,1,2 . . . . (12.35)

These results also follow from Eq. (12.8) by inspection.

6The double factorial notation is defined in Section 8.1:

(2n)!! = 2 · 4 · 6· · · (2n), (2n− 1)!! = 1 · 3 · 5· · · (2n− 1), (−1)!! = 1.
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Parity

Some of these results are special cases of the parity property of the Legendre polynomials.
We refer once more to Eqs. (12.4) and (12.8). If we replacex by −x and t by −t , the
generating function is unchanged. Hence

g(t, x) = g(−t,−x)= [1− 2(−t)(−x)+ (−t)2]−1/2

=
∞∑
n=0

Pn(−x)(−t)n =
∞∑
n=0

Pn(x)t
n. (12.36)

Comparing these two series, we have

Pn(−x)= (−1)nPn(x); (12.37)

that is, the polynomial functions are odd or even (with respect tox = 0, θ = π/2) according
to whether the indexn is odd or even. This is the parity,7 or reflection, property that plays
such an important role in quantum mechanics. For central forces the indexn is a measure
of the orbital angular momentum, thus linking parity and orbital angular momentum.

This parity property is confirmed by the series solution and for the special values tabu-
lated in Table 12.1. It might also be noted that Eq. (12.37) may be predicted by inspection
of Eq. (12.17), the recurrence relation. Specifically, ifPn−1(x) andxPn(x) are even, then
Pn+1(x) must be even.

Upper and Lower Bounds for Pn(cos θ)

Finally, in addition to these results, our generating function enables us to set an upper limit
on |Pn(cosθ)|. We have(

1− 2t cosθ + t2
)−1/2 = (1− teiθ

)−1/2(1− te−iθ
)−1/2

= (1+ 1
2te

iθ + 3
8t

2e2iθ + · · · )
· (1+ 1

2te
−iθ + 3

8t
2e−2iθ + · · · ), (12.38)

with all coefficientspositive. Our Legendre polynomial,Pn(cosθ), still the coefficient of
tn, may now be written as a sum of terms of the form

1
2am

(
eimθ + e−imθ

)= am cosmθ (12.39a)

with all theam positive andm andn both even or odd so that

Pn(cosθ)=
n∑

m=0 or 1

am cosmθ. (12.39b)

7In spherical polar coordinates the inversion of the point(r, θ,ϕ) through the origin is accomplished by the transformation
[r→ r, θ→ π − θ , andϕ→ ϕ±π ]. Then, cosθ→ cos(π − θ)=−cosθ , corresponding tox→−x (compare Exercise 2.5.8).
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This series, Eq. (12.39b), is clearly a maximum whenθ = 0 and cosmθ = 1. But forx =
cosθ = 1, Eq. (12.31) shows thatPn(1)= 1. Therefore∣∣Pn(cosθ)

∣∣≤ Pn(1)= 1. (12.39c)

A fringe benefit of Eq. (12.39b) is that it shows that our Legendre polynomial is a linear
combination of cosmθ . This means that the Legendre polynomials form a complete set
for any functions that may be expanded by a Fourier cosine series (Section 14.1) over the
interval[0,π].

• In this section various useful properties of the Legendre polynomials are derived from
the generating function, Eq. (12.4).

• The explicit series representation, Eq. (12.8), offers an alternate and sometimes supe-
rior approach.

Exercises

12.2.1 Given the series

α0+ α2 cos2 θ + α4 cos4 θ + α6 cos6 θ = a0P0+ a2P2+ a4P4+ a6P6,

express the coefficientsαi as a column vectorα and the coefficientsai as a column
vectora and determine the matricesA andB such that

Aα = a and Ba= α.

Check your computation by showing thatAB= 1 (unit matrix). Repeat for the odd case

α1 cosθ + α3 cos3 θ + α5 cos5 θ + α7 cos7 θ = a1P1+ a3P3+ a5P5+ a7P7.

Note. Pn(cosθ) and cosn θ are tabulated in terms of each other in AMS-55 (see Addi-
tional Readings of Chapter 8 for the complete reference).

12.2.2 By differentiating the generating functiong(t, x) with respect tot , multiplying by 2t ,
and then addingg(t, x), show that

1− t2

(1− 2tx + t2)3/2
=

∞∑
n=0

(2n+ 1)Pn(x)t
n.

This result is useful in calculating the charge induced on a grounded metal sphere by a
point chargeq.

12.2.3 (a) Derive Eq. (12.27),(
1− x2)P ′n(x)= (n+ 1)xPn(x)− (n+ 1)Pn+1(x).

(b) Write out the relation of Eq. (12.27) to preceding equations in symbolic form
analogous to the symbolic forms for Eqs. (12.23) to (12.26).
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12.2.4 A point electric octupole may be constructed by placing a point electric quadrupole
(pole strengthp(2) in the z-direction) atz = a and an equal but opposite point elec-
tric quadrupole atz = 0 and then lettinga→ 0, subject top(2)a = constant. Find the
electrostatic potential corresponding to a point electric octupole. Show from the con-
struction of the point electric octupole that the corresponding potential may be obtained
by differentiating the point quadrupole potential.

12.2.5 Operating inspherical polar coordinates, show that

∂

∂z

[
Pn(cosθ)

rn+1

]
=−(n+ 1)

Pn+1(cosθ)

rn+2
.

This is the key step in the mathematical argument that the derivative of one multipole
leads to the next higher multipole.
Hint. Compare Exercise 2.5.12.

12.2.6 From

PL(cosθ)= 1

L!
∂L

∂tL

(
1− 2t cosθ + t2

)−1/2∣∣
t=0

show that

PL(1)= 1, PL(−1)= (−1)L.

12.2.7 Prove that

P ′n(1)=
d

dx
Pn(x)

∣∣
x=1=

1

2
n(n+ 1).

12.2.8 Show thatPn(cosθ) = (−1)nPn(−cosθ) by use of the recurrence relation relating
Pn,Pn+1, andPn−1 and your knowledge ofP0 andP1.

12.2.9 From Eq. (12.38) write out the coefficient oft2 in terms of cosnθ , n ≤ 2. This coeffi-
cient isP2(cosθ).

12.2.10 Write a program that will generate the coefficientsas in the polynomial form of the
Legendre polynomial

Pn(x)=
n∑

s=0

asx
s.

12.2.11 (a) CalculateP10(x) over the range[0,1] and plot your results.
(b) Calculate precise (at least to five decimal places) values of the five positive roots of

P10(x). Compare your values with the values listed in AMS-55, Table 25.4. (For
the complete reference, see Additional Readings of Chapter 8.)

12.2.12 (a) Calculate thelargest root ofPn(x) for n= 2(1)50.
(b) Develop an approximation for the largest root from the hypergeometric represen-

tation ofPn(x) (Section 13.4) and compare your values from part (a) with your
hypergeometric approximation. Compare also with the values listed in AMS-55,
Table 25.4. (For the complete reference, see Additional Readings of Chapter 8.)
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12.2.13 (a) From Exercise 12.2.1 and AMS-55, Table 22.9, develop the 6× 6 matrix B that
will transform a series of even-order Legendre polynomials throughP10(x) into a
power series

∑5
n=0α2nx

2n.
(b) CalculateA asB−1. Check the elements ofA against the values listed in AMS-55,

Table 22.9. (For the complete reference, see Additional Readings of Chapter 8.)
(c) By using matrix multiplication, transform some even power series

∑5
n=0α2nx

2n

into a Legendre series.

12.2.14 Write a subroutine that will transform a finite power series
∑N

n=0anx
n into a Legendre

series
∑N

n=0bnPn(x). Use the recurrence relation, Eq. (12.17), and follow the technique
outlined in Section 13.3 for a Chebyshev series.

12.3 ORTHOGONALITY

Legendre’s ODE (12.28) may be written in the form

d

dx

[(
1− x2)P ′n(x)]+ n(n+ 1)Pn(x)= 0, (12.40)

showing clearly that it is self-adjoint. Subject to satisfying certain boundary condi-
tions, then, it is known that the solutionsPn(x) will be orthogonal. Upon comparing
Eq. (12.40) with Eqs. (10.6) and (10.8) we see that the weight functionw(x) = 1, L =
(d/dx)(1− x2)(d/dx), p(x)= 1− x2, and the eigenvalueλ= n(n+ 1). The integration
limits on x are±1, wherep(±1)= 0. Then form 
= n, Eq. (10.34) becomes∫ 1

−1
Pn(x)Pm(x)dx = 0,8 (12.41)∫ π

0
Pn(cosθ)Pm(cosθ)sinθ dθ = 0, (12.42)

showing thatPn(x) andPm(x) are orthogonal for the interval[−1,1]. This orthogonality
may also be demonstrated by using Rodrigues’ definition ofPn(x) (compare Section 12.4,
Exercise 12.4.2).

We shall need to evaluate the integral (Eq. (12.41)) whenn=m. Certainly it is no longer
zero. From our generating function,(

1− 2tx + t2
)−1=

[ ∞∑
n=0

Pn(x)t
n

]2

. (12.43)

Integrating fromx =−1 tox =+1, we have∫ 1

−1

dx

1− 2tx + t2
=

∞∑
n=0

t2n
∫ 1

−1

[
Pn(x)

]2
dx; (12.44)

8In Section 10.4 such integrals are interpreted as inner products in a linear vector (function) space. Alternate notations are∫ 1

−1

[
Pn(x)

]∗
Pm(x)dx ≡ 〈Pn|Pm〉 ≡ (Pn,Pm).

The 〈 〉 form, popularized by Dirac, is common in the physics literature. The ( ) form is more common in the mathematics
literature.



12.3 Orthogonality 757

the cross terms in the series vanish by means of Eq. (12.42). Usingy = 1− 2tx + t2,
dy =−2t dx, we obtain∫ 1

−1

dx

1− 2tx + t2
= 1

2t

∫ (1+t)2

(1−t)2
dy

y
= 1

t
ln

(
1+ t

1− t

)
. (12.45)

Expanding this in a power series (Exercise 5.4.1) gives us

1

t
ln

(
1+ t

1− t

)
= 2

∞∑
n=0

t2n

2n+ 1
. (12.46)

Comparing power-series coefficients of Eqs. (12.44) and (12.46), we must have∫ 1

−1

[
Pn(x)

]2
dx = 2

2n+ 1
. (12.47)

Combining Eq. (12.42) with Eq. (12.47) we have the orthonormality condition∫ 1

−1
Pm(x)Pn(x) dx = 2δmn

2n+ 1
. (12.48)

We shall return to this result in Section 12.6 when we construct the orthonormal spherical
harmonics.

Expansion of Functions, Legendre Series

In addition to orthogonality, the Sturm–Liouville theory implies that the Legendre polyno-
mials form a complete set. Let us assume, then, that the series

∞∑
n=0

anPn(x)= f (x) (12.49)

converges in the mean (Section 10.4) in the interval[−1,1]. This demands thatf (x) and
f ′(x) be at least sectionally continuous in this interval. The coefficientsan are found by
multiplying the series byPm(x) and integrating term by term. Using the orthogonality
property expressed in Eqs. (12.42) and (12.48), we obtain

2

2m+ 1
am =

∫ 1

−1
f (x)Pm(x)dx. (12.50)

We replace the variable of integrationx by t and the indexm by n. Then, substituting into
Eq. (12.49), we have

f (x)=
∞∑
n=0

2n+ 1

2

(∫ 1

−1
f (t)Pn(t) dt

)
Pn(x). (12.51)

This expansion in a series of Legendre polynomials is usually referred to as a Legendre
series.9 Its properties are quite similar to the more familiar Fourier series (Chapter 14). In

9Note that Eq. (12.50) givesam as adefinite integral, that is, a number for a givenf (x).
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particular, we can use the orthogonality property (Eq. (12.48)) to show that the series is
unique.

On a more abstract (and more powerful) level, Eq. (12.51) gives the representation of
f (x) in the vector space of Legendre polynomials (a Hilbert space, Section 10.4).

From the viewpoint of integral transforms (Chapter 15), Eq. (12.50) may be considered
a finite Legendre transform off (x). Equation (12.51) is then the inverse transform. It may
also be interpreted in terms of theprojection operators of quantum theory. We may take
Pm in

[Pmf ](x)≡ Pm(x)
2m+ 1

2

∫ 1

−1
Pm(t)

[
f (t)

]
dt

as an (integral) operator, ready to operate onf (t). (Thef (t) would go in the square bracket
as a factor in the integrand.) Then, from Eq. (12.50),

[Pmf ](x)= amPm(x).
10

The operatorPm projects out themth component of the functionf .
Equation (12.3), which leads directly to the generating function definition of Legendre

polynomials, is a Legendre expansion of 1/r1. This Legendre expansion of 1/r1 or 1/r12

appears in several exercises of Section 12.8. Going beyond a Coulomb field, the 1/r12 is
often replaced by a potentialV (|r1− r2|), and the solution of the problem is again effected
by a Legendre expansion.

The Legendre series, Eq. (12.49), has been treated as aknown functionf (x) that we
arbitrarily chose to expand in a series of Legendre polynomials. Sometimes the origin and
nature of the Legendre series are different. In the next examples we considerunknown
functions we know can be represented by a Legendre series because of the differential
equation the unknown functions satisfy. As before, the problem is to determine the un-
known coefficients in the series expansion. Here, however, the coefficients are not found
by Eq. (12.50). Rather, they are determined by demanding that the Legendre series match
a known solution at a boundary. These are boundary value problems.

Example 12.3.1 EARTH’S GRAVITATIONAL FIELD

An example of a Legendre series is provided by the description of the Earth’s gravitational
potentialU (for exterior points), neglecting azimuthal effects. With

R = equatorial radius= 6378.1± 0.1 km

GM

R
= 62.494± 0.001 km2/s2,

we write

U(r, θ)= GM

R

[
R

r
−

∞∑
n=2

an

(
R

r

)n+1

Pn(cosθ)

]
, (12.52)

10The dependent variables are arbitrary. Herex came from thex in Pm.
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a Legendre series. Artificial satellite motions have shown that

a2 = (1,082,635± 11)× 10−9,

a3 = (−2,531± 7)× 10−9,

a4 = (−1,600± 12)× 10−9.

This is the famous pear-shaped deformation of the Earth. Other coefficients have been
computed throughn = 20. Note thatP1 is omitted because the origin from whichr is
measured is the Earth’s center of mass (P1 would represent a displacement).

More recent satellite data permit a determination of the longitudinal dependence of the
Earth’s gravitational field. Such dependence may be described by a Laplace series (Sec-
tion 12.6). �

Example 12.3.2 SPHERE IN A UNIFORM FIELD

Another illustration of the use of Legendre polynomials is provided by the problem of
a neutral conducting sphere (radiusr0) placed in a (previously) uniform electric field
(Fig. 12.8). The problem is to find the new, perturbed, electrostatic potential. If we call
the electrostatic potential11 V , it satisfies

∇2V = 0, (12.53)

Laplace’s equation. We select spherical polar coordinates because of the spherical shape of
the conductor. (This will simplify the application of the boundary condition at the surface
of the conductor.) Separating variables and glancing at Table 9.2, we can write the unknown
potentialV (r, θ) in the region outside the sphere as a linear combination of solutions:

V (r, θ)=
∞∑
n=0

anr
nPn(cosθ)+

∞∑
n=0

bn
Pn(cosθ)

rn+1
. (12.54)

FIGURE 12.8 Conducting sphere in
a uniform field.

11It should be emphasized that this is not a presentation of a Legendre-series expansion of a knownV (cosθ). Here we are back
to boundary value problems of PDEs.
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No ϕ-dependence appears because of the axial symmetry of our problem. (The center of
the conducting sphere is taken as the origin and thez-axis is oriented parallel to the original
uniform field.)

It might be noted here thatn is an integer, because only for integraln is theθ depen-
dence well behaved at cosθ =±1. For nonintegraln the solutions of Legendre’s equation
diverge at the ends of the interval[−1,1], the polesθ = 0,π of the sphere (compare Exam-
ple 5.2.4 and Exercises 5.2.15 and 9.5.5). It is for this same reason that the second solution
of Legendre’s equation,Qn, is also excluded.

Now we turn to our (Dirichlet) boundary conditions to determine the unknownan and
bn of our series solution, Eq. (12.54). If the original, unperturbed electrostatic field isE0,
we require, as one boundary condition,

V (r→∞)=−E0z=−E0r cosθ =−E0rP1(cosθ). (12.55)

Since our Legendre series is unique, we may equate coefficients ofPn(cosθ) in Eq. (12.54)
(r→∞) and Eq. (12.55) to obtain

an = 0, n > 1 and n= 0, a1=−E0. (12.56)

If an 
= 0 for n > 1, these terms would dominate at larger and the boundary condition
(Eq. (12.55)) could not be satisfied.

As a second boundary condition, we may choose the conducting sphere and the plane
θ = π/2 to be at zero potential, which means that Eq. (12.54) now becomes

V (r = r0)= b0

r0
+
(
b1

r2
0

−E0r0

)
P1(cosθ)+

∞∑
n=2

bn
Pn(cosθ)

rn+1
0

= 0. (12.57)

In order that this may hold for all values ofθ , each coefficient ofPn(cosθ) must vanish.12

Hence

b0= 0, 13 bn = 0, n≥ 2, (12.58)

whereas

b1=E0r
3
0 . (12.59)

The electrostatic potential (outside the sphere) is then

V =−E0rP1(cosθ)+ E0r
3
0

r2
P1(cosθ)=−E0rP1(cosθ)

(
1− r3

0

r3

)
. (12.60)

In Section 1.16 it was shown that a solution of Laplace’s equation that satisfied the bound-
ary conditions over the entire boundary was unique. The electrostatic potentialV , as given
by Eq. (12.60), is a solution of Laplace’s equation. It satisfies our boundary conditions and
therefore is the solution of Laplace’s equation for this problem.

12Again, this is equivalent to saying that a series expansion in Legendre polynomials (or any complete orthogonal set) is unique.
13The coefficient ofP0 is b0/r0. We setb0 = 0 because there is no net charge on the sphere. If there is a net chargeq, then
b0 
= 0.
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It may further be shown (Exercise 12.3.13) that there is an induced surface charge den-
sity

σ =−ε0
∂V

∂r

∣∣∣∣
r=r0

= 3ε0E0 cosθ (12.61)

on the surface of the sphere and an induced electric dipole moment (Exercise 12.3.13)

P = 4πr3
0ε0E0. (12.62)

�

Example 12.3.3 ELECTROSTATIC POTENTIAL OF A RING OF CHARGE

As a further example, consider the electrostatic potential produced by a conducting ring
carrying a total electric chargeq (Fig. 12.9). From electrostatics (and Section 1.14) the
potentialψ satisfies Laplace’s equation. Separating variables in spherical polar coordinates
(compare Table 9.2), we obtain

ψ(r, θ)=
∞∑
n=0

cn
an

rn+1
Pn(cosθ), r > a. (12.63a)

Herea is the radius of the ring that is assumed to be in theθ = π/2 plane. There is no
ϕ (azimuthal) dependence because of the cylindrical symmetry of the system. The terms
with positive exponent in the radial dependence have been rejected because the potential
must have an asymptotic behavior,

ψ ∼ q

4πε0
· 1

r
, r� a. (12.63b)

The problem is to determine the coefficientscn in Eq. (12.63a). This may be done by
evaluatingψ(r, θ) at θ = 0, r = z, and comparing with an independent calculation of the

FIGURE 12.9 Charged,
conducting ring.



762 Chapter 12 Legendre Functions

potential from Coulomb’s law. In effect, we are using a boundary condition along thez-
axis. From Coulomb’s law (with all charge equidistant),

ψ(r, θ) = q

4πε0
· 1

(z2+ a2)1/2
,

{
θ = 0
r = z,

= q

4πε0z

∞∑
s=0

(−1)s
(2s)!

22s(s!)2
(
a

z

)2s

, z > a. (12.63c)

The last step uses the result of Exercise 8.1.15. Now, Eq. (12.63a) evaluated atθ = 0, r = z

(with Pn(1)= 1), yields

ψ(r, θ)=
∞∑
n=0

cn
an

zn+1
, r = z. (12.63d)

Comparing Eqs. (12.63c) and (12.63d), we getcn = 0 for n odd. Settingn= 2s, we have

c2s = q

4πε0
(−1)s

(2s)!
22s(s!)2 , (12.63e)

and our electrostatic potentialψ(r, θ) is given by

ψ(r, θ)= q

4πε0r

∞∑
s=0

(−1)s
(2s)!

22s(s!)2
(
a

r

)2s

P2s(cosθ), r > a. (12.63f)

The magnetic analog of this problem appears in Example 12.5.3. �

Exercises

12.3.1 You have constructed a set of orthogonal functions by the Gram–Schmidt process (Sec-
tion 10.3), takingun(x) = xn, n = 0,1,2, . . . , in increasing order withw(x) = 1 and
an interval−1≤ x ≤ 1. Prove that thenth such function constructed is proportional to
Pn(x).
Hint. Use mathematical induction.

12.3.2 Expand the Dirac delta function in a series of Legendre polynomials using the interval
−1≤ x ≤ 1.

12.3.3 Verify the Dirac delta function expansions

δ(1− x) =
∞∑
n=0

2n+ 1

2
Pn(x)

δ(1+ x) =
∞∑
n=0

(−1)n
2n+ 1

2
Pn(x).

These expressions appear in a resolution of the Rayleigh plane-wave expansion (Exer-
cise 12.4.7) into incoming and outgoing spherical waves.
Note. Assume that theentire Dirac delta function is covered when integrating over
[−1,1].
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12.3.4 Neutrons (mass 1) are being scattered by a nucleus of massA (A > 1). In the center-
of-mass system the scattering is isotropic. Then, in the laboratory system the average of
the cosine of the angle of deflection of the neutron is

〈cosψ〉 = 1

2

∫ π

0

Acosθ + 1

(A2+ 2Acosθ + 1)1/2
sinθ dθ.

Show, by expansion of the denominator, that〈cosψ〉 = 2/3A.

12.3.5 A particular functionf (x) defined over the interval[−1,1] is expanded in a Legendre
series over this same interval. Show that the expansion is unique.

12.3.6 A functionf (x) is expanded in a Legendre seriesf (x)=∑∞
n=0anPn(x). Show that∫ 1

−1

[
f (x)

]2
dx =

∞∑
n=0

2a2
n

2n+ 1
.

This is the Legendre form of the Fourier series Parseval identity, Exercise 14.4.2. It also
illustrates Bessel’s inequality, Eq. (10.72), becoming an equality for a complete set.

12.3.7 Derive the recurrence relation(
1− x2)P ′n(x)= nPn−1(x)− nxPn(x)

from the Legendre polynomial generating function.

12.3.8 Evaluate
∫ 1

0 Pn(x)dx.

ANS. n= 2s; 1 for s = 0, 0 for s > 0,
n= 2s + 1; P2s(0)/(2s + 2)= (−1)s(2s − 1)!!/1(2s + 2)!!

Hint. Use a recurrence relation to replacePn(x) by derivatives and then integrate by
inspection. Alternatively, you can integrate the generating function.

12.3.9 (a) For

f (x)=
{+1, 0< x < 1
−1, −1< x < 0,

show that ∫ 1

−1

[
f (x)

]2
dx = 2

∞∑
n=0

(4n+ 3)

[
(2n− 1)!!
(2n+ 2)!!

]2

.

(b) By testing the series, prove that the series is convergent.

12.3.10 Prove that∫ 1

−1
x
(
1− x2)P ′nP ′m dx = 0, unlessm= n± 1,

= 2n(n2− 1)

4n2− 1
δm,n−1, if m< n.

= 2n(n+ 2)(n+ 1)

(2n+ 1)(2n+ 3)
δm,n+1, if m> n.
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12.3.11 The amplitude of a scattered wave is given by

f (θ)= 1

k

∞∑
l=0

(2l + 1)exp[iδl]sinδlPl(cosθ).

Here θ is the angle of scattering,l is the angular momentum eigenvalue,h̄k is the
incident momentum, andδl is the phase shift produced by the central potential that is
doing the scattering. The total cross section isσtot=

∫ |f (θ)|2d�. Show that

σtot= 4π

k2

∞∑
l=0

(2l + 1)sin2 δl.

12.3.12 The coincidence counting rate,W(θ), in a gamma–gamma angular correlation experi-
ment has the form

W(θ)=
∞∑
n=0

a2nP2n(cosθ).

Show that data in the rangeπ/2≤ θ ≤ π can, in principle, define the functionW(θ)

(and permit a determination of the coefficientsa2n). This means that although data in
the range 0≤ θ < π/2 may be useful as a check, they are not essential.

12.3.13 A conducting sphere of radiusr0 is placed in an initially uniform electric field,E0.
Show the following:

(a) The induced surface charge density is

σ = 3ε0E0 cosθ.

(b) The induced electric dipole moment is

P = 4πr3
0ε0E0.

The induced electric dipole moment can be calculated either from the surface
charge [part (a)] or by noting that the final electric fieldE is the result of su-
perimposing a dipole field on the original uniform field.

12.3.14 A chargeq is displaced a distancea along thez-axis from the center of a spherical
cavity of radiusR.

(a) Show that the electric field averaged over the volumea ≤ r ≤R is zero.
(b) Show that the electric field averaged over the volume 0≤ r ≤ a is

E= ẑEz =−ẑ
q

4πε0a2
(SI units)=−ẑ

nqa

3ε0
,

wheren is the number of such displaced charges per unit volume. This is a basic calcu-
lation in the polarization of a dielectric.
Hint. E=−∇ϕ.
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FIGURE 12.10 Charged,
conducting disk.

12.3.15 Determine the electrostatic potential (Legendre expansion) of a circular ring of electric
charge forr < a.

12.3.16 Calculate the electric field produced by the charged conducting ring of Example 12.3.3
for
(a) r > a, (b) r < a.

12.3.17 As an extension of Example 12.3.3, find the potentialψ(r, θ) produced by a charged
conducting disk, Fig. 12.10, forr > a, the radius of the disk. The charge densityσ (on
each side of the disk) is

σ(ρ)= q

4πa(a2− ρ2)1/2
, ρ2= x2+ y2.

Hint. The definite integral you get can be evaluated as a beta function, Section 8.4. For
more details see Section 5.03 of Smythe in Additional Readings.

ANS.ψ(r, θ)= q

4πε0r

∞∑
l=0

(−1)l
1

2l + 1

(
a

r

)2l

P2l (cosθ).

12.3.18 From the result of Exercise 12.3.17 calculate the potential of the disk. Since you are
violating the conditionr > a, justify your calculation.
Hint. You may run into the series given in Exercise 5.2.9.

12.3.19 The hemisphere defined byr = a,0 ≤ θ < π/2, has an electrostatic potential+V0.
The hemispherer = a,π/2< θ ≤ π has an electrostatic potential−V0. Show that the
potential at interior points is

V = V0

∞∑
n=0

4n+ 3

2n+ 2

(
r

a

)2n+1

P2n(0)P2n+1(cosθ)

= V0

∞∑
n=0

(−1)n
(4n+ 3)(2n− 1)!!

(2n+ 2)!!
(
r

a

)2n+1

P2n+1(cosθ).

Hint. You need Exercise 12.3.8.

12.3.20 A conducting sphere of radiusa is divided into two electrically separate hemispheres by
a thin insulating barrier at its equator. The top hemisphere is maintained at a potential
V0, the bottom hemisphere at−V0.
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(a) Show that the electrostatic potentialexterior to the two hemispheres is

V (r, θ)= V0

∞∑
s=0

(−1)s(4s + 3)
(2s − 1)!!
(2s + 2)!!

(
a

r

)2s+2

P2s+1(cosθ).

(b) Calculate the electric charge densityσ on the outside surface. Note that your series
diverges at cosθ =±1, as you expect from the infinite capacitance of this system
(zero thickness for the insulating barrier).

ANS. σ = ε0En =−ε0
∂V

∂r

∣∣∣∣
r=a

= ε0V0

∞∑
s=0

(−1)s(4s + 3)
(2s − 1)!!
(2s)!! P2s+1(cosθ).

12.3.21 In the notation of Section 10.4,ϕs(x) =√(2s + 1)/2Ps(x), a Legendre polynomial is
renormalized to unity. Explain how|ϕs〉〈ϕs | acts as a projection operator. In particular,
show that if|f 〉 =∑n a

′
n|ϕn〉, then

|ϕs〉〈ϕs |f 〉 = a′s |ϕs〉.
12.3.22 Expandx8 as a Legendre series. Determine the Legendre coefficients from Eq. (12.50),

am = 2m+ 1

2

∫ 1

−1
x8Pm(x)dx.

Check your values against AMS-55, Table 22.9. (For the complete reference, see Addi-
tional Readings in Chapter 8). This illustrates the expansion of a simple functionf (x).
Actually if f (x) is expressed as a power series, the technique of Exercise 12.2.14 is
both faster and more accurate.
Hint. Gaussian quadrature can be used to evaluate the integral.

12.3.23 Calculate and tabulate the electrostatic potential created by a ring of charge, Exam-
ple 12.3.3, forr/a = 1.5(0.5)5.0 andθ = 0◦(15◦)90◦. Carry terms throughP22(cosθ).
Note. The convergence of your series will be slow forr/a = 1.5. Truncating the series
atP22 limits you to about four-significant-figure accuracy.

Check value. For r/a = 2.5 andθ = 60◦, ψ = 0.40272(q/4πε0r).

12.3.24 Calculate and tabulate the electrostatic potential created by a charged disk, Ex-
ercise 12.3.17, forr/a = 1.5(0.5)5.0 and θ = 0◦(15◦)90◦. Carry terms through
P22(cosθ).

Check value. For r/a = 2.0 andθ = 15◦, ψ = 0.46638(q/4πε0r).

12.3.25 Calculate the first five (nonvanishing) coefficients in the Legendre series expansion of
f (x) = 1− |x| using Eq. (12.51) — numerical integration. Actually these coefficients
can be obtained in closed form. Compare your coefficients with those obtained from
Exercise 13.3.28.

ANS. a0= 0.5000,a2=−0.6250,a4= 0.1875,a6=−0.1016,a8= 0.0664.
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12.3.26 Calculate and tabulate the exterior electrostatic potential created by the two charged
hemispheres of Exercise 12.3.20, forr/a = 1.5(0.5)5.0 and θ = 0◦(15◦)90◦. Carry
terms throughP23(cosθ).

Check value. For r/a = 2.0 andθ = 45◦, V = 0.27066V0.

12.3.27 (a) Givenf (x)= 2.0, |x|< 0.5;f (x)= 0,0.5< |x|< 1.0, expandf (x) in a Legen-
dre series and calculate the coefficientsan througha80 (analytically).

(b) Evaluate
∑80

n=0anPn(x) for x = 0.400(0.005)0.600. Plot your results.
Note. This illustrates the Gibbs phenomenon of Section 14.5 and the danger of trying to
calculate with a series expansion in the vicinity of a discontinuity.

12.4 ALTERNATE DEFINITIONS OF LEGENDRE POLYNOMIALS

Rodrigues’ Formula

The series form of the Legendre polynomials (Eq. (12.8)) of Section 12.1 may be trans-
formed as follows. From Eq. (12.8),

Pn(x)=
[n/2]∑
r=0

(−1)r
(2n− 2r)!

2nr!(n− 2r)!(n− r)!x
n−2r . (12.64)

Forn an integer,

Pn(x) =
[n/2]∑
r=0

(−1)r
1

2nr!(n− r)!
(

d

dx

)n

x2n−2r

= 1

2nn!
(

d

dx

)n n∑
r=0

(−1)rn!
r!(n− r)!x

2n−2r . (12.64a)

Note the extension of the upper limit. The reader is asked to show in Exercise 12.4.1 that
the additional terms[n/2] + 1 to n in the summation contribute nothing. However, the
effect of these extra terms is to permit the replacement of the new summation by(x2−1)n

(binomial theorem once again) to obtain

Pn(x)= 1

2nn!
(

d

dx

)n(
x2− 1

)n
. (12.65)

This is Rodrigues’ formula. It is useful in proving many of the properties of the Legendre
polynomials, such as orthogonality. A related application is seen in Exercise 12.4.3. The
Rodrigues definition is extended in Section 12.5 to define the associated Legendre func-
tions. In Section 12.7 it is used to identify the orbital angular momentum eigenfunctions.
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Schlaefli Integral

Rodrigues’ formula provides a means of developing an integral representation ofPn(z).
Using Cauchy’s integral formula (Section 6.4)

f (z)= 1

2πi

∮
f (t)

t − z
dt (12.66)

with

f (z)= (z2− 1
)n
, (12.67)

we have (
z2− 1

)n = 1

2πi

∮
(t2− 1)n

t − z
dt. (12.68)

Differentiatingn times with respect toz and multiplying by 1/2nn! gives

Pn(z)= 1

2nn!
dn

dzn

(
z2− 1

)n = 2−n

2πi

∮
(t2− 1)n

(t − z)n+1
dt, (12.69)

with the contour enclosing the pointt = z.
This is the Schlaefli integral. Margenau and Murphy14 use this to derive the recurrence

relations we obtained from the generating function.
The Schlaefli integral may readily be shown to satisfy Legendre’s equation by differen-

tiation and direct substitution (Fig. 12.11). We obtain(
1− z2)d2Pn

dz2
− 2z

dPn

dz
+ n(n+ 1)Pn = n+ 1

2n2πi

∮
d

dt

[
(t2− 1)n+1

(t − z)n+2

]
dt. (12.70)

For integraln our function(t2−1)n+1/(t − z)n+2 is single-valued, and the integral around
the closed path vanishes. The Schlaefli integral may also be used to definePν(z) for non-
integralν integrating around the pointst = z, t = 1, but not crossing the cut line−1 to
−∞. We could equally well encircle the pointst = z and t = −1, but this would lead to

FIGURE 12.11 Schlaefli integral contour.

14H. Margenau and G. M. Murphy,The Mathematics of Physics and Chemistry, 2nd ed., Princeton, NJ: Van Nostrand (1956),
Section 3.5.
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nothing new. A contour aboutt = +1 andt = −1 will lead to a second solution,Qν(z),
Section 12.10.

Exercises

12.4.1 Show thateach term in the summation
n∑

r=[n/2]+1

(
d

dx

)n
(−1)rn!
r!(n− r)!x

2n−2r

vanishes (r andn integral).

12.4.2 Using Rodrigues’ formula, show that thePn(x) are orthogonal and that∫ 1

−1

[
Pn(x)

]2
dx = 2

2n+ 1
.

Hint. Use Rodrigues’ formula and integrate by parts.

12.4.3 Show that
∫ 1
−1x

mPn(x)dx = 0 whenm< n.
Hint. Use Rodrigues’ formula or expandxm in Legendre polynomials.

12.4.4 Show that ∫ 1

−1
xnPn(x) dx = 2n+1n!n!

(2n+ 1)! .

Note. You are expected to use Rodrigues’ formula and integrate by parts, but also see if
you can get the result from Eq. (12.8) by inspection.

12.4.5 Show that ∫ 1

−1
x2rP2n(x) dx = 22n+1(2r)!(r + n!)

(2r + 2n+ 1)!(r − n)! , r ≥ n.

12.4.6 As a generalization of Exercises 12.4.4 and 12.4.5, show that the Legendre expansions
of xs are

(a) x2r =
r∑

n=0

22n(4n+ 1)(2r)!(r + n)!
(2r + 2n+ 1)!(r − n)! P2n(x), s = 2r ,

(b) x2r+1=
r∑

n=0

22n+1(4n+ 3)(2r + 1)!(r + n+ 1)!
(2r + 2n+ 3)!(r − n)! P2n+1(x), s = 2r + 1.

12.4.7 A plane wave may be expanded in a series of spherical waves by the Rayleigh equation,

eikr cosγ =
∞∑
n=0

anjn(kr)Pn(cosγ ).

Show thatan = in(2n+ 1).
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Hint.

1. Use the orthogonality of thePn to solve foranjn(kr).
2. Differentiaten times with respect to(kr) and setr = 0 to eliminate ther-

dependence.
3. Evaluate the remaining integral by Exercise 12.4.4.

Note. This problem may also be treated by noting that both sides of the equation satisfy
the Heemholtz equation. The equality can be established by showing that the solutions
have the same behavior at the origin and also behave alike at large distances. A “by
inspection” type of solution is developed in Section 9.7 using Green’s functions.

12.4.8 Verify the Rayleigh equation of Exercise 12.4.7 by starting with the following steps:

(a) Differentiate with respect to(kr) to establish∑
n

anj
′
n(kr)Pn(cosγ )= i

∑
n

anjn(kr)cosγPn(cosγ ).

(b) Use a recurrence relation to replace cosγPn(cosγ ) by a linear combination of
Pn−1 andPn+1.

(c) Use a recurrence relation to replacej ′n by a linear combination ofjn−1 andjn+1.

12.4.9 From Exercise 12.4.7 show that

jn(kr)= 1

2in

∫ 1

−1
eikrµPn(µ)dµ.

This means that (apart from a constant factor) the spherical Bessel functionjn(kr) is
the Fourier transform of the Legendre polynomialPn(µ).

12.4.10 The Legendre polynomials and the spherical Bessel functions are related by

jn(z)= 1

2
(−i)n

∫ π

0
eizcosθPn(cosθ)sinθ dθ, n= 0,1,2, . . . .

Verify this relation by transforming the right-hand side into

zn

2n+1n!
∫ π

0
cos(zcosθ)sin2n+1 θ dθ

and using Exercise 11.7.8.

12.4.11 By direct evaluation of the Schlaefli integral show thatPn(1)= 1.

12.4.12 Explain why the contour of the Schlaefli integral, Eq. (12.69), is chosen to enclose the
pointst = z andt = 1 whenn→ ν, not an integer.

12.4.13 In numerical work (for example, the Gauss–Legendre quadrature) it is useful to establish
thatPn(x) hasn real zeros in the interior of[−1,1]. Show that this is so.
Hint. Rolle’s theorem shows that the first derivative of(x2 − 1)2n has one zero in the
interior of [−1,1]. Extend this argument to the second, third, and ultimately thenth
derivative.
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12.5 ASSOCIATED LEGENDRE FUNCTIONS

When Helmholtz’s equation is separated in spherical polar coordinates (Section 9.3), one
of the separated ODEs is the associated Legendre equation

1

sinθ

d

dθ

(
sinθ

dPm
n (cosθ)

dθ

)
+
[
n(n+ 1)− m2

sin2 θ

]
Pm
n (cosθ)= 0. (12.71)

With x = cosθ , this becomes

(
1− x2) d2

dx2
Pm
n (x)− 2x

d

dx
Pm
n (x)+

[
n(n+ 1)− m2

1− x2

]
Pm
n (x)= 0. (12.72)

If the azimuthal separation constantm2 = 0, we have Legendre’s equation, Eq. (12.28).
The regular solutionsPm

n (x) (with m not necessarily zero, but an integer) are

v ≡ Pm
n (x)= (1− x2)m/2 dm

dxm
Pn(x) (12.73a)

with m≥ 0 an integer.
One way of developing the solution of the associated Legendre equation is to start with

the regular Legendre equation and convert it into the associated Legendre equation by using
multiple differentiation. These multiple differentiations are suggested by Eq. (12.73a), the
generation of associated Legendre polynomials, and spherical harmonics of Section 12.6
more generally, in Section 4.3 using raising or lowering operators of Eq. (4.69) repeatedly.
For their derivative form see Exercise 12.6.8. We take Legendre’s equation(

1− x2)P ′′n − 2xP ′n + n(n+ 1)Pn = 0, (12.74)

and with the help of Leibniz’ formula15 differentiatem times. The result is(
1− x2)u′′ − 2x(m+ 1)u′ + (n−m)(n+m+ 1)u= 0, (12.75)

where

u≡ dm

dxm
Pn(x). (12.76)

Equation (12.74) is not self-adjoint. To put it into self-adjoint form and convert the weight-
ing function to 1, we replaceu(x) by

v(x)= (1− x2)m/2
u(x)= (1− x2)m/2d

mPn(x)

dxm
. (12.73b)

15Leibniz’ formula for thenth derivative of a product is

dn

dxn

[
A(x)B(x)

]= n∑
s=0

(
n

s

)
dn−s
dxn−s A(x)

ds

dxs
B(x),

(
n

s

)
= n!

(n− s)!s! ,

a binomial coefficient.
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Solving foru and differentiating, we obtain

u′ =
(
v′ + mxv

1− x2

)(
1− x2)−m/2

, (12.77)

u′′ =
[
v′′ + 2mxv′

1− x2
+ mv

1− x2
+ m(m+ 2)x2v

(1− x2)2

]
· (1− x2)−m/2

. (12.78)

Substituting into Eq. (12.74), we find that the new functionv satisfies the self-adjoint
ODE (

1− x2)v′′ − 2xv′ +
[
n(n+ 1)− m2

1− x2

]
v = 0, (12.79)

which is the associated Legendre equation; it reduces to Legendre’s equation whenm is set
equal to zero. Expressed in spherical polar coordinates, the associated Legendre equation
is

1

sinθ

d

dθ

(
sinθ

dv

dθ

)
+
[
n(n+ 1)− m2

sin2 θ

]
v = 0. (12.80)

Associated Legendre Polynomials

The regular solutions, relabeledPm
n (x), are

v ≡ Pm
n (x)= (1− x2)m/2 dm

dxm
Pn(x). (12.73c)

These are the associated Legendre functions.16 Since the highest power ofx in Pn(x) is
xn, we must havem ≤ n (or them-fold differentiation will drive our function to zero).
In quantum mechanics the requirement thatm≤ n has the physical interpretation that the
expectation value of the square of thez component of the angular momentum is less than
or equal to the expectation value of the square of the angular momentum vectorL,〈

L2
z

〉≤ 〈L2〉≡ ∫ ψ∗lmL2ψlm d3r.

From the form of Eq. (12.73c) we might expectm to be nonnegative. However, ifPn(x)

is expressed by Rodrigues’ formula, this limitation onm is relaxed and we may have−n≤
m≤ n, negative as well as positive values ofm being permitted. These limits are consistent
with those obtained by means of raising and lowering operators in Chapter 4. In particular,
|m| > n is ruled out. This also follows from Eq. (12.73c). Using Leibniz’ differentiation
formula once again, we can show (Exercise 12.5.1) thatPm

n (x) andP−mn (x) are related by

P−mn (x)= (−1)m
(n−m)!
(n+m)!P

m
n (x). (12.81)

16Occasionally (as in AMS-55; for the complete reference, see the Additional Readings of Chapter 8), one finds the associated
Legendre functions defined with an additional factor of(−1)m. This (−1)m seems an unnecessary complication at this point.
It will be included in the definition of the spherical harmonicsYm

n (θ,ϕ) in Section 12.6. Our definition agrees with Jackson’s
Electrodynamics (see Additional Readings of Chapter 11 for this reference). Note also that the upper indexm is not an exponent.
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From our definition of the associated Legendre functionsPm
n (x),

P 0
n (x)= Pn(x). (12.82)

A generating function for the associated Legendre functions is obtained, via Eq. (12.71),
from that of the ordinary Legendre polynomials:

(2m)!(1− x2)m/2

2mm!(1− 2tx + t2)m+1/2
=

∞∑
s=0

Pm
s+m(x)ts . (12.83)

If we drop the factor(1− x2)m/2 = sinm θ from this formula and define thepolynomi-
als Pm

s+m(x) = Pm
s+m(x)(1− x2)−m/2, then we obtain a practical form of the generating

function,

gm(x, t)≡ (2m)!
2mm!(1− 2tx + t2)m+1/2

=
∞∑
s=0

Pm
s+m(x)ts . (12.84)

We can derive a recursion relation for associated Legendre polynomials that is analogous
to Eqs. (12.14) and (12.17) by differentiation as follows:(

1− 2tx + t2
)∂gm
∂t

= (2m+ 1)(x − t)gm(x, t).

Substituting the defining expansions for associated Legendre polynomials we get(
1− 2tx + t2

)∑
s

sPm
s+m(x)ts−1= (2m+ 1)

∑
s

[
xPm

s+mts −Pm
s+mts+1].

Comparing coefficients of powers oft in these power series, we obtain the recurrence
relation

(s + 1)Pm
s+m+1− (2m+ 1+ 2s)xPm

s+m + (s + 2m)Pm
s+m−1= 0. (12.85)

Form= 0 ands = n this relation is Eq. (12.17).
Before we can use this relation we need to initialize it, that is, relate the associated

Legendre polynomials to ordinary Legendre polynomials. We can usePm
m = (2m − 1)!!

from Eq. (12.73c). Also, since|m| ≤ n, we may setPn+1
n = 0 and use this to obtain starting

values for various recursive processes. We observe that(
1− 2xt + t2

)
g1(x, t)=

(
1− 2xt + t2

)−1/2=
∑
s

Ps(x)t
s, (12.86)

so upon inserting Eq. (12.84) we get the recursion

P1
s+1− 2xP1

s +P1
s−1= Ps(x). (12.87)

More generally, we also have the identity(
1− 2xt + t2

)
gm+1(x, t)= (2m+ 1)gm(x, t), (12.88)

from which we extract the recursion

Pm+1
s+m+1− 2xPm+1

s+m +Pm+1
s+m−1= (2m+ 1)Pm

s+m(x), (12.89)

which relates the associated Legendre polynomials with superindexm+1 to those withm.

Form= 0 we recover the initial recursion Eq. (12.87).
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Table 12.2 Associated Legendre Functions

P 1
1 (x)= (1− x2)1/2= sinθ

P 1
2 (x)= 3x(1− x2)1/2= 3cosθ sinθ

P 2
2 (x)= 3(1− x2)= 3sin2 θ

P 1
3 (x)= 3

2(5x
2− 1)(1− x2)1/2= 3

2(5cos2 θ − 1)sinθ

P 2
3 (x)= 15x(1− x2)= 15cosθ sin2 θ

P 3
3 (x)= 15(1− x2)3/2= 15sin3 θ

P 1
4 (x)= 5

2(7x
3− 3x)(1− x2)1/2= 5

2(7cos3 θ − 3cosθ)sinθ

P 2
4 (x)= 15

2 (7x2− 1)(1− x2)= 15
2 (7cos2 θ − 1)sin2 θ

P 3
4 (x)= 105x(1− x2)3/2= 105cosθ sin3 θ

P 4
4 (x)= 105(1− x2)2= 105sin4 θ

Example 12.5.1 LOWEST ASSOCIATED LEGENDRE POLYNOMIALS

Now we are ready to derive the entries of Table 12.2. Form = 1 ands = 0, Eq. (12.87)
yieldsP1

1 = 1, becauseP1
0 = 0= P1−1 do not occur in the definition, Eq. (12.84), of the

associated Legendre polynomials. Multiplying by(1− x2)1/2= sinθ we get the first line
of Table 12.2. Fors = 1 we find, from Eq. (12.87),

P1
2(x)= P1+ 2xP1

1 = x + 2x = 3x,

from which the second line of Table 12.2, 3 cosθ sinθ , follows upon multiplying by sinθ .
For s = 2 we get

P1
3(x)= P2+ 2xP1

2 −P1
1 =

1

2

(
3x2− 1

)+ 6x2− 1= 15

2
x2− 3

2
,

in agreement with line 4 of Table 12.2. To get line 3 we use Eq. (12.88). Form= 1, s = 0,
this givesP2

2(x) = 3P1
1(x) = 3, and multiplying by 1− x2 = sin2 θ reproduces line 3 of

Table 12.2. For lines 5, 8, 9, Eq. (12.84) may be used, which we leave as an exercise. More
generally, we use Eq. (12.89) instead of Eq. (12.87) to get a starting value ofPm

m . Then
Eq. (12.85) reduces to a two-term formula forPm

m , giving (2m− 1)!!. Note that, ifm= 0,
this is(−1)!! = 1. �

Example 12.5.2 SPECIAL VALUES

Forx = 1 we use(
1− 2t + t2

)−m−1/2= (1− t)−2m−1=
∞∑
s=0

(−2m− 1
s

)
t s

in Eq. (12.84) and find

Pm
s+m(1)=

(2m)!
2mm!

(−2m− 1
s

)
, (12.90)
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where (−m
s

)
= 1

for s = 0 and (−m
s

)
= (−m)(−m− 1) · · · (1− s −m)

s!
for s ≥ 1. Form = 1, s = 0 we haveP1

1(1) =
(−3

0

) = 1; for s = 1, P1
2(1) = −

(−3
1

) = 3;

for s = 2, P1
3(1)=

(−3
2

)= (−3)(−4)
2 = 6= 3

2(5− 1), which all agree with Table 12.2. For
x = 0 we can also use the binomial expansion, which we leave as an exercise. �

Recurrence Relations

As expected and already seen, the associated Legendre functions satisfy recurrence rela-
tions. Because of the existence of two indices instead of just one, we have a wide variety
of recurrence relations:

Pm+1
n − 2mx

(1− x2)1/2
Pm
n +

[
n(n+ 1)−m(m− 1)

]
Pm−1
n = 0, (12.91)

(2n+ 1)xPm
n = (n+m)Pm

n−1+ (n−m+ 1)Pm
n+1, (12.92)

(2n+ 1)
(
1− x2)1/2

Pm
n = Pm+1

n+1 − Pm+1
n−1

= (n+m)(n+m− 1)Pm−1
n−1

− (n−m+ 1)(n−m+ 2)Pm−1
n+1 , (12.93)

(
1− x2)1/2

Pm′
n = 1

2
Pm+1
n − 1

2
(n+m)(n−m+ 1)Pm−1

n . (12.94)

These relations, and many other similar ones, may be verified by use of the generat-
ing function (Eq. (12.4)), by substitution of the series solution of the associated Legen-
dre equation (12.79) or reduction to the Legendre polynomial recurrence relations, us-
ing Eq. (12.73c). As an example of the last method, consider Eq. (12.93). It is similar to
Eq. (12.23):

(2n+ 1)Pn(x)= P ′n+1(x)− P ′n−1(x). (12.95)

Let us differentiate this Legendre polynomial recurrence relationm times to obtain

(2n+ 1)
dm

dxm
Pn(x) = dm

dxm
P ′n+1(x)−

dm

dxm
P ′n−1(x)

= dm+1

dxm+1
Pn+1(x)− dm+1

dxm+1
Pn−1(x). (12.96)

Now multiplying by(1− x2)(m+1)/2 and using the definition ofPn(x), we obtain the first
part of Eq. (12.93).
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Parity

The parity relation satisfied by the associated Legendre functions may be determined by
examination of the defining equation (12.73c). Asx→−x, we already know thatPn(x)

contributes a(−1)n. Them-fold differentiation yields a factor of(−1)m. Hence we have

Pm
n (−x)= (−1)n+mPm

n (x). (12.97)

A glance at Table 12.2 verifies this for 1≤m≤ n≤ 4.
Also, from the definition in Eq. (12.73c),

Pm
n (±1)= 0, for m 
= 0. (12.98)

Orthogonality

The orthogonality of thePm
n (x) follows from the ODE, just as for thePn(x) (Section 12.3),

if m is the same for both functions. However, it is instructive to demonstrate the orthogo-
nality by another method, a method that will also provide the normalization constant.

Using the definition in Eq. (12.73c) and Rodrigues’ formula (Eq. (12.65)) forPn(x), we
find ∫ 1

−1
Pm
p (x)Pm

q (x) dx = (−1)m

2p+qp!q!
∫ 1

−1
Xm

(
dp+m

dxp+m
Xp

)
dq+m

dxq+m
Xq dx. (12.99)

The functionX is given byX ≡ (x2−1). If p 
= q, let us assume thatp < q. Notice that the
superscriptm is the same for both functions. This is an essential condition. The technique
is to integrate repeatedly by parts; all the integrated parts will vanish as long as there is a
factorX = x2− 1. Let us integrateq +m times to obtain∫ 1

−1
Pm
p (x)Pm

q (x) dx = (−1)m(−1)q+m

2p+qp!q!
∫ 1

−1
Xq dq+m

dxq+m

(
Xm dp+m

dxp+m
Xp

)
dx. (12.100)

The integrand on the right-hand side is now expanded by Leibniz’ formula to give

Xq dq+m

dxq+m

(
Xm dp+m

dxp+m
Xp

)

=Xq

q+m∑
i=0

(q +m)!
i!(q +m− i)!

(
dq+m−i

dxq+m−i
Xm

)
dp+m+i

dxp+m+i
Xp. (12.101)

Since the termXm contains no power ofx greater thanx2m, we must have

q +m− i ≤ 2m (12.102)

or the derivative will vanish. Similarly,

p+m+ i ≤ 2p. (12.103)

Adding both inequalities yields

q ≤ p, (12.104)



12.5 Associated Legendre Functions 777

which contradicts our assumption thatp < q. Hence, there is no solution fori and the
integral vanishes. The same result obviously will follow ifp > q.

For the remaining case,p = q, we have the single term corresponding toi = q − m.
Putting Eq. (12.101) into Eq. (12.100), we have∫ 1

−1

[
Pm
q (x)

]2
dx = (−1)q+2m(q +m)!

22qq!q!(2m)!(q −m)!
∫ 1

−1
Xq

(
d2m

dx2m
Xm

)(
d2q

dx2q
Xq

)
dx.

(12.105)
Since

Xm = (x2− 1
)m = x2m −mx2m−2+ · · · , (12.106)

d2m

dx2m
Xm = (2m)!, (12.107)

Eq. (12.105) reduces to∫ 1

−1

[
Pm
q (x)

]2
dx = (−1)q+2m(2q)!(q +m)!

22qq!q!(q −m)!
∫ 1

−1
Xq dx. (12.108)

The integral on the right is just

(−1)q
∫ π

0
sin2q+1 θ dθ = (−1)q22q+1q!q!

(2q + 1)! (12.109)

(compare Exercise 8.4.9). Combining Eqs. (12.108) and (12.109), we have theorthogo-
nality integral, ∫ 1

−1
Pm
p (x)Pm

q (x) dx = 2

2q + 1
· (q +m)!
(q −m)!δpq, (12.110)

or, in spherical polar coordinates,∫ π

0
Pm
p (cosθ)Pm

q (cosθ)sinθ dθ = 2

2q + 1
· (q +m)!
(q −m)!δpq. (12.111)

The orthogonality of the Legendre polynomials is a special case of this result, obtained
by settingm equal to zero; that is, form = 0, Eq. (12.110) reduces to Eqs. (12.47) and
(12.48). In both Eqs. (12.110) and (12.111), our Sturm–Liouville theory of Chapter 10
could provide the Kronecker delta. A special calculation, such as the analysis here, is re-
quired for the normalization constant.

The orthogonality of the associated Legendre functions over the same interval and with
the same weighting factor as the Legendre polynomials does not contradict the unique-
ness of the Gram–Schmidt construction of the Legendre polynomials, Example 10.3.1.
Table 12.2 suggests (and Section 12.4 verifies) that

∫ 1
−1P

m
p (x)Pm

q (x) dx may be written as∫ 1

−1
Pm
p (x)Pm

q (x)
(
1− x2)m dx,

where we defined earlier

Pm
p (x)

(
1− x2)m/2= Pm

p (x).
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The functionsPm
p (x) may be constructed by the Gram–Schmidt procedure with the weight-

ing functionw(x)= (1− x2)m.
It is possible to develop an orthogonality relation for associated Legendre functions of

the same lower index but different upper index. We find∫ 1

−1
Pm
n (x)P k

n (x)
(
1− x2)−1

dx = (n+m)!
m(n−m!) δm,k. (12.112)

Note that a new weighting factor,(1− x2)−1, has been introduced. This relation is a math-
ematical curiosity. In physical problems with spherical symmetry solutions of Eqs. (12.80)
and (9.64) appear in conjunction with those of Eq. (9.61), and orthogonality of the az-
imuthal dependence makes the two upper indices equal and always leads to Eq. (12.111).

Example 12.5.3 MAGNETIC INDUCTION FIELD OF A CURRENT LOOP

Like the other ODEs of mathematical physics, the associated Legendre equation is likely
to pop up quite unexpectedly. As an illustration, consider the magnetic induction fieldB
and magnetic vector potentialA created by a single circular current loop in the equatorial
plane (Fig. 12.12).

We know from electromagnetic theory that the contribution of current elementI dλ to
the magnetic vector potential is

dA= µ0

4π

I dλ

r
. (12.113)

(This follows from Exercise 1.14.4 and Section 9.7) Equation (12.113), plus the symmetry
of our system, shows thatA has only aϕ̂ component and that the component is independent

FIGURE 12.12 Circular current
loop.
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of ϕ,17

A= ϕ̂Aϕ(r, θ). (12.114)

By Maxwell’s equations,

∇×H= J,
∂D
∂t
= 0 (SI units). (12.115)

Since

µ0H= B=∇×A, (12.116)

we have

∇× (∇×A)= µ0J, (12.117)

whereJ is the current density. In our problemJ is zero everywhere except in the current
loop. Therefore, away from the loop,

∇×∇× ϕ̂Aϕ(r, θ)= 0, (12.118)

using Eq. (12.114).
From the expression for the curl in spherical polar coordinates (Section 2.5), we obtain

(Example 2.5.2)

∇× [∇× ϕ̂Aϕ(r, θ)
] = ϕ̂

[
−∂2Aϕ

∂r2
− 2

r

∂Aϕ

∂r
− 1

r2

∂2Aϕ

∂θ2
− 1

r2

∂

∂θ
(cotθAϕ)

]
= 0. (12.119)

LettingAϕ(r, θ)=R(r)�(θ) and separating variables, we have

r2d
2R

dr2
+ 2

dR

dr
− n(n+ 1)R = 0, (12.120)

d2�

dθ2
+ cotθ

d�

dθ
+ n(n+ 1)�− �

sin2 θ
= 0. (12.121)

The second equation is the associated Legendre equation (12.80) withm= 1, and we may
immediately write

�(θ)= P 1
n (cosθ). (12.122)

The separation constantn(n+1), n a nonnegative integer, was chosen to keep this solution
well behaved.

By trial, lettingR(r) = rα , we find thatα = n, or −n− 1. The first possibility is dis-
carded, for our solution must vanish asr→∞. Hence

Aϕn = bn

rn+1
P 1
n (cosθ)= cn

(
a

r

)n+1

P 1
n (cosθ) (12.123)

17Pair off corresponding current elementsI dλ(ϕ1) andI dλ(ϕ2), whereϕ − ϕ1= ϕ2− ϕ.
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and

Aϕ(r, θ)=
∞∑
n=1

cn

(
a

r

)n+1

P 1
n (cosθ) (r > a). (12.124)

Herea is the radius of the current loop.
SinceAϕ must be invariant to reflection in the equatorial plane, by the symmetry of our

problem,

Aϕ(r,cosθ)=Aϕ(r,−cosθ), (12.125)

the parity property ofPm
n (cosθ) (Eq. (12.97)) shows thatcn = 0 for n even.

To complete the evaluation of the constants, we may use Eq. (12.124) to calculateBz

along thez-axis (Bz = Br(r, θ = 0)) and compare with the expression obtained from the
Biot–Savart law. This is the same technique as used in Example 12.3.3. We have (compare
Eq. (2.47))

Br =∇×A
∣∣
r
= 1

r sinθ

[
∂

∂θ
(sinθAϕ)

]
= cotθ

r
Aϕ + 1

r

∂Aϕ

∂θ
. (12.126)

Using

∂P 1
n (cosθ)

∂θ
=−sinθ

dP 1
n (cosθ)

d(cosθ)
=−1

2
P 2
n +

n(n+ 1)

2
P 0
n (12.127)

(Eq. (12.94)) and then Eq. (12.91) withm= 1,

P 2
n (cosθ)− 2 cosθ

sinθ
P 1
n (cosθ)+ n(n+ 1)Pn(cosθ)= 0, (12.128)

we obtain

Br(r, θ)=
∞∑
n=1

cnn(n+ 1)
an+1

rn+2
Pn(cosθ), r > a, (12.129)

(for all θ ). In particular, forθ = 0,

Br(r,0)=
∞∑
n=1

cnn(n+ 1)
an+1

rn+2
. (12.130)

We may also obtain

Bθ(r, θ)=−1

r

∂(rAϕ)

∂r
=

∞∑
n=1

cnn
an+1

rn+2
P 1
n (cosθ), r > a, (12.131)

The Biot–Savart law states that

dB= µ0

4π
I
dλ× r̂
r2

(SI units). (12.132)

We now integrate over the perimeter of our loop (radiusa). The geometry is shown in
Fig. 12.13. The resulting magnetic induction field isẑBz, along thez-axis, with

Bz = µ0I

2
a2(a2+ z2)−3/2= µ0I

2

a2

z3

(
1+ a2

z2

)−3/2

. (12.133)
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FIGURE 12.13 Biot–Savart law applied to a circular loop.

Expanding by the binomial theorem, we obtain

Bz = µ0I

2

a2

z3

[
1− 3

2

(
a

z

)2

+ 15

8

(
a

z

)4

− · · ·
]

= µ0I

2

a2

z3

∞∑
s=0

(−1)s
(2s + 1)!!
(2s)!!

(
a

z

)2s

, z > a. (12.134)

Equating Eqs. (12.130) and (12.134) term by term (withr = z),18 we find

c1= µ0I

4
, c3=−µ0I

16
, c2= c4= · · · = 0.

cn = (−1)(n−1)/2 µ0I

2n(n+ 1)
· (n/2)!
[(n− 1)/2]!(1

2)!
, n odd.

(12.135)

Equivalently, we may write

c2n+1= (−1)n
µ0I

22n+2
· (2n)!
n!(n+ 1)! = (−1)n

µ0I

2
· (2n− 1)!!
(2n+ 2)!! (12.136)

18The descending power series is also unique.
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and

Aϕ(r, θ) =
(
a

r

)2 ∞∑
n=0

c2n+1

(
a

r

)2n

P 1
2n+1(cosθ), (12.137)

Br(r, θ) = a2

r3

∞∑
n=0

c2n+1(2n+ 1)(2n+ 2)

(
a

r

)2n

P2n+1(cosθ), (12.138)

Bθ(r, θ) = a2

r3

∞∑
n=0

c2n+1(2n+ 1)

(
a

r

)2n

P 1
2n+1(cosθ). (12.139)

These fields may be described in closed form by the use of elliptic integrals. Exer-
cise 5.8.4 is an illustration of this approach. A third possibility is direct integration of
Eq. (12.113) by expanding the denominator of the integral forAϕ in Exercise 5.8.4 as
a Legendre polynomial generating function. The current is specified by Dirac delta func-
tions. These methods have the advantage of yielding the constantscn directly.

A comparison of magnetic current loop dipole fields and finite electric dipole fields may
be of interest. For the magnetic current loop dipole, the preceding analysis gives

Br(r, θ) = µ0I

2

a2

r3

[
P1− 3

2

(
a

r

)2

P3+ · · ·
]
, (12.140)

Bθ(r, θ) = µ0I

4

a2

r3

[
P 1

1 −
3

4

(
a

r

)2

P 1
3 + · · ·

]
. (12.141)

From the finite electric dipole potential of Section 12.1 we have

Er(r, θ) = qa

πε0r3

[
P1+ 2

(
a

r

)2

P3+ · · ·
]
, (12.142)

Eθ(r, θ) = qa

2πε0r3

[
P 1

1 +
(
a

r

)2

P 1
3 + · · ·

]
. (12.143)

The two fields agree in form as far as the leading term is concerned(r−3P1), and this is
the basis for calling them both dipole fields.

As with electric multipoles, it is sometimes convenient to discusspoint magnetic mul-
tipoles (see Fig. 12.14). For the dipole case, Eqs. (12.140) and (12.141), the point dipole
is formed by taking the limita→ 0, I →∞, with Ia2 held constant. Withn a unit vector
normal to the current loop (positive sense by right-hand rule, Section 1.10), the magnetic
momentm is given bym= nIπa2. �

FIGURE 12.14 Electric dipole.



12.5 Associated Legendre Functions 783

Exercises

12.5.1 Prove that

P−mn (x)= (−1)m
(n−m)!
(n+m)!P

m
n (x),

wherePm
n (x) is defined by

Pm
n (x)= 1

2nn!
(
1− x2)m/2 dn+m

dxn+m
(
x2− 1

)n
.

Hint. One approach is to apply Leibniz’ formula to(x + 1)n(x − 1)n.

12.5.2 Show that

P 1
2n(0) = 0,

P 1
2n+1(0) = (−1)n

(2n+ 1)!
(2nn!)2 = (−1)n

(2n+ 1)!!
(2n)!! ,

by each of these three methods:

(a) use of recurrence relations,
(b) expansion of the generating function,
(c) Rodrigues’ formula.

12.5.3 EvaluatePm
n (0).

ANS.Pm
n (0)=

(−1)(n−m)/2 (n+m)!
2n((n−m)/2)!((n+m)/2!) , n+m even,

0, n+m odd.

Also,Pm
n (0)= (−1)(n−m)/2 (n+m− 1)!!

(n−m)!! , n+m even.

12.5.4 Show that

Pn
n (cosθ)= (2n− 1)!!sinn θ, n= 0,1,2, . . . .

12.5.5 Derive the associated Legendre recurrence relation

Pm+1
n (x)− 2mx

(1− x2)1/2
Pm
n (x)+ [n(n+ 1)−m(m− 1)

]
Pm−1
n (x)= 0.

12.5.6 Develop a recurrence relation that will yieldP 1
n (x) as

P 1
n (x)= f1(x,n)Pn(x)+ f2(x,n)Pn−1(x).

Follow either (a) or (b).

(a) Derive a recurrence relation of the preceding form. Givef1(x,n) and f2(x,n)

explicitly.
(b) Find the appropriate recurrence relation in print.

(1) Give the source.
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(2) Verify the recurrence relation.

ANS.P 1
n (x)=−

nx

(1− x2)1/2
Pn + n

(1− x2)1/2
Pn−1.

12.5.7 Show that

sinθ
d

d cosθ
Pn(cosθ)= P 1

n (cosθ).

12.5.8 Show that

(a)
∫ π

0

(
dPm

n

dθ

dPm
n′

dθ
+ m2Pm

n Pm
n′

sin2 θ

)
sinθ dθ = 2n(n+ 1)

2n+ 1

(n+m)!
(n−m)!δnn′ ,

(b)
∫ π

0

(
P 1
n

sinθ

dP 1
n′

dθ
+ P 1

n′
sinθ

dP 1
n

dθ

)
sinθ dθ = 0.

These integrals occur in the theory of scattering of electromagnetic waves by spheres.

12.5.9 As a repeat of Exercise 12.3.10, show, using associated Legendre functions, that∫ 1

−1
x
(
1− x2)P ′n(x)P ′m(x)dx = n+ 1

2n+ 1
· 2

2n− 1
· n!
(n− 2)!δm,n−1

+ n

2n+ 1
· 2

2n+ 3
· (n+ 2)!

n! δm,n+1.

12.5.10 Evaluate ∫ π

0
sin2 θP 1

n (cosθ) dθ.

12.5.11 The associated Legendre polynomialPm
n (x) satisfies the self-adjoint ODE

(
1− x2)d2Pm

n (x)

dx2
− 2x

dPm
n (x)

dx
+
[
n(n+ 1)− m2

1− x2

]
Pm
n (x)= 0.

From the differential equations forPm
n (x) andP k

n (x) show that∫ 1

−1
Pm
n (x)P k

n (x)
dx

1− x2
= 0,

for k 
=m.

12.5.12 Determine the vector potential of a magnetic quadrupole by differentiating the magnetic
dipole potential.

ANS. AMQ = µ0

2

(
Ia2)(dz)ϕ̂P 1

2 (cosθ)

r3
+ higher-order terms.

BMQ = µ0
(
Ia2)(dz)[r̂

3P2(cosθ)

r4
+ θ̂

P 1
2 (cosθ)

r4

]
.
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This corresponds to placing a current loop of radiusa at z→ dz and an oppositely
directed current loop atz→−dz and lettinga→ 0 subject to(dz)a (dipole strength)
equal constant.
Another approach to this problem would be to integratedA (Eq. (12.113), to expand the
denominator in a series of Legendre polynomials, and to use the Legendre polynomial
addition theorem (Section 12.8).

12.5.13 A single loop of wire of radiusa carries a constant currentI .

(a) Find the magnetic inductionB for r < a, θ = π/2.
(b) Calculate the integral of the magnetic flux(B · dσ ) over the area of the current

loop, that is ∫ a

0

∫ 2π

0
Bz

(
r, θ = π

2

)
dϕ r dr.

ANS.∞.

The Earth is within such a ring current, in whichI approximates millions of amperes
arising from the drift of charged particles in the Van Allen belt.

12.5.14 (a) Show that in the point dipole limit the magnetic induction field of the current loop
becomes

Br(r, θ) = µ0

2π

m

r3
P1(cosθ),

Bθ (r, θ) = µ0

2π

m

r3
P 1

1 (cosθ)

with m= Iπa2.
(b) Compare these results with the magnetic induction of the point magnetic dipole of

Exercise 1.8.17. Takem= ẑm.

12.5.15 A uniformly charged spherical shell is rotating with constant angular velocity.

(a) Calculate the magnetic inductionB along the axis of rotation outside the sphere.
(b) Using the vector potential series of Section 12.5, findA and thenB for all space

outside the sphere.

12.5.16 In the liquid drop model of the nucleus, the spherical nucleus is subjected to small
deformations. Consider a sphere of radiusr0 that is deformed so that its new surface is
given by

r = r0
[
1+ α2P2(cosθ)

]
.

Find the area of the deformed sphere through terms of orderα2
2.

Hint.

dA=
[
r2+

(
dr

dθ

)2]1/2

r sinθ dθ dϕ.

ANS.A= 4πr2
0

[
1+ 4

5α
2
2 +O

(
α3

2

)]
.



786 Chapter 12 Legendre Functions

Note. The area elementdA follows from noting that the line elementds for fixed ϕ is
given by

ds = (r2dθ2+ dr2)1/2=
(
r2+

(
dr

dθ

)2)1/2

dθ.

12.5.17 A nuclear particle is in a spherical square well potentialV (r, θ,ϕ) = 0 for 0≤ r < a

and∞ for r > a. The particle is described by a wave functionψ(r, θ,ϕ) which satisfies
the wave equation

− h̄2

2M
∇2ψ + V0ψ =Eψ, r < a,

and the boundary condition

ψ(r = a)= 0.

Show that for the energyE to be a minimum there must be no angular dependence in
the wave function; that is,ψ =ψ(r).
Hint. The problem centers on the boundary condition on the radial function.

12.5.18 (a) Write a subroutine to calculate the numerical value of the associated Legendre
functionP 1

N(x) for given values ofN andx.
Hint. With the known forms ofP 1

1 andP 1
2 you can use the recurrence relation

Eq. (12.92) to generateP 1
N , N > 2.

(b) Check your subroutine by having it calculateP 1
N(x) for x = 0.0(0.5) 1.0 andN =

1(1)10. Check these numerical values against the known values ofP 1
N(0) and

P 1
N(1) and against the tabulated values ofP 1

N(0.5).

12.5.19 Calculate the magnetic vector potential of a current loop, Example 12.5.1. Tabulate your
results forr/a = 1.5(0.5)5.0 andθ = 0◦(15◦)90◦. Include terms in the series expansion,
Eq. (12.137), until the absolute values of the terms drop below the leading term by a fac-
tor of 105 or more.
Note. This associated Legendre expansion can be checked by comparison with the el-
liptic integral solution, Exercise 5.8.4.

Check value. For r/a = 4.0 andθ = 20◦,
Aϕ/µ0I = 4.9398× 10−3.

12.6 SPHERICAL HARMONICS

In the separation of variables of (1) Laplace’s equation, (2) Helmholtz’s or the space-
dependence of the electromagnetic wave equation, and (3) the Schrödinger wave equation
for central force fields,

∇2ψ + k2f (r)ψ = 0, (12.144)
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the angular dependence, coming entirely from the Laplacian operator, is19

�(ϕ)

sinθ

d

dθ

(
sinθ

d�

dθ

)
+ �(θ)

sin2 θ

d2�(ϕ)

dϕ2
+ n(n+ 1)�(θ)�(ϕ)= 0. (12.145)

Azimuthal Dependence — Orthogonality

The separated azimuthal equation is

1

�(ϕ)

d2�(ϕ)

dϕ2
=−m2, (12.146)

with solutions

�(ϕ)= e−imϕ, eimϕ, (12.147)

with m integer, which satisfy the orthogonal condition∫ 2π

0
e−im1ϕeim2ϕ dϕ = 2πδm1m2. (12.148)

Notice that it is the product�∗m1
(ϕ)�m2(ϕ) that is taken and that∗ is used to indicate the

complex conjugate function. This choice is not required, but it is convenient for quantum
mechanical calculations. We could have used

�= sinmϕ, cosmϕ (12.149)

and the conditions of orthogonality that form the basis for Fourier series (Chapter 14).
For applications such as describing the Earth’s gravitational or magnetic field, sinmϕ and
cosmϕ would be the preferred choice (see Example 12.6.1).

In electrostatics and most other physical problems we requirem to be an integer in order
that �(ϕ) be a single-valued function of the azimuth angle. In quantum mechanics the
question is much more involved: Compare the footnote in Section 9.3.

By means of Eq. (12.148),

�m = 1√
2π

eimϕ (12.150)

is orthonormal (orthogonal and normalized) with respect to integration over the azimuth
angleϕ.

19For a separation constant of the formn(n+ 1) with n an integer, a Legendre-equation-series solution becomes a polynomial.
Otherwise both series solutions diverge, Exercise 9.5.5.
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Polar Angle Dependence

Splitting off the azimuthal dependence, the polar angle dependence(θ) leads to the asso-
ciated Legendre equation (12.80), which is satisfied by the associated Legendre functions;
that is,�(θ) = Pm

n (cosθ). To include negative values ofm, we use Rodrigues’ formula,
Eq. (12.65), in the definition ofPm

n (cosθ). This leads to

Pm
n (cosθ)= 1

2nn!
(
1− x2)m/2 dm+n

dxm+n
(
x2− 1

)n
, −n≤m≤ n. (12.151)

Pm
n (cosθ) andP−mn (cosθ) are related as indicated in Exercise 12.5.1. An advantage of this

approach over simply definingPm
n (cosθ) for 0≤m≤ n and requiring thatP−mn = Pm

n is
that the recurrence relations valid for 0≤m≤ n remain valid for−n≤m< 0.

Normalizing the associated Legendre function by Eq. (12.110), we obtain the orthonor-
mal functions √

2n+ 1

2

(n−m)!
(n+m)!P

m
n (cosθ), −n≤m≤ n, (12.152)

which are orthonormal with respect to the polar angleθ .

Spherical Harmonics

The function�m(ϕ) (Eq. (12.150)) is orthonormal with respect to the azimuthal an-
gle ϕ. We take the product of�m(ϕ) and the orthonormal function in polar angle from
Eq. (12.152) and define

Ym
n (θ,ϕ)≡ (−1)m

√
2n+ 1

4π

(n−m)!
(n+m)!P

m
n (cosθ)eimϕ (12.153)

to obtain functions of two angles (and two indices) that are orthonormal over the spheri-
cal surface. TheseYm

n (θ,ϕ) are spherical harmonics, of which the first few are plotted in
Fig. 12.15. The complete orthogonality integral becomes∫ 2π

ϕ=0

∫ π

θ=0
Ym1∗
n1

(θ,ϕ)Ym2
n2

(θ,ϕ)sinθ dθ dϕ = δn1n2δm1m2. (12.154)

The extra(−1)m included in the defining equation ofYm
n (θ,ϕ) deserves some comment.

It is clearly legitimate, since Eq. (12.144) is linear and homogeneous. It is not necessary,
but in moving on to certain quantum mechanical calculations, particularly in the quan-
tum theory of angular momentum (Section 12.7), it is most convenient. The factor(−1)m

is a phase factor, often called the Condon–Shortley phase, after the authors of a classic
text on atomic spectroscopy. The effect of this(−1)m (Eq. (12.153)) and the(−1)m of
Eq. (12.73c) forP−mn (cosθ) is to introduce an alternation of sign among the positivem

spherical harmonics. This is shown in Table 12.3.
The functionsYm

n (θ,ϕ) acquired the namespherical harmonics first because they are
defined over the surface of a sphere withθ the polar angle andϕ the azimuth. Thehar-
monic was included because solutions of Laplace’s equation were called harmonic func-
tions andYm

n (cos, ϕ) is the angular part of such a solution.
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FIGURE 12.15 [�Ym
l (θ,ϕ)]2 for 0≤ l ≤ 3,m= 0, . . . ,3.
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Table 12.3 Spherical Harmon-
ics (Condon–Shortley Phase)

Y0
0 (θ,ϕ)=

1√
4π

Y1
1 (θ,ϕ)=−

√
3

8π
sinθeiϕ

Y0
1 (θ,ϕ)=

√
3

4π
cosθ

Y−1
1 (θ,ϕ)=+

√
3

8π
sinθe−iϕ

Y2
2 (θ,ϕ)=

√
5

96π
3sin2 θe2iϕ

Y1
2 (θ,ϕ)=−

√
5

24π
3sinθ cosθeiϕ

Y0
2 (θ,ϕ)=

√
5

4π

(
3

2
cos2 θ − 1

2

)

Y−1
2 (θ,ϕ)=+

√
5

24π
3sinθ cosθe−iϕ

Y−2
2 (θ,ϕ)=

√
5

96π
3sin2 θe−2iϕ

In the framework of quantum mechanics Eq. (12.145) becomes an orbital angular mo-
mentum equation and the solutionYM

L (θ,ϕ) (n replaced byL,m replaced byM) is an
angular momentum eigenfunction,L being the angular momentum quantum number and
M the z-axis projection ofL. These relationships are developed in more detail in Sec-
tions 4.3 and 12.7.

Laplace Series, Expansion Theorem

Part of the importance of spherical harmonics lies in the completeness property, a con-
sequence of the Sturm–Liouville form of Laplace’s equation. This property, in this case,
means that any functionf (θ,ϕ) (with sufficient continuity properties) evaluated over the
surface of the sphere can be expanded in a uniformly convergent double series of spherical
harmonics20 (Laplace’s series):

f (θ,ϕ)=
∑
m,n

amnY
m
n (θ,ϕ). (12.155)

If f (θ,ϕ) is known, the coefficients can be immediately found by the use of the orthogo-
nality integral.

20For a proof of this fundamental theorem see E. W. Hobson,The Theory of Spherical and Ellipsoidal Harmonics, New York:
Chelsea (1955), Chapter VII. Iff (θ,ϕ) is discontinuous we may still have convergence in the mean, Section 10.4.
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Table 12.4 Gravity Field Coefficients, Eq. (12.156)

Coefficienta Earth Moon Mars

C20 1.083× 10−3 (0.200± 0.002)× 10−3 (1.96± 0.01)× 10−3

C22 0.16× 10−5 (2.4± 0.5)× 10−5 (−5± 1)× 10−5

S22 −0.09× 10−5 (0.5± 0.6)× 10−5 (3± 1)× 10−5

aC20 represents an equatorial bulge, whereasC22 andS22 represent an azimuthal dependence of the
gravitational field.

Example 12.6.1 LAPLACE SERIES — GRAVITY FIELDS

The gravity fields of the Earth, the Moon, and Mars have been described by a Laplace
series with real eigenfunctions:

U(r, θ,ϕ)= GM

R

[
R

r
−

∞∑
n=2

n∑
m=0

(
R

r

)n+1{
CnmY

e
mn(θ,ϕ)+ SnmY

o
mn(θ,ϕ)

}]
. (12.156)

HereM is the mass of the body andR is the equatorial radius. The real functionsY e
mn and

Yo
mn are defined by

Y e
mn(θ,ϕ)= Pm

n (cosθ)cosmϕ, Y o
mn(θ,ϕ)= Pm

n (cosθ)sinmϕ.

For applications such as this, the real trigonometric forms are preferred to the imaginary
exponential form ofYM

L (θ,ϕ). Satellite measurements have led to the numerical values
shown in Table 12.4. �

Exercises

12.6.1 Show that the parity ofYM
L (θ,ϕ) is (−1)L. Note the disappearance of anyM depen-

dence.
Hint. For the parity operation in spherical polar coordinates see Exercise 2.5.8 and foot-
note 7 in Section 12.2.

12.6.2 Prove that

YM
L (0, ϕ)=

(
2L+ 1

4π

)1/2

δM,0.

12.6.3 In the theory of Coulomb excitation of nuclei we encounterYM
L (π/2,0). Show that

YM
L

(
π

2
,0

)
=
(

2L+ 1

4π

)1/2 [(L−M)!(L+M)!]1/2

(L−M)!!(L+M)!! (−1)(L+M)/2 for L+M even,

= 0 for L+M odd.

Here

(2n)!! = 2n(2n− 2) · · ·6 · 4 · 2,
(2n+ 1)!! = (2n+ 1)(2n− 1) · · ·5 · 3 · 1.
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12.6.4 (a) Express the elements of the quadrupole moment tensorxixj as a linear combina-
tion of the spherical harmonicsYm

2 (andY 0
0 ).

Note. The tensorxixj is reducible. TheY 0
0 indicates the presence of a scalar com-

ponent.
(b) The quadrupole moment tensor is usually defined as

Qij =
∫ (

3xixj − r2δij
)
ρ(r) dτ,

with ρ(r) the charge density. Express the components of(3xixj − r2δij ) in terms
of r2YM

2 .
(c) What is the significance of the−r2δij term?

Hint. Compare Sections 2.9 and 4.4.

12.6.5 The orthogonal azimuthal functions yield a useful representation of the Dirac delta func-
tion. Show that

δ(ϕ1− ϕ2)= 1

2π

∞∑
m=−∞

exp
[
im(ϕ1− ϕ2)

]
.

12.6.6 Derive the spherical harmonic closure relation

∞∑
l=0

+l∑
m=−l

Ym
l (θ1, ϕ1)Y

m∗
l (θ2, ϕ2) = 1

sinθ1
δ(θ1− θ2)δ(ϕ1− ϕ2)

= δ(cosθ1− cosθ2)δ(ϕ1− ϕ2).

12.6.7 The quantum mechanical angular momentum operatorsLx ± iLy are given by

Lx + iLy = eiϕ
(

∂

∂θ
+ i cotθ

∂

∂ϕ

)
,

Lx − iLy = −e−iϕ
(

∂

∂θ
− i cotθ

∂

∂ϕ

)
.

Show that

(a) (Lx + iLy)Y
M
L (θ,ϕ)=√(L−M)(L+M + 1)YM+1

L (θ,ϕ),

(b) (Lx − iLy)Y
M
L (θ,ϕ)=√(L+M)(L−M + 1)YM−1

L (θ,ϕ).

12.6.8 With L± given by

L± = Lx ± iLy =±e±iϕ
[
∂

∂θ
± i cotθ

∂

∂ϕ

]
,

show that

(a) Ym
l =

√
(l +m)!

(2l)!(l −m)! (L−)
l−mY l

l ,
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(b) Ym
l =

√
(l −m)!

(2l)!(l +m)! (L+)
l+mY−ll .

12.6.9 In some circumstances it is desirable to replace the imaginary exponential of our spher-
ical harmonic by sine or cosine. Morse and Feshbach (see the General References at
book’s end) define

Y e
mn = Pm

n (cosθ)cosmϕ,

Y o
mn = Pm

n (cosθ)sinmϕ,

where∫ 2π

0

∫ π

0

[
Y e or o
mn (θ,ϕ)

]2 sinθ dθ dϕ = 4π

2(2n+ 1)

(n+m)!
(n−m)! , n= 1,2, . . .

= 4π for n= 0 (Y o
00 is undefined).

These spherical harmonics are often named according to the patterns of their positive
and negative regions on the surface of a sphere — zonal harmonics form= 0, sectoral
harmonics form = n, and tesseral harmonics for 0< m < n. For Y e

mn, n = 4, m =
0,2,4, indicate on a diagram of a hemisphere (one diagram for each spherical harmonic)
the regions in which the spherical harmonic is positive.

12.6.10 A functionf (r, θ,ϕ) may be expressed as a Laplace series

f (r, θ,ϕ)=
∑
l,m

almr
lYm

l (θ,ϕ).

With 〈 〉sphereused to mean the average over a sphere (centered on the origin), show that〈
f (r, θ,ϕ)

〉
sphere= f (0,0,0).

12.7 ORBITAL ANGULAR MOMENTUM OPERATORS

Now we return to the specific orbital angular momentum operatorsLx,Ly , andLz of
quantum mechanics introduced in Section 4.3. Equation (4.68) becomes

LzψLM(θ,ϕ)=MψLM(θ,ϕ),

and we want to show that

ψLM(θ,ϕ)= YM
L (θ,ϕ)

are the eigenfunctions|LM〉 of L2 andLz of Section 4.3 in spherical polar coordinates, the
spherical harmonics. The explicit form ofLz =−i∂/∂ϕ from Exercise 2.5.13 indicates that
ψLM has aϕ dependence of exp(iMϕ)— with M an integer to keepψLM single-valued.
And if M is an integer, thenL is an integer also.

To determine theθ dependence ofψLM(θ,ϕ), we proceed in two main steps: (1) the
determination ofψLL(θ,ϕ) and (2) the development ofψLM(θ,ϕ) in terms ofψLL with
the phase fixed byψL0. Let

ψLM(θ,ϕ)=�LM(θ)eiMϕ. (12.157)
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FromL+ψLL = 0,L being the largestM , using the form ofL+ given in Exercises 2.5.14
and 12.6.7, we have

ei(L+1)ϕ
[
d

dθ
−Lcotθ

]
�LL(θ)= 0, (12.158)

and thus

ψLL(θ,ϕ)= cL sinL θeiLϕ. (12.159)

Normalizing, we obtain

c∗LcL
∫ 2π

0

∫ π

0
sin2L+1 θ dθ dϕ = 1. (12.160)

Theθ integral may be evaluated as a beta function (Exercise 8.4.9) and

|cL| =
√
(2L+ 1)!!
4π(2L)!! =

√
(2L)!

2LL!
√

2L+ 1

4π
. (12.161)

This completes our first step.
To obtain theψLM,M 
= ±L, we return to the ladder operators. From Eqs. (4.83) and

(4.84) and as shown in Exercise 12.7.2 (J+ replaced byL+ andJ− replaced byL−),

ψLM(θ,ϕ) =
√

(L+M)!
(2L)!(L−M)! (L−)

L−MψLL(θ,ϕ),

(12.162)

ψLM(θ,ϕ) =
√

(L−M)!
(2L)!(L+M)! (L+)

L+MψL,−L(θ,ϕ).

Again, note that the relative phases are set by the ladder operators.L+ andL− operating
on�LM(θ)eiMϕ may be written as

L+�LM(θ)eiMϕ = ei(M+1)ϕ
[
d

dθ
−M cotθ

]
�LM(θ)

= ei(M+1)ϕ sin1+M θ
d

d(cosθ)
sin−M �LM(θ),

(12.163)

L−�LM(θ)eiMϕ = −ei(M−1)ϕ
[
d

dθ
+M cotθ

]
�LM(θ)

= ei(M−1)ϕ sin1−M θ
d

d(cosθ)
sinM θ�LM(θ).

Repeating these operationsn times yields

(L+)n�LM(θ)eiMϕ = (−1)nei(M+n)ϕ sinn+M θ
dn sin−M θ�LM(θ)

d(cosθ)n
,

(12.164)

(L−)n�LM(θ)eiMϕ = ei(M−n)ϕ sinn−M θ
dn sinM θ�LM(θ)

d(cosθ)n
.
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From Eq. (12.163),

ψLM(θ,ϕ)= cL

√
(L+M)!

(2L)!(L−M)!e
iMϕ sin−M θ

dL−M

d(cosθ)L−M
sin2L θ, (12.165)

and forM =−L:

ψL,−L(θ,ϕ) = cL

(2L)!e
−iLϕ sinL θ

d2L

d(cosθ)2L
sin2L θ

= (−1)LcL sinL θe−iLϕ. (12.166)

Note the characteristic(−1)L phase ofψL,−L relative toψL,L. This (−1)L enters from

sin2L θ = (1− x2)L = (−1)L
(
x2− 1

)L
. (12.167)

Combining Eqs. (12.163), (12.163), and (12.166), we obtain

ψLM(θ,ϕ)= (−1)LcL

√
(L−M)!

(2L)!(L+M)! (−1)L+MeiMϕ sinM θ
dL+M sin2L θ

d(cosθ)L+M
. (12.168)

Equations (12.165) and (12.168) agree if

ψL0(θ,ϕ)= cL
1√
(2L)!

dL

(d cosθ)L
sin2L θ. (12.169)

Using Rodrigues’ formula, Eq. (12.65), we have

ψL0(θ,ϕ) = (−1)LcL
2LL!√
(2L)!PL(cosθ)

= (−1)L
cL

|cL|
√

2L+ 1

4π
PL(cosθ). (12.170)

The last equality follows from Eq. (12.161). We now demand thatψL0(0,0) be real and
positive. Therefore

cL = (−1)L|cL| = (−1)L
√
(2L)!

2LL!
√

2L+ 1

4π
. (12.171)

With (−1)LcL/|cL| = 1,ψL0(θ,ϕ) in Eq. (12.170) may be identified with the spherical
harmonicY 0

L(θ,ϕ) of Section 12.6.
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When we substitute the value of(−1)LcL into Eq. (12.168),

ψLM(θ,ϕ) =
√
(2L)!

2LL!
√

2L+ 1

4π

√
(L−M)!

(2L)!(L+M)! (−1)L+M

· eiMϕ sinM θ
dL+M

d(cosθ)L+M
sin2L θ

=
√

2L+ 1

4π

√
(L−M)!
(L+M)!e

iMϕ(−1)M

·
{

1

2LL!
(
1− x2)M/2 dL+M

dxL+M
(
x2− 1

)L}
, x = cosθ, M ≥ 0.

(12.172)

The expression in the curly bracket is identified as the associated Legendre function
(Eq. (12.151), and we have

ψLM(θ,ϕ) = YM
L (θ,ϕ)

= (−1)M

√
2L+ 1

4π
· (L−M)!
(L+M)! · P

M
L (cosθ)eiMϕ, M ≥ 0,

(12.173)

in complete agreement with Section 12.6. Then by Eq. (12.73c),YM
L for negative super-

script is given by

Y−ML (θ,ϕ)= (−1)M
[
YM
L (θ,ϕ)

]∗
. (12.174)

• Our angular momentum eigenfunctionsψLM(θ,ϕ) are identified with the spherical
harmonics. The phase factor(−1)M is associated with the positive values ofM and is
seen to be a consequence of the ladder operators.

• Our development of spherical harmonics here may be considered a portion of Lie alge-
bra — related to group theory, Section 4.3.

Exercises

12.7.1 Using the known forms ofL+ andL− (Exercises 2.5.14 and 12.6.7), show that∫ [
YM
L

]∗
L−
(
L+YM

L

)
d�=

∫ (
L+YM

L

)∗(
L+YM

L

)
d�.

12.7.2 Derive the relations

(a) ψLM(θ,ϕ)=
√

(L+M)!
(2L)!(L−M)! (L−)

L−MψLL(θ,ϕ),

(b) ψLM(θ,ϕ)=
√

(L−M)!
(2L)!(L+M)! (L+)

L+MψL,−L(θ,ϕ).
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Hint. Equations (4.83) and (4.84) may be helpful.

12.7.3 Derive the multiple operator equations

(L+)n�LM(θ)eiMϕ = (−1)nei(M+n)ϕ sinn+M θ
dn sin−M θ�LM(θ)

d(cosθ)n
,

(L−)n�LM(θ)eiMϕ = ei(M−n)ϕ sinn−M θ
dn sinM θ�LM(θ)

d(cosθ)n
.

Hint. Try mathematical induction.

12.7.4 Show, using(L−)n, that

Y−ML (θ,ϕ)= (−1)MY ∗ML (θ,ϕ).

12.7.5 Verify by explicit calculation that

(a) L+Y 0
1 (θ,ϕ)=−

√
3

4π
sinθeiϕ =√2Y 1

1 (θ,ϕ),

(b) L−Y 0
1 (θ,ϕ)=+

√
3

4π
sinθe−iϕ =√2Y−1

1 (θ,ϕ).

The signs (Condon–Shortley phase) are a consequence of the ladder operatorsL+ and
L−.

12.8 THE ADDITION THEOREM FOR SPHERICAL HARMONICS

Trigonometric Identity

In the following discussion,(θ1, ϕ1) and (θ2, ϕ2) denote two different directions in our
spherical coordinate system(x1, y1, z1), separated by an angleγ (Fig. 12.16). The polar
anglesθ1, θ2 are measured from thez1-axis. These angles satisfy the trigonometric identity

cosγ = cosθ1 cosθ2+ sinθ1 sinθ2 cos(ϕ1− ϕ2), (12.175)

which is perhaps most easily proved by vector methods (compare Chapter 1).
The addition theorem, then, asserts that

Pn(cosγ )= 4π

2n+ 1

n∑
m=−n

(−1)mYm
n (θ1, ϕ1)Y

−m
n (θ2, ϕ2), (12.176)

or equivalently,

Pn(cosγ )= 4π

2n+ 1

n∑
m=−n

Ym
n (θ1, ϕ1)

[
Ym
n (θ2, ϕ2)

]∗
.21 (12.177)

21The asterisk for complex conjugation may go on either spherical harmonic.
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In terms of the associated Legendre functions, the addition theorem is

Pn(cosγ ) = Pn(cosθ1)Pn(cosθ2)

+ 2
n∑

m=1

(n−m)!
(n+m)!P

m
n (cosθ1)P

m
n (cosθ2)cosm(ϕ1− ϕ2).

(12.178)

Equation (12.175) is a special case of Eq. (12.178),n= 1.

Derivation of Addition Theorem

We now derive Eq. (12.177). Let(γ, ξ) be the angles that specify the direction(θ1, ϕ1) in a
coordinate system(x2, y2, z2) whose axis is aligned with(θ2, ϕ2). (Actually, the choice of
the 0 azimuth angleξ in Fig. 12.16 is irrelevant.) First, we expandYm

n (θ1, ϕ1) in spherical
harmonics in the(γ, ξ) angular variables:

Ym
n (θ1, ϕ1)=

n∑
σ=−n

amnσY
σ
n (γ, ξ). (12.179)

We write no summation overn in Eq. (12.179) because the angular momentumn of Ym
n is

conserved (see Section 4.3); as a spherical harmonic,Ym
n (θ1, ϕ1) is an eigenfunction ofL2

with eigenvaluen(n+ 1).

FIGURE 12.16 Two directions separated by an
angleγ .
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We need for our proof only the coefficientamn0, which we get by multiplying Eq. (12.179)
by [Y 0

n (γ, ξ)]∗ and integrating over the sphere:

amn0=
∫

Ym
n (θ1, ϕ1)

[
Y 0
n (γ, ξ)

]∗
d�γ,ξ . (12.180)

Similarly, we expandPn(cosγ ) in terms of spherical harmonicsYm
n (θ1, ϕ1):

Pn(cosγ )=
(

4π

2n+ 1

)1/2

Y 0
n (γ, ξ)=

n∑
m=−n

bnmY
m
n (θ1, ϕ1), (12.181)

where thebnm will, of course, depend onθ2, ϕ2, that is, on the orientation of thez2-axis.
Multiplying by [Ym

n (θ1, ϕ1)]∗ and integrating with respect toθ1 andϕ1 over the sphere, we
have

bnm =
∫

Pn(cosγ )Ym∗
n (θ1, ϕ1) d�θ1,ϕ1. (12.182)

In terms of spherical harmonics Eq. (12.182) becomes(
4π

2n+ 1

)1/2∫
Y 0
n (γ,ψ)

[
Ym
n (θ1, ϕ1)

]∗
d�= bnm. (12.183)

Note that the subscripts have been dropped from the solid angle elementd�. Since the
range of integration is over all solid angles, the choice of polar axis is irrelevant. Then
comparing Eqs. (12.180) and (12.183), we see that

b∗nm = amn0

(
4π

2n+ 1

)1/2

. (12.184)

Now we evaluateYm
n (θ2, ϕ2) using the expansion of Eq. (12.179) and noting that the

values of(γ, ξ) corresponding to(θ1, ϕ1)= (θ2, ϕ2) are(0,0). The result is

Ym
n (θ2, ϕ2)= amn0Y

0
n (0,0)= amn0

(
2n+ 1

4π

)1/2

, (12.185)

all terms with nonzeroσ vanishing. Substituting this back into Eq. (12.184), we obtain

bnm = 4π

2n+ 1

[
Ym
n (θ2, ϕ2)

]∗
. (12.186)

Finally, substituting this expression forbnm into the summation, Eq. (12.181) yields
Eq. (12.177), thus proving our addition theorem.

Those familiar with group theory will find a much more elegant proof of Eq. (12.177)
by using the rotation group.22 This is Exercise 4.4.5.

One application of the addition theorem is in the construction of a Green’s function for
the three-dimensional Laplace equation in spherical polar coordinates. If the source is on

22Compare M. E. Rose,Elementary Theory of Angular Momentum, New York: Wiley (1957).
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the polar axis at the point(r = a, θ = 0, ϕ = 0), then, by Eq. (12.4a),

1

R
= 1

|r− ẑa| =
∞∑
n=0

Pn(cosγ )
an

rn+1
, r > a

=
∞∑
n=0

Pn(cosγ )
rn

an+1
, r < a. (12.187)

Rotating our coordinate system to put the source at(a, θ2, ϕ2) and the point of observation
at (r, θ1, ϕ1), we obtain

G(r, θ1, ϕ1, a, θ2, ϕ2)= 1

R

=
∞∑
n=0

n∑
m=−n

4π

2n+ 1

[
Ym
n (θ1, ϕ1)

]∗
Ym
n (θ2, ϕ2)

an

rn+1
, r > a,

=
∞∑
n=0

n∑
m=−n

4π

2n+ 1

[
Ym
n (θ1, ϕ1)

]∗
Ym
n (θ2, ϕ2)

rn

an+1
, r < a. (12.188)

In Section 9.7 this argument is reversed to provide another derivation of the Legendre
polynomial addition theorem.

Exercises

12.8.1 In proving the addition theorem, we assumed thatY k
n (θ1, ϕ1) could be expanded in a

series ofYm
n (θ2, ϕ2), in which m varied from−n to +n but n was held fixed. What

arguments can you develop to justify summing only over the upper index,m, andnot
over the lower index,n?
Hints. One possibility is to examine the homogeneity of theYm

n , that is,Ym
n may be

expressed entirely in terms of the form cosn−p θ sinp θ , or xn−p−sypzs/rn. Another
possibility is to examine the behavior of the Legendre equation under rotation of the
coordinate system.

12.8.2 An atomic electron with angular momentumL and magnetic quantum numberM has a
wave function

ψ(r, θ,ϕ)= f (r)YM
L (θ,ϕ).

Show that the sum of the electron densities in a given complete shell is spherically
symmetric; that is,

∑L
M=−L ψ∗(r, θ,ϕ)ψ(r, θ,ϕ) is independent ofθ andϕ.

12.8.3 The potential of an electron at pointre in the field ofZ protons at pointsrp is

�=− e2

4πε0

Z∑
p=1

1

|re − rp| .
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Show that this may be written as

�=− e2

4πε0re

Z∑
p=1

∑
L,M

(
rp

re

)L 4π

2L+ 1

[
YM
L (θp,ϕp)

]∗
YM
L (θe,ϕe),

wherere > rp . How should� be written forre < rp?

12.8.4 Two protons areuniformly distributed within the same spherical volume. If the coor-
dinates of one element of charge are(r1, θ1, ϕ1) and the coordinates of the other are
(r2, θ2, ϕ2) and r12 is the distance between them, the element of energy of repulsion
will be given by

dψ = ρ2dτ1dτ2

r12
= ρ2 r

2
1 dr1 sinθ1dθ1dϕ1 r

2
2 dr2 sinθ2dθ2dϕ2

r12
.

Here

ρ = charge

volume
= 3e

4πR3
, charge density,

r2
12= r2

1 + r2
2 − 2r1r2 cosγ.

Calculate the total electrostatic energy (of repulsion) of the two protons. This calculation
is used in accounting for the mass difference in “mirror” nuclei, such as O15 and N15.

ANS.
6

5

e2

R
.

This isdouble that required to create a uniformly charged sphere because we have two
separate cloud charges interacting, not one charge interacting with itself (with permuta-
tion of pairsnot considered).

12.8.5 Each of the two 1S electrons in helium may be described by a hydrogenic wave function

ψ(r)=
(

Z3

πa3
0

)1/2

e−Zr/a0

in the absence of the other electron. HereZ, the atomic number, is 2. The symbola0 is
the Bohr radius,̄h2/me2. Find the mutual potential energy of the two electrons, given
by ∫

ψ∗(r1)ψ
∗(r2)

e2

r12
ψ(r1)ψ(r2) d

3r1d
3r2.

ANS.
5e2Z

8a0
.

Note. d3r1= r2dr1 sinθ1dθ1dϕ1≡ dτ1, r12= |r1− r2|.
12.8.6 The probability of finding a 1S hydrogen electron in a volume elementr2dr sinθ dθ dϕ

is

1

πa3
0

exp[−2r/a0]r2dr sinθ dθ dϕ.
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Find the corresponding electrostatic potential. Calculate the potential from

V (r1)= q

4πε0

∫
ρ(r2)

r12
d3r2,

with r1 not on thez-axis. Expandr12. Apply the Legendre polynomial addition theorem
and show that the angular dependence ofV (r1) drops out.

ANS.V (r1)= q

4πε0

{
1

2r1
γ

(
3,

2r1

a0

)
+ 1

a0
�

(
2,

2r1

a0

)}
.

12.8.7 A hydrogen electron in a 2P orbit has a charge distribution

ρ = q

64πa5
0

r2e−r/a0 sin2 θ,

wherea0 is the Bohr radius,̄h2/me2. Find the electrostatic potential corresponding to
this charge distribution.

12.8.8 The electric current density produced by a 2P electron in a hydrogen atom is

J= ϕ̂
qh̄

32ma5
0

e−r/a0r sinθ.

Using

A(r1)= µ0

4π

∫
J(r2)

|r1− r2|d
3r2,

find the magnetic vector potential produced by this hydrogen electron.
Hint. Resolve into Cartesian components. Use the addition theorem to eliminateγ , the
angle included betweenr1 andr2.

12.8.9 (a) As a Laplace series and as an example of Eq. (1.190) (now with complex func-
tions), show that

δ(�1−�2)=
∞∑
n=0

n∑
m=−n

Ym∗
n (θ2, ϕ2)Y

m
n (θ1, ϕ1).

(b) Show also that thissame Dirac delta function may be written as

δ(�1−�2)=
∞∑
n=0

2n+ 1

4π
Pn(cosγ ).

Now, if you can justify equating the summations overn term by term, you have an
alternate derivation of the spherical harmonic addition theorem.
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12.9 INTEGRALS OF PRODUCTS OF THREE SPHERICAL
HARMONICS

Frequently in quantum mechanics we encounter integrals of the general form〈
Y
M1
L1

∣∣YM2
L2

∣∣YM3
L3

〉 = ∫ 2π

0

∫ π

0

[
Y
M1
L1

]∗
Y
M2
L2

Y
M3
L3

sinθ dθ dϕ

=
√
(2L2+ 1)(2L3+ 1)

4π(2L1+ 1)
C(L2L3L1|000)C(L2L3L1|M2M3M1),

(12.189)

in which all spherical harmonics depend onθ,ϕ. The first factor in the integrand may come
from the wave function of a final state and the third factor from an initial state, whereas the
middle factor may represent an operator that is being evaluated or whose “matrix element”
is being determined.

By using group theoretical methods, as in the quantum theory of angular momentum,
we may give a general expression for the forms listed. The analysis involves the vector–
addition or Clebsch–Gordan coefficients from Section 4.4, which are tabulated. Three gen-
eral restrictions appear.

1. The integral vanishes unless the triangle condition of theL’s (angular momentum) is
zero,|L1−L3| ≤ L2≤ L1+L3.

2. The integral vanishes unlessM2+M3=M1. Here we have the theoretical foundation
of the vector model of atomic spectroscopy.

3. Finally, the integral vanishes unless the product[YM1
L1
]∗YM2

L2
Y
M3
L3

is even, that is, unless
L1+L2+L3 is an even integer. This is a parity conservation law.

The key to the determination of the integral in Eq. (12.189) is the expansion of the prod-
uct of two spherical harmonics depending on the same angles (in contrast to the addition
theorem), which are coupled by Clebsch–Gordan coefficients to angular momentumL,M ,
which, from its rotational transformation properties, must be proportional toYM

L (θ,ϕ);
that is, ∑

M1,M2

C(L2L3L1|M2M3M1)Y
M2
L2

(θ,ϕ)Y
M3
L3

(θ,ϕ)∼ Y
M1
L1

(θ,ϕ).

For details we refer to Edmonds.23

Let us outline some of the steps of this general and powerful approach using Section 4.4.
The Wigner–Eckart theorem applied to the matrix element in Eq. (12.189) yields〈

Y
M1
L1

∣∣YM2
L2

∣∣YM3
L3

〉 = (−1)L2−L3+L1C(L2L3L1|M2M3M1)

· 〈YL1‖YL2‖YL3〉√
(2L1+ 1)

, (12.190)

23E. U. Condon and G. H. Shortley,The Theory of Atomic Spectra, Cambridge, UK: Cambridge University Press (1951); M.
E. Rose,Elementary Theory of Angular Momentum, New York: Wiley (1957); A. Edmonds,Angular Momentum in Quantum
Mechanics, Princeton, NJ: Princeton University Press (1957); E. P. Wigner,Group Theory and Its Applications to Quantum
Mechanics (translated by J. J. Griffin), New York: Academic Press (1959).
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where the double bars denote the reduced matrix element, which no longer depends on
theMi . Selection rules (1) and (2) mentioned earlier follow directly from the Clebsch–
Gordan coefficient in Eq. (12.190). Next we use Eq. (12.190) forM1 =M2 =M3 = 0 in
conjunction with Eq. (12.153) form= 0, which yields

〈
Y 0
L1

∣∣Y 0
L2

∣∣Y 0
L3

〉 = (−1)L2−L3+L1

√
2L1+ 1

C(L2L3L1|000) · 〈YL1‖YL2‖YL3〉

=
√
(2L1+ 1)(2L2+ 1)(2L3+ 1)

4π

· 1

2
·
∫ 1

−1
PL1(x)PL2(x)PL3(x) dx, (12.191)

wherex = cosθ . By elementary methods it can be shown that∫ 1

−1
PL1(x)PL2(x)PL3(x) dx =

2

2L1+ 1
C(L2L3L1|000)2. (12.192)

Substituting Eq. (12.192) into (12.191) we obtain

〈YL1‖YL2‖YL3〉 = (−1)L2−L3+L1C(L2L3L1|000)

√
(2L2+ 1)(2L3+ 1)

4π
. (12.193)

The aforementioned parity selection rule (3) above follows from Eq. (12.193) in conjunc-
tion with the phase relation

C(L2L3L1| −M2,−M3,−M1)= (−1)L2+L3−L1C(L2L3L1|M2M3M1). (12.194)

Note that the vector-addition coefficients are developed in terms of the Condon–Shortley
phase convention,23 in which the(−1)m of Eq. (12.153) is associated with the positivem.

It is possible to evaluate many of the commonly encountered integrals of this form with
the techniques already developed. The integration over azimuth may be carried out by
inspection: ∫ 2π

0
e−iM1ϕeiM2ϕeiM3ϕ dϕ = 2πδM2+M3−M1,0. (12.195)

Physically this corresponds to the conservation of thez component of angular momentum.

