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PREFACE

Through six editions nowathematical Methods for Physicists has provided all the math-
ematical methods that aspirings scientists and engineers are likely to encounter as students
and beginning researchers. More than enough material is included for a two-semester un-
dergraduate or graduate course.

The book is advanced in the sense that mathematical relations are almost always proven,
in addition to being illustrated in terms of examples. These proofs are not what a mathe-
matician would regard as rigorous, but sketch the ideas and emphasize the relations that
are essential to the study of physics and related fields. This approach incorporates theo-
rems that are usually not cited under the most general assumptions, but are tailored to the
more restricted applications required by physics. For example, Stokes’ theorem is usually
applied by a physicist to a surface with the tacit understanding that it be simply connected.
Such assumptions have been made more explicit.

PROBLEM-SOLVING SKILLS

The book also incorporates a deliberate focus on problem-solving skills. This more ad-
vanced level of understanding and active learning is routine in physics courses and requires
practice by the reader. Accordingly, extensive problem sets appearing in each chapter form
an integral part of the book. They have been carefully reviewed, revised and enlarged for
this Sixth Edition.

PATHWAYS THROUGH THE MATERIAL

Undergraduates may be best served if they start by reviewing Chapter 1 according to the
level of training of the class. Section 1.2 on the transformation properties of vectors, the

cross product, and the invariance of the scalar product under rotations may be postponed
until tensor analysis is started, for which these sections form the introduction and serve as

Xi



Xii Preface

examples. They may continue their studies with linear algebra in Chapter 3, then perhaps
tensors and symmetries (Chapters 2 and 4), and next real and complex analysis (Chap-
ters 5-7), differential equations (Chapters 9, 10), and special functions (Chapters 11-13).

In general, the core of a graduate one-semester course comprises Chapters 5-10 and
11-13, which deal with real and complex analysis, differential equations, and special func-
tions. Depending on the level of the students in a course, some linear algebra in Chapter 3
(eigenvalues, for example), along with symmetries (group theory in Chapter 4), and ten-
sors (Chapter 2) may be covered as needed or according to taste. Group theory may also be
included with differential equations (Chapters 9 and 10). Appropriate relations have been
included and are discussed in Chapters 4 and 9.

A two-semester course can treat tensors, group theory, and special functions (Chap-
ters 11-13) more extensively, and add Fourier series (Chapter 14), integral transforms
(Chapter 15), integral equations (Chapter 16), and the calculus of variations (Chapter 17).

CHANGES TO THE SIXTH EDITION

Improvements to the Sixth Edition have been made in nearly all chapters adding examples
and problems and more derivations of results. Numerous left-over typos caused by scan-
ning into LaTeX, an error-prone process at the rate of many errors per page, have been
corrected along with mistakes, such as in the Diramatrices in Chapter 3. A few chap-

ters have been relocated. The Gamma function is now in Chapter 8 following Chapters 6
and 7 on complex functions in one variable, as it is an application of these methods. Dif-
ferential equations are now in Chapters 9 and 10. A new chapter on probability has been
added, as well as new subsections on differential forms and Mathieu functions in response
to persistent demands by readers and students over the years. The new subsections are
more advanced and are written in the concise style of the book, thereby raising its level to
the graduate level. Many examples have been added, for example in Chapters 1 and 2, that
are often used in physics or are standard lore of physics courses. A number of additions
have been made in Chapter 3, such as on linear dependence of vectors, dual vector spaces
and spectral decomposition of symmetric or Hermitian matrices. A subsection on the dif-
fusion equation emphasizes methods to adapt solutions of partial differential equations to
boundary conditions. New formulas have been developed for Hermite polynomials and are
included in Chapter 13 that are useful for treating molecular vibrations; they are of interest

to the chemical physicists.

ACKNOWLEDGMENTS

We have benefited from the advice and help of many people. Some of the revisions are in re-
sponse to comments by readers and former students, such as Dr. K. Bodoor and J. Hughes.
We are grateful to them and to our Editors Barbara Holland and Tom Singer who organized
accuracy checks. We would like to thank in particular Dr. Michael Bozoian and Prof. Frank
Harris for their invaluable help with the accuracy checking and Simon Crump, Production
Editor, for his expert management of the Sixth Edition.



CHAPTER 1

VECTOR ANALYSIS

1.1 DEFINITIONS, ELEMENTARY APPROACH

In science and engineering we frequently encounter quantities that have magnitude and
magnitude only: mass, time, and temperature. These wedadlal quantities, which re-
main the same no matter what coordinates we use. In contrast, many interesting physical
guantities have magnitude and, in addition, an associated direction. This second group
includes displacement, velocity, acceleration, force, momentum, and angular momentum.
Quantities with magnitude and direction are labelector quantities. Usually, in elemen-
tary treatments, a vector is defined as a quantity having magnitude and direction. To dis-
tinguish vectors from scalars, we identify vector quantities with boldface type, that is,

Our vector may be conveniently represented by an arrow, with length proportional to the
magnitude. The direction of the arrow gives the direction of the vector, the positive sense
of direction being indicated by the point. In this representation, vector addition

C=A+B (1.1)

consists in placing the rear end of vec®rat the point of vectoA. Vector C is then
represented by an arrow drawn from the reaAdf the point ofB. This procedure, the
triangle law of addition, assigns meaning to Eq. (1.1) and is illustrated in Fig. 1.1. By
completing the parallelogram, we see that

C=A+B=B+A, (1.2)

as shown in Fig. 1.2. In words, vector additiorc@gnmutative.
For the sum of three vectors

D=A+B+C,
Fig. 1.3, we may first adé andB:
A+B=E.

1
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FIGURE 1.1  Triangle law of vector
addition.

FIGURE 1.2 Parallelogram law of
vector addition.

D

FIGURE 1.3 Vector addition is

associative.
Then this sum is added {©:

D=E+C.
Similarly, we may first add@ andC:

B+C=F.
Then

D=A+F.

In terms of the original expression,
(A+B)+C=A+(B+0).

Vector addition isassociative.
A direct physical example of the parallelogram addition law is provided by a weight
suspended by two cords. If the junction poitif Fig. 1.4) is in equilibrium, the vector
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FIGURE 1.4 Equilibrium of forcesF; + Fo = —Fs3.

sum of the two force&1 andF, must just cancel the downward force of graviyg, Here

the parallelogram addition law is subject to immediate experimental verifichtion.
Subtraction may be handled by defining the negative of a vector as a vector of the same

magnitude but with reversed direction. Then

A—-B=A+(-B).
In Fig. 1.3,
A=E-B.

Note that the vectors are treated as geometrical objects that are independent of any coor-
dinate system. This concept of independence of a preferred coordinate system is developed
in detail in the next section.

The representation of vectéx by an arrow suggests a second possibility. ArrAw
(Fig. 1.5), starting from the origifferminates at the poirit,, Ay, A)). Thus, if we agree
that the vector is to start at the origin, the positive end may be specified by giving the
Cartesian coordinate®,, A, A;) of the arrowhead.

AlthoughA could have represented any vector quantity (momentum, electric field, etc.),
one particularly important vector quantity, the displacement from the origin to the point

1strictly speaking, the parallelogram addition was introduced as a definition. Experiments show that if we assume that the
forces are vector quantities and we combine them by parallelogram addition, the equilibrium condition of zero resultant force is
satisfied.

2We could start from any point in our Cartesian reference frame; we choose the origin for simplicity. This freedom of shifting
the origin of the coordinate system without affecting the geometry is caledlation invariance.
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# (A Ay A

a Tl l
Ay L LT
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FIGURE 1.5 Cartesian components and direction cosineA .of

(x,y,2), is denoted by the special symbolWe then have a choice of referring to the dis-
placement as either the vectoor the collection(x, y, z), the coordinates of its endpoint:

r< (x,y,2). (1.3)

Usingr for the magnitude of vectar, we find that Fig. 1.5 shows that the endpoint coor-
dinates and the magnitude are related by

X =r COSw, y =r COSf, Z =r COSy. (1.4)

Here cog, cosB, and coy are called thelirection cosines, « being the angle between the
given vector and the positive-axis, and so on. One further bit of vocabulary: The quan-
tities A, Ay, and A, are known as the (Cartesiacomponents of A or theprojections

of A, with cof« + cog g + cogy = 1.

Thus, any vectoA may be resolved into its components (or projected onto the coordi-
nate axes) to yield, = A cosa, etc., as in Eq. (1.4). We may choose to refer to the vector
as a single quantits or to its componentsA,, A, A;). Note that the subscriptin A,
denotes ther component and not a dependence on the variablEhe choice between
usingA or its component$A,, Ay, A;) is essentially a choice between a geometric and
an algebraic representation. Use either representation at your convenience. The geometric
“arrow in space” may aid in visualization. The algebraic set of components is usually more
suitable for precise numerical or algebraic calculations.

Vectors enter physics in two distinct forms. (1) Vecformay represent a single force
acting at a single point. The force of gravity acting at the center of gravity illustrates this
form. (2) VectorA may be defined over some extended region; thak iand its compo-
nents may be functions of positiod:, = A, (x, y, z), and so on. Examples of this sort
include the velocity of a fluid varying from point to point over a given volume and electric
and magnetic fields. These two cases may be distinguished by referring to the vector de-
fined over a region as\&ctor field. The concept of the vector defined over a region and
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being a function of position will become extremely important when we differentiate and
integrate vectors.

At this stage it is convenient to introduce unit vectors along each of the coordinate axes.
Let X be a vector of unit magnitude pointing in the positilirection,y, a vector of unit
magnitude in the positive-direction, andz a vector of unit magnitude in the positive
direction. Therk A, is a vector with magnitude equal td, | and in thex-direction. By
vector addition,

A=XA,+YA, +2A;. (1.5)
Note that ifA vanishes, all of its components must vanish individually; that is, if
A=0, thenA, =A,=A,=0.

This means that these unit vectors serve lases, or complete set of vectors, in the three-
dimensional Euclidean space in terms of which any vector can be expanded. Thus, Eq. (1.5)
is an assertion that the three unit vectorg, andz span our real three-dimensional space:
Any vector may be written as a linear combinationkofy, andz. SinceX, ¥, andz are
linearly independent (no one is a linear combination of the other two), they fdrasia

for the real three-dimensional Euclidean space. Finally, by the Pythagorean theorem, the
magnitude of vectoA is

1/2
Al = (A2 + A2 4 a2)Y2 (1.6)

Note that the coordinate unit vectors are not the only complete set, or basis. This resolution
of a vector into its components can be carried out in a variety of coordinate systems, as
shown in Chapter 2. Here we restrict ourselves to Cartesian coordinates, where the unit
vectors have the coordinates= (1, 0, 0), y = (0, 1, 0) andz = (0, 0, 1) and are all constant
in length and direction, properties characteristic of Cartesian coordinates.

As a replacement of the graphical technique, addition and subtraction of vectors may
now be carried out in terms of their components. Roe XA, + YA, + ZA, andB =
XB; +YBy + 2B,

A+B=X(A, £ By) +J(A, + By) + 2(A, + B,). (1.7)

It should be emphasized here that the unit veckpfs andz are used for convenience.
They are not essential; we can describe vectors and use them entirely in terms of their
componentsA < (Ay, Ay, A;). This is the approach of the two more powerful, more
sophisticated definitions of vector to be discussed in the next section. Hokeyerand
Z emphasize thdirection.

So far we have defined the operations of addition and subtraction of vectors. In the next
sections, three varieties of multiplication will be defined on the basis of their applicability:

a scalar, or inner, product, a vector product peculiar to three-dimensional space, and a
direct, or outer, product yielding a second-rank tensor. Division by a vector is not defined.
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Exercises

111
112

113

114

115

116

117

118

119

Show how to findA andB, givenA + B andA — B.

The vectorA whose magnitude is.132 units makes equal angles with the coordinate
axes. FindA,, Ay, andA;.

Calculate the components of a unit vector that lies initheplane and makes equal
angles with the positive directions of the and y-axes.

The velocity of sailboati relative to sailboai, vy, is defined by the equatione =
V4 — Vg, Wherevy is the velocity ofA andvp is the velocity of B. Determine the
velocity of A relative toB if

v4 = 30 knmy/hr east
vp = 40 kmy/hr north.

ANS. vyl = 50 km/hr, 531° south of east.

A sailboat sails for 1 hr at 4 kyihr (relative to the water) on a steady compass heading
of 40° east of north. The sailboat is simultaneously carried along by a current. At the
end of the hour the boat is 6.12 km from its starting point. The line from its starting point
to its location lies 60 east of north. Find the (easterly) and (northerly) components

of the water’s velocity.

ANS. Veast= 2.73 km/hr, Unorth ~ 0 km/hr

A vector equation can be reduced to the fokre= B. From this show that the one vector
equation is equivalent tthree scalar equations. Assuming the validity of Newton’s
second lawF = ma, as avector equation, this means that depends only o, and

is independent of’, and F;.

The verticesA, B, andC of a triangle are given by the points-1, 0, 2), (0, 1, 0), and
(1, -1, 0), respectively. Find poinD so that the figured BC D forms a plane parallel-
ogram.

ANS. (0, —-2,2) or (2,0, —2).

A triangle is defined by the vertices of three vectér,B andC that extend from the
origin. In terms ofA, B, andC show that thevector sum of the successive sides of the
triangle(AB + BC + CA) is zero, where the sidé B is from A to B, etc.

A sphere of radiug is centered at a poimg.

(@) Write out the algebraic equation for the sphere.
(b) Write out avector equation for the sphere.

ANS. (@) (x —x1)?+ (y — y1)? + (z —z21)? =d?.
(b)r =r1 + a, with r; = center.
(atakes on all directions but has a fixed magnitude
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1.1.10 A corner reflector is formed by three mutually perpendicular reflecting surfaces. Show
that a ray of light incident upon the corner reflector (striking all three surfaces) is re-
flected back along a line parallel to the line of incidence.

Hint. Consider the effect of a reflection on the components of a vector describing the
direction of the light ray.

1.1.11  Hubble's law. Hubble found that distant galaxies are receding with a velocity propor-
tional to their distance from where we are on Earth. Forithealaxy,

V; = Hor;,

with us at the origin. Show that this recession of the galaxies from usrdmamply
that we are at the center of the universe. Specifically, take the galangyast a new
origin and show that Hubble’s law is still obeyed.

1112  Find the diagonal vectors of a unit cube with one corner at the origin and its three sides
lying along Cartesian coordinates axes. Show that there are four diagonals with length
/3. Representing these as vectors, what are their components? Show that the diagonals
of the cube’s faces have lengtf2 and determine their components.

1.2 ROTATION OF THE COORDINATE AXES3

In the preceding section vectors were defined or represented in two equivalent ways:
(1) geometrically by specifying magnitude and direction, as with an arrow, and (2) al-
gebraically by specifying the components relative to Cartesian coordinate axes. The sec-
ond definition is adequate for the vector analysis of this chapter. In this section two more
refined, sophisticated, and powerful definitions are presented. First, the vector field is de-
fined in terms of the behavior of its components under rotation of the coordinate axes. This
transformation theory approach leads into the tensor analysis of Chapter 2 and groups of
transformations in Chapter 4. Second, the component definition of Section 1.1 is refined
and generalized according to the mathematician’s concepts of vector and vector space. This
approach leads to function spaces, including the Hilbert space.

The definition of vector as a quantity with magnitude and direction is incomplete. On
the one hand, we encounter quantities, such as elastic constants and index of refraction
in anisotropic crystals, that have magnitude and direcbiohthat are not vectors. On
the other hand, our naive approach is awkward to generalize to extend to more complex
gquantities. We seek a new definition of vector field using our coordinate veasra
prototype.

There is a physical basis for our development of a new definition. We describe our phys-
ical world by mathematics, but it and any physical predictions we may make must be
independent of our mathematical conventions.

In our specific case we assume that space is isotropic; that is, there is no preferred di-
rection, or all directions are equivalent. Then the physical system being analyzed or the
physical law being enunciated cannot and must not depend on our chaiciatation
of the coordinate axes. Specifically, if a quantitygloes not depend on the orientation of
the coordinate axes, it is called a scalar.

3This section is optional here. It will be essential for Chapter 2.
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FIGURE 1.6 Rotation of Cartesian coordinate axes aboutzHais.

Now we return to the concept of vectoras a geometric object independent of the
coordinate system. Let us lookatn two different systems, one rotated in relation to the
other.

For simplicity we consider first the two-dimensional case. If thgy-coordinates are
rotated counterclockwise through an anglekeeping r, fixed (Fig. 1.6), we get the fol-
lowing relations between the components resolved in the original system (unprimed) and
those resolved in the new rotated system (primed):

x" = xcosp + ysing,

y' = —x sing + y cosp. (1.8)

We saw in Section 1.1 that a vector could be represented by the coordinates of a point;
that is, the coordinates were proportional to the vector components. Hence the components
of a vector must transform under rotation as coordinates of a point (sugh Hserefore
whenever any pair of quantities, andA,, in thexy-coordinate system is transformed into
(A%, A}) by this rotation of the coordinate system with

A, =A,cosp + A, sing,

A, = —A,sing + Ay cosp, (1.9)

wedefine* A, andA, as the components of a vec#r Our vector now is defined in terms
of the transformation of its components under rotation of the coordinate systamatid

A, transform in the same way asandy, the components of the general two-dimensional
coordinate vector, they are the components of a vecfarlf A, andA, do not show this

4A scalar quantity does not depend on the orientation of coordingites;s expresses the fact that it is invariant under rotation
of the coordinates.
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form invariance (also calledcovariance) when the coordinates are rotated, they do not
form a vector.

The vector field components, andA, satisfying the defining equations, Egs. (1.9), as-
sociate a magnitudg and a direction with each point in space. The magnitude is a scalar
quantity, invariant to the rotation of the coordinate system. The direction (relative to the
unprimed system) is likewise invariant to the rotation of the coordinate system (see Exer-
cise 1.2.1). The result of all this is that the components of a vector may vary according to
the rotation of the primed coordinate system. This is what Egs. (1.9) say. But the variation
with the angle is just such that the components in the rotated coordinate syStanalA’,
define a vector with the same magnitude and the same direction as the vector defined by
the componentd, andA, relative to thex-, y-coordinate axes. (Compare Exercise 1.2.1.)
The components oA in a particular coordinate system constitute thpresentation of
A in that coordinate system. Equations (1.9), the transformation relations, are a guarantee
that the entityA is independent of the rotation of the coordinate system.

To go on to three and, later, four dimensions, we find it convenient to use a more compact
notation. Let

X —> X1

o (1.10)
aj1 = COSyp, alZZSin(p’
. (1.12)
az1 = —SIng, a2 = COSp.
Then Egs. (1.8) become
I
x] = a11x1 + a1x2, (1.12)

xé =azi1x1 + azpxo.

The coefficient;; may be interpreted as a direction cosine, the cosine of the angle between
x/ andx;; that is,

a2 = Cogxy, x2) = Sing,

The advantage of the new notattais that it permits us to use the summation sympol
and to rewrite Egs. (1.12) as

2
X =) ayx;, i=12 (1.14)
j=1

Note thati remains as a parameter that gives rise to one equation when it is set equal to 1
and to a second equation when it is set equal to 2. The ifdekcourse, is a summation
index, a dummy index, and, as with a variable of integratipmay be replaced by any
other convenient symbol.

SYou may wonder at the replacement of one parametiay four parameters; ;. Clearly, theq;; do not constitute a minimum

set of parameters. For two dimensions the feyrare subject to the three constraints given in Eq. (1.18). The justification for

this redundant set of direction cosines is the convenience it provides. Hopefully, this convenience will become more apparent
in Chapters 2 and 3. For three-dimensional rotations; {ut only three independent) alternate descriptions are provided by:

(1) the Euler angles discussed in Section 3.3, (2) quaternions, and (3) the Cayley—Klein parameters. These alternatives have their
respective advantages and disadvantages.
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The generalization to three, four, drdimensions is now simple. The set@fquantities
V; is said to be the components of akdimensional vectoV if and only if their values
relative to the rotated coordinate axes are given by

N
V/=> a;V;, i=12....N. (1.15)
j=1

As before,q;; is the cosine of the angle betweehandx ;. Often the upper limitv and
the corresponding range ofwill not be indicated. It is taken for granted that you know
how many dimensions your space has.

From the definition ofz;; as the cosine of the angle between the positivdirection
and the positiver; direction we may write (Cartesian coordinafes)

_ o (1.16a)
ajj = 8xj . .
Using the inverse rotatiorp(— —¢) yields
2 0x;
Xj 2201']')6; or 3_)6? =ajj. (1.16b)
1=
Note that these arpartial derivatives. By use of Egs. (1.16a) and (1.16b), Eqg. (1.15)
becomes
N / N
ox; 0x;
I — - Ty,
Vi= g V=l gV (1.17)
j=1 j=1 !
The direction cosines;; satisfy anorthogonality condition
Zaija,-k =38k (1.18)
i
or, equivalently,
Zaﬁak,' =3djk. (1.19)
i

Here, the symbadi  is the Kronecker delta, defined by

Sir=1 for j =k,

8ik=0 for  j#k.
It is easily verified that Eqgs. (1.18) and (1.19) hold in the two-dimensional case by
substituting in the specifia;; from Egs. (1.11). The result is the well-known identity

sirt ¢ + cof ¢ = 1 for the nonvanishing case. To verify Eq. (1.18) in general form, we
may use the partial derivative forms of Egs. (1.16a) and (1.16b) to obtain

0x;j dxy dxj dx]  dx;
_ S 1.21
Z ax; 0x; Z ox; dxg  Oxk ( )

(1.20)

i i

6Differentiatexlf with respect tor ;. See discussion following Eg. (1.21).
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The last step follows by the standard rules for partial differentiation, assuming gt
a function ofx3, x5, x5, and so on. The final resullyx; /dx;, is equal tos j;, sincex; and
x; as coordinate linesj(# k) are assumed to be perpendicular (two or three dimensions)
or orthogonal (for any number of dimensions). Equivalently, we may assume tlaaid
xr (j # k) are totally independent variables.jl& k, the partial derivative is clearly equal
to 1.
In redefining a vector in terms of how its components transform under a rotation of the
coordinate system, we should emphasize two points:

1. This definition is developed because it is useful and appropriate in describing our
physical world. Our vector equations will be independent of any particular coordinate
system. (The coordinate system need not even be Cartesian.) The vector equation can
always be expressed in some particular coordinate system, and, to obtain numerical
results, we must ultimately express the equation in some specific coordinate system.

2. This definition is subject to a generalization that will open up the branch of mathemat-
ics known as tensor analysis (Chapter 2).

A qualification is in order. The behavior of the vector components under rotation of the
coordinates is used in Section 1.3 to prove that a scalar product is a scalar, in Section 1.4
to prove that a vector product is a vector, and in Section 1.6 to show that the gradient of a
scalary, Vi, is a vector. The remainder of this chapter proceeds on the basis of the less
restrictive definitions of the vector given in Section 1.1.

Summary: Vectors and Vector Space

It is customary in mathematics to label an ordered triple of real numhersy, x3) a
vector x. The number, is called thenth component of vectox. The collection of all
such vectors (obeying the properties that follow) form a three-dimensionaleetr

space. We ascribe five properties to our vectorsx i (x1, x2, x3) andy = (y1, y2, y3),

Vector equalityx =y meansx; = y;,i = 1,2, 3.

Vector additionx +y =z meansy; + y; = z;,i = 1,2, 3.
Scalar multiplicationax <> (ax1, ax2, axz) (with a real).
Negative of a vector-x = (—1)X <> (—x1, —x2, —x3)-
Null vector: There exists a null vectbr (0, 0, 0).

arwbdpE

Since our vector components are real (or complex) numbers, the following properties
also hold:

1. Addition of vectors is commutative:+y =y + X.
2. Addition of vectors is associativet +y) +z=X+ (Y + 2).
3. Scalar multiplication is distributive:

a(X+Yy) =ax+ay, also (a + b)X = ax + bx.

4. Scalar multiplication is associativetb)x = a(bX).



12

Chapter 1 Vector Analysis

Further, the null vectoD is unique, as is the negative of a given vector

So far as the vectors themselves are concerned this approach merely formalizes the com-
ponent discussion of Section 1.1. The importance lies in the extensions, which will be con-
sidered in later chapters. In Chapter 4, we show that vectors form both an Abelian group
under addition and a linear space with the transformations in the linear space described by
matrices. Finally, and perhaps most important, for advanced physics the concept of vectors
presented here may be generalized to (1) complex quantig@dunctions, and (3) an infi-
nite number of components. This leads to infinite-dimensional function spaces, the Hilbert
spaces, which are important in modern quantum theory. A brief introduction to function
expansions and Hilbert space appears in Section 10.4.

Exercises

121

122

(@) Show that the magnitude of a vectoy A = (A2 + A2)1/2, is independent of the
orientation of the rotated coordinate system, '

(A% + 437 = (a2 + D)
that is, independent of the rotation angle
This independence of angle is expressed by sayingAhatinvariant under
rotations.
(b) At a given point(x, y), A defines an angle relative to the positiver-axis and
o’ relative to the positiva’-axis. The angle from to x’ is ¢. Show thatA = A’
defines thesame direction in space when expressed in terms of its primed compo-
nents as in terms of its unprimed components; that is,

1/2

o =a—g.

Prove the orthogonality conditioh’; aj;ax; = 8 jx. As a special case of this, the direc-
tion cosines of Section 1.1 satisfy the relation

cofa +cogf+cody =1,

a result that also follows from Eqg. (1.6).

1.3 SCALAR OR DOT PRODUCT

Having defined vectors, we now proceed to combine them. The laws for combining vectors
must be mathematically consistent. From the possibilities that are consistent we select two
that are both mathematically and physically interesting. A third possibility is introduced in
Chapter 2, in which we form tensors.

The projection of a vectoA onto a coordinate axis, which gives its Cartesian compo-
nents in Eq. (1.4), defines a special geometrical case of the scalar producraf the
coordinate unit vectors:

Ay=Acosa=A-X, A,=Acosp=A-y, A,=Acosy=A-Z (1.22)

"Then-dimensional vector space of reatuples is often labeleR” and then-dimensional vector space of complextuples is

labeledC".
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This special case of a scalar product in conjunction with general properties the scalar prod-
uct is sufficient to derive the general case of the scalar product.

Just as the projection is linear &, we want the scalar product of two vectors to be
linear inA andB, that is, obey the distributive and associative laws

A-(B+C)=A-B+A.C (1.23a)
A-(yB) = (yA)-B =yA B, (1.23b)

wherey is a number. Now we can use the decompositioB wito its Cartesian components
according to Eq. (1.5B = B:X+ B,y + B.Z, to construct the general scalar or dot product
of the vectorsA andB as

A-B=A.(BX+B,y+B;2)
=BA-X+B,A-Y+BA -2 upon applying Egs. (1.23a) and (1.23b)
= B:Ay+ B,A, + B/A; upon substituting Eq. (1.22).

Hence

A-B=) BiA;=) AB=B-A (1.24)
i i

If A =B in Eq. (1.24), we recover the magnitude= (3~ A?)Y/? of A in Eq. (1.6) from
Eq. (1.24).

It is obvious from Eq. (1.24) that the scalar product treatand B alike, or is sym-
metric inA andB, and is commutative. Thus, alternatively and equivalently, we can first
generalize Egs. (1.22) to the projectigiy of A onto the direction of a vectds # 0
asAgp = Acos9 =A - B, whereB = B/B is the unit vector in the direction d andé
is the angle betweeA andB as shown in Fig. 1.7. Similarly, we projeBtonto A as
B4 = Bcosd =B - A. Second, we make these projections symmetrid iand B, which
leads to the definition

A-B=AgB=AB4s=ABcCosf. (1.25)

»
-

FIGURE 1.7 Scalar produch - B = AB cosh.
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« B+0), >

FiGure 1.8 The distributive law
A.-(B+C)=ABs+AC,=AB+C)4, Eq. (1.233).

The distributive law in Eq. (1.23a) is illustrated in Fig. 1.8, which shows that the sum of
the projections oB andC onto A, B4 + C4 is equal to the projection @ + C onto A,
(B+C)a.

It follows from Egs. (1.22), (1.24), and (1.25) that the coordinate unit vectors satisfy the
relations

X-X=9y.9=2.-2=1, (1.26a)
whereas
X-y=%X.-2=9-2=0. (1.26b)

If the component definition, Eq. (1.24), is labeled an algebraic definition, then Eq. (1.25)
is a geometric definition. One of the most common applications of the scalar product in
physics is in the calculation efork = force-displacement- cosd, which is interpreted as
displacement times the projection of the force along the displacement direction, i.e., the
scalar product of force and displaceméit=F - S.

If A-B =0 and we know tha# # 0 andB # 0, then, from Eg. (1.25), cés= 0, or
6 =9, 27C°, and so on. The vectord and B must be perpendicular. Alternately, we
may sayA andB are orthogonal. The unit vectoksy, andz are mutually orthogonal. To
develop this notion of orthogonality one more step, supposentisad unit vector and is
a nonzero vector in they-plane; that isr = Xx + yy (Fig. 1.9). If

n-r=0

for all choices ofr, thenn must be perpendicular (orthogonal) to theplane.
Often it is convenient to replace ¥, andz by subscripted unit vectoes,, m =1, 2, 3,
with X = e1, and so on. Then Egs. (1.26a) and (1.26b) become

€n - € = Smn. (1260)

For m # n the unit vectorss,, ande, are orthogonal. Fot = n each vector is normal-

ized to unity, that is, has unit magnitude. The ggtis said to beorthonormal. A major
advantage of Eq. (1.26¢) over Egs. (1.26a) and (1.26b) is that Eq. (1.26¢) may readily be
generalized taV-dimensional spacen,n = 1,2, ..., N. Finally, we are picking sets of

unit vectorse,, that are orthonormal for convenience — a very great convenience.
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FIGURE 1.9 A normal vector.

Invariance of the Scalar Product Under Rotations

We have not yet shown that the waaehlar is justified or that the scalar product is indeed
a scalar quantity. To do this, we investigate the behaviok oB under a rotation of the
coordinate system. By use of Eq. (1.15),

A;B; +A;,B;, + A;Bé = ZaxiAi Zaijj + ZayiA,- ZanBj
i J i J

+ZaZiAi ZaZij. (127)
i J
Using the indice4 and!/ to sum overr, y, andz, we obtain
ZA;(B]QZZZZaHA,’aZij, (1.28)
k [

and, by rearranging the terms on the right-hand side, we have
Z A;CB,/{ = Z Z Z(alialj)AiBj = Z Z(SiinBj = Z A;B;. (1.29)

k I i i i

The last two steps follow by using Eg. (1.18), the orthogonality condition of the direction
cosines, and Egs. (1.20), which define the Kronecker delta. The effect of the Kronecker
delta is to cancel all terms in a summation over either index except the term for which the
indices are equal. In Eq. (1.29) its effect is to get i and to eliminate the summation
over j. Of course, we could equally well set= j and eliminate the summation ovér
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Equation (1.29) gives us

> ALBL=)AiB. (1.30)
k i

which is just our definition of a scalar quantity, one that remains invariant under the rotation
of the coordinate system.

In a similar approach that exploits this concept of invariance, we @keA + B and
dot it into itself:

C.-C=(A+B)-(A+B)
=A-A+B-B+2A-B. (1.31)

Since
Cc.C=cC? (1.32)

the square of the magnitude of vecand thus an invariant quantity, we see that
A.-B= E(C — A®— B°), invariant. (1.33)

Since the right-hand side of Eq. (1.33) is invariant—that is, a scalar quantity —the left-
hand sideA - B, must also be invariant under rotation of the coordinate system. Hence
A -Bis ascalar.

Equation (1.31) is really another form of the law of cosines, which is

C?= A%+ B? 4+ 2AB cosh. (1.34)

Comparing Egs. (1.31) and (1.34), we have another verification of Eq. (1.25), or, if pre-
ferred, a vector derivation of the law of cosines (Fig. 1.10).

The dot product, given by Eq. (1.24), may be generalized in two ways. The space need
not be restricted to three dimensionssktdimensional space, Eq. (1.24) applies with the
sum running from 1 ta. Moreover,: may be infinity, with the sum then a convergent infi-
nite series (Section 5.2). The other generalization extends the concept of vector to embrace
functions. The function analog of a dot, or inner, product appears in Section 10.4.

FIGURE 1.10 The law of cosines.
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Two unit magnitude vectorg ande; are required to be either parallel or perpendicular
to each other. Show tha - e; provides an interpretation of Eq. (1.18), the direction
cosine orthogonality relation.

Given that (1) the dot product of a unit vector with itself is unity and (2) this relation is
valid in all (rotated) coordinate systems, show tklatX’ = 1 (with the primed system
rotated 48 about thez-axis relative to the unprimed) implies thaty = 0.

The vectorr, starting at the origin, terminates at and specifies the point in §pagez).
Find the surface swept out by the tiproif

(@ (r—a)-a=0. Characterizea geometrically.
(b) (r —a)-r =0. Describe the geometric role af
The vectora is constant (in magnitude and direction).

The interaction energy between two dipoles of momentsaind u, may be written in
the vector form

_Pake 3wy -N(pa-T)

V= 3 /5
and in the scalar form
Hapm2 . .
V= 3 (2co991 cosh, — Sindy Sind2 Ccosy).
r

Here61 and6; are the angles of; and u, relative tor, while ¢ is the azimuth ofu,
relative to theu,—r plane (Fig. 1.11). Show that these two forms are equivalent.
Hint: Equation (12.178) will be helpful.

A pipe comes diagonally down the south wall of a building, making an angle of 45
with the horizontal. Coming into a corner, the pipe turns and continues diagonally down
a west-facing wall, still making an angle of 4&ith the horizontal. What is the angle
between the south-wall and west-wall sections of the pipe?

ANS. 120.

Find the shortest distance of an observer at the p@nt, 3) from a rocket in free
flight with velocity (1, 2, 3) m/s. The rocket was launched at time- 0 from (1, 1, 1).
Lengths are in kilometers.

Prove the law of cosines from the triangle with corners at the poin® @ind A in
Fig. 1.10 and the projection of vectBronto vectorA.

L
/ Vo

FIGURE 1.11  Two dipole moments.
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1.4 VECTOR OR CROSS PRODUCT

A second form of vector multiplication employs the sine of the included angle instead
of the cosine. For instance, the angular momentum of a body shown at the point of the
distance vector in Fig. 1.12 is defined as

angular momentura- radius armx linear momentum
= distancex linear momentunx sing.

For convenience in treating problems relating to quantities such as angular momentum,
torque, and angular velocity, we define the vector product, or cross product, as

C=AxB, with C = ABsinf. (1.35)

Unlike the preceding case of the scalar prod@ts now a vector, and we assign it a
direction perpendicular to the planeAfandB such thatA, B, andC form a right-handed
system. With this choice of direction we have

AxB=-BxA, anticommutation (1.36a)
From this definition of cross product we have
XKXX=9Yxy=2x2=0, (1.36b)
whereas
Xx§=2, ¥y xz=X, Zx K=Y,
JxX=-2,  x§=-%  Kx2=-9 (1.360)

Among the examples of the cross product in mathematical physics are the relation between
linear momentunp and angular momentuin, with L defined as

L=rxp,

7
7
rd
Fe 0
1 Ve
Linear momentum oy _
"

Radius arm Distance

D

\J
\j
=

FIGURE 1.12  Angular momentum.
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Bsin 6 B

FIGURE 1.13 Parallelogram representation of the vector product.

and the relation between linear velocityand angular velocitw,
V=wXTI.

Vectorsv andp describe properties of the particle or physical system. However, the posi-
tion vectorr is determined by the choice of the origin of the coordinates. This means that
» andL depend on the choice of the origin.

The familiar magnetic inductioB is usually defined by the vector product force equa-
tion®

Fuy = gV x B (mks units)

Herev is the velocity of the electric chargeandF,, is the resulting force on the moving
charge.

The cross product has an important geometrical interpretation, which we shall use in
subsequent sections. In the parallelogram defined andB (Fig. 1.13),Bsind is the
height if A is taken as the length of the base. ThAnx B| = AB siné is thearea of the
parallelogram. As a vectoh, x B is the area of the parallelogram defined&wandB, with
the area vector normal to the plane of the parallelogram. This suggests that area (with its
orientation in space) may be treated as a vector quantity.

An alternate definition of the vector product can be derived from the special case of the
coordinate unit vectors in Egs. (1.36c¢) in conjunction with the linearity of the cross product
in both vector arguments, in analogy with Egs. (1.23) for the dot product,

AxB+C)=AxB+AxC, (1.37a)
(A+B)xC=AxC+BxC, (1.37b)
A x (yB) = yA x B=(yA) x B, (1.37¢c)

8The electric fielcE is assumed here to be zero.
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wherey is a number again. Using the decompositioadndB into their Cartesian com-
ponents according to Eq. (1.5), we find

AxB=C=(Cy,Cy,C)) = (A K+ A J+ A2) x (BeX+ B, + B.2)
= (A By — AyB)X X §+ (A B, — A,B)X x 2
+(AyB,— A,;B))Y x 2

upon applying Egs. (1.37a) and (1.37b) and substituting Egs. (1.36a), (1.36b), and (1.36c¢)
so that the Cartesian componentsfok B become

Cy=AyB, — A.By, Cy=A.By — A:B., C,=AyBy — A,B,, (1.38)
or
Ci = A;Br — A¢Bj, i, j, k all different (1.39)

and with cyclic permutation of the indicés;, andk corresponding ta, y, andz, respec-
tively. The vector producE may be mnemonically represented by a determifiant,

£y 2z
oAy A ~|Ax A 5| Ax Ay
C=|Ay A, A =X By BZ -y BX BZ +2 BX B) , (1.40)
y z x z X y
B, By B

which is meant to be expanded across the top row to reproduce the three compofents of
listed in Eqgs. (1.38).

Equation (1.35) might be called a geometric definition of the vector product. Then
Egs. (1.38) would be an algebraic definition.

To show the equivalence of Eq. (1.35) and the component definition, Egs. (1.38), let us
form A - C andB - C, using Egs. (1.38). We have

A.C=A.(AxB)
= Ay (AyB, — A;By) + Ay(A; By — Ay B,) + A, (A By — Ay By)
=0. (1.41)
Similarly,
B-C=B-(AxB)=0. (1.42)

Equations (1.41) and (1.42) show titais perpendicular to botA andB (cosd = 0,0 =
4+90°) and therefore perpendicular to the plane they determine. The positive direction is
determined by considering special cases, such as the unit veetgrs- 2 (C; = +A, B,).

The magnitude is obtained from

(A xB)- (A xB)=A?B?— (A-B)?
= A’B? — A’B?cog0
= A’B?sirf 6. (1.43)

9See Section 3.1 for a brief summary of determinants.
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Hence
C = ABsiné. (1.44)

The first step in Eq. (1.43) may be verified by expanding out in component form, using
Egs. (1.38) forA x B and Eq. (1.24) for the dot product. From Egs. (1.41), (1.42), and
(1.44) we see the equivalence of Egs. (1.35) and (1.38), the two definitions of vector prod-
uct.

There still remains the problem of verifying th@= A x B is indeed a vector, that
is, that it obeys Eq. (1.15), the vector transformation law. Starting in a rotated (primed
system),

Ci=A B, — AB, i, j, andk in cyclic order
= ZaﬂAl ZakmBm — ZaklA[ Zaijm
1 m ! m

= Z(ajlakm — axajm)AiBpy. (1.45)

I,m

The combination of direction cosines in parentheses vanishesfor. We therefore have
j and k taking on fixed values, dependent on the choice,and six combinations of
[ andm. If i =3, thenj =1,k = 2 (cyclic order), and we have the following direction
cosine combination&

a11a22 — a1a12 = ass,
a13dz] — a3a1l = asy, (1.46)
a12a23 — a2013 = a3l

and their negatives. Equations (1.46) are identities satisfied by the direction cosines. They
may be verified with the use of determinants and matrices (see Exercise 3.3.3). Substituting
back into Eqg. (1.45),

C5 = az3A1B2 + azpA3B1 + az1A2B3 — azzA2B1 — az2A1B3 — az1AsBo
= a31C1 + a32C2 + az3C3

=Y azCn. (1.47)
n

By permuting indices to pick ug; andC,, we see that Eq. (1.15) is satisfied ahds
indeed a vector. It should be mentioned here thatwéisor nature of the cross product
is an accident associated with ttre ee-dimensional nature of ordinary spacé. It will be
seen in Chapter 2 that the cross product may also be treated as a second-rank antisymmetric
tensor.

10Equations (1.46) hold for rotations because they preserve volumes. For a more general orthogonal transformation, the r.h.s. of
Egs. (1.46) is multiplied by the determinant of the transformation matrix (see Chapter 3 for matrices and determinants).
l1gpecifically Egs. (1.46) hold only for three-dimensional space. See D. Hestenes and G. SohffaydtAlgebra to Geometric

Calculus (Dordrecht: Reidel, 1984) for a far-reaching generalization of the cross product.
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If we define a vector as an ordered triplet of numbers (or functions), as in the latter part
of Section 1.2, then there is no problem identifying the cross product as a vector. The cross-
product operation maps the two tripl&sandB into a third triple,C, which by definition
is a vector.

We now have two ways of multiplying vectors; a third form appears in Chapter 2. But
what about division by a vector? It turns out that the r&j@ is not uniquely specified
(Exercise 3.2.21) unles& andB are also required to be parallel. Hence division of one
vector by another is not defined.

Exercises
14.1 Show that the medians of a triangle intersect in the center, whict8iefthe median’s
length from each corner. Construct a numerical example and plot it.
1.4.2 Prove the law of cosines starting frohf = (B — C)2.
143 Starting withC = A 4 B, show thaiC x C =0 leads to
AxB=-BxA.
144 Show that
(@ (A—B)-(A+B)=A2- B2
(b) (A—B)x(A+B)=2A xB.
The distributive laws needed here,
A-B+C)=A-B+A-C,
and
AxB+C)=AxB+AxC,
may easily be verified (if desired) by expansion in Cartesian components.
145 Given the three vectors,
P=3%x+2y—2,
Q= —-6X—4y+ 22,
R=%X-2y-2

find two that are perpendicular and two that are parallel or antiparallel.

146 If P=XP, +yP, andQ =XQ, +yQ, are any two nonparallel (also nonantiparallel)
vectors in thexy-plane, show thaP x Q is in thez-direction.
147 Prove thatA x B) - (A x B) = (AB)2 — (A - B)2.
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Using the vectors

= RXcosh + §sing,

P
Q
R = Xcosp + ¥ sing,

Xcosp — ysing,

prove the familiar trigonometric identities
sin(@ + ¢) = sind cosy + cosh Sing,
cogf + ¢) = c0SH coSp — Sinb sing.
(@) Find a vectoA thatis perpendicular to
U=2x+9-2,
V=X-y+2
(b) What isA if, in addition to this requirement, we demand that it have unit magni-
tude?
If four vectorsa, b, ¢, andd all lie in the same plane, show that
(axb)yx(cxd)=0.
Hint. Consider the directions of the cross-product vectors.

The coordinates of the three vertices of a triangle(@rd, 5), (5, 2, 8), and (4, 8, 2).
Compute its area by vector methods, its center and medians. Lengths are in centimeters.
Hint. See Exercise 1.4.1.

The vertices of parallelograwBCD are (1, 0, 0), (2, —1,0), (0, —1,1), and(—1,0, 1)
in order. Calculate the vector areas of triangBD and of triangleBCD. Are the two
vector areas equal?

ANS. Areagp = — 3 (X + ¥ + 22).

The origin and the three vectofs B, andC (all of which start at the origin) define a
tetrahedron. Taking the outward direction as positive, calculate the total vector area of
the four tetrahedral surfaces.

Note. In Section 1.11 this result is generalized to any closed surface.

Find the sides and angles of the spherical triadd€ defined by the three vectors

A=(1,00),
1 1
B=|—,0,—,
(ﬁ ﬁ)

(o5 %)

Each vector starts from the origin (Fig. 1.14).
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FIGURE 1.14 Spherical triangle.

1.4.15 Derive the law of sines (Fig. 1.15):
sine _sing _ siny
Al Bl IClT
1416  The magnetic inductioB is defined by the Lorentz force equation,

F=g¢g(v xB).
Carrying out three experiments, we find that if
F
V=X, — =224y,
q
F
V= y, — = 4)/\( - 2,
q
F
V=2, —=9y-2%
q

From the results of these three separate experiments calculate the magnetic irBluction

1417  Define a cross product of two vectors in two-dimensional space and give a geometrical
interpretation of your construction.

1418  Find the shortest distance between the paths of two rockets in free flight. Take the first
rocket path to be = r1 + #1v1 with launch atr; = (1, 1, 1) and velocityv1 = (1, 2, 3)
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VA

\j

o

FIGURE 1.15 Law of sines.

and the second rocket path@as-ry + tovo with ro = (5,2, 1) andvo = (-1, —1, 1).
Lengths are in kilometers, velocities in kilometers per hour.

1.5 TRIPLE SCALAR PRODUCT, TRIPLE VECTOR PRODUCT

Triple Scalar Product

Sections 1.3 and 1.4 cover the two types of multiplication of interest here. However, there
are combinations of three vectoss; (B x C) andA x (B x C), that occur with sufficient
frequency to deserve further attention. The combination

A.-(BxC)

is known as theriple scalar product. B x C yields a vector that, dotted inth, gives a
scalar. We note thaiA - B) x C represents a scalar crossed into a vector, an operation that
is not defined. Hence, if we agree to exclude this undefined interpretation, the parentheses
may be omitted and the triple scalar product writéenB x C.

Using Eqs. (1.38) for the cross product and Eq. (1.24) for the dot product, we obtain

A-BxC=A,(B,C,—-B,Cy)+A,(B,Cy — B:C,)+ A, (B,Cy — B,Cy)
=B-CxA=C-AxB

=—-A.-CxB=-C-BxA=-B-AxC, andsoon (1.48)

There is a high degree of symmetry in the component expansion. Every term contains the
factorsA;, B;, andCy. If i, j, andk are in cyclic ordelx, y, z), the sign is positive. If the
order is anticyclic, the sign is negative. Further, the dot and the cross may be interchanged,

A-BxC=AxB-C. (1.49)
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FIGURE 1.16 Parallelepiped representation of triple scalar product.

A convenient representation of the component expansion of Eq. (1.48) is provided by the
determinant

A A, A,
A-BxC=|B, B, B.|. (1.50)
c. Cy C.

The rules for interchanging rows and columns of a determidgbvide an immediate
verification of the permutations listed in Eq. (1.48), whereas the symmet&y Bf and
C in the determinant form suggests the relation given in Eq. (1.49). The triple products
encountered in Section 1.4, which showed that B was perpendicular to both andB,
were special cases of the general result (Eq. (1.48)).

The triple scalar product has a direct geometrical interpretation. The three va¢c®ys
andC may be interpreted as defining a parallelepiped (Fig. 1.16):

IB x C| = BCsing
= area of parallelogram base. (1.51)

The direction, of course, is normal to the base. Dot#ninto this means multiplying the
base area by the projection &fonto the normal, or base times height. Therefore

A - B x C = volume of parallelepiped defined By, B, andC.

The triple scalar product finds an interesting and important application in the construc-
tion of a reciprocal crystal lattice. Let b, andc (not necessarily mutually perpendicular)

125ee Section 3.1 for a summary of the properties of determinants.
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represent the vectors that define a crystal lattice. The displacement from one lattice point
to another may then be written

r =nga+npb+nc.c, (1.52)
with n,, np, andn, taking on integral values. With these vectors we may form
, bxc , cxa axb

d=abxc b:a-bxc’ C/:a-bxc' (1.53a)
We see tha#l is perpendicular to the plane containibgandc, and we can readily show
that
a-a=b'-b=c.c=1, (1.53b)
whereas
a-b=a.c=b-a=b'.c=c.a=c-b=0. (1.53c)

It is from Egs. (1.53b) and (1.53c) that the naneeiprocal lattice is associated with the
pointsr’ = n;a +nyb’ +n,.c". The mathematical space in which this reciprocal lattice ex-
ists is sometimes calledRurier space, on the basis of relations to the Fourier analysis of
Chapters 14 and 15. This reciprocal lattice is useful in problems involving the scattering of
waves from the various planes in a crystal. Further details may be found in R. B. Leighton’s
Principles of Modern Physics, pp. 440-448 [New York: McGraw-Hill (1959)].

Triple Vector Product
The second triple product of interestis< (B x C), which is a vector. Here the parentheses
must be retained, as may be seen from a special(@as&) x ¥ =0, whilek x (X x §) =
Kx2=-Y.

Example 1.5.1  ATripLE VECTOR PRODUCT

For the vectors

A=%+2)—2=(1,2-1), B=y+2=(0,1,1), C=%-9y=(0,1,1),

X v z
BxC=|0 1 1=%+9y-—2
1 -1 0
and
Xy z
AxBxC=1 2 -1|l=-%-2=-FY+2—-&—-9
1 1 -1

=—-B-C. [ |

By rewriting the result in the last line of Example 1.5.1 as a linear combinati@neofd
C, we notice that, taking a geometric approach, the triple vector product is perpendicular
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BxC

N AxX(BxC)

FIGURE 1.17 B andC are in thexy-plane.
B x C is perpendicular to they-plane and
is shown here along theaxis. Then
A x (B x C) is perpendicular to the-axis
and therefore is back in they-plane.

to A and toB x C. The plane defined bB andC is perpendicular t& x C, and so the
triple product lies in this plane (see Fig. 1.17):

A x (B xC)=uB+vC. (1.54)

Taking the scalar product of Eq. (1.54) with gives zero for the left-hand side, so
uA -B+ vA - C=0. Hencex = wA - C andv = —wA - B for a suitablew. Substitut-
ing these values into Eq. (1.54) gives

A x (B xC)=w[B(A-C)—C(A-B)]; (1.55)

we want to show that
w=1

in Eg. (1.55), an important relation sometimes known as BR&—CAB rule. Since
Eq. (1.55) is linear inA, B, andC, w is independent of these magnitudes. That is, we
only need to show thaiy = 1 for unit vectorsA, B, C. Let us denoteB - C = cosa,
C.A=cosB, A-B=cosy, and square Eq. (1.55) to obtain

[Ax Bx O =A2BxC)2-[A-Bx O]
=1-coda—[A-(Bx CA:)]2
=w?[(A-C)>+(A-B)?2-2A-B)A -C)B-O)]
= w?(cod B + cos y — 2cosu cosp cosy), (1.56)
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using(A x B)2 = A?B2? — (A - B)? repeatedly (see Eq. (1.43) for a proof). Consequently,
the (squared) volume spannedAyB, C that occurs in Eq. (1.56) can be written as

[A-Bx )] =1-cofa — w?(cod B + cod y — 2 cosx Cosp cosy).