Application of Recurrence Relations

A glance at Table 12.3 will show that theθ -dependence ofYM2
L2

, that is,PM2
L2

(θ), can be
expressed in terms of cosθ and sinθ . However, a factor of cosθ or sinθ may be combined
with theYM3

L3
factor by using the associated Legendre polynomial recurrence relations. For
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instance, from Eqs. (12.92) and (12.93) we get

cosθYM
L = +

[
(L−M + 1)(L+M + 1)

(2L+ 1)(2L+ 3)

]1/2

YM
L+1

+
[
(L−M)(L+M)

(2L− 1)(2L+ 1)

]1/2

YM
L−1 (12.196)

eiϕ sinθYM
L = −

[
(L+M + 1)(L+M + 2)

(2L+ 1)(2L+ 3)

]1/2

YM+1
L+1

+
[
(L−M)(L−M − 1)

(2L− 1)(2L+ 1)

]1/2

YM+1
L−1 (12.197)

e−iϕ sinθYM
L = +

[
(L−M + 1)(L−M + 2)

(2L+ 1)(2L+ 3)

]1/2

YM−1
L+1

−
[
(L+M)(L+M − 1)

(2L− 1)(2L+ 1)

]1/2

YM−1
L−1 . (12.198)

Using these equations, we obtain∫
Y
M1∗
L1

cosθYM
L d� =

[
(L−M + 1)(L+M + 1)

(2L+ 1)(2L+ 3)

]1/2

δM1,MδL1,L+1

+
[
(L−M)(L+M)

(2L− 1)(2L+ 1)

]1/2

δM1,MδL1,L−1. (12.199)

The occurrence of the Kronecker delta(L1,L ± 1) is an aspect of the conservation of
angular momentum. Physically, this integral arises in a consideration of ordinary atomic
electromagnetic radiation (electric dipole). It leads to the familiar selection rule that transi-
tions to an atomic level with orbital angular momentum quantum numberL1 can originate
only from atomic levels with quantum numbersL1− 1 orL1+ 1. The application to ex-
pressions such as

quadrupole moment∼
∫

YM∗
L (θ,ϕ)P2(cosθ)YM

L (θ,ϕ)d�

is more involved but perfectly straightforward.

Exercises

12.9.1 Verify

(a)
∫

YM
L (θ,ϕ)Y 0

0 (θ,ϕ)Y
M∗
L (θ,ϕ)d�= 1√

4π
,

(b)
∫

YM
L Y 0

1Y
M∗
L+1d�=

√
3

4π

√
(L+M + 1)(L−M + 1)

(2L+ 1)(2L+ 3)
,
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(c)
∫

YM
L Y 1

1Y
M+1∗
L+1 d�=

√
3

8π

√
(L+M + 1)(L+M + 2)

(2L+ 1)(2L+ 3)
,

(d)
∫

YM
L Y 1

1Y
M+1∗
L−1 d�=−

√
3

8π

√
(L−M)(L−M − 1)

(2L− 1)(2L+ 1)
.

These integrals were used in an investigation of the angular correlation of internal con-
version electrons.

12.9.2 Show that

(a)
∫ 1

−1
xPL(x)PN(x)dx =


2(L+ 1)

(2L+ 1)(2L+ 3)
, N = L+ 1,

2L

(2L− 1)(2L+ 1)
, N = L− 1,

(b)
∫ 1

−1
x2PL(x)PN(x)dx =



2(L+ 1)(L+ 2)

(2L+ 1)(2L+ 3)(2L+ 5)
, N = L+ 2,

2(2L2+ 2L− 1)

(2L− 1)(2L+ 1)(2L+ 3)
, N = L,

2L(L− 1)

(2L− 3)(2L− 1)(2L+ 1)
, N = L− 2.

12.9.3 SincexPn(x) is a polynomial (degreen + 1), it may be represented by the Legendre
series

xPn(x)=
∞∑
s=0

asPs(x).

(a) Show thatas = 0 for s < n− 1 ands > n+ 1.
(b) Calculatean−1, an, andan+1 and show that you have reproduced the recurrence

relation, Eq. 12.17.

Note. This argument may be put in a general form to demonstrate the existence of a
three-term recurrence relation for any of our complete sets of orthogonal polynomials:

xϕn = an+1ϕn+1+ anϕn + an−1ϕn−1.

12.9.4 Show that Eq. (12.199) is a special case of Eq. (12.190) and derive the reduced matrix
element〈YL1‖Y1‖YL〉.

ANS. 〈YL1‖Y1‖YL〉 = (−1)L1+1−LC(1LL1|000)

√
3(2L+ 1)

4π
.

12.10 LEGENDRE FUNCTIONS OF THE SECOND KIND

In all the analysis so far in this chapter we have been dealing with one solution of Legen-
dre’s equation, the solutionPn(cosθ), which is regular (finite) at the two singular points of
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the differential equation, cosθ = ±1. From the general theory of differential equations it
is known that a second solution exists. We develop this second solution,Qn, with nonneg-
ative integern (becauseQn in applications will occur in conjunction withPn), by a series
solution of Legendre’s equation. Later a closed form will be obtained.

Series Solutions of Legendre’s Equation

To solve

d

dx

[
(1− x2)

dy

dx

]
+ n(n+ 1)y = 0 (12.200)

we proceed as in Chapter 9, letting24

y =
∞∑
λ=0

aλx
k+λ, (12.201)

with

y′ =
∞∑
λ=0

(k + λ)aλx
k+λ−1, (12.202)

y′′ =
∞∑
λ=0

(k + λ)(k + λ− 1)aλx
k+λ−2. (12.203)

Substitution into the original differential equation gives

∞∑
λ=0

(k + λ)(k + λ− 1)aλx
k+λ−2

+
∞∑
λ=0

[
n(n+ 1)− 2(k+ λ)− (k + λ)(k + λ− 1)

]
aλx

k+λ = 0. (12.204)

Theindicial equation is

k(k − 1)= 0, (12.205)

with solutionsk = 0,1. We try firstk = 0 with a0= 1, a1= 0. Then our series is described
by the recurrence relation

(λ+ 2)(λ+ 1)aλ+2+
[
n(n+ 1)− 2λ− λ(λ− 1)

]
aλ = 0, (12.206)

which becomes

aλ+2=− (n+ λ+ 1)(n− λ)

(λ+ 1)(λ+ 2)
aλ. (12.207)

24Note thatx may be replaced by the complex variablez.
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Labeling this series, from Eq. (12.201),y(x)= pn(x), we have

pn(x)= 1− n(n+ 1)

2! x2+ (n− 2)n(n+ 1)(n+ 3)

4! x4+ · · · . (12.208)

The second solution of the indicial equation,k = 1, with a0 = 0, a1 = 1, leads to the
recurrence relation

aλ+2=− (n+ λ+ 2)(n− λ− 1)

(λ+ 2)(λ+ 3)
aλ. (12.209)

Labeling this series, from Eq. (12.201),y(x)= qn(x), we obtain

qn(x)= x − (n− 1)(n+ 2)

3! x3+ (n− 3)(n− 1)(n+ 2)(n+ 4)

5! x5− · · · . (12.210)

Our general solution of Eq. (12.200), then, is

yn(x)=Anpn(x)+Bnqn(x), (12.211)

provided we have convergence. From Gauss’ test, Section 5.2 (see Example 5.2.4), we do
not have convergence atx =±1. To get out of this difficulty, we set the separation constant
n equal to an integer (Exercise 9.5.5) and convert the infinite series into a polynomial.

For n a positive even integer (or zero), seriespn terminates, and with a proper choice
of a normalizing factor (selected to obtain agreement with the definition ofPn(x) in Sec-
tion 12.1)

Pn(x) = (−1)n/2 n!
2n[(n/2)!]2pn(x)= (−1)s

(2s)!
22s(s!)2p2s(x)

= (−1)s
(2s − 1)!!
(2s)!! p2s(x), for n= 2s. (12.212)

If n is a positive odd integer, seriesqn terminates after a finite number of terms, and we
write

Pn(x) = (−1)n−1)/2 n!
2n−1 {[n− 1)/2]!}2qn(x)

= (−1)s
(2s + 1)!
22s(s!)2 q2s+1(x)= (−1)s

(2s + 1)!!
(2s)!! q2s+1(x), for n= 2s + 1.

(12.213)

Note that these expressions hold for all real values ofx,−∞< x <∞, and for complex
values in the finite complex plane. The constants that multiplypn andqn are chosen to
makePn agree with Legendre polynomials given by the generating function.

Equations (12.208) and (12.210) may still be used withn = ν, not an integer, but now
the series no longer terminates, and the range of convergence becomes−1< x < 1. The
endpoints,x =±1, are not included.

It is sometimes convenient to reverse the order of the terms in the series. This may be
done by putting

s = n

2
− λ in the first form ofPn(x), n even,

s = n− 1

2
− λ in the second form ofPn(x), n odd,
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so that Eqs. (12.212) and (12.213) become

Pn(x)=
[n/2]∑
s=0

(−1)s
(2n− 2s)!

2ns!(n− s)!(n− 2s)!x
n−2s , (12.214)

where the upper limits = n/2 (for n even) or(n − 1)/2 (for n odd). This reproduces
Eq. (12.8) of Section 12.1, which is obtained directly from the generating function. This
agreement with Eq. (12.8) is the reason for the particular choice of normalization in
Eqs. (12.212) and (12.213).

Qn(x) Functions of the Second Kind

It will be noticed that we have used onlypn for n even andqn for n odd (because they ter-
minated for this choice ofn). We may now define a second solution of Legendre’s equation
(Fig. 12.17) by

Qn(x) = (−1)n/2 [n/2]!22n

n! qn(x)

= (−1)s
(2s)!!

(2s − 1)!!q2s(x), for n even, n= 2s, (12.215)

FIGURE 12.17 Second Legendre function,Qn(x),
0≤ x < 1.
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FIGURE 12.18 Second
Legendre function,Qn(x),

x > 1.

Qn(x) = (−1)(n+1)/2 {[(n− 1)/2]!}22n−1

n! pn(x)

= (−1)s+1 (2s)!!
(2s + 1)!!p2s+1(x), for n odd, n= 2s + 1. (12.216)

This choice of normalizing factors forcesQn to satisfy the same recurrence relations as
Pn. This may be verified by substituting Eqs. (12.215) and (12.216) into Eqs. (12.17) and
(12.26). Inspection of the (series) recurrence relations (Eqs. (12.207) and (12.209)), that is,
by the Cauchy ratio test, shows thatQn(x) will converge for−1< x < 1. If |x| ≥ 1, these
series forms of our second solutiondiverge. A solution in a series of negative powers of
x can be developed for the region|x| > 1 (Fig. 12.18), but we proceed to a closed-form
solution that can be used over the entire complex plane (apart from the singular points
x =±1 and with care on cut lines).

Closed-Form Solutions

Frequently, a closed form of the second solution,Qn(z), is desirable. This may be obtained
by the method discussed in Section 9.6. We write

Qn(z)= Pn(z)

{
An +Bn

∫ z dx

(1− x2)[Pn(x)]2
}
, (12.217)

in which the constantAn replaces the evaluation of the integral at the arbitrary lower limit.
Both constants,An andBn, may be determined for special cases.
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Forn= 0, Eq. (12.217) yields

Q0(z) = P0(z)

{
A0+B0

∫ z dx

(1− x2)[P0(x)]2
}
=A0+B0

1

2
ln

1+ z

1− z

= A0+B0

(
z+ z3

3
+ z5

5
+ · · · + z2s+1

2s + 1
+ · · ·

)
, (12.218)

the last expression following from a Maclaurin expansion of the logarithm. Comparing this
with the series solution (Eq. (12.210)), we obtain

Q0(z)= q0(z)= z+ z3

3
+ z5

5
+ · · · + z2s+1

2s + 1
+ · · · , (12.219)

we haveA0= 0,B0= 1. Similar results follow forn= 1. We obtain

Q1(z) = z

[
A1+B1

∫ z dx

(1− x2)x2

]
= A1z+B1z

(
1

2
ln

1+ z

1− z
− 1

z

)
. (12.220)

Expanding in a power series and comparing withQ1(z)=−p1(z), we haveA1= 0,B1=
1. Therefore we may write

Q0(z)= 1

2
ln

1+ z

1− z
, Q1(z)= 1

2
z ln

1+ z

1− z
− 1, |z|< 1. (12.221)

Perhaps the best way of determining the higher-orderQn(z) is to use the recurrence
relation (Eq. (12.17)), which may be verified for bothx2 < 1 andx2 > 1 by substituting in
the series forms. This recurrence relation technique yields

Q2(z)= 1

2
P2(z) ln

1+ z

1− z
− 3

2
P1(z). (12.222)

Repeated application of the recurrence formula leads to

Qn(z)= 1

2
Pn(z) ln

1+ z

1− z
− 2n− 1

1 · n Pn−1(z)− 2n− 5

3(n− 1)
Pn−3(z)− · · · . (12.223)

From the form ln[(1+ z)/(1− z)] it will be seen that for realz these expressions hold in
the range−1< x < 1. If we wish to have closed forms valid outside this range, we need
only replace

ln
1+ x

1− x
by ln

z+ 1

z− 1
.

When using the latter form, valid for largez, we take the line interval−1≤ x ≤ 1 as a cut
line. Values ofQn(x) on the cut line are customarily assigned by the relation

Qn(x)= 1

2

[
Qn(x + i0)+Qn(x − i0)

]
, (12.224)
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the arithmetic average of approaches from the positive imaginary side and from the nega-
tive imaginary side. Note that forz→ x > 1, z− 1→ (1− x)e±iπ . The result is that for
all z, except on the real axis,−1≤ x ≤ 1, we have

Q0(z) = 1

2
ln

z+ 1

z− 1
, (12.225)

Q1(z) = 1

2
z ln

z+ 1

z− 1
− 1, (12.226)

and so on.
For convenient reference some special values ofQn(z) are given.

1. Qn(1)=∞, from the logarithmic term (Eq. (12.223)).
2. Qn(∞)= 0. This is best obtained from a representation ofQn(x) as a series of nega-

tive powers ofx, Exercise 12.10.4.
3. Qn(−z) = (−1)n+1Qn(z). This follows from the series form. It may also be derived

by usingQ0(z),Q1(z) and the recurrence relation (Eq. (12.17)).
4. Qn(0)= 0, for n even, by (3).

5. Qn(0) = (−1)(n+1)/2 {[(n− 1)/2]!}2
n! 2n−1

= (−1)s+1 (2s)!!
(2s + 1)!! , for n odd, n= 2s + 1.

This last result comes from the series form (Eq. (12.216)) withpn(0)= 1.

Exercises

12.10.1 Derive the parity relation forQn(x).

12.10.2 From Eqs. (12.212) and (12.213) show that

(a) P2n(x)= (−1)n

22n−1

n∑
s=0

(−1)s
(2n+ 2s − 1)!

(2s)!(n+ s − 1)!(n− s)!x
2s .

(b) P2n+1(x)= (−1)n

22n

n∑
s=0

(−1)s
(2n+ 2s + 1)!

(2s + 1)!(n+ s)!(n− s)!x
2s+1.

Check the normalization by showing that one term of each series agrees with the corre-
sponding term of Eq. (12.8).

12.10.3 Show that

(a) Q2n(x) = (−1)n22n
n∑

s=0

(−1)s
(n+ s)!(n− s)!

(2s + 1)!(2n− 2s)!x
2s+1

+ 22n
∞∑

s=n+1

(n+ s)!(2s − 2n)!
(2s + 1)!(s − n)! x

2s+1, |x|< 1.
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(b) Q2n+1(x) = (−1)n+122n
n∑

s=0

(−1)s
(n+ s)!(n− s)!

(2s)!(2n− 2s + 1)!x
2s

+ 22n+1
∞∑

s=n+1

(n+ s)!(2s − 2n− 2)!
(2s)!(s − n− 1)! x2s , |x|< 1.

12.10.4 (a) Starting with the assumed form

Qn(x)=
∞∑
λ=0

b−λxk−λ,

show that

Qn(x)= b0x
−n−1

∞∑
s=0

(n+ s)!(n+ 2s)!(2n+ 1)!
s!(n!)2(2n+ 2s + 1)! x−2s .

(b) The standard choice ofb0 is

b0= 2n(n!)2
(2n+ 1)! .

Show that this choice ofbo brings this negative power-series form ofQn(x) into
agreement with the closed-form solutions.

12.10.5 Verify that the Legendre functions of the second kind,Qn(x), satisfy the same recur-
rence relations asPn(x), both for|x|< 1 and for|x|> 1:

(2n+ 1)xQn(x) = (n+ 1)Qn+1(x)+ nQn−1(x),

(2n+ 1)Qn(x) =Q′n+1(x)−Q′n−1(x).

12.10.6 (a) Using the recurrence relations, prove (independent of the Wronskian relation) that

n
[
Pn(x)Qn−1(x)− Pn−1(x)Qn(x)

]= P1(x)Q0(x)− P0(x)Q1(x).

(b) By direct substitution show that the right-hand side of this equation equals 1.

12.10.7 (a) Write a subroutine that will generateQn(x) andQ0 throughQn−1 based on the
recurrence relation for these Legendre functions of the second kind. Takex to be
within (−1,1)— excluding the endpoints.
Hint. TakeQ0(x) andQ1(x) to be known.

(b) Test your subroutine for accuracy by computingQ10(x) and comparing with the
values tabulated in AMS-55 (for a complete reference, see Additional Readings in
Chapter 8).

12.11 VECTOR SPHERICAL HARMONICS

Most of our attention in this chapter has been directed toward solving the equations of
scalar fields, such as the electrostatic potential. This was done primarily because the scalar
fields are easier to handle than vector fields. However, with scalar field problems under
firm control, more and more attention is being paid to vector field problems.
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Maxwell’s equations for the vacuum, where the external current and charge densities
vanish, lead to the wave (or vector Helmholtz) equation for the vector potentialA. In a par-
tial wave expansion ofA in spherical polar coordinates we want to use angular eigenfunc-
tions that are vectors. To this end we write the coordinate unit vectorsx̂, ŷ, ẑ in spherical
notation (see Section 4.4),

ê+1=− x̂+ iŷ√
2

, ê0= ẑ, ê−1= x̂− iŷ√
2

, (12.227)

so thatêm form a spherical tensor of rank 1. If we couple the spherical harmonics with the
êm to total angular momentumJ using the relevant Clebsch–Gordan coefficients, we are
led to the vector spherical harmonics:

YJLMJ
(θ,ϕ)=

∑
m,M

C(L1J |MmMJ )Y
M
L (θ,ϕ)êm. (12.228)

It is obvious that they obey the orthogonality relations∫
Y∗JLMJ

(θ,ϕ) ·YJ ′L′M ′
J
(θ, ϕ) d�= δJJ ′δLL′δMJM

′
M
. (12.229)

GivenJ , the selection rules of angular momentum coupling tell us thatL can only take on
the valuesJ + 1, J , andJ − 1. If we look up the Clebsch–Gordan coefficients and invert
Eq. (12.228) we get

r̂YM
L (θ,ϕ)=−

[
L+ 1

2L+ 1

]1/2

YLL+1M +
[

L

2L+ 1

]1/2

YLL−1M, (12.230)

displaying the vector character of theY and the orbital angular momentum contents,L+1
andL− 1, of r̂YM

L .
Under the parity operations (coordinate inversion) the vector spherical harmonics trans-

form as

YLL+1M(θ ′, ϕ′) = (−1)L+1YLL+1M(θ,ϕ),

YLL−1M(θ ′, ϕ′) = (−1)L+1YLL−1M(θ,ϕ), (12.231)

YLLM(θ ′, ϕ′) = (−1)LYLLM(θ,ϕ),

where

θ ′ = π − θ ϕ′ = π + ϕ. (12.232)

The vector spherical harmonics are useful in a further development of the gradient
(Eq. (2.46)), divergence (Eq. (2.47)) and curl (Eq. (2.49)) operators in spherical polar co-
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ordinates:

∇[F(r)YM
L (θ,ϕ)

] = −[ L+ 1

2L+ 1

]1/2[
d

dr
− L

r

]
FYLL+1M

+
[

L

2L+ 1

]1/2[
d

dr
+ L+ 1

r

]
FYLL−1M, (12.233)

∇ · [F(r)YLL+1M(θ,ϕ)
] = −( L+ 1

2L+ 1

)1/2[
dF

dr
+ L+ 2

r
F

]
YM
L (θ,ϕ), (12.234)

∇ · [F(r)YLL−1M(θ,ϕ)
] = ( L

2L+ 1

)1/2[
dF

dr
− L− 1

r
F

]
YM
L (θ,ϕ), (12.235)

∇ · [F(r)YLLM(θ,ϕ)
] = 0, (12.236)

∇× [F(r)YLL+1M
] = i

[
L

2L+ 1

]1/2[
dF

dr
+ L+ 2

r
F

]
YLLM, (12.237)

∇× [F(r)YLLM

] = i

(
L

2L+ 1

)1/2[
dF

dr
− L

r
F

]
YLL+1M

+ i

(
L+ 1

2L+ 1

)1/2[
dF

dr
+ L+ 1

r
F

]
YLL−1M, (12.238)

∇× [F(r)YLL−1M
] = i

[
L+ 1

2L+ 1

]1/2[
dF

dr
− L− 1

r
F

]
YLLM. (12.239)

If we substitute Eq. (12.230) into the radial componentr̂∂/∂r of the gradient operator,
for example, we obtain bothdF/dr terms in Eq. (12.233). For a complete derivation of
Eqs. (12.233) to (12.239) we refer to the literature.25 These relations play an important
role in the partial wave expansion of classical and quantum electrodynamics.

The definitions of the vector spherical harmonics given here are dictated by convenience,
primarily in quantum mechanical calculations, in which the angular momentum is a sig-
nificant parameter. Further examples of the usefulness and power of the vector spherical
harmonics will be found in Blatt and Weisskopf,25 in Morse and Feshbach (see General
References book’s end), and in Jackson’sClassical Electrodynamics, 3rd ed., New York: J.
Wiley & Sons (1998), which use vector spherical harmonics in a description of multipole
radiation and related electromagnetic problems.

• Vector spherical harmonics are developed from couplingL units of orbital angular
momentum and 1 unit of spin angular momentum. An extension, couplingL units
of orbital angular momentum and 2 units of spin angular momentum to formtensor
spherical harmonics, is presented by Mathews.26

25E. H. Hill, Theory of vector spherical harmonics,Am. J. Phys. 22: 211 (1954); also J. M. Blatt and V. Weisskopf,Theoret-
ical Nuclear Physics, New York: Wiley (1952). Note that Hill assigns phases in accordance with the Condon–Shortley phase
convention (Section 4.4). In Hill’s notationXLM =YLLM , VLM =YLL+1M , WLM =YLL−1M .
26J. Mathews, Gravitational multipole radiation, inIn Memoriam (H.P. Robertson, ed.), Philadelphia: Society for Industrial and
Applied Mathematics (1963).
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• The major application of tensor spherical harmonics is in the investigation of gravita-
tional radiation.

Exercises

12.11.1 Construct thel = 0,m= 0 andl = 1,m= 0 vector spherical harmonics.

ANS. Y010=−r̂(4π)−1/2

Y000= 0
Y120=−r̂(2π)−1/2 cosθ − θ̂(8π)−1/2 sinθ
Y110= ϕ̂i(3/8π)1/2 sinθ
Y100= r̂(4π)−1/2 cosθ − θ̂(4π)−1/2 sinθ .

12.11.2 Verify that the parity ofYLL+1M is (−1)L+1, that of YLLM is (−1)L, and that of
YLL−1M is (−1)L+1. What happened to theM-dependence of the parity?
Hint. r̂ andϕ̂ have odd parity;̂θ has even parity (compare Exercise 2.5.8).

12.11.3 Verify the orthonormality of the vector spherical harmonicsYJLMJ
.

12.11.4 In Jackson’sClassical Electrodynamics, 3rd ed., (see Additional Readings of Chapter 11
for the reference) definesYLLM by the equation

YLLM(θ,ϕ)= 1√
L(L+ 1)

LYM
L (θ,ϕ),

in which the angular momentum operatorL is given by

L=−i(r×∇).

Show that this definition agrees with Eq. (12.228).

12.11.5 Show that
L∑

M=−L
Y∗LLM(θ,ϕ) ·YLLM(θ,ϕ)= 2L+ 1

4π
.

Hint. One way is to use Exercise 12.11.4 withL expanded in Cartesian coordinates
using the raising and lowering operators of Section 4.3.

12.11.6 Show that ∫
YLLM · (r̂×YLLM)d�= 0.

The integrand represents an interference term in electromagnetic radiation that con-
tributes to angular distributions but not to total intensity.

Additional Readings

Hobson, E. W.,The Theory of Spherical and Ellipsoidal Harmonics. New York: Chelsea (1955). This is a very
complete reference and the classic text on Legendre polynomials and all related functions.

Smythe, W. R.,Static and Dynamic Electricity, 3rd ed. New York: McGraw-Hill (1989).

See also the references listed in Sections 4.4 and 12.9 and at the end of Chapter 13.



CHAPTER 13

MORE SPECIAL FUNCTIONS

In this chapter we shall study four sets of orthogonal polynomials, Hermite, Laguerre, and
Chebyshev1 of first and second kinds. Although these four sets are of less importance in
mathematical physics than are the Bessel and Legendre functions of Chapters 11 and 12,
they are used and therefore deserve attention. For example, Hermite polynomials occur in
solutions of the simple harmonic oscillator of quantum mechanics and Laguerre polynomi-
als in wave functions of the hydrogen atom. Because the general mathematical techniques
duplicate those of the preceding two chapters, the development of these functions is only
outlined. Detailed proofs, along the lines of Chapters 11 and 12, are left to the reader. We
express these polynomials and other functions in terms of hypergeometric and confluent
hypergeometric functions. To conclude the chapter, we give an introduction to Mathieu
functions, which arise as solutions of ODEs and PDEs with elliptical boundary conditions.

13.1 HERMITE FUNCTIONS

Generating Functions — Hermite Polynomials

The Hermite polynomials (Fig. 13.1),Hn(x), may be defined by the generating function2

g(x, t)= e−t2+2tx =
∞∑
n=0

Hn(x)
tn

n! . (13.1)

1This is the spelling choice of AMS-55 (for the complete reference see footnote 4 in Chapter 5). However, a variety of names,
such as Tschebyscheff, is encountered.
2A derivation of this Hermite-generating function is outlined in Exercise 13.1.1.

817
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FIGURE 13.1 Hermite
polynomials.

Recurrence Relations

Note the absence of a superscript, which distinguishes Hermite polynomials from the unre-
lated Hankel functions. From the generating function we find that the Hermite polynomials
satisfy the recurrence relations

Hn+1(x)= 2xHn(x)− 2nHn−1(x) (13.2)

and

H ′
n(x)= 2nHn−1(x). (13.3)

Equation (13.2) is obtained by differentiating the generating function with respect tot :

∂g

∂t
= (−2t + 2x)e−t2+2tx =

∞∑
n=0

Hn+1(x)
tn

n!

= −2
∞∑
n=0

Hn(x)
tn+1

n! + 2x
∞∑
n=0

Hn(x)
tn

n! ,

which can be rewritten as
∞∑
n=0

tn

n!
[
Hn+1(x)− 2xHn(x)+ 2nHn−1(x)

]= 0.

Because each coefficient of this power series vanishes, Eq. (13.2) is established. Similarly,
differentiation with respect tox leads to

∂g

∂x
= 2te−t2+2tx =

∞∑
n=0

H ′
n(x)

tn

n! = 2
∞∑
n=0

Hn(x)
tn+1

n! ,

which yields Eq. (13.3) upon shifting the summation indexn in the last sumn+ 1→ n.
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Table 13.1 Hermite Polynomials

H0(x)= 1
H1(x)= 2x
H2(x)= 4x2− 2
H3(x)= 8x3− 12x
H4(x)= 16x4− 48x2+ 12
H5(x)= 32x5− 160x3+ 120x
H6(x)= 64x6− 480x4+ 720x2− 120

The Maclaurin expansion of the generating function

e−t2+2tx =
∞∑
n=0

(2tx − t2)n

n! = 1+ (2tx − t2
)+ · · · (13.4)

givesH0(x)= 1 andH1(x)= 2x, and then the recursion Eq. (13.2) permits the construc-
tion of anyHn(x) desired (integraln). For convenient reference the first several Hermite
polynomials are listed in Table 13.1.

Special values of the Hermite polynomials follow from the generating function for
x = 0:

e−t2 =
∞∑
n=0

(−t2)n
n! =

∞∑
n=0

Hn(0)
tn

n! ,

that is,

H2n(0)= (−1)n
(2n)!
n! , H2n+1(0)= 0, n= 0,1, . . . . (13.5)

We also obtain from the generating function the important parity relation

Hn(x)= (−1)nHn(−x) (13.6)

by noting that Eq. (13.1) yields

g(−x,−t)=
∞∑
n=0

Hn(−x)(−t)
n

n! = g(x, t)=
∞∑
n=0

Hn(x)
tn

n! .

Alternate Representations

The Rodrigues representation ofHn(x) is

Hn(x)= (−1)nex
2 dn

dxn
e−x2

. (13.7)

Let us show this using mathematical induction as follows.
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Example 13.1.1 RODRIGUES REPRESENTATION

We rewrite the generating function asg(x, t)= ex
2
e−(t−x)2 and note that

∂

∂t
e−(t−x)2 =− ∂

∂x
e−(t−x)2.

This yields

∂g

∂t

∣∣∣∣
t=0
= (2x − 2t)g

∣∣∣
t=0
= 2x =H1(x)=−ex2 d

dx
e−x2

,

which is the initialn= 1 case. Assuming the casen of Eq. (13.7) as valid, we now use the
operator identityd

dx
ex

2 = 2xex
2 + ex

2 d
dx

in

(−1)n+1ex
2 dn+1

dxn+1
e−x2 = (−1)n+1

[
d

dx
ex

2 − 2xex
2
]
dn

dxn
e−x2

= − d

dx
Hn(x)+ 2xHn(x)=Hn+1(x)

to establish then+ 1 case, with the last equality following from Eqs.(13.2) and (13.3).
More directly, differentiation of the generating functionn times with respect tot and

then settingt equal to zero yields

Hn(x)= ∂n

∂tn

(
e−t2+2tx)∣∣∣

t=0
= (−1)nex

2 ∂n

∂xn
e−(t−x)2

∣∣∣
t=0
= (−1)nex

2 dn

dxn
e−x2

.

�

A second representation may be obtained by using the calculus of residues (Section 7.1).
If we multiply Eq. (13.1) byt−m−1 and integrate around the origin in the complext-plane,
only the term withHm(x) will survive:

Hm(x)= m!
2πi

∮
t−m−1e−t2+2tx dt. (13.8)

Also, from the Maclaurin expansion, Eq. (13.4), we can derive our Hermite polynomial
Hn(x) in series form: Using the binomial expansion of(2x− t)ν and the indexN = s+ ν,

e−t2+2tx =
∞∑
ν=0

tν

ν! (2x − t)ν =
∞∑
ν=0

tν

ν!
ν∑

s=0

(
ν

s

)
(2x)ν−s(−t)s

=
∞∑

N=0

tN

N !
[N/2]∑
s=0

(2x)N−2s(−1)s
N !

(N − s)!
(
N − s

s

)
,

where[N/2] is the largest integer less than or equal toN/2. Writing the binomial coeffi-
cient in terms of factorials and using Eq. (13.1) we obtain

HN(x)=
[N/2]∑
s=0

(2x)N−2s(−1)s
N !

s!(N − 2s)! .
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More explicitly, replacingN→ n, we have

Hn(x) = (2x)n − 2n!
(n− 2)!2! (2x)

n−2+ 4n!
(n− 4)!4! (2x)

n−41 · 3 · · ·

=
[n/2]∑
s=0

(−2)s(2x)n−2s
(

n

2s

)
1 · 3 · 5 · · · (2s − 1)

=
[n/2]∑
s=0

(−1)s(2x)n−2s n!
(n− 2s)!s! . (13.9)

This series terminates for integraln and yields our Hermite polynomial.

Orthogonality

If we substitute the recursion Eq. (13.3) into Eq. (13.2) we can eliminate the indexn− 1,
obtaining

Hn+1(x)= 2xHn(x)−H ′
n(x),

which was used already in Example 13.1.1. If we differentiate this recursion relation and
substitute Eq. (13.3) for the indexn+ 1 we find

H ′
n+1(x)= 2(n+ 1)Hn(x)= 2Hn(x)+ 2xH ′

n(x)−H ′′
n (x),

which can be rearranged to the second-order ODE for Hermite polynomials. Thus, the
recurrence relations (Eqs. (13.2) and (13.3)) lead to the second-order ODE

H ′′
n (x)− 2xH ′

n(x)+ 2nHn(x)= 0, (13.10)

which is clearlynot self-adjoint.
To put the ODE in self-adjoint form, following Section 10.1, we multiply by exp(−x2),

Exercise 10.1.2. This leads to the orthogonality integral∫ ∞

−∞
Hm(x)Hn(x)e

−x2
dx = 0, m 
= n, (13.11)

with the weighting function exp(−x2), a consequence of putting the ODE into self-adjoint
form. The interval(−∞,∞) is chosen to obtain the Hermitian operator boundary condi-
tions, Section 10.1. It is sometimes convenient to absorb the weighting function into the
Hermite polynomials. We may define

ϕn(x)= e−x2/2Hn(x), (13.12)

with ϕn(x) no longer a polynomial.
Substitution into Eq. (13.10) yields the differential equation forϕn(x),

ϕ′′n(x)+
(
2n+ 1− x2)ϕn(x)= 0. (13.13)

This is the differential equation for a quantum mechanical, simple harmonic oscillator,
which is perhaps the most important physics application of the Hermite polynomials.
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Equation (13.13) is self-adjoint, and the solutionsϕn(x) are orthogonal for the interval
(−∞< x <∞) with a unit weighting function.

The problem of normalizing these functions remains. Proceeding as in Section 12.3, we
multiply Eq. (13.1) by itself and then bye−x2

. This yields

e−x2
e−s2+2sxe−t2+2tx =

∞∑
m,n=0

e−x2
Hm(x)Hn(x)

smtn

m!n! .

When we integrate this relation overx from −∞ to +∞, the cross terms of the double
sum drop out because of the orthogonality property:3

∞∑
n=0

(st)n

n!n!
∫ ∞

−∞
e−x2[

Hn(x)
]2
dx =

∫ ∞

−∞
e−x2−s2+2sx−t2+2tx dx

=
∫ ∞

−∞
e−(x−s−t)2e2st dx

= π1/2e2st = π1/2
∞∑
n=0

2n(st)n

n! , (13.14)

using Eqs. (8.6) and (8.8). By equating coefficients of like powers ofst , we obtain∫ ∞

−∞
e−x2[

Hn(x)
]2
dx = 2nπ1/2n!. (13.15)

Quantum Mechanical Simple Harmonic Oscillator

The following development of Hermite polynomials via simple harmonic oscillator wave
functionsφn(x) is analogous to the use of the raising and lowering operators for angu-
lar momentum operators presented in Section 4.3. This means that we derive the eigen-
valuesn + 1/2 and eigenfunctions (theHn(x)) without assuming the development that

led to Eq. (13.13). The key aspect of the eigenvalue Eq. (13.13),( d2

dx2 − x2)ϕn(x) =
−(2n+ 1)ϕn(x), is that the Hamiltonian

−2H≡ d2

dx2
− x2=

(
d

dx
− x

)(
d

dx
+ x

)
+
[
x,

d

dx

]
(13.16)

almost factorizes. Using naivelya2−b2= (a−b)(a+b), the basic commutator[px, x] =
h̄/i of quantum mechanics (with momentumpx = (h̄/i)d/dx) enters as a correction in
Eq. (13.16). (Becausepx is Hermitian,d/dx is anti-Hermitian,(d/dx)†=−d/dx.) This
commutator can be evaluated as follows. Imagine the differential operatord/dx acts on a
wave functionϕ(x) to the right, as in Eq. (13.13), so

d

dx
(xϕ)= x

d

dx
ϕ + ϕ, (13.17)

3The cross terms(m 
= n) may be left in, if desired. Then, when the coefficients ofsαtβ are equated, the orthogonality will be
apparent.
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by the product rule. Dropping the wave functionϕ from Eq. (13.17), we rewrite Eq. (13.17)
as

d

dx
x − x

d

dx
≡
[
d

dx
, x

]
= 1, (13.18)

a constant, and then verify Eq. (13.16) directly by expanding the product of operators.
The product form of Eq. (13.16), up to the constant commutator, suggests introducing the
non-Hermitian operators

â†≡ 1√
2

(
x − d

dx

)
, â ≡ 1√

2

(
x + d

dx

)
, (13.19)

with (â)†= â†, which are adjoints of each other. They obey the commutation relations[
â, â†]= [ d

dx
, x

]
= 1, [â, â] = 0= [â†, â†], (13.20)

which are characteristic of these operators and straightforward to derive from Eq. (13.18)
and [

d

dx
,
d

dx

]
= 0= [x, x] and

[
x,

d

dx

]
=−

[
d

dx
, x

]
.

Returning to Eq. (13.16) and using Eq. (13.19) we rewrite the Hamiltonian as

H= â†â + 1

2
= â†â + 1

2

(
â†â + ââ†)= 1

2

(
â†â + ââ†) (13.21)

and introduce the Hermitiannumber operator N = â†â so thatH=N + 1/2. Let |n〉 be
an eigenfunction ofH,

H|n〉 = λn|n〉,
whose eigenvalueλn is unknown at this point. Now we prove the key property thatN has
nonnegative integer eigenvalues

N |n〉 =
(
λn − 1

2

)
|n〉 = n|n〉, n= 0,1,2 . . . , (13.22)

that is,λn = n+ 1/2. Sinceâ|n〉 is complex conjugate to〈n|â†, the normalization integral
〈n|â†â|n〉 ≥ 0 and is finite. From(

â|n〉)†â|n〉 = 〈n|â†â|n〉 =
(
λn − 1

2

)
≥ 0 (13.23)

we see thatN has nonnegative eigenvalues.
We now show that ifâ|n〉 is nonzero it is an eigenfunction with eigenvalueλn−1 =

λn − 1. After normalizingâ|n〉, this state is designated|n − 1〉. This is proved by the
commutation relations [

N, â†]= â†, [N, â] = −â, (13.24)
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which follow from Eq. (13.20). These commutation relations characterizeN as the number
operator. To see this, we determine the eigenvalue ofN for the stateŝa†|n〉 andâ|n〉. Using
ââ†=N + [â, â†] =N + 1, we find that

N
(
â†|n〉) = â†(ââ†)|n〉 = â†([â, â†]+N

)|n〉
= â†(N + 1)|n〉 =

(
λn + 1

2

)
â†|n〉 = (n+ 1)â†|n〉, (13.25)

N
(
â|n〉) = (ââ†− 1

)
â|n〉 = â(N − 1)|n〉 = (n− 1)â|n〉.

In other words,N acting onâ†|n〉 shows that̂a† has raised the eigenvaluen corresponding
to |n〉 by one unit, whence its nameraising, orcreation, operator. Applying â† repeatedly,
we can reach all higher states. There is no upper limit to the sequence of eigenvalues.
Similarly, â lowers the eigenvaluen by one unit; hence it is alowering (or annihilation)
operator because. Therefore,

â†|n〉 ∼ |n+ 1〉, â|n〉 ∼ |n− 1〉. (13.26)

Applying â repeatedly, we can reach the lowest, or ground, state|0〉with eigenvalueλ0. We
cannot step lower becauseλ0≥ 1/2. Thereforêa|0〉 ≡ 0, suggesting we constructψ0= |0〉
from the (factored)first-order ODE

√
2âψ0=

(
d

dx
+ x

)
ψ0= 0. (13.27)

Integrating

ψ ′0
ψ0
=−x, (13.28)

we obtain

lnψ0=−1

2
x2+ ln c0, (13.29)

wherec0 is an integration constant. The solution,

ψ0(x)= c0e
−x2/2, (13.30)

is a Gaussian that can be normalized, withc0= π−1/4 using the error integral, Eqs. (8.6)
and (8.8). Substitutingψ0 into Eq. (13.13) we find

H|0〉 =
(
â†â + 1

2

)
|0〉 = 1

2
|0〉, (13.31)

so its energy eigenvalue isλ0 = 1/2 and its number eigenvalue isn = 0, confirming the
notation|0〉. Applying â† repeatedly toψ0= |0〉, all other eigenvalues are confirmed to be
λn = n+1/2, proving Eq. (13.13). The normalizations needed for Eq. (13.26) follow from
Eqs. (13.25) and (13.23) and

〈n|ââ†|n〉 = 〈n|â†â + 1|n〉 = n+ 1, (13.32)
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showing

√
n+ 1|n+ 1〉 = â†|n〉, √

n|n− 1〉 = â|n〉. (13.33)

Thus, the excited-state wave functions,ψ1,ψ2, and so on, are generated by the raising
operator

|1〉 = â†|0〉 = 1√
2

(
x − d

dx

)
ψ0(x)= x

√
2

π1/4
e−x2/2, (13.34)

yielding (and leading to upcoming Eq. (13.38))

ψn(x)=NnHn(x)e
−x2/2, Nn ≡ π−1/4(2nn!)−1/2

, (13.35)

whereHn are the Hermite polynomials (Fig. 13.2).
As shown, the Hermite polynomials are used in analyzing the quantum mechanical sim-

ple harmonic oscillator. For a potential energyV = 1
2Kz2= 1

2mω2z2 (forceF=−∇V =
−Kzẑ), the Schrödinger wave equation is

− h̄2

2m
∇2�(z)+ 1

2
Kz2�(z)=E�(z). (13.36)

Our oscillating particle has massm and total energyE. By use of the abbreviations

x = αz with α4= mK

h̄2
= m2ω2

h̄2
,

λ= 2E

h̄

(
m

K

)1/2

= 2E

h̄ω
,

(13.37)

in whichω is the angular frequency of the corresponding classical oscillator, Eq. (13.36)
becomes (with�(z)=�(x/α)=ψ(x))

d2ψ(x)

dx2
+ (λ− x2)ψ(x)= 0. (13.38)

This is Eq. (13.13) withλ= 2n+ 1. Hence (Fig. 13.2),

ψn(x)= 2−n/2π−1/4(n!)−1/2e−x2/2Hn(x), (normalized). (13.39)

Alternatively, the requirement thatn be an integer is dictated by the boundary conditions
of the quantum mechanical system,

lim
z→±∞�(z)= 0.

Specifically, ifn→ ν, not an integer, a power-series solution of Eq. (13.13) (Exercise 9.5.6)
shows thatHν(x) will behave asxνex

2
for largex. The functionsψν(x) and�ν(z) will

therefore blow up at infinity, and it will be impossible to normalize the wave function�(z).
With this requirement, the energyE becomes

E =
(
n+ 1

2

)
h̄ω. (13.40)
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FIGURE 13.2 Quantum mechanical
oscillator wave functions: The

heavy bar on thex-axis indicates the
allowed range of the classical

oscillator with the same total energy.

As n ranges over integral values(n≥ 0), we see that the energy is quantized and that there
is a minimum or zero point energy

Emin= 1

2
h̄ω. (13.41)

This zero point energy is an aspect of the uncertainty principle, a genuine quantum phe-
nomenon.
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In quantum mechanical problems, particularly in molecular spectroscopy, a number of
integrals of the form ∫ ∞

−∞
xre−x2

Hn(x)Hm(x)dx

are needed. Examples forr = 1 andr = 2 (with n=m) are included in the exercises at the
end of this section. A large number of other examples are contained in Wilson, Decius, and
Cross.4

In the dynamics and spectroscopy of molecules in the Born–Oppenheimer approxima-
tion, the motion of a molecule is separated into electronic, vibrational and rotational mo-
tion. Each vibrating atom contributes to a matrix element two Hermite polynomials, its
initial state and another one to its final state. Thus, integrals of products of Hermite poly-
nomials are needed.

Example 13.1.2 THREEFOLD HERMITE FORMULA

We want to calculate the following integral involvingm= 3 Hermite polynomials:

I3≡
∫ ∞

−∞
e−x2

HN1(x)HN2(x)HN3(x) dx, (13.42)

whereNi ≥ 0 are integers. The formula (due to E. C. Titchmarsh,J. Lond. Math. Soc. 23:
15 (1948), see Gradshteyn and Ryzhik, p. 838, in the Additional Readings) generalizes the
m = 2 case needed for the orthogonality and normalization of Hermite polynomials. To
derive it, we start with the product of three generating functions of Hermite polynomials,
multiply by e−x2

, and integrate overx in order to generateI3:

Z3 ≡
∫ ∞

−∞
e−x2

3∏
j=1

e
2xtj−t2j dx =

∫ ∞

−∞
e
−(∑3

j=1 tj−x)2+2(t1t2+t1t3+t2t3) dx

=√πe2(t1t2+t1t3+t2t3). (13.43)

The last equality follows from substitutingy = x −∑j tj and using the error integral∫∞
−∞ e−y2

dy =√π , Eqs. (8.6) and (8.8). Expanding the generating functions in terms of
Hermite polynomials we obtain

Z3 =
∞∑

N1,N2,N3=0

t
N1
1 t

N2
2 t

N3
3

N1!N2!N3!
∫ ∞

−∞
e−x2

HN1(x)HN2(x)HN3(x) dx

=√π

∞∑
N=0

2N

N ! (t1t2+ t1t3+ t2t3)
N

=√π

∞∑
N=0

2N

N !
∑

0≤ni≤N,
∑

i ni=N

N !
n1!n2!n3! (t1t2)

n1(t1t3)
n2(t2t3)

n3,

4E. B. Wilson, Jr., J. C. Decius, and P. C. Cross,Molecular Vibrations, New York: McGraw-Hill (1955), reprinted Dover (1980).
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using the polynomial expansion( m∑
j=1

aj

)N

=
∑

0≤ni≤m

N !
n1! · · ·nm!a

n1
1 · · ·anmm .

The powers of the foregoingtj tk become

(t1t2)
n1(t1t3)

n2(t2t3)
n3 = t

N1
1 t

N2
2 t

N3
3 ;

N1= n1+ n2, N2= n1+ n3, N3= n2+ n3.

That is, from

2N = 2(n1+ n2+ n3)=N1+N2+N3

there follows

2N = 2n1+ 2N3= 2n2+ 2N2= 2n3+ 2N1,

so we obtain

n1=N −N3, n2=N −N2, n3=N −N1.

The ni are all fixed (making this case special and easy) because theNi are fixed, and

2N =
3∑

i=1
Ni , with N ≥ 0 an integer by parity. Hence, upon comparing the foregoing like

t1t2t3 powers,

I3=
√
π2NN1!N2!N3!

(N −N1)!(N −N2)!(N −N3)! , (13.44)

which is the desired formula. If weorder N1 ≥ N2 ≥ N3 ≥ 0, thenn1 ≥ n2 ≥ n3 ≥ 0
follows, being equivalent toN −N3≥N −N2≥N −N1≥ 0, which occur in the denom-
inators of the factorials ofI3. �

Example 13.1.3 DIRECT EXPANSION OF PRODUCTS OF HERMITE POLYNOMIALS

In an alternative approach, we now start again from the generating function identity

∞∑
N1,N2=0

HN1(x)HN2(x)
t
N1
1

N1!
t
N2
2

N2! = e2x(t1+t2)−t21−t22 = e2x(t1+t2)−(t1+t2)2 · e2t1t2

=
∞∑

N=0

HN(x)
(t1+ t2)

N

N !
∞∑
ν=0

(2t1t2)ν

ν! .
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Using the binomial expansion and then comparing like powers oft1t2 we extract an identity
due to E. Feldheim (J. Lond. Math. Soc. 13: 22 (1938)):

HN1(x)HN2(x) =
min(N1,N2)∑

ν=0

HN1+N2−2ν
N1!N2!2ν

ν!(N1+N2− 2ν)!
(
N1+N2− 2ν

N1− ν

)

=
∑

0≤ν≤min(N1,N2)

HN1+N2−2ν2νν!
(
N1
ν

)(
N2
ν

)
. (13.45)

For ν = 0 the coefficient ofHN1+N2 is obviously unity. Special cases, such as

H 2
1 =H2+2, H1H2=H3+4H1, H 2

2 =H4+8H2+8, H1H3=H4+6H2,

can be derived from Table 13.1 and agree with the general twofold product formula.
This compact formula can be generalized to products ofm Hermite polynomials, and

this in turn yields a new closed form result for the integralIm.
Let us begin with a new result forI4 containing a product of four Hermite polynomials.

Inserting the Feldheim identity forHN1HN2 andHN3HN4 and using orthogonality∫ ∞

−∞
e−x2

HN1HN2 dx =
√
π2N1N1!δN1N2

for the remaining product of two Hermite polynomials yields

I4 =
∫ ∞

−∞
e−x2

HN1HN2HN3HN4 dx

=
∑

0≤µ≤min(N1,N2);0≤ν≤min(N3,N4)

2µµ!

·
(
N1
µ

)(
N2
µ

)
2νν!

(
N3
ν

)(
N4
ν

)∫ ∞

−∞
e−x2

HN1+N2−2µHN3+N4−2ν dx

=
N4∑
ν=0

√
π2M(N3+N4− 2ν)!N1!N2!N3!N4!

(M −N3−N4− ν)!(M −N1+ ν)!(M −N2+ ν)!(N3− ν)!(N4− ν)!ν! .
(13.46)

Here we use the notationM = (N1+N2+N3+N4)/2 and write the binomial coefficients
explicitly, so

1
2(N1+N2−N3−N4) =M −N3−N4,

1
2(N1−N2+N3+N4) =M −N2,

1
2(N2−N1+N3+N4) =M −N1.

From orthogonality we haveµ = (N1 + N2 − N3 − N4)/2 + ν. The upper limit
of ν is min(N3,N4,M − N1,M − N2) = min(N4,M − N1) and the lower limit is
max(0,N3+N4−M)= 0, if we orderN1≥N2≥N3≥N4.
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Now we return to the product expansion ofm Hermite polynomials and the correspond-
ing new result from it forIm. We prove a generalized Feldheim identity,

HN1(x) · · ·HNm(x)=
∑

ν1,...,νm−1

HM(x)aν1,...,νm−1, (13.47)

where

M =
m−1∑
i=1

(Ni − 2νi)+Nm,

by mathematical induction. Multiplying this byHNm+1 and using the Feldheim identity,
we end up with the same formula form+ 1 Hermite polynomials, including the recursion
relation

aν1,...,νm = aν1,...,νm−12νmνm!
(
Nm+1
νm

)(∑m−1
i=1 (Ni − 2νi)+Nm+1

νm

)
.

Its solution is

aν1,...,νm−1 =
m−1∏
i=1

(
Ni+1
νi

)(∑i−1
j=1(Nj − 2νj )+Ni

νi

)
2νi νi !. (13.48)

The limits of the summation indices are

0≤ ν1≤min(N1,N2), 0≤ ν2≤min(N3,N1+N2− 2ν1), . . . ,

0≤ νm−1≤min

(
Nm,

m−2∑
i=1

(Ni − 2νi)+Nm−1

)
. (13.49)

We now apply this generalized Feldheim identity, with indices ordered asN1 ≥ N2 ≥
· · · ≥ Nm, to Im, groupingHN2 · · ·HNm together and using orthogonality for the re-
maining product of two Hermite polynomialsHN1H

∑m−1
i=2 (Ni−2νi )+Nm

. This yieldsN1 =∑m−1
i=2 (Ni − 2νi)+Nm, fixing νm−1, and

Im =√π2N1N1!
∑

ν2,...,νm−1

m−1∏
i=2

(
Ni+1
νi

)(∑i−1
j=2(Nj − 2νj )+Ni

νi

)
νi !2νi , (13.50)

where the limits on the summation indices are

0≤ ν2≤min(N3,N2), . . . , 0≤ νm−1≤min

(
Nm,

m−2∑
i=2

(Ni−2νi)+Nm−1

)
. (13.51)

�
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Example 13.1.4 APPLICATIONS OF THE PRODUCT FORMULAS

To check the expressionIm for m= 3, we note that the sum
∑i−1

j=2 with i− 1=m− 2= 1
in the second binomial coefficient inIm is empty (that is, zero), so onlyNi =Nm−1=N2

remains. Also, withνm−2 = ν1 the sum over theνi is that overν2, which is fixed by the
constraint on the summation indexν2: N1 = N2 − 2ν2 + N3. Henceν2 = (N2 + N3 −
N1)/2= N −N1, with N = (N1+N2+N3)/2. That is, only the product remains inIm.
The general formula forIm therefore gives

I3=√π2N1N1!
(
N3

ν2

)(
N2

ν2

)
ν2!2ν2 =

√
π2NN1!N2!N3!

(N −N1)!(N −N2)!(N −N3)! ,

which agrees with our earlier result of Example 13.1.2. The last expression is based on
the following observations. The power of 2 has the exponentN1+ ν2=N . The factorials
from the binomial coefficients areN3 − ν2 = (N1 + N3 − N2)/2= N − N2,N2 − ν2 =
(N1+N2−N3)/2=N −N3.

Next let us considerm = 4, where we do not order the Hermite indicesNi as yet. The
reason is that the generalIm expression was derived with a different grouping of the Her-
mite polynomials than the separate calculation ofI4 with which we compare. That is why
we’ll have to permute the indices to get the earlier result forI4. That is a general conclu-
sion: Different groupings of the Hermite polynomials just give different permutations of
the Hermite indices in the general result.

We have two summations overν2 andνm−1= ν3, which is fixed by the constraintN1=
N2− 2ν2+N3− 2ν3+N4. Hence

ν3= 1
2(N2+N3+N4−N1)− ν2=M −N1− ν2

with M = 1
2(N1+N2+N3+N4). The exponent of 2 isN1+ ν2+ ν3=M . Therefore for

m= 4 theIm formula gives

I4 =√π2N1N1!
∑
ν2≥0

(
N3

ν2

)(
N4

ν3

)(
N2

ν2

)(
N2− 2ν2+N3

ν3

)
ν2!2ν2ν3!2ν3

=
∑
ν2≥0

√
π2MN1!N2!N3!N4!(N2− 2ν2+N3)!

ν2!ν3!(N2− ν2)!(N3− ν2)!(N4− ν3)!(N2+N3− 2ν2− ν3)!

=
∑
ν2≥0

√
π2MN1!N2!N3!N4!(N2+N3− 2ν2)!

(N2− ν2)!(N3− ν2)!(N4− ν3)!ν2!ν3!(N2+N3− 2ν2− ν3)!

=
∑
ν2≥0

√
π2MN1!N2!N3!N4!(N2+N3− 2ν2)!

ν2!(M −N1− ν2)!(N3− ν2)!(N2− ν2)!(M −N2−N3+ ν2)!(M −N4− ν2)! .

In the last expression we have substitutedν3 and used

N4− ν3= (N1−N2−N3+N4)+ ν2=M −N2−N3+ ν2,

N2+N3− 2ν2− ν3= N1+N2+N3−N4

2
− ν2=M −N4− ν2.
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The upper limit isν2 ≤ min(N2,N3,M − N1,M − N4), and the lower limit isν2 ≥
max(0,N2 + N3 −M). If we make the permutationN2 ↔ N4, ν2 → ν, then our previ-
ousI4 result is obtained with upper limitν ≤min(N4,M −N1)= 1

2(N2+N3+N4−N1)

and lower limit ν ≥ max(0,N3 + N4 − M) = 0 becauseN3 + N4 − N1 − N2 ≤ 0 for
N1≥N2≥N3≥N4≥ 0. �

The Hermite polynomial product formula also applies to products of simple harmonic
oscillator wave functions,

∫∞
−∞ e−mx2/2HN1(x) · · ·HNm(x)dx, with a different exponential

weight function. To evaluate such integrals we use the generalized Feldheim identity for
HN2 · · ·HNm in conjunction with the integral (see Gradshteyn and Ryzhik, p. 845, in the
Additional Readings),∫ ∞

−∞
e−a2x2

Hm(x)Hn(x)dx = 1

2

(
2

a

)m+n+1(
1− a2)(m+n)/2

�

(
m+ n+ 1

2

)

· 2F1

(
−m,−n; 1−m− n

2
; a2

2(a2− 1)

)
,

instead of the standard orthogonality integral for the remaining product of two Hermite
polynomials. Here the hypergeometric function is the finite sum

2F1

(
−m,−n; 1−m− n

2
; a2

2(a2− 1)

)
=

min(m,n)−1∑
ν=0

(−m)ν(−n)ν
ν!(1−m−n

2 )ν

(
a2

2(a2− 1)

)ν

with (−m)ν = (−m)(1−m) · · · (ν−1−m) and(−m)0≡ 1. This yields a result similar to
Im but somewhat more complicated.

The oscillator potential has also been employed extensively in calculations of nuclear
structure (nuclear shell model) quark models of hadrons and the nuclear force.

There is a second independent solution of Eq. (13.13). This Hermite function of the
second kind is an infinite series (Sections 9.5 and 9.6) and is of no physical interest, at
least not yet.

Exercises

13.1.1 Assume the Hermite polynomials are known to be solutions of the differential equa-
tion (13.13). From this the recurrence relation, Eq. (13.3), and the values ofHn(0) are
also known.

(a) Assume the existence of a generating function

g(x, t)=
∞∑
n=0

Hn(x)t
n

n! .

(b) Differentiateg(x, t) with respect tox and using the recurrence relation develop a
first-order PDE forg(x, t).

(c) Integrate with respect tox, holdingt fixed.
(d) Evaluateg(0, t) using Eq. (13.5). Finally, show that

g(x, t)= exp
(−t2+ 2tx

)
.
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13.1.2 In developing the properties of the Hermite polynomials, start at a number of different
points, such as:

1. Hermite’s ODE, Eq. (13.13),
2. Rodrigues’ formula, Eq. (13.7),
3. Integral representation, Eq. (13.8),
4. Generating function, Eq. (13.1),
5. Gram–Schmidt construction of a complete set of orthogonal polynomials over

(−∞,∞) with a weighting factor of exp(−x2), Section 10.3.

Outline how you can go from any one of these starting points to all the other points.

13.1.3 Prove that (
2x − d

dx

)n

1=Hn(x).

Hint. Check out the first couple of examples and then use mathematical induction.

13.1.4 Prove that ∣∣Hn(x)
∣∣≤ ∣∣Hn(ix)

∣∣.
13.1.5 Rewrite the series form ofHn(x), Eq. (13.9), as anascending power series.

ANS.H2n(x)= (−1)n
n∑

s=0

(−1)2s(2x)2s
(2n)!

(2s)!(n− s)! ,

H2n+1(x)= (−1)n
n∑

s=0

(−1)s(2x)2s+1 (2n+ 1)!
(2s + 1)!(n− s)! .

13.1.6 (a) Expandx2r in a series of even-order Hermite polynomials.
(b) Expandx2r+1 in a series of odd-order Hermite polynomials.

ANS. (a)x2r = (2r)!
22r

r∑
n=0

H2n(x)

(2n)!(r − n)!

(b) x2r+1= (2r + 1)!
22r+1

r∑
n=0

H2n+1(x)

(2n+ 1)!(r − n)! , r = 0,1,2, . . . .

Hint. Use a Rodrigues representation and integrate by parts.

13.1.7 Show that

(a)
∫ ∞

−∞
Hn(x)exp

[
−x2

2

]
dx =

{
2πn!/(n/2)!, n even
0, n odd.

(b)
∫ ∞

−∞
xHn(x)exp

[
−x2

2

]
dx =

0, n even

2π
(n+ 1)!

((n+ 1)/2)! , n odd.
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13.1.8 Show that∫ ∞

−∞
xme−x2

Hn(x)dx = 0 for m an integer, 0≤m≤ n− 1.

13.1.9 The transition probability between two oscillator statesm andn depends on∫ ∞

−∞
xe−x2

Hn(x)Hm(x)dx.

Show that this integral equalsπ1/22n−1n!δm,n−1 + π1/22n(n + 1)!δm,n+1. This result
shows that such transitions can occur only between states of adjacent energy levels,
m= n± 1.
Hint. Multiply the generating function (Eq. (13.1)) by itself using two different sets of
variables(x, s) and(x, t). Alternatively, the factorx may be eliminated by the recur-
rence relation, Eq. (13.2).

13.1.10 Show that ∫ ∞

−∞
x2e−x2

Hn(x)Hn(x) dx = π1/22nn!
(
n+ 1

2

)
.

This integral occurs in the calculation of the mean-square displacement of our quantum
oscillator.
Hint. Use the recurrence relation, Eq. (13.2), and the orthogonality integral.

13.1.11 Evaluate ∫ ∞

−∞
x2e−x2

Hn(x)Hm(x)dx

in terms ofn andm and appropriate Kronecker delta functions.

ANS. 2n−1π1/2(2n+ 1)n!δnm + 2nπ1/2(n+ 2)!δn+2,m + 2n−2π1/2n!δn−2,m.

13.1.12 Show that ∫ ∞

−∞
xre−x2

Hn(x)Hn+p(x) dx =
{

0, p > r

2nπ1/2(n+ r)!, p = r,

with n, p, andr nonnegative integers.
Hint. Use the recurrence relation, Eq. (13.2),p times.

13.1.13 (a) Using the Cauchy integral formula, develop an integral representation ofHn(x)

based on Eq. (13.1) with the contour enclosing the pointz=−x.

ANS.Hn(x)= n!
2πi

ex
2
∮

e−z2

(z+ x)n+1
dz.

(b) Show by direct substitution that this result satisfies the Hermite equation.
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13.1.14 With

ψn(x)= e−x2/2 Hn(x)

(2nn!π1/2)1/2
,

verify that

ânψn(x) = 1√
2

(
x + d

dx

)
ψn(x)= n1/2ψn−1(x),

â†
nψn(x) = 1√

2

(
x − d

dx

)
ψn(x)= (n+ 1)1/2ψn+1(x).

Note. The usual quantum mechanical operator approach establishes these raising and
lowering properties before the form ofψn(x) is known.

13.1.15 (a) Verify the operator identity

x − d

dx
=−exp

[
x2

2

]
d

dx
exp

[
−x2

2

]
.

(b) The normalized simple harmonic oscillator wave function is

ψn(x)=
(
π1/22nn!)−1/2 exp

[
−x2

2

]
Hn(x).

Show that this may be written as

ψn(x)=
(
π1/22nn!)−1/2

(
x − d

dx

)n

exp

[
−x2

2

]
.

Note. This corresponds to ann-fold application of the raising operator of Exer-
cise 13.1.14.

13.1.16 (a) Show that the simple oscillator Hamiltonian (from Eq. (13.38)) may be written as

H=−1

2

d2

dx2
+ 1

2
x2= 1

2

(
ââ†+ â†â

)
.

Hint. ExpressE in units of h̄ω.
(b) Using the creation–annihilation operator formulation of part (a), show that

Hψ(x)=
(
n+ 1

2

)
ψ(x).

This means the energy eigenvalues areE = (n + 1
2)(h̄ω), in agreement with

Eq. (13.40).

13.1.17 Write a program that will generate the coefficientsas , in the polynomial form of the
Hermite polynomialHn(x)=∑n

s=0asx
s .

13.1.18 A functionf (x) is expanded in a Hermite series:

f (x)=
∞∑
n=0

anHn(x).
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From the orthogonality and normalization of the Hermite polynomials the coefficient
an is given by

an = 1

2nπ1/2n!
∫ ∞

−∞
f (x)Hn(x)e

−x2
dx.

Forf (x)= x8 determine the Hermite coefficientsan by the Gauss–Hermite quadrature.
Check your coefficients against AMS-55, Table 22.12 (for the reference see footnote 4
in Chapter 5 or the General References at book’s end).

13.1.19 (a) In analogy with Exercise 12.2.13, set up the matrix of even Hermite polynomial
coefficients that will transform an even Hermite series into an even power series:

B=


1 −2 12 · · ·
0 4 −48 · · ·
0 0 16 · · ·
...

...
... · · ·

 .

ExtendB to handle an even polynomial series throughH8(x).
(b) Invert your matrix to obtain matrixA, which will transform an even power series

(throughx8) into a series of even Hermite polynomials. Check the elements ofA
against those listed in AMS-55 (Table 22.12, in the General References at book’s
end).

(c) Finally, using matrix multiplication, determine the Hermite series equivalent to
f (x)= x8.

13.1.20 Write a subroutine that will transform a finite power series,
∑N

n=0anx
n, into a Hermite

series,
∑N

n=0bnHn(x). Use the recurrence relation, Eq. (13.2).
Note. Both Exercises 13.1.19 and 13.1.20 are faster and more accurate than the Gaussian
quadrature, Exercise 13.1.18, iff (x) is available as a power series.

13.1.21 Write a subroutine for evaluating Hermite polynomial matrix elements of the form

Mpqr =
∫ ∞

−∞
Hp(x)Hq(x)x

re−x2
dx,

using the 10-point Gauss–Hermite quadrature (forp + q + r ≤ 19). Include a parity
check and set equal to zero the integrals with odd-parity integrand. Also, check to see
if r is in the range|p − q| ≤ r . OtherwiseMpqr = 0. Check your results against the
specific cases listed in Exercises 13.1.9, 13.1.10, 13.1.11, and 13.1.12.

13.1.22 Calculate and tabulate the normalized linear oscillator wave functions

ψn(x)= 2−n/2π−1/4(n!)−1/2Hn(x)exp

(
−x2

2

)
for x = 0.0(0.1)5.0

andn= 0(1)5. If a plotting routine is available, plot your results.

13.1.23 Evaluate
∫∞
−∞ e−2x2

HN1(x) · · ·HN4(x) dx in closed form.

Hint.
∫∞
−∞e−2x2

HN1(x)HN2(x)HN3(x) dx = 1
π

2(N1+N2+N3−1)/2 · �(s −N1)�(s −N2)

· �(s − N3), s = (N1 + N2 + N3 + 1)/2 or
∫∞
−∞ e−2x2

HN1(x)HN2(x) dx =
(−1)(N1+N2−1)/22(N1+N2−1)/2 · �((N1 + N2 + 1)/2) may be helpful. Prove these for-
mulas (see Gradshteyn and Ryzhik, no. 7.375 on p. 844, in the Additional Readings).
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13.2 LAGUERRE FUNCTIONS

Differential Equation — Laguerre Polynomials

If we start with the appropriate generating function, it is possible to develop the Laguerre
polynomials in analogy with the Hermite polynomials. Alternatively, a series solution may
be developed by the methods of Section 9.5. Instead, to illustrate a different technique, let
us start with Laguerre’s ODE and obtain a solution in the form of a contour integral, as we
did with the integral representation for the modified Bessel functionKν(x) (Section 11.6).
From this integral representation a generating function will be derived.

Laguerre’s ODE (which derives from the radial ODE of Schrödinger’s PDE for the hy-
drogen atom) is

xy′′(x)+ (1− x)y′(x)+ ny(x)= 0. (13.52)

We shall attempt to representy, or ratheryn, sincey will depend on the parametern,
a nonnegative integer, by the contour integral

yn(x)= 1

2πi

∮
e−xz/(1−z)

(1− z)zn+1
dz (13.53a)

and demonstrate that it satisfies Laguerre’s ODE. The contour includes the origin but does
not enclose the pointz= 1. By differentiating the exponential in Eq. (13.53a) we obtain

y′n(x) = −
1

2πi

∮
e−xz/(1−z)

(1− z)2zn
dz, (13.53b)

y′′n(x) =
1

2πi

∮
e−xz/(1−z)

(1− z)3zn−1
dz. (13.53c)

Substituting into the left-hand side of Eq. (13.52), we obtain

1

2πi

∮ [
x

(1− z)3zn−1
− 1− x

(1− z)2zn
+ n

(1− z)zn+1

]
e−xz/(1−z) dz,

which is equal to

− 1

2πi

∮
d

dz

[
e−xz/(1−z)

(1− z)zn

]
dz. (13.54)

If we integrate our perfect differential around a closed contour (Fig. 13.3), the integral will
vanish, thus verifying thatyn(x) (Eq. (13.53a)) is a solution of Laguerre’s equation.

It has become customary to defineLn(x), the Laguerre polynomial (Fig. 13.4), by5

Ln(x)= 1

2πi

∮
e−xz/(1−z)

(1− z)zn+1
dz. (13.55)

5Other definitions ofLn(x) are in use. The definitions here of the Laguerre polynomialLn(x) and the associated Laguerre
polynomialLk

n(x) agree with AMS-55, Chapter 22. (For the full ref. see footnote 4 in Chapter 5 or the General References at
book’s end.)
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FIGURE 13.3 Laguerre
polynomial contour.

FIGURE 13.4 Laguerre
polynomials.

This is exactly what we would obtain from the series

g(x, z)= e−xz/(1−z)

1− z
=

∞∑
n=0

Ln(x)z
n, |z|< 1, (13.56)

if we multipliedg(x, z) by z−n−1 and integrated around the origin. As in the development
of the calculus of residues (Section 7.1), only thez−1 term in the series survives. On this
basis we identifyg(x, z) as the generating function for the Laguerre polynomials.
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With the transformation

xz

1− z
= s − x, or z= s − x

s
, (13.57)

Ln(x) = ex

2πi

∮
sne−s

(s − x)n+1
ds, (13.58)

the new contour enclosing the points = x in the s-plane. By Cauchy’s integral formula
(for derivatives),

Ln(x)= ex

n!
dn

dxn

(
xne−x

)
(integraln), (13.59)

giving Rodrigues’ formula for Laguerre polynomials. From these representations ofLn(x)

we find the series form (for integraln),

Ln(x) = (−1)n

n!
[
xn − n2

1! x
n−1+ n2(n− 1)2

2! xn−2− · · · + (−1)nn!
]

=
n∑

m=0

(−1)mn!xm
(n−m)!m!m! =

n∑
s=0

(−1)n−sn!xn−s
(n− s)!(n− s)!s! (13.60)

and the specific polynomials listed in Table 13.2 (Exercise 13.2.1). Clearly, the defini-
tion of Laguerre polynomials in Eqs. (13.55), (13.56), (13.59), and (13.60) are equivalent.
Practical applications will decide which approach is used as one’s starting point. Equa-
tion (13.59) is most convenient for generating Table 13.2, Eq. (13.56) for deriving recur-
sion relations from which the ODE (13.52) is recovered.

By differentiating the generating function in Eq. (13.56) with respect tox and z, we
obtain recurrence relations for the Laguerre polynomials as follows. Using the product
rule for differentiation we verify the identities

(1− z)2
∂g

∂z
= (1− x − z)g(x, z), (z− 1)

∂g

∂x
= zg(x, z). (13.61)

Table 13.2 Laguerre Polynomials

L0(x)= 1
L1(x)=−x + 1
2!L2(x)= x2− 4x + 2
3!L3(x)=−x3+ 9x2− 18x + 6
4!L4(x)= x4− 16x3+ 72x2− 96x + 24
5!L5(x)=−x5+ 25x4− 200x3+ 600x2− 600x + 120
6!L6(x)= x6− 36x5+ 450x4− 2400x3+ 5400x2− 4320x + 720
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Writing the left-hand and right-hand sides of the first identity in terms of Laguerre polyno-
mials using Eq. (13.56) we obtain∑

n

[
(n+ 1)Ln+1(x)− 2nLn(x)+ (n− 1)Ln−1(x)

]
zn

=
∑
n

[
(1− x)Ln(x)−Ln−1(x)

]
zn.

Equating coefficients ofzn yields

(n+ 1)Ln+1(x)= (2n+ 1− x)Ln(x)− nLn−1(x). (13.62)

To get the second recursion relation we use both identities of Eqs. (13.61) to verify the
third identity,

x
∂g

∂x
= z

∂g

∂z
− z

∂(zg)

∂z
, (13.63)

which, when written similarly in terms of Laguerre polynomials, is seen to be equivalent
to

xL′n(x)= nLn(x)− nLn−1(x). (13.64)

Equation (13.61), modified to read

Ln+1(x)= 2Ln(x)−Ln−1(x)− 1

n+ 1

[
(1+ x)Ln(x)−Ln−1(x)

]
, (13.65)

for reasons of economy and numerical stability, is used for computation of numerical val-
ues ofLn(x). The computer starts with known numerical values ofL0(x) andL1(x), Ta-
ble 13.2, and works up step by step. This is the same technique discussed for computing
Legendre polynomials, Section 12.2.

Also, from Eq. (13.56) we find

g(0, z)= 1

1− z
=

∞∑
n=0

zn =
∞∑
n=0

Ln(0)z
n,

which yields the special values of Laguerre polynomials

Ln(0)= 1. (13.66)

As is seen from the form of the generating function, from the form of Laguerre’s ODE, or
from Table 13.2, the Laguerre polynomials have neither odd nor even symmetry under the
parity transformationx→−x.

The Laguerre ODE is not self-adjoint, and the Laguerre polynomialsLn(x) do not by
themselves form an orthogonal set. However, following the method of Section 10.1, if we
multiply Eq. (13.52) bye−x (Exercise 10.1.1) we obtain∫ ∞

0
e−xLm(x)Ln(x) dx = δmn. (13.67)
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This orthogonality is a consequence of the Sturm–Liouville theory, Section 10.1. The nor-
malization follows from the generating function. It is sometimes convenient to define or-
thogonalized Laguerre functions (with unit weighting function) by

ϕn(x)= e−x/2Ln(x). (13.68)

Our new orthonormal function,ϕn(x), satisfies the ODE

xϕ′′n(x)+ ϕ′n(x)+
(
n+ 1

2
− x

4

)
ϕn(x)= 0, (13.69)

which is seen to have the (self-adjoint) Sturm–Liouville form. Note that the interval
(0≤ x <∞) was used because Sturm–Liouville boundary conditions are satisfied at its
endpoints.

Associated Laguerre Polynomials

In many applications, particularly in quantum mechanics, we need the associated Laguerre
polynomials defined by6

Lk
n(x)= (−1)k

dk

dxk
Ln+k(x). (13.70)

From the series form ofLn(x) we verify that the lowest associated Laguerre polynomials
are given by

Lk
0(x) = 1,

Lk
1(x) = −x + k+ 1,

Lk
2(x) =

x2

2
− (k + 2)x + (k + 2)(k + 1)

2
. (13.71)

In general,

Lk
n(x)=

n∑
m=0

(−1)m
(n+ k)!

(n−m)!(k +m)!m!x
m, k >−1. (13.72)

A generating function may be developed by differentiating the Laguerre generating func-
tion k times to yield

(−1)k
dk

dxk

e−xz/(1−z)

1− z
= (−1)k

∞∑
n=0

dk

dxk
Ln+k(x)zn+k =

∞∑
n=0

Lk
n(x)z

n+k

=
(

z

1− z

)k
exz/(1−z)

1− z
.

6Some authors useLk
n+k(x)= (dk/dxk)[Ln+k(x)]. Hence ourLk

n(x)= (−1)kLk
n+k(x).
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From the last two members of this equation, canceling the common factorzk , we obtain

e−xz/(1−z)

(1− z)k+1
=

∞∑
n=0

Lk
n(x)z

n, |z|< 1. (13.73)

From this, forx = 0, the binomial expansion

1

(1− z)k+1
=

∞∑
n=0

(−k− 1

n

)
(−z)n =

∞∑
n=0

Lk
n(0)z

n

yields

Lk
n(0)=

(n+ k)!
n!k! . (13.74)

Recurrence relations can be derived from the generating function or by differentiating the
Laguerre polynomial recurrence relations. Among the numerous possibilities are

(n+ 1)Lk
n+1(x) = (2n+ k + 1− x)Lk

n(x)− (n+ k)Lk
n−1(x), (13.75)

x
dLk

n(x)

dx
= nLk

n(x)− (n+ k)Lk
n−1(x). (13.76)

Thus, we obtain from differentiating Laguerre’s ODE once

x
dL′′n
dx

+L′′n −L′n + (1− x)
dL′n
dx

+ n
dLn

dx
= 0,

and eventually from differentiating Laguerre’s ODEk times

x
dk

dxk
L′′n + k

dk−1

dxk−1
L′′n − k

dk−1

dxk−1
L′n + (1− x)

dk

dxk
L′n + n

dk

dxk
Ln = 0.

Adjusting the indexn→ n+ k, we have the associated Laguerre ODE

x
d2Lk

n(x)

dx2
+ (k + 1− x)

dLk
n(x)

dx
+ nLk

n(x)= 0. (13.77)

When associated Laguerre polynomials appear in a physical problem it is usually because
that physical problem involves Eq. (13.77). The most important application is the bound
states of the hydrogen atom, which are derived in upcoming Example 13.2.1.

A Rodrigues representation of the associated Laguerre polynomial

Lk
n(x)=

exx−k

n!
dn

dxn

(
e−xxn+k

)
(13.78)

may be obtained from substituting Eq. (13.59) into Eq. (13.70). Note that all these formulas
for associated Legendre polynomialsLk

n(x) reduce to the corresponding expressions for
Ln(x) whenk = 0.
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The associated Laguerre equation (13.77) is not self-adjoint, but it can be put in self-
adjoint form by multiplying bye−xxk , which becomes the weighting function (Sec-
tion 10.1). We obtain ∫ ∞

0
e−xxkLk

n(x)L
k
m(x)dx =

(n+ k)!
n! δmn. (13.79)

Equation (13.79) shows the same orthogonality interval(0,∞) as that for the Laguerre
polynomials, but with a new weighting function we have a new set of orthogonal polyno-
mials, the associated Laguerre polynomials.

By lettingψk
n(x)= e−x/2xk/2Lk

n(x),ψ
k
n(x) satisfies the self-adjoint ODE

x
d2ψk

n(x)

dx2
+ dψk

n(x)

dx
+
(
−x

4
+ 2n+ k+ 1

2
− k2

4x

)
ψk
n(x)= 0. (13.80)

Theψk
n(x) are sometimes calledLaguerre functions. Equation (13.67) is the special case

k = 0 of Eq. (13.79).
A further useful form is given by defining7

�k
n(x)= e−x/2x(k+1)/2Lk

n(x). (13.81)

Substitution into the associated Laguerre equation yields

d2�k
n(x)

dx2
+
(
−1

4
+ 2n+ k + 1

2x
− k2− 1

4x2

)
�k

n(x)= 0. (13.82)

The corresponding normalization integral
∫∞

0 |�k
n(x)|2dx is∫ ∞

0
e−xxk+1[Lk

n(x)
]2
dx = (n+ k)!

n! (2n+ k + 1). (13.83)

Notice that the�k
n(x) donot form an orthogonal set (except withx−1 as a weighting func-

tion) because of thex−1 in the term(2n+ k + 1)/2x. (The Laguerre functionsLµ
ν (x) in

which the indicesν andµ arenot integers may be defined using the confluent hypergeo-
metric functions of Section 13.5.)

Example 13.2.1 THE HYDROGEN ATOM

The most important application of the Laguerre polynomials is in the solution of the
Schrödinger equation for the hydrogen atom. This equation is

− h̄2

2m
∇2ψ − Ze2

4πε0r
ψ =Eψ, (13.84)

in which Z = 1 for hydrogen, 2 for ionized helium, and so on. Separating variables, we
find that the angular dependence ofψ is the spherical harmonicsYM

L (θ,ϕ). The radial
part,R(r), satisfies the equation

− h̄2

2m

1

r2

d

dr

(
r2dR

dr

)
− Ze2

4πε0r
R + h̄2

2m

L(L+ 1)

r2
R =ER. (13.85)

7This corresponds to modifying the functionψ in Eq. (13.80) to eliminate the first derivative (compare Exercise 9.6.11).
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For bound states,R→ 0 asr→∞, andR is finite at the origin,r = 0. We do not consider
continuum states with positive energy. Only when the latter are included do hydrogen wave
functions form a complete set.

By use of the abbreviations (resulting from rescalingr to the dimensionless radial vari-
ableρ)

ρ = αr with α2=−8mE

h̄2
, E < 0, λ= mZe2

2πε0αh̄
2
, (13.86)

Eq. (13.85) becomes

1

ρ2

d

dρ

(
ρ2dχ(ρ)

dρ

)
+
(
λ

ρ
− 1

4
− L(L+ 1)

ρ2

)
χ(ρ)= 0, (13.87)

whereχ(ρ)= R(ρ/α). A comparison with Eq. (13.82) for�k
n(x) shows that Eq. (13.87)

is satisfied by

ρχ(ρ)= e−ρ/2ρL+1L2L+1
λ−L−1(ρ), (13.88)

in which k is replaced by 2L+ 1 andn by λ−L− 1, upon using

1

ρ2

d

dρ
ρ2dχ

dρ
= 1

ρ

d2

dρ2
(ρχ).

We must restrict the parameterλ by requiring it to be an integern, n= 1,2,3, . . . .8 This
is necessary because the Laguerre function of nonintegraln would diverge9 asρneρ , which
is unacceptable for our physical problem, in which

lim
r→∞R(r)= 0.

This restriction onλ, imposed by our boundary condition, has the effect of quantizing the
energy,

En =− Z2m

2n2h̄2

(
e2

4πε0

)2

. (13.89)

The negative sign reflects the fact that we are dealing here with bound states (E < 0), cor-
responding to an electron that is unable to escape to infinity, where the Coulomb potential
goes to zero. Using this result forEn, we have

α = me2

2πε0h̄
2
· Z
n
= 2Z

na0
, ρ = 2Z

na0
r, (13.90)

with

a0= 4πε0h̄
2

me2
, the Bohr radius.

8This is the conventional notation forλ. It is not the samen as the indexn in �k
n(x).

9This may be shown, as in Exercise 9.5.5.
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Thus, the final normalized hydrogen wave function is written as

ψnLM(r, θ,ϕ)=
[(

2Z

na0

)3
(n−L− 1)!
2n(n+L)!

]1/2

e−αr/2(αr)LL2L+1
n−L−1(αr)Y

M
L (θ,ϕ).

(13.91)

Regular solutions exist forn ≥ L + 1, so the lowest state withL = 1 (called a 2P state)
occurs only withn= 2. �

Exercises

13.2.1 Show with the aid of the Leibniz formula that the series expansion ofLn(x)

(Eq. (13.60)) follows from the Rodrigues representation (Eq. (13.59)).

13.2.2 (a) Using the explicit series form (Eq. (13.60)) show that

L′n(0) = −n,
L′′n(0) = 1

2n(n− 1).

(b) Repeat without using the explicit series form ofLn(x).

13.2.3 From the generating function derive the Rodrigues representation

Lk
n(x)=

exx−k

n!
dn

dxn

(
e−xxn+k

)
.

13.2.4 Derive the normalization relation (Eq. (13.79)) for the associated Laguerre polynomials.

13.2.5 Expandxr in a series of associated Laguerre polynomialsLk
n(x), k fixed andn ranging

from 0 tor (or to∞ if r is not an integer).
Hint. The Rodrigues form ofLk

n(x) will be useful.

ANS. xr = (r + k)!r!
r∑

n=0

(−1)nLk
n(x)

(n+ k)!(r − n)! , 0≤ x <∞.

13.2.6 Expande−ax in a series of associated Laguerre polynomialsLk
n(x), k fixed andn rang-

ing from 0 to∞.

(a) Evaluate directly the coefficients in your assumed expansion.
(b) Develop the desired expansion from the generating function.

ANS. e−ax = 1

(1+ a)1+k
∞∑
n=0

(
a

1+ a

)n

Lk
n(x), 0≤ x <∞.

13.2.7 Show that ∫ ∞

0
e−xxk+1Lk

n(x)L
k
n(x) dx =

(n+ k)!
n! (2n+ k + 1).

Hint. Note that

xLk
n = (2n+ k + 1)Lk

n − (n+ k)Lk
n−1− (n+ 1)Lk

n+1.
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13.2.8 Assume that a particular problem in quantum mechanics has led to the ODE

d2y

dx2
−
[
k2− 1

4x2
− 2n+ k + 1

2x
+ 1

4

]
y = 0

for nonnegative integersn, k. Write y(x) as

y(x)=A(x)B(x)C(x),

with the requirement that

(a) A(x) be anegative exponential giving the required asymptotic behavior ofy(x)

and
(b) B(x) be apositive power ofx giving the behavior ofy(x) for 0≤ x� 1.

DetermineA(x) andB(x). Find the relation betweenC(x) and the associated Laguerre
polynomial.

ANS.A(x)= e−x/2, B(x)= x(k+1)/2, C(x)= Lk
n(x).

13.2.9 From Eq. (13.91) the normalized radial part of the hydrogenic wave function is

RnL(r)=
[
α3 (n−L− 1)!

2n(n+L)!
]1/2

e−αr (αr)LL2L+1
n−L−1(αr),

in whichα = 2Z/na0= 2Zme2/4πε0h̄
2. Evaluate

(a) 〈r〉 =
∫ ∞

0
rRnL(αr)RnL(αr)r

2 dr ,

(b)
〈
r−1〉= ∫ ∞

0
r−1RnL(αr)RnL(αr)r

2 dr .

The quantity〈r〉 is the average displacement of the electron from the nucleus, whereas
〈r−1〉 is the average of the reciprocal displacement.

ANS. 〈r〉 = a0

2

[
3n2−L(L+ 1)

]
,

〈
r−1〉= 1

n2a0
.

13.2.10 Derive the recurrence relation for the hydrogen wave function expectation values:

s + 2

n2

〈
rs+1〉− (2s + 3)a0

〈
rs
〉+ s + 1

4

[
(2L+ 1)2− (s + 1)2

]
a2

0

〈
rs−1〉= 0,

with s ≥−2L− 1, 〈rs〉 ≡ $rs .
Hint. Transform Eq. (13.87) into a form analogous to Eq. (13.80). Multiply byρs+2u′ −
cρs+1u. Hereu= ρ�. Adjustc to cancel terms that do not yield expectation values.

13.2.11 The hydrogen wave functions, Eq. (13.91), are mutually orthogonal, as they should be,
since they are eigenfunctions of the self-adjoint Schrödinger equation∫

ψ∗n1L1M1
ψn2L2M2r

2dr d�= δn1n2δL1L2δM1M2.
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Yet the radial integral has the (misleading) form∫ ∞

0
e−αr/2(αr)LL2L+1

n1−L−1(αr)e
−αr/2(αr)LL2L+1

n2−L−1(αr)r
2 dr,

which appears to match Eq. (13.83) and not the associated Laguerre orthogonality re-
lation, Eq. (13.79). How do you resolve this paradox?

ANS. The parameterα is dependent onn. The first threeα, previ-
ously shown, are 2Z/n1a0. The last three are 2Z/n2a0. For
n1= n2 Eq. (13.83) applies. Forn1 
= n2 neither Eq. (13.79)
nor Eq. (13.83) is applicable.

13.2.12 A quantum mechanical analysis of the Stark effect (parabolic coordinate) leads to the
ODE

d

dξ

(
ξ
du

dξ

)
+
(

1

2
Eξ +L− m2

4ξ
− 1

4
Fξ2

)
u= 0.

HereF is a measure of the perturbation energy introduced by an external electric field.
Find the unperturbed wave functions(F = 0) in terms of associated Laguerre polyno-
mials.

ANS.u(ξ)= e−εξ/2ξm/2Lm
p (εξ), with ε =√−2E > 0,

p = L/ε− (m+ 1)/2, a nonnegative integer.

13.2.13 The wave equation for the three-dimensional harmonic oscillator is

− h̄2

2M
∇2ψ + 1

2
Mω2r2ψ =Eψ.

Hereω is the angular frequency of the corresponding classical oscillator. Show that the
radial part ofψ (in spherical polar coordinates ) may be written in terms of associated
Laguerre functions of argument(βr2), whereβ =Mω/h̄.
Hint. As in Exercise 13.2.8, split off radial factors ofrl ande−βr2/2. The associated
Laguerre function will have the formLl+1/2

1/2(n−l−1)(βr
2).

13.2.14 Write a computer program that will generate the coefficientsas in the polynomial form
of the Laguerre polynomialLn(x)=∑n

s=0asx
s .

13.2.15 Write a computer program that will transform a finite power series
∑N

n=0anx
n into a

Laguerre series
∑N

n=0bnLn(x). Use the recurrence relation, Eq. (13.62).

13.2.16 TabulateL10(x) for x = 0.0(0.1)30.0. This will include the 10 roots ofL10. Beyond
x = 30.0,L10(x) is monotonic increasing. If graphic software is available, plot your
results.

Check value. Eighth root= 16.279.

13.2.17 Determine the 10 roots ofL10(x) using root-finding software. You may use your knowl-
edge of the approximate location of the roots or develop a search routine to look for the
roots. The 10 roots ofL10(x) are the evaluation points for the 10-point Gauss–Laguerre
quadrature. Check your values by comparing with AMS-55, Table 25.9. (For the refer-
ence see footnote 4 in Chapter 5 or the General References at book’s end.)
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13.2.18 Calculate the coefficients of a Laguerre series expansion(Ln(x), k = 0) of the ex-
ponentiale−x . Evaluate the coefficients by the Gauss–Laguerre quadrature (compare
Eq. (10.64)). Check your results against the values given in Exercise 13.2.6.
Note. Direct application of the Gauss–Laguerre quadrature withf (x)Ln(x)e

−x gives
poor accuracy because of the extrae−x . Try a change of variable,y = 2x, so that the
function appearing in the integrand will be simplyLn(y/2).

13.2.19 (a) Write a subroutine to calculate the Laguerre matrix elements

Mmnp =
∫ ∞

0
Lm(x)Ln(x)x

pe−x dx.

Include a check of the condition|m− n| ≤ p ≤m+ n. (If p is outside this range,
Mmnp = 0. Why?)
Note. A 10-point Gauss–Laguerre quadrature will give accurate results for
m+ n+ p ≤ 19.

(b) Call your subroutine to calculate a variety of Laguerre matrix elements. Check
Mmn1 against Exercise 13.2.7.

13.2.20 Write a subroutine to calculate the numerical value ofLk
n(x) for specified values ofn, k,

andx. Require thatn andk be nonnegative integers andx ≥ 0.
Hint. Starting with known values ofLk

0 andLk
1(x), we may use the recurrence relation,

Eq. (13.75), to generateLk
n(x), n= 2,3,4, . . . .

13.2.21 Show that
∫∞
−∞ xne−x2

Hn(xy)dx =√πn!Pn(y), wherePn is a Legendre polynomial.

13.2.22 Write a program to calculate the normalized hydrogen radial wave functionψnL(r).
This isψnLM of Eq. (13.91), omitting the spherical harmonicYM

L (θ,ϕ). TakeZ = 1
anda0 = 1 (which means thatr is being expressed in units of Bohr radii). Acceptn

andL as input data. TabulateψnL(r) for r = 0.0(0.2)R with R taken large enough to
exhibit the significant features ofψ . This means roughlyR = 5 for n= 1, R = 10 for
n= 2, andR = 30 forn= 3.

13.3 CHEBYSHEV POLYNOMIALS

In this section two types of Chebyshev polynomials are developed as special cases of ul-
traspherical polynomials. Their properties follow from the ultraspherical polynomial gen-
erating function. The primary importance of the Chebyshev polynomials is in numerical
analysis.

Generating Functions

In Section 12.1 the generating function for the ultraspherical, or Gegenbauer, polynomials

1

(1− 2xt + t2)α
=

∞∑
n=0

C(α)
n (x)tn, |x|< 1, |t |< 1 (13.92)

was mentioned, withα = 1
2 giving rise to the Legendre polynomials. In this section we first

takeα = 1 and thenα = 0 to generate two sets of polynomials known as the Chebyshev
polynomials.
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Type II

With α = 1 andC(1)
n (x)=Un(x), Eq. (13.92) gives

1

1− 2xt + t2
=

∞∑
n=0

Un(x)t
n, |x|< 1, |t |< 1. (13.93)

These functionsUn(x) generated by(1− 2xt + t2)−1 are labeled Chebyshev polynomials
type II. Although these polynomials have few applications in mathematical physics, one
unusual application is in the development of four-dimensional spherical harmonics used in
angular momentum theory.

Type I

With α = 0 there is a difficulty. Indeed, our generating function reduces to the constant 1.
We may avoid this problem by first differentiating Eq. (13.92) with respect tot . This yields

−α(−2x + 2t)

(1− 2xt + t2)α+1
=

∞∑
n=1

nC(α)
n (x)tn−1, (13.94)

or

x − t

(1− 2xt + t2)α+1
=

∞∑
n=1

n

2

[
C

(α)
n (x)

α

]
tn−1. (13.95)

We defineC(0)
n (x) by

C(0)
n (x)= lim

α→0

C
(α)
n (x)

α
. (13.96)

The purpose of differentiating with respect tot was to getα in the denominator and
to create an indeterminate form. Now multiplying Eq. (13.95) by 2t and adding 1=
(1− 2xt + t2)/(1− 2xt + t2), we obtain

1− t2

1− 2xt + t2
= 1+ 2

∞∑
n=1

n

2
C(0)
n (x)tn. (13.97)

We defineTn(x) by

Tn(x)=
{

1, n= 0
n

2
C(0)
n (x), n > 0.

(13.98)

Notice the special treatment forn= 0. This is similar to the treatment of then= 0 term in
the Fourier series. Also, note thatC

(0)
n is the limit indicated in Eq. (13.96) and not a literal

substitution ofα = 0 into the generating function series. With these new labels,

1− t2

1− 2xt + t2
= T0(x)+ 2

∞∑
n=1

Tn(x)t
n, |x| ≤ 1, |t |< 1. (13.99)
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We callTn(x) the type I Chebyshev polynomials. Note that the notation and spelling of the
name for these functions differs from reference to reference. Here we follow the usage of
AMS-55 (for the full reference see footnote 4 in Chapter 5).

Differentiating the generating function (Eqs. (13.99)) with respect tot and multiplying
by the denominator, 1− 2xt + t2, we obtain

−t − (t − x)

[
T0(x)+ 2

∞∑
n=1

Tn(x)t
n

]
= (1− 2xt + t2

) ∞∑
n=1

nTn(x)t
n−1

=
∞∑
n=1

[
nTnt

n−1− 2xnTnt
n + nTnt

n+1],
from which the recurrence relation

Tn+1(x)− 2xTn(x)+ Tn−1(x)= 0 (13.100)

follows by shifting the summation index so as to get the same power,tn, in each term and
then comparing coefficients oftn. Similarly treating Eq. (13.93) we find

− 2(t − x)

1− 2xt + t2
= (1− 2xt + t2

) ∞∑
n=1

nUn(x)t
n−1

from which the recursion relation

Un+1(x)− 2xUn(x)+Un−1(x)= 0 (13.101)

follows upon comparing coefficients of like powers oft (see Table 13.3).
Then, using the generating functions for the first few values ofn and these recurrence

relations for the higher-order polynomials, we get Tables 13.4 and 13.5 (see also Figs. 13.5
and 13.6).

As with the Hermite polynomials, Section 13.1, the recurrence relations, Eqs. (13.100)
and (13.101), together with the known values ofT0(x), T1(x),U0(x), andU1(x), provide a
convenient — that is, for a computer — means of getting the numerical value of anyTn(x0)

or Un(x0), with x0 a given number.

Table 13.3 Recursion relationa Pn+1(x)=
(Anx +Bn)Pn(x)−CnPn−1(x)

Pn(x) An Bn Cn

Legendre Pn(x)
2n+1
n+1 0 1

n+1
Chebyshev I Tn(x) 2 0 1
Shifted Chebyshev I T ∗n (x) 4 −2 1
Chebyshev II Un(x) 2 0 1
Shifted Chebyshev II U∗n (x) 4 −2 1

Associated Laguerre L
(k)
n (x) − 1

n+1
2n+k+1
n+1

n+k
n+1

Hermite Hn(x) 2 0 2n

aPn denotes any of the orthogonal polynomials.
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Table 13.4 Chebyshev
polynomials, type I

T0= 1
T1= x

T2= 2x2− 1
T3= 4x3− 3x
T4= 8x4− 8x2+ 1
T5= 16x5− 20x3+ 5x
T6= 32x6− 48x4+ 18x2− 1

Table 13.5 Chebyshev
polynomials, type II

U0= 1
U1= 2x
U2= 4x2− 1
U3= 8x3− 4x
U4= 16x4− 12x2+ 1
U5= 32x5− 32x3+ 6x
U6= 64x6− 80x4+ 24x2− 1

FIGURE 13.5 Chebyshev polynomialsTn(x).

FIGURE 13.6 Chebyshev polynomialsUn(x).
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Again, from the generating functions, we can obtain the special values of various poly-
nomials:

Tn(1) = 1, Tn(−1)= (−1)n,
(13.102)

T2n(0) = (−1)n, T2n+1(0)= 0;

Un(1) = n+ 1, Un(−1)= (−1)n(n+ 1),
(13.103)

U2n(0) = (−1)n, U2n+1(0)= 0.

For example, comparing the power series

1− t2

(1− t)2
= 1+ t

1− t
=

∞∑
n=0

(
tn + tn+1)

with Eq. (13.99) forx = 1 givesTn(1), and forx =−1 a similar expansion of(1− t)/(1+
t) givesTn(−1), while replacingt→−t2 in the first power series yieldsTn(0). The power
series for(1± t)−2 and(1+ t2)−1 generate the correspondingUn(±1),Un(0).

The parity relations forTn andUn follow from their generating functions, with the sub-
stitutionst→−t, x→−x, which leave them invariant; these are

Tn(x)= (−1)nTn(−x), Un(x)= (−1)nUn(−x). (13.104)

Rodrigues’ representations ofTn(x) andUn(x) are

Tn(x)= (−1)nπ1/2(1− x2)1/2

2n(n− 1
2)!

dn

dxn

[(
1− x2)n−1/2] (13.105)

and

Un(x)= (−1)n(n+ 1)π1/2

2n+1(n+ 1
2)!(1− x2)1/2

dn

dxn

[(
1− x2)n+1/2]

. (13.106)

Recurrence Relations — Derivatives

Differentiation of the generating functions forTn(x) andUn(x) with respect to the variable
x leads to a variety of recurrence relations involving derivatives. For example, from Eq.
(13.99) we thus obtain(

1− 2xt + t2
)
2
∞∑
n=1

T ′n(x)tn = 2t

[
T0(x)+ 2

∞∑
n=1

Tn(x)t
n

]
,

from which we extract the recursion

2Tn−1(x)= T ′n(x)− 2xT ′n−1(x)+ T ′n−2(x), (13.107)

which is the derivative of Eq. (13.100) forn→ n− 1. Among the more useful recursions
we thus find are (

1− x2)T ′n(x)=−nxTn(x)+ nTn−1(x) (13.108)
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and (
1− x2)U ′n(x)=−nxUn(x)+ (n+ 1)Un−1(x). (13.109)

Manipulating a variety of these recursions as in Section 12.2 for Legendre polynomials one
can eliminate the indexn− 1 also in favor ofT ′′n and establish thatTn(x), the Chebyshev
polynomial type I, satisfies the ODE(

1− x2)T ′′n (x)− xT ′n(x)+ n2Tn(x)= 0. (13.110)

The Chebyshev polynomial of type II,Un(x), satisfies(
1− x2)U ′′n (x)− 3xU ′n(x)+ n(n+ 2)Un(x)= 0. (13.111)

Chebyshev polynomials may be defined starting from these ODEs, but our emphasis has
been on generating functions.

The ultraspherical equation(
1− x2) d2

dx2
C(α)
n (x)− (2α + 1)x

d

dx
C(α)
n (x)+ n(n+ 2α)C(α)

n (x)= 0 (13.112)

is a generalization of these differential equations, reducing to Eq. (13.110) forα = 0 and
Eq. (13.111) forα = 1 (and to Legendre’s equation forα = 1

2).

Trigonometric Form

At this point in the development of the properties of the Chebyshev solutions it is beneficial
to change variables, replacingx by cosθ . With x = cosθ andd/dx = (−1/sinθ)(d/dθ),
we verify that(

1− x2)d2Tn

dx2
= d2Tn

dθ2
− cotθ

dTn

dθ
, xT ′n =−cotθ

dTn

dθ
.

Adding these terms, Eq. (13.110) becomes

d2Tn

dθ2
+ n2Tn = 0, (13.113)

the simple harmonic oscillator equation with solutions cosnθ and sinnθ . The special val-
ues (boundary conditions atx = 0,1) identify

Tn = cosnθ = cosn(arccosx). (13.114a)

A second linearly independent solution of Eqs. (13.110) and (13.113) is labeled

Vn = sinnθ = sinn(arccosx). (13.114b)

The corresponding solutions of the type II Chebyshev equation, Eq. (13.111), become

Un = sin(n+ 1)θ

sinθ
, (13.115a)

Wn = cos(n+ 1)θ

sinθ
. (13.115b)
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The two sets of solutions, type I and type II, are related by

Vn(x) =
(
1− x2)1/2

Un−1(x), (13.116a)

Wn(x) =
(
1− x2)−1/2

Tn+1(x). (13.116b)

As already seen from generating functions,Tn(x) andUn(x) are polynomials. Clearly,
Vn(x) andWn(x) arenot polynomials. From

Tn(x)+ iVn(x) = cosnθ + i sinnθ

= (cosθ + i sinθ)n = [x + i
(
1− x2)1/2]n

, |x| ≤ 1 (13.117)

we obtain expansions

Tn(x)= xn −
(
n

2

)
xn−2(1− x2)+(n

4

)
xn−4(1− x2)2− · · · (13.118a)

and

Vn(x)=
√

1− x2

[(
n

1

)
xn−1−

(
n

3

)
xn−3(1− x2)+ · · ·]. (13.118b)

From the generating functions, or from the ODEs, power-series representations are

Tn(x)= n

2

[n/2]∑
m=0

(−1)m
(n−m− 1)!
m!(n− 2m)! (2x)

n−2m, (13.119a)

for n≥ 1, with [n/2] the largest integer belown/2 and

Un(x)=
[n/2]∑
m=0

(−1)m
(n−m)!

m!(n− 2m)! (2x)
n−2m. (13.119b)

Orthogonality

If Eq. (13.110) is put into self-adjoint form (Section 10.1), we obtainw(x)= (1− x2)−1/2

as a weighting factor. For Eq. (13.111) the corresponding weighting factor is(1− x2)+1/2.
The resulting orthogonality integrals,

∫ 1

−1
Tm(x)Tn(x)

(
1− x2)−1/2

dx =


0, m 
= n,
π

2
, m= n 
= 0,

π, m= n= 0,

(13.120)

∫ 1

−1
Vm(x)Vn(x)

(
1− x2)−1/2

dx =


0, m 
= n,
π

2
, m= n 
= 0,

0, m= n= 0,

(13.121)

∫ 1

−1
Um(x)Un(x)

(
1− x2)1/2

dx = π

2
δm,n, (13.122)
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and ∫ 1

−1
Wm(x)Wn(x)

(
1− x2)1/2

dx = π

2
δm,n, (13.123)

are a direct consequence of the Sturm–Liouville theory, Chapter 10. The normalization
values may best be obtained by usingx = cosθ and converting these four integrals into
Fourier normalization integrals (for the half-period interval[0,π]).

Exercises

13.3.1 Another Chebyshev generating function is

1− xt

1− 2xt + t2
=

∞∑
n=0

Xn(x)t
n, |t |< 1.

How isXn(x) related toTn(x) andUn(x)?

13.3.2 Given (
1− x2)U ′′n (x)− 3xU ′n(x)+ n(n+ 2)Un(x)= 0,

show thatVn(x) (Eq. (13.116a)) satisfies(
1− x2)V ′′n (x)− xV ′n(x)+ n2Vn(x)= 0,

which is Chebyshev’s equation.

13.3.3 Show that the Wronskian ofTn(x) andVn(x) is given by

Tn(x)V
′
n(x)− T ′n(x)Vn(x)=− n

(1− x2)1/2
.

This verifies thatTn andVn(n 
= 0) are independent solutions of Eq. (13.110). Con-
versely, forn= 0, we do not have linear independence. What happens atn= 0? Where
is the “second” solution?

13.3.4 Show thatWn(x)= (1− x2)−1/2Tn+1(x) is a solution of(
1− x2)W ′′

n (x)− 3xW ′
n(x)+ n(n+ 2)Wn(x)= 0.

13.3.5 Evaluate the Wronskian ofUn(x) andWn(x)= (1− x2)−1/2Tn+1(x).

13.3.6 Vn(x) = (1− x2)1/2Un−1(x) is not defined forn = 0. Show that a second and inde-
pendent solution of the Chebyshev differential equation forTn(x) (n = 0) is V0(x) =
arccosx (or arcsinx).

13.3.7 Show that Vn(x) satisfies the same three-term recurrence relation asTn(x)

(Eq. (13.100)).

13.3.8 Verify the series solutions forTn(x) andUn(x) (Eqs. (13.109a) and (13.119b)).
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13.3.9 Transform the series form ofTn(x), Eq. (13.119a), into anascending power series.

ANS. T2n(x)= (−1)nn
n∑

m=0

(−1)m
(n+m− 1)!
(n−m)!(2m)! (2x)

2m, n≥ 1,

T2n+1(x)= 2n+ 1

2

n∑
m=0

(−1)m+n(n+m)!
(n−m)!(2m+ 1)! (2x)

2m+1.

13.3.10 Rewrite the series form ofUn(x), Eq. (13.119b), as an ascending power series.

ANS.U2n(x)= (−1)n
n∑

m=0

(−1)m
(n+m)!

(n−m)!(2m)! (2x)
2m,

U2n+1(x)= (−1)n
n∑

m=0

(−1)m
(n+m+ 1)!

(n−m)!(2m+ 1)! (2x)
2m+1.

13.3.11 Derive the Rodrigues representation ofTn(x),

Tn(x)= (−1)nπ1/2(1− x2)1/2

2n(n− 1
2)!

dn

dxn

[(
1− x2)n−1/2]

.

Hint. One possibility is to use the hypergeometric function relation

2F1(a, b; c; z)= (1− z)−a 2F1

(
a, c− b; c; −z

1− z

)
,

with z= (1−x)/2. An alternate approach is to develop a first-order differential equation
for y = (1− x2)n−1/2. Repeated differentiation of this equation leads to the Chebyshev
equation.

13.3.12 (a) From the differential equation forTn (in self-adjoint form) show that∫ 1

−1

dTm(x)

dx

dTn(x)

dx

(
1− x2)1/2

dx = 0, m 
= n.

(b) Confirm the preceding result by showing that

dTn(x)

dx
= nUn−1(x).

13.3.13 The expansion of a power ofx in a Chebyshev series leads to the integral

Imn =
∫ 1

−1
xmTn(x)

dx√
1− x2

.

(a) Show that this integral vanishes form< n.
(b) Show that this integral vanishes form+ n odd.

13.3.14 Evaluate the integral

Imn =
∫ 1

−1
xmTn(x)

dx√
1− x2

for m≥ n andm+ n even by each of two methods:
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(a) Operate withx as the variable replacingTn by its Rodrigues representation.
(b) Usingx = cosθ transform the integral to a form withθ as the variable.

ANS. Imn = π
m!

(m− n)!
(m− n− 1)!!
(m+ n)!! , m≥ n, m+ n even.

13.3.15 Establish the following bounds,−1≤ x ≤ 1:

(a) |Un(x)| ≤ n+ 1, (b)

∣∣∣∣ ddx Tn(x)
∣∣∣∣≤ n2.

13.3.16 (a) Establish the following bound,−1≤ x ≤ 1: |Vn(x)| ≤ 1.
(b) Show thatWn(x) is unbounded in−1≤ x ≤ 1.

13.3.17 Verify the orthogonality-normalization integrals for

(a)Tm(x), Tn(x), (b)Vm(x), Vn(x),
(c) Um(x), Un(x), (d)Wm(x), Wn(x).

Hint. All these can be converted to Fourier orthogonality-normalization integrals.

13.3.18 Show whether

(a) Tm(x) andVn(x) are or are not orthogonal over the interval[−1,1] with respect
to the weighting factor(1− x2)−1/2.

(b) Um(x) andWn(x) are or are not orthogonal over the interval[−1,1] with respect
to the weighting factor(1− x2)1/2.

13.3.19 Derive

(a) Tn+1(x)+ Tn−1(x)= 2xTn(x),
(b) Tm+n(x)+ Tm−n(x)= 2Tm(x)Tn(x),

from the “corresponding” cosine identities.

13.3.20 A number of equations relate the two types of Chebyshev polynomials. As examples
show that

Tn(x)=Un(x)− xUn−1(x)

and (
1− x2)Un(x)= xTn+1(x)− Tn+2(x).