Herew? = 1, since this volume is symmetric ia 8, y. That is,w = +1 and is inde-
pendent ofA, B, C. Using again the special cagex (X x ) = —¥ in Eq. (1.55) finally
givesw = 1. (An alternate derivation using the Levi-Civita symbgk of Chapter 2 is the
topic of Exercise 2.9.8.)

It might be noted here that just as vectors are independent of the coordinates, so a vector
equation is independent of the particular coordinate system. The coordinate system only
determines the components. If the vector equation can be established in Cartesian coor-
dinates, it is established and valid in any of the coordinate systems to be introduced in
Chapter 2. Thus, Eq. (1.55) may be verified by a direct though not very elegant method of
expanding into Cartesian components (see Exercise 1.5.2).

Exercises
151 One vertex of a glass parallelepiped is at the origin (Fig. 1.18). The three adjacent
vertices are a3, 0, 0), (0,0, 2), and(0, 3, 1). All lengths are in centimeters. Calculate
the number of cubic centimeters of glass in the parallelepiped using the triple scalar
product.
152 Verify the expansion of the triple vector product

A x (BxC)=B(A-C)—C(A-B)

~

FIGURE 1.18 Parallelepiped: triple scalar product.
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by direct expansion in Cartesian coordinates.
Show that the first step in Eq. (1.43), which is

(A xB)- (A xB)=A%B?— (A-B)?,
is consistent with th8AC—CAB rule for a triple vector product.

You are given the three vectofs B, andC,

A:5\(+§/s
B=y+2
C=%-2

(@) Compute the triple scalar produét; B x C. Noting thatA = B + C, give a geo-
metric interpretation of your result for the triple scalar product.
(b) ComputeA x (B x C).

The orbital angular momentuin of a particle is given by. =r x p =mr x v, where
p is the linear momentum. With linear and angular velocity related byw x r, show
that

L= mrz[w —f(f- w)].

Heref is a unit vector in the-direction. Forr - @ = 0 this reduces th = /@, with the
moment of inertial given bymr2. In Section 3.5 this result is generalized to form an
inertia tensor.

The kinetic energy of a single particle is given By= %mvz. For rotational motion this
becomesim (@ x r)2. Show that

T = %m[rza)z —(r -w)z].

Forr - @ = 0 this reduces t@" = 31?2, with the moment of inertid given bymr2.
Show that®

ax(bxco+bx(cxa+cx(@xhb)y=0.
A vector A is decomposed into a radial vectéy and a tangential vectdk;. If  is a
unit vector in the radial direction, show that

(@ A, =f(A-f)and
(b) A, =-Ffx({ xA).

Prove that a necessary and sufficient condition for the three (nonvanishing) w&g¢tors
B, andC to be coplanar is the vanishing of the triple scalar product

A-BxC=0.

13This is Jacobi's identity for vector products; for commutators it is important in the context of Lie algebras (see Eq. (4.16) in
Section 4.2).
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Three vectord\, B, andC are given by
A=3R—-2§+22
B =68+ 49 — 22,
C=-3%x—2y—4z
Compute the values & - B x C andA x (B x C),C x (A x B) andB x (C x A).
VectorD is a linear combination of three noncoplanar (and nonorthogonal) vectors:
D=aA+bB+cC.

Show that the coefficients are given by a ratio of triple scalar products,

D-BxC
a=—, and so on.
A-BxC
Show that
(AxB)-(CxD)=(A-C)(B-D)— (A-D)(B-C).
Show that

AxB)x(CxD)=(A-BxD)C—-(A-BxC)D.
For aspherical triangle such as pictured in Fig. 1.14 show that
SinA sinB sinC
SinBC _ SiNCA _ SinAB
Here sind is the sine of the included angle At while BC is the side opposite (in
radians).

Given
,_ bxc ,  Ctxa ¢ axb
T a-bxc’ T a-bxc T a-bxc’
anda- b x c# 0, show that
(a) X'y/=8xys(xvy:avbsc)y
(b) & -b'xcd=(@-bxc)L
© a= b’ x ¢
T a-bxc’
If Xy =8y, (X,y=a, b, c), prove that
,  bxc
T a-bxc

(This is the converse of Problem 1.5.15.)

Show that any vectdv may be expressed in terms of the reciprocal veads’, ¢’ (of
Problem 1.5.15) by

V= -aa+ V- -bb+ . oc.



32 Chapter 1 Vector Analysis

1518 An electric charge;; moving with velocityv, produces a magnetic inducti@given
by

no vy x f

B =
a2

(mks units),
wheref points fromg; to the point at whictB is measured (Biot and Savart law).

(&) Show that the magnetic force on a second chaggeelocity vo, is given by the
triple vector product

Fo= @_qlqzvz x (Vg x ).
}”

(b) Write out the corresponding magnetic fofegthat g, exerts ong;. Define your
unit radial vector. How d&, andF, compare?
(c) CalculateF; andF; for the case ofj; andg, moving along parallel trajectories

side by side.
ANS.
() Fi=—12Ty 5 v x ).
4 r2

In general, there is no simple relation between
F1 andF,. Specifically, Newton’s third laws; = —F»,
does not hold.
10 4192 5
c) F f=—Fo.
© Fi=,""73 2
Mutual attraction.

1.6 GRADIENT, V

To provide a motivation for the vector nature of partial derivatives, we now introduce the
total variation of a function F(x, y),

It consists of independent variations in theand y-directions. We writel F as a sum of
two increments, one purely in the and the other in the-direction,

dF(x,y)=F(x+dx,y+dy) — F(x,y)
=[F(x+dx,y+dy)— F(x,y+dy)|+[F(x,y+dy) — F(x,)]

by adding and subtracting(x, y + dy). The mean value theorem (that is, continuityrf
tells us that her@ F/dx, d F/dy are evaluated at some poity betweenr andx + dx, y
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andy + dy, respectively. Asix — 0 anddy — 0,& — x andn — y. This result general-
izes to three and higher dimensions. For example, for a fungtiofthree variables,

dp(x,y.2) = [p(x +dx,y +dy, z+dz) — p(x,y +dy. 2 +d2)]
+ e,y +dy, z+dz) — o(x, v,z +d2)]
+ e, y.z+d2) —(x,y,2)] (1.57)

dp dp dp
= axdx + 8ydy + aZdz.
Algebraically,d¢ in the total variation is a scalar product of the change in positioand
the directional change ofp. And now we are ready to recognize the three-dimensional
partial derivative as a vector, which leads us to the concept of gradient.

Suppose thap(x, y, z) is a scalar point function, that is, a function whose value depends
on the values of the coordinatés y, 7). As a scalar, it must have the same value at a given
fixed point in space, independent of the rotation of our coordinate system, or

¢/ (x1, xp, x3) = p(x1, X2, X3). (1.58)
By differentiating with respect t®; we obtain
3¢’ (x], x5, x3)  dg(x1, x2, X3) I Ox; ¢
= =) —— = ii— 1.59
ax; dx; ; dx; dx] ;a” ax; ( )

by the rules of partial differentiation and Egs. (1.16a) and (1.16b). But comparison with
Eq. (1.17), the vector transformation law, now shows that we bametructed a vector
with components¢/dx ;. This vector we label the gradient of

A convenient symbolism is

L0 d¢ L0
Vo=x22 492 L 5% (1.60)
ox dy 9z
or
] ] 9
V=Kk—+y—+2—. (1.61)

Vo (or delgp) is our gradient of the scalar, whereasv (del) itself is a vector differential
operator (available to operate on or to differentiate a sgglafll the relationships fov
(del) can be derived from the hybrid nature of del in terms of both the partial derivatives
and its vector nature.

The gradient of a scalar is extremely important in physics and engineering in expressing
the relation between a force field and a potential field,

forceF = —V (potentialV), (1.62)

which holds for both gravitational and electrostatic fields, among others. Note that the
minus sign in Eq. (B2) results in water flowing downbhill rather than uphill! If a force can

be described, as in Eq. (1.62), by a single functiofn) everywhere, we call the scalar
functionV its potential. Because the force is the directional derivative of the potential, we
can find the potential, if it exists, by integrating the force along a suitable path. Because the
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total variationdV = VV - dr = —F - dr is the work done against the force along the path
dr, we recognize the physical meaning of the potential (difference) as work and energy.
Moreover, in a sum of path increments the intermediate points cancel,

[V +dri+dro) — V(r+dr)]+ [V +dr) — V()] =V +dra+dry) - V(r),

so the integrated work along some path from an initial pgino a final pointr is given by

the potential differenc& (r) — V(r;) at the endpoints of the path. Therefore, such forces
are especially simple and well behaved: They are calbeder vative. When there is loss of
energy due to friction along the path or some other dissipation, the work will depend on the
path, and such forces cannot be conservative: No potential exists. We discuss conservative
forces in more detail in Section 1.13.

Example 1.6.1  THe GRADIENT OF A POTENTIAL V()

Let us calculate the gradient &f(r) = V (v/x2 + y2 +z2), so

aVv aVv aVv
(r) +9 (r) I (r)'
0x dy 0z

Now, V (r) depends on through the dependence obn x. Thereforé*
av(r) dv(r) or

VV(@r) =X

0x dr  ox’
Fromr as a function of, y, z,
ar A2+ y24HY2 x X
ax dx N o R

Therefore
aV(r) dV(r) x
ax  dr r
Permuting coordinate — y, y — z,z — x) to obtain they andz derivatives, we get

. . .. 1dv
VV(r)=&x+Vyy+2z)——
rdr

_rdV_de
T rdr dr’

Heref is a unit vector(r /r) in the positive radial direction. The gradient of a function of
r is a vector in the (positive or negative) radial direction. In Section2i§,seen as one
of the three orthonormal unit vectors of spherical polar coordinateg&fda as the radial
component oiv. |

Thisis a special case of tlohain rule of partial differentiation:

aV(r.0,9) 9V dr V36 3V dg
ax T r ax 30 9x B¢ Ox’

wheredV /a0 = dV /dp = 0,3V /ar — dV/dr.
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A Geometrical Interpretation

One immediate application & ¢ is to dot it into an increment of length
dr =Xdx +9dy +2dz.
Thus we obtain

0 d 9
Vo -dr= —wdx+—(pdy+—¢dz=d<p,
ox ay 9z

the change in the scalar functigrcorresponding to a change in positidén Now consider

P andQ to be two points on a surfaggx, y, z) = C, a constant. These points are chosen
so thatQ is a distancer from P. Then, moving fromP to Q, the change ip(x, y,z) =C

is given by

dp=(Vg)-dr=0 (1.63)

since we stay on the surfaggx, y, z) = C. This shows thaV ¢ is perpendicular telr.
Sincedr may have any direction from® aslong asit staysin the surface of constaniy,
point Q being restricted to the surface but having arbitrary direciop s seen as normal
to the surface = constant (Fig. 1.19).

If we now permitdr to take us from one surfage= C; to an adjacent surfage= C»
(Fig. 1.20),

dp=C1—Co=AC = (Vg)-dr. (1.64)

For a givendg, |dr| is a minimum when it is chosen parallel ¥0p (cosp = 1); or, for
a givenldr|, the change in the scalar functignis maximized by choosindr parallel to

A

A4
plxyvz)=C

X

FIGURE 1.19 The length incrementr has to stay on the surfage= C.
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p=0C,>C,

FIGURE 1.20 Gradient.

V. Thisidentifies Vg as a vector having the direction of the maximum space rate

of change of ¢, an identification that will be useful in Chapter 2 when we consider non-
Cartesian coordinate systems. This identificatiorlVef may also be developed by using
the calculus of variations subject to a constraint, Exercise 17.6.9.

Example 1.6.2  FORCE AS GRADIENT OF A POTENTIAL

As a specific example of the foregoing, and as an extension of Example 1.6.1, we consider
the surfaces consisting of concentric spherical shells, Fig. 1.21. We have

12

o(x,y.2) = (x*+y? + 2% r=C,

wherer is the radius, equal t@, our constantAC = Ag = Ar, the distance between two
shells. From Example 1.6.1

d
Vo) =920 ¢,
dr
The gradient is in the radial direction and is normal to the spherical supfac€’. |

Example 71.6.3  INTEGRATION BY PARTS OF GRADIENT

Let us prove the formuld A(r) -V £(r)d® = — [ f(r)V -A(r) d3r, whereA or f or both
vanish at infinity so that the integrated parts vanish. This condition is satisfied if, for exam-
ple, A is the electromagnetic vector potential afids a bound-state wave functian(r).
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FIGURE 1.21 Gradient for
@(x,y,2) = (x* + y2 4+ z9)Y?, spherical
shells:(x3 + y3 +22)Y2 =rp = C2,
Z+y2+2HY2=r=C1

Writing the inner product in Cartesian coordinates, integrating each one-dimensional
integral by parts, and dropping the integrated terms, we obtain

/A(r).Vf<r>d3r=//[Axf|§‘;_oo—/f
=—///fa(;lxdxdydz—///f%dydxdz—///faaézdzdxdy

= / F(OV A d3r.

0A
xdxi| dydz+---
ox

If A = ¢*?&describes an outgoing photon in the direction of the constant polarization unit
vectoréand f = v (r) is an exponentially decaying bound-state wave function, then

) d ikz )
/e"“é-vw(r)d%:—esz(r) - d3r:—ikez[1//(r)e’kzd3r,
z
because only the-component of the gradient contributes. |
Exercises

161  If S(x,y,2) = (% +y?>+ 2732 find

(a) VSatthe point1l, 2, 3);
(b) the magnitude of the gradient 8f |V S| at (1, 2, 3); and
(c) the direction cosines &F S at (1, 2, 3).
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16.2 (&) Find a unit vector perpendicular to the surface
x2+y?+72=3
at the point(1, 1, 1). Lengths are in centimeters.
(b) Derive the equation of the plane tangent to the surfa¢g 4t 1).

ANS. @)X +9+2)//3, (b)x +y+z=3.

16.3 Given a vector 12 = X(x1 — x2) + Y(y1 — y2) + 2(z1 — z2), show thatV1r12 (gradient
with respect toxg, y1, andz1 of the magnitude-12) is a unit vector in the direction of
rio.

164 If a vector functionF depends on both space coordinatesy, z) and timez, show that
oF
dF =(dr - V)F + Edt.

165 Show thatV (uv) = vVu + uVv, whereu andv are differentiable scalar functions of
x,y, andz.

(@) Show that a necessary and sufficient condition #iat y, z) andv(x, y, z) are
related by some functioffi(u, v) =0 is that(Vu) x (Vv) =0.

(b) Ifu=u(x,y)andv=rv(x,y), show that the conditiotVu) x (Vv) =0 leads to
the two-dimensional Jacobian

ou du
J u,v _ﬁ W—O
=law o |=0

Xy ax ay

The functions: andv are assumed differentiable.

1.7 DIVERGENCE, V

Differentiating a vector function is a simple extension of differentiating scalar quantities.
Suppose (7) describes the position of a satellite at some tim&hen, for differentiation
with respect to time,

dr (1) rt+ At) —r()

—— = lim

=V, linear velocity.
dt A—0 At

Graphically, we again have the slope of a curve, orbit, or trajectory, as shown in Fig. 1.22.

If we resolver (¢) into its Cartesian componentgr /dt always reduces directly to a
vector sum of not more than three (for three-dimensional space) scalar derivatives. In other
coordinate systems (Chapter 2) the situation is more complicated, for the unit vectors are
no longer constant in direction. Differentiation with respect to the space coordinates is
handled in the same way as differentiation with respect to time, as seen in the following
paragraphs.
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lim Ar _
Ar At—0 At

r(t)
r(t+ Al)

FIGURE 1.22 Differentiation of a vector.

In Section 1.6,V was defined as a vector operator. Now, paying attention to both its
vector and its differential properties, we let it operate on a vector. First, as a vector we dot
it into a second vector to obtain

aV. avy, aV.
V.V=—4 24 % (1.65a)
ax ay 0z
known as the divergence ®f. This is a scalar, as discussed in Section 1.3.
Example 1.7.1  DIVERGENCE OF COORDINATE VECTOR
CalculateV -r:
.0 .0 .0 " . A
Vir=(X—4+y—+72— ) Xx+Yyy+122)
ox ay 0z
_0x dy 0z
Cax 9y Az
orv.r=3. |

Example 1.7.2  DIVERGENCE OF CENTRAL FORCE FIELD

Generalizing Example 1.7.1,
d 0 9
V. (rf(r)) = g[x f(r)] + @[yf(r)] + g[zf(r)]

2 2 2
xcdf y°df z¢df
:3 _—
f(r)+rdr+rdr+rdr

_ af
—3f(r)+rdr.
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The manipulation of the partial derivatives leading to the second equation in Example 1.7.2
is discussed in Example 1.6.1. In particularfifr) = "1,

V. (rr"il) =V.ir"
=314 (n— 1)r"_1
=mn+2r" L (1.65b)

This divergence vanishes far= —2, except at = 0, an important fact in Section 1.18.

Example 1.7.3 INTEGRATION BY PARTS OF DIVERGENCE

Let us prove the formuld f(r)V - A(r)d% = — [A - V f d%r, whereA or f or both
vanish at infinity.

To show this, we proceed, as in Example 1.6.3, by integration by parts after writing
the inner product in Cartesian coordinates. Because the integrated terms are evaluated at
infinity, where they vanish, we obtain
A

IA dA
/f(r)V~A(r)d3r:/f dxdydz + —2dydxdz + —dzdxdy
0x dy 0z

0 0 0
= —/ Ax—fdxdydz + Ay—fdydxdz + Az—fdzdxdy
ox ay az

=—/A-Vfd3r. -

A Physical Interpretation

To develop a feeling for the physical significance of the divergence, cor€iderv) with

v(x, y, z), the velocity of a compressible fluid, apdx, y, z), its density at pointx, y, z).

If we consider a small voluméx dy dz (Fig. 1.23) atx = y = z = 0, the fluid flowing into

this volume per unit time (positive-direction) through the facBEFGH is (rate of flow
iN)EFGH = pvx|x=0 = dy dz. The components of the flowv, and pv, tangential to this
face contribute nothing to the flow through this face. The rate of flow out (still positive
x-direction) through fac&BCD is pv, |x=4x dy dz. To compare these flows and to find the
net flow out, we expand this last result, like the total variation in SectioA®IT®is yields

(rate of flow oujagcD = PVx|x=ax dy dz

a
= [pvx + —(pvx)dX} dydz.
dx x=0
Here the derivative term is a first correction term, allowing for the possibility of nonuniform
density or velocity or bott® The zero-order termu, | o (corresponding to uniform flow)

15Here we have the incremett and we show a partial derivative with respecttsincepv, may also depend omandz.
16strictly speakingpvy is averaged over fadeFGH and the expressiopu, + (3/9x)(pvx) dx is similarly averaged over face
ABCD. Using an arbitrarily small differential volume, we find that the averages reduce to the values employed here.
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dz

/ ! dy
x

FiGure 1.23  Differential rectangular parallelepiped (in first octant).

cancels out:
0
Net rate of flow ouit, = a—(pvx) dxdydz.
X

Equivalently, we can arrive at this result by

im PYx(ax.0.0) —pv:(0.0.0) _ dlpvx(x,y.2)]
Ax—0 Ax o 9x 0’0’0.

Now, thex-axis is not entitled to any preferred treatment. The preceding result for the two
faces perpendicular to theaxis must hold for the two faces perpendicular to fhaxis,

with x replaced byy and the corresponding changes foandz: y — z, z — x. This is

a cyclic permutation of the coordinates. A further cyclic permutation yields the result for
the remaining two faces of our parallelepiped. Adding the net rate of flow out for all three
pairs of surfaces of our volume element, we have

net flow out
(per unit time) ™

=V . (pV)dxdydz. (1.66)

0 d d
[a—x(pvx) + 5(,01@) + a(pvz)} dxdydz

Therefore the net flow of our compressible fluid out of the volume elertedty dz per
unit volume per unit time i% - (pv). Hence the namdiver gence. A direct application is
in the continuity equation

ap
at
which states that a net flow out of the volume results in a decreased density inside the

volume. Note that in Eqg. (1.673a),is considered to be a possible function of time as well
as of spacep(x, y, z, t). The divergence appears in a wide variety of physical problems,

4+ V. (pv) =0, (1.67a)
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ranging from a probability current density in guantum mechanics to neutron leakage in a
nuclear reactor.
The combinatiorV - (fV), in which f is a scalar function an¥l is a vector function,
may be written
V- (fV)= fo)+ fV)+ fV)
af 3f Vy | 9f aV;
=V v 4=
ax)‘Jr a dy +f8y+8z Z+faz
=(Vf) V+[fV-V, (1.67b)
which is just what we would expect for the derivative of a product. Notice thas a
differential operator differentiates both andV; as a vector it is dotted int¥/ (in each
term).
If we have the special case of the divergence of a vector vanishing,
V.-B=0, (1.68)
the vectorB is said to besolenoidal, the term coming from the example in whighis the
magnetic induction and Eq. (1.68) appears as one of Maxwell's equations. When a vector
is solenoidal, it may be written as the curl of another vector known as the vector potential.
(In Section 1.13 we shall calculate such a vector potential.)
Exercises
171 For a particle moving in a circular orhit= Xr coswr + yr sinwr,
(a) evaluate x I, with i =4 =v.
(b) Show thaf + w?r =0 Wlth =
The radius- and the angular velocity are constant.
ANS. (a)2wr?.
172 Vector A satisfies the vector transformation law, Eq. (1.15). Show directly that its time
derivativedA /dt also satisfies Eq. (1.15) and is therefore a vector.
173 Show, by differentiating components, that
(b) (AxB)_dth—i—Axd[,
just like the derivative of the product of two algebraic functions.
174 In Chapter 2 it will be seen that the unit vectors in non-Cartesian coordinate systems are

usually functions of the coordinate variables= € (g1, g2, g3) but|e;| = 1. Show that
eitherde; /aqg; =0 orde;/dg; is orthogonal tae;.
Hint. 3e?/dq, = 0.
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175 ProveV .(axb)=b-(Vxa) —a-(V xb).
Hint. Treat as a triple scalar product.

176 The electrostatic field of a point charges

4 eg

o] &

Calculate the divergence & What happens at the origin?

1.8 CURL, Vx

Another possible operation with the vector operatds to cross it into a vector. We obtain
V xV f(aV aV +A8V aV +23V 8V
X = o _— | —_ _— J— , — —
dy © 9z yazx ax ° ax 7 ay

(1.69)

|
S
N
Sl N

which is called theur| of V. In expanding this determinant we must consider the derivative
nature ofV. Specifically,V x V is defined only as an operator, another vector differential
operator. It is certainly not equal, in general,+& x V.17 In the case of Eq. (1.69) the
determinant must be expandigdm the top down so that we get the derivatives as shown
in the middle portion of Eq. (1.69). ¥ is crossed into the product of a scalar and a vector,

we can show

9 d
VX(fV)|x=[5(sz)—a—z(ny)]
=( v, af v, gv>

2 Jy — ,
fay+8yZ faz dz 7

= fV x V]y + (Vf) x V. (1.70)

If we permute the coordinates— y, y — z,z — x to pick up they-component and
then permute them a second time to pick up#f@mmponent, then

V x (fV)=fV xV+(Vf)xV, (1.71)

which is the vector product analog of Eq. (1.67b). Again, as a differential opevator
differentiates bothf andV. As a vector it is crossed intd (in each term).

170 this same spirit, ifA is a differential operator, it is not necessarily true thak A = 0. Specifically, for the quantum
mechanical angular momentusperator L = —i(r x V), we find thatL x L =iL. See Sections 4.3 and 4.4 for more details.
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Example 1.8.1  VECTOR POTENTIAL OF A CONSTANT B FIELD

From electrodynamics we know thet: B = 0, which has the general soluti@=V x A,
whereA(r) is called the vector potential (of the magnetic induction), bec&us¥ x A) =
(VxV)-A=0, as atriple scalar product with two identical vectors. This last identity will
not change if we add the gradient of some scalar function to the vector potential, which,

therefore, is not unique.
In our case, we want to show that a vector potenti&l is %(B x r).

Using theBAC-BAC rule in conjunction with Example 1.7.1, we find that
2VxA=VxBxr)=(V-r)B—(B-V)r=3B—-B=2B,
where we indicate by the ordering of the scalar product of the second term that the gradient
still acts on the coordinate vector. |

Example 1.8.2  CURL OF A CENTRAL FORCE FIELD

CalculateVv x (r f(r)).

By Eq. (1.71),
Vx(rfm)=frVxr+[VFr]xr. (1.72)
First,
Xy 2
Vxr=|g& & #|=0 (1.73)
x 'y z

Second, usiny f (r) =f(df/dr) (Example 1.6.1), we obtain

erf(r):%fxrzo. (1.74)

This vector product vanishes, since- fr andf x f = 0. [ |

To develop a better feeling for the physical significance of the curl, we consider the
circulation of fluid around a differential loop in they-plane, Fig. 1.24.

ya Xy ¥y + dy 3 X, +dx, ¥, + dy

Ao ¥p 1 {,l'“ + ¢lx, ‘\‘“]

> X

FIGURE 1.24 Circulation around a differential loop.
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Although the circulation is technically given by a vector line integfal - dA (Sec-
tion 1.10), we can set up the equivalent scalar integrals here. Let us take the circulation to
be

circulatioqz34=/Vx(x,y)dkar/Vy(x,y)dky
1 2

—i—/Vx(x,y)d)»x—i—/Vy(x,y)d)»y. (1.75)
3 4

The numbers 1, 2, 3, and 4 refer to the numbered line segments in Fig. 1.24. In the first
integral,d\, = +dx; but in the third integrald, = —dx because the third line segment

is traversed in the negatiwedirection. Similarlydi, = +dy for the second integrakdy

for the fourth. Next, the integrands are referred to the pigtyp) with a Taylor expan-
sion'® taking into account the displacement of line segment 3 from 1 and that of 2 from 4.
For our differential line segments this leads to

. . oV,
circulation 234 = V, (xo, yo) dx + [Vy(xo, yo) + B—}dX} dy
X

AV,
+ |:Vx (x0, yo) + Wdy](—dx) + Vy(xo0, yo) (—dy)

v, aV.
:=(-—l— X>dxdy (1.76)
y

Dividing by dx dy, we have

circulation per unit area V x V|,. 1.77)

The circulatiort® about our differential area in they-plane is given by the-component
of V x V. In principle, the curlV x V at (xg, yo) could be determined by inserting a
(differential) paddle wheel into the moving fluid at poinb, yo). The rotation of the little
paddle wheel would be a measure of the curl, and its axis would be along the direction of
V x V, which is perpendicular to the plane of circulation.

We shall use the result, Eq. (1.76), in Section 1.12 to derive Stokes’ theorem. Whenever
the curl of a vectoWV vanishes,

V xV =0, (1.78)

V is labeledrrotational. The most important physical examples of irrotational vectors are
the gravitational and electrostatic forces. In each case
r

f
V=C—=C—, 1.79

2-¢3 (1.79)
where C is a constant and is the unit vector in the outward radial direction. For the
gravitational case we have= —Gm1m2, given by Newton’s law of universal gravitation.

If C = q192/4meo, we have Coulomb’s law of electrostatics (mks units). The force

8Here, Vy (xo + dx, yo) = Vy (x0, y0) + (aa%)myo dx + --- . The higher-order terms will drop out in the limit @ — 0.
A correction term for the variation dfy, with y is canceled by the corresponding term in the fourth integral.
1991 fluid dynamicsV x V is called the “vorticity.”
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given in Eg. (1.79) may be shown to be irrotational by direct expansion into Cartesian
components, as we did in Example 1.8.1. Another approach is developed in Chapter 2, in
which we expres¥ x, the curl, in terms of spherical polar coordinates. In Section 1.13 we
shall see that whenever a vector is irrotational, the vector may be written as the (negative)
gradient of a scalar potential. In Section 1.16 we shall prove that a vector field may be
resolved into an irrotational part and a solenoidal part (subject to conditions at infinity).
In terms of the electromagnetic field this corresponds to the resolution into an irrotational
electric field and a solenoidal magnetic field.

For waves in an elastic medium, if the displacemei# irrotational,V x u = 0, plane
waves (or spherical waves at large distances) become longitudinalisifsolenoidal,

V - u =0, then the waves become transverse. A seismic disturbance will produce a dis-
placement that may be resolved into a solenoidal part and an irrotational part (compare
Section 1.16). The irrotational part yields the longitudiRa{primary) earthquake waves.

The solenoidal part gives rise to the slower transvérésecondary) waves.

Using the gradient, divergence, and curl, and of courseBd&e—CAB rule, we may
construct or verify a large number of useful vector identities. For verification, complete
expansion into Cartesian components is always a possibility. Sometimes if we use insight
instead of routine shuffling of Cartesian components, the verification process can be short-
ened drastically.

Remember thaV is a vector operator, a hybrid creature satisfying two sets of rules:

1. vector rules, and
2. partial differentiation rules — including differentiation of a product.

Example 1.8.3  GRADIENT OF A DOT PRODUCT

Verify that
VA -B)=B-VA+(A-V)B+Bx (VxA)+Ax(VxB). (1.80)

This particular example hinges on the recognition tfigh - B) is the type of term that
appears in th8AC—-CAB expansion of a triple vector product, Eq. (1.55). For instance,

Ax(VxB)=V(A-B)—(A-V)B,

with the V differentiating onlyB, not A. From the commutativity of factors in a scalar
product we may interchangle andB and write

Bx (VxA)=V(A-B)—(B:-V)A,
now with V differentiating onlyA, not B. Adding these two equations, we obtaindif-

ferentiating the produdA - B and the identity, Eq. (1.80). This identity is used frequently
in electromagnetic theory. Exercise 1.8.13 is a simple illustration. |
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Example 1.8.4  INTEGRATION BY PARTS OF CURL

Let us prove the formuld C(r) - (V x A(r))d% = [A(r) - (V x C(r)) d%r, whereA or
C or both vanish at infinity.

To show this, we proceed, as in Examples 1.6.3 and 1.7.3, by integration by parts after
writing the inner product and the curl in Cartesian coordinates. Because the integrated
terms vanish at infinity we obtain

/C(r) (V< A®N) d3
3A, 0A dA.  9A dA, 0A
=/ Cl—=2-=-2)+C (=2 )+ == |
ox ay ay 9z 9z ax
ac. oaC aC, dC 3C, aC
=/ A == - 2 )44, 2 - =)+ A (2 - =) @
ay 0z 0z dx ax ay

=/A(r) (VxCn)d3,

just rearranging appropriately the terms after integration by parts. |

Exercises

181 Show, by rotating the coordinates, that the components of the curl of a vector transform
as a vector.
Hint. The direction cosine identities of Eq. (1.46) are available as needed.

182 Show thatu x v is solenoidal ifu andv are each irrotational.

183 If A isirrotational, show tha# x r is solenoidal.

184 A rigid body is rotating with constant angular velocity Show that the linear velocity
v is solenoidal.

185 If a vector functiorf(x, y, z) is notirrotational but the product gf and a scalar function
g(x, y, z) isirrotational, show that then

f-Vxf=0.

1.8.6 If (@) V=XVi(x,y)+9Vy(x,y) and (b)V x V # 0, prove thav x V is perpendicular
toV.

187 Classically, orbital angular momentum is given by=r x p, wherep is the linear

momentum. To go from classical mechanics to quantum mechanics, replac¢he
operator—iV (Section 15.6). Show that the quantum mechanical angular momentum
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operator has Cartesian components (in unitg)of

Using the angular momentum operators previously given, show that they satisfy com-
mutation relations of the form

[Ly,Ly]=LyLy—LyLy=iL,
and hence
L xL=ilL.

These commutation relations will be taken later as the defining relations of an angular
momentum operator — Exercise 3.2.15 and the following one and Chapter 4.

With the commutator bracket notati¢n,, L,] = L;L, — L,L,, the angular momen-
tum vectorL satisfiedL,, Ly]=iL,, etc.,orL x L =iL.

If two other vectorsa andb commute with each other and with, that is,[a, b] =
[a,L]=[b,L] =0, show that

[a-L,b-L]=i(axb)-L.

1810 ForA=XA,(x,y,z)andB =XB,(x, y, z) evaluate each term in the vector identity

VA-B)=B-V)A+(A-V)B+B x (VxA)+A x (V xB)

and verify that the identity is satisfied.

1811  Verify the vector identity

Vx(AxB)=(B -V)A—(A-V)B—B(V-A)+A(V-B).

1.8.12  As an alternative to the vector identity of Example 1.8.3 show that

VA -B)=(AxV)xB+(BxV)xA+AV -B)+B(V-A).

1.8.13  Verify the identity

1 2
Ax (V x A) =2V (A%) — (A-V)A.

1.8.14 If A andB are constant vectors, show that

V(A-Bxr)=A xB.
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1.8.15 A distribution of electric currents creates a constant magnetic momentonst. The
force onm in an external magnetic inductidhis given by
F=V x (B xm).
Show that
F=(m-V)B.

Note. Assuming no time dependence of the fields, Maxwell's equations Yiedd = 0.
Also,V-B=0.

1.8.16  An electric dipole of momenp is located at the origin. The dipole creates an electric
potential atr given by

y(r)= PI
A egr3’
Find the electric fieldE = -V atr.

1.8.17  The vector potentiaP of a magnetic dipole, dipole moment, is given byA(r) =
(no/4m)(m x r/r3). Show that the magnetic inductid= V x A is given by

uo 3 (F-m)—m
B=——«————.
4 r3

Note. The limiting process leading to point dipoles is discussed in Section 12.1 for
electric dipoles, in Section 12.5 for magnetic dipoles.

1.8.18  The velocity of a two-dimensional flow of liquid is given by
V =Ru(x,y) —Yv(x, y).
If the liquid is incompressible and the flow is irrotational, show that
du _ v du_ v
ax  dy ay dax
These are the Cauchy—Riemann conditions of Section 6.2.

and

1.8.19 The evaluation in this section of the four integrals for the circulation omitted Taylor
series terms such @3/, /0x, dV, /0y and all second derivatives. Show thdt, /ox,
aV,/dy cancel out when the four integrals are added and that the second derivative
terms drop out in the limit agx — 0,dy — 0.

Hint. Calculate the circulation per unit area and then take the éimi> 0, dy — O.

1.9 SUCCESSIVE APPLICATIONS OF V

We have now defined gradient, divergence, and curl to obtain vector, scalar, and vector
quantities, respectively. Letting operate on each of these quantities, we obtain

@V vy (b)V x Vo (c)VVv.V
dV-VxV (e)V x (VxV)
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all five expressions involving second derivatives and all five appearing in the second-order
differential equations of mathematical physics, particularly in electromagnetic theory.
The first expressior¥ - Vg, the divergence of the gradient, is named the Laplacian of

We have
) .0 L 0 .0 .0 .0
VoVe= (R 49— 2 ) (%52 492 452
ox ay 0z z

82(,0 82(p 82(p

=—+—+—. 1.8la
ax2 3y 9z2 ( )

Wheng is the electrostatic potential, we have
V.-Vp=0 (1.81b)

at points where the charge density vanishes, which is Laplace’s equation of electrostatics.
Often the combinatiolV - V is written V2, or A in the European literature.

Example 1. 9. 1 LAPLACIAN OF A POTENTIAL

CalculateVv - VV (r).
Referring to Examples 1.6.1 and 1.7.2,
AV _2dv d*v
dr  rdr dr?’
replacingf (r) in Example 1.7.2 by A&r - dV /dr. If V(r) =r", this reduces to

V.VV(r)=V

V.V =nmn+ "2

This vanishes for = 0 [V (r) = constant] and for = —1; thatis,V (r) = 1/r is a solution
of Laplace’s equationy?V (r) = 0. This is forr # 0. At r = 0, a Dirac delta function is
involved (see Eqg. (1.169) and Section 9.7). |

Expression (b) may be written

X ¥y z
d d d
VxVep=|3; 3y 2
do ¢ B¢
x ay 0z

By expanding the determinant, we obtain

92 92 92 92
VxV¢=k< $ ¢>+9< d w)

dydz  0zdy dzox dxdz
&L 32
IPY (b A A ) (1.82)
dxdy  dydx

assuming that the order of partial differentiation may be interchanged. This is true as long
as these second partial derivativespolre continuous functions. Then, from Eg. (1.82),
the curl of a gradient is identically zero. All gradients, therefore, are irrotational. Note that
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the zero in Eq. (1.82) comes as a mathematical identity, independent of any physics. The
zero in Eqg. (1.81b) is a consequence of physics.
Expression (d) is a triple scalar product that may be written

b2 9 3

dx ay 0z

— |0 d 9
V-VxVv=|E L 4 (1.83)

Ve Vy W,

Again, assuming continuity so that the order of differentiation is immaterial, we obtain
V-VxV=0. (1.84)

The divergence of a curl vanishes or all curls are solenoidal. In Section 1.16 we shall see
that vectors may be resolved into solenoidal and irrotational parts by Helmholtz's theorem.
The two remaining expressions satisfy a relation

Vx(VxV)=VV.V—-V.VV, (1.85)

valid in Cartesian coordinates (but not in curved coordinates). This follows immediately
from Eqg. (1.55), thedBAC—CAB rule, which we rewrite so thaf appears at the extreme
right of each term. The ter¥ - VV was not included in our list, but it may lefined by

Eq. (1.85).

Example 1.9.2 ELECTROMAGNETIC WAVE EQUATION

One important application of this vector relation (Eq. (1.85)) is in the derivation of the
electromagnetic wave equation. In vacuum Maxwell’s equations become

V-B=0, (1.86a)
V.-E=0, (1.86b)
JoE
VxB= 80“05, (1.86¢)
B
VXE=——. (1.86d)
at

HereE is the electric fieldB is the magnetic inductioryg is the electric permittivity,
and o is the magnetic permeability (Sl units), sguo = 1/¢2, ¢ being the velocity of
light. The relation has important consequences. Becagisgo can be measured in any
frame, the velocity of light is the same in any frame.

Suppose we eliminatB from Egs. (1.86¢) and (1.86d). We may do this by taking the
curl of both sides of Eqg. (1.86d) and the time derivative of both sides of Eq. (1.86c¢). Since
the space and time derivatives commute,

0 B
—VxB=V x —,
at at
and we obtain
92E

Vx(VxE)=- —.
x (V xE) €010 7
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Application of Egs. (1.85) and (1.86b) yields

3°E
ar2’
the electromagnetic vector wave equation. Againkifs expressed in Cartesian coor-
dinates, Eq. (1.87) separates into three scalar wave equations, each involving the scalar
Laplacian.

When external electric charge and current densities are kept as driving terms in
Maxwell's equations, similar wave equations are valid for the electric potential and the
vector potential. To show this, we solve Eq. (1.86a) by writg V x A as a curl of the
vector potential. This expression is substituted into Faraday'’s induction law in differential
form, Eq. (1.86d), to yiel&v x (E —|— ) = 0. The vanishing curl implies thd& + W isa
gradient and, therefore, can be erttena‘ﬁw, wherep(r, t) is defined as the (honstatic)
electric potential. These results for tBeandE fields,

V . VE =¢ouo (1.87)

A
B=VxA  E=-Vy-—. (1.88)

solve the homogeneous Maxwell’s equations.
We now show that the inhomogeneous Maxwell’s equations,

1 0E
Gauss’ law] V -E = p/ep, Oersted’s law; V x B — 2 = nod | (1.89)

in differential form lead to wave equations for the potenti@abndA, provided thatv - A is

determined by the constrailgk%—‘f + V- A =0. This choice of fixing the divergence of the

vector potential, called thieorentz gauge, serves to uncouple the differential equations of

both potentials. This gauge constraint is not a restriction; it has no physical effect.
Substituting our electric field solution into Gauss’ law yields

4 2 0 2 19 ‘/’
—=V.-E=-V%9—-—V.-A=-V —— 1.90
€0 (P ot 2 92’ (1.90)

the wave equation for the electric potential. In the last step we have used the Lorentz
gauge to replace the divergence of the vector potential by the time derivative of the electric
potential and thus decoupefrom A.

Finally, we substitutd® = V x A into Oersted’s law and use Eq. (1.85), which expands
V2 in terms of a longitudinal (the gradient term) and a transverse component (the curl
term). This yields

140
Hodt 35 2\ o a2

where we have used the electric field solution (Eq. (1.88)) in the last step. Now we see that
the Lorentz gauge condition eliminates the gradient terms, so the wave equation

E 1/_9 92A
—V><(VxA):V(V-A)—VZA:MOJ__<V_¢+_)’

19°A _,
252~ VA=nol (1.91)
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for the vector potential remains.
Finally, looking back at Oersted’s law, taking the divergence of Eq. (1.89), dropping

V- (V x B) =0, and substituting Gauss’ law f8t- E = p/eg, we find gV - J__m%?a_z’

whereeguo = 1/c?, that is, the continuity equation for the current density. This step justi-
fies the inclusion of Maxwell’s displacement current in the generalization of Oersted’s law
to nonstationary situations. |

Exercises

191 Verify Eq. (1.85),
Vx(VxV)=VV.V—-V.VV,
by direct expansion in Cartesian coordinates.

192 Show that the identity
Vx(VxV)=VV.V-V.VV

follows from theBAC—CAB rule for a triple vector product. Justify any alteration of the
order of factors in th®&AC andCAB terms.

193 Prove thatV x (¢pVg) =

194 You are given that the curl df equals the curl o&5. Show that- andG may differ by
(a) a constant and (b) a gradient of a scalar function.

195 The Navier—Stokes equation of hydrodynamics contains a nonlineatieNnv. Show
that the curl of this term may be written asv x [v x (V x V)].

1.9.6 From the Navier—Stokes equation for the steady flow of an incompressible viscous fluid
we have the term

VX[VX(VXV)],
wherev is the fluid velocity. Show that this term vanishes for the special case
v==Xv(y,z).
19.7 Prove thaiVu) x (Vv) is solenoidal, where andv are differentiable scalar functions.

198 ¢ is a scalar satisfying Laplace’s equati®#y = 0. Show thatV ¢ is both solenoidal
and irrotational.

199 With +r a scalar (wave) function, show that
205 _ 500
ar2 ar

(This can actually be shown more easily in spherical polar coordinates, Section 2.5.)

(rx V) -(r x V) =r°V%y —r
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19.10

1911

19.12

19.13

1.10

In a (nonrotating) isolated mass such as a star, the condition for equilibrium is
VP +pVp=0.
Here P is the total pressure is the density, ang is the gravitational potential. Show
that at any given point the normals to the surfaces of constant pressure and constant
gravitational potential are parallel.
In the Pauli theory of the electron, one encounters the expression
(p—eA) x (p—eA)y,
whereyr is a scalar (wave) functiorA is the magnetic vector potential related to the
magnetic inductioB by B =V x A. Given thatp = —iV, show that this expression
reduces taeBvy . Show that this leads to the orbitgdfactor g; = 1 upon writing the
magnetic moment a8 = g, L in units of Bohr magnetons arld= —ir x V. See also
Exercise 1.13.7.
Show that any solution of the equation
Vx(VxA) —k’A=0
automatically satisfies the vector Helmholtz equation
VZA 4+ k’°A=0
and the solenoidal condition
V.-A=0.
Hint. Let V- operate on the first equation.
The theory of heat conduction leads to an equation
VoW = k|VD|?,
where® is a potential satisfying Laplace’s equatiof?® = 0. Show that a solution of
this equation is
1
W= kP2,
2
VECTOR INTEGRATION

The next step after differentiating vectors is to integrate them. Let us start with line integrals
and then proceed to surface and volume integrals. In each case the method of attack will be
to reduce the vector integral to scalar integrals with which the reader is assumed familiar.
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LinelIntegrals

Using an increment of lengfr = Xdx +Ydy+2dz, we may encounter the line integrals

/(pdr, (1.92a)
c
fv-dr, (1.92b)
c
/V x dr, (2.92¢)
c

in each of which the integral is over some contéuthat may be open (with starting point

and ending point separated) or closed (forming a loop). Because of its physical interpreta-

tion that follows, the second form, Eqg. (1.92b) is by far the most important of the three.
With ¢, a scalar, the first integral reduces immediately to

f<pdr=§</ w(x,y,z)dx+)7/ w(x,y,z)dy+2/ p(x,y,2)dz. (1.93)
C C C C

This separation has employed the relation

/)A«pdxzf(/godx, (2.94)

which is permissible because the Cartesian unit ve®p§s andz are constant in both
magnitude and direction. Perhaps this relation is obvious here, but it will not be true in the
non-Cartesian systems encountered in Chapter 2.

The three integrals on the right side of Eq. (1.93) are ordinary scalar integrals and, to
avoid complications, we assume that they are Riemann integrals. Note, however, that the
integral with respect tac cannot be evaluated unlessand z are known in terms ok
and similarly for the integrals with respect foandz. This simply means that the path
of integrationC must be specified. Unless the integrand has special properties so that
the integral depends only on the value of the end points, the value will depend on the
particular choice of contou€. For instance, if we choose the very special case 1,

Eqg. (1.92a) is just the vector distance from the start of conbtw the endpoint, in this

case independent of the choice of path connecting fixed endpointsdWittk dx +y dy +

2dz, the second and third forms also reduce to scalar integrals and, like Eq. (1.92a), are
dependent, in general, on the choice of path. The form (Eqg. (1.92b)) is exactly the same
as that encountered when we calculate the work done by a force that varies along the
path,

W:/F.dr=/Fx(x,y,z)dx+/Fy(x,y,z)dy+/Fz(x,y,z)dz. (1.95a)

In this expressiolfr is the force exerted on a patrticle.
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(1,1

o
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(1,0

FIGURE 1.25 A path of integration.

Example 1.10.1 PATH-DEPENDENT WORK

The force exerted on a body 5= —Xy + yx. The problem is to calculate the work done
going from the origin to the pointl, 1):

11 11
W= F~dr=/ (=ydx +xdy). (1.95b)
0,0 0,0

Separating the two integrals, we obtain

1 1
W= —/ ydx +/ xdy. (1.95c)
0 0

The first integral cannot be evaluated until we specify the valugsasfx ranges from 0
to 1. Likewise, the second integral requiresas a function ofy. Consider first the path
shown in Fig. 1.25. Then

1 1
W= —/ Odx +/ ldy=1, (2.95d)
0 0

sincey = 0 along the first segment of the path ang- 1 along the second. If we select the
path[x =0,0< y < 1] and[0 < x < 1, y = 1], then Eq. (1.95c) give® = —1. For this
force the work done depends on the choice of path. |

Surface Integrals

Surface integrals appear in the same forms as line integrals, the element of area also being
a vectordo .20 Often this area element is writtéw A, in whichn is a unit (normal) vector

to indicate the positive directioff. There are two conventions for choosing the positive
direction. First, if the surface is a closed surface, we agree to take the outward normal
as positive. Second, if the surface is an open surface, the positive normal depends on the
direction in which the perimeter of the open surface is traversed. If the right-hand fingers

20Recall that in Section 1.4 the area (of a parallelogram) is represented by a cross-peothict
21Althoughn always has unit length, its direction may well be a function of position.
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FIGURE 1.26 Right-hand rule for
the positive normal.

are placed in the direction of travel around the perimeter, the positive normal is indicated by
the thumb of the right hand. As an illustration, a circle in #heplane (Fig. 1.26) mapped
out fromx to y to —x to —y and back tax will have its positive normal parallel to the
positivez-axis (for the right-handed coordinate system).

Analogous to the line integrals, Egs. (1.92a) to (1.92c), surface integrals may appear in

the forms
/gz)da, /V-da, /dea.

Again, the dot product is by far the most commonly encountered form. The surface integral
[V -do may be interpreted as a flow or flux through the given surface. This is really what
we did in Section 1.7 to obtain the significance of the term divergence. This identification
reappears in Section 1.11 as Gauss’ theorem. Note that both physically and from the dot
product the tangential components of the velocity contribute nothing to the flow through
the surface.

Volume Integrals

Volume integrals are somewhat simpler, for the volume elenderis a scalar quantity?
We have

/Vdr:f(/ der+9/ Vydr+2/ V. dr, (2.96)
v 14 v v

again reducing the vector integral to a vector sum of scalar integrals.

22Frequently the symbolg3r andd3x are used to denote a volume element in coordinate ¢r xq.xpx3) space.
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FiGure 1.27 Differential rectangular parallelepiped (origin at center).

Integral Definitions of Gradient, Divergence, and Curl

One interesting and significant application of our surface and volume integrals is their use
in developing alternate definitions of our differential relations. We find

d
Vo= lim Jedo (1.97)
[dr—0 [ dt
V.
v.v= iim 1Y (1.98)
[dr—0 [ dt
Vv
VxvVe lm 47XV (1.99)
fdr—0 [dt

In these three equatiorfsdt is the volume of a small region of space afuis the vector

area element of this volume. The identification of Eq. (1.98) as the divergendenals

carried out in Section 1.7. Here we show that Eq. (1.97) is consistent with our earlier
definition of Vg (Eq. (1.60)). For simplicity we choosér to be the differential volume

dx dydz (Fig. 1.27). This time we place the origin at the geometric center of our volume
element. The area integral leads to six integrals, one for each of the six faces. Remembering
thatdo is outward,de - X = —|do | for surfaceEFHG, and+|da | for surfaceABDC, we

have
N dp dx . dp dx
pdo = —X ¢ — —— |dydz+X o+ ——|dydz
EFHG ax 2 ABDC dx 2
N op d . op d
—y/ <§0——¢—y>dxdz+y (¢+—¢—y)dxdz
AEGC dy 2 BFHD dy 2

A o d . 0p dz
—Z/ ((p——w—z>dxdy+2/ ((p—l——(p—Z)dxdy.
ABFE 0z 2 CDHG dz 2
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Using the total variations, we evaluate each integrand at the origin with a correction in-
cluded to correct for the displacementdx /2, etc.) of the center of the face from the
origin. Having chosen the total volume to be of differential sd;"ea’r =dxdydz), we

drop the integral signs on the right and obtain

1% a ap
/(pda: (XB_ +y8—(p+2—)dxdydz (1.1200)
y
Dividing by
/dr =dxdydz,

we verify Eq. (1.97).

This verification has been oversimplified in ignoring other correction terms beyond the
first derivatives. These additional terms, which are introduced in Section 5.6 when the
Taylor expansion is developed, vanish in the limit

fdr—>0(dx—>0,dy—>0,dz—>0).

This, of course, is the reason for specifying in Egs. (1.97), (1.98), and (1.99) that this limit
be taken. Verification of Eq. (1.99) follows these same lines exactly, using a differential
volumedx dydz.

Exercises

1101

1.10.2

The force field acting on a two-dimensional linear oscillator may be described by
F = —Xkx — ky.

Compare the work done moving against this force field when going fior) to (4, 4)

by the following straight-line paths:

@ 1LLH— 41— 49

b Q@LHY—>A,dH—> 449

(c) (1,)— (4,94 alongx=y
This means evaluating

4.4
- / F-dr
1.1

Find the work done going around a unit circle in theplane:

along each path.

(@) counterclockwise from O to,

(b) clockwise from 0 to-xr, doing workagainst a force field given by
—Xy yx

x2+y2 | x24y2

Note that the work done depends on the path.

F=
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1.10.3

1.104

1.10.5

1.10.6

1.11

Calculate the work you do in going from poitt, 1) to point(3, 3). The forceyou exert
is given by

F=%(x—y) +9x+y).
Specify clearly the path you choose. Note that this force field is nonconservative.

Evaluatef r - dr.
Note. The symbolf means that the path of integration is a closed loop.

1
§/Sr~d0

over the unit cube defined by the poii@ O, 0) and the unit intercepts on the positive
x-, y-, andz-axes. Note that (&) - do is zero for three of the surfaces and (b) each of
the three remaining surfaces contributes the same amount to the integral.

Evaluate

Show, by expansion of the surface integral, that
do xV
im L1V gy,
Jd—0 [dt

Hint. Choose the volumé¢ d to be a differential voluméx dy dz.

GAUSS’ THEOREM

Here we derive a useful relation between a surface integral of a vector and the volume inte-
gral of the divergence of that vector. Let us assume that the Véaod its first derivatives

are continuous over the simply connected region (that does not have any holes, such as a
donut) of interest. Then Gauss’ theorem states that

#avv-da=/ffvv-vczr. (1.101a)

In words, the surface integral of a vector over a closed surface equals the volume integral
of the divergence of that vector integrated over the volume enclosed by the surface.

Imagine that volumé’/ is subdivided into an arbitrarily large number of tiny (differen-
tial) parallelepipeds. For each parallelepiped

Y V.do=V-Vdr (1.101b)

six surfaces

from the analysis of Section 1.7, Eq. (1.66), witki replaced by. The summation is

over the six faces of the parallelepiped. Summing over all parallelepipeds, we find that the
V - do terms cancel (pairwise) for dlhterior faces; only the contributions of tleterior
surfaces survive (Fig. 1.28). Analogous to the definition of a Riemann integral as the limit
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!
-1 t——»
i

|

FIGURE 1.28 Exact
cancellation ofio’s on
interior surfaces. No
cancellation on the
exterior surface.

of a sum, we take the limit as the number of parallelepipeds approaches iinity)
and the dimensions of each approach z2e#00):

> V.-do _ > V-Vdr
exterior surfaces volumes
[V -do = [y V-Vdr.

The resultis Eq. (1.101a), Gauss’ theorem.

From a physical point of view Eg. (1.66) has establisivedV as the net outflow of
fluid per unit volume. The volume integral then gives the total net outflow. But the surface
integral [V - do is just another way of expressing this same quantity, which is the equality,
Gauss' theorem.

Green’s Theorem

A frequently useful corollary of Gauss’ theorem is a relation known as Green’s theorem. If
u andv are two scalar functions, we have the identities
V-uVv)=uV - -Vv+ Vu) - (Vv), (1.202)
V-@wVu)=vV- -Vu+(Vv)- (Vu). (1.103)

Subtracting Eq. (1.103) from Eq. (1.102), integrating over a volume,(and their
derivatives, assumed continuous), and applying Eq. (1.101a) (Gauss’ theorem), we obtain

/// (uV~Vv—vV~Vu)dt=# uVv—ovVu)-do. (1.104)
v av
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This is Green’s theorem. We use it for developing Green’s functions in Chapter 9. An
alternate form of Green'’s theorem, derived from Eg. (1.102) alone, is

. wvto [[[ ww-veaes [[[ wuveae. o

This is the form of Green’s theorem used in Section 1.16.

Alternate Forms of Gauss’ Theorem

Although Eqg. (1.101a) involving the divergence is by far the most important form of Gauss’
theorem, volume integrals involving the gradient and the curl may also appear. Suppose

Vx,y,2)=V(x,y,2)a (1.106)

in which a is a vector with constant magnitude and constant but arbitrary direction. (You
pick the direction, but once you have chosen it, hold it fixed.) Equation (1.101a) becomes

a.#w\/dazf/fvv-anr:a-///vvvczr (1.107)

by Eq. (1.67b). This may be rewritten

a Vdo — VVdr|=0. (1.108)
(5, vem=[[fvver]

Sincela| #£ 0 and its direction is arbitrary, meaning that the cosine of the included angle
cannotalways vanish, the terms in brackets must be z&@he result is

#aVVdaszvaVdr. (1.209)

In a similar manner, using = a x P in which ais a constant vector, we may show

#Wda x P = ///V V x Pdr. (1.110)

These last two forms of Gauss’ theorem are used in the vector form of Kirchoff diffraction
theory. They may also be used to verify Egs. (1.97) and (1.99). Gauss’ theorem may also
be extended to tensors (see Section 2.11).

Exercises

1111  Using Gauss’ theorem, prove that

# do =0
S

23This exploitation of therbitrary nature of a part of a problem is a valuable and widely used technique. The arbitrary vector
is used again in Sections 1.12 and 1.13. Other examples appear in Section 1.14 (integrands equated) and in Section 2.8, quotient
rule.

if S=0V is a closed surface.
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l#rd \%
— -do =1V,
3JS s

whereV is the volume enclosed by the closed surface dV.
Note. This is a generalization of Exercise 1.10.5.

# B-do=0
S

Over some volumé’ let ¢ be a solution of Laplace’s equation (with the derivatives
appearing there continuous). Prove that the integral over any closed surfaas the
normal derivative of) (3vy/dn, or Vi - n) will be zero.

Show that

If B=V x A, show that

for any closed surfacs.

In analogy to the integral definition of gradient, divergence, and curl of Section 1.10,
show that

V2= lim M.
[dr—0 [dt

The electric displacement vectbrsatisfies the Maxwell equatiovi - D = p, wherep
is the charge density (per unit volume). At the boundary between two media there is a
surface charge density (per unit area). Show that a boundary conditionBois

(Do —D1)-n=o.

n is a unit vector normal to the surface and out of medium 1.
Hint. Consider a thin pillbox as shown in Fig. 1.29.

From Eqg. (1.67b), with/ the electric fielde and f the electrostatic potential, show
that, for integration over all space,

/p(pdrzeo/Ezdr.

This corresponds to a three-dimensional integration by parts.
Hint. E= —Vg, V- E = p/ep. You may assume that vanishes at large at least as
fastas 1.

n

medium 2 - ‘
medium 1

FIGURE 1.29 Pillbox.
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1118

1119

1.11.10

A particular steady-state electric current distribution is localized in space. Choosing a
bounding surface far enough out so that the current dedsityero everywhere on the

surface, show that
/ / / Jdr =0.

Hint. Take one component dfat a time. Withv - J =0, show thatl; = V - (x;J) and
apply Gauss’ theorem.

The creation of docalized system of steady electric currents (current dendjtand
magnetic fields may be shown to require an amount of work

Wt [[[n sa
w=l [[fsnir

HereA is the magnetic vector potenti&¥: x A = B.

Hint. In Maxwell's equations take the displacement current teyid: = 0. If the fields

and currents are localized, a bounding surface may be taken far enough out so that the
integrals of the fields and currents over the surface yield zero.

Transform this into

Prove the generalization of Green’s theorem:

f/f (wLu —ulv)dt = # p(wVu —uVv) -do.
\% av

Here L is the self-adjoint operator (Section 10.1),
L=V [p()V]+4q(r)

andp, ¢, u, andv are functions of positiory andg having continuous first derivatives
andu andv having continuous second derivatives.
Note. This generalized Green’s theorem appears in Section 9.7.

1.12 STOKES’ THEOREM

Gauss’ theorem relates the volume integral of a derivative of a function to an integral of
the function over the closed surface bounding the volume. Here we consider an analogous
relation between the surface integral of a derivative of a function and the line integral of
the function, the path of integration being the perimeter bounding the surface.

Let us take the surface and subdivide it into a network of arbitrarily small rectangles.

In Section 1.8 we showed that the circulation about such a differential rectangle (in the
xy-plane) isV x V|, dx dy. From Eq. (1.76) applied tone differential rectangle,

Y V.dr=VxV-do. (1.111)

four sides
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0 [

dr

—

-—

FIGURE 1.30 Exact cancellation on
interior paths. No cancellation on the
exterior path.

We sum over all the little rectangles, as in the definition of a Riemann integral. The surface
contributions (right-hand side of Eq. (1.111)) are added together. The line integrals (left-
hand side of Eq. (1.111)) of alhterior line segments cancel identically. Only the line
integral around the perimeter survives (Fig. 1.30). Taking the usual limit as the number of
rectangles approaches infinity while — 0, dy — 0, we have

2 V-di > VxV-.do
eétéaéhc%reg?se " rectangles (1.112)

%V-dl:/VxV-do.
N

This is Stokes’ theorem. The surface integral on the right is over the surface bounded
by the perimeter or contour, for the line integral on the left. The direction of the vector
representing the area is out of the paper plane toward the reader if the direction of traversal
around the contour for the line integral is in the positive mathematical sense, as shown in
Fig. 1.30.

This demonstration of Stokes’ theorem is limited by the fact that we used a Maclaurin
expansion ol (x, y, z) in establishing Eq. (1.76) in Section 1.8. Actually we need only
demand that the curl of (x, y, z) exist and that it be integrable over the surface. A proof
of the Cauchy integral theorem analogous to the development of Stokes’ theorem here but
using these less restrictive conditions appears in Section 6.3.

Stokes’ theorem obviously applies to an open surface. It is possible to consider a closed
surface as a limiting case of an open surface, with the opening (and therefore the perimeter)
shrinking to zero. This is the point of Exercise 1.12.7.
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Alternate Forms of Stokes’ Theorem

As with Gauss’ theorem, other relations between surface and line integrals are possible.
We find

/da x Vo =¢ @dA (1.113)
s 35S

and
/(da x V) x P:% dr x P. (1.114)
S BN

Equation (1.113) may readily be verified by the substitutiba ag, in whicha is a vec-
tor of constant magnitude and of constant direction, as in Section 1.11. Substituting into
Stokes’ theorem, Eq. (1.112),

/(ango)-da:—fangwda
S S

=-a- / Vo xdo. (1.115)
s

For the line integral,

% a(p'dlza'fﬁ pdX, (1.116)
S EN

and we obtain

a- (% (pdl—}-/ng)xda):O. (1.117)
as S

Since the choice of direction @f is arbitrary, the expression in parentheses must vanish,
thus verifying Eq. (1.113). Equation (1.114) may be derived similarly by ugirga x P,
in which a is again a constant vector.

We can use Stokes’ theorem to derive Oersted’s and Faraday’s laws from two of
Maxwell's equations, and vice versa, thus recognizing that the former are an integrated
form of the latter.

Example 1.12.1  OERSTED’s AND FARADAY’S LAWS

Consider the magnetic field generated by a long wire that carries a stationary durrent
Starting from Maxwell’s differential laww x H = J, Eq. (1.89) (with Maxwell's displace-
ment currenbD/dr = 0 for a stationary current case by Ohm’s law), we integrate over a
closed ared& perpendicular to and surrounding the wire and apply Stokes’ theorem to get

I:/J~d0=/(VxH)~d0=¢. H-dr,
S S aS

which is Oersted’s law. Here the line integral is aldry the closed curve surrounding the
cross-sectional arefa
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Similarly, we can integrate Maxwell's equation férx E, Eq. (1.86d), to yield Faraday’s
induction law. Imagine moving a closed logpsS) of wire (of areaS) across a magnetic
induction fieldB. We integrate Maxwell's equation and use Stokes’ theorem, yielding

d dd
/Ewﬂ:/Wwaﬁ:——/Bdazm—,
as S dt Js dt

which is Faraday’s law. The line integral on the left-hand side represents the voltage in-
duced in the wire loop, while the right-hand side is the change with time of the magnetic
flux ® through the moving surfacg of the wire. |

Both Stokes’ and Gauss’ theorems are of tremendous importance in a wide variety of
problems involving vector calculus. Some idea of their power and versatility may be ob-
tained from the exercises of Sections 1.11 and 1.12 and the development of potential theory
in Sections 1.13 and 1.14.

Exercises

1.12.1  Given a vectot = —Xy + yx, show, with the help of Stokes’ theorem, that the integral

around a continuous closed curve in theplane
1¢tdx—1%(d dx)=A
2 - 2 X y y X) = 9

the area enclosed by the curve.

1.12.2  The calculation of the magnetic moment of a current loop leads to the line integral

fr X dr.

(@) Integrate around the perimeter of a current loop (inxthglane) and show that
the scalar magnitude of this line integral is twice the area of the enclosed surface.
(b) The perimeter of an ellipse is describedrby Xa cosd + yb singd. From part (a)
show that the area of the ellipseriab.

1123  Evaluatef r x dr by using the alternate form of Stokes’ theorem given by Eq. (1.114):

f(daxV)xP:fdle.
s
Take the loop to be entirely in they-plane.

1124 In steady state the magnetic fidfdsatisfies the Maxwell equatiovi x H = J, whereJ
is the current density (per square meter). At the boundary between two media there is a
surface current densitg. Show that a boundary condition éhis

nx(Hy—H) =K.

n is a unit vector normal to the surface and out of medium 1.
Hint. Consider a narrow loop perpendicular to the interface as shown in Fig. 1.31.
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1125

1126

1127

1128
1129

1.12.10

medium 2
n :

medium 1

FIGURE 1.31
Integration path
at the boundary

of two media.

From Maxwell’s equationsy x H = J, with J here the current density aiid= 0. Show

from this that
%H -dr=1,

wherel is the net electric current enclosed by the loop integral. These are the differential
and integral forms of Ampere’s law of magnetism.

A magnetic inductiorB is generated by electric current in a ring of radRisShow that
themagnitude of the vector potentiad (B =V x A) at the ring can be

¢
Al=—
Al 27 R
whereg is the total magnetic flux passing through the ring.

Note. A is tangential to the ring and may be changed by adding the gradient of a scalar
function.

)

Prove that
/ VxV-do=0,
S

if Sis a closed surface.
Evaluatef r - dr (Exercise 1.10.4) by Stokes’ theorem.

Prove that
quv-dk:—%vVu-dl.

%qu -dk:/(Vu) x (Vv) -do.
N

Prove that

1.13 POTENTIAL THEORY

Scalar Potential

If a force over a given simply connected region of sp&c@vhich means that it has no
holes) can be expressed as the negative gradient of a scalar fupction

F=_Vo, (1.118)
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we callg a scalar potential that describes the force by one function instead of three. A scalar
potential is only determined up to an additive constant, which can be used to adjust its value
at infinity (usually zero) or at some other point. The fofe@ppearing as the negative
gradient of a single-valued scalar potential is labelembraser vative force. We want to

know when a scalar potential function exists. To answer this question we establish two
other relations as equivalent to Eq. (1.118). These are

VxF=0 (1.119)

and
f Fedr=0, (1.120)

for every closed path in our simply connected regiorwe proceed to show that each of
these three equations implies the other two. Let us start with

F=-Vog. (1.121)
Then
VxF=-VxVgp=0 (1.122)

by Eq. (1.82) or Eq. (1.118) implies Eq. (1.119). Turning to the line integral, we have

%F.dr:_yﬁw.dr:_%d(p, (1.123)

using Eqg. (1.118). Nowfy integrates to give. Since we have specified a closed loop,
the end points coincide and we get zero for every closed path in our régienwhich
Eqg. (1.118) holds. It is important to note the restriction here that the potential be single-
valued and that Eq. (1.118) hold falt points inS. This problem may arise in using a scalar
magnetic potential, a perfectly valid procedure as long as no net current is encircled. As
soon as we choose a path in space that encircles a net current, the scalar magnetic potential
ceases to be single-valued and our analysis no longer applies.

Continuing this demonstration of equivalence, let us assume that Eq. (1.120) holds. If
¢ F-dr =0 for all paths inS, we see that the value of the integral joining two distinct
pointsA and B is independent of the path (Fig. 1.32). Our premise is that

f F.dr=0. (1.124)
ACBDA

Therefore

/F-dr:—f F-dr:f F-dr, (1.125)
ACB BDA ADB

reversing the sign by reversing the direction of integration. Physically, this means that
the work done in going frona to B is independent of the path and that the work done in
going around a closed path is zero. This is the reason for labeling such a force conservative:
Energy is conserved.
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4

FIGURE 1.32 Possible paths for doing work.

With the result shown in Eq. (1.125), we have the work done dependent only on the
endpointsA andB. That is,

B
work done by force= / F-dr =¢(A) — ¢(B). (1.126)
A

Equation (1.126) defines a scalar potential (strictly speaking, the difference in potential
between pointsA and B) and provides a means of calculating the potential. If pd@int
is taken as a variable, sagt, y, z), then differentiation with respect to, y, andz will
recover Eq. (1.118).

The choice of sign on the right-hand side is arbitrary. The choice here is made to achieve
agreement with Eq. (1.118) and to ensure that water will run downhill rather than uphill.
For pointsA and B separated by a lengtlr, Eq. (1.126) becomes

F.-dr=—dp=—-Veg-dr. (1.127)
This may be rewritten
(F+Veg)-dr =0, (1.128)

and sincedr is arbitrary, Eq. (1.118) must follow. If
f F.dr =0, (1.129)
we may obtain Eq. (1.119) by using Stokes’ theorem (Eq. (1.112)):
fF.er/VxF-da. (1.130)

If we take the path of integration to be the perimeter of an arbitrary differentialdarea

the integrand in the surface integral must vanish. Hence Eq. (1.120) implies Eq. (1.119).
Finally, if V x F =0, we need only reverse our statement of Stokes’' theorem

(EqQ. (1.130)) to derive Eqg. (1.120). Then, by Egs. (1.126) to (1.128), the initial statement
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F=-Vp (1.118)
VxF=0(1.119) > gEF-dr:O(l.lzm
-

FIGURE 1.33 Equivalent formulations of a conservative force.

PsHo

Re

e

FIGURE 1.34 Potential energy versus distance (gravitational,
centrifugal, and simple harmonic oscillator).

F = —Vy is derived. The triple equivalence is demonstrated (Fig. 1.33). To summarize,
a single-valued scalar potential functigrexists if and only ifF is irrotational or the work

done around every closed loop is zero. The gravitational and electrostatic force fields given
by Eg. (1.79) are irrotational and therefore are conservative. Gravitational and electrostatic
scalar potentials exist. Now, by calculating the work done (Eg. (1.126)), we proceed to
determine three potentials (Fig. 1.34).
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Example 1.13.1  GRAVITATIONAL POTENTIAL

Find the scalar potential for the gravitational force on a unit mags

Gmymoaf kf
Fg = ——2 =3 (1.131)

radiallyinward. By integrating Eq. (1.118) from infinity in to positian we obtain

r o0
¢G(r)—<ﬂG(OO)=—/ Fg -dr =+/ Fg -dr. (1.132)
r

o
By use ofFg = —Fapplies @ comparison with Eq. (1.95a) shows that the potential is the
work done in bringing the unit mass in from infinity. (We can define only potential dif-
ference. Here we arbitrarily assign infinity to be a zero of potential.) The integral on the
right-hand side of Eq. (1.132) is negative, meaning thatr) is negative. Sincé g is
radial, we obtain a contribution @ only whendr is radial, or

X kdr k Gmqma
b =—| —F=--=- :
p

7'2 r r

The final negative sign is a consequence of the attractive force of gravity. |

Example 1.13.2  CENTRIFUGAL POTENTIAL

Calculate the scalar potential for thentrifugal force per unit mass;c = w?rf, radially
outward. Physically, you might feel this on a large horizontal spinning disk at an amuse-
ment park. Proceeding as in Example 1.13.1 but integrating from the origin outward and
takingoc (0) = 0, we have

w22
2

</)C(r)=—/0 Fe-dr=—

If we reverse signs, takingsno = —kr, we obtaingsyo = %krz, the simple harmonic
oscillator potential.

The gravitational, centrifugal, and simple harmonic oscillator potentials are shown in
Fig. 1.34. Clearly, the simple harmonic oscillator yields stability and describes a restoring
force. The centrifugal potential describes an unstable situation. |

Thermodynamics — Exact Differentials

In thermodynamics, which is sometimes called a search for exact differentials, we en-
counter equations of the form

df = P(x,y)dx + Q(x, y)dy. (1.133a)

The usual problem is to determine whethfé® (x, y) dx + Q(x, y) dy) depends only on
the endpoints, that is, whethéf is indeed an exact differential. The necessary and suffi-
cient condition is that

a a
df = —fdx + —fdy (1.133b)
ox ay
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or that

P(x,y) =df/ox,
O(x,y)=23f/dy. (1.133c)

Equations (1.133c) depend on satisfying the relation

0P (x,y) _ 90(x,y)

(1.133d)
ay ax

This, however, is exactly analogous to Eg. (1.119), the requiremenk thatirrotational.
Indeed, the.-component of Eq. (1.119) yields

OF, OF,

= , 1.133e
ay ax ( )
with
a a
F= k=
ax T dy

Vector Potential

In some branches of physics, especially electrodynamics, it is convenient to introduce a
vector potentialA such that a (force) fiel® is given by

B=V xA. (1.134)

Clearly, if Eq. (1.134) holdsy - B =0 by Eg. (1.84) and is solenoidal. Here we want
to develop a converse, to show that wh#iis solenoidal a vector potentiél exists. We
demonstrate the existence Afby actually calculating it. Suppodg = b1 + ¥b, + 2b3
and our unknowm\ = Ray + Yas + zas. By Eq. (1.134),

3 3
%48 _ 92y (1.135a)
ay 0z

3 3

a2y, (1.135b)
0z 0x

3 3

92 Ny (1.135c¢)
ox ay

Let us assume that the coordinates have been chosen o ithaarallel to theyz-plane;
that is,a; = 024 Then

9
by — 003
; dx (1.136)
az
by=—=2.
0x

24CIearIy, this can be done at any one point. It is not at all obvious that this assumption will hold at all points;Ahatlisie
two-dimensional. The justification for the assumption is that it works; Eq. (1.141) satisfies Eq. (1.134).
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Integrating, we obtain

az = / bzdx + fa(y, 2),
0 x (2.137)
az= —/ badx + f3(y,2),
X0
where f> and f3 are arbitrary functions oy andz but not functions ofx. These two
equations can be checked by differentiating and recovering Eq. (1.136). Equation (1.135a)
become®

d d * 7 0b ob d d
ﬂ_ﬂ__/ <_2+_3)dx+ﬁ_ﬁ
X

dy 0z o \ 0y 9z dy 9z
* ob 0 0
Y L N 3 (1.138)
xg 0X dy 9z

usingV - B = 0. Integrating with respect to, we obtain

a da a a
ﬂ——2=b1(x,y,z)—b1(XO,y,z)+ﬁ—ﬁ. (1.139)
dy 0z dy 0z

Remembering thafs and f» are arbitrary functions of andz, we choose
f2=0,

y

fz= / bi(xo,y,2)dy,
Y

0

(1.140)

so that the right-hand side of Eq. (1.139) reducesh{6x, v, z), in agreement with
Eq. (1.135a). Withf> and f3 given by Eqg. (1.140), we can construtt

X y x
A =)7/ ba(x,y,z)dx + 2|:/ bi(x0,y,z)dy — / ba(x,y,2) dx]. (1.141)
X0 Yo X0
However, this is not quite complete. We may add any constant Biiga derivative ofA.
What is much more important, we may add any gradient of a scalar funegowithout
affecting B at all. Finally, the functionsf> and f3 are not unique. Other choices could
have been made. Instead of setting= O to get Eqg. (1.136) any cyclic permutation of
1,2,3 x,y,z, x0, Yo, zo would also work.

Example 1.13.3 A MAGNETIC VECTOR POTENTIAL FOR A CONSTANT MAGNETIC FIELD

To illustrate the construction of a magnetic vector potential, we take the special but still
important case of a constant magnetic induction

B=2B,, (1.142)

25| gibniz’ formula in Exercise 9.6.13 is useful here.
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in which B, is a constant. Equations (1.135a to ¢) become

daz dar _

ay dz

a ad

dar _ %48 _ (1.143)
9z dx

ad a

dap_day_

ax dy

If we assume that; = 0, as before, then by Eq. (1.141)
Azy/ B.dx =VxB_, (1.144)

setting a constant of integration equal to zero. It can readily be seen that gatsfies
Eq. (1.134).

To show that the choice; = 0 was not sacred or at least not required, let us try setting
az =0. From Eq. (1.143)

daz

—= =0, (1.145a)
0z
day
——= =0, (1.145b)
9z
ad a
g9z _ 9 _p (1.145c)
ax ay
We seeai; anday are independent of, or
ap=ai(x,y), az=ax(x,y). (1.146)
Equation (1.145c) is satisfied if we take
X
az= p/ B.dx = pxB; (1.247)
and
y
a=p-1 [ Bdy=(p-1DyE. (1.148)
with p any constant. Then
A=X(p—1)yB, +YpxB;. (1.149)

Again, Egs. (1.134), (1.142), and (1.149) are seen to be consistent. Comparison of Egs.
(1.144) and (1.149) shows immediately thatis not unique. The difference between
Egs. (1.144) and (1.149) and the appearance of the paraméteEq. (1.149) may be
accounted for by rewriting Eq. (1.149) as

1. . 1\ . .
A= _E(Xy —Yx)B; + (p - §>(Xy +Yx)B;

1. . 1
:—E(Xy—yx)BZ—l— (p—§>BZV90 (1.150)



76

Chapter 1 Vector Analysis

with
@ =Xxy. (1.151)
[ |

The first term inA corresponds to the usual form
1
A= E(B X ) (1.152)

for B, a constant.
Adding a gradient of a scalar function, say, to the vector potentidl does not affect
B, by Eqg. (1.82); this is known as a gauge transformation (see Exercises 1.13.9 and 4.6.4):

A—A =A+VA. (1.153)

Suppose now that the wave functigriy solves the Schrédinger equation of quantum
mechanics without magnetic induction fiesd

{i(—iw)z +V-— E}I/fo =0, (1.154)
2m

describing a particle with mass and charge. WhenB is switched on, the wave equation
becomes

1 5 B
{E(—th—eA) +V—E}w_0. (1.155)

Its solutiony picks up a phase factor that depends on the coordinates in general,

. r
y(r) = exp[% / A(r') -dr’]wo(r). (1.156)

From the relation

(—ihV —eA)y = eXp[%e/A : dr/] {(—ihV — Ao — ihwo%eA}

=exp[%/A.dr’](—ihvwo), (1.157)

itis obvious that) solves Eq. (1.155) ifrg solves Eq. (1.154). Thgauge covariant deriv-
ative V —i(e/h)A describes the coupling of a charged particle with the magnetic field. Itis
often calledminimal substitution and plays a central role in quantum electromagnetism,
the first and simplest gauge theory in physics.

To summarize this discussion of the vector potential: When a vector B is solenocidal, a
vector potential A exists such that B =V x A. A is undetermined to within an additive
gradient. This correspondsto the arbitrary zero of a potential, a constant of integration for
the scalar potential.

In many problems the magnetic vector potenflalvill be obtained from the current
distribution that produces the magnetic inductiinrhis means solving Poisson’s (vector)
equation (see Exercise 1.14.4).
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1132

1133

1134

1.13 Potential Theory 77

If a forceF is given by
F=(x?+y2+2%)"Rx + 9y + 22),
find

(@ V-F.

(b) VxF.

(c) A scalar potentiap(x, y, z) so thatF = —Ve.

(d) Forwhat value of the exponemntoes the scalar potential diverge at both the origin
and infinity?

ANS. (a)(2n +3)r?", (b) O,
© — 55?2, n# -1, (dn=-1,
o=—Inr.

A sphere of radiug is uniformly charged (throughout its volume). Construct the elec-
trostatic potentiap(r) for 0 < r < oo.

Hint. In Section 1.14 it is shown that the Coulomb force on a test charge=atg
depends only on the charge at distances lessithamd is independent of the charge
at distances greater thag. Note that this applies to spherically symmetric charge
distribution.

The usual problem in classical mechanics is to calculate the motion of a particle given
the potential. For a uniform densityd), nonrotating massive sphere, Gauss’ law of
Section 1.14 leads to a gravitational force on a unit mmagat a pointrg produced by

the attraction of the massak rg. The mass at > rg contributes nothing to the force.

(&) Show thaF/mo= —(4r Gpo/3)r, 0< r < a, wherea is the radius of the sphere.

(b) Find the corresponding gravitational potentiak @ < a.

(c) Imagine a vertical hole running completely through the center of the Earth and out
to the far side. Neglecting the rotation of the Earth and assuming a uniform density
po = 5.5 gm/cm®, calculate the nature of the motion of a particle dropped into the
hole. What is its period?

Note. F o< r is actually a very poor approximation. Because of varying density,
the approximatiorF = constant along the outer half of a radial line afdx r
along the inner half is a much closer approximation.

The origin of the Cartesian coordinates is at the Earth’s center. The moon is gn the
axis, a fixed distanc® away (center-to-center distance). The tidal force exerted by the
moon on a particle at the Earth’s surface (pain, z) is given by

x y z
Fx:—GMmF, Fy:—GMmF, Fz=+2GMmF-

Find the potential that yields this tidal force.
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R3 2 2
In terms of the Legendre polynomials of
Chapter 12 this becomes

GMm
R3

M 1, 1
ANS. - & m(zz— “x? - —y2>.

2 P>(COSH).

1135 Along, straight wire carrying a currerdtproduces a magnetic inducti@with com-

ponents
ol y X
p=Hol(__ > _* o)
27r< x24+y2 x2+y? )

Find a magnetic vector potential

ANS. A = —2(uol /4) In(x2 4 y2). (This solution is not unique.)

f X z
B=_2=<_3’13’_3>’
r r r r

find a vectorA such thatV x A = B. One possible solution is

1136 |If

Xz B ¥xz
St 4y?) @ 4y?)
1.13.7  Show that the pair of equations

1
AZE(BX”’ B=V xA

is satisfied by any constant magnetic inductin
1.13.8  VectorB is formed by the product of two gradients
B=(Vu) x (Vv),

whereu andv are scalar functions.

(&) Show thaB is solenoidal.
(b) Show that

1
Azé(qu—vVu)

is a vector potential foB, in that

B=V x A.

1.13.9 The magnetic inductioB is related to the magnetic vector poten#taby B =V x A.

By Stokes’ theorem
/B-dorzygA-dr.
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Show that each side of this equation is invariant undeg#uge transfor mation, A —

A+ Vo.

Note. Take the functiorp to be single-valued. The complete gauge transformation is
considered in Exercise 4.6.4.

1.13.10 With E the electric field and\ the magnetic vector potential, show thigt+ dA /d¢] is
irrotational and that therefore we may write

E=—-Vp——.
¢ at
1.13.11 The total force on a chargemoving with velocityv is
F=g¢g(E+vVv xB).
Using the scalar and vector potentials, show that
dA
F=q|:—V<p ~ +V(A~v)i|.

Note that we now have a total time derivative/fin place of the partial derivative of
Exercise 1.13.10.

1.14 GAuUSS’ LAw, POISSON’S EQUATION

Gauss’ Law

Consider a point electric chargeat the origin of our coordinate system. This produces an
electric fieldE given by?®

A

qr

E=
47t £gr?

. (1.158)

We now derive Gauss’ law, which states that the surface integral in Fig. 1435¢sf the

closed surfacé& = 9V includes the origin (wherg is located) and zero if the surface does

not include the origin. The surfackis any closed surface; it need not be spherical.
Using Gauss’ theorem, Egs. (1.101a) and (1.101b) (and neglecting/theg), we

obtain
f -do f
/ ’ =/V.<_2>dfzo (1.159)
s T 1% r

by Example 1.7.2, provided the surfageloes not include the origin, where the integrands
are not defined. This proves the second part of Gauss’ law.

The first part, in which the surfacg must include the origin, may be handled by sur-
rounding the origin with a small sphe® = 3V’ of radiusé$ (Fig. 1.36). So that there
will be no question what is inside and what is outside, imagine the volume outside the
outer surfaces and the volume inside surfac®(r < §) connected by a small hole. This

26The electric fielcE is defined as the force per unit charge on a small stationary test chaBge: F/g;. From Coulomb’s law
the force ory; due tog is F = (qq,/4nso)(f/r2). When we divide by, Eq. (1.158) follows.
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| E-do=0

[ q
.] E do= T

FIGURE 1.35 Gauss’ law.

-4

FIGURE 1.36 Exclusion of the origin.

joins surfacess andS’, combining them into one single simply connected closed surface.
Because the radius of the imaginary hole may be made vanishingly small, there is no ad-
ditional contribution to the surface integral. The inner surface is deliberately chosen to be
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spherical so that we will be able to integrate over it. Gauss’ theorem now applies to the
volume betweer$ andS’ without any difficulty. We have

f-do f-do’
=0. 1.160
/:g }"2 +// 62 ( )

We may evaluate the second integral, flar = —f524d<2, in which d<Q is an element of
solid angle. The minus sign appears because we agreed in Section 1.10 to have the positive
normalf’ outward from the volume. In this case the outwdtdis in the negative radial

direction,f’ = —f. By integrating over all angles, we have
f-do’ f-762dQ
// = / e (1.161)
independent of the radius With the constants from Eq. (1.158), this results in
/E-da: A (1.162)
s A eg £0

completing the proof of Gauss’ law. Notice that although the surfaney be spherical,
it need not be spherical. Going just a bit further, we consider a distributed charge so that

q:/ pdrt. (1.163)
1%

Equation (1.162) still applies, with now interpreted as the total distributed charge en-
closed by surfacs:

/ E.do= | Zar. (1.164)
N v €0
Using Gauss’ theorem, we have
/ V.Edr= | Lar. (1.165)
4 v €0
Since our volume is completely arbitrary, the integrands must be equal, or
v.E="2, (1.166)
€0

one of Maxwell’'s equations. If we reverse the argument, Gauss’ law follows immediately
from Maxwell’s equation.

Poisson’s Equation

If we replaceE by — V¢, EqQ. (1.166) becomes

vV.ve=-2-, (1.167a)

€0



82 Chapter 1 Vector Analysis

which is Poisson’s equation. For the conditier= 0 this reduces to an even more famous
equation,

V.Vg=0, (1.167b)

Laplace’s equation. We encounter Laplace’s equation frequently in discussing various co-
ordinate systems (Chapter 2) and the special functions of mathematical physics that appear
as its solutions. Poisson’s equation will be invaluable in developing the theory of Green’s
functions (Section 9.7).

From direct comparison of the Coulomb electrostatic force law and Newton’s law of
universal gravitation,
1 @92, mima .

Fp— . Fe=-G
E drreg 12 G r2

All of the potential theory of this section applies equally well to gravitational potentials.
For example, the gravitational Poisson equation is

V-V =44rGp, (1.168)

with p now a mass density.

Exercises

1141

1142

1143

Develop Gauss’ law for the two-dimensional case in which

Inp
— , E=-Vp= .
aneo ¢ q2n50,0

gp:

Hereq is the charge at the origin or the line charge per unit length if the two-dimensional
system is a unit thickness slice of a three-dimensional (circular cylindrical) system. The
variable p is measured radially outward from the line charges the corresponding

unit vector (see Section 2.4).

(@) Show that Gauss’ law follows from Maxwell's equation

vE=2
€0
Herep is the usual charge density.
(b) Assuming that the electric field of a point chargis spherically symmetric, show
that Gauss’ law implies the Coulomb inverse square expression

A

qr
T Amegr?’

Show that the value of the electrostatic potengial any pointP is equal to the average
of the potential over any spherical surface centere@omhere are no electric charges
on or within the sphere.

Hint. Use Green’s theorem, Eq. (1.104), with! = r, the distance fronP, andv = ¢.
Also note Eqg. (1.170) in Section 1.15.
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1144  Using Maxwell's equations, show that for a system (steady current) the magnetic vector
potentialA satisfies a vector Poisson equation,

V2A = —puold,

provided we requir& - A =0.

1.15 DIRAC DELTA FUNCTION

From Example 1.6.1 and the development of Gauss’ law in Section 1.14,

/vv(%)w:-/v-(%)dr:{&“” (1.169)

depending on whether or not the integration includes the origirD. This result may be
conveniently expressed by introducing the Dirac delta function,

Vz(%) = —4w8(1) = —4r8()8(1)8(2). (1.170)

This Dirac delta function islefined by its assigned properties

5(x)=0,  x#0 (1.171a)

£0) = / ¥ s da. (1.171b)

where f(x) is any well-behaved function and the integration includes the origin. As a
special case of Eq. (1.171b),

/OO S(x)dx = 1. (1.171c)

—00

From Eq. (1.171b)j(x) must be an infinitely high, infinitely thin spike at= 0, as in the
description of an impulsive force (Section 15.9) or the charge density for a point arge.
The problem is thamo such function exists, in the usual sense of function. However, the
crucial property in Eq. (1.171b) can be developed rigorously as the limitsefjaence
of functions, a distribution. For example, the delta function may be approximated by the

27The delta function is frequently invoked to describe very short-range forces, such as nuclear forces. It also appears in the
normalization of continuum wave functions of quantum mechanics. Compare Eq. (1.193c) for plane-wave eigenfunctions.
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FIGURE 1.37 §-Sequence
function.
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FIGURE 1.38 §-Sequence
function.

sequences of functions, Eqgs. (1.172) to (1.175) and Figs. 1.37 to 1.40:

0, X< —%
Sn(x) =1 n, —A <x<4 (1.172)
1
O, X > 0
n
8 (x) = —= exp(—n?x?) (1.173)
JT
n 1
On(x) = ; : 1+ n2x2 (1.174)
sin 1 M .
5y (x) = o 2 7 gint gy (1.175)

TX 27 J_,
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FIGURE 1.40 §-Sequence function.

These approximations have varying degrees of usefulness. Equation (1.172) is useful in
providing a simple derivation of the integral property, Eq. (1.171b). Equation (1.173)
is convenient to differentiate. Its derivatives lead to the Hermite polynomials. Equa-
tion (1.175) is particularly useful in Fourier analysis and in its applications to quantum
mechanics. In the theory of Fourier series, Eq. (1.175) often appears (modified) as the
Dirichlet kernel:
R 1
5,(x) = iSIn[(n + z)x]_

1.176
2 sin(3x) ( )

In using these approximations in Eq. (1.171b) and later, we assumé¢ thats well be-
haved — it offers no problems at large
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For most physical purposes such approximations are quite adequate. From a mathemat-
ical point of view the situation is still unsatisfactory: The limits

lim 8, (x)
n—0oo

do not exist.

A way out of this difficulty is provided by the theory of distributions. Recognizing that
Eqg. (1.171b) is the fundamental property, we focus our attention on it rather th&mpn
itself. Equations (1.172) to (1.175) with= 1, 2, 3, ... may be interpreted agquences of
normalized functions:

/00 Sp(x)dx = 1. (2.277)

—00

The sequence of integrals has the limit

nleoo/oo 8,(x) F(x)dx = £(0). (1.178)

Note that Eq. (1.178) is the limit of a sequence of integrals. Again, the liméd, of),
n — oo, does not exist. (The limits for all four forms éf(x) diverge atc =0.)
We may trea (x) consistently in the form

o o
/ S(x)f(x)dx = lim / S (x) f(x)dx. (1.279)
—00 n—oo [_
8(x) is labeled a distribution (not a function) defined by the sequefjgas as indicated
in Eg. (1.179). We might emphasize that the integral on the left-hand side of Eq. (1.179) is
not a Riemann integraf It is a limit.

This distributions (x) is only one of an infinity of possible distributions, but it is the one
we are interested in because of Eq. (1.171b).

From these sequences of functions we see that Dirac’s delta function must be eyen in
3(—x) =38(x).

The integral property, Eq. (1.171b), is useful in cases where the argument of the delta
function is a functiorg (x) with simple zeros on the real axis, which leads to the rules

S(ax) = }8()6), a >0, (1.180)
a
§(x —a)
8 = ) 1.181
(3(x)) Z @) (1.181a)
g(a)=0,
g (@)#0

Equation (1.180) may be written

/ f(X)S(ax)dx=—/ f(;)S(y)dy=;f(0),

aJ—oo

28)t can be treated as a Stieltjes integral if desig&@.) dx is replaced bylu(x), whereu(x) is the Heaviside step function

(compare Exercise 1.15.13).
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applying Eq. (1.171b). Equation (1.180) may be writted @) = ﬁa(x) fora <0. To
prove Eq. (1.181a) we decompose the integral

e’} a+te
/ f(x)S(g(x)) dx = Z/ f(x)zS((x —a)g’(a)) dx (1.181b)

into a sum of integrals over small intervals containing the zer@gof. In these intervals,
gx) = g(a) + (x —a)g’(a) = (x — a)g’(a). Using Eq. (1.180) on the right-hand side of
Eqg. (1.181b) we obtain the integral of Eq. (1.181a).

Using integration by parts we can aldefine the derivative §'(x) of the Dirac delta
function by the relation

/OO Fx)8 (x —x)dx = _/‘00 F@)8(x —xNdx =—f'(x'). (1.182)

We uses(x) frequently and call it the Dirac delta functi&h— for historical reasons.
Remember that it is not really a function. It is essentially a shorthand notation, defined
implicitly as the limit of integrals in a sequendg(x), according to Eq. (1.179). It should
be understood that our Dirac delta function has significance only as part of an integrand.
In this spirit, the linear operataf dx § (x — xo) operates ory (x) and yieldsf (xo):

L(xo) f(x) = / 8(x —x0) f(x)dx = f(x0). (1.183)

It may also be classified as a linear mapping or simply as a generalized function. Shift-
ing our singularity to the point = x’, we write the Dirac delta function a¥x — x').
Equation (1.171b) becomes

/OO Fx)8(x —xNdx = f(xX'). (1.184)

As a description of a singularity at = x’, the Dirac delta function may be written as
3(x —x’) orass(x’ — x). Going to three dimensions and using spherical polar coordinates,
we obtain

2r pmw o0 )
/ / / s(Nrdrsinfdode = / / / 8(x)8(y)8(z)dxdydz=1.  (1.185)
0 0 JO —00

This corresponds to a singularity (or source) at the origin. Again, if our source is &,
Eq. (1.185) becomes

/// 8(ra —r1)r2drysindadfadgs = 1. (1.186)

29Dirac introduced the delta function to quantum mechanics. Actually, the delta function can be traced back to Kirchhoff, 1882.
For further details see M. Jamm@dte Conceptual Development of Quantum Mechanics. New York: McGraw-Hill (1966),
p. 301.
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Example 1.15.1  ToTAL CHARGE INSIDE A SPHERE
Consider the total electric fluf E - do out of a sphere of radiug around the origin

surrounding: charges;, located at the points; with r; < R, that is, inside the sphere.
The electric field strengtk = —V¢(r), where the potential

n /
ej ,O(r) 3.7
= = d°r
v Z|r—r,»| r—r/|
j=1

is the sum of the Coulomb potentials generated by each charge and the total charge density
isp(r)= Zj e;j8(r —r;). The delta function is used here as an abbreviation of a pointlike
density. Now we use Gauss’ theorem for

r i€j
fEda:—%Vgpdo':—/VZ(pdrzv/&d-L-:L
€0 €0

in conjunction with the differential form of Gauss’s laW,- E = —p /&g, and

Zejfa(r —rjdr=>e;.
j

J

Example 1.15.2  PHASE SpPacE

In the scattering theory of relativistic particles using Feynman diagrams, we encounter the
following integral over energy of the scattered particle (we set the velocity ofdight):

/ d*ps(p? — m?) £ (p) = f &p f dpod(p — P> —m?) £ (p)

:/ EpfEP [ dpfED
E>0 2y/m2+p2  JE<0 2/m2+p?’

where we have used Eg. (1.181a) at the zefos +./m? 4 p? of the argument of the
delta function. The physical meaning &p? — m?) is that the particle of masa and
four-momenturmp” = (po, p) is on its mass shell, becaupé = m? is equivalent toF =
+.,/m? 4 p2. Thus, the on-mass-shell volume element in momentum space is the Lorentz
invariant%, in contrast to the nonrelativisti¢3p of momentum space. The fact that

a negative energy occurs is a peculiarity of relativistic kinematics that is related to the
antiparticle. ]

Delta Function Representation by Orthogonal
Functions

Dirac’s delta functiof® can be expanded in terms of any basis of real orthogonal functions
{on(x),n=0,1,2,...}. Such functions will occur in Chapter 10 as solutions of ordinary
differential equations of the Sturm—Liouville form.

30This section is optional here. It is not needed until Chapter 10.
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They satisfy the orthogonality relations

b
/ Om (X)@n (x) dx = Smn, (1.187)

where the intervala, b) may be infinite at either end or both ends. [For convenience we
assume thap, has been defined to incluge (x))/2 if the orthogonality relations contain
an additional positive weight functiom (x).] We use thep, to expand the delta function
as

S —1)= an(t)gn(x). (1.188)
n=0

where the coefficients, are functions of the variable Multiplying by ¢,, (x) and inte-
grating over the orthogonality interval (Eg. (1.187)), we have

b
am (1) 2[ 3(x — Dom(x) dx = @i (1) (1.189)
or
(e =1= en(Ogn(x) =8t —x). (1.190)
n=0

This series is assuredly not uniformly convergent (see Chapter 5), but it may be used as
part of an integrand in which the ensuing integration will make it convergent (compare
Section 5.5).

Suppose we form the integrdlF(t)3(r — x) dx, where it is assumed thdt(s) can be
expanded in a series of orthogonal functignst), a property calleccompleteness. We
then obtain

/ F(1)8(t —x)dt = / > " apep®) Y en(x)@u(t) dt
p=0 n=0

= appp(x) =F(x), (1.191)
p=0

the cross productg ¢,¢, dt(n # p) vanishing by orthogonality (Eq. (1.187)). Referring
back to the definition of the Dirac delta function, Eq. (1.171b), we see that our series
representation, Eq. (1.190), satisfies the defining property of the Dirac delta function and
therefore is a representation of it. This representation of the Dirac delta function is called
closure. The assumption of completeness of a set of functions for expansid of )

yields the closure relation. The converse, that closure implies completeness, is the topic of
Exercise 1.15.16.
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Integral Representations for the Delta Function

Integral transforms, such as the Fourier integral

F(w):/oo f@)expliowt) dt

of Chapter 15, lead to the corresponding integral representations of Dirac’s delta function.
For example, take

8, (t —x) = w ! /" exp(ia)(t —x)) do, (1.192)

Tt—x) 27/,

using Eg. (1.175). We have

f) = nli_)mOO/oo f(@)o,(t —x)dt, (1.193a)

wheres, (t — x) is the sequence in Eq. (1.192) defining the distribusioGn- x). Note that
Eq. (1.193a) assumes thgtr) is continuous at = x. If we substitute Eq. (1.192) into
Eqg. (1.193a) we obtain

f) = ILmOO%/OO o [ exp(io(t — x)) dodt. (1.193b)

Interchanging the order of integration and then taking the limit as oo, we have the
Fourier integral theorem, Eq. (15.20).

With the understanding that it belongs under an integral sign, as in Eq. (1.193a), the
identification

§(t—x)= % /‘00 eXp(ia)(t — x)) dw (1.193c)

provides a very useful integral representation of the delta function.
When the Laplace transform (see Sections 15.1 and 15.9)

Ls(s) = /oo exp(—st)d(t — tg) = exp(—sto), >0 (1.194)
0

is inverted, we obtain the complex representation

y+ioo
8(t — 1) = 2—71”/ exp(s(t — t0)) ds, (1.195)
Y

—ioo

which is essentially equivalent to the previous Fourier representation of Dirac’s delta func-
tion.
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Exercises

1151 Let

0, x<—%,
1 1
bn(x) =14 n, —lz <x <3,
O, E<X.

Show that
Jim / " 08, dx = £,

assuming thay (x) is continuous at = 0.
1.15.2  Verify that the sequenc, (x), based on the function
0, x <0,

ne "*, x>0,

8 (x) = {

is a delta sequence (satisfying Eq. (1.178)). Note that the singularityi,ahe posi-
tive side of the origin.
Hint. Replace the upper limitb) by ¢/n, wherec is large but finite, and use the mean
value theorem of integral calculus.

1153 For

1

n

(Eq. (1.174)), show that

/OO Sn(x)dx =1.

—00

1154 Demonstrate that, = sinnx/mx is a delta distribution by showing that

lim /oo f(x)Sinzxdxzf(O).

n—00 T

Assume thatf (x) is continuous at = 0 and vanishes as— +oo.
Hint. Replacex by y/n and take limn — oo before integrating.

1155 Fejer’'s method of summing series is associated with the function

1 |:Sin(nt/2)j|2

W) =5 sina/2)

Show thats, (1) is a delta distribution, in the sense that

. 1 o0 sin(nt/2) 2 B
LETIRE - K
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1.156

1.15.7

1158

1.159

1.15.10

11511

1.15.12

Prove that
1
S[a(x — xl)] = ZS(x — X1).

Note. If §[a(x — x1)] is considered even, relative tq, the relation holds for negative
and 1/a may be replaced by/la].

Show that
S[(r —xD)(x = x2)] = [8(x —x1) +8(x — x2)]/Ix1 — x2].
Hint. Try using Exercise 1.15.6.