13.3.21 Show that

dVn(x)

dx
=−n Tn(x)√

1− x2

(a) using the trigonometric forms ofVn andTn,
(b) using the Rodrigues representation.
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13.3.22 Starting withx = cosθ andTn(cosθ)= cosnθ , expand

xk =
(
eiθ + e−iθ

2

)k

and show that

xk = 1

2k−1

[
Tk(x)+

(
k

1

)
Tk−2(x)+

(
k

2

)
Tk−4+ · · ·

]
,

the series in brackets terminating with
(
k
m

)
T1(x) for k = 2m+1 or 1

2

(
k
m

)
T0 for k = 2m.

13.3.23 (a) Calculate and tabulate the Chebyshev functionsV1(x),V2(x), andV3(x) for x =
−1.0(0.1)1.0.

(b) A second solution of the Chebyshev differential equation, Eq. (13.100), for
n = 0 is y(x) = sin−1x. Tabulate and plot this function over the same range:
−1.0(0.1)1.0.

13.3.24 Write a computer program that will generate the coefficientsas in the polynomial form
of the Chebyshev polynomialTn(x)=∑n

s=0asx
s .

13.3.25 TabulateT10(x) for 0.00(0.01)1.00. This will include the five positive roots ofT10. If
graphics software is available, plot your results.

13.3.26 Determine the five positive roots ofT10(x) by calling a root-finding subroutine. Use
your knowledge of the approximate location of these roots from Exercise 13.3.25 or
write a search routine to look for the roots. These five positive roots (and their negatives)
are the evaluation points of the 10-point Gauss–Chebyshev quadrature method.

Check values. xk = cos
[
(2k − 1)π/20

]
, k = 1,2,3,4,5.

13.3.27 Develop the following Chebyshev expansions (for[−1,1]):

(a)
(
1− x2)1/2= 2

π

[
1− 2

∞∑
s=1

(
4s2− 1

)−1
T2s(x)

]
.

(b)
+1, 0< x ≤ 1
−1, −1≤ x < 0

}
= 4

π

∞∑
s=0

(−1)s(2s + 1)−1T2s+1(x).

13.3.28 (a) For the interval[−1,1] show that

|x| = 1

2
+

∞∑
s=1

(−1)s+1 (2s − 3)!!
(2s + 2)!! (4s + 1)P2s(x)

= 2

π
+ 4

π

∞∑
s=1

(−1)s+1 1

4s2− 1
T2s(x).

(b) Show that the ratio of the coefficient ofT2s(x) to that ofP2s(x) approaches(πs)−1

ass→∞. This illustrates the relatively rapid convergence of the Chebyshev se-
ries.
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Hint. With the Legendre recurrence relations, rewritexPn(x) as a linear combination
of derivatives. The trigonometric substitutionx = cosθ,Tn(x)= cosnθ is most helpful
for the Chebyshev part.

13.3.29 Show that

π2

8
= 1+ 2

∞∑
s=1

(
4s2− 1

)−2
.

Hint. Apply Parseval’s identity (or the completeness relation) to the results of Exer-
cise 13.3.28.

13.3.30 Show that

(a) cos−1x = π

2
− 4

π

∞∑
n=0

1

(2n+ 1)2
T2n+1(x).

(b) sin−1x = 4

π

∞∑
n=0

1

(2n+ 1)2
T2n+1(x).

13.4 HYPERGEOMETRIC FUNCTIONS

In Chapter 9 the hypergeometric equation10

x(1− x)y′′(x)+ [c− (a + b+ 1)x
]
y′(x)− ab y(x)= 0 (13.124)

was introduced as a canonical form of a linear second-order ODE with regular singularities
atx = 0,1, and∞. One solution is

y(x) = 2F1(a, b; c;x)

= 1+ a · b
c

x

1! +
a(a + 1)b(b+ 1)

c(c+ 1)

x2

2! + · · · , c 
= 0,−1,−2,−3, . . . ,

(13.125)

which is known as thehypergeometric function or hypergeometric series. The range of
convergence forc > a + b is |x|< 1 andx = 1, and isx =−1 for c > a + b− 1. In terms
of the often-used Pochhammer symbol,

(a)n = a(a + 1)(a + 2) · · · (a + n− 1)= (a + n− 1)!
(a − 1)! ,

(a)0 = 1, (13.126)

the hypergeometric function becomes

2F1(a, b; c;x)=
∞∑
n=0

(a)n(b)n

(c)n

xn

n! . (13.127)

10This is sometimes called Gauss’ ODE. The solutions then become Gauss functions.
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In this form the subscripts 2 and 1 become clear. The leading subscript 2 indicates that
two Pochhammer symbols appear in the numerator and the final subscript 1 indicates one
Pochhammer symbol in the denominator.11 (The confluent hypergeometric function1F1

with one Pochhammer symbol in the numerator and one in the denominator appears in
Section 13.5.)

From the form of Eq. (13.125) we see that the parameterc may not be zero or a negative
integer. On the other hand, ifa or b equals 0 or a negative integer, the series terminates and
the hypergeometric function becomes a polynomial. Many more or less elementary func-
tions can be represented by the hypergeometric function.12 Comparing the power series we
verify that

ln(1+ x)= x 2F1(1,1;2;−x). (13.128)

For the complete elliptic integralsK andE,

K
(
k2) = ∫ π/2

0

(
1− k2 sin2 θ

)−1/2
dθ = π

2
2F1

(
1

2
,

1

2
;1; k2

)
, (13.129)

E
(
k2) = ∫ π/2

0

(
1− k2 sinθ

)1/2
dθ = π

2
2F1

(
1

2
,−1

2
;1; k2

)
. (13.130)

The explicit series forms and other properties of the elliptic integrals are developed in
Section 5.8.

The hypergeometric equation as a second-order linear ODE has a second independent
solution. The usual form is

y(x)= x1−c
2F1(a + 1− c, b+ 1− c;2− c;x), c 
= 2,3,4, . . . . (13.131)

If c is an integer either the two solutions coincide or (barring a rescue by integrala or
integral b) one of the solutions will blow up (see Exercise 13.4.1). In such a case the
second solution is expected to include a logarithmic term.

Alternate forms of the hypergeometric ODE include

(
1− z2) d2

dz2
y

(
1− z

2

)
− [(a + b+ 1)z− (a + b+ 1− 2c)

] d
dz

y

(
1− z

2

)
− ab y

(
1− z

2

)
= 0, (13.132)

(
1− z2) d2

dz2
y(z2)−

[
(2a + 2b+ 1)z+ 1− 2c

z

]
d

dz
y
(
z2)− 4ab y

(
z2)= 0. (13.133)

11The Pochhammer symbol is often useful in other expressions involving factorials, for instance,

(1− z)−a =
∞∑
n=0

(a)nz
n/n!, |z|< 1.

12With three parameters,a, b, andc, we can represent almost anything.
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Contiguous Function Relations

The parametersa, b, andc enter in the same way as the parametern of Bessel, Legendre,
and other special functions. As we found with these functions, we expect recurrence rela-
tions involving unit changes in the parametersa, b, andc. The usual nomenclature for the
hypergeometric functions, in which one parameter changes by+ or −1, is a “contiguous
function.” Generalizing this term to include simultaneous unit changes in more than one
parameter, we find 26 functions contiguous to2F1(a, b; c;x). Taking them two at a time,
we can develop the formidable total of 325 equations among the contiguous functions. One
typical example is

(a − b)
{
c(a + b− 1)+ 1− a2− b2+ [(a − b)2− 1

]
(1− x)

}
2F1(a, b; c;x)

= (c− a)(a − b+ 1)b 2F1(a − 1, b+ 1; c;x)
+ (c− b)(a − b− 1)a 2F1(a + 1, b− 1; c;x). (13.134)

Another contiguous function relation appears in Exercise 13.4.10.

Hypergeometric Representations

Since the ultraspherical equation (13.112) in Section 13.3 is a special case of Eq. (13.124),
we see that ultraspherical functions (and Legendre and Chebyshev functions) may be ex-
pressed as hypergeometric functions. For the ultraspherical function we obtain

Cβ
n (x)=

(n+ 2β)!
2βn!β! 2F1

(
−n,n+ 2β + 1;1+ β; 1− x

2

)
(13.135)

upon comparing its ODE with Eq. (13.124) and the power-series solutions. For Legendre
and associated Legendre functions we find similarly

Pn(x) = 2F1

(
−n,n+ 1;1; 1− x

2

)
, (13.136)

Pm
n (x) = (n+m)!

(n−m)!
(1− x2)m/2

2mm! 2F1

(
m− n,m+ n+ 1;m+ 1; 1− x

2

)
. (13.137)

Alternate forms are

P2n(x) = (−1)n
(2n)!

22nn!n! 2F1

(
−n,n+ 1

2
; 1

2
;x2

)
= (−1)n

(2n− 1)!!
(2n)!! 2F1

(
−n,n+ 1

2
; 1

2
;x2

)
, (13.138)

P2n+1(x) = (−1)n
(2n+ 1)!
22nn!n! 2F1

(
−n,n+ 3

2
; 3

2
;x2

)
x

= (−1)n
(2n+ 1)!!
(2n)!! 2F1

(
−n,n+ 3

2
; 3

2
;x2

)
x. (13.139)
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In terms of hypergeometric functions, the Chebyshev functions become

Tn(x) = 2F1

(
−n,n; 1

2
; 1− x

2

)
, (13.140)

Un(x) = (n+ 1) 2F1

(
−n,n+ 2; 3

2
; 1− x

2

)
, (13.141)

Vn(x) = n
√

1− x2
2F1

(
−n+ 1, n+ 1; 3

2
; 1− x

2

)
. (13.142)

The leading factors are determined by direct comparison of complete power series, com-
parison of coefficients of particular powers of the variable, or evaluation atx = 0 or 1, and
so on.

The hypergeometric series may be used to define functions with nonintegral indices. The
physical applications are minimal.

Exercises

13.4.1 (a) Forc, an integer, anda andb nonintegral, show that

2F1(a, b; c;x) and x1−c
2F1(a + 1− c, b+ 1− c;2− c;x)

yield only one solution to the hypergeometric equation.
(b) What happens ifa is an integer, say,a =−1, andc=−2?

13.4.2 Find the Legendre, Chebyshev I, and Chebyshev II recurrence relations corresponding
to the contiguous hypergeometric function Eq. (13.134).

13.4.3 Transform the following polynomials into hypergeometric functions of argumentx2. (a)
T2n(x); (b) x−1T2n+1(x); (c) U2n(x); (d) x−1U2n+1(x).

ANS. (a)T2n(x)= (−1)n 2F1(−n,n; 1
2;x2).

(b) x−1T2n+1(x)= (−1)n(2n+ 1) 2F1(−n,n+ 1; 3
2;x2).

(c) U2n(x)= (−1)n 2F1(−n,n+ 1; 1
2;x2).

(d) x−1U2n+1(x)= (−1)n(2n+ 2) 2F1(−n,n+ 2; 3
2;x2).

13.4.4 Derive or verify the leading factor in the hypergeometric representations of the Cheby-
shev functions.

13.4.5 Verify that the Legendre function of the second kind,Qν(z), is given by

Qν(z) = π1/2ν!
(ν + 1

2)!(2z)ν+1 2F1

(
ν

2
+ 1

2
,
ν

2
+ 1; ν

2
+ 3

2
; z−2

)
,

|z| > 1, |argz|< π, ν 
= −1,−2,−3, . . . .

13.4.6 Analogous to the incomplete gamma function, we may define an incomplete beta func-
tion by

Bx(a, b)=
∫ x

0
ta−1(1− t)b−1dt.
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Show that

Bx(a, b)= a−1xa 2F1(a,1− b;a + 1;x).
13.4.7 Verify the integral representation

2F1(a, b; c; z)= �(c)

�(b)�(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt.

What restrictions must be placed on the parametersb andc and on the variablez?
Note. The restriction on|z| can be dropped — analytic continuation. For nonintegrala

the real axis in thez-plane from 1 to∞ is a cut line.
Hint. The integral is suspiciously like a beta function and can be expanded into a series
of beta functions.

ANS.�(c) >�(b) > 0, and|z|< 1.

13.4.8 Prove that

2F1(a, b; c;1)= �(c)�(c− a − b)

�(c− a)�(c− b)
, c 
= 0,−1,−2, . . . c > a + b.

Hint. Here is a chance to use the integral representation, Exercise 13.4.7.

13.4.9 Prove that

2F1(a, b; c;x)= (1− x)−a 2F1

(
a, c− b; c; −x

1− x

)
.

Hint. Try an integral representation.
Note. This relation is useful in developing a Rodrigues representation ofTn(x) (compare
Exercise 13.3.11).

13.4.10 Verify that

2F1(−n,b; c;1)= (c− b)n

(c)n
.

Hint. Here is a chance to use the contiguous function relation[2a − c + (b − a)x] ·
2F1(a, b; c;x)= a(1− x) 2F1(a + 1, b; c;x)− (c− a) 2F1(a − 1, b; c;x) and mathe-
matical induction. Alternatively, use the integral representation and the beta function.

13.5 CONFLUENT HYPERGEOMETRIC FUNCTIONS

The confluent hypergeometric equation13

xy′′(x)+ (c− x)y′(x)− ay(x)= 0 (13.143)

13This is often calledKummer’s equation. The solutions, then, areKummer functions.
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has a regular singularity atx = 0 and an irregular one atx =∞. It is obtained from the hy-
pergeometric equation of Section 13.4 by merging (by hand:x(1−x)→ x in Eq. (13.124))
two of the latter’s three singularities. One solution of the confluent hypergeometric equa-
tion is

y(x) = 1F1(a; c;x)=M(a, c, x)

= 1+ a

c

x

1! +
a(a + 1)

c(c+ 1)

x2

2! + · · · , c 
= 0,−1,−2, . . . . (13.144)

This solution is convergent for all finitex (or complexz). In terms of the Pochhammer
symbols, we have

M(a, c, x)=
∞∑
n=0

(a)n

(c)n

xn

n! . (13.145)

Clearly,M(a, c, x) becomes a polynomial if the parametera is 0 or a negative integer.
Numerous more or less elementary functions may be represented by the confluent hyper-
geometric function. Examples are the error function and the incomplete gamma function
(from Eq. (8.69)):

erf(x) = 2

π1/2

∫ x

0
e−t2 dt = 2

π1/2
xM

(
1

2
,

3

2
,−x2

)
, (13.146)

γ (a, x) =
∫ x

0
e−t ta−1dt = a−1xaM(a, a + 1,−x), �(a) > 0. (13.147)

Clearly, this coincides with the first solution forc = a. The error function and the incom-
plete gamma function are discussed further in Section 8.5.

A second solution of Eq. (13.143) is given by

y(x)= x1−cM(a + 1− c,2− c, x), c 
= 2,3,4, . . . . (13.148)

The standard form of the second solution of Eq. (13.143) is a linear combination of
Eqs. (13.144) and (13.148):

U(a, c, x)= π

sinπc

[
M(a, c, x)

(a − c)!(c− 1)! −
x1−cM(a + 1− c,2− c, x)

(a − 1)!(1− c)!
]
. (13.149)

Note the resemblance to our definition of the Neumann function, Eq. (11.60). As with our
Neumann function, Eq. (11.60), this definition ofU(a, c, x) becomes indeterminate in this
case forc an integer.

An alternate form of the confluent hypergeometric equation that will be useful later is
obtained by changing the independent variable fromx to x2:

d2

dx2
y
(
x2)+ [2c− 1

x
− 2x

]
d

dx
y
(
x2)− 4ay

(
x2)= 0. (13.150)

As with the hypergeometric functions, contiguous functions exist in which the para-
metersa and c are changed by±1. Including the cases of simultaneous changes in the
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two parameters,14 we have eight possibilities. Taking the original function and pairs of the
contiguous functions, we can develop a total of 28 equations.15

Integral Representations

It is frequently convenient to have the confluent hypergeometric functions in integral form.
We find (Exercise 13.5.10)

M(a, c, x) = �(c)

�(a)�(c− a)

∫ 1

0
ext ta−1(1− t)c−a−1dt, �(c) >�(a) > 0,

(13.151)

U(a, c, x) = 1

�(a)

∫ ∞

0
e−xt ta−1(1+ t)c−a−1dt, �(x) > 0, �(a) > 0.

(13.152)

Three important techniques for deriving or verifying integral representations are as fol-
lows:

1. Transformation of generating function expansions and Rodrigues representations: The
Bessel and Legendre functions provide examples of this approach.

2. Direct integration to yield a series: This direct technique is useful for a Bessel function
representation (Exercise 11.1.18) and a hypergeometric integral (Exercise 13.4.7).

3. (a) Verification that the integral representation satisfies the ODE. (b) Exclusion of
the other solution. (c) Verification of normalization. This is the method used in Sec-
tion 11.5 to establish an integral representation of the modified Bessel functionKν(z).
It will work here to establish Eqs. (13.151) and (13.152).

Bessel and Modified Bessel Functions

Kummer’s first formula,

M(a, c, x)= exM(c− a, c,−x), (13.153)

is useful in representing the Bessel and modified Bessel functions. The formula may be ver-
ified by series expansion or by use of an integral representation (compare Exercise 13.5.10).

As expected from the form of the confluent hypergeometric equation and the character
of its singularities, the confluent hypergeometric functions are useful in representing a
number of the special functions of mathematical physics. For the Bessel functions,

Jν(x)= e−ix

ν!
(
x

2

)ν

M

(
ν + 1

2
,2ν + 1,2ix

)
, (13.154)

whereas for the modified Bessel functions of the first kind,

Iν(x)= e−x

ν!
(
x

2

)ν

M

(
ν + 1

2
,2ν + 1,2x

)
. (13.155)

14Slater refers to these asassociated functions.
15The recurrence relations for Bessel, Hermite, and Laguerre functions are special cases of these equations.
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Hermite Functions

The Hermite functions are given by

H2n(x) = (−1)n
(2n)!
n! M

(
−n, 1

2
, x2

)
, (13.156)

H2n+1(x) = (−1)n
2(2n+ 1)!

n! xM

(
−n, 3

2
, x2

)
, (13.157)

using Eq. (13.150).
Comparing the Laguerre ODE with the confluent hypergeometric equation (13.143), we

have

Ln(x)=M(−n,1, x). (13.158)

The constant is fixed as unity by noting Eq. (13.66) forx = 0. For the associated Laguerre
functions,

Lm
n (x)= (−1)m

dm

dxm
Ln+m(x)= (n+m)!

n!m! M(−n,m+ 1, x). (13.159)

Alternate verification is obtained by comparing Eq. (13.159) with the power-series so-
lution (Eq. (13.72) of Section 13.2). Note that in the hypergeometric form, as distinct from
a Rodrigues representation, the indicesn andm need not be integers, and, if they are not
integers,Lm

n (x) will not be a polynomial.

Miscellaneous Cases

There are certain advantages in expressing our special functions in terms of hypergeomet-
ric and confluent hypergeometric functions. If the general behavior of the latter functions is
known, the behavior of the special functions we have investigated follows as a series of spe-
cial cases. This may be useful in determining asymptotic behavior or evaluating normaliza-
tion integrals. The asymptotic behavior ofM(a, c, x) andU(a, c, x) may be conveniently
obtained from integral representations of these functions, Eqs. (13.151) and (13.152). The
further advantage is that the relations between the special functions are clarified. For in-
stance, an examination of Eqs. (13.156), (13.157), and (13.159) suggests that the Laguerre
and Hermite functions are related.

The confluent hypergeometric equation (13.143) is clearly not self-adjoint. For this and
other reasons it is convenient to define

Mkµ(x)= e−x/2xµ+1/2M

(
µ− k+ 1

2
,2µ+ 1, x

)
. (13.160)

This new function,Mkµ(x), is a Whittaker function that satisfies the self-adjoint equation

M ′′
kµ(x)+

(
−1

4
+ k

x
+

1
4 −µ2

x2

)
Mkµ(x)= 0. (13.161)

The corresponding second solution is

Wkµ(x)= e−x/2xµ+1/2U

(
µ− k + 1

2
,2µ+ 1, x

)
. (13.162)
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Exercises

13.5.1 Verify the confluent hypergeometric representation of the error function

erf(x)= 2x

π1/2
M

(
1

2
,

3

2
,−x2

)
.

13.5.2 Show that the Fresnel integralsC(x) andS(x) of Exercise 5.10.2 may be expressed in
terms of the confluent hypergeometric function as

C(x)+ iS(x)= xM

(
1

2
,

3

2
,
iπx2

2

)
.

13.5.3 By direct differentiation and substitution verify that

y = ax−a
∫ x

0
e−t ta−1dt = ax−aγ (a, x)

satisfies

xy′′ + (a + 1+ x)y′ + ay = 0.

13.5.4 Show that the modified Bessel function of the second kind,Kν(x), is given by

Kν(x)= π1/2e−x(2x)νU
(
ν + 1

2
,2ν + 1,2x

)
.

13.5.5 Show that the cosine and sine integrals of Section 8.5 may be expressed in terms of
confluent hypergeometric functions as

Ci(x)+ i si(x)=−eixU(1,1,−ix).
This relation is useful in numerical computation of Ci(x) and si(x) for large values ofx.

13.5.6 Verify the confluent hypergeometric form of the Hermite polynomialH2n+1(x)

(Eq. (13.157)) by showing that

(a) H2n+1(x)/x satisfies the confluent hypergeometric equation witha = −n, c = 3
2

and argumentx2,

(b) lim
x→0

H2n+1(x)

x
= (−1)n

2(2n+ 1)!
n! .

13.5.7 Show that the contiguous confluent hypergeometric function equation

(c− a)M(a − 1, c, x)+ (2a − c+ x)M(a, c, x)− aM(a + 1, c, x)= 0

leads to the associated Laguerre function recurrence relation (Eq. (13.75)).

13.5.8 Verify the Kummer transformations:

(a) M(a, c, x)= exM(c− a, c,−x)
(b) U(a, c, x)= x1−cU(a − c+ 1,2− c, x).
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13.5.9 Prove that

(a)
dn

dxn
M(a, c, x)= (a)n

(b)n
M(a + n,b+ n,x),

(b)
dn

dxn
U(a, c, x)= (−1)n(a)nU(a + n, c+ n,x).

13.5.10 Verify the following integral representations:

(a) M(a, c, x)= �(c)

�(a)�(c− a)

∫ 1

0
ext ta−1(1− t)c−a−1dt, �(c) >�(a) > 0.

(b) U(a, c, x)= 1

�(a)

∫ ∞

0
e−xt ta−1(1+ t)c−a−1dt, �(x) > 0, �(a) > 0.

Under what conditions can you accept�(x)= 0 in part (b)?

13.5.11 From the integral representation ofM(a, c, x), Exercise 13.5.10(a), show that

M(a, c, x)= exM(c− a, c,−x).
Hint. Replace the variable of integrationt by 1− s to release a factorex from the
integral.

13.5.12 From the integral representation ofU(a, c, x), Exercise 13.5.10(b), show that the expo-
nential integral is given by

E1(x)= e−xU(1,1, x).

Hint. Replace the variable of integrationt in E1(x) by x(1+ s).

13.5.13 From the integral representations ofM(a, c, x) andU(a, c, x) in Exercise 13.5.10 de-
velop asymptotic expansions of
(a)M(a, c, x), (b)U(a, c, x).
Hint. You can use the technique that was employed withKν(z), Section 11.6.

ANS. (a)
�(c)

�(a)

ex

xc−a

{
1+ (1− a)(c− a)

1!x +

(1− a)(2− a)(c− a)(c− a + 1)

2!x2
+ · · ·

}

(b)
1

xa

{
1+ a(1+ a − c)

1!(−x) + a(a + 1)(1+ a − c)(2+ a − c)

2!(−x)2 + · · ·
}

.

13.5.14 Show that the Wronskian of the two confluent hypergeometric functionsM(a, c, x) and
U(a, c, x) is given by

MU ′ −M ′U =− (c− 1)!
(a − 1)!

ex

xc
.

What happens ifa is 0 or a negative integer?
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13.5.15 The Coulomb wave equation (radial part of the Schrödinger equation with Coulomb
potential) is

d2y

dρ2
+
[
1− 2η

ρ
− L(L+ 1)

ρ2

]
y = 0.

Show that a regular solutiony = FL(η,ρ) is given by

FL(η,ρ)= CL(η)ρ
L+1e−iρM(L+ 1− iη,2L+ 2,2iρ).

13.5.16 (a) Show that the radial part of the hydrogen wave function, Eq. (13.81), may be writ-
ten as

e−αr/2(αr)LL2L+1
n−L−1(αr)

= (n+L)!
(n−L− 1)!(2L+ 1)!e

−αr/2(αr)LM(L+ 1− n,2L+ 2, αr).

(b) It was assumed previously that the total (kinetic+ potential) energyE of the elec-
tron was negative. Rewrite the (unnormalized) radial wave function for the free
electron,E > 0.

ANS. eiαr/2(αr)LM(L + 1− in,2L + 2,−iαr), outgoing wave.
This representation provides a powerful alternative tech-
nique for the calculation of photoionization and recombina-
tion coefficients.

13.5.17 Evaluate

(a)
∫ ∞

0

[
Mkµ(x)

]2
dx, (b)

∫ ∞

0

[
Mkµ(x)

]2dx
x

,

(c)
∫ ∞

0

[
Mkµ(x)

]2 dx

x1−a ,

where 2µ= 0,1,2, . . . , k −µ− 1
2 = 0,1,2, . . . , a >−2µ− 1.

ANS. (a)(2µ)!2k. (b) (2µ)!. (c) (2µ)!(2k)a .

13.6 MATHIEU FUNCTIONS

When PDEs such as Laplace’s, Poisson’s, and the wave equation are solved with cylin-
drical or spherical boundary conditions by separating variables in polar coordinates, we
find radial solutions, which are the Bessel functions of Chapter 11, and angular solutions,
which are sinmϕ,cosmϕ in cylindrical cases and spherical harmonics in spherical cases.
Examples are electromagnetic waves in resonant cavities, vibrating circular drumheads,
and coaxial wave guides.

When in such cylindrical problems the circular boundary condition becomes elliptical
we are led to the angular and radial Mathieu functions, which, therefore, might be called
elliptic cylinder functions. In fact, in 1868 Mathieu developed the leading terms of series
solutions of the vibrating elliptical drumhead, and Whittaker and others in the early 1900s
derived higher-order terms as well.



870 Chapter 13 More Special Functions

Here our goal is to give an introduction to the rich and complex properties of Mathieu
functions.

Separation of Variables in Elliptical Coordinates

Elliptical cylinder coordinatesξ, η, z, which are appropriate for elliptical boundary condi-
tions, are expressed in rectangular coordinates as

x = c coshξ cosη, y = c sinhξ sinη, z= z, (13.163)

0≤ ξ <∞, 0≤ η ≤ 2π,

where the parameter 2c > 0 is the distance between the foci of the confocal ellipses de-
scribed by these coordinates (Fig. 13.7). We want to show that in the limitc→ 0 the foci
of the ellipses coalesce to the center of circles. We work at constantz-coordinate mostly,
z= 0, say. Indeed for fixed radial variableξ =const. we can eliminate the angular variable
η to obtain from Eq. (13.163)

x2

c2 cosh2 ξ
+ y2

c2 sinh2 ξ
= 1, (13.164)

describing confocal ellipses centered at the origin of thex, y-plane with major and minor
half-axes

a = c coshξ, b= c sinhξ, (13.165)

respectively. Since

b

a
= tanhξ =

√
1− 1

cosh2 ξ
≡
√

1− e2, (13.166)

the eccentricitye = 1/coshξ of the ellipse with 0≤ e ≤ 1, and the distance between the
foci 2ae = 2c, providing a geometrical interpretation of the radial coordinateξ and the

FIGURE 13.7 Elliptical coordinatesξ, η.
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parameterc. As ξ →∞, e→ 0 and the ellipses become circles, which is indicated in
Fig. 13.7. Asξ → 0, the ellipse becomes more elongated until, atξ = 0, it has shrunk to
the line segment between the foci.

Whenη=const. we eliminateξ to find confocal hyperbolas

x2

c2 cos2η
− y2

c2 sin2η
= 1, (13.167)

which are also plotted in Fig. 13.7. Differentiating the ellipse, we obtain

x dx

cosh2 ξ
+ y dy

sinh2 ξ
= 0, (13.168)

which means that the tangent vector(dx, dy) of the ellipse is perpendicular to the vector
( x

cosh2 ξ
,

y

sinh2 ξ
). For the hyperbola the orthogonality condition is

x dx

cos2η
− y dy

sin2η
= 0, (13.169)

so the scalar product of the ellipse and hyperbola tangent vectors at each of their intersec-
tion points(x, y) of Eq. (13.163) obey

x2

cosh2 ξ cos2η
− y2

sinh2 ξ sin2η
= c2− c2= 0. (13.170)

This means that these confocal ellipses and hyperbolas form an orthogonal coordinate
system, in the sense of Section 2.1. To extract the scale factorshξ ,hη from the differentials
of the elliptical coordinates

dx = c sinhξ cosη dξ − c coshξ sinη dη,
(13.171)

dy = c coshξ sinη dξ + c sinhξ cosη dη,

we sum their squares, finding

dx2+ dy2 = c2(sinh2 ξ cos2η+ cosh2 ξ sin2η
)(
dξ2+ dη2)

= c2(cosh2 ξ − cos2η
)(
dξ2+ dη2)≡ h2

ξ dξ
2+ h2

η dη
2 (13.172)

and yielding

hξ = hη = c
(
cosh2 ξ − cos2η

)1/2
. (13.173)

Note that there is no cross term involvingdξ dη, showing again that we are dealing with
orthogonal coordinates.

Now we are ready to derive Mathieu’s differential equations.
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Example 13.6.1 ELLIPTICAL DRUM

We consider vibrations of an elliptical drumhead with vertical displacementz= z(x, y, t)

governed by the wave equation

∂2z

∂x2
+ ∂2z

∂y2
= 1

v2

∂2z

∂t2
, (13.174)

where the velocity squaredv2= T/ρ with tensionT and mass densityρ is a constant. We
first separate the harmonic time dependence, writing

z(x, y, t)= u(x, y)w(t), (13.175)

wherew(t)= cos(ωt + δ), with ω the frequency andδ a constant phase. Substituting this
functionz into Eq. (13.174) yields

1

u

(
∂2u

∂x2
+ ∂2u

∂y2

)
= 1

v2w

∂2w

∂t2
=−ω2

v2
=−k2= const., (13.176)

that is, the two-dimensional Helmholtz equation for the displacementu. We now use Eq.
(2.22) to convert the Laplacian∇2 to the elliptical coordinates, where we drop thez-
coordinate. This gives

∂2u

∂x2
+ ∂2u

∂y2
+ k2u= 1

h2
ξ

(
∂2u

∂ξ2
+ ∂2u

∂η2

)
+ k2u= 0, (13.177)

that is, the Helmholtz equation in ellipticalξ, η coordinates,

∂2u

∂ξ2
+ ∂2u

∂η2
+ c2k2(cosh2 ξ − cos2η

)
u= 0. (13.178)

Lastly, we separateξ andη, writing u(ξ, η)=R(ξ)�(η), which yields

1

R

d2R

dξ2
+ c2k2 cosh2 ξ = c2k2 cos2η− 1

�

d2�

dη2
= λ+ 1

2
c2k2, (13.179)

whereλ + c2k2/2 is the separation constant. Writing cosh 2ξ,cos2η instead of cosh2 ξ,
cos2η (which motivates the special form of the separation constant in Eq. (13.179)) we
find the linear, second-order ODE

d2R

dξ2
− (λ− 2q cosh 2ξ)R(ξ)= 0, q = 1

4
c2k2, (13.180)

which is also called theradial Mathieu equation, and

d2�

dη2
+ (λ− 2q cos2η)�(η)= 0, (13.181)

theangular, or modified, Mathieu equation. Note that the eigenvalueλ(q) is a function
of the continuous parameterq in the Mathieu ODEs. It is this parameter dependence that
complicates the analysis of Mathieu functions and makes them among the most difficult
special functions used in physics. �



13.6 Mathieu Functions 873

Clearly, all finite points are regular points of both ODEs, while infinity is an essential
singularity for both ODEs, which are of the Sturm–Liouville type (Chapter 10) with coef-
ficient functionsp ≡ 1 and

q(ξ)=−λ+ 2q cosh 2ξ, q(η)= λ− 2q cos2η. (13.182)

(These functionsq must not be confused with the parameterq.) As a consequence, their
solutions form orthogonal sets of functions. The substitutionη→ iξ transforms the angular
to the radial Mathieu ODE, so their solutions are closely related.

Using the Lindemann–Stieltjes substitutionz = cos2η, dz/dη = −sin 2η, the angular
Mathieu ODE is transformed into an ODE with coefficients that are algebraic in the vari-

ablez (using d
dη
= dz

dη
d
dz
=−sin 2η d

dz
and d2

dη2 =−2 cos2η d
dz
+ sin2 2η d2

dz2 ):

4z(1− z)
d2�

dz2
+ 2(1− 2z)

d�

dz
+ [λ+ 2q(1− 2z)

]
�= 0. (13.183)

This ODE has regular singularities atz = 0 andz = 1, whereas the point at infinity is
an essential singularity (Chapter 9). By comparison, the hypergeometric ODE has three
regular singularities. But not all ODEs with two regular singularities and one essential
singularity can be transformed into an ODE of the Mathieu type.

Example 13.6.2 THE QUANTUM PENDULUM

A plane pendulum of lengthl and massm with gravitational potentialV (θ)=−mgl cosθ
is called aquantum pendulum if its wave function� obeys the Schrödinger equation

− h̄2

2ml2

d2�

dθ2
+ [V (θ)−E

]
� = 0, (13.184)

where the variableθ is the angular displacement from the vertical direction. (For fur-
ther details and illustrations we refer to Gutiérrez-Vegaet al. in the Additional Readings.)
A boundary condition applies to� so as to be single-valued; that is,�(θ + 2π)=�(θ).
Substituting

θ = 2η, λ= 8Eml2

h̄2
, q =−4m2gl3

h̄2
(13.185)

into the Schrödinger equation yields the angular Mathieu ODE for�(2(η + π)) =
�(2η). �

For many other applications involving Mathieu functions we refer to Ruby in the Addi-
tional Readings.

Our main focus will be on the solutions of the angular Mathieu ODE, which has the
important property that its coefficient function is periodic with periodπ .
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General Properties of Mathieu Functions

In physics applications the angular Mathieu functions are required to be single-valued, that
is, periodic with period 2π . Let us start with some nomenclature. Since Mathieu’s ODEs
are invariant under parity (η→−η), Mathieu functions have definite parity. Those of odd
parity that have period 2π and, for smallq, start with sin(2n+1)η are called se2n+1(η, q),
with n an integer,n = 0,1,2, . . . (se is short for sine-elliptic). Mathieu functions of odd
parity and periodπ that start with sin2nη for small q are called se2n(η, q), with n =
1,2, . . . . Mathieu functions of even parity, periodπ that start with cos2nη for small q
are called ce2n(η, q) (ce is short for cosine-elliptic), while those with period 2π that start
with cos(2n+1)η,n= 0,1, . . . , for smallq are called ce2n+1(η, q). In the limit where the
parameterq→ 0 (and the Mathieu ODE becomes the classical harmonic oscillator ODE),
Mathieu functions reduce to these trigonometric functions.

The periodicity condition�(η + 2π) = �(η) is sufficient to determine a set of eigen-
valuesλ in terms ofq. An elementary analog of this result is the fact that a solution of the
classical harmonic oscillator ODEu′′(η)+λu(η)= 0 has period 2π if, and only if,λ= n2

is the square of an integer. Such problems will be pursued in Section 14.7 as applications
of Fourier series.

Example 13.6.3 RADIAL MATHIEU FUNCTIONS

Upon replacing the angular elliptic variableη → iξ , the angular Mathieu ODE,
Eq. (13.181), becomes the radial ODE, Eq. (13.180). This motivates the definitions of
radial Mathieu functions as

Ce2n+p(ξ, q) = ce2n+p(iξ, q), p = 0,1; n= 0,1, . . . ,

Se2n+p(ξ, q) = −ise2n+p(iξ, q), p = 0,1; n= 1,2, . . . .

Because these functions are differentiable, they correspond to the regular solutions of the
radial Mathieu ODE. Of course, they are no longer periodic but are oscillatory (Fig. 13.8).

In physical problems involving elliptical coordinates, the radial Mathieu ODE,
Eq. (13.180), plays a role corresponding to Bessel’s ODE in cylindrical geometry. Be-
cause there are four families of independent Bessel functions — the regular solutionsJn
and irregular Neumann functionsNn, along with the modified Bessel functionsIn and
Kn — we expect four kinds of radial Mathieu functions. Because of parity, the solutions
split into even and odd Mathieu functions and so there are eight kinds. Forq > 0,

Je2n(ξ, q) = Ce2n(ξ, q), Je2n+1(ξ, q)=Ce2n+1(ξ, q),

Jo2n(ξ, q) = Se2n(ξ, q), Jo2n+1(ξ, q)= Se2n+1(ξ, q), regular or first kind;
Nen(ξ, q),Non(ξ, q), irregular or second kind;

for q < 0, the solutions of the radial Mathieu ODE are denoted by

Ien(ξ, q), Ion(ξ, q), regular or first kind,

Ken(ξ, q),Kon(ξ, q), irregular or second kind
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FIGURE 13.8 Radial Mathieu functions:q = 1 (solid line),q = 2 (dashed
line), q = 3 (dotted line). (From Gutiérrez-Vegaet al., Am. J. Phys. 71:

233 (2003).)

and are known as theevanescent radial Mathieu functions. Mathieu functions corre-
sponding to the Hankel functions can be similarly defined. In Fig. 13.8 some of them are
plotted.

In applications such as a vibrating drumhead with elliptical boundary conditions (see
Example 13.6.1), the solution can be expanded in even and odd Mathieu functions:

zen ≡ Jen(ξ, q)cen(η, q)cos(ωnt), m≥ 0,

zon ≡ Jon(ξ, q)sen(η, q)cos(ωnt), m≥ 1.

They obey Dirichlet boundary conditions,zen(ξ0, η, t)= 0= zon(ξ0, η, t), which hold pro-
vided the radial functions satisfy Jen(ξ0, q) = 0= Jon(ξ0, q) at the elliptical boundary,
whereξ = ξ0.

When the focal distancec→ 0, the angular Mathieu functions become the conventional
trigonometric functions, while the radial Mathieu functions become Bessel functions.

In the case of oscillations of a confocal annular elliptic lake, the modes have to include
the Mathieu functions of the second kind and are thus given by

zen ≡
[
AJen(ξ, q)+BNen(ξ, q)

]
cen(η, q)cos(ωnt), m≥ 0,

zon ≡
[
AJon(ξ, q)+BNon(ξ, q)

]
sen(η, q)cos(ωnt), m≥ 1,

with A,B constants. These standing wave solutions must obey Neumann boundary con-
ditions at the inner (ξ = ξ0) and outer (ξ = ξ1) elliptical boundaries; that is, the normal
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derivatives (a prime denotesd/dξ ) of zen and zon vanish at each point of the boundaries.
For even modes, we have ze′n(ξ0, η, t) = 0= ze′n(ξ1, η, t). The implied radial constraints
are similar to Eqs. (11.81) and (11.82) of Example 11.3.1. Numerical examples and plots,
also for traveling waves, are given in Gutiérrez-Vegaet al. in the Additional Readings.�

For zeros of Mathieu functions, their asymptotic expansions, and a more complete listing
of formulas we refer to Abramowitz and Stegun (AMS-55) in the Additional Readings,Am.
J. Phys. 71, Jahnke and Emde and Gradshteyn and Ryzhik in the Additional Readings.

To illustrate and support the nomenclature, we want to show16 that there is an angular
Mathieu function that is

• even inη and of periodπ if and only if �′1(π/2)= 0;
• odd and of periodπ if and only if �2(π/2)= 0;
• even and of period 2π if and only if �1(π/2)= 0;
• odd and of period 2π if and only if �′2(π/2)= 0,

where�1(η),�2(η) are two linearly independent solutions of the angular Mathieu ODE
so that

�1(0)= 1, �′1(0)= 0; �2(0)= 0, �′2(0)= 1. (13.186)

Since the Mathieu ODE is a linear second-order ODE, we know (Chapter 9) that these
initial conditions are realistic. The first case just given corresponds to ce2n(η, q), with
�′1(π/2) = −2nsin2nη|η=π/2 + · · · = 0 for n = 1,2, . . . . The second is the se2n(η, q),
with �2(π/2)= sin2nη|π/2+ · · · = 0. The third case is the ce2n+1(η, q), with �1(π/2)=
cos(2n+ 1)π/2+ · · · = 0. The fourth case is the se2n+1(η, q).

The key to the proof is Floquet’s approach to linear second-order ODEs with periodic
coefficient functions, such as Mathieu’s angular ODE or the simple pendulum (Exercise
13.6.1). If �1(η),�2(η) are two linearly independent solutions of the ODE, any other
solution� can be expressed as

�(η)= c1�1(η)+ c2�2(η), (13.187)

with constantsc1, c2. Now,�k(η+2π) are also solutions because such an ODE is invariant
under the translationη→ η+ 2π , and in particular

�1(η+ 2π) = a1�1(η)+ a2�2(η),

�2(η+ 2π) = b1�1(η)+ b2�2(η), (13.188)

with constantsai, bj . Substituting Eq. (13.188) into Eq. (13.187) we get

�(η+ 2π)= (c1a1+ c2b1)�1(η)+ (c2b2+ c1a2)�2(η), (13.189)

where the constantsci can be chosen as solutions of the eigenvalue equations

a1c1+ b1c2 = λc1,

a2c1+ b2c2 = λc2. (13.190)

16See Hochstadt in the Additional Readings.
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ThenFloquet’s theorem states that�(η+ 2π)= λ�(η), whereλ is a root of∣∣∣∣a1− λ b1
a2 b2− λ

∣∣∣∣= 0. (13.191)

A useful corollary is obtained if we defineµ and y by λ = exp(2πµ) and y(η) =
exp(−µη)�(η), so

y(η+ 2π)= e−µηe−2πµ�(η+ 2π)= e−µη�(η)= y(η). (13.192)

Thus,�(η)= eµηy(η), with y a periodic function ofη with period 2π .
Let us apply Floquet’s argument to the�k(η+π), which are also solutions of Mathieu’s

ODE because the latter is invariant under the translation
η→ η+ π . Using the special values in Eq. (13.186) we know that

�1(η+ π) = �1(π)�1(η)+�′1(π)�2(η),

�2(η+ π) = �2(π)�1(η)+�′2(π)�2(η), (13.193)

because these linear combinations of�k(η) are solutions of Mathieu’s ODE with the cor-
rect values�i(η+ π),�′i (η+ π) for η= 0. Therefore,

�i(η+ π)= λi�i(η), (13.194)

where theλi are the roots of∣∣∣∣�1(π)− λ �2(π)

�′1(π) �′2(π)− λ

∣∣∣∣= 0. (13.195)

The constant term in the characteristic polynomial is given by the Wronskian

W
(
�1(η),�2(η)

)= C, (13.196)

a constant because the coefficient ofd�/dη in the angular Mathieu ODE vanishes, imply-
ing dW/dη= 0. In fact, using Eq. (13.186),

W
(
�1(0),�2(0)

) = �1(0)�
′
2(0)−�′1(0)�2(0)= 1

=W
(
�1(π),�2(π)

)
, (13.197)

so the eigenvalue Eq. (13.195) forλ becomes(
�1(π)− λ

)(
�′2(π)− λ

)−�2(π)�
′
1(π)= 0

= λ2− [�1(π)+�′2(π)
]
λ+ 1, (13.198)

with λ1 · λ2= 1 andλ1+ λ2=�1(π)+�′2(π).
If |λ1| = |λ2| = 1, thenλ1= exp(iφ) andλ2= exp(−iφ), soλ1+λ2= 2 cosφ. Forφ 
=

0,π,2π, . . . this case corresponds to|�1(π)+�′2(π)| < 2, where both solutions remain
bounded asη→∞ in steps ofπ using Eq. (13.194). These cases do not yield periodic
Mathieu functions, and this is also the case when|�1(π) + �′2(π)| > 2. If φ = 0, that
is, λ1= 1= λ2 is a double root, then the�i have periodπ and|�1(π)+�′2(π)| = 2. If
φ = π , that is,λ1=−1= λ2 is again a double root, then|�1(π)+�′2(π)| = −2 and the
�i have period 2π with �i(η+ π)=−�i(η).
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Because the angular Mathieu ODE is invariant under a parity transformationη→−η,
it is convenient to consider solutions

�e(η)= 1

2

[
�(η)+�(−η)], �o(η)= 1

2

[
�(η)−�(−η)] (13.199)

of definite parity, which obey the same initial conditions as�i . We now relabel�e →
�1,�o → �2, taking�1 to be even and�2 to be odd under parity. These solutions of
definite parity of Mathieu’s ODE are calledMathieu functions and are labeled according
to our nomenclature discussed earlier.

If �1(η) has periodπ , then�′1(η + π) = �′1(η) also has periodπ but is odd under
parity. Substitutingη=−π/2 we obtain

�′1
(
π

2

)
=�′1

(
−π

2

)
=−�′1

(
π

2

)
, so �′1

(
π

2

)
= 0. (13.200)

Conversely, if�′1(π/2)= 0, then�1(η) has periodπ . To see this, we use

�1(η+ π)= c1�1(η)+ c2�2(η). (13.201)

This expansion is valid because�1(η+ π) is a solution of the angular Mathieu ODE. We
now determine the coefficientsci , settingη = −π/2, and recall that�1 and�′2 are even
under parity, whereas�2 and�′1 are odd. This yields

�1

(
π

2

)
= c1�1

(
π

2

)
− c2�2

(
π

2

)
,

(13.202)

�′1
(
π

2

)
= −c1�

′
1

(
π

2

)
+ c2�

′
2

(
π

2

)
.

Since�′1(π/2) = 0, �′2(π/2) 
= 0, or the Wronskian would vanish and�2 ∼ �1 would
follow. Hencec2 = 1 follows from the second equation andc1 = 1 from the first. Thus,
�1(η+ π)=�1(η). The other bulleted cases listed earlier can be proved similarly.

Because the Mathieu ODEs are of the Sturm–Liouville type, Mathieu functions repre-
sent orthogonal systems of functions. So, form,n nonnegative integers, the orthogonality
relations and normalizations are∫ π

−π
cemcen dη =

∫ π

−π
semsen dη= 0, if m 
= n;∫ π

−π
cemsen dη = 0; (13.203)∫ π

−π
[ce2n]2dη =

∫ π

−π
[se2n]2dη= π, if n≥ 1;

∫ π

0

[
ce0(η, q)

]2
dη= π.

If a functionf (η) is periodic with periodπ , then it can be expanded in a series of orthog-
onal Mathieu functions as

f (η)= 1

2
a0 ce0(η, q)+

∞∑
n=1

[
an ce2n(η, q)+ bn se2n(η, q)

]
(13.204)
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with

an = 1

π

∫ π

−π
f (η)ce2n(η, q) dη, n≥ 0;

(13.205)

bn = 1

π

∫ π

−π
f (η)se2n(η, q) dη, n≥ 1.

Similar expansions exist for functions of period 2π in terms of ce2n+1 and se2n+1.
Series expansions of Mathieu functions will be derived in Section 14.7.

Exercises

13.6.1 For the simple pendulum ODE of Section 5.8, apply Floquet’s method and derive the
properties of its solutions similar to those marked by bullets before Eq. (13.186).

13.6.2 Derive a Mathieu function analog for the Rayleigh expansion of a plane wave for
cos(k cosη cosθ) and sin(k cosη cosθ).
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CHAPTER 14

FOURIER SERIES

14.1 GENERAL PROPERTIES

Periodic phenomena involving waves, rotating machines (harmonic motion), or other repet-
itive driving forces are described by periodic functions. Fourier series are a basic tool for
solving ordinary differential equations (ODEs) and partial differential equations (PDEs)
with periodic boundary conditions. Fourier integrals for nonperiodic phenomena are de-
veloped in Chapter 15. The common name for the field isFourier analysis.

A Fourier series is defined as an expansion of a function or representation of a function
in a series of sines and cosines, such as

f (x)= a0

2
+

∞∑
n=1

an cosnx +
∞∑
n=1

bn sinnx. (14.1)

The coefficientsa0, an, andbn are related to the periodic functionf (x) by definite inte-
grals:

an = 1

π

∫ 2π

0
f (x)cosnx dx, (14.2)

bn = 1

π

∫ 2π

0
f (x)sinnx dx, n= 0,1,2, . . . , (14.3)

which are subject to the requirement that the integrals exist. Notice thata0 is singled out
for special treatment by the inclusion of the factor1

2. This is done so that Eq. (14.2) will
apply to allan,n= 0 as well asn > 0.

The conditions imposed onf (x) to make Eq. (14.1) valid are thatf (x) have only a
finite number of finite discontinuities and only a finite number of extreme values, maxima,
and minima in the interval[0,2π].1 Functions satisfying these conditions may be called

1These conditions aresufficient but notnecessary.

881
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piecewise regular. The conditions themselves are known as theDirichlet conditions. Al-
though there are some functions that do not obey these Dirichlet conditions, they may well
be labeled pathological for purposes of Fourier expansions. In the vast majority of physi-
cal problems involving a Fourier series these conditions will be satisfied. In most physical
problems we shall be interested in functions that are square integrable (in the Hilbert space
L2 of Section 10.4). In this space the sines and cosines form a complete orthogonal set.
And this in turn means that Eq. (14.1) is valid, in the sense of convergence in the mean.

Expressing cosnx and sinnx in exponential form, we may rewrite Eq. (14.1) as

f (x)=
∞∑

n=−∞
cne

inx, (14.4)

in which

cn = 1

2
(an − ibn), c−n = 1

2
(an + ibn), n > 0, (14.5a)

and

c0= 1

2
a0. (14.5b)

Complex Variables — Abel’s Theorem

Consider a functionf (z) represented by a convergent power series

f (z)=
∞∑
n=0

Cnz
n =

∞∑
n=0

Cnr
neinθ . (14.6)

This is our Fourier exponential series, Eq. (14.4). Separating real and imaginary parts we
get

u(r, θ)=
∞∑
n=0

Cnr
n cosnθ, v(r, θ)=

∞∑
n=1

Cnr
n sinnθ, (14.7a)

the Fourier cosine and sine series. Abel’s theorem asserts that ifu(1, θ) andv(1, θ) are
convergent for a givenθ , then

u(1, θ)+ iv(1, θ)= lim
r→1

f
(
reiθ

)
. (14.7b)

An application of this appears as Exercise 14.1.9 and in Example 14.1.1.

Example 14.1.1 SUMMATION OF A FOURIER SERIES

Usually in this chapter we shall be concerned with finding the coefficients of the Fourier
expansion of a known function. Occasionally, we may wish to reverse this process and
determine the function represented by a given Fourier series.
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Consider the series
∑∞

n=1(1/n)cosnx,x ∈ (0,2π). Since this series is only condition-
ally convergent (and diverges atx = 0), we take

∞∑
n=1

cosnx

n
= lim

r→1

∞∑
n=1

rn cosnx

n
, (14.8)

absolutely convergent for|r| < 1. Our procedure is to try forming power series by trans-
forming the trigonometric functions into exponential form:

∞∑
n=1

rn cosnx

n
= 1

2

∞∑
n=1

rneinx

n
+ 1

2

∞∑
n=1

rne−inx

n
. (14.9)

Now, these power series may be identified as Maclaurin expansions of− ln(1− z), z =
reix, re−ix (Eq. (5.95)), and

∞∑
n=1

rn cosnx

n
= −1

2

[
ln
(
1− reix

)+ ln
(
1− re−ix

)]
= − ln

[(
1+ r2)− 2r cosx

]1/2
. (14.10)

Letting r = 1 and using Abel’s theorem, we see that

∞∑
n=1

cosnx

n
= − ln(2− 2 cosx)1/2

= − ln

(
2 sin

x

2

)
, x ∈ (0,2π).2 (14.11)

Both sides of this expression diverge asx→ 0 and 2π . �

Completeness

The problem of establishing completeness may be approached in a number of different
ways. One way is to transform the trigonometric Fourier series into exponential form and
to compare it with a Laurent series. If we expandf (z) in a Laurent series3 (assumingf (z)
is analytic),

f (z)=
∞∑

n=−∞
dnz

n. (14.12)

On the unit circlez= eiθ and

f (z)= f (eiθ )=
∞∑

n=−∞
dne

inθ . (14.13)

2The limits may be shifted to[−π,π ] (andx 
= 0) using|x| on the right-hand side.
3Section 6.5.
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FIGURE 14.1 Fourier
representation of sawtooth

wave.

The Laurent expansion on the unit circle (Eq. (14.13)) has the same form as the complex
Fourier series (Eq. (14.12)), which shows the equivalence between the two expansions.
Since the Laurent series as a power series has the property of completeness, we see that the
Fourier functionseinx form a complete set. There is a significant limitation here. Laurent
series and complex power series cannot handle discontinuities such as a square wave or the
sawtooth wave of Fig. 14.1, except on the circle of convergence.

The theory of vector spaces provides a second approach to the completeness of the sines
and cosines. Here completeness is established by the Weierstrass theorem for two variables.

The Fourier expansion and the completeness property may be expected, for the functions
sinnx,cosnx, einx are all eigenfunctions of a self-adjoint linear ODE,

y′′ + n2y = 0. (14.14)

We obtain orthogonal eigenfunctions for different values of the eigenvaluen for the interval
[0,2π] that satisfy the boundary conditions in the Sturm–Liouville theory (Chapter 10).
Different eigenfunctions for the same eigenvaluen are orthogonal. We have∫ 2π

0
sinmx sinnx dx =

{
πδmn, m 
= 0,
0, m= 0,

(14.15)

∫ 2π

0
cosmx cosnx dx =

{
πδmn, m 
= 0,
2π, m= n= 0,

(14.16)

∫ 2π

0
sinmx cosnx dx = 0 for all integralm andn. (14.17)

Note that any intervalx0 ≤ x ≤ x0+ 2π will be equally satisfactory. Frequently, we shall
usex0=−π to obtain the interval−π ≤ x ≤ π . For the complex eigenfunctionse±inx or-
thogonality is usuallydefined in terms of the complex conjugate of one of the two factors,∫ 2π

0

(
eimx

)∗
einx dx = 2πδmn. (14.18)

This agrees with the treatment of the spherical harmonics (Section 12.6).
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Sturm–Liouville Theory

The Sturm–Liouville theory guarantees the validity of Eq. (14.1) (for functions satis-
fying the Dirichlet conditions) and, by use of the orthogonality relations, Eqs. (14.15),
(14.16), and (14.17), allows us to compute the expansion coefficientsan, bn, as shown in
Eqs. (14.2), and (14.3). Substituting Eqs. (14.2) and (14.3) into Eq. (14.1), we write our
Fourier expansion as

f (x) = 1

2π

∫ 2π

0
f (t) dt

+ 1

π

∞∑
n=1

(
cosnx

∫ 2π

0
f (t)cosnt dt + sinnx

∫ 2π

0
f (t)sinnt dt

)

= 1

2π

∫ 2π

0
f (t) dt + 1

π

∞∑
n=1

∫ 2π

0
f (t)cosn(t − x)dt, (14.19)

the first (constant) term being the average value off (x) over the interval[0,2π]. Equa-
tion (14.19) offers one approach to the development of the Fourier integral and Fourier
transforms, Section 15.1.

Another way of describing what we are doing here is to say thatf (x) is part of an
infinite-dimensional Hilbert space, with the orthogonal cosnx and sinnx as the basis.
(They can always be renormalized to unity if desired.) The statement that cosnx and
sinnx (n = 0,1,2, . . .) span this Hilbert space is equivalent to saying that they form a
complete set. Finally, the expansion coefficientsan andbn correspond to the projections of
f (x), with the integral inner products (Eqs. (14.2) and (14.3)) playing the role of the dot
product of Section 1.3. These points are outlined in Section 10.4.

Example 14.1.2 SAWTOOTH WAVE

An idea of the convergence of a Fourier series and the error in using only a finite number
of terms in the series may be obtained by considering the expansion of

f (x)=
{
x, 0≤ x < π,

x − 2π, π < x ≤ 2π.
(14.20)

This is a sawtooth wave, and for convenience we shall shift our interval from[0,2π] to
[−π,π]. In this interval we havef (x) = x. Using Eqs. (14.2) and (14.3), we show the
expansion to be

f (x)= x = 2

[
sinx − sin 2x

2
+ sin 3x

3
− · · · + (−1)n+1 sinnx

n
+ · · ·

]
. (14.21)

Figure 14.1 showsf (x) for 0≤ x < π for the sum of 4, 6, and 10 terms of the series. Three
features deserve comment.

1. There is a steady increase in the accuracy of the representation as the number of terms
included is increased.
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2. All the curves pass through the midpoint,f (x)= 0, atx = π .
3. In the vicinity ofx = π there is an overshoot that persists and shows no sign of dimin-

ishing.

As a matter of incidental interest, settingx = π/2 in Eq. (14.21) provides an alternate
derivation of Leibniz’ formula, Exercise 5.7.6. �

Behavior of Discontinuities

The behavior of the sawtooth wavef (x) at x = π is an example of a general rule that at
a finite discontinuity the series converges to the arithmetic mean. For a discontinuity at
x = x0 the series yields

f (x0)= 1
2

[
f (x0+ 0)+ f (x0− 0)

]
, (14.22)

the arithmetic mean of the right and left approaches tox = x0. A general proof using
partial sums, as in Section 14.5, is given by Jeffreys and Jeffreys and by Carslaw (see the
Additional Readings). The proof may be simplified by the use of Dirac delta functions —
Exercise 14.5.1.

The overshoot of the sawtooth wave just beforex = π in Fig. 14.1 is an example of the
Gibbs phenomenon, discussed in Section 14.5.

Exercises

14.1.1 A functionf (x) (quadratically integrable) is to be represented by afinite Fourier series.
A convenient measure of the accuracy of the series is given by the integrated square of
the deviation,

�p =
∫ 2π

0

[
f (x)− a0

2
−

p∑
n=1

(an cosnx + bn sinnx)

]2

dx.

Show that the requirement that�p be minimized, that is,

∂�p

∂an
= 0,

∂�p

∂bn
= 0,

for all n, leads to choosingan andbn as given in Eqs. (14.2) and (14.3).
Note. Your coefficientsan andbn are independent ofp. This independence is a con-
sequence of orthogonality and would not hold for powers ofx, fitting a curve with
polynomials.

14.1.2 In the analysis of a complex waveform (ocean tides, earthquakes, musical tones, etc.) it
might be more convenient to have the Fourier series written as

f (x)= a0

2
+

∞∑
n=1

αn cos(nx − θn).
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Show that this is equivalent to Eq. (14.1) with

an = αn cosθn, α2
n = a2

n + b2
n,

bn = αn sinθn, tanθn = bn/an.

Note. The coefficientsα2
n as a function ofn define what is called thepower spectrum.

The importance ofα2
n lies in their invariance under a shift in the phaseθn.

14.1.3 A functionf (x) is expanded in an exponential Fourier series

f (x)=
∞∑

n=−∞
cne

inx.

If f (x) is real,f (x)= f ∗(x), what restriction is imposed on the coefficientscn?

14.1.4 Assuming that
∫ π

−π [f (x)]2dx is finite, show that

lim
m→∞am = 0, lim

m→∞bm = 0.

Hint. Integrate[f (x) − sn(x)]2, wheresn(x) is thenth partial sum, and use Bessel’s
inequality, Section 10.4. For our finite interval the assumption thatf (x) is square inte-
grable (

∫ π

−π |f (x)|2dx is finite) implies that
∫ π

−π |f (x)|dx is also finite. The converse
does not hold.

14.1.5 Apply the summation technique of this section to show that

∞∑
n=1

sinnx

n
=
{ 1

2(π − x), 0< x ≤ π

−1
2(π + x), −π ≤ x < 0

(Fig. 14.2).

FIGURE 14.2 Reverse sawtooth wave.



888 Chapter 14 Fourier Series

14.1.6 Sum the trigonometric series
∞∑
n=1

(−1)n+1 sinnx

n

and show that it equalsx/2.

14.1.7 Sum the trigonometric series
∞∑
n=0

sin(2n+ 1)x

2n+ 1

and show that it equals {
π/4, 0< x < π

−π/4, −π < x < 0.

14.1.8 Calculate the sum of the finite Fourier sine series for the sawtooth wave,f (x) =
x, (−π,π), Eq. (14.21). Use 4-, 6-, 8-, and 10-term series andx/π = 0.00(0.02)1.00.
If a plotting routine is available, plot your results and compare with Fig. 14.1.

14.1.9 Let f (z) = ln(1+ z) =∑∞
n=1(−1)n+1zn/n. (This series converges to ln(1+ z) for

|z| ≤ 1, except at the pointz=−1.)

(a) From the real parts show that

ln

(
2 cos

θ

2

)
=

∞∑
n=1

(−1)n+1 cosnθ

n
, −π < θ < π.

(b) Using a change of variable, transform part (a) into

− ln

(
2 sin

θ

2

)
=

∞∑
n=1

cosnθ

n
, 0< θ < 2π.

14.2 ADVANTAGES, USES OF FOURIER SERIES

Discontinuous Functions

One of the advantages of a Fourier representation over some other representation, such as a
Taylor series, is that it can represent a discontinuous function. An example is the sawtooth
wave in the preceding section. Other examples are considered in Section 14.3 and in the
exercises.

Periodic Functions

Related to this advantage is the usefulness of a Fourier series in representing a periodic
function. If f (x) has a period of 2π , perhaps it is only natural that we expand it in a series
of functions with period 2π,2π/2,2π/3, . . . . This guarantees that if our periodicf (x) is
represented over one interval[0,2π] or [−π,π], the representation holds for all finitex.
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At this point we may conveniently consider the properties of symmetry. Using the in-
terval [−π,π],sinx is odd and cosx is an even function ofx. Hence, by Eqs. (14.2) and
(14.3),4 if f (x) is odd, allan = 0 and iff (x) is even, allbn = 0. In other words,

f (x) = a0

2
+

∞∑
n=1

an cosnx, f (x) even, (14.23)

f (x) =
∞∑
n=1

bn sinnx, f (x) odd, (14.24)

Frequently these properties are helpful in expanding a given function.
We have noted that the Fourier series is periodic. This is important in considering

whether Eq. (14.1) holds outside the initial interval. Suppose we are given only that

f (x)= x, 0≤ x < π (14.25)

and are asked to representf (x) by a series expansion. Let us take three of the infinite
number of possible expansions.

1. If we assume a Taylor expansion, we have

f (x)= x, (14.26)

a one-term series. This (one-term) series is defined for all finitex.
2. Using the Fourier cosine series (Eq. (14.23)), thereby assuming the function is repre-

sented faithfully in the interval[0,π) and extended to neighboring intervals using the
known symmetry properties, we predict that

f (x)=−x, −π < x ≤ 0,
f (x)= 2π − x, π < x < 2π.

(14.27)

3. Finally, from the Fourier sine series (Eq. (14.24)), we have

f (x)= x, −π < x ≤ 0,
f (x)= x − 2π, π < x < 2π.

(14.28)

These three possibilities — Taylor series, Fourier cosine series, and Fourier sine series —
are each perfectly valid in the original interval,[0,π]. Outside, however, their behavior is
strikingly different (compare Fig. 14.3). Which of the three, then, is correct? This question
has no answer, unless we are given more information aboutf (x). It may be any of the
three or none of them. Our Fourier expansions are valid over the basic interval. Unless the
functionf (x) is known to be periodic with a period equal to our basic interval or to(1/n)th
of our basic interval, there is no assurance whatever that the representation (Eq. (14.1)) will
have any meaning outside the basic interval.

In addition to the advantages of representing discontinuous and periodic functions, there
is a third very real advantage in using a Fourier series. Suppose that we are solving the
equation of motion of an oscillating particle subject to a periodic driving force. The Fourier

4With the range of integration−π ≤ x ≤ π .
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FIGURE 14.3 Comparison of Fourier cosine series, Fourier sine series,
and Taylor series.

expansion of the driving force then gives us the fundamental term and a series of harmon-
ics. The (linear) ODE may be solved for each of these harmonics individually, a process
that may be much easier than dealing with the original driving force. Then, as long as the
ODE is linear, all the solutions may be added together to obtain the final solution.5 This is
more than just a clever mathematical trick.

• It corresponds to finding the response of the system to the fundamental frequency and
to each of the harmonic frequencies.

One question that is sometimes raised is: “Were the harmonics there all along, or were they
created by our Fourier analysis?” One answer compares the functional resolution into har-
monics with the resolution of a vector into rectangular components. The components may
have been present, in the sense that they may be isolated and observed, but the resolution
is certainly not unique. Hence many authors prefer to say that the harmonics were created
by our choice of expansion. Other expansions in other sets of orthogonal functions would
give different results. For further discussion we refer to a series of notes and letters in the
American Journal of Physics.6

Change of Interval

So far attention has been restricted to an interval of length 2π . This restriction may easily
be relaxed. Iff (x) is periodic with a period 2L, we may write

5One of the nastier features of nonlinear differential equations is that this principle of superposition is not valid.
6B. L. Robinson, Concerning frequencies resulting from distortion.Am. J. Phys. 21: 391 (1953); F. W. Van Name, Jr., Concerning
frequencies resulting from distortion.ibid. 22: 94 (1954).
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f (x)= a0

2
+

∞∑
n=1

[
an cos

nπx

L
+ bn sin

nπx

L

]
, (14.29)

with

an = 1

L

∫ L

−L
f (t)cos

nπt

L
dt, n= 0,1,2,3, . . . , (14.30)

bn = 1

L

∫ L

−L
f (t)sin

nπt

L
dt, n= 1,2,3, . . . , (14.31)

replacingx in Eq. (14.1) withπx/L and t in Eqs. (14.2) and (14.3) withπt/L. (For
convenience the interval in Eqs. (14.2) and (14.3) is shifted to−π ≤ t ≤ π .) The choice of
the symmetric interval(−L,L) is not essential. Forf (x) periodic with a period of 2L, any
interval (x0, x0+ 2L) will do. The choice is a matter of convenience or literally personal
preference.

Exercises

14.2.1 The boundary conditions (such asψ(0)= ψ(l)= 0) may suggest solutions of the form
sin(nπx/l) and eliminate the corresponding cosines.

(a) Verify that the boundary conditions used in the Sturm–Liouville theory are satis-
fied for the interval(0, l). Note that this is only half the usual Fourier interval.

(b) Show that the set of functionsϕn(x) = sin(nπx/l), n = 1,2,3, . . . , satisfies an
orthogonality relation∫ l

0
ϕm(x)ϕn(x) dx = l

2
δmn, n > 0.

14.2.2 (a) Expandf (x)= x in the interval(0,2L). Sketch the series you have found (right-
hand side of Ans.) over(−2L,2L).

ANS. x = L− 2L

π

∞∑
n=1

1

n
sin

(
nπx

L

)
.

(b) Expandf (x)= x as a sine series in thehalf interval(0,L). Sketch the series you
have found (right-hand side of Ans.) over(−2L,2L).

ANS. x = 4L

π

∞∑
n=0

1

2n+ 1
sin

(
(2n+ 1)πx

L

)
.

14.2.3 In some problems it is convenient to approximate sinπx over the interval[0,1] by a
parabolaax(1− x), wherea is a constant. To get a feeling for the accuracy of this
approximation, expand 4x(1− x) in a Fourier sine series(−1≤ x ≤ 1):

f (x)=
{

4x(1− x), 0≤ x ≤ 1
4x(1+ x), −1≤ x ≤ 0

}
=

∞∑
n=1

bn sinnπx.
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FIGURE 14.4 Parabolic sine wave.

ANS. bn = 32

π3
· 1

n3
, n odd

bn = 0, n even.

(Fig. 14.4.)

14.3 APPLICATIONS OF FOURIER SERIES

Example 14.3.1 SQUARE WAVE — HIGH FREQUENCIES

One application of Fourier series, the analysis of a “square” wave (Fig. 14.5) in terms of its
Fourier components, occurs in electronic circuits designed to handle sharply rising pulses.
Suppose that our wave is defined by

f (x) = 0, −π < x < 0,

f (x) = h, 0< x < π. (14.32)

From Eqs. (14.2) and (14.3) we find

a0 = 1

π

∫ π

0
hdt = h, (14.33)

an = 1

π

∫ π

0
hcosnt dt = 0, n= 1,2,3, . . . , (14.34)

bn = 1

π

∫ π

0
hsinnt dt = h

nπ
(1− cosnπ); (14.35)

bn = 2h

nπ
, n odd, (14.36)

bn = 0, n even. (14.37)

The resulting series is

f (x)= h

2
+ 2h

π

(
sinx

1
+ sin3x

3
+ sin 5x

5
+ · · ·

)
. (14.38)
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FIGURE 14.5 Square wave.

Except for the first term, which represents an average off (x) over the interval[−π,π],
all the cosine terms have vanished. Sincef (x)−h/2 is odd, we have a Fourier sine series.
Although only the odd terms in the sine series occur, they fall only asn−1. Thisconditional
convergence is like that of the alternating harmonic series. Physically this means that our
square wave contains a lot ofhigh-frequency components. If the electronic apparatus will
not pass these components, our square-wave input will emerge more or less rounded off,
perhaps as an amorphous blob. �

Example 14.3.2 FULL-WAVE RECTIFIER

As a second example, let us ask how well the output of a full-wave rectifier approaches
pure direct current (Fig. 14.6). Our rectifier may be thought of as having passed the positive
peaks of an incoming sine wave and inverting the negative peaks. This yields

f (t) = sinωt, 0<ωt < π,

(14.39)
f (t) = −sinωt, −π < ωt < 0.

Sincef (t) defined here is even, no terms of the form sinnωt will appear. Again, from
Eqs. (14.2) and (14.3), we have

a0 = − 1

π

∫ 0

−π
sinωt d(ωt)+ 1

π

∫ π

0
sinωt d(ωt)

= 2

π

∫ π

0
sinωt d(ωt)= 4

π
, (14.40)

an = 2

π

∫ π

0
sinωt cosnωt d(ωt)

= − 2

π

2

n2− 1
, n even,

= 0, n odd. (14.41)
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FIGURE 14.6 Full-wave rectifier.

Note that[0,π] is not an orthogonality interval for both sines and cosines together and we
do not get zero for evenn. The resulting series is

f (t)= 2

π
− 4

π

∞∑
n=2,4,6,...

cosnωt

n2− 1
. (14.42)

The original frequency,ω, has been eliminated. The lowest-frequency oscillation is 2ω.
The high-frequency components fall off asn−2, showing that the full-wave rectifier does
a fairly good job of approximating direct current. Whether this good approximation is
adequate depends on the particular application. If the remaining ac components are objec-
tionable, they may be further suppressed by appropriate filter circuits. These two examples
bring out two features characteristic of Fourier expansions.7

• If f (x) has discontinuities (as in the square wave in Example 14.3.1), we can expect
thenth coefficient to be decreasing asO(1/n). Convergence is conditional only.

• If f (x) is continuous (although possibly with discontinuous derivatives, as in the full-
wave rectifier of Example 14.3.2), we can expect thenth coefficient to be decreasing
as 1/n2, that is, absolute convergence. �

Example 14.3.3 INFINITE SERIES, RIEMANN ZETA FUNCTION

As a final example, we consider the problem of expandingx2. Let

f (x)= x2, −π < x < π. (14.43)

Sincef (x) is even, allbn = 0. For thean we have

a0= 1

π

∫ π

−π
x2dx = 2π2

3
, (14.44)

7G. Raisbeek, Order of magnitude of Fourier coefficients.Am. Math. Mon. 62: 149–155 (1955).
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an = 2

π

∫ π

0
x2 cosnx dx

= 2

π
· (−1)n

2π

n2

= (−1)n
4

n2
. (14.45)

From this we obtain

x2= π2

3
+ 4

∞∑
n=1

(−1)n
cosnx

n2
. (14.46)

As it stands, Eq. (14.46) is of no particular importance. But if we setx = π ,

cosnπ = (−1)n (14.47)

and Eq. (14.46) becomes8

π2= π2

3
+ 4

∞∑
n=1

1

n2
, (14.48)

or

π2

6
=

∞∑
n=1

1

n2
≡ ζ(2), (14.49)

thus yielding the Riemann zeta function,ζ(2), in closed form (in agreement with the
Bernoulli number result of Section 5.9). From our expansion ofx2 and expansions of other
powers ofx, numerous other infinite series can be evaluated. A few are included in this list
of exercises:

Fourier series Reference

1.
∞∑
n=1

1

n
sinnx =

{
− 1

2(π + x), −π ≤ x < 0
1
2(π − x), 0≤ x < π

Exercise 14.1.5
Exercise 14.3.3

2.
∞∑
n=1

(−1)n+1 1

n
sinnx = 1

2
x, −π < x < π

Exercise 14.1.6
Exercise 14.3.2

3.
∞∑
n=0

1

2n+ 1
sin(2n+ 1)x =

{−π/4, −π < x < 0
+π/4, 0< x < π

Exercise 14.1.7
Eq. (14.38)

4.
∞∑
n=1

cosnx

n
=− ln

[
2sin

( |x|
2

)]
, −π < x < π

Eq. (14.11)
Exercise 14.1.9(b)

5.
∞∑
n=1

(−1)n
1

n
cosnx =− ln

[
2cos

(
x

2

)]
, −π < x < π Exercise 14.1.9(a)

6.
∞∑
n=0

1

2n+ 1
cos(2n+ 1)x = 1

2
ln

[
cot
|x|
2

]
, −π < x < π

8Note that the pointx = π is not a point of discontinuity.



896 Chapter 14 Fourier Series

The square-wave Fourier series from Eq. (14.38) and item (3) in the table,

g(x)=
∞∑
n=0

sin(2n+ 1)x

2n+ 1
= (−1)m

π

4
, mπ < x < (m+ 1)π, (14.50)

can be used to derive Riemann’sfunctional equation for the zeta function. Its defining
Dirichlet series can be written in various forms:

ζ(s)=
∞∑
n=1

n−s = 1+
∞∑
n=1

(2n)−s +
∞∑
n=1

(2n+ 1)−s

= 2−sζ(s)+
∞∑
n=0

(2n+ 1)−s

implying that the functionλ(s) defined in Section 5.9 (along withη(s)) satisfies

λ(s)≡
∞∑
n=0

(2n+ 1)−s = (1− 2−s
)
ζ(s). (14.51)

Heres is a complex variable. Both Dirichlet series converge forσ =�s > 1. Alternatively,
using Eq. (14.51), we have

η(s)≡
∞∑
n=1

(−1)n−1n−s =
∞∑
n=0

(2n+ 1)−s −
∞∑
n=1

(2n)−s = (1− 21−s)ζ(s), (14.52)

which converges already for�s > 0 using the Leibniz convergence criterion (see Sec-
tion 5.3).

Another approach to Dirichlet series starts from Euler’s integral for the gamma function,∫ ∞

0
ys−1e−ny dy = n−s

∫ ∞

0
e−yys−1dy = n−s�(s), (14.53)

which may be summed using the geometric series

∞∑
n=1

e−ny = e−y

1− e−y
= 1

ey − 1

to yield the integral representation for the zeta function:∫ ∞

0

ys−1

ey − 1
dy = ζ(s)�(s). (14.54)

If we combine the alternative forms of Eq. (14.53),∫ ∞

0
ys−1e−iny dy = n−s�(s)e−iπs/2,∫ ∞

0
ys−1einy dy = n−s�(s)eiπs/2,
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we obtain ∫ ∞

0
ys−1 sin(ny)dy = n−s�(s)sin

πs

2
. (14.55)

Dividing both sides of Eq. (14.55) byn and summing over all oddn yields, forσ =�(s) >
0, ∫ ∞

0
g(y)ys−1dy = (1− 2−s−1)ζ(s + 1)�(s)sin

πs

2
, (14.56)

using Eqs. (14.50) and (14.51). Here, the interchange of summation and integration is jus-
tified by uniform convergence. This relation is at the heart of the functional equation. If we
divide the integration range into intervalsmπ < y < (m+ 1)π and substitute Eq. (14.50)
into Eq. (14.56) we find∫ ∞

0
g(y)ys−1dy = π

4

∞∑
m=0

(−1)m
∫ (m+1)π

mπ

ys−1dy

= πs+1

4s

{ ∞∑
m=1

(−1)m
[
(m+ 1)s −ms

]+ 1

}

= πs+1

2s

(
1− 2s+1)ζ(−s), (14.57)

using Eq. (14.52). The series in Eq. (14.57) converges for�s < 1 to an analytic func-
tion. Comparing Eqs. (14.56) and (14.57) for the common area of convergence to analytic
functions, 0< σ =�s < 1, we get thefunctional equation

πs+1

2s

(
1− 2s+1)ζ(−s)= (1− 2−s−1)ζ(s + 1)�(s)sin

πs

2
,

which can be rewritten as

ζ(1− s)= 2(2π)−sζ(s)�(s)cos
πs

2
. (14.58)

This functional equation provides an analytic continuation ofζ(s) into the negative half-
plane ofs. For s→ 1 the pole ofζ(s) and the zero of cos(πs/2) cancel in Eq. (14.58), so
ζ(0)=−1/2 results. Since cos(πs/2)= 0 for s = 2m+1= odd integer, Eq. (14.58) gives
ζ(−2m)= 0, the trivial zeros of the zeta function form= 1,2, . . . . All other zeros must lie
in the “critical strip” 0< σ =�s < 1. They are closely related to the distribution of prime
numbers because the prime number product forζ(s) (see Section 5.9) can be converted
into a Dirichlet series over prime powers forζ ′/ζ = d ln ζ(s)/ds. From here on we sketch
ideas only, without proofs. Using the inverse Mellin transform (see Section 16.2) yields the
relation ∑

pm<x,p=prime
m=1,2,...

lnp =− 1

2πi

∫ σ+i∞

σ−i∞
ζ ′(s)
ζ(s)s

xs ds (14.59)

for σ > 1, which is a cornerstone of analytic number theory. Since zeros ofζ(s) become
simple poles ofζ ′/ζ , the asymptotic distribution of prime numbers is directly related by
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Eq. (14.59) to the zeros of the Riemann zeta function. Riemann conjectured that all zeros
lie on the lineσ = 1/2, that is, have the form 1/2+ it with realt . If so, one could shift the
line of integration to the left toσ = 1/2+ ε, the simple pole ofζ(s) at s = 1 giving rise to
the residuex, while the integral along the lineσ = 1/2+ ε is of orderO(x1/2+ε). Hence,
the remarkably small remainder in the asymptotic estimate∑

p<x

lnp ∼ x +O
(
x1/2+ε), x→∞

would result for arbitrarily smallε. This is equivalent to the estimate for the number of
primes belowx,

π(x)=
∑
p<x

1=
∫ x

2
(ln t)−1dt +O

(
x1/2+ε), x→∞.

In fact, numerical studies have shown that the first 300× 109 zeros are simple and lie
all on the critical lineσ = 1/2. For more details the reader is referred to the classic text
by E. C. Titchmarsh and D. R. Heath-Brown,The Theory of the Riemann Zeta Function,
Oxford, UK: Clarendon Press (1986); H. M. Edwards,Riemann’s Zeta Function, New
York: Academic Press (1974) and Dover (2003); J. Van de Lune, H. J. J. Te Riele, and
D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. IV.Math.
Comput. 47: 667 (1986). Popular accounts can be found in M. du Sautoy,The Music of the
Primes: Searching to Solve the Greatest Mystery in Mathematics, New York: HarperCollins
(2003); J. Derbyshire,Prime Obsession: Bernhard Riemann and the Greatest Unsolved
Problem in Mathematics. Washington, DC: Joseph Henry Press (2003); K. Sabbagh,The
Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics, New York: Farrar,
Straus and Giroux (2003).

More recently the statistics of the zerosρ of the Riemann zeta function on the critical
line played a prominent role in the development of theories of chaos (see Chapter 18 for
an introduction). Assuming that there is a quantum mechanical system whose energies
are the imaginary parts of theρ, then primes determine the primitive periodic orbits of
the associated classically chaotic system. For this case Gutzwiller’s trace formula, which
relates quantum energy levels and classical periodic orbits, plays a central role and can be
better understood using properties of the zeta function and primes. For more details see
Sections 12.6 and 12.7 by J. Keating, inThe Nature of Chaos (T. Mullin, ed.), Oxford, UK:
Clarendon Press (1993), and references therein. �

Exercises

14.3.1 Develop the Fourier series representation of

f (t)=
{

0, −π ≤ ωt ≤ 0,
sinωt, 0≤ ωt ≤ π.

This is the output of a simple half-wave rectifier. It is also an approximation of the solar
thermal effect that produces “tides” in the atmosphere.

ANS. f (t)= 1

π
+ 1

2
sinωt − 2

π

∞∑
n=2,4,6,...

cosnωt

n2− 1
.
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FIGURE 14.7 Triangular wave.

14.3.2 A sawtooth wave is given by

f (x)= x, −π < x < π.

Show that

f (x)= 2
∞∑
n=1

(−1)n+1

n
sinnx.

14.3.3 A different sawtooth wave is described by

f (x)=
{−1

2(π + x), −π ≤ x < 0

+1
2(π − x), 0< x ≤ π.

Show thatf (x)=∑∞
n=1(sinnx/n).

14.3.4 A triangular wave (Fig. 14.7) is represented by

f (x)=
{
x, 0< x < π

−x, −π < x < 0.

Representf (x) by a Fourier series.

ANS. f (x)= π

2
− 4

π

∑
n=1,3,5,...

cosnx

n2
.

14.3.5 Expand

f (x)=
{

1, x2 < x2
0

0, x2 > x2
0

in the interval[−π,π].
Note. This variable-width square wave is of some importance in electronic music.
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FIGURE 14.8 Cross section
of split tube.

14.3.6 A metal cylindrical tube of radiusa is split lengthwise into two nontouching halves. The
top half is maintained at a potential+V , the bottom half at a potential−V (Fig. 14.8).
Separate the variables in Laplace’s equation and solve for the electrostatic potential for
r ≤ a. Observe the resemblance between your solution forr = a and the Fourier series
for a square wave.

14.3.7 A metal cylinder is placed in a (previously) uniform electric field,E0, with the axis of
the cylinder perpendicular to that of the original field.

(a) Find the perturbed electrostatic potential.
(b) Find the induced surface charge on the cylinder as a function of angular position.

14.3.8 Transform the Fourier expansion of a square wave, Eq. (14.38), into a power series.
Show that the coefficients ofx1 form a divergent series. Repeat for the coefficients
of x3.
A power series cannot handle a discontinuity. These infinite coefficients are the result
of attempting to beat this basic limitation on power series.

14.3.9 (a) Show that the Fourier expansion of cosax is

cosax = 2a sinaπ

π

{
1

2a2
− cosx

a2− 12
+ cos2x

a2− 22
− · · ·

}
,

an = (−1)n
2a sinaπ

π(a2− n2)
.

(b) From the preceding result show that

aπ cotaπ = 1− 2
∞∑
p=1

ζ(2p)a2p.

This provides an alternate derivation of the relation between the Riemann zeta function
and the Bernoulli numbers, Eq. (5.152).
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14.3.10 Derive the Fourier series expansion of the Dirac delta functionδ(x) in the interval−π <

x < π .

(a) What significance can be attached to the constant term?
(b) In what region is this representation valid?
(c) With the identity

N∑
n=1

cosnx = sin(Nx/2)

sin(x/2)
cos

[(
N + 1

2

)
x

2

]
,

show that your Fourier representation ofδ(x) is consistent with Eq. (1.190).

14.3.11 Expandδ(x − t) in a Fourier series. Compare your result with the bilinear form of
Eq. (1.190).

ANS. δ(x − t) = 1

2π
+ 1

π

∞∑
n=1

(cosnx cosnt + sinnx sinnt)

= 1

2π
+ 1

π

∞∑
n=1

cosn(x − t).

14.3.12 Verify that

δ(ϕ1− ϕ2)= 1

2π

∞∑
m=−∞

eim(ϕ1−ϕ2)

is a Dirac delta function by showing that it satisfies the definition of a Dirac delta func-
tion: ∫ π

−π
f (ϕ1)

1

2π

∞∑
m=−∞

eim(ϕ1−ϕ2) dϕ1= f (ϕ2).

Hint. Representf (ϕ1) by an exponential Fourier series.
Note. The continuum analog of this expression is developed in Section 15.2. The most
important application of this expression is in the determination of Green’s functions,
Section 9.7.

14.3.13 (a) Using

f (x)= x2, −π < x < π,

show that
∞∑
n=1

(−1)n+1

n2
= π2

12
= η(2).

(b) Using the Fourier series for a triangular wave developed in Exercise 14.3.4, show
that

∞∑
n=1

1

(2n− 1)2
= π2

8
= λ(2).
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(c) Using

f (x)= x4, −π < x < π,

show that
∞∑
n=1

1

n4
= π4

90
= ζ(4),

∞∑
n=1

(−1)n+1

n4
= 7π4

720
= η(4).

(d) Using

f (x)=
{
x(π − x), 0< x < π,

x(π + x), π < x < 0,

derive

f (x)= 8

π

∞∑
n=1,3,5,...

sinnx

n3

and show that
∞∑

n=1,3,5,...

(−1)(n−1)/2 1

n3
= 1− 1

33
+ 1

53
− 1

73
+ · · · = π3

32
= β(3).

(e) Using the Fourier series for a square wave, show that
∞∑

n=1,3,5,...

(−1)(n−1)/2 1

n
= 1− 1

3
+ 1

5
− 1

7
+ · · · = π

4
= β(1).

This is Leibniz’ formula forπ , obtained by a different technique in Exercise 5.7.6.
Note. Theη(2), η(4), λ(2), β(1), andβ(3) functions are defined by the indicated
series. General definitions appear in Section 5.9.

14.3.14 (a) Find the Fourier series representation of

f (x)=
{

0, −π < x ≤ 0
x, 0≤ x < π.

(b) From the Fourier expansion show that

π2

8
= 1+ 1

32
+ 1

52
+ · · · .

14.3.15 A symmetric triangular pulse of adjustable height and width is described by

f (x)=
{
a(1− x/b), 0≤ |x| ≤ b

0, b ≤ |x| ≤ π.

(a) Show that the Fourier coefficients are

a0= ab

π
, an = 2ab

π(nb)2
(1− cosnb).

Sum the finite Fourier series throughn = 10 and throughn = 100 for x/π =
0(1/9)1. Takea = 1 andb= π/2.
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(b) Call a Fourier analysis subroutine (if available) to calculate the Fourier coefficients
of f (x), a0 througha10.

14.3.16 (a) Using a Fourier analysis subroutine, calculate the Fourier cosine coefficientsa0

througha10 of

f (x)=
[
1−

(
x

π

)2]1/2

, x ∈ [−π,π].

(b) Spot-check by calculating some of the preceding coefficients by direct numerical
quadrature.

Check values. a0= 0.785, a2= 0.284.

14.3.17 Using a Fourier analysis subroutine, calculate the Fourier coefficients througha10 and
b10 for

(a) a full-wave rectifier, Example 14.3.2,
(b) a half-wave rectifier, Exercise 14.3.1. Check your results against the analytic forms

given (Eq. (14.41) and Exercise 14.3.1).

14.4 PROPERTIES OF FOURIER SERIES

Convergence

It might be noted, first, that our Fourier series should not be expected to be uniformly con-
vergent if it represents a discontinuous function. A uniformly convergent series of continu-
ous functions(sinnx,cosnx) always yields a continuous function (compare Section 5.5).
If, however,

(a) f (x) is continuous,−π ≤ x ≤ π ,
(b) f (−π)= f (+π), and
(c) f ′(x) is sectionally continuous,

the Fourier series forf (x) will converge uniformly. These restrictions do not demand that
f (x) be periodic, but they will be satisfied by continuous, differentiable, periodic functions
(period of 2π ). For a proof of uniform convergence we refer to the literature.9 With or
without a discontinuity inf (x), the Fourier series will yield convergence in the mean,
Section 10.4.

9See, for instance, R. V. Churchill,Fourier Series and Boundary Value Problems, 5th ed., New York: McGraw-Hill (1993),
Section 38.
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Integration

Term-by-term integration of the series

f (x)= a0

2
+

∞∑
n=1

an cosnx +
∞∑
n=1

bn sinnx (14.60)

yields ∫ x

x0

f (x)dx = a0x

2

∣∣∣∣x
x0

+
∞∑
n=1

an

n
sinnx

∣∣∣x
x0
−

∞∑
n=1

bn

n
cosnx

∣∣∣x
x0
. (14.61)

Clearly, the effect of integration is to place an additional power ofn in the denominator
of each coefficient. This results in more rapid convergence than before. Consequently, a
convergent Fourier series may always be integrated term by term, the resulting series con-
verging uniformly to the integral of the original function. Indeed, term-by-term integration
may be valid even if the original series (Eq. (14.60)) is not itself convergent. The func-
tion f (x) need only be integrable. A discussion will be found in Jeffreys and Jeffreys,
Section 14.06 (see the Additional Readings).

Strictly speaking, Eq. (14.61) may not be a Fourier series; that is, ifa0 
= 0, there will be
a term1

2a0x. However, ∫ x

x0

f (x)dx − 1

2
a0x (14.62)

will still be a Fourier series.

Differentiation

The situation regarding differentiation is quite different from that of integration. Here the
word is caution. Consider the series for

f (x)= x, −π < x < π. (14.63)

We readily find (compare Exercise 14.3.2) that the Fourier series is

x = 2
∞∑
n=1

(−1)n+1 sinnx

n
, −π < x < π. (14.64)

Differentiating term by term, we obtain

1= 2
∞∑
n=1

(−1)n+1 cosnx, (14.65)

which is not convergent.Warning: Check your derivative for convergence.
For a triangular wave (Exercise 14.3.4), in which the convergence is more rapid (and

uniform),

f (x)= π

2
− 4

π

∞∑
n=1,odd

cosnx

n2
. (14.66)
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Differentiating term by term we get

f ′(x)= 4

π

∞∑
n=1,odd

sinnx

n
, (14.67)

which is the Fourier expansion of a square wave,

f ′(x)=
{

1, 0< x < π,

−1, −π < x < 0.
(14.68)

Inspection of Fig. 14.7 verifies that this is indeed the derivative of our triangular wave.

• As the inverse of integration, the operation of differentiation has placed an additional
factorn in the numerator of each term. This reduces the rate of convergence and may,
as in the first case mentioned, render the differentiated series divergent.

• In general, term-by-term differentiation is permissible under the same conditions listed
for uniform convergence.

Exercises

14.4.1 Show that integration of the Fourier expansion off (x)= x,−π < x < π , leads to

π2

12
=

∞∑
n=1

(−1)n+1

n2
= 1− 1

4
+ 1

9
− 1

16
+ · · · .

14.4.2 Parseval’s identity.

(a) Assuming that the Fourier expansion off (x) is uniformly convergent, show that

1

π

∫ π

−π
[
f (x)

]2
dx = a2

0

2
+

∞∑
n=1

(
a2
n + b2

n

)
.

This is Parseval’s identity. It is actually a special case of the completeness relation,
Eq. (10.73).

(b) Given

x2= π2

3
+ 4

∞∑
n=1

(−1)n cosnx

n2
, −π ≤ x ≤ π,

apply Parseval’s identity to obtainζ(4) in closed form.
(c) The condition of uniform convergence is not necessary. Show this by applying the

Parseval identity to the square wave

f (x) =
{−1, −π < x < 0

1, 0< x < π

= 4

π

∞∑
n=1

sin(2n− 1)x

2n− 1
.
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FIGURE 14.9 Rectangular pulse.

14.4.3 Show that integrating the Fourier expansion of the Dirac delta function (Exer-
cise 14.3.10) leads to the Fourier representation of the square wave, Eq. (14.38), with
h= 1.
Note. Integrating the constant term(1/2π) leads to a termx/2π . What are you going
to do with this?

14.4.4 Integrate the Fourier expansion of the unit step function

f (x)=
{

0, −π < x < 0
x, 0< x < π.

Show that your integrated series agrees with Exercise 14.3.14.

14.4.5 In the interval(−π,π),

δn(x)=
{
n, for |x|< 1

2n ,

0, for |x|> 1
2n

(Fig. 14.9).

(a) Expandδn(x) as a Fourier cosine series.
(b) Show that your Fourier series agrees with a Fourier expansion ofδ(x) in the limit

asn→∞.

14.4.6 Confirm the delta function nature of your Fourier series of Exercise 14.4.4 by showing
that for anyf (x) that is finite in the interval[−π,π] and continuous atx = 0,∫ π

−π
f (x)

[
Fourier expansion ofδ∞(x)

]
dx = f (0).

14.4.7 (a) Show that the Dirac delta functionδ(x − a), expanded in a Fourier sine series in
the half-interval(0,L)(0< a <L), is given by

δ(x − a)= 2

L

∞∑
n=1

sin

(
nπa

L

)
sin

(
nπx

L

)
.

Note that this series actually describes

−δ(x + a)+ δ(x − a) in the interval (−L,L).
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(b) By integrating both sides of the preceding equation from 0 tox, show that the
cosine expansion of the square wave

f (x)=
{

0, 0≤ x < a

1, a < x < L,

is

f (x)= 2

π

∞∑
n=1

1

n
sin

(
nπa

L

)
− 2

π

∞∑
n=1

1

n
sin

(
nπa

L

)
cos

(
nπx

L

)
,

for 0≤ x < L.
(c) Verify that the term

2

π

∞∑
n=1

1

n
sin

(
nπa

L

)
is 〈f (x)〉.

14.4.8 Verify the Fourier cosine expansion of the square wave, Exercise 14.4.7(b), by direct
calculation of the Fourier coefficients.

14.4.9 (a) A string is clamped at both endsx = 0 andx = L. Assuming small-amplitude
vibrations, we find that the amplitudey(x, t) satisfies the wave equation

∂2y

∂x2
= 1

v2

∂2y

∂t2
.

Herev is the wave velocity. The string is set in vibration by a sharp blow atx = a.
Hence we have

y(x,0)= 0,
∂y(x, t)

∂t
= Lv0δ(x − a) at t = 0.

The constantL is included to compensate for the dimensions (inverse length) of
δ(x − a). With δ(x − a) given by Exercise 14.4.7(a), solve the wave equation
subject to these initial conditions.

ANS. y(x, t)= 2v0L

πv

∞∑
n=1

1

n
sin

nπa

L
sin

nπx

L
sin

nπvt

L
.

(b) Show that the transverse velocity of the string∂y(x, t)/∂t is given by

∂y(x, t)

∂t
= 2v0

∞∑
n=1

sin
nπa

L
sin

nπx

L
cos

nπvt

L
.

14.4.10 A string, clamped atx = 0 and atx = 1, is vibrating freely. Its motion is described by
the wave equation

∂2u(x, t)

∂t2
= v2∂

2u(x, t)

∂x2
.
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Assume a Fourier expansion of the form

u(x, t)=
∞∑
n=1

bn(t)sin
nπx

l

and determine the coefficientsbn(t). The initial conditions are

u(x,0)= f (x) and
∂

∂t
u(x,0)= g(x).

Note. This is only half the conventional Fourier orthogonality integral interval. However,
as long as only the sines are included here, the Sturm–Liouville boundary conditions are
still satisfied and the functions are orthogonal.

ANS. bn(t) = An cos
nπvt

l
+Bn sin

nπvt

l
,

An = 2

l

∫ l

0
f (x)sin

nπx

l
dx, Bn = 2

nπv

∫ l

0
g(x)sin

nπx

l
dx.

14.4.11 (a) Let us continue the vibrating string problem, Exercise 14.4.10. The presence of a
resisting medium will damp the vibrations according to the equation

∂2u(x, t)

∂t2
= v2∂

2u(x, t)

∂x2
− k

∂u(x, t)

∂t
.

Assume a Fourier expansion

u(x, t)=
∞∑
n=1

bn(t)sin
nπx

l

and again determine the coefficientsbn(t). Take the initial and boundary condi-
tions to be the same as in Exercise 14.4.10. Assume the damping to be small.

(b) Repeat, but assume the damping to be large.

ANS. (a) bn(t) = e−kt/2{An cosωnt +Bn sinωnt},

An = 2

l

∫ l

0
f (x)sin

nπx

l
dx,

Bn = 2

ωnl

∫ l

0
g(x)sin

nπx

l
dx + k

2ωn

An,

ω2
n =

(
nπv

l

)
−
(
k

2

)2

> 0.
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(b) bn(t) = e−kt/2{An coshσnt +Bn sinhσnt},

An = 2

l

∫ l

0
f (x)sin

nπx

l
dx,

Bn = 2

σnl

∫ l

0
g(x)sin

nπx

l
dx + k

2σn
An,

σ 2
n =

(
k

2

)2

−
(
nπv

l

)2

> 0.

14.4.12 Find the charge distribution over the interior surfaces of the semicircles of Exer-
cise 14.3.6.
Note. You obtain a divergent series and this Fourier approach fails. Using conformal
mapping techniques, we may show the charge density to be proportional to cscθ . Does
cscθ have a Fourier expansion?

14.4.13 Given

ϕ1(x)=
∞∑
n=1

sinnx

n
=
{−1

2(π + x), −π ≤ x < 0,

1
2(π − x), 0< x ≤ π,

show by integrating that

ϕ2(x)≡
∞∑
n=1

cosnx

n2
=


1
4(π + x)2− π2

12, −π ≤ x ≤ 0

1
4(π − x)2− π2

12, 0≤ x ≤ π.

14.4.14 Given

ψ2s(x)=
∞∑
n=1

sinnx

n2s
, ψ2s+1(x)=

∞∑
n=1

cosnx

n2s+1
,

develop the following recurrence relations:

(a) ψ2s(x)=
∫ x

0
ψ2s−1(x) dx

(b) ψ2s+1(x)= ζ(2s + 1)−
∫ x

0
ψ2s(x) dx.

Note. The functionsψs(x) and theϕs(x) of the preceding two exercises are known as
Clausen functions. In theory they may be used to improve the rate of convergence of a
Fourier series. As with the series of Chapter 5, there is always the question of how much
analytical work we do and how much arithmetic work we demand that the computer do.
As computers become steadily more powerful, the balance progressively shifts so that
we are doing less and demanding that they do more.

14.4.15 Show that

f (x)=
∞∑
n=1

cosnx

n+ 1
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may be written as

f (x)=ψ1(x)− ϕ2(x)+
∞∑
n=1

cosnx

n2(n+ 1)
.

Note. ψ1(x) andϕ2(x) are defined in the preceding exercises.

14.5 GIBBS PHENOMENON

The Gibbs phenomenon is an overshoot, a peculiarity of the Fourier series and other eigen-
function series at a simple discontinuity. An example is seen in Fig. 14.1.

Summation of Series

In Section 14.1 the sum of the first several terms of the Fourier series for a sawtooth wave
was plotted (Fig. 14.10). Now we develop analytic methods of summing the firstr terms
of our Fourier series.

From Eq. (14.19),

an cosnx + bn sinnx = 1

π

∫ π

−π
f (t)cosn(t − x)dt. (14.69)

Then ther th partial sum becomes10

sr (x) = a0

2
+

r∑
n=1

(an cosnx + bn sinnx)

= � 1

π

∫ π

−π
f (t)

[
1

2
+

r∑
n=1

e−i(t−x)n
]
dt. (14.70)

Summing the finite series of exponentials (geometric progression),11 we obtain

sr (x)= 1

2π

∫ π

−π
f (t)

sin[(r + 1
2)(t − x)]

sin 1
2(t − x)

dt. (14.71)

This is convergent at all points, includingt = x. The factor

sin[(r + 1
2)(t − x)]

2π sin 1
2(t − x)

is the Dirichlet kernel mentioned in Section 1.15 as a Dirac delta distribution.

10It is of some interest to note that this series also occurs in the analysis of the diffraction grating (r slits).
11Compare Exercise 6.1.7 with initial valuen= 1.
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Square Wave

For convenience of numerical calculation we consider the behavior of the Fourier series
that represents the periodic square wave

f (x)=
{

h
2, 0< x < π,

−h
2 , −π < x < 0.

(14.72)

This is essentially the square wave used in Section 14.3, and we immediately see that the
solution is

f (x)= 2h

π

(
sinx

1
+ sin 3x

3
+ sin5x

5
+ · · ·

)
. (14.73)

Applying Eq. (14.71) to our square wave (Eq. (14.72)), we have the sum of the firstr terms
(plus 1

2a0, which is zero here):

sr (x) = h

4π

∫ π

0

sin[(r + 1
2)(t − x)]

sin 1
2(t − x)

dt − h

4π

∫ 0

−π
sin[(r + 1

2)(t − x)]
sin 1

2(t − x)
dt

= h

4π

∫ π

0

sin[(r + 1
2)(t − x)]

sin 1
2(t − x)

dt − h

4π

∫ π

0

sin[(r + 1
2)(t + x)]

sin 1
2(t + x)

dt. (14.74)

This last result follows from the transformation

&t − t

in the second integral. Replacingt − x in the first term withs andt + x in the second term
with s, we obtain

sr (x)= h

4π

∫ π−x

−x
sin(r + 1

2)s

sin 1
2s

ds − h

4π

∫ π+x

x

sin(r + 1
2)s

sin 1
2s

ds. (14.75)

The intervals of integration are shown in Fig. 14.10(top). Because the integrands have
the same mathematical form, the integrals fromx to π − x cancel, leaving the integral
ranges shown in the bottom portion of Fig. 14.10:

sr (x)= h

4π

∫ x

−x
sin(r + 1

2)s

sin 1
2s

ds − h

4π

∫ π+x

π−x
sin(r + 1

2)s

sin 1
2s

ds. (14.76)

Consider the partial sum in the vicinity of the discontinuity atx = 0. Asx→ 0, the sec-
ond integral becomes negligible, and we associate the first integral with the discontinuity
atx = 0. Usingr + 1

2 = p andps = ξ we obtain

sr (x)= h

2π

∫ px

0

sinξ

sin(ξ/2p)

dξ

p
. (14.77)
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FIGURE 14.10 Intervals of integration — Eq. (14.75).

Calculation of Overshoot

Our partial sumsr (x) starts at zero whenx = 0 (in agreement with Eq. (14.22)) and in-
creases untilξ = ps = π , at which point the numerator, sinξ , goes negative. For larger ,
and therefore for largep, our denominator remains positive. We get the maximum value of
the partial sum by taking the upper limitpx = π . Right here we see thatx, the location of
the overshoot maximum, is inversely proportional to the number of terms taken:

x = π

p
≈ π

r
.

The maximum value of the partial sum is then

sr (x)max= h

2
· 1

π

∫ π

0

sinξ dξ

sin(ξ/2p)p
≈ h

2
· 2

π

∫ π

0

sinξ

ξ
dξ. (14.78)

In terms of the sine integral, si(x) of Section 8.5,∫ π

0

sinξ

ξ
dξ = π

2
+ si(π). (14.79)

The integral is clearly greater thanπ/2, since it can be written as(∫ ∞

0
−
∫ 3π

π

−
∫ 5π

3π
−· · ·

)
sinξ

ξ
dξ =

∫ π

0

sinξ

ξ
dξ. (14.80)

We saw in Example 7.1.4 that the integral from 0 to∞ is π/2. From this integral we are
subtracting a series of negative terms. A Gaussian quadrature or a power-series expansion
and term-by-term integration yields

2

π

∫ π

0

sinξ

ξ
dξ = 1.1789797. . . , (14.81)

which means that the Fourier series tends to overshoot the positive corner by some 18 per-
cent and to undershoot the negative corner by the same amount, as suggested in Fig. 14.11.
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FIGURE 14.11 Square wave — Gibbs phenomenon.

The inclusion of more terms (increasingr) does nothing to remove this overshoot but
merely moves it closer to the point of discontinuity. The overshoot is the Gibbs phenom-
enon, and because of it the Fourier series representation may be highly unreliable for pre-
cise numerical work, especially in the vicinity of a discontinuity.

The Gibbs phenomenon is not limited to the Fourier series. It occurs with other eigen-
function expansions. Exercise 12.3.27 is an example of the Gibbs phenomenon for a Legen-
dre series. For more details, see W. J. Thompson, Fourier series and the Gibbs phenomenon,
Am. J. Phys. 60: 425 (1992).

Exercises

14.5.1 With the partial sum summation techniques of this section, show that at a discontinuity
in f (x) the Fourier series forf (x) takes on the arithmetic mean of the right- and left-
hand limits:

f (x0)= 1

2

[
f (x0+ 0)+ f (x0− 0)

]
.

In evaluating limr→∞ sr (x0) you may find it convenient to identify part of the integrand
as a Dirac delta function.

14.5.2 Determine the partial sum,sn, of the series in Eq. (14.73) by using

(a)
sinmx

m
=
∫ x

0
cosmy dy, (b)

n∑
p=1

cos(2p− 1)y = sin 2ny

2 siny
.

Do you agree with the result given in Eq. (14.79)?

14.5.3 Evaluate the finite step function series, Eq. (14.73),h = 2, using 100, 200, 300, 400,
and 500 terms forx = 0.0000(0.0005)0.0200. Sketch your results (five curves) or, if a
plotting routine is available, plot your results.
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14.5.4 (a) Calculate the value of the Gibbs phenomenon integral

I = 2

π

∫ π

0

sint

t
dt

by numerical quadrature accurate to 12 significant figures.
(b) Check your result by (1) expanding the integrand as a series, (2) integrating term

by term, and (3) evaluating the integrated series. This calls for double precision
calculation.

ANS. I = 1.178979744472.

14.6 DISCRETE FOURIER TRANSFORM

For many physicists the Fourier transform is automatically the continuous Fourier trans-
form of Chapter 15. The use of digital computers, however, necessarily replaces a contin-
uum of values by a discrete set; an integration is replaced by a summation. The continuous
Fourier transform becomes the discrete Fourier transform and an appropriate topic for this
chapter.

Orthogonality over Discrete Points

The orthogonality of the trigonometric functions and the imaginary exponentials is ex-
pressed in Eqs. (14.15) to (14.18). This is the usual orthogonality for functions:integration
of a product of functions over the orthogonality interval. The sines, cosines, and imaginary
exponentials have the remarkable property that they are also orthogonal over a series of
discrete, equally spaced points over the period (the orthogonality interval).

Consider a set of 2N time values

tk = 0,
T

2N
,

2T

2N
, . . . ,

(2N − 1)T

2N
(14.82)

for the time interval(0, T ). Then

tk = kT

2N
, k = 0,1,2, . . . ,2N − 1. (14.83)

We shall prove that the exponential functions exp(2πiptk/T ) and exp(2πiqtk/T ) satisfy
an orthogonality relation over the discrete pointstk :

2N−1∑
k=0

[
exp

(
2πiptk

T

)]∗
exp

(
2πiqtk

T

)
= 2Nδp,q±2nN . (14.84)

Heren,p, andq are all integers.
Replacingq − p by s, we find that the left-hand side of Eq. (14.84) becomes

2N−1∑
k=0

exp

(
2πistk

T

)
=

2N−1∑
k=0

exp

(
2πisk

2N

)
.
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This right-hand side is obtained by using Eq. (14.83) to replaceT . This is a finite geometric
series with an initial term 1 and a ratio

r = exp

(
πis

N

)
.

From Eq. (5.3),

2N−1∑
k=0

exp

(
2πistk

T

)
=


1− r2N

1− r
= 0, r 
= 1

2N, r = 1,
(14.85)

establishing Eq. (14.84), our basic orthogonality relation. The upper value, zero, is a con-
sequence of

r2N = exp(2πis)= 1

for s an integer. The lower value, 2N , for r = 1 corresponds top = q. The orthogonality
of the corresponding trigonometric functions is left as Exercise 14.6.1.