Using the Gauss error curve delta sequerﬁg&-(% e‘”zxz), show that

d
xaﬁ(x) =—=686(x),

treatings (x) and its derivative as in Eq. (1.179).
Show that

/ 5'(x) f(x)dx = — f'(0).

Here we assume thgt (x) is continuous at = 0.

Prove that
-1
8(x — x0),

X=x0

df(x)
dx

80@»=‘

wherexg is chosen so thaf (xg) = 0.
Hint. Note that3 (/) df = 8(x)dx.

Show that in spherical polar coordinatescos?, ¢) the delta functiors(r; — r») be-
comes

1
r—23(r1 —r2)8(C0SY1 — COSH2)8 (g1 — ¢2).
1

Generalize this to the curvilinear coordinates, g2, ¢3) of Section 2.1 with scale fac-
torshy, ho, andhs.

A rigorous development of Fourier transforfthincludes as a theorem the relations

L2 [t Sinax
lim —/ fu+x) dx
. X

a=oom [

fw+0)+ f(u—0), x1<0<xo

) fu+0), x1=0<x2
T fw—0), x1<0=x2
0, x1<x2<0o0r0<x1 <x2.

Verify these results using the Dirac delta function.

31}, N. SneddonFourier Transforms. New York: McGraw-Hill (1951).
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1,(x) n large

n—> o0

FIGURE 1.41 %[1+ tanhnx] and the Heaviside unit step
function.

1.15.13 (a) If we define a sequendég(x) = n/(2 costf nx), show that

o0
/ Sn(x)dx =1, independent of.

—00

(b) Continuing this analysis, show tiat

/ Sp(x)dx = %[1+tanhnx] =u,(x),

—00

lim ) = 0, x <0,
n—>oou”x - 1, x>0.

This is the Heaviside unit step function (Fig. 1.41).
1.15.14 Show that the unit step functianx) may be represented by
1 1 oo . dt
[ —P l)CI_7
U =S+ o /_of ‘
where P means Cauchy principal value (Section 7.1).

1.15.15 As avariation of Eq. (1.175), take

1 [ .
On(x) = P / e gy,
—o00

Show that this reduces t@/7)1/(1+ n?x?), Eq. (1.174), and that
o0
[ Sn(x)dx =1
—00

Note. In terms of integral transforms, the initial equation here may be interpreted as
either a Fourier exponential transformeof'’l/? or a Laplace transform af*’.

32Many other symbols are used for this function. This is the AMS-55 (see footnote 4 on p. 330 for the reference) nd@tion:
unit.
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1.15.16

1.15.17

1.15.18

1.15.19

1.15.20

(@) The Dirac delta function representation given by Eq. (1.190),

o0
Sx—1=)_ ¢a(X)pu(0),
n=0
is often called theclosure relation. For an orthonormal set of real functions,
¢n, Show that closure implies completeness, that is, Eq. (1.191) follows from
Eqg. (1.190).
Hint. One can take

F(x):/F(t)S(x—t)dt.

(b) Following the hint of part (a) you encounter the integfaf (1)¢, (t) dt. How do
you know that this integral is finite?

For the finite interval(—m, ) write the Dirac delta functiod(x — r) as a series of
sines and cosines: sin, cosnx,n = 0,1,2,.... Note that although these functions
are orthogonal, they are not normalized to unity.

In the interval(—x, 7), 8, (x) = % exp(—nx?).

(&) Writes, (x) as a Fourier cosine series.

(b) Show that your Fourier series agrees with a Fourier expansié&xpfn the limit
asn — o0.

(c) Confirm the delta function nature of your Fourier series by showing that for any
f(x) that is finite in the interval—r, 7] and continuous at = 0,

b4
f(x)[Fourier expansion afs (x)]dx = f(0).
(@) Writes,(x) = # exp(—n2x2) in the interval(—oo, 0o) as a Fourier integral and
compare the limik — oo with Eq. (1.193c).
(b) Write §,,(x) = nexp(—nx) as a Laplace transform and compare the limit- oo
with Eq. (1.195).
Hint. See Eqgs. (15.22) and (15.23) for (a) and Eq. (15.212) for (b).

(&) Show that the Dirac delta functidiix — a), expanded in a Fourier sine series in
the half-interval(0, L), (0 < a < L), is given by

2 . (nma\ . (nmx
S(x —a)=— — — ).
(x —a) LZSIH( 7 )sm( 7 )
n=1
Note that this series actually describes
—(x+a)+d(x—a) in the interval(—L, L).

(b) By integrating both sides of the preceding equation from @,tshow that the
cosine expansion of the square wave

f(x)={2’ O<x<a

, a<x<L,
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is, forO<x <L,

f(x)=§Z%s' (njw> Z% [ <mm) os(me).

n=1

(c) Verify that the term

L
—Z -(”’m) is (f(x))s%/(; fx)dx.

1.15.21 Verify the Fourier cosine expansion of the square wave, Exercise 1.15.20(b), by direct

calculation of the Fourier coefficients.

1.15.22 We may define a sequence

|, x| <1/2n,
8 (x) = {o, x| > 1/2n.

(This is Eq. (1.172).) Expresk (x) as a Fourier integral (via the Fourier integral theo-
rem, inverse transform, etc.). Finally, show that we may write

8(x)= lim § (x)—i/oo e R gk
T oo ! T o ’

—00

1.15.23 Using the sequence

Sn(x) = % exp(—nzxz),

show that

1 [ _
§(x) = / e R gk
2n

Note. Remember that(x) is defined in terms of its behavior as part of an integrand —
especially Egs. (1.178) and (1.189).

1.15.24 Derive sine and cosine representations@f- x) that are comparable to the exponential

1.16

representation, Eq. (1.193c).

ANS. 2 [*sinwt sinwx do, 2 [5° coswt coswx dw.

HELMHOLTZ’S THEOREM

In Section 1.13 it was emphasized that the choice of a magnetic vector pofentésd not
unigue. The divergence &f was still undetermined. In this section two theorems about the
divergence and curl of a vector are developed. The first theorem is as follows:

A vector is uniquely specified by giving its divergence and its curl within a simply con-
nected region (without holes) and its normal component over the boundary.
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Note that the subregions, where the divergence and curl are defined (often in terms of
Dirac delta functions), are part of our region and are not supposed to be removed here or
in Helmholtz's theorem, which follows. Let us take

V-V1=S,
V xVi=c,

wheres may be interpreted as a source (charge) densitycamsla circulation (current)
density. Assuming also that the normal comporiépton the boundary is given, we want

to show thatV is unique. We do this by assuming the existence of a second v&gtor,
which satisfies Eqg. (1.196) and has the same normal component over the boundary, and
then showing that/; — V2 =0. Let

(1.196)

W =Vi—Vs.

Then

V-W=0 (1.197)
and

V x W =0. (1.198)
SinceW is irrotational we may write (by Section (1.13))

W =—-Vo. (1.199)
Substituting this into Eq. (1.197), we obtain

V.Vp=0, (1.200)

Laplace’s equation.
Now we draw upon Green’s theorem in the form given in Eq. (1.105), lettiagd v
each equap. Since

W,=Vy, — Vo, =0 (2.201)

on the boundary, Green’s theorem reduces to
/(V(p)-(V(p)dr:/ W . -Wdr =0. (1.202)

v 14

The quantityW - W = W? is nonnegative and so we must have
W=V;-V2=0 (1.203)

everywhere. Thu¥; is unique, proving the theorem.

For our magnetic vector potentiél the relationB = V x A specifies the curl oA.

Often for convenience we s& - A = 0 (compare Exercise 1.14.4). Then (with boundary
conditions)A is fixed.

This theorem may be written as a uniqueness theorem for solutions of Laplace’s equa-
tion, Exercise 1.16.1. In this form, this uniqueness theorem is of great importance in solv-
ing electrostatic and other Laplace equation boundary value problems. If we can find a
solution of Laplace’s equation that satisfies the necessary boundary conditions, then our
solution is the complete solution. Such boundary value problems are taken up in Sec-
tions 12.3 and 12.5.
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Helmholtz’s Theorem

The second theorem we shall prove is Helmholtz’s theorem.

A vector V satisfying Eq. (1.196)with both source and circulation densities vanishing
at infinity may be written as the sum of two parts, one of which isirrotational, the other of
which is solenoidal.

Note that our region is simply connected, being all of space, for simplicity. Helmholtz’s
theorem will clearly be satisfied if we may writeéas

V=-Vgp+VxA, (1.204a)

—V being irrotational an& x A being solenoidal. We proceed to justify Eq. (1.204a).
V is a known vector. We take the divergence and curl

V-V =s() (1.204b)
V xV =c(r) (1.204c)

with s(r) andc(r) now known functions of position. From these two functions we construct
a scalar potentiah(rq),

1
p(r) = —/ s(rZ)dfz, (1.205a)
4 r12
and a vector potentiad (r1),
A = & / 2 0, (1.205b)
4 ri2

If s =0, thenV is solenoidal and Eq. (1.205a) impligs= 0. From Eg. (1.204a)y =
V x A, with A as given in Eq. (1.141), which is consistent with Section 1.13. Further,
if c=0, thenV is irrotational and Eq. (1.205b) implies = 0, and Eq. (1.204a) implies
V = — Vg, consistent with scalar potential theory of Section 1.13.

Here the argument; indicates(x1, y1, z1), the field point;ro, the coordinates of the
source point£z, yo, z2), whereas

riz=[(1 - x22+ (1 — y2)2 + (e1 — 2272 (1.206)

When a direction is associated witly, the positive direction is taken to be away from
the source and toward the field point. Veectorially, =r; — r2, as shown in Fig. 1.42.
Of course,s andc must vanish sufficiently rapidly at large distance so that the integrals
exist. The actual expansion and evaluation of integrals such as Egs. (1.205a) and (1.205b)
is treated in Section 12.1.

From the uniqueness theorem at the beginning of this sedfias,uniquely specified
by its divergencey, and curl,c (and boundary conditions). Returning to Eq. (1.204a), we
have

V.-V=-V.Vgp, (1.207a)
the divergence of the curl vanishing, and

VXxV=Vx(VxA), (1.207b)
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Field point
(pyz)) r Source point
r (X3:¥5,2,)

>y
X
FIGURE 1.42 Source and field points.
the curl of the gradient vanishing. If we can show that
=V .- Vop(r1) =s(r1) (1.207¢)
and
V x (V xA(ry) =c(ry), (1.207d)

thenV as given in Eq. (1.204a) will have the proper divergence and curl. Our description
will be internally consistent and Eq. (1.204a) justiffed.
First, we consider the divergence\¢f

s(r2)
r2

1
V.vz—v.w:—4—v.v/ dt. (1.208)
TT

The Laplacian operato¥, - V, or V2, operates on the field coordinates, y1, z1) and so
commutes with the integration with respect(o, y», z2). We have

1 1
% .V=——/s(r2)V§(—> do. (1.209)
47T ri12

We must make two minor modifications in Eq. (1.169) before applying it. First, our source
is atrp, not at the origin. This means that a nonzero result from Gauss’ law appears if and
only if the surfaceS includes the point =r;. To show this, we rewrite Eq. (1.170):

V2<E12) = —A4x8(r1—ro). (1.210)

33Alternatively, we could solve Eq. (1.207c), Poisson’s equation, and compare the solution with the constructed potential,
Eq. (1.205a). The solution of Poisson’s equation is developed in Section 9.7.
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This shift of the source top may be incorporated in the defining equation (1.171b) as
8(ra—r2)=0, ri#ra, (1.211a)

/f(f1)5(f1 —r2)dtny= f(r2). (1.211b)

Second, noting that differentiatinq‘zl twice with respect torp, yo, z2 is the same as
differentiatingtwice with respect toc, y1, z1, we have

v2( 1) = va( L) = —ansra—
iIl—])=Va =—4rs(rp —r2)
ri2 ri2

= —4nrd(rp—ry). (1.212)
Rewriting Eq. (1.209) and using the Dirac delta function, Eq. (1.212), we may integrate to

obtain
1 1
V.V=—— vi[—)d
4nfs(r2) 2<r12> "

1
_ _4_/s(r2)(—47r)8(r2 —rydr
G4
en, (1.213)

The final step follows from Eq. (1.211b), with the subscripts 1 and 2 exchanged. Our
result, Eq. (1.213), shows that the assumed formé ahd of the scalar potential are in
agreement with the given divergence (Eq. (1.204b)).

To complete the proof of Helmholtz's theorem, we need to show that our assumptions are
consistent with Eq. (1.204c), that is, that the cufV/ok equal toc(r1). From Eq. (1.204a),

VxV=Vx(VxA)
=VV.A—V?A. (1.214)
The firstterm,VV - A, leads to

47 VV ~A=/C(I’2)-V1V1< ! )d‘[z (1.215)

ri2

by Eq. (1.205b). Again replacing the second derivatives with respegt §a, z1 by second
derivatives with respect t@y, v, z2, we integrate each compon&hbf Eq. (1.215) by
parts:

0 1
47 VV ‘Al = fC(rz) . Vz—(—) dto
dx2 \ r12

0 1
=/V2- [C(Fz)—<—)]dfz
dxo \r12

- [1v2-cra)s () ara (1.216)

ri2

34This avoids creating thensor c(r»)Vs.
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The second integral vanishes because the circulation dentgolenoidalP® The first
integral may be transformed to a surface integral by Gauss’ theoreis lIbounded in
space or vanishes faster thatrIfor large r, so that the integral in Eq. (1.205b) exists,
then by choosing a sufficiently large surface the first integral on the right-hand side of
Eqg. (1.216) also vanishes.

With VV - A =0, Eq. (1.214) now reduces to

1 1
VxV=-VA=—— / c(rz)vﬁ(—> d. (1.217)
4 r12

This is exactly like Eq. (1.209) except that the scal@p) is replaced by the vector circu-
lation densityc(ry). Introducing the Dirac delta function, as before, as a convenient way
of carrying out the integration, we find that Eq. (1.217) reduces to Eq. (1.196). We see that
our assumed forms df, given by Eq. (1.204a), and of the vector potenfialgiven by
Eq. (1.205b), are in agreement with Eq. (1.196) specifying the curl of

This completes the proof of Helmholtz's theorem, showing that a vector may be re-
solved into irrotational and solenoidal parts. Applied to the electromagnetic field, we have
resolved our field vectoy into an irrotational electric fieldE, derived from a scalar po-
tential ¢, and a solenoidal magnetic induction fiddd derived from a vector potential.
The source density(r) may be interpreted as an electric charge density (divided by elec-
tric permittivity ¢), whereas the circulation densityr) becomes electric current density
(times magnetic permeabilify).

Exercises
1.16.1 Implicit in this section is a proof that a functiaf(r) is uniquely specified by requiring
itto (1) satisfy Laplace’s equation and (2) satisfy a complete set of boundary conditions.
Develop this proof explicitly.
1.16.2 (a) Assuming thaP is a solution of the vector Poisson equati&'rf,P(rl) =-V(ry),

develop an alternate proof of Helmholtz’s theorem, showing\thaiaty be written

as
V=-Vp+VxA,
where
A=V xP,
and
p=V_-P.

(b) Solving the vector Poisson equation, we find
1 V(r
P(ry) =— / "2 4.
T Jy Tri2

Show that this solution substituted intcandA of part (a) leads to the expressions
given forg andA in Section 1.16.

35Remembergc =V x V is known.
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Additional Readings
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with the appropriate matrices.

Spiegel, M. R.,Veector Analysis. New York: McGraw-Hill (1989).
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Wrede, R. C.|ntroduction to Vector and Tensor Analysis. New York: Wiley (1963). Reprinted, New York: Dover
(1972). Fine historical introduction. Excellent discussion of differentiation of vectors and applications to me-
chanics.
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CHAPTER 2

VECTOR ANALYSIS IN
CURVED COORDINATES
AND TENSORS

In Chapter 1 we restricted ourselves almost completely to rectangular or Cartesian coordi-
nate systems. A Cartesian coordinate system offers the unique advantage that all three unit
vectors X, ¥, andz, are constant in direction as well as in magnitude. We did introduce the
radial distance, but even this was treated as a functioncofy, andz. Unfortunately, not

all physical problems are well adapted to a solution in Cartesian coordinates. For instance,
if we have a central force problerR,= f F (r), such as gravitational or electrostatic force,
Cartesian coordinates may be unusually inappropriate. Such a problem demands the use of
a coordinate system in which the radial distance is taken to be one of the coordinates, that
is, spherical polar coordinates.

The point is that the coordinate system should be chosen to fit the problem, to exploit
any constraint or symmetry present in it. Then it is likely to be more readily soluble than if
we had forced it into a Cartesian framework.

Naturally, there is a price that must be paid for the use of a non-Cartesian coordinate
system. We have not yet written expressions for gradient, divergence, or curl in any of the
non-Cartesian coordinate systems. Such expressions are developed in general form in Sec-
tion 2.2. First, we develop a system of curvilinear coordinates, a general system that may
be specialized to any of the particular systems of interest. We shall specialize to circular
cylindrical coordinates in Section 2.4 and to spherical polar coordinates in Section 2.5.

2.1 ORTHOGONAL COORDINATES IN R3

In Cartesian coordinates we deal with three mutually perpendicular families of planes:
x = constanty = constant, and = constant. Imagine that we superimpose on this system

103



104 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

three other families of surfaces(x, y,z), i =1, 2, 3. The surfaces of any one famidy
need not be parallel to each other and they need not be planes. If this is difficult to visualize,
the figure of a specific coordinate system, such as Fig. 2.3, may be helpful. The three new
families of surfaces need not be mutually perpendicular, but for simplicity we impose this
condition (Eq. (2.7)) because orthogonal coordinates are common in physical applications.
This orthogonality has many advantages: Orthogonal coordinates are almost like Cartesian
coordinates where infinitesimal areas and volumes are products of coordinate differentials.
In this section we develop the general formalism of orthogonal coordinates, derive from
the geometry the coordinate differentials, and use them for line, area, and volume elements
in multiple integrals and vector operators. We may describe any paint z) as the inter-
section of three planes in Cartesian coordinates or as the intersection of the three surfaces
that form our new, curvilinear coordinates. Describing the curvilinear coordinate surfaces
by g1 = constantg, = constantgs = constant, we may identify our point kiy1, g2, ¢3)
as well as by(x, y, 2):

General curvilinear coordinates Circular cylindrical coordinates

q1,92, 493 PP, 2
x =x(q1, 92, 93) —00 < X = pCOSY < 0O
y =y(q1,92,93) —00 <y =pSing < 0o (2.1)
z=12(91, 92, 93) —00<Z=27<00

specifyingx, y, z in terms ofq1, g2, g3 and the inverse relations

1/2
q1=4q1(x,y,2) 0§,0=(x2+y2)/ <00
q2=¢q2(x,y,2) 0< ¢ =arctany/x) < 2w (2.2)
q3=q3(x,y,2) —00 <7 =17 < 00.

As a specific illustration of the general, abstragt g2, g3, the transformation equations
for circular cylindrical coordinates (Section 2.4) are included in Egs. (2.1) and (2.2). With
each family of surfaceg; = constant, we can associate a unit vedipmormal to the
surfaceg; = constant and in the direction of increasipg In general, these unit vectors
will depend on the position in space. Then a vedfanay be written

V=0q1V1+G2V2 + G3Va, (2.3)

but the coordinate or position vector is different in general,

r # 0191 + Q292 + Q3gs,

as the special cases= rf for spherical polar coordinates and= pp + zz for cylindri-
cal coordinates demonstrate. Teare normalized tc«ji2 =1 and form a right-handed
coordinate system with voluntg - (G2 x §3) > 0.

Differentiation ofx in Egs. (2.1) leads to the total variation or differential

0x
dx = —dq1 + —dqz + —dqs, (2.4)
1 3

and similarly for differentiation ofy andz. In vector notationdr = }_; %dq,-. From
the Pythagorean theorem in Cartesian coordinates the square of the distance between two
neighboring points is

ds® =dx?+ dy2 +dz°.
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Substitutingdr shows that in our curvilinear coordinate space the square of the distance
element can be written as a quadratic form in the differentials

ar or
o dqidg;

ds?® =dr -dr =dr® = .
i7 0q; 8QJ

= g11dq? + g12dq1dg2 + g13dq1dgs3
+ g21dq2dq1 + 822d g5 + g23dq2dqs
+ g31dq3dqr + g32dq3dqz + g33dqs

= Zgij dqidgq;, (2.5)
ij
where nonzero mixed terméy; dg; with i # j signal that these coordinates are not or-
thogonal, that is, that the tangential directidpsare not mutually orthogonal. Spaces for
which Eqg. (2.5) is a legitimate expression are cali&tric or Riemannian.
Writing Eq. (2.5) more explicitly, we see that

dx 0x ady dy dz 9z _ dr or

= = = _Z .2 (2.6)
dq; dq;  0q; dq;  0q; dq; 9dq; 9q;

8ij(q1,92,q3) =

are scalar products of thangent vectors % to the curves for g; = const, j #i. These
coefficient functionsg;;, which we now proceed to investigate, may be viewed as speci-
fying the nature of the coordinate systém, g2, ¢3). Collectively these coefficients are
referred to as thenetric and in Section 2.10 will be shown to form a second-rank sym-
metric tensol. In general relativity the metric components are determined by the proper-
ties of matter; that is, thg;; are solutions of Einstein’s field equations with the energy—
momentum tensor as driving term; this may be articulated as “geometry is merged with
physics.”

At usual we limit ourselves to orthogonal (mutually perpendicular surfaces) coordinate
systems, which means (see Exercise 221.1)

andg; - §; = &;;. (Nonorthogonal coordinate systems are considered in some detail in
Sections 2.10 and 2.11 in the framework of tensor analysis.) Now, to simplify the notation,
we write g;; = h? > 0, SO

ds® = (h1dq1)? + (h2dq2)® + (h3dg)® =) (h; dg;). (2.8)

1

1The tensor nature of the set of;'s follows from the quotient rule (Section 2.8). Then the tensor transformation law yields
Eq. (2.5).

2In relativistic cosmology the nondiagonal elements of the metri@re usually set equal to zero as a consequence of physical
assumptions such as no rotation, asdgrt, d6 dt.
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The specific orthogonal coordinate systems are described in subsequent sections by spec-
ifying these (positive) scale factors, h2, andhs. Conversely, the scale factors may be
conveniently identified by the relation

8r_

ds; = h; dq;, Py
1

hiQi (2.9)

for any givendg;, holding all otherg constant. Hereds; is a differential length along the
direction§;. Note that the three curvilinear coordinatgs g2, g3 need not be lengths. The
scale factor&; may depend og and they may have dimensions. Tgmduct /; dg; must
have a dimension of length. The differential distance vedtamay be written

dr =h1dq1 61+ hadg2G2+ h3dgaGz =Y _hidg; §;.

1

Using this curvilinear component form, we find that a line integral becomes

/V~dr=Z/‘/,-hidqi.
i

From Egs. (2.9) we may immediately develop the area and volume elements
dojj=ds;ds; =hihjdq;dq; (2.10)
and
dt =ds1dsyds3 = hihohzdgqidgodqs. (2.11)

The expressions in Eqgs. (2.10) and (2.11) agree, of course, with the results of using
the transformation equations, Eq. (2.1), and Jacobians (described shortly; see also Exer-
cise 2.1.5).

From Eq. (2.10) an area element may be expanded:

do =dsods30Q1 + ds3ds1 02+ ds1ds203
= h2h3dq2dq3 @1+ hah1dqzdqi Q2
+hih2dq1dq2Qs.

A surface integral becomes

/V-dG=/VlhzhsdQdeJ3+/Vzhshldqsdfh

+ / Vahihadqidqgo.

(Examples of such line and surface integrals appear in Sections 2.4 and 2.5.)
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In anticipation of the new forms of equations for vectatculus that appear in the
next section, let us emphasize that vedhgebra is the same in orthogonal curvilinear
coordinates as in Cartesian coordinates. Specifically, for the dot product,

A-B=Y Aili-GBi=) AiBidix
i i

- Z A;B; = A1B1 + A2B> + A3Bs, (2.12)

1

where the subscripts indicate curvilinear components. For the cross product,

1 G2 Qs
AxB=|A1 Ax Asj]|, (2.13)
B1 B> B3

asin Eq. (1.40).
Previously, we specialized to locally rectangular coordinates that are adapted to special

symmetries. Let us now briefly look at the more general case, where the coordinates are

not necessarily orthogonal. Surface and volume elements are part of multiple integrals,

which are common in physical applications, such as center of mass determinations and

moments of inertia. Typically, we choose coordinates according to the symmetry of the
particular problem. In Chapter 1 we used Gauss’ theorem to transform a volume integral
into a surface integral and Stokes’ theorem to transform a surface integral into a line in-

tegral. For orthogonal coordinates, the surface and volume elements are simply products

of the line element#; dg; (see Egs. (2.10) and (2.11)). For the general case, we use the
geometric meaning ofr /d¢; in Eq. (2.5) as tangent vectors. We start with the Cartesian
surface elemendx dy, which becomes an infinitesimal rectangle in the new coordinates
q1, g2 formed by the two incremental vectors

ar
dri=r(q1+dq1,q2) —1(q1, q2) = —dqa,
9q1
ar
dro=r(q1, 92 +dq2) —r(q1,92) = a—qzdtn, (2.14)

whose area is the-component of their cross product, or

ax 0 ax 0
drdy=dryaral, = | g7 = 2o s
' 1 1
dx  9x
3 3
=‘£ ﬁ dqidqo. (2.15)
dq1 092

The transformation coefficient in determinant form is calledJa@obian.
Similarly, the volume elementx dy dz becomes the triple scalar product of the three in-
finitesimal displacement vectods; = dqi% along theg; directionsdi, which, according
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to Section 1.5, takes on the form

dq1  0q2 g3

— | 9y Oy
dxdydz = 51 93 93 dgidqadqs. (2.16)
9z 9z 0z
dq1  dq2  9q3

Here the determinant is also called the Jacobian, and so on in higher dimensions.

For orthogonal coordinates the Jacobians simplify to products of the orthogonal vec-
tors in Eq. (2.9). It follows that they are just products of thefor example, the volume
Jacobian becomes

hihoh3(G1 % G2) - 63 = h1hohs,

and so on.

Example 2.1.1  jacosians FOR POLAR COORDINATES

Let us illustrate the transformation of the Cartesian two-dimensional volume elémént
to polar coordinateg, ¢, with x = p cosp, y = p sing. (See also Section 2.4.) Here,

0x 0x .
3 90 CcO —p SIn

dxdy= |3 3 |dpde= Sin&p piosf dpdyp=pdpde.
% 3 ¢

Similarly, in spherical coordinates (see Section 2.5) we get, freav sind cosp, y =
rsing sing, z =r cosv, the Jacobian

ax dx

9x  dx  dx . . .
ar 30 g sinfd cosy rcosdcosy —rSind sing
— |9 ¥ W|_|g i i i
J=\|35 i sind sing rcose_squ r Sinf cosp
dz ¥z 9z cosd —rsing 0
ar a0 g
r c0sH Co —r sing sin . siné co —r sing sin
= cos 0Sp ) 9| 4 rsing | SN0 COSP . ¢
rcosdsing  rSsind cosy singsing  rsind cosy

= r?(co0'sind + sin*6) = r?sing

by expanding the determinant along the third line. Hence the volume element becomes
dxdydz =r?drsind do de. The volume integral can be written as

/f(x,y,z)dxdydz:/f(x(r,Q,go),y(r,@,w),z(r,@,go))rzdrsinedédw. -

In summary, we have devel oped the general formalism for vector analysisin orthogonal
curvilinear coordinatesin R3. For most applications, locally orthogonal coordinates can
be chosen for which surface and volume elementsin multiple integrals are products of line
elements. For the general nonorthogonal case, Jacobian determinants apply.
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Exercises

211 Show that limiting our attention to orthogonal coordinate systems impliegthat 0
fori # j (Eq. (2.7)).
Hint. Construct a triangle with sidek, ds2, andds,. Equation (2.9) must hold regard-
less of whetheg;; = 0. Then compards? from Eq. (2.5) with a calculation using the
law of cosines. Show that cég = g12/./811822-

212 In the spherical polar coordinate systega,=r, g2 = 6, g3 = ¢. The transformation
equations corresponding to Eqg. (2.1) are

x =r siné cosy, y =rsing sing, 7 =rCo%4.

(a) Calculate the spherical polar coordinate scale fackorsiy, andh,,.
(b) Check your calculated scale factors by the relatign= h; dg;.

213 Theu-, v-, z-coordinate system frequently used in electrostatics and in hydrodynamics
is defined by

xXy=u, x2—y =, z=2z.

Thisu-, v-, z-system is orthogonal.

(& In words, describe briefly the nature of each of the three families of coordinate
surfaces.

(b) Sketch the system in the-plane showing the intersections of surfaces of constant
u and surfaces of constantwith the xy-plane.

(c) Indicate the directions of the unit vectdandV in all four quadrants.

(d) Finally, is thisu-, v-, z-system right-hande@i x V = +2) or left-handed (i x ¥ =
-2)?

214 The elliptic cylindrical coordinate system consists of three families of surfaces:

x2 y2 x2 yZ

) a?cofv  a?sirfv

1 + =1;
)azcosﬁu a?sintfu

1; z=z

Sketch the coordinate surfaces- constant and = constant as they intersect the first
quadrant of they-plane. Show the unit vectofsandV. The range ofi is 0< u < oc.
The range ob is0< v < 27.

215 A two-dimensional orthogonal system is described by the coordigatesdg,. Show
that the Jacobian

j< x,y)_ d(x,y) _ dx dy dax dy
q1, 492

is in agreement with Eq. (2.10).
Hint. It's easier to work with the square of each side of this equation.
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2.1.6 In Minkowski space we define; = x, xz = y xX3=2, andxo = ct. This is done so that
the metric interval becomess? = dxo dxl dx2 dx3 (with ¢ = velocity of light).
Show that the metric in Minkowski space is

1 0 0 0
0 -1 0 0
@i)=1o0 0o -1 o
0 0 0 -1

We use Minkowski space in Sections 4.5 and 4.6 for describing Lorentz transformations.

2.2 DIFFERENTIAL VECTOR OPERATORS

We return to our restriction to orthogonal coordinate systems.

Gradient

The starting point for developing the gradient, divergence, and curl operators in curvilinear
coordinates is the geometric interpretation of the gradient as the vector having the mag-
nitude and direction of the maximum space rate of change (compare Section 1.6). From
this interpretation the component ®f (g1, g2, ¢3) in the direction normal to the family
of surfacesy; = constant is given

Q1~V1/f=V1/f|1=%=i%, (2.17)

ds1 h1dq1

since this is the rate of change ¥ffor varying g1, holdingg, andgs fixed. The quantity
dsq is a differential length in the direction of increasipg (compare Egs. (2.9)). In Sec-
tion 2.1 we introduced a unit vectép to indicate this direction. By repeating Eq. (2.17)
for g2 and again fogz and adding vectorially, we see that the gradient becomes

9
Vir(q1, 92, q3) = v

oy . 19y
1991 h2 dg2

.1
=iy -+ 2o+ sy

L0 L
qla—sl‘i‘QZ(,)—SZ‘i‘%a—S3

1oy
h3 dg3

(2.18)

Exercise 2.2.4 offers a mathematical alternative independent of this physical interpretation

of the gradient. The total variation of a function,
dy =V -dr = Z

is consistent with Eq. (2.18), of course.

1oy
ni 9g _Z

oy
—d
94 qi

3Here the use ap to label a function is avoided because it is conventional to use this symbol to denote an azimuthal coordinate.
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Divergence

The divergence operator may be obtained from the second definition (Eq. (1.98)) of Chap-
ter 1 or equivalently from Gauss’ theorem, Section 1.11. Let us use Eq. (1.98),

. V.-d
V-V(q1,92.93) = lim / id

fdr—0 [drt (2.19)

with a differential volumei1hohzdg1dg2dgs (Fig. 2.1). Note that the positive directions
have been chosen so thdt, g, §3) form a right-handed sefj; x 2 = §3.
The difference of area integrals for the two fages= constant is given by

0
[V1h2h3 + a—ql(Vlhzhs) dcn} dgadqz — Vihohzdqrdgs
0
= 8_511(Vlh2h3) dq1dqzdgs, (2.20)

exactly as in Sections 1.7 and 14®ere, V; =V - §; is the projection oV onto the
@g;-direction. Adding in the similar results for the other two pairs of surfaces, we obtain

/V(quqz,qs) -do

0 d 0
= [—(Vlhzhs) + —(Vah3hy) + —(Vshlhz)} dqidqgzdqs.
9q1 0g2 93

dsy = hy dyy

ds, = h, dq,

ds, = h, dq,

FIGURE 2.1 Curvilinear volume element.

4since we take the limi#qq, dgp, dg3 — 0, the second- and higher-order derivatives will drop out.
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Now, using Eg. (2.19), division by our differential volume yields

0 d 0
V-V(q1,92.93) = [—(V1h2h3) + — (Vahshy) + —(V3h1h2)}- (2.21)
p) 9g3

hih2h3| 9q1

We may obtain the Laplacian by combining Egs. (2.18) and (2.21), uSing
Vi (g1, 92, g3). This leads to

V- V¥(q1, 92, 93)

1 0 (hoh3 0 0 (hshy 0 0 (hihs 0
_ [_< 2 3_¢>+_<g_¢’>+_(¥_¢)] (2.22)
hih2h3| dg1\ h1 0q1 dg2 \ h2 9g2 dg3\ h3 0g3

Curl

Finally, to developV x V, let us apply Stokes’ theorem (Section 1.12) and, as with the
divergence, take the limit as the surface area becomes vanishingly small. Working on one
component at a time, we consider a differential surface element in the curvilinear surface
g1 = constant. From

/V xV-do=0q1-(V xV)hohadgodqs (2.23)

N

(mean value theorem of integral calculus), Stokes’ theorem yields
Q1+ (V x V)hohzdgodqs = % V.dr, (2.24)

with the line integral lying in the surfacg = constant. Following the loop (1, 2, 3, 4) of
Fig. 2.2,

d
7€V(6]1, q2,q3) - dr = Vohodgo + [Vshs + a—qz(Vshs) dqz} dqs
0
— | Vaho + 8—(13(V2h2)dCJ3 dqz — V3hzdqs

= [i(h3V3) - i(thz)]dqqua- (2.25)
9q2 943
We pick up a positive sign when going in the positive direction on parts 1 and 2 and
a negative sign on parts 3 and 4 because here we are going in the negative direction.
(Higher-order terms in Maclaurin or Taylor expansions have been omitted. They will van-
ish in the limit as the surface becomes vanishingly snaélp & 0, dgz — 0).)
From Eq. (2.24),

1 0 0
VxV|1=—| —(h3V3) — —(h2V2)1|. 2.26
1= [ - " (2.26)
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dsy = hydq

FIGURE 2.2 Curvilinear surface element wigh = constant.

The remaining two components §f x V may be picked up by cyclic permutation of the
indices. As in Chapter 1, it is often convenient to write the curl in determinant form;

Gih1  G2h2  G3h3

1
VxV= R (2.27)
hih2hs | 91 dq2  dg3
h1iVi h2Vo h3V3

Remember that, because of the presence of the differential operators, this determinant must
be expanded from the top down. Note that this equatioroisdentical with the form for

the cross product of two vectors, Eq. (2.1%).is not an ordinary vector; it is a vector

oper ator.

Our geometric interpretation of the gradient and the use of Gauss’ and Stokes’ theorems
(or integral definitions of divergence and curl) have enabled us to obtain these quantities
without having to differentiate the unit vectors ;. There exist alternate ways to deter-
mine grad, div, and curl based on direct differentiation of§heDne approach resolves the
@; of a specific coordinate system into its Cartesian components (Exercises 2.4.1 and 2.5.1)
and differentiates this Cartesian form (Exercises 2.4.3 and 2.5.2). The point here is that the
derivatives of the Cartesiat ¥, andz vanish sincek, ¥, andz are constant in direction
as well as in magnitude. A second approach [L. J. Kijewahi, J. Phys. 33: 816 (1965)]
assumes the equality 6fr /dg; dg; andazr/aqj dq; and develops the derivatives @fin
a general curvilinear form. Exercises 2.2.3 and 2.2.4 are based on this method.

Exercises
221 Develop arguments to show that dot and cross products (not invojrig orthogonal
curvilinear coordinates i3 proceed, as in Cartesian coordinateish noinvolvement
of scalefactors.
222 With ¢, a unit vector in the direction of increasiigg, show that
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1 9(h2h3)

hih2hs  9q1

1 3/11 st 1 3h1i|

h3 93 h2 dq2

(@ V-Gi=
N 11,

R

Note that even thougf; is a unit vector, its divergence and cuid not necessarily

vanish.
223 Show that the orthogonal unit vectals may be defined by

N 1 or
i a
4= g @)
In particular, show thafj; - §; = 1 leads to an expression fé; in agreement with
Egs. (2.9).
Equation (a) may be taken as a starting point for deriving
90, . 10h; oo
l
aq/ =Y h 3611 il
and
94, .1 oh;
b= Vi
T A
224 Derive

1 9y 1oy . 13y
v 1—— + +
V= 2 T s g

by direct application of Eq. (1.97),

[vdo
V]/f_falilrnlo fdtr

Hint. Evaluation of the surface integral will lead to terms liei/ioh3) ~1(8/9g1) x
(G1h2h3). The results listed in Exercise 2.2.3 will be helpful. Cancellation of unwanted
terms occurs when the contributions of all three pairs of surfaces are added together.

2.3 SPECIAL COORDINATE SYSTEMS: INTRODUCTION

There are at least 11 coordinate systems in which the three-dimensional Helmholtz equa-
tion can be separated into three ordinary differential equations. Some of these coordinate
systems have achieved prominence in the historical development of quantum mechanics.
Other systems, such as bipolar coordinates, satisfy special needs. Partly because the needs
are rather infrequent but mostly because the development of computers and efficient pro-
gramming techniques reduce the need for these coordinate systems, the discussion in this
chapter is limited to (1) Cartesian coordinates, (2) spherical polar coordinates, and (3) cir-
cular cylindrical coordinates. Specifications and details of the other coordinate systems
will be found in the first two editions of this work and in Additional Readings at the end of

this chapter (Morse and Feshbach, Margenau and Murphy).
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CIRCULAR CYLINDER COORDINATES

In the circular cylindrical coordinate system the three curvilinear coordin@iegz, ¢3)
are relabeledp, ¢, 7). We are using for the perpendicular distance from thexis and
savingr for the distance from the origin. The limits gn ¢ andz are

0<p <o, 0< ¢ < 2n, and —00 <7< 00.

Forp =0, ¢ is not well defined. The coordinate surfaces, shown in Fig. 2.3, are:

1. Right circular cylinders having theaxis as a common axis,

p = (x> +»%)"? = constant

2. Half-planes through theg-axis,
@= tanl<X) = constant
X

3. Planes parallel to they-plane, as in the Cartesian system,

z = constant

o

FiGure 2.3  Circular cylinder coordinates.
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z

FIGURE 2.4 Circular cylindrical
coordinate unit vectors.

Inverting the preceding equations forand¢ (or going directly to Fig. 2.3), we obtain
the transformation relations

X = pCOSp, y = pSing, z=z. (2.28)

The z-axis remains unchanged. This is essentially a two-dimensional curvilinear system
with a Cartesian-axis added on to form a three-dimensional system.
According to Eg. (2.5) or from the length elemedts, the scale factors are

hi=h,=1, h2=hy,=p, hz3=h,=1. (2.29)

The unit vectors1, G2, §z are relabeledp, ¢, 2), as in Fig. 2.4. The unit vectgris normal

to the cylindrical surface, pointing in the direction of increasing ragiughe unit vector
¢ is tangential to the cylindrical surface, perpendicular to the half pfareconstant and
pointing in the direction of increasing azimuth angleT he third unit vectorz, is the usual
Cartesian unit vector. They are mutually orthogonal,

A

po=p-2=24=0,
and the coordinate vector and a general vedtare expressed as
r=pp+2z, V=pV,+@V,+2V,.
A differential displacemendr may be written
dr = pds, + @ds, +2dz
=pdp+ @pdy+2dz. (2.30)

Example 2.4.1  AREA LAW FOR PLANETARY MOTION

First we derive Kepler’s law in cylindrical coordinates, saying that the radius vector sweeps
out equal areas in equal time, from angular momentum conservation.
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We consider the sun at the origin as a source of¢hér al gravitational forcéd= = f(r)f .
Then the orbital angular momentum= mr x v of a planet of mass: and velocityv is
conserved, because the torque

dL dr dr dav f)

—=m— X —+Ixm—=rxF=

dr "l " dr From dt
HenceL = const. Now we can choose theaxis to lie along the direction of the orbital
angular momentum vectdr,= Lz, and work in cylindrical coordinatas= (p, ¢, z) =
with z = 0. The planet moves in they-plane becauseandv are perpendicular tb. Thus,
we expand its velocity as follows:

rxr=0.

v=2 PP+ pd—p-
dt dt
From
N . ap . o
p = (Cosp, sing), do = (—sIng, cosp) = ¢,
we find thatdt = Z—(’;E = ¢¢ using the chain rule, so= pp + p dt =pp + ppp. When

we substitute the expansions@fndyv in polar coordinates, we obtain
L=mp xV=mp(pg)(p x $) =mp?¢p2 = constant

The triangular area swept by the radius vegian the timed: (area law), when inte-
grated over one revolution, is given by

A= ;/p(pd(p)——/ (pdt —/dt (2.312)

if we substitutenp?¢ = L = const. Here is the period, that is, the time for one revolution
of the planet in its orbit.

Kepler's first law says that the orbit is an ellipse. Now we derive the orbit equation
o (p) of the ellipse in polar coordinates, where in Fig. 2.5 the sun is at one focus, which is
the origin of our cylindrical coordinates. From the geometrical construction of the ellipse
we know thatp’ + p = 2a, wherea is the major half-axis; we shall show that this is
equivalent to the conventional form of the ellipse equation. The distance between both foci
is 0 < 2ae < 2a, where O< € < 1 is called the eccentricity of the ellipse. For a cirele 0
because both foci coincide with the center. There is an angle, as shown in Fig. 2.5, where
the distance®’ = p = a are equal, and Pythagoras’ theorem applied to this right triangle

FIGURE 2.5 Ellipse in polar coordinates.
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givesb? + a2e2 = 2. As aresulta/1 — €2 = b/a is the ratio of the minor half-axij to
the major half-axisg.

Now consider the triangle with the sides labeled &y p, 2a¢ in Fig. 2.5 and angle
oppositep” equal tor — ¢. Then, applying the law of cosines, gives

0'? = p? + 4a®€? + Apae cosyp.
Now substitutinge’ = 2a — p, cancelinge? on both sides and dividing by4yields
p(L+ecosp) =a(l—e?) =p, (2.32)

theKepler orbit equation in polar coordinates.
Alternatively, we revert to Cartesian coordinates to find, from Eq. (2.32) with
p COSp, that

p?=x%+ y2 =(p— xe)? = p2 + x%€? — 2pxe,
so the familiar ellipse equation in Cartesian coordinates,

2.2 2

2

pPe 2 2, P€ 14
1—¢€2 = =
( 6)<x+1—62> LR Ak pup

obtains. If we compare this result with the standard form of the ellipse,

we confirm that

Y S e S
€

1-—¢2 1-
and that the distance) between the center and focusiis as shown in Fig. 2.5. [ |

The differential operations involviny follow from Egs. (2.18), (2.21), (2.22), and
(2.27):

U 1y Loy
Vlﬂ(p,rp,z)zpa— +o——+2—, (2.33)
0 0 09 9z
19 19V, V.
VV="—"(V)+=-—"2+ 2=, 2.34
,oa,o(p ») o dp 0z ( )
19 ( oy 19%y 3%y
Vy=>—(p= )+ 55 +—5. (235
v pap(p3p>+p28¢2+3zz (&5
o po 2
1
vxv==|0 3 9] (2.36)
Plop 0d¢ 0z
V, pV, V,
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Finally, for problems such as circular wave guides and cylindrical cavity resonators the
vector LaplaciarW2V resolved in circular cylindrical coordinates is

1 2 9V,
V|, =V, - SV, - S £,
p pe ¢
1 29V
V|, = V2V, - SV, + ——2L, (2.37)
4 % pz @ ;02 a(p
V|, = V3V,

which follow from Eq. (1.85). The basic reason for this particular form ozHsemponent
is that thez-axis is a Cartesian axis; that is,

V2BV, + ¢V, +2V.) = V2BV, + ¢V,) + 2V?V,
= pf(Vp, V) +¢g(Vy, V) +2V2V,.

Finally, the operatoW 2 operating on the, ¢ unit vectors stays in tha@-plane.

Example 2.4.2 A NAVIER-STOKES TERM

The Navier—Stokes equations of hydrodynamics contain a nonlinear term
V x [VX(VXV)],

wherev is the fluid velocity. For fluid flowing through a cylindrical pipe in thelirection,

v =2v(p).
From Eq. (2.36),
b po 2
1 ad
Vxv==|0 0 9 )__ 5%
Plap B¢ 0z ap
0 0 v
p o 2
0 0 v R v
Vx(VxvVv)= = pv(p)—
ov a
0O — O
ap
Finally,
o P9 Z
118 a8 8
VX(VX(VXV))=; 88,0 3(0 9z =0,
vl 0 0
ap

so, for this particular case, the nonlinear term vanishes. |
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Exercises

241

242

243

244

245

Chapter 2 Vector Analysis in Curved Coordinates and Tensors

Resolve the circular cylindrical unit vectors into their Cartesian components (Fig. 2.6).

ANS. p = Xcosp + ¥ sing,
@ = —Xsing + y cosy,
2=12

Resolve the Cartesian unit vectors into their circular cylindrical components (Fig. 2.6).

p cosp — ¢ sing,
y = psing + ¢ cosp,
z2=12

From the results of Exercise 2.4.1 show that
B _, 00 __
dp T e
and that all other first derivatives of the circular cylindrical unit vectors with respect to
the circular cylindrical coordinates vanish.
CompareV -V (Eqg. (2.34)) with the gradient operator

V_Aa +A1 0 +28
_pap (pp8<p 0z

(Eq. (2.33)) dotted intd&/. Note that the differential operators 8f differentiateboth
the unit vectors and the componentsvof
Hint. ¢(1/p)(/d¢) - pV, becomesp - %%(ﬁvp) and doesiot vanish.

(a) Show that = pp + 2z.

Ay

=y

FIGURE 2.6 Plane polar coordinates.
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(b) Working entirely in circular cylindrical coordinates, show that
V.r=3 and Vxr=0.

24.6 (a) Show that the parity operation (reflection through the origin) on a gpint, z)
relative tofixed x-, y-, z-axes consists of the transformation

p—=p, p—>pxm, 7= =2z

(b) Show thatp and ¢ have odd parity (reversal of direction) and ttzahas even
parity.
Note. The Cartesian unit vectofs ¥, andz remain constant.

247 A rigid body is rotating about a fixed axis with a constant angular velegitfakew to
lie along thez-axis. Express the position vectom circular cylindrical coordinates and
using circular cylindrical coordinates,

(a) calculater =@ x r, (b) calculateV x v.

ANS. (a) V= gwp,

(b) V x v=_20.
24.8 Find the circular cylindrical components of the velocity and acceleration of a moving
particle,
Up=p9 apzlb_pgbZ’
Vp = P9, ap = pY + 2p¢,
v, =2, a;, =7%.
Hint.

r@) = pn)p) +2z(t)
= [Rcosp (1) +Ysing(1)]p(1) + 22(1).
Note. p =dp/dt, p = d?p/dt?, and so on.
249 Solve Laplace’s equatioV, >y = 0, in cylindrical coordinates foyr = v (p).
ANS. v =kin 2.
00

2.4.10 Inright circular cylindrical coordinates a particular vector function is given by

V(p,9)=pV,(p,0) +9Vy(p, ¢).

Show thatV x V has only az-component. Note that this result will hold for any vector
confined to a surfacgs = constant as long as the produétsV; and h,V> are each
independent of3.

2411  For the flow of an incompressible viscous fluid the Navier—Stokes equations lead to
—V x (VX (V x V) = LVZ(V x V).
£0

Heren is the viscosity angy is the density of the fluid. For axial flow in a cylindrical
pipe we take the velocity to be

v =2v(p).
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From Example 2.4.2,
V x (Vx(VXV)):O

for this choice ofv.
Show that

V2(V xVv)=0
leads to the differential equation
1d( d*v 1 dv
T |p—=)]-5—=0
pdp\ dp?) p?dp
and that this is satisfied by

V=10 + a2,02.

24.12 A conducting wire along the-axis carries a current. The resulting magnetic vector
potential is given by

24.13  Aforce is described by

(a) Express in circular cylindrical coordinates.
Operating entirely in circular cylindrical coordinates for (b) and (c),

(b) calculate the curl of and
(c) calculate the work done Hyin travers the unit circle once counterclockwise.
(d) How do you reconcile the results of (b) and (c)?

2414  Atransverse electromagnetic wave (TEM) in a coaxial waveguide has an electric field
E =E(p, ¢)e!*:=®) and a magnetic induction field &= B(p, ¢)e!*:=©"_ Since the
wave is transverse, neithEmor B has az component. The two fields satisfy thector
Laplacian equation

VZE(p,¢) =0

V2B(p,9) =0.

(@) ShowthaE = pEg(a/p)e*2=) andB = ¢ Bo(a/p)e' *2=“" are solutions. Here
a is the radius of the inner conductor afig and Bg are constant amplitudes.
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(b) Assuming a vacuum inside the waveguide, verify that Maxwell's equations are
satisfied with

Bo/Eo=k/w = nogo(w/k) =1/c.

24.15 A calculation of the magnetohydrodynamic pinch effect involves the evaluation of
(B - V)B. If the magnetic inductio is taken to beB = ¢ B, (p), show that

(B-V)B=—pBZ/p.

24.16 The linear velocity of particles in a rigid body rotating with angular velogitis given
by

V=gpo.
Integratef v - dA around a circle in the y-plane and verify that

fv-dr
=V xVv|;.
area

24.17 A proton of massn, charge+e, and (asymptotic) momentum = mv is incident on
a nucleus of charge Ze at an impact parametér Determine the proton’s distance of
closest approach.