Discrete Fourier Transform

To simplify the notation and to make more direct contact with physics, we introduce the
(reciprocal)ω-space, or angular frequency, with

ωp = 2πp

T
, p = 0,1,2, . . . ,2N − 1. (14.86)

We makep range over the same integers ask. The exponential exp(±2πiptk/T ) of
Eq. (14.84) becomes exp(±iωptk). The choice of whether to use the+ or the− sign is
a matter of convenience or convention. In quantum mechanics the negative sign is selected
when expressing the time dependence.

Consider a function of time defined (measured) at the discrete time valuestk . Then we
construct

F(ωp)= 1

2N

2N−1∑
k=0

f (tk)e
iωptk . (14.87)

Employing the orthogonality relation, we obtain

1

2N

2N−1∑
p=0

(
eiωptm

)∗
eiωptk = δmk, (14.88)

and then replacing the subscriptm by k, we find that the amplitudesf (tk) become

f (tk)=
2N−1∑
p=0

F(ωp)e
−iωptk . (14.89)

The time functionf (tk), k = 0,1,2, . . . ,2N − 1, and the frequency functionF(ωp),p =
0,1,2, . . . ,2N − 1, are discrete Fourier transforms of each other.12 Compare Eqs. (14.87)

12The two transform equations may be symmetrized with a resulting(2N)−1/2 in each equation if desired.
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and (14.89) with the corresponding continuous Fourier transforms, Eqs. (15.22) and
(15.23) of Chapter 15.

Limitations

Taken as a pair of mathematical relations, the discrete Fourier transforms are exact. We
can say that the 2N 2N -component vectors exp(−iωptk), k = 0,1,2, . . . ,2N − 1, form
a complete set13 spanning thetk-space. Thenf (tk) in Eq. (14.89) is simply a particular
linear combination of these vectors. Alternatively, we may take the 2N measured compo-
nentsf (tk) as defining a 2N -component vector intk-space. Then, Eq. (14.87) yields the
2N -component vectorF(ωp) in the reciprocal ωp-space. Equations (14.87) and (14.89)
become matrix equations, with exp(iωptk)/(2N)1/2 the elements of a unitary matrix.

The limitations of the discrete Fourier transform arise when we apply Eqs. (14.87) and
(14.89) to physical systems and attempt physical interpretation and the limitF(ωp)→
F(ω). Example 14.6.1 illustrates the problems that can occur. The most important precau-
tion to be taken to avoid trouble is to takeN sufficiently large so that there is no angular
frequency component of a higher angular frequency thanωN = 2πN/T . For details on
errors and limitations in the use of the discrete Fourier transform we refer to Hamming in
the Additional Readings.

Example 14.6.1 DISCRETE FOURIER TRANSFORM — ALIASING

Consider the simple case ofT = 2π,N = 2, andf (tk)= costk . From

tk = kT

4
= kπ

2
, k = 0,1,2,3, (14.90)

f (tk)= cos(tk) is represented by the four-component vector

f (tk)= (1,0,−1,0). (14.91)

The frequencies,ωp, are given by Eq. (14.86):

ωp = 2πp

T
= p. (14.92)

Clearly, costk implies ap = 1 component and no other frequency components.
The transformation matrix

exp(iωptk)

2N
= exp(ipkπ/2)

2N

becomes

1

4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 . (14.93)

13By Eq. (14.85) these vectors are orthogonal and are therefore linearly independent.
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Note that the 2N × 2N matrix has only 2N independent components. It is therepetition
of values that makes the fast Fourier transform technique possible.

Operating on column vectorf (tk), we find that this matrix yields a column vector

F(ωp)=
(
0, 1

2,0,
1
2

)
. (14.94)

Apparently, there is ap = 3 frequency component present. We reconstructf (tk) by
Eq. (14.89), obtaining

f (tk)= 1
2e
−itk + 1

2e
−3itk . (14.95)

Taking real parts, we can rewrite the equation as

�f (tk)= 1
2 costk + 1

2 cos3tk. (14.96)

Obviously, this result, Eq. (14.96), is not identical with our originalf (tk)costk . But
costk = 1

2 costk + 1
2 cos3tk at tk = 0,π/2,π ; and 3π/2. The costk and cos3tk mimic

each other because of the limited number of data points (and the particular choice of data
points). This error of one frequency mimicking another is known asaliasing. The problem
can be minimized by taking more data points. �

Fast Fourier Transform

The fast Fourier transform is a particular way of factoring and rearranging the terms in
the sums of the discrete Fourier transform. Brought to the attention of the scientific com-
munity by Cooley and Tukey,14 its importance lies in the drastic reduction in the number
of numerical operations required. Because of the tremendous increase in speed achieved
(and reduction in cost), the fast Fourier transform has been hailed as one of the few really
significant advances in numerical analysis in the past few decades.

ForN time values (measurements), a direct calculation of a discrete Fourier transform
would mean aboutN2 multiplications. ForN a power of 2, the fast Fourier transform tech-
nique of Cooley and Tukey cuts the number of multiplications required to(N/2) log2N .
If N = 1024(= 210), the fast Fourier transform achieves a computational reduction by a
factor of over 200. This is why the fast Fourier transform is called fast and why it has rev-
olutionized the digital processing of waveforms. Details on the internal operation will be
found in the paper by Cooley and Tukey and in the paper by Bergland.15

14J. W. Cooley and J. W. Tukey,Math. Comput. 19: 297 (1965).
15G. D. Bergland, A guided tour of the fast Fourier transform,IEEE Spectrum, July, pp. 41–52 (1969); see also, W. H. Press,
B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes, 2nd ed., Cambridge, UK: Cambridge University Press
(1996), Section 12.3.
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Exercises

14.6.1 Derive the trigonometric forms of discrete orthogonality corresponding to Eq. (14.84):

2N−1∑
k=0

cos

(
2πptk
T

)
sin

(
2πqtk
T

)
= 0

2N−1∑
k=0

cos

(
2πptk
T

)
cos

(
2πqtk
T

)
=


0, p 
= q

N, p = q 
= 0,N
2N, p = q = 0,N

2N−1∑
k=0

sin

(
2πptk
T

)
sin

(
2πqtk
T

)
=


0, p 
= q

N, p = q 
= 0,N
0, p = q = 0,N.

Hint. Trigonometric identities such as

sinAcosB = 1
2

[
sin(A+B)+ sin(A−B)

]
are useful.

14.6.2 Equation (14.84) exhibits orthogonality summing over time points. Show that we have
the same orthogonality summing over frequency points

1

2N

2N−1∑
p=0

(
eiωptm

)∗
eiωptk = δmk.

14.6.3 Show in detail how to go from

F(ωp)= 1

2N

2N−1∑
k=0

f (tk)e
iωptk

to

f (tk)=
2N−1∑
p=0

F(ωp)e
−iωptk .

14.6.4 The functionsf (tk) andF(ωp) are discrete Fourier transforms of each other. Derive the
following symmetry relations:

(a) If f (tk) is real,F(ωp) is Hermitian symmetric; that is,

F(ωp)= F ∗
(

4πN

T
−ωp

)
.

(b) If f (tk) is pure imaginary,

F(ωp)=−F ∗
(

4πN

T
−ωp

)
.

Note. The symmetry of part (a) is an illustration of aliasing. The frequency 4πN/T −
ωp masquerades as the frequencyωp.
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14.6.5 GivenN = 2, T = 2π , andf (tk)= sintk ,

(a) findF(ωp),p = 0,1,2,3, and
(b) reconstructf (tk) from F(ωp) and exhibit the aliasing ofω1= 1 andω3= 3.

ANS. (a)F(ωp)= (0, i/2,0,−i/2)
(b) f (tk)= 1

2 sintk − 1
2 sin3tk.

14.6.6 Show that the Chebyshev polynomialsTm(x) satisfy a discrete orthogonality relation

1

2
Tm(−1)Tn(−1)+

N−1∑
s=1

Tm(xs)Tn(xs)+ 1

2
Tm(1)Tn(1)=


0, m 
= n

N/2, m= n 
= 0
N, m= n= 0.

Here,xs = cosθs , where the(N + 1)θs are equally spaced along theθ -axis:

θs = sπ

N
, s = 0,1,2, . . . ,N.

14.7 FOURIER EXPANSIONS OF MATHIEU FUNCTIONS

As a realistic application of Fourier series we now derive first integral equations satisfied
by Mathieu functions, from which subsequently their Fourier series are obtained.

Integral Equations and Fourier Series for Mathieu
Functions

Our first goal is to establish Whittaker’s integral equations that Mathieu functions satisfy,
from which we then obtain their Fourier series representations.

We start from an integral representation

V (r)=
∫ π

−π
f (z+ ix cosθ + iy sinθ, θ) dθ (14.97)

of a solutionV of Laplace’s equation with a twice differentiable functionf (v, θ). Apply-
ing ∇2 to V we verify that it obeys Laplace’s PDE. Separating variables in Laplace’s PDE
suggests choosing the product formf (v, θ)= ekvφ(θ). Substituting the elliptical variables
of Eq. (13.163) we rewriteV as

R(ξ)�(η)ekz =
∫ π

−π
φ(θ)ek(z+ic coshξ cosη cosθ+ic sinhξ sinη sinθ) dθ (14.98)

with normalizationR(0)= 1. Sinceξ andη are independent variables we may setξ = 0,
which leads to Whittaker’s integral representation

�(η)=
∫ π

−π
φ(θ)exp(ick cosθ cosη)dθ, (14.99)
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whereck = 2
√
q from Eq. (13.180). Clearly,� is even in the variableη and periodic with

periodπ. In order to prove thatφ ∼ � we check howφ(θ) is constrained when�(η) is
taken to obey the angular Mathieu ODE

d2�

dη2
+ (λ− 2q cos2η)�(η)

=
∫ π

−π
φ(θ)exp(ick cosθ cosη)

· [λ− 2q cos2η+ (ick cosθ sinη)2− ick cosθ cosη
]
dθ. (14.100)

Here we integrate the last term on the right-hand side by parts, obtaining

d2�

dη2
+ (λ− 2q cos2η)�(η)

= φ(θ)(−ick cosη sinθ)exp(ick cosθ cosη)
∣∣∣π
θ=−π

+
∫ π

−π
φ(θ)exp(ick cosθ cosη)[λ− 2q cos2η− ick cosθ cosη]dθ

+
∫ π

−π
[−φ′(θ)(−ick cosη sinθ)+ φ(θ)ick cosη cosθ

]
exp(ick cosθ cosη)dθ

=
∫ π

−π
expick cosθ cosη

[
φ(θ)(λ− 2q cos2η)+ φ′(θ)ick cosη sinθ

]
dθ, (14.101)

where the integrated term vanishes ifφ(−π) = φ(π), which we assume to be the case.
Integrating once more by parts yields

d2�

dη2
+ (λ− 2q cos2η)�(η)=−φ′(θ)expick cosθ cosη

∣∣∣π
θ=−π

+
∫ π

−π
exp(ick cosθ cosη)

[
φ(θ)(λ− 2q cos2η)+ φ′′(θ)

]
dθ, (14.102)

where the integrated term vanishes ifφ′ is periodic with periodπ , which we assume is
the case. Therefore, ifφ(θ) obeys the angular Mathieu ODE, so does the integral�(η), in
Eq. (14.99). As a consequence,φ(θ)∼�(θ), where the constant may be a function of the
parameterq.

Thus, we have the main result that a solution�(η) of Mathieu’s ODE that is even in the
variableη satisfies the integral equation

�(η)=�n(q)

∫ π

−π
e2i
√
q cosθ cosη�(θ) dθ. (14.103)

When these Mathieu functions are expanded in a Fourier cosine series and normalized so
that the leading term is cosnη, they are denoted by cen(η, q).
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Similarly, solutions of Mathieu’s ODE that are odd inη with leading term sinnη in a
Fourier series are denoted by sen(η, q), and they can similarly be shown to obey the integral
equation

sen(η, q)= sn(q)

∫ π

−π
sin
(
2i
√
q sinη sinθ

)
sen(θ, q) dθ. (14.104)

We now come to theFourier expansion for the angular Mathieu functions and start
with

se1(η, q)= sinη+
∞∑
ν=1

βν(q)sin(2ν + 1)η, βν(q)=
∞∑
µ=ν

β(ν)
µ qµ (14.105)

as a paradigm for the systematic construction of Mathieu functions of odd parity. Notice
the key point that the coefficientβν of sin(2ν + 1)η in the Fourier series depends on the
parameterq and is expanded in a power series. Moreover, se1 is normalized so that the
coefficient of the leading term, sinη, is unity, that is, independent ofq. This feature will
become important when se1 is substituted into the angular Mathieu ODE to determine the
eigenvalueλ(q).

The fact that theβν power series inq starts with exponentν can be proved by a simpler
but similar series for se1(η, q):

se1(η, q)=
∞∑
ν=0

γν(q)sin2ν+1η, γν(q)=
∞∑
µ=0

γ (ν)
µ qµ, (14.106)

which is useful for this demonstration alone. However, since we need to expand

sin2ν+1η=
ν∑

m=0

Bνm sin(2m+ 1)η (14.107)

with Fourier coefficients

Bνm = 1

π

∫ π

−π
sin2ν+1η sin(2m+ 1)η dη= (−1)m

22ν

(
2ν + 1

ν −m

)
(14.108)

that we can look up in a table of integrals (see Gradshteyn and Ryzhik in the Additional
Readings of Chapter 13), this proof gives us an opportunity to introduce theBνm that are
nonzero only ifm≤ ν and are important ingredients of the recursion relations for the lead-
ing terms of se1 (and all other Mathieu functions of odd parity). Substituting Eq. (14.107)
into Eq. (14.106) we obtain

se1(η, q)=
∞∑
ν=0

ν∑
m=0

Bνmγν(q)sin(2m+ 1)η. (14.109)

Comparing this expression for se1 with Eq. (14.105) we find

βν(q)=
∞∑

m=ν
Bmνγm(q). (14.110)

Here, the sum starts withm= ν becauseBmν = 0 for m< ν.
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Next we substitute Eq. (14.106) into the integral Eq. (14.104) forn= 1, where we insert
the power series for sin(2i

√
q sinη sinθ). This yields

se1(η, q)

2πs1(q)
= 1

2π

∫ π

−π
sin(2i

√
q sinη sinθ)se1(θ, q) dθ

= 1

2πs1(q)

∞∑
m=0

γm(q)sin2m+1η

= i
√
q

∞∑
m,ν=0

qmγν(q)sin2m+1η
22m+1

(2m+ 1)!
1

2π

∫ π

−π
sin2ν+2m+2 θ dθ,

(14.111)

from which we obtain the recursion relations

γm(q)= 22m+1

(2m+ 1)!q
mi
√
qs1(q)

∞∑
ν=0

γν(q)

∫ π

−π
sin2ν+2m+2 θ dθ, (14.112)

upon comparing coefficients of sin2m+1η. This shows that the power series forγm(q) starts
with qm. Using Eq. (14.110) proves that the power series forβm(q) also starts withqm,
and this confirms Eq. (14.105). The integral in Eq. (14.112) can be evaluated analytically
and expressed via the beta function (Chapter 8) in terms of ratios of factorials, but we do
not need this formula here.

Our next goal is to establish a recursion relation for the leading termβ
(ν)
ν of se1, in

Eq. (14.105). We substitute Eq. (14.105) into the integral Eq. (14.104) forn= 1, where we
insert the power series for sin(2i

√
q sinη sinθ) again, along with the expansion

1

2πs1(q)
= i

∞∑
m=0

αmq
m+1/2. (14.113)

Here, the extra factor,i
√
q, cancels the corresponding factor from the sine in the integral

equation. This yields

∞∑
ν=0

β(λ)
µ qµ+ν sin2ν+1η

22ν+1

(2ν + 1)!
1

2π

∫ π

−π
sin2ν+2λ+2 θ dθ

=
∞∑

m,µ=0

αmq
m+µβ(ν)

µ sin(2ν + 1)η. (14.114)

Here, we replace sin2ν+1η by sin(2m+ 1)η using Eq. (14.107). Upon comparing the co-
efficients ofqN sin(2ν + 1)η for N = µ+ ν we obtain the recursion relation

N∑
ν=n

N−ν∑
λ=0

β
(λ)
N−ν

22ν

(2ν + 1)!BνnBνλ =
N−n∑
m=0

αmβ
(n)
N−m. (14.115)
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Now we substitute Eq. (14.108) to obtain themain recursion relation for the leading
coefficientsβ(ν)

ν of se1:

N∑
ν=n

N−ν∑
λ=0

β
(λ)
N−ν

22ν(2ν + 1)!
(

2ν + 1

ν − n

)(
2ν + 1

ν − λ

)
=

N−n∑
m=0

αmβ
(n)
N−m. (14.116)

Example 14.7.1 LEADING COEFFICIENTS OF se1

We evaluate Eq. (14.116) starting withN = 0, n= 0. For this case we findβ(0)
0 = α0β

(0)
0 ,

or α0 = 1 because the coefficient of sinη in se1, β
(0)
0 = 1, by normalization. ForN = 1,

n= 0 Eq. (14.116) yields

α0β
(0)
1 + α1β

(0)
0 = β

(0)
1 + 1

4 · 3!
(

3

1

)[
β
(0)
0

(
3

1

)
+ β

(1)
0

(
3

0

)]
, (14.117)

whereβ(1)
0 = 0 andβ(0)

1 drops out, a general feature. Of course,β
(0)
1 = 0 because sinη in

se1 has coefficient unity. This yieldsα1= 3/8.
The caseN = 1, n= 1 yields

−1

4 · 3!
(

3

0

)
β
(0)
0

(
3

1

)
= α0β

(1)
1 , (14.118)

or β(1)
1 =−1/8. The leading term is obtained from the general casen=N ,

(−1)N

22N(2N + 1)!
(

2N + 1

0

)
β
(0)
0

(
2N + 1

N

)
= α0β

(N)
N , (14.119)

as

β
(N)
N = (−1)N

22N(2N + 1)!
(

2N + 1

N

)
, (14.120)

which was first derived by Mathieu. ForN = 1 this formula reproduces our earlier result,
β
(1)
1 =−1/8. �

In order to determine the first nonleading termβ(N)
N+1 of se1, Eq. (14.105), and the

eigenvalueλ1(q) we substitute se1 into the angular Mathieu ODE, Eq. (13.181), using
the trigonometric identities

2 cos2η sin(2ν + 1)η= sin(2ν + 3)η+ sin(2ν − 1)η

and

d2 sin(2ν + 1)η

dη2
=−(2ν + 1)2 sin(2ν + 1)η.
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This yields

0= d2se1

dη2
+ (λ1− 2q cos2η)se1= q(sinη− sin 3η)+ λ1 sinη− sinη

+
∞∑
ν=1

[
λ1− (2ν + 1)2

][ (−1)νqν

22νν!(ν + 1)! + β
(ν)
ν+1q

ν+1+ · · ·
]

sin(2ν + 1)η

− q

∞∑
ν=1

[
(−q)ν

22νν!(ν + 1)! + β
(ν)
ν+1q

ν+1+ · · ·
](

sin(2ν + 3)η+ sin(2ν − 1)η
)

=
(
λ1− 1+ q − q

[
− q

222! + β
(1)
2 q2+ · · ·

])
sinη

+ sin 3η

[
−q − q

(
q2

242!3! + β
(2)
3 q3

)
+ (λ1− 32)(− q

222! + β
(1)
2 q2

)]
+ sin(2ν + 1)η

[
λ1− (2ν + 1)2

]( (−q)ν
22νν!(ν + 1)! + β

(ν)
ν+1q

ν+1
)

− q sin(2ν + 1)η

(
(−q)ν+1

22(ν+1)(ν + 1)!(ν + 2)! + β
(ν+1)
ν+2 qν+2

)
− q sin(2ν + 1)η

(
(−q)ν−1

22(ν−1)(ν − 1)!ν! + β(ν−1)
ν qν

)
+ · · · . (14.121)

In this series the coefficient of each power ofq within different sine terms must vanish;
that of sinη being zero yields the eigenvalue

λ1(q)= 1− q − 1

8
q2+ β

(1)
2 q3+ · · · , (14.122)

with β
(1)
2 = 1/26 coming from the vanishing coefficient ofq2 in sin 3η. Setting the coeffi-

cient of(−q)ν in sin(2ν + 1)η equal to zero yields the identity[
1− (2ν + 1)2

] 1

22νν!(ν + 1)! +
1

22(ν−1)(ν − 1)!ν! = 0, (14.123)

which verifies the correct determination of the leading termsβ
(ν)
ν in Eq. (14.120). The

vanishing coefficient ofqν+1 in sin(2ν + 1)η yields

(−1)ν+1

22νν!(ν + 1)! +
[
1− (2ν + 1)2

]
β
(ν)
ν+1− β(ν−1)

ν = 0, (14.124)

which implies the mainrecursion relation for nonleading coefficients,

4ν(ν + 1)β(ν)
ν+1=−β(ν−1)

ν + (−1)ν+1

22νν!(ν + 1)! , (14.125)

for the first nonleading terms. We verify that

β
(ν)
ν+1=

(−1)ν+1ν

22ν+2(ν + 1)!2 (14.126)
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satisfies this recursion relation. Higher nonleading terms may be obtained by setting to
zero the coefficient ofqν+2, etc. Altogether we have derived the Fourier series for

se1(η, q)= sinη+
∞∑
ν=1

[
(−q)ν

22νν!(ν + 1)! +
(−q)ν+1ν

22ν+2(ν + 1)!2 + · · ·
]
· sin(2ν + 1)η.

(14.127)

A similar treatment yields the Fourier series for se2n+1(η, q) and se2n(η, q). An invariance
of Mathieu’s ODE leads to the symmetry relation

ce2n+1(η, q)= (−1)nse2n+1(η+ π/2,−q), (14.128)

which allows us to determine the ce2n+1 of period 2π from se2n+1. Similarly,
ce2n(η+ π/2,−q)= se2n(η, q) relates these Mathieu functions of periodπ to each other.

Finally, we briefly outline a derivation of the Fourier series for

ce0(η, q)= 1+
∞∑
n=1

βn(q)cos2nη, βn(q)=
∞∑

m=n
β(n)
m qm, (14.129)

as a paradigm for the Mathieu functions of periodπ. Note that this normalization agrees
with Whittaker and Watson and with Hochstadt in the Additional Readings of Chapter 13,
whereas in AMS-55 (for the full reference see footnote 4 in Chapter 5) ce0 differs by a
factor of 1/

√
2. The symmetry relation from the Mathieu ODE,

ce0

(
π

2
− η,−q

)
= ce0(η, q), (14.130)

implies

βn(−q)= (−1)nβn(q); (14.131)

that is,β2n contains only even powers ofq andβ2n+1 only odd powers.
The fact that the power series forβn(q) in Eq. (14.129) starts withqn can be proved by

the similar expansion

ce0(η, q)=
∞∑
n=0

γn(q)cos2n η, γn(q)=
∞∑
µ=0

γ (n)
µ qµ, (14.132)

as for se1 in Eqs. (14.105) to (14.112). Substituting Eq. (14.132) into the integral equation

ce0(η, q)= c0(q)

∫ π

−π
e2i
√
q cosθ cosηce(θ, q) dθ, (14.133)

inserting the power series for the exponential function (odd powers cos2m+1 θ drop out)
and equating the coefficients of cos2m η yields

γm(q)= c1(q)(−q)m 22m

(2m)!
∞∑
µ=0

γµ(q)

∫ π

−π
cos2m+2µ θ dθ. (14.134)
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This recursion relation shows that the power series forγm(q) starts withqm. We expand

cos2n η=
n∑

m=0

Anm cos2mη (14.135)

with Fourier coefficients

Anm = 2

π

∫ π/2

−π/2
cos2n η cos2mηdη= 1

22n−1

(
2n

n−m

)
, (14.136)

which are nonzero only whenm ≤ n. Using this result to replace the cosine powers in
Eq. (14.132) by cos2mη we obtain

βn(q)=
∞∑

m=n
Amnγm(q), (14.137)

confirming Eq. (14.129).
Proceeding as for se1 in Eqs. (14.113) to (14.120) we substitute Eq. (14.129) into the

integral Eq. (14.133) and obtain
∞∑

m,µ,ν,λ=0

(−1)m
22m

(2m)!q
µ+m

m∑
ν=0

Amν cos(2νη)Amλ

=
∞∑

m,µ,ν=0

αmβ
(ν)
µ qm+µ cos(2νη), (14.138)

with

1

2πc1(q)
=

∞∑
m=0

αmq
m. (14.139)

Upon comparing the coefficient ofqN cos(2νη) with N =m+µ, we extract therecursion
relation for leading coefficients β(n)

n of ce0

N∑
m=ν

(−1)m
22m

(2m)!Amν

m∑
λ=0

β
(λ)
N−mAmλ =

N∑
m=0

αmβ
(ν)
N−m, (14.140)

with Anm in Eq. (14.136).

Example 14.7.2 LEADING COEFFICIENTS FOR ce0

The caseN = 0, ν = 0 of Eq. (14.140) yields

A2
00β

(0)
0 = α0β

(0)
0 , (14.141)

with A00= 1 andβ(0)
0 = 1 from normalizing the leading term of ce0 to unity so thatα0= 1

results.
The caseN = 1, ν = 0 yields

A00β
(0)
1 A00− 2A10

[
β
(0)
0 A10+ β

(1)
0 A11

]= α0β
(0)
1 + α1β

(0)
0 , (14.142)
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with β
(1)
0 = 0 by Eq. (14.129). This simplifies to

β
(0)
1 − 1

2
β
(0)
0 = α1β

(0)
0 + β

(0)
1 , (14.143)

whereβ(0)
1 drops out. We know already thatβ(0)

1 = 0 from the leading term unity of ce0.
Therefore,α1=−1/2.

For the caseN = 1, ν = 1 we obtain

−2A11β
(0)
0 A10= α0β

(1)
1 , (14.144)

with A10= 1/2= A11, from whichβ
(1)
1 = −1/2 follows. For the caseN = 2, ν = 2 we

find

24

4!23
β
(0)
0 A20= α0β

(2)
2 , (14.145)

with A20= 3/8, from whichβ(2)
2 = 2−4 follows. The general caseN,ν =N yields

(−1)N
22N

(2N)!ANNβ
(0)
0 AN0= α0β

(N)
N , (14.146)

with ANN = 2−2N+1,AN0= 1
22N−1

(2N
N

)
, from which the leading term

β
(N)
N = (−1)N

22N−1(2N)!
(

2N

N

)
= (−1)N

22N−1N !2 (14.147)

follows. �
The nonleading termsβ(N)

N+1 of ce0 are best determined from the angular Mathieu ODE
by substitution of Eq. (14.129), in analogy with se1, Eqs. (14.121) to (14.127). Using the
identities

2 cos(2nη)cos2η = cos(2n+ 2)η+ cos(2n− 2)η,

d2

dη2
cos(2nη) = −(2n)2 cos(2nη), (14.148)

we obtain

d2ce0

dη2
+ (λ0(q)− 2q cos2η

)
ce0 = 0

= λ0(q)− q

(
−q

2
+ 7

27q
3
)
+ · · ·

+
∞∑
n=1

(
λ0− 4n2)cos(2nη)

[
(−q)n

22n−1n!2 + β
(n)
n+2q

n+2
]

− q

∞∑
n=1

[
(−q)n

22n−1n!2 + β
(n)
n+2q

n+2
]

× [cos(2n+ 2)η+ cos(2n− 2)η
]
. (14.149)
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Setting the coefficient of cos(2nη) for n= 0 to zero yields the eigenvalue

λ0=−1

2
q2+ 7

27q
4+ · · · . (14.150)

The coefficient of cos(2nη)qn yields an identity,

(−1)n+1 4n2

22n−1n!2 +
(−1)n

22n−3(n− 1)!2 = 0, (14.151)

which shows that the leading term in Eq. (14.147) was correctly determined. The coeffi-
cient ofqn+2 cos(2nη) yields the recursion relation

−4n2β
(n)
n+2− β

(n−1)
n+1 + (−1)n+1

22nn!2 + (−1)n

22n+1(n+ 1)!2 = 0. (14.152)

It is straightforward to check that

β
(n)
n+2= (−1)n+1 n(3n+ 4)

22n+3(n+ 1)!2 (14.153)

satisfies this recursion relation. Altogether we have derived the formula

ce0(η, q) = 1+ cos2η

[
−1

2
q2+ 7

27q
3+ · · ·

]
+ cos4η

[
q2

25
+ · · ·

]
+ cos6η

[
− q3

2732
+ · · ·

]

= 1+
∞∑
n=1

cos(2nη)

[
(−q)n

22n−1n!2 +
(−1)n+1n(3n+ 4)qn+2

22n+3(n+ 1)!2 + · · ·
]
.

(14.154)

Similarly one can derive

ce1(η, q)= cosη+
∞∑
n=1

cos(2n+ 1)η

[
(−q)n

22nn!(n+ 1)! −
(−q)n+1n

22n+2(n+ 1)12
+ · · ·

]
,

(14.155)

whose eigenvalue is given by the power series

λ1(q)= 1+ q − 1

8
q2− 1

26
q3+ · · · . (14.156)
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FIGURE 14.12 Angular Mathieu functions. (From Gutiérrez-Vegaet al.,
Am. J. Phys. 71: 233 (2003).)

Exercises

14.7.1 Determine the nonleading coefficientsβ(n)
n+2 for se1. Derive a suitable recursion relation.

14.7.2 Determine the nonleading coefficientsβ(n)
n+4 for ce0. Derive the corresponding recursion

relation.

14.7.3 Derive the formula for ce1, Eq. (14.155), and its eigenvalue, Eq. (14.156).

Additional Readings

Carslaw, H. S.,Introduction to the Theory of Fourier’s Series and Integrals, 2nd ed. London: Macmillan (1921);
3rd ed., paperback, New York: Dover (1952). This is a detailed and classic work; includes a considerable
discussion of Gibbs phenomenon in Chapter IX.

Hamming, R. W.,Numerical Methods for Scientists and Engineers, 2nd ed. New York: McGraw-Hill (1973),
reprinted Dover (1987). Chapter 33 provides an excellent description of the fast Fourier transform.

Jeffreys, H., and B. S. Jeffreys,Methods of Mathematical Physics, 3rd ed. Cambridge, UK: Cambridge University
Press (1972).

Kufner, A., and J. Kadlec,Fourier Series. London: Iliffe (1971). This book is a clear account of Fourier series in
the context of Hilbert space.
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Lanczos, C.,Applied Analysis, Englewood Cliffs, NJ: Prentice-Hall (1956), reprinted Dover (1988). The book
gives a well-written presentation of the Lanczos convergence technique (which suppresses the Gibbs phenom-
enon oscillations). This and several other topics are presented from the point of view of a mathematician who
wants useful numerical results and not just abstract existence theorems.

Oberhettinger, F.,Fourier Expansions, A Collection of Formulas. New York, Academic Press (1973).

Zygmund, A.,Trigonometric Series. Cambridge, UK: Cambridge University Press (1988). The volume contains
an extremely complete exposition, including relatively recent results in the realm of pure mathematics.



CHAPTER 15

INTEGRAL TRANSFORMS

15.1 INTEGRAL TRANSFORMS

Frequently in mathematical physics we encounter pairs of functions related by an expres-
sion of the form

g(α)=
∫ b

a

f (t)K(α, t) dt. (15.1)

The functiong(α) is called the (integral) transform off (t) by the kernelK(α, t).
The operation may also be described as mapping a functionf (t) in t-space into another
function,g(α), in α-space. This interpretation takes on physical significance in the time-
frequency relation of Fourier transforms, as in Example 15.3.1, and in the real space–
momentum space relations in quantum physics of Section 15.6.

Fourier Transform

One of the most useful of the infinite number of possible transforms is the Fourier trans-
form, given by

g(ω)= 1√
2π

∫ ∞

−∞
f (t)eiωt dt. (15.2)

Two modifications of this form, developed in Section 15.3, are the Fourier cosine and
Fourier sine transforms:

gc(ω) =
√

2

π

∫ ∞

0
f (t)cosωt dt, (15.3)

gs(ω) =
√

2

π

∫ ∞

0
f (t)sinωt dt. (15.4)

931
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The Fourier transform is based on the kerneleiωt and its real and imaginary parts taken sep-
arately, cosωt and sinωt . Because these kernels are the functions used to describe waves,
Fourier transforms appear frequently in studies of waves and the extraction of information
from waves, particularly when phase information is involved. The output of a stellar in-
terferometer, for instance, involves a Fourier transform of the brightness across a stellar
disk. The electron distribution in an atom may be obtained from a Fourier transform of the
amplitude of scattered X-rays. In quantum mechanics the physical origin of the Fourier
relations of Section 15.6 is the wave nature of matter and our description of matter in terms
of waves.

Example 15.1.1 FOURIER TRANSFORM OF GAUSSIAN

The Fourier transform of a Gaussian functione−a2t2,

g(ω)= 1√
2π

∫ ∞

−∞
e−a2t2eiωt dt,

can be done analytically by completing the square in the exponent,

−a2t2+ iωt =−a2
(
t − iω

2a2

)2

− ω2

4a2
,

which we check by evaluating the square. Substituting this identity we obtain

g(ω)= 1√
2π

e−ω2/4a2
∫ ∞

−∞
e−a2t2 dt,

upon shifting the integration variablet → t + iω

2a2 . This is justified by an application of

Cauchy’s theorem to the rectangle with vertices−T , T , T + iω

2a2 , −T + iω

2a2 for T →
∞, noting that the integrand has no singularities in this region and that the integrals over
the sides from±T to ±T + iω

2a2 become negligible forT →∞. Finally we rescale the
integration variable asξ = at in the integral (see Eqs. (8.6) and (8.8)):∫ ∞

−∞
e−a2t2 dt = 1

a

∫ ∞

−∞
e−ξ2

dξ =
√
π

a
.

Substituting these results we find

g(ω)= 1

a
√

2
exp

(
− ω2

4a2

)
,

again a Gaussian, but inω-space. The biggera is, that is, the narrower the original Gaussian
e−a2t2 is, the wider is its Fourier transform∼ e−ω2/4a2

. �
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Laplace, Mellin, and Hankel Transforms

Three other useful kernels are

e−αt , tJn(αt), tα−1.

These give rise to the following transforms

g(α) =
∫ ∞

0
f (t)e−αtdt, Laplace transform (15.5)

g(α) =
∫ ∞

0
f (t)tJn(αt) dt, Hankel transform (Fourier–Bessel) (15.6)

g(α) =
∫ ∞

0
f (t)tα−1dt, Mellin transform. (15.7)

Clearly, the possible types are unlimited. These transforms have been useful in mathemati-
cal analysis and in physical applications. We have actually used the Mellin transform with-
out calling it by name; that is,g(α)= (α − 1)! is the Mellin transform off (t)= e−t . See
E. C. Titchmarsh,Introduction to the Theory of Fourier Integrals, 2nd ed., New York: Ox-
ford University Press (1937), for more Mellin transforms. Of course, we could just as well
sayg(α)= n!/αn+1 is the Laplace transform off (t)= tn. Of the three, the Laplace trans-
form is by far the most used. It is discussed at length in Sections 15.8 to 15.12. The Hankel
transform, a Fourier transform for a Bessel function expansion, represents a limiting case
of a Fourier–Bessel series. It occurs in potential problems in cylindrical coordinates and
has been applied extensively in acoustics.

Linearity

All these integral transforms are linear; that is,∫ b

a

[
c1f1(t)+ c2f2(t)

]
K(α, t) dt

= c1

∫ b

a

f1(t)K(α, t) dt + c2

∫ b

a

f2(t)K(α, t) dt, (15.8)∫ b

a

cf (t)K(α, t) dt = c

∫ b

a

f (t)K(α, t) dt, (15.9)

wherec1 andc2 are constants andf1(t) andf2(t) are functions for which the transform
operation is defined.

Representing our linear integral transform by the operatorL, we obtain

g(α)= Lf (t). (15.10)
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FIGURE 15.1 Schematic integral transforms.

We expect an inverse operatorL−1 exists such that1

f (t)= L−1g(α). (15.11)

For our three Fourier transformsL−1 is given in Section 15.3. In general, the determination
of the inverse transform is the main problem in using integral transforms. The inverse
Laplace transform is discussed in Section 15.12. For details of the inverse Hankel and
inverse Mellin transforms we refer to the Additional Readings at the end of the chapter.

Integral transforms have many special physical applications and interpretations that
are noted in the remainder of this chapter. The most common application is outlined in
Fig. 15.1. Perhaps an original problem can be solved only with difficulty, if at all, in the
original coordinates (space). It often happens that the transform of the problem can be
solved relatively easily. Then the inverse transform returns the solution from the trans-
form coordinates to the original system. Example 15.4.1 and Exercise 15.4.1 illustrate this
technique.

Exercises
15.1.1 The Fourier transforms for a function of two variables are

F(u, v) = 1

2π

∫ ∞

−∞

∫
f (x, y)ei(ux+vy) dx dy,

f (x, y) = 1

2π

∫ ∞

−∞

∫
F(u, v)e−i(ux+vy) dudv.

Usingf (x, y)= f ([x2+ y2]1/2), show that the zero-order Hankel transforms

F(ρ) =
∫ ∞

0
rf (r)J0(ρr) dr,

f (r) =
∫ ∞

0
ρF(ρ)J0(ρr) dρ,

are a special case of the Fourier transforms.

1Expectation is not proof, and here proof of existence is complicated because we are actually in aninfinite-dimensional Hilbert
space. We shall prove existence in the special cases of interest by actual construction.
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This technique may be generalized to derive the Hankel transforms of orderν =
0, 1

2,1,
1
2, . . . (compare I. N. Sneddon,Fourier Transforms, New York: McGraw-Hill

(1951)). A more general approach, valid forν >−1
2, is presented in Sneddon’sThe Use

of Integral Transforms (New York: McGraw-Hill (1972)). It might also be noted that
the Hankel transforms of nonintegral orderν = ±1

2 reduce to Fourier sine and cosine
transforms.

15.1.2 Assuming the validity of the Hankel transform–inverse transform pair of equations

g(α) =
∫ ∞

0
f (t)Jn(αt)t dt,

f (t) =
∫ ∞

0
g(α)Jn(αt)α dα,

show that the Dirac delta function has a Bessel integral representation

δ(t − t ′)= t

∫ ∞

0
Jn(αt)Jn(αt

′)α dα.

This expression is useful in developing Green’s functions in cylindrical coordinates,
where the eigenfunctions are Bessel functions.

15.1.3 From the Fourier transforms, Eqs. (15.22) and (15.23), show that the transformation

t → lnx

iω→ α − γ

leads to

G(α)=
∫ ∞

0
F(x)xα−1dx

and

F(x)= 1

2πi

∫ γ+i∞

γ−i∞
G(α)x−αdα.

These are the Mellin transforms. A similar change of variables is employed in Sec-
tion 15.12 to derive the inverse Laplace transform.

15.1.4 Verify the following Mellin transforms:

(a)
∫ ∞

0
xα−1 sin(kx) dx = k−α(α − 1)!sin

πα

2
, −1< α < 1.

(b)
∫ ∞

0
xα−1 cos(kx) dx = k−α(α − 1)!cos

πα

2
, 0< α < 1.

Hint. You can force the integrals into a tractable form by inserting a convergence factor
e−bx and (after integrating) lettingb→ 0. Also, coskx + i sinkx = expikx.
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15.2 DEVELOPMENT OF THE FOURIER INTEGRAL

In Chapter 14 it was shown that Fourier series are useful in representing certain func-
tions (1) over a limited range[0,2π], [−L,L], and so on, or (2) for the infinite interval
(−∞,∞), if the function is periodic. We now turn our attention to the problem of rep-
resenting a nonperiodic function over the infinite range. Physically this means resolving a
single pulse or wave packet into sinusoidal waves.

We have seen (Section 14.2) that for the interval[−L,L] the coefficientsan and bn
could be written as

an = 1

L

∫ L

−L
f (t)cos

nπt

L
dt, (15.12)

bn = 1

L

∫ L

−L
f (t)sin

nπt

L
dt. (15.13)

The resulting Fourier series is

f (x) = 1

2L

∫ L

−L
f (t) dt + 1

L

∞∑
n=1

cos
nπx

L

∫ L

−L
f (t)cos

nπt

L
dt

+ 1

L

∞∑
n=1

sin
nπx

L

∫ L

−L
f (t)sin

nπt

L
dt, (15.14)

or

f (x)= 1

2L

∫ L

−L
f (t) dt + 1

L

∞∑
n=1

∫ L

−L
f (t)cos

nπ

L
(t − x)dt. (15.15)

We now let the parameterL approach infinity, transforming the finite interval[−L,L] into
the infinite interval(−∞,∞). We set

nπ

L
= ω,

π

L
=�ω, with L→∞.

Then we have

f (x)→ 1

π

∞∑
n=1

�ω

∫ ∞

−∞
f (t)cosω(t − x)dt, (15.16)

or

f (x)= 1

π

∫ ∞

0
dω

∫ ∞

−∞
f (t)cosω(t − x)dt, (15.17)

replacing the infinite sum by the integral overω. The first term (corresponding toa0) has
vanished, assuming that

∫∞
−∞ f (t) dt exists.

It must be emphasized that this result (Eq. (15.17)) is purely formal. It is not intended
as a rigorous derivation, but it can be made rigorous (compare I. N. Sneddon,Fourier
Transforms, Section 3.2). We take Eq. (15.17) as the Fourier integral. It is subject to the
conditions thatf (x) is (1) piecewise continuous, (2) piecewise differentiable, and (3) ab-
solutely integrable — that is,

∫∞
−∞ |f (x)|dx is finite.
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Fourier Integral — Exponential Form

Our Fourier integral (Eq. (15.17)) may be put into exponential form by noting that

f (x)= 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
f (t)cosω(t − x)dt, (15.18)

whereas

1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
f (t)sinω(t − x)dt = 0; (15.19)

cosω(t − x) is an even function ofω and sinω(t − x) is an odd function ofω. Adding
Eqs. (15.18) and (15.19) (with a factori), we obtain theFourier integral theorem

f (x)= 1

2π

∫ ∞

−∞
e−iωx dω

∫ ∞

−∞
f (t)eiωt dt. (15.20)

The variableω introduced here is an arbitrary mathematical variable. In many physical
problems, however, it corresponds to the angular frequencyω. We may then interpret
Eq. (15.18) or (15.20) as a representation off (x) in terms of a distribution of infinitely
long sinusoidal wave trains of angular frequencyω, in which this frequency is acontinu-
ous variable.

Dirac Delta Function Derivation

If the order of integration of Eq. (15.20) is reversed, we may rewrite it as

f (x)=
∫ ∞

−∞
f (t)

{
1

2π

∫ ∞

−∞
eiω(t−x)dω

}
dt. (15.20a)

Apparently the quantity in curly brackets behaves as a delta functionδ(t − x). We might
take Eq. (15.20a) as presenting us with a representation of the Dirac delta function. Alter-
natively, we take it as a clue to a new derivation of the Fourier integral theorem.

From Eq. (1.171b) (shifting the singularity fromt = 0 to t = x),

f (x)= lim
n→∞

∫ ∞

−∞
f (t)δn(t − x)dt, (15.21a)

whereδn(t − x) is a sequence defining the distributionδ(t − x). Note that Eq. (15.21a)
assumes thatf (t) is continuous att = x. We takeδn(t − x) to be

δn(t − x)= sinn(t − x)

π(t − x)
= 1

2π

∫ n

−n
eiω(t−x) dω, (15.21b)

using Eq. (1.174). Substituting into Eq. (15.21a), we have

f (x)= lim
n→∞

1

2π

∫ ∞

−∞
f (t)

∫ n

−n
eiω(t−x)dω dt. (15.21c)
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Interchanging the order of integration and then taking the limit asn→∞, we have
Eq. (15.20), the Fourier integral theorem.

With the understanding that it belongs under an integral sign, as in Eq. (15.21a), the
identification

δ(t − x)= 1

2π

∫ ∞

−∞
eiω(t−x) dω (15.21d)

provides a very useful representation of the delta function.

15.3 FOURIER TRANSFORMS — INVERSION THEOREM

Let usdefine g(ω), the Fourier transform of the functionf (t), by

g(ω)≡ 1√
2π

∫ ∞

−∞
f (t)eiωt dt. (15.22)

Exponential Transform

Then, from Eq. (15.20), we have the inverse relation,

f (t)= 1√
2π

∫ ∞

−∞
g(ω)e−iωt dω. (15.23)

Note that Eqs. (15.22) and (15.23) are almost but not quite symmetrical, differing in the
sign ofi.

Here two points deserve comment. First, the 1/
√

2π symmetry is a matter of choice,
not of necessity. Many authors will attach the entire 1/2π factor of Eq. (15.20) to one
of the two equations: Eq. (15.22) or Eq. (15.23). Second, although the Fourier integral,
Eq. (15.20), has received much attention in the mathematics literature, we shall be primar-
ily interested in the Fourier transform and its inverse. They are the equations with physical
significance.

When we move the Fourier transform pair to three-dimensional space, it becomes

g(k)= 1

(2π)3/2

∫
f (r)eik·r d3r, (15.23a)

f (r)= 1

(2π)3/2

∫
g(k)e−ik·r d3k. (15.23b)

The integrals are over all space. Verification, if desired, follows immediately by substitut-
ing the left-hand side of one equation into the integrand of the other equation and using the
three-dimensional delta function.2 Equation (15.23b) may be interpreted as an expansion
of a functionf (r) in a continuum of plane wave eigenfunctions;g(k) then becomes the
amplitude of the wave, exp(−ik · r).

2δ(r1− r2)= δ(x1− x2)δ(y1− y2)δ(z1− z2) with Fourier integralδ(x1− x2)= 1
2π

∫∞
−∞ exp[ik1(x1− x2)]dk1, etc.
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Cosine Transform

If f (x) is odd or even, these transforms may be expressed in a somewhat different
form. Consider first an even functionfc with fc(x) = fc(−x). Writing the exponential
of Eq. (15.22) in trigonometric form, we have

gc(ω) = 1√
2π

∫ ∞

−∞
fc(t)(cosωt + i sinωt) dt

=
√

2

π

∫ ∞

0
fc(t)cosωt dt, (15.24)

the sinωt dependence vanishing on integration over the symmetric interval(−∞,∞).
Similarly, since cosωt is even, Eqs. (15.23) transforms to

fc(x)=
√

2

π

∫ ∞

0
gc(ω)cosωx dω. (15.25)

Equations (15.24) and (15.25) are known as Fourier cosine transforms.

Sine Transform

The corresponding pair of Fourier sine transforms is obtained by assuming thatfs(x) =
−fs(−x), odd, and applying the same symmetry arguments. The equations are

gs(ω)=
√

2

π

∫ ∞

0
fs(t)sinωt dt, 3 (15.26)

fs(x)=
√

2

π

∫ ∞

0
gs(ω)sinωx dω. (15.27)

From the last equation we may develop the physical interpretation thatf (x) is being
described by a continuum of sine waves. The amplitude of sinωx is given by

√
2/πgs(ω),

in whichgs(ω) is the Fourier sine transform off (x). It will be seen that Eq. (15.27) is the
integral analog of the summation (Eq. (14.24)). Similar interpretations hold for the cosine
and exponential cases.

If we take Eqs. (15.22), (15.24), and (15.26) as the direct integral transforms, de-
scribed byL in Eq. (15.10) (Section 15.1), the corresponding inverse transforms,L−1

of Eq. (15.11), are given by Eqs. (15.23), (15.25), and (15.27).
Note that the Fourier cosine transforms and the Fourier sine transforms each involve

only positive values (and zero) of the arguments. We use the parity off (x) to establish the
transforms; but once the transforms are established, the behavior of the functionsf andg
for negative argument is irrelevant. In effect, the transform equations themselves impose
a definite parity: even for the Fourier cosine transform andodd for the Fourier sine
transform.

3Note that a factor−i has been absorbed into thisg(ω).
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FIGURE 15.2 Finite wave train.

Example 15.3.1 FINITE WAVE TRAIN

An important application of the Fourier transform is the resolution of a finite pulse into
sinusoidal waves. Imagine that an infinite wave train sinω0t is clipped by Kerr cell or
saturable dye cell shutters so that we have

f (t)=


sinω0t, |t |< Nπ

ω0
,

0, |t |> Nπ

ω0
.

(15.28)

This corresponds toN cycles of our original wave train (Fig. 15.2). Sincef (t) is odd, we
may use the Fourier sine transform (Eq. (15.26)) to obtain

gs(ω)=
√

2

π

∫ Nπ/ω0

0
sinω0t sinωt dt. (15.29)

Integrating, we find our amplitude function:

gs(ω)=
√

2

π

[
sin[(ω0−ω)(Nπ/ω0)]

2(ω0−ω)
− sin[(ω0+ω)(Nπ/ω0)]

2(ω0+ω)

]
. (15.30)

It is of considerable interest to see howgs(ω) depends on frequency. For largeω0 and
ω ≈ ω0, only the first term will be of any importance because of the denominators. It is
plotted in Fig. 15.3. This is the amplitude curve for the single-slit diffraction pattern.

There are zeros at

ω0−ω

ω0
= �ω

ω0
=± 1

N
,± 2

N
, and so on. (15.31)

For largeN,gs(ω) may also be interpreted as a Dirac delta distribution, as in Section 1.15.
Since the contributions outside the central maximum are small in this case, we may take

�ω= ω0

N
(15.32)

as a good measure of the spread in frequency of our wave pulse. Clearly, ifN is large
(a long pulse), the frequency spread will be small. On the other hand, if our pulse is clipped
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FIGURE 15.3 Fourier transform
of finite wave train.

short,N small, the frequency distribution will be wider and the secondary maxima are more
important. �

Uncertainty Principle

Here is a classical analog of the famous uncertainty principle of quantum mechanics. If we
are dealing with electromagnetic waves,

hω

2π
=E, energy (of our photon)

h�ω

2π
=�E, (15.33)

h being Planck’s constant. Here�E represents an uncertainty in the energy of our pulse.
There is also an uncertainty in the time, for our wave ofN cycles requires 2Nπ/ω0 seconds
to pass. Taking

�t = 2Nπ

ω0
, (15.34)

we have the product of these two uncertainties:

�E ·�t = h�ω

2π
· 2πN

ω0
= h

ω0

2πN
· 2πN

ω0
= h. (15.35)

The Heisenberg uncertainty principle actually states

�E ·�t ≥ h

4π
, (15.36)

and this is clearly satisfied in our example.
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Exercises

15.3.1 (a) Show thatg(−ω) = g∗(ω) is a necessary and sufficient condition forf (x) to be
real.

(b) Show thatg(−ω)=−g∗(ω) is a necessary and sufficient condition forf (x) to be
pure imaginary.

Note. The condition of part (a) is used in the development of the dispersion relations of
Section 7.2.

15.3.2 LetF(ω) be the Fourier (exponential) transform off (x) andG(ω) be the Fourier trans-
form of g(x)= f (x + a). Show that

G(ω)= e−iaωF (ω).

15.3.3 The function

f (x)=
{

1, |x|< 1
0, |x|> 1

is a symmetrical finite step function.

(a) Find thegc(ω), Fourier cosine transform off (x).
(b) Taking the inverse cosine transform, show that

f (x)= 2

π

∫ ∞

0

sinω cosωx

ω
dω.

(c) From part (b) show that∫ ∞

0

sinω cosωx

ω
dω=


0, |x|> 1,
π
4 , |x| = 1,
π
2 , |x|< 1.

15.3.4 (a) Show that the Fourier sine and cosine transforms ofe−at are

gs(ω)=
√

2

π

ω

ω2+ a2
, gc(ω)=

√
2

π

a

ω2+ a2
.

Hint. Each of the transforms can be related to the other by integration by parts.
(b) Show that ∫ ∞

0

ω sinωx

ω2+ a2
dω= π

2
e−ax, x > 0,∫ ∞

0

cosωx

ω2+ a2
dω= π

2a
e−ax, x > 0.

These results are also obtained by contour integration (Exercise 7.1.14).

15.3.5 Find the Fourier transform of the triangular pulse (Fig. 15.4).

f (x)=
{
h
(
1− a|x|), |x|< 1

a
,

0, |x|> 1
a
.

Note. This function provides another delta sequence withh= a anda→∞.
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FIGURE 15.4 Triangular pulse.

15.3.6 Define a sequence

δn(x)=
{
n, |x|< 1

2n ,

0, |x|> 1
2n .

(This is Eq. (1.172).) Expressδn(x) as a Fourier integral (via the Fourier integral theo-
rem, inverse transform, etc.). Finally, show that we may write

δ(x)= lim
n→∞ δn(x)= 1

2π

∫ ∞

−∞
e−ikx dk.

15.3.7 Using the sequence

δn(x)= n√
π

exp
(−n2x2),

show that

δ(x)= 1

2π

∫ ∞

−∞
e−ikx dk.

Note. Remember thatδ(x) is defined in terms of its behavior as part of an integrand
(Section 1.15), especially Eqs. (1.178) and (1.179).

15.3.8 Derive sine and cosine representations ofδ(t−x) that are comparable to the exponential
representation, Eq. (15.21d).

ANS.
2

π

∫ ∞

0
sinωt sinωx dω,

2

π

∫ ∞

0
cosωt cosωx dω.

15.3.9 In a resonant cavity an electromagnetic oscillation of frequencyω0 dies out as

A(t)=A0e
−ω0t/2Qe−iω0t , t > 0.

(TakeA(t)= 0 for t < 0.) The parameterQ is a measure of the ratio of stored energy to
energy loss per cycle. Calculate the frequency distribution of the oscillation,a∗(ω)a(ω),
wherea(ω) is the Fourier transform ofA(t).
Note. The largerQ is, the sharper your resonance line will be.

ANS. a∗(ω)a(ω)= A2
0

2π

1

(ω−ω0)2+ (ω0/2Q)2
.
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15.3.10 Prove that

h̄

2πi

∫ ∞

−∞
e−iωt dω

E0− i�/2− h̄ω
=
{

exp
(−�t

2h̄

)
exp

(− iE0t
h̄

)
, t > 0,

0, t < 0.

This Fourier integral appears in a variety of problems in quantum mechanics: WKB
barrier penetration, scattering, time-dependent perturbation theory, and so on.
Hint. Try contour integration.

15.3.11 Verify that the following are Fourier integral transforms of one another:

(a)

√
2

π
· 1√

a2− x2
, |x|< a, andJ0(ay),

0, |x|> a,

(b)
0, |x|< a,

−
√

2

π

1√
x2+ a2

, |x|> a, andN0(a|y|),

(c)

√
π

2
· 1√

x2+ a2
and K0

(
a|y|).

(d) Can you suggest whyI0(ay) is not included in this list?

Hint. J0,N0, andK0 may be transformed most easily by using an exponential repre-
sentation, reversing the order of integration, and employing the Dirac delta function
exponential representation (Section 15.2). These cases can be treated equally well as
Fourier cosine transforms.
Note. TheK0 relation appears as a consequence of a Green’s function equation in Ex-
ercise 9.7.14.

15.3.12 A calculation of the magnetic field of a circular current loop in circular cylindrical
coordinates leads to the integral∫ ∞

0
coskz kK1(ka) dk.

Show that this integral is equal to

πa

2(z2+ a2)3/2
.

Hint. Try differentiating Exercise 15.3.11(c).

15.3.13 As an extension of Exercise 15.3.11, show that

(a)
∫ ∞

0
J0(y) dy = 1, (b)

∫ ∞

0
N0(y) dy = 0, (c)

∫ ∞

0
K0(y) dy = π

2
.

15.3.14 The Fourier integral, Eq. (15.18), has been held meaningless forf (t) = cosαt . Show
that the Fourier integral can be extended to coverf (t)= cosαt by use of the Dirac delta
function.
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15.3.15 Show that ∫ ∞

0
sinka J0(kρ)dk =

{(
a2− ρ2

)−1/2
, ρ < a,

0, ρ > a.

Herea andρ are positive. The equation comes from the determination of the distribution
of charge on an isolated conducting disk, radiusa. Note that the function on the right
has aninfinite discontinuity atρ = a.
Note. A Laplace transform approach appears in Exercise 15.10.8.

15.3.16 The functionf (r) has a Fourier exponential transform,

g(k)= 1

(2π)3/2

∫
f (r)eik·r d3r = 1

(2π)3/2k2
.

Determinef (r).
Hint. Use spherical polar coordinates ink-space.

ANS. f (r)= 1

4πr
.

15.3.17 (a) Calculate the Fourier exponential transform off (x)= e−a|x|.
(b) Calculate the inverse transform by employing the calculus of residues (Sec-

tion 7.1).

15.3.18 Show that the following are Fourier transforms of each other

inJn(t) and


√

2

π
Tn(x)

(
1− x2)−1/2

, |x|< 1,

0, |x|> 1.

Tn(x) is thenth-order Chebyshev polynomial.
Hint. With Tn(cosθ)= cosnθ , the transform ofTn(x)(1− x2)−1/2 leads to an integral
representation ofJn(t).

15.3.19 Show that the Fourier exponential transform of

f (µ)=
{
Pn(µ), |µ| ≤ 1,
0, |µ|> 1

is (2in/2π)jn(kr). HerePn(µ) is a Legendre polynomial andjn(kr) is a spherical
Bessel function.

15.3.20 Show that the three-dimensional Fourier exponential transform of a radially symmetric
function may be rewritten as a Fourier sine transform:

1

(2π)3/2

∫ ∞

−∞
f (r)eik·r d3x = 1

k

√
2

π

∫ ∞

0

[
rf (r)

]
sinkr dr.
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15.3.21 (a) Show thatf (x) = x−1/2 is a self-reciprocal under both Fourier cosine and sine
transforms; that is, √

2

π

∫ ∞

0
x−1/2 cosxt dx = t−1/2,√

2

π

∫ ∞

0
x−1/2 sinxt ds = t−1/2.

(b) Use the preceding results to evaluate the Fresnel integrals
∫∞

0 cos(y2) dy and∫∞
0 sin(y2) dy.

15.4 FOURIER TRANSFORM OF DERIVATIVES

In Section 15.1, Fig. 15.1 outlines the overall technique of using Fourier transforms and
inverse transforms to solve a problem. Here we take an initial step in solving a differential
equation — obtaining the Fourier transform of a derivative.

Using the exponential form, we determine that the Fourier transform off (x) is

g(ω)= 1√
2π

∫ ∞

−∞
f (x)eiωx dx (15.37)

and fordf (x)/dx

g1(ω)= 1√
2π

∫ ∞

−∞
df (x)

dx
eiωx dx. (15.38)

Integrating Eq. (15.38) by parts, we obtain

g1(ω)= eiωx√
2π

f (x)

∣∣∣∞−∞ − iω√
2π

∫ ∞

−∞
f (x)eiωx dx. (15.39)

If f (x) vanishes4 asx→±∞, we have

g1(ω)=−iω g(ω); (15.40)

that is, the transform of the derivative is(−iω) times the transform of the original function.
This may readily be generalized to thenth derivative to yield

gn(ω)= (−iω)ng(ω), (15.41)

provided all the integrated parts vanish asx → ±∞. This is the power of the Fourier
transform, the reason it is so useful in solving (partial) differential equations. The operation
of differentiation has been replaced by a multiplication inω-space.

4Apart from cases such as Exercise 15.3.6,f (x) must vanish asx→±∞ in order for the Fourier transform off (x) to exist.
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Example 15.4.1 WAVE EQUATION

This technique may be used to advantage in handling PDEs. To illustrate the technique, let
us derive a familiar expression of elementary physics. An infinitely long string is vibrating
freely. The amplitudey of the (small) vibrations satisfies the wave equation

∂2y

∂x2
= 1

v2

∂2y

∂t2
. (15.42)

We shall assume an initial condition

y(x,0)= f (x), (15.43)

wheref is localized, that is, approaches zero at largex.

Applying our Fourier transform inx, which means multiplying byeiαx and integrating
overx, we obtain ∫ ∞

−∞
∂2y(x, t)

∂x2
eiαx dx = 1

v2

∫ ∞

−∞
∂2y(x, t)

∂t2
eiαx dx (15.44)

or

(−iα)2Y(α, t)= 1

v2

∂2Y(α, t)

∂t2
. (15.45)

Here we have used

Y(α, t)= 1√
2π

∫ ∞

−∞
y(x, t)eiαx dx (15.46)

and Eq. (15.41) for the second derivative. Note that the integrated part of Eq. (15.39) van-
ishes: The wave has not yet gone to±∞ because it is propagating forward in time, and
there is no source at infinity becausef (±∞) = 0. Since no derivatives with respect to
α appear, Eq. (15.45) is actually an ODE — in fact, the linear oscillator equation. This
transformation, from a PDE to an ODE, is a significant achievement. We solve Eq. (15.45)
subject to the appropriate initial conditions. Att = 0, applying Eq. (15.43), Eq. (15.46)
reduces to

Y(α,0)= 1√
2π

∫ ∞

−∞
f (x)eiαx dx = F(α). (15.47)

The general solution of Eq. (15.45) in exponential form is

Y(α, t)= F(α)e±ivαt . (15.48)

Using the inversion formula (Eq. (15.23)), we have

y(x, t)= 1√
2π

∫ ∞

−∞
Y(α, t)e−iαx dα, (15.49)

and, by Eq. (15.48),

y(x, t)= 1√
2π

∫ ∞

−∞
F(α)e−iα(x∓vt) dα. (15.50)
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Sincef (x) is the Fourier inverse transform ofF(α),

y(x, t)= f (x ∓ vt), (15.51)

corresponding to waves advancing in the+x- and−x-directions, respectively.
The particular linear combinations of waves is given by the boundary condition of

Eq. (15.43) and some other boundary condition, such as a restriction on∂y/∂t . �
The accomplishment of the Fourier transform here deserves special emphasis.

• Our Fourier transform converted a PDE into an ODE, where the “degree of transcen-
dence” of the problem was reduced.

In Section 15.9 Laplace transforms are used to convert ODEs (with constant coefficients)
into algebraic equations. Again, the degree of transcendence is reduced. The problem is
simplified — as outlined in Fig. 15.1.

Example 15.4.2 HEAT FLOW PDE

To illustrate another transformation of a PDE into an ODE, let us Fourier transform the
heat flow partial differential equation

∂ψ

∂t
= a2∂

2ψ

∂x2
,

where the solutionψ(x, t) is the temperature in space as a function of time. By taking the
Fourier transform of both sides of this equation (note that here onlyω is the transform
variable conjugate tox becauset is the time in the heat flow PDE), where

�(ω, t)= 1√
2π

∫ ∞

−∞
ψ(x, t)eiωx dx,

this yields an ODE for the Fourier transform� of ψ in the time variablet ,

∂�(ω, t)

∂t
=−a2ω2�(ω, t).

Integrating we obtain

ln� =−a2ω2t + lnC, or � = Ce−a2ω2t ,

where the integration constantC may still depend onω and, in general, is determined
by initial conditions. In fact,C = �(ω,0) is the initial spatial distribution of�, so it is
given by the transform (inx) of the initial distribution ofψ, namely,ψ(x,0). Putting this
solution back into our inverse Fourier transform, this yields

ψ(x, t)= 1√
2π

∫ ∞

−∞
C(ω)e−iωxe−a2ω2t dω.

For simplicity, we here takeCω-independent (assuming a delta-function initial temper-
ature distribution) and integrate by completing the square inω, as in Example 15.1.1,
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making appropriate changes of variables and parameters (a2 → a2t, ω→ x, t →−ω).
This yields the particular solution of the heat flow PDE,

ψ(x, t)= C

a
√

2t
exp

(
− x2

4a2t

)
,

which appears as a clever guess in Chapter 8. In effect, we have shown thatψ is the inverse
Fourier transform ofC exp(−a2ω2t). �

Example 15.4.3 INVERSION OF PDE

Derive a Fourier integral for the Green’s functionG0 of Poisson’s PDE, which is a solution
of

∇2G0(r, r′)=−δ(r− r′).

OnceG0 is known, the general solution of Poisson’s PDE,

∇2�=−4πρ(r)

of electrostatics, is given as

�(r)=
∫

G0(r, r′)4πρ(r′) d3r ′.

Applying ∇2 to � and using the PDE the Green’s function satisfies, we check that

∇2�(r)=
∫

∇2G0(r, r′)4πρ(r′) d3r ′ = −
∫

δ(r− r′)4πρ(r′) d3r ′ = −4πρ(r).

Now we use the Fourier transform ofG0, which isg0, and of that of theδ function, writing

∇2
∫

g0(p)eip·(r−r′) d3p

(2π)3
=−

∫
eip·(r−r′) d3p

(2π)3
.

Because the integrands of equal Fourier integrals must be the same (almost) everywhere,
which follows from the inverse Fourier transform, and with

∇eip·(r−r′) = ipeip·(r−r′),

this yields−p2g0(p) = −1. Therefore, application of the Laplacian to a Fourier integral
f (r) corresponds to multiplying its Fourier transformg(p) by−p2. Substituting this solu-
tion into the inverse Fourier transform forG0 gives

G0(r, r′)=
∫

eip·(r−r′) d3p

(2π)3p2
= 1

4π |r− r′| .

We can verify the last part of this result by applying∇2 to G0 again and recalling from
Chapter 1 that∇2 1

|r−r′| = −4πδ(r− r′).
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The inverse Fourier transform can be evaluated using polar coordinates, exploiting the
spherical symmetry ofp2. For simplicity, we writeR= r− r′ and callθ the angle between
R andp, ∫

eip·R d3p

p2
=
∫ ∞

0
dp

∫ 1

−1
eipR cosθ d cosθ

∫ 2π

0
dϕ

= 2π

iR

∫ ∞

0

dp

p
eipR cosθ

∣∣∣1
cosθ=−1

= 4π

R

∫ ∞

0

sinpR

p
dp

= 4π

R

∫ ∞

0

sinpR

pR
d(pR)= 2π2

R
,

whereθ andϕ are the angles ofp and
∫∞

0
sinx
x

dx = π
2 , from Example 7.1.4. Dividing by

(2π)3, we obtainG0(R)= 1/(4πR), as claimed. An evaluation of this Fourier transform
by contour integration is given in Example 9.7.2. �

Exercises

15.4.1 The one-dimensional Fermi age equation for the diffusion of neutrons slowing down in
some medium (such as graphite) is

∂2q(x, τ )

∂x2
= ∂q(x, τ )

∂τ
.

Hereq is the number of neutrons that slow down, falling below some given energy per
second per unit volume. The Fermi age,τ , is a measure of the energy loss.
If q(x,0) = Sδ(x), corresponding to a plane source of neutrons atx = 0, emittingS
neutrons per unit area per second, derive the solution

q = S
e−x2/4τ

√
4πτ

.

Hint. Replaceq(x, τ ) with

p(k, τ )= 1√
2π

∫ ∞

−∞
q(x, τ )eikx dx.

This is analogous to the diffusion of heat in an infinite medium.

15.4.2 Equation (15.41) yields

g2(ω)=−ω2g(ω)

for the Fourier transform of the second derivative off (x). The conditionf (x)→ 0 for
x→±∞ may be relaxed slightly. Find the least restrictive condition for the preceding
equation forg2(ω) to hold.

ANS.

[
df (x)

dx
− iωf (x)

]
eiωx

∣∣∣∞−∞ = 0.
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15.4.3 The one-dimensional neutron diffusion equation with a (plane) source is

−Dd2ϕ(x)

dx2
+K2Dϕ(x)=Qδ(x),

whereϕ(x) is the neutron flux,Qδ(x) is the (plane) source atx = 0, andD andK2 are
constants. Apply a Fourier transform. Solve the equation in transform space. Transform
your solution back intox-space.

ANS. ϕ(x)= Q

2KD
e−|Kx|.

15.4.4 For a point source at the origin, the three-dimensional neutron diffusion equation be-
comes

−D∇2ϕ(r)+K2Dϕ(r)=Qδ(r).

Apply a three-dimensional Fourier transform. Solve the transformed equation. Trans-
form the solution back intor-space.

15.4.5 (a) Given thatF(k) is the three-dimensional Fourier transform off (r) andF1(k) is
the three-dimensional Fourier transform of∇f (r), show that

F1(k)= (−ik)F (k).

This is a three-dimensional generalization of Eq. (15.40).
(b) Show that the three-dimensional Fourier transform of∇ ·∇f (r) is

F2(k)= (−ik)2F(k).

Note. Vectork is a vector in the transform space. In Section 15.6 we shall have
h̄k= p, linear momentum.

15.5 CONVOLUTION THEOREM

We shall employ convolutions to solve differential equations, to normalize momentum
wave functions (Section 15.6), and to investigate transfer functions (Section 15.7).

Let us consider two functionsf (x) andg(x) with Fourier transformsF(t) andG(t),
respectively. We define the operation

f ∗ g ≡ 1√
2π

∫ ∞

−∞
g(y)f (x − y)dy (15.52)

as theconvolution of the two functionsf andg over the interval(−∞,∞). This form of
an integral appears in probability theory in the determination of the probability density of
two random, independent variables. Our solution of Poisson’s equation, Eq. (9.148), may
be interpreted as a convolution of a charge distribution,ρ(r2), and a weighting function,
(4πε0|r1− r2|)−1. In other works this is sometimes referred to as theFaltung, to use the
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FIGURE 15.5

German term for “folding.”5 We now transform the integral in Eq. (15.52) by introducing
the Fourier transforms:∫ ∞

−∞
g(y)f (x − y)dy = 1√

2π

∫ ∞

−∞
g(y)

∫ ∞

−∞
F(t)e−it (x−y) dt dy

= 1√
2π

∫ ∞

−∞
F(t)

[∫ ∞

−∞
g(y)eitydy

]
e−itx dt

=
∫ ∞

−∞
F(t)G(t)e−itx dt, (15.53)

interchanging the order of integration and transformingg(y). This result may be inter-
preted as follows: The Fourier inverse transform of aproduct of Fourier transforms is the
convolution of the original functions,f ∗ g.

For the special casex = 0 we have∫ ∞

−∞
F(t)G(t) dt =

∫ ∞

−∞
f (−y)g(y) dy. (15.54)

The minus sign in−y suggests that modifications be tried. We now do this withg∗ instead
of g using a different technique.

Parseval’s Relation

Results analogous to Eqs. (15.53) and (15.54) may be derived for the Fourier sine and co-
sine transforms (Exercises 15.5.1 and 15.5.3). Equation (15.54) and the corresponding sine
and cosine convolutions are often labeledParseval’s relations by analogy with Parseval’s
theorem for Fourier series (Chapter 14, Exercise 14.4.2).

5For f (y)= e−y, f (y) andf (x − y) are plotted in Fig. 15.5. Clearly,f (y) andf (x − y) are mirror images of each other in
relation to the vertical liney = x/2, that is, we could generatef (x − y) by folding overf (y) on the liney = x/2.
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The Parseval relation6,7∫ ∞

−∞
F(ω)G∗(ω)dω=

∫ ∞

−∞
f (t)g∗(t) dt (15.55)

may be derived elegantly using the Dirac delta function representation, Eq. (15.21d). We
have∫ ∞

−∞
f (t)g∗(t) dt =

∫ ∞

−∞
1√
2π

∫ ∞

−∞
F(ω)e−iωt dω · 1√

2π

∫ ∞

−∞
G∗(x)eixt dx dt,

(15.56)
with attention to the complex conjugation in theG∗(x) to g∗(t) transform. Integrating over
t first, and using Eq. (15.21d), we obtain∫ ∞

−∞
f (t)g∗(t) dt =

∫ ∞

−∞
F(ω)

∫ ∞

−∞
G∗(x)δ(x −ω)dx dω

=
∫ ∞

−∞
F(ω)G∗(ω)dω, (15.57)

our desired Parseval relation. Iff (t)= g(t), then the integrals in the Parseval relation are
normalization integrals (Section 10.4). Equation (15.57) guarantees that if a functionf (t)

is normalized to unity, its transformF(ω) is likewise normalized to unity. This is extremely
important in quantum mechanics as developed in the next section.

It may be shown that the Fourier transform is a unitary operation (in the Hilbert spaceL2,
square integrable functions). The Parseval relation is a reflection of this unitary property —
analogous to Exercise 3.4.26 for matrices.

In Fraunhofer diffraction optics the diffraction pattern (amplitude) appears as the trans-
form of the function describing the aperture (compare Exercise 15.5.5). With intensity
proportional to the square of the amplitude the Parseval relation implies that the energy
passing through the aperture seems to be somewhere in the diffraction pattern — a state-
ment of the conservation of energy. Parseval’s relations may be developed independently
of the inverse Fourier transform and then used rigorously to derive the inverse transform.
Details are given by Morse and Feshbach,8 Section 4.8 (see also Exercise 15.5.4).

Exercises

15.5.1 Work out the convolution equation corresponding to Eq. (15.53) for

(a) Fourier sine transforms

1

2

∫ ∞

0
g(y)

[
f (y + x)+ f (y − x)

]
dy =

∫ ∞

0
Fs(s)Gs(s)cossx ds,

wheref andg are odd functions.

6Note that all arguments are positive, in contrast to Eq. (15.54).
7Some authors prefer to restrict Parseval’s name to series and refer to Eq. (15.55) asRayleigh’s theorem.
8P. M. Morse and H. Feshbach,Methods of Theoretical Physics, New York: McGraw-Hill (1953).
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(b) Fourier cosine transforms

1

2

∫ ∞

0
g(y)

[
f (y + x)+ f (x − y)

]
dy =

∫ ∞

0
Fc(s)Gc(s)cossx ds,

wheref andg are even functions.

15.5.2 F(ρ) and G(ρ) are the Hankel transforms off (r) and g(r), respectively (Exer-
cise 15.1.1). Derive the Hankel transform Parseval relation:∫ ∞

0
F ∗(ρ)G(ρ)ρ dρ =

∫ ∞

0
f ∗(r)g(r)r dr.

15.5.3 Show that for both Fourier sine and Fourier cosine transforms Parseval’s relation has
the form ∫ ∞

0
F(t)G(t) dt =

∫ ∞

0
f (y)g(y) dy.

15.5.4 Starting from Parseval’s relation (Eq. (15.54)), letg(y)= 1, 0≤ y ≤ α, and zero else-
where. From this derive the Fourier inverse transform (Eq. (15.23)).
Hint. Differentiate with respect toα.

15.5.5 (a) A rectangular pulse is described by

f (x)=
{

1, |x|< a,

0, |x|> a.

Show that the Fourier exponential transform is

F(t)=
√

2

π

sinat

t
.

This is the single-slit diffraction problem of physical optics. The slit is described
by f (x). The diffraction patternamplitude is given by the Fourier transformF(t).

(b) Use the Parseval relation to evaluate∫ ∞

−∞
sin2 t

t2
dt.

This integral may also be evaluated by using the calculus of residues, Exer-
cise 7.1.12.

ANS. (b) π.

15.5.6 Solve Poisson’s equation,∇2ψ(r) = −ρ(r)/ε0, by the following sequence of opera-
tions:

(a) Take the Fourier transform of both sides of this equation. Solve for the Fourier
transform ofψ(r).

(b) Carry out the Fourier inverse transform by using a three-dimensional analog of the
convolution theorem, Eq. (15.53).
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15.5.7 (a) Givenf (x) = 1− |x/2|,−2≤ x ≤ 2, and zero elsewhere, show that the Fourier
transform off (x) is

F(t)=
√

2

π

(
sint

t

)2

.

(b) Using the Parseval relation, evaluate∫ ∞

−∞

(
sint

t

)4

dt.

ANS. (b)
2π

3
.

15.5.8 With F(t) andG(t) the Fourier transforms off (x) andg(x), respectively, show that∫ ∞

−∞
∣∣f (x)− g(x)

∣∣2dx = ∫ ∞

−∞
∣∣F(t)−G(t)

∣∣2dt.
If g(x) is an approximation tof (x), the preceding relation indicates that the mean
square deviation int-space is equal to the mean square deviation inx-space.

15.5.9 Use the Parseval relation to evaluate

(a)
∫ ∞

−∞
dω

(ω2+ a2)2
, (b)

∫ ∞

−∞
ω2dω

(ω2+ a2)2
.

Hint. Compare Exercise 15.3.4.

ANS. (a)
π

2a3
, (b)

π

2a
.

15.6 MOMENTUM REPRESENTATION

In advanced dynamics and in quantum mechanics, linear momentum and spatial position
occur on an equal footing. In this section we shall start with the usual space distribution
and derive the corresponding momentum distribution. For the one-dimensional case our
wave functionψ(x) has the following properties:

1. ψ∗(x)ψ(x)dx is the probability density of finding a quantum particle betweenx and
x + dx, and

2.
∫ ∞

−∞
ψ∗(x)ψ(x)dx = 1 (15.58)

corresponds to probability unity.
3. In addition, we have

〈x〉 =
∫ ∞

−∞
ψ∗(x)xψ(x)dx (15.59)

for theaverage position of the particle along thex-axis. This is often called anexpec-
tation value.

We want a functiong(p) that will give the same information about the momentum:
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1. g∗(p)g(p)dp is the probability density that our quantum particle has a momentum
betweenp andp+ dp.

2.

∫ ∞

−∞
g∗(p)g(p)dp = 1. (15.60)

3. 〈p〉 =
∫ ∞

−∞
g∗(p)p g(p)dp. (15.61)

As subsequently shown, such a function is given by the Fourier transform of our space
functionψ(x). Specifically,9

g(p)= 1√
2πh̄

∫ ∞

−∞
ψ(x)e−ipx/h̄ dx, (15.62)

g∗(p)= 1√
2πh̄

∫ ∞

−∞
ψ∗(x)eipx/h̄ dx. (15.63)

The corresponding three-dimensional momentum function is

g(p)= 1

(2πh̄)3/2

∫ ∞∫
−∞

∫
ψ(r)e−ir·p/h̄ d3r.

To verify Eqs. (15.62) and (15.63), let us check on properties 2 and 3.
Property 2, the normalization, is automatically satisfied as a Parseval relation,

Eq. (15.55). If the space functionψ(x) is normalized to unity, the momentum function
g(p) is also normalized to unity.

To check on property 3, we must show that

〈p〉 =
∫ ∞

−∞
g∗(p)pg(p)dp =

∫ ∞

−∞
ψ∗(x) h̄

i

d

dx
ψ(x)dx, (15.64)

where (h̄/i)(d/dx) is the momentum operator in the space representation. We replace
the momentum functions by Fourier-transformed space functions, and the first integral
becomes

1

2πh̄

∫ ∞∫
−∞

∫
pe−ip(x−x′)/h̄ψ∗(x′)ψ(x)dp dx′ dx. (15.65)

Now we use the plane-wave identity

pe−ip(x−x′)/h̄ = d

dx

[
− h̄

i
e−ip(x−x′)/h̄

]
, (15.66)

9The h̄ may be avoided by using the wave numberk,p = kh̄ (andp= kh̄), so

ϕ(k)= 1

(2π)1/2

∫
ψ(x)e−ikx dx.

An example of this notation appears in Section 16.1.
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with p a constant, not an operator. Substituting into Eq. (15.65) and integrating by parts,
holdingx′ andp constant, we obtain

〈p〉 =
∫∞∫
−∞

[
1

2πh̄

∫ ∞

−∞
e−ip(x−x′)/h̄ dp

]
·ψ∗(x′) h̄

i

d

dx
ψ(x)dx′ dx. (15.67)

Here we assumeψ(x) vanishes asx →±∞, eliminating the integrated part. Using the
Dirac delta function, Eq. (15.21c), Eq. (15.67) reduces to Eq. (15.64) to verify our mo-
mentum representation.

Alternatively, if the integration overp is done first in Eq. (15.65), leading to∫ ∞

−∞
pe−ip(x−x′)/h̄ dp = 2πih̄2δ′(x − x′),

and using Exercise 1.15.9, we can do the integration overx, which causesψ(x) to become
−dψ(x′)/dx′. The remaining integral overx′ is the right-hand side of Eq. (15.64).

Example 15.6.1 HYDROGEN ATOM

The hydrogen atom ground state10 may be described by the spatial wave function

ψ(r)=
(

1

πa3
0

)1/2

e−r/a0, (15.68)

a0 being the Bohr radius, 4πε0h̄
2/me2. We now have a three-dimensional wave function.

The transform corresponding to Eq. (15.62) is

g(p)= 1

(2πh̄)3/2

∫
ψ(r)e−ip·r/h̄ d3r. (15.69)

Substituting Eq. (15.68) into Eq. (15.69) and using∫
e−ar+ib·r d3r = 8πa

(a2+ b2)2
, (15.70)

we obtain the hydrogenic momentum wave function,

g(p)= 23/2

π

a
3/2
0 h̄5/2

(a2
0p

2+ h̄2)2
. (15.71)

Such momentum functions have been found useful in problems like Compton scattering
from atomic electrons, the wavelength distribution of the scattered radiation, depending on
the momentum distribution of the target electrons.

The relation between the ordinary space representation and the momentum representa-
tion may be clarified by considering the basic commutation relations of quantum mechan-
ics. We go from a classical Hamiltonian to the Schrödinger wave equation by requiring that
momentump and positionx not commute. Instead, we require that

[p,x] ≡ px − xp =−ih̄. (15.72)

10See E. V. Ivash, A momentum representation treatment of the hydrogen atom problem.Am. J. Phys. 40: 1095 (1972) for
a momentum representation treatment of the hydrogen atoml = 0 states.
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For the multidimensional case, Eq. (15.72) is replaced by

[pi, xj ] = −ih̄δij . (15.73)

The Schrödinger (space) representation is obtained by using

x→ x : pi →−ih̄ ∂

∂xi
,

replacing the momentum by a partial space derivative. We see that

[p,x]ψ(x)=−ih̄ψ(x). (15.74)

However, Eq. (15.72) can equally well be satisfied by using

p→ p : xj → ih̄
∂

∂pj

.

This is the momentum representation. Then

[p,x]g(p)=−ih̄g(p). (15.75)

Hence the representation(x) is not unique;(p) is an alternate possibility.
In general, the Schrödinger representation(x) leading to the Schrödinger wave equation

is more convenient because the potential energyV is generally given as a function of
positionV (x, y, z). The momentum representation(p) usually leads to an integral equation
(compare Chapter 16 for the pros and cons of the integral equations). For an exception,
consider the harmonic oscillator. �

Example 15.6.2 HARMONIC OSCILLATOR

The classical Hamiltonian (kinetic energy+ potential energy= total energy) is

H(p,x)= p2

2m
+ 1

2
kx2=E, (15.76)

wherek is the Hooke’s law constant.
In the Schrödinger representation we obtain

− h̄2

2m

d2ψ(x)

dx2
+ 1

2
kx2ψ(x)=Eψ(x). (15.77)

For total energyE equal to
√
(k/m)h̄/2 there is an unnormalized solution (Section 13.1),

ψ(x)= e−(
√
mk/2h̄)x2

. (15.78)

The momentum representation leads to

p2

2m
g(p)− h̄2k

2

d2g(p)

dp2
=Eg(p). (15.79)

Again, for

E =
√

k

m

h̄

2
(15.80)
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the momentum wave equation (15.79) is satisfied by the unnormalized

g(p)= e−p2/(2h̄
√
mk). (15.81)

Either representation, space or momentum (and an infinite number of other possibilities),
may be used, depending on which is more convenient for the particular problem under
attack.

The demonstration thatg(p) is the momentum wave function corresponding to
Eq. (15.78) — that it is the Fourier inverse transform of Eq. (15.78) — is left as Exer-
cise 15.6.3. �

Exercises

15.6.1 The functioneik·r describes a plane wave of momentump = h̄k normalized to unit
density. (Time dependence ofe−iωt is assumed.) Show that these plane-wave functions
satisfy an orthogonality relation∫ (

eik·r
)∗
eik

′·rdx dy dz= (2π)3δ(k− k′).

15.6.2 An infinite plane wave in quantum mechanics may be represented by the function

ψ(x)= eip
′x/h̄.

Find the corresponding momentum distribution function. Note that it has an infinity and
thatψ(x) is not normalized.

15.6.3 A linear quantum oscillator in its ground state has a wave function

ψ(x)= a−1/2π−1/4e−x2/2a2
.

Show that the corresponding momentum function is

g(p)= a1/2π−1/4h̄−1/2e−a2p2/2h̄2
.

15.6.4 Thenth excited state of the linear quantum oscillator is described by

ψn(x)= a−1/22−n/2π−1/4(n!)−1/2e−x2/2a2
Hn(x/a),

whereHn(x/a) is thenth Hermite polynomial, Section 13.1. As an extension of Exer-
cise 15.6.3, find the momentum function corresponding toψn(x).
Hint. ψn(x) may be represented by(â†)nψ0(x), whereâ† is the raising operator, Exer-
cise 13.1.14 to 13.1.16.

15.6.5 A free particle in quantum mechanics is described by a plane wave

ψk(x, t)= ei[kx−(h̄k2/2m)t].

Combining waves of adjacent momentum with an amplitude weighting factorϕ(k), we
form a wave packet

�(x, t)=
∫ ∞

−∞
ϕ(k)ei[kx−(h̄k2/2m)t] dk.
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(a) Solve forϕ(k) given that

�(x,0)= e−x2/2a2
.

(b) Using the known value ofϕ(k), integrate to get the explicit form of�(x, t). Note
that this wave packet diffuses or spreads out with time.

ANS.�(x, t)= e−{x2/2[a2+(ih̄/m)t]}

[1+ (ih̄t/ma2)]1/2
.

Note. An interesting discussion of this problem from the evolution operator point of
view is given by S. M. Blinder, Evolution of a Gaussian wave packet,Am. J. Phys. 36:
525 (1968).

15.6.6 Find the time-dependent momentum wave functiong(k, t) corresponding to�(x, t) of
Exercise 15.6.5. Show that the momentum wave packetg∗(k, t)g(k, t) is independent
of time.

15.6.7 The deuteron, Example 10.1.2, may be described reasonably well with a Hulthén wave
function

ψ(r)=A[e−αr − e−βr ]/r,
with A, α, andβ constants. Findg(p), the corresponding momentum function.
Note. The Fourier transform may be rewritten as Fourier sine and cosine transforms or
as a Laplace transform, Section 15.8.

15.6.8 The nuclear form factorF(k) and the charge distributionρ(r) are three-dimensional
Fourier transforms of each other:

F(k)= 1

(2π)3/2

∫
ρ(r)eik·r d3r.

If the measured form factor is

F(k)= (2π)−3/2
(

1+ k2

a2

)−1

,

find the corresponding charge distribution.

ANS. ρ(r)= a2

4π

e−ar

r
.

15.6.9 Check the normalization of the hydrogen momentum wave function

g(p)= 23/2

π

a
3/2
0 h̄5/2

(a2
0p

2+ h̄2)2

by direct evaluation of the integral∫
g∗(p)g(p) d3p.

15.6.10 With ψ(r) a wave function in ordinary space andϕ(p) the corresponding momentum
function, show that
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(a)
1

(2πh̄)3/2

∫
rψ(r)e−ir·p/h̄ d3r = ih̄∇pϕ(p),

(b)
1

(2πh̄)3/2

∫
r2ψ(r)e−r·p/h̄ d3r = (ih̄∇p)

2ϕ(p).

Note. ∇p is the gradient in momentum space:

x̂
∂

∂px

+ ŷ
∂

∂py

+ ẑ
∂

∂pz

.

These results may be extended to any positive integer power ofr and therefore to any
(analytic) function that may be expanded as a Maclaurin series inr .

15.6.11 The ordinary space wave functionψ(r, t) satisfies the time-dependent Schrödinger
equation

ih̄
∂ψ(r, t)

∂t
=− h̄2

2m
∇2ψ + V (r)ψ.

Show that the corresponding time-dependent momentum wave function satisfies the
analogous equation,

ih̄
∂ϕ(p, t)

∂t
= p2

2m
ϕ + V (ih̄∇p)ϕ.

Note. Assume thatV (r) may be expressed by a Maclaurin series and use Exer-
cise 15.6.10.V (ih̄∇p) is the same function of the variableih̄∇p thatV (r) is of the
variabler.

15.6.12 The one-dimensional time-independent Schrödinger wave equation is

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x)=Eψ(x).

For the special case ofV (x) an analytic function ofx, show that the corresponding
momentum wave equation is

V

(
ih̄

d

dp

)
g(p)+ p2

2m
g(p)=Eg(p).

Derive this momentum wave equation from the Fourier transform, Eq. (15.62), and its
inverse. Do not use the substitutionx→ ih̄(d/dp) directly.

15.7 TRANSFER FUNCTIONS

A time-dependent electrical pulse may be regarded as built-up as a superposition of plane
waves of many frequencies. For angular frequencyω we have a contribution

F(ω)eiωt .

Then the complete pulse may be written as

f (t)= 1

2π

∫ ∞

−∞
F(ω)eiωt dω. (15.82)
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FIGURE 15.6 Servomechanism or a stereo amplifier.

Because the angular frequencyω is related to the linear frequencyν by

ν = ω

2π
,

it is customary to associate the entire 1/2π factor with this integral.
But if ω is a frequency, what about the negative frequencies? The negativeω may be

looked on as a mathematical device to avoid dealing with two functions (cosωt and sinωt)
separately (compare Section 14.1).

Because Eq. (15.82) has the form of a Fourier transform, we may solve forF(ω) by
writing the inverse transform,

F(ω)=
∫ ∞

−∞
f (t)e−iωt dt. (15.83)

Equation (15.83) represents aresolution of the pulse f (t) into its angular frequency com-
ponents. Equation (15.82) is asynthesis of the pulse from its components.

Consider some device, such as a servomechanism or a stereo amplifier (Fig. 15.6), with
an inputf (t) and an outputg(t). For an input of a single frequencyω,fω(t) = eiωt , the
amplifier will alter the amplitude and may also change the phase. The changes will proba-
bly depend on the frequency. Hence

gω(t)= ϕ(ω)fω(t). (15.84)

This amplitudes- and phase-modifying functionϕ(ω) is called atransfer function. It usu-
ally will be complex:

ϕ(ω)= u(ω)+ iv(ω), (15.85)

where the functionsu(ω) andv(ω) are real.
In Eq. (15.84) we assume that the transfer functionϕ(ω) is independent of input ampli-

tude and of the presence or absence of any other frequency components. That is, we are
assuming a linear mapping off (t) onto g(t). Then the total output may be obtained by
integrating over the entire input, as modified by the amplifier

g(t)= 1

2π

∫ ∞

−∞
ϕ(ω)F (ω)eiωtdω. (15.86)

The transfer function is characteristic of the amplifier. Once the transfer function is
known (measured or calculated), the outputg(t) can be calculated for any inputf (t).
Let us considerϕ(ω) as the Fourier (inverse) transform of some function�(t):

ϕ(ω)=
∫ ∞

−∞
�(t)e−iωt dt. (15.87)
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Then Eq. (15.86) is the Fourier transform of two inverse transforms. From Section 15.5 we
obtain the convolution

g(t)=
∫ ∞

−∞
f (τ)�(t − τ) dτ. (15.88)

Interpreting Eq. (15.88), we have an input — a “cause” —f (τ), modified by�(t − τ),
producing an output — an “effect” —g(t). Adopting the concept ofcausality — that the
cause precedes the effect — we must requireτ < t . We do this by requiring

�(t − τ)= 0, τ > t. (15.89)

Then Eq. (15.88) becomes

g(t)=
∫ t

−∞
f (τ)�(t − τ) dτ. (15.90)

The adoption of Eq. (15.89) has profound consequences here and equivalently in disper-
sion theory, Section 7.2.

Significance of (t)

To see the significance of�, let f (τ) be a sudden impulse starting atτ = 0,

f (τ)= δ(τ ),

whereδ(τ ) is a Dirac delta distribution on the positive side of the origin. Then Eq. (15.90)
becomes

g(t) =
∫ t

−∞
δ(τ )�(t − τ) dτ,

(15.91)

g(t) =
{
�(t), t > 0,
0, t < 0.

This identifies�(t) as the output function corresponding to a unit impulse att = 0. Equa-
tion (15.91) also serves to establish that�(t) is real. Our original transfer function gives
the steady-state output corresponding to a unit-amplitude single-frequency input.�(t) and
ϕ(ω) are Fourier transforms of each other.

From Eq. (15.87) we now have

ϕ(ω)=
∫ ∞

0
�(t)e−iωt dt, (15.92)

with the lower limit set equal to zero by causality (Eq. (15.89)). With�(t) real from
Eq. (15.91) we separate real and imaginary parts and write

u(ω) =
∫ ∞

0
�(t)cosωt dt,

(15.93)

v(ω) = −
∫ ∞

0
�(t)sinωt dt, ω > 0.
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From this we see that the real part ofϕ(ω),u(ω), is even, whereas the imaginary part of
ϕ(ω), v(ω), is odd:

u(−ω)= u(ω), v(−ω)=−v(ω).
Compare this result with Exercise 15.3.1.

Interpreting Eq. (15.93) as Fourier cosine and sine transforms, we have

�(t) = 2

π

∫ ∞

0
u(ω)cosωt dω

= − 2

π

∫ ∞

0
v(ω)sinωt dω, t > 0. (15.94)

Combining Eqs. (15.93) and (15.94), we obtain

v(ω)=−
∫ ∞

0
sinωt

{
2

π

∫ ∞

0
u(ω′)cosω′t dω′

}
dt, (15.95)

showing that if our transfer function has a real part, it will also have an imaginary part (and
vice versa). Of course, this assumes that the Fourier transforms exist, thus excluding cases
such as�(t)= 1.

The imposition of causality has led to a mutual interdependence of the real and imagi-
nary parts of the transfer function. The reader should compare this with the results of the
dispersion theory of Section 7.2, also involving causality.

It may be helpful to show that the parity properties ofu(ω) andv(ω) require�(t) to
vanish for negativet . Inverting Eq. (15.87), we have

�(t)= 1

2π

∫ ∞

−∞
[
u(ω)+ iv(ω)

][
cosωt + i sinωt

]
dω. (15.96)

With u(ω) even andv(ω) odd, Eq. (15.96) becomes

�(t)= 1

π

∫ ∞

0
u(ω)cosωt dω− 1

π

∫ ∞

0
v(ω)sinωt dω. (15.97)

From Eq. (15.94),∫ ∞

0
u(ω)cosωt dω=−

∫ ∞

0
v(ω)sinωt dω, t > 0. (15.98)

If we reverse the sign oft,sinωt reverses sign and, from Eq. (15.97),

�(t)= 0, t < 0

(demonstrating the internal consistency of our analysis).

Exercise

15.7.1 Derive the convolution

g(t)=
∫ ∞

−∞
f (τ)�(t − τ) dτ.
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15.8 LAPLACE TRANSFORMS

Definition

The Laplace transformf (s) or L of a functionF(t) is defined by11

f (s)= L
{
F(t)

}= lim
a→∞

∫ a

0
e−stF (t) dt =

∫ ∞

0
e−stF (t) dt. (15.99)

A few comments on the existence of the integral are in order. The infinite integral ofF(t),∫ ∞

0
F(t) dt,

need not exist. For instance,F(t) may diverge exponentially for larget . However, if there
is some constants0 such that ∣∣e−s0tF (t)

∣∣≤M, (15.100)

a positive constant for sufficiently larget, t > t0, the Laplace transform (Eq. (15.99)) will
exist for s > s0;F(t) is said to be ofexponential order. As a counterexample,F(t)= et

2

does not satisfy the condition given by Eq. (15.100) and isnot of exponential order.L{et2}
doesnot exist.

The Laplace transform may also fail to exist because of a sufficiently strong singularity
in the functionF(t) ast→ 0; that is,∫ ∞

0
e−st tn dt

diverges at the origin forn≤−1. The Laplace transformL{tn} does not exist forn≤−1.
Since, for two functionsF(t) andG(t), for which the integrals exist

L
{
aF(t)+ bG(t)

}= aL
{
F(t)

}+ bL
{
G(t)

}
, (15.101)

the operation denoted byL is linear.

Elementary Functions

To introduce the Laplace transform, let us apply the operation to some of the elementary
functions. In all cases we assume thatF(t)= 0 for t < 0. If

F(t)= 1, t > 0,

11This is sometimes called aone-sided Laplace transform; the integral from−∞ to+∞ is referred to as atwo-sided Laplace
transform. Some authors introduce an additional factor ofs. This extras appears to have little advantage and continually gets
in the way (compare Jeffreys and Jeffreys, Section 14.13 — see the Additional Readings — for additional comments). Generally,
we takes to be real and positive. It is possible to haves complex, provided�(s) > 0.
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then

L{1} =
∫ ∞

0
e−st dt = 1

s
, for s > 0. (15.102)

Again, let

F(t)= ekt , t > 0.

The Laplace transform becomes

L
{
ekt
}= ∫ ∞

0
e−st ekt dt = 1

s − k
, for s > k. (15.103)

Using this relation, we obtain the Laplace transform of certain other functions. Since

coshkt = 1

2

(
ekt + e−kt

)
, sinhkt = 1

2

(
ekt − e−kt

)
, (15.104)

we have

L{coshkt} = 1

2

(
1

s − k
+ 1

s + k

)
= s

s2− k2
,

(15.105)

L{sinhkt} = 1

2

(
1

s − k
− 1

s + k

)
= k

s2− k2
,

both valid fors > k. We have the relations

coskt = coshikt, sinkt =−i sinhikt. (15.106)

Using Eqs. (15.105) withk replaced byik, we find that the Laplace transforms are

L{coskt} = s

s2+ k2
,

(15.107)

L{sinkt} = k

s2+ k2
,

both valid for s > 0. Another derivation of this last transform is given in the next sec-
tion. Note that lims→0L{sinkt} = 1/k. The Laplace transform assigns a value of 1/k to∫∞

0 sinkt dt .
Finally, forF(t)= tn, we have

L
{
tn
}= ∫ ∞

0
e−st tn dt,

which is just the factorial function. Hence

L
{
tn
}= n!

sn+1
, s > 0, n >−1. (15.108)

Note that in all these transforms we have the variables in the denominator — negative
powers ofs. In particular, lims→∞ f (s)= 0. The significance of this point is that iff (s)
involves positive powers ofs (lims→∞ f (s)→∞), then no inverse transform exists.
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Inverse Transform

There is little importance to these operations unless we can carry out the inverse transform,
as in Fourier transforms. That is, with

L
{
F(t)

}= f (s),

then

L−1{f (s)}= F(t). (15.109)

This inverse transform isnot unique. Two functionsF1(t) andF2(t) may have the same
transform,f (s). However, in this case

F1(t)− F2(t)=N(t),

whereN(t) is a null function (Fig. 15.7), indicating that∫ t0

0
N(t) dt = 0,

for all positive t0. This result is known asLerch’s theorem. Therefore to the physicist
and engineerN(t) may almost always be taken as zero and the inverse operation becomes
unique.

The inverse transform can be determined in various ways. (1) A table of transforms can
be built up and used to carry out the inverse transformation, exactly as a table of logarithms
can be used to look up antilogarithms. The preceding transforms constitute the beginnings
of such a table. For a more complete set of Laplace transforms see upcoming Table 15.2
or AMS-55, Chapter 29 (see footnote 4 in Chapter 5 for the reference). Employing partial
fraction expansions and various operational theorems, which are considered in succeeding
sections, facilitates use of the tables.

• There is some justification for suspecting that these tables are probably of more value
in solving textbook exercises than in solving real-world problems.

• (2) A general technique forL−1 will be developed in Section 15.12 by using the cal-
culus of residues.

FIGURE 15.7 A possible null
function.
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• (3) For the difficulties and the possibilities of a numerical approach — numerical inver-
sion — we refer to the Additional Readings.

Partial Fraction Expansion

Utilization of a table of transforms (or inverse transforms) is facilitated by expandingf (s)

in partial fractions.
Frequentlyf (s), our transform, occurs in the formg(s)/h(s), whereg(s) andh(s) are

polynomials with no common factors,g(s) being of lower degree thanh(s). If the factors
of h(s) are all linear and distinct, then by the method of partial fractions we may write

f (s)= c1

s − a1
+ c2

s − a2
+ · · · + cn

s − an
, (15.110)

where theci are independent ofs. Theai are the roots ofh(s). If any one of the roots, say,
a1, is multiple (occurringm times), thenf (s) has the form

f (s)= c1,m

(s − a1)m
+ c1,m−1

(s − a1)m−1
+ · · · + c1,1

s − a1
+

n∑
i=2

ci

s − ai
. (15.111)

Finally, if one of the factors is quadratic,(s2 + ps + q), then the numerator, instead of
being a simple constant, will have the form

as + b

s2+ ps + q
.

There are various ways of determining the constants introduced. For instance, in
Eq. (15.110) we may multiply through by(s − ai) and obtain

ci = lim
s→ai

(s − ai)f (s). (15.112)

In elementary cases a direct solution is often the easiest.

Example 15.8.1 PARTIAL FRACTION EXPANSION

Let

f (s)= k2

s(s2+ k2)
= c

s
+ as + b

s2+ k2
. (15.113)

Putting the right side of the equation over a common denominator and equating like powers
of s in the numerator, we obtain

k2

s(s2+ k2)
= c(s2+ k2)+ s(as + b)

s(s2+ k2)
, (15.114)

c+ a = 0, s2; b= 0, s1; ck2= k2, s0.

Solving these(s 
= 0), we have

c= 1, b= 0, a =−1,
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giving

f (s)= 1

s
− s

s2+ k2
, (15.115)

and

L−1{f (s)}= 1− coskt (15.116)

by Eqs. (15.102) and (15.106). �

Example 15.8.2 A STEP FUNCTION

As one application of Laplace transforms, consider the evaluation of

F(t)=
∫ ∞

0

sintx

x
dx. (15.117)

Suppose we take the Laplace transform of this definite (and improper) integral:

L
{∫ ∞

0

sintx

x
dx

}
=
∫ ∞

0
e−st

∫ ∞

0

sintx

x
dx dt. (15.118)

Now, interchanging the order of integration (which is justified),12 we get∫ ∞

0

1

x

[∫ ∞

0
e−st sintx dt

]
dx =

∫ ∞

0

dx

s2+ x2
, (15.119)

since the factor in square brackets is just the Laplace transform of sintx. From the integral
tables, ∫ ∞

0

dx

s2+ x2
= 1

s
tan−1

(
x

s

)∣∣∣∣∞
0
= π

2s
= f (s). (15.120)

By Eq. (15.102) we carry out the inverse transformation to obtain

F(t)= π

2
, t > 0, (15.121)

in agreement with an evaluation by the calculus of residues (Section 7.1). It has been as-
sumed thatt > 0 in F(t). ForF(−t) we need note only that sin(−tx) = −sintx, giving
F(−t)=−F(t). Finally, if t = 0,F (0) is clearly zero. Therefore∫ ∞

0

sintx

x
dx = π

2

[
2u(t)− 1

]=


π
2 , t > 0

0, t = 0
−π

2 , t < 0.
(15.122)

Note that
∫∞

0 (sintx/x) dx, taken as a function oft , describes a step function (Fig. 15.8),
a step of heightπ at t = 0. This is consistent with Eq. (1.174). �

The technique in the preceding example was to (1) introduce a second integration —
the Laplace transform, (2) reverse the order of integration and integrate, and (3) take the

12See — in the Additional Readings — Jeffreys and Jeffreys (1966), Chapter 1 (uniform convergence of integrals).
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FIGURE 15.8 F(t)= ∫∞0 sintx
x

dx,
a step function.

inverse Laplace transform. There are many opportunities where this technique of reversing
the order of integration can be applied and proved useful. Exercise 15.8.6 is a variation of
this.

Exercises

15.8.1 Prove that

lim
s→∞ sf (s)= lim

t→+0
F(t).

Hint. Assume thatF(t) can be expressed asF(t)=∑∞
n=0ant

n.

15.8.2 Show that

1

π
lim
s→0

L{cosxt} = δ(x).

15.8.3 Verify that

L
{

cosat − cosbt

b2− a2

}
= s

(s2+ a2)(s2+ b2)
, a2 
= b2.

15.8.4 Using partial fraction expansions, show that

(a) L−1
{

1

(s + a)(s + b)

}
= e−at − e−bt

b− a
, a 
= b.

(b) L−1
{

s

(s + a)(s + b)

}
= ae−at − be−bt

a − b
, a 
= b.

15.8.5 Using partial fraction expansions, show that fora2 
= b2,

(a) L−1
{

1

(s2+ a2)(s2+ b2)

}
=− 1

a2− b2

{
sinat

a
− sinbt

b

}
,

(b) L−1
{

s2

(s2+ a2)(s2+ b2)

}
= 1

a2− b2
{a sinat − b sinbt}.
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15.8.6 The electrostatic potential of a charged conducting disk is known to have the general
form (circular cylindrical coordinates)

�(ρ, z)=
∫ ∞

0
e−k|z|J0(kρ)f (k) dk,

with f (k) unknown. At large distances(z →∞) the potential must approach the
Coulomb potentialQ/4πε0z. Show that

lim
k→0

f (k)= q

4πε0
.

Hint. You may setρ = 0 and assume a Maclaurin expansion off (k) or, usinge−kz,
construct a delta sequence.

15.8.7 Show that

(a)
∫ ∞

0

coss

sν
ds = π

2(ν − 1)!cos(νπ/2)
, 0< ν < 1,

(b)
∫ ∞

0

sins

sν
ds = π

2(ν − 1)!sin(νπ/2)
, 0< ν < 2,

Why isν restricted to (0, 1) for (a), to(0,2) for (b)? These integrals may be interpreted
as Fourier transforms ofs−ν and as Mellin transforms of sins and coss.
Hint. Replaces−ν by a Laplace transform integral:L{tν−1}/(ν − 1)!. Then integrate
with respect tos. The resulting integral can be treated as a beta function (Section 8.4).

15.8.8 A functionF(t) can be expanded in a power series (Maclaurin); that is,

F(t)=
∞∑
n=0

ant
n.

Then

L
{
F(t)

}= ∫ ∞

0
e−st

∞∑
n=0

ant
ndt =

∞∑
n=0

an

∫ ∞

0
e−st tndt.

Show thatf (s), the Laplace transform ofF(t), contains no powers ofs greater than
s−1. Check your result by calculatingL{δ(t)}, and comment on this fiasco.

15.8.9 Show that the Laplace transform ofM(a, c, x) is

L
{
M(a, c, x)

}= 1

s
2F1

(
a,1; c, 1

s

)
.

15.9 LAPLACE TRANSFORM OF DERIVATIVES

Perhaps the main application of Laplace transforms is in converting differential equations
into simpler forms that may be solved more easily. It will be seen, for instance, that coupled
differential equations with constant coefficients transform to simultaneous linear algebraic
equations.
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Let us transform the first derivative ofF(t):

L
{
F ′(t)

}= ∫ ∞

0
e−st dF (t)

dt
dt.

Integrating by parts, we obtain

L
{
F ′(t)

} = e−stF (t)

∣∣∣∞
0
+ s

∫ ∞

0
e−stF (t) dt

= sL
{
F(t)

}− F(0). (15.123)

Strictly speaking,F(0)= F(+0)13anddF/dt is required to be at least piecewise contin-
uous for 0≤ t <∞. Naturally, bothF(t) and its derivative must be such that the integrals
do not diverge. Incidentally, Eq. (15.123) provides another proof of Exercise 15.8.8. An
extension gives

L
{
F (2)(t)

} = s2L
{
F(t)

}− sF (+0)− F ′(+0), (15.124)

L
{
F (n)(t)

} = snL
{
F(t)

}− sn−1F(+0)− · · · − F (n−1)(+0). (15.125)

The Laplace transform, like the Fourier transform, replaces differentiation with multi-
plication. In the following examples ODEs become algebraic equations. Here is the power
and the utility of the Laplace transform. But see Example 15.10.3 for what may happen if
the coefficients are not constant.

Note how the initial conditions,F(+0),F ′(+0), and so on, are incorporated into the
transform. Equation (15.124) may be used to deriveL{sinkt}. We use the identity

−k2 sinkt = d2

dt2
sinkt. (15.126)

Then applying the Laplace transform operation, we have

−k2L{sinkt} = L
{
d2

dt2
sinkt

}
= s2L{sinkt} − s sin(0)− d

dt
sinkt

∣∣∣
t=0

. (15.127)

Since sin(0)= 0 andd/dt sinkt |t=0= k,

L{sinkt} = k

s2+ k2
, (15.128)

verifying Eq. (15.107).

13Zero is approached from the positive side.
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Example 15.9.1 SIMPLE HARMONIC OSCILLATOR

As a physical example, consider a massm oscillating under the influence of an ideal spring,
spring constantk. As usual, friction is neglected. Then Newton’s second law becomes

m
d2X(t)

dt2
+ kX(t)= 0; (15.129)

also, we take as initial conditions

X(0)=X0, X′(0)= 0.

Applying the Laplace transform, we obtain

mL
{
d2X

dt2

}
+ kL

{
X(t)

}= 0, (15.130)

and by use of Eq. (15.124) this becomes

ms2x(s)−msX0+ kx(s)= 0, (15.131)

x(s)=X0
s

s2+ω2
0

, with ω2
0 ≡

k

m
. (15.132)

From Eq. (15.107) this is seen to be the transform of cosω0t , which gives

X(t)=X0 cosω0t, (15.133)

as expected. �

Example 15.9.2 EARTH’S NUTATION

A somewhat more involved example is the nutation of the earth’s poles (force-free pre-
cession). If we treat the Earth as a rigid (oblate) spheroid, the Euler equations of motion
reduce to

dX

dt
=−aY, dY

dt
=+aX, (15.134)

where a ≡ [(Iz − Ix)/Iz]ωz, X = ωx , Y = ωy with angular velocity vectorω =
(ωx,ωy,ωz) (Fig. 15.9),Iz = moment of inertia about thez-axis andIy = Ix moment
of inertia about thex- (or y-)axis. Thez-axis coincides with the axis of symmetry of the
Earth. It differs from the axis for the Earth’s daily rotation,ω, by some 15 meters, measured
at the poles. Transformation of these coupled differential equations yields

sx(s)−X(0)=−ay(s), sy(s)− Y(0)= ax(s). (15.135)

Combining to eliminatey(s), we have

s2x(s)− sX(0)+ aY (0)=−a2x(s),

or

x(s)=X(0)
s

s2+ a2
− Y(0)

a

s2+ a2
. (15.136)
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FIGURE 15.9

Hence

X(t)=X(0)cosat − Y(0)sinat. (15.137)

Similarly,

Y(t)=X(0)sinat + Y(0)cosat. (15.138)

This is seen to be a rotation of the vector(X,Y ) counterclockwise (fora > 0) about the
z-axis with angleθ = at and angular velocitya.

A direct interpretation may be found by choosing the time axis so thatY(0)= 0. Then

X(t)=X(0)cosat, Y (t)=X(0)sinat, (15.139)

which are the parametric equations for rotation of(X,Y ) in a circular orbit of radiusX(0),
with angular velocitya in the counterclockwise sense.

In the case of the Earth’s angular velocity, vectorX(0) is about 15 meters, whereas
a, as defined here, corresponds to a period(2π/a) of some 300 days. Actually because
of departures from the idealized rigid body assumed in setting up Euler’s equations, the
period is about 427 days.14 If in Eq. (15.134) we set

X(t)= Lx, Y (t)= Ly,

whereLx andLy are thex- andy-components of the angular momentumL, a =−gLBz,
gL is the gyromagnetic ratio, andBz is the magnetic field (along thez-axis), then
Eq. (15.134) describes the Larmor precession of charged bodies in a uniform magnetic
field Bz. �

14D. Menzel, ed.,Fundamental Formulas of Physics, Englewood Cliffs, NJ: Prentice-Hall (1955), reprinted, 2nd ed., Dover
(1960), p. 695.
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Dirac Delta Function

For use with differential equations one further transform is helpful — the Dirac delta func-
tion:15

L
{
δ(t − t0)

}= ∫ ∞

0
e−st δ(t − t0) dt = e−st0, for t0≥ 0, (15.140)

and fort0= 0

L
{
δ(t)

}= 1, (15.141)

where it is assumed that we are using a representation of the delta function such that∫ ∞

0
δ(t) dt = 1, δ(t)= 0, for t > 0. (15.142)

As an alternate method,δ(t) may be considered the limit asε→ 0 of F(t), where

F(t)=


0, t < 0,
ε−1, 0< t < ε,

0, t > ε.

(15.143)

By direct calculation

L
{
F(t)

}= 1− e−εs

εs
. (15.144)

Taking the limit of the integral (instead of the integral of the limit), we have

lim
ε→0

L
{
F(t)

}= 1,

or Eq. (15.141),

L
{
δ(t)

}= 1.

This delta function is frequently called theimpulse function because it is so useful in
describing impulsive forces, that is, forces lasting only a short time.

Example 15.9.3 IMPULSIVE FORCE

Newton’s second law for impulsive force acting on a particle of massm becomes

m
d2X

dt2
= Pδ(t), (15.145)

whereP is a constant. Transforming, we obtain

ms2x(s)−msX(0)−mX′(0)= P. (15.146)

15Strictly speaking, the Dirac delta function is undefined. However, the integral over it is well defined. This approach is developed
in Section 1.16 using delta sequences.
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For a particle starting from rest,X′(0)= 0.16 We shall also takeX(0)= 0. Then

x(s)= P

ms2
, (15.147)

and

X(t) = P

m
t, (15.148)

dX(t)

dt
= P

m
, a constant. (15.149)

The effect of the impulsePδ(t) is to transfer (instantaneously)P units of linear momentum
to the particle.

A similar analysis applies to the ballistic galvanometer. The torque on the galvanometer
is given initially bykι, in which ι is a pulse of current andk is a proportionality constant.
Sinceι is of short duration, we set

kι= kq δ(t), (15.150)

whereq is the total charge carried by the currentι. Then, withI the moment of inertia,

I
d2θ

dt2
= kq δ(t), (15.151)

and, transforming as before, we find that the effect of the current pulse is a transfer ofkq

units ofangular momentum to the galvanometer. �

Exercises

15.9.1 Use the expression for the transform of a second derivative to obtain the transform of
coskt .

15.9.2 A massm is attached to one end of an unstretched spring, spring constantk (Fig. 15.10).
At time t = 0 the free end of the spring experiences a constant accelerationa, away from
the mass. Using Laplace transforms,

FIGURE 15.10 Spring.

16This should beX′(+0). To include the effect of the impulse, consider that the impulse will occur att = ε and letε→ 0.
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(a) Find the positionx of m as a function of time.
(b) Determine the limiting form ofx(t) for small t .

ANS. (a) x = 1

2
at2− a

ω2
(1− cosωt), ω2= k

m
,

(b) x = aω2

4! t4, ωt � 1.

15.9.3 Radioactive nuclei decay according to the law

dN

dt
=−λN,

N being the concentration of a given nuclide andλ being the particular decay constant.
This equation may be interpreted as stating that the rate of decay is proportional to the
number of these radioactive nuclei present. They all decay independently.
In a radioactive series ofn different nuclides, starting withN1,

dN1

dt
= −λ1N1,

dN2

dt
= λ1N1− λ2N2, and so on.

dNn

dt
= λn−1Nn−1, stable.

FindN1(t),N2(t), N3(t), n= 3, withN1(0)=N0, N2(0)=N3(0)= 0.

ANS.N1(t)=N0e
−λ1t , N2(t)=N0

λ1

λ2− λ1

(
e−λ1t − e−λ2t

)
,

N3(t)=N0

(
1− λ2

λ2− λ1
e−λ1t + λ1

λ2− λ1
e−λ2t

)
.

Find an approximate expression forN2 andN3, valid for smallt whenλ1≈ λ2.

ANS.N2≈N0λ1t , N3≈ N0

2
λ1λ2t

2.

Find approximate expressions forN2 andN3, valid for larget , when

(a) λ1� λ2,
(b) λ1� λ2.

ANS. (a)N2≈N0e
−λ2t ,

N3≈N0
(
1− e−λ2t

)
, λ1t � 1.

(b) N2≈N0
λ1
λ2
e−λ1t ,

N3≈N0
(
1− e−λ1t

)
, λ2t � 1.

15.9.4 The formation of an isotope in a nuclear reactor is given by

dN2

dt
= nvσ1N10− λ2N2(t)− nvσ2N2(t).
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Here the productnv is the neutron flux, neutrons per cubic centimeter, times centimeters
per second mean velocity;σ1 andσ2 (cm2) are measures of the probability of neutron
absorption by the original isotope, concentrationN10, which is assumed constant and
the newly formed isotope, concentrationN2, respectively. The radioactive decay con-
stant for the isotope isλ2.

(a) Find the concentrationN2 of the new isotope as a function of time.
(b) If the original element is Eu153, σ1 = 400 barns= 400× 10−24 cm2, σ2 =

1000 barns= 1000× 10−24 cm2, andλ2 = 1.4× 10−9 s−1. If N10= 1020 and
(nv) = 109 cm−2 s−1, find N2, the concentration of Eu154 after one year of con-
tinuous irradiation. Is the assumption thatN1 is constant justified?

15.9.5 In a nuclear reactor Xe135 is formed as both a direct fission product and a decay product
of I135, half-life, 6.7 hours. The half-life of Xe135 is 9.2 hours. Because Xe135 strongly
absorbs thermal neutrons thereby “poisoning” the nuclear reactor, its concentration is a
matter of great interest. The relevant equations are

dNI

dt
= γIϕσfNU − λINI ,

dNX

dt
= λINI + γXϕσfNU − λXNX − ϕσXNX.

HereNI = concentration of I135 (Xe135, U235). Assume

NU = constant,

γI = yield of I135 per fission= 0.060,

γX = yield of Xe135 direct from fission= 0.003,

λI = I135 (Xe135
)

decay constant= ln 2

t1/2
= 0.693

t1/2
,

σf = thermal neutron fission cross section for U235,

σX = thermal neutron absorption cross section for Xe135

= 3.5× 106 barns= 3.5× 10−18 cm2.

(σI the absorption cross section of I135, is negligible.)

ϕ = neutron flux= neutrons/cm3×mean velocity (cm/s).

(a) FindNX(t) in terms of neutron fluxϕ and the productσfNU .
(b) FindNX(t→∞).
(c) AfterNX has reached equilibrium, the reactor is shut down,ϕ = 0. FindNX(t) fol-

lowing shutdown. Notice the increase inNX, which may for a few hours interfere
with starting the reactor up again.
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15.10 OTHER PROPERTIES

Substitution

If we replace the parameters by s − a in the definition of the Laplace transform
(Eq. (15.99)), we have

f (s − a) =
∫ ∞

0
e−(s−a)tF (t) dt =

∫ ∞

0
e−st eatF (t) dt

= L
{
eatF (t)

}
. (15.152)

Hence the replacement ofs with s − a corresponds to multiplyingF(t) by eat , and con-
versely. This result can be used to good advantage in extending our table of transforms.
From Eq. (15.107) we find immediately that

L
{
eatsinkt

}= k

(s − a)2+ k2
; (15.153)

also,

L
{
eatcoskt

}= s − a

(s − a)2+ k2
, s > a.

Example 15.10.1 DAMPED OSCILLATOR

These expressions are useful when we consider an oscillating mass with damping propor-
tional to the velocity. Equation (15.129), with such damping added, becomes

mX′′(t)+ bX′(t)+ kX(t)= 0, (15.154)

in which b is a proportionality constant. Let us assume that the particle starts from rest at
X(0)=X0, X′(0)= 0. The transformed equation is

m
[
s2x(s)− sX0

]+ b
[
sx(s)−X0

]+ kx(s)= 0, (15.155)

and

x(s)=X0
ms + b

ms2+ bs + k
. (15.156)

This may be handled by completing the square of the denominator:

s2+ b

m
s + k

m
=
(
s + b

2m

)2

+
(
k

m
− b2

4m2

)
. (15.157)

If the damping is small,b2 < 4 km, the last term is positive and will be denoted byω2
1:

x(s) = X0
s + b/m

(s + b/2m)2+ω2
1

= X0
s + b/2m

(s + b/2m)2+ω2
1

+X0
(b/2mω1)ω1

(s + b/2m)2+ω2
1

. (15.158)
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By Eq. (15.153),

X(t) = X0e
−(b/2m)t

(
cosω1t + b

2mω1
sinω1t

)
= X0

ω0

ω1
e−(b/2m)t cos(ω1t − ϕ), (15.159)

where

tanϕ = b

2mω1
, ω2

0 =
k

m
.

Of course, asb→ 0, this solution goes over to the undamped solution (Section 15.9).�

RLC Analog

It is worth noting the similarity between this damped simple harmonic oscillation of a mass
on a spring and anRLC circuit (resistance, inductance, and capacitance) (Fig. 15.11). At
any instant the sum of the potential differences around the loop must be zero (Kirchhoff’s
law, conservation of energy). This gives

L
dI

dt
+RI + 1

C

∫ t

I dt = 0. (15.160)

Differentiating the currentI with respect to time (to eliminate the integral), we have

L
d2I

dt2
+R

dI

dt
+ 1

C
I = 0. (15.161)

If we replaceI (t) with X(t),L with m,R with b, andC−1 with k, then Eq. (15.161) is
identical with the mechanical problem. It is but one example of the unification of diverse
branches of physics by mathematics. A more complete discussion will be found in Olson’s
book.17

FIGURE 15.11 RLC circuit.

17H. F. Olson,Dynamical Analogies, New York: Van Nostrand (1943).
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FIGURE 15.12 Translation.

Translation

This time letf (s) be multiplied bye−bs, b > 0:

e−bsf (s) = e−bs
∫ ∞

0
e−stF (t) dt

=
∫ ∞

0
e−s(t+b)F (t) dt. (15.162)

Now let t + b= τ . Equation (15.162) becomes

e−bsf (s) =
∫ ∞

b

e−sτF (τ − b)dτ

=
∫ ∞

0
e−sτF (τ − b)u(τ − b)dτ, (15.163)

whereu(τ −b) is the unit step function. This relation is often called theHeaviside shifting
theorem (Fig. 15.12).

SinceF(t) is assumed to be equal to zero fort < 0, F(τ − b) = 0 for 0≤ τ < b.
Therefore we can extend the lower limit to zero without changing the value of the integral.
Then, noting thatτ is only a variable of integration, we obtain

e−bsf (s)= L
{
F(t − b)

}
. (15.164)

Example 15.10.2 ELECTROMAGNETIC WAVES

The electromagnetic wave equation withE = Ey or Ez, a transverse wave propagating
along thex-axis, is

∂2E(x, t)

∂x2
− 1

v2

∂2E(x, t)

∂t2
= 0. (15.165)

Transforming this equation with respect tot , we get

∂2

∂x2
L
{
E(x, t)

}− s2

v2
L
{
E(x, t)

}+ s

v2
E(x,0)+ 1

v2

∂E(x, t)

∂t

∣∣∣∣
t=0
= 0. (15.166)
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If we have the initial conditionE(x,0)= 0 and

∂E(x, t)

∂t

∣∣∣∣
t=0
= 0,

then

∂2

∂x2
L
{
E(x, t)

}= s2

v2
L
{
E(x, t)

}
. (15.167)

The solution (of thisODE) is

L
{
E(x, t)

}= c1e
−(s/v)x + c2e

+(s/v)x . (15.168)

The “constants”c1 and c2 are obtained by additional boundary conditions. They are
constant with respect tox but may depend ons. If our wave remains finite asx →
∞,L{E(x, t)} will also remain finite. Hencec2 = 0. If E(0, t) is denoted byF(t), then
c1= f (s) and

L
{
E(x, t)

}= e−(s/v)xf (s). (15.169)

From the translation property (Eq. (15.164)) we find immediately that

E(x, t)=
{
F
(
t − x

v

)
, t ≥ x

v
,

0, t < x
v
.

(15.170)

Differentiation and substitution into Eq. (15.165) verifies Eq. (15.170). Our solution rep-
resents a wave (or pulse) moving in the positivex-direction with velocityv. Note that for
x > vt the region remains undisturbed; the pulse has not had time to get there. If we had
wanted a signal propagated along the negativex-axis,c1 would have been set equal to 0
and we would have obtained

E(x, t)=
{
F
(
t + x

v

)
, t ≥− x

v
,

0, t <− x
v
,

(15.171)

a wave along the negativex-axis. �

Derivative of a Transform

WhenF(t), which is at least piecewise continuous, ands are chosen so thate−stF (t)

converges exponentially for larges, the integral∫ ∞

0
e−stF (t) dt

is uniformly convergent and may be differentiated (under the integral sign) with respect
to s. Then

f ′(s)=
∫ ∞

0
(−t)e−stF (t) dt = L

{−tF (t)
}
. (15.172)

Continuing this process, we obtain

f (n)(s)= L
{
(−t)nF (t)

}
. (15.173)
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All the integrals so obtained will be uniformly convergent because of the decreasing expo-
nential behavior ofe−stF (t).

This same technique may be applied to generate more transforms. For example,

L
{
ekt
}= ∫ ∞

0
e−st ekt dt = 1

s − k
, s > k. (15.174)

Differentiating with respect tos (or with respect tok), we obtain

L
{
tekt

}= 1

(s − k)2
, s > k. (15.175)

Example 15.10.3 BESSEL’S EQUATION

An interesting application of a differentiated Laplace transform appears in the solution of
Bessel’s equation withn= 0. From Chapter 11 we have

x2y′′(x)+ xy′(x)+ x2y(x)= 0. (15.176)

Dividing by x and substitutingt = x andF(t)= y(x) to agree with the present notation,
we see that the Bessel equation becomes

tF ′′(t)+ F ′(t)+ tF (t)= 0. (15.177)

We need a regular solution, in particular,F(0) = 1. From Eq. (15.177) witht = 0,
F ′(+0)= 0. Also, we assume that our unknownF(t) has a transform. Transforming and
using Eqs. (15.123), (15.124), and (15.172), we have

− d

ds

[
s2f (s)− s

]+ sf (s)− 1− d

ds
f (s)= 0. (15.178)

Rearranging Eq. (15.178), we obtain(
s2+ 1

)
f ′(s)+ sf (s)= 0, (15.179)

or
df

f
=− s ds

s2+ 1
, (15.180)

a first-order ODE. By integration,

lnf (s)=−1
2 ln

(
s2+ 1

)+ lnC, (15.181)

which may be rewritten as

f (s)= C√
s2+ 1

. (15.182)

To make use of Eq. (15.108), we expandf (s) in a series of negative powers ofs, conver-
gent fors > 1:

f (s) = C

s

(
1+ 1

s2

)−1/2

= C

s

[
1− 1

2s2
+ 1 · 3

22 · 2!s4
− · · · + (−1)n(2n)!

(2nn!)2s2n
+ · · ·

]
. (15.183)
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Inverting, term by term, we obtain

F(t)= C

∞∑
n=0

(−1)nt2n

(2nn!)2 . (15.184)

WhenC is set equal to 1, as required by the initial conditionF(0)= 1, F(t) is justJ0(t),
our familiar Bessel function of order zero. Hence

L
{
J0(t)

}= 1√
s2+ 1

. (15.185)

Note that we assumeds > 1. The proof fors > 0 is left as a problem.
It is worth noting that this application was successful and relatively easy because we

took n = 0 in Bessel’s equation. This made it possible to divide out a factor ofx (or t).
If this had not been done, the terms of the formt2F(t) would have introduced a second
derivative off (s). The resulting equation would have been no easier to solve than the
original one.

When we go beyond linear ODEs with constant coefficients, the Laplace transform may
still be applied, but there is no guarantee that it will be helpful.

The application to Bessel’s equation,n 
= 0, will be found in the references. Alterna-
tively, we can show that

L
{
Jn(at)

}= a−n(
√
s2+ a2− s)n√
s2+ a2

(15.186)

by expressingJn(t) as an infinite series and transforming term by term. �

Integration of Transforms

Again, withF(t) at least piecewise continuous andx large enough so thate−xtF (t) de-
creases exponentially (asx→∞), the integral

f (x)=
∫ ∞

0
e−xtF (t) dt (15.187)

is uniformly convergent with respect tox. This justifies reversing the order of integration
in the following equation:∫ b

s

f (x) dx =
∫ b

s

dx

∫ ∞

0
dt e−xtF (t)

=
∫ ∞

0

F(t)

t

(
e−st − e−bt

)
dt, (15.188)

on integrating with respect tox. The lower limits is chosen large enough so thatf (s) is
within the region of uniform convergence. Now lettingb→∞, we have∫ ∞

s

f (x) dx =
∫ ∞

0

F(t)

t
e−st dt = L

{
F(t)

t

}
, (15.189)

provided thatF(t)/t is finite att = 0 or diverges less strongly thant−1 (so thatL{F(t)/t}
will exist).
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Limits of Integration — Unit Step Function

The actual limits of integration for the Laplace transform may be specified with the (Heav-
iside) unit step function

u(t − k)=
{

0, t < k

1, t > k.

For instance,

L
{
u(t − k)

}= ∫ ∞

k

e−st dt = 1

s
e−ks .

A rectangular pulse of widthk and unit height is described byF(t) = u(t) − u(t − k).
Taking the Laplace transform, we obtain

L
{
u(t)− u(t − k)

}= ∫ k

0
e−st dt = 1

s

(
1− e−ks

)
.

The unit step function is also used in Eq. (15.163) and could be invoked in Exer-
cise 15.10.13.

Exercises

15.10.1 Solve Eq. (15.154), which describes a damped simple harmonic oscillator forX(0) =
X0, X′(0)= 0, and

(a) b2= 4 km (critically damped),
(b) b2 > 4 km (overdamped).

ANS. (a) X(t)=X0e
−(b/2m)t

(
1+ b

2m
t

)
.

15.10.2 Solve Eq. (15.154), which describes a damped simple harmonic oscillator forX(0)= 0,
X′(0)= v0, and

(a) b2 < 4 km (underdamped),
(b) b2= 4 km (critically damped),
(c) b2 > 4 km (overdamped).

ANS. (a)X(t)= v0

ω1
e−(b/2m)t sinω1t ,

(b) X(t)= v0te
−(b/2m)t .

15.10.3 The motion of a body falling in a resisting medium may be described by

m
d2X(t)

dt2
=mg − b

dX(t)

dt
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FIGURE 15.13 Ringing circuit.

when the retarding force is proportional to the velocity. FindX(t) anddX(t)/dt for the
initial conditions

X(0)= dX

dt

∣∣∣∣
t=0
= 0.

15.10.4 Ringing circuit. In certain electronic circuits, resistance, inductance, and capacitance
are placed in the plate circuit in parallel (Fig. 15.13). A constant voltage is maintained
across the parallel elements, keeping the capacitor charged. At timet = 0 the circuit
is disconnected from the voltage source. Find the voltages across the parallel elements
R,L, andC as a function of time. AssumeR to be large.
Hint. By Kirchhoff’s laws

IR + IC + IL = 0 and ER =EC =EL,

where

ER = IRR, EL = L
dIL

dt

EC = q0

C
+ 1

C

∫ t

0
IC dt,

q0 = initial charge of capacitor.

With the DC impedance ofL= 0, letIL(0)= I0, EL(0)= 0. This meansq0= 0.

15.10.5 With J0(t) expressed as a contour integral, apply the Laplace transform operation, re-
verse the order of integration, and thus show that

L
{
J0(t)

}= (s2+ 1
)−1/2

, for s > 0.

15.10.6 Develop the Laplace transform ofJn(t) from L{J0(t)} by using the Bessel function
recurrence relations.
Hint. Here is a chance to use mathematical induction.

15.10.7 A calculation of the magnetic field of a circular current loop in circular cylindrical
coordinates leads to the integral∫ ∞

0
e−kzkJ1(ka) dk, �(z)≥ 0.

Show that this integral is equal toa/(z2+ a2)3/2.
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15.10.8 The electrostatic potential of a point chargeq at the origin in circular cylindrical coor-
dinates is

q

4πε0

∫ ∞

0
e−kzJ0(kρ)dk = q

4πε0
· 1

(ρ2+ z2)1/2
, �(z)≥ 0.

From this relation show that the Fourier cosine and sine transforms ofJ0(kρ) are

(a)

√
π

2
Fc

{
J0(kρ)

}= ∫ ∞

0
J0(kρ)coskζ dk =

{(
ρ2− ζ 2

)−1/2
, ρ > ζ,

0, ρ < ζ.

(b)

√
π

2
Fs

{
J0(kρ)

}= ∫ ∞

0
J0(kρ)sinkζ dk =

{
0, ρ > ζ,(
ρ2− ζ 2

)−1/2
, ρ < ζ.

Hint. Replacez by z+ iζ and take the limit asz→ 0.

15.10.9 Show that

L
{
I0(at)

}= (s2− a2)−1/2
, s > a.

15.10.10 Verify the following Laplace transforms:

(a) L
{
j0(at)

}= L
{

sinat

at

}
= 1

a
cot−1

(
s

a

)
,

(b) L
{
n0(at)

}
does not exist,

(c) L
{
i0(at)

}= L
{

sinhat

at

}
= 1

2a
ln

s + a

s − a
= 1

a
coth−1

(
s

a

)
,

(d) L
{
k0(at)

}
does not exist.

15.10.11 Develop a Laplace transform solution of Laguerre’s equation

tF ′′(t)+ (1− t)F ′(t)+ nF(t)= 0.

Note that you need a derivative of a transform and a transform of derivatives. Go as far
as you can withn; then (and only then) setn= 0.

15.10.12 Show that the Laplace transform of the Laguerre polynomialLn(at) is given by

L
{
Ln(at)

}= (s − a)n

sn+1
, s > 0.

15.10.13 Show that

L
{
E1(t)

}= 1

s
ln(s + 1), s > 0,

where

E1(t)=
∫ ∞

t

e−τ

τ
dτ =

∫ ∞

1

e−xt

x
dx.

E1(t) is the exponential-integral function.
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15.10.14 (a) From Eq. (15.189) show that∫ ∞

0
f (x)dx =

∫ ∞

0

F(t)

t
dt,

provided the integrals exist.
(b) From the preceding result show that∫ ∞

0

sint

t
dt = π

2
,

in agreement with Eqs. (15.122) and (7.56).

15.10.15 (a) Show that

L
{

sinkt

t

}
= cot−1

(
s

k

)
.

(b) Using this result (withk = 1), prove that

L
{
si(t)

}=−1

s
tan−1 s,

where

si(t)=−
∫ ∞

t

sinx

x
dx, the sine integral.

15.10.16 If F(t) is periodic (Fig. 15.14) with a perioda so thatF(t + a) = F(t) for all t ≥ 0,
show that

L
{
F(t)

}= ∫ a

0 e−stF (t) dt

1− e−as
,

with the integration now over only thefirst period of F(t).

15.10.17 Find the Laplace transform of the square wave (perioda) defined by

F(t)=
{

1, 0< t < a
2

0, a
2 < t < a.

ANS. f (s)= 1

s
· 1− e−as/2

1− e−as
.

FIGURE 15.14 Periodic function.
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15.10.18 Show that

(a) L{coshat cosat} = s3

s4+ 4a4
, (c) L{sinhat cosat} = as2− 2a3

s4+ 4a4
,

(b) L{coshat sinat} = as2+ 2a3

s4+ 4a4
, (d) L{sinhat sinat} = 2a2s

s4+ 4a4
.

15.10.19 Show that

(a) L−1{(s2+ a2)−2}= 1

2a3
sinat − 1

2a2
t cosat ,

(b) L−1{s(s2+ a2)−2}= 1

2a
t sinat ,

(c) L−1{s2(s2+ a2)−2}= 1

2a
sinat + 1

2
t cosat ,

(d) L−1{s3(s2+ a2)−2}= cosat − a

2
t sinat .

15.10.20 Show that

L
{(
t2− k2)−1/2

u(t − k)
}=K0(ks).

Hint. Try transforming an integral representation ofK0(ks) into the Laplace transform
integral.

15.10.21 The Laplace transform ∫ ∞

0
e−xsxJ0(x) dx = s

(s2+ 1)3/2

may be rewritten as

1

s2

∫ ∞

0
e−yyJ0

(
y

s

)
dy = s

(s2+ 1)3/2
,

which is in Gauss–Laguerre quadrature form. Evaluate this integral fors = 1.0,0.9,0.8,
. . . , decreasings in steps of 0.1 until the relative error rises to 10 percent. (The effect
of decreasings is to make the integrand oscillate more rapidly per unit length ofy, thus
decreasing the accuracy of the numerical quadrature.)

15.10.22 (a) Evaluate ∫ ∞

0
e−kzkJ1(ka) dk

by the Gauss–Laguerre quadrature. Takea = 1 andz= 0.1(0.1)1.0.
(b) From the analytic form, Exercise 15.10.7, calculate the absolute error and the rel-

ative error.
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15.11 CONVOLUTION (FALTUNGS) THEOREM

One of the most important properties of the Laplace transform is that given by the convo-
lution, or Faltungs, theorem.18 We take two transforms,

f1(s)= L
{
F1(t)

}
and f2(s)= L

{
F2(t)

}
, (15.190)

and multiply them together. To avoid complications when changing variables, we hold the
upper limits finite:

f1(s)f2(s)= lim
a→∞

∫ a

0
e−sxF1(x) dx

∫ a−x

0
e−syF2(y) dy. (15.191)

The upper limits are chosen so that the area of integration, shown in Fig. 15.15a, is the
shaded triangle, not the square. If we integrate over a square in thexy-plane, we have
a parallelogram in thetz-plane, which simply adds complications. This modification is
permissible because the two integrands are assumed to decrease exponentially. In the limit
a→∞, the integral over the unshaded triangle will give zero contribution. Substituting
x = t − z, y = z, the region of integration is mapped into the triangle shown in Fig. 15.15b.
To verify the mapping, map the vertices:t = x + y, z = y. Using Jacobians to transform
the element of area, we have

dx dy =

∣∣∣∣∣∣∣∣
∂x

∂t

∂y

∂t

∂x

∂z

∂y

∂z

∣∣∣∣∣∣∣∣dt dz=
∣∣∣∣ 1 0
−1 1

∣∣∣∣ dt dz (15.192)

or dx dy = dt dz. With this substitution Eq. (15.191) becomes

f1(s)f2(s) = lim
a→∞

∫ a

0
e−st

∫ t

0
F1(t − z)F2(z) dz dt

= L
{∫ t

0
F1(t − z)F2(z) dz

}
. (15.193)

a b

FIGURE 15.15
Change of variables,

(a)xy-plane (b)zt-plane.

18An alternate derivation employs the Bromwich integral (Section 15.12). This is Exercise 15.12.3.



15.11 Convolution (Faltungs) Theorem 991

For convenience this integral is represented by the symbol∫ t

0
F1(t − z)F2(z) dz≡ F1 ∗ F2 (15.194)

and referred to as theconvolution, closely analogous to the Fourier convolution (Sec-
tion 15.5). If we substitutew = t − z, we find

F1 ∗ F2= F2 ∗ F1, (15.195)

showing that the relation is symmetric.
Carrying out the inverse transform, we also find

L−1{f1(s)f2(s)
}= ∫ t

0
F1(t − z)F2(z) dz. (15.196)

This can be useful in the development of new transforms or as an alternative to a partial
fraction expansion. One immediate application is in the solution of integral equations (Sec-
tion 16.2). Since the upper limit,t , is variable, this Laplace convolution is useful in treating
Volterra integral equations. The Fourier convolution with fixed (infinite) limits would apply
to Fredholm integral equations.

Example 15.11.1 DRIVEN OSCILLATOR WITH DAMPING

As one illustration of the use of the convolution theorem, let us return to the massm on
a spring, with damping and a driving forceF(t). The equation of motion ((15.129) or
(15.154)) now becomes

mX′′(t)+ bX′(t)+ kX(t)= F(t). (15.197)

Initial conditionsX(0)= 0,X′(0)= 0 are used to simplify this illustration, and the trans-
formed equation is

ms2x(s)+ bs x(s)+ kx(s)= f (s), (15.198)

or

x(s)= f (s)

m

1

(s + b/2m)2+ω2
1

, (15.199)

whereω2
1 ≡ k/m− b2/4m2, as before.

By the convolution theorem (Eq. (15.193) or (15.196)),

X(t)= 1

mω1

∫ t

0
F(t − z)e−(b/2m)z sinω1z dz. (15.200)

If the force is impulsive,F(t)= Pδ(t),19

X(t)= P

mω1
e−(b/2m)t sinω1t. (15.201)

19Note thatδ(t) lies inside the interval[0, t].
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P represents the momentum transferred by the impulse, and the constantP/m takes the
place of an initial velocityX′(0).

If F(t)= F0 sinωt , Eq. (15.200) may be used, but a partial fraction expansion is perhaps
more convenient. With

f (s)= F0ω

s2+ω2

Eq. (15.199) becomes

x(s) = F0ω

m
· 1

s2+ω2
· 1

(s + b/2m)2+ω2
1

= F0ω

m

[
a′s + b′

s2+ω2
+ c′s + d ′

(s + b/2m)2+ω2
1

]
. (15.202)

The coefficientsa′, b′, c′, andd ′ are independent ofs. Direct calculation shows

− 1

a′
= b

m
ω2+ m

b

(
ω2

0−ω2)2,
− 1

b′
= −m

b

(
ω2

0−ω2)[ b

m
ω2+ m

b

(
ω2

0−ω2)2].
Sincec′ andd ′ will lead to exponentially decreasing terms (transients), they will be dis-
carded here. Carrying out the inverse operation, we find for the steady-state solution

X(t)= F0

[b2ω2+m2(ω2
0−ω2)2]1/2

sin(ωt − ϕ), (15.203)

where

tanϕ = bω

m(ω2
0−ω2)

.

Differentiating the denominator, we find that the amplitude has a maximum when

ω2= ω2
0−

b2

2m2
= ω2

1−
b2

4m2
. (15.204)

This is the resonance condition.20At resonance the amplitude becomesF0/bω1, showing
that the massm goes into infinite oscillation at resonance if damping is neglected(b= 0).
It is worth noting that we have had three different characteristic frequencies:

ω2
2 = ω2

0−
b2

2m2
,

resonance for forced oscillations, with damping;

ω2
1 = ω2

0−
b2

4m2
,

20The amplitude (squared) has the typical resonance denominator, the Lorentz line shape, Exercise 15.3.9.
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free oscillation frequency, with damping; and

ω2
0 =

k

m
,

free oscillation frequency, no damping. They coincide only if the damping is zero.�
Returning to Eqs. (15.197) and (15.199), Eq. (15.197) is our ODE for the response of

a dynamical system to an arbitrary driving force. The final response clearly depends on both
the driving force and the characteristics of our system. This dual dependence is separated
in the transform space. In Eq. (15.199) the transform of the response (output) appears as
the product of two factors, one describing the driving force (input) and the other describing
the dynamical system. This latter part, which modifies the input and yields the output, is
often called atransfer function. Specifically,[(s+b/2m)2+ω2

1]−1 is the transfer function
corresponding to this damped oscillator. The concept of a transfer function is of great use in
the field of servomechanisms. Often the characteristics of a particular servomechanism are
described by giving its transfer function. The convolution theorem then yields the output
signal for a particular input signal.

Exercises

15.11.1 From the convolution theorem show that

1

s
f (s)= L

{∫ t

0
F(x)dx

}
,

wheref (s)= L{F(t)}.
15.11.2 If F(t)= ta andG(t)= tb, a >−1, b >−1:

(a) Show that the convolution

F ∗G= ta+b+1
∫ 1

0
ya(1− y)b dy.

(b) By using the convolution theorem, show that∫ 1

0
ya(1− y)b dy = a!b!

(a + b+ 1)! .

This is the Euler formula for the beta function (Eq. (8.59a)).

15.11.3 Using the convolution integral, calculate

L−1
{

s

(s2+ a2)(s2+ b2)

}
, a2 
= b2.

15.11.4 An undamped oscillator is driven by a forceF0 sinωt . Find the displacement as a func-
tion of time. Notice that it is a linear combination of two simple harmonic motions,
one with the frequency of the driving force and one with the frequencyω0 of the free
oscillator. (AssumeX(0)=X′(0)= 0.)

ANS.X(t)= F0/m

ω2−ω2
0

(
ω

ω0
sinω0t − sinωt

)
.
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Other exercises involving the Laplace convolution appear in Section 16.2.

15.12 INVERSE LAPLACE TRANSFORM

Bromwich Integral

We now develop an expression for the inverse Laplace transformL−1 appearing in the
equation

F(t)= L−1{f (s)}. (15.205)

One approach lies in the Fourier transform, for which we know the inverse relation. There
is a difficulty, however. Our Fourier transformable function had to satisfy the Dirichlet
conditions. In particular, we required that

lim
ω→∞G(ω)= 0 (15.206)

so that the infinite integral would be well defined.21 Now we wish to treat functionsF(t)

that may diverge exponentially. To surmount this difficulty, we extract an exponential fac-
tor, eγ t , from our (possibly) divergent Laplace function and write

F(t)= eγ tG(t). (15.207)

If F(t) diverges aseαt , we requireγ to be greater thanα sothat G(t) will be convergent.
Now, withG(t)= 0 for t < 0 and otherwise suitably restricted so that it may be represented
by a Fourier integral (Eq. (15.20)),

G(t)= 1

2π

∫ ∞

−∞
eiut du

∫ ∞

0
G(v)e−iuv dv. (15.208)

Using Eq. (15.207), we may rewrite (15.208) as

F(t)= eγ t

2π

∫ ∞

−∞
eiut du

∫ ∞

0
F(v)e−γ ve−iuv dv. (15.209)

Now, with the change of variable,

s = γ + iu, (15.210)

the integral overv is thrown into the form of a Laplace transform,∫ ∞

0
f (v)e−sv dv = f (s); (15.211)

21If delta functions are included,G(ω) may be a cosine. Although this does not satisfy Eq. (15.206),G(ω) is still bounded.
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FIGURE 15.16 Singularities
of estf (s).

s is now a complex variable, and�(s) ≥ γ to guarantee convergence. Notice that the
Laplace transform has mapped a function specified on the positive real axis onto the com-
plex plane,�(s)≥ γ .22

With γ as a constant,ds = i du. Substituting Eq. (15.211) into Eq. (15.209), we obtain

F(t)= 1

2πi

∫ γ+i∞

γ−i∞
estf (s) ds. (15.212)

Here is ourinverse transform. We have rotated the line of integration through 90◦ (by
usingds = i du). The path has become an infinite vertical line in the complex plane, the
constantγ having been chosen so that all the singularities off (s) are on the left-hand side
(Fig. 15.16).

Equation (15.212), our inverse transformation, is usually known as theBromwich in-
tegral, although sometimes it is referred to as theFourier–Mellin theorem or Fourier–
Mellin integral. This integral may now be evaluated by the regular methods of contour
integration (Chapter 7). Ift > 0, the contour may be closed by an infinite semicircle in the
left half-plane. Then by the residue theorem (Section 7.1)

F(t)=�(residues included for�(s) < γ ). (15.213)

Possibly this means of evaluation with�(s) ranging through negative values seems para-
doxical in view of our previous requirement that�(s)≥ γ . The paradox disappears when
we recall that the requirement�(s) ≥ γ was imposed to guarantee convergence of the
Laplace transform integral that definedf (s). Oncef (s) is obtained, we may then pro-
ceed to exploit its properties as an analytical function in the complex plane wherever we
choose.23 In effect we are employing analytic continuation to getL{F(t)} in the left half-
plane, exactly as the recurrence relation for the factorial function was used to extend the
Euler integral definition (Eq. (8.5)) to the left half-plane.

Perhaps a pair of examples may clarify the evaluation of Eq. (15.212).

22For a derivation of the inverse Laplace transform using only real variables, see C. L. Bohn and R. W. Flynn, Real variable
inversion of Laplace transforms: An application in plasma physics.Am. J. Phys. 46: 1250 (1978).
23In numerical workf (s) may well be available only for discrete real, positive values ofs. Then numerical procedures are
indicated. See Krylov and Skoblya in the Additional Reading.
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Example 15.12.1 INVERSION VIA CALCULUS OF RESIDUES

If f (s)= a/(s2− a2), then

estf (s)= aest

s2− a2
= aest

(s + a)(s − a)
. (15.214)

The residues may be found by using Exercise 6.6.1 or various other means. The first step is
to identify the singularities, the poles. Here we have one simple pole ats = a and another
simple pole ats =−a. By Exercise 6.6.1, the residue ats = a is (1

2)e
at and the residue at

s =−a is (−1
2)e

−at . Then

Residues= (1
2

)(
eat − e−at

)= sinhat = F(t), (15.215)

in agreement with Eq. (15.105). �

Example 15.12.2

If

f (s)= 1− e−as

s
,

thenes(t−a) grows exponentially fort < a on the semicircle in the left-hands-plane, so
contour integration and the residue theorem are not applicable. However, we can evaluate
the integral explicitly as follows. We letγ → 0 and substitutes = iy, so

F(t)= 1

2πi

∫ γ+i∞

γ−i∞
estf (s)= 1

2π

∫ ∞

−∞
[
eiyt − eiy(t−a)

]dy
y
. (15.216)

Using the Euler identity, only the sines survive that are odd iny and we obtain

F(t)= 1

π

∫ ∞

−∞

[
sinty

y
− sin(t − a)y

y

]
. (15.217)

If k > 0, then
∫∞

0
sinky
y

dy givesπ/2, and it gives−π/2 if k < 0. As a consequence,
F(t) = 0 if t > a > 0 and if t < 0. If 0 < t < a, thenF(t) = 1. This can be written
compactly in terms of the Heaviside unit step functionu(t) as follows:

F(t)= u(t)− u(t − a)=


0, t < 0,
1, 0< t < a,

0, t > a,

(15.218)

a step function of unit height and lengtha (Fig. 15.17). �
Two general comments may be in order. First, these two examples hardly begin to show

the usefulness and power of the Bromwich integral. It is always available for inverting a
complicated transform when the tables prove inadequate.

Second, this derivation is not presented as a rigorous one. Rather, it is given more as
a plausibility argument, although it can be made rigorous. The determination of the in-
verse transform is somewhat similar to the solution of a differential equation. It makes
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FIGURE 15.17
Finite-length step function

u(t)− u(t − a).

little difference how you get the solution. Guess at it if you want. The solution can al-
ways be checked by substitution back into the original differential equation. Similarly,
F(t) can (and, to check on careless errors, should) be checked by determining whether, by
Eq. (15.99),

L
{
F(t)

}= f (s).

Two alternate derivations of the Bromwich integral are the subjects of Exercises 15.12.1
and 15.12.2.

As a final illustration of the use of the Laplace inverse transform, we have some results
from the work of Brillouin and Sommerfeld (1914) in electromagnetic theory.

Example 15.12.3 VELOCITY OF ELECTROMAGNETIC WAVES IN A DISPERSIVE MEDIUM

The group velocityu of traveling waves is related to the phase velocityv by the equation

u= v− λ
dv

dλ
. (15.219)

Hereλ is the wavelength. In the vicinity of an absorption line (resonance),dv/dλ may be
sufficiently negative so thatu > c (Fig. 15.18). The question immediately arises whether
a signal can be transmitted faster thanc, the velocity of light in vacuum. This question,
which assumes that such a group velocity is meaningful, is of fundamental importance to
the theory of special relativity.

We need a solution to the wave equation

∂2ψ

∂x2
= 1

v2

∂2ψ

∂t2
, (15.220)

corresponding to a harmonic vibration starting at the origin at time zero. Since our medium
is dispersive,v is a function of the angular frequency. Imagine, for instance, a plane wave,
angular frequencyω, incident on a shutter at the origin. Att = 0 the shutter is (instanta-
neously) opened, and the wave is permitted to advance along the positivex-axis.
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FIGURE 15.18 Optical dispersion.

Let us then build up a solution starting atx = 0. It is convenient to use the Cauchy
integral formula, Eq. (6.43),

ψ(0, t)= 1

2πi

∮
e−izt

z− z0
dz= e−iz0t

(for a contour encirclingz = z0 in the positive sense). Usings = −iz and z0 = ω, we
obtain

ψ(0, t)= 1

2πi

∫ γ+i∞

γ−i∞
est

s + iω
ds =

{
0, t < 0,
e−iωt , t > 0.

(15.221)

To be complete, the loop integral is along the vertical line�(s)= γ and an infinite semi-
circle, as shown in Fig. 15.19. The location of the infinite semicircle is chosen so that the
integral over it vanishes. This means a semicircle in the left half-plane fort > 0 and the
residue is enclosed. Fort < 0 we pick the right half-plane and no singularity is enclosed.
The fact that this is just the Bromwich integral may be verified by noting that

F(t)=
{

0, t < 0,
e−iωt , t > 0

(15.222)

FIGURE 15.19 Possible closed contours.
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and applying the Laplace transform. The transformed functionf (s) becomes

f (s)= 1

s + iω
. (15.223)

Our Cauchy–Bromwich integral provides us with the time dependence of a signal leav-
ing the origin att = 0. To include the space dependence, we note that

es(t−x/v)

satisfies the wave equation. With this as a clue, we replacet by t−x/v and write a solution:

ψ(x, t)= 1

2πi

∫ γ+i∞

γ−i∞
es(t−x/v)

s + iω
ds. (15.224)

It was seen in the derivation of the Bromwich integral that our variables replaces theω
of the Fourier transformation. Hence the wave velocityv may become a function ofs, that
is, v(s). Its particular form need not concern us here. We need only the propertyv ≤ c and

lim|s|→∞v(s)= constant, c. (15.225)

This is suggested by the asymptotic behavior of the curve on the right side of Fig. 15.18.24

Evaluating Eq. (15.225) by the calculus of residues, we may close the path of integration
by a semicircle in the right half-plane, provided

t − x

c
< 0.

Hence

ψ(x, t)= 0, t − x

c
< 0, (15.226)

which means that the velocity of our signal cannot exceed the velocity of light in the vac-
uum,c. This simple but very significant result was extended by Sommerfeld and Brillouin
to show just how the wave advanced in the dispersive medium. �

Summary — Inversion of Laplace Transform

• Direct use of tables, Table 15.2, and references; use of partial fractions (Section 15.8)
and the operational theorems of Table 15.1.

• Bromwich integral, Eq. (15.212), and the calculus of residues.

• Numerical inversion, see the Additional Readings.

24Equation (15.225) follows rigorously from the theory of anomalous dispersion. See also the Kronig–Kramers optical disper-
sion relations of Section 7.2.



1000 Chapter 15 Integral Transforms

Table 15.1 Laplace Transform Operations

Operations Equation

1. Laplace transform f (s)=L{F(t)} =
∫ ∞

0
e−stF (t) dt (15.99)

2. Transform of derivative sf (s)− F(+0)=L{F ′(t)} (15.123)

s2f (s)− sF (+0)− F ′(+0)=L{F ′′(t)} (15.124)

3. Transform of integral
1

s
f (s)=L

{∫ t

0
F(x)dx

}
(Exercise 15.11.1)

4. Substitution f (s − a)=L{eatF (t)} (15.152)

5. Translation e−bsf (s)=L{F(t − b)} (15.164)

6. Derivative of transform f (n)(s)=L{(−t)nF (t)} (15.173)

7. Integral of transform
∫ ∞
s

f (x) dx =L
{
F(t)

t

}
(15.189)

8. Convolution f1(s)f2(s)=L
{∫ t

0
F1(t − z)F2(z) dz

}
(15.193)

9. Inverse transform, Bromwich integral
1

2πi

∫ γ+i∞
γ−i∞

est f (s) ds = F(t) (15.212)

Exercises
15.12.1 Derive the Bromwich integral from Cauchy’s integral formula.

Hint. Apply the inverse transformL−1 to

f (s)= 1

2πi
lim
α→∞

∫ γ+iα

γ−iα
f (z)

s − z
dz,

wheref (z) is analytic for�(z)≥ γ .

15.12.2 Starting with

1

2πi

∫ γ+i∞

γ−i∞
estf (s) ds,

show that by introducing

f (s)=
∫ ∞

0
e−szF (z) dz,

we can convert one integral into the Fourier representation of a Dirac delta function.
From this derive the inverse Laplace transform.

15.12.3 Derive the Laplace transformation convolution theorem by use of the Bromwich inte-
gral.

15.12.4 Find

L−1
{

s

s2− k2

}
(a) by a partial fraction expansion.
(b) Repeat, using the Bromwich integral.
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Table 15.2 Laplace Transforms

f (s) F (t) Limitation Equation

1. 1 δ(t) Singularity at+0 (15.141)

2.
1

s
1 s > 0 (15.102)

3.
n!

sn+1
tn s > 0 (15.108)

n >−1

4.
1

s − k
ekt s > k (15.103)

5.
1

(s − k)2
tekt s > k (15.175)

6.
s

s2− k2
coshkt s > k (15.105)

7.
k

s2− k2
sinhkt s > k (15.105)

8.
s

s2+ k2
coskt s > 0 (15.107)

9.
k

s2+ k2
sinkt s > 0 (15.107)

10.
s − a

(s − a)2+ k2
eat coskt s > a (15.153)

11.
k

(s − a)2+ k2
eat sinkt s > a (15.153)

12.
s2− k2

(s2+ k2)2
t coskt s > 0 (Exercise 15.10.19)

13.
2ks

(s2+ k2)2
t sinkt s > 0 (Exercise 15.10.19)

14.(s2+ a2)−1/2 J0(at) s > 0 (15.185)

15.(s2− a2)−1/2 I0(at) s > a (Exercise 15.10.9)

16.
1

a
cot−1

(
s

a

)
j0(at) s > 0 (Exercise 15.10.10)

17.

1

2a
ln

s + a

s − a

1

a
coth−1

(
s

a

)
 i0(at) s > a (Exercise 15.10.10)

18.
(s − a)n

sn+1
Ln(at) s > 0 (Exercise 15.10.12)

19.
1

s
ln(s + 1) E1(x)=−Ei(−x) s > 0 (Exercise 15.10.13)

20.
ln s

s
− ln t − γ s > 0 (Exercise 15.12.9)

A more extensive table of Laplace transforms appears in Chapter 29 of AMS-55 (see footnote 4 in Chapter 5 for the reference).

15.12.5 Find

L−1
{

k2

s(s2+ k2)

}
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(a) by using a partial fraction expansion.
(b) Repeat using the convolution theorem.
(c) Repeat using the Bromwich integral.

ANS.F(t)= 1− coskt.

15.12.6 Use the Bromwich integral to find the function whose transform isf (s)= s−1/2. Note
thatf (s) has a branch point ats = 0. The negativex-axis may be taken as a cut line.

ANS.F(t)= (πt)−1/2.

15.12.7 Show that

L−1{(s2+ 1
)−1/2}= J0(t)

by evaluation of the Bromwich integral.
Hint. Convert your Bromwich integral into an integral representation ofJ0(t). Fig-
ure 15.20 shows a possible contour.

15.12.8 Evaluate the inverse Laplace transform

L−1{(s2− a2)−1/2}
by each of the following methods:

(a) Expansion in a series and term-by-term inversion.
(b) Direct evaluation of the Bromwich integral.
(c) Change of variable in the Bromwich integral:s = (a/2)(z+ z−1).

FIGURE 15.20 A possible
contour for the inversion of

J0(t).
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15.12.9 Show that

L−1
{

ln s

s

}
=− ln t − γ,

whereγ = 0.5772. . . , the Euler–Mascheroni constant.

15.12.10 Evaluate the Bromwich integral for

f (s)= s

(s2+ a2)2
.

15.12.11 Heaviside expansion theorem. If the transformf (s) may be written as a ratio

f (s)= g(s)

h(s)
,

whereg(s) andh(s) are analytic functions,h(s) having simple, isolated zeros ats = si ,
show that

F(t)= L−1
{
g(s)

h(s)

}
=
∑
i

g(si)

h′(si)
esi t .

Hint. See Exercise 6.6.2.

15.12.12 Using the Bromwich integral, invertf (s) = s−2e−ks . ExpressF(t) = L−1{f (s)} in
terms of the (shifted) unit step functionu(t − k).

ANS.F(t)= (t − k)u(t − k).

15.12.13 You have a Laplace transform:

f (s)= 1

(s + a)(s + b)
, a 
= b.

Invert this transform by each of three methods:

(a) Partial fractions and use of tables.
(b) Convolution theorem.
(c) Bromwich integral.

ANS.F(t)= e−bt − e−at

a − b
, a 
= b.

Additional Readings

Champeney, D. C.,Fourier Transforms and Their Physical Applications. New York: Academic Press (1973).
Fourier transforms are developed in a careful, easy-to-follow manner. Approximately 60% of the book is
devoted to applications of interest in physics and engineering.

Erdelyi, A.,W. Magnus, F. Oberhettinger, and F. G. Tricomi,Tables of Integral Transforms, 2 vols. New York:
McGraw–Hill (1954). This text contains extensive tables of Fourier sine, cosine, and exponential transforms,
Laplace and inverse Laplace transforms, Mellin and inverse Mellin transforms, Hankel transforms, and other,
more specialized integral transforms.
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Hanna, J. R.,Fourier Series and Integrals of Boundary Value Problems. Somerset, NJ: Wiley (1990). This book
is a broad treatment of the Fourier solution of boundary value problems. The concepts of convergence and
completeness are given careful attention.

Jeffreys, H., and B. S. Jeffreys,Methods of Mathematical Physics, 3rd ed. Cambridge, UK: Cambridge University
Press (1972).

Krylov, V. I., and N. S. Skoblya,Handbook of Numerical Inversion of Laplace Transform. Jerusalem: Israel
Program for Scientific Translations (1969).

Lepage, W. R.,Complex Variables and the Laplace Transform for Engineers. New York: McGraw-Hill (1961);
New York: Dover (1980). A complex variable analysis that is carefully developed and then applied to Fourier
and Laplace transforms. It is written to be read by students, but intended for the serious student.

McCollum, P. A., and B. F. Brown,Laplace Transform Tables and Theorems. New York: Holt, Rinehart and
Winston (1965).

Miles, J. W.,Integral Transforms in Applied Mathematics. Cambridge, UK: Cambridge University Press (1971).
This is a brief but interesting and useful treatment for the advanced undergraduate. It emphasizes applications
rather than abstract mathematical theory.

Papoulis, A.,The Fourier Integral and Its Applications. New York: McGraw-Hill (1962). This is a rigorous
development of Fourier and Laplace transforms and has extensive applications in science and engineering.

Roberts, G. E., and H. Kaufman,Table of Laplace Transforms. Philadelphia: Saunders (1966).

Sneddon, I. N.,Fourier Transforms. New York: McGraw-Hill (1951), reprinted, Dover (1995). A detailed com-
prehensive treatment, this book is loaded with applications to a wide variety of fields of modern and classical
physics.

Sneddon, I. H.,The Use of Integral Transforms. New York: McGraw-Hill (1972). Written for students in science
and engineering in terms they can understand, this book covers all the integral transforms mentioned in this
chapter as well as in several others. Many applications are included.

Van der Pol, B., and H. Bremmer,Operational Calculus Based on the Two-sided Laplace Integral, 3rd ed. Cam-
bridge, UK: Cambridge University Press (1987). Here is a development based on the integral range−∞ to
+∞, rather than the useful 0 to∞. Chapter V contains a detailed study of the Dirac delta function (impulse
function).

Wolf, K. B., Integral Transforms in Science and Engineering. New York: Plenum Press (1979). This book is a
very comprehensive treatment of integral transforms and their applications.



CHAPTER 16

INTEGRAL EQUATIONS

16.1 INTRODUCTION

With the exception of the integral transforms of the last chapter, we have been considering
relations between the unknown functionϕ(x) and one or more of its derivatives. We now
proceed to investigate equations containing the unknown function within an integral. As
with differential equations, we shall confine our attention to linear relations, linear integral
equations. Integral equations are classified in two ways:

• If the limits of integration are fixed, we call the equation aFredholm equation; ifone
limit is variable, it is aVolterra equation.

• If the unknown function appearsonly under the integral sign, we label itfirst kind.
If it appears bothinside and outside the integral, it is labeledsecond kind.

Definitions

Symbolically, we have aFredholm equation of the first kind,

f (x)=
∫ b

a

K(x, t)ϕ(t) dt; (16.1)

theFredholm equation of the second kind, with λ being the eigenvalue,

ϕ(x)= f (x)+ λ

∫ b

a

K(x, t)ϕ(t) dt; (16.2)

theVolterra equation of the first kind,

f (x)=
∫ x

a

K(x, t)ϕ(t) dt; (16.3)

1005
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and theVolterra equation of the second kind,

ϕ(x)= f (x)+
∫ x

a

K(x, t)ϕ(t) dt. (16.4)

In all four casesϕ(t) is the unknown function.K(x, t), which we call thekernel, and
f (x) are assumed to be known. Whenf (x)= 0, the equation is said to behomogeneous.

Why do we bother about integral equations? After all, the differential equations have
done a rather good job of describing our physical world so far. There are several reasons
for introducing integral equations here.

We have placed considerable emphasis on the solution of differential equationssubject
to particular boundary conditions. For instance, the boundary condition atr = 0 deter-
mines whether the Neumann functionNn(r) is present when Bessel’s equation is solved.
The boundary condition forr →∞ determines whether theIn(r) is present in our solu-
tion of the modified Bessel equation. The integral equation relates the unknown function
not only to its values at neighboring points (derivatives) but also to its values throughout a
region, including the boundary. In a very real sense the boundary conditions are built into
the integral equation rather than imposed at the final stage of the solution. It can be seen in
Section 10.5, where kernels are constructed, that the form of the kernel depends on the val-
ues on the boundary. The integral equation, then, is compact and may turn out to be a more
convenient or powerful form than the differential equation. Mathematical problems such as
existence, uniqueness, and completeness may often be handled more easily and elegantly
in integral form. Finally, whether or not we like it, there are some problems, such as some
diffusion and transport phenomena, that cannot be represented by differential equations.
If we wish to solve such problems, we are forced to handle integral equations. Finally, an
integral equation may also appear as a matter of deliberate choice based on convenience or
the need for the mathematical power of an integral equation formulation.

Example 16.1.1 MOMENTUM REPRESENTATION IN QUANTUM MECHANICS

The Schrödinger equation (in ordinary space representation) is

− h̄2

2m
∇2ψ(r)+ V (r)ψ(r)=Eψ(r), (16.5)

or (∇2+ a2)ψ(r)= v(r)ψ(r), (16.6)

where

a2= 2m

h̄2
E, v(r)= 2m

h̄2
V (r). (16.7)

If we generalize Eq. (16.6) to(∇2+ a2)ψ(r)=
∫

v(r, r′)ψ(r′) d3r ′, (16.8)

then, for the special case of

v(r, r′)= v(r′)δ(r− r′), (16.9)
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a local interaction, Eq. (16.8) reduces to Eq. (16.6). Consider the Fourier transform pairψ

and� (compare footnote 9 in Section 15.6):

�(k)= 1

(2π)3/2

∫
ψ(r)e−ik·r d3r, ψ(r)= 1

(2π)3/2

∫
�(k)eik·r d3k, (16.10)

with the abbreviationp for momentum so that

p
h̄
= k (wave number). (16.11)

Multiplying Eq. (16.8) by the plane-wavee−ik·r, we obtain∫
e−ik·r

(∇2+ a2)ψ(r) d3r =
∫

d3r e−ik·r
∫

v(r, r′)ψ(r′) d3r ′. (16.12)

Note that the∇2 on the left operates only on theψ(r). Integrating the left-hand side by
parts and substituting Eq. (16.10) forψ(r′) on the right, we get∫ (− k2+ a2)ψ(r)e−ik·rd3r = (2π)3/2(− k2+ a2)�(k)

= 1

(2π)3/2

∫∫∫
v(r, r′)�(k′)e−i(k·r−k′·r′) d3r ′ d3r d3k′. (16.13)

If we use

f (k,k′)= 1

(2π)3/2

∫∫
v(r, r′)e−i(k·r−k′·r′)d3r ′ d3r, (16.14)

Eq. (16.13) becomes

(− k2+ a2)�(k)=
∫

f (k,k′)�(k′) d3k′, (16.15)

a Fredholm equation of the second kind in which the parametera2 corresponds to the
eigenvalue.

For our special but important case of local interaction, application of Eq. (16.9) leads to

f (k,k′)= f (k− k′). (16.16)

This is our momentum representation, equivalent to an ordinary static interaction poten-
tial in coordinate space. Our momentum wave function�(k) satisfies the integral equation
Eq. (16.15). It must be emphasized that all through here we have assumed that the required
Fourier integrals exist. For a harmonic oscillator potential,V (r) = r2, the required inte-
grals would not exist. Equation (16.10) would lead to divergent oscillations and we would
have no Eq. (16.15). �
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Transformation of a Differential Equation into an
Integral Equation

Often we find that we have a choice. The physical problem may be represented by a dif-
ferential or an integral equation. Let us assume that we have the differential equation and
wish to transform it into an integral equation. Starting with alinear second-order ODE

y′′ +A(x)y′ +B(x)y = g(x) (16.17)

with initial conditions

y(a)= y0, y′(a)= y′0,

we integrate to obtain

y′(x)=−
∫ x

a

A(t)y′(t) dt −
∫ x

a

B(t)y(t) dt +
∫ x

a

g(t) dt + y′0. (16.18)

Integrating the first integral on the right by parts yields

y′(x)=−Ay(x)−
∫ x

a

(B −A′)y(t) dt +
∫ x

a

g(t) dt +A(a)y0+ y′0. (16.19)

Notice how the initial conditions are being absorbed into our new version. Integrating a
second time, we obtain

y(x) = −
∫ x

a

Ay dx −
∫ x

a

du

∫ u

a

[
B(t)−A′(t)

]
y(t) dt

+
∫ x

a

du

∫ u

a

g(t) dt + [A(a)y0+ y′0
]
(x − a)+ y0. (16.20)

To transform this equation into a neater form, we use the relation∫ x

a

du

∫ u

a

f (t) dt =
∫ x

a

(x − t)f (t) dt. (16.21)

This may be verified by differentiating both sides. Since the derivatives are equal, the
original expressions can differ only by a constant. Lettingx→ a, the constant vanishes
and Eq. (16.21) is established. Applying it to Eq. (16.20), we obtain

y(x) = −
∫ x

a

{
A(t)+ (x − t)

[
B(t)−A′(t)

]}
y(t) dt

+
∫ x

a

(x − t)g(t) dt + [A(a)y0+ y′0
]
(x − a)+ y0. (16.22)

If we now introduce the abbreviations

K(x, t) = (t − x)
[
B(t)−A′(t)

]−A(t),

(16.23)

f (x) =
∫ x

a

(x − t)g(t) dt + [A(a)y0+ y′0
]
(x − a)+ y0,



16.1 Introduction 1009

Eq. (16.22) becomes

y(x)= f (x)+
∫ x

a

K(x, t)y(t) dt, (16.24)

which is a Volterra equation of the second kind. This reformulation as a Volterra integral
equation offers certain advantages in investigating questions of existence and uniqueness.

Example 16.1.2 LINEAR OSCILLATOR EQUATION

As an illustration, consider the linear oscillator equation

y′′ +ω2y = 0 (16.25)

with

y(0)= 0, y′(0)= 1.

This yields (compare with Eq. (16.17))

A(x)= 0, B(x)= ω2, g(x)= 0.

Substituting into Eq. (16.22) (or Eqs. (16.23) and (16.24)), we find that the integral equa-
tion becomes

y(x)= x +ω2
∫ x

0
(t − x)y(t) dt. (16.26)

• This integral equation, Eq. (16.26), is equivalent to the original differential equation
plus the initial conditions.

A check shows that each form is indeed satisfied byy(x)= (1/ω)sinωx. �

Let us reconsider the linear oscillator equation (16.25) but now with the boundary con-
ditions

y(0)= 0, y(b)= 0.

Sincey′(0) is not given, we must modify the procedure. The first integration gives

y′ = −ω2
∫ x

0
y dx + y′(0). (16.27)

Integrating a second time and again using Eq. (16.21), we have

y =−ω2
∫ x

0
(x − t)y(t) dt + y′(0)x. (16.28)

To eliminate the unknowny′(0), we now impose the conditiony(b)= 0. This gives

ω2
∫ b

0
(b− t)y(t) dt = by′(0). (16.29)
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FIGURE 16.1

Substituting this back into Eq. (16.28), we obtain

y(x)=−ω2
∫ x

0
(x − t)y(t) dt +ω2x

b

∫ b

0
(b− t)y(t) dt. (16.30)

Now let us break the interval[0, b] into two intervals,[0, x] and[x, b]. Since

x

b
(b− t)− (x − t)= t

b
(b− x), (16.31)

we find

y(x)= ω2
∫ x

0

t

b
(b− x)y(t) dt +ω2

∫ b

x

x

b
(b− t)y(t) dt. (16.32)

Finally, if we define a kernel (Fig. 16.1)

K(x, t)=


t

b
(b− x), t < x,

x

b
(b− t), t > x,

(16.33)

we have

y(x)= ω2
∫ b

0
K(x, t)y(t) dt, (16.34)

a homogeneous Fredholm equation of the second kind.
Our new kernel,K(x, t), has some interesting properties.

1. It is symmetric,K(x, t)=K(t, x).
2. It is continuous, in the sense that

t

b
(b− x)

∣∣∣
t=x =

x

b
(b− t)

∣∣∣
t=x.

3. Its derivative with respect tot is discontinuous. As t increases through the pointt = x,
there is a discontinuity of−1 in ∂K(x, t)/∂t .

According to these properties in Section 9.7 we identifyK(x, t) as a Green’s function.

1. In the transformation of a linear, second-order ODE into an integral equation, the initial
or boundary conditions play a decisive role. If we haveinitial conditions (only one end
of our interval), the differential equation transforms into a Volterra integral equation.
For the case of the linear oscillator equation withboundary conditions (both ends
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of our interval), the differential equation leads to a Fredholm integral equation with
a kernel that will be a Green’s function.

2. Note that the reverse transformation (integral equation to differential equation) is not
always possible. There exist integral equations for which no corresponding differential
equation is known.

Exercises

16.1.1 Starting with the ODE, integrate twice and derive the Volterra integral equation corre-
sponding to
(a)y′′(x)− y(x)= 0; y(0)= 0, y′(0)= 1.

ANS. y =
∫ x

0
(x − t)y(t) dt + x.

(b) y′′(x)− y(x)= 0; y(0)= 1, y′(0)=−1.

ANS. y =
∫ x

0
(x − t)y(t) dt − x + 1.

Check your results with Eq. (16.23).

16.1.2 Derive a Fredholm integral equation corresponding to

y′′(x)− y(x)= 0, y(1)= 1, y(−1)= 1,

(a) by integrating twice,
(b) by forming the Green’s function.

ANS. y(x)= 1−
∫ 1

−1
K(x, t)y(t) dt ,

K(x, t)=
{ 1

2(1− x)(t + 1), x > t,

1
2(1− t)(x + 1), x < t.

16.1.3 (a) Starting with the given answers of Exercise 16.1.1, differentiate and recover the
original ODEsand the boundary conditions.

(b) Repeat for Exercise 16.1.2.

16.1.4 The general second-order linear ODE with constant coefficients is

y′′(x)+ a1y
′(x)+ a2y(x)= 0.

Given the boundary conditions

y(0)= y(1)= 0,

integrate twice and develop the integral equation

y(x)=
∫ 1

0
K(x, t)y(t) dt,
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with

K(x, t)=
{
a2t (1− x)+ a1(x − 1), t < x,

a2x(1− t)+ a1x, x < t.

Note thatK(x, t) is symmetric and continuous ifa1 = 0. How is this related to self-
adjointness of the ODE?

16.1.5 Verify that
∫ x

a

∫ x

a
f (t) dt dx = ∫ x

a
(x − t)f (t) dt for all f (t) (for which the integrals

exist).

16.1.6 Givenϕ(x)= x − ∫ x

0 (t − x)ϕ(t) dt , solve this integral equation by converting it to an
ODE (plus boundary conditions) and solving the ODE (by inspection).

16.1.7 Show that the homogeneous Volterra equation of the second kind

ψ(x)= λ

∫ x

0
K(x, t)ψ(t) dt

has no solution (apart from the trivialψ = 0).
Hint. Develop a Maclaurin expansion ofψ(x). Assumeψ(x) andK(x, t) are differen-
tiable with respect tox as needed.

16.2 INTEGRAL TRANSFORMS, GENERATING FUNCTIONS

Analogous to differentiation, linear ODEs are solved in Chapter 9. Analogous to integra-
tion, there is no general method available for solving integral equations. However, certain
special cases may be treated with ourintegral transforms (Chapter 15). For convenience
these are listed here. If

ψ(x)= 1√
2π

∫ ∞

−∞
eixtϕ(t) dt,

then

ϕ(x)= 1√
2π

∫ ∞

−∞
e−ixtψ(t) dt (Fourier). (16.35)

If

ψ(x)=
∫ ∞

0
e−xtϕ(t) dt,

then

ϕ(x)= 1

2πi

∫ γ+i∞

γ−i∞
extψ(t) dt (Laplace). (16.36)

If

ψ(x)=
∫ ∞

0
tx−1ϕ(t) dt,
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then

ϕ(x)= 1

2πi

∫ γ+i∞

γ−i∞
x−tψ(t) dt (Mellin). (16.37)

If

ψ(x)=
∫ ∞

0
tϕ(t)Jν(xt) dt,

then

ϕ(x)=
∫ ∞

0
tψ(t)Jν(xt) dt (Hankel). (16.38)

Actually the usefulness of the integral transform technique extends a bit beyond these
four rather specialized forms.

Example 16.2.1 FOURIER TRANSFORM SOLUTION

Let us consider a Fredholm equation of the first kind with a kernel of the general type
k(x − t),

f (x)=
∫ ∞

−∞
k(x − t)ϕ(t) dt, (16.39)

in whichϕ(t) is our unknown function.Assuming that the needed transforms exist, we
apply the Fourier convolution theorem (Section 15.5) to obtain

f (x)=
∫ ∞

−∞
K(ω)�(ω)e−iωx dω. (16.40)

The functionsK(ω), �(ω), andF(ω) are the Fourier transforms ofk(x), ϕ(x), andf (x),
respectively. Taking the Fourier transform of both sides of Eq. (16.40), by Eq. (16.35) we
have

K(ω)�(ω)= 1

2π

∫ ∞

−∞
f (x)eiωx dx = F(ω)√

2π
. (16.41)

Then

�(ω)= 1√
2π
· F(ω)

K(ω)
, (16.42)

and, using the inverse Fourier transform, we have

ϕ(x)= 1

2π

∫ ∞

−∞
F(ω)

K(ω)
e−iωx dω. (16.43)

For a rigorous justification of this result one can follow Morse and Feshbach (see the
Additional Readings) (1953) across complex planes. An extension of this transformation
solution appears as Exercise 16.2.1. �
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Example 16.2.2 GENERALIZED ABEL EQUATION, CONVOLUTION THEOREM

The generalized Abel equation is

f (x)=
∫ x

0

ϕ(t)

(x − t)α
dt, 0< α < 1, with

{
f (x) known,
ϕ(t) unknown.

(16.44)

Taking the Laplace transform of both sides of this equation, we obtain

L{f (x)} = L
{∫ x

0

ϕ(t)

(x − t)α
dt

}
= L

{
x−α

}
L
{
ϕ(x)

}
, (16.45)

the last step following by the Laplace convolution theorem (Section 15.11). Then

L
{
ϕ(x)

}= s1−αL{f (x)}
(−α)! . (16.46)

Dividing by s,1 we obtain

1

s
L
{
ϕ(x)

}= s−αL{f (x)}
(−α)! = L{xα−1}L{f (x)}

(α − 1)!(−α)! . (16.47)

Combining the factorials (Eq. (8.32)) and applying the Laplace convolution theorem again,
we discover that

1

s
L
{
ϕ(x)

}= sinπα

π
L
{∫ x

0

f (t)

(x − t)1−α
dt

}
. (16.48)

Inverting with the aid of Exercise 15.11.1, we get∫ x

0
ϕ(t) dt = sinπα

π

∫ x

0

f (t)

(x − t)1−α
dt, (16.49)

and finally, by differentiating,

ϕ(x)= sinπα

π

d

dx

∫ x

0

f (t)

(x − t)1−α
dt. (16.50)

�

Generating Functions

Occasionally, the reader may encounter integral equations that involve generating func-
tions. Suppose we have the admittedly special case

f (x)=
∫ 1

−1

ϕ(t)

(1− 2xt + x2)1/2
dt, −1≤ x ≤ 1. (16.51)

We notice two important features:

1. (1− 2xt + x2)−1/2 generates the Legendre polynomials.
2. [−1,1] is the orthogonality interval for the Legendre polynomials.

1s1−α does not have an inverse for 0< α < 1.
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If we now expand the denominator (property 1) and assume that our unknownϕ(t) may
be written as a series of these same Legendre polynomials,

f (x)=
∫ 1

−1

∞∑
n=0

anPn(t)

∞∑
r=0

Pr(t)x
r dt. (16.52)

Utilizing the orthogonality of the Legendre polynomials (property 2), we obtain

f (x)=
∞∑
r=0

2ar
2r + 1

xr . (16.53)

We may identify thean by differentiatingn times and then settingx = 0:

f (n)(0)= n! 2

2n+ 1
an. (16.54)

Hence

ϕ(t)=
∞∑
n=0

2n+ 1

2

f (n)(0)

n! Pn(t). (16.55)

Similar results may be obtained with the other generating functions (compare Exer-
cise 7.1.6).

• This technique of expanding in a series of special functions is always available. It is
worth a try whenever the expansion is possible (and convenient) and the interval is
appropriate.

Exercises

16.2.1 The kernel of a Fredholm equation of the second kind,

ϕ(x)= f (x)+ λ

∫ ∞

−∞
K(x, t)ϕ(t) dt,

is of the formk(x − t).2 Assuming that the required transforms exist, show that

ϕ(x)= 1√
2π

∫ ∞

−∞
F(t)e−ixt dt

1−√2πλK(t)
.

F (t) andK(t) are the Fourier transforms off (x) andk(x), respectively.

16.2.2 The kernel of a Volterra equation of the first kind,

f (x)=
∫ x

0
K(x, t)ϕ(t) dt,

2This kernel and a range 0≤ x <∞ are the characteristics of integral equations of the Wiener–Hopf type. Details will be found
in Chapter 8 of Morse and Feshbach (1953); see the Additional Readings.
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has the formk(x − t). Assuming that the required transforms exist, show that

ϕ(x)= 1

2πi

∫ γ+i∞

γ−i∞
F(s)

K(s)
exs ds.

F (s) andK(s) are the Laplace transforms off (x) andk(x), respectively.

16.2.3 The kernel of a Volterra equation of the second kind,

ϕ(x)= f (x)+ λ

∫ x

0
K(x, t)ϕ(t) dt,

has the formk(x − t). Assuming that the required transforms exist, show that

ϕ(x)= 1

2πi

∫ γ+i∞

γ−i∞
F(s)

1− λK(s)
exs ds.

16.2.4 Using the Laplace transform solution (Exercise 16.2.3), solve

(a) ϕ(x)= x +
∫ x

0
(t − x)ϕ(t) dt .

ANS. ϕ(x)= sinx.

(b) ϕ(x)= x −
∫ x

0
(t − x)ϕ(t) dt .

ANS. ϕ(x)= sinhx.

Check your results by substituting back into the original integral equations.

16.2.5 Reformulate the equations of Example 16.2.1 (Eqs. (16.39) to (16.43)), using Fourier
cosine transforms.

16.2.6 Given the Fredholm integral equation,

e−x2 =
∫ ∞

−∞
e−(x−t)2ϕ(t) dt,

apply the Fourier convolution technique of Example 16.2.1 to solve forϕ(t).

16.2.7 Solve Abel’s equation,

f (x)=
∫ x

0

ϕ(t)

(x − t)α
dt, 0< α < 1,

by the following method:

(a) Multiply both sides by(z− x)α−1 and integrate with respect tox over the range
0≤ x ≤ z.

(b) Reverse the order of integration and evaluate the integral on the right-hand side
(with respect tox) by the beta function.
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Note. ∫ z

t

dx

(z− x)1−α(x − t)α
= B(1− α,α)= (−α)!(α − 1)! = π

sinπα
.

16.2.8 Given the generalized Abel equation withf (x)= 1,

1=
∫ x

0

ϕ(t)

(x − t)α
dt, 0< α < 1,

solve forϕ(t) and verify thatϕ(t) is a solution of the given equation.

ANS. ϕ(t)= sinπα

π
tα−1.

16.2.9 A Fredholm equation of the first kind has a kernele−(x−t)2:

f (x)=
∫ ∞

−∞
e−(x−t)2ϕ(t) dt.

Show that the solution is

ϕ(x)= 1√
π

∞∑
π=0

f (n)(0)

2nn! Hn(x),

in whichHn(x) is annth-order Hermite polynomial.

16.2.10 Solve the integral equation

f (x)=
∫ 1

−1

ϕ(t)

(1− 2xt + x2)1/2
dt, −1≤ x ≤ 1,

for the unknown functionϕ(t) if
(a)f (x)= x2s , (b) f (x)= x2s+1.

ANS. (a)ϕ(t)= 4s + 1

2
P2s(t), (b) ϕ(t)= 4s + 3

2
P2s+1(t).

16.2.11 A Kirchhoff diffraction theory analysis of a laser leads to the integral equation

v(r2)= γ

∫∫
K(r1, r2)v(r1) dA.

The unknown,v(r1), gives the geometric distribution of the radiation field over one
mirror surface; the range of integration is over the surface of that mirror. For square
confocal spherical mirrors the integral equation becomes

v(x2, y2)= −iγ e
ikb

λb

∫ a

−a

∫ a

−a
e−(ik/b)(x1x2+y1y2)v(x1, y1) dx1dy1,

in which b is the centerline distance between the laser mirrors. This can be put in a
somewhat simpler form by the substitutions

kx2
i

b
= ξ2

i ,
ky2

i

b
= η2

i , and
ka2

b
= 2πa2

λb
= α2.

(a) Show that the variables separate and we get two integral equations.
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(b) Show that the new limits,±α, may be approximated by±∞ for a mirror dimen-
siona� λ.

(c) Solve the resulting integral equations.

16.3 NEUMANN SERIES, SEPARABLE (DEGENERATE)
KERNELS

Many and probably most integral equations cannot be solved by the specialized integral
transform techniques of the preceding section. Here we develop three rather general tech-
niques for solving integral equations. The first, due largely to Neumann, Liouville, and
Volterra, develops the unknown functionϕ(x) as a power series inλ, whereλ is a given
constant. The method is applicable whenever the series converges.

The second method is somewhat restricted because it requires that the two variables ap-
pearing in the kernelK(x, t) be separable. However, there are two major rewards: (1) The
relation between an integral equation and a set of simultaneous linear algebraic equations
is shown explicitly, and (2) the method leads to eigenvalues and eigenfunctions—in close
analogy to Section 3.5.

Third, a technique for numerical solution of Fredholm equations of both the first and
second kind is outlined. The problem posed by ill-conditioned matrices is emphasized.

Neumann Series

We solve a linear integral equation of the second kind by successive approximations; our
integral equation is the Fredholm equation,

ϕ(x)= f (x)+ λ

∫ b

a

K(x, t)ϕ(t) dt, (16.56)

in which f (x) 
= 0. If the upper limit of the integral is a variable (Volterra equation), the
following development will still hold, but with minor modifications. Let us try (there is no
guarantee that it will work) to approximate our unknown function by

ϕ(x)≈ ϕ0(x)= f (x). (16.57)

This choice is not mandatory. If you can make a better guess, go ahead and guess. The
choice here is equivalent to saying that the integral or the constantλ is small. To improve
this first crude approximation, we feedϕ0(x) back into the integral, Eq. (16.56), and get

ϕ1(x)= f (x)+ λ

∫ b

a

K(x, t)f (t) dt. (16.58)

Repeating this process of substituting the newϕn(x) back into Eq. (16.56), we develop the
sequence

ϕ2(x) = f (x)+ λ

∫ b

a

K(x, t1)f (t1) dt1

+ λ2
∫ b

a

∫ b

a

K(x, t1)K(t1, t2)f (t2) dt2dt1 (16.59)
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and

ϕn(x)=
n∑

i=0

λiui(x), (16.60)

where

u0(x) = f (x),

u1(x) =
∫ b

a

K(x, t1)f (t1) dt1,

(16.61)

u2(x) =
∫ b

a

∫ b

a

K(x, t1)K(t1, t2)f (t2) dt2dt1,

un(x) =
∫∫

· · ·
∫

K(x, t1)K(t1, t2) · · ·K(tn−1, tn) · f (tn) dtn · · ·dt1.

We expect that our solutionϕ(x) will be

ϕ(x)= lim
n→∞ϕn(x)= lim

n→∞

n∑
i=0

λiui(x), (16.62)

provided that our infinite series converges. We may conveniently check the convergence
by the Cauchy ratio test, Section 5.2, noting that∣∣λnun(x)∣∣≤ ∣∣λn∣∣ · |f |max · |K|nmax · |b− a|n, (16.63)

using|f |max to represent themaximum value of|f (x)| in the interval[a, b] and|K|max

to represent the maximum value of|K(x, t)| in its domain in thex, t-plane. We have
convergence if

|λ| · |K|max · |b− a|< 1. (16.64)

Note thatλ|un(max)| is being used as acomparison series. If it converges, our actual series
must converge. If this condition is not satisfied, we may or may not have convergence.
A more sensitive test is required. Of course, even if the Neumann series diverges, there
still may be a solution obtainable by another method.

To see what has been done with this iterative manipulation, we may find it helpful to
rewrite the Neumann series solution, Eq. (16.59), in operator form. We start by rewriting
Eq. (16.56) as

ϕ = λKϕ + f,

whereK represents theintegral operator
∫ b

a
K(x, t)[ ]dt . Solving forϕ, we obtain

ϕ = (1− λK)−1f.

Binomial expansion leads to Eq. (16.59). Theconvergence of the Neumann series is a
demonstration that the inverse operator(1− λK)−1 exists.
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Example 16.3.1 NEUMANN SERIES SOLUTION

To illustrate the Neumann method, we consider the integral equation

ϕ(x)= x + 1

2

∫ 1

−1
(t − x)ϕ(t) dt. (16.65)

To start the Neumann series, we take

ϕ0(x)= x. (16.66)

Then

ϕ1(x)= x + 1

2

∫ 1

−1
(t − x)t dt = x + 1

2

(
1

3
t3− 1

2
t2x

)∣∣∣∣1−1
= x + 1

3
.

Substitutingϕ1(x) back into Eq. (16.65), we get

ϕ2(x)= x + 1

2

∫ 1

−1
(t − x)t dt + 1

2

∫ 1

−1
(t − x)

1

3
dt = x + 1

3
− x

3
.

Continuing this process of substituting back into Eq. (16.65), we obtain

ϕ3(x)= x + 1

3
− x

3
− 1

32
,

and by induction

ϕ2n(x)= x +
n∑

s=1

(−1)s−13−s − x

n∑
s=1

(−1)s−13−s . (16.67)

Lettingn→∞, we get

ϕ(x)= 3

4
x + 1

4
. (16.68)

This solution can (and should) be checked by substituting back into the original equation,
Eq. (16.65). �

It is interesting to note that our series converged easily even though Eq. (16.64) isnot
satisfied in this particular case. Actually Eq. (16.64) is a rather crude upper bound onλ.
It can be shown that a necessary and sufficient condition for the convergence of our series
solution is that|λ| < |λe|, whereλe is the eigenvalue of smallest magnitude of the cor-
responding homogeneous equation[f (x) = 0)]. For this particular exampleλe =

√
3/2.

Clearly,λ= 1
2 < λe =

√
3/2.

One approach to the calculation of time-dependent perturbations in quantum mechanics
starts with the integral equation for the evolution operator

U(t, t0)= 1− i

h̄

∫ t

t0

V (t1)U(t1, t0) dt1. (16.69a)

Iteration leads to

U(t, t0)= 1− i

h̄

∫ t

t0

V (t1) dt1+
(
i

h̄

)2∫ t

t0

∫ t1

t0

V (t1)V (t2) dt2dt1+ · · · . (16.69b)
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The evolution operator is obtained as a series of multiple integrals of the perturbing poten-
tial V (t), closely analogous to the Neumann series, Eq. (16.60). ForV = V0, independent
of t , the evolution operator becomes (see Exercise 3.4.13, replacet →�t , and construct
U from products ofT (t +�t, t) as in Eq. (4.26))

U(t1, t0)= exp

[
− i

h̄
(t − t0)V0

]
.

A second and similar relationship between the Neumann series and quantum mechanics
appears when the Schrödinger wave equation for scattering is reformulated as an integral
equation. The first term in a Neumann series solution is the incident (unperturbed) wave.
The second term is the first-order Born approximation, Eq. (9.203b) of Section 9.7.

The Neumann method may also be applied to Volterra integral equations of the second
kind, Eq. (16.4) or Eq. (16.56) with the fixed upper limit,b, replaced by a variable,x. In
the Volterra case the Neumann series converges for allλ as long as the kernel is square
integrable.

Separable Kernel

The technique of replacing our integral equation by simultaneous algebraic equations may
also be used whenever our kernelK(x, t) is separable, in the sense that

K(x, t)=
n∑

j=1

Mj(x)Nj (t), (16.70)

wheren, the upper limit of the sum, isfinite. Such kernels are sometimes calleddegener-
ate. Our class of separable kernels includes all polynomials and many of the elementary
transcendental functions; that is,

cos(t − x)= cost cosx + sint sinx. (16.70a)

If Eq. (16.70) is satisfied, substitution into the Fredholm equation of the second kind, Eq.
(16.2), yields

ϕ(x)= f (x)+ λ

n∑
j=1

Mj(x)

∫ b

a

Nj (t)ϕ(t) dt, (16.71)

interchanging integration and summation. Now, the integral with respect tot is a constant,∫ b

a

Nj (t)ϕ(t) dt = cj . (16.72)

Hence Eq. (16.71) becomes

ϕ(x)= f (x)+ λ

n∑
j=1

cjMj (x). (16.73)

This gives usϕ(x), our solution, once the constantsci have been determined. Equa-
tion (16.73) further tells us the form ofϕ(x) : f (x), plus a linear combination of the
x-dependent factors of the separable kernel.
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We may findci by multiplying Eq. (16.73) byNi(x) and integrating to eliminate the
x-dependence. Use of Eq. (16.72) yields

ci = bi + λ

n∑
j=1

aij cj , (16.74)

where

bi =
∫ b

a

Ni(x)f (x) dx, aij =
∫ b

a

Ni(x)Mj (x) dx. (16.75)

It is perhaps helpful to write Eq. (16.74) in matrix form, withA= (aij ):

b= c− λAc= (1− λA)c, (16.76a)

or3

c= (1− λA)−1b. (16.76b)

Equation (16.76a) is equivalent to a set of simultaneous linear algebraic equations

(1− λa11)c1− λa12c2− λa13c3− · · · = b1,

−λa21c1+ (1− λa22)c2− λa23c3− · · · = b2, (16.77)

−λa31c1− λa32c2+ (1− λa33)c3− · · · = b3, and so on.

If our integral equation is homogeneous,[f (x)= 0], thenb= 0. To get a solution, we set
the determinant of the coefficients ofci equal to zero,

|1− λA| = 0, (16.78)

exactly as in Section 3.5. The roots of Eq. (16.78) yield our eigenvalues. Substituting into
(1− λA)c= 0, we find theci , and then Eq. (16.73) gives our solution.

Example 16.3.2

To illustrate this technique for determining eigenvalues and eigenfunctions of the homoge-
neous Fredholm equation, we consider the case

ϕ(x)= λ

∫ 1

−1
(t + x)ϕ(t) dt. (16.79)

Here (compare with Eqs. (16.71) and (16.77))

M1 = 1, M2(x)= x,

N1(t) = t, N2= 1.

Equation (16.75) yields

a11= a22= 0, a12= 2
3, a21= 2; b1= 0= b2.

3Notice the similarity to the operator form of the Neumann series.
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Equation (16.78), our secular equation, becomes∣∣∣∣∣∣ 1 −2λ

3
−2λ 1

∣∣∣∣∣∣= 0. (16.80)

Expanding, we obtain

1− 4λ2

3
= 0, λ=±

√
3

2
. (16.81)

Substituting the eigenvaluesλ=±√3/2 into Eq. (16.76), we have

c1∓ c2√
3
= 0. (16.82)

Finally, with a choice ofc1= 1, Eq. (16.73) gives

ϕ1(x) =
√

3

2
(1+√3x), λ=

√
3

2
, (16.83)

ϕ2(x) = −
√

3

2
(1−√3x), λ=−

√
3

2
. (16.84)

Since our equation is homogeneous, the normalization ofϕ(x) is arbitrary. �
If the kernel is not separable in the sense of Eq. (16.70), there is still the possibility that

it may be approximated by a kernel that is separable. Then we can get the exact solution of
an approximate equation, an equation that approximates the original equation. The solution
of the separable approximate kernel problem can then be checked by substituting back into
the original, unseparable kernel problem.

Numerical Solution

There is extensive literature on the numerical solution of integral equations, and much of
it concerns special techniques for certain situations. One method of fair generality is the
replacement of the single integral equation by a set of simultaneous algebraic equations.
And again matrix techniques are invoked. This simultaneous algebraic equation–matrix
approach is applied here to two different cases. For the homogeneous Fredholm equation
of the second kind this method works well. For the Fredholm equation of the first kind the
method is a disaster. First we deal with the disaster.

We consider the Fredholm integral equation of the first kind,

f (x)=
∫ b

a

K(x, t)ϕ(t) dt, (16.84a)

with f (x) andK(x, t) known andϕ(t) unknown. The integral can be evaluated (in prin-
ciple) by quadrature techniques. For maximum accuracy the Gaussian method is recom-
mended (if the kernel is continuous and has continuous derivatives). The numerical quadra-
ture replaces the integral by a summation,

f (xi)=
n∑

k=1

AkK(xi, tk)ϕ(tk), (16.84b)
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with Ak the quadrature coefficients. We abbreviatef (xi) as fi, ϕ(tk) as ϕk , and
AkK(xi, tk) asBik . In effect we are changing from a function description to a vector–
matrix description, with then components of the vector(fi) defined as the values of the
function at then discrete points[f (xi)]. Equation (16.84b) becomes

fi =
n∑

k=1

Bikϕk,

a matrix equation. Inverting(Bik), we obtain

ϕ(xk)= ϕk =
n∑

k=1

B−1
ki fi, (16.84c)

and Eq. (16.84a) is solved — in principle. In practice, the quadrature coefficient–kernel ma-
trix is often “ill-conditioned” (with respect to inversion). This means that in the inversion
process small (numerical) errors are multiplied by large factors. In the inversion process
all significant figures may be lost and Eq. (16.84c) becomes numerical nonsense.

This disaster should not be entirely unexpected. Integration is essentially a smoothing
operation.f (x) is relatively insensitive to local variation ofϕ(t). Conversely,ϕ(t) may
be exceedingly sensitive to small changes inf (x). Small errors inf (x) or in B−1 are
magnified and accuracy disappears. This same behavior shows up in attempts to invert
Laplace transforms numerically.

When the quadrature–matrix technique is applied to the integral equation eigenvalue
problem, the symmetric kernel, homogeneous Fredholm equation of the second kind,4

λϕ(x)=
∫ b

a

K(x, t)ϕ(t) dt, (16.84d)

the technique is far more successful. Replacing the integral by a set of simultaneous alge-
braic equations (numerical quadrature), we have

λϕi =
n∑

k=1

AkKikϕk, (16.84e)

with ϕi = ϕ(xi), as before. The pointsxi , i = 1,2, . . . , n, are taken to be the same (nu-
merically) astk , k = 1,2, . . . , n, soKik will be symmetric. The system is symmetrized by
multiplying byA1/2

i so that

λ
(
A

1/2
i ϕi

)= n∑
k=1

(
A

1/2
i KikA

1/2
k

)(
A

1/2
k ϕk

)
. (16.84f)

ReplacingA1/2
i ϕi by ψi andA1/2

i KikA
1/2
k by Sik , we obtain

λψ = Sψ, (16.84g)

with S symmetric (since the kernelK(x, t) was assumed symmetric). Of course,ψ has
componentsψi =ψ(xi). Equation (16.84g) is our matrix eigenvalue equation, Eq. (3.136).

4The eigenvalueλ has been written on the left side, multiplying the eigenfunction, as is customary in matrix analysis (Section
3.5). In this formλ will take on amaximum value.
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The eigenvalues are readily obtained by calling a canned eigenroutine.5 For kernels such as
those of Exercise 16.3.15 and using a 10-point Gauss–Legendre quadrature, the eigenrou-
tine determines the largest eigenvalue to within about 0.5 percent for the cases where the
kernel has discontinuities in its derivatives. If the derivatives are continuous, the accuracy
is much better.

Linz6 has described an interesting variational refinement in the determination ofλmax to
high accuracy. The key to his method is Exercise 17.8.7. The components of the eigenfunc-
tion vector are obtained from Eq. (16.84d) withϕ(tk) now known andϕi = ϕ(xi) generated
as required. (Thexi are no longer tied to thetk .)

Exercises

16.3.1 Using the Neumann series, solve

(a) ϕ(x)= 1− 2
∫ x

0
tϕ(t) dt ,

(b) ϕ(x)= x +
∫ x

0
(t − x)ϕ(t) dt ,

(c) ϕ(x)= x −
∫ x

0
(t − x)ϕ(t) dt .

ANS. (a)ϕ(x)= e−x2
.

16.3.2 Solve the equation

ϕ(x)= x + 1

2

∫ 1

−1
(t + x)ϕ(t) dt

by the separable kernel method. Compare with the Neumann method solution of Section
16.3.

ANS. ϕ(x)= 1
2(3x − 1).

16.3.3 Find the eigenvalues and eigenfunctions of

ϕ(x)= λ

∫ 1

−1
(t − x)ϕ(t) dt.

16.3.4 Find the eigenvalues and eigenfunctions of

ϕ(x)= λ

∫ 2π

0
cos(x − t)ϕ(t) dt.

ANS. λ1= λ2= 1
π
, ϕ(x)=Acosx +B sinx.

5See W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes, 2nd ed., Cambridge, UK: Cambridge
University Press (1992), Chapter 11, for details, references, and computer codes. The symbolic softwareMathematica andMaple
also include matrix functions for computing eigenvalues and eigenvectors.
6P. Linz, On the numerical computation of eigenvalues and eigenvectors of symmetric integral equations.Math. Comput. 24:
905 (1970).
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16.3.5 Find the eigenvalues and eigenfunctions of

y(x)= λ

∫ 1

−1
(x − t)2y(t) dt.

Hint. This problem may be treated by the separable kernel method or by a Legendre
expansion.

16.3.6 If the separable kernel technique of this section is applied to a Fredholm equation of the
first kind (Eq. (16.1)), show that Eq. (16.76) is replaced by

c= A−1b.

In general the solution for the unknownϕ(t) is not unique.

16.3.7 Solve

ψ(x)= x +
∫ 1

0
(1+ xt)ψ(t) dt

by each of the following methods:

(a) the Neumann series technique,
(b) the separable kernel technique,
(c) educated guessing.

16.3.8 Use the separable kernel technique to show that

ψ(x)= λ

∫ π

0
cosx sintψ(t) dt

hasno solution (apart from the trivialψ = 0). Explain this result in terms of separability
and symmetry.

16.3.9 Solve

ϕ(x)= 1+ λ2
∫ x

0
(x − t)ϕ(t) dt

by each of the following methods:

(a) reduction to an ODE (find the boundary conditions),
(b) the Neumann series,
(c) the use of Laplace transforms.

ANS. ϕ(x)= coshλx.

16.3.10 (a) In Eq. (16.69a) takeV = V0, independent oft . Without using Eq. (16.69b), show
that Eq. (16.69a) leads directly to

U(t − t0)= exp

[
− i

h̄
(t − t0)V0

]
.

(b) Repeat for Eq. (16.69b) without using Eq. (16.69a).
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16.3.11 Givenϕ(x)= λ
∫ 1

0 (1+ xt)ϕ(t) dt , solve for the eigenvalues and the eigenfunctions by
the separable kernel technique.

16.3.12 Knowing the form of the solutions can be a great advantage, for the integral equation

ϕ(x)= λ

∫ 1

0
(1+ xt)ϕ(t) dt,

assumeϕ(x) to have the form 1+ bx. Substitute into the integral equation. Integrate
and solve forb andλ.

16.3.13 The integral equation

ϕ(x)= λ

∫ 1

0
J0(αxt)ϕ(t) dt, J0(α)= 0,

is approximated by

ϕ(x)= λ

∫ 1

0

[
1− x2t2

]
ϕ(t) dt.

Find the minimum eigenvalueλ and the corresponding eigenfunctionϕ(t) of the ap-
proximate equation.

ANS. λmin= 1.112486, ϕ(x)= 1− 0.303337x2.

16.3.14 You are given the integral equation

ϕ(x)= λ

∫ 1

0
sinπxtϕ(t) dt.

Approximate the kernel by

K(x, t)= 4xt (1− xt)≈ sinπxt.

Find the positive eigenvalue and the corresponding eigenfunction for the approximate
integral equation.
Note. ForK(x, t)= sinπxt , λ= 1.6334.

ANS. λ= 1.5678, ϕ(x)= x − 0.6955x2

(λ+ =
√

31− 4, λ− =−
√

31− 4).

16.3.15 The equation

f (x)=
∫ b

a

K(x, t)ϕ(t) dt

has a degenerate kernelK(x, t)=∑n
i=1Mi(x)Ni(t).

(a) Show that this integral equation has no solution unlessf (x) can be written as

f (x)=
n∑

i=1

fiMi(x),

with thefi constants.
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(b) Show that to any solutionϕ(x) we may addψ(x), providedψ(x) is orthogonal to
all Ni(x): ∫ b

a

Ni(x)ψ(x)dx = 0 for all i.

16.3.16 Using numerical quadrature, convert

ϕ(x)= λ

∫ 1

0
J0(αxt)ϕ(t) dt, J0(α)= 0,

to a set of simultaneous linear equations.

(a) Find the minimum eigenvalueλ.
(b) Determineϕ(x) at discrete values ofx and plotϕ(x) versusx. Compare with the

approximate eigenfunction of Exercise 16.3.13.

ANS. (a)λmin= 1.14502.

16.3.17 Using numerical quadrature, convert

ϕ(x)= λ

∫ 1

0
sinπxtϕ(t) dt

to a set of simultaneous linear equations.

(a) Find the minimum eigenvalueλ.
(b) Determineϕ(x) at discrete values ofx and plotϕ(x) versusx. Compare with the

approximate eigenfunction of Exercise 16.3.14.

ANS. (a)λmin= 1.6334.

16.3.18 Given a homogeneous Fredholm equation of the second kind

λϕ(x)=
∫ 1

0
K(x, t)ϕ(t) dt.

(a) Calculate the largest eigenvalueλ0. Use the 10-point Gauss–Legendre quadrature
technique. For comparison the eigenvalues listed by Linz are given asλexact.

(b) Tabulateϕ(xk), where thexk are the 10 evaluation points in[0,1].
(c) Tabulate the ratio

1

λ0ϕ(x)

∫ 1

0
K(x, t)ϕ(t) dt for x = xk.

This is the test of whether or not you really have a solution.

(a) K(x, t)= ext .

ANS. λexact= 1.35303.
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(b) K(x, t)=
{ 1

2x(2− t), x < t,

1
2t (2− x), x > t.

ANS. λexact= 0.24296.

(c) K(x, t)= |x − t |.

ANS. λexact= 0.34741.

(d) K(x, t)=
{
x, x < t,

t, x > t.

ANS. λexact= 0.40528.

Note. (1) The evaluation pointsxi of Gauss–Legendre quadrature for[−1,1] may be
linearly transformed into[0,1],

xi[0,1] = 1
2

(
xi[−1,1] + 1

)
.

Then the weighting factorsAi are reduced in proportion to the length of the interval:

Ai[0,1] = 1
2Ai[−1,1].

16.3.19 Using the matrix variational technique of Exercise 17.8.7, refine your calculation of the
eigenvalue of Exercise 16.3.18(c)[K(x, t)= |x − t |]. Try a 40× 40 matrix.
Note. Your matrix should be symmetric so that the (unknown) eigenvectors will be or-
thogonal.

ANS. (40-point Gauss–Legendre quadrature) 0.34727.

16.4 HILBERT–SCHMIDT THEORY

Symmetrization of Kernels

This is the development of the properties of linear integral equations (Fredholm type) with
symmetric kernels:

K(x, t)=K(t, x). (16.85)

Before plunging into the theory, we note that some important nonsymmetric kernels can be
symmetrized. If we have the equation

ϕ(x)= f (x)+ λ

∫ b

a

K(x, t)ρ(t)ϕ(t) dt, (16.86)

the total kernel is actuallyK(x, t)ρ(t), clearly not symmetric ifK(x, t) alone is symmetric.
However, if we multiply Eq. (16.86) by

√
ρ(x) and substitute√

ρ(x)ϕ(x)=ψ(x), (16.87)
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we obtain

ψ(x)=√ρ(x)f (x)+ λ

∫ b

a

[
K(x, t)

√
ρ(x)ρ(t)

]
ψ(t) dt, (16.88)

with a symmetric total kernelK(x, t)
√
ρ(x)ρ(t). We shall meetρ(x) later as a positive

weighting factor in this integral equation Sturm–Liouville theory.

Orthogonal Eigenfunctions

We now focus on the homogeneous Fredholm equation of the second kind:

ϕ(x)= λ

∫ b

a

K(x, t)ϕ(t) dt. (16.89)

We assume that the kernelK(x, t) is symmetric and real. Perhaps one of the first ques-
tions we might ask about the equation is: “Does it make sense?” or more precisely, “Does
an eigenvalueλ satisfying this equation exist?” With the aid of the Schwarz and Bessel
inequalities, Chapter 10 and Courant and Hilbert (Chapter III, Section 4 — see the Addi-
tional Readings) show that ifK(x, t) is continuous, there is at least one such eigenvalue
and possibly an infinite number of them.

We show that the eigenvalues,λ, are real and that the corresponding eigenfunctions,
ϕi(x), are orthogonal. Letλi , λj be two different eigenvalues andϕi(x), ϕj (x) be the
corresponding eigenfunctions. Equation (16.89) then becomes

ϕi(x) = λi

∫ b

a

K(x, t)ϕi(t) dt, (16.90a)

ϕj (x) = λj

∫ b

a

K(x, t)ϕj (t) dt. (16.90b)

If we multiply Eq. (16.90a) byλjϕj (x) and Eq. (16.90b) byλiϕi(x) and then integrate
with respect tox, the two equations become7

λj

∫ b

a

ϕi(x)ϕj (x) dx = λiλj

∫ b

a

∫ b

a

K(x, t)ϕi(t)ϕj (x) dt dx, (16.91a)

λi

∫ b

a

ϕi(x)ϕj (x) dx = λiλj

∫ b

a

∫ b

a

K(x, t)ϕj (t)ϕi(x) dt dx, (16.91b)

Since we have demanded thatK(x, t) by symmetric, Eq. (16.91b) may be rewritten as

λi

∫ b

a

ϕi(x)ϕj (x) dx = λiλj

∫ b

a

∫ b

a

K(x, t)ϕi(t)ϕj (x) dt dx. (16.92)

Subtracting Eq. (16.92) from Eq. (16.91a), we obtain

(λj − λi)

∫ b

a

ϕi(x)ϕj (x) dx = 0. (16.93)

7We assume that the necessary integrals exist. For an example of a simple pathological case, see Exercise 16.4.3.
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This has the same form as Eq. (10.34) in the Sturm–Liouville theory. Sinceλi 
= λj ,∫ b

a

ϕi(x)ϕj (x) dx = 0, i 
= j, (16.94)

proving orthogonality. Note that with a real symmetric kernel, no complex conjugates are
involved in Eq. (16.94). For the self-adjoint or Hermitian kernel, see Exercise 16.4.1.

If the eigenvalueλi is degenerate,8 the eigenfunctions for that particular eigenvalue may
be orthogonalized by the Gram–Schmidt method (Section 10.3). Our orthogonal eigen-
functions may, of course, be normalized, and we assume that this has been done. The
result is ∫ b

a

ϕi(x)ϕj (x) dx = δij . (16.95)

To demonstrate that theλi are real, we need to admit complex conjugates. Taking the
complex conjugate of Eq. (16.90a), we have

ϕ∗i (x)= λ∗i
∫ b

a

K(x, t)ϕ∗i (t) dt, (16.96)

provided the kernelK(x, t) is real. Now, using Eq. (16.96) instead of Eq. (16.90b), we see
that the analysis leads to

(λ∗i − λi)

∫ b

a

ϕ∗i (x)ϕi(x) dx = 0. (16.97)

This time the integral cannot vanish (unless we have the trivial solution,ϕi(x)= 0) and

λ∗i = λi, (16.98)

or λi , our eigenvalue, is real.
This is thethird time we have passed this way, first with Hermitian matrices, then with

Sturm–Liouville (self-adjoint) ODEs, and now with Hilbert–Schmidt integral equations.
The correspondence between the Hermitian matrices and the self-adjoint ODEs shows up
in physics as the two outstanding formulations of quantum mechanics — the Heisenberg
matrix approach and the Schrödinger differential operator approach. In Section 17.8 and
Exercise 17.7.6 we shall explore further the correspondence between the Hilbert–Schmidt
symmetric kernel integral equations and the Sturm–Liouville self-adjoint differential equa-
tions.

The eigenfunctions of our integral equations form a complete set,9 in the sense that any
functiong(x) that can be generated by the integral

g(x)=
∫

K(x, t)h(t) dt, (16.99)

8If more than one distinct eigenfunction corresponds to the same eigenvalue (satisfying Eq. (16.89)), that eigenvalue is said to
be degenerate (see Chapters 3 and 4).
9For a proof of this statement, see Courant and Hilbert (1953), Chapter III, Section 5, in the Additional Readings.
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in which h(t) is any piecewise continuous function, can be represented by a series of
eigenfunctions,

g(x)=
∞∑
n=1

anϕn(x). (16.100)

The series converges uniformly and absolutely.
Let us extend this to the kernelK(x, t) by asserting that

K(x, t)=
∞∑
n=1

anϕn(t), (16.101)

andan = an(x). Substituting into the original integral equation (Eq. (16.89)) and using the
orthogonality integral, we obtain

ϕi(x)= λiai(x). (16.102)

Therefore for our homogeneous Fredholm equation of the second kind, the kernel may be
expressed in terms of the eigenfunctions and eigenvalues by

K(x, t)=
∞∑
n=1

ϕn(x)ϕn(t)

λn
(zero not an eigenvalue). (16.103)

Here we have a bilinear expansion, a linear expansion inϕn(x) and linear inϕn(t). Similar
bilinear expansions appear in Section 9.7. It is possible that the expansion given by Eq.
(16.101) may not exist. As an illustration of the sort of pathological behavior that may
occur, you are invited to apply this analysis to

ϕ(x)= λ

∫ ∞

0
e−xtϕ(t) dt

(compare Exercise 16.4.3).
It should be emphasized that this Hilbert–Schmidt theory is concerned with the establish-

ment of properties of the eigenvalues (real) and eigenfunctions (orthogonality, complete-
ness), properties that may be of great interest and value. The Hilbert–Schmidt theory does
not solve the homogeneous integral equation for us any more than the Sturm–Liouville
theory of Chapter 10 solved the ODEs. The solutions of the integral equation come from
Sections 16.2 and 16.3 (including numerical analysis).