2.5 SPHERICAL POLAR COORDINATES

Relabeling(q1, g2, g3) as(r, 8, ¢), we see that the spherical polar coordinate system con-
sists of the following:

1. Concentric spheres centered at the origin,

1/2

r=(x*+ y*+ %) = constant

2. Right circular cones centered on thé€polar) axis, vertices at the origin,

b4
6 = arccos = constant

(x2 + y2 + 72)1/2

3. Half-planes through the(polar) axis,

Q= arctanX = constant
X

By our arbitrary choice of definitions @f, the polar angle, and, the azimuth angle, the
z-axis is singled out for special treatment. The transformation equations corresponding to
Eqg. (2.1) are

x =rSinf cosp, y =rsing sing, z=rCcosb, (2.38)
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z
[ s
rsin@ do

rsin@
rdé

5 dA of
« Eq. (2.40)

FIGURE 2.7 Spherical polar coordinate area
elements.

measuring from the positivez-axis andy in the xy-plane from the positive-axis. The
ranges of values areQr <00, 0<0 <m,and 0< ¢ < 27. At r =0, 6 andg are
undefined. From differentiation of Eq. (2.38),

hi=h=1,
ha =hg=r, (2.39)
ha =h, =rsing.
This gives a line element
dr =tdr+0rdo + @rsinfde,
o)
ds? =dr -dr =dr?+ r?d6® + r?sin? 0 dy?,

the coordinates being obviously orthogonal. In this spherical coordinate system the area
element (forr = constant) is

dA =dog, =r?sind do dy, (2.40)

the light, unshaded area in Fig. 2.7. Integrating over the azimputke find that the area
element becomes a ring of widi®,

dAg = 27r?sing db. (2.41)

This form will appear repeatedly in problems in spherical polar coordinates with azimuthal
symmetry, such as the scattering of an unpolarized beam of particles. By definition of solid
radians, or steradians, an element of solid ad§lds given by

dA
dQ = —5 =sind d dy. (2.42)
r
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FIGURE 2.8 Spherical polar coordinates.

Integrating over the entire spherical surface, we obtain

/ dQ2 =4r.

From Eq. (2.11) the volume element is
dt =r?drsinfdode =r?drdQ. (2.43)

The spherical polar coordinate unit vectors are shown in Fig. 2.8.

It must be emphasized thidte unit vectorsf, 8, and ¢ vary in direction asthe angles
6 and ¢ vary. Specifically, thed andg derivatives of these spherical polar coordinate unit
vectors do not vanish (Exercise 2.5.2). When differentiating vectors in spherical polar (or
in any non-Cartesian system), this variation of the unit vectors with position must not be
neglected. In terms of the fixed-direction Cartesian unit ve&pysandz (cp. Eq. (2.38)),

f = Xsind cosy + ysinéd sing + zcosy,

A~

N . . afr
0 = XcosH cosp + ¥ cosd sing — zsinh = 30" (2.44)
p = —Xsing + ycosp = 1 of
which follow from
ar? af ap? af
=— =2 — 0= =2f

T 90 90’ Y R



126

Chapter 2 Vector Analysis in Curved Coordinates and Tensors

Note that Exercise 2.5.5 gives the inverse transformation and that a given vector can
now be expressed in a number of different (but equivalent) ways. For instance, the position
vectorr may be written

r=fr= f(xz + y2 +Z2)1/2
=Xx + )7y +2z
= Xr sinf cosy + Yr sinf sing + 2r cosh. (2.45)

Select the form that is most useful for your particular problem.
From Section 2.2, relabeling the curvilinear coordinate unit vedor§», andqs asf,

A

6, andg gives

oy A1y . 1 ay
Vi =f—— +0-—— . 2.46
V=T T 58 T sing vy (2.46)
1 7. 9 3y v,
V.V=———|sing— @YV, —(sinBV, — |, 2.47
rzsiHH[ ar V) gl 9)+ra¢] (2.47)
1 9 L0y (. oY 1 9%y
V.V =———|sind— — — | sin6— ——— |, (2.48
v rZSIHQ[ E)r(r 3r)+89< 26 ) Tsne gz @49
For  rsingg
1
VxV=—r=" |9 3 o, (2.49)
r2sing |5- 90 ag
Vi rVs rsingV,

Occasionally, the vector Laplacia®?V is needed in spherical polar coordinates. It is
best obtained by using the vector identity (Eq. (1.85)) of Chapter 1. For reference

R - By LN R UM
2 rdr  9r2  r2sinf 06 r2902  r2sir g g2

n 20 2cos) Vo + 2 0 v
290  r2sing ) ° r2sing ag ) ¢

2 293Vy 2co9 2 9V,

2 29 92 cosd 9 1 92 1 92
V2V|,=(— )

=V, -y, - S -y ¢ 2.50
TR T 0290 T rZsing U r2sing g (2.50)
20V, 2coy aV,

VNVjg=VVg— —— Vo 5 — — —— % 2.51
lo O 2site ' 1290 r2sirfe de #50

1 2 9V, 2co) AV
V2|, = V2V, — Vo4 5 — + —. 2.52
ly Y r2sitg Y r2sing dg - r2sire de (252

These expressions for the component&8¥ are undeniably messy, but sometimes they
are needed.
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Example 2.5.1 v,V ., Vx For A CENTRAL FORCE

Using Egs. (2.46) to (2.49), we can reproduce by inspection some of the results derived in

Chapter 1 by laborious application of Cartesian coordinates.
From Eq. (2.46),

df
VIO =tar (2.53)
V' = fnrn—1,
For the Coulomb potentidl = Ze/ (4 eor), the electric field i€E = —-VV = 4morzr
From Eq. (2.47),
Vot =2rm+Y
DEYT (2.54)

V-tr"=m+2)r" 1

Forr > 0 the charge density of the electric field of the Coulomb potentialdsV - E =
22V - L =0because = —2.

From'Eq. (2.48),

f d*f
Vif(r) = PR (2.55)
V2" =nn+ )r" 2, (2.56)

in contrast to the ordinary radial second derivative’binvolving n — 1 instead ofr + 1.
Finally, from Eq. (2.49),

V x i f(r)=0. (2.57)
|

Example 2.5.2  MAGNETIC VECTOR POTENTIAL

The computation of the magnetic vector potential of a single current loop imytiane
uses Oersted’s law, x H = J, in conjunction withugH =B = V x A (see Examples 1.9.2
and 1.12.1), and involves the evaluation of

1od =V x [V x A, (r,0)].

In spherical polar coordinates this reduces to

Pord rsing
) SR E I D
Ho rZsing |3, 39 %

0 0 rsinfA,(r,0)

1
=V x m[ —(rsinfA,) — r0—(r S|n0A¢):|
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Taking the curl a second time, we obtain

f ré rsind@
] 1 0 0 d
Hod = r2sing 31’ L 39 g
Zeing 30 (r SinfA,) —ma—(r SinfA,) 0
By expanding the determinant along the top row, we have
J = “182(A)+1a 1 (smeA)
HOS= "2 5,2V ) T 1296 | sing 00 v
—¢|:V2A¢(r,9) n2 5 Ay(r, 0)] (2.58)

Exercises

251 Express the spherical polar unit vectors in Cartesian unit vectors.
ANS. f = Xsinf cosy + ¥ sind sing + 2cosY,
0 = XcosH cosp + § cosd sing — 2singd,
@ = —Xsing + ¥ cosp.
252 (@) From the results of Exercise 2.5.1, calculate the partial derivativesfofand

with respect to-, 6, andg.
(b) With V given by

~19 P 1 9
or " v a6 % sing o

(greatest space rate of change), use the results of part (a) to calulsité. This
is an alternate derivation of the Laplacian.
Note. The derivatives of the left-hand operate on the unit vectors of the right-havid
before the unit vectors are dotted together.

253 Arigid body is rotating about a fixed axis with a constant angular velegitfakew to
be along the-axis. Using spherical polar coordinates,
(a) Calculate
V=w XTI.
(b) Calculate
V xwv.

ANS. (a) V= @wr sing,
(b) V x v =20.
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The coordinate syste, y, z) is rotated through an angie counterclockwise about an
axis defined by the unit vectorinto system(x’, y’, z’). In terms of the new coordinates
the radius vector becomes

r'=rcos® +r x nsin® +n(n-r)(1— cosd).

(@) Derive this expression from geometric considerations.

(b) Show that it reduces as expectedrice 2. The answer, in matrix form, appears in
Eq. (3.90).

(c) Verify thatr'? = r2.

Resolve the Cartesian unit vectors into their spherical polar components:
X = f sinf cosp + 6 coso Ccosp — @ Sing,
§ = f sind sing + @ cosd sing + ¢ cosg,
2= cosd — @ sind.

The direction of one vector is given by the angfesand¢;. For a second vector the
corresponding angles afe andg,. Show that the cosine of the included anglés
given by

COSy = C0SH1 COSHo + Sinby Sinda co @1 — ¢2).
See Fig. 12.15.

A certain vectorV has no radial component. Its curl has no tangential components.
What does this imply about the radial dependence of the tangential compon#gftits of

Modern physics lays great stress on the property of parity — whether a quantity remains
invariant or changes sign under an inversion of the coordinate system. In Cartesian
coordinates this means— —x, y - —y, andz — —z.

(a) Show that the inversion (reflection through the origin) of a p6int, ¢) relative
to fixed x-, y-, z-axes consists of the transformation

r—r, 0 —m—0, ¢ —> @t

(b) Show thaf and¢ have odd parity (reversal of direction) and thdtas even parity.

With A any vector,

A-Vr=A.

() \Verify this result in Cartesian coordinates.
(b) \Verify this result using spherical polar coordinates. (Equation (2.46) pro¥des
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2510

2511

2512

2513

2514

Find the spherical coordinate components of the velocity and acceleration of a moving
particle:

v =T,
Vg Z}’é,
vy =rSinfg,

a =7 — r6? — rSin2t9</')2,
ag = rb + 270 — r sind cosv?,
a, = rSindg + 27 sinf¢ + 2r coshhg.
Hint.
r@) =ft@®ra)
= [Xsind (1) cosp(r) + ¥sind (1) sing (1) + 2cosH (1) |r ().

Note. Using the Lagrangian techniques of Section 17.3, we may obtain these results
somewhat more elegantly. The dot#nd, ¢ means time derivative;, = dr/dt,0 =
do/dt, 9 =de/dt. The notation was originated by Newton.

A particlem moves in response to a central force according to Newton’s second law,
mi =Ff f(r).

Show thatr x f = ¢, a constant, and that the geometric interpretation of this leads to
Kepler's second law.

Expressd/dx, d/dy, 3/dz in spherical polar coordinates.

0 d 19 sing 9
ANS. — = sinf cosp — + cosf cosp— — — —— —,

dx Yo T 796 " rsing dp

0 . .9 .10 cosp 9

— =singsing — +cosf sing— — + ———,

dy ar rdf  rsind dgp

0 a .19

— =C0S9— —sinf——.

0z or r 00

Hint. EquateV .y, andV ,g,.

From Exercise 2.5.12 show that

This is the quantum mechanical operator corresponding te-temponent of orbital
angular momentum.

With the quantum mechanical orbital angular momentum operator defined=as
—i(r x V), show that

. of 0 . 0
(a) Lx—l—zL},:e"/’(£+lC0t9%>,
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2517

2518

2519
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. | ad
(b) Ly,—iLy=—e""Y| — —icotd— ).
a0 17

(These are the raising and lowering operators of Section 4.3.)

Verify that L x L =iL in spherical polar coordinatek. = —i(r x V), the quantum
mechanical orbital angular momentum operator.

Hint. Use spherical polar coordinates forbut Cartesian components for the cross
product.

(a) From Eg. (2.46) show that

L=—i(rxV)=i(6 1 9 50
=—i =i(0———-90—).
sing d¢ ¢89

(b) Resolving‘i andg into Cartesian components, determing L, andL. in terms
of 6, ¢, and their derivatives.
(c) FromL?=L2+ L2+ L? show that

5 1 9(. 9 1 92
=————|SiNf— | — ———
sing 96 30 ) sirg g2

8 8
— V + J— — ).
- r (r )

This latter identity is useful in relating orbital angular momentum and Legendre’s dif-
ferential equation, Exercise 9.3.8.

With L = —ir x V, verify the operator identities

rxL
r2

0
a) V=Ff——i
(@) or !

r

3
(b) rVZ—V(1+r8—) =iV xL.

Show that the following three forms (spherical coordinatesy & (r) are equivalent:

(@)

1d [rzch/f(r)] 1 d2 d*y(r)  2dy(r)

r2dr dr ; (b);ﬁ[rw(r)]; © dr? r dr

The second form is particularly convenient in establishing a correspondence between
spherical polar and Cartesian descriptions of a problem.
One model of the solar corona assumes that the steady-state equation of heat flow,

V.- (kVT)=0,

is satisfied. Herek, the thermal conductivity, is proportional ©°2. Assuming that
the temperaturd is proportional to-", show that the heat flow equation is satisfied by
T = To(ro/r)?/".
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2520

2521

2522

2.5.23

A certain force field is given by

2Pcosd AP
+ 60— sing, r>=pP/2

F=f
3 3

(in spherical polar coordinates).

(@) ExamineV x F to see if a potential exists.

(b) Calculatef F - dx for a unit circle in the plané = /2. What does this indicate
about the force being conservative or nonconservative?

(c) If you believe thaF may be described blf = —V, find 1. Otherwise simply
state that no acceptable potential exists.

(@) Show tha’h = —¢ cotd/r is a solution ofV x A =F/r2.

(b) Show that this spherical polar coordinate solution agrees with the solution given

for Exercise 1.13.6:
PR _¢ Xz
r(x24y2)  Tr(x?4y?)
Note that the solution diverges fér= 0, = corresponding ta, y = 0.
(c) Finally, show thaA = —égo sinf/r is a solution. Note that although this solution
does not divergér # 0), it is no longer single-valued for all possible azimuth
angles.

A=

A magnetic vector potential is given by
Mo mxr
C4r g3

Show that this leads to the magnetic inducti®of a point magnetic dipole with dipole
momentm.

ANS. for m = zm,

2mcosd sing
V xA=fHo Hom _
47 73 47 r3

Compare Eqgs. (12.133) and (12.134)

At large distances from its source, electric dipole radiation has fields

i(kr—wt) ei(kr—wt)
E =agsing 0, B =agsing Q.
r r
Show that Maxwell’s equations
0B oE
VXE=—— and V x B =¢gouo—
ot K0,
are satisfied, if we take
ag w _
— = — =c=(eop0) /%
ap k

Hint. Sincer is large, terms of order—2 may be dropped.
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2524  The magnetic vector potential for a uniformly charged rotating spherical shell is
R Moa“oa) siné
A= 3 r2’
~ oao w
1o -r C0s9, r<a.

r>a

(a = radius of spherical shelly = surface charge density, angd= angular velocity.)
Find the magnetic inductioB =V x A.

2uoatocw cosh

ANS. B, (r,0) = === = r>a
4 .
sing
Birn0) =22 = rea
2
B:i%, r<a.

2525 (a) Explain whyV? in plane polar coordinates follows froR? in circular cylindrical
coordinates witly = constant.
(b) Explain why takingv? in spherical polar coordinates and restrictihg /2 does
not lead to the plane polar form &f.
Note.

v2( )_32+1a+132
PO =502 T ap T p2ag?

2.6 TENSOR ANALYSIS

Introduction, Definitions

Tensors are important in many areas of physics, including general relativity and electrody-
namics. Scalars and vectors are special cases of tensors. In Chapter 1, a quantity that did not
change under rotations of the coordinate system in three-dimensional space, an invariant,
was labeled a scalar. gcalar is specified by one real number and iseasor of rank 0.

A quantity whose components transformed under rotations like those of the distance of a
point from a chosen origin (Eqg. (1.9), Section 1.2) was called a vector. The transformation
of the components of the vector under a rotation of the coordinates preserves the vector as
a geometric entity (such as an arrow in space), independent of the orientation of the refer-
ence frame. In three-dimensional spaceeetor is specified by 3= 3! real numbers, for
example, its Cartesian components, andtiensor of rank 1. A tensor of rank n has 3
components that transform in a definite walhis transformation philosophy is of central
importance for tensor analysis and conforms with the mathematician’s concept of vector
and vector (or linear) space and the physicist’s notion that physical observables must not
depend on the choice of coordinate frames. There is a physical basis for such a philosophy:
We describe the physical world by mathematics, but any physical predictions we make

5In N-dimensional space a tensor of rankasN”" components.
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must be independent of our mathematical conventions, such as a coordinate system with
its arbitrary origin and orientation of its axes.
There is a possible ambiguity in the transformation law of a vector

Al =ZaijAj, (2.59)
J

in whicha;; is the cosine of the angle between tHeaxis and thex ;-axis.
If we start with a differential distance vectdr, then, takingix; to be a function of the
unprimed variables,

ox’
dx]=3" ax' dx; (2.60)

j ot
by partial differentiation. If we set

0x/
aij = ﬁ (2.61)

Egs. (2.59) and (2.60) are consistent. Any set of quantitiesansforming according to

12 8)6[-/ J
Al = Z EA (2.62a)

J

is defined as aontravariant vector, whose indices we write agper script; this includes
the Cartesian coordinate vectdr= x; from now on.

However, we have already encountered a slightly different type of vector transformation.
The gradient of a scala&f ¢, defined by

dp L dp L 0¢

(usingxt, x2, x3 for x, y, z), transforms as
a¢’ dp dx’
ax/1 L gy gx'i’ (2.64)
J

usinge = ¢(x,y,z) = o(x’,y',7) = ¢', ¢ defined as a scalar quantity. Notice that this
differs from Eq. (2.62) in that we havéx//dx'! instead ofdx’! /dx/. Equation (2.64)

is taken as the definition of eovariant vector, with the gradient as the prototype. The
covariant analog of Eq. (2.62a) is

J
Al =ZaLAj. (2.62b)

9x'i

Only in Cartesian coordinates is

ax/  axt
ax’i = m = daij (265)
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so that there no difference between contravariant and covariant transformations. In other
systems, Eq. (2.65) in general does not apply, and the distinction between contravariant
and covariant is real and must be observed. This is of prime importance in the curved
Riemannian space of general relativity.

In the remainder of this section the components of@mgr avariant vector are denoted
by asuperscript, A’, whereas aubscript is used for the components ofcavariant
vectorA; 8

Definition of Tensors of Rank 2

Now we proceed to definentravariant, mixed, and covariant tensorsof rank 2 by the
following equations for their components under coordinate transformations:

iy ax'l ax'J
nj __ kl
A= oA
kl

. ax’t ax!
B = Zﬁaxu‘Bkl’ (2.66)
kl

, axk ax!
Clearly, the rank goes as the number of partial derivatives (or direction cosines) in the de-
finition: O for a scalar, 1 for a vector, 2 for a second-rank tensor, and so on. Each index
(subscript or superscript) ranges over the number of dimensions of the space. The number
of indices (equal to the rank of tensor) is independent of the dimensions of the space. We
see thatA¥’ is contravariant with respect to both indic€s, is covariant with respect to
both indices, and*; transforms contravariantly with respect to the first indésut covari-
antly with respect to the second indexOnce again, if we are using Cartesian coordinates,
all three forms of the tensors of second rank contravariant, mixed, and covariant are —the
same.

As with the components of a vector, the transformation laws for the components of a
tensor, Eq. (2.66), yield entities (and properties) that are independent of the choice of ref-
erence frame. This is what makes tensor analysis important in physics. The independence
of reference frame (invariance) is ideal for expressing and investigating universal physical
laws.

The second-rank tensér(componentst¥’) may be conveniently represented by writing
out its components in a square array(3 if we are in three-dimensional space):

ALl 412 413
A=| A2l A2 A% ], (2.67)
A31 A32 A33
This does not mean that any square array of numbers or functions forms a tensor. The
essential condition is that the components transform according to Eq. (2.66).

6This means that the coordinates y, z) are Written(xl, x2, x3) sincer transforms as a contravariant vector. The ambiguity of
x2 representing both squared and is the price we pay.
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In the context of matrix analysis the preceding transformation equations become (for
Cartesian coordinates) an orthogonal similarity transformation; see Section 3.3. A geomet-
rical interpretation of a second-rank tensor (the inertia tensor) is developed in Section 3.5.

In summary, tensors are systems of components organized by one or more indices that
transform according to specific rules under a set of transformations. The number of in-
dices is called the rank of the tensor. If the transformations are coordinate rotations in
three-dimensional space, then tensor analysis amounts to what we did in the sections on
curvilinear coordinates and in Cartesian coordinates in Chapter 1. In four dimensions of
Minkowski space-time, the transformations are Lorentz transformations, and tensors of
rank 1 are called four-vectors.

Addition and Subtraction of Tensors

The addition and subtraction of tensors is defined in terms of the individual elements, just
as for vectors. If

A+B=C, (2.68)
then
AY + BY = CY.

Of course A andB must be tensors of the same rank and both expressed in a space of the
same number of dimensions.

Summation Convention

In tensor analysis it is customary to adopt a summation convention to put Eq. (2.66) and
subsequent tensor equations in a more compact form. As long as we are distinguishing
between contravariance and covariance, let us agree that when an index appears on one side
of an equation, once as a superscript and once as a subscript (except for the coordinates
where both are subscripts), we automatically sum over that index. Then we may write the
second expression in Eq. (2.66) as

g axtaxt

with the summation of the right-hand side oweand!/ implied. This is Einstein’s summa-
tion conventior!. The indexi is superscript because it is associated with the contravariant
x’%: likewise j is subscript because it is related to the covariant gradient.

To illustrate the use of the summation convention and some of the techniques of tensor
analysis, let us show that the now-familiar Kronecker deltg, is really a mixed tensor

7In this contexix’’ /3x* might better be written asi anddx!/dx’/ asbé.
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of rank 2,8%;.8 The question is: Does; transform according to Eq. (2.66)? This is our
criterion for calling it a tensor. We have, using the summation convention,

coox/taxl axt axk

= 2.70
Poxk 9x/7 ~ 9xk ax'i (2.70)
by definition of the Kronecker delta. Now,
9 i 9 k ) i
=X 2.71)

Bxk 9x'7  ox'i
by direct partial differentiation of the right-hand side (chain rule). Howevérandx’/

are independent coordinates, and therefore the variation of one with respect to the other
must be zero if they are different, unity if they coincide; that is,

ax/i ri
=3 (2.72)

Hence
o ax'l axl
T axk gxti

showing that thé*,; are indeed the components of a mixed second-rank tensor. Notice that
this result is independent of the number of dimensions of our space. The reason for the
upper index and lower indexj is the same as in Eq. (2.69).

The Kronecker delta has one further interesting property. It has the same components in
all of our rotated coordinate systems and is therefore cadlgdopic. In Section 2.9 we
shall meet a third-rank isotropic tensor and three fourth-rank isotropic tensors. No isotropic
first-rank tensor (vector) exists.

B

Symmetry-Antisymmetry
The order in which the indices appear in our description of a tensor is important. In general,
A™ isindependent oA"", but there are some cases of special interest. If, far @hdn,
A" = A", (2.73)
we call the tensosymmetric. If, on the other hand,
AT = — AT, (2.74)

the tensor imntisymmetric. Clearly, every (second-rank) tensor can be resolved into sym-
metric and antisymmetric parts by the identity

A %(Amn + Anm) + %(Amn — A”m), (2.75)

the first term on the right being a symmetric tensor, the second, an antisymmetric tensor.
A similar resolution of functions into symmetric and antisymmetric parts is of extreme
importance to quantum mechanics.

8]t is common practice to refer to a tensbiby specifying a typical componemn, ;. As long as the reader refrains from writing
nonsense such #= A;;, no harm is done.
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Spinors

It was once thought that the system of scalars, vectors, tensors (second-rank), and so on
formed a complete mathematical system, one that is adequate for describing a physics
independent of the choice of reference frame. But the universe and mathematical physics
are not that simple. In the realm of elementary particles, for example, spin zero particles
(r mesonsg particles) may be described with scalars, spin 1 particles (deuterons) by
vectors, and spin 2 particles (gravitons) by tensors. This listing omits the most common
particles: electrons, protons, and neutrons, all with s;biﬁ'hese particles are properly
described byspinors. A spinor is not a scalar, vector, or tensor. A brief introduction to
spinors in the context of group theoty = 1/2) appears in Section 4.3.

Exercises

261

26.2

26.3

264

265

Show that if all the components of any tensor of any rank vanish in one particular
coordinate system, they vanish in all coordinate systems.

Note. This point takes on special importance in the four-dimensional curved space of
general relativity. If a quantity, expressed as a tensor, exists in one coordinate system, it
exists in all coordinate systems and is not just a consequenaghof@ of a coordinate
system (as are centrifugal and Coriolis forces in Newtonian mechanics).

The components of tensér are equal to the corresponding components of teBsior
one particular coordinate system, denoted by the superscript O; that is,

0 0
Aij = Bl-j.
Show that tensoh is equal to tensoB, A;; = B;;, in all coordinate systems.
The last three components of a four-dimensional vector vanish in each of two reference
frames. If the second reference frame is not merely a rotation of the first abatg the
axis, that is, if at least one of the coefficients (i = 1, 2, 3) £ 0, show that the zeroth
component vanishes in all reference frames. Translated into relativistic mechanics this

means that if momentum is conserved in two Lorentz frames, then energy is conserved
in all Lorentz frames.

From an analysis of the behavior of a general second-rank tensor urfdan®d.80
rotations about the coordinate axes, show that an isotropic second-rank tensor in three-
dimensional space must be a multiplespf.

The four-dimensional fourth-rank Riemann—Christoffel curvature tensor of general rel-
ativity, R;xim, satisfies the symmetry relations

Rikim = —Rikmi = — Ryiim-

With the indices running from 0 to 3, show that the number of independent components
is reduced from 256 to 36 and that the condition

Rikim = Rimik

9The particle spin is intrinsic angular momentum (in unitsdfit is distinct from classical, orbital angular momentum due to

motion.
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further reduces the number of independent components to 21. Finally, if the components
satisfy an identityR;x;m + Riimk + Rimx = 0, show that the number of independent
components is reduced to 20.

Note. The final three-term identity furnishes new information only if all four indices are
different. Then it reduces the number of independent components by one-third.

2.6.6 T;uim is antisymmetric with respect to all pairs of indices. How many independent com-
ponents has it (in three-dimensional space)?

2.7 CONTRACTION, DIRECT PRODUCT

Contraction
When dealing with vectors, we formed a scalar product (Section 1.3) by summing products
of corresponding components:

A-B=A;B; (summation convention). (2.76)

The generalization of this expression in tensor analysis is a process known as contraction.
Two indices, one covariant and the other contravariant, are set equal to each other, and then
(as implied by the summation convention) we sum over this repeated index. For example,
let us contract the second-rank mixed ten86r;,

_ ax't ox! k ax!

= Bk, = — Bk 2.77
P xk gxin T k7! ( )

using Eq. (2.71), and then by Eq. (2.72)
B/[i = SlkBkl = Bkk. (2.78)

Our contracted second-rank mixed tensor is invariant and therefore a'Scalis is ex-

actly what we obtained in Section 1.3 for the dot product of two vectors and in Section 1.7
for the divergence of a vector. In general, the operation of contraction reduces the rank of
a tensor by 2. An example of the use of contraction appears in Chapter 4.

Direct Product

The components of a covariant vector (first-rank tengoand those of a contravariant vec-
tor (first-rank tensorp’/ may be multiplied component by component to give the general
terma; b/ . This, by Eg. (2.66) is actually a second-rank tensor, for

axk axy o axk ax'J
b j—

a{b/j = ‘ak = T
! ax’t " ox! ax’t ax!

(axd'). (2.79)
Contracting, we obtain

ab'’ =aqb*, (2.80)

101n matrix analysis this scalar is theace of the matrix, Section 3.2.
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asin Egs. (2.77) and (2.78), to give the regular scalar product.

The operation of adjoining two vectors andb/ as in the last paragraph is known as
forming thedirect product. For the case of two vectors, the direct product is a tensor of
second rank. In this sense we may attach meanirigEowhich was not defined within
the framework of vector analysis. In general, the direct product of two tensors is a tensor
of rank equal to the sum of the two initial ranks; that is,

AT BM =T M (2.81a)
whereC’ ;¥ is a tensor of fourth rank. From Egs. (2.66),

C”'jkl _ ax'! Bx”. ax’k gx" cm . (2.81b)
dx™ dx'J dxP dx4

The direct product is a technique for creating new, higher-rank tensors. Exer-
cise 2.7.1is a form of the direct product in which the first factov isApplications appear
in Section 4.6.

When T is annth-rank Cartesian tenso(a/axi)Tjk, ..., a component ofVT, is a
Cartedian tensor of rank: 4+ 1 (Exercise 2.7.1). Howevefd/dx*)Tjy ... is not a tensor
in more general spaces. In non-Cartesian systgthis’' will act on the partial derivatives
dx?/dx"4 and destroy the simple tensor transformation relation (see Eqg. (2.129)).

So far the distinction between a covariant transformation and a contravariant transfor-
mation has been maintained because it does exist in non-Euclidean space and because it is
of great importance in general relativity. In Sections 2.10 and 2.11 we shall develop differ-
ential relations for general tensors. Often, however, because of the simplification achieved,
we restrict ourselves to Cartesian tensors. As noted in Section 2.6, the distinction between
contravariance and covariance disappears.

Exercises

271 If 7., is a tensor of rank, show thatd7..,;/dx/ is a tensor of rank + 1 (Cartesian
coordinates).
Note. In non-Cartesian coordinate systems the coefficieptare, in general, functions
of the coordinates, and the simple derivative of a tensor of naislnot a tensor except
in the special case of = 0. In this case the derivative does yield a covariant vector
(tensor of rank 1) by Eq. (2.64).

2.7.2 If T;j.... is a tensor of rank:, show thatZl. aT,-,»k.../axf is a tensor of ranks — 1
(Cartesian coordinates). '

273 The operator
2 192
c2 312
may be written as

4
92
257
:l
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usingx4 = ict. This is the four-dimensional Laplacian, sometimes called the d’Alem-
bertian and denoted Hyi2. Show that it is ascalar operator, that is, is invariant under
Lorentz transformations.

QUOTIENT RULE

If A; andB; are vectors, as seen in Section 2.7, we can easily showfiBgtis a second-
rank tensor. Here we are concerned with a variety of inverse relations. Consider such equa-
tions as

KiAi =B (2.82a)
KijA; = B; (2.82b)
KijAjr = Bi (2.82¢)
KijrAij = Bu (2.82d)
KijAr = Biji. (2.82€)

Inline with our restriction to Cartesian systems, we write all indices as subscripts and,
unless specified otherwise, sum repeated indices.

In each of these expressioAsandB are known tensors of rank indicated by the number
of indices andA is arbitrary. In each cask is an unknown quantity. We wish to establish
the transformation properties &f. The quotient rule asserts that if the equation of interest
holds in all (rotated) Cartesian coordinate systekhss a tensor of the indicated rank. The
importance in physical theory is that the quotient rule can establish the tensor nature of
quantities. Exercise 2.8.1 is a simple illustration of this. The quotient rule (Eq. (2.82b))
shows that the inertia matrix appearing in the angular momentum equatofe, Sec-
tion 3.5, is a tensor.

In proving the quotient rule, we consider Eq. (2.82b) as a typical case. In our primed
coordinate system

Kl/]A/] = Bl/ = a,-kBk, (283)

using the vector transformation propertiesBf Since the equation holds in all rotated
Cartesian coordinate systems,

aik B = aix (K1 Ay). (2.84)

Now, transformingA back into the primed coordinate syst€nfcompare Eq. (2.62)), we
have

Ki/jA/j = aikKklale/j. (2.85)
Rearranging, we obtain
(K,-/j — a,'kaszkl)A’j =0. (2.86)

11Note the order of the indices of the direction cosingin thisinver se transformation. We have

ox; ., ’
Ar=) 5 A =2 anA).
J J

J
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This must hold for each value of the inde&nd for every primed coordinate system. Since
the A/j is arbitrary2 we conclude
Ki/j =a;xa;i Ky, (2.87)
which is our definition of second-rank tensor.
The other equations may be treated similarly, giving rise to other forms of the quotient
rule. One minor pitfall should be noted: The quotient rule does not necessarily agply if
is zero. The transformation properties of zero are indeterminate.

Example 2.8.1  EQUATIONS OF MOTION AND FIELD EQUATIONS

In classical mechanics, Newton’s equations of motioh= F tell us on the basis of the
quotient rule that, if the mass is a scalar and the force a vector, then the accelaeation
is a vector. In other words, the vector character of the force as the driving term imposes its
vector character on the acceleration, provided the scale faci®scalar.

The wave equation of electrodynamigésA* = J* involves the four-dimensional ver-
sion of the Laplaciad? = % — V2, aLorentz scalar, and the external four-vector current
J# as its driving term. From the quotient rule, we infer that the vector poteatiais a
four-vector as well. If the driving current is a four-vector, the vector potential must be of
rank 1 by the quotient rule. |

The quotient ruleis a substitute for the illegal division of tensors.

Exercises

281 The double summatiok;; A; B; is invariant for any two vectord; andB;. Prove that
K;; is a second-rank tensor.
Note. In the formds? (invariant)= gij dx' dx/, this result shows that the matrg; is
atensor.

2.8.2 The equatiorK;; A jx = B;; holds for all orientations of the coordinate systerA land
B are arbitrary second-rank tensors, show #ad a second-rank tensor also.

2.8.3 The exponential in a plane wave is ¢ - r — wt)]. We recognize” = (ct, x1, X2, X3)
as a prototype vector in Minkowski spacekr — wr is a scalar under Lorentz transfor-
mations (Section 4.5), show thit = (w/c, k1, k2, k3) is a vector in Minkowski space.
Note. Multiplication by 7 yields (E /¢, p) as a vector in Minkowski space.

2.9 PSEUDOTENSORS, DUAL TENSORS

So far our coordinate transformations have been restricted to pure passive rotations. We
now consider the effect of reflections or inversions.

12\n%e might, for instance, takd) =1 andAj, =0 form # 1. Then the equatioi/; = a;ay Ky, follows immediately. The
rest of Eq. (2.87) comes from other special choices of the arbiﬁéjary
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)

FIGURE 2.9 Inversion of Cartesian coordinates — polar vector.

If we have transformation coefficients; = —§;;, then by Eqg. (2.60)
xl=—x'l (2.88)

which is an inversion or parity transformation. Note that this transformation changes our
initial right-handed coordinate system into a left-handed coordinate systémr proto-
type vector with componentgx?, x2, x3) transforms to

= (x/1’x/2’x/3) — (_xl’ _x2’ _XS).

This new vector’ has negative components, relative to the new transformed set of axes.
As shown in Fig. 2.9, reversing the directions of the coordinate axes and changing the
signs of the components gives=r. The vector (an arrow in space) stays exactly as it
was before the transformation was carried out. The position veaad all other vectors
whose components behave this way (reversing sign with a reversal of the coordinate axes)
are calledpolar vectorsand have odd parity.

A fundamental difference appears when we encounter a vector defined as the cross prod-
uct of two polar vectors. Le€C = A x B, where bothA andB are polar vectors. From
Eq. (1.33), the components Gfare given by

Cl=A’B3— A%B? (2.89)

and so on. Now, when the coordinate axes are invertédy —A’, B — —B;., but from

its definitionC¥ — +C’*; that is, our cross-product vector, vec@ydoesnot behave like

a polar vector under inversion. To distinguish, we label it a pseudovector or axial vector
(see Fig. 2.10) that has even parity. The tewial vector is frequently used because these
cross products often arise from a description of rotation.

13This is an inversion of the coordinate system or coordinate axes, objects in the physical world remaining fixed.
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y
C 77

C’ V'

FIGURE 2.10 Inversion of Cartesian coordinates — axial vector.

Examples are

angular velocity, V=w X,
orbital angular momentum, L=rxp,
torque, force=F, N=r x F,
magnetic induction field, % =—-V x E.

In v=w x r, the axial vector is the angular velocigy, andr andv = dr/dt are polar
vectors. Clearly, axial vectors occur frequently in physics, although this fact is usually
not pointed out. In a right-handed coordinate system an axial v&tbas a sense of
rotation associated with it given by a right-hand rule (compare Section 1.4). In the inverted
left-handed system the sense of rotation is a left-handed rotation. This is indicated by the
curved arrows in Fig. 2.10.

The distinction between polar and axial vectors may also be illustrated by a reflection.
A polar vector reflects in a mirror like a real physical arrow, Fig. 2.11a. In Figs. 2.9 and 2.10
the coordinates are inverted; the physical world remains fixed. Here the coordinate axes
remain fixed; the world is reflected —as in a mirror in theplane. Specifically, in this
representation we keep the axes fixed and associate a change of sign with the component
of the vector. For a mirror in thez-plane, P, — —P,. We have

P= (P)CaPy7PZ)
P =(P,,—Py, P;)  polarvector.

An axial vector such as a magnetic fidldor a magnetic moment (= currentx area
of current loop) behaves quite differently under reflection. Consider the magnetic field
H and magnetic moment to be produced by an electric charge moving in a circular path
(Exercise 5.8.4 and Example 12.5.3). Reflection reverses the sense of rotation of the charge.
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b

FIGURE 2.11  (a) Mirror in xz-plane; (b) mirror
in xz-plane.

The two current loops and the resulting magnetic moments are shown in Fig. 2.11b. We
have

IL = (MQ\W I’Lyv /“LZ)

' = (—px, uy, —pz)  reflected axial vector.
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If we agree that the universe does not care whether we use a right- or left-handed coor-
dinate system, then it does not make sense to add an axial vector to a polar vector. In the
vector equatiorA = B, both A andB are either polar vectors or axial vectdfsSimilar
restrictions apply to scalars and pseudoscalars and, in general, to the tensors and pseudoten-
sors considered subsequently.

Usually, pseudoscalars, pseudovectors, and pseudotensors will transform as

S'=17Js, C;=Ja;;jCj, A} = Jaikaji A, (2.90)

where J is the determinad® of the array of coefficients,,,, the Jacobian of the parity
transformation. In our inversion the Jacobian is

-1 0 0
J=/0 -1 0|=-1 (2.92)
0 0o -1
For a reflection of one axis, theaxis,
-1 0 0
J=/0 1 0/=-1, (2.92)
0O 0 1

and again the Jacobiah= —1. On the other hand, for all pure rotations, the Jacobias
always+1. Rotation matrices discussed further in Section 3.3.

In Chapter 1 the triple scalar produ§t= A x B - C was shown to be a scalar (un-
der rotations). Now by considering the parity transformation given by Eq. (2.88), we see
that S — —S, proving that the triple scalar product is actually a pseudoscalar: This be-
havior was foreshadowed by the geometrical analogy of a volume. If all three parameters
of the volume —length, depth, and height— change from positive distances to negative
distances, the product of the three will be negative.

Levi-Civita Symbol

For future use it is convenient to introduce the three-dimensional Levi-Civita sysmol
defined by

£123=¢€231=¢€312=1,
£132=¢€213=¢€321= —1, (2.93)
all othere;;x = 0.

Note thate;;; is antisymmetric with respect to all pairs of indices. Suppose now that we
have a third-rank pseudotens®y;, which in one particular coordinate system is equal to
Eijk- Then

!/
8ijk = |alaipajqair€pgr (2.94)
14The big exception to this is in beta decay, weak interactions. Here the universe distinguishes between right- and left-handed

systems, and we add polar and axial vector interactions.
15peterminants are described in Section 3.1.
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by definition of pseudotensor. Now,
a1pa2403r-&pgr = la| (2.95)

by direct expansion of the determinant, showing #igt = la|? = 1 = e123. Considering
the other possibilities one by one, we find

sz{jk = Sijk (296)

for rotations and reflections. Heneg; is a pseudotensdf: 1’ Furthermore, it is seen to
be an isotropic pseudotensor with the same components in all rotated Cartesian coordinate
systems.

Dual Tensors

With anyantisymmetric second-rank tens@ (in three-dimensional space) we may asso-
ciate a dual pseudovect6y defined by

1 )
Ci = Esijkak. (2.97)

Here the antisymmetri€ may be written

0 C12 _C31
c=|-c? o c® . (2.98)
C3l _C23 0

We know thatC; must transform as a vector under rotations from the double contraction of
the fifth-rank (pseudo) tensey;C,,, but that it is really a pseudovector from the pseudo
nature ofe; ;. Specifically, the components Gfare given by

(C1,Ca, C3) = (€%, 3L, c1?), (2.99)

Notice the cyclic order of the indices that comes from the cyclic order of the components
of &;jx. EQ. (2.99) means that our three-dimensional vector product may literally be taken
to be either a pseudovector or an antisymmetric second-rank tensor, depending on how we
choose to write it out.

If we take three (polar) vectois, B, andC, we may define the direct product

viik = Al BJCk, (2.100)
By an extension of the analysis of Section 218/* is a tensor of third rank. The dual
quantity
1 iy
v =Stk yiik (2.101)

16The usefulness of 4 extends far beyond this section. For instance, the matfifiesf Exercise 3.2.16 are derived from
(My) pqg = —iepqr- Much of elementary vector analysis can be written in a very compact form by &igjngnd the identity of
Exercise 2.9.4 See A. A. Evett, Permutation symbol approach to elementary vector adatysSidhys. 34: 503 (1966).

17The numerical value of pgr is given by the triple scalar product of coordinate unit vectors:

Kp - Rg X Ry

From this point of view each element 8§, is a pseudoscalar, but thg,, collectively form a third-rank pseudotensor.
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is clearly a pseudoscalar. By expansion it is seen that
Al Bl c?
V =|A% B? (? (2.102)
A3 B3 C3

is our familiar triple scalar product.

For use in writing Maxwell's equations in covariant form, Section 4.6, we want to extend
this dual vector analysis to four-dimensional space and, in particular, to indicate that the
four-dimensional volume eleme®dx! dx?dx3 is a pseudoscalar.

We introduce the Levi-Civita symbal;;;, the four-dimensional analog @f;;. This
quantity ¢;; is defined as totally antisymmetric in all four indices.(dfkl) is an even
permutatiof® of (0, 1, 2, 3), thene;;; is defined ast-1; if it is an odd permutation,
theneg;;i; is —1, and 0 if any two indices are equal. The Levi-Civita; may be proved a
pseudotensor of rank 4 by analysis similar to that used for establishing the tensor nature of
&ijk- Introducing the direct product of four vectors as fourth-rank tensor with components

HUM = AlBickp!, (2.103)
built from the polar vectorg\, B, C, andD, we may define the dual quantity

1 ..
H= Egij,dH’-/k’ , (2.104)

a pseudoscalar due to the quadruple contraction with the pseudotgnsoNow we let
A, B, C, andD be infinitesimal displacements along the four coordinate axes (Minkowski

space),
A = (dx°,0,0,0)
(2.105)
B=(0,dx%0,0), andsoon,
and
H=dx"dxtdx?dx3. (2.106)

The four-dimensional volume element is now identified as a pseudoscalar. We use this
result in Section 4.6. This result could have been expected from the results of the special
theory of relativity. The Lorentz—Fitzgerald contractiondf! dx2dx? just balances the

time dilation ofdx?.

We slipped into this four-dimensional space as a simple mathematical extension of the
three-dimensional space and, indeed, we could just as easily have discussed 5N-6-, or
dimensional space. This is typical of the power of the component analysis. Physically, this
four-dimensional space may be taken as Minkowski space,

(xo, x1 X2, x3) =(ct,x,y,2), (2.107)

wherer is time. This is the merger of space and time achieved in special relativity. The
transformations that describe the rotations in four-dimensional space are the Lorentz trans-
formations of special relativity. We encounter these Lorentz transformations in Section 4.6.

18p permutation is odd if it involves an odd number of interchanges of adjacent indices, s(@i &3 — (02 1 3. Even
permutations arise from an even number of transpositions of adjacent indices. (Actually thedjameht is unnecessary.)
£0123=+1.
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Irreducible Tensors

For some applications, particularly in the quantum theory of angular momentum, our Carte-
sian tensors are not particularly convenient. In mathematical language our general second-
rank tensor4;; is reducible, which means that it can be decomposed into parts of lower
tensor rank. In fact, we have already done this. From Eq. (2.78),

A=Al (2.108)

is a scalar quantity, the trace af; 19
The antisymmetric portion,

Bij = 3(Aij — Aj), (2.109)
has just been shown to be equivalent to a (pseudo) vector, or
Bij = Cy cyclic permutation of, j, k. (2.110)

By subtracting the scalat and the vectoCy from our original tensor, we have an irre-
ducible, symmetric, zero-trace second-rank ten§gy,in which

with five independent components. Then, finally, our original Cartesian tensor may be writ-
ten
Ajj =%A5,-j+Ck—|—S,-j. (2.112)

The three quantitied, Cx, andsS;; form spherical tensors of rank 0, 1, and 2, respec-
tively, transforming like the spherical harmonifﬁ” (Chapter 12) forL. =0, 1, and 2.
Further details of such spherical tensors and their uses will be found in Chapter 4 and the
books by Rose and Edmonds cited there.

A specific example of the preceding reduction is furnished by the symmetric electric
quadrupole tensor

Qi = /(3x,~xj —r28;) p(x1. X2, x3)d°x.

The —r2s; ; term represents a subtraction of the scalar trace (the threg terms). The
resultingQ;; has zero trace.

Exercises

29.1 An antisymmetric square array is given by

0 C3 —-C 0 ct2 B
—-C3 O 1 |=|-c2 o 28],
c, -C; O -cB ¢ ¢

19An alternate approach, using matrices, is given in Section 3.3 (see Exercise 3.3.9).
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where(C1, C», C3) form a pseudovector. Assuming that the relation

1 .
Cl' = EgijkCJk

holds in all coordinate systems, prove tiddf is a tensor. (This is another form of the

quotient theorem.)

292 Show that the vector product is unique to three-dimensional space; that is, only in three
dimensions can we establish a one-to-one correspondence between the components of
an antisymmetric tensor (second-rank) and the components of a vector.

293 Show that inR3

(@ 6;=3,

(b) dijeijxr =0,

(c) Eipq€jpq = 281']‘-
(d) &ijkeijx =6.

294 Show that inR3

€ijkEpgk = 8ipdjg — Siq8jp-

295 (a) Express the components of a cross-product ve&i@ = A x B, in terms ofe; jx
and the components éf andB.
(b) Use the antisymmetry af; to show thatA - A x B=0.

ANS. (@) C; =¢;jiA;By.

2.9.6 (a) Show that the inertia tensor (matrix) may be written
Lij =m(x;ixjd;ij — xixj)
for a particle of mass: at (x1, x2, x3).
(b) Show that
Iij = —M; Mj; = —méeixXrrjmXm,

whereM;; = mY/2¢;;.x;. This is the contraction of two second-rank tensors and is
identical with the matrix product of Section 3.2.

297 Write V-V x A andV x Vg in tensor (index) notation i3 so that it becomes obvious
that each expression vanishes.
9 9

ANS. V.V xA=¢gjjj———A",
ox! ox/

a 9
(VxVg); = €ijkw87(p'
298 Expressing cross products in terms of Levi-Civita symlgels.), derive theBAC-CAB
rule, Eq. (1.55).
Hint. The relation of Exercise 2.9.4 is helpful.
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29.10
2911

29.12

29.13

2914

2.10
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Verify that each of the following fourth-rank tensors is isotropic, that is, that it has the
same form independent of any rotation of the coordinate systems.

(@ Ajju=28ij0u,
(b)  Bjjx =8ikdji + 88k,
(©) Cijki =8ix8j1 — 8ud jk-

Show that the two-index Levi-Civita symbesj; is a second-rank pseudotensor (in two-
dimensional space). Does this contradict the uniqueness (Exercise 2.6.4)?

Represent;; by a 2x 2 matrix, and using the 2 2 rotation matrix of Section 3.3 show
thate;; is invariant under orthogonal similarity transformations.

Given Ay = %EijkBij with Bi/ = — B/ antisymmetric, show that
B — Sm”kAk.
Show that the vector identity
(AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C)

(Exercise 1.5.12) follows directly from the description of a cross product ayjthand
the identity of Exercise 2.9.4.

Generalize the cross product of two vectors:tdimensional space for =4,5,....
Check the consistency of your construction and discuss concrete examples. See Exer-
cise 1.4.17 for the case= 2.

GENERAL TENSORS

The distinction between contravariant and covariant transformations was established in
Section 2.6. Then, for convenience, we restricted our attention to Cartesian coordinates
(in which the distinction disappears). Now in these two concluding sections we return to
non-Cartesian coordinates and resurrect the contravariant and covariant dependence. As in
Section 2.6, a superscript will be used for an index denoting contravariant and a subscript
for an index denoting covariant dependence. The metric tensor of Section 2.1 will be used
to relate contravariant and covariant indices.

The emphasis in this section is on differentiation, culminating in the construction of
the covariant derivative. We saw in Section 2.7 that the derivative of a vector yields a
second-rank tensor—in Cartesian coordinates. In non-Cartesian coordinate systems, it is
the covariant derivative of a vector rather than the ordinary derivative that yields a second-
rank tensor by differentiation of a vector.

Metric Tensor

Let us start with the transformation of vectors from one set of coordinates;?, ¢4°)
to anotherr = (x1, x2, x3). The new coordinates are (in generainlinear) functions
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x' (g1, 42, ¢®) of the old, such as spherical polar coordinate®, ¢). But their differ-
entials obey thelinear transformation law

Coaxt .
dx' = 25 g, (2.113a)
aq’
or
dr =e;dq’ (2.113b)

. . . . 1 9.1 9.1
in vector notation. For convenience we take the basis veetprs (g%, % g%), €2,

and ez to form a right-handed set. These vectors are not necessarily orthogonal. Also, a
limitation to three-dimensional space will be required only for the discussions of cross
products and curls. Otherwise thesemay be in N-dimensional space, including the
four-dimensional space—time of special and general relativity. The basis vegtoray

be expressed by

ar
& = o
aq'

asin Exercise 2.2.3. Note, however, thatdhbere dmnot necessarily have unit magnitude.
From Exercise 2.2.3, the unit vectors are

(2.114)

1 or .
g =—— (no summation)
hi 9g;
and therefore
e =hig (no summation) (2.115)

Thee; are related to the unit vectoesby the scale factors; of Section 2.2. The; have no
dimensions; the; have the dimensions @f;. In spherical polar coordinates, as a specific
example,

& =6 =T, co =rey =rb, e, =rsinfde, =rsinfg. (2.116)

In Euclidean spaces, or in Minkowski space of special relativity, the partial derivatives in
Eq. (2.113) are constants that define the new coordinates in terms of the old ones. We used
them to define the transformation laws of vectors in Eq. (2.59) and (2.62) and tensors in
Eq. (2.66). Generalizing, we definecantravariant vector V! undergeneral coordinate
transformations if its components transform according to

_ dx!