Nonhomogeneous Integral Equation

We need a solution of the nonhomogeneous equation

ϕ(x)= f (x)+ λ

∫ b

a

K(x, t)ϕ(t) dt. (16.104)

Let us assume that the solutions of the corresponding homogeneous integral equation are
known:

ϕn(x)= λn

∫ b

a

K(x, t)ϕn(t) dt, (16.105)
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the solutionϕn(x) corresponding to the eigenvalueλn. We expand bothϕ(x) andf (x) in
terms of this set of eigenfunctions:

ϕ(x) =
∞∑
n=1

anϕn(x) (an unknown), (16.106)

f (x) =
∞∑
n=1

bnϕn(x) (bn known). (16.107)

Substituting into Eq. (16.104), we obtain

∞∑
n=1

anϕn(x)=
∞∑
n=1

bnϕn(x)+ λ

∫ b

a

K(x, t)

∞∑
n=1

anϕn(t) dt. (16.108)

By interchanging the order of integration and summation, we may evaluate the integral by
Eq. (16.105), and we get

∞∑
n=1

anϕn(x)=
∞∑
n=1

bnϕn(x)+ λ

∞∑
n=1

anϕn(x)

λn
. (16.109)

If we multiply by ϕi(x) and integrate fromx = a to x = b, the orthogonality of our eigen-
functions leads to

ai = bi + λ
ai

λi
. (16.110)

This can be rewritten as

ai = bi + λ

λi − λ
bi, (16.111)

which brings us to our solution

ϕ(x)= f (x)+ λ

∞∑
i=1

∫ b

a
f (t)ϕi(t) dt

λi − λ
ϕi(x). (16.112)

Here it is assumed that the eigenfunctionsϕi(x) are normalized to unity.Note that if
f (x)= 0 there is no solution unless λ= λi . This means that our homogeneous equation
has no solution (except the trivialϕ(x)= 0) unlessλ is an eigenvalue,λi .

In the event thatλ for the nonhomogeneous equation (16.104) is equal to one of the
eigenvaluesλp of the homogeneous equation, our solution (Eq. (16.112)) blows up. To
repair the damage we return to Eq. (16.110) and give the value

ap = bp + λp
ap

λp
= bp + ap (16.113)

special attention. Clearly,ap drops out and is no longer determined bybp, whereasbp = 0.
This implies that

∫
f (x)ϕp(x) dx = 0; that is,f (x) is orthogonal to the eigenfunction

ϕp(x). If this is not the case, we have no solution.
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Equation (16.111) still holds fori 
= p, so we multiply byϕi(x) and sum overi(i 
= p)

to obtain

ϕ(x)= f (x)+ apϕp + λp

∞∑
i=1
i 
=p

∫ b

a
f (t)ϕi(t) dt

λi − λp
ϕi(x). (16.114)

In this solution theap remains as an undetermined constant.10

Exercises

16.4.1 In the Fredholm equation

ϕ(x)= λ

∫ b

a

K(x, t)ϕ(t) dt

the kernelK(x, t) is self-adjoint or Hermitian:

K(x, t)=K∗(t, x).

Show that

(a) the eigenfunctions are orthogonal, in the sense that∫ b

a

ϕ∗m(x)ϕn(x) dx = 0, m 
= n (λm 
= λn),

(b) the eigenvalues are real.

16.4.2 Solve the integral equation

ϕ(x)= x + 1

2

∫ 1

−1
(t + x)ϕ(t) dt

(compare Exercise 16.3.2) by the Hilbert–Schmidt method.
Note. The application of the Hilbert–Schmidt technique here is somewhat like using
a shotgun to kill a mosquito, especially when the equation can be solved quickly by
expanding in Legendre polynomials.

16.4.3 Solve the Fredholm integral equation

ϕ(x)= λ

∫ ∞

0
e−xtϕ(t) dt.

Note. A series expansion of the kernele−xt would permit a separable kernel-type solu-
tion (Section 16.3), except that the series is infinite. This suggests an infinite number of
eigenvalues and eigenfunctions. If you stop with

ϕ(x)= x−1/2, λ= π−1/2,

10This is like the inhomogeneous linear ODE. We may add to its solution any constant times a solution of the corresponding
homogeneous ODE.



16.4 Hilbert–Schmidt Theory 1035

you will have missed most of the solutions. Show that the normalization integrals of
the eigenfunctions donot exist. A basic reason for this anomalous behavior is that the
range of integration is infinite, making this a “singular” integral equation.

16.4.4 Given

y(x)= x + λ

∫ 1

0
xty(t) dt.

(a) Determiney(x) as a Neumann series.
(b) Find the range ofλ for which your Neumann series solution is convergent. Com-

pare with the value obtained from

|λ| · |K|max< 1.

(c) Find the eigenvalue and the eigenfunction of the corresponding homogeneous in-
tegral equation.

(d) By the separable kernel method show that the solution is

y(x)= 3x

3− λ
.

(e) Findy(x) by the Hilbert–Schmidt method.

16.4.5 In Exercise 16.3.4,

K(x, t)= cos(x − t).

The (unnormalized) eigenfunctions are cosx and sinx.

(a) Show that there is a functionh(t) such thatK(x, s), considered as a function ofs
alone, may be written as

K(x, s)=
∫ 2π

0
K(s, t)h(t) dt.

(b) Show thatK(x, t) may be expanded as

K(x, t)=
2∑

n=1

ϕn(x)ϕn(t)

λn
.

16.4.6 The integral equationϕ(x)= λ
∫ 1

0 (1+xt)ϕ(t) dt has eigenvaluesλ1= 0.7889 andλ2=
15.211 and eigenfunctionsϕ1= 1+ 0.5352x andϕ2= 1− 1.8685x.

(a) Show that these eigenfunctions are orthogonal over the interval[0,1].
(b) Normalize the eigenfunctions to unity.
(c) Show that

K(x, t)= ϕ1(x)ϕ1(t)

λ1
+ ϕ2(x)ϕ2(t)

λ2
.
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ANS. (b)ϕ1(x)= 0.7831+ 0.4191x
ϕ2(x)= 1.8403− 3.4386x.

16.4.7 An alternate form of the solution to the nonhomogeneous integral equation, Eq.
(16.104), is

ϕ(x)=
∞∑
i=1

biλi

λi − λ
ϕi(x).

(a) Derive this form without using Eq. (16.112).
(b) Show that this form and Eq. (16.112) are equivalent.

16.4.8 (a) Show that the eigenfunctions of Exercise 16.3.5 are orthogonal.
(b) Show that the eigenfunctions of Exercise 16.3.11 are orthogonal.

Additional Readings

Bocher, M.,An Introduction to the Study of Integral Equations, Cambridge Tracts in Mathematics and Mathe-
matical Physics, No. 10. New York: Hafner (1960). This is a helpful introduction to integral equations.

Cochran, J. A.,The Analysis of Linear Integral Equations. New York: McGraw-Hill (1972). This is a compre-
hensive treatment of linear integral equations which is intended for applied mathematicians and mathematical
physicists. It assumes a moderate to high level of mathematical competence on the part of the reader.

Courant, R., and D. Hilbert,Methods of Mathematical Physics, Vol.1 (English edition). New York: Interscience
(1953). This is one of the classic works of mathematical physics. Originally published in German in 1924,
the revised English edition is an excellent reference for a rigorous treatment of integral equations, Green’s
functions, and a wide variety of other topics on mathematical physics.

Golberg, M. A., ed.,Solution Methods of Integral Equations. New York: Plenum Press (1979). This is a set of
papers from a conference on integral equations. The initial chapter is excellent for up-to-date orientation and
a wealth of references.

Kanval, R. P.,Linear Integral Equations. New York: Academic Press (1971), reprinted, Birkhäuser (1996). This
book is a detailed but readable treatment of a variety of techniques for solving linear integral equations.

Morse, P. M., and H. Feshbach,Methods of Theoretical Physics. New York: McGraw-Hill (1953). Chapter 7
is a particularly detailed, complete discussion of Green’s functions from the point of view of mathematical
physics. Note, however, that Morse and Feshbach frequently choose a source of 4πδ(r− r′) in place of our
δ(r− r′). Considerable attention is devoted to bounded regions.

Muskhelishvili, N. I.,Singular Integral Equations, 2nd ed., New York: Dover (1992).

Stakgold, I.,Green’s Functions and Boundary Value Problems. New York: Wiley (1979).



CHAPTER 17

CALCULUS OF VARIATIONS

Uses of the Calculus of Variations

We now address problems where we search for a function or curve, rather than a value of
some variable, that makes a given quantity stationary, usually an energy or action integral.
Because a function is varied, these problems are calledvariational. Variational principles,
such as D’Alembert’s and Hamilton’s, have been developed in classical mechanics, and
Lagrangian techniques occur in quantum mechanics and field theory, for example, Fermat’s
principle of the shortest optical path in electrodynamics. Before plunging into this rather
different branch of mathematical physics, let us summarize some of its uses in both physics
and mathematics.

1. In existing physical theories:

a. Unification of diverse areas of physics using energy as a key concept.
b. Convenience in analysis — Lagrange equations, Section 17.3.
c. Elegant treatment of constraints, Section 17.7.

2. Starting point for new, complex areas of physics and engineering. In general rela-
tivity the geodesic is taken as the minimum path of a light pulse or the free-fall path
of a particle in curved Riemannian space (see geodesics in Section 2.10). Variational
principles appear in quantum field theory. Variational principles have been applied
extensively in control theory.

3. Mathematical unification. Variational analysis provides a proof of the completeness
of the Sturm–Liouville eigenfunctions, Chapter 10, and establishes a lower bound for
the eigenvalues. Similar results follow for the eigenvalues and eigenfunctions of the
Hilbert–Schmidt integral equation, Section 16.4.

4. Calculation techniques, Section 17.8. Calculation of the eigenfunctions and eigenval-
ues of the Sturm–Liouville equation. Integral equation eigenfunctions and eigenvalues
may be calculated using numerical quadrature and matrix techniques, Section 16.3.

1037
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17.1 A DEPENDENT AND AN INDEPENDENT VARIABLE

Concept of Variation

The calculus of variations involves problems in which the quantity to be minimized (or
maximized) appears as a stationary integral, a functional, because a functiony(x,α) needs
to be determined from a class described by an infinitesimal parameterα. As the simplest
case, let

J =
∫ x2

x1

f (y, yx, x) dx. (17.1)

Here J is the quantity that takes on a stationary value. Under the integral sign,f is a
known function of the indicated variablesx andα, as arey(x,α), yx(x,α)≡ ∂y(x,α)/∂x,
but the dependence ofy on x (andα) is not yet known; that is,y(x) is unknown. This
means that although the integral is fromx1 to x2, the exact path of integration is not known
(Fig. 17.1). We are to choose the path of integration through points(x1, y1) and(x2, y2) to
minimizeJ . Strictly speaking, we determine stationary values ofJ : minima, maxima, or
saddle points. In most cases of physical interest the stationary value will be a minimum.
This problem is considerably more difficult than the corresponding problem of a function
y(x) in differential calculus. Indeed, there may be no solution. In differential calculus the
minimum is determined by comparingy(x0) with y(x), wherex ranges over neighboring
points. Here we assume the existence of an optimum path, that is, an acceptable path for
which J is stationary, and then compareJ for our (unknown) optimum path with that
obtained from neighboring paths. In Fig. 17.1 two possible paths are shown. (There are an
infinite number of possibilities.) The difference between these two for a givenx is called
the variation ofy, δy, and is conveniently described by introducing a new function,η(x),
to define the arbitrary deformation of the path and a scale factor,α, to give the magnitude
of the variation. The functionη(x) is arbitrary except for two restrictions. First,

η(x1)= η(x2)= 0, (17.2)

FIGURE 17.1 A varied path.
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which means that all varied paths must pass through the fixed endpoints. Second, as will
be seen shortly,η(x) must be differentiable; that is, we may not use

η(x) = 1, x = x0,
(17.3)= 0, x 
= x0,

but we can chooseη(x) to have a form similar to the functions used to represent the Dirac
delta function (Chapter 1) so thatη(x) differs from zero only over an infinitesimal region.1

Then, with the path described byα andη(x),

y(x,α)= y(x,0)+ αη(x) (17.4)

and

δy = y(x,α)− y(x,0)= αη(x). (17.5)

Let us choosey(x,α = 0) as the unknown path that will minimizeJ . Theny(x,α)

for nonzeroα describes a neighboring path. In Eq. (17.1),J is now a function2 of our
parameterα:

J (α)=
∫ x2

x1

f
[
y(x,α), yx(x,α), x

]
dx, (17.6)

and our condition for an extreme value is that[
∂J (α)

∂α

]
α=0

= 0, (17.7)

analogous to the vanishing of the derivativedy/dx in differential calculus.
Now, the α-dependence of the integral is contained iny(x,α) and yx(x,α) =

(∂/∂x)y(x,α). Therefore3

∂J (α)

∂α
=
∫ x2

x1

[
∂f

∂y

∂y

∂α
+ ∂f

∂yx

∂yx

∂α

]
dx. (17.8)

From Eq. (17.4),

∂y(x,α)

∂α
= η(x), (17.9)

∂yx(x,α)

∂α
= dη(x)

dx
, (17.10)

so Eq. (17.8) becomes

∂J (α)

∂α
=
∫ x2

x1

(
∂f

∂y
η(x)+ ∂f

∂yx

dη(x)

dx

)
dx. (17.11)

1Compare H. Jeffreys and B. S. Jeffreys,Methods of Mathematical Physics, 3rd ed., Cambridge, UK: Cambridge University
Press (1966), Chapter 10, for a more complete discussion of this point.
2Technically,J is a functional of y, yx , but a function ofα depending on the functionsy(x,α) andyx(x,α) : J [y(x,α),
yx(x,α)].
3Note thaty andyx are being treated asindependent variables.
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Integrating the second term by parts to getη(x) as a common and arbitrary nonvanishing
factor, we obtain∫ x2

x1

dη(x)

dx

∂f

∂yx
dx = η(x)

∂f

∂yx

∣∣∣∣x2

x1

−
∫ x2

x1

η(x)
d

dx

∂f

∂yx
dx. (17.12)

The integrated part vanishes by Eq. (17.2), and Eq. (17.11) becomes∫ x2

x1

[
∂f

∂y
− d

dx

∂f

∂yx

]
η(x)dx = 0. (17.13)

In this formα has been set equal to zero, corresponding to the solution path, and, in effect,
is no longer part of the problem.

Occasionally we will see Eq. (17.13) multiplied byδα, which gives, upon using
η(x)δα = δy, ∫ x2

x1

(
∂f

∂y
− d

dx

∂f

∂yx

)
δy dx = δα

[
∂J

∂α

]
α=0

= δJ = 0. (17.14)

Sinceη(x) is arbitrary, we may choose it to have the same sign as the bracketed expression
in Eq. (17.13) whenever the latter differs from zero. Hence the integrand is always nonneg-
ative. Equation (17.13), our condition for the existence of a stationary value, can then be
satisfied only if the bracketed term itself is zero almost everywhere. The condition for our
stationary value is thus a PDE,4

∂f

∂y
− d

dx

∂f

∂yx
= 0, (17.15)

known as the Euler equation, which can be expressed in various other forms. Sometimes
solutions are missed when they are not twice differentiable, as required by Eq. (17.15). An
example is Goldschmidt’s discontinuous solution of Section 17.2. It is clear that Eq. (17.15)
must be satisfied forJ to take on a stationary value, that is, for Eq. (17.14) to be satisfied.
Equation (17.15) is necessary, but it is by no means sufficient.5 Courant and Robbins (1996;
see the Additional Readings) illustrate this very nicely by considering the distance over a
sphere between points on the sphere,A andB, Fig. 17.2. Path (1), a great circle, is found
from Eq. (17.15). But path (2), the remainder of the great circle through pointsA andB,
also satisfies the Euler equation. Path (2) is a maximum, but only if we demand that it be
a great circle and then only if we make less than one circuit; that is, path (2)+n complete
revolutions is also a solution. If the path is not required to be a great circle, any deviation
from (2) will increase the length. This is hardly the property of a local maximum, and
that is why it is important to check the properties of solutions of Eq. (17.15) to see if they
satisfy the physical conditions of the given problem.

4It is important to watch the meaning of∂/∂x andd/dx closely. For example, iff = f [y(x), yx , x],
df

dx
= ∂f

∂x
+ ∂f

∂y

dy

dx
+ ∂f

∂yx

d2y

dx2
.

The first term on the right gives theexplicit x-dependence. The second and third terms give theimplicit x-dependence viay
andyx .
5For a discussion of sufficiency conditions and the development of the calculus of variations as a part of mathematics, see G. M.
Ewing, Calculus of Variations with Applications, New York: Norton (1969). Sufficiency conditions are also covered by Sagan
(in the Additional Readings at the end of this chapter).
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FIGURE 17.2 Stationary
paths over a sphere.

Example 17.1.1 OPTICAL PATH NEAR EVENT HORIZON OF A BLACK HOLE

Determine the optical path in an atmosphere where the velocity of light increases in pro-
portion to the height,v(y)= y/b, with b > 0 some parameter describing the light speed.
Sov = 0 aty = 0, which simulates the conditions at the surface of a black hole, called its
event horizon, where the gravitational force is so strong that the velocity of light goes to
zero, thus even trapping light.

Because light takes the shortest time, the variational problem takes the form

�t =
∫ t2

t1

dt =
∫

ds

v
= b

∫ √
dx2+ dy2

y
dt =minimum.

Herev = ds/dt = y/b is the velocity of light in this environment, they coordinate being
the height. A look at the variational functional suggests choosingy as the independent
variable becausex does not appear in the integrand. We can bringdy outside the radical
and change the role ofx andy in J of Eq. (17.1) and the resulting Euler equation. With
x = x(y), x′ = dx/dy, we obtain

b

∫ √
x′2+ 1

y
dy =minimum,

and the Euler equation becomes

∂f

∂x
− d

dy

∂f

∂x′
= 0.

Since∂f/∂x = 0, this can be integrated, giving

x′

y
√
x′2+ 1

= C1= const., or x′2= C2
1y

2(x′2+ 1
)
.

Separatingdx anddy in this first-order ODE we find the integral∫ x

dx =
∫ y C1y dy√

1−C2
1y

2
,
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FIGURE 17.3 Circular optical path in medium.

which yields

x +C2= −1

C1

√
1−C2

1y
2, or (x +C2)

2+ y2= 1

C2
1

.

This is a circular light path with center on thex-axis along the event horizon. (See
Fig. 17.3.) This example may be adapted to a mirage (Fata Morgana) in a desert with
hot air near the ground and cooler air aloft (the index of refraction changes with height
in cool versus hot air), thus changing the velocity law fromv = y/b→ v0− y/b. In this
case, the circular light path is no longer convex with center on thex-axis, but becomes
concave. �

Alternate Forms of Euler Equations

One other form (Exercise 17.1.1), which is often useful, is

∂f

∂x
− d

dx

(
f − yx

∂f

∂yx

)
= 0. (17.16)

In problems in whichf = f (y, yx), that is, in whichx does not appear explicitly,
Eq. (17.16) reduces to

d

dx

(
f − yx

∂f

∂yx

)
= 0, (17.17)

or

f − yx
∂f

∂yx
= constant. (17.18)

Example 17.1.2 Missing Dependent Variables

Consider the variational problem
∫
f (ṙ) dt = minimum. Herer is absent from the inte-

grand. Therefore the Euler equations become

d

dt

∂f

∂ẋ
= 0,

d

dt

∂f

∂ẏ
= 0,

d

dt

∂f

∂ż
= 0,
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with r= (x, y, z), sofṙ = c= const. Solving these three equations for the three unknowns
ẋ, ẏ, ż yields ṙ = c1 = const. Integrating this constant velocity givesr = c1t + c2. The
solutions are straight lines, despite the general nature of the functionf .

A physical example illustrating this case is the propagation of light in a crystal, where
the velocity of light depends on the (crystal) directions but not on the location in the crystal,
because a crystal is an anisotropichomogeneous medium. The variational problem∫

ds

v
=
∫ √

ṙ2

v(ṙ)
dt =minimum

has the form of our example. Note thatt need not be the time, but it parameterizes the light
path. �

Exercises

17.1.1 Fordy/dx ≡ yx 
= 0, show the equivalence of the two forms of Euler’s equation:

∂f

∂x
− d

dx

∂f

∂yx
= 0

and

∂f

∂y
− d

dx

(
f − yx

∂f

∂yx

)
= 0.

17.1.2 Derive Euler’s equation by expanding the integrand of

J (α)=
∫ x2

x1

f
[
y(x,α), yx(x,α), x

]
dx

in powers ofα, using a Taylor (Maclaurin) expansion withy andyx as the two variables
(Section 5.6).
Note. The stationary condition is∂J (α)/∂α = 0, evaluated atα = 0. The terms
quadratic inα may be useful in establishing the nature of the stationary solution (maxi-
mum, minimum, or saddle point).

17.1.3 Find the Euler equation corresponding to Eq. (17.15) iff = f (yxx, yx, y, x).

ANS.
d2

dx2

(
∂f

∂yxx

)
− d

dx

(
∂f

∂yx

)
+ ∂f

∂y
= 0,

η(x1)= η(x2)= 0, ηx(x1)= ηx(x2)= 0.

17.1.4 The integrandf (y, yx, x) of Eq. (17.1) has the form

f (y, yx, x)= f1(x, y)+ f2(x, y)yx.

(a) Show that the Euler equation leads to

∂f1

∂y
− ∂f2

∂x
= 0.

(b) What does this imply for the dependence of the integralJ upon the choice of path?
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17.1.5 Show that the condition that

J =
∫

f (x, y) dx

has a stationary value

(a) leads tof (x, y) independent ofy and
(b) yields no information about anyx-dependence.

We get no (continuous, differentiable) solution. To be a meaningful variational problem,
dependence ony or higher derivatives is essential.
Note. The situation will change when constraints are introduced (compare Exer-
cise 17.7.7).

17.2 APPLICATIONS OF THE EULER EQUATION

Example 17.2.1 STRAIGHT LINE

Perhaps the simplest application of the Euler equation is in the determination of the shortest
distance between two points in the Euclideanxy-plane. Since the element of distance is

ds = [(dx)2+ (dy)2
]1/2= [1+ y2

x

]1/2
dx, (17.19)

the distanceJ may be written as

J =
∫ x2,y2

x1,y1

ds =
∫ x2

x1

[
1+ y2

x

]1/2
dx. (17.20)

Comparison with Eq. (17.1) shows that

f (y, yx, x)=
(
1+ y2

x

)1/2
. (17.21)

Substituting into Eq. (17.16), we obtain

− d

dx

[
1

(1+ y2
x)

1/2

]
= 0, (17.22)

or

1

(1+ y2
x)

1/2
= C, a constant. (17.23)

This is satisfied by

yx = a, a second constant, (17.24)

and

y = ax + b, (17.25)

which is the familiar equation for a straight line. The constantsa and b are chosen so
that the line passes through the two points(x1, y1) and(x2, y2). Hence the Euler equation
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predicts that the shortest6 distance between two fixed points in Euclidean space is a straight
line. �

The generalization of this in curved four-dimensional space–time leads to the important
concept of the geodesic in general relativity (see Section 2.10).

Example 17.2.2 SOAP FILM

As a second illustration (Fig. 17.4), consider two parallel coaxial wire circles to be con-
nected by a surface of minimum area that is generated by revolving a curvey(x) about
thex-axis. The curve is required to pass through fixed endpoints(x1, y1) and(x2, y2). The
variational problem is to choose the curvey(x) so that the area of the resulting surface will
be a minimum.

For the element of area shown in Fig. 17.4,

dA= 2πy ds = 2πy
(
1+ y2

x

)1/2
dx. (17.26)

The variational equation is then

J =
∫ x2

x1

2πy
(
1+ y2

x

)1/2
dx. (17.27)

Neglecting the 2π , we obtain

f (y, yx, x)= y
(
1+ y2

x

)1/2
. (17.28)

FIGURE 17.4 Surface of rotation — soap film
problem.

6Technically, we have a stationary value. From theα2 terms it can be identified as a minimum (Exercise 17.2.2).
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Since∂f/∂x = 0, we may apply Eq. (17.18) directly and get

y
(
1+ y2

x

)1/2− yy2
x

1

(1+ y2
x)

1/2
= c1, (17.29)

or
y

(1+ y2
x)

1/2
= c1. (17.30)

Squaring, we get

y2

1+ y2
x

= c2
1 with c2

1 ≤ y2
min, (17.31)

and

(yx)
−1= dx

dy
= c1√

y2− c2
1

. (17.32)

This may be integrated to give

x = c1 cosh−1 y

c1
+ c2. (17.33)

Solving fory, we have

y = c1 cosh

(
x − c2

c1

)
, (17.34)

and againc1 andc2 are determined by requiring the hyperbolic cosine to pass through the
points(x1, y1) and(x2, y2). Our “minimum”-area surface is a special case of a catenary of
revolution, or acatenoid. �

Soap Film — Minimum Area

This calculus of variations contains many pitfalls for the unwary. (Remember, the Euler
equation is anecessary condition assuming adifferentiable solution. The sufficiency con-
ditions are quite involved. See the Additional Readings for details.) Respect for some of
these hazards may be developed by considering a specific physical problem, for example,
a minimum-area problem with(x1, y1)= (−x0,1), (x2, y2)= (+x0,1). The minimum sur-
face is a soap film stretched between the two rings of unit radius atx =±x0. The problem
is to predict the curvey(x) assumed by the soap film.

By referring to Eq. (17.34), we find thatc2 = 0 by the symmetry of the problem about
x = 0. Then

y = c1 cosh

(
x

c1

)
, c1 cosh

(
x0

c1

)
= 1. (17.34a)

If we takex0= 1
2 we obtain a transcendental equation forc1, viz.

1= c1 cosh

(
1

2c1

)
. (17.35)
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We find that this equation has two solutions:c1 = 0.2350, leading to a “deep” curve, and
c1 = 0.8483, leading to a “flat” curve. Which curve is assumed by the soap film? Before
answering this question, consider the physical situation with the rings moved apart so that
x0= 1. Then Eq. (17.34a) becomes

1= c1 cosh

(
1

c1

)
, (17.36)

which hasno real solutions. The physical significance is that as the unit-radius rings were
moved out from the origin, a point was reached at which the soap film could no longer
maintain the same horizontal force over each vertical section. Stable equilibrium was no
longer possible. The soap film broke (irreversible process) and formed a circular film over
each ring (with a total area of 2π = 6.2832. . .). This is the Goldschmidt discontinuous
solution.

The next question is: How large mayx0 be and still give a real solution for Eq. (17.34a)?7

Letting c−1
1 = p, Eq. (17.34a) becomes

p = coshpx0. (17.37)

To find x0max we could solve forx0 (as in Eq. (17.33)) and then differentiate with respect
to p. Finally, with an eye on Fig. 17.5,dx0/dp would be set equal to zero. Alternatively,
direct differentiation of Eq. (17.37) with respect top yields

1=
[
x0+ p

dx0

dp

]
sinhpx0.

FIGURE 17.5 Solutions of
Eq. (17.34a) for unit-radius rings

atx =±x0.

7From a numerical point of view it is easier to invert the problem. Pick a value ofc1 and solve forx0. Equation (17.34a) becomes
x0= c1 cosh−1(1/c1). This has numerical solutions in the range 0< c1≤ 1.



1048 Chapter 17 Calculus of Variations

The requirement thatdx0/dp vanish leads to

1= x0 sinhpx0. (17.38)

Equations (17.37) and (17.38) may be combined to form

px0= cothpx0, (17.39)

with the root

px0= 1.1997. (17.40)

Substituting into Eq. (17.37) or (17.38), we obtain

p = 1.810, c1= 0.5524 (17.41)

and

x0max= 0.6627. (17.42)

Returning to the question of the solution of Eq. (17.35) that describes the soap film, let
us calculate the area corresponding to each solution. We have

A = 4π
∫ x0

0
y
(
1+ y2

x

)1/2
dx = 4π

c1

∫ x0

0
y2dx (by Eq.(17.30))

= 4πc1

∫ x0

0

(
cosh

x

c1

)2

dx = πc2
1

[
sinh

(
2x0

c1

)
+ 2x0

c1

]
. (17.43)

Forx0= 1
2, Eq. (17.35) leads to

c1 = 0.2350→A= 6.8456,

c1 = 0.8483→A= 5.9917,

showing that the former can at most be only a local minimum. A more detailed investiga-
tion (compare Bliss,Calculus of Variations, Chapter IV) shows that this surface is not even
a local minimum. Forx0= 1

2, the soap film will be described by the flat curve

y = 0.8483 cosh

(
x

0.8483

)
. (17.44)

This flat or shallow catenoid (catenary of revolution) will be an absolute minimum for
0≤ x0 < 0.528. However, for 0.528< x < 0.6627 its area is greater than that of the Gold-
schmidt discontinuous solution (6.2832) and it is only a relative minimum (Fig. 17.6).

For an excellent discussion of both the mathematical problems and experiments with
soap films, we refer to Courant and Robbins (1996) in the Additional Readings at the end
of the chapter.
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FIGURE 17.6 Catenoid area (unit-radius rings at
x =±x0).

Exercises

17.2.1 A soap film is stretched across the space between two rings of unit radius centered at
±x0 on thex-axis and perpendicular to thex-axis. Using the solution developed in
Section 17.2, set up the transcendental equations for the condition thatx0 is such that
the area of the curved surface of rotation equals the area of the two rings (Goldschmidt
discontinuous solution). Solve forx0 (Fig. 17.7).

17.2.2 In Example 17.2.1, expandJ [y(x,α)] − J [y(x,0)] in powers ofα. The term linear in
α leads to the Euler equation and to the straight-line solution, Eq. (17.25). Investigate

FIGURE 17.7 Surface of rotation.
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the α2 term and show that the stationary value ofJ , the straight-line distance, is a
minimum.

17.2.3 (a) Show that the integral

J =
∫ x2

x1

f (y, yx, x) dx, with f = y(x),

hasno extreme values.
(b) If f (y, yx, x) = y2(x), find a discontinuous solution similar to the Goldschmidt

solution for the soap film problem.

17.2.4 Fermat’s principle of optics states that a light ray will follow the pathy(x) for which∫ x2,y2

x1,y1

n(y, x) ds

is a minimum whenn is the index of refraction. Fory2 = y1 = 1,−x1 = x2 = 1, find
the ray path if

(a) n= ey , (b) n= a(y − y0), y > y0.

17.2.5 A frictionless particle moves from pointA on the surface of the Earth to pointB by
sliding through a tunnel. Find the differential equation to be satisfied if the transit time
is to be a minimum.
Note. Assume the Earth to be nonrotating sphere of uniform density.

ANS. (Eq. (17.15)):rϕϕ(r3− ra2)+ r2
ϕ(2a

2− r2)+ a2r2= 0,

r(ϕ = 0)= r0, rϕ(ϕ = 0)= 0, r(ϕ = ϕA)= a, r(ϕ = ϕB)= a.

Eq. (17.18):r2
ϕ = a2r2

r2
0
· r2−r2

0
a2−r2 . The solution of these equations is a hypocycloid, gener-

ated by a circle of radius12(a − r0) rolling inside the circle of radiusa. You might like
to show that the transit time is

t = π
(a2− r2

0)
1/2

(ag)1/2
.

For details see P. W. Cooper,Am. J. Phys. 34: 68 (1966); G. Venezianoet al., ibid., pp.
701–704.

17.2.6 A ray of light follows a straight-line path in a first homogeneous medium, is refracted
at an interface, and then follows a new straight-line path in the second medium. Use
Fermat’s principle of optics to derive Snell’s law of refraction:

n1 sinθ1= n2 sinθ2.

Hint. Keep the points(x1, y1) and (x2, y2) fixed and varyx0 to satisfy Fermat
(Fig. 17.8). This isnot an Euler equation problem. (The light path is not differentiable
atx0.)
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FIGURE 17.8 Snell’s law.

17.2.7 A second soap film configuration for the unit-radius rings atx = ±x0 consists of a
circular disk, radiusa, in thex = 0 plane and two catenoids of revolution, one joining
the disk and each ring. One catenoid may be described by

y = c1 cosh

(
x

c1
+ c3

)
.

(a) Impose boundary conditions atx = 0 andx = x0.
(b) Although not necessary, it is convenient to require that the catenoids form an angle

of 120◦ where they join the central disk. Express this third boundary condition in
mathematical terms.

(c) Show that the total area of catenoids plus central disk is

A= c2
1

[
sinh

(
2x0

c1
+ 2c3

)
+ 2x0

c1

]
.

Note. Although this soap film configuration is physically realizable and stable, the area
is larger than that of the simple catenoid for all ring separations for which both films
exist.

ANS. (a)

1= c1 cosh

(
x0

c1
+ c3

)
a = c1 coshc3,

(b)
dy

dx
= tan30◦ = sinhc3.

17.2.8 For the soap film described in Exercise 17.2.7, find (numerically) the maximum value
of x0.
Note. This calls for a pocket calculator with hyperbolic functions or a table of hyperbolic
cotangents.

ANS. x0max= 0.4078.
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17.2.9 Find the root ofpx0 = cothpx0 (Eq. (17.39)) and determine the corresponding values
of p andx0 (Eqs. (17.41) and (17.42)). Calculate your values to five significant figures.

17.2.10 For the two-ring soap film problem of this section calculate and tabulatex0, p, p−1, and
A, the soap film area forpx0= 0.00(0.02)1.30.

17.2.11 Find the value ofx0 (to five significant figures) that leads to a soap film area, Eq. (17.43),
equal to 2π , the Goldschmidt discontinuous solution.

ANS. x0= 0.52770.

17.2.12 Find the curve of quickest descent from(0,0) to (x0, y0) for a particle sliding under
gravity and without friction. Show that the ratio of times taken by the particle along a
straight line joining the two points compared to along the curve of quickest descent is
(1+ 4/π2)1/2.
Hint. Takey to increase downwards. Apply Eq. (17.18) to obtainy2

x = (1− c2y)/c2y,
wherec is an integration constant. Then make the substitutiony = (sin2ϕ/2)/c2 to
parametrize the cycloid and take(x0, y0)= (π/2c2,1/c2).

17.3 SEVERAL DEPENDENT VARIABLES

Our original variational problem, Eq. (17.1), may be generalized in several respects. In
this section we consider the integrandf to be a function of severaldependent vari-
ablesy1(x), y2(x), y3(x), . . . , all of which depend onx, the independent variable. In Sec-
tion 17.4f again will contain only one unknown functiony, but y will be a function of
several independent variables (over which we integrate). In Section 17.5 these two gener-
alizations are combined. In Section 17.7 the stationary value is restricted by one or more
constraints.

For more than one dependent variable, Eq. (17.1) becomes

J =
∫ x2

x1

f
[
y1(x), y2(x), . . . , yn(x), y1x(x), y2x(x), . . . , ynx(x), x

]
dx. (17.45)

As in Section 17.1, we determine the extreme value ofJ by comparing neighboring
paths. Let

yi(x,α)= yi(x,0)+ αηi(x), i = 1,2, . . . , n, (17.46)

with the ηi independent of one another but subject to the restrictions discussed in Sec-
tion 17.1. By differentiating Eq. (17.45) with respect toα and settingα = 0, since
Eq. (17.7) still applies, we obtain∫ x2

x1

∑
i

(
∂f

∂yi
ηi + ∂f

∂yix
ηix

)
dx = 0, (17.47)

the subscriptx denoting partial differentiation with respect tox; that is,yix = ∂yi/∂x, and
so on. Again, each of the terms(∂f/∂yix)ηix is integrated by parts. The integrated part
vanishes and Eq. (17.47) becomes∫ x2

x1

∑
i

(
∂f

∂yi
− d

dx

∂f

∂yix

)
ηi dx = 0. (17.48)
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Since theηi are arbitrary andindependent of one another,8 each of the terms in the sum
must vanishindependently. We have

∂f

∂yi
− d

dx

∂f

∂(∂yi/∂x)
= 0, i = 1,2, . . . , n, (17.49)

a whole set of Euler equations, each of which must be satisfied for an extreme value.

Hamilton’s Principle

The most important application of Eq. (17.45) occurs when the integrandf is taken to
be a LagrangianL. The Langrangian (for nonrelativistic systems; see Exercise 17.3.5 for
a relativistic particle) is defined as thedifference of kinetic and potential energies of a
system:

L≡ T − V. (17.50)

Using time as an independent variable instead ofx andxi(t) as the dependent variables,
we get

x→ t, yi → xi(t), yix → ẋi (t);
xi(t) is the location anḋxi = dxi/dt is the velocity of particlei as a function of time.
The equationδJ = 0 is then a mathematical statement of Hamilton’s principle of classical
mechanics,

δ

∫ t2

t1

L(x1, x2, . . . , xn, ẋ1, ẋ2, . . . , ẋn; t) dt = 0. (17.51)

In words, Hamilton’s principle asserts that the motion of the system from timet1 to t2
is such that the time integral of the LagrangianL, or action, has a stationary value. The
resulting Euler equations are usually called the Lagrangian equations of motion,

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0. (17.52)

These Lagrangian equations can be derived from Newton’s equations of motion, and New-
ton’s equations can be derived from Lagrange’s. The two sets of equations are equally
“fundamental.”

The Lagrangian formulation has advantages over the conventional Newtonian laws.
Whereas Newton’s equations are vector equations, we see that Lagrange’s equations in-
volve only scalar quantities. The coordinatesx1, x2, . . . need not be any standard set of co-
ordinates or lengths. They can be selected to match the conditions of the physical problem.
The Lagrange equations are invariant with respect to the choice of coordinate system. New-
ton’s equations (in component form) are not manifestly invariant. Exercise 2.5.10 shows
what happens toF=ma resolved in spherical polar coordinates.

8For example, we could setη2 = η3 = η4 = · · · = 0, eliminating all but one term of the sum, and then treatη1 exactly as in
Section 17.1.
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Exploiting the concept of energy, we may easily extend the Lagrangian formulation from
mechanics to diverse fields, such as electrical networks and acoustical systems. Extensions
to electromagnetism appear in the exercises. The result is a unity of otherwise-separate
areas of physics. In the development of new areas, the quantization of Lagrangian particle
mechanics provided a model for the quantization of electromagnetic fields and led to the
gauge theory of quantum electrodynamics.

One of the most valuable advantages of the Hamilton principle — Lagrange equation
formulation — is the ease in seeing a relation between a symmetry and a conservation law.
As an example, letxi = ϕ, an azimuthal angle. If our Lagrangian is independent ofϕ

(that is, ifϕ is an ignorable coordinate), there are two consequences: (1) the conservation
or invariance of a component of angular momentum and (2) from Eq. (17.52)∂L/∂ϕ̇ =
constant. Similarly, invariance under translation leads to conservation of linear momentum.
Noether’s theorem is a generalization of this invariance (symmetry) — the conservation law
relation.

Example 17.3.1 MOVING PARTICLE — CARTESIAN COORDINATES

Consider Eq. (17.50), which describes one particle with kinetic energy

T = 1
2mẋ2 (17.53)

and potential energyV (x), in which, as usual, the force is given by the negative gradient
of the potential,

F(x)=−dV (x)

dx
. (17.54)

From Eq. (17.52),

d

dt
(mẋ)− ∂(T − V )

∂x
=mẍ − F(x)= 0, (17.55)

which is Newton’s second law of motion. �

Example 17.3.2 MOVING PARTICLE — CIRCULAR CYLINDRICAL COORDINATES

Now let us describe a moving particle in cylindrical coordinates of thexy-plane, that is,
z= 0. The kinetic energy is

T = 1
2m
(
ẋ2+ ẏ2

)= 1
2m
(
ρ̇2+ ρ2ϕ̇2

)
, (17.56)

and we takeV = 0 for simplicity.
The transformation oḟx2+ ẏ2 into circular cylindrical coordinates could be carried out

by taking x(ρ,ϕ) and y(ρ,ϕ), Eq. (2.28), and differentiating with respect to time and
squaring. It is much easier to interpretẋ2+ ẏ2 asv2 and just write down the components
of v asρ̂(dsρ/dt)= ρ̂ρ̇, and so on. (Thedsρ is an increment oflength, ρ changing bydρ,
ϕ remaining constant. See Sections 2.1 and 2.4.)

The Lagrangian equations yield

d

dt
(mρ̇)−mρϕ̇2= 0,

d

dt

(
mρ2ϕ̇

)= 0. (17.57)
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The second equation is a statement of conservation of angular momentum. The first may be
interpreted as radial acceleration9 equated to centrifugal force. In this sense the centrifugal
force is a real force. It is of some interest that this interpretation of centrifugal force as a
real force is supported by the general theory of relativity. �

Exercises

17.3.1 (a) Develop the equations of motion corresponding toL= 1
2m(ẋ2+ ẏ2).

(b) In what sense do your solutions minimize the integral
∫ t2
t1
Ldt?

Compare the result for your solution withx = const.,y = const.

17.3.2 From the Lagrangian equations of motion, Eq. (17.52), show that a system in stable
equilibrium has a minimum potential energy.

17.3.3 Write out the Lagrangian equations of motion of a particle in spherical coordinates for
potentialV equal to a constant. Identify the terms corresponding to (a) centrifugal force
and (b) Coriolis force.

17.3.4 The spherical pendulum consists of a mass on a wire of lengthl, free to move in polar
angleθ and azimuth angleϕ (Fig. 17.9).

(a) Set up the Lagrangian for this physical system.
(b) Develop the Lagrangian equations of motion.

17.3.5 Show that the Lagrangian

L=m0c
2
(

1−
√

1− v2

c2

)
− V (r)

FIGURE 17.9 Spherical
pendulum.

9Here is a second method of attacking Exercise 2.4.8.
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leads to a relativistic form of Newton’s second law of motion,

d

dt

(
m0vi√

1− v2/c2

)
= Fi,

in which the force components areFi =−∂V/∂xi .

17.3.6 The Lagrangian for a particle with chargeq in an electromagnetic field described by
scalar potentialϕ and vector potentialA is

L= 1
2mv2− qϕ + qA · v.

Find the equation of motion of the charged particle.
Hint. (d/dt)Aj = ∂Aj/∂t +∑i (∂Aj/∂xi)ẋi . The dependence of the force fieldsE and
B upon the potentialsϕ andA is developed in Section 1.13 (compare Exercise 1.13.10).

ANS.mẍi = q[E+ v×B]i .
17.3.7 Consider a system in which the Lagrangian is given by

L(qi, q̇i )= T (qi, q̇i)− V (qi),

whereqi and q̇i represent sets of variables. The potential energyV is independent of
velocity and neitherT norV has any explicit time dependence.

(a) Show that

d

dt

(∑
j

q̇j
∂L

∂q̇j
−L

)
= 0.

(b) The constant quantity ∑
j

q̇j
∂L

∂q̇j
−L

defines the HamiltonianH . Show that under the preceding assumed conditions,
H = T + V , the total energy.

Note. The kinetic energyT is a quadratic function of thėqi .

17.4 SEVERAL INDEPENDENT VARIABLES

Sometimes the integrandf of Eq. (17.1) will contain one unknown function,u, that is a
function of several independent variables,u = u(x, y, z), for the three-dimensional case,
for example. Equation (17.1) becomes

J =
∫∫∫

f [u,ux,uy,uz, x, y, z]dx dy dz, (17.58)

ux = ∂u/∂x, and so on. The variational problem is to find the functionu(x, y, z) for which
J is stationary,

δJ = δα
∂J

∂α

∣∣∣∣
α=0

= 0. (17.59)
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Generalizing Section 17.1, we let

u(x, y, z,α)= u(x, y, z,0)+ αη(x, y, z), (17.60)

whereu(x, y, z,α = 0) represents the (unknown) function for which Eq. (17.59) is satis-
fied, whereas againη(x, y, z) is the arbitrary deviation that describes the varied function
u(x, y, z,α). This deviationη(x, y, z) is required to be differentiable and to vanish at the
endpoints. Then from Eq. (17.60),

ux(x, y, z,α)= ux(x, y, z,0)+ αηx, (17.61)

and similarly foruy anduz.
Differentiating the integral Eq. (17.58) with respect to the parameterα and then setting

α = 0, we obtain

∂J

∂α

∣∣∣∣
α=0

=
∫∫∫ (

∂f

∂u
η+ ∂f

∂ux
ηx + ∂f

∂uy
ηy + ∂f

∂uz
ηz

)
dx dy dz= 0. (17.62)

Again, we integrate each of the terms(∂f/∂ui)ηi by parts. The integrated part vanishes
at the endpoints (because the deviationη is required to go to zero at the endpoints) and∫∫∫ (

∂f

∂u
− ∂

∂x

∂f

∂ux
− ∂

∂y

∂f

∂uy
− ∂

∂z

∂f

∂uz

)
η(x, y, z) dx dy dz= 0.10 (17.63)

Since the variationη(x, y, z) is arbitrary, the term in large parentheses is set equal to zero.
This yields the Euler equation for (three) independent variables,

∂f

∂y
− ∂

∂x

∂f

∂ux
− ∂

∂y

∂f

∂uy
− ∂

∂z

∂f

∂uz
= 0. (17.64)

Example 17.4.1 LAPLACE’S EQUATION

An example of this sort of variational problem is provided by electrostatics. The energy of
an electrostatic field is

energy density= 1
2εE2, (17.65)

in which E is the usual electrostatic force field. In terms of the static potentialϕ,

energy density= 1
2ε(∇ϕ)2. (17.66)

Now let us impose the requirement that the electrostatic energy (associated with the field)
in a given volume be a minimum. (Boundary conditions onE andϕ must still be satisfied.)
We have the volume integral11

J =
∫∫∫

(∇ϕ)2dx dy dz=
∫∫∫ (

ϕ2
x + ϕ2

y + ϕ2
z

)
dx dy dz. (17.67)

10Recall that∂/∂x is a partial derivative, wherey andz are held constant. But∂/∂x also acts onimplicit x-dependence as well
as onexplicit x-dependence. In this sense, for example,

∂

∂x

(
∂f

∂ux

)
= ∂2f

∂x∂ux
+ ∂2f

∂u∂ux
ux + ∂2f

∂u2
x

uxx + ∂2f

∂uy∂ux
uxy + ∂2f

∂uz∂ux
uxz.

11The subscriptx indicates thex-partial derivative, not anx-component.
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With

f (ϕ,ϕx,ϕy,ϕz, x, y, z)= ϕ2
x + ϕ2

y + ϕ2
z , (17.68)

the functionϕ replacing theu of Eq. (17.64), Euler’s equation (Eq. (17.64)) yields

−2(ϕxx + ϕyy + ϕzz)= 0, (17.69)

or

∇2ϕ(x, y, z)= 0, (17.70)

which is Laplace’s equation of electrostatics.
Closer investigation shows that this stationary value is indeed a minimum. Thus the

demand that the field energy be minimized leads to Laplace’s PDE. �

Exercises

17.4.1 The Lagrangian for a vibrating string (small-amplitude vibrations) is

L=
∫ (1

2ρu
2
t − 1

2τu
2
x

)
dx,

whereρ is the (constant) linear mass density andτ is the (constant) tension. Thex-
integration is over the length of the string. Show that application of Hamilton’s principle
to the Lagrangian density (the integrand), now with two independent variables, leads to
the classical wave equation

∂2u

∂x2
= ρ

τ

∂2u

∂t2
.

17.4.2 Show that the stationary value of the total energy of the electrostatic field of Exam-
ple 17.4.1 is aminimum.
Hint. Use Eq. (17.61) and investigate theα2 terms.

17.5 SEVERAL DEPENDENT AND INDEPENDENT VARIABLES

In some cases our integrandf contains more than one dependent variable and more than
one independent variable. Consider

f = f
[
p(x, y, z),px,py,pz, q(x, y, z), qx, qy, qz, r(x, y, z), rx, ry, rz, x, y, z

]
. (17.71)

We proceed as before with

p(x, y, z,α) = p(x, y, z,0)+ αξ(x, y, z),

q(x, y, z,α) = q(x, y, z,0)+ αη(x, y, z), (17.72)

r(x, y, z,α) = r(x, y, z,0)+ αζ(x, y, z), and so on.
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Keeping in mind thatξ, η, andζ are independent of one another, as were theηi in Sec-
tion 17.3, the same differentiation and then integration by parts leads to

∂f

∂p
− ∂

∂x

∂f

∂px

− ∂

∂y

∂f

∂py

− ∂

∂z

∂f

∂pz

= 0, (17.73)

with similar equations for functionsq andr . Replacingp,q, r, . . . with yi andx, y, z, . . .
with xy , we can put Eq. (17.73) in a more compact form:

∂f

∂yi
−
∑
j

∂

∂xj

(
∂f

∂yij

)
= 0, i = 1,2, . . . , (17.73a)

in which

yij ≡ ∂yi

∂xj
.

An application of Eq. (17.73) appears in Section 17.7.

Relation to Physics

The calculus of variations as developed so far provides an elegant description of a wide
variety of physical phenomena. The physics includes classical mechanics in Section 17.3;
relativistic mechanics, Exercise 17.3.5; electrostatics, Example 17.4.1; and electromag-
netic theory in Exercise 17.5.1. The convenience should not be minimized, but at the same
time we should be aware that in these cases the calculus of variations has only provided an
alternate description of what was already known. The situation does change with incom-
plete theories.

• If the basic physics is not yet known, a postulated variational principle can be a useful
starting point.

Exercise

17.5.1 The Lagrangian (per unit volume) of an electromagnetic field with a charge densityρ is
given by

L= 1

2

(
ε0E2− 1

µ0
B2
)
− ρϕ + ρv ·A.

Show that Lagrange’s equations lead to two of Maxwell’s equations. (The remaining
two are a consequence of the definition ofE andB in terms ofA andϕ.) This Lagrange
density comes from a scalar expression in Section 4.6.
Hint. TakeA1,A2,A3, andϕ as dependent variables,x, y, z, and t as independent
variables.E andB are given in terms ofA andϕ by Eq. (4.142) and Eq. (1.88).
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17.6 LAGRANGIAN MULTIPLIERS

In this section the concept of a constraint is introduced. To simplify the treatment, the
constraint appears as a simple function rather than as an integral. In this section we are
not concerned with the calculus of variations, but in Section 17.7 the constraints, with our
newly developed Lagrangian multipliers, are incorporated into the calculus of variations.

Consider a function of three independent variables,f (x, y, z). For the functionf to be
a maximum (or extreme),12

df = 0. (17.74)

The necessary and sufficient condition for this is

∂f

∂x
= ∂f

∂y
= ∂f

∂z
= 0, (17.75)

in which

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz. (17.76)

Often in physical problems the variablesx, y, z are subject to constraints so that they
are no longer all independent. It is possible, at least in principle, to use each constraint to
eliminate one variable and to proceed with a new and smaller set of independent variables.

The use of Lagrangian multipliers is an alternate technique that may be applied when
this elimination of variables is inconvenient or undesirable. Let ourequation of constraint
be

ϕ(x, y, z)= 0, (17.77)

from which z(x, y) may be extracted ifx, y are taken as the independent coordinates.
Returning to Eq. (17.74), Eq. (17.75) no longer follows because there are now only two
independent variables, sodz is no longer arbitrary. From the total differentialdϕ = 0, we
then obtain

−∂ϕ

∂z
dz= ∂ϕ

∂x
dx + ∂ϕ

∂y
dy (17.78)

and therefore

df = ∂f

∂x
dx + ∂f

∂y
dy + λ

(
∂ϕ

∂x
dx + ∂ϕ

∂x
dx

)
, λ=−fz

ϕz
,

assumingϕz = ∂ϕ
∂z

= 0. Thus, we may add Eq. (17.76) and a multiple of Eq. (17.78) to

obtain

df + λdϕ =
(
∂f

∂x
+ λ

∂ϕ

∂x

)
dx +

(
∂f

∂y
+ λ

∂ϕ

∂y

)
dy +

(
∂f

∂z
+ λ

∂ϕ

∂z

)
dz= 0. (17.79)

In other words, our Lagrangian multiplierλ is chosen so that

∂f

∂z
+ λ

∂ϕ

∂z
= 0, (17.80)

12Including a saddle point.
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assuming that∂ϕ/∂z 
= 0. Equation (17.79) now becomes(
∂f

∂x
+ λ

∂ϕ

∂x

)
dx +

(
∂f

∂y
+ λ

∂ϕ

∂y

)
dy = 0. (17.81)

However, nowdx anddy are arbitrary and the quantities in parentheses must vanish:

∂f

∂x
+ λ

∂ϕ

∂x
= 0,

∂f

∂y
+ λ

∂ϕ

∂y
= 0. (17.82)

When Eqs. (17.80) and (17.82) are satisfied,df = 0 andf is an extremum. Notice that
there are now four unknowns:x, y, z, andλ. The fourth equation is, of course, the con-
straint Eq. (17.77). We want onlyx, y, andz, soλ need not be determined. For this reason
λ is sometimes calledLagrange’s undetermined multiplier. This method will fail if all
the coefficients ofλ vanish at the extremum,∂ϕ/∂x, ∂ϕ/∂y, ∂ϕ/∂z= 0. It is then impos-
sible to solve forλ.

Note that from the form of Eqs. (17.80) and (17.82), we could identifyf as the function
taking an extreme value subject toϕ, the constraint, or we could identifyf as the constraint
andϕ as the function.

If we have aset of constraints ϕk , then Eqs. (17.80) and (17.82) become

∂f

∂xi
+
∑
k

λk
∂ϕk

∂xi
= 0, i = 1,2, . . . , n,

with a separate Lagrange multiplierλk for eachϕk .

Example 17.6.1 PARTICLE IN A BOX

As an example of the use of Lagrangian multipliers, consider the quantum mechanical
problem of a particle (massm) in a box. The box is a rectangular parallelepiped with sides
a, b, andc. The ground-state energy of the particle is given by

E = h2

8m

(
1

a2
+ 1

b2
+ 1

c2

)
. (17.83)

We seek the shape of the box that will minimize the energyE, subject to constraint that
the volume is constant,

V (a, b, c)= abc= k. (17.84)

With f (a, b, c)=E(a,b, c) andϕ(a, b, c)= abc− k = 0, we obtain

∂E

∂a
+ λ

∂ϕ

∂a
=− h2

4ma3
+ λbc= 0. (17.85)

Also,

− h2

4mb3
+ λac= 0, − h2

4mc3
+ λab= 0.
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Multiplying the first of these expressions bya, the second byb, and the third byc, we
have

λabc= h2

4ma2
= h2

4mb2
= h2

4mc2
. (17.86)

Therefore our solution is

a = b= c, a cube. (17.87)

Notice thatλ has not been determined but follows from Eq. (17.86). �

Example 17.6.2 CYLINDRICAL NUCLEAR REACTOR

A further example is provided by the nuclear reactor theory. Suppose a (thermal) nuclear
reactor is to have the shape of a right circular cylinder of radiusR and heightH . Neutron
diffusion theory supplies a constraint:

ϕ(R,H)=
(

2.4048

R

)2

+
(
π

H

)2

= constant.13 (17.88)

We wish to minimize the volume of the reactor vessel,

f (R,H)= πR2H. (17.89)

Application of Eq. (17.82) leads to

∂f

∂R
+ λ

∂ϕ

∂R
= 2πRH − 2λ

(2.4048)2

R3
= 0,

∂f

∂H
+ λ

∂ϕ

∂H
= πR2− 2λ

π2

H 3
= 0. (17.90)

By multiplying the first of these equations byR/2 and the second byH , we obtain

πR2H = λ
(2.4048)2

R2
= λ

2π2

H 2
, (17.91)

or height

H =
√

2πR

2.4048
= 1.847R, (17.92)

for the minimum-volume right-circular cylindrical reactor.
Strictly speaking, we have found only an extremum. Its identification as a minimum

follows from a consideration of the original equations. �

132.4048. . . is the lowest root of Bessel functionJ0(R) (compare Section 11.1).
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Exercises

The following problems are to be solved by using Lagrangian multipliers.

17.6.1 The ground-state energy of a quantum particle of massm in a pillbox (right-circular
cylinder) is given by

E = h̄2

2m

(
(2.4048)2

R2
+ π2

H 2

)
,

in whichR is the radius andH is the height of the pillbox. Find the ratio ofR toH that
will minimize the energy for a fixed volume.

17.6.2 Find the ratio ofR (radius) toH (height) that will minimize the total surface area of a
right-circular cylinder of fixed volume.

17.6.3 The U.S. Post Office limits first class mail to Canada to a total of 36 inches, length plus
girth. Using a Lagrange multiplier, find the maximum volume and the dimensions of a
(rectangular parallelepiped) package subject to this constraint.

17.6.4 A thermal nuclear reactor is subject to the constraint

ϕ(a, b, c)=
(
π

a

)2

+
(
π

b

)2

+
(
π

c

)2

= B2, a constant.

Find the ratios of the sides of the rectangular parallelepiped reactor of minimum volume.

ANS. a = b= c, cube.

17.6.5 For a lens of focal lengthf , the object distancep and the image distanceq are related
by 1/p + 1/q = 1/f . Find the minimum object–image distance(p + q) for fixed f .
Assume real object and image (p andq both positive).

17.6.6 You have an ellipse(x/a)2 + (y/b)2 = 1. Find the inscribed rectangle of maximum-
area. Show that the ratio of the area of the maximum-area rectangle to the area of the
ellipse is 2/π = 0.6366.

17.6.7 A rectangular parallelepiped is inscribed in an ellipsoid of semiaxesa, b, andc. Maxi-
mize the volume of the inscribed rectangular parallelepiped. Show that the ratio of the
maximum volume to the volume of the ellipsoid is 2/π

√
3≈ 0.367.

17.6.8 A deformed sphere has a radius given byr = r0{α0+ α2P2(cosθ)}, whereα0≈ 1 and
|α2| � |α0|. From Exercise 12.5.16 the area and volume are

A= 4πr2
0α

2
0

{
1+ 4

5

(
α2

α0

)2}
, V = 4πr3

0

3
a3

0

{
1+ 3

5

(
α2

α0

)2}
.

Terms of orderα3
2 have been neglected.

(a) With the constraint that the enclosed volume be held constant, that is,V = 4πr3
0/3,

show that the bounding surface of minimum area is a sphere (α0= 1, α2= 0).
(b) With the constraint that the area of the bounding surface be held constant, that

is, A = 4πr2
0, show that the enclosed volume is a maximum when the surface is

a sphere.
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17.6.9 Find the maximum value of the directional derivative ofϕ(x, y, z),

dϕ

ds
= ∂ϕ

∂x
cosα + ∂ϕ

∂y
cosβ + ∂ϕ

∂z
cosγ,

subject to the constraint

cos2α + cos2β + cos2γ = 1.

ANS.

(
dϕ

ds

)
= |∇ϕ|.

Note concerning the following exercises: In a quantum mechanical system there aregi
distinct quantum states between energiesEi andEi + dEi . The problem is to describe
howni particles are distributed among these states subject to two constraints:

(a) fixed number of particles, ∑
i

ni = n.

(b) fixed total energy, ∑
i

niEi =E.

17.6.10 For identical particles obeying the Pauli exclusion principle, the probability of a given
arrangement is

WFD =
∏
i

gi !
ni !(gi − ni)! .

Show that maximizingWFD , subject to a fixed number of particles and fixed total en-
ergy, leads to

ni = gi

eλ1+λ2Ei + 1
.

With λ1=−E0/kT andλ2= 1/kT , this yields Fermi–Dirac statistics.
Hint. Try working with lnW and using Stirling’s formula, Section 8.3. The justification
for differentiation with respect toni is that we are dealing here with a large number of
particles,�ni/ni � 1.

17.6.11 For identical particles but no restriction on the number in a given state, the probability
of a given arrangement is

WBE =
∏
i

(ni + gi − 1)!
ni !(gi − 1)! .

Show that maximizingWBE , subject to a fixed number of particles and fixed total en-
ergy, leads to

ni = gi

eλ1+λ2Ei − 1
.

With λ1=−E0/kT andλ2= 1/kT , this yields Bose–Einstein statistics.
Note. Assume thatgi � 1.
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17.6.12 Photons satisfyWBE and the constraint that total energy is constant. They clearly donot
satisfy the fixed-number constraint. Show that eliminating the fixed-number constraint
leads to the foregoing result but withλ1= 0.

17.7 VARIATION WITH CONSTRAINTS

As in the preceding sections, we seek the path that will make the integral

J =
∫

f

(
yi,

∂yi

∂xj
, xj

)
dxj (17.93)

stationary. This is the general case in whichxj represents a set of independent variables
andyi a set of dependent variables. Again,

δJ = 0. (17.94)

Now, however, we introduce one or more constraints. This means that theyi are no longer
independent of each other. Not all theηi may be varied arbitrarily, and Eqs. (17.62)
and (17.73a) would not apply. The constraint may have the form

ϕk(yi, xj )= 0, (17.95)

as in Section 17.6. In this case we may multiply by a function ofxj , say,λk(xj ), and
integrate over the same range as in Eq. (17.93) to obtain∫

λk(xj )ϕk(yi, xj ) dxj = 0. (17.96)

Then clearly

δ

∫
λk(xj )ϕk(yi, xj ) dxj = 0. (17.97)

Alternatively, the constraint may appear in the form of an integral∫
ϕk(yi, ∂yi/∂xj , xj ) dxj = constant. (17.98)

We may introduce anyconstant Lagrangian multiplier, and again Eq. (17.97) follows —
now withλ a constant.

In either case, by adding Eqs. (17.94) and (17.97), possibly with more than one con-
straint, we obtain

δ

∫ [
f

(
yi,

∂yi

∂xj
, xj

)
+
∑
k

λkϕk(yi, xj )

]
dxj = 0. (17.99)

The Lagrangian multiplierλk may depend onxj whenϕ(yi, xj ) is given in the form of
Eq. (17.95).

Treating the entire integrand as a new function,

g

(
yi,

∂yi

∂xj
, xj

)
,
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we obtain

g

(
yi,

∂yi

∂xj
, xj

)
= f +

∑
k

λkϕk. (17.100)

If we haveN yi (i = 1,2, . . . ,N) andm constraints(k = 1,2, . . .m), thenN − m of
theηi may be taken as arbitrary. For the remainingm ηi , theλ may, in principle, be cho-
sen so that the remaining Euler–Lagrange equations are satisfied, completely analogous
to Eq. (17.80). The result is that our composite functiong must satisfy the usual Euler–
Lagrange equations,

∂g

∂yi
−
∑
j

∂

∂xj

∂g

(∂yi/∂xj )
= 0, (17.101)

with one such equation for each dependent variableyi (compare Eqs. (17.64) and (17.73)).
These Euler equations and the equations of constraint are then solved simultaneously to
find the function yielding a stationary value.

Lagrangian Equations

In the absence of constraints, Lagrange’s equations of motion (Eq. (17.52)) were found to
be14

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0,

with t (time) the one independent variable andqi(t) (particle positions) a set of dependent
variables. Usually the generalized coordinatesqi are chosen to eliminate the forces of con-
straint, but this is not necessary and not always desirable. In the presence of (holonomic)
constraints,ϕk = 0, Hamilton’s principle is

δ

∫ [
L(qi, q̇i , t)+

∑
k

λk(t)ϕk(qi, t)

]
dt = 0, (17.102)

and the constrained Lagrangian equations of motion are

d

dt

∂L

∂q̇i
− ∂L

∂qi
=
∑
k

aikλk. (17.103)

Usuallyϕk = ϕk(qi, t), independent of the generalized velocitiesq̇i . In this case the coef-
ficientaik is given by

aik = ∂ϕk

∂qi
. (17.104)

Thenaikλk (no summation) represents the force of thekth constraint in theqi -direction,
appearing in Eq. (17.103) in exactly the same way as−∂V/∂qi .

14The symbolq is customary in classical mechanics. It serves to emphasize that the variable is not necessarily a Cartesian
variable (and not necessarily a length).
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FIGURE 17.10
Simple pendulum.

Example 17.7.1 SIMPLE PENDULUM

To illustrate, consider the simple pendulum, a massm constrained by a wire of lengthl to
swing in an arc (Fig. 17.10). In the absence of the one constraint

ϕ1= r − l = 0 (17.105)

there are two generalized coordinatesr andθ (motion in vertical plane). The Lagrangian
is

L= T − V = 1
2m
(
ṙ2+ r2θ̇2

)+mgr cosθ, (17.106)

taking the potentialV to be zero when the pendulum is horizontal,θ = π/2. By
Eq. (17.103) the equations of motion are

d

dt

∂L

∂ṙ
− ∂L

∂r
= λ1,

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 (ar1= 1, aθ1= 0), (17.107)

or

d

dt
(mṙ)−mrθ̇2−mg cosθ = λ1,

d

dt

(
mr2θ̇

)+mgr sinθ = 0. (17.108)

Substituting in the equation of constraint(r = l, ṙ = 0), we have

mlθ̇2+mg cosθ =−λ1, ml2θ̈ +mgl sinθ = 0. (17.109)

The second equation may be solved forθ(t) to yield simple harmonic motion if the am-
plitude is small(sinθ ∼ θ), whereas the first equation expresses the tension in the wire in
terms ofθ andθ̇ .

Note that since the equation of constraint, Eq. (17.105), is in the form of Eq. (17.95), the
Lagrange multiplierλ may be (and here is) a function oft (or of θ ). �
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FIGURE 17.11 A particle
sliding on a cylindrical

surface.

Example 17.7.2 SLIDING OFF A LOG

Closely related to this is the problem of a particle sliding on a cylindrical surface. The
object is to find the critical angleθc at which the particle flies off from the surface. This
critical angle is the angle at which the radial force of constraint goes to zero (Fig. 17.11).
We have

L= T − V = 1
2m
(
ṙ2+ r2θ̇2

)−mgr cosθ (17.110)

and the one equation of constraint,

ϕ1= r − l = 0. (17.111)

Proceeding as in Example 17.7.1 withar1= 1,

mr̈ −mrθ̇2+mg cosθ = λ1(θ),

mr2θ̈ + 2mrṙθ̇ −mgr sinθ = 0, (17.112)

in which the constraining forceλ1(θ) is a function of the angleθ .15 Sincer = l, r̈ = ṙ = 0,
Eq. (17.112) reduces to

−mlθ̇2+mg cosθ = λ1(θ), (17.113a)

ml2θ̈ −mgl sinθ = 0. (17.113b)

Differentiating Eq. (17.113a) with respect to time and remembering that

df (θ)

dt
= df (θ)

dθ
θ̇ , (17.114)

we obtain

−2mlθ̈ −mg sinθ = dλ1(θ)

dθ
. (17.115)

15Note thatλ1 is theradial force exerted by the cylinder on the particle. Consideration of the physical problem shows that
λ1 must depend on the angleθ . We permittedλ = λ(t). Now we are replacing the time dependence by an (unknown) angular
dependence usingθ = θ(t).
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Using Eq. (17.113b) to eliminate thëθ term and then integrating, we have

λ1(θ)= 3mg cosθ +C. (17.116)

Since

λ1(0) = mg, (17.117)

C = −2mg. (17.118)

The particlem will stay on the surface as long as the force of constraint is nonnegative,
that is, as long as the surface has to push outward on the particle:

λ1(θ)= 3mg cosθ − 2mg ≥ 0. (17.119)

The critical angle lies whereλ1(θc) = 0, the force of constraint going to zero. From
Eq. (17.119),

cosθc = 2
3, or θc = 48◦11′ (17.120)

from the vertical. At this angle (neglecting all friction) our particle takes off.
It must be admitted that this result can be obtained more easily by considering a varying

centripetal force furnished by the radial component of the gravitational force. The example
was chosen to illustrate the use of Lagrange’s undetermined multiplier without confusing
the reader with a complicated physical system. �

Example 17.7.3 THE SCHRÖDINGER WAVE EQUATION

As a final illustration of a constrained minimum, let us find the Euler equations for a quan-
tum mechanical problem

δ

∫∫∫
ψ∗(x, y, z)Hψ(x, y, z) dx dy dz= 0, (17.121)

with the normalization constraint∫∫∫
ψ∗ψ dx dy dz= 1. (17.122)

Equation (17.121) is a statement that the energy of the system is stationary,H being the
quantum mechanical Hamiltonian for a particle of massm, a differential operator,

H =− h̄2

2m
∇2+ V (x, y, z). (17.123)

Equation (17.122) is a bound-state constraint,ψ is the usual wave function, a dependent
variable, andψ∗, its complex conjugate, is treated as asecond16 dependent variable.

The integrand in Eq. (17.121) involvessecond derivatives, which can be converted to
first derivatives by integrating by parts:∫

ψ∗ ∂
2ψ

∂x2
dx =ψ∗ ∂ψ

∂x

∣∣∣∣− ∫ ∂ψ∗

∂x

∂ψ

∂x
dx. (17.124)

We assume either periodic boundary conditions (as in the Sturm–Liouville theory,
Chapter 10) or that the volume of integration is so large thatψ andψ∗ vanish rapidly

16Compare Section 6.1.
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enough17 at the boundary. Then the integrated part vanishes and Eq. (17.121) may be
rewritten as

δ

∫∫∫ [
h̄2

2m
∇ψ∗ ·∇ψ + Vψ∗ψ

]
dx dy dz= 0. (17.125)

The functiong of Eq. (17.100) is

g = h̄2

2m
∇ψ∗ ·∇ψ + Vψ∗ψ − λψ∗ψ

= h̄2

2m
(ψ∗xψx +ψ∗yψy +ψ∗z ψz)+ Vψ∗ψ − λψ∗ψ, (17.126)

again using the subscriptx to denote∂/∂x. Foryi =ψ∗, Eq. (17.101) becomes

∂g

∂ψ∗
− ∂

∂x

∂g

∂ψ∗x
− ∂

∂y

∂g

∂ψ∗y
− ∂

∂z

∂g

∂ψ∗z
= 0.

This yields

Vψ − λψ − h̄2

2m
(ψxx +ψyy +ψzz)= 0,

or

− h̄2

2m
∇2ψ + Vψ = λψ. (17.127)

Reference to Eq. (17.123) enables us to identifyλ physically as the energy of the quantum
mechanical system. With this interpretation, Eq. (17.127) is the celebrated Schrödinger
wave equation. �

This variational approach is more than just a matter of academic curiosity. It provides a
very powerful method of obtaining approximate solutions of the wave equation (Rayleigh–
Ritz variational method, Section 17.8).

Exercises

17.7.1 A particle, massm, is on a frictionless horizontal surface. It is constrained to move so
thatθ = ωt (rotating radial arm, no friction). With the initial conditions

t = 0, r = r0, ṙ = 0,

(a) find the radial positions as a function of time.

ANS. r(t)= r0 coshωt.

(b) find the force exerted on the particle by the constraint.

ANS.F (c) = 2mṙω= 2mr0ω
2 sinhωt.

17For example, limr→∞ rψ(r)= 0.
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17.7.2 A point massm is moving over a flat, horizontal, frictionless plane. The mass is con-
strained by a string to move radially inward at a constant rate. Using plane polar coor-
dinates(ρ,ϕ), ρ = ρ0− kt ,

(a) Set up the Lagrangian.
(b) Obtain the constrained Lagrange equations.
(c) Solve theϕ-dependent Lagrange equation to obtainω(t), the angular velocity.

What is the physical significance of the constant of integration that you get from
your “free” integration?

(d) Using theω(t) from part (b), solve theρ-dependent (constrained) Lagrange equa-
tion to obtainλ(t). In other words, explain what is happening to theforce of con-
straint asρ→ 0.

17.7.3 A flexible cable is suspended from two fixed points. The length of the cable is fixed.
Find the curve that will minimize the total gravitational potential energy of the cable.

ANS. Hyperbolic cosine.

17.7.4 A fixed volume of water is rotating in a cylinder with constant angular velocityω. Find
the curve of the water surface that will minimize the total potential energy of the water
in the combined gravitational-centrifugal force field.

ANS. Parabola.

17.7.5 (a) Show that for a fixed-length perimeter the figure with maximum area is a circle.
(b) Show that for a fixed area the curve with minimum perimeter is a circle.
Hint. The radius of curvatureR is given by

R = (r2+ r2
θ )

3/2

rrθθ − 2r2
θ − r2

.

Note. The problems of this section, variation subject to constraints, are often called
isoperimetric. The term arose from problems of maximizing area subject to a fixed
perimeter — as in Exercise 17.7.5(a).

17.7.6 Show that requiringJ , given by

J =
∫ b

a

[
p(x)y2

x − q(x)y2]dx,
to have a stationary value subject to the normalizing condition∫ b

a

y2w(x)dx = 1

leads to the Sturm–Liouville equation of Chapter 10:

d

dx

(
p
dy

dx

)
+ qy + λwy = 0.

Note. The boundary condition

pyxy

∣∣∣b
a
= 0

is used in Section 10.1 in establishing the Hermitian property of the operator.
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17.7.7 Show that requiringJ , given by

J =
∫ b

a

∫ b

a

K(x, t)ϕ(x)ϕ(t) dx dt,

to have a stationary value subject to the normalizing condition∫ b

a

ϕ2(x) dx = 1

leads to the Hilbert–Schmidt integral equation, Eq. (16.89).
Note. The kernelK(x, t) is symmetric.

17.8 RAYLEIGH–RITZ VARIATIONAL TECHNIQUE

Exercise 17.7.6 opens up a relation between the calculus of variations and eigenfunction–
eigenvalue problems. We may rewrite the expression of Exercise 17.7.6 as

F
[
y(x)

]= ∫ b

a
(py2

x − qy2) dx∫ b

a
y2wdx

, (17.128)

in which the constraint appears in the denominator as a normalizing condition. After the
unconstrained minimum ofF has been found,y can be normalized without changing the
stationary value ofF because stationary values ofJ correspond to stationary values ofF .
Then from Exercise 17.7.6, wheny(x) is such thatJ andF take on a stationary value, the
optimum functiony(x) satisfies the Sturm–Liouville equation

d

dx

(
p
dy

dx

)
+ qy + λwy = 0, (17.129)

with λ the eigenvalue (not a Lagrangian multiplier). Integrating the first term in the numer-
ator of Eq. (17.128) by parts and using theboundary condition,

pyxy

∣∣∣b
a
= 0, (17.130)

we obtain

F
[
y(x)

]=−∫ b

a

y

{
d

dx

(
p
dy

dx

)
+ qy

}
dx
/∫ b

a

y2wdx. (17.131)

Then substituting in Eq. (17.129), the stationary values ofF [y(x)] are given by

F
[
y(x)

]= λn, (17.132)

with λn the eigenvalue corresponding to the eigenfunctionyn. Equation (17.132) withF
given by either Eq. (17.128) or Eq. (17.131) forms the basis of the Rayleigh–Ritz method
for the computation of eigenfunctions and eigenvalues.
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Ground State Eigenfunction

Suppose that we seek to compute the ground-state eigenfunctiony0 and eigenvalue18 λ0
of some complicated atomic or nuclear system. The classical example, for which no exact
solution exists, is the helium atom problem. The eigenfunctiony0 is unknown, but we shall
assume we can make a pretty good guess at an approximate functiony, so mathematically
we may write19

y = y0+
∞∑
i=1

ciyi . (17.133)

Theci are small quantities. (How small depends on how good our guess was.) Theyi are
orthonormalized eigenfunctions (also unknown), and therefore our trial functiony is not
normalized.

Substituting the approximate functiony into Eq. (17.131) and noting that∫ b

a

yi

{
d

dx

(
p
dyj

dx

)
+ qyi

}
dx =−λiδij , (17.134)

F
[
y(x)

]= λ0+∑∞
i=1 c

2
i λi

1+∑∞
i=1 c

2
i

. (17.135)

Here we have taken the eigenfunctions to be orthonormal — since they are solutions of the
Sturm–Liouville equation, Eq. (17.129). We also assume thaty0 is nondegenerate. Now, if
we replace

∑
i c

2
i λi →

∑
i c

2
i λ0+∑i c

2
i (λi − λ0) we obtain

F
[
y(x)

]= λ0+
∑∞

i=1 c
2
i (λi − λ0)

1+∑∞
i=1 c

2
i

. (17.136)

Equation (17.136) contains two important results.

• Whereas the error in the eigenfunctiony wasO(ci), the error inλ is onlyO(c2
i ). Even

a poor approximation of the eigenfunctions may yield an accurate calculation of the
eigenvalue.

• If λ0 is the lowest eigenvalue (ground state), then sinceλi − λ0 > 0,

F
[
y(x)

]= λ≥ λ0, (17.137)

or our approximation is always on the high side and becoming lower, converging on
λ0 as our approximate eigenfunctiony improves(ci → 0). Note that Eq. (17.137)
is a direct consequence of Eq. (17.135). More directly,F [y(x)] in Eq. (17.135) is
a positively weighted average of theλi and, therefore, must be no smaller than the
smallestλi , to wit, λ0. In practical problems in quantum mechanics,y often depends
on parameters that may be varied to minimizeF and thereby improve the estimate
of the ground-state energyλ0. This is the “variational method” discussed in quantum
mechanics texts.

18This means thatλ0 is the lowest eigenvalue. It is clear from Eq. (17.128) that ifp(x)≥ 0 andq(x)≤ 0 (compare Table 10.1),
thenF [y(x)] has a lower bound and this lower bound is nonnegative. Recall from Section 10.1 thatw(x)≥ 0.
19We are guessing at the form of the function. The normalization is irrelevant.
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Example 17.8.1 VIBRATING STRING

A vibrating string, clamped atx = 0 and 1, satisfies the eigenvalue equation

d2y

dx2
+ λy = 0 (17.138)

and the boundary conditiony(0)= y(1)= 0. For this simple example we recognize imme-
diately thaty0(x)= sinπx (unnormalized) andλ0 = π2. But let us try out the Rayleigh–
Ritz technique.

With one eye on the boundary conditions, we try

y(x)= x(1− x). (17.139)

Then withp = 1 andw = 1, Eq. (17.128) yields

F [y(x)] =
∫ 1

0 (1− 2x)2dx∫ 1
0 x2(1− x)2dx

= 1/3

1/30
= 10. (17.140)

This result,λ = 10, is a fairly good approximation (1.3% error)20 of λ0 = π2 = 9.8696.
You may have noted thaty(x), Eq. (17.139), is not normalized to unity. The denominator
in F [y(x)] compensates for the lack of unit normalization.F may also be calculated from
Eq. (17.131) since Eq. (17.130) is satisfied byy from Eq. (17.139).

In the usual scientific calculation the eigenfunction would be improved by introducing
more terms and adjustable parameters, such as

y = x(1− x)+ a2x
2(1− x)2. (17.141)

It is convenient to have the additional terms orthogonal, but it is not necessary. The parame-
tera2 is adjusted tominimize F [y(x)]. In this case, choosinga2= 1.1353 drivesF [y(x)]
down to 9.8697, very close to the correct eigenvalue value. �

Exercises

17.8.1 From Eq. (17.128) develop in detail the argument whenλ ≥ 0 or λ < 0. Explain the
circumstances under whichλ= 0, and illustrate with several examples.

17.8.2 An unknown function satisfies the differential equation

y′′ +
(
π

2

)2

y = 0

and the boundary conditions

y(0)= 1, y(1)= 0.

20The closeness of the fit may be checked by a Fourier sine expansion (compare Exercise 14.2.3 over the half-interval[0,1] or,
equivalently, over the interval[−1,1], with y(x) taken to be odd). Because of the even symmetry relative tox = 1/2, only odd
n terms appear:

y(x)= x(1− x)=
(

8

π3

)[
sinπx + sin 3πx

33
+ sin 5πx

53
+ · · ·

]
.
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(a) Calculate the approximation

λ= F [ytrial]
for

ytrial = 1− x2.

(b) Compare with the exact eigenvalue.

ANS. (a)λ= 2.5, (b)λ/λexact= 1.013.

17.8.3 In Exercise 17.8.2 use a trial function

y = 1− xn.

(a) Find the value ofn that will minimizeF [ytrial].
(b) Show that the optimum value ofn drives the ratioλ/λexactdown to 1.003.

ANS. (a) n= 1.7247.

17.8.4 A quantum mechanical particle in a sphere (Example 11.7.1) satisfies

∇2ψ + k2ψ = 0,

with k2= 2mE/h̄2. The boundary condition is thatψ(r = a)= 0, wherea is the radius
of the sphere. For the ground state [whereψ =ψ(r)] try an approximate wave function

ψa(r)= 1−
(
r

a

)2

and calculate an approximate eigenvaluek2
a .

Hint. To determinep(r) andw(r), put your equation in self-adjoint form (in spherical
polar coordinates).

ANS. k2
a =

10.5

a2
, k2

exact=
π2

a2
.

17.8.5 The wave equation for the quantum mechanical oscillator may be written as

d2ψ(x)

dx2
+ (λ− x2)ψ(x)= 0,

with λ= 1 for the ground state (Eq. (13.18)). Take

ψtrial =
{

1− x2

a2 , x2≤ a2

0, x2 > a2

for the ground-state wave function (witha2 an adjustable parameter) and calculate the
corresponding ground-state energy. How much error do you have?
Note. Your parabola is really not a very good approximation to a Gaussian exponential.
What improvements can you suggest?
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17.8.6 The Schrödinger equation for a central potential may be written as

Lu(r)+ h̄2l(l + 1)

2Mr2
u(r)=Eu(r).

The l(l + 1) term, the angular momentum barrier, comes from splitting off the angu-
lar dependence (Section 9.3). Treating this term as a perturbation, use your variational
technique to show thatE >E0, whereE0 is the energy eigenvalue ofLu0=E0u0 cor-
responding tol = 0. This means that the minimum energy state will havel = 0, zero
angular momentum.
Hint. You can expandu(r) asu0(r)+∑∞

i=1 ciui , whereLui =Eiui , Ei > E0.

17.8.7 In the matrix eigenvector, eigenvalue equation

Ari = λiri ,

whereλ is ann× n Hermitian matrix. For simplicity, assume that itsn real eigenvalues
(Section 3.5) are distinct,λ1 being the largest. Ifr is an approximation tor1,

r= r1+
n∑

i=2

δi ri ,

show that

r†Ar
r†r

≤ λ1

and that the error inλ1 is of the order|δi |2. Take|δi | � 1.
Hint. Then ri form a complete orthogonal set spanning then-dimensional (complex)
space.

17.8.8 The variational solution of Example 17.8.1 may be refined by takingy = x(1− x)+
a2x

2(1−x)2. Using the numerical quadrature, calculateλapprox= F [y(x)], Eq. (17.128),
for a fixed value ofa2. Vary a2 to minimizeλ. Calculate the value ofa2 that minimizes
λ and calculateλ itself, both to five significant figures. Compare your eigenvalueλ

with π2.

Additional Readings

Bliss, G. A.,Calculus of Variations. The Mathematical Association of America. LaSalle, IL: Open Court Pub-
lishing Co. (1925). As one of the older texts, this is still a valuable reference for details of problems such as
minimum-area problems.

Courant, R., and H. Robbins,What Is Mathematics? 2nd ed. New York: Oxford University Press (1996). Chapter
VII contains a fine discussion of the calculus of variations, including soap film solutions to minimum-area
problems.

Lanczos, C.,The Variational Principles of Mechanics, 4th ed. Toronto: University of Toronto Press (1970),
reprinted, Dover (1986). This book is a very complete treatment of variational principles and their applica-
tions to the development of classical mechanics.

Sagan, H.,Boundary and Eigenvalue Problems in Mathematical Physics. New York: Wiley (1961), reprinted,
Dover (1989). This delightful text could also be listed as a reference for Sturm–Liouville theory, Legendre and
Bessel functions, and Fourier Series. Chapter 1 is an introduction to the calculus of variations, with applications
to mechanics. Chapter 7 picks up the calculus of variations again and applies it to eigenvalue problems.
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Sagan, H.,Introduction to the Calculus of Variations. New York: McGraw-Hill (1969), reprinted, Dover (1983).
This is an excellent introduction to the modern theory of the calculus of variations, which is more sophisticated
and complete than his 1961 text. Sagan covers sufficiency conditions and relates the calculus of variations to
problems of space technology.

Weinstock, R.,Calculus of Variations. New York: McGraw-Hill (1952); New York: Dover (1974). A detailed,
systematic development of the calculus of variations and applications to Sturm–Liouville theory and physical
problems in elasticity, electrostatics, and quantum mechanics.

Yourgrau, W., and S. Mandelstam,Variational Principles in Dynamics and Quantum Theory, 3rd ed. Philadelphia:
Saunders (1968); New York: Dover (1979). This is a comprehensive, authoritative treatment of variational
principles. The discussions of the historical development and the many metaphysical pitfalls are of particular
interest.
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CHAPTER 18

NONLINEAR METHODS
AND CHAOS

Our mind would lose itself in the complexity of the world if that complexity were not
harmonious; like the short–sighted, it would only see the details, and would be obliged
to forget each of these details before examining the next, because it would be incapable
of taking in the whole. The only facts worthy of our attention are those which introduce
order into this complexity and so make it accessible to us.

HENRI POINCARÉ

18.1 INTRODUCTION

The origin of nonlinear dynamics goes back to the work of the renowned French mathe-
matician Henri Poincaré on celestial mechanics at the turn of the twentieth century. Clas-
sical mechanics is, in general, nonlinear in its dependence on the coordinates of the par-
ticles and the velocities, one example being vibrations with a nonlinear restoring force.
The Navier–Stokes equations are nonlinear, which makes hydrodynamics difficult to han-
dle. For almost four centuries however, following the lead of Galileo, Newton, and others,
physicists have focused on predictable, effectively linear responses of classical systems,
which usually have linear and nonlinear properties.

Poincaré was the first to understand the possibility of completely irregular, or “chaotic,”
behavior of solutions of nonlinear differential equations that are characterized by an ex-
treme sensitivity to initial conditions: Given slightly different initial conditions, from er-
rors in measurements for example, solutions can grow exponentially apart with time, so
the system soon becomes effectively unpredictable, or “chaotic.” This property of chaos,
often called the “butterfly” effect, will be discussed in Section 18.3. Since the rediscovery
of this effect by Lorenz in meteorology in the early 1960s, the field of nonlinear dynamics
has grown tremendously. Thus, nonlinear dynamics and chaos theory now have entered the
mainstream of physics.

1079
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Numerous examples of nonlinear systems have been found to display irregular behavior.
Surprisingly, order, in the sense of quantitative similarities as universal properties, or other
regularities may arise spontaneously in chaos; a first example. Feigenbaum’s universal
numbersα andδ will appear in Section 18.2. Dynamical chaos is not a rare phenomenon
but is ubiquitous in nature. It includes irregular shapes of clouds, coast lines, and other
landscapes, which are examples of fractals, to be discussed in Section 18.3, and turbulent
flow of fluids, water dripping from a faucet, and the weather, of course. The damped, driven
pendulum is among the simplest systems displaying chaotic motion.

Necessary conditions for chaotic motion in dynamical systems described byfirst-order
differential equations are

• at least three dynamical variables, and

• one or more nonlinear terms coupling two or several of them.

As in classical mechanics, the space of the time-dependent dynamical variables of a system
of coupled differential equations is called itsphase space. In such deterministic systems,
trajectories in phase space are not allowed to cross. If they did, the system would have a
choice at each intersection and would not be deterministic. In two dimensions such nonlin-
ear systems allow only for fixed points. An example is a damped pendulum, whose second
derivative,θ̈ = f (θ̇ , θ), can be written as two first-order derivatives,ω = θ̇ , ω̇ = f (ω, θ),
involving just two dynamic variables,ω(t) and θ(t). In the undamped case, there will
only be periodic motion and equilibrium points. With three or more dynamic variables (for
example,damped, driven pendulum, written as first-order coupled ODEs again), more
complicated nonintersecting trajectories are possible. These include chaotic motion and
are calleddeterministic chaos.

A central theme in chaos is the evolution ofcomplex forms from the repetition ofsimple
butnonlinear operations; this is being recognized as afundamental organizing principle
of nature. While nonlinear differential equations are a natural place in physics for chaos to
occur, the mathematically simpler iteration of nonlinear functions provides a quicker entry
to chaos theory, which we will pursue first in Section 18.2. In this context, chaos already
arises in certain nonlinear functions of asingle variable.

18.2 THE LOGISTIC MAP

The nonlinear one-dimensional iteration, or difference equation,

xn+1= µxn(1− xn), xn ∈ [0,1]; 1<µ< 4, (18.1)

is called thelogistic map. It is patterned after the nonlinear differential equationdx/dt =
µx(1− x), used by P. F. Verhulst in 1845 to model the development of a breeding popula-
tion whose generations do not overlap. The density of the population at timen is xn. The
linear term simulates the birth rate and the nonlinear term the death rate of the species in a
constant environment controlled by the parameterµ.

The quadratic functionfµ(x)= µx(1−x) is chosen because it has one maximum in the
interval[0,1] and is zero at the endpoints,fµ(0)= 0= fµ(1). The maximum atxm = 1/2
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FIGURE 18.1 Cycle (x0, x1, . . .) for the logistic map forµ= 2,
starting valuex0= 0.1 and attractorx∗ = 1/2.

is determined fromf ′(x)= 0, that is,

f ′µ(xm)= µ(1− 2xm)= 0, xm = 1

2
, (18.2)

wherefµ(1/2)= µ/4.

• Varying the single parameterµ controls a rich and complex behavior, including one-
dimensional chaos, as we shall see. More parameters or additional variables are hardly
necessary at this point to increase the complexity. In a rather qualitative sense the sim-
ple logistic map of Eq. (18.1) is representative of many dynamical systems in biology,
chemistry, and physics.

Figure (18.1) shows a plot offµ(x) = µx(1− x) along with the diagonal and a series
of points (x0, x1, . . .) called acycle. To construct a cycle for a fixed value ofµ (= 2 in
Fig. 18.1), we choose somex0 ∈ [0,1] [x0 = 0.1 in Eq. (18.1)]. The vertical line through
x0 intersects the curvefµ(x) atx1= fµ(x0) (= 0.18 in Fig. 18.1). Proceeding horizontally
from x1 leads us tox1 on the diagonal. Going vertically from the abscissax1 givesx2 =
fµ(x1) on the curve (x2 = 0.2952 in Fig. 18.1), etc. That is, straight vertical lines show
the intersections with the curvefµ and horizontal lines convertfµ(xi)= xi+1 to the next
abscissa.

For any initial valuex0 with 0< x0 < 1, thexi converge toward the fixed pointx∗, or
attractor [= (0.5,0.5) in Fig. 18.1]:

fµ(x
∗)= µx∗(1− x∗)= x∗, i.e., x∗ = 1− 1

µ
. (18.3)

The interval(0,1) defines abasin of attraction for the fixed pointx∗. The attractorx∗ is
stable provided the slope|f ′µ(x∗)| = |2− µ|< 1, or 1< µ < 3. This can be seen from a
Taylor expansion of an iteration near the attractor:

xn+1= fµ(xn)= fµ(x
∗)+ f ′µ(x∗)(xn − x∗)+ · · · , i.e.,

xn+1− x∗

xn − x∗
= f ′µ(x∗),
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FIGURE 18.2 Part of the bifurcation plot for the logistic
map: fixed pointsx∗ versusµ.

upon dropping all higher-order terms. Thus, if|f ′µ(x∗)| < 1, the next iterate,xn+1, lies
closer tox∗ than doesxn, implying convergence to and stability of the fixed point. How-
ever, if |f ′µ(x∗)|> 1, xn+1 moves farther fromx∗ than doesxn implying divergence and
instability. Given the continuity off ′µ in µ, the fixed point and its properties persist when
the parameter (hereµ) is slightly varied.

For µ > 1 andx0 < 0 or x0 > 1, it is easy to verify graphically or analytically that
thexi →−∞. The origin,x = 0, is arepellent fixed point sincef ′µ(0) = µ > 1 and the
iterates move away from it. Sincef ′µ(1)=−µ, the pointx = 1 is a repellor forµ> 1.

When

f ′µ(x∗)= µ(1− 2x∗)= 2−µ=−1

is reached forµ= 3, two fixed points occur, shown as the two branches in Fig. 18.2, asµ

increases beyond the value 3. They can be located by solving

x∗2 = fµ
(
fµ(x

∗
2)
)= µ2x∗2(1− x∗2)

[
1−µx∗2(1− x∗2)

]
for x∗2. Here it is convenient to abbreviatef (1)(x) = fµ(x), f

(2)(x) = fµ(fµ(x)) for the
second iterate, etc. Now we drop the commonx∗2 and then reduce the remaining third-
order polynomial to second-order by recalling that a fixed point offµ is also a fixed point
of f (2) becausefµ(fµ(x∗))= fµ(x

∗)= x∗. Sox∗2 = x∗ is one solution. Factoring out the
quadratic polynomial we obtain

0= µ2[1− (µ+ 1)x∗2 + 2(x∗2)2−µ(x∗2)3
]− 1

= (µ− 1−µx∗2)
[
µ+ 1−µ(µ+ 1)x∗2 +µ2(x∗2)2

]
.

The roots of the quadratic polynomial are

x∗2 =
1

2µ

(
µ+ 1±√(µ+ 1)(µ− 3)

)
,

which are the two branches in Fig. 18.2 forµ> 3 starting atx∗2 = 2/3. This shows that both
fixed points bifurcate at the same value ofµ. Eachx∗2 is a point of period 2 and invariant
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under two iterations of the mapfµ. The iterates oscillate between both branches of fixed
points x∗2. A point xn is defined as aperiodic point of period n for fµ if f (n)(x0) =
x0, but f (i)(x0) 
= x0 for 0 < i < n. Thus, for 3< µ < 3.45 (see Fig. 18.2) the stable
attractorbifurcates, or splits, into two fixed pointsx∗2. The bifurcation forµ= 3, where the
doubling occurs, is called apitchfork bifurcation because of its characteristic (rounded Y-)
shape. A bifurcation is a sudden change in the evolution of the system, such as a splitting
of one curve into two curves.

As µ increases beyond 3, the derivativedf (2)/dx decreases from unity to−1. Forµ=
1+√6∼ 3.44949, which can be derived from

df (2)

dx

∣∣∣∣
x=x∗

= −1, f (2)(x∗)= x∗,

each branch of fixed points bifurcates again, sox∗4 = f (4)(x∗4), that is, has period 4. For
µ= 1+√6 these arex∗4 = 0.43996 andx∗4 = 0.849938.

With increasing period doublings it becomes impossible to obtain analytic solutions. The
iterations are better done numerically on a programmable pocket calculator or a personal
computer, whose rapid improvements (computer-driven graphics, in particular) and wide
distribution since the 1970s has accelerated the development of chaos theory. The sequence
of bifurcations continues with ever longer periods until we reachµ∞ = 3.5699456. . . ,
where an infinite number of bifurcations occur. Near bifurcation points, fluctuations,
rounding errors in initial conditions, etc., play an increasing role because the system has to
choose between two possible branches and becomes much more sensitive to small pertur-
bations. In the present case thexn never repeat. The bands of fixed pointsx∗ begin forming
a continuum (shown dark in Fig. 18.2); this is where chaos starts. This increasing period
doubling is the route to chaos for the logistic map that is characterized by a universal con-
stantδ, called aFeigenbaum number. If the first bifurcation occurs atµ1= 3, the second
atµ2= 3.45, . . . , then the ratio of spacings between theµn converges toδ:

lim
n→∞

µn −µn−1

µn+1−µn

= δ = 4.66920161. . . . (18.4)

From the bifurcation plot in Fig. 18.2 we obtain

µ2−µ1

µ3−µ2
= 3.45− 3.00

3.54− 3.45
= 5.0

as a first approximation for the dimensionlessδ. The corresponding critical-period-2n
pointsx∗n lead to another universal and dimensionless quantity:

lim
n→∞

x∗n − x∗n−1

x∗n+1− x∗n
= α = 2.5029. . . . (18.5)

Again reading off Fig. 18.2’s approximate values forx∗n we obtain

0.44− 0.67

0.37− 0.44
= 3.3

as a first approximation forα.
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The Feigenbaum numberδ is universal for the route to chaos via period doublings for
all maps with aquadratic maximum similar to the logistic map. It is an example of or-
der in chaos. Experience shows that its validity is even wider, including two-dimensional
(dissipative) systems and twice continuously differentiable functions with subharmonic bi-
furcations.1 When the maps behave like|x − xm|1+ε near their maximumxm for someε
between 0 and 1, the Feigenbaum number will depend on the exponentε; thusδ(ε) varies
betweenδ(1) given in Eq. (18.4) for quadratic maps toδ(0)= 2 for ε = 0.2

Exercises

18.2.1 Show thatx∗ = 1 is a nontrivial fixed point of the mapxn+1= xn exp[r(1− xn)] with
a slope 1− r , so that the equilibrium is stable if 0< r < 2.

18.2.2 Draw a bifurcation diagram for the exponential map of Exercise 18.2.1 forr > 1.9.

18.2.3 Determine fixed points of the cubic mapxn+1 = ax3
n + (1− a)xn for 0 < a < 4 and

0< xn < 1.

18.2.4 Write the time-delayed logistical mapxn+1= µxn(1−xn−1) as a two-dimensional map
xn+1= µxn(1− yn), yn+1= xn, and determine some of its fixed points.

18.2.5 Show that the second bifurcation for the logistical map that leads to cycles of period 4
is located atµ= 1+√6.

18.2.6 Construct a nonlinear iteration function with Feigenbaumδ in the interval 2< δ <

4.6692. . . .

18.2.7 Determine the Feigenbaumδ for (a) the exponential map of Exercise 18.2.1, (b) some
cubic map of Exercise 18.2.3, (c) the time-delayed logistic map of Exercise 18.2.4.

18.2.8 Repeat Exercise 18.2.7 for Feigenbaum’sα instead ofδ.

18.2.9 Find numerically the first four pointsµ for period doubling of the logistic map, and then
obtain the first two approximations to the Feigenbaumδ. Compare with Fig. 18.2 and
Eq. (18.4).

18.2.10 Find numerically the valuesµ where the cycle of period 1, 3, 4, 5, 6 begins and then
where it becomes unstable.

Check values. For period

3, µ= 3.8284,
4, µ= 3.9601,
5, µ= 3.7382,
6, µ= 3.6265.

18.2.11 Repeat Exercise 18.2.9 for Feigenbaum’sα.

1More details and computer codes for the logistic map are given by G. L. Baker and J. P. Gollub,Chaotic Dynamics: An
Introduction, Cambridge, UK: Cambridge University Press (1990).
2For other maps and a discussion of the fascinating history how chaos became again a hot research topic, see D. Holton and
R. M. May in The Nature of Chaos (T. Mullin, ed.), Oxford, UK: Clarendon Press (1993), Section 5, p. 95; and Gleick’sChaos
(1987) — see the Additional Readings.
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18.3 SENSITIVITY TO INITIAL CONDITIONS AND PARAMETERS

Lyapunov Exponents

In Section 18.2 we described how, as we approach the period-doubling accumulation para-
meter valueµ∞ = 3.5699. . . from below, the periodn+ 1 of cycles (x0, x1, . . . , xn) with
xn+1= x0 gets longer. It is also easy to check that the distances

dn =
∣∣f (n)(x0+ ε)− f (n)(x0)

∣∣ (18.6)

grow as well for smallε > 0. From experience with chaotic behavior we find that this
distance increases exponentially withn→∞; that is,dn/ε = eλn, or

λ= 1

n
ln

( |f (n)(x0+ ε)− f (n)(x0)|
ε

)
, (18.7)

whereλ is aLyapunov exponent for the cycle. Forε→ 0 we may rewrite Eq. (18.7) in
terms of derivatives as

λ= 1

n
ln

∣∣∣∣df (n)(x0)

dx

∣∣∣∣= 1

n

n∑
i=0

ln
∣∣f ′(xi)∣∣, (18.8)

using the chain rule of differentiation fordf (n)(x)/dx, where

df (2)(x0)

dx
= dfµ

dx

∣∣∣∣
x=fµ(x0)

dfµ

dx

∣∣∣∣
x=x0

= f ′µ(x1)f
′
µ(x0) (18.9)

andf ′µ = dfµ/dx, etc. Our Lyapunov exponent has been calculated at the pointx0, and
Eq. (18.8) is exact for one-dimensional maps.

As a measure of the sensitivity of the system to changes in initial conditions, one point is
not enough to determineλ in higher-dimensional dynamical systems in general, where the
motion often is bounded, so thedn cannot go to∞. In such cases, we repeat the procedure
for several points on the trajectory and average over them. This way, we obtain theaverage
Lyapunov exponent for the sample. This average value is often called and taken as the
Lyapunov exponent.

The Lyapunov exponentλ is a quantitative measure of chaos: A one-dimensional iterated
function similar to the logistic map haschaotic cycles (x0, x1, . . .) for the parameterµ if
the average Lyapunov exponent is positive for that value ofµ. Any such initial point
x0 is called astrange or chaotic attractor (the shaded region in Fig. 18.2). For cycles
of finite period,λ is negative. This is the case forµ < 3, for µ < µ∞, and even in the
periodic window atµ∼ 3.627 inside the chaotic region of Fig. 18.2. At bifurcation points,
λ = 0. Forµ > µ∞ the Lyapunov exponent is positive, except in the periodic windows,
whereλ < 0, andλ grows withµ. In other words, the system becomes more chaotic as the
control parameterµ increases.

In the chaos region of the logistic map there is a scaling law for the average Lyapunov
exponent (we do not derive it),

λ(µ)= λ0(µ−µ∞)ln 2/ ln δ, (18.10)
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where ln2/ ln δ ∼ 0.445, δ is the universal Feigenbaum number of Section 18.2, andλ0
is a constant. This relation (18.10) is reminiscent of a physical observable at a (second-
order) phase transition. The exponent in Eq. (18.10) is a universal number; the Lyapunov
exponent plays the role of anorder parameter, while µ− µ∞ is the analog ofT − Tc,
whereTc is thecritical temperature at which the phase transition occurs.

Fractals

In dissipative chaotic systems (but rarely in conservative Hamiltonian systems) often new
geometric objects with intricate shapes appear that are calledfractals because of their
noninteger dimension. Fractals are irregular geometric objects whose dimension is typi-
cally not integral and that exist at many scales, so their smaller parts resemble their larger
parts. Intuitively a fractal is a set which is (approximately)self-similar under magnifica-
tion. A set of attracting points with noninteger dimension is called astrange attractor.

We need a quantitative measure of dimensionality in order to describe fractals. Unfortu-
nately, there are several definitions with usually different numerical values, none of which
has yet become a standard. For strictly self-similar, sets, one measure suffices. More com-
plicated (for instance, only approximately self-similar) sets require more measures for their
complete description. The simplest is thebox-counting dimension, due to Kolmogorov
and Hausdorff. For a one-dimensional set, we cover the curve by line segments of length
R. In two dimensions the boxes are squares of areaR2, in three dimensions cubes of vol-
umeR3, etc. Then we count the numberN(R) of boxes needed to cover the set. LettingR

go to zero we expectN to scale asN(R)∼ R−d . Taking the logarithm thebox-counting
dimension is defined as

d ≡ lim
R→0

lnN(R)

lnR
. (18.11)

For example, in a two-dimensional space a single point is covered by one square, so
lnN(R) = 0 andd = 0. A finite set of isolated points also has dimensiond = 0. For a
differentiable curve of lengthL, N(R) ∼ L/R asR→ 0, sod = 1 from Eq. (18.11), as
expected.

Let us now construct a more irregular set, theKoch curve. We start with a line segment
of unit length in Fig. 18.3 and remove the middle third. Then we replace it with two seg-
ments of length 1/3, which form a triangle in Fig. 18.3. We iterate this procedure with
each segment ad infinitum. The resulting Koch curve is infinitely long and is nowhere dif-
ferentiable because of the infinitely many discontinuous changes of slope. At thenth step
each line segment has lengthRn = 3−n and there areN(Rn) = 4n segments. Hence its
dimension isd = ln 4/ ln3= 1.26. . . , which is more than a curve but less than a surface.
Because the Koch curve results from iteration of the first step, it is strictly self-similar.

For the logistic map the box-counting dimension at a period–doubling accumulation
point µ∞ is 0.5388. . . , which is a universal number for iterations of functions in one
variable with a quadratic maximum. To see roughly how this comes about, consider the
pairs of line segments originating from successive bifurcation points for a given parameter
µ in the chaos regime (see Fig. 18.2). Imagine removing the interior space from the chaotic
bands. When we go to the next bifurcation, the relevant scale parameter isα = 2.5029. . .
from Eq. (18.5). Suppose we need 2n line segments of lengthR to cover 2n bands. In the
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FIGURE 18.3 Construction of the Koch curve by
iterations.

next stage then we need 2n+1 segments of lengthR/α to cover the bands. This yields a
dimensiond =− ln(2n/2n+1)/ lnα = 0.4498. . . . This crude estimate can be improved by
taking into account that the width between neighboring pairs of line segments differs by
1/α (see Fig. 18.2). The improved estimate, 0.543, is closer to 0.5388. . . . This example
suggests that when the fractal set does not have a simple self-similar structure, then the
box-counting dimension depends on the box-construction method.

Finally, we turn to the beautiful fractals that are surprisingly easy to generate and
whose color pictures had considerable impact. For complexc = a + ib, the correspond-
ing quadratic complex map involving the complex variablez= x + iy,

zn+1= z2
n + c, (18.12)

looks deceptively simple, but the equivalent two-dimensional map in terms of the real
variables

xn+1= x2
n − y2

n + a, yn+1= 2xnyn + b (18.13)

reveals already more of its complexity. This map forms the basis for some of Mandelbrot’s
beautiful multicolor fractal pictures (we refer the reader to Mandelbrot (1988) and Peitgen
and Richter (1986) in the Additional Readings), and it has been found to generate rather
intricate shapes for variousc 
= 0. For example, theJulia set of a mapzn+1 = F(zn) is
defined as the set of all its repelling fixed or periodic points. Thus it forms the boundary
between initial conditions of a two-dimensional iterated map leading to iterates that diverge
and those that stay within some finite region of the complex plane. For the casec = 0 and
F(z) = z2, the Julia set can be shown to be just a circle about the origin of the complex
plane. Yet, just by adding a constantc 
= 0, the Julia set becomes fractal. For instance, for
c=−1 one finds a fractal necklace with infinitely many loops (see Devaney (1989) in the
Additional Readings).

While the Julia set is drawn in the complex plane, theMandelbrot set is constructed
in the two-dimensional parameter spacec = (a, b) = a + bi. It is constructed as follows.
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Starting from the initial valuez0= 0= (0,0) one searches Eq. (18.12) for parameter val-
uesc so that the iterated{zn} donot diverge to∞. Each color outside the fractal boundary
of the Mandelbrot set represents a given number of iterationsm, say, needed for thezn
to go beyond a specified absolute (real) valueR, |zm| > R > |zm−1|. For real parame-
ter valuec = a, the resulting map,xn+1 = x2

n + a, is equivalent to the logistic map with
period-doubling bifurcations (see Section 18.2) asa increases on the real axis inside the
Mandelbrot set.

Exercises

18.3.1 Use a programmable pocket calculator (or a personal computer with BASIC or FOR-
TRAN or symbolic software such as Mathematica or Maple) to obtain the iteratesxi
of an initial 0< x0 < 1 andf ′µ(xi) for the logistic map. Then calculate the Lyapunov
exponent for cycles of period 2,3, . . . of the logistic map for 2< µ < 3.7. Show that
for µ<µ∞ the Lyapunov exponentλ is 0 at bifurcation points and negative elsewhere,
while for µ>µ∞ it is positive except in periodic windows.
Hint. See Fig. 9.3 of Hilborn (1994) in the Additional Readings.

18.3.2 Consider the mapxn+1= F(xn) with

F(x)=
{
a + bx, x < 1,

c+ dx, x > 1,

for b > 0 andd < 0. Show that its Lyapunov exponent is positive whenb > 1, d <−1.
Plot a few iterations in the(xn+1, xn) plane.

18.4 NONLINEAR DIFFERENTIAL EQUATIONS

In Section 18.1 we mentioned nonlinear differential equations (abbreviated as NDEs) as
the natural place in physics for chaos to occur, but continued with the simpler iteration of
nonlinear functions of one variable (maps). Here we briefly address the much broader area
of NDEs and the far greater complexity in the behavior of their solutions. However, maps
and systems of solutions of NDEs are closely related. The latter can often be analyzed in
terms of discrete maps. One prescription is the so-calledPoincaré section of a system of
NDE solutions. Placing a plane transverse into a trajectory (of a solution of a NDE), it in-
tersects the plane in a series of points at increasing discrete times, for example, in Fig. 18.4
(x(t1), y(t1)) = (x1, y1), (x2, y2), . . . , which are recorded and graphically or numerically
analyzed for fixed points, period-doubling bifurcations, etc. This method is useful when
solutions of NDEs are obtained numerically in computer simulations so that one can gen-
erate Poincaré sections at various locations and with different orientations, with further
analysis leading to two-dimensional iterated maps

xn+1= F1(xn, yn), yn+1= F2(xn, yn) (18.14)

stored by the computer. Extracting the functionsFj analytically or graphically is not al-
ways easy, though.

Let us start with a few classical examples of NDEs. In Chapter 9 we have already dis-
cussed the soliton solution of the nonlinear Korteweg–de Vries PDE, Eq. (9.11).
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FIGURE 18.4 Schematic of a Poincaré section.

Exercise

18.4.1 For the damped harmonic oscillator

ẍ + 2aẋ + x = 0,

consider the Poincaré section{x > 0, y = ẋ = 0}. Take 0< a �1 and show that the
map is given byxn+1= bxn with b < 1. Find an estimate forb.

Bernoulli and Riccati Equations

Bernoulli equations are also nonlinear, having the form

y′(x)= p(x)y(x)+ q(x)
[
y(x)

]n
, (18.15)

wherep andq are real functions andn 
= 0, 1 to exclude first-order linear ODEs. If we
substitute

u(x)= [y(x)]1−n, (18.16)

then Eq. (18.15) becomes a first-order linear ODE,

u′ = (1− n)y−ny′ = (1− n)
[
p(x)u(x)+ q(x)

]
, (18.17)

which we can solve as described in Section 9.2.
Riccati equations are quadratic iny(x):

y′ = p(x)y2+ q(x)y + r(x), (18.18)
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wherep 
= 0 to exclude linear ODEs andr 
= 0 to exclude Bernoulli equations. There is no
general method for solving Riccati equations. However, when a special solutiony0(x) of
Eq. (18.18) is known by a guess or inspection, then one can write the general solution in
the formy = y0+ u, with u satisfying the Bernoulli equation

u′ = pu2+ (2py0+ q)u, (18.19)

because substitution ofy = y0+ u into Eq. (18.18) removesr(x) from Eq. (18.18).
Just as for Riccati equations there are no general methods for obtaining exact solutions of

other nonlinear ODEs. It is more important to develop methods for finding the qualitative
behavior of solutions. In Chapter 9 we mentioned that power-series solutions of ODEs
exist except (possibly) at regular or essential singularities, which are directly given by
local analysis of the coefficient functions of the ODE. Such local analysis provides us with
the asymptotic behavior of solutions as well.

Fixed and Movable Singularities, Special Solutions

Solutions of NDEs also have such singular points, independent of the initial or boundary
conditions and calledfixed singularities. In addition they may havespontaneous, ormov-
able, singularities that vary with the initial or boundary conditions. They complicate the
(asymptotic) analysis of NDEs. This point is illustrated by a comparison of the linear ODE

y′ + y

x − 1
= 0, (18.20)

which has the obvious regular singularity atx = 1, with the NDEy′ = y2. Both have the
same solution with initial conditiony(0) = 1, namely,y(x) = 1/(1− x). For y(0) = 2,
though, the pole in the (obvious, but check) solutiony(x) = 2/(1− 2x) of the NDE has
moved tox = 1/2.

For a second-order ODE we have a complete description of (the asymptotic behavior
of) its solutions when (that of) two linearly independent solutions are known. For NDEs
there may still bespecial solutions whose asymptotic behavior is not obtainable from
two independent solutions. This is anothercharacteristic property of NDEs, which we
illustrate again by an example.

The general solution of the NDEy′′ = yy′/x is given by

y(x)= 2c1 tan(c1 lnx + c2)− 1, (18.21)

whereci are integration constants. An obvious (check it) special solution isy = c3 =
constant, which cannot be obtained from Eq. (18.20) for any choice of the parameters
c1, c2. Note that using the substitutionx = et , Y(t)= y(et ) so thatx dy/dx = dY/dt , we
obtain the ODEY ′′ = Y ′(Y + 1). This ODE can be integrated once to giveY ′ = 1

2Y
2+

Y + c with c = 2(c2
1+ 1/4) an integration constant, and again according to Section 9.2 to

lead to the solution of Eq. (18.21).
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Autonomous Differential Equations

Differential equations that do not explicitly contain the independent variable, taken to be
the timet here, are calledautonomous. Verhulst’s NDEẏ = dy/dt = µy(1− y), which
we encountered briefly in Section 18.2 as motivation for the logistic map, is a special case
of this wide and important class of ODEs.3 For one dependent variabley(t) they can be
written as

ẏ = f (y), (18.22a)

and for several dependent variables as a system

ẏi = fi(y1, y2, . . . , yn), i = 1,2, . . . , n, (18.22b)

with sufficiently differentiable functionsf , fi . A solution of Eq. (18.22b) is a curve or
trajectory y(t) for n = 1 and in general a trajectory(y1(t), y2(t), . . . , yn(t)) in an n-
dimensional (so-called)phase space. As discussed already in Section 18.1, two trajectories
cannot cross because of the uniqueness of the solutions of ODEs. Clearly, solutions of the
algebraic system

fi(y1, y2, . . . , yn)= 0 (18.23)

are special points in phase space, where the position vector (y1, y2, . . . , yn) does not move
on the trajectory; they are calledcritical (or fixed) points. It turns out that a local analysis
of solutions near critical points leads to an understanding of the global behavior of the
solutions. First let us look at a simple example.

For Verhulst’s ODE,f (y)= µy(1− y)= 0 givesy = 0 andy = 1 as the critical points.
For the logistic map,y = 0 andy = 1 are repellent fixed points becausedf/dy(0) = µ

at y = 0 anddf/dy(1) = −µ at y = 1 for µ > 1. A local analysis neary = 0 suggests
neglecting they2 term and solvinġy = µy instead. Integrating

∫
dy/y = µt + ln c gives

the solutiony(t)= ceµt , which diverges ast →∞, soy = 0 is a repellent critical point.
(Note that forµ< 0 of the logistic map the critical pointy = 0 would be attracting, leading
to a convergingy ∼ eµt solution.) Similarly aty = 1,

∫
dy/(1− y) = µt − ln c leads to

y(t)= 1− ce−µt → 1 for t→∞. Hencey = 1 is an attracting critical point. Because the
ODE is separable, its general solution is given by∫

dy

y(1− y)
=
∫

dy

[
1

y
+ 1

1− y

]
= ln

y

1− y
= µt + ln c.

Hencey(t)= ceµt/(1+ ceµt ) for t→∞ converges to 1, thus confirming the local analy-
sis. This example motivates us to look next at the properties of fixed points in more detail.
For an arbitrary functionf, it is easy to see that

• in one dimension, fixed pointsyi with f (yi) = 0 divide they-axis into dynamically
separate intervals because, given an initial value in one of the intervals, the trajectory
y(t) will stay there, for it cannot go beyond either fixed point whereẏ = 0.

3Solutions of nonautonomous equations can be much more complicated.
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FIGURE 18.5 Fixed points: (a) repellor, (b) sink.

If f ′(y0) > 0 at the fixed pointy0 wheref (y0)= 0, then aty0+ ε for ε > 0 sufficiently
small,ẏ = f ′(y0)ε+O(ε2) > 0 in a neighborhood to the right ofy0, so the trajectoryy(t)
keeps moving to the right, away from the fixed pointy0. To the left ofy0, ẏ =−f ′(y0)ε+
O(ε2) < 0, so the trajectory moves away from the fixed point here as well. Hence,

• a fixed point [withf (y0) = 0] at y0 with f ′(y0) > 0, as shown in Fig. 18.5a, repels
trajectories; that is, all trajectories move away from the critical point:· · ·← ·→ · · · ; it
is a repellor. Similarly, we see that

• a fixed point aty0 with f ′(y0) < 0, as shown in Fig. 18.5b, attracts trajectories; that
is, all trajectories converge toward the critical pointy0: · · · → ·← · · · ; it is a sink or
node.

Let us now consider the remaining case when alsof ′(y0)= 0.
Let us assumef ′′(y0) > 0. Then aty0 + ε to the right of fixed pointy0, ẏ =

f ′′(y0)ε
2/2+O(ε3) > 0, so the trajectory moves away from the fixed point there, while

to the left it moves closer toy0. In other words, we have asaddle point. Forf ′′(y0) < 0,
the sign ofẏ is reversed, so we deal again with a saddle point with the motion to the right
of y0 toward the fixed point and at left away from it. Let us summarize the local behavior
of trajectories near such a fixed pointy0: We have a

• a saddle point aty0 whenf (y0)= 0, andf ′(y0)= 0, as shown in Fig. 18.6a,b corre-
sponding to the cases where (a)f ′′(y0) > 0 and trajectories on one side of the critical
point, converge toward it and diverge from it on the other side:· · · → · → · · · ; and
(b) f ′′(y0) < 0. Here the direction is simply reversed compared to (a). Figure 18.6(c)
shows the cases wheref ′′(y0)= 0.

So far we have ignored the additional dependence off (y) on one or more parameters,
such asµ for the logistic map. When a critical point maintains its properties qualitatively
as we adjust a parameter slightly, we call itstructurally stable. This is reasonable be-
cause structurally unstable objects are unlikely to occur in reality because noise and other
neglected degrees of freedom act as perturbations on the system that effectively prevent
such unstable points from being observed. Let us now look at fixed points from this point
of view. Upon varying such a control parameter slightly we deform the functionf , or we
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FIGURE 18.6 Saddle points.

may just shiftf up or down or sideways in Fig. 18.5 a bit. This will move a little the
locationy0 of the fixed point withf (y0)= 0, but maintain the sign off ′(y0). Thus, both
sinks and repellors are stable, while a saddle point in general is not. For example, shift-
ing f in Fig. 18.6a down a bit creates two fixed points, one a sink and the other a repellor,
and removes the saddle point. Since two conditions must be satisfied at a saddle point,
they are less common and important, being unstable with respect to variations of parame-
ters. However, they mark the border between different types of dynamics and are useful
and meaningful for the global analysis of the dynamics. We are now ready to consider the
richer, but more complicated, higher-dimensional cases.

Local and Global Behavior in Higher Dimensions

In two or more dimensions we start the local analysis at a fixed point(y0
1, y

0
2, . . .) with

ẏi = fi(y
0
1, y

0
2, . . .) = 0 using the same Taylor expansion of thefi in Eq. (18.22b) as

for the one-dimensional case. Retaining only the first-order derivatives, this approach lin-
earizes the coupled NDEs of Eq. (18.22b) and reduces their solution to linear algebra as
follows. We abbreviate the constant derivatives at the fixed point as a matrixF with ele-
ments

fij ≡ ∂fi

∂yj

∣∣∣∣
(y0

1,y
0
2,··· )

. (18.24)
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In contrast to the standard linear algebra in Chapter 3, however,F is neither symmetric nor
Hermitian in general. As a result, its eigenvalues may not be real. If we shift the fixed point
to the origin and call the shifted coordinatesxi = yi − y0

i , then the coupled NDEs of Eq.
(18.22b) become

ẋi =
∑
j

fij xj , (18.25)

that is, coupled linear ODEs with constant coefficients. We solve Eq. (18.25) with the
standard exponential Ansatz,

xi(t)=
∑
j

cij e
λj t , (18.26)

with constant exponentsλj and a constant matrixC of coefficientscij , socj = (cij , i =
1,2, . . .) forms thej th column vector ofC. Substituting Eq. (18.26) into Eq. (18.25) yields
a linear combination of exponential functions,∑

j

cij λj e
λj t =

∑
j,k

fikckj e
λj t , (18.27)

which are independent ifλi 
= λj . This is the general case on which we focus, while degen-
eracies where two or moreλ are equal require special treatment similar to saddle points in
one dimension. Comparing coefficients of exponential functions with the same exponent
yields the linear eigenvalue equations∑

k

fikckj = λjcij , or Fcj = λjcj . (18.28)

A nontrivial solution comprising the eigenvalueλj and eigenvectorcj of the homoge-
neous linear equations (18.28) requiresλj to be a root of the secular equation (compare
with Section 3.5):

det(F− λ · 1)= 0. (18.29)

Equation (18.28) means thatC diagonalizesF, so we can write Eq. (18.28) also
as

C−1FC= [λ1, λ2, . . .]. (18.30)

In the new but in general nonorthogonal coordinatesξj , defined asCξ = x, we have
a fixed point for each directionξj , as ξ̇j = λj ξj , where theλj play the role off ′(y0)

in the one-dimensional case. Theλ are characteristic exponents and complex num-
bers in general. This is seen by substitutingx = Cξ into Eq. (18.25) in conjunction with
Eqs. (18.28) and (18.30). Thus, this solution represents the independent combination of
one-dimensional fixed points, one for each component ofξ and each independent of the
other components. In two dimensions forλ1 < 0 andλ2 < 0, then, we have a sink in all
directions. When bothλ are greater than 0, we have repellor in all directions.
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Example 18.4.1 STABLE SINK

The coupled ODEs

ẋ =−x, ẏ =−x − 3y

have an equilibrium point at the origin. The solutions have the form

x(t)= c11e
λ1t , y(t)= c21e

λ1t + c22e
λ2t ,

so the eigenvalueλ1=−1 results fromλ1c11=−c11, and the solution isx = c11e
−t . The

determinant of Eq. (18.29),∣∣∣∣−1− λ 0
−1 −3− λ

∣∣∣∣= (1+ λ)(3+ λ)= 0,

yields the eigenvaluesλ1=−1, λ2=−3. Because both are negative we have a stable sink
at the origin. The ODE fory gives the linear relations

λ1c21=−c11− 3c21=−c21, λ2c22=−3c22,

from which we infer 2c21 = −c11, or c21 = −c11/2. Because the general solution will
contain two constants, it is given by

x(t)= c11e
−t , y(t)=−c11

2
e−t + c22e

−3t .

As the timet→∞, we havey ∼−x/2 andx→ 0 andy→ 0, while for t→−∞, y ∼ x3

andx, y→±∞. The motion toward the sink is indicated by arrows in Fig. 18.7. To find
the orbit, we eliminate the independent variable,t , and find the cubics:

y =−x

2
+ c22

c3
11

x3. �
When bothλ are greater than 0, we have repellor. In this case the motion is away from

the fixed point. However, when theλ have different signs, we have a saddle point, that is,
a combination of a sink in one dimension and a repellor in the other. This type of behavior
generalizes to higher dimensions.

Example 18.4.2 SADDLE POINT

The coupled ODEs

ẋ =−2x − y, ẏ =−x + 2y

have a fixed point at the origin. The solutions have the form

x(t)= c11e
λ1t + c12e

λ2t , y(t)= c21e
λ1t + c22e

λ2t .

The eigenvaluesλ=±√5 are determined from∣∣∣∣−2− λ −1
−1 2− λ

∣∣∣∣= λ2− 5= 0.
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FIGURE 18.7 Stable sink.

Substituting the general solutions into the ODEs yields the linear equations

λ1c11= −2c11− c21=
√

5c11, λ1c21= −c11+ 2c21=
√

5c21,

λ2c12= −2c12− c22=−
√

5c12, λ2c22= −c12+ 2c22=−
√

5c22,

or

(
√

5+ 2)c11= −c21, (
√

5− 2)c12= c22,

(
√

5− 2)c21= −c11, (
√

5+ 2)c22= c12,

so c21 = −(2+
√

5)c11, c22 = (
√

5− 2)c12. The family of solutions depends on two
parameters,c11, c12. For large timet → ∞, the positive exponent prevails andy ∼
−(√5+ 2)x, while for t →−∞ we havey = (

√
5− 2)x. These straight lines are the

asymptotes of the orbits. Because−(√5+ 2)(
√

5− 2)=−1 they are orthogonal. We find
the orbits by eliminating the independent variable,t , as follows. Substituting thec2j we
write

y =−2x −√5
(
c11e

√
5t − c12e

−√5t), so
y + 2x√

5
=−c11e

√
5t + c12e

−√5t .

Now we add and subtract the solutionx(t) to get

1√
5
(y + 2x)+ x = 2c12e

−√5t ,
1√
5
(y + 2x)− x =−2c11e

√
5t ,
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FIGURE 18.8 Saddle point.

which we multiply to obtain

1

5
(y + 2x)2− x2=−4c12c11= const.

The resulting quadratic form,y2 + 4xy − x2 = const., is a hyperbola because of the
negative sign. The hyperbola is rotated in the sense that its asymptotes are not aligned
with the x, y-axes (Fig. 18.8). Its orientation is given by the direction of the as-
ymptotes that we found earlier. Alternatively we could find the direction of minimal
distance from the origin, proceeding as follows. We set thex and y derivatives of
f +�g ≡ x2+ y2+�(y2+ 4xy − x2) equal to zero, where� is the Lagrange multiplier
for the hyperbolic constraint. The four branches of hyperbolas correspond to the differ-
ent signs of the parametersc11 and c12. Figure 18.8 is plotted for the casesc11 = ±1,
c12=±2. �

However, a new kind of behavior arises for a pair of complex conjugate eigenvalues
λ1,2 = ρ ± iκ . If we write the complex solutionsξ1,2 = exp(ρt ± iκt) in real variables
ξ+ = (ξ1+ ξ2)/2, ξ− = (ξ1− ξ2)/2i upon using the Euler identity exp(ix)= cosx+ i sinx
(see Section 6.1),

ξ+ = exp(ρt)cos(κt), ξ− = exp(ρt)sin(κt) (18.31)

describe a trajectory that spirals inward to the fixed point at the origin forρ < 0, aspiral
node, and spirals away from the fixed point forρ > 0, aspiral repellor.
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Example 18.4.3 SPIRAL FIXED POINT

The coupled ODEs

ẋ =−x + 3y, ẏ =−3x + 2y

have a fixed point at the origin and solutions of the form

x(t)= c11e
λ1t + c12e

λ2t , y(t)= c21e
λ1t + c22e

λ2t .

The exponentsλ1,2 are solutions of∣∣∣∣−1− λ 3
−3 2− λ

∣∣∣∣= (1+ λ)(λ− 2)+ 9= 0,

or λ2−λ+7= 0. The eigenvalues are complex conjugate,λ= 1/2± i
√

27/2, so we deal
with a spiral fixed point at the origin (a repellor because 1/2> 0). Substituting the general
solutions into the ODEs yields the linear equations

λ1c11= −c11+ 3c21, λ1c21= −3c11+ 2c21,

λ2c12= −c12+ 3c22, λ2c22= −3c12+ 2c22,

or

(λ1+ 1)c11= 3c21, (λ1− 2)c21= −3c11,

(λ2+ 1)c12= 3c22, (λ2− 2)c22= −3c12,

which, using the values ofλ1,2, imply the family of curves

x(t) = et/2(c11e
i
√

27t/2+ c12e
−i√27t/2),

y(t) = x

2
+
√

27

6
et/2i

(
c11e

i
√

27t/2− c12e
−i√27t/2),

which depends on two parameters,c11, c12. To simplify we can separate real and imaginary
parts ofx(t) andy(t) using the Euler identityeix = cosx+ i sinx. It is equivalent, but more
convenient, to choosec11= c12= c/2 and rescalet → 2t, so with the Euler identity we
have

x(t)= cet cos(
√

27t), y(t)= x

2
−
√

27

6
cet sin(

√
27t).

Here we can eliminatet and find the orbit

x2+ 4

3

(
y − x

2

)2

= (cet)2.
For fixed t this is the positive definite quadratic formx2 − xy + y2 = const., that is, an
ellipse. But there is no ellipse in the solutions becauset is not fixed. Nonetheless, it is
useful to find its orientation. We proceed as follows. With� the Lagrange multiplier for
the elliptical constraint we seek the directions of maximal and minimal distance from the
origin, forming

f (x, y)+�g(x, y)≡ x2+ y2+�
(
x2− xy + y2)
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FIGURE 18.9 Spiral point.

and setting

∂(f +�g)

∂x
= 2x + 2�x −�y = 0,

∂(f +�g)

∂y
= 2y + 2�y −�x = 0.

From

2(�+ 1)x =�y, 2(�+ 1)y =�x

we obtain the directions

x

y
= �

2(�+ 1)
= 2(�+ 1)

�
,

or �2 + 8
3�+ 4

3 = 0. This yields the values� = −2/3, −2 and the directionsy = ±x.
In other words, our ellipse is centered at the origin and rotated by 45◦. As we vary the
independent variable,t , the size of the ellipse changes, so we get the rotated spiral shown
in Fig. 18.9 forc= 1. �

In the special case whenρ = 0 in Eq. (18.31), the circular trajectory is called acycle.
When trajectories near it are attracted as time goes on, it is called alimit cycle, representing
periodic motion for autonomous systems.
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FIGURE 18.10 Center.

Example 18.4.4 CENTER OR CYCLE

The undamped linear harmonic oscillator ODEẍ+ω2x = 0 can be written as two coupled
ODEs:

ẋ =−ωy, ẏ = ωx.

Integrating the resulting ODĖxx + ẏy = 0 yields the circular orbitsx2 + y2 = const.,
which define a center at the origin and are shown in Fig. 18.10. The solutions can be para-
meterized asx =R cost , y =R sint, whereR is the radius parameter. They correspond to
the complex conjugate eigenvaluesλ1,2=±iω. We can check them if we write the general
solution as

x(t)= c11e
λ1t + c12e

λ2t , y(t)= c21e
λ1t + c22e

λ2t .

Then the eigenvalues follow from∣∣∣∣−λ −ω
ω −λ

∣∣∣∣= λ2+ω2= 0= 0.

�

Another classic attractor is quasiperiodic motion, such as the trajectory

x(t)=A1 sin(ω1t + b1)+A2 sin(ω2t + b2), (18.32)



18.4 Nonlinear Differential Equations 1101

where the ratioω1/ω2 is an irrational number. Such combined oscillations occur as solu-
tions of a damped anharmonic oscillator (Van der Pol nonautonomous system)

ẍ + 2γ ẋ +ω2
2x + βx3= f cos(ω1t). (18.33)

In three dimensions, when there is a positive characteristic exponent and an attracting
complex conjugate pair in the other directions, we have a spiral saddle point as a new
feature. Conversely, a negative characteristic exponent in conjunction with a repelling pair
also gives rise to a spiral saddle point, where trajectories spiral out in two dimensions but
are attracted in a third direction.

In general, when some form of damping (or dissipation of energy) is present, the tran-
sients decay and the system settles either in equilibrium, that is, a single point, or in pe-
riodic or quasiperiodic motion. Chaotic motion in dissipative systems is now recognized
as a fourth state, and its attractors are often calledstrange. In dissipative systems, initial
conditions are not important because trajectories end up on some attractor. They are cru-
cial in Hamiltonian systems. In nonintegrable Hamiltonian systems, chaos may also occur,
and then it is calledconservative chaos. We refer to Chapter 8 of Hilborn (1994) in the
Additional Readings for this more complicated topic.

For the driven damped pendulum when trajectories near a center (closed orbit) are at-
tracted to it as time goes on, this closed orbit is defined as alimit cycle, representing
periodic motion for autonomous systems. A damped pendulum usually spirals into the ori-
gin (the position at rest); that is, the origin is a spiral fixed point in its phase space. When
we turn on a driving force, then the system formally becomes nonautonomous, because of
its explicit time dependence, but also more interesting. In this case, we can call the explicit
time in a sinusoidal driving force a new variable,ϕ, whereω0 is a fixed rate, in the equation
of motion

ω̇+ γω+ sinθ = f sinϕ, ω= θ̇ , ϕ = ω0t.

Then we increase the dimension of our phase space by 1 (adding one variable,ϕ) because
ϕ̇ = ω0 = const., but we keep the coupled ODEs autonomous. This driven damped pen-
dulum has trajectories that cross a closed orbit in phase space and spiral back to it; it is
calledlimit cycle. This happens for a range of strengthf of the driving force, the control
parameter of the system. As we increasef , the phase space trajectories go through sev-
eral neighboring limit cycles and eventually become aperiodic and chaotic. Such closed
limit cycles are calledHopf bifurcations of the pendulum on its road to chaos, after the
mathematician E. Hopf, who generalized Poincaré’s results on such bifurcations to higher
dimensions of phase space.

Such spiral sinks or saddle points cannot occur in one dimension, but we might ask if
they are stable when they occur in higher dimensions. An answer is given by the Poincaré–
Bendixson theorem, which says that either trajectories (in the finite region to be specified
in a moment) are attracted to a fixed point as time goes on, or they approach a limit cycle
provided the relevant two-dimensional subsystem stays inside a finite region, that is, does
not diverge there ast→∞. For a proof we refer to Hirsch and Smale (1974) and Jackson
(1989) in the Additional Readings.

In general, when some form of damping is present, the transients decay and the system
settles either in equilibrium, that is, a single point, or in periodic or quasiperiodic motion.
Chaotic motion is now recognized as a fourth state, and its attractors are oftenstrange.
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Exercise

18.4.2 Show that the (Rössler) coupled ODEs

ẋ1=−x2− x3, ẋ2= x1+ a1x2, ẋ3= a2+ (x1− a3)x3

(a) have two fixed points fora2= 2, a3= 4, and 0< a1 < 2,
(b) have a spiral repellor at the origin, and
(c) have a spiral chaotic attractor fora1= 0.398.

Dissipation in Dynamical Systems

Dissipative forces often involve velocities, that is, first-order time derivatives, such as fric-
tion (for example, for the damped oscillator). Let us look for a measure of dissipation,
that is, how a small areaA= c1,2�ξ1�ξ2 at a fixed point shrinks or expands, first in two
dimensions for simplicity. Herec1,2 ≡ sin(ξ̂1, ξ̂2), involving the sine of the characteristic
directions, is a time-independent angular factor that takes into account the nonorthogonal-
ity of the characteristic directionŝξ1 andξ̂2 of Eq. (18.28). If we take the time derivative of
A and usėξj = λj ξj of the characteristic coordinates, implying�̇ξj = λj�ξj , we obtain,
to lowest order in the�ξj ,

Ȧ= c1,2[�ξ1λ2�ξ2+�ξ2λ1�ξ1] = c1,2�ξ1�ξ2(λ1+ λ2). (18.34)

In the limit �ξj → 0, we find from Eq. (18.34) that the rate

Ȧ

A
= λ1+ λ2= trace(F)=∇ · f|y0, (18.35)

with f= (f1, f2) the vector of time evolution functions of Eq. (18.22b). Note that the time-
independent sine of the angle betweenξ1 andξ2 drops out of the rate. The generalization
to higher dimensions is obvious. Moreover, inn dimensions,

trace(F)=
∑
i

λi . (18.36)

This trace formula follows from the invariance of the secular polynomial in Eq. (18.29)
under a linear transformation,Cξ = x in particular, and it is a result of its determinental
form using the product theorem for determinants (see Section 3.2), viz.

det(F− λ · 1) = [det(C)
]−1 det(F− λ · 1)[det(C)

]= det
(
C−1(F− λ · 1)C)

= det
(
C−1FC− λ · 1)= n∏

i=1

(λi − λ). (18.37)

Here the product form comes about by substituting Eq. (18.30). Now, trace(F) is the coef-
ficient of (−λ)n−1 upon expanding det(F− λ · 1) in powers ofλ, while it is

∑
i λi from

the product form
∏

i (λi − λ), which proves Eq. (18.36). Clearly, according to Eqs. (18.35)
and (18.36),
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• it is the sign (and more precisely the trace) of the characteristic exponents of the deriv-
ative matrix at the fixed point that determines whether there is expansion or shrinkage
of areas and volumes in higher dimensions near a critical point.

In summary then, Eq. (18.35) states that dissipation requires∇ · f(y) 
= 0, whereẏj = fj ,
and does not occur in Hamiltonian systems where∇ · f= 0.

Moreover, in two or more dimensions, there are the following global possibilities:

• The trajectory may describe a closed orbit (cycle).

• The trajectory may approach a closed orbit (spiraling inward or outward toward the
orbit) ast→∞. In this case we have a limit cycle.

The local behavior of a trajectory near a critical point is also more varied in general
than in one dimension: At a stable critical point all trajectories may approach the critical
point along straight lines or spiral inward (toward thespiral node) or may follow a more
complicated path. If all time-reversed trajectories move toward the critical point in spirals
as t →−∞, then the critical point is a divergent spiral point, orspiral repellor. When
some trajectories approach the critical point while others move away from it, then it is
called asaddle point. When all trajectories form closed orbits about the critical point, it is
called acenter.

Bifurcations in Dynamical Systems

A bifurcation is a sudden change in dynamics for specific parameter values, such as the
birth of a node–repellor pair of fixed points or their disappearance upon adjusting a control
parameter; that is, the motions before and after the bifurcation are topologically different.
At a bifurcation point, not only are solutions unstable when one or more parameters are
changed slightly, but the character of the bifurcation in phase space or in the parameter
manifold may change. Thus we are dealing with fairly sudden events of nonlinear dynam-
ics. Rather sudden changes from regular to random behavior of trajectories are character-
istic of bifurcations, as is sensitive dependence on initial conditions: Nearby initial condi-
tions can lead to very different long-term behavior. If a bifurcation does not change quali-
tatively with parameter adjustments, it is calledstructurally stable. Note that structurally
unstable bifurcations are unlikely to occur in reality because noise and other neglected
degrees of freedom act as perturbations on the system that effectively eliminate unstable
bifurcations from our view. Bifurcations (such as doublings in maps) are important as one
among many routes to chaos. Others are sudden changes in trajectories associated with
several critical points calledglobal bifurcations. Often they involve changes in basins of
attraction and/or other global structures. The theory of global bifurcations is fairly compli-
cated and is still in its infancy at present.

Bifurcations that are linked to sudden changes in the qualitative behavior of dynamical
systems at a single fixed point are calledlocal bifurcations. More specifically, a change
in stability occurs in parameter space where the real part of a characteristic exponent of
the fixed point alters its sign, that is, moves from attracting to repelling trajectories, or vice
versa. Thecenter–manifold theorem says that at a local bifurcation only those degrees
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of freedom matter that are involved with characteristic exponents going to zero:�λi = 0.
Locating the set of these points is the first step in a bifurcation analysis. Another step
consists in cataloguing the types of bifurcations in dynamical systems, to which we turn
next.

The conventionalnormal forms of dynamical equations represent a start in classifying
bifurcations. For systems with one parameter (that is, a one-dimensional center manifold)
we write the general case of NDE as follows:

ẋ =
∞∑
j=0

a
(0)
j xj + c

∞∑
j=0

a
(1)
j xj + c2

∞∑
j=0

a
(2)
j xj + · · · , (18.38)

where the superscript on thea(m) denotes the power of the parameterc they are associated
with. One-dimensional iterated nonlinear maps such as the logistic map of Section 18.2
(which occur in Poincaré sections) of nonlinear dynamical systems can be classified simi-
larly, viz.

xn+1=
∞∑
j=0

a
(0)
j x

j
n + c

∞∑
j=0

a
(1)
j x

j
n + c2

∞∑
j=0

a
(2)
j x

j
n + · · · . (18.39)

Thus, one of the simplest NDEs with a bifurcation is

ẋ = x2− c, (18.40)

which corresponds to alla(m)
j = 0 except fora(1)0 =−1 anda(0)2 = 1. Forc > 0, there are

two fixed points (recall,̇x = 0) x± = ±√c with characteristic exponents 2x±, sox− is a
node andx+ is a repellor. Forc < 0 there are no fixed points. Therefore, asc→ 0 the
fixed point pair disappears suddenly; that is, the parameter valuec = 0 is a repellor-node
bifurcation that is structurally unstable. This complex map (withc→−c) generates the
fractal Julia and Mandelbrot sets discussed in Section 18.3.

A pitchfork bifurcation occurs for the undamped (nondissipative and special case of the
Duffing) oscillator with a cubic anharmonicity

ẍ + ax + bx3= 0, b > 0. (18.41)

It has a continuous frequency spectrum and is, among others, a model for a ball bouncing
between two walls. When the control parametera > 0, there is only one fixed point, at
x = 0, a node, while fora < 0 there are two more nodes, atx± = ±√−a/b. Thus, we
have a pitchfork bifurcation of a node at the orgin into a saddle point at the origin and two
nodes, atx± 
= 0. In terms of a potential formulation,V (x) = ax2/2+ bx4/4 is a single
well for a > 0 but a double well (with a maximum atx = 0) for a < 0.

When a pair of complex conjugate characteristic exponentsρ ± iκ crosses from a spiral
node (ρ < 0) to a repelling spiral (ρ > 0) and periodic motion (limit cycle) emerges, then
we call the qualitative change aHopf bifurcation. They occur in the quasiperiodic route
to chaos that will be discussed in the next section, on chaos.

In a global analysis we piece together the motions near various critical points, such as
nodes and bifurcations, to bundles of trajectories that flow more or less together in two
dimensions. (This geometric view is the current mode of analyzing solutions of dynamical
systems.) But this flow is no longer collective in the case of three dimensions, where they
diverge from each other in general, because chaotic motion is possible that typically fills
the plane of a Poincaré section with points.
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Chaos in Dynamical Systems

Our previous summaries of intricate and complicated features of dynamical systems due
to nonlinearities in one and two dimensions do not include chaos, although some of them,
such as bifurcations, sometimes are precursors to chaos. In three- or more-dimensional
NDEs, chaotic motion may occur, often when a constant of the motion (an energy integral
for NDEs defined by a Hamiltonian, for example) restricts the trajectories to a finite volume
in phase space and when there are no critical points. Another characteristic signal for chaos
is when for each trajectory there are nearby ones, some of which move away from it, while
others approach it with increasing time. The notion of exponential divergence of nearby
trajectories is made quantitative by the Lyapunov exponentλ (see Section 18.3 for more
details) of iterated maps of Poincaré sections associated with the dynamical system. If two
nearby trajectories are at a distanced0 at timet = 0 but diverge with a distanced(t) at a
later timet , thend(t)≈ d0e

λt holds. Thus, by analyzing the series of points, that is, iterated
maps generated on Poincaré sections, one can study routes to chaos of three-dimensional
dynamical systems. This is the key method for studying chaos. As one varies the location
and orientation of the Poincaré plane, a fixed point on it often is recognized to originate
from a limit cycle in the three-dimensional phase space whose structural stability can be
checked there. For example, attracting limit cycles show up as nodes in Poincaré sections,
repelling limit cycles as repellors of Poincaré maps, and saddle cycles as saddle points of
associated Poincaré maps.

Three or more dimensions of phase space are required for chaos to occur because of the
interplay of the necessary conditions we just discussed, viz.

• bounded trajectories (are often the case for Hamiltonian systems),

• exponential divergence of nearby trajectories (is guaranteed by positive Lyapunov ex-
ponents of corresponding Poincaré maps),

• no intersection of trajectories.

The last condition is obeyed by deterministic systems in particular, as we discussed in
Section 18.1. A surprising feature of chaos, mentioned in Section 18.1, is how prevalent
it is and how universal the routes to chaos often are, despite the overwhelming variety of
NDEs.

An example for spatially complex patterns in classical mechanics is the planar pendu-
lum, whose one-dimensional equation of motion

I
dθ

dt
= L,

dL

dt
=−lmg sinθ (18.42)

is nonlinear in the dynamic variableθ(t). HereI is the moment of inertia,l is the distance
to the center of mass,m is the mass, andg is the gravitational acceleration constant. When
all parameters in Eq. (18.42) are constant in time and space, then the solutions are given in
terms of elliptic integrals (see Section 5.8) and no chaos exists. However, a pendulum under
a periodic external force can exhibit chaotic dynamics, for example, for the Lagrangian

L = m

2
ṙ2−mg(l − z), (x − x0)

2+ y2+ z2= l2, (18.43)

x0 = εl cosωt. (18.44)
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(See Moon (1992) in the Additional Readings.)
Good candidates for chaos are multiple well potential problems,

d2r
dt2

+∇V (r)= F

(
r,

dr
dt

, t

)
, (18.45)

whereF represents dissipative and/or driving forces. Another classic example is rigid-body
rotation, whose nonlinear three-dimensional Euler equations are familiar, viz.

d

dt
I1ω1= (I2− I3)ω2ω3+M1,

d

dt
I2ω2= (I3− I1)ω1ω3+M2, (18.46)

d

dt
I3ω3= (I1− I2)ω1ω2+M3.

Here theIj are the principal moments of inertia andω is the angular velocity with compo-
nentsωj about the body-fixed principal axes. Even free rigid-body rotation can be chaotic,
for its nonlinear couplings and three-dimensional form satisfy all requirements for chaos to
occur (see Section 18.1). A rigid-body example of chaos in our solar system is the chaotic
tumbling of Hyperion, one of Saturn’s moons that is highly nonspherical. It is a world
where the Saturn rise and set is so irregular as to be unpredictable. Another is Halley’s
comet, whose orbit is perturbed by Jupiter and Saturn. In general, when three or more ce-
lestial bodies interact gravitationally, stochastic dynamics are possible. Note, though, that
computer simulations over large time intervals are required to ascertain chaotic dynamics
in the solar system. For more details on chaos in such conservative Hamiltonian systems
we refer to Chapter 8 of Hilborn (1994) in the Additional Readings.

Exercise

18.4.3 Construct a Poincaré map for the Duffing oscillator in Eq. (18.41).

Routes to Chaos in Dynamical Systems

Let us now look at some routes to chaos. The period-doubling route to chaos is exemplified
by the logistic map in Section 18.2, and the universal Feigenbaum numbersα, δ are its
quantitative features, along with Lyapunov exponents. It is common in dynamical systems.
It may begin with limit cycle (periodic) motion that shows up as a fixed point in a Poincaré
section. The limit cycle may have originated in a bifurcation from a node or some other
fixed point. As a control parameter changes, the fixed point of the Poincaré map splits into
two points; that is, the limit cycle has a characteristic exponent going through zero from
attracting to repelling, say. The periodic motion now has a period twice as long as before,
etc. We refer to Chapter 11 of Barger and Olsson (1995) in the Additional Readings for
period-doubling plots of Poincaré sections for the Duffing equation (18.41) with a periodic
external force. Another example for period doubling is a forced oscillator with friction (see
Helleman in Cvitanovic (1989) in the Additional Readings).
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The quasiperiodic route to chaos is also quite common in dynamical systems, for exam-
ple, starting from a time-independent node, a fixed point. If we adjust a control parameter,
the system undergoes a Hopf bifurcation to the periodic motion corresponding to a limit
cycle in phase space. With further change of the control parameter, a second frequency
appears. If the frequency ratio is an irrational number, the trajectories are quasiperiodic,
eventually covering the surface of a torus in phase space; that is, quasiperiodic orbits never
close or repeat. Further changes of the control parameter may lead to a third frequency or
directly to chaotic motion. Bands of chaotic motion can alternate with quasiperiodic mo-
tion in parameter space. An example for such a dynamic system is a periodically driven
pendulum.

A third route to chaos goes via intermittency, where the dynamical system switches
between two qualitatively different motions at fixed control parameters. For example, at
the beginning, periodic motion alternates with an occasional burst of chaotic motion. With
a change of the control parameter, the chaotic bursts typically lengthen until, eventually, no
periodic motion remains. The chaotic parts are irregular and do not resemble each other, but
one needs to check for a positive Lyapunov exponent to demonstrate chaos. Intermittencies
of various types are common features of turbulent states in fluid dynamics. The Lorenz
coupled NDEs also show intermittency.

Exercise

18.4.4 Plot the intermittency region of the logistic map atµ = 3.8319. What is the period of
the cycles? What happens atµ= 1+ 2

√
2?

ANS. There is a tangent bifurcation to period 3 cycles.
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CHAPTER 19

PROBABILITY

Probabilities arise in many problems dealing with random events or large numbers of parti-
cles defining random variables. An event is calledrandom if it is practically impossible to
predict from the initial state. This includes those cases where we have merely incomplete
information about initial states and/or the dynamics, as in statistical mechanics, where we
may know the energy of the system that corresponds to very many possible microscopic
configurations, preventing us from predicting individual outcomes. Often the average prop-
erties of many similar events are predictable, as in quantum theory. This is why probability
theory can be and has been developed.

Random variables are involved when data depend on chance, such as weather reports and
stock prices. The theory of probability describes mathematical models of chance processes
in terms of probability distributions of random variables that describe how some “random
events” are more likely than others. In this sense probability is a measure of our igno-
rance, giving quantitative meaning to qualitative statements such as “It will probably rain
tomorrow” and “I’m unlikely to draw the heart queen.” Probabilities are of fundamental
importance in quantum mechanics and statistical mechanics and are applied in meteorol-
ogy, economics, games, and many other areas of daily life.

To a mathematician, probabilities are based on axioms, but we will discuss here practical
ways of calculating probabilities for random events. Because experiments in the sciences
are always subject to errors, theories of errors and their propagation involve probabilities.
In statistics we deal with the applications of probability theory to experimental data.

19.1 DEFINITIONS, SIMPLE PROPERTIES

All possible mutually exclusive1 outcomes of an experiment that is subject to chance
represent the events (or points) of thesample space S. For example, each time we toss a
coin we give the trial a numberi = 1,2, . . . and observe the outcomesxi . Here the sample

1This means that given that one particular event did occur, the others could not have occurred.

1109
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consists of two events: heads and tails, and thexi represent a discrete random variable
that takes on one of two values, heads or tails. When two coins are tossed, the sample
contains the events two heads, one head and one tail, two tails; the number of heads is a
good value to assign to the random variable, so the possible values are 2, 1, and 0. There
are four equally probable outcomes, of which one has value 2, two have value 1, and one
has value 0. So the probabilities of the three values of the random variable are 1/4 for two
heads (value 2), 1/4 for no heads (value 0), and 1/2 for value 1. In other words, we define
the theoretical probabilityP of an event denoted by the pointxi of the sample as

P(xi)≡ number of outcomes of eventxi
total number of all events

. (19.1)

An experimental definition applies when the total number of events is not well defined (or
is difficult to obtain) or equally likely outcomes do not always occur. Then

P(xi)≡ number of times eventxi occurs

total number of trials
(19.2)

is more appropriate. A large, thoroughly mixed pile of black and white sand grains of the
same size and in equal proportions is a relevant example, because it is impractical to count
them all. But we can count the grains in a small sample volume that we pick. This way we
can check that white and black grains turn up with roughly equal probability 1/2, provided
we put back each sample and mix the pile again. It is found that the larger the sample
volume, the smaller the spread about 1/2 will be. The more trials we run, the closer the
average occurrence of all trial counts will be to 1/2. We could even pick single grains and
check if the probability 1/4 of picking two black grains in a row equals that of two white
grains, etc. There are lots of statistics questions we can pursue. Thus, piles of colored sand
provide for instructive experiments.

The following axioms are self-evident.

• Probabilities satisfy 0≤ P ≤ 1. Probability 1 means certainty; probability 0 means
impossibility.

• The entire sample has probability 1. For example, drawing an arbitrary card has prob-
ability 1.

• The probabilities for mutually exclusive events add. The probability for getting one
head in two coin tosses is 1/4+1/4= 1/2 because it is 1/4 for head first and then tail,
plus 1/4 for tail first and then head.

Example 19.1.1 PROBABILITY FOR A OR B

What is the probability for drawing2 a club or a jack from a shuffled deck of cards? Because
there are 52 cards in a deck, each being equally likely, 13 cards for each suit and 4 jacks,
there are 13 clubs including the club jack, and 3 other jacks; that is, there are 16 possible
cards out of 52, giving the probability(13+ 3)/52= 16/52= 4/13. �

2These are examples of non-mutually exclusive events.
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If we represent the sample space by a setS of points, then events are subsetsA, B, . . . of
S, denoted asA⊂ S, etc. Two setsA, B are equal ifA is contained inB, A⊂ B, andB is
contained inA, B ⊂A. Theunion A∪B consists of all points (events) that are inA or B
or both (see Fig. 19.1). Theintersection A ∩ B consists of all points, that are in bothA
andB. If A andB have no common points, their intersection is theempty set, A∩B = ∅,
which has no elements (events). The set of points inA that are not in the intersection ofA
andB is denoted byA−A∩B, defining a subtraction of sets. If we take the club suit in
Example 19.1.1 as setA and the four jacks as setB, then their union comprises all clubs
and jacks, and their intersection is the club jack only.

Each subsetA has its probabilityP(A) ≥ 0. In terms of these set theory concepts and
notations, the probability laws we just discussed become

0≤ P(A)≤ 1.

The entire sample space hasP(S) = 1. The probability of the unionA ∪ B of mutually
exclusive events is the sum

P(A∪B)= P(A)+ P(B), A∩B = ∅.
Theaddition rule for probabilities of arbitrary sets is given by the following theorem.

ADDITION RULE:

P(A∪B)= P(A)+ P(B)− P(A∩B). (19.3)

To prove this, we decompose the union into two mutually exclusive setsA ∪ B = A ∪
(B − B ∩A), subtracting the intersection ofA andB from B before joining them. Their
probabilities areP(A), P(B)−P(B ∩A), which we add. We could also have decomposed
A ∪ B = (A − A ∩ B) ∪ B, from which our theorem follows similarly by adding these
probabilities,P(A ∪ B)= [P(A)− P(A ∩ B)] + P(B). Note thatA ∩ B = B ∩A. (See
Fig. 19.1.)

Sometimes the rules and definitions of probabilities that we have discussed so far are not
sufficient, however.

FIGURE 19.1 The shaded area gives the
intersectionA∩B, corresponding to the
A andB events, the dashed line encloses

A∪B, corresponding to theA or B
events.
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Example 19.1.2 CONDITIONAL PROBABILITY

A simple example consists of a box of 10 identical red and 20 identical blue pens, arranged
in random order, from which we remove pens successively, that is, without putting them
back. Suppose we draw a red pen first, eventA. That will happen with probabilityP(A)=
10/30= 1/3 if the pens are thoroughly mixed up. The conditional probabilityP(B|A)
of drawing a blue pen in the next round, eventB, however, will depend on the fact that
we drew a red pen in the first round. It is given by 20/29. There are 10· 20 possible
sample points (red/blue pen events) in two rounds, and the sample has 30· 29 events, so
the combined probability is

P(A,B)= 10

30

20

29
= 10· 20

30· 29
= 20

87
. �

In general, the combined probabilityP(A,B) thatA andB happen (in this order) is
given by the product of the probability thatA happens,P(A), and the probability thatB
happens ifA does,P(B|A):

P(A,B)= P(A)P (B|A). (19.4)

In other words, theconditional probability P(B|A) is given by the ratio

P(B|A)= P(A,B)

P (A)
. (19.5)

If the conditional probabilityP(B|A)= P(B) is independent ofA, then the eventsA and
B are calledindependent, and the combined probability

P(A∩B)= P(A)P (B) (19.6)

is simply theproduct of both probabilities.

Example 19.1.3 SCHOLASTIC APTITUDE TESTS

Colleges and universities rely on the verbal and mathematics SAT scores, among others, as
predictors of a student’s success in passing courses and graduating. A research university
is known to admit mostly students with a combined verbal and mathematics score above
1400 points. The graduation rate is 95%; that is, 5% drop out or transfer elsewhere. Of
those who graduate, 97% have an SAT score of more than 1400 points, while 80% of those
who drop out have an SAT score below 1400. Suppose a student has an SAT score below
1400. What is his/her probability of graduating?

LetA be the cases having an SAT test score below 1400, B represent those above 1400,

mutually exclusive events withP(A)+ P(B)= 1, andC be those students who graduate.
That is, we want to know the conditional probabilitiesP(C|A) andP(C|B). To apply
Eq. (19.5) we needP(A) andP(B). There are 3% of students with scores below 1400
among those who graduate (95%) and 80% of those 5% who do not graduate, so

P(A)= 0.03· 0.95+ 4

5
0.05= 0.0685, P (B)= 0.97· 0.95+ 0.05

5
= 0.9315,
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and also

P(C ∩A)= 0.03· 0.95= 0.0285 and P(C ∩B)= 0.97· 0.95= 0.9215.

Here the combined probabilitiesP(C,A)= P(C ∩A), P(C,B)= P(C ∩B) asC andA
(andC andB) are parts of the same sample space. Therefore,

P(C|A) = P(C ∩A)

P (A)
= 0.0285

0.0685
∼ 41.6%,

P (C|B) = P(C ∩B)

P (B)
= 0.9215

0.9315
∼ 98.9%;

that is, a little less than 42% is the probability for a student with a score below 1400 to
graduate at this particular university. �

As a corollary to the definition of a conditional probability, Eq. (19.5), we compare
P(A|B)= P(A∩B)/P (B) andP(B|A)= P(A∩B)/P (A), which leads to the following
theorem.

BAYES THEOREM:

P(A|B)= P(A)

P (B)
P (B|A). (19.7)

This can be generalized to the following.

THEOREM: If the random events Ai with probabilities P(Ai) > 0 are mutually exclusive
and their union represents the entire sample S, then an arbitrary random event B ⊂ S has
the probability

P(B)=
n∑

i=1

P(Ai)P (B|Ai). (19.8)

FIGURE 19.2 The shaded areaB is
composed of mutually exclusive subsets of
B belonging also toA1, A2, A3, where the

Ai are mutually exclusive.
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This decomposition law resembles the expansion of a vector into a basis of unit vectors
defining the components of the vector. This relation follows from the obvious decomposi-
tion B =⋃i (B ∩Ai), Fig. 19.2, which impliesP(B) =∑i P (B ∩ Ai) for the probabil-
ities because the componentsB ∩ Ai are mutually exclusive. For eachi, we know from
Eq. (19.5) thatP(B ∩Ai)= P(Ai)P (B|Ai), which proves the theorem.

Counting of Permutations and Combinations

Counting particles in samples can help us find probabilities, as in statistical mechanics.
If we haven different molecules, let us ask in how many ways we can arrange them in

a row, that is, permute them. This number is defined as the number of theirpermutations.
Thus, by definition, theorder matters in permutations. There aren choices of picking
the first molecule,n − 1 for the second, etc. Altogether there aren! permutations ofn
different molecules or objects.

Generalizing this, suppose there aren people but onlyk < n chairs to seat them. In how
many ways can we seatk people in the chairs? Counting as before, we get

n(n− 1) · · · (n− k + 1)= n!
(n− k)!

for the number of permutations ofn different objects,k at a time.
We now consider the number ofcombinations of objects when theirorder is irrelevant

by definition. For example, three lettersa, b, c can be combined, two letters at a time, in
3= 3!

2! ways:ab, ac, bc. If letters can be repeated, then we add the pairsaa, bb, cc and have
six combinations. Thus, acombination of different particles differs from a permutation in
that theirorder does not matter. Combinations occur with repetition (the mathematician’s
way of treating indistinguishable objects) and without, where no two sets contain the same
particles.

The number of different combinations ofn particles,k at a time and without repetitions,
is given by the binomial coefficient

n(n− 1) · · · (n− k + 1)

k! =
(n
k

)
.

If repetition is allowed, then the number is(
n+ k − 1

k

)
.

In the numbern!/(n − k)! of permutations ofn particles,k at a time, we have to divide
out the numberk! of permutations of the groups ofk particles because their order does
not matter in a combination. This proves the first claim. The second one is shown by
mathematical induction.

In statistical mechanics, we ask in how many ways we can putn particles ink boxes so
that there will beni (distinguishable) particles in theith box, without regard to order in
each box, with

∑k
i=1ni = n. Counting as before, there aren choices for selecting the first

particle,n−1 for picking the second, etc., but then1! permutations within the first box are
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discounted, andn2! permutations within the second box are disregarded, etc. Therefore the
number of combinations is

n!
n1!n2! · · ·nk! , n1+ n2+ · · · + nk = n.

In statistical mechanics, particles that obey

• Maxwell–Boltzmann (MB) statistics are distinguishable, without restriction on their
number in each state;

• Bose–Einstein (BE) statistics are indistinguishable, with no restriction on the number
of particles in each quantum state;

• Fermi–Dirac (FD) statistics are indistinguishable, with at most one particle per state.

For example, putting three particles in four boxes, there are 43 equally likely arrangements
for the MB case, because each particle can be put into any box in four ways, giving a total of
43 choices. For BE statistics, the number of combinations with repetitions is

(3+4−1
3

)= (63)
for the Bose–Einstein case. For FD statistics, it is

(3+1
3

) = (43). More generally, for MB
statistics the number of distinct arrangements ofn particles amongk states (boxes) iskn,
for BE statistics it is

(
n+k−1

n

)
, and for FD statistics it is

(
k
n

)
.

Exercises

19.1.1 A card is drawn from a shuffled deck. (a) What is the probability that it is black, (b) a
red nine, (c) or a queen of spades?

19.1.2 Find the probability of drawing two kings from a shuffled deck of cards (a) if the first
card is put back before the second is drawn, and (b) if the first card is not put back after
being drawn.

19.1.3 When two fair dice are thrown, what is the probability of (a) observing a number less
than 4 or (b) a number greater than or equal to 4 but less than 6?

19.1.4 Rolling three fair dice, what is the probability of obtaining six points?

19.1.5 Determine the probabilityP(A∩B ∩C) in terms ofP(A),P (B),P (C), etc.

19.1.6 Determine directly or by mathematical induction the probability of a distribution ofN

(Maxwell–Boltzmann) particles ink boxes withN1 in box 1,N2 in box 2, . . . ,Nk in
thekth box for any numbersNj ≥ 1 withN1+N2+ · · · +Nk =N , k < N. Repeat this
for Fermi–Dirac and Bose–Einstein particles.

19.1.7 Show thatP(A∪B ∪C)= P(A)+ P(B)+ P(C)− P(A∩B)− P(A∩C)

− P(B ∩C)+ P(A∩B ∩C).

19.1.8 Determine the probability that a positive integern≤ 100 is divisible by a prime number
p ≤ 100. Verify your result forp = 3,5,7.

19.1.9 Put two particles obeying Maxwell–Boltzmann (Fermi–Dirac, or Bose–Einstein) statis-
tics in three boxes. How many ways are there in each case?
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19.2 RANDOM VARIABLES

Each time we toss a die, we give the trial a numberi = 1,2, . . . and observe the point
xi = 1, or 2, 3, 4, 5, 6 with probability 1/6. If i denotes the trial number, thenxi is a
discrete random variable that takes the discrete values from 1 to 6 with a definite probability
P(xi)= 1/6.

Example 19.2.1 DISCRETE RANDOM VARIABLE

If we toss two dice and record the sum of the points shown in each trial, then this sum is
also a discrete random variable, which takes on the value 2 when both dice show 1 with
probability (1/6)2; the value 3 when one die has 1 and the other 2, hence with proba-
bility (1/6)2 + (1/6)2 = 1/18; the value 4 when both dice have 2 or one has 1 and the
other 3, so with probability(1/6)2+ (1/6)2+ (1/6)2= 1/12; the value 5 with probability
4(1/6)2 = 1/9; the value 6 with probability 5/36; the value 7 with the maximum proba-
bility, 6(1/6)2 = 1/6; up to the value 12 when both dice show 6 points with probability
(1/6)2. This probability distribution is symmetric about 7. This symmetry is obvious from
Fig. 19.3 and becomes visible algebraically when we write the rising and falling linear
parts as

P(x) = x − 1

36
= 6− (7− x)

36
, x = 2,3, . . . ,7,

P (x) = 13− x

36
= 6+ (7− x)

36
, x = 7,8, . . . ,12. �

In summary, then,

• The different valuesxi that a random variableX assumes denote and distinguish the
events in the sample space of an experiment; each event occurs by chance with a prob-

FIGURE 19.3 Probability distributionP(x) of the sum of points when two
dice are tossed.
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ability P(X = xi) = pi ≥ 0 that is a function of the random variableX. A random
variableX(ei)= xi is defined on the sample space, that is, for the eventsei ∈ S.

• We define the probability densityf (x) of a continuous random variable X as

P(x ≤X ≤ x + dx)= f (x)dx; (19.9)

that is,f (x)dx is the probability thatX lies in the intervalx ≤ X ≤ x + dx. For
f (x) to be a probability density, it has to satisfyf (x) ≥ 0 and

∫
f (x)dx = 1. The

generalization to probability distributions depending on several random variables is
straightforward. Quantum physics abounds in examples.

Example 19.2.2 CONTINUOUS RANDOM VARIABLE: HYDROGEN ATOM

Quantum mechanics gives the probability|ψ |2d3r of finding a 1s electron in a hydrogen
atom in volume3 d3r, whereψ =Ne−r/a is the wave function that is normalized to

1=
∫
|ψ |2dV = 4πN2

∫ ∞

0
e−2r/ar2dr = πa3N2, dV = r2dr d cosθ dϕ

being the volume element anda the Bohr radius. The radial integral is found by repeated
integration by parts or by rescaling it to the gamma function∫ ∞

0
e−2r/ar2dr =

(
a

2

)3∫ ∞

0
e−xx2dx = a3

8
�(3)= a3

4
.

Here all points in space constitute the sample and represent three random variables, but
the probability density|ψ |2 in this case depends only on the radial variable because of the
spherical symmetry of the 1s state.

A measure for the size of the H atom is given by the average radial distance of the elec-
tron from the proton at the center, which in quantum mechanics is called theexpectation
value:

〈1s|r|1s〉 =
∫

r|ψ |2dV = 4πN2
∫ ∞

0
re−2r/ar2dr = 3

2
a.

We shall define this concept for arbitrary probability distributions shortly. �

• A random variable that takes only discrete valuesx1, x2, . . . , xn with probabilities
p1,p2, . . . , pn, respectively, is called a discrete random variable, so

∑
i pi = 1. If an

“experiment” or trial is performed, some outcome must occur, with unit probability.

• If the values comprise a continuous range of valuesa ≤ x ≤ b, then we deal with
a continuous random variable, whose probability distribution may or may not be a
continuous function as well.

3Note that|ψ |24πr2 dr gives the probability for the electron to be found betweenr andr + dr , at any angle.
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When we measure a quantityx n times, obtaining the valuesxj , we define theaverage
value

x̄ = 1

n

n∑
j=1

xj (19.10)

of the trials, also called themean or expectation value, where this formula assumes that
every observed valuexi is equally likely and occurs with probability 1/n. This connection
is the key link of experimental data with probability theory. This observation and practical
experience suggest defining themean value for a discrete random variable X as

〈X〉 ≡
∑
i

xipi (19.11)

and that for acontinuous random variable characterized by probability densityf (x) as

〈X〉 =
∫

xf (x)dx. (19.12)

These are linear averages. Other notations in the literature areX̄ andE(X).

The use of the arithmetic mean̄x of n measurements as the average value is suggested
by simplicity and plain experience, assuming equal probability for eachxi again. But why
do we not consider the geometric mean

xg = (x1 · x2 · · · · · xn)1/n (19.13)

or the harmonic meanxh determined by the relation

1

xh
= 1

n

(
1

x1
+ 1

x1
+ · · · + 1

xn

)
(19.14)

or that valuex̃ that minimizes the sum of absolute deviations|xi − x̃|? Here thexi are
taken to increase monotonically. When we plotO(x) =∑2n+1

i=1 |xi − x|, as in Fig. 19.4a,
for an odd number of points, we realize that it has a minimum at its central valuei = n,

FIGURE 19.4 (a)
∑3

i=1 |xi − x| for an odd
number of points; (b)

∑4
i=1 |xi − x| for an even

number of points.
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while for an even number of pointsE(x) =∑2n
i=1 |xi − x| is flat in its central region, as

shown in Fig. 19.4b. These properties make these functions unacceptable for determining
average values. Instead, when we minimize the sum of quadratic deviations,

n∑
i=1

(x − xi)
2=minimum, (19.15)

setting the derivative equal to zero yields 2
∑

i (x − xi)= 0, or

x = 1

n

∑
i

xi ≡ x̄,

that is, the arithmetic mean. It has another important property: If we denote byvi = xi − x̄

the deviations, then
∑

i vi = 0, that is, the sum of positive deviations equals the sum of
negative deviations. This principle of minimizing the quadratic sum of deviations, called
themethod of least squares, is due to C. F. Gauss, among others.

How close a fit of the mean value to a set of data points is depends on the spread of the
individual measurements from this mean. Again, we reject the average sum of deviations∑n

i=1 |xi − x̄|/n as a measure of the spread because it selects the central measurement
as the best value for no good reason. A more appropriate definition of the spread is the
average of the deviations from the mean, squared, orstandard deviation

σ =
√√√√1

n

n∑
i=1

(xi − x̄)2,

where the square root is motivated by dimensional analysis.

Example 19.2.3 STANDARD DEVIATION OF MEASUREMENTS

From the measurementsx1 = 7, x2 = 9, x3 = 10, x4 = 11, x5 = 13 we extractx̄ = 10
for the mean value andσ = √(9+ 1+ 1+ 9)/4= 2.2361 for the standard deviation, or
spread, using the experimental formula (19.2) because the probabilities are not known.�

There is yet another interpretation of the standard variation, in terms of the sum of
squares of measurement differences∑

i<k

(xi − xk)
2 = 1

2

n∑
i=1

n∑
k=1

(
x2
i + x2

k − 2xixk
)

= 1

2

(
2n2〈x2〉− 2n2〈x〉2)= n2σ 2, (19.16)

because by multiplying out the square in the definition ofσ 2 we obtain

σ 2 = 1

n

∑
i

(
xi − 〈x〉

)2= 1

n

∑
i

x2
i −

2〈x〉
n

∑
i

xi + 〈x〉2

= 1

n

∑
i

x2
i − 〈x〉2=

〈
x2〉− 〈x〉2. (19.17)

This formula is often used and widely applied forσ 2.
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Now we are ready to generalize the spread in a set ofn measurements with equal prob-
ability 1/n to thevariance of an arbitrary probability distribution. For a discrete random
variableX with probabilitiespi atX = xi we define thevariance

σ 2=
∑
j

(
xj − 〈X〉

)2
pj , (19.18)

and similarly for a continuous probability distribution

σ 2=
∫ ∞

−∞
(
x − 〈X〉)2f (x)dx. (19.19)

These definitions imply the following.

THEOREM: If a random variable Y = aX+ b is linearly related to X, then we can imme-
diately derive the mean value 〈Y 〉 = a〈X〉 + b and variance σ 2(Y )= a2σ 2(X) from these
definitions.

We prove this theorem only for a continuous distribution and leave the case of a discrete
random variable as an exercise for the reader. For the infinitesimal probability we know
thatf (x)dx = g(y)dy with y = ax+ b, because the linear transformation has to preserve
probability, so

〈Y 〉 =
∫ ∞

−∞
yg(y) dy =

∫ ∞

−∞
(ax + b)f (x) dx = a〈X〉 + b,

since
∫
f (x)dx = 1. For the variance we similarly obtain

σ 2(Y ) =
∫ ∞

−∞
(
y − 〈Y 〉)2g(y)dy = ∫ ∞

−∞
(
ax + b− a〈X〉 − b

)2
f (x)dx

= a2σ 2(X)

after substituting our result for the mean value〈Y 〉.
Finally we prove the generalChebychev inequality

P
(∣∣x − 〈X〉∣∣≥ kσ

)≤ 1

k2
, (19.20)

which demonstrates why the standard deviation serves as a measure of the spread of an
arbitrary probability distribution from its mean value〈X〉 and shows why experimental or
other data are often characterized according to their spread in numbers of standard devia-
tions. We first show the simpler inequality

P(Y ≥K)≤ 〈Y 〉
K

for a continuous random variableY whose valuesy ≥ 0. (The proof for a discrete random
variable follows along similar lines.) This inequality follows from

〈Y 〉 =
∫ ∞

0
yf (y)dy =

∫ K

0
yf (y)dy +

∫ ∞

K

yf (y)dy

≥
∫ ∞

K

yf (y)dy ≥K

∫ ∞

K

f (y)dy =KP(Y ≥K).
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Next we apply the same method to the positive variance integral

σ 2 =
∫ (

x − 〈X〉)2f (x)dx ≥ ∫
|x−〈X〉|≥kσ

(
x − 〈X〉)2f (x)dx

≥ k2σ 2
∫
|x−〈X〉|≥kσ

f (x) dx = k2σ 2P
(∣∣x − 〈X〉∣∣≥ kσ

)
,

decreasing the right-hand side first by omitting the part of the positive integral with
|x − 〈X〉| ≤ kσ and then again by replacing(x − 〈X〉)2 in the remaining integral by its
lowest limit, k2σ 2. This proves the Chebychev inequality. Fork = 3 we have the conven-
tional three-standard-deviation estimate

P
(∣∣x − 〈X〉∣∣≥ 3σ

)≤ 1

9
. (19.21)

It is straightforward to generalize the mean value to higher moments of probability dis-
tributions relative to the mean value〈X〉:〈(

X− 〈X〉)k 〉 =∑
j

(
xj − 〈X〉

)k
pj , discrete distribution, (19.22)

〈(
X− 〈X〉)k 〉 = ∫ ∞

−∞
(
x − 〈X〉)kf (x) dx, continuous distribution.

Themoment-generating function〈
etX

〉= ∫ etxf (x) dx = 1+ t〈X〉 + t2

2!
〈
X2〉+ · · · (19.23)

is a weighted sum of the moments of the continuous random variableX upon substituting

the Taylor expansion of the exponential functions. So〈X〉 = d〈etX〉
dt

∣∣
t=0. Notice that the

moments here are not relative to the expectation value; they are calledcentral moments.

Thenth central moment,〈Xn〉 = dn〈etX〉
dtn

∣∣
t=0, is given by thenth derivative of the moment-

generating function att = 0. By a change of the parametert→ it the moment-generating
function is related to thecharacteristic function 〈eitX〉, which is the often-used Fourier
transform of the probability densityf (x).

Moreover, mean values, moments, and variance can be defined similarly for probability
distributions that depend on several random variables. For simplicity, let us restrict our
attention to two continuous random variablesX, Y and list the corresponding quantities:

〈X〉 =
∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dx dy,

〈Y 〉 =
∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dx dy, (19.24)

σ 2(X) =
∫ ∞

−∞

∫ ∞

−∞
(
x − 〈X〉)2f (x, y) dx dy,

σ 2(Y ) =
∫ ∞

−∞

∫ ∞

−∞
(
y − 〈Y 〉)2f (x, y) dx dy. (19.25)
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Two random variables are said to beindependent if the probability density f (x, y)

factorizes into a productf (x)g(y) of probability distributions of one random variable
each.

The covariance, defined as

cov(X,Y )= 〈(X− 〈X〉)(Y − 〈Y 〉)〉, (19.26)

is a measure of how much the random variablesX, Y are correlated (or related): It is zero
for independent random variables because

cov(X,Y ) =
∫ (

x − 〈X〉)(y − 〈Y 〉)f (x, y) dx dy
=
∫ (

x − 〈X〉)f (x)dx ∫ (
y − 〈Y 〉)g(y)dy = (〈X〉 − 〈X〉)(〈Y 〉 − 〈Y 〉)= 0.

The normalized covariancecov(X,Y )
σ (X)σ(Y )

, which has values between−1 and+1, is often called
correlation.

In order to demonstrate that the correlation is bounded by

−1≤ cov(X,Y )

σ (X)σ(Y )
≤ 1

we analyze the positive mean value

Q = 〈[u(X− 〈X〉)+ v
(
Y − 〈Y 〉)]2〉

= u2〈[X− 〈X〉]2〉+ 2uv
〈[
X− 〈X〉][Y − 〈Y 〉]〉+ v2〈[Y − 〈Y 〉]2〉

= u2σ(X)2+ 2uv cov(X,Y )+ v2σ(Y )2≥ 0, (19.27)

whereu, v are numbers, not functions. For this quadratic form to be nonnegative, its dis-
criminant must obey cov(X,Y )2− σ(X)2σ(Y )2≤ 0, which proves the desired inequality.

The usefulness of the correlation as a quantitative measure is emphasized by the follow-
ing.

THEOREM: P(Y = aX+ b)= 1 is valid if, and only if, the correlation is equal to ±1.

This theorem states that a±100% correlation betweenX, Y implies not only some func-
tional relation between both random variables but also alinear relation between them. We
denote by〈B|A〉 the expectation value of the conditional probability distributionP(B|A).

To prove this strong correlation property, we apply Bayes’ decomposition law
(Eq. (19.8)) to the mean value and variance of the random variableY , assuming first that
P(Y = aX+ b)= 1, soP(Y 
= aX+ b)= 0. This yields

〈Y 〉 = P(Y = aX+ b)〈Y |Y = aX+ b〉
+ P(Y 
= aX+ b)〈Y |Y 
= aX+ b〉

= 〈aX+ b〉 = a〈X〉 + b,

σ (Y )2 = P(Y = aX+ b)
〈[
Y − 〈Y 〉]2∣∣Y = aX+ b

〉
+ P(Y 
= aX+ b)

〈[
Y − 〈Y 〉]2∣∣Y 
= aX+ b

〉
= 〈[aX+ b− 〈Y 〉]2〉= 〈a2[X− 〈X〉]2〉= a2σ(X)2,
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substituting〈Y 〉 = a〈X〉 + b. Similarly we obtain cov(X,Y ) = a2σ(X)2. These results
show that the correlation is±1.

Conversely, we start from cov(X,Y )2 = σ(X)2σ(Y )2. Hence the quadratic form in
Eq. (19.27) must be zero for (practically) allx for some(u0, v0) 
= (0,0):〈[

u0
(
X− 〈X〉)+ v0

(
Y − 〈Y 〉)]2〉= 0.

Because the argument of this mean value is positive definite, this relationship is satisfied
only if P(u0(X − 〈X〉)+ v0(Y − 〈Y 〉) = 0) = 1, which means thatY andX are linearly
related.

When we integrate out one random variable, we are left with the probability distribution
of the other random variable,

F(x)=
∫

f (x, y) dy, or G(y)=
∫

f (x, y) dx, (19.28)

and analogously for discrete probability distributions. When one or more random variables
are integrated out, the remaining probability distribution is calledmarginal, motivated
by the geometric aspects of projection. It is straightforward to show that these marginal
distributions satisfy all the requirements of properly normalized probability distributions.

If we are interested in the distribution of the random variableX for a definite valuey =
y0 of the other random variable, then we deal with aconditional probability distribution
P(X = x|Y = y0). The corresponding continuous probability density isf (x, y0).

Example 19.2.4 REPEATED DRAWS OF CARDS

When we draw cards repeatedly, we shuffle the deck often because we want to make sure
these events stay independent. So we draw the first card at random from a bridge deck
containing 52 cards and then put it back at a random place. Now we repeat the process for
a second card. Then the deck is reshuffled, etc. We now define the random variables

• X = number of so-called honors, that is, 10s, jacks, queens, kings, or aces;

• Y = number of 2s or 3s.

In a single draw the probability of a 10 to an ace isa = 5 · 4/52= 5/13, and b =
2 · 4/52= 2/13 for two or three to be drawn andc= (13− 5− 2)/13= 6/13 for anything
else, witha + b+ c= 1.

In two drawingsX andY can bex = 0= y, when no 10 to ace show up or 2 or 3. This
case has probabilityc2. In generalX, Y have the values 0, 1, and 2, so 0≤ x + y ≤ 2
because we will have drawn two cards. The probability function of (X = x, Y = y) is
given by the product of the probabilities of the three possibilitiesax , by , c2−x−y times the
number of distributions (or permutations) of two cards over the three cases with probabil-
ities a, b, c, which is 2!/[x!y!(2− x − y)!]. This number is the coefficient of the power
axbyc2−x−y in the generalized binomial expansion of all possibilities in two drawings with
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probability 1:

1= (a + b+ c)2=
∑

0≤x+y≤2

2!
x!y!(2− x − y)!a

xbyc2−x−y

= a2+ b2+ c2+ 2(ab+ ac+ bc). (19.29)

Hence the probability distribution of our discrete random variables is given by

f (X = x,Y = y) = 2!
x!y!(2− x − y)!

(
5

13

)x( 2

13

)y( 6

13

)2−x−y
,

x, y = 0,1,2; 0≤ x + y ≤ 2, (19.30)

or more explicitly as

f (0,0) =
(

6

13

)2

, f (1,0)= 2 · 5

13
· 6

13
= 60

132
,

f (2,0) =
(

5

13

)2

, f (0,1)= 2
2

13
· 6

13
= 24

132
,

f (0,2) =
(

2

13

)2

, f (1,1)= 2
5

13
· 2

13
= 20

132
.

The probability distribution is properly normalized according to Eq. (19.29). Its expecta-
tion values are given by

〈X〉 =
∑

0≤x+y≤2

xf (x, y)= f (1,0)+ f (1,1)+ 2f (2,0)

= 60

132
+ 20

132
+ 2

(
5

13

)2

= 130

132
= 10

13
= 2a,

and

〈Y 〉 =
∑

0≤x+y≤2

yf (x, y)= f (0,1)+ f (1,1)+ 2f (0,2)

= 24

132
+ 20

132
+ 2

(
2

13

)2

= 52

132
= 4

13
= 2b,

as expected because we are drawing a card two times. The variances are

σ 2(X) =
∑

0≤x+y≤2

(
x − 10

13

)2

f (x, y)

=
(

10

13

)2[
f (0,0)+ f (0,1)+ f (0,2)

]
+
(

3

13

)2[
f (1,0)+ f (1,1)

]+(16

13

)2

f (2,0)

= 102 · 64+ 32 · 80+ 162 · 52

134
= 42 · 5 · 169

134
= 80

132
,
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σ 2(Y ) =
∑

0≤x+y≤2

(
y − 4

13

)2

f (x, y)

=
(

4

13

)2[
f (0,0)+ f (1,0)+ f (2,0)

]
+
(

9

13

)2[
f (0,1)+ f (1,1)

]+(22

13

)2

f (0,2)

= 42 · 112+ 92 · 44+ 222 · 22

134
= 11· 4 · 169

134
= 44

132
.

It is reasonable thatσ 2(Y ) < σ 2(X), becauseY takes only two values, 2 and 3, whileX
varies over the five honors. The covariance is given by

cov(X,Y ) =
∑

0≤x+y≤2

(
x − 10

13

)(
y − 4

13

)
f (x, y)

= 10· 4
132

· 62

132
− 10· 9

132
· 24

132
− 10· 22

132
· 4

132
− 3 · 4

132
· 60

132

+ 3 · 9
132

· 20

132
− 16· 4

132
· 52

132
=−20· 169

134
=− 20

132
.

Therefore the correlation of the random variablesX,Y is given by

cov(X,Y )

σ (X)σ(Y )
=− 20

8
√

5 · 11
=−1

2

√
5

11
=−0.3371,

which means that there is a small (negative) correlation between these random variables,
because if a card is an honor it cannot be a 2 or a 3, and vice versa.

Finally, let us determine the marginal distribution:

F(X = x)=
2∑

y=0

f (x, y), (19.31)

or explicitly

F(0) = f (0,0)+ f (0,1)+ f (0,2)=
(

6

13

)2

+ 24

132
+
(

2

13

)2

=
(

8

13

)2

,

F (1) = f (1,0)+ f (1,1)= 60

132
+ 20

132
= 80

132
,

F (2) = f (2,0)=
(

5

13

)2

,

which is properly normalized because

F(0)+ F(1)+ F(2)= 64+ 80+ 25

132
= 169

132
= 1.
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Its mean value is given by

〈X〉F =
2∑

x=0

xF(x)= F(1)+ 2F(2)= 80+ 2 · 25

132
= 130

132
= 10

13
= 〈X〉,

and its variance

σ 2
F =

2∑
x=0

(
x − 10

13

)2

F(x)=
(

10

13

)2

·
(

8

13

)2

+
(

3

13

)2 80

132
+
(

16

13

)2

·
(

5

13

)2

= 80· 169

134
= 80

132
= σ 2(X).

From the definitions it follows that these results hold generally. �
Finally we address the transformation of two random variablesX, Y into U(X,Y ),

V (X,Y ). We treat the continuous case, leaving the discrete case, as an exercise. If

u= u(x, y), v = v(x, y); x = x(u, v), y = y(u, v) (19.32)

describe the transformation and its inverse, then the probability stays invariant and the
integral of the density transforms according to the rules of Jacobians of Chapter 2, so the
transformed probability density becomes

g(u, v)= f
(
x(u, v), y(u, v)

)|J |, (19.33)

with the Jacobian

J = ∂(x, y)

∂(u, v)
=
∣∣∣∣∣ ∂x∂u ∂x

∂v
∂y
∂u

∂y
∂v

∣∣∣∣∣ . (19.34)

Example 19.2.5 SUM, PRODUCT, AND RATIO OF RANDOM VARIABLES

Let us consider three examples.(1) The sum Z = X + Y, where the transformation may
be taken to be

x = x, z= x + y, J =
∣∣∣∣1 1
0 1

∣∣∣∣ ,
using

∂x

∂x
= 1,

∂(z− y)

∂z
= 1,

∂y

∂x
= 0,

∂(z− x)

∂z
= 1,

so the probability is given by

F(Z)=
∫ Z

−∞

∫ ∞

−∞
f (x, z− x)dx dz. (19.35)

If the random variablesX,Y are independent with densitiesf1, f2, then

F(Z)=
∫ Z

−∞

∫ ∞

−∞
f1(x)f2(z− x)dx dz. (19.36)
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(2) The product Z =XY , takingX, Z as the new variables, leads to the Jacobian

J =
∣∣∣∣∣1 1

y

0 1
x

∣∣∣∣∣= 1

x
,

using

∂x

∂x
= 1,

∂( z
y
)

∂z
= 1

y
,

∂y

∂x
= 0,

∂( z
x
)

∂z
= 1

x
,

so the probability is given by

F(Z)=
∫ Z

−∞

∫ ∞

−∞
f

(
x,

z

x

)
dx

|x|dz. (19.37)

If the random variablesX, Y are independent with densitiesf1, f2, then

F(Z)=
∫ Z

−∞

∫ ∞

−∞
f1(x)f2

(
z

x

)
dx

|x|dz. (19.38)

(3) The ratio Z = X
Y

, takingY,Z as the new variables, has the Jacobian

J =
∣∣∣∣ z y

1 0

∣∣∣∣=−y,
using

∂(yz)

∂y
= z,

∂(yz)

∂z
= y,

∂y

∂y
= 1,

∂y

∂z
= 0,

so the probability is given by

F(Z)=
∫ Z

−∞

∫ ∞

−∞
f (yz, y)|y|dy dz. (19.39)

If the random variablesX, Y are independent with densitiesf1, f2, then

F(Z)=
∫ Z

−∞

∫ ∞

−∞
f1(yz)f2(y)|y|dy dz. (19.40)

�

Exercises

19.2.1 Show that adding a constantc to a random variableX changes the expectation value
〈X〉 by that same constant but not the variance. Show also that multiplying a random
variable by a constant multiplies both the mean and variance by that constant. Show that
the random variableX− 〈X〉 has mean value zero.

19.2.2 If 〈X〉, 〈Y 〉 are the average values of two independent random variablesX, Y, what is
the expectation value of the productX · Y?
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19.2.3 A velocity vj = xj/tj is measured by recording the distancesxj at the corresponding
timestj . Show thatx̄/t̄ is a good approximation for the average velocityv, provided all
the errors|xj − x̄| � |x̄| and|tj − t̄ | � |t̄ | are small.

19.2.4 Define the random variableY in Example 19.2.4 as the number of 4s, 5s, 6s, 7s, 8s, or
9s. Then determine the correlation of theX andY random variables.

19.2.5 If X andY are two independent random variables with different probability densities
and the functionf (x, y) has derivatives of any order, express〈f (X,Y )〉 in terms of〈X〉
and〈Y 〉. Develop similarly the covariance and correlation.

19.2.6 Let f (x, y) be the joint probability density of two random variablesX, Y. Find the
varianceσ 2(aX + bY ), wherea, b are constants. What happens whenX, Y are inde-
pendent?

19.2.7 The probability that a particle of an ideal gas travels a small distancedx between col-
lisions is∼e−x/f dx, wheref is the constant mean free path. Verify thatf is the aver-
age distance between collisions, and determine the probability of a free path of length
l ≥ 3f.

19.2.8 Determine the probability density for a particle in simple harmonic motion in the inter-
val−A≤ x ≤A.

Hint. The probability that the particle is betweenx andx + dx is proportional to the
time it takes to travel across the interval.

19.3 BINOMIAL DISTRIBUTION

Example 19.3.1 REPEATED TOSSES OF DICE

What is the probability of three 6s in four tosses, all trials being independent? Getting one
6 in a single toss of a fair die has probabilitya = 1/6, and anything else has probability
b = 5/6 with a + b = 1. Let the random variableX = x be the number of 6s. In four
tosses, 0≤ x ≤ 4. The probability distributionf (X) is given by the product of the two
possibilities,ax andb4−x , times the number of combinations of four tosses over the two
cases with probabilitiesa, b. This number is the coefficient of the poweraxb4−x in the
binomial expansion of all possibilities in four tosses with probability 1:

1= (a + b)4=
4∑

x=0

4!
x!(4− x)!a

xb4−x

= a4+ b4+ 4a3b+ 4ab3+ 6a2b2. (19.41)

Hence the probability distribution of our discrete random variable is given by

f (X = x)= 4!
x!(4− x)!a

xb4−x, 0≤ x ≤ 4,

or more explicitly

f (0)= b4, f (1)= 4ab3, f (2)= 6a2b2, f (3)= 4a3b, f (4)= a4.
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The probability distribution is properly normalized according to Eq. (19.41). The proba-
bility of three 6s in four tosses is

4a3b= 4
5/6

63
= 5

4 · 34
,

fairly small. �
This case dealt with repeated independent trials, each with two possible outcomes of

constant probabilityp for a hit andq = 1− p for a miss, and it is typical of many ap-
plications, such as defective products, hits or misses of a target, and decays of radioactive
atoms. The generalization toX = x successes inn trials is given by thebinomial proba-
bility distribution

f (X = x)= n!
x!(n− x)!p

xqn−x =
(
n

x

)
pxqn−x, (19.42)

using the binomial coefficients (see Chapter 5). This distribution is normalized to the prob-
ability 1 of all possibilities inn trials, as can be seen from the binomial expansion

1= (p+ q)n = pn + npn−1q + · · · + npqn−1+ qn. (19.43)

Figure 19.5 shows typical histograms. The random variableX takes the values 0,1,2, . . . , n
in discrete steps and can also be viewed as a composition

∑
i Xi of n independent random

variablesXi, one for each trial, that have the value 0 for a miss and 1 for a hit. This
observation allows us to employ the moment-generating functions〈

etXi
〉= P(Xi = 0)+ etP (Xi = 1)= q + pet (19.44)

and 〈
etX

〉=∏
i

〈
etXi

〉= (pet + q
)n
, (19.45)

FIGURE 19.5 Binomial probability distributions
for n= 20 andp = 0.1,0.3,0.5.
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from which the mean values and higher moments can be read off upon differentiating and
settingt = 0. Using

∂〈etX〉
∂t

= npet
(
pet + q

)n−1
,

∂〈etX〉
∂t

∣∣∣∣
t=0
= 〈X〉 =

∑
i

xif (xi)= np,

∂2〈etX〉
∂t2

= npet
(
pet + q

)n−1+ n(n− 1)p2e2t(pet + q
)n−2

,

〈
X2〉 = ∂2〈etX〉

∂t2

∣∣∣∣
t=0
=
∑
i

x2
i f (xi)= np+ n(n− 1)p2,

we obtain, with Eq. (19.17),

σ 2(X) = 〈X2〉− 〈X〉2= np+ n(n− 1)p2− n2p2

= np(1− p)= npq. (19.46)

Figure 19.5 illustrates these results with peaks atx = np = 2,6,10, which widen with
increasingp.

Exercises

19.3.1 Show that the variableX = x number of heads inn coin tosses is a random variable,
and determine its probability distribution. Describe the sample space. What are its mean
value, the variance, and the standard deviation? Plot the probability functionf (x) =
n!/(x!(n− x)!2n) for n= 10,20,30 using graphical software.

19.3.2 Plot the binomial probability function for the probabilitiesp = 1/6, q = 5/6 andn= 6
throws of a die.

19.3.3 A hardware company knows that the probability of mass-producing nails includes a
small probabilityp = 0.03 of defective nails (without a sharp tip usually). What is the
probability of finding more than two defective nails in its commercial box of 100 nails?

19.3.4 Four cards are drawn from a shuffled bridge deck. What is the probability that they are
all red? that they are all hearts? that they are honors? Compare the probabilities when
the cards are put back at random places, or not.

19.3.5 Show that for the binomial distribution of Eq. (19.42) the most probable value ofx is
np.

19.4 POISSON DISTRIBUTION

The Poisson distribution typically occurs in situations involving an event repeated at a
constant rate of probability, thereby depleting the population. The decay of a radioactive
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sample is a case in point because, once a particle decays, it does not decay again. If the
observation timedt is small enough so that the emission of two or more particles is neg-
ligible, then the probability that one particle (He4 in α decay or an electron inβ decay) is
emitted isµdt with constantµ andµdt � 1. We can set up a recursion relation for the
probabilityPn(t) of observingn counts during a time intervalt. Forn > 0 the probability
Pn(t + dt) is composed of two mutually exclusive events that (i)n particles are emitted in
the timet, none indt , and (ii)n− 1 particles are emitted in timet, one indt. Therefore

Pn(t + dt)= Pn(t)P0(dt)+ Pn−1(t)P1(dt).

Here we substitute the probability of observing one particle,P1(dt)= µdt , and no particle,
P0(dt)= 1− P1(dt), in timedt. This yields

Pn(t + dt)= Pn(t)(1−µdt)+ Pn−1(t)µdt.

So, after rearranging and dividing bydt, we get

dPn(t)

dt
= Pn(t + dt)− Pn(t)

dt
= µPn−1(t)−µPn(t). (19.47)

Forn= 0 this differential recursion relation simplifies, because there is no particle in times
t anddt giving

dP0(t)

dt
=−µP0(t). (19.48)

The ODE says that particles have a constant decay probability and decay removes them
from the distribution. This ODE integrates toP0(t)= e−µt if the probability that no particle
is emitted during a zero time intervalP0(0)= 1 is used. HereP0(0)= 1 means no decay
takes place att ≤ 0.

Now we go back to Eq. (19.47) forn= 1,

Ṗ1= µ
(
e−µt − P1

)
, P1(0)= 0, (19.49)

and solve the homogeneous equation, which is the same forP1 as Eq. (19.48). This yields
P1(t) = µ1e

−µt . Then we solve the inhomogeneous ODE (Eq. (19.49)) by varying the
constantµ1 to find µ̇1= µ, soP1(t)= µte−µt . The general solution is

Pn(t)= (µt)n

n! e−µt , (19.50)

as may be confirmed by substitution into Eq. (19.47) and verifying the initial conditions,
Pn(0)= 0, n > 0. This is an example of the Poisson distribution.

The Poisson distribution is defined with the probabilities

p(n)= µn

n! e
−µ, X = n= 0,1,2, . . . (19.51)

and is exhibited in Fig. 19.6. The random variableX is discrete. The probabilities are
properly normalized becausee−µ

∑∞
n=0

µn

n! = 1. The mean value and variance,

〈X〉 = e−µ
∞∑
n=1

n
µn

n! = µe−µ
∞∑
n=0

µn

n! = µ,

σ 2 = 〈X2〉− 〈X〉2= µ(µ+ 1)−µ2= µ, (19.52)
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FIGURE 19.6 Poisson distribution
compared with binomial distribution.

follow from the characteristic function

〈
eitX

〉= ∞∑
n=0

eitn−µµ
n

n! = e−µ
∞∑
n=0

(µeit )n

n! = eµ(e
it−1)

by differentiation and settingt = 0, using Eq. (19.17).
A Poisson distribution becomes a good approximation of the binomial distribution for a

large numbern of trials and small probabilityp ∼ µ/n, µ a constant.

THEOREM: In the limit n→∞ and p→ 0 so that the mean value np→ µ stays finite,
the binomial distribution becomes a Poisson distribution.

To prove this theorem, we apply Stirling’s formula (Chapter 8)n! ∼ √2πn(n/e)n for
largen to the factorials in Eq. (19.42), keepingx finite while n→∞. This yields for
n→∞:

n!
(n− x)! ∼

(
n

e

)n(
e

n− x

)n−x
∼
(
n

e

)x(
n

n− x

)n−x

∼
(
n

e

)x(
1+ x

n− x

)n−x
∼
(
n

e

)x

ex ∼ nx,

and forn→∞, p→ 0, with np→ µ:

(1− p)n−x ∼
(

1− pn

n

)n

∼
(

1− µ

n

)n

∼ e−µ.
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Table 19.1

i→ 0 1 2 3 4 5 6 7 8 9 10
ni → 57 203 383 525 532 408 273 139 45 27 16

Finally,pxnx → µx, so altogether

n!
x!(n− x)!p

x(1− p)n−x → µx

x! e
−µ, n→∞, (19.53)

which is a Poisson distribution for the random variableX = x with 0≤ x <∞. This limit
theorem is a particular example of thelaws of large numbers.

Exercises

19.4.1 Radioactive decays are governed by the Poisson distribution. In a Rutherford–Geiger
experiment the numberni of emittedα particles is counted inn= 2608 time intervals
of 7.5 seconds each. In Table 19.1ni is the number of time intervals in whichi particles
were emitted. Determine the average numberλ of emitted particles, and compare theni
of Table 19.1 withnpi computed from the Poisson distribution with mean valueλ.

19.4.2 Derive the standard deviation of a Poisson distribution of mean valueµ.

19.4.3 The number ofα decay particles of a radium sample is counted per minute for 40 hours.
The total number is 5000. How many 1-minute intervals are there expected to be with
(a) 2, (b) 5α particles?

19.4.4 For a radioactive sample, 10 decays are counted on average in 100 seconds. Use the
Poisson distribution to estimate the probability of counting 3 decays in 10 seconds.

19.4.5 238U has a half-life of 4.51×109 years. Its decay series ends with the stable lead isotope
206Pb. The ratio of the number of206Pb to238U atoms in a rock sample is measured as
0.0058. Estimate the age of the rock assuming that all the lead in the rock is from the
initial decay of the238U, which determines the rate of the entire decay process, because
the subsequent steps take place far more rapidly.
Hint. The decay constantλ in the decay lawN(t)=Ne−λt is related to the half-lifeT
by T = ln2/λ.

ANS. 3.8× 107 years.

19.4.6 The probability of hitting a target in one shot is known to be 20%. If five shots are fired
independently, what is the probability of striking the target at least once?

19.4.7 A piece of uranium is known to contain the isotopes235
92U and238

92U as well as from 0.80
g of 206

82Pb per gram of uranium. Estimate the age of the piece (and thus Earth) in years.
Hint. Assume the lead comes only from the238

92U. Use the decay constant from Exer-
cise 19.4.5.
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19.5 GAUSS’ NORMAL DISTRIBUTION

The bell-shaped Gauss distribution is defined by the probability density

f (x)= 1

σ
√

2π
exp

(
−[x −µ]2

2σ 2

)
, −∞< x <∞, (19.54)

with mean valueµ and varianceσ 2. It is by far the most important continuous probability
distribution and is displayed in Fig. 19.7.

It is properly normalized because, substitutingy = x−µ
σ
√

2
, we obtain

1

σ
√

2π

∫ ∞

−∞
e
− (x−µ)2

2σ2 dx = 1√
π

∫ ∞

−∞
e−y2

dy = 2√
π

∫ ∞

0
e−y2

dy = 1.

Similarly, substitutingy = x −µ, we see that

〈X〉 −µ=
∫ ∞

−∞
x −µ

σ
√

2π
e
− (x−µ)2

2σ2 dx =
∫ ∞

−∞
y

σ
√

2π
e
− y2

2σ2 dy = 0,

the integrand being odd iny, so the integral overy > 0 cancels that overy < 0. Similarly
we check that the standard deviation isσ.

From the normal distribution (by the substitutiony = x−〈X〉
σ

)

P
(∣∣X− 〈X〉∣∣> kσ

) = P

( |X− 〈X〉|
σ

> k

)
= P

(|Y |> k
)

=
√

2

π

∫ ∞

k

e−y2/2dy =
√

4

π

∫ ∞

k/
√

2
e−z2

dz= erfc
k√
2
,

FIGURE 19.7 Normal Gauss distribution for mean value zero and various
standard deviationsh= 1/σ

√
2.
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we can evaluate the integral fork = 1,2,3 and thus extract the following numerical rela-
tions for a normally distributed random variable:

P
(∣∣X− 〈X〉∣∣≥ σ

) ∼ 0.3173, P
(∣∣X− 〈X〉∣∣≥ 2σ

)∼ 0.0455,

P
(∣∣X− 〈X〉∣∣≥ 3σ

) ∼ 0.0027, (19.55)

of which the last one is interesting to compare with Chebychev’s inequality (see
Eq. (19.21).) giving≤ 1/9 for anarbitrary probability distribution instead of∼ 0.0027
for the 3σ -rule of thenormal distribution.

ADDITION THEOREM: If the random variables X,Y have the same normal distributions,
that is, the same mean value and variance, then Z =X + Y has normal distribution with
twice the mean value and twice the variance of X and Y .

To prove this theorem, we take the Gauss density as

f (x)= 1√
2π

e−x2/2, with
1√
2π

∫ ∞

−∞
e−x2/2dx = 1,

without loss of generality. Then the probability density of(X,Y ) is the product

f (x, y)= 1√
2π

e−x2/2 1√
2π

e−y2/2= 1

2π
e−(x2+y2)/2.

Also, Eq. (17.36) gives the density forZ =X+ Y as

g(z)=
∫ ∞

−∞
1√
2π

e−x2/2 1√
2π

e−(x−z)2/2dx.

Completing the square in the exponent,

2x2− 2xz+ z2=
(
x
√

2− z√
2

)2

+ z2

2
,

we obtain

g(z)= 1

2π
e−z2/4

∫ ∞

−∞
exp

(
−1

2

(
x
√

2− z√
2

)2)
dx.

Using the substitutionu= x − z
2, we find that the integral transforms into∫ ∞

−∞
exp

(
−1

2

(
x
√

2− z√
2

)2)
dx =

∫ ∞

−∞
e−u2

du=√π,

so the density forZ =X+ Y is

g(z)= 1

2
√
π
e−z2/4, (19.56)

which means it has mean value zero and variance 2, twice that ofX andY.
In a special limit the discrete Poisson probability distribution is closely related to the

continuous Gauss distribution. This limit theorem is another example of thelaws of large
numbers, which are often dominated by the bell-shaped normal distribution.
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THEOREM: For large n and mean value µ, the Poisson distribution approaches a Gauss
distribution.

To prove this theorem forn→∞, we approximate the factorial in the Poisson’s proba-
bility p(n) of Eq. (19.51) by Stirling’s asymptotic formula (see Chapter 8),

n! ∼ √2nπ

(
n

e

)n

, n→∞,

and choose the deviationv = n− µ from the mean value as the new variable. We let the
mean valueµ→∞ and treatv/µ as small butv2/µ as finite. Substitutingn= µ+ v and
expanding the logarithm in a MacLaurin series, keeping two terms, we obtain

lnp(n) = −µ+ n lnµ− n lnn+ n− ln
√

2nπ

= (µ+ v) lnµ− (µ+ v) ln(µ+ v)+ v− ln
√

2π(µ+ v)

= (µ+ v) ln

(
1− v

µ+ v

)
+ v− ln

√
2πµ

= (µ+ v)

(
− v

µ+ v
− v2

2(µ+ v)2

)
+ v− ln

√
2πµ

∼ − v2

2µ
− ln

√
2πµ,

replacingµ+ v→ µ because|v| � µ. Exponentiating this result we find that for largen
andµ

p(n)→ 1√
2πµ

e−v2/2µ, (19.57)

which is a Gauss distribution of the continuous variablev with mean value 0 and standard
deviationσ =√µ.

In a special limit the discrete binomial probability distribution is also closely related to
the continuous Gauss distribution. This limit theorem is another example of thelaws of
large numbers.

THEOREM: In the limit n→∞, so that the mean value np→∞, the binomial distribu-
tion becomes Gauss’ normal distribution. Recall from Section 19.4 that, when np→ µ<

∞, the binomial distribution becomes a Poisson distribution.

Instead of the large numberx of successes inn trials, we use the deviationv = x − pn

from the (large) mean valuepn as our new continuous random variable, under the condition
that |v| � pn but v2/n is finite asn→∞. Thus, we replacex by v + pn andn− x by
qn− v in the factorials of Eq. (19.42),f (x)→W(v) asn→∞, and then apply Stirling’s
formula. This yields

W(v)= pxqn−xnn+1/2e−n+x+(n−x)√
2π(v + pn)x+1/2(qn− v)n−x+1/2

.
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Here we factor out the dominant powers ofn and cancel powers ofp andq to find

W(v)= 1√
2πpqn

(
1+ v

pn

)−(v+pn+1/2)(
1− v

qn

)−(qn−v+1/2)

.

In terms of the logarithm we have

lnW(v) = ln
1√

2πpqn
− (v + pn+ 1/2) ln

(
1+ v

pn

)
− (qn− v+ 1/2) ln

(
1− v

qn

)
= ln

1√
2πpqn

− (v + pn+ 1/2)

(
v

pn
− v2

2p2n2
+ · · ·

)

− (qn− v+ 1/2)

(
− v

qn
− v2

2q2n2
+ · · ·

)
= ln

1√
2πpqn

−
[
v

n

(
1

2p
− 1

2q

)
+ v2

n

(
1

2p
+ 1

2q

)
+ · · ·

]
,

where

v

n
→ 0,

v2

n

is finite and (
1

2p
+ 1

2q

)
= p+ q

2pq
= 1

2pq
.

Neglecting higher orders inv/n, such asv2/p2n2 andv2/q2n2, we find the largen limit

W(v)= 1√
2πpqn

e−v2/2pqn, (19.58)

which is a Gaussian distribution in the deviationsx − pn, with mean value 0 and standard
deviationσ = √npq. The large mean valuepn (and the discarded terms) restricts the
validity of the theorem to the central part of the Gaussian bell shape, excluding the tails.

Exercises

19.5.1 What is the probability for a normally distributed random variable to differ by more
than 4σ from its mean value? Compare your result with the corresponding one from
Chebychev’s inequality. Explain the difference in your own words.

19.5.2 LetX1,X2, . . . ,Xn be independent normal random variables with the same meanx̄ and

varianceσ 2. Show that
∑

i Xi/n−x̄√
nσ

is normal with mean zero and variance 1.
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19.5.3 An instructor grades a final exam of a large undergraduate class, obtaining the mean
value of pointsM and the varianceσ 2. Assuming a normal distribution for the number
M of points, he defines a grade F whenM < m − 3σ/2, D whenm − 3σ/2 < M <

m − σ/2, C whenm − σ/2 < M < m + σ/2, B whenm + σ/2 < M < m + 3σ/2,
A whenM >m+ 3σ/2. What is the percentage of As, Fs; Bs, Ds; Cs? Redesign the
cutoffs so that there are equal percentages of As and Fs (5%), 25% Bs and Ds, and
40% Cs.

19.5.4 If the random variableX is normal with mean value 29 and standard deviation 3, what
are the distributions of 2X− 1 and 3X+ 2?

19.5.5 For a normal distribution of mean valuem and varianceσ 2, find the distancer such that
half the area under the bell shape is betweenm− r andm+ r.

19.6 STATISTICS

In statistics, probability theory is applied to the evaluation of data from random experi-
ments or to samples to test some hypothesis because the data have random fluctuations
due to lack of complete control over the experimental conditions. Typically one attempts
to estimate the mean value and variance of the distributions, from which the samples de-
rive, and to generalize properties valid for a sample to the rest of the events at a prescised
confidence level. Any assumption about an unknown probability distribution is called a
statistical hypothesis. The concepts of tests and confidence intervals are among the most
important developments of statistics.

Error Propagation

When we measure a quantityx repeatedly, obtaining the valuesxj at random, or select a
sample for testing, we determine the mean value (see Eq. (19.10)) and the variance,

x̄ = 1

n

n∑
j=1

xj , σ 2= 1

n

n∑
j=1

(xj − x̄)2,

as a measure for the error, or spread from the mean valuex̄. We can writexj = x̄ + ej ,

where the errorej is the deviation from the mean value, and we know that
∑

j ej = 0. (See
the discussion after Eq. (19.15).)

Now suppose we want to determine a known functionf (x) from these measurements;
that is, we have a setfj = f (xj ) from the measurements ofx. Substitutingxj = x̄ + ej
and forming the mean value from

f̄ = 1

n

∑
j

f (xj )= 1

n

∑
j

f (x̄ + ej )

= f (x̄)+ 1

n
f ′(x̄)

∑
j

ej + 1

2n
f ′′(x̄)

∑
j

e2
j + · · ·

= f (x̄)+ 1

2
σ 2f ′′(x̄)+ · · · , (19.59)
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we obtain the average valuēf asf (x̄) in lowest order, as expected. But in second order
there is a correction given by half the variance with a scale factorf ′′(x̄). It is interesting to
compare this correction of the mean value with the average spread of individualfj from
the mean valuef̄ , the variance off. To lowest order, this is given by the average of the
sum of squares of the deviations, in which we approximatefj ≈ f̄ + f ′(x̄)ej , yielding

σ 2(f )≡ 1

n

∑
j

(fj − f̄ )2= (f ′(x̄))2 1

n

∑
j

e2
j =

(
f ′(x̄)

)2
σ 2. (19.60)

In summary we may formulate somewhat symbolically

f (x̄ ± σ)= f (x̄)± f ′(x̄)σ

as the simplest form of error propagation by a function of one measured variable.
For a functionf (xj , yk) of two measured quantitiesxj = x̄+uj , yk = ȳ+vk, we obtain

similarly

f̄ = 1

rs

r∑
j=1

s∑
k=1

fjk = 1

rs

r∑
j=1

s∑
k=1

f (x̄ + uj , ȳ + vk)

= f (x̄, ȳ)+ 1

r
fx
∑
j

uj + 1

s
fx
∑
k

vk + · · · ,

where
∑

j uj = 0=∑k vk, so againf̄ = f (x̄, ȳ) in lowest order. Here

fx = ∂f

∂x
(x̄, ȳ), fy = ∂f

∂y
(x̄, ȳ) (19.61)

denote partial derivatives. The sum of squares of the deviations from the mean value is
given by

r∑
j=1

s∑
k+1

(fjk − f̄ )2=
∑
j,k

(ujfx + vkfy)
2= sf 2

x

∑
j

u2
j + rf 2

y

∑
k

v2
k ,

because
∑

j,k uj vk =
∑

j uj
∑

k vk = 0. Therefore the variance is

σ 2(f )= 1

rs

∑
j,k

(fjk − f̄ )2= f 2
x σ

2
x + f 2

y σ
2
y , (19.62)

with fx , fy from Eq. (19.61); and

σ 2
x =

1

r

∑
j

u2
j , σ 2

y =
1

s

∑
k

v2
k

are the variances of thex and y data points. Symbolically the error propagation for a
function of two measured variables may be summarized as

f (x̄ ± σx, ȳ ± σy)= f (x̄, ȳ)±
√
f 2
x σ

2
x + f 2

y σ
2
y .

As an application and generalization of the last result, we now calculate the error of
the mean valuēx = 1

n

∑n
j=1xj of a sample ofn individual measurementsxj , each with



1140 Chapter 19 Probability

spreadσ. In this case the partial derivatives are given byfx = 1
n
= fy = · · · andσx = σ =

σy = · · · . Thus, our last error propagation rule tells us that errors of a sum of variables add
quadratically, so the uncertainty of the arithmetic mean is given by

σ̄ = 1

n

√
nσ 2= σ√

n
, (19.63)

decreasing with the number of measurementsn.
As the numbern of measurements increases, we expect the arithmetic meanx̄ to con-

verge to some true valuex. Let x̄ differ from x byα andvj = xj −x be the true deviations;
then ∑

j

(xj − x̄)2=
∑
j

e2
j =

∑
j

v2
j + nα2.

Taking into account the error of the arithmetic mean, we determine the spread of the indi-
vidual points about the unknown true mean value to be

σ 2= 1

n

∑
j

e2
j =

1

n

∑
j

v2
j + α2.

According to our earlier discussion leading to Eq. (19.63),α2= 1
n
σ 2. As a result

σ 2= 1

n

∑
j

v2
j +

σ 2

n
,

from which thestandard deviation of a sample in statistics follows:

σ =
√∑

j v
2
j

n− 1
=
√∑

j (xj − x)2

n− 1
, (19.64)

with n− 1 being the number of control measurements of the sample. This modified mean
error includes the expected error in the arithmetic mean.

Because the spread is not well defined when there is no comparison measurement, that
is, whenn= 1, the variance is sometimes defined by Eq. (19.64), in which we replace the
numbern of measurements by the numbern− 1 of control measurements in statistics.

Fitting Curves to Data

Suppose we have a sample of measurementsyj (for example, a particle moving freely, that
is, no force) taken at known timestj (which are taken to be practically free of errors; that
is, the timet is an ordinary independent variable) that we expect to be linearly related as
y = at, our hypothesis. We want to fit this line to the data.

First we minimize the sum of deviations
∑

j (atj − yj )
2 to determine the slope parame-

ter a, also called theregression coefficient, using the method of least squares. Differenti-
ating with respect toa we obtain

2
∑
j

(atj − yj )tj = 0,
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FIGURE 19.8 Straight line fit to
data points(tj , yj ) with tj

known,yj measured.

from which

a =
∑

j tj yj∑
j t

2
j

(19.65)

follows. Note that the numerator is built like a sample covariance, the scalar product of the
variablest, y of the sample. As shown in Fig. 19.8, the measured valuesyj do not lie on
the line as a rule. They have the spread (or root mean square deviation from the fitted line)

σ =
√∑

j (yj − atj )2

n− 1
.

Alternatively, let theyj values be known (without error) whiletj are measurements. As
suggested by Fig. 19.9, in this case we need to interchange the role oft andy and to fit the
line t = by to the data points. We minimize

∑
j (byj − tj )

2, set the derivative with respect

FIGURE 19.9 Straight line fit to
data points(tj , yj ) with yj

known,tj measured.
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FIGURE 19.10 (a) Straight line fit to data points(tj , yj ). (b) Geometry of
deviationsuj , vj , dj .

to b equal to zero, and find similarly the slope parameter

b=
∑

j tj yj∑
j y

2
j

. (19.66)

In case bothtj andyj have errors (we taket andy to have the same units), we have to
minimize the sum of squares of the deviations of both variables and fit to a parameterization
t sinα−y cosα = 0, wheret andy occur on an equal footing. As displayed in Fig. (19.10a)
this means geometrically that the line has to be drawn so that the sum of the squares of the
distancesdj of the points(tj , yj ) from the line becomes a minimum. (See Fig. 19.10b and
Chapter 1.) Heredj = tj sinα − yj cosα, so

∑
j d

2
j = minimum must be solved for the

angleα. Setting the derivative with respect to the angle equal to zero,∑
j

(tj sinα − yj cosα)(tj cosα+ yj sinα)= 0,

yields

sinα cosα
∑
j

(
t2j − y2

j

)− (cos2α − sin2α
)∑

j

tj yj = 0.

Therefore the angle of the straight-line fit is given by

tan 2α = 2
∑

j tj yj∑
j (t

2
j − y2

j )
. (19.67)

This least-squares fitting applies when the measurement errors are unknown. It allows as-
signing at least some kind of error bar to the measured points. Recall that we did not use
errors for the points. Our parametera (or α) is most likely to reproduce the data under
these circumstances. More precisely, the least-squares method is a maximum-likelihood
estimate of the fitted parameters when it is reasonable to assume that the errors are in-
dependent and normally distributed withthe same deviation for all points. This fairly
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strong assumption can be relaxed in “weighted” least-squares fits calledchi square fits.4

(See also Example 19.6.1.)

The χ2 Distribution
This distribution is typically applied to fits of a curvey(t, a, . . .) with parametersa, . . .
to datatj using the method of least squares involving theweighted sum of squares of
deviations; that is,

χ2=
N∑
j=1

(
yj − y(tj , a, . . .)