V/i —
dqJ

Vi, (2.117a)

or
V' =Vie; (2.117b)

in vector notation. Forovariant vectors we inspect the transformation of the gradient
operator
9 9q’

T = o g7 (2.118)
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using the chain rule. From
dx? aqj _
dgl axk
it is clear that Eq. (2.118) is related to thwver se transformation of Eq. (2.113),

8k (2.119)

Y LA
dg’ = aii dx'. (2.120)
Hence we define eovariant vectorV; if
g/
V= %vj (2.121a)
holds or, in vector notation,
V' =V;el, (2.121b)

wheree/ are the contravariant vectogd'e; = &/.
Second-rank tensors are defined as in Eq. (2.66),

; .
. ox' ax) 4,

Al = a_qka_qlA , (2.122)

and tensors of higher rank similarly.
As in Section 2.1, we construct the square of a differential displacement

(ds)?=dr -dt = (e;dg')* =¢&; - &, dq' dq’. (2.123)
Comparing this with(ds)? of Section 2.1, Eq. (2.5), we identif; - e as the covariant
metric tensor
€ -&j=gij. (2.124)

Clearly, g;; is symmetric. The tensor nature gf; follows from the quotient rule, Exer-
cise 2.8.1. We take the relation

gikgkj = 51’]_ (2.125)

to define the corresponding contravariant tengér Contravariantg’* enters as the in-
versé? of covariantg;. We use this contravariat® to raise indices, converting a co-
variantindex into a contravariant index, as shown subsequently. Likewise the cogafiant
will be used to lower indices. The choicegf andg; for this raising—lowering operation
is arbitrary. Any second-rank tensor (and its inverse) would do. Specifically, we have

gie;=¢ relating covariant and
y l_ contravariant basis vectors, (2.126)
gYF;=F relating covariant and

contravariant vector components.

20if the tensorgy; is written as a matrix, the tensgff is given by the inverse matrix.
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Then

g,;,ef =g as the corresponding index

gijF/ =F;  lowering relations. (2.127)

It should be emphasized again that theande/ donot have unit magnitude. This may
be seen in Egs. (2.116) and in the metric tengpffor spherical polar coordinates and its
inverseg'/:

1 0 0
10 0 - 1
(gij)=|0 r? 0 (") = 0 0
0 0 r2sirfe 0 o 1
r2sirf 6
Christoffel Symbols
Let us form the differential of a scalar,
9 .
dyr = qul_ (2.128)
aq’

Since thedq’ are the components of a contravariant vector, the partial derivatives
dy/dq' must form a covariant vector — by the quotient rule. The gradient of a scalar be-
comes
oy
aq'

Vy=—¢. (2.129)
Note thatdy /9’ are not the gradient components of Section 2.2 —becalsee; of
Section 2.2.

Moving on to the derivatives of a vector, we find that the situation is much more compli-
cated because the basis vectgrare in general not constant. Remember, we are no longer
restricting ourselves to Cartesian coordinates and the nice, convénigrit! Direct dif-
ferentiation of Eq. (2.117a) yields

vk axkavi 92k

= — e 2.130a
daq’ daqt dq’ + dq’aq’ ( )

or, in vector notation,
v/ avi ; 0€;
- = —&; \% .
aq’ aq’t aq’t
The right side of Eq. (2.130a) differs from the transformation law for a second-rank mixed
tensor by the second term, which contains second derivatives of the coordifiafése
latter are nonzero for nonlinear coordinate transformations.
Now, de; /dg’ will be some linear combination of the, with the coefficient depending
on the indices and j from the partial derivative and index from the base vector. We
write

(2.130b)

a .
% —fep (2.131a)
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Multiplying by ¢ and usinge™ - ¢, = 6] from Exercise 2.10.2, we have
m m

N Be,-
ij =€ 'aqj'

(2.131b)

The Ffj is a Christoffel symbol of theecond kind. It is also called aoefficient of con-

nection. Thesel“f‘. arenot third-rank tensors and th@V’/dg’ of Eq. (2.130a) are not
second-rank tensors. Equations (2.131) should be compared with the results quoted in Ex-
ercise 2.2.3 (remembering that in genera¥ €;). In Cartesian coordinateEfj =0 for all
values of the indices, j, andk. These Christoffel three-index symbols may be computed
by the techniques of Section 2.2. This is the topic of Exercise 2.10.8. Equation (2.138)
offers an easier method. Using Eq. (2.114), we obtain

de; °r de

S T kg (2.132)

dq/  03q’/dq' g J

Hence these Christoffel symbols are symmetric in the two lower indices:

rk=rk. (2.133)

Christoffel Symbols as Derivatives of the Metric Tensor

Itis often convenient to have an explicit expression for the Christoffel symbols in terms of
derivatives of the metric tensor. As an initial step, we define the Christoffel symbol of the
first kind [ij, k] by

lij. k1= gmiT}}, (2.134)

from which the symmetryij, k] = [ji, k] follows. Again, this[ij, k] is not a third-rank
tensor. From Eq. (2.131b),

0e;
lij. k] = gmie™ - 5
8 .
L (2.135)
aq/
Now we differentiateg;; = &; - €, Eq. (2.124):
dgij  0&; e
dgk ~ agt ST gk
= [ik, j1+ [jk,i] (2.136)
by Eq. (2.135). Then
1(og; 0gi 0gii
lij, k)= =28k | 28k _ %8ij 1 (2.137)
2| 9q/  9q'  dq*
and
. kSpe -
F;j :g b[ljvk]
_ Lok |08 | 08k 0sij (2.138)
2 dg/  dqt  agk ]’ '
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These Christoffel symbols are applied in the next section.

Covariant Derivative

With the Christoffel symbols, Eq. (2.130b) may be rewritten
oV’ avt

k
27 aq/ ei+ Vi I'iek. (2.139)
Now, i andk in the last term are dummy indices. Interchangirandk (in this one term),
we have
v’ 8Vl %

The quantity in parenthesis is labeledavariant derivative, V_ij. We have

vkri 2.141
=t 2140

The; j subscript indicates differentiation with respecyta The differentialdV’ becomes

oV’
dg/

dVv' =

dg’ = [V’ dq’le;. (2.142)

A comparison with Eq. (2.113) or (2.122) shows that the quantity in square brackets is
theith contravariant component of a vector. Siakzg is the jth contravariant component
of a vector (again, Eq. (2. 113)\)” must be the jth component of a (mixed) second-rank
tensor (quotient rule). The covanant derivatives of the contravariant components of a vector
form a mixed second-rank tenséft ..

Since the Christoffel symbols vanish in Cartesian coordinates, the covariant derivative
and the ordinary partial derivative coincide:

avi

307 = V’j (Cartesian coordinates). (2.143)
q ;
The covariant derivative of a covariant vectgris given by (Exercise 2.10.9)
9 V
Vij=——ViT'},. (2.144)

Like V’j ;.j Is a second-rank tensor.

The physical importance of the covariant derivative is that “A consistent replacement
of regular partial derivatives by covariant derivatives carries the laws of physics (in com-
ponent form) from flat space—time into the curved (Riemannian) space—time of general
relativity. Indeed, this substitution may be taken as a mathematical statement of Einstein’s
principle of equivalence?t

21c. w. Misner, K. S. Thorne, and J. A. Wheel6ravitation. San Francisco: W. H. Freeman (1973), p. 387.
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Geodesics, Parallel Transport

The covariant derivative of vectors, tensors, and the Christoffel symbols may also be ap-
proached from geodesics. A geodesic in Euclidean space is a straight line. In general, it is
the curve of shortest length between two points and the curve along which a freely falling
particle moves. The ellipses of planets are geodesics around the sun, and the moon is in
free fall around the Earth on a geodesic. Since we can throw a particle in any direction, a
geodesic can have any direction through a given point. Hence the geodesic equation can
be obtained from Fermat's variational principle of optics (see Chapter 17 for Euler’'s equa-
tion),

B/ds =0, (2.145)
whereds? is the metric, Eq. (2.123), of our space. Using the variatiodsdf
2ds8ds =dq' dq’ 8 gij + gijdq' $dq’ + gijdq’ 8dq’ (2.146)
in Eq. (2.145) yields
1 dq' dg’ dq' d dq’ d ;
= —38g — —3d&dq’ ———&8dq' |ds =0, 2.147
2/|:ds g5 08 8o odda + gy bdg! | ds (2.147)

whereds measures the length on the geodesic. Expressing the variations

0gij

k _ - k
ngq = (drgij)ddq

8gij =
in terms of theindependent variations 8 dg*, shifting their derivatives in the other two
terms of Eq. (2.147) upon integrating by parts, and renaming dummy summation indices,
we obtain

dq' dg’ d dq’ dq’
2/[ ds kgij — ds <g1kd + 8kj—— s >]8dq ds =0. (2.148)

The integrand of Eq. (2.148), set equal to zero, is the geodesic equation. It is the Euler
equation of our variational problem. Upon expanding

dgik dq’ dgi; dq'
5; =(0 i8 lk) 1 dsj (0 k]) dq (2149)
along the geodesic we find
1dq' dg’ d?q’
Ed—ii(ak&j 0;8ik — 0i8kj) — gikd—:z =0. (2.150)

Multiplying Eq. (2.150) withg"’ and using Eq. (2.125), we find tiyeodesic equation
d’q'  dq'dq’ 1
ds? ds ds 2

where the coefficient of the velocities is the Christoffel synibplof Eq. (2.138).
Geodesics are curves that are independent of the choice of coordinates. They can be
drawn through any point in space in various directions. Since the lelsgtieasured along

gkl(algkj +0;gik — 0k&ij) = (2.151)
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the geodesic is a scalar, the velocitigd /ds (of a freely falling particle along the geodesic,
for example) form a contravariant vector. Henidedq* /ds is a well-defined scalar on

any geodesic, which we can differentiate in order to define the covariant derivative of any

covariant vectolV,. Using Eqg. (2.151) we obtain from the scalar

d dg* dV; dqg* d?q*
<V1>_ kdq” |, dq

ds\ Yds ) T as ds + K ds?

Vi dq' dg* dq' dg’

= Jrkaa 49y, lkii (2.152)
dq' ds ds 1 ds ds
dq' dg* (dV,

=YY (2 ).
ds ds \ 9q"

When the quotient theorem is applied to Eq. (2.152) it tells us that
Vi
Viei = Fro rl v (2.153)

is a covariant tensor that defines the covariant derivativg ponsistent with Eq. (2.144).
Similarly, higher-order tensors may be derived.
The second term in Eq. (2.153) defines flaeallel transport or displacement,

8V =T Vidq', (2.154)

of the covariant vecto¥; from the point with coordinateg’ to ¢’ + 8¢4'. The parallel
transportsU*, of a contravariant vectdy* may be found from the invariance of the scalar
productU* V, under parallel transport,

s(U V) =sU*v, + U*sv, =0, (2.155)

in conjunction with the quotient theorem.

In summary, when we shift a vector to a neighboring point, parallel transport preventsit
from sticking out of our space. This can be clearly seen on the surface of a spherein spher-
ical geometry, where a tangent vector is supposed to remain a tangent upon translating it
along some path on the sphere. This explains why the covariant derivative of a vector or
tensor is naturally defined by tranglating it along a geodesic in the desired direction.

Exercises
2101 Equations (2.115) and (2.116) use the scale fagtoriting Exercise 2.2.3. In Sec-
tion 2.2 we had restricted ourselves to orthogonal coordinate systems, yet Eq. (2.115)
holds for nonorthogonal systems. Justify the use of Eq. (2.115) for nonorthogonal sys-
tems.
2102 (a) Showthat'-¢;=3".

(b) From the result of part (a) show that

Fi=F.¢& and F,=F-¢;.
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2.109
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For the special case of three-dimensional spaggel>, €3 defining a right-handed co-
ordinate system, not necessarily orthogonal), show that

: €; X &
el_ J

=—, i, j, k=1, 2,3 and cyclic permutations.
€j X € &

Note. These contravariant basis vectersdefine the reciprocal lattice space of Sec-
tion 1.5.

Prove that the contravariant metric tensor is given by
g/ =¢"-el.

If the covariant vectors; are orthogonal, show that

(a) gjisdiagonal,

(b) g =1/g;; (no summation),
(€) le'l=1/leil.

Derive the covariant and contravariant metric tensors for circular cylindrical coordi-
nates.

Transform the right-hand side of Eq. (2.129),

oy
= p
into thee; basis, and verify that this expression agrees with the gradient developed in
Section 2.2 (for orthogonal coordinates).

&',

vy

Evaluatede; /dg/ for spherical polar coordinates, and from these results calc[][‘?te
for spherical polar coordinates.
Note. Exercise 2.5.2 offers a way of calculating the needed partial derivatives. Remem-
ber,
e1="f but &2 =0 and e3=rsinfg.

Show that the covariant derivative of a covariant vector is given by

_ 3V ‘
Vi;j = W — Vkrij'
Hint. Differentiate
e e =3

Verify that V;. ; = ¢ix V", by showing that

J Vl K 9 Vk myk

a7~ Vol =gik{m + VTt

From the circular cylindrical metric tensgy;, calculate the‘f‘j for circular cylindrical
coordinates.

Note. There are only three nonvanishihg
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2.10.12

2.10.13

2.10.14

2.10.15
2.10.16

2.10.17

Using thel'¥; from Exercise 2.10.11, write out the covariant derivatiVésof a vector
V in circular cylindrical coordinates.

A triclinic crystal is described using an oblique coordinate system. The three covariant
base vectors are

e1 = 1.5%,
&2 =0.4%x + 1.69,
e3=0.2x+ 0.3y + 1.02.
(a) Calculate the elements of the covariant metric tegsor

(b) Calculate the Christoffel three-index symbdl%,. (This is a “by inspection” cal-
culation.)

(c) From the cross-product form of Exercise 2.10.3 calculate the contravariant base

vectoreS.
(d) Using the explicit forms2 ande;, verify thate? - &; = §3;.

Note. If it were needed, the contravariant metric tensor could be determined by finding
the inverse og;; or by finding thes’ and usingg'/ =&’ - &/.

Verify that

[ij, k1= Z{ 5k S8k S8

2| aq/ aq’ aq
Hint. Substitute Eq. (2.135) into the right-hand side and show that an identity results.
Show that for the metric tensgg;.x =0, g'/.x =0.

Show that parallel displaceme&ﬂqi = d?¢' along a geodesic. Construct a geodesic
by parallel displacement &fdq’.

Construct the covariant derivative of a vecior by parallel transport starting from the
limiting procedure

fim Vig/ +dq’) — Vi(g’)
dgi—0 dql ’

2.11 TENSOR DERIVATIVE OPERATORS

In this section the covariant differentiation of Section 2.10 is applied to rederive the vector
differential operations of Section 2.2 in general tensor form.

Divergence

Replacing the partial derivative by the covariant derivative, we take the divergence to be

V-v—vf.—a—vi+v’< i (2.156)
- ;z_aqi ik* '
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Expressing™, by Eq. (2.138), we have

i 1 im{ 0gim 08km 0gik }

Fik = 2g

- 2.157
dgk aq' g™ ( )

When contracted witlg?” the last two terms in the curly bracket cancel, since

im 08km i O8ki i 08ik

— = = 2.158
og7 =8 agn — & agm ( )
Then
i 1 i 8gim
ik=58" 2k (2.159)
From the theory of determinants, Section 3.1,
d - 0gi
8 ggim 8 (2.160)

where g is the determinant of the metrig = def(g;;). Substituting this result into
Eq. (2.158), we obtain

1 og 1 9g1/2

i=—_° =-_-_° 2.161
ik 28 aqk gl/2 aqk ( )
This yields
V.V=Vi= %ik(gl/sz). (2.162)
o gY29q

To compare this result with Eq. (2.21), note thatohz = g1/2 and V! (contravariant
coefficient ofe;) = V;/ h; (no summation), wher¥®; is Section 2.2 coefficient ;.

Laplacian

In Section 2.2, replacement of the vectbin V -V by Vi led to the LaplaciaV - V.
Here we have a contravaria¥it. Using the metric tensor to create a contravarkijt, we
make the substitution

Vi gik%.
q
Then the LaplaciaiV - V¢ becomes

For theorthogonal systems of Section 2.2 the metric tensor is diagonal and the contravari-
antg'’ (no summation) becomes

g =h)~2.
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Equation (2.163) reduces to

V.Vy

_ 1 0 [ hihoh3 0y
 hahohzdq' \ hZ 9q')

in agreement with Eq. (2.22).

Curl

The difference of derivatives that appears in the curl (Eq. (2.27)) will be written
oV, 9V;

agi  agi
Again, remember that the componerits here are coefficients of the contravariant
(nonunit) base vectows . The V; of Section 2.2 are coefficients of unit vectes Adding
and subtracting, we obtain
av; aV; aV; aV;
L= — _wrk - vk
an Bq’ aq] J 8ql JU
=Vi;— Vi (2.164)

using the symmetry of the Christoffel symbols. The characteristic difference of derivatives
of the curl becomes a difference of covariant derivatives and therefore is a second-rank
tensor (covariant in both indices). As emphasized in Section 2.9, the special vector form of
the curl exists only in three-dimensional space.

From Eq. (2.138) it is clear that all the Christoffel three index symbols vanish in
Minkowski space and in the real space—time of special relativity with

1 0 0 O
o -1 o0 o
Su=lo o0 -1 o0
0 0 0 -1

Here
XxQ = ct, X1=x, X2=1y, and xX3=72.

This completes the development of the differential operators in general tensor form. (The
gradient was given in Section 2.10.) In addition to the fields of elasticity and electromag-
netism, these differentials find application in mechanics (Lagrangian mechanics, Hamil-
tonian mechanics, and the Euler equations for rotation of rigid body); fluid mechanics; and
perhaps most important of all, the curved space—time of modern theories of gravity.

Exercises

2111  \Verify Eq. (2.160),

ag im agim
for the specific case of spherical polar coordinates.
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Starting with the divergence in tensor notation, Eq. (2.162), develop the divergence of a
vector in spherical polar coordinates, Eq. (2.47).

The covariant vectoA; is the gradient of a scalar. Show that the difference of covariant
derivativesA;,; — A;.; vanishes.

Additional Readings

Dirac, P. A. M.,General Theory of Relativity. Princeton, NJ: Princeton University Press (1996).
Hartle, J. B. Gravity, San Francisco: Addison-Wesley (2003). This text uses a minimum of tensor analysis.

Jeffreys, H.Cartesian Tensors. Cambridge: Cambridge University Press (1952). This is an excellent discussion
of Cartesian tensors and their application to a wide variety of fields of classical physics.

Lawden, D. F.An Introduction to Tensor Calculus, Relativity and Cosmology, 3rd ed. New York: Wiley (1982).

Margenau, H., and G. M. Murphihe Mathematics of Physics and Chemistry, 2nd ed. Princeton, NJ: Van Nos-
trand (1956). Chapter 5 covers curvilinear coordinates and 13 specific coordinate systems.

Misner, C. W,, K. S. Thorne, and J. A. Wheel€ravitation. San Francisco: W. H. Freeman (1973), p. 387.

Moller, C., The Theory of Relativity. Oxford: Oxford University Press (1955). Reprinted (1972). Most texts on
general relativity include a discussion of tensor analysis. Chapter 4 develops tensor calculus, including the
topic of dual tensors. The extension to non-Cartesian systems, as required by general relativity, is presented in
Chapter 9.

Morse, P. M., and H. FeshbadWgthods of Theoretical Physics. New York: McGraw-Hill (1953). Chapter 5 in-
cludes a description of several different coordinate systems. Note that Morse and Feshbach are not above using
left-handed coordinate systems even for Cartesian coordinates. Elsewhere in this excellent (and difficult) book
there are many examples of the use of the various coordinate systems in solving physical problems. Eleven ad-
ditional fascinating but seldom-encountered orthogonal coordinate systems are discussed in the second (1970)
edition of Mathematical Methods for Physicists.

Ohanian, H. C., and R. RuffinGravitation and Spacetime, 2nd ed. New York: Norton & Co. (1994). A well-
written introduction to Riemannian geometry.

Sokolnikoff, I. S.,Tensor Analysis—Theory and Applications, 2nd ed. New York: Wiley (1964). Particularly
useful for its extension of tensor analysis to non-Euclidean geometries.

Weinberg, S.Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity. New
York: Wiley (1972). This book and the one by Misner, Thorne, and Wheeler are the two leading texts on
general relativity and cosmology (with tensors in non-Cartesian space).

Young, E. C.Vector and Tensor Analysis, 2nd ed. New York: Marcel Dekker (1993).
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CHAPTER 3

DETERMINANTS AND
MATRICES

3.1 DETERMINANTS

We begin the study of matrices by solving linear equations that will lead us to determi-
nants and matrices. The conceptdeferminant and the notation were introduced by the
renowned German mathematician and philosopher Gottfried Wilhelm von Leibniz.

Homogeneous Linear Equations

One of the major applications of determinants is in the establishment of a condition for
the existence of a nontrivial solution for a set of linear homogeneous algebraic equations.
Suppose we have three unknownsxs, x3 (or n equations withh unknowns):

arxq + azxy +azxz3 =0,
bix1 + boxz + baxz =0, (3.1)
c1x1 + cox2 + c3x3=0.

The problem is to determine under what conditions there is any solution, apart from
the trivial onex1 =0, x» =0, x3 = 0. If we use vector notatior = (x1, x2, x3) for the
solution and three rowa = (a1, az, a3), b = (b1, b2, b3), ¢ = (c1, c2, c3) of coefficients,
then the three equations, Egs. (3.1), become

a-x=0, b-x=0, c-x=0. (3.2)

These three vector equations havedgbemetrical interpretation thax is orthogonal to
a, b, andc. If the volume spanned bg, b, c given by the determinant (or triple scalar

165
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product, see Eq. (1.50) of Section 1.5)

aip a2 as
Dz=(axbh)-c=detla,b,c)=|b1 br b3 (3.3)
c1 2 C3

is not zero, then there is only the trivial solutiga= 0.

Conversely, if the aforementioned determinant of coefficients vanishes, then one of the
row vectors is a linear combination of the other two. Let us assume ffet in the plane
spanned bya andb, that is, that the third equation is a linear combination of the first
two and not independent. Thenis orthogonal to that plane so that~ a x b. Since
homogeneous equations can be multiplied by arbitrary numbers, only ratios gf dne
relevant, for which we then obtain ratios 0&22 determinants

X1 axbz —azb?
 a1bp — azb
X3 aiba —azb1 (3.4)
x2 aibz — azby
x3  aiby —azb1
from the components of the cross prodact b, providedxs ~ a1b2 — axby # 0. This is
Cramer’srulefor three homogeneous linear equations.

Inhomogeneous Linear Equations

The simplest case of two equations with two unknowns,
arxy+azxp=as,  bixi+baxa=b3, (3.5)

can be reduced to the previous case by imbedding it in three-dimensional space with a so-
lution vectorx = (x1, x2, —1) and row vectora = (ax, ap, az), b = (b1, b2, b3). As before,

Egs. (3.5) in vector notatiom,- x = 0 andb - x = 0, imply thatx ~ a x b, so the analog of

Egs. (3.4) holds. For this to apply, though, the third componeatsob must not be zero,

that is,a1b2 — a2b1 # 0, because the third componentofs —1 # 0. This yields they;

as

as az
azby — bzap bz b2

= = , 3.6a

1 aiby — asbq air ar ( )
b1 by
ay as

— b1 b

o b3z asby 1P 03] (3.6b)
ai1by — asbq ai ar
by by

The determinant in the numerator of(x2) is obtained from the determinant of the co-
efficients |, ;2| by replacing the first (second) column vector by the vegfgy of the
inhomogeneous side of Eqg. (3.5). Thigdsamer’srule for a set of two inhomogeneous

linear equations with two unknowns.
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These solutions of linear equations in terms of determinants can be generalized to
dimensions. The determinant is a square array

al ar e ay
_|b1 b2 - by
D, = o1 e o o (3.7)

of numbers (or functions), the coefficients oflinear equations in our case here. The
numbern of columns (and of rows) in the array is sometimes calleddtaer of the
determinant. The generalization of the expansion in Eq. (1.48) of the triple scalar product
(of row vectors of three linear equations) leads to the following value of the determinant
D, in n dimensions,

D, = Z &ijk--aibjcg -+, (3.8)
ik

wheree; ..., analogous to the Levi-Civita symbol of Section 2.9;H% for even permuta-
tionst (ijk---) of (123---n), —1 for odd permutations, and zero if any index is repeated.
Specifically, for the third-order determinabg of Eq. (3.3), Eq. (3.8) leads to

D3 = +ai1bycz — arbzcy — azbic3 + azbscy + azbico — azbocy. (3.9

The third-order determinant, then, is this particular linear combination of products. Each
product contains one and only one element from each row and from each column. Each
product is added if the columns (indices) represent an even permutation of (123) and sub-
tracted if we have an odd permutation. Equation (3.3) may be considered shorthand no-
tation for Eq. (3.9). The number of terms in the sum (Eq. (3.8)) is 24 for a fourth-order
determinanty! for annth-order determinant. Because of the appearance of the negative
signs in Eq. (3.9) (and possibly in the individual elements as well), there may be consider-
able cancellation. It is quite possible that a determinant of large elements will have a very
small value.

Several useful properties of th¢h-order determinants follow from Eq. (3.8). Again, to
be specific, Eq. (3.9) for third-order determinants is used to illustrate these properties.

Laplacian Development by Minors

Equation (3.9) may be written

D3 = ai(bpcz — bacp) — ax(bicz — bacy) + az(bicz — bact)

by b3 by b3 b1 by
. (3.10)

= —az +az

c2 (3 1 €3 1 €2

In general, thezth-order determinant may be expanded as a linear combination of the
products of the elements of any row (or any column) andthe 1)th-order determinants

in alinear sequencebcd - - -, any single, simple transposition of adjacent elements yieldsldrpermutation of the original
sequencezbcd — bacd. Two such transpositions yield an even permutation. In general, an odd number of such interchanges of
adjacent elements results in an odd permutation; an even number of such transpositions yields an even permutation.
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formed by striking out the row and column of the original determinant in which the element
appears. This reduced arrayX2 in this specific example) is calledwinor. If the element

is in theith row and thejth column, the sign associated with the produatid)’*/. The
minor with this sign is called theofactor. If M;; is used to designate the minor formed by
omitting theith row and thejth column andC;; is the corresponding cofactor, Eq. (3.10)
becomes

3 3
D3=) (=)/"a;M1; = a;Cy;. (3.11)
j=1 j=1

In this case, expanding along the first row, we havel and the summation ovgr, the
columns.

This Laplace expansion may be used to advantage in the evaluation of high-order de-
terminants in which a lot of the elements are zero. For example, to find the value of the
determinant

0 1 0 O
-1 0 0 O
D= 0o 0o o0 1 (3.12)
0 0 -1 0
we expand across the top row to obtain
-1 0 O
D=-D¥*?. |0 o 1. (3.13)
0 -1 0
Again, expanding across the top row, we get
0 1 0 1
1) (L _ —
R L CE I - B I A B (3.14)

(This determinantD (Eg. (3.12)) is formed from one of the Dirac matrices appearing in
Dirac’s relativistic electron theory in Section 3.4.)

Antisymmetry

The determinant changes sign if any two rows are interchanged or if any two columns are
interchanged. This follows from the even—odd character of the Levi-GiviteEq. (3.8)
or explicitly from the form of Egs. (3.9) and (3.19).

This property was used in Section 2.9 to develop a totally antisymmetric linear combina-
tion. It is also frequently used in quantum mechanics in the construction of a many-particle
wave function that, in accordance with the Pauli exclusion principle, will be antisymmetric
under the interchange of any two identical séirparticles (electrons, protons, neutrons,
etc.).

2The sign reversal is reasonably obvious for the interchange of two adjacent rows (or columns), this clearly being an odd
permutation. Show that the interchangean§ two rows is still an odd permutation.
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e As a special case of antisymmetry, any determinant with two rows equal or two
columns equal equals zero.

e If each elementin a row or each element in a column is zero, the determinant is equal
to zero.

e If each element in a row or each element in a column is multiplied by a constant, the
determinant is multiplied by that constant.

e The value of a determinant is unchanged if a multiple of one row is added (column by
column) to another row or if a multiple of one column is added (row by row) to another

column3
We have
ay az as ai1+kay a» a3z
b1 by b3z|=|b1+kby by b3|. (3.15)
c1 c2 c3 c1+kcy c2 c3

Using the Laplace development on the right-hand side, we obtain

ai1+kay a» a3z ai az as a; az as
b1+ kby by b3z|=|b1 by b3|+k|by by b3|, (3.16)
c1+kca c2 c3 c1 c2 c3 c2 Cc2 C3

then by the property of antisymmetry the second determinant on the right-hand side of
Eq. (3.16) vanishes, verifying Eq. (3.15).

As a special case, a determinant is equal to zero if any two rows are proportional or any
two columns are proportional.

Some useful relations involving determinants or matrices appear in Exercises of Sec-
tions 3.2 and 3.4.

Returning to the homogeneous Egs. (3.1) and multiplying the determinant of the coef-
ficients byx1, then addinge, times the second column ang times the third column, we
can directly establish the condition for the presence of a nontrivial solution for Egs. (3.1):

ap az as aixy az as aixi+azx2 +azxz azx as
x1|b1 by b3z|=|bix1 by b3|=|bix1+ boxo+b3xz by b3
c1 c2 c3 Cc1x1 c2 €3 c1x1+c2x2+c3x3 Cc2 €3
0 a» a3
=0 by b3|=0. (3.17)
0 ¢ c3

Thereforex1 (andx2 and x3) must be zerainless the determinant of the coefficients
vanishes. Conversely (see text below Eqg. (3.3)), we can show that if the determinant of the
coefficients vanishes, a nontrivial solution does indeed exist. This is used in Section 9.6 to
establish the linear dependence or independence of a set of functions.

3This derives from the geometric meaning of the determinant as the volume of the parallelepiped spanned by its column vectors.
Pulling it to the side without changing its height leaves the volume unchanged.
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If our linear equations aremnhomogeneous, that is, as in Egs. (3.5) if the zeros on
the right-hand side of Egs. (3.1) are replacedalyb,s, andcy, respectively, then from
Eq. (3.17) we obtain, instead,

as ar» aj
ba by b
y=1t 2 S (3.18)
a1 a» as
bi by bs

c1 c2 c3

which generalizes Eq. (3.6a) to= 3 dimensions, etc. If the determinant of the coefficients
vanishes, the inhomogeneous set of equations has no solution — unless the numerators also
vanish. In this case solutions may exist but they are not unique (see Exercise 3.1.3 for
a specific example).

For numerical work, this determinant solution, Eq. (3.18), is exceedingly unwieldy. The
determinant may involve large numbers with alternate signs, and in the subtraction of two
large numbers the relative error may soar to a point that makes the result worthless. Also,
although the determinant method is illustrated here with three equations and three un-
knowns, we might easily have 200 equations with 200 unknowns, which, involving up to
200! terms in each determinant, pose a challenge even to high-speed computers. There
must be a better way.

In fact, there are better ways. One of the best is a straightforward process often called
Gauss elimination. To illustrate this technique, consider the following set of equations.

Example 3.1.1  Gauss ELIMINATION

Solve
Ix+2y+z=11
2x+3y+2z=13 (3.19)
x+y+4z=12

The determinant of the inhomogeneous linear equations (3.19) is 18, so a solution exists.
For convenience and for the optimum numerical accuracy, the equations are rearranged
so that the largest coefficients run along the main diagonal (upper left to lower right). This
has already been done in the preceding set.
The Gauss technique is to use the first equation to eliminate the first unknpwom
the remaining equations. Then the (new) second equation is used to elimifrata the
last equation. In general, we work down through the set of equations, and then, with one
unknown determined, we work back up to solve for each of the other unknowns in succes-

sion.
Dividing each row by its initial coefficient, we see that Egs. (3.19) become
x-+-%y-+—%zr= %%
xt3y+li=2 (3.20)

x+y+4z=12
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Now, using the first equation, we eliminatdrom the second and third equations:

x—l—%y—i—%Z:%
tEi=% (3.21)

1 11 25

§y+?z 3
and

2 1 11
+§y+§z— 3

yt+iz=¥% (3.22)

y+11z =25

Repeating the technique, we use the new second equation to elimifrata the third
equation:

x—i—gy—l—%z: 1@1
yt+iz=¥Y (3.23)
54; = 108

or
=2
Finally, working back up, we get
y+ix2=%,
or
y=3
Then withz andy determined,
x+%x3+%x2=%l,
and
x=1

The technique may not seem so elegant as Eq. (3.18), but it is well adapted to computers
and is far faster than the time spent with determinants.
This Gauss technique may be used to convert a determinant into triangular form:

a1 b1 c1
D=0 by o
0 0 c3

for a third-order determinant whose elements are not to be confused with those in Eq. (3.3).
In this form D = a1bsc3. For annth-order determinant the evaluation of the triangular
form requires onlyn — 1 multiplications, compared with the! required for the general
case.
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A variation of this progressive elimination is known as Gauss—Jordan elimination. We
start as with the preceding Gauss elimination, but each new equation considered is used to
eliminate a variable fronall the other equations, not just those below it. If we had used
this Gauss—Jordan elimination, Eq. (3.23) would become

k=1
z2=2,

using the second equation of Eqgs. (3.22) to eliminatem both the first and third equa-
tions. Then the third equation of Egs. (3.24) is used to elimin&i@m the first and second,
giving
X =1
y =3 (3.25)
z=2.

We return to this Gauss—Jordan technique in Section 3.2 for inverting matrices.

Another technique suitable for computer use is the Gauss—Seidel iteration technique.
Each technique has its advantages and disadvantages. The Gauss and Gauss—Jordan meth-
ods may have accuracy problems for large determinants. This is also a problem for ma-
trix inversion (Section 3.2). The Gauss—Seidel method, as an iterative method, may have
convergence problems. The IBM Scientific Subroutine Package (SSP) uses Gauss and
Gauss—Jordan techniques. The Gauss—Seidel iterative method and the Gauss and Gauss—
Jordan elimination methods are discussed in considerable detail by Ralston and Wilf and
also by Penningtof.Computer codes in FORTRAN and other programming languages
and extensive literature for the Gauss—Jordan elimination and others are also given by
Presset al.® u

Linear Dependence of Vectors

Two nonzero two-dimensional vectors

_(an _(an
al—<a12>5é0, az—<a22>?50

are defined to binearly dependent if two numbersx1, x2 can be found that are not both
zero so that the linear relationa; + xpa2 = 0 holds. They ardinearly independent if

x1 = 0= x> is the only solution of this linear relation. Writing it in Cartesian components,
we obtain two homogeneous linear equations

ai1x1 + az1x2 =0, aipx1+azx; =0

4A. Ralston and H. Wilf, edsMathematical Methods for Digital Computers. New York: Wiley (1960); R. H. Pennington,
Introductory Computer Methods and Numerical Analysis. New York: Macmillan (1970).

SW. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterivigmerical Recipes, 2nd ed. Cambridge, UK: Cambridge
University Press (1992), Chapter 2.
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from which we extract the following criterion for linear independence of two vectors using
Cramer’s rulelf a1, a; span a nonzero area, that is,their determinant |31 ¢21| # 0O,

then the set of homogeneous linear equations has only the solution x; = 0 = xp. If

the determinant is zero, then thereis a nontrivial solution x1, x2, andour vectorsare
linearly dependent. In particular, the unit vectors in the- and y-directions are linearly
independent, the linear relationt; + xpx» = (j;) = (8) having only the trivial solution
x1=0=xo.

Three or more vectors in two-dimensional space are always linearly dependent. Thus,
the maximum number of linearly independent vectors in two-dimensional space is 2. For
example, givera, az, as, the linear relatiorr1a; + xp2ap + xzaz = 0 always has nontrivial
solutions. If one of the vectors is zero, linear dependence is obvious because the coefficient
of the zero vector may be chosen to be nonzero and that of the others as zero. So we assume
all of them as nonzero. H; anday are linearly independent, we write the linear relation

ai1x1 + azix2 = —asixs, ai1zx1 + azpx2 = —aspxs,

as a set of two inhomogeneous linear equations and apply Cramer’s rule. Since the determi-
nant is nonzero, we can find a nontrivial solution x, for any nonzerocz. This argument

goes through for any pair of linearly independent vectors. If all pairs are linearly depen-
dent, any of these linear relations is a linear relation among the three vectors, and we are
finished. If there are more than three vectors, we pick any three of them and apply the fore-
going reasoning and put the coefficients of the other vectgrs; 0, in the linear relation.

e Mutually orthogonal vectors are linearly independent.

Assume a linear relatiod; c;v; = 0. Dotting v, into this usingv; - v; =0 for j #i, we
obtainc;v; - v; =0, so every; = 0 because? # 0.

It is straightforward to extend these theorems:tor more vectors im-dimensional
Euclidean space. Thushe maximum number of linearly independent vectors in
n-dimensional space is n. The coordinate unit vectors are linearly independent be-
cause they span a nonzero parallelepiped-timensional space and their determinant
is unity.

Gram-Schmidt Procedure

In ann-dimensional vector space with an inner (or scalar) product, we can always construct
an orthonormal basis afvectorsw; with w; -w; = §;; starting fromn linearly independent
vectorsv;,i =0,1,...,n— 1.

We start by normalizingo to unity, definingwo = —2,. Then we projectg from vy,

NATY
forming u; = v1 + a10Wo, with the admixture coefficieni;g chosen so thatg - u; = 0.

Dotting vg into u; yieldsaip = —VL"; = —V1 - Wo. Again, we normalizes; definingw; =
V,
0

\7—172. Here,u% # 0 becaus®y, v1 are linearly independent. This first step generalizes to
ug

Uj=V;+ajoWo+ajiwi+---+a;j—1wW;_1,

with coefficientsaj; = —v; - w;. Normalizingw; = —% completes our construction.

Vi
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It will be noticed that although this Gram—Schmidt procedure is one possible way of
constructing an orthogonal or orthonormal set, the veatgrare not unique. There is an
infinite number of possible orthonormal sets.

As an illustration of the freedom involved, consider two (nonparallel) ve&oasnd B
in the xy-plane. We may normalizA to unit magnitude and then forl® = aA + B so
that B is perpendicular té\. By normalizingB’ we have completed the Gram—Schmidt
orthogonalization for two vectors. But any two perpendicular unit vectors, suchrady,
could have been chosen as our orthonormal set. Again, with an infinite number of possible
rotations ofk andy about thez-axis, we have an infinite number of possible orthonormal
sets.

Example 3.1.2  VECTORS BY GRAM=-SCHMIDT ORTHOGONALIZATION

To illustrate the method, we consider two vectors

(1) we(3)

which are neither orthogonal nor normalized. Normalizing the first vestos vo/+/2,
we then construat; = v1 + a10Wo SO as to be orthogonal t@. This yields

a1o
Up-Vo=0=V1-Vo+ —=V3= -1+ a1ov2,

V2

so the adjustable admixture coefficienp = 1/+/2. As a resullt,

n=(%)+2(3)-2(4)

so the second orthonormal vector becomes

m=7( )
1= — .
Vv2\-1
We check thatvg - w1 = 0. The two vectorsvg, w1 form an orthonormal set of vectors,
a basis of two-dimensional Euclidean space. |

Exercises

311 Evaluate the following determinants:

101 120 1%?28
@lo 10, MmI312 ©= .
100 03 1 V20 2 0 3

0 0 V3 0

312 Test the set of linear homogeneous equations
x+3y+3z=0, x—y+z=0, 2x+y+3z=0

to see if it possesses a nontrivial solution, and find one.
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314

315

3.16

3.17
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Given the pair of equations
x+2y=3, 2x + 4y =6,

(@) Show that the determinant of the coefficients vanishes.
(b) Show that the numerator determinants (Eg. (3.18)) also vanish.
(c) Find at least two solutions.

Express theomponentsof A x B as 2x 2 determinants. Then show that the dot product
A - (A x B) yields a Laplacian expansion of a<33 determinant. Finally, note that two
rows of the 3x 3 determinant are identical and hence that/A x B) =0.

If Ci; is the cofactor of element; (formed by striking out théth row and;th column
and including a sigri—1)*/), show that

(@ >;aijCij=>;a;iCji =|A|, where|A| is the determinant with the elemeiatg,
(b) > ;aijCik=>;a;iCri=0,j#k.

A determinant with all elements of order unity may be surprisingly small. The Hilbert
determinantd;; = (i + j — 171 i,j=1,2,...,nis notorious for its small values.

(@) Calculate the value of the Hilbert determinants of ordéor n = 1, 2, and 3.
(b) If an appropriate subroutine is available, find the Hilbert determinants of arder
forn=4,5, and 6.

ANS. Det(H,)
1.

8.33333x 102

4.62963x 104

165344x 10~

3.74930x 10712

5.36730x 10718

@U‘IA(}OI\)H‘E

Solve the following set of linear simultaneous equations. Give the results to five decimal
places.

1.0x1 + 0.9x2 + 0.8x3 + 0.4x4 + 0.1x5 =10
0.9x1 + 1.0x2 + 0.8x3 4+ 0.5x4 + 0.2x5 + 0.1xg = 0.9
0.8x1 + 0.8x2 + 1.0x3 + 0.7x4 + 0.4x5 + 0.2xg = 0.8
0.4x1 + 0.5x2 + 0.7x3 4+ 1.0x4 + 0.6x5 + 0.3xg = 0.7
0.1x7 + 0.2x2 + 0.4x3 + 0.6x4 + 1.0x5 + 0.5x¢ = 0.6

0.1x2 + 0.2x3 + 0.3x4 + 0.5x5 4+ 1.0xg = 0.5.

Note. These equations may also be solved by matrix inversion, Section 3.2.
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3.1.8 Solve the linear equatiores- X = ¢, a x X + b =0 for x = (x1, x2, x3) with constant
vectorsa # 0, b and constant.
ANS.x = Ga+ (ax b)/a?.
3.19 Solve the linear equatioss X =d, b-x=e¢, c-x = f, for x = (x1, x2, x3) with constant
vectorsa, b, c and constants, e, f such thatia x b) - c# 0.
ANS.[(@ax b)-clx=d(b xc)+e(cxa)+ f(axb).

3.1.10  Express invector form the soluti@ri, x2, x3) of ax1 +bx, +cx3+d = 0 with constant
vectorsa, b, ¢, d so that(a x b) - c#£ 0.

3.2 MATRICES

Matrix analysis belongs to linear algebra because matrices are linear operators or maps
such as rotations. Suppose, for instance, we rotate the Cartesian coordinates of a two-
dimensional space, as in Section 1.2, so that, in vector notation,

<x’1) _ ( X1COSp +xzsin<p> _ (Zj “11')‘1'), (3.26)

x5 —x2SiNg + x2 COSp Zj azjx;

We label the array of elemen(§i! 412) a 2x 2 matrix A consisting of two rows and two
columns and consider the vectorsx’ as 2x 1 matrices.We take the summation of
products in Eq. (3.26) as a definition of matrix multiplication involving the scalar
product of each row vector of A with the column vector x. Thus, in matrix notation

Eq. (3.26) becomes
x = Ax. (3.27)

To extend this definition of multiplication of a matrix times a column vector to the prod-
uct of two 2x 2 matrices, let the coordinate rotation be followed by a second rotation given
by matrixB such that

x" =Bx'. (3.28)

In component form,
x}’:Zb,’jx} =Zb,-j2ajkxk:Z(Zb,-jajk>xk. (329)
J J k k J
The summation ovef is matrix multiplication defining a matri€ = BA such that

'xl'// = Zcik-xka (330)
k

or x” = Cx in matrix notation. Again, this definition involves the scalar products of row
vectors ofB with column vectors oA\. This definition of matrix multiplication generalizes
tom x n matrices and is found useful; indeetljs usefulness is the justification for its
existence. The geometrical interpretation is that the matrix product of the two matBées

is the rotation that carries the unprimed system directly into the double-primed coordinate
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system. Before passing to formal definitions, the your should note that opéréate-
scribed by its effect on the coordinates or basis vectors. The matrix elementsistitute
arepresentation of the operator, a representation that depends on the choice of a basis.

The special case where a matrix has one columnuarmvs is called a column vector,
|x), with components;;, i = 1,2,...,n. If Ais ann x n matrix, |x) ann-component
column vectorA|x) is defined as in Egs. (3.27) and (3.26). Similarly, if a matrix has one
row andn columns, it is called a row vectotx| with componentsy;, i = 1,2,...,n.
Clearly, (x| results from|.x) by interchanging rows and columns, a matrix operation called
transposition, and transposition for any matri, A is called “A transpose” with matrix
elementsA);x = Ay;. Transposing a product of matrica8 reverses the order and gives
BA; similarly Alx) transpose igx|A. The scalar product takes the formly) =3, x; y;
(x] ina complex vector space). THisrac bra-ket notation is used in quantum mechanics
extensively and in Chapter 10 and here subsequently.

More abstractly, we can define thieial space V of linear functionals F on a vector
spaceV, where each linear functional of 1% assigns a numbedr (v) so that

F(c1v1+cav2) = c1F (V1) + c2F (V2)

for any vectorsvy, vo from our vector spac® and numberss, c2. If we define the sum
of two functionals by linearity as

(F1+ F2)(V) = F1(V) + F2(V),

thenV is a linear space by construction.

Riesz’ theorem says that there is a one-to-one correspondence between linear function-
als F in V and vectord in a vector spacé’ that has an inner (or scalar) produgéjv)
defined for any pair of vectoffs v.

The proof relies on the scalar product by defining a linear functiéhfar any vectorf
of V asF(v) = (f|v) for anyv of V. The linearity of the scalar productirshows that these
functionals form a vector space (containedimecessarily). Note that a linear functional
is completely specified when it is defined for every veestorf a given vector space.

On the other hand, starting from any nontrivial linear functioradf V we now con-
struct a unique vectdr of V so thatF(v) =f - v is given by an inner product. We start
from an orthonormal basiw; of vectors inV using the Gram—-Schmidt procedure (see
Section 3.2). Take any vectar from V and expand it av = ), w; - vw;. Then the
linear functional F(v) = ), w; - VF(w;) is well defined onV. If we define the spe-
cific vectorf = ), F(w;)w;, then its inner product with an arbitrary vecteris given
by (flv) =f-v=>", F(w;)w; - v= F(v), which proves Riesz’ theorem.

Basic Definitions

A matrix is defined as a square or rectangular array of numbers or functions that obeys
certain laws. This is a perfectly logical extension of familiar mathematical concepts. In
arithmetic we deal with single numbers. In the theory of complex variables (Chapter 6) we
deal with ordered pairs of numbex4, 2) = 1+ 2i, in which the ordering is important. We

6Some texts (including ours sometimes) dendteanspose bA” .
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now consider numbers (or functions) ordered in a square or rectangular array. For conve-
nience in later work the numbers are distinguished by two subscripts, the first indicating
the row (horizontal) and the second indicating the column (vertical) in which the number
appears. For instance, s is the matrix element in the first row, third column. HenceA if

is a matrix withm rows andz columns,

ailr a2 - ain
a a e a

A= 21 22 2n . (3_31)
aml Aam2 -  dmn

Perhaps the most important fact to note is that the elemgptare not combined with
one another. A matrix is not a determinant. It is an ordered array of numbers, not a single
number.

The matrixA, so far just an array of numbers, has the properties we assign to it. Literally,
this means constructing a new form of mathematics. We define that maii&sandC,
with elementsy;;, b;;, andc;;, respectively, combine according to the following rules.

Rank

Looking back at the homogeneous linear Egs. (3.1), we note that the matrix of coefficients,
A, is made up of three row vectors that each represent one linear equation of the set. If
their triple scalar product is not zero, than they span a nonzero volume and are linearly
independent, and the homogeneous linear equations have only the trivial solution. In this
case the matrix is said to havank 3. In n dimensions the volume represented by the
triple scalar product becomes the determinanti&etfor a square matrix. If déf) # 0,

then x n matrix A hasrank n. The case of Egs. (3.1), where the veatdies in the plane
spanned by andb, corresponds to rank 2 of the matrix of coefficients, because only two
of its row vectors §, b corresponding to two equations) are independent. In general, the
rank r of a matrix is the maximal number of linearly independent row or column
vectorsit has, with 0<r <n.

Equality

Matrix A = Matrix B if and only if a;; = b;; for all values ofi and j. This, of course,
requires thafA andB each ben x n arrays fn rows,n columns).

Addition, Subtraction

AxB=Cifandonlyifa;; & b;; = c;; for all values ofi and j, the elements combining
according to the laws of ordinary algebra (or arithmetic if they are simple numbers). This
means thal + B = B + A, commutation. Also, an associative law is satisfiadt+ B) +
C=A+ (B+ C). If all elements are zero, the matrix, called thdl matrix, is denoted

by O. For allA,

A+O0=0+A=A,
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with

0= (3.32)

oNeoNe)
oNeoNe)
[oNeNe)

Suchm x n matrices form a linear space with respect to addition and subtraction.

Multiplication (by a Scalar)

The multiplication of matrixA by the scalar quantity is defined as
aA=(ah), (3.33)

in which the elements afA areaaq;;; that is, each element of matrixis multiplied by the
scalar factor. This is in striking contrast to the behavior of determinants in which the factor
o« multiplies only one column or one row and not every element of the entire determinant.
A consequence of this scalar multiplication is that

oA = Ac, commutation
If Ais a square matrix, then

detaA) = o det(A).