�yj

)2

is minimized, whereN is the number of points andr is the number of adjusted parameters
a, . . . . This quadratic merit function gives more weight to points with small measurement
uncertainties�yj .

We represent each point by a normally distributed random variableX with zero mean
value and varianceσ 2 = 1, the latter in view of the weights in theχ2 function. In a first
step, we determine the probability density for the random variableY = X2 of a single
point that takes only positive values. Assuming a zero mean value is no loss of generality
because, if〈X〉 =m 
= 0, we would consider the shifted variableY =X−m, whose mean
value is zero. We show that ifX has a Gauss normal density

f (x)= 1

σ
√

2π
e−x2/2σ2

, −∞< x <∞,

then the probability of the random variableY is zero ify ≤ 0, and

P(Y < y)= P(X2 < y)= P(−√y <X <
√
y ) if y > 0.

From the continuous normal distributionP(y)= ∫ y

−∞ f (x)dx, we obtain the probability
densityg(y) by differentiation:

g(y) = d

dy

[
P(
√
y )− P(−√y )

]= 1

2
√
y

(
f (
√
y )+ f (−√y )

)
= 1

σ
√

2πy
e−y/2σ 2

, y > 0. (19.68)

This density,∼ e−y/2σ 2
/
√
y, corresponds to the integrand of the Euler integral of the

gamma function. Such a probability distribution

g(y)= yp−1

�(p)(2σ 2)p
e−y/2σ2

is called agamma distribution with parametersp andσ. Its characteristic function for
our case,p = 1/2, is proportional to the Fourier transform〈

eitY
〉 = 1

σ
√

2π

∫ ∞

0
e−y(1/2σ 2−it) dy√

y
= 1

σ
√

2π( 1
2σ2 − it)1/2

∫ ∞

0
e−x dx√

x

= (1− 2itσ 2)−1/2
.

4For more details, see Chapter 14 of Press et al. in the Additional Readings of Chapter 9.
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Since theχ2 sample function contains a sum of squares, we need the following theorem.

ADDITION THEOREM: for the gamma distributions: If the independent random variables
Y1 and Y2 have a gamma distribution with p = 1/2, and the same σ then Y1+ Y2 has a
gamma distribution with p = 1.

SinceY1 andY2 are independent, the product of their densities (Eq. (19.36)) generates
the characteristic function〈

eit (Y1+Y2)
〉= 〈eitY1eitY2

〉= 〈eitY1
〉〈
eitY2

〉= (1− 2itσ 2)−1
. (19.69)

Now we come to the second step. We assess the quality of the fit by the random variable
Y =∑n

j=1X
2
j , wheren = N − r is the number of degrees of freedom forN data points

and r fitted parameters. The independent random variablesXj are taken to be normally
distributed with the (sample) varianceσ 2. (In our caser = 1 andσ = 1.) Theχ2 analysis
does not really test the assumptions of normality and independence, but if these are not
approximately valid, there will be many outlying points in the fit. The addition theorem
gives the probability density (Fig. 19.11) forY,

gn(y)= y
n
2−1

2n/2σn�(n2)
e−y/2σ 2

, y > 0,

andgn(y)= 0 if y < 0, which is theχ2 distribution corresponding ton degrees of freedom.
Its characteristic function is 〈

eitY
〉= (1− 2itσ 2)−n/2

.

Differentiating and settingt = 0 we obtain its mean value and variance

〈Y 〉 = nσ 2, σ 2(Y )= 2nσ 4. (19.70)

FIGURE 19.11 χ2 probability density
gn(y).
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Table 19.2 χ2 Distribution

n v = 0.8 v = 0.7 v = 0.5 v = 0.3 v = 0.2 v = 0.1

1 0.064 0.148 0.455 1.074 1.642 2.706
2 0.446 0.713 1.386 2.408 3.219 4.605
3 1.005 1.424 2.366 3.665 4.642 6.251
4 1.649 2.195 3.357 4.878 5.989 7.779
5 2.343 3.000 4.351 6.064 7.289 9.236
6 3.070 3.828 5.348 7.231 8.558 10.645

Entries areχv for the probabilitiesv = P(χ2 ≥ χ2
v )= 1

2n/2�(n/2)

∫∞
χ2
v
e−y/2y(n/2)−1 dy for σ = 1.

Tables give values for theχ2 probability forn degrees of freedom,

P
(
χ2≥ y0

)= 1

2n/2σn�(n2)

∫ ∞

y0

yn/2−1e−y/2σ 2
dy

for σ = 1 andy0 > 0. To use Table 19.2 forσ 
= 1, rescaley0= v0σ
2 so thatP(χ2≥ v0σ

2)

corresponds toP(χ2≥ v0) of Table 19.2. The following example will illustrate the whole
process.

Example 19.6.1

Let us apply theχ2 function to the fit in Fig. 19.8. The measured points(tj , yj ±�yj )

with errors�yj are

(1,0.8± 0.1), (2,1.5± 0.05), (3,3± 0.2).

For comparison, the maximum-likelihood fit, Eq. (19.65), gives

a = 1 · 0.8+ 2 · 1.5+ 3 · 3
1+ 4+ 9

= 12.8

14
= 0.914.

Minimizing instead,

χ2=
∑
j

(
yj − atj

�yj

)2

,

gives

0= ∂χ2

∂a
=−2

∑
j

tj (yj − atj )

(�yj )2
,

or

a =
∑

j

tj yj

(�yj )
2∑

j

t2j

(�yj )
2

.
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In our case

a =
1·0.8
0.12 + 2·1.5

0.052 + 3·3
0.22

12

0.12 + 22

0.052 + 32

0.22

= 1505

1925
= 0.782

is dominated by the middle point with the smallest error,�y2= 0.05. The error propaga-
tion formula (Eq. (19.62)) gives us the varianceσ 2

a of the estimate ofa,

σ 2
a =

∑
j

(�yj )
2
(
∂a

∂yj

)2

=
∑
j

t2j

(�yj )
2(∑

k

t2k
(�yk)

2

)2 = 1∑
j

t2j

(�yj )
2

using

∂a

∂yj
=

tj

(�yj )
2∑

k

t2k
(�yk)

2

.

For our case,σa = 1/
√

1925= 0.023; that is, our slope parameter isa = 0.782± 0.023.
To estimate the quality of this fit ofa, we compute theχ2 probability that the two

independent (control) points miss the fit by two standard deviations; that is, on average each
point misses by one standard deviation. We apply theχ2 distribution to the fit involving
N = 3 data points andr = 1 parameter, that is, forn= 3−1= 2 degrees of freedom. From
Eq. (19.70) theχ2 distribution has a mean value 2 and a variance 4. A rule of thumb is that
χ2 ≈ n for a reasonably good fit. ThenP(χ2 ≥ 2) ∼ 0.496 is read off Table 19.2, where
we interpolate betweenP(χ2≥ 1.3862)= 0.50 andP(χ2≥ 2.4082)= 0.30 as follows:

P
(
χ2≥ 2

) = P
(
χ2≥ 1.3862)− 2− 1.3862

2.4082− 1.3862

[
P
(
χ2≥ 1.3862)− P

(
χ2≥ 2.4082)]

= 0.5− 0.02· 0.2= 0.496.

Thus theχ2 probability that, on average, each point misses by one standard deviation is
nearly 50% and fairly large. �

Our next goal is to compute aconfidence interval for the slope parameter of our fit.
A confidence interval for an a priori unknown parameter of some distribution (for example,
a determined by our fit) is an interval that containsa not with certainty but with a high
probabilityp, the confidence level, which we can choose. Such an interval is computed for
a given sample. Such an analysis involves the Studentt distribution.

The Student t Distribution

Because we always compute the arithmetic mean of measured points, we now consider the
sample function

X̄ = 1

n

n∑
j=1

Xj ,
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where the random variablesXj are assumed independent with a normal distribution of
the same mean valuem and varianceσ 2. The addition theorem for the Gauss distrib-
ution tells us thatX1 + · · · + Xn has the mean valuenm and variancenσ 2. Therefore
(X1+ · · · +Xn)/n is normal with mean valuem and variancenσ 2/n2= σ 2/n. The prob-
ability density of the variablēX−m is the Gauss distribution

f̄ (x̄ −m)=
√
n

σ
√

2π
exp

(
−n(x̄ −m)2

2σ 2

)
. (19.71)

The key problem solved by the Studentt distribution is to provide estimates for the mean
valuem, whenσ is not known, in terms of a sample function whose distribution isinde-
pendent of σ. To this end, we define a rescaled sample function (traditionally called)t :

t = X̄−m

S

√
n− 1, S2= 1

n

n∑
j=1

(Xj − X̄)2. (19.72)

It can be shown thatt andS are independent random variables. Following the arguments
leading to theχ2 distribution, the density of the denominator variableS is given by the
gamma distribution

d(s)= n(n−1)/2sn−2e−ns2/2σ2

2
n−3

2 �(n−1
2 )σ n−1

. (19.73)

The probability for the ratioZ = X/Y of two independent random variablesX,Y with
normal density forf̄ andd as given by Eqs. (19.71) and (19.73) is (Eq. (19.40))

R(z)=
∫ z

−∞

∫ ∞

−∞
f (yz)d(y)|y|dy dz, (19.74)

so the variableV = (X̄−m)/S has the density

r(v) =
∫ ∞

0

√
n

σ
√

2π
exp

(
−nv2s2

2σ 2

)
n(n−1)/2sn−2e−ns2/2σ2

2
n−3

2 �(n−1
2 )σ n−1

s ds

= nn/2

σn
√
π2(n−2)/2�(n−1

2 )

∫ ∞

0
e−ns2(v2+1)/2σ 2

sn−1ds.

Here we substitutez= s2 and obtain

r(v)= nn/2

σn
√
π2n/2�(n−1

2 )

∫ ∞

0
e−nz(v2+1)/2σ 2

z(n−2)/2dz.

Now we substitute�(1/2)=√π, define the parameter

a = n(v2+ 1)

2σ 2
,

and transform the integral into�(n/2)/an/2 to find

r(v)= �(n/2)√
π�(n−1

2 )(v2+ 1)n/2
, −∞< v <∞.
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FIGURE 19.12 Studentt probability
densitygn(y) for n= 3.

Table 19.3 Studentt Distribution

p n= 1 n= 2 n= 3 n= 4 n= 5

0.8 1.38 1.06 0.98 0.94 0.92
0.9 3.08 1.89 1.64 1.53 1.48
0.95 6.31 2.92 2.35 2.13 2.02
0.975 12.7 4.30 3.18 2.78 2.57
0.99 31.8 6.96 4.54 3.75 3.36
0.999 318.3 22.3 10.2 7.17 5.89

Entries are the valuesC in P(C)=Kn

∫ C
−∞(1+ t2

n )−(n+1)/2 dt = p, n is the number of degrees of freedom.

Finally we rescale this expression to the variablet in Eq. (19.72) with the density
(Fig. 19.12)

g(t)= �(n/2)√
π(n− 1)�(n−1

2 )(1+ t2

n−1)
n/2

, −∞< t <∞, (19.75)

for the Studentt distribution, which manifestly does not depend onm or σ . The probability
for t1 < t < t2 is given by the integral

P(t1, t2)= �(n/2)√
π(n− 1)�(n−1

2 )

∫ t2

t1

dt

(1+ t2

n−1)
n/2

, (19.76)

andP(z) ≡ P(−∞, z) is tabulated. (See Table 19.3 for example.) Also,P(∞,−∞) = 1
andP(−z)= 1− P(z), because the integrand in Eq (19.76) is even int, so∫ −z

−∞
dt

(1+ t2

n−1)
n/2
=
∫ ∞

z

dt

(1+ t2

n−1)
n/2

and ∫ ∞

z

dt

(1+ t2

n−1)
n/2
=
∫ ∞

−∞
dt

(1+ t2

n−1)
n/2
−
∫ z

−∞
dt

(1+ t2

n−1)
n/2

.
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Multiplying this by the factor preceding the integral in Eq. (19.76) yieldsP(−z) = 1−
P(z). In the following example we show how to apply the Studentt distribution to our fit
of Example 19.6.1.

Example 19.6.2 CONFIDENCE INTERVAL

Here we want to determine a confidence interval for the slopea in the lineary = at fit of
Fig. 19.8. We assume

• first that the sample points(tj , yj ) are random and independent, and

• second that, for each fixed valuet, the random variableY is normal with meanµ(t)=
at and varianceσ 2 independent oft.

These valuesyj are measurements of the random variableY, but we will regard them
as single measurements of the independent random variablesYj with the same normal
distribution asY (whose variance we do not know).

We choose a confidence level,p = 95%, say. Then the Student probability is

P(−C,C)= P(C)− P(−C)= p =−1+ 2P(C),

hence

P(C)= 1

2
(1+ p),

usingP(−C)= 1− P(C), and

P(C)= 1

2
(1+ p)= 0.975=Kn

∫ C

−∞

(
1+ t2

n

)−(n+1)/2

dt,

whereKn−1 is the factor preceding the integral in Eq. (19.76). Now we determine a solu-
tion C = 4.3 from Table 19.3 of Student’st distribution, withn=N − r = 3− 1= 2 the
number of degrees of freedom, noting that(1+ p)/2 corresponds top in Table 19.3.

Then we computeA = Cσa/
√
N for sample sizeN = 3. The confidence interval is

given by

a −A≤ a ≤ a +A, atp = 95% confidence level.

From theχ2 analysis of Example 17.6.1 we use the slopea = 0.782 and varianceσ 2
a =

0.0232, soA = 4.30.023√
3
= 0.057, and the confidence interval is determined bya − A =

0.782− 0.057= 0.725, a +A= 0.839, or

0.725< a < 0.839 at 95% confidence level.

Compared toσa , the uncertainty ofa has increased due to the high confidence level. A look
at Table 19.3 shows that a decrease in confidence level,p, reduces the uncertainty inter-
val, and increasing the number of degrees of freedom,n, would also lower the range of
uncertainty. �
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Exercises

19.6.1 Let �A be the error of a measurement ofA, etc. Use error propagation to show that(
σ(C)

C

)2

=
(
σ(A)

A

)2

+
(
σ(B)

B

)2

holds for the productC =AB and the ratioC =A/B.

19.6.2 Find the mean value and standard deviation of the sample of measurementsx1 =
6.0, x2 = 6.5, x3 = 5.9, x5 = 6.2. If the point x6 = 6.1 is added to the sample, how
does the change affect the mean value and standard deviation?

19.6.3 (a) Carry out aχ2 analysis of the fit of caseb in Fig. 19.9 assuming the same errors for
the ti , �ti =�yi , as for theyi used in theχ2 analysis of the fit in Fig. 19.8. (b) Deter-
mine the confidence interval at 95% confidence level.

19.6.4 If x1, x2, . . . , xn are a sample of measurements with mean value given by the arithmetic
meanx̄ and the corresponding random variablesXj that take the valuesxj with the
same probability are independent and have mean valueµ and varianceσ 2, then show
that 〈x̄〉 = µ andσ 2(x̄)= σ 2/n. If σ̄ 2 = 1

n

∑
j (xj − x̄)2 is the sample variance, show

that〈σ̄ 2〉 = n−1
n

σ 2.
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1-forms, 304–5
2-forms, 305–6
3-forms, 306–7

A
Abelian group, 242
Abel’s equation, 1016
Abel’s test, 351, 665, 882
Abel’s theorem, 882
absolute convergence, 340–42, 350, 363
addition

of matrices, 178–79
of series, 324–25
of tensors, 136

addition rule, 1111
addition theorem for spherical harmonics,

797–802
Bessel functions, 636
derivation of addition theorem, 798–800
Legendre polynomials, 798
trigonometric identity, 797–98

adjoint operator property, 208
algebraic form, 405
aliasing, 916–17
alternating series, 339–42

absolute convergence, 340–42
exercises, 342
Leibniz criterion, 339–40
overview, 339

analytic continuation, 432–34
analytic functions, 415–18

z∗, 416
z2, 415

analytic landscape, 489–90
angular Mathieu equation, 872
angular momentum, 18, 215, 267,see also orbital

angular momentum
coupling, 266–78

Clebsch–Gordan coefficientsSU(2) and
SO(3), 267–70

exercises, 277–78
overview, 266–67
spherical tensors, 271–74
young tableaux forSU(n), 274–77

angular momentum operators, 261
Clebsch–Gordan coefficients, 803
orbital, 793–96
spherical harmonics, 793

vector spherical harmonics, 813–16
annihilation operator, 824
anomalous dispersion, 998
anticommutation relation, 18
anti-Hermitian matrices, 221–23

eigenvalues
degenerate, 223
and eigenvectors of real symmetric matrices,

221–22
overview, 221

antisymmetry
antisymmetric matrices, 204
and determinants, 168–72

Gauss elimination, 170–72
overview, 168–70

of tensors, 137, 147
area law for planetary motion, 116–19
Argand diagram, 405
associated Legendre equation functions,see

Legendre equation, functions polynomials
associative, 2
asymptotic expansions, 719–25
asymptotic forms

of factorial function�(1+ s), 494–95
of Hankel function, 493–94

asymptotic series, 389–96
Bessel functions, 722
confluent hypergeometric functions, 393
cosine and sine integrals, 392–93
definition of, 393–94
exercises, 394–96
incomplete gamma function, 389–92
overview, 389
overview: integral representation expansion,

719–23
steepest descent, 489–95
Stokes’ method, 719, 724

asymptotic values, Bessel functions, 722, 729
attractor, 1081
autonomous differential equations, 1091–93
average value, 1117–18
axes,see rotations; symmetry
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axial vector, 143–44
axis, coordinate, 4–5, 7–11, 195–99
azimuthal dependence — orthogonality, 787

B
Baker–Hausdorff formula, 225
basin of attraction, 1081
Bernoulli and Riccati equations, 1089–90
Bernoulli numbers, 376–89, 473–74

Euler–Maclaurin integration formula, 380–82
exercises, 385–89
improvement of convergence, 385
overview, 376–79
polynomials, 379–80
Riemann Zeta function, 382–84

Bessel functions, 675–739, 865
asymptotic expansions, 719–25

exercises, 723–25
expansion of an integral representation,

720–23
asymptotic values, 722
closure equation, 696
of first kind, 675–93

alternate approaches, 685–86
Bessel functions of nonintegral order, 686
Bessel’s differential equation, 678–79
Bessel’s differential equation: self-adjoint

form, 694
confluent hypergeometric representation, 865
cylindrical resonant cavity, 682–85
cylindrical wave guide, 705
exercises, 686–93
Fourier transform, 933
Fraunhofer diffraction, circular aperture,

680–82
generating function for integral order, 675–77
integral representation, 679–80
Laplace transform solution, 983–84
orthogonality, 694
recurrence relations, 677–78
second kinds, 699–707
series solution, 570–72, 676–79
singularities, 564
spherical, 725–39
Wronskian, 702–5

Fraunhofer diffraction, 680–82
Hankel functions, 707–13

contour integral representation of, 709–11
cylindrical traveling waves, 708
definitions, 707–8
exercises, 711–13

Helmholtz equation, 683–84, 725
Laplace’s equation, 695
modified, 713–19

asymptotic expansion, 711, 719

exercises, 716–19
Fourier transform, 716
generating function, 709
integral representation, 720–23
Laplace transform, 933
recurrence relations, 714–16
series form, 714

Neumann functions, Bessel functions of second
kind, 699–707

coaxial wave guides, 703–4
definition and series form, 699–700
exercises, 704–7
other forms, 701
recurrence relations, 702
Wronskian formulas, 702–3

of nonintegral order, 686
orthogonality, 694–99

Bessel series, 695
continuum form, 696
electrostatic potential in a hollow cylinder,

695–96
exercises, 697–99
normalization, 695

recurrence relations, 677
spherical, 725–39

asymptotic values, 729
definitions, 726–29
exercises, 732–39
limiting values, 729–30
orthogonality, 731
particle in a sphere, 731–32
recurrence relations, 730

spherical waves, 730
in wave guides, 703–4
zeros, 682

Bessel’s differential equation, 678–79, 684
self-adjoint form, 694

Bessel’s equation, 983–84
Bessel series, 695
Bessel’s inequality, 651–52
beta function, 520–26

definite integrals, alternate forms, 521–22
derivation of Legendre duplication formula,

522–23
incomplete, 523
Laplace convolution, 993
verification ofπα/sinπα relation, 522

bifurcates, 1083
bifurcations in dynamical systems, 1103–4

Hopf, 1101, 1103–4, 1107
pitchfork, 1083, 1086, 1101, 1107

binomial coefficient, 356
binomial distribution, 1128–30
binomial expansion, 1129
binomial probability distribution, 1129



Index 1155

binomial theorem, 356–57
Biot and Savart law, 780–82
black hole, optical path near event horizon of,

1041–42
Bohr radius, 844
Born approximation, 603
Bose–Einstein statistics, 1064, 1115
boundary conditions, 542–43

Cauchy, 542
Dirichlet, 543
hollow cylinder, 695
magnetic field of current loop, 778–82
Neumann, 543
ring of charge, 761
sphere in uniform electric field, 759
Sturm–Liouville theory, 627–29
waveguide, coaxial cable, 703

bound state, 627
box counting dimension, 1086
branch cut (cut line), 409
branch points, 440–42

and multivalent functions, 447–50
of order 2, 440–42

Bromwich integral, 994–95
Butterfly effect, 1079

C
calculus of residues, 455–82,see also definite

integrals
Cauchy principal value, 457–60
exercises, 474–82
Jordan’s lemma, 466–68
overview, 455
pole expansion of meromorphic functions, 461
product expansion of entire functions, 462–63
residue theorem, 455–56

calculus of variations, 1037–77
applications of the Euler equation, 1044–52

exercises, 1049–52
soap film, 1045–46
soap film — minimum area, 1046–49
straight line, 1044–45

dependent and an independent variable,
1038–44

alternate forms of Euler equations, 1042
concept of variation, 1038–41
exercises, 1043–44
missing dependent variables, 1042–43
optical path near event horizon of a black

hole, 1041–42
Lagrangian multipliers, 1060–65

constraints, 1060–72
cylindrical nuclear reactor, 1062
exercises, 1063–65
particle in a box, 1061–62

Rayleigh–Ritz variational technique, 1072–76
exercises, 1074–76
ground state eigenfunction, 1073
Sturm–Liouville equation, 1072
vibrating string, 1074

several dependent and independent variables,
1058–59

exercises, 1059
relation to physics, 1059

several dependent variables, 1052–58
exercises, 1055–56
Hamilton’s principle, 1053–54
Laplace’s equation, 1057–58
moving particle — Cartesian coordinates,

1054
moving particle — circular cylindrical

coordinates, 1054–55
several independent variables, exercises, 1058
surface of revolution, 1046
uses of, 1037
variation with constraints, 1065–72

exercises, 1070–72
Lagrangian equations, 1066–67
Schrödinger wave equation, 1069–70
simple pendulum, 1067–68
sliding off a log, 1068–69

Cartesian components, 4
Cartesian coordinates, 554–55

unit vectors, 5
Casimir operators, 265
Catalan’s constant, 384, 513
catenoid, catenary of revolution, 1046
Cauchy (Maclaurin) integral test, 327–30, 418–30

contour integrals, 418–20
derivatives, 426–27
exercises, 424–25, 429–30
Goursat proof, 421–23
Morera’s theorem, 427–28
multiply connected regions, 423–24
overview, 418, 425–26
Stokes’ theorem proof, 420–21

Cauchy boundary conditions, 542
Cauchy criterion, 322
Cauchy inequality, 428
Cauchy principal value, 457–60, 471
Cauchy–Riemann conditions, 413–18

analytic functions, 415–18
z∗, 416
z2, 415

exercises, 416–18
overview, 413–15

causality, 486–87
cavities, cylindrical, 682–85
Cayley–Klein parameters, 252
center or cycle, 1100–1101
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central force, 117
central force field, 39–40, 44–46
centrifugal potentials, 72
chain rule, 34
chaos in dynamical systems, 1105–6
chaotic attractor, 1085
character, 184, 293
characteristics, 538–41
Chebyshev differential equation, 559
Chebyshev polynomials, 848–59

generating functions, 848
Gram–Schmidt construction, 646
hypergeometric representations, 862
orthogonality, 854–55
recurrence relation, 850
recurrence relations — derivatives, 852–53
shifted, 646, 850
trigonometric form, 853–54
type I, 849–52
type II, 849

chi-squared (χ2) distribution, 1143–45
Christoffel symbols, 154–56, 314
circular cylinder coordinates, 115–23

area law for planetary motion, 116–19
exercises, 120–23
Navier–Stokes term, 119
overview, 115–16

circular cylindrical coordinates, 555–56
expansion, 601–2

circular membrane, Bessel functions, 693, 708
classes and character, 293
Clausen functions, 909
Clebsch–Gordan coefficients, 267–70, 803
Clifford algebra, 211–12
closed-form solutions, 810–12
closure, of Bessel function, 89, 248, 696
closure, of spherical harmonics, 790, 792
coaxial wave guides, 703–4
commutative, 1
commutator, 180, 225, 231, 249, 253, 262, 264
comparison tests, 325–26
completeness of eigenfunctions

of Fourier series: of Sturm–Liouville
eigenfunctions, 649–51

of Hilbert–Schmidt: of integral equations,
1031–33

complex variables, 403–54, 455–97,see also
calculus of residues; Cauchy–Riemann
conditions; functions; mapping; saddle
points (steepest descent method);
singularities

algebra using, 404–13
calculus of residues, 455–82
complex conjugation, 407–8
exercises, 409–13

overview, 404–5
permanence of algebraic form, 405–7

Cauchy’s integral formula, 425–30
derivatives, 426–27
exercises, 429–30
Morera’s theorem, 427–28
overview, 425–26

Cauchy’s integral theorem, 418–25
Cauchy–Goursat proof, 421–23
contour integrals, 418–20
exercises, 424–25
multiply connected regions, 423–24
overview, 418
Stokes’ theorem proof, 420–21

dispersion relations, 482–89
causality, 486–87
exercises, 487–89
optical dispersion, 484–85
overview, 482–83
Parseval relation, 485–86
symmetry relations, 484

Laurent expansion, 430–38
analytic continuation, 432–34
exercises, 437–38
Schwarz reflection principle, 431–32
Taylor expansion, 430–31

overview, 403–4, 455
conditional convergence, 340
conditional probability, 1112
condition number, of ill-conditioned systems, 234
Condon–Shortley phase conventions, 270
confidence interval, 1146, 1149
confluent hypergeometric functions, 863–69

asymptotic expansions, 866
Bessel and modified Bessel functions, 865
Hermite functions, 866
integral representations, 865
Laguerre functions, 837–48
miscellaneous cases, 866
Whittaker functions, 866
Wronskian, 868

conformal mapping, 451–54
conjugation, complex, 407–8
connected, simply or multiply, 60, 95, 420, 423,

426, 435
conservation theorem, 309
conservative force, 34, 69
constant 1-forms, 305
constantB field, vector potentials of, 44
contiguous function relations, 861
continuation, analytic, 432–34
continuity equation, 40–42
continuity of power series, 364
continuous random variable, 1117–19
continuum form, 696
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contour integral representation, Hankel functions,
709–11

contour integrals, 418–20
contour of integration, simple pole on, 468–69
contraction, 139
contravariant tensor, 135, 156–58, 160, 162
contravariant vector, 134
convergence, rate of, 334, 345
convergence of infinite series, 321, 903

absolute, 340–42, 350
improvement of, and Bernoulli numbers, 385
of infinite product, 397–98
of power series, 363
rate, 334, 345
and rational approximations, 345
tests, 325–39,see also Cauchy (Maclaurin)

integral test
comparison, 325–26
exercises, 335–39
Gauss’, 332–33, 357
improvement of, 334–39
Kummer’s, 330–32
overview, 325
partial sum approximation, 390
Raabe’s, 332

uniform and nonuniform, 348–49
convolution (Faltungs) theorem, 951–55, 990–94

driven oscillator with damping, 991–93
Fourier transform, 931–32, 936–45
Laplace transform, 965–1003
Parseval’s relation, 952–53

coordinates,see also circular cylinder coordinates;
curved coordinates and vectors; orthogonal
coordinates; spherical polar coordinates

axes, rotation of,see rotations
curvilinear, 104, 105, 110, 111, 112
divergence of coordinate vector, 39
Laplacian in orthogonal, 316
rotation of, 199

correlation, 1122
cosets and subgroups, 293–94
cosines

asymptotic expansion, 392–93
confluent hypergeometric representation, 867
cosine transform, 939
direction, 196–97
direction cosines (orthogonal matrices), 4,

196–97, 201
functions of infinite products, 398–99
infinite product, 398, 462
integral, 392
integral of in denominator, 464–65
integrals in asymptotic series, 392–93
law of, 16–17, 118, 745
law of, theorem, 16

theorem, 16
coupling, angular momentum,see angular

momentum
covariance, 1122
covariance of Maxwell’s equations, Lorentz,see

Lorentz covariance of Maxwell’s equations
covariant derivative, 151, 156
covariant vectors, 134, 152–53

tensor, 135, 156–58, 160, 162
Cramer’s rule, 166
creation operator, 824
criterion, Leibniz, 339–40
critical point, 1091–93
critical strip, 897
critical temperature, 1086
crossing conditions, 484
cross product, 18–22,see also triple vector

products
exercises, 22–25
overview, 18–22
of vectors, 315

crystallographic point and space groups, 299–300
curl,∇×, 43–49

central force field, 44–46
as differential vector operator, 112–13
exercises, 47–49
gradient of dot product, 46
integral definitions of gradient, divergence and,

58–59
integration by parts of, 47
overview, 43
as tensor derivative operator, 162–63
vector potential of constantB field, 44

curl,∇×
central force field

in circular cylindrical coordinates, 118
in curvilinear coordinates, 112–13
in spherical polar coordinates, 126

irrotational, 45
curved coordinates and vectors, 103–33,see also

circular cylinder coordinates; orthogonal
coordinates; spherical polar coordinates

differential operators, 110–14
curl, 112–13
divergence, 111–12
exercises, 113–14
gradient, 110
overview, 110

overview, 103
special coordinate systems, 114–33

curves, fitting to data, 1140–43
curvilinear coordinates, 104, 105, 110, 111, 112
cut line (branch cut), 409
cylinder coordinates, circular,see circular cylinder

coordinates
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cylindrical coordinates, 104
cylindrical symmetry, 617
cylindrical traveling waves, 708

D
d’Alembertian, 141
d’Alembert ratio test, 326–27
damped oscillator, 979–80
damped simple harmonic oscillation, 980
decay, kaon, 282–83
definite integral (Euler), 500–501
definite integrals

evaluation of, 463
exponential forms, 471–82

Bernoulli numbers, 473–74
factorial function, 472–73∫∞
−∞ f (x)dx, 465–66∫∞
−∞ f (x)eiax dx, 466–71
quantum mechanical scattering, 469–71
simple pole on contour of integration, 468–69∫ 2π

0 f (sinθ,cosθ) dθ , 464–65
degeneracy, of Schrödinger’s wave equation, 638
degenerate eigenfunctions, 638
degenerate eigenvalues, 223, 638
Del (∇), 42, 43

for central force, 127
successive applications of, 49–54

electromagnetic wave equation, 51–53
exercises, 53–54
Laplacian of potential, 50–51
overview, 49–50

delta function, Dirac, 83–85, 669–70, 975
Bessel representation, 935
in circular cylindrical coordinates, 601
derivation, 937–38
eigenfunction expansion, 89, 650
exercises, 91–95
Fourier integral, 90
Fourier representation, 90
Green’s function and, 592–610
impulse force, 975
integral representations for, 90
Laplace transform, 975
overview, 83–87
phase space, 88
point source, 88, 593
quantum theory, 955–61
representation by orthogonal functions, 88–89
sequences, 83, 86
sine, cosine representations, 943
in spherical polar coordinates, 82, 599
theory of distributions, 86
total charge inside sphere, 88

De Moivre’s formula, 408–13

denominator, integral of cos in, 464–65
dependent and independent variables, 1038–44

alternate forms of Euler equations, 1042
concept of variation, 1038–41
missing dependent variables, 1042–43
optical path near event horizon of a black hole,

1041–42
derivative operators, tensor

curl, 162–63
divergence, 160–61
exercises, 162–63
Laplacian, 161–62
overview, 160

derivatives, 426–27,see also exterior derivative
covariant, 156
gauge covariant, 76

descending power series solutions, 369, 781
descent, steepest,see saddle points (steepest

descent method)
determinants, 165–239

antisymmetry, 168–72
Gauss elimination, 170–72
Gauss–Jordan elimination, inversion, 185–86
overview, 168–70

exercises, 174–76
Gram–Schmidt procedure, 173–74

overview, 173–74
vectors by orthogonalization, 174

homogeneous linear equations, 165–66
inhomogeneous linear equations, 166–67
Laplacian development by minors, 167–68
linear dependence of vectors, 172–73
overview, 165
product theorem, 181

representation of a vector product, 20
secular equation, 218
solution of a set of homogenous equations,

165
solution of a set of nonhomogenous

equations, 166
deuteron, 626–27
diagonal matrices, 182–83, 215–31,see also

anti-Hermitian matrices
eigenvectors and eigenvalues, 216–19
exercises, 226–31
functions of, 224–26
Hermitian, 219–21
moment of inertia, 215–16

differential equations, 535–619, 751–52
first-order differential equations, 543–53

exact differential equations, 545–47
exercises, 550–53
linear first-order ODEs, 547–50
nonlinear, 1088–1102
parachutist, 544–49
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RL circuit, 549–50
separable variables, 544–45

Fuchs’ theorem, 573
heat flow, or diffusion, PDE, 611–18

alternate solutions, 614–15
special boundary condition again, 615–16
specific boundary condition, 612–13
spherically symmetric heat flow, 616–17

homogeneous, 536, 548–50, 565
linear independence of solutions

second solution, 581–83
series form of the second solution, 583–85

nonhomogeneous equation — Green’s function,
592–610

circular cylindrical coordinate expansion, 27,
601–2

exercises, 607–10
form of Green’s functions, 596–98
Legendre polynomial addition theorem,

600–601
quantum mechanical scattering — Green’s

function, 603–6
quantum mechanical scattering — Neumann

series solution, 602–3
spherical polar coordinate expansion,

598–600
symmetry of Green’s function, 595–96

partial differential equations, 535–43
boundary conditions, 542–43
classes of PDEs and characteristics, 538–41
examples of, 536–38
introduction, 535–36
nonlinear PDEs, 541–42

particular solution, 548, 565
second solution, 573–78

exercises, 588–92
linear dependence, 580–81
linear independence, 580
linear independence of solutions, 579–80
second solution for the linear oscillator

equation, 583
second solution of Bessel’s equation, 586–87

second solution logarithmic term, 585, 700
separation of variables, 554–62

Cartesian coordinates, 554–55
circular cylindrical coordinates, 555–56
exercises, 560–62
spherical polar coordinates, 557–60

series solutions — Frobenius’ method, 565–78
exercises, 574–78
expansion aboutx0, 569
Fuchs’ theorem, 573
limitations of series approach — Bessel’s

equation, 570–71
regular and irregular singularities, 572–73

symmetry of solutions, 569
singular points, 562–65

differential forms, 304–19,see also pullbacks
1-forms, 304–5
2-forms, 305–6
3-forms, 306–7
exercises, 318–20
exterior derivative, 307–9
Hodge operator *, 314–19

cross product of vectors, 315
Laplacian in orthogonal coordinates, 316
Maxwell’s equations, 316–20
overview, 314–15

Legendre’s equation, 752
overview, 304
Stokes’ theorem on, 313–14

differentials, exact,see thermodynamics
differential vector operators, 110–14

adjoint, 621, 623, 634–35
curl, 112–13
del, 33
divergence, 111–12
exercises, 113–14
gradient, 110
overview, 110

differentiation, 904–5
differentiation of power series, 364
diffraction, 680–82, 1017
diffusion equation,see differential equations, heat

flow PDE
digamma and polygamma functions, 510–16

digamma functions, 510–11
Maclaurin expansion, computation, 512
polygamma function, 511–12
series summation, 512

dihedral groups,Dn, 299
dimension

box-counting, 1086
Hausdorff, 1086
Kolmogorov, 1086

dimensionality theorem, 298
dipoles, interaction energy, magnetic dipole,

radiation fields,see electric dipole
Dirac bra-ket notation, 177
Dirac delta function,see delta function, Dirac
Dirac matrices, 209–12
direction cosines (orthogonal matrices), 4,

196–97, 201
direct product, 139–41

exercises, 140–41
and matrix multiplication, 181–82
overview, 139–40
of tensors, 140

direct tensor, 181
direct tensor product, 139
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Dirichlet conditions, 543, 882
kernel, 910

Dirichlet problem, 617
Dirichlet series, 326
discontinuities, behavior of, 886
discontinuous functions, 888
discrete Fourier transform, 914–19

aliasing, 916–17
fast Fourier transform, 917
limitations, 916
orthogonality over discrete points, 914–15

discrete groups, 291–304
classes and character, 293
crystallographic point and space groups,

299–300
dihedral groups,Dn, 299
exercises, 300–304
subgroups and cosets, 293–94
threefold symmetry axis, 296–99
twofold symmetry axis, 294–96

discrete random variable, 1116–17
dispersion relations, 482–89

causality, 486–87
crossing relations, 484
exercises, 487–89
Hilbert transform, 485
optical dispersion, 484–85
overview, 482–83
Parseval relation, 485–86
sum rules, 484
symmetry relations, 484

displacement, 158
dissipation, 1101–3
distributive, 13
divergence,∇, 38–43

of central force field, 39–40
circular cylindrical, 115–23
coordinates, Cartesian, 4–7
of coordinate vector, 39
curvilinear coordinates, 111
as differential vector operator, 111–12
exercises, 42–43
integral definitions of gradient, curl, and, 58–59
integration by parts of, 40
overview, 38–39
physical interpretation, 40–42
solenoidal, 42
spherical polar, 123–33
as tensor derivative operator, 160–61

divergent series, 325–26
Doppler shift, 360
dot products, 12–17

exercises, 17
gradient of, 46

invariance of scalar product under rotations,
15–17

overview, 12–15
double series, rearrangement of, 345–48
driven oscillator with damping, 991–93
dual tensors, 147–48
duplication formula for factorial functions, see

Legendre duplication formula
dynamical systems, dissipation in, 1102–3

E
E, Lorentz transformation of the electric field,

287–88
Earth’s gravitational field, 758–59
Earth’s nutation, 973–74
eigenfunctions, 624, 626–27

Bessel’s inequality, 651–52
completeness of, 649–61

of Fourier series: of Sturm–Liouville
eigenfunctions, 649–51

of Hilbert–Schmidt: of integral equations,
1031–33

eigenvalue equation, 667–68
expansion, Green’s function, 662–74

of Dirac delta function, 88–90
of Hermitian differential operators, 635,

649–51
of square wave, 637

expansion coefficients, 658
orthogonal, 636, 637, 1030–32
Schwarz inequality, 652–54
summary — vector spaces, completeness,

654–58
variational calculation, 1072–76

eigenvalues, 217–18, 223, 624–27, 634–35
of Hermitial differential operator, 634
of Hermitial matrices, 219–23
of Hilbert–Schmidt integral equation, 1030–36
of normal matrices, 231–32
of real symmetric matrices, 215–19
variational principle for, 1072

eigenvectors, 216–19, 221–22
eightfold way (weight diagram), 257
Einstein’s energy relation, 281
Einstein’s summation convention, 136

velocity addition law, 283, 290
electrical charge inside spheres, 88
electric dipole potential, Legendre polynomial

expansion, 745
electromagnetic invariants, 288
electromagnetic wave equation, 51–53
electromagnetic waves, 981–82
electrostatic multipole expansion, 599
electrostatic potential, 593

in hollow cylinder, 695–96



Index 1161

of ring of charge, 761–62
electrostatics, physical basis, 741–42
elimination,see determinants
elliptical drum, 872–73
elliptic integrals, 370–76

definitions of, 372
exercises, 374–76
of first kind, 372
hypergeometric representations, 373, 860
limiting values, 374
overview, 370
period of simple pendulum, 370–71
of second kind, 372
series expansion, 372–73

elliptic PDEs, 538
empty set, 1111
energy

potentials, 309
relativistic, 356–57

equality of matrices, 178
equations,see also linear equations; Maxwell’s

equations; Poisson’s equation
of motion and field, 142

error integrals, 530
asymptotic expansion, 393
confluent hypergeometric representation, 864

error propagation, 1138–40
essential (irregular) singular point, 563
Euler angles, 202–3
Euler equation, 1040

alternate forms of, 1042
applications of, 1044–52

soap film, 1045–46
soap film — minimum area, 1046–49
straight line, 1044–45

Euler identity, 224
product formula, 382–84

Euler integrals, 502
Euler–Maclaurin integration formula, 380–82, 517
Euler–Mascheroni constant, 330
Euler product for Riemann Zeta function, 382–84
event horizon, 1041
exact differential equations, 545–47
exact differentials,see thermodynamics
expansion,see also Laurent expansion; Taylor’s

expansion
pole, of meromorphic functions, 461
product, of entire function, 462–63
of series, 372–73

expansion coefficients, 658
expansion of functions, Legendre series, 757–58
expectation value, 630, 955–56, 1117–18
exponential forms, 471–82

Bernoulli numbers, 473–74
factorial function, 472–73

exponential function, of Maclaurin theorem,
354–55

exponential integral, 527–30
exponential of diagonal matrix, 225–26
exponential transform, 938
exterior derivative, 307–9
extreme or stationary value, 36, 881, 1038–40

F
Factorial function�(1+ s)

asymptotic form of, 494–95
complex argument, 499–506
contour integrals, 505
digamma function, 510
double factorial notation, 505
Gamma functional relation, 503
infinite product, 501
integral (Euler) representation, 500
Legendre duplication formula, 503
Maclaurin expansion, 512
polygamma functions, 511
steepest descent asymptotic formula, 495
Stirling’s (formula) series, 516–18

factorial notation, 503–5
faithful group, 243
Faraday’s law, 66–68
fast Fourier transform, 917
Feigenbaum number, 1083–84
Fermage equation, 950
Fermat’s principle, 157, 1041, 1050
Fermi–Dirac statistics, 1064, 1115
field equations, 142
finite wave train, 940–41
first-order differential equations, 543–53

exact differential equations, 545–47
linear first-order ODEs, 547–50
separable variables, 544–45

fixed and movable singularities, special solutions,
1090

Floquet’s theorem, 877
force as gradient of potentials, 36
forced classical oscillators, 457–60
force field, central,see central force field
Fourier–Bessel series, 695
Fourier expansions of Mathieu functions, 919–29

integral equations and Fourier series for
Mathieu functions, 919–23

leading coefficients for ce0, 926–29
leading coefficients of se1, 923–26

Fourier integral theorem, 937
development of, 936–38
exponential form, 937

Fourier–Mellin integral, 995
Fourier representation, of Dirac delta function, 90
Fourier series, 881–930
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advantages, uses of, 888–92
change of interval, 890–91
completeness,see general properties of

Fourier series
convergence, 893, 903–10
differentiation,see general properties of

Fourier series
discontinuous functions, 888
exercises, 891–92
integration,see general properties of Fourier

series
periodic functions, 888–90

applications of, 892–903
exercises, 898–903
full-wave rectifier, 893–94
infinite series, Riemann Zeta function,

894–98
square wave — high frequencies, 892–93

discrete Fourier transform, 914–19
discrete fourier transform, 915–16
discrete Fourier transform — aliasing, 916–17
exercises, 918–19
fast Fourier transform, 917
limitations, 916
orthogonality over discrete points, 914–15

Fourier expansions of Mathieu functions,
919–29

exercises, 929
integral equations and Fourier series for

Mathieu functions, 919–23
leading coefficients for ce0, 926–29
leading coefficients of se1, 923–26

general properties, 881–88
behavior of discontinuities, 886
completeness, 883–84
complex variables — Abel’s theorem, 882
exercises, 886–88
sawtooth wave, 885–86
square wave, 892
Sturm–Liouville theory, 885
summation of a Fourier series, 882–83

Gibbs phenomenon, 910–14
calculation of overshoot, 912–13
exercises, 913–14
square wave, 911–12
summation of series, 910

orthogonality, 636–37
properties of, 903–10

convergence, 903
differentiation, 904–5
exercises, 905–10
integration, 904

summation of, 882–83
Fourier transform, of Gaussian, 932
Fourier transform of derivatives, 946–51

heat flow PDE, 948–49
inversion of PDE, 949–50
wave equation, 947–48

Fourier transforms, 486–87, 931–32
aliasing, 916
convolution (Faltungs) theorem, 951
delta function derivation, 937
transfer functions, 961

Fourier transforms — inversion theorem, 938–46
cosine transform, 939
exponential transform, 938
fast Fourier transform, 917
finite wave train, 940–41
Fourier integral, 931, 936–39
momentum space representation, 955
sine transform, 939–40
uncertainty principle, 941

Fourier transform solution, 1013
fractals, 1086–88
fractional order, 427
Fraunhofer diffraction, Bessel function, 680–82
Fredholm equation, 1005–6
Frobenius’ method, series solutions, 565–78
Fuchs’ theorem, 573
full-wave rectifier, 893–94

functional equation, Riemann Zeta function,
896

Gamma function, 500
functions, 817–80,see also analytic functions

Chebyshev polynomials, 848–59
exercises, 855–59
generating functions, 848
orthogonality, 854–55
recurrence relations — derivatives, 852–53
trigonometric form, 853–54
type I, 849–52
type II, 849

of complex variable, 408–13
confluent hypergeometric functions, 863–69

Bessel and modified Bessel functions, 865
exercises, 867–69
Hermite functions, 866
integral representations, 865
miscellaneous cases, 866

entire, 415, 451, 462–63
exponential, of Maclaurin theorem, 354–55
factorial, 472–73
Hermite functions, 817–36

alternate representations, 819
applications of the product formulas, 831–32
direct expansion of products of Hermite

polynomials, 828–30
exercises, 832–36
generating functions — Hermite polynomials,

817–18
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orthogonality, 821–22
quantum mechanical simple harmonic

oscillator, 822–27
recurrence relations, 818–19
Rodrigues’ representation, 820–21
threefold Hermite formula, 827–28

hypergeometric functions, 859–63
contiguous function relations, 861
exercises, 862–63
hypergeometric representations, 861–62

Laguerre functions, 837–48
associated Laguerre polynomials, 841–43
differential equation — Laguerre

polynomials, 837–41
exercises, 845–48
hydrogen atom, 843–45

Mathieu functions, 869–79
elliptical drum, 872–73
exercises, 879
general properties of Mathieu functions, 874
quantum pendulum, 873
radial Mathieu functions, 874–79
separation of variables in elliptical

coordinates, 870–71
of matrices, 224–26
meromorphic, 451, 461–62, 478
multivalent, and branch points, 447–50
rotation of, 251
series of, 348–52

Abel’s test, 351
exercises, 352
overview, 348
uniform and nonuniform convergence,

348–49
WeierstrassM test, 349–50

G
gamma distribution, 1143
gamma function,see also factorial function,

499–533
beta function, 520–26

definite integrals, alternate forms, 521–22
derivation of Legendre duplication formula,

522–23
exercises, 523–26
incomplete beta function, 523
verification ofπα/sinπα relation, 522

definitions, simple properties, 499–510
definite integral (Euler), 500–501
double factorial notation, 505
exercises, 506–10
factorial notation, 503–5
infinite limit (Euler), 499–500
infinite product (Weierstrass), 501–3
integral representation, 505–6

digamma and polygamma functions, 510–16
Catalan’s constant, 513
digamma functions, 510–11
exercises, 513–16
Maclaurin expansion, computation, 512
polygamma function, 511–12
series summation, 512

incomplete gamma functions and related
functions, 527–33

error integrals, 530
exercises, 530–33
exponential integral, 527–30

of infinite product, 398–99
Stirling’s series, 516–20

derivation from Euler–Maclaurin integration
formula, 517

exercises, 518–20
Stirling’s series, 518

gauge covariant derivative, 76
theory, 259
transformation, 76

gauge theory, 76, 241
Gauss elimination, 170–72

Gauss’ differential equation, 312–13, 318,
614–15, 617–18

hypergeometric differential equation, 576,
859–62, 873

Gauss error integral, 500
asymptotic expansion, 530

Gauss’ fundamental theorem of algebra, 428, 463
Gauss–Jordan matrix inversion, 185–87
Gauss’ law, 52, 79–83, 594
Gauss’ normal distribution, 1134–38
Gauss’ notation, 503
Gauss–Seidel iteration technique, 172
Gauss–Seidel method, 226
Gauss’ test, 332–33, 357

Legendre series, 333
Gauss’ theorem, 60–64

alternate forms of, 62–64
exercises, 62–64
overview, 62

overview, 60–61
pullbacks, 312–13

Gegenbauer polynomials,see ultraspherical
polynomials

general parabolic solution, 540
general properties, 881–88

behavior of discontinuities, 886
completeness, 883–84
complex variables — Abel’s theorem, 882
of Mathieu functions, 874
sawtooth wave, 885–86
Sturm–Liouville theory, 885
summation of a Fourier series, 882–83
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general tensors, 151–60,see also Christoffel
symbols

covariant derivative, 156
exercises, 158–60
geodesics and parallel transport, 157–60
metric tensor, 151–54
overview, 151

generating function, 741–49, 848, 1014–15
associated Laguerre polynomials, 624–25,

841–45
associated Legendre functions, 771–82, 788
associated Legendre polynomials, 773
Bernoulli numbers, 376–89, 473–74, 517
Bernoulli polynomials, 379–80
Bessel functions, modified, 711, 713–19,

723–24, 865
Chebyshev polynomials, 848–59
extension to ultraspherical polynomials, 747
Hermite polynomials, 817–30
for integral order, 675–77
Laguerre polynomials, 647, 837–41, 843–45
Legendre polynomials, 742–44
linear electric multipoles, 744–45
physical basis — electrostatics, 741–42
ultraspherical polynomials, 747
vector expansion, 745–47

generators of continuous groups, 246–61,see also
rotations;SU(2)

exercises, 260–61
overview, 246–50

geodesic equation, 157
geodesics, 157–60
geometrical interpretation of gradient, 35–38

integration by parts of, 36–37
of potential, force as, 36

geometric series, 322–23
Gibbs phenomenon, 886, 910–14

calculation of overshoot, 912–13
square wave, 911–12
summation of series, 910

global behavior, 1093–1101
Goursat proof of Cauchy’s integral theorem,

421–23
gradient

in Cartesian coordinates, 37, 51, 113, 134
in circular cylindrical coordinates, 118
in curvilinear coordinates, 110
in spherical polar coordinates, 126

gradient, curvilinear coordinates, 110
gradient,∇, 32–38

as differential vector operator, 110
of dot product, 46
exercises, 37–38
geometrical interpretation, 35–38

integration by parts of, 36–37

of potential, force as, 36
integral definitions of divergence, curl, and,

58–59
overview, 32–34
of potential, 34

Gram–Schmidt orthogonalization, 642–49
Gram–Schmidt procedure, 173–74

overview, 173–74
vectors by orthogonalization, 174

gravitational potentials, 72
great circle, 1040
Green’s function, 662–74

construction of, one dimension, 598, 599,
663–65, 670

construction of, two dimension, 597–98
construction of, three dimension, 597–98
and Dirac delta function, 669–70
eigenfunction, eigenvalue equation, 667–68
eigenfunction expansion, 662–82
electrostatic analog, 592, 665
form of, 596–98
Helmholtz, 598
Helmholtz equation, 662
integral — differential equation, 665–67
Laplace operator, 598

circular cylindrical expansion, 601–6
spherical polar expansion, 598–600

linear oscillator, 668–69
modified Helmholtz, 598
nonhomogeneous equation, 592–610
one-dimensional, 663–65
Poisson’s equation, 669–70
symmetry of, 595–96

Green’s theorem, 61–62, 593
Gregory series, 362, 368
ground state eigenfunction, 1073
group theory, 241–320,see also angular

momentum; differential forms; generators
of continuous groups; homogeneous
Lorentz group

character, 184
definition of, 242–43
discrete, 291–93

classes and character, 293
crystallographic point and space, 299–300
dihedral,Dn, 299
exercises, 300–304
subgroups and cosets, 293–94
threefold symmetry axis, 296–99
twofold symmetry axis, 294–96

faithfulness, 243
homomorphic, 243
homomorphism and isomorphism, 243–45
homomorphismSU(2)–SO(3), 252–6
isomorphic, 243
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Lorentz covariance of Maxwell’s equations,
283–91

electromagnetic invariants, 288
exercises, 289–91
overview, 283–86
transformation ofE andB, 287–88

overview, 241–42
permutation groups, 301–3
quantum chromodynamics (QCD), 258
reducible and irreducible representations,

245–46
special unitary groupSU(2), 251
vierergruppe, 292–93, 296

Gutzwiller’s trace formula, 898

H
Hadamard product, 208
Hamilton–Jacobi equation, 539
Hamilton’s principle, 1053–54
Hankel functions and Lagrange equations of

motion, 493–94, 707–13
asymptotic forms, 493–94, 723
contour integral representation of the Hankel

functions, 709–11
cylindrical traveling waves, 708
definition, by Neumann function, 707–8
definitions, 707–8
series expansion, 707, 715
spherical, 728–29
Wronskian formulas, 708

Hankel transforms, 933
harmonic functions, 539
harmonic oscillator, 822–27, 958–59
harmonics,see also spherical harmonics, vector

spherical harmonics
harmonic series, 323–24
Hausdorff, 225, 249, 1086
heat flow PDE, 948–49
Heaviside expansion theorem, 442, 1003
Heaviside shifting theorem, 981
Heaviside unit step function, 93, 996
Heisenberg uncertainty principle, 732, 941
Helmholtz diffusion equation, 536, 537
Helmholtz equation, 556, 557, 613

Bessel function, 683–84, 725
Green’s function, 662
spherical coordinates, 725

Helmholtz operators, 598
Helmholtz’s theorem, 95–101

exercises, 100–101
overview, 95–96

Hermite functions, 817–36, 866
alternate representations, 819
applications of the product formulas, 831–32
confluent hypergeometric representation, 866

direct expansion of products of Hermite
polynomials, 828–30

generating functions — Hermite polynomials,
817–18

Gram–Schmidt construction, 642
orthogonality, 821–22
quantum mechanical simple harmonic

oscillator, 822–27
recurrence relations, 818–19
Rodrigues representation, 820–21
threefold Hermite formula, 827–28

Hermite polynomials
direct expansion of products of, 828–30
generating functions, 817–18
orthogonality integral, 821
recurrence relations, 818–19
Rodrigues representation, 820–21

Hermitian matrices, 184, 209
and matrix diagonalization, 219–21
unitary and, 208–15

exercises, 212–15
overview, 208–9
Pauli and Dirac, 209–12

Hermitian matrices, anti-, 221–23
eigenvalues

degenerate, 223
and eigenvectors of real symmetric matrices,

221–22
overview, 221

Hermitian operators, 629–30, 634–42
completeness of eigenfunctions, 649–58
degeneracy, 638
expansion in orthogonal

eigenfunctions — square wave, 637
Fourier series — orthogonality, 636–37
integration interval, 628–29
orthogonal eigenfunctions, 636
properties of, 634–38
in quantum mechanics, 630
real eigenvalues, 634–35

Hilbert matrix, determinant, 235
Hilbert–Schmidt theory, 1029–36

nonhomogeneous integral equation, 1032–34
orthogonal eigenfunctions, 1030–32
symmetrization of kernels, 1029–30

Hilbert space, 7, 535, 629, 638, 658, 885
Hilbert transforms, 483
Hodge * operator, 314–19

cross product of vectors, 315
Laplacian in orthogonal coordinates, 316
Maxwell’s equations, 316–20
overview, 314–15

holomorphic functions (analytic or regular
functions), 415

homogeneous equations, 165–66, 565
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homogeneous Lorentz group, 278–83
exercises, 283
kinematics and dynamics in Minkowski

space–time, 280–83
overview, 278–80

homomorphic group, 243
homomorphism, 243–45

overview, 243
rotations, 244–45
SU(2) andSO(3), 252–56

hooks, 275–76
Hubble’s law, 7
hydrogen atom, 843–45, 957–58

Schrödinger’s wave equation, 843
hyperbolic PDEs, 538
hypercharge, 257
hypergeometric equation

alternate forms, 860, 864
second independent solution, 860
singularities, 564, 859, 864, 865, 873

hypergeometric functions, 859–63
contiguous function relations, 861
hypergeometric representations, 861–62

I
ill-conditioned matrices, 234–35
imaginary part, 407
impulsive force, 975–76
incomplete gamma function, 389–92

confluent hypergeometric representation, 500,
864

recurrence relations, 399, 512
independence, linear, 173, 579–81, 643, 665, 703

of solutions of ordinary differential equations,
579–81

of vectors, 173, 579
indicial equation, 566
inertia matrix, moment of, 215–16
infinite limit (Euler), 499–500
infinite product (Weierstrass), 499–500, 501–3
infinite products, 378, 383, 396–99, 499, 501–3

convergence, 397–98
cosine, 398–99
entire functions, 462
gamma function, 398–99
sine, 398–99

infinite series, 321–401,see also alternating
series; power series; Taylor’s expansion

algebra of, 342–48
alternating series, 342–43
convergence, 342–45
convergence: absolute, 342–44
convergence: Cauchy integral, 327–29
convergence: Cauchy root, 326
convergence: comparison, 325–26

convergence: conditional, Leibniz criterion,
344

convergence: D’Alembert ratio, 326–27
convergence: Gauss’, 332–33
convergence: improvement of, 345
convergence: Kummer’s, 330–32
convergence: Maclaurin integral, 327–30
convergence: Raabe’s, 332
convergence: tests of, 325–35
convergence: uniform, 348–51, 363–64
divergence of squares, 344
double series, 345–47
exercises, 347–48
overview, 342–44
rearrangement of double, 345–48

asymptotic series, 389–96
cosine and sine integrals, 392–93
definition of, 393–94
exercises, 394–96
incomplete gamma function, 389–92
overview, 389

Bernoulli numbers, 376–89
Euler–Maclaurin integration formula, 380–82
exercises, 385–89
improvement of convergence, 385
overview, 376–79
polynomials, 379–80
Riemann Zeta function, 382–84

elliptic integrals, 370–76
definitions of, 372
exercises, 374–76
limiting values, 374
overview, 370
period of simple pendulum, 370–71
series expansion, 372–73

of functions, 348–52
Abel’s test, 351
exercises, 352
overview, 348
uniform and nonuniform convergence,

348–49
WeierstrassM test, 349–50

fundamental concepts, 321–25
addition and subtraction of, 324–25
exercises, 325
geometric, 322–23
harmonic, 323–24
overview, 321–22

power series, 363–66, 578–79
products of, 396–401

convergence of, 397–98
exercises, 399–401
overview, 396–97
sine, cosine, and gamma functions, 398–99

Riemann’s theorem, 894–98
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infinity, see singularity, pole, essential singularity
inhomogeneous linear equations, 166–67
inhomogeneous ordinary differential equation

(ODE), Green’s function solutions, 663–64
inner product and matrix multiplication, 179–81
integral definitions of gradient, divergence, and

curl, 58–59
integral — differential equation, 665–67
integral equations, 1005–36

and Fourier series for Mathieu functions,
919–23

Fredholm equations, 1005, 1007, 1010, 1013,
1018, 1021–24, 1030–32

Hilbert–Schmidt theory, 1029–36
exercises, 1034–36
nonhomogeneous integral equation, 1032–34
orthogonal eigenfunctions, 1030–32
symmetrization of kernels, 1029–30

integral transforms, generating functions,
1012–18

exercises, 1015–18
Fourier transform solution, 1013
generalized Abel equation, convolution

theorem, 1014
generating functions, 1014–15

introduction, 1005–12
definitions, 1005–6
exercises, 1011
linear oscillator equation, 1009–11
momentum representation in quantum

mechanics, 1006–7
transformation of a differential equation into

an integral equation, 1008–9
Neumann series, separable (degenerate) kernels,

1018–29
exercises, 1025–29
Neumann series, 1018–19
Neumann series solution, 1020–21
numerical solution, 1023–25
separable kernel, 1021–22

Volterra equations, 991, 1005–6, 1009–11, 1021
integral form, Neumann functions, 701
integral representations, 505–6, 679–80

for Dirac delta function, 90
expansion of, 720–23

integrals,see also Cauchy (Maclaurin) integral
test; definite integrals; elliptic integrals

contour integration, 463, 471, 503, 522, 603
differentiation of, 590
evaluation of, 810
Lebesgue, 649, 657
line, 55–56, 65–67, 440
of products of three spherical harmonics, 803–6
Riemann, 55, 60–61, 605, 636
Stieltjes, 86, 873

surface, 56–57
volume, 57–58

integral test, Cauchy,see Cauchy (Maclaurin)
integral test

integral transforms, 931–1004
convolution (Faltungs) theorem, 990–94

driven oscillator with damping, 991–93
exercises, 993

convolution theorem, 951–55
exercises, 953–55
Parseval’s relation, 952–53

development of the Fourier integral, 936–38
Dirac delta function derivation, 937–38
Fourier integral — exponential form, 937

Fourier transform, 931–32
Fourier transform of derivatives, 946–51

heat flow PDE, 948–49
inversion of PDE, 949–50
wave equation, 947–48

Fourier transform of Gaussian, 932
Fourier transforms — inversion theorem,

938–46
cosine transform, 939
exercises, 942–46
exponential transform, 938
finite wave train, 940–41
sine transform, 939–40
uncertainty principle, 941

Fourier transforms of derivatives, 950–51
generating functions, 1012–18

Fourier transform solution, 1013
generalized Abel equation, convolution

theorem, 1014
generating functions, 1014–15

integral transforms, 931–35
exercises, 934–35
Fourier transform, 931–32
Fourier transform of Gaussian, 932
Laplace, Mellin, and Hankel transforms, 933
linearity, 933–34

inverse Laplace transform, 994–1003
Bromwich integral, 994–95
exercises, 1000–1003
inversion via calculus of residues, 996
summary — inversion of Laplace transform,

999–1000
velocity of electromagnetic waves in a

dispersive medium, 997–99
Laplace, Mellin, and Hankel transforms, 933
Laplace transform of derivatives, 971–78

Dirac delta function, 975
Earth’s nutation, 973–74
exercises, 976–78
impulsive force, 975–76
simple harmonic oscillator, 973
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Laplace transforms, 965–71
definition, 965
elementary functions, 965–66
exercises, 970–71
inverse transform, 967–68
partial fraction expansion, 968–69
step function, 969–70

linearity, 933–34
momentum representation, 955–61

exercises, 959–61
harmonic oscillator, 958–59
hydrogen atom, 957–58

other properties, 979–89
Bessel’s equation, 983–84
damped oscillator, 979–80
derivative of a transform, 982–83
electromagnetic waves, 981–82
exercises, 985–89
integration of transforms, 984
limits of integration — unit step function, 985
RLC analog, 980–81
substitution, 979
translation, 981

transfer functions, 961–64
exercises, 964
significance of�(t), 963–64

integration, 904,see also path-dependent work
Euler–Maclaurin formula, 380–82
by parts of curl, 47
by parts of divergence, 40
by parts of gradient, 36
of power series, 364
simple pole on contour of, 468–69
of transforms, 984
of vectors, 54–60

exercises, 59–60
overview, 54–56

integration interval[a, b], 628–29
interpolating polynomials, 194
interpretation,see geometrical interpretation of

gradient; physical interpretation of
divergence

interitem, 1111
invariance of scalar product under rotations, 15–17
invariants, electromagnetic, 288
inverse Laplace transform, 994–1003

Bromwich integral, 994–95
inversion via calculus of residues, 996
summary — inversion of Laplace transform,

999–1000
velocity of electromagnetic waves in a

dispersive medium, 997–99
inverse matrix, 200
inverse operator, 934, 1019
inverse transform, 967–68

inversion, 445–46
matrix, 184–87

Gauss–Jordan, 185–87
overview, 184–85

of PDE, 949–50
of power series, 366
via calculus of residues, 996

irreducible representations, 245–46
irreducible tensors, 149–51
irregular (essential) singular point, 563
irregular sign changes, series with, 341–42
irregular singularities, 572–73
irrotational, 45
isomorphic group, 243
isomorphism, 243–45

overview, 243
rotations, 244–45

isospin,SU(2), 256–60
isospinI, 257

J
Jacobian, 107–8

parity transformation, 146
Jacobians for polar coordinates, 108–10
Jacobi–Anger expansion, 687
Jacobi identity, 248
Jacobi technique, 226
Jordan’s lemma, 468
Julia set, 1087

K
kaon decay, 282–83
Kepler’s laws of planetary motion, 116–17
kinematics and dynamics in Minkowski

space–time, 280–83
Kirchhoff diffraction theory, 426
Klein–Gordon equation, 537
Korteweg–deVries equation, 542
Kronecker delta, 10, 136–37
Kronecker product, 181
Kronig–Kramers optical dispersion relations, 484,

485
Kummer’s equation,see confluent hypergeometric

equation
Kummer’s test, 330–32

L
ladder operators, approach to orbital angular

momentum, 262–64
Lagrange’s equations, 1066
Lagrangian, 1053–54
Lagrangian equations, 1066–67
Lagrangian multipliers, 1060–65

cylindrical nuclear reactor, 1062
particle in a box, 1061–62
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Laguerre functions, 837–48
associated Laguerre polynomials, 841–43
differential equation — Laguerre polynomials,

837–41
hydrogen atom, 843–45

Laguerre polynomials, 624
associated, 624–25

confluent hypergeometric representation, 866
generating function, 841–42
integral representation, 843
orthogonality, 843
recurrence relations, 842
Rodrigues’ representation, 767, 842

confluent hypergeometric representation, 866
differential equation, 837–41
generating function, 837–39
Gram–Schmidt construction, 647
orthogonality, 624, 647
recurrence relations, 840, 842
Rodrigues’ formula, 839
Schrödinger’s wave equation, 843
self-adjoint form, 624, 840
singularities, 564

Laplace, Mellin, and Hankel transforms, 933
Laplace function, 598
Laplace’s equation, 536, 1057–58

Bessel functions, 695
Legendre polynomials, 760, 761
solutions, 50–51, 96, 443, 452, 539, 559–60

Laplace series
expansion theorem, 790–91
gravity fields, 791

Laplace transforms, 965–71
convolution theorem, 521, 1000, 1003, 1014
definition, 965
of derivatives, 971–78

Dirac delta function, 975
Earth’s nutation, 973–74
impulsive force, 975–76
simple harmonic oscillator, 973

elementary functions, 965–66
inverse transform, 967–68
partial fraction expansion, 968–69
step function, 969–70
table of transforms, 967–68, 979
translation, 1000

Laplacian
in Cartesian coordinates, 51–52, 554–55
in circular cylindrical coordinates, 119
development by minors, 167–68
in orthogonal coordinates, 316
of potentials, 50–51
spherical polar coordinates, 126
as tensor derivative operator, 161–62

Laurent expansion, 430–38, 466, 472

analytic continuation, 432–34
exercises, 437–38
Schwarz reflection principle, 431–32
Taylor expansion, 430–31

law of cosines, 16–17, 118, 745
leading coefficients for ce0, 926–29
leading coefficients of se1, 923–26
least squares, method of, 1119
Legendre duplication formula, derivation of,

522–23
Legendre equation, Maxwell’s equation, 779

self-adjoint form, 623, 625
Legendre functions, 741–816

addition theorem, 798
addition theorem for spherical harmonics,

797–802
derivation of addition theorem, 798–800
exercises, 800–802
trigonometric identity, 797–98

alternate definitions of Legendre polynomials,
767–70

exercises, 769–70
Rodrigues’ formula, 767
Schlaefli integral, 768–69

associated, 772
associated Legendre functions, 771–86

associated Legendre polynomials, 772–74
equation, 558, 771–72, 778–82, 788
Fourier transform, 770
Gram–Schmidt construction, 789
hypergeometric representation, 861
lowest associated Legendre polynomials, 774
magnetic induction field of a current loop,

778–82
orthogonality, 776–78
parity, 776
poles, 760, 782
recurrence relations, 775
Rodrigues’ formula, 772–73
Schlaefli integral, 768
second kind, 806–12
self-adjoint form, 771–72
special values, 774–75

generating function, 741–49
exercises, 747–49
extension to ultraspherical polynomials, 747
Legendre polynomials, 742–44
linear electric multipoles, 744–45
physical basis — electrostatics, 741–42
vector expansion, 745–47

integrals of products of three spherical
harmonics, 803–6

application of recurrence relations, 804–5
exercises, 805–6

orbital angularmomentum operators, 793–97
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orbital angular momentum operators, 796–97
orthogonality, 756–67

Earth’s gravitational field, 758–59
electrostatic potential of a ring of charge,

761–62
exercises, 762–66
expansion of functions, Legendre series,

757–58
polarization of dielectric, 764
ring of electric charge, 761–62
sphere in a uniform field, 759–61

recurrence relations and special properties,
749–56

differential equations, 751–52
exercises, 754–56
parity, 753
recurrence relations, 749–50
special values, 752
sphere in uniform electric field, 759–61
upper and lower bounds forPn(cosθ), 753–4
of second kind, 806–13
closed-form solutions, 810–12
exercises, 812–13
Qn(x) functions of the second kind, 809–10
series solutions of Legendre’s equation,

807–9
spherical harmonics, 786–93

azimuthal dependence — orthogonality, 787
exercises, 791–93
Laplace series, expansion theorem, 790–91
Laplace series — gravity fields, 791
polar angle dependence, 788
spherical harmonics, 788–90

vector spherical harmonics, 813–16
Legendre polynomials, 644–46, 741, 742–44

associated
generating function, 773
recurrence relations, 775

generating function, 743
by Gram–Schmidt orthogonalization, 644–46
Laplace’s equation, 760, 761
orthogonality integral, 777
recurrence relations, 749–50
Rodrigues’ formula, 761
Schlaefli integral, 768

Legendre’s duplication formula, 503
Legendre’s equation, 625

differential form, 752
Legendre’s equation

self-adjoint form, 625, 771
Legendre’s equation

series solutions of, 807–9
Legendre series, 333, 807–9

recurrence relations, 807–8
Leibniz criterion, 339–40

formula for differentiating an integral, 590, 776
formula for differentiating a product, 771

Lerch’s theorem, 967
Levi-Civita symbol, 146–47
L’Hôpital’s rule, 365
Lie groups and algebras, 243, 248, 264–66
limits of integration — unit step function, 985
limits to values of elliptic integrals, 374
linear electric multipoles, 744–45
linear equations

homogeneous, 165–66
inhomogeneous, 165–66

linear independence of solutions, 581–83
linearity, 933–34
linearly dependent solutions, 549
linearly independent solutions, 549
linear operator, 87, 176, 208, 535, 622, 650

differential operator, 42–43, 249, 261, 285, 304,
307, 554, 569, 629, 634, 664

integral operator, 768, 1019
linear oscillator

Green’s function, 668–69
linear oscillator equation, 1009–11
linear transformation law, 152
line integrals, 55
Liouville’s theorem, 428
liquid drop model, 785
logistic map, 1080–84
Lommel integrals, 697
Lorentz covariance of Maxwell’s equations,

283–91
electromagnetic invariants, 288
exercises, 289–91
overview, 283–86
transformation ofE andB , 287–88

Lorentz–Fitzgerald contraction, 148
Lorentz gauge, 52
Lorentz group,see homogeneous Lorentz group
lowering operator, 263
lowest associated Legendre polynomials, 774
Lyapunov exponents, 1085–86

M
Maclaurin expansion, series computation, 512
Maclaurin integral test, 327–30

Riemann Zeta function, 329–30
Maclaurin theorem, 354–55

exponential function, 354–55
logarithm, 355
overview, 354

Madelung constant, 347
magnetic, 19, 46, 51, 66–67, 69, 74–76, 96, 100,

127–28, 144–45, 283–84, 288, 306, 311,
317, 447, 537, 638, 685, 703–5, 746,
778–82, 974
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magnetic field constant (B field), 44
magnetic flux across an oriented surface, 306
magnetic induction field of current loop, 778–82
magnetic moments, 145
magnetic vector potentials, 44, 74–76, 127–28
Mandelbrot set, 1087–88
mapping

complex variables, 443–51
branch points and multivalent functions,

447–50
exercises, 450–51
inversion, 445–46
overview, 443
rotation, 444
translation, 443–44

conformal, 451–54
exercises, 453–54

Mathieu equation
angular, 872
modified, 872
radial, 872

Mathieu functions, 869–79, 921
elliptical drum, 872–73
Fourier expansions of, 919–29

integral equations and Fourier series for
Mathieu functions, 919–23

leading coefficients for ce0, 926–29
leading coefficients of se1, 923–26

general properties of Mathieu functions, 874
quantum pendulum, 873
radial Mathieu functions, 874–79
separation of variables in elliptical coordinates,

870–71
matrices, 165–239,see also determinants;

diagonal matrices; orthogonal matrices
addition and subtraction, 178–79
adjoint, 208
angular momentum matrices, 253, 273
anticommuting sets, 236
antihermitian, 221–23, 231
antisymmetric, 204
definition, 176
diagonalization, 215–26
direct product, 181–82
equality, 178
Euler angle rotation, 202–3
exercises, 187–95
Gauss–Jordan matrix inversion technique, 185
Hermitian and unitary, 208–15

exercises, 212–15
overview, 208–9
Pauli and Dirac, 209–12

inversion of, 184–87
Gauss–Jordan, 185–87
overview, 184–85

ladder operators, 263
matrix multiplication, 176, 179–81
moment of intertia, 215–16, 220
multiplication, 179–80

direct product, 181–82
inner product, 179–81
by scalar, 179

normal, 231–39
exercises, 236–39
ill-conditioned systems, 234–35
normal modes of vibration, 233–34
overview, 231–32

null matrix, 178
orthogonal matrix, 201, 206, 209
overview, 176–78
product theorem, 181
quaternions, 204, 212
rank, 178
relation to tensor, 206
representation, 177, 184, 205, 208, 212
self-adjoint, 209
similarity transformation, 205
skewsymmetric, 204
symmetric, 204
traces, 139, 183–84
transposition, 177
unitary, 209
vector transformation law, 198

Maxwell’s equations, 51, 284, 316–20
derivation of wave equations, 52
dual transformation, 290
Gauss’ law, 52–53
Legendre equation, 779
Lorentz covariance of, 283–91

electromagnetic invariants, 288
exercises, 289–91
overview, 283–86
transformation ofE andB, 287–88

Oersted’s law, 52–53
mean value theorem, 353
Mellin transforms, 897, 933
meromorphic functions, 439, 461

integral of, 466
pole expansion of, 461

metric, curvilinear coordinates, 105
metric tensor, 151–54

Christoffel symbols as derivatives of, 155–56
minimal substitution, 76
Minkowski space, 136, 278–79
Minkowski space–time,see kinematics and

dynamics in Minkowski space–time
minor, 168
minors, Laplacian development by, 167–68
missing dependent variables, 1042–43
Mittag-Leffler theorem, 461
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mixed tensor, 136, 139, 154
modes of vibration, normal, 233–34
modified Bessel functions, 713–19

asymptotic expansion, 711, 719
Fourier transform, 716
generating function, 709
integral representation, 720–23
Laplace transform, 933
recurrence relations, 714–16
series form, 714

modified Helmholtz operator, 598
modified Mathieu equation, 872
modulus, 406
moment of inertia matrix, 215–16
momentum,see angular momentum; orbital

angular momentum
momentum representation, 955–61

harmonic oscillator, 958–59
hydrogen atom, 957–58
Schrödinger wave equation, 957–58

momentum representation in quantum mechanics,
1006–7

monopole, 745–46
Morera’s theorem, 427–28
motion

area law for planetary, 116–19
equations of, 142

moving particle
Cartesian coordinates, 1054
circular cylindrical coordinates, 1054–55

multiplet, 245
multiplication

of matrices
direct product, 181–82

of vectors, 182
inner product, 179–81
by scalar, 179

multiply connected regions, 423–24
multipole expansion, electrostatic, 599
multivalent functions, 447–50
multivalued function, 409
mutually exclusive, 1109–10

N
Navier–Stokes equations, 119
Neumann boundary conditions, 543
Neumann functions, 511

asymptotic form, 602–3
Bessel functions of second kind, 699–707

coaxial wave guides, 703–4
definition and series form, 699–700
other forms, 701
recurrence relations, 702
Wronskian formulas, 702–3

Fourier transform, 602

Hankel function definition, 707–8
integral form, 701
recurrence relations, 702
spherical, 507, 727
Wronskian formulas, 702–3

Neumann functions, integral form, 701
Neumann problem, 617
Neumann series, 1018–19
Neumann series, separable (degenerate) kernels,

1018–29
numerical solution, 1023–25
separable kernel, 1021–22

Neumann series solution, 1020–21
neutron diffusion theory, 369, 951
Newton’s second laws, 130, 233, 370, 973, 1054
node, spiral, 1097, 1103–4
non-Cartesian tensors, 140
nonessential (regular) singular point, 563
nonhomogeneous equation — Green’s function,

592–610
circular cylindrical coordinate expansion, 601–2
form of Green’s functions, 596–98
Legendre polynomial addition theorem,

600–601
spherical polar coordinate expansion, 598–600
symmetry of Green’s function, 595–96

nonhomogeneous integral equation, 1032–34
nonlinear differential equations (NDEs), 1088–89

autonomous differential equations, 1091–93
Bernoulli and Riccati equations, 1089–90
bifurcations in dynamical systems, 1103–4
center or cycle, 1100–1101
chaos in dynamical systems, 1105–6
dissipation in dynamical systems, 1102–3
fixed and movable singularities, special

solutions, 1090
local and global behavior in higher dimensions,

1093–94
routes to chaos in dynamical systems, 1106–7
saddle point, 1095–97
spiral fixed point, 1098–1100
stable sink, 1095

nonlinear methods and chaos, 1079–1108
introduction, 1079–80
logistic map, 1080–84

exercises, 1084
nonlinear differential equations (NDEs),

1088–89
autonomous differential equations, 1091–93
Bernoulli and Riccati equations, 1089–90
bifurcations in dynamical systems, 1103–4
center or cycle, 1100–1101
chaos in dynamical systems, 1105–6
dissipation in dynamical systems, 1102–3
exercises, 1089, 1102, 1106, 1107
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fixed and movable singularities, special
solutions, 1090

local and global behavior in higher
dimensions, 1093–94

routes to chaos in dynamical systems, 1106–7
saddle point, 1095–97
spiral fixed point, 1098–1100
stable sink, 1095

sensitivity to initial conditions and parameters,
1085–88

exercises, 1088
fractals, 1086–88
Lyapunov exponents, 1085–86

nonuniform convergence, 348–49
normalization, 695
normal matrices, 231–39

exercises, 236–39
ill-conditioned, 234–35
normal modes of vibration, 233–34
overview, 231–32

null matrix, 178
number operator, 823
numbers, Bernoulli,see Bernoulli numbers
numerical solution, 1023–25
nutation, 973–74

O
Oersted’s law, 52, 66–68
Olbers’ paradox, 337
operators, differential vector,see differential

vector operators
optical dispersion, 484–85
optical path near event horizon of black hole,

1041–42
orbital angular momentum, 251, 261–66

exercises, 266
ladder operator approach, 262–64
Lie groups and algebras, 264–66
Lie groups and operators, order of, 264–65
operators, 793–97
overview, 261
rotation of, 251

order 2 branch points, 440–42
order parameter, 1086
ordinary differential equations (ODEs), linear

first-order, 547–50
oriented surface, magnetic flux across, 306
orthogonal coordinates

Laplacian in, 316
in R3, 103–10

exercises, 109–10
Jacobians for polar coordinates, 108
overview, 103–8

orthogonal eigenfunctions, 636, 637, 1030–32

orthogonal functions, representation of Dirac delta
function by, 88–89

orthogonal groups, 243
orthogonal groupSO(3), 254, 256
orthogonality, 694–99, 731, 776–78, 821–22,

854–55
Bessel series, 695
continuum form, 696
curvilinear coordinates, 104
Earth’s gravitational field, 758–59
electrostatic potential in hollow cylinder,

695–96
electrostatic potential of ring of charge, 761–62
expansion of functions, Legendre series, 757–58
Fourier series, 636–37
Fourier series: Hilbert–Schmidt integral

equations, 919–29
normalization, 695
over discrete points, 914–15
sphere in a uniform field, 759–61
Sturm–Liouville differential equations, 1031
of vectors, 14

orthogonality condition, 10, 198
orthogonality integral

Hermite polynomials, 821
Legendre polynomials, 777
spherical harmonics, 788

orthogonality relations, spherical harmonics, 814
orthogonalization, Gram–Schmidt, 173, 642–7
orthogonal matrices, 195–208, 209

applications to vectors, 197–98
direction cosines, 196–97
Euler angles, 202–3
exercises, 206–8
inverse, 200
overview, 195–96
relation to tensors, 206
symmetry properties, 203–5
transpose matrix,̃A, 200–202
two-dimensional conditions for, 199–200

orthonormal functions, 642–44
polynomials, 646–47
vectors, 174

oscillator
damping, 979–80, 991–93, 1101
driven, 457, 565, 991–93
forced classical, 457–60
harmonic, 822–27
integral equation for, 991–93
Laplace transform solution, 991–93
linear, 668–69
momentum space wave function, 569
self-adjoint equation, 679
series solution of differential equation, 568–69
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singularities in harmonic oscillator differential
equation, 564

oscillatory series, 322
overshoot, calculation of, 912–13

P
parabolic PDEs, 538
parallelogram addition law, 2–3
parallel transport, 157–60
parity, 753, 776, 939

Bessel functions, 687, 735
Chebyshev functions, 569
differential operator, 569
Fourier cosine, sine transforms, 939
Hermite functions, 569
Legendre functions, 569
Legendre functions, associated, 776
Legendre functions, second kind, 812
spherical harmonics, 776, 791
vector spherical harmonics, 814

parity transformation, 143
Parseval relation, 485–86, 952–53
partial differential equations (PDEs), 535–43

bicharacteristics of, 538
boundary conditions, 542–43
characteristics of, 538–41
classes of, 538–41
elliptic, 538
examples of, 536–38
harmonic functions, 539
hyperbolic, 538
introduction, 535–36
inversion of, 949–50
nonlinear, 541–42
parabolic, 538

partial fraction expansion, 968–69
partial sum approximation, 390
particle

in a box, 1061–62
in a sphere, 731–32

particle motion
Cartesian coordinates, 1054
circular cylindrical coordinates, 1054–55
quantum mechanical, 827
in rectangular box, 1061–62
in right circular cylinder, 1062
in sphere, 731–32

path-dependent work, 56–60
integral definitions of gradient, divergence, and

curl, 58–59
overview, 56
surface integrals, 56–57
volume integrals, 57–58

Pauli matrices, 209–12
pendulums, period of simple, 370–71

periodic functions, 888–90
boundary conditions, 636, 883–5

permutations and combinations, counting of,
1114–15

phase of a complex function, 409
phase of a complex number, 409
phase space, 88, 1080, 1091
physical interpretation of divergence, 40–42
pi, π , 219, 379, 396–400, 586

Leibniz formula, 590, 776, 886
Wallis formula, 399

pion photoproduction threshold, 282–83
pi-sine relation, verification of, 522
planetary motion, area law for, 116–19
Pochhammer symbol, 859–60, 864
Poincaré section, 1088–89, 1104–6
point and space groups, crystallographic, 299–300
point source equation, 662
Poisson distribution, 1130–33
Poisson’s equation, 536

and Gauss’ law, 81–83
Green’s function, 669–70

polar angle dependence, 788
polar coordinates, Jacobians for, 108–10,see also

spherical polar coordinates
polar vectors, 143–44
pole expansion of meromorphic functions, 461
poles, 439

simple, on contour of integration, 468–69
polygamma functions, 511–12

Catalan’s constant, 513
polynomials, Bernoulli, 379–80
potential energy, 309
potentials, 68–79,see also thermodynamics

gradient of, 34
force as, 36

Laplacian of, 50–51
overview, 68
scalar, 68–72

centrifugal, 72
gravitational, 72
overview, 68–71

vector, 73–79
of constantB field, 44
exercises, 77–79
magnetic, 74–76

potential theory
conservative force, 69
electrostatic potential, 593
scalar potential, 70
vector potential, 73, 311

power series, 363–70
continuity, 364
convergence, 363

uniform and absolute, 363
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differentiation and integration, 364
exercises, 366–70
inversion of, 366
overview, 363
uniqueness theorem, 364–65

L’Hôpital’s rule, 365
prime numbers, 379, 382–83, 897
prime number theorem, asymptotic, 897–8
primitive, 898
principal axis, 216
principal value, 409
probability, 1109–51

binomial distribution, 1128–30
exercises, 1129
repeated tosses of dice, 1128–30

definitions, simple properties, 1109–15
conditional probability, 1112
counting of permutations and combinations,

1114–15
exercises, 1115
probability forA or B , 1110–11
scholastic aptitude tests, 1112–14

Gauss’ normal distribution, 1134–38
exercises, 1137–38

Poisson distribution, 1130–33
exercises, 1133

random variables, 1116–28
continuous random variable: hydrogen atom,

1117–19
discrete random variable, 1116–17
exercises, 1127–28
repeated draws of cards, 1123–26
standard deviation of measurements, 1119–23
sum, product, and ratio of random variables,

1126–27
statistics, 1138

χ2 distribution, 1143–45
confidence interval, 1149
error propagation, 1138–40
exercises, 1150
fitting curves to data, 1140–43
studentt distribution, 1146–49

probability forA or B , 1110–11
product convergence theorem, 344
products,see also cross product; direct product;

dot products; scalars
expansion of entire functions, 462–63
of infinite series, 396–401

convergence of infinite, 397–98
exercises, 399–401
overview, 396–97
sine, cosine, and gamma functions, 398–99

product theorem, 181
projection operators, 644
projections, of vectors, 4, 12

pseudoscalars, 146
pseudotensors, 142–51

dual tensors, 147–48
exercises, 149–51
irreducible tensors, 149–51
Levi-Civita symbol, 146–47
overview, 142–46

pseudovectors, 146
pullbacks, 309–13

Gauss’ theorem, differential form, 312–13
overview, 309–10
Stokes’ theorem, 310–11

differential form, 311

Q
QCD (quantum chromodynamics), 259
Qn(x) functions of the second kind, 809–10
quadrupole, 149, 745–47, 805
quantization, 624–25, 1054
quantum chromodynamics (QCD), 259
quantum mechanical scattering, 469–71
quantum mechanical simple harmonic oscillator,

822–27
quantum mechanics, sum rules, 484

angular momentum, 189–92, 251–6, 261–4,
266–70

configuration space representation, 957–58
expectation values, 263
hydrogen atom, 245–46
momentum representation, 1006–7
Schrödinger representation, 1006–7

quantum pendulum, 873
quasiperiodic, 1100–1101, 1107
quaternions, 189, 204, 212
quotient rule, 141–42

equations of motion and field equations, 142
exercises, 142
overview, 141–42

R
R3, orthogonal coordinates in,see orthogonal

coordinates
Raabe’s test, 332
radial Mathieu equation, 872
radial Mathieu functions, 874–79
radioactive decay, 553, 977–78, 1129, 1130–31,

1133
raising operator, 263
random variables, 1116–28

continuous random variable: hydrogen atom,
1117–19

discrete random variable, 1116–17
standard deviation of measurements, 1119–23
sum, product, and ratio of random variables,

1126–27
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rank, 264
of matrices, 178
of tensor, 133

rapidity, 280
rational approximations, 345
ratio test, Cauchy, d’Alembert, 326
Rayleigh formulas, 730
Rayleigh–Ritz variational technique, 1072–76

ground state eigenfunction, 1073
vibrating string, 1074

real part, 407
rearrangement of double series, 345–48
reciprocal, 916
reciprocal lattice, 27
reciprocity principle, 665
rectifier, full-wave, 893–94
recurrence relations, 567, 714–16, 749–50, 775,

818–19
application of, 804–5
associated Legendre polynomials, 775
Bernoulli numbers, 377
Bessel functions, 677
Bessel functions, spherical, 730
Chebyshev polynomials, 850
confluent hypergeometric functions, 866
derivatives, 852–53
exponential integral, 529
factorial function, gamma, 504, 506, 529, 995
Hankel functions, 708
Hermite polynomials, 818–19
hypergeometric functions, 861
Laguerre functions, associated, 842
Legendre polynomials, 749–50
Legendre series, 807–8
modified Bessel functions, 714–16
Neumann functions, 702
polygamma functions, 512
and special properties, 749–56

differential equations, 751–52
parity, 753
recurrence relations, 749–50
special values, 752
upper and lower bounds forPn(cosθ),

753–54
spherical Bessel functions, 730

reducible representations, 245–46
reflection principle, Schwarz, 431–32
regression coefficient, 1140–41
regular (nonessential) singular point, 563
regular functions (holomorphic or analytic

functions), 415
regular singularities, 572–73
relations,see dispersion relations
relativistic energy, 356–57
repeated draws of cards, 1123–26

repellant, 1082
repellor, 1092
representation

fundamental, 259–60, 274–75
irreducible, 246, 263, 265, 268, 274, 276, 293,

298
reducible, 246

residue theorem, 455–56, 472;see also calculus of
residues

resonant cavity, 682–85
Riccati equation, 1089–90
Riemann–Christoffel curvature tensor, 138
Riemann integral, 60–61
Riemann manifold, 313–14
Riemann’s theorem, 344
Riemann surface, 448–49
Riemann Zeta function, 329–30, 334–39

and Bernoulli numbers, 382–84
Fourier series evaluation, 329

table of values, 382
infinite series, 894–98

Riesz’ theorem, 177
RLC analog, 980–81
RL circuit, 549–50
Rodrigues’ formula, 767

Laguerre polynomials, 839
associated, 767, 842

Rodrigues representation, 820–21
Hermite polynomials, 820–21

root diagram, 264
root test, Cauchy, 326
rotations, 176, 444

of coordinate axes, 7–12
exercises, 12
vectors and vector space, 11–12

of coordinates, 199
of functions and orbital angular momentum, 251
groupsSO(2) andSO(3), 250
invariance of scalar product under, 15–17
isomorphic and homomorphic, 244–45

Rouché’s theorem, 463
routes to chaos in dynamical systems, 1106–7

S
saddle points (steepest descent method), 489–97,

1092, 1095–97, 1103
analytic landscape, 489–90
asymptotic forms

of factorial function�, 494–95
of Hankel functionH(1)

ν (s), 493–94
exercises, 496–97
factorial function�(z), 494–95

Hankel functionH(1)
ν , 493–94

overview, 489
sample space, 1109–10
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sawtooth wave, 885–86
scalar potential, 33–34, 70, 536
scalar quantities, 1
scalars, 7, 133

multiplication of matrices by, 179
potentials, 68–72

centrifugal, 72
gravitational, 72
overview, 68–71

products, 12–17
exercises, 17
invariance of under rotations, 15–17
overview, 12–15
triple, 25–27

scattering, quantum mechanical, 469–71
Schlaefli integral, 709, 768–69

Legendre polynomials, 768
Schmidt orthogonalonization,see Gram–Schmidt
scholastic aptitude tests, 1112–14
Schrödinger’s wave equation, 624

degeneracy of, 638
hydrogen atom, 843

Schrödinger wave equation, 76, 537, 1069–70
momentum space representation, 957–58
variational derivations, 1069–70

Schur’s lemma, 265
Schwarz inequality, 652–54

generalized, 661
Schwarz reflection principle, 431–32
second-rank tensors, 135–36
section,see Poincaré section
secular equation, 218
selection rules, 265
self-adjoint eigenvalue equations, 595
self-adjoint matrices, 209
self-adjoint ODEs, 622–34

boundary conditions, 627–28
deuteron, 626–27
eigenfunctions, eigenvalues, 624–25
Hermitian operators, 629
Hermitian operators in quantum mechanics, 630
integration interval[a, b], 628–29
Legendre’s equation, 625

self-adjoint operator, 623, 630
Sturm–Liouville theory, differential equations,

622–30
semiconvergent series, 391
sensitivity to initial conditions and parameters,

1085–88
fractals, 1086–88
Lyapunov exponents, 1085–86

separable kernel, 1021–22
separable variables, 544–45
separation of variables in elliptical coordinates,

870–71

series,see infinite series
series approach, 570–71

Bessel’s equation, limitations of, 570–71
Chebyshev, 338, 569
Hermite, 567
hypergeometric, 569, 859, 862
incomplete beta, 523
Laguerre, 569
Legendre, 333, 507, 569, 757–62
shifted polynomials, 836

Chebyshev, 850
Legendre, 629

ultraspherical, 338
series form, 714

of second solution, 583–85
series solutions — Frobenius’ method, 565–78

expansion aboutx0, 569
Fuchs’ theorem, 573
limitations of series approach — Bessel’s

equation, 570–71
regular and irregular singularities, 572–73
symmetry of solutions, 569

sign changes, series with alternating, irregular,
341–42

similarity transformation, 205
simple harmonic oscillator, 973
simple pendulum, 1067–68
simple pole on contour of integration, 468–69
sine

confluent hypergeometric representation, 393
functions of infinite products, 398–99
integrals in asymptotic series, 392–93

sine transform, 939–40
singularities, 438–43

branch points, 440–42
of order 2, 440–42

exercises, 442–43
fixed, 1090
Laurent series, 439
movable, 1090
overview, 438
poles, 439

singular points, 562–65
essential (irregular), 563
irregular (essential), 563
nonessential (regular), 563
regular (nonessential), 563

sink, 1092–96, 1101
sinx

infinite product representation, 378, 392–93,
398, 439, 468–69, 583, 679–80, 728–29,
730, 885, 889, 892, 911, 950, 1021,
1097–98

power series, 358, 406, 410
skewsymmetric matrices, 204
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Slater determinant, 274
small oscillations, 370–71
SO(2) rotation groups, 250
SO(3)

Clebsch–Gordan coefficients, 267–70
homomorphism, 252–56
rotation groups, 250

soap film, 1045–46
soap film — minimum area, 1046–49
solenoidal, 42
soliton solutions, 542
space, vector,see vectors
space and point groups, crystallographic, 299–300
space–time, Minkowski,see kinematics and

dynamics in Minkowski space–time
special unitary groups

SU(2), Pauli spin matrices, 189, 203–4,
250–66, 267–70, 274–76

SU(3), Gell-Mann matrices, 212, 256–60,
265–66, 274–76

SU(n), Young tableaux, 274–76
special unitary groupSU(2), 252
special values, 774–75
spectral decomposition, 219, 225, 635
sphere in a uniform field, 759–61
spheres, total charge inside, 88
spherical Bessel functions, 725–39

asymptotic values, 729
definitions, 726–29
limiting values, 729–30
recurrence relations, 730

spherical components, 271
spherical coordinates, Helmholtz equation, 725
spherical harmonics, 264, 786–93

addition theorem for, 797–802
derivation of addition theorem, 798–800
trigonometric identity, 797–98

angular momentum operators, 793
azimuthal dependence — orthogonality, 787
Condon–Shortley phase conventions, 270

integrals of, 804
ladder operators, 796–97

Laplace series, expansion theorem, 790–91
orthogonality integral, 788
orthogonality relations, 814
polar angle dependence, 788
spherical harmonics, 788–90
vector spherical harmonics, 813–16

spherical polar coordinates, 123–33, 557–60
exercises, 128–33
expansion, 598–600
magnetic vector potential, 127–28
∇, ∇·, ∇× for central force, 127
overview, 123–26
unit vectors, 123

spherical symmetry, 616
spherical tensor operator, 271
spherical tensors, 271–74
spherical waves, Bessel functions, 730
spinors, 138–39

exercises, 138–39
overview, 138

spinor wave functions, 212
spiral fixed point, 1098–1100
spiral node, 1097, 1103
spiral repellor, 1097, 1103
square integrable, 485, 487, 653, 658, 882
squares of series, divergent, 344
square wave, 911–12
square wave — high frequencies, 892–93
stable sink, 1095
standard deviation, 1119, 1140
standard deviation of measurements, 1119–23
stark effect, 576, 847
statistical hypothesis, 1138
statistics, 1138

χ2 distribution, 1143–45
confidence interval, 1149
error propagation, 1138–40
fitting curves to data, 1140–43
studentt distribution, 1146–49

steepest descent, method of, 489–96
factorial function, 494–95
Hankel functions, 493–94
modified Bessel functions, 720

step function, 969–70
Stirling’s expansion, 495
Stirling’s series, 516–20

derivation from Euler–Maclaurin integration
formula, 517

Stokes’ theorem, 64–68
alternate forms of, 66–68

Oersted’s and Faraday’s laws, 66–68
overview, 66

on differential forms, 313–14
Riemann manifold, 313–14

exercises, 67–68
overview, 64–65
proof, 420–21
pullbacks, 310–11

straight line, 1044–45
strange attractor, 1085, 1086
string, Lagrangian of a vibrational, 1058, 1071
structure constants, 248, 251, 259
studentt distribution, 1146–49
Sturm–Liouville theory, 885
Sturm–Liouville theory — orthogonal functions,

621–74
completeness of egenfunctions, 649–61

Bessel’s inequality, 651–52
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expansion coefficients, 658
Schwarz inequality, 652–54
summary — vector spaces, completeness,

654–58
Sturm–Liouville theory — orthogonal functions

completeness of Eigenfunction, 659–61
Gram–Schmidt orthogonalization, 642–49

exercises, 647–49
Legendre polynomials by Gram–Schmidt

orthogonalization, 644–46
Green’s function — eigenfunction expansion,

662–74
eigenfunction, eigenvalue equation, 667–68
exercises, 670–74
Green’s function and the Dirac delta function,

669–70
Green’s function integral — differential

equation, 665–67
Green’s functions — one-dimensional,

663–65
linear ocillator, 668–69

Hermitian operators, 634–42
degeneracy, 638
exercises, 639–42
expansion in orthogonal

eigenfunctions — square wave, 637
Fourier series — orthogonality, 636–37
orthogonal eigenfunctions, 636
real eigenvalues, 634–35

self-adjoint ODEs, 622–34
boundary conditions, 627–28
deuteron, 626–27
eigenfunctions, eigenvalues, 624–25
exercises, 631–34
Hermitian operators, 629
Hermitian operators in quantum mechanics,

630
integration interval[a, b], 628–29
Legendre’s equation, 625

SU(2)
Clebsch–Gordan coefficients, 267–70
isospin andSU(3) flavor symmetry, 256–60
andSO(3) homomorphism, 252–56

SU(3) flavor symmetry, 256–60
subgroups and cosets, 293–94
substitution, 979
subtraction

of matrices, 178–79
of series, 324–25
of sets, 1111
of tensors, 136

sum, product, and ratio of random variables,
1126–27

summation convention, 136–37, 139
summation of series, 910

sum rules, 484
SU(n), young tableaux for, 274–78
superposition principle for homogenous ODEs,

PDEs, 536
surface integrals, 56–57
symmetric matrices, 204
symmetric tensor, 137
symmetrization of kernels, 1029–30
symmetry, 889

axes
threefold, 296–99
twofold, 294–96

cylindrical, 617
properties of orthogonal matrices, 203–5
relations, 484
of solutions, 569
spherical, 616
SU(3) flavor, 256–60
of tensors, 137

T
tableaux forSU(n), Young, 274–78
Taylor’s expansion, 352–63, 430–31

binomial theorem, 356–57
relativistic energy, 356–57

exercises, 358–63
Maclaurin theorem, 354–55

exponential function, 354–55
logarithm, 355
overview, 354

multiple variables, 358
overview, 352–54

tensor analysis
contravariant tensor, 135–36, 153
contravariant vector, 134–35, 139, 152–54, 158
covariant tensor, 135–36, 158
covariant vector, 134–35, 139–40, 152–54, 156,

158
definition, 133–36
displacement, 158
isotropic tensor, 137
non-Cartesian tensors, 140
parallel transport, 158
scalar quantity, 8, 15, 57, 134, 149, 179
spherical components, 271
spherical tensor operator, 271
symmetry–asymmetry, 137

tensor density,see pseudotensors
tensor derivative operators

curl, 162–63
divergence, 160–61
exercises, 162–63
Laplacian, 161–62
overview, 160
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tensors,see also derivative operators, tensor;
direct product; general tensors;
pseudotensors; quotient rule; spinors

general tensors, 151–60,see also Christoffel
symbols

covariant derivative, 156
exercises, 158–60
geodesics and parallel transport, 157–60
metric tensor, 151–54
overview, 151

relation to orthogonal matrices, 206
spherical, 271–74
vector analysis in, 133–63

addition and subtraction of, 136
contraction, 139
overview, 133–35
second-rank, 135–36
summation convention, 136–37
symmetry–antisymmetry, 137

thermodynamics, 72–79
exact differentials, 72–76
overview, 72–73
vector potential, 73–79

exercises, 77–79
magnetic, 74–76

Thomas precession, 280
threefold Hermite formula, 827–28
threefold symmetry axis, 296–99
time-dependent diffusion equation, 536
time-independent diffusion equation, 536
Titchmarsh theorem, 487
trace, 139
trace formula, 224–25

Gutzwiller’s, 898
traces of matrices, 183–84
trajectory, 38, 1088, 1091–92, 1097, 1099, 1100,

1103, 1105
transfer function, 962
transfer functions, 961–64

significance of�(t), 963–64
transform, derivative of, 982–83;see also cosines;

exponential; Fourier; Fourier–Bessel;
Hankel; Laplace; Mellin; sine

transformation law, 134
transformation of differential equation into

integral equation, 1008–9
transformation ofE andB, Lorentz, 287–88
translation, 443–44, 981
transport, parallel, 157–60
transpose matrix,̃A, 200–202
transposition, 177
triangle inequalities, 406
triangle rule, 268–69
trigonometric form, 853–54
trigonometric identity, 797–98

triple scalar products, 25–27, 165–66
triple vector products, 27–29, 46

BAC–CAB rule, 28, 46, 51
exercises, 27–32
overview, 27

Tschebyscheff,see Chebyshev
two-dimensional conditions for orthogonal

matrices, 199–200
twofold symmetry axis, 294–96

U
ultraspherical polynomials, extension to, 747

equation, 853, 861
self-adjoint form, 854

uncertainty principle in quantum theory, 941
uniform convergence, 348–49, 363
union of sets, 1111
uniqueness theorem, 364–65

descending power series, 781
inverse operator, 181
Laurent expansion, 433
of power series, 364–65

uniqueness theorem, L’Hôpital’s rule, 365
unitary groups, 243
unitary matrices,see also Hermitian matrices

algebra, 210–12
Heaviside, 93, 981, 985, 996
ring, 180, 187
unit element of group, 293
unit step function, 191
vector space, 208

unit vectors, 123
Cartesian coordinates, 5
circular cylindrical, 116
orthogonality relation, 651
spherical polar, 201–2
spherical polar coordinates, 126

upper and lower bounds forPn(cosθ), 753–4

V
values, limiting, of elliptic integrals, 374
variables,see also complex variables

dependent, 1052–58
Hamilton’s Principle, 1053–54
Laplace’s equation, 1057–58
moving particle — Cartesian coordinates,

1054
moving particle — circular cylindrical

coordinates, 1054–55
dependent and independent, 1038–44, 1058–59

alternate forms of Euler equations, 1042
concept of variation, 1038–41
missing dependent variables, 1042–43
optical path near event horizon of a black

hole, 1041–42
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multiple, of Taylor’s expansion, 358
separation of, 554–62

variance, 1120
variation, concept of, 1038–41
variation of the constant, 548
variations,see also calculus of variations
variation with constraints, 1065–72

Lagrangian equations, 1066–67
Schrödinger wave equation, 1069–70
simple pendulum, 1067–68
sliding off a log, 1068–69

vector analysis
parallelogram addition law, 2–3
reciprocal lattice, 27
rotation of coordinates, 205
transformation law, 134

vector definition, 8–9
representation of, 9

vector expansion, 745–47
vector field, 7
vector integrals

line integrals, 55
surface integrals, 56–57
volume integrals, 57

vector potential, 73, 311
vector product, 5, 11, 18–22, 25–29, 43–44, 46,

147, 272
vector quantities, 1
vectors, 1–101,see also curved coordinates and

vectors; divergence,∇; gradient,∇;
integration; potentials; rotations; Stokes’
theorem; tensors

applications of orthogonal matrices to, 197–98
components, 8, 11, 153, 654
contravariant, 134–35, 139, 152–54, 158
covariant, 134–35, 139, 152–54, 156, 158
cross product of, 315
curl,∇×, 43–49

of central force field, 44–46
exercises, 47–49
gradient of dot product, 46
integration by parts of, 47
overview, 43
potential of constantB field, 44

definitions and elementary approach, 1–7
exercises, 6–7

differential vector operators, 110–14
curl, 112–13
divergence, 111–12
exercises, 113–14
gradient, 110
overview, 110

Dirac delta function, 83–95
exercises, 91–95
integral representations for, 90–95

overview, 83–87
phase space, 88
representation by orthogonal functions,

88–89
total charge inside sphere, 88

direction, 5
direct product of, 182
elementary approach to, 1–7
elementary approach to, exercises, 6–7
Gauss’ law, 79–83

exercises, 82–83
Poisson’s equation, 81–83

Gauss’ theorem, 60–64
alternate forms of, 62
exercises, 62–64
Green’s theorem, 61–62
overview, 60–61

by Gram–Schmidt orthogonalization, 174–76
Helmholtz’s theorem, 95–101

exercises, 100–101
overview, 95–96

irrotational, 45–46
linear dependence of, 172–73
normal, 15, 56
or cross product, 18–22

exercises, 22–25
orthogonal, 108, 173
overview, 1
potentials, magnetic, 127–28
scalar or dot product, 12–17

exercises, 17
invariance of under rotations, 15–16

serve as a basis, 5
space, 11–12

exercises, 12
successive applications of∇, 49–54

electromagnetic wave equation, 51–53
exercises, 53–54
Laplacian of potential, 50–51
overview, 49–50

triangle law of addition, 1–2
triple product of, 27–29

exercises, 27–32
triple scalar product, 25–27

vector space, linear space, 7, 11–12, 173, 177,
208, 219, 247–48, 314, 638, 644, 650,
654–55, 657–58, 884

vector spaces, completeness, 654–58
vector spherical harmonics, 813–16
vector transformation law, 21
velocity of electromagnetic waves in a dispersive

medium, 997–99
vibrating string, 1074
vibration, normal modes of, 233–34
vierergruppe, 292–93, 296



1182 Index

Volterra equation, 1005–6
volume integrals, 57–58
von Staudt–Clausen theorem, 379

W
Wallis’ formula, 399
wave diffusion equation (Helmholtz diffusion

equation), 536, 537
wave equation, 947–48

anomalous dispersion, 999
derivation from Maxwell’s equation, 52
Fourier transform solution, 947–48
Laplace transform solution, 948

wave equation, electromagnetic, 51–53
wave functions, 624

spinor, 212
wave guides, coaxial, Bessel functions, 703–4
Weierstrass infinite-product form of�(z),

499–500
WeierstrassM test, 349–50
weight diagram, 257, 258, 260, 265
weight vectors, 265
Whittaker functions, 866, 919
Wigner–Eckart theorem, 273
WKB expansion, 394

work, potential, 34, 70–72
Wronskian, 550
Wronskian determinant, 579–80
Wronskian formulas, 702–3

absence of third solution, 587, 589
Bessel functions, 702–4
Bessel functions, spherical, 601, 723
Chebyshev functions, 582–83, 591
confluent hypergeometric functions, 868
Green’s function, construction of, 592, 703
linear independence of functions, 579–80, 665,

703
second solution of differential equations,

583–87
solutions of self-adjoint differential equation,

702

Y
Young tableaux forSU(n), 274–77

Z
zero-point energy, 732, 826
zeros, Bessel function, 682
zeta function,see Riemann Zeta function
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