Matrix Multiplication, Inner Product

AB=C if and only if’ cij =Y aibj. (3.34)
k

Theij element ofC is formed as a scalar product of tite row of A with the jth column
of B (which demands thah have the same number of colummg @sB has rows). The
dummy indexk takes on all values,P, ..., n in succession; that is,

cij = ai1bij + ai2b2j + ai3bs; (3.35)

for n = 3. Obviously, the dummy indek may be replaced by any other symbol that is
not already in use without altering Eq. (3.34). Perhaps the situation may be clarified by
stating that Eq. (3.34) defines the method of combining certain matrices. This method of
combination, to give it a label, is calledatrix multiplication. To illustrate, consider two
(so-called Pauli) matrices

01:@ é) and 03=<é _01>. (3.36)

7Some authors follow the summation convention here (compare Section 2.6).
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The11 element of the productgi03)11 is given by the sum of the products of elements of
the firstrow of o1 with the corresponding elements of the ficastumn of o73:

1 0
01 —50.-141-0=0.
10 0 -1

Continuing, we have

_(0-141.0 0-0+1.(-1)_ (0 -1
01‘73—<1-1+o.o 1-o+o-(—1)>—<1 o)' (3:37)

Here
(0103)ij = 01,,03;; + 01,03,

Direct application of the definition of matrix multiplication shows that

0301 = (_01 é) (3.38)

and by Eq. (3.37)
0301 = —0103. (3.39)
Except in special cases, matrix multiplication is not commutative:
AB # BA. (3.40)

However, from the definition of matrix multiplication we can stfalat an associative law
holds,(AB)C = A(BC). There is also a distributive lawy(B + C) = AB + AC.

The unit matrix 1 has elemends, Kronecker delta, and the property th& £ Al=A
for all A,

(3.41)

N
Il
cocopr
cor o
or oo
rOOO

It should be noted that it is possible for the product of two matrices to be the null matrix
without either one being the null matrix. For example, if

11 1 0
A=<0 O> and B=<_1 0),

AB = O. This differs from the multiplication of real or complex numbers, which form
afield, whereas the additive and multiplicative structure of matrices is calledgby
mathematicians. See also Exercise 3.2.6(a), from which it is evident thsB i 0, at

8Commutation or the lack of it is conveniently described by the commutator bracket syiwhiB],= AB — BA. Equation (3.40)
becomegA, B] # 0.

9Note that the basic definitions of equality, addition, and multiplication are given in terms of the matrix elements, Aieur

matrix operations can be carried out in terms of the matrix elements. However, we can also treat a matrix as a single algebraic
operator, as in Eq. (3.40). Matrix elements and single operators each have their advantages, as will be seen in the following
section. We shall use both approaches.
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least one of the matrices must have a zero determinant (that is, be singular as defined after
Eq. (3.50) in this section).

If Ais ann x n matrix with determinantA| 0, then it has a unique inverge !
satisfyingAA™! = A=1A = 1. If B is also ann x n matrix with inverseB—1, then the
productAB has the inverse

(AB)t=B"!Aa"1 (3.42)

becaus@BB A1 =1=B"1A1AB (see also Exercises 3.2.31 and 3.2.32).
Theproduct theorem, which says that the determinant of the prodi&B|, of twon x n
matricesA andB is equal to the product of the determinam#sB|, links matrices with de-
terminants. To prove this, consider theolumn vectorg;, = (Zj ajjbjx,i=12,...,n)
of the product matrixC = AB for k = 1,2, ...,n. Eachcg, = ij bjka;, is a sum ofn
column vectors, = (a;;,,i =1,2,...,n). Note that we are now using a different prod-
uct summation index for each columrc. Since any determinan®(b1a; + boap) =
b1D(ay) + baD(ay) is linear in its column vectors, we can pull out the summation sign in
front of the determinant from each column vectoGnogether with the common column
factorb; . so that

ICl=> bjibja-+bj,ndet@yay,, ....a;,). (3.43)
irs
If we rearrange the column vectaag of the determinant factor in Eq. (3.43) in the proper
order, then we can pull the common factor@gtay, ..., a,) = |A| in front of then sum-

mation signs in Eqg. (3.43). These column permutations generate just the righ,sign,
to produce in Eq. (3.43) the expression in Eq. (3.8) Rirso

ICI=IAIY_ &jsjpjubisibjp2- - bjn = IAIBI, (3.44)
jts

which proves the product theorem.

Direct Product

A second procedure for multiplying matrices, known as divect tensor or Kronecker
product, follows. If Ais anm x m matrix andB is ann x n matrix, then the direct product
is

A®B=C. (3.45)
Cis anmn x mn matrix with elements
Cop = Aij B, (3.46)
with

a=m( —1) +k, B=n(j—1+L.
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For instance, ifA andB are both 2< 2 matrices,

a11B a125>

A®B= (ang a»B

a11bi1  aitbiz aizb11  ai2bi
ai1bo1r ai1bz2  aizbz1  aizbz2 (3.47)
axnbil azibiz axb11 axbiz |’ '
axibz1  azibzz  azobr1  azobzo

The direct product is associative but not commutative. As an example of the direct prod-
uct, the Dirac matrices of Section 3.4 may be developed as direct products of the Pauli
matrices and the unit matrix. Other examples appear in the construction of groups (see
Chapter 4) and in vector or Hilbert space in quantum theory.

Example 3.2.1 DIRECT PRODUCT OF VECTORS

The direct product of two two-dimensional vectors is a four-component vector,

X0Yo

) g (Y0) = | oo ].
x1 y1 x1yo |’
xX1y1
while the direct product of three such vectors,

X0Y020
X0Y021
X0Y120
(XO) 2 (yo) ® (Zo) _ | rovazs |
X1 y1 Z1 X1Y020
X1Y021

X1y120
X1y1z1

is a (23 = 8)-dimensional vector. [ |

Diagonal Matrices

An important special type of matrix is the square matrix in which all the nondiagonal
elements are zero. Specifically, if ax33 matrixA is diagonal, then

aip; O 0
A= 0 ax» O
0 0 as3

A physical interpretation of such diagonal matrices and the method of reducing matrices to
this diagonal form are considered in Section 3.5. Here we simply note a significant property
of diagonal matrices — multiplication of diagonal matrices is commutative,

AB = BA, if A andB are each diagonal.
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Multiplication by a diagonal matrixds, do, ..., d,] that has only nonzero elements in the
diagonal is particularly simple:

(6 2) (5 )= (o' 2%)=(5 3)

while the opposite order gives

1 2\(1 0\ (1 2.2\ (1 4
3 4)\0 2)\3 2.4)7\3 8)°
Thus,a diagonal matrix does not commute with another matrix unlessboth are diag-

onal, or the diagonal matrix isproportional to the unit matrix. This is borne out by the
more general form

d0 - 0 ail a2 -+ dipn
d1,d2,...,dy A= Odz 0 ‘12.1”022 a.2n
00 - dy) \an1 an2 -+ am
diann diaiz -+ diai,
_ | d2a21 daazz .- daazn ’
dpan1 dpanz -+ dpann
whereas
ail aiz -+ din d0 - 0
Ay ooy = | 22,52 | O 00
apl a2 -+ dpn 00 --- d,
dia11 dza1z - dpai,
_ | d1az1 doazz --- dnaz,
dian1 doano -+ dpaps

Here we have denoted i1, . . ., d,, ] a diagonal matrix with diagonal elememnts . .., d,,.
In the special case of multiplying two diagonal matrices, we simply multiply the corre-
sponding diagonal matrix elements, which obviously is commutative.

Trace

In any square matrix the sum of the diagonal elements is callett abe.
Clearly the trace is a linear operation:

tracdA — B) =tracgA) — tracegB).
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One of its interesting and useful properties is that the trace of a product of two matrices
andB is independent of the order of multiplication:

tracgAB) = Z(AB)H = Z Zaijb ji
i i J
= Zzbjiaij = Z(BA)jj (3.48)
joi j

= traceBA).

This holds even thougAB # BA. Equation (3.48) means that the trace of any commutator
[A, B] = AB — BA is zero. From Eq. (3.48) we obtain

tracd ABC) = tracd BCA) = tracg CAB),

which shows that the trace is invariant under cyclic permutation of the matrices in a prod-
uct.

For a real symmetric or a complex Hermitian matrix (see Section 3.4) the trace is the
sum, and the determinant the product, of its eigenvalues, and both are coefficients of the
characteristic polynomial. In Exercise 3.4.23 the operation of taking the trace selects one
term out of a sum of 16 terms. The trace will serve a similar function relative to matrices
as orthogonality serves for vectors and functions.

In terms of tensors (Section 2.7) the trace is a contraction and, like the contracted second-
rank tensor, is a scalar (invariant).

Matrices are used extensively to represent the elements of groups (compare Exer-
cise 3.2.7 and Chapter 4). The trace of the matrix representing the group element is known
in group theory as theharacter. The reason for the special name and special attention
is that, the trace or character remains invariant under similarity transformations (compare
Exercise 3.3.9).

Matrix Inversion

At the beginning of this section matriX is introduced as the representation of an operator
that (linearly) transforms the coordinate axes. A rotation would be one example of such
a linear transformation. Now we look for the inverse transformadion that will restore

the original coordinate axes. This means, as either a matrix or an operator edfation,

AAl=A"lA=1 (3.49)
With (A=Y =af; 7,
C ..
-1 _
a; = ﬁ, (3.50)

10Here and throughout this chapter our matrices have finite rakidfan infinite-rank matrix«{ x n with n — o0), then life is
more difficult. ForA—1 to be the inverse we must demand that both

AA1=1 and Ala=1

one relation no longer implies the other.
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with C;; the cofactor (see discussion preceding Eqg. (3.119) 0and the assumption that
the determinant oA, |A| #£ 0. If it is zero, we labelA singular. No inverse exists.

There is a wide variety of alternative techniques. One of the best and most commonly
used is the Gauss—Jordan matrix inversion technique. The theory is based on the results of
Exercises 3.2.34 and 3.2.35, which show that there exist maigesich that the product
Mz A will be A but with

a. one row multiplied by a constant, or
b. one row replaced by the original row minus a multiple of another row, or
c. rows interchanged.

Other matricedMy operating on the rightAMg) can carry out the same operations on
thecolumns of A.

This means that the matrix rows and columns may be altered (by matrix multiplication)
as though we were dealing with determinants, so we can apply the Gauss—Jordan elimina-
tion techniques of Section 3.1 to the matrix elements. Hence there exists a Mat(or
Mg) such that!

MLA=1. (3.51)

ThenM; = A—1. We determinéVl; by carrying out the identical elimination operations on
the unit matrix. Then

Mzl=M;. (3.52)
To clarify this, we consider a specific example.
Example 3.2.2 GAUSS-JORDAN MATRIX INVERSION

We want to invert the matrix

321
A=12 3 1]. (3.53)
1 1 4
For convenience we writ& and 1 side by side and carry out the identical operations on
each:
321 100
2 31 and 010 (3.54)
11 4 0 01
To be systematic, we multiply each row to ggt =1,
13 4 i1 oo
13 3 and 030 (3.55)
11 4 0 0 1

11Remember that ded) # 0.
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Subtracting the first row from the second and third rows, we obtain

2 1 1

12 3 i oo

02 3 and -3 3 0]. (3.56)
1 11 1

03 3 -3 01

Then we divide the second row (bbth matrices) by% and subtrac% times it from the
first row and% times it from the third row. The results for both matrices are

1 3 2

10 3 5 —5 0

o1 % and -2 3 o]. (3.57)
18 1 1

00 % -5 —5 1

We divide the third row (oboth matrices) byl—58. Then as the last steé) times the third
row is subtracted from each of the first two rows (of both matrices). Our final pair is

11 7 1

1 00 8 ~ 18 18
-1 7 11 1

0 01 1 _1 s
18 18 18

The check is to multiply the origina by the calculated\ ! to see if we really do get
the unit matrix 1. [ |

As with the Gauss—Jordan solution of simultaneous linear algebraic equations, this tech-
nique is well adapted to computers. Indeed, this Gauss—Jordan matrix inversion technique
will probably be available in the program library as a subroutine (see Sections 2.3 and 2.4
of Presst al., loc. cit.).

For matrices of special form, the inverse matrix can be given in closed form. For

example, for
a b c
A=|b d b, (3.59)
c b e
the inverse matrix has a similar but slightly more general form,
a p1 vy
At=|B § B2, (3.60)
Yy B2 €

with matrix elements given by
Do = ed — b2, Dy = —(cd — b?), Dp1 = (c — e)b, Dfo = (c — a)b,
DS:ae—cz, De:ad—bz, D:bz(Zc—a—e)+d(ae—cz),

whereD = det(A) is the determinant of the matri. If e = a in A, then the inverse matrix
A~ also simplifies to

B1= B2, €=, D= (az - 62)d + 2(c — a)b>.
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As a check, let us work out the 11-matrix element of the produict® = 1. We find
ac+bB1+cy = %[a(ed — bz) + bz(c —e) — c(cd — bz)]
—(—ab®+aed + 2b%c — b%e — c?d) =

5
Similarly we check that the 12-matrix element vanishes,

=1

ol

0»

1 2
aB1+ bé + ch2 = B[ab(c —e) —l—b(ae —c ) +cb(c —a)]

and so on.

Note though that we cannot always find an inversé\ot by solving for the matrix
elements, b, ... of A, because not every inverse mat#ix® of the form in Eq. (3.60) has
a corresponding of the special form in Eq. (3.59), as Example 3.2.2 clearly shows.

Matricesare squareor rectangular arrays of numbersthat definelinear transformations,
such as rotations of a coordinate system. As such, they are linear operators. Square matri-
ces may be inverted when their determinant is nonzero. When a matrix defines a system of
linear equations, the inverse matrix solves it. Matrices with the same number of rows and
columns may be added and subtracted. They form what mathematicians call a ring with
a unit and a zero matrix. Matrices are also useful for representing group operations and
operatorsin Hilbert spaces.

Exercises

321 Show that matrix multiplication is associativéB)C = A(BC).
322 Show that
(A+B)(A—B)=A? - B?
if and only if A andB commute,
[A,B]=0.
323 Show that matripA is alinear operator by showing that
A(cir1 + c2r2) = c1Arq + c2Aro.

It can be shown that an x n matrix is themost general linear operator in am-
dimensional vector space. This means that every linear operator in-thimensional
vector space is equivalent to a matrix.

324 (@) Complex numbers; + ib, with a andb real, may be represented by (or are iso-
morphic with) 2x 2 matrices:

a+ib<—><_ab Z)

Show that this matrix representation is valid for (i) addition and (ii) multiplication.
(b) Find the matrix corresponding ta + ib) 1.
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3.25 If Ais ann x n matrix, show that
det(—A) = (—1)" detA.

3.26 (@) The matrix equatiod?® = 0 does not implyA = 0. Show that the most general
2 x 2 matrix whose square is zero may be written as

ab  b?
—a® —ab )’

wherea andb are real or complex humbers.

(b) If C=A+B,ingeneral
detC +# detA + detB.
Construct a specific numerical example to illustrate this inequality.
3.2.7 Given the three matrices
-1 0 01 0 -1
2=(05) e-(ia) e-(4 )

find all possible products &%, B, andC, two at a time, including squares. Express your
answers in terms oA, B, andC, and 1, the unit matrix. These three matrices, together
with the unit matrix, form a representation of a mathematical groupvidser gruppe

(see Chapter 4).
0 0
K=|-i 0 0],
0 -1 0

328 Given
show that
K" =KKK- .. (n factorg =1
(with the proper choice of, n # 0).
329 Verify the Jacobi identity,
[A,[B.C]]=[B.[A,C]] - [C.[A,B]].

This is useful in matrix descriptions of elementary particles (see Eq. (4.16)). As a
mnemonic aid, the you might note that the Jacobi identity has the same form as the
BAC-CAB rule of Section 1.5.

3.2.10 Show that the matrices

010 0 0O 0 0 1
A=|0 0 0], B=|0 0 1]}, C=|0 00
0 0O 0 0O 0 0O

satisfy the commutation relations

[A,B]=C, [A,C]=0, and [B,C]=0.
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Let
0O 1 0 O 0O 0 0 -1
-1 0 00 (o0 -1 0
=lo o o 1|° '“lo1 o ol
0O 0 -1 0 1 0 O 0
and
0O 0 -1 0
|0 0o o1
11 O 0 O
0O -1 0 O
Show that
(@) i2=j%2=k?=—1, where 1 is the unit matrix.
(b) ij=-ji=Kk,
k= —kj=i,
Ki = —ik =].

These three matrice§ {, andk) plus the unit matrix 1 form a basis fguaternions.
An alternate basis is provided by the foux2 matricesjo1, io2, —ios, and 1, where
theo are the Pauli spin matrices of Exercise 3.2.13.

A matrix with elementsy;; = 0 for j <i may be called upper right triangular. The
elements in the lower left (below and to the left of the main diagonal) vanish. Examples
are the matrices in Chapters 12 and 13, Exercise 13.1.21, relating power series and
eigenfunction expansions.

Show that the product of two upper right triangular matrices is an upper right triangular
matrix.

The three Pauli spin matrices are

0 1 0 —i 1 0

o1 = 1 0) o2 = ; 0 S and 03 = 0o -1/
Show that
@ (0)?=1y,
(b) ojor=ioy, (j,k,1)=(1,2,3),(2,3,1), 3,1, 2) (cyclic permutation),
(€) oioj+0j0; =26;;12; 1 is the 2x 2 unit matrix.
These matrices were used by Pauli in the nonrelativistic theory of electron spin.
Using the Paulb; of Exercise 3.2.13, show that

(0-a)(o-b)=a-blo+io-(axb).
Here
o = Ro1+ Yoo + 203,

aandb are ordinary vectors, ang 1s the 2x 2 unit matrix.
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3.215 One description of spin 1 particles uses the matrices

L {010 L (0 i 0O
M=—[10 1], wm="oi o -i],
v2\o 1 o0 v2\lo i o
and
10 0
M.=[o o o
00 -1
Show that

(@ [My,My]=iM,, and so of? (cyclic permutation of indices). Using the Levi-
Civita symbol of Section 2.9, we may write

[M,, M,1 =g, M,.

(b) M2=M?Z+ M2+ M2 =2 13, where % is the 3x 3 unit matrix.
(€) [M*M;i]=0,

[Mz» L+] = L+;
[LT,L7]=2M,,
where

LT =M, +iM,,
L™ =M, —iM,.

3216 Repeat Exercise 3.2.15 using an alternate representation,

0 0 O 0O 0 i
M,=[0 0 —i], My=| 0 0 0},
0O0i O —i 0 0
and
0 —i O
M,=|i 0 O
0O 0 O

In Chapter 4 these matrices appear agydmer ator s of the rotation group.

3.217  Show that the matrix—vector equation

190
(5122} o
c ot

reproduces Maxwell's equations in vacuum. Heras a column vector with compo-
nentsy; = B; —iE;/c, j = x,y,z. M is a vector whose elements are the angular
momentummatrices of Exercise 3.2.16. Note thabug = 1/c2, 13 is the 3x 3 unit
matrix.

12[p B] = AB — BA.
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From Exercise 3.2.15(b),
M2y = 2.

A comparison with the Dirac relativistic electron equation suggests that the “particle”
of electromagnetic radiation, the photon, has zero rest mass and a spin of 1 (in units

of h).
3.218 Repeat Exercise 3.2.15, using the matrices for a spin@f 3
0 V3 0 o0 0 -v3 0 ©
Mo_1l¥v3 0 2 0 M_i|¥3 0 -2 o0
T2l 0 2 o V3|’ Y210 2 0 V3|
0 0 /3 0 0 0 V3 0
and
3 0 O 0
1
M, = = 01 0 O
2|10 0 -1 O
0 0 0 -3

3.219  AnoperatoP commutes withl, andJ,, thex andy components of an angular momen-
tum operator. Show thd& commutes with the third component of angular momentum,
that is, that

[P,J.]=0.

Hint. The angular momentum components must satisfy the commutation relation of
Exercise 3.2.15(a).

3.220 TheL™ andL~ matrices of Exercise 3.2.15 akadder operators (see Chapter 4} T
operating on a system of spin projecti@rwill raise the spin projection te + 1 if m is
below its maximumL™ operating onnmax yields zero L~ reduces the spin projection
in unit steps in a similar fashion. Dividing by2, we have

010 0 0 O
Lt*=(0 0 1], L =|1 0 0]}.
0 0O 010

Show that
L*|—1) =10), L~ |—1) = null column vector,
L*|0) =11),L710) =|-1),
L*|1) = null column vector L™|1) = |0),
where

0 0 1
-n=(0o], o=|1], and |n=|0
1 0 0

represent states of spin projectiei, 0, and 1, respectively.
Note. Differential operator analogs of these ladder operators appear in Exercise 12.6.7.
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3221  \ectorsA andB are related by the tensor,
B=TA.

GivenA andB, show that there iso unique solution for the components of. This is
why vector divisionB/A is undefined (apart from the special casé\adndB parallel
andT then a scalar).

3222  We might ask for a vectoh—1, an inverse of a given vectér in the sense that
A-Al=pAT.A=1

Show that this relation does not suffice to defiie! uniquely; A would then have an
infinite number of inverses.

3.2.23 If Alis a diagonal matrix, with all diagonal elements different, &xdndB commute,
show thatB is diagonal.

3.224  If AandB are diagonal, show th#& andB commute.
3225 Show that tracBC) = tracgCBA) if any two of the three matrices commute.
3.2.26  Angular momentum matrices satisfy a commutation relation
M;, Ml =iMy, j, k, 1 cyclic.
Show that the trace of each angular momentum matrix vanishes.

3227 (a) The operator trace replaces a makily its trace; that is,

traceA) = Z““'
i

Show that trace is Anear operator.
(b) The operator det replaces a mattixy its determinant; that is,

det(A) = determinant of.
Show that det imot a linear operator.

3228 A andB anticommute:BA = —AB. Also, A2 = 1, B2 = 1. Show that tradd\) =
tracgB) = 0.
Note. The Pauli and Dirac (Section 3.4) matrices are specific examples.

3.2.29  With |x) an N-dimensional column vector ang| an N-dimensional row vector, show
that

trace(|x) (y[) = (v]x).

Note. |x)(y| means direct product of column vectely with row vector(y|. The result
is a squaréV x N matrix.

3230 (a) Iftwo nonsingular matrices anticommute, show that the trace of each one is zero.
(Nonsingular means that the determinant of the matrix nonzero.)
(b) For the conditions of part (a) to hold,andB must ben x n matrices withn even.
Show that ifn is odd, a contradiction results.
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If a matrix has an inverse, show that the inverse is unique.
If A~1 has elements
oy _ G
(A )ij_aij - |A|’
whereC}; is the jith cofactor of|A|, show that
AlA=1.

HenceA~1is the inverse oA (if |A| # 0).

Show that def—1 = (detA)~1.
Hint. Apply the product theorem of Section 3.2.
Note. If detA is zero, therA has no inverseA is singular.

Find the matrices; such that the produdii; A will be A but with:

(a) theith row multiplied by a constarit (a;; — ka;;, j =1,2,3,...);

(b) theith row replaced by the originath row minus a multiple of thenth row
(a,-j — ajj — Kamj, i=123,. L)

(c) theith andmth rows interchanget;; — amj, amj — aij, j =1,2,3,...).

Find the matrice$l i such that the produ&My will be A but with:

(a) theith column multiplied by a constaat(a;; — kaj;, j =1,2,3,...);

(b) theith column replaced by the originah column minus a multiple of theith
column(aj; — aji —kajm, j=1,2,3,...),

(c) theith andmth columns interchange@;; — ajm, ajm — aji, j =1,2,3,...).

3 21
A=12 2 1].
1 1 4

(@) Rewrite Eq. (2.4) of Chapter 2 (and the corresponding equatiods fanddz) as
a single matrix equation

Find the inverse of

|dxr) =Jldq;).
J is a matrix of derivatives, thdacobian matrix. Show that
(dx|dxi) = (dqi|Gldq;),

with the metric (matrix)G having elementg;; given by Eq. (2.6).
(b) Show that

detJ)dqgidqrdgqz=dxdydz,

with det(J) the usual Jacobian.
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3.238 Matrices are far too useful to remain the exclusive property of physicists. They may ap-
pear wherever there are linear relations. For instance, in a study of population movement
the initial fraction of a fixed population in eachmfreas (or industries or religions, etc.)
is represented by ancomponent column vect®. The movement of people from one
area to another in a given time is described by:ann (stochastic) matrixX. HereT;;
is the fraction of the population in thgh area that moves to th¢h area. (Those not
moving are covered bi= j.) With P describing the initial population distribution, the
final population distribution is given by the matrix equatibil = Q.

From its definition,)"_; P = 1.

(a) Show that conservation of people requires that
n
ZT,-]-:L =12 ...,n.
i=1

(b) Prove that

n
) 0i=1
i=1
continues the conservation of people.

3239 Given a 6x 6 matrix A with elementsq;; = 0.5/, i =0,1,2,...,5; i =0,1,
2,...,5, find AL, List its matrix elements to five decimal places.

4 2 0 0 0 0
25 2 0 0 0
1 2 5 -2 0 0
1+

ANS. AT =3 0 -2 5 -2 0
0 0 -2 5 -2
0 0 0 -2 4

[eoNeoNeNe)

3.240  Exercise 3.1.7 may be written in matrix form:
AX =C.
Find A~ and calculat& asA~1C.

3241 (a) Write asubroutinethat will multiply complex matrices. Assume that the complex
matrices are in a general rectangular form.
(b) Test your subroutine by multiplying pairs of the Dirag 4 matrices, Section 3.4.

3242 (a) Write a subroutine that will call the complex matrix multiplication subroutine of
Exercise 3.2.41 and will calculate the commutator bracket of two complex matri-
ces.

(b) Test your complex commutator bracket subroutine with the matrices of Exer-
cise 3.2.16.

3.243  Interpolating polynomial is the name given to th@ — 1)-degree polynomial determined
by (and passing throughy points, (x;, y;) with all the x; distinct. This interpolating
polynomial forms a basis for numerical quadratures.
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(@) Show that the requirement that an— 1)-degree polynomial inc pass through
each of thex points(x;, y;) with all x; distinct leads te: simultaneous equations
of the form

n—1 )

J .
Zajxizyi, i=12...,n.
j=0

(b) Write a computer program that will read indata points and return thecoeffi-
cientsa;. Use a subroutine to solve the simultaneous equations if such a subroutine
is available.

(c) Rewrite the set of simultaneous equations as a matrix equation

XA =Y.

(d) Repeat the computer calculation of part (b), but this time solve for véctoy
inverting matrixX (again, using a subroutine).

3.244 A calculation of the values of electrostatic potential inside a cylinder leads to

V(0.0)=52640 V(0.6) = 25844
V(0.2) = 48292 V(0.8) = 12.648
V(0.4) = 38270 V(1.0)=0.0.

The problem is to determine the values of the argument for whieh 10, 20, 30, 40,
and 50. Expres¥ (x) as a seriegizo az, x%". (Symmetry requirements in the original
problem require thaV (x) be an even function af.) Determine the coefficienis,.
With V(x) now a known function ofx, find the root ofV(x) —10=0, 0<x < 1.
Repeat forV (x) — 20, and so on.

ANS. ap = 52.640,
apx =—117.676,
V(0.6851 = 20.

3.3 ORTHOGONAL MATRICES

Ordinary three-dimensional space may be described with the Cartesian coordinates
(x1,x2,x3). We consider a second set of Cartesian coordinatest,, x3), whose ori-

gin and handedness coincides with that of the first set but whose orientation is different
(Fig. 3.1). We can say that the primed coordinates have beerrotated relative to the

initial, unprimed coordinate axes. Since this rotation isn@ar operation, we expect a
matrix equation relating the primed basis to the unprimed basis.

This section repeats portions of Chapters 1 and 2 in a slightly different context and
with a different emphasis. Previously, attention was focused on the vector or tensor. In
the case of the tensor, transformation properties were strongly stressed and were critical.
Here emphasis is placed on the description of the coordinate rotation itself —the matrix.
Transformation properties, the behavior of the matrix when the basis is changed, appear
at the end of this section. Sections 3.4 and 3.5 continue with transformation properties in
complex vector spaces.
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X3
A

X3
»
\

>

X

FIGURE 3.1 Cartesian coordinate systems.

Direction Cosines
A unit vector along therj-axis (X;) may be resolved into components along the x2-,
andxz-axes by the usual projection technique:

K] = X1€0qx], x1) + X2 COKx7, x2) + X3 COx], X3). (3.61)

Equation (3.61) is a specific example of the linear relations discussed at the beginning of

Section 3.2.
For convenience these cosines, which are the direction cosines, are labeled

cos(xy, x1) = X7 - X1 = a11,
COS(xi, Xx2) = )A(/l -Xo=aia, (3.62a)
COS(x’l, x3) = )A(/l - X3 =ais.

Continuing, we have

/ o &
COq(xy, x1) = X5 - X1 = az1,

(3.62h)
coS(x5, x2) = X5 - Ko = a2,
and so on, wherey1 # a1z in general. Now, Eq. (3.62) may be rewritten
K1 = %111 + Xea12 + Xazs, (3.62¢)
and also
(3.62d)

NN . -
Xo = X1a21 + X2a22 + X3a23,
/
3

= X1a31 + Roaz2 + X3azs.
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We may also go the other way by resolvikg X2, andX3 into components in the primed
system. Then

K2 = Xja12 + Xpaz2 + Xzaz2, (3.63)
A o/ &/ o/
X3 = X1a13 + X5a23 + X3a33.

AssociatingX; andX; with the subscript 1%, andX’, with the subscript 23 andX}
with the subscript 3, we see that in each case the first subscript mdfers to the primed
unit vector (X3, X5, X5), whereas the second subscript refers to the unprimed unit vector
(X1, X2, X3).

Applications to Vectors

If we consider a vector whose components are functions of the position in space, then
V(x1, x2,x3) = X1 V1 + X2 V2 + X3 V3,
A . . (3.64)
V' (x1, x5, x5) = K V] + X5V, + K5V,

since the point may be given both by the coordindtgsx,, x3) and by the coordinates

(x1, x5, x3). Note thatv andV’ are geometrically the same vector (but with different com-
ponents). The coordinate axes are being rotated; the vector stays fixed. Using Egs. (3.62)
to eliminateXy, X2, andXs, we may separate Eq. (3.64) into three scalar equations,

Vi =a11V1 +a12V2 + a13Vs,
Vs = az1Vi + azVa + azsVs, (3.65)
Vi = az1Vi +az2Vo + azzVa.
In particular, these relations will hold for the coordinates of a pat x2, x3) and
(x1, x5, x3), giving
X = a11x1 + a12x2 + a13x3,
x5 = ap1x1 + agoxp + ax3xs, (3.66)
X§ = az1x1 + azzx2 + azaxas,

and similarly for the primed coordinates. In this notation the set of three equations (3.66)
may be written as

3
X[ =Y aijx;, (3.67)
j=1

wherei takes on the values 1, 2, and 3 and the result is tbeear ate equations.

Now let us set aside these results and try a different approach to the same problem. We
consider two coordinate systensy, x2, x3) and (x3, x5, x3) with a common origin and
one point(x1, x2, x3) in the unprimed systengx}, x5, x3) in the primed system. Note the
usual ambiguity. The same symholdenotes both the coordinate axis and a particular
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distance along that axis. Since our system is lingamust be a linear combination of
thex;. Let

3
x{:Zaijxj. (368)
j=1

Thea;; may be identified as the direction cosines. This identification is carried out for the
two-dimensional case later.

If we have two sets of quantitig¥/;, V2, V3) in the unprimed system and;, V,, V3) in
the primed system, related in the same way as the coordinates of a point in the two different
systems (Eq. (3.68)),

3
VI-/Z Zal’jvj', (3.69)
j=1

then, as in Section 1.2, the quantiti@g, V>, V3) are defined as the components of a vector
that stays fixed while the coordinates rotate; that is, a vector is defined in terms of trans-
formation properties of its components under a rotation of the coordinate axes. In a sense
the coordinates of a point have been taken as a prototype vector. The power and useful-
ness of this definition became apparent in Chapter 2, in which it was extended to define
pseudovectors and tensors.

From Eqg. (3.67) we can derive interesting information about#hehat describe the
orientation of coordinate syste(;, x5, x3) relative to the systertiy, x2, x3). The length
from the origin to the point is the same in both systems. Squaring, for converience,

22 = [Zx;z _ Z(Z> (; a,.kxk)

i
= Z)ijk Za,'ja,-k. (3.70)
jik i
This can be true for all points if and only if

> ajan =8,  jk=123 (3.71)
i

Note that Eq. (3.71) is equivalent to the matrix equation (3.83); see also Eqgs. (3.87a)
to (3.87d).

Verification of Eq. (3.71), if needed, may be obtained by returning to Eq. (3.70) and
settingr = (x1, x2,x3) = (1,0, 0), (0,1, 0), (0,0, 1), (1, 1,0), and so on to evaluate the
nine relations given by Eq. (3.71). This process is valid, since Eq. (3.70) must holdrfor all
for a given set ofy;;. Equation (3.71), a consequence of requiring that the length remain
constant (invariant) under rotation of the coordinate system, is calledrthegonality
condition. Thegq;;, written as a matrixA subject to Eq. (3.71), form an orthogonal matrix,

a first definition of an orthogonal matrix. Note that Eq. (3.71)as matrix multiplication.
Rather, it is interpreted later as a scalar product of two colum#s of

13Note thattwo independent indiceg andk are used.
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In matrix notation Eq. (3.67) becomes
[x") = Alx). (3.72)

Orthogonality Conditions — Two-Dimensional Case

A better understanding of the; and the orthogonality condition may be gained by consid-
ering rotation in two dimensions in detail. (This can be thought of as a three-dimensional
system with therp-, xo-axes rotated about.) From Fig. 3.2,

= x1COSp + x2Sing,

X
) (3.73)
x5 = —x1SiNg 4 x2 COSyp.
Therefore by Eq. (3.72)
A= ( cosp S'”‘P> . (3.74)
—sing cosp

Notice thatA reduces to the unit matrix far = 0. Zero angle rotation means nothing has
changed. Itis clear from Fig. 3.2 that

a11 = COSp = COS(x], x1),
a12 = sing = cog % — ¢) = cosx}, x2),

and so on, thus identifying the matrix elememtsas the direction cosines. Equation (3.71),
the orthogonality condition, becomes

(3.75)

sifp +cofp =1,

. . (3.76)
sing cosp — sing cosy = 0.

X

s @ I
X\co \

¢ y

FIGURE 3.2 Rotation of coordinates.
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The extension to three dimensions (rotation of the coordinates through anecgle-
terclockwise abouts) is simply

cosp sing O
A=| —sinp cosp O0]. (3.77)
0 0o 1

Theass =1 expresses the fact thef = x3, since the rotation has been about t3eaxis.
The zeros guarantee thetandx;, do not depend ong and thatx; does not depend on
andxo.

Inverse Matrix, A—1
Returning to the general transformation mattixthe inverse matriXA—! is defined such
that

Ix) =A"Lx"). (3.78)

That is,A~1 describes the reverse of the rotation givenfownd returns the coordinate
system to its original position. Symbolically, Egs. (3.72) and (3.78) combine to give

) =A~Alx), (3.79)
and sincgx) is arbitrary,
AlA=1, (3.80)
the unit matrix. Similarly,
AA =1, (3.81)

using Egs. (3.72) and (3.78) and eliminating instead of|x’).

Transpose Matrix, A

We can determine the elements of our postulated inverse matrixby employing the
orthogonality condition. Equation (3.71), the orthogonality condition, does not conform to
our definition of matrix multiplication, but it can be put in the required formdefining a

new matrixA such that

ﬁjl‘ =daij. (382)

Equation (3.71) becomes

AA=1. (3.83)

This is a restatement of the orthogonality condition and may be taken as the constraint
defining an orthogonal matrix, a second definition of an orthogonal matrix. Multiplying
Eq. (3.83) byA~! from the right and using Eq. (3.81), we have

A=A"1 (3.84)
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a third definition of an orthogonal matrix. This important result, that the inverse equals
the transpose, holds only for orthogonal matrices and indeed may be taken as a further
restatement of the orthogonality condition.

Multiplying Eq. (3.84) byA from the left, we obtain

AA=1 (3.85)

or

Zajiaki =68k, (3.86)

which is still another form of the orthogonality condition.
Summarizing, the orthogonality condition may be stated in several equivalent ways:

Zaijaik =djk, (3.87a)
Zajiaki =08k, (3.87h)
AA=AA=1, (3.87¢)
A=A"1 (3.87d)

Any one of these relations is a necessary and a sufficient conditightfobe orthogonal.
It is now possible to see and understand why the terthogonal is appropriate for
these matrices. We have the general form

ail aiz ais
A=|axn a2 ax],
asl asy ass

a matrix of direction cosines in whicl; is the cosine of the angle betweehandx;.
Thereforeay1, a2, a13 are the direction cosines af relative toxy, x2, x3. These three
elements oA define a unit length along, that is, a unit vectox,

X1 = X1a11 + Xea12 + X3a1s.

The orthogonality relation (Eq. (3.86)) is simply a statement that the unit vex}ogs,
andXj are mutually perpendicular, or orthogonal. Our orthogonal transformation natrix
transforms one orthogonal coordinate system into a second orthogonal coordinate system
by rotation and/or reflection.

As an example of the use of matrices, the unit vectors in spherical polar coordinates may
be written as

(3.88)

S >~
I
O

N < X
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whereC is given in Exercise 2.5.1. This is equivalent to Egs. (3.62) withx,, andxj

replaced by, 0, andg. From the preceding analysisis orthogonal. Therefore the inverse
relation becomes

% AN
g]l=ctlé|=C|d], (3.89)
2 o o

and Exercise 2.5.5 is solved by inspection. Similar applications of matrix inverses appear in
connection with the transformation of a power series into a series of orthogonal functions
(Gram—-Schmidt orthogonalization in Section 10.3) and the numerical solution of integral

equations.

Euler Angles

Our transformation matriXA contains nine direction cosines. Clearly, only three of these
are independent, Eq. (3.71) providing six constraints. Equivalently, we may say that two
parametersy andg in spherical polar coordinates) are required to fix the axis of rotation.
Then one additional parameter describes the amount of rotation about the specified axis.
(In the Lagrangian formulation of mechanics (Section 17.3) it is necessary to describe
A by using some set of three independent parameters rather than the redundant direction
cosines.) The usual choice of parameters is the Euler affles.

The goal is to describe the orientation of a final rotated systginxy’, x3') relative to
some initial coordinate systeiry, x2, x3). The final system is developed in three steps,
with each step involving one rotation described by one Euler angle (Fig. 3.3):

1. The coordinates are rotated about #eaxis through an angle counterclockwise
into new axes denoted by -, x5-, x5. (Thexs- andxz-axes coincide.)

a b [

FIGURE 3.3  (a) Rotation abouts through angler; (b) rotation abouk;, through
angleg; (c) rotation abouk? through angle/.

14There are almost as many definitions of the Euler angles as there are authors. Here we follow the choice generally made by
workers in the area of group theory and the quantum theory of angular momentum (compare Sections 4.3, 4.4).
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2. The coordinates are rotated aboutjﬂiaezelxis15 through an anglg counterclockwise
into new axes denoted by-, x7-, x5. (Thex5- andx’-axes coincide.)
3. The third and final rotation is through an angleounterclockwise about the-axis,

"

yielding thex!”, x5, x5’ system. (The:5- andxj’-axes coincide.)

The three matrices describing these rotations are

cose sina O
R;(@)=| —sina cose O], (3.90)
0 0 1

exactly like Eq. (3.77),

cosp 0 -—sing

Ry(B) = 0 1 0 (3.91)
sing 0 cosB
and
cosy siny O
R.(y)=| —siny cosy O0]. (3.92)
0 0o 1
The total rotation is described by the triple matrix product,
A, B, y) =R (¥)Ry (B)R: (). (3.93)
Note the orderR; () operates first, theR, (8), and finallyR (). Direct multiplication
gives
Ale, B, v)

COSy COSB cosx — Siny Sine €cOSy cosB Sina + Siny cose — cosy sing
= | —siny cosB cose — cOSy Sine — Siny cosp Sina 4+ coSy cose  Siny sing
sinB cosx sing sina cospB
(3.94)

EquatingA(a;;) with A(a, 8, ¥), element by element, yields the direction cosines in terms

of the three Euler angles. We could use this Euler angle identification to verify the direction
cosine identities, Eq. (1.46) of Section 1.4, but the approach of Exercise 3.3.3 is much more
elegant.

Symmetry Properties

Our matrix description leads to the rotation grd®@(3) in three-dimensional spad®?,

and the Euler angle description of rotations forms a basis for developing the rotation
group in Chapter 4. Rotations may also be described by the unitary &0 in two-
dimensional spac€? over the complex numbers. The concept of groups suchi®)

and its generalizations and group theoretical techniques are often encountered in modern

1550me authors choose this second rotation to be abomitbais.
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particle physics, where symmetry properties play an important role STh@) group is
also considered in Chapter 4. The power and flexibility of matrices pushed quaternions into
obscurity early in the 20th centuf$.

It will be noted that matrices have been handled in two ways in the foregoing discussion:
by their components and as single entities. Each technique has its own advantages and both
are useful.

The transpose matrix is useful in a discussion of symmetry properties. If

AZA, a,'j :aji, (3-95)

the matrix is calledymmetric, whereas if

A= —A, ajj = —daiji, (396)

it is calledantisymmetric or skewsymmetric. The diagonal elements vanish. It is easy to
show that any (square) matrix may be written as the sum of a symmetric matrix and an
antisymmetric matrix. Consider the identity

A=3[A+A]+3A-AL (3.97)

[A+ Al is clearly symmetric, whereagA — Al is clearly antisymmetric. This is the
matrix analog of Eq. (2.75), Chapter 2, for tensors. Similarly, a function may be broken up
into its even and odd parts.

So far we have interpreted the orthogonal matrix as rotating the coordinate system. This
changes the components of a fixed vector (not rotating with the coordinates) (Fig. 1.6,
Chapter 1). However, an orthogonal mat#ixnay be interpreted equally well as a rotation
of thevector in theopposite direction (Fig. 3.4).

These two possibilities, (1) rotating the vector keeping the coordinates fixed and (2)
rotating the coordinates (in the opposite sense) keeping the vector fixed, have a direct
analogy in quantum theory. Rotation (a time transformation) of the state vector gives the
Schrddinger picture. Rotation of the basis keeping the state vector fixed yields the Heisen-
berg picture.

FIGURE 3.4 Fixed coordinates —
rotated vector.

16R. J. Stephenson, Development of vector analysis from quatersfioms. Phys. 34: 194 (1966).
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Suppose we interpret matrix as rotating avector r into the position shown by ; that
is, in a particular coordinate system we have a relation

ri{=Ar. (3.98)

Now let us rotate thecoordinates by applying matrixB, which rotates(x, y, z) into
&'y, 2),
ry = Bri1=BAr = (Ar) =BA(B™'B)r
= (BAB™1)Br = (BABY)r". (3.99)

Bry is justrj in the new coordinate system, with a similar interpretation holdind3far
Hencein this new system (Br) is rotated into positioriBr1) by the matrixBAB~1:

Bri = (BAB™1) Br

|

rél. — A r’

In the new system the coordinates have been rotated by nitéixhas the formA’, in
which

A =BAB™L. (3.100)

A’ operates in the’, y’, 7/ space a#\ operates in the, y, z space.
The transformation defined by Eq. (3.100) wlehany matrix, not necessarily orthogo-
nal, is known as aimilarity transformation. In component form Eq. (3.100) becomes

al; = bika (B, (3.101)
k.l
Now, if B is orthogonal,
(B_l)lj =B);=bjI, (3.102)
and we have
aj; = bixbjian. (3.103)
k.l

It may be helpful to think oA again as an operator, possibly as rotating coordinate axes,
relating angular momentum and angular velocity of a rotating solid (Section 3.5). Matrix
is the representation in a given coordinate system — or basis. But there are directions asso-
ciated withA — crystal axes, symmetry axes in the rotating solid, and so on—so that the
representatiol\ depends on the basis. The similarity transformation shows just how the
representation changes with a change of basis.
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Relation to Tensors
Comparing Eqg. (3.103) with the equations of Section 2.6, we see that it is the definition
of a tensor of second rank. Hence a matrix that transforms byrtirogonal similarity
transformation is, by definition, a tensor. Clearly, then, arthogonal matrix A, inter-
preted as rotating a vector (Eqg. (3.98)), may be called a tensor. If, however, we consider
the orthogonal matrix as a collection of fixed direction cosines, giving the new orientation
of a coordinate system, there is no tensor property involved.
The symmetry and antisymmetry properties defined earlier are preservecbutiobg-
onal similarity transformations. LeA be a symmetric matrixj = A, and
A =BAB™ L. (3.104)
Now,
A =B 1AB=BABI, (3.105)
sinceB is orthogonal. BUA = A. Therefore
A =BAB 1=A (3.106)
showing that the property of symmetry is invariant under an orthogonal similarity transfor-
mation. In general, symmetry i®ot preserved under a nonorthogonal similarity transfor-
mation.
Exercises
Note. Assume all matrix elements are real.
331 Show that the product of two orthogonal matrices is orthogonal.
Note. This is a key step in showing that allx » orthogonal matrices form a group
(Section 4.1).
332 If Ais orthogonal, show that its determinanat:-1.
3.33 If Ais orthogonal and dét= +1, show thatdetA)a;; = C;;, whereC;; is thecofactor
of a;;. This yields the identities of Eq. (1.46), used in Section 1.4 to show that a cross
product of vectors (in three-space) is itself a vector.
Hint. Note Exercise 3.2.32.
334 Another set of Euler rotations in common use is

(1) arotation about thes-axis through an angle, counterclockwise,
(2) arotation about the] -axis through an angle, counterclockwise,
(3) arotation about the;-axis through an anglé¢, counterclockwise.

If
a=¢—m/2 p=a+m/2
p=6 6=p
y=v+n/2  Y=y-n/2

show that the final systems are identical.
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3.3.7

3.3.8
3.39
3.3.10

3311

3.3.12

3.3.13

3314
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Suppose the Earth is moved (rotated) so that the north pole goes tw@f, 20 west
(original latitude and longitude system) and thé f@st meridian points due south.

(a) What are the Euler angles describing this rotation?
(b) Find the corresponding direction cosines.

0.9551 —-0.2552 —-0.1504
ANS. (b)A={ 0.0052 05221 —-0.8529].
0.2962 08138 05000

Verify that the Euler angle rotation matrix, Eq. (3.94), is invariant under the transforma-
tion

o0 — o+, B— —pB, y -y —m.
Show that the Euler angle rotation matfxXe, 8, y) satisfies the following relations:
@ Al B.y) =A@ B,),
(b) AN, B,y)=A(=y, =B, —a).
Show that the trace of the product of a symmetric and an antisymmetric matrix is zero.
Show that the trace of a matrix remains invariant under similarity transformations.

Show that the determinant of a matrix remains invariant under similarity transforma-
tions.

Note. Exercises (3.3.9) and (3.3.10) show that the trace and the determinant are inde-
pendent of the Cartesian coordinates. They are characteristics of the matrix (operator)
itself.

Show that the property of antisymmetry is invariant under orthogonal similarity trans-
formations.

Ais 2 x 2 and orthogonal. Find the most general form of
a b
A= (2 ).
Compare with two-dimensional rotation.

|x) and|y) are column vectors. Under an orthogonal transforma8omx’) = S|x),

ly’) = S|y). Show that the scalar produgt | y) is invariant under this orthogonal trans-
formation.

Note. This is equivalent to the invariance of the dot product of two vectors, Section 1.3.

Show that the sum of the squares of the elements of a matrix remains invariant under
orthogonal similarity transformations.

As a generalization of Exercise 3.3.14, show that

D USiuTik =) SinTim:
jk I,m
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where the primed and unprimed elements are related by an orthogonal similarity trans-
formation. This result is useful in deriving invariants in electromagnetic theory (com-
pare Section 4.6).

Note. This productM jx =Y S;iT;x is sometimes called Hadamard product. In the
framework of tensor analysis, Chapter 2, this exercise becomes a double contraction of
two second-rank tensors and therefore is clearly a scalar (invariant).

3.3.16 A rotation g1 + ¢ about thez-axis is carried out as two successive rotatipasand
@2, each about the-axis. Use the matrix representation of the rotations to derive the
trigonometric identities

CoS¢1 + @2) = COSp1 COSP2 — SiNg; SiNg2,
Sin(e1 + @2) = Sing1 COSP + COSp1 Singy.

3.3.17  Acolumn vectolV has componentg; andV> in an initial (unprimed) system. Calculate
v/ andV, for a

(a) rotation of the coordinates through an anglé cbunterclockwise,
(b) rotation of the vector through an angletotlockwise.

The results for parts (a) and (b) should be identical.

3.3.18  Write a subroutine that will test whether a réalx N matrix is symmetric. Symmetry
may be defined as

0<lajj —aji| <e,

wheree is some small tolerance (which allows for truncation error, and so on in the
computer).

3.4 HERMITIAN MATRICES, UNITARY MATRICES

Definitions

Thus far it has generally been assumed that our linear vector space is a real space and
that the matrix elements (the representations of the linear operators) are real. For many
calculations in classical physics, real matrix elements will suffice. However, in quantum
mechanics complex variables are unavoidable because of the form of the basic commuta-
tion relations (or the form of the time-dependent Schrddinger equation). With this in mind,
we generalize to the case of complex matrix elements. To handle these elements, let us
define, or label, some new properties.

1. Complex conjugated*, formed by taking the complex conjugate— —i) of each
element, wheré¢ = /—1.
2. Adjoint, AT, formed by transposing*,

AT = Ax = A*, (3.107)
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3. Hermitian matrix: The matriA is labeledHer mitian (or self-adjoint) if
A=A, (3.108)

If Ais real, thenAT = A and real Hermitian matrices are real symmetric matrices.
In quantum mechanics (or matrix mechanics) matrices are usually constructed to be
Hermitian, or unitary.

4. Unitary matrix: MatrixU is labeledunitary if

uT=u-1t (3.109)

If U is real, thenu=! = U, so real unitary matrices are orthogonal matrices. This
represents a generalization of the concept of orthogonal matrix (compare Eq. (3.84)).
5. (AB)* = A*B*, (AB)T = BTAT.

If the matrix elements are complex, the physicist is almost always concerned with Her-
mitian and unitary matrices. Unitary matrices are especially important in quantum me-
chanics because they leave the length of a (complex) vector unchanged — analogous to the
operation of an orthogonal matrix on a real vector. It is for this reason that the S matrix
of scattering theory is a unitary matrix. One important exception to this interest in unitary
matrices is the group of Lorentz matrices, Chapter 4. Using Minkowski space, we see that
these matrices are not unitary.

In a complexn-dimensional linear space the square of the length of a pbiat
xT(x1,x2,...,x,), Or the square of its distance from the origin 0, is defined fas=
Doxixi=) |x;|2. If a coordinate transformation= Ux leaves the distance unchanged,
thenx™x = yTy = (Ux)TUx = xTUTUx. Sincex is arbitrary it follows thatUtu = 1,,;
that is,U is a unitaryn x n matrix. If x’ = Ax is a linear map, then its matrix in the new
coordinates becomes the unitary (analog of a similarity) transformation

A = UAUT, (3.110)
becausd)x’ =y’ = UAx = UAU 1y = UAUTy.

Pauli and Dirac Matrices

The set of three X 2 Pauli matrices,

01 0 —i 1 0
61=<1 o>’ 02=<l. ol)’ 03:(0 _1>, (3.111)

were introduced by W. Pauli to describe a particle of spif ih nonrelativistic quantum
mechanics. It can readily be shown that (compare Exercises 3.2.13 and 3.2.14) tlee Pauli
satisfy

0;0; +0jo; = 251, anticommutation (3.112)
00 =ioy, i, j,k acyclic permutation of 1, 2, 3 (3.113)

(0)% = 1a, (3.114)
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where % is the 2x 2 unit matrix. Thus, the vectar /2 satisfies the same commutation
relations,

l[oi,0jl=0i0; —0j0; =2i8,’jk0k, (3.115)

as the orbital angular momentum(L x L =iL, see Exercise 2.5.15 and tB©(3) and
SU(2) groups in Chapter 4).

The three Pauli matrices and the unit matrix form a complete set, so any Hermitian
2 x 2 matrixM may be expanded as

M =moly + mi01 + moo2 +m3cz3=mg+mM-o, (3.116)

where then; form a constant vectan. Using(o;)2 = 1, and tracéos;) = 0 we obtain from
Eq. (3.116) the expansion coefficiemis by forming traces,

2mg = tracgM), 2m; =trac&Mo;), i=1,223 (3.117)

Adding and multiplying such % 2 matrices we generate the Pauli algebralote that
tracgo;) =0fori =1, 2, 3.
In 1927 P. A. M. Dirac extended this formalism to fast-moving particles of %:)in

such as electrons (and neutrinos). To include special relativity he started from Einstein’s

energy, E2 = p2c2 + m?c?*, instead of the nonrelativistic kinetic and potential energy,

E =p?/2m + V. The key to the Dirac equation is to factorize
E? —p?c? =E? = (co -p)?>=(E —co - p)(E + co - p) = m?c? (3.118)
using the 2x 2 matrix identity
(0 -p)? =p?la. (3.119)

The 2x 2 unit matrix % is not written explicitly in Eq. (3.118), and Eq. (3.119) follows
from Exercise 3.2.14 foa = b = p. Equivalently, we can introduce two matricesandy
to factorizeE? — p?c? directly:

[EY' ®1—c(y ®0) -p]
=E*"?®@1+*y*®@ (0 -p?— Ec(y'y +yy)®0 -p
= E? — p?c?> =m?c*. (3.119)
For Eg. (3.119 to hold, the conditions
y2=1=—y2 Yy +yy' =0 (3.120)

must be satisfied. Thus, the matriggsandy anticommute, just like the three Pauli ma-
trices; therefore they cannot be real or complex numbers. Because the conditions (3.120)
can be met by % 2 matrices, we have written direct product signs (see Example 3.2.1) in
Eqg. (3119) because/’, y are multiplied by %, ¢ matrices, respectively, with

J/=(é _01>, y=<_ol é) (3.121)

17Forits geometrical significance, see W. E. Baylis, J. Huschilt, and JiansuAviied, Phys. 60: 788 (1992).
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The direct-product 4x 4 matrices in Eq. (319) are the four conventional Dirac

y-matrices,
10 0 0
o .. (12 0\ _ |lo1 0 o
”—V®1—(o 1,)= o0 -1 o
00 0 -1
0 0 01
- 0 m)\ [0 0 10
Y —7”@"1—(—(;1 0) (o -1 0 of
1 0 00
0 01 0
- (0 o\ [0 00 1
0 10 0

and similarly fory? = y ® 0. In vector notationy = y ® ¢ is a vector with three
components, each ax 4 matrix, a generalization of the vector of Pauli matrices to a
vector of 4x 4 matrices. The four matriceg’ are the components of the four-vector
y* =0y, 2 ¥3). If we recognize in Eq. (1.19)

Ey®@L—cly®ao)-p=y'pu=v-p=u0.¥) (E,cp) (3.123)

as a scalar product of two four-vectarg and p* (see Lorentz group in Chapter 4), then
Eq. (3.119) with p2 = p - p = E2 — p%c2 may be regarded as a four-vector generalization
of Eq. (3.119).

Summarizing the relativistic treatment of a spin 1/2 particle, it leadsto 4 x 4 matrices,
while the spin 1/2 of a nonrelativistic particleis described by the 2 x 2 Pauli matrices o .

By analogy with the Pauli algebra, we can form products of the bp&ianatrices
and linear combinations of them and the unit matrix= 14, thereby generating a 16-
dimensional (so-calle@lifford®) algebra. A basis (with convenient Lorentz transforma-
tion properties, see Chapter 4) is given (itx 2 matrix notation of Eq. (3.122)) by

. 0 1 .
14,7/5:11/07/13/23/3:(12 02> yh, ySpt ot = i(yty =y yt) /2. (3.124)

The y-matrices anticommute; that is, their symmetric combinations
yhy" +ytyt =211, (3.125)

whereg®0=1= —gll= 22— _ 433 gndgi¥ =0 for u # v, are zero or proportional

to the 4x 4 unit matrix 4, while the six antisymmetric combinations in Eq. (3.124) give
new basis elements that transform like a tensor under Lorentz transformations (see Chap-
ter 4). Any 4x 4 matrix can be expanded in terms of these 16 elements, and the expan-
sion coefficients are given by forming traces similar to the 2 case in Eq. (3.117) us-

18D, Hestenes and G. Sobczyke.cit.; D. HestenesAm. J. Phys. 39: 1013 (1971); and. Math. Phys. 16: 556 (1975).
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ing trac€1,) = 4, tracgys) = 0, tracgy*) = 0 = tracgy5y*), tracgo*’) =0 for u, v =
0,1, 2, 3 (see Exercise 3.4.23). In Chapter 4 we show {has odd under parity, sgsy*
transform like an axial vector that has even parity.
The spin algebra generated by the Pauli matrices is just a matrix representation of the
four-dimensional Clifford algebra, while Hestenes and coworkers (loc. cit.) have developed
in their geometric calculus a representation-free (that is, “coordinate-free”) algebra that
contains complex numbers, vectors, the quaternion subalgebra, and generalized cross prod-
ucts as directed areas (calleigiectors). This algebraic-geometric framework is tailored to
nonrelativistic quantum mechanics, where spinors acquire geometric aspects and the Gauss
and Stokes theorems appear as components of a unified theorem. Their geometric algebra
corresponding to the 16-dimensional Clifford algebra of Divamatrices is the appropri-
ate coordinate-free framework for relativistic quantum mechanics and electrodynamics.
The discussion of orthogonal matrices in Section 3.3 and unitary matrices in this sec-
tion is only a beginning. Further extensions are of vital concern in “elementary” particle
physics. With the Pauli and Dirac matrices, we can devgbdpor wave functions for elec-
trons, protons, and other (relativistic) sr%rparticles. The coordinate system rotations lead
to D/ (a, B, y), the rotation group usually represented by matrices in which the elements
are functions of the Euler angles describing the rotation. The special unitary Std(®)
(composed of X 3 unitary matrices with determinastl) has been used with considerable
success to describe mesons and baryons involved in the strong interactions, a gauge theory
that is now callecquantum chromodynamics. These extensions are considered further in
Chapter 4.

Exercises

341

34.2

343
344

345

34.6

Show that
detA*) = (detA)* = deA").
Three angular momentum matrices satisfy the basic commutation relation
Fx, Iyl =iJ;

(and cyclic permutation of indices). If two of the matrices have real elements, show that
the elements of the third must be pure imaginary.

Show that(AB)T = BTAT.

A matrix C = S'S. Show that the trace is positive definite unl&sis the null matrix,
in which case tracéC) = 0.

If A andB are Hermitian matrices, show théAB + BA) andi(AB — BA) are also
Hermitian.

The matrixC is not Hermitian. Show that the@ + C andi(C — C") are Hermitian.
This means that a non-Hermitian matrix may be resolved into two Hermitian parts,

_1 o et
C_2m+c)+zdc ch).

This decomposition of a matrix into two Hermitian matrix parts parallels the decompo-
sition of a complex numbeyinto x + iy, wherex = (z + z*)/2 andy = (z — z*)/2i.
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348

349

34.10
34.11

34.12

34.13
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A andB are two noncommuting Hermitian matrices:
AB —-BA=iC.
Prove thaC is Hermitian.

Show that a Hermitian matrix remains Hermitian under unitary similarity transforma-
tions.

Two matricesA andB are each Hermitian. Find a necessary and sufficient condition for
their productAB to be Hermitian.

ANS. [A,B] =0.
Show that the reciprocal (that is, inverse) of a unitary matrix is unitary.
A particular similarity transformation yields
A =UAUY,
AT=UATU,

If the adjoint relationship is preservegAT/ = AT and detU = 1, show thatU must be
unitary.

Two matricedJ andH are related by
U= eiaH
with a real. (The exponential function is defined by a Maclaurin expansion. This will

be done in Section 5.6.)

(&) If His Hermitian, show that) is unitary.
(b) If Uis unitary, show thaH is Hermitian. { is independent of.)

Note. With H the Hamiltonian,
¥(x,t) =U(x, )Y (x, 0) =exp(—itH/h) Y (x, 0)

is a solution of the time-dependent Schridinger equatign, 1) = exp(—itH/h) is the
“evolution operator.”

An operatorT (t + ¢, t) describes the change in the wave function frotmz + ¢. Fore
real and small enough so thet may be neglected,

T(t+et)=1— ;_l—eH(z).

(@) If T is unitary, show thaH is Hermitian.
(b) If His Hermitian, show thal is unitary.

Note. WhenH(r) is independent of time, this relation may be put in exponential form —
Exercise 3.4.12.
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3.4.14 Show that an alternate form,
1—ieH(r)/2h
1+ieH()/2h°

agrees with the” of part (a) of Exercise 3.4.13, neglecting, and is exactly unitary
(for H Hermitian).

T(t+e,1)=

34.15 Prove that the direct product of two unitary matrices is unitary.
34.16  Show thatys anticommutes with all foup#.

34.17  Use the four-dimensional Levi-Civita symbe) ., with o123 = —1 (generalizing
Egs. (2.93) in Section 2.9 to four dimensions) and show that§y2, = —ie vapo®?
using the summation convention of Section 2.6 andiy, vy = gaxu¥v — Vi +
g +icnnpy?ys. Definey, = g, y" usingg”” = g, to raise and lower indices.

3.4.18 Evaluate the following traces: (see Eg. (3.123) for the notation)
(i) tracely -ay-b)=4a-b,
(i) trace(y -ay -by -c) =0,

(i) trace(y -ay -by -cy-d)y=4(a-bc-d—a-cb-d+a-db-c),
(iv) trace(ysy -ay -by -cy-d) =4i8aﬁwa“bﬂc“d”.

3.4.19 Show that (i)y,y*y* = —2y%, (ii) yﬂy"‘yﬁy“ = 4g°‘/5, and (iii) yuy"‘yﬂy”y“ =
=2y yPy.
3420  If M= 3(1+ ys), show that
M2 =M.

Note thatys may be replaced by any other Dirac matrix (dhyof Eq. (3.124)). IfM is
Hermitian, then this resuliM? = M, is the defining equation for a quantum mechanical
projection operator.

3421  Show that
axa=2ic 1o,
wherea = ypy is a vector
o = (a1, 02,03).
Note that ifa is a polar vector (Section 2.4), thenis an axial vector.
3.4.22  Prove that the 16 Dirac matrices form a linearly independent set.

34.23  If we assume that a given» 4 matrix A (with constant elements) can be written as a
linear combination of the 16 Dirac matrices

16
A= Z Ci F,‘ s
i=1
show that
c; ~ tracdATY;).
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3424 If C=iy?yQis the charge conjugation matrix, show tf@y*C-1 = —y*, where
~indicates transposition.

3425 Let xM = A, x, be arotation by an angteabout the 3-axis,

/

xo= X7 = x1C080 + x2sind,
x5 = —x1SiN0 + x2COSY, x5 = Xx3.

Use R = exp(ifo1?/2) = cos9/2 + io1?sing/2 (see Eq. (3.170b)) and show that
the y's transform just like the coordinates’, that is, A}y, = R‘lyﬂR. (Note that

v = guy’ and that they* are well defined only up to a similarity transformation.)
Similarly, if x’ = Ax is a boost (pure Lorentz transformation) along the 1-axis, that is,

x4 = XxpC0shy — xysinh, x} = —xoSinhg 4 x3 cosh,
X5=X2,  X3=X3,

with tanh; = v/c and B = exp(—ito%/2) = cosh;/2 — ioc%sinhz/2 (see
Eq. (3.170b)), show thak!,y, = By, B~*

3426 (a) Givenr’ = Ur, with U a unitary matrix and a (column) vector with complex
elements, show that the norm (magnitude) & invariant under this operation.
(b) The matrixU transforms any column vector with complex elements into’,
leaving the magnitude invariant'r = r’Tr’. Show thatU is unitary.

3.4.27  Write a subroutine that will test whether a complex n matrix is self-adjoint. In
demanding equality of matrix elemenitg = a ., allow some small toleraneeto com-
pensate for truncation error of the computer

3.4.28  Write a subroutine that will form the adjoint of a compl&k x N matrix.

3429 (a) Write a subroutine that will take a complgk x N matrix A and yield the product
ATA,
Hint. This subroutine can call the subroutines of Exercises 3.2.41 and 3.4.28.
(b) Test your subroutine by taking to be one or more of the Dirac matrices,
Eq. (3.124).

3.5 DIAGONALIZATION OF MATRICES

Moment of Inertia Matrix

In many physical problems involving real symmetric or complex Hermitian matrices it is
desirable to carry out a (real) orthogonal similarity transformation or a unitary transfor-
mation (corresponding to a rotation of the coordinate system) to reduce the matrix to a
diagonal form, nondiagonal elements all equal to zero. One particularly direct example
of this is the moment of inertia matrikof a rigid body. From the definition of angular
momentunL we have

L =lw, (3.126)
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 being the angular veloci}? The inertia matrix is found to have diagonal components

Lix = Zmi (r? — x?), and so on, (3.127)
i

the subscript referring to massz; located atr; = (x;, y;, z;). For the nondiagonal com-

ponents we have

Ixy = — Zmixiy,- = ]yx' (3.128)
i

By inspection, matrid is symmetric. Also, sincé appears in a physical equation of the
form (3.126), which holds for all orientations of the coordinate system, it may be consid-
ered to be a tensor (quotient rule, Section 2.3).

The key now is to orient the coordinate axes (along a body-fixed frame) so that the
Iy and the other nondiagonal elements will vanish. As a consequence of this orientation
and an indication of it, if the angular velocity is along one such realigméacipal axis,
the angular velocity and the angular momentum will be parallel. As an illustration, the
stability of rotation is used by football players when they throw the ball spinning about its
long principal axis.

Eigenvectors, Eigenvalues

It is instructive to consider a geometrical picture of this problem. If the inertia miisix
multiplied from each side by a unit vector of variable directibns («, 8, v), then in the
Dirac bracket notation of Section 3.2,

(ANIAY =1, (3.129)

where I is the moment of inertia about the directiGnand a positive number (scalar).
Carrying out the multiplication, we obtain

I =1, @® + Ly B2 + Loy + 210 + 2L ay + 21, By, (3.130)

a positive definite quadratic form that must be an ellipsoid (see Fig. 3.5). From analytic
geometry it is known that the coordinate axes can always be rotated to coincide with the
axes of our ellipsoid. In many elementary cases, especially when symmetry is present, these
new axes, called thprincipal axes, can be found by inspection. We can find the axes by
locating the local extrema of the ellipsoid in terms of the variable componentssabject

to the constrainf? = 1. To deal with the constraint, we introduce a Lagrange multiplier
(Section 17.6). Differentiatingh|I|A) — A (A|A),

0

Wj(<ﬁ|||ﬁ) — M(AIA)) = 2211,(;1,( —2in; =0, j=123 (3.131)

k
yields the eigenvalue equations

11A) = A|A). (3.132)

19The moment of inertia matrix may also be developed from the kinetic energy of a rotatinglbedy/2(w|l|w).
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”I

FIGURE 3.5 Moment of inertia ellipsoid.

The same result can be found by purely geometric methods. We now proceed to develop
a general method of finding the diagonal elements and the principal axes.

If R~1 =R is the real orthogonal matrix such thalt= Rn, or |n’) = R|n) in Dirac
notation, are the new coordinates, then we obtain, ugifig = (n| in Eq. (3.132),

(n[lin) = (N |RIR|N') = I1n}2 + Iyn'? + I5n'?, (3.133)

where thel/ > 0 are the principal moments of inertia. The inertia maltix Eq. (3.133)
is diagonal in the new coordinates,

(1 0 0
'=RIR={0 I, 0]. (3.134)
0 0 I

If we rewrite Eq. (3.134) usin® ! = R in the form
RI'=IR (3.135)

and takeR = (v1, vz, v3) to consist of three column vectors, then Eq. (3.135) splits up into
three eigenvalue equations,

lv; = Ii/Vi, i=123 (3136)

with eigenvalues I/ and eigenvectors v;. The names were introduced from the German
literature on quantum mechanics. Because these equations are linear and homogeneous
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(for fixed i), by Section 3.1 their determinants have to vanish:

In—1I Iz I13
I12 Ioo — Ii/ I>3 =0. (3.137)
I13 Iz Izz—1I

Replacing the eigenvalug by a variablei times the unit matrixl, we may rewrite
Eq. (3.136) as

(I = A1)|v) = 0. (3.136)

The determinant set to zero,

Il—Al| =0, (3.137)

is a cubic polynomial irk; its three roots, of course, are tlie Substituting one root at

a time back into Eq. (3.136) (or (3.135 we can find the corresponding eigenvectors.
Because of its applications in astronomical theories, Eq. (3.137) (or (3} 18Kknown as
thesecular equation.2® The same treatment applies to any real symmetric mhteixcept

that its eigenvalues need not all be positive. Also, the orthogonality condition in Eq. (3.87)
for R say that, in geometric terms, the eigenvecterare mutually orthogonal unit vectors.
Indeed they form the new coordinate system. The fact that any two eigenvectoysare
orthogonal if1/ # Ij/. follows from Eg. (3.136) in conjunction with the symmetry ldby
multiplying with v; andv;, respectively,

(Vj|||Vi) = Ii/vj -V = (Vi|||Vj> = I}Vi “Vj. (313851)

Sincel] # I]/. and Eq. (3.138a) implies thalj’. —I/)v;-v;=0,s0v;-v; =0.
We can write the quadratic forms in Eq. (3.133) as a sum of squares in the original
coordinatesgn),

(n|lin) = (n'|RIR|N") Zl(n vi)2, (3.138b)

because the rows of the rotation matrixin= Rn, or

/

n Vi-Nn
ny |=1v2-n
/ V3-Nn
ny 3

componentwise, are made up of the eigenveatar¥he underlying matrix identity,

| = Z Ivi)(vil, (3.138c)

20Equation (3.126) will take on this form whenis along one of the principal axes. Then= Aw andlw = Aw. In the mathe-
matics literature. is usually called @haracteristic value, w acharacteristic vector.
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may be viewed as thgectral decomposition of the inertia tensor (or any real symmetric
matrix). Here, the wordpectral is just another term for expansion in terms of its eigen-
values. When we multiply this eigenvalue expansioritoyon the left andn) on the right
we reproduce the previous relation between quadratic forms. The op&ratav; ) (v;| is

a projection operator satisfying,.2 = P; that projects théth componentw; of any vector
|w) = Zj w;|v;) that is expanded in terms of the eigenvector basis. This is verified

by

Pilw) =y " w; Vi) (vilV,) = wi Vi) = Vi - WIV;).
J
Finally, the identity

Do vivil =1

expresses the completeness of the eigenvector basis according to which anywgestor
>, w;i|v;) can be expanded in terms of the eigenvectors. Multiplying the completeness
relation by|w) proves the expansiamw) =Y. (v; |W)|V;).

An important extension of the spectral decomposition theorem applies to commuting
symmetric (or Hermitian) matrices, B: If [A, B] = 0, then there is an orthogonal (unitary)
matrix that diagonalizes both andB; that is, both matrices have common eigenvectors if
the eigenvalues are nondegenerate. The reverse dhdoiemis also valid.

To prove this theorem we diagonalige Av; = a;v;. Multiplying each eigenvalue equa-
tion by B we obtainBAv; = g;Bv; = A(Bv;), which says thaByv; is an eigenvector oA
with eigenvalues;. HenceBv; = b;v; with realb;. Conversely, if the vectorg; are com-
mon eigenvectors oA andB, thenABv; = Ab;v; = a;b;v; = BAv;. Since the eigenvec-
torsv; are complete, this implieAB = BA.

Hermitian Matrices

For complex vector spaces, Hermitian and unitary matrices play the same role as symmetric
and orthogonal matrices over real vector spaces, respectively. First, let us generalize the
important theorem about the diagonal elements and the principal axes for the eigenvalue
equation

Alr) = Alr), (3.139)

We now show that ifA is a Hermitian matrix! its eigenvalues are real and its eigenvectors
orthogonal.

Let; andi; be two eigenvalues arjd;) and|r ;), the corresponding eigenvectorsfaf
a Hermitian matrix. Then

Alri) = Ailri), (3.140)
A|rj)=Aj|rj>. (3.141)

2Lif Ais real, the Hermitian requirement reduces to a requirement of symmetry.
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Equation (3.140) is multiplied byr ;|

(rjlAlr;) = xi(rjlr;). (3.142)
Equation (3.141) is multiplied byr;| to give

(FilAlrj) = A (rilr ). (3.143)
Taking the adjoirf? of this equation, we have

(r ATy = a%¢r ), (3.144)
or

(rjlAlr) = a5(rIr;) (3.145)
sinceA is Hermitian. Subtracting Eq. (3.145) from Eq. (3.142), we obtain

(i = A)(rjlri) =0. (3.146)

This is a general result for all possible combinations @nd j. First, let j = i. Then
Eq. (3.146) becomes

(hi = A5){rilr;) =0. (3.147)
Since(r;|r;) = 0 would be a trivial solution of Eq. (3.147), we conclude that
A=A (3.148)
or A; is real, for alli.
Second, foi # j andi; # A,
(A =X j)(rjlri) =0, (3.149)
or
(rjlri) =0, (3.150)

which means that the eigenvectorslddtinct eigenvalues are orthogonal, Eqg. (3.150) being
our generalization of orthogonality in this complex sp&te.

If 1; =A; (degenerate casd),) is not automatically orthogonal o), but it may be
made orthogonaf* Consider the physical problem of the moment of inertia matrix again.
If x1 is an axis of rotational symmetry, then we will find that= A3. Eigenvectorsr,) and
[r3) are each perpendicular to the symmetry aiig), but they lie anywhere in the plane
perpendicular tdr1); that is, any linear combination ¢if2) and|r3) is also an eigenvector.
Consider(az|r2) + as|r3)) with a2 andas constants. Then

A(azlr2) +aalra)) = aziz|r2) + asha|rs)
= A2(azlr2) + aslrs)). (3.151)

22Note (r ;| = |r ;)" for complex vectors.

23The corresponding theory for differential operators (Sturm-Liouville theory) appears in Section 10.2. The integral equation
analog (Hilbert—Schmidt theory) is given in Section 16.4.

24\ne are assuming here that the eigenvectors of:tfigld degenerate.; span the correspondingdimensional space. This

may be shown by including a parametein the original matrix to remove the degeneracy and then lettiagproach zero
(compare Exercise 3.5.30). This is analogous to breaking a degeneracy in atomic spectroscopy by applying an external magnetic
field (Zeeman effect).
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as is to be expected, fan is an axis of rotational symmetry. Therefore/if) and|rs)

are fixed,|r3) may simply be chosen to lie in the plane perpendiculalr{p and also
perpendicular tdr,). A general method of orthogonalizing solutions, the Gram—Schmidt
process (Section 3.1), is applied to functions in Section 10.3.

The set ofn orthogonal eigenvectors;) of our n x n Hermitian matrixA forms a
complete set, spanning the-dimensional (complex) spac®,, |r;)(r;| = 1. This fact is
useful in a variational calculation of the eigenvalues, Section 17.8.

The spectral decomposition of any Hermitian matixs proved by analogy with real
symmetric matrices

A= nlriril,

with real eigenvalues; and orthonormal eigenvectolrs).

Eigenvalues and eigenvectors are not limited to Hermitian matrices. All matrices have
at least one eigenvalue and eigenvector. However, only Hermitian matrices have all eigen-
vectors orthogonal and all eigenvalues real.

Anti-Hermitian Matrices

Occasionally in quantum theory we encounter anti-Hermitian matrices:
AT = A,

Following the analysis of the first portion of this section, we can show that

a. The eigenvalues are pure imaginary (or zero).
b. The eigenvectors corresponding to distinct eigenvalues are orthogonal.

The matrixR formed from the normalized eigenvectors is unitary. This anti-Hermitian
property is preserved under unitary transformations.

Example 3.5. 1 EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX

Let
0 10
A=[1 0 0]. (3.152)
0 0O
The secular equation is
-2 1 0
1 -1 0|=0, (3.153)
0 0 -—aA

or
-2(x2-1) =0, (3.154)
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expanding by minors. The roots axe= —1, 0, 1. To find the eigenvector corresponding to
A = —1, we substitute this value back into the eigenvalue equation, Eq. (3.139),

% 1 0 (x 0
1 -~ o]|ly|l=1]0]. (3.155)
0 0 -a/)\z 0

x+y=0, z=0. (3.156)

With » = —1, this yields

Within an arbitrary scale factor and an arbitrary sign (or phase fagtr)= (1, —1, 0).

Note that (for realr) in ordinary space) the eigenvector singles out a line in space. The
positive or negative sense is not determined. This indeterminancy could be expected if we
noted that Eq. (3.139) is homogeneougrih For convenience we will require that the
eigenvectors be normalized to unity;|r1) = 1. With this condition,

(ra| = <\/i§ :/—;,o) (3.157)

is fixed except for an overall sign. Far= 0, Eq. (3.139) yields
y=0, x=0, (3.158)

(ra] = (0,0, 1) is a suitable eigenvector. Finally, far=1, we get

—x +y=0, z=0, (3.159)
or
1 1
r3sl={—,—,0). 3.160
r=(7 %) (3169

The orthogonality ofr1,r», andrs, corresponding to three distinct eigenvalues, may be
easily verified.
The corresponding spectral decomposition gives

A=cn( L -Lo) % (L 20) 2\ 40001 (0
IRV W 22 ) \¢) T

I
|
|
Nl
onNIk
o O O
+
QO NI NI
O NIk NIk
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Example 3.5.2  DEGENERATE EIGENVALUES

Consider
1 00
A=|0 0 1]. (3.161)
010
The secular equation is
1-» 0 O
0 -1 1|=0 (3.162)
0 1 -
or
1-»(**-1)=0, r=-1,11, (3.163)
a degenerate caself= —1, the eigenvalue equation (3.139) yields
2x =0, y+z=0. (3.164)
A suitable normalized eigenvector is
1 -1
ril=(0,—, — J. 3.165
rai=(0.5.7) (3.165)
Forix =1, we get
-y+z=0. (3.166)

Any eigenvector satisfying Eq. (3.166) is perpendicularitoWe have an infinite number
of choices. Suppose, as one possible choigés taken as

(ral = (o, % %) (3.167)

which clearly satisfies Eq. (3.166). Themmust be perpendicular ta and may be made
perpendicular to, by?®

rs=ryxr>=(1,0,0). (3.168)

The corresponding spectral decomposition gives

0 0 1
11 1 11 1
A:_(O,_,__> 7 +<O,_1_) NG +(15030) 0
V2 v2) | 3 V2' V2] | 0
V2 V2
0 0 0 0 0 0 100 100
:-0%—%+0%%+(000):(001).
1 1 1 1 0 0O 010
0 -3 3 03 3 .

25The use of the cross product is limited to three-dimensional space (see Section 1.4).
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Functions of Matrices

Polynomials with one or more matrix arguments are well defined and occur often. Power
series of a matrix may also be defined, provided the series converge (see Chapter 5) for
each matrix element. For exampleAifis anyn x n matrix, then the power series

expA) = Z %Af', (3.169a)

j=0/°
: o (D7 i

sin(A) = )~ ———— AT (3.169b)
= @j+D)!
o (D7 4o

cogA) = Z A% (3.169c¢)
pr il

are well defined: x n matrices. For the Pauli matrices theEuler identity for realé and
k=1,2,0r3

expiord) = 1, cosh + ioy SinG, (3.170a)

follows from collecting all even and odd powerséfn separate series usimgf =1. For
the 4x 4 Dirac matricesr /¥ = 1 with (6/%)2 = 1 if j # k = 1, 2 or 3 we obtain similarly
(without writing the obvious unit matrig4 anymore)

exp(io/*0) = cosd +ia /¥ sing, (3.170b)

while

exp(ic%¢) = cosht +io% sinh¢ (3.170c)

holds for real becauséioc%)2=1fork =1, 2, or 3.
For a Hermitian matrixA there is a unitary matrii that diagonalizes it; that is)AUT =
[a1, a2, ..., a,]. Then thetrace formula

det(exp(A)) = exp(traceA)) (3.171)

is obtained (see Exercises 3.5.2 and 3.5.9) from
detlexp(A)) = def(U exp(A)UT) = det(exp(UAUT))

=detexpay, ap,...,a,] = det[e”l, e, ..., e""]

= H el = exp(z ai) = exp(tracgA)),

usingUA'UT = (UAU™)/ in the power series Eq. (3.169a) for ékiAU™) and the product
theorem for determinants in Section 3.2.
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This trace formula is a special case of fpectral decompaosition law for any (infinitely
differentiable) functionf (A) for HermitianA:

FA=Y" FODINr,

where|r;) are the common eigenvectorsAfandA/. This eigenvalue expansion follows
from A/|r;) = A!|r;), multiplied by £ (0)/;! and summed ovey to form the Taylor
expansion off (4;) and yield f (A)|r;) = f(A;)|r;). Finally, summing ovei and using
completeness we obtajfA) >, [r;)(ril=Y_; fF)Iri){ril= f(A), g.e.d.

Example 3.5.3  EXPONENTIAL OF A DIAGONAL MATRIX

(1 0
63_ 0 _1 ’

then itsnth power is also diagonal with its diagonal, matrix elements raised taftine

power:
. (1 o0
(03)" = (0 (_1)n) :

Then summing the exponential series, element for element, yields

0 Yo Gr 0

If we write the general diagonal matrix &s= [a1, az, ..., a,] with diagonal elements;,
thenA™ =[a7', a3, ..., a;'], and summing the exponentials elementwise again we obtain
A= [e®t, e?2, ..., e%].

Using the spectral decomposition law we obtain directly

e” =¢t1(1,0) <é> +¢710, 1) <2> = (g 691> ) n

Another important relation is thBaker—Hausdor ff for mula,

If the matrix A is diagonal like

Q=

expiG)Hexp(—iG) = H + [iG, H] + %[iG, (G, HI]+--, (3.172)

which follows from multiplying the power series for ef{5) and collecting the terms with
the same powers 6fs. Here we define

[G,H]=GH-HG

as thecommutator of G andH.

The preceding analysis has the advantage of exhibiting and clarifying conceptual rela-
tionships in the diagonalization of matrices. However, for matrices larger thaB,3or
perhaps 4« 4, the process rapidly becomes so cumbersome that we turn to computers and
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iterative technique$® One such technique is the Jacobi method for determining eigenval-
ues and eigenvectors of real symmetric matrices. This Jacobi technique for determining
eigenvalues and eigenvectors and the Gauss—Seidel method of solving systems of simulta-
neous linear equations are examples of relaxation methods. They are iterative techniques
in which the errors may decrease or relax as the iterations continue. Relaxation methods
are used extensively for the solution of partial differential equations.

(a) Starting with the orbital angular momentum of itie element of mass,
Li=r; xpi=ml; x (@ xT;),

derive the inertia matrix such that=lw, |L) = l|w).
(b) Repeat the derivation starting with kinetic energy

1 ) 1
E:Emi(wxl’i) (T:E(w|l|w)>.
Show that the eigenvalues of a matrix are unaltered if the matrix is transformed by a
similarity transformation.

This property is not limited to symmetric or Hermitian matrices. It holds for any ma-
trix satisfying the eigenvalue equation, Eq. (3.139). If our matrix can be brought into
diagonal form by a similarity transformation, then two immediate consequences are

1. The trace (sum of eigenvalues) is invariant under a similarity transformation.
2. The determinant (product of eigenvalues) is invariant under a similarity transfor-
mation.

Note. The invariance of the trace and determinant are often demonstrated by using the
Cayley—Hamilton theorem: A matrix satisfies its own characteristic (secular) equation.

As a converse of the theorem that Hermitian matrices have real eigenvalues and that
eigenvectors corresponding to distinct eigenvalues are orthogonal, show that if

(@) the eigenvalues of a matrix are real and
(b) the eigenvectors satisf)}rj =38;; = (rilr;),

then the matrix is Hermitian.

Show that a real matrix that is not symmetric cannot be diagonalized by an orthogonal
similarity transformation.

Hint. Assume that the nonsymmetric real matrix can be diagonalized and develop a
contradiction.

26y higher-dimensional systems the secular equation may be strongly ill-conditioned with respect to the determination of its
roots (the eigenvalues). Direct solution by computer may be very inaccurate. Iterative techniques for diagonalizing the original
matrix are usually preferred. See Sections 2.7 and 2.9 of Breksloc. cit.
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The matrices representing the angular momentum compodents,, and J; are all
Hermitian. Show that the eigenvalues B, whereJ? = J2 + J2 + JZ, are real and
nonnegative.

A has eigenvalues; and corresponding eigenvectdxs). Show thatA—1 has the same
eigenvectors but with eigenvaluggs-.

A square matrix with zero determinant is labeseagular.

(&) If Ais singular, show that there is at least one nonzero column vestach that

Alv) =0.
(b) If there is a nonzero vectdv) such that
Alv) =0,

show thatA is a singular matrix. This means that if a matrix (or operator) has zero
as an eigenvalue, the matrix (or operator) has no inverse and its determinant is
zero.

The same similarity transformation diagonalizes each of two matrices. Show that the
original matrices must commute. (This is particularly important in the matrix (Heisen-
berg) formulation of quantum mechanics.)

Two Hermitian matrice\ andB have the same eigenvalues. Show thandB are
related by a unitary similarity transformation.

Find the eigenvalues and an orthonormal (orthogonal and normalized) set of eigenvec-
tors for the matrices of Exercise 3.2.15.

Show that the inertia matrix for a single particle of masst (x, y, z) has a zero de-
terminant. Explain this result in terms of the invariance of the determinant of a matrix
under similarity transformations (Exercise 3.3.10) and a possible rotation of the coordi-
nate system.

A certain rigid body may be represented by three point masgses: 1 at (1, 1, —2),
mpy =2 at(-1,-1,0),andmz=1at(l,1, 2).

(@) Find the inertia matrix.
(b) Diagonalize the inertia matrix, obtaining the eigenvalues and the principal axes (as
orthonormal eigenvectors).

Unit masses are placed as shown in Fig. 3.6.

(@) Find the moment of inertia matrix.
(b) Find the eigenvalues and a set of orthonormal eigenvectors.
(c) Explain the degeneracy in terms of the symmetry of the system.

4 -1 -1 r=2
ANS.I=| -1 4 -1 ri=(1/v3,1/4/3,1/4/3)
-1 -1 4 Ao =A3=05.
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3514

35.15

3.5.16

3517

—————— 101, 1)

s 1

!

s 1
.00 1
I

I
! '
I

FIGURE 3.6 Mass sites for inertia tensor.

A massmjy = 1/2 kg is located at(1,1,1) (meters), a mas#, = 1/2 kg is at
(-1, -1, —-1). The two masses are held together by an ideal (weightless, rigid) rod.

(@) Find the inertia tensor of this pair of masses.

(b) Find the eigenvalues and eigenvectors of this inertia matrix.

(c) Explain the meaning, the physical significance of the 0 eigenvalue. What is
the significance of the corresponding eigenvector?

(d) Now that you have solved this problem by rather sophisticated matrix techniques,
explain how you could obtain

(1) A =0andr =? — by inspection (that is, using common sense).
(2) r,—0=7? — by inspection (that is, using freshman physics).

Unit masses are at the eight corners of a cub® +1, +1). Find the moment of inertia
matrix and show that there is a triple degeneracy. This means that so far as moments of
inertia are concerned, the cubic structure exhibits spherical symmetry.

Find the eigenvalues and corresponding orthonormal eigenvectors of the following ma-
trices (as a numerical check, note that the sum of the eigenvalues equals the sum of the
diagonal elements of the original matrix, Exercise 3.3.9). Note also the correspondence
between def = 0 and the existence af= 0, as required by Exercises 3.5.2 and 3.5.7.

10 1
A=|0 1 0
10 1
ANS.A=0,1,2.
1 J2 0
A=|v2 0 0
0 0 O

ANS. A =-1,0,2.
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35.19

3.5.20

3521

3.5.22

3.5.23

35.24

3.5.25

3.5.26

110
A=|1 0 1].
01 1
1 V8 0
A=|v8 1 V8
0 V8 1
10 0
A=|0 1 1].
01 1
1 0 0
A=|0 1 J2].
0 V2 0
010
A=|1 0 1].
010
2 00
A=|0 1 1].
011
01 1
A=|1 0 1].
110
1 -1 -1
A=|-1 1 -1].
-1 -1 1
11 1
A=|1 1 1].
11 1
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ANS.A=-1,1,2.

ANS. A =-3,1,5.

ANS. A =0,1,2.

ANS. A =-1,1,2.

ANS. L = —+/2,0, /2.

ANS. A =0,2,2.

ANS. A =-1,-1,2.

ANS. A =-1,22.

ANS.1=0,0, 3.
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3.5.27

3.5.28

3.5.29

3.5.30

3531

3.5.32
3.5.33

5 0 2
A=|0 1 0
2 0 2
ANS.1=1,1,6.
110
A=[1 1 o
000
ANS.1=0,0,2.
5 0 43
A= 0 3 o0
V3 0 3
ANS. 1 =2, 3,6.

(a) Determine the eigenvalues and eigenvectors of

(£ 1)

Note that the eigenvalues are degeneratesferO but that the eigenvectors are
orthogonal for alk # 0 ande — 0.
(b) Determine the eigenvalues and eigenvectors of

(4 3)

Note that the eigenvalues are degenerate 010 and that for this (nonsymmetric)
matrix the eigenvectorg = 0) do not span the space.

(c) Find the cosine of the angle between the two eigenvectors as a functiofoiof
O<e<1.

(a) Take the coefficients of the simultaneous linear equations of Exercise 3.1.7 to be
the matrix elements;; of matrix A (symmetric). Calculate the eigenvalues and
eigenvectors.

(b) Form a matriXR whose columns are the eigenvectorg\ofind calculate the triple
matrix producﬂiAR.

ANS. 1 = 3.33163.
Repeat Exercise 3.5.31 by using the matrix of Exercise 3.2.39.
Describe the geometric properties of the surface
x2+2xy+2y2+2yz+z2=l.

How is it oriented in three-dimensional space? Is it a conic section? If so, which kind?
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Table 3.1
Matrix Eigenvalues Eigenvectors

(for different eigenvalues)
Hermitian Real Orthogonal
Anti-Hermitian Pure imaginary (or zero) Orthogonal
Unitary Unit magnitude Orthogonal
Normal If A has eigenvalug, Orthogonal

AT has eigenvalug*

A andAT have the

same eigenvectors

3.5.34  For a Hermitiam x n matrix A with distinct eigenvalues; and a functionf, show
that the spectral decomposition law may be expressed as

" ni;gj(A_)\i)
A) = D et
A ;f( ’)H#,(x;—m

This formula is due to Sylvester.

3.6 NORMAL MATRICES

In Section 3.5 we concentrated primarily on Hermitian or real symmetric matrices and
on the actual process of finding the eigenvalues and eigenvectors. In this $eot®n
generalize to normal matrices, with Hermitian and unitary matrices as special cases. The

physically important problem of normal modes of vibration and the numerically important
problem of ill-conditioned matrices are also considered.
A normal matrix is a matrix that commutes with its adjoint,

[A,AT] =0.

Obvious and important examples are Hermitian and unitary matrices. We will show that
normal matrices have orthogonal eigenvectors (see Table 3.1). We proceed in two steps.
I. Let A have an eigenvectgx) and corresponding eigenvaldeThen

AlX) = A|X) (3.173)
or
(A—=211)|x) =0. (3.174)

For convenience the combinatioh — 11 will be labeledB. Taking the adjoint of
Eq. (3.174), we obtain

XA —2D)T=0=(xB. (3.175)
Because

[(A-iD" (A-2rD]=[AAT] =0,

27Normal matrices are the largest class of matrices that can be diagonalized by unitary transformations. For an extensive discus-
sion of normal matrices, see P. A. Macklin, Normal matrices for physidstsJ. Phys. 52: 513 (1984).
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we have
[B,BT]=0. (3.176)

The matrixB is also normal.
From Eqgs. (3.174) and (3.175) we form

(x|B™B|x) = 0. (3.177)
This equals
(x|BBTx) =0 (3.178)
by Eq. (3.176). Now Eg. (3.178) may be rewritten as
(B'x)"(B'x) =0. (3.179)
Thus
BYlx) = (AT - 2*1)1x) = 0. (3.180)

We see that for normal matricea! has the same eigenvectorsfabut the complex con-
jugate eigenvalues.
I1. Now, considering more than one eigenvector-eigenvalue, we have

AlX;) = AilX;), (3.181)
AlXj) = AjIXj). (3.182)
Multiplying Eqg. (3.182) from the left by(x;| yields
(X [AIX;) = A ;i (Xi[X;). (3.183)
Taking the transpose of Eq. (3.181), we obtain
(xi|A = (ATx;))". (3.184)

From Eq. (3.180), wittAT having the same eigenvectorsAadut the complex conjugate
eigenvalues,

AT = (k)T =2l (3.185)
Substituting into Eq. (3.183) we have
Ai{Xi1X;) = Aj (X;[X;)
or
(Ai = Xj)(Xi1Xj)=0. (3.186)

This is the same as Eq. (3.149).
Fori; # )‘j!

(Xjlx;) =0.

The eigenvectors corresponding to different eigenvalues of a normal matdxthogo-
nal. This means that a normal matrix may be diagonalized by a unitary transformation. The
required unitary matrix may be constructed from the orthonormal eigenvectors as shown
earlier, in Section 3.5.

The converse of this result is also true Aifcan be diagonalized by a unitary transfor-
mation, thenA is normal.
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Normal Modes of Vibration

We consider the vibrations of a classical model of the@@lecule. It is an illustration of
the application of matrix techniques to a problem that does not start as a matrix problem. It
also provides an example of the eigenvalues and eigenvectors of an asymmetric real matrix.

Example 3.6.1 NORMAL MODES

Consider three masses on thexis joined by springs as shown in Fig. 3.7. The spring
forces are assumed to be linear (small displacements, Hooke’s law), and the mass is con-
strained to stay on the-axis.

Using a different coordinate for each mass, Newton’s second law yields the set of equa-

tions
X k ( )
¥1=——@x1—x
1 7 (1 X2
. k k
¥2=——(x2—x1) — —(x2 —x3) (3.187)
m m

. k( )
X3 =——(x3—x2).
S VA

The system of masses is vibrating. We seek the common frequengissich that all
masses vibrate at this same frequency. These amotimal modes. Let

xi = xipe'®", i=123
Substituting this set into Eq. (3.187), we may rewrite it as
k k
M M 0 X1 X1
ko 2 k 2
— = =S x| =+0 | x2 ], (3.188)
0o -k £ X3 X3
M M

with the common factoe’®’ divided out. We have a matrix—eigenvalue equation with the
matrix asymmetric. The secular equation is

beot ko
k2% _,2 _k |_qo (3.189)
m m m
k k 2

M —\QéQ/— m —\QéQ/— M

. . _—

FIGURE 3.7 Double oscillator.
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This leads to
The eigenvalues are

all real.
The corresponding eigenvectors are determined by substituting the eigenvalues back into
Eq. (3.188) one eigenvalue at a time. kdr= 0, Eq. (3.188), yields

x1—x2=0, —x1+ 2x2 —x3=0, —x2+x3=0.
Then we get
X1=X2 =Xx3.

This describes pure translation with no relative motion of the masses and no vibration.
Forw? =k/M, Eq. (3.188) yields
X1 = —x3, x2=0.
The two outer masses are moving in opposite direction. The central mass is stationary.
Forw? = k/M + 2k/m, the eigenvector components are
2M
X1 = X3, X2 = ———X1.
m

The two outer masses are moving together. The central mass is moving opposite to the two
outer ones. The net momentum is zero.

Any displacement of the three masses along.tkexis can be described as a linear
combination of these three types of motion: translation plus two forms of vibratiorll

I11-Conditioned Systems

A system of simultaneous linear equations may be written as
Ax)=ly) or  AThy)=[x), (3.190)
with A and|y) known and|x) unknown. When a small error ify) results in a larger error

in |x), then the matrix is calledill-conditioned. With |§x) an error in|x) and|§X) an error
in |y), the relative errors may be written as

12 1/2
[(8x|8x)] 5 K(A)[WISW} . (3.191)
(X]x) (yly)

HereK (A), a property of matriX, is labeled theondition number. For A Hermitian one
form of the condition number is given B

K(A) = A lmax (3.192)

|)\|min'

28G. E. Forsythe, and C. B. MoleGomputer Solution of Linear Algebraic Systems. Englewood Cliffs, NJ, Prentice Hall (1967).
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An approximate form due to Turikg§is
K (A) = nlAijlma A7 ] max (3.193)

in which n is the order of the matrix an; ; Imax is the maximum element iA.

Example 3.6.7 AN ILL-CONDITIONED MATRIX

A common example of an ill-conditioned matrix is the Hilbert matdi; = (i 4 j — 1)1,
The Hilbert matrix of order 4Hg, is encountered in a least-squares fit of data to a third-
degree polynomial. We have

1 1 1

133 3

EEE
Ha=11 1 1 1 (3.194)

3 4 5 6

11 1 1

4 5 6 7

The elements of the inverse matrix (ord@rare given by
—1)itJ i —1)! i —1)!
(Y, =P Al Dt oD (3.195)
P4 =1 [ =D = DI = D)l — )]

Forn =4,

16 120 240 —140
. | -120 1200 —2700 1680
Hao=1 240 —2700 6480 —4200|" (3.196)

—140 1680 —4200 2800
From Eg. (3.193) the Turing estimate of the condition numbeHipbecomes
KTuring =4 x1x 6480

=259x 10%.

This is a warning that an input error may be multiplied by 26,000 in the calculation
of the output result. It is a statement thdy is ill-conditioned. If you encounter a highly
ill-conditioned system, you have two alternatives (besides abandoning the problem).

(@) Try a different mathematical attack.
(b) Arrange to carry more significant figures and push through by brute force.

As previously seen, matrix eigenvector—eigenvalue techniques are not limited to the so-
lution of strictly matrix problems. A further example of the transfer of techniques from one
area to another is seen in the application of matrix techniques to the solution of Fredholm
eigenvalue integral equations, Section 16.3. In turn, these matrix techniques are strength-
ened by a variational calculation of Section 17.8. |

29Ccompare J. Toddhe Condition of the Finite Segments of the Hilbert Matrix, Applied Mathematics Series No. 313. Washing-
ton, DC: National Bureau of Standards.
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Exercises

3.6.1

3.6.2

3.6.3

364

365

3.6.6

3.6.7

3.6.8

Show that every % 2 matrix has two eigenvectors and corresponding eigenvalues. The
eigenvectors are not necessarily orthogonal and may be degenerate. The eigenvalues are
not necessarily real.

As an illustration of Exercise 3.6.1, find the eigenvalues and corresponding eigenvectors

for
2 4
1 2)°
Note that the eigenvectors amet orthogonal.

ANS. 11 =0,r1= (2, —1);

If Aisa2x 2 matrix, show that its eigenvalugssatisfy the secular equation
12 — rtracgA) + detA = 0.

Assuming a unitary matrik) to satisfy an eigenvalue equatidli = Ar, show that the
eigenvalues of the unitary matrix have unit magnitude. This same result holds for real
orthogonal matrices.

Since an orthogonal matrix describing a rotation in real three-dimensional space is a
special case of a unitary matrix, such an orthogonal matrix can be diagonalized by a
unitary transformation.

(&) Show that the sum of the three eigenvaluesis2lcosp, whereg is the net angle
of rotation about a single fixed axis.

(b) Given that one eigenvalue is 1, show that the other two eigenvalues meét be
ande™i%,

Our orthogonal rotation matrix (real elements) has complex eigenvalues.

A is annth-order Hermitian matrix with orthonormal eigenvectprs and real eigen-
valuesii < A2 < A3 <--- < A,. Show that for a unit magnitude vectgqm,

A1 =< (YIAlY) < Ay

A particular matrix is both Hermitian and unitary. Show that its eigenvalues atielall
Note. The Pauli and Dirac matrices are specific examples.

For his relativistic electron theory Dirac required a sefonir anticommuting matrices.
Assume that these matrices are to be Hermitian and unitary. If thegseatematrices,
show that: must be even. With 2 matrices inadequate (why?), this demonstrates that
the smallest possible matrices forming a set of four anticommuting, Hermitian, unitary
matrices are 4« 4.



3.6.9

3.6.10

3.6.11

3.6.12

3.6.13

36.14
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A is a normal matrix with eigenvalues and orthonormal eigenvectops,). Show that
A may be written as

A= hnlXn) (Xl.

Hint. Show that both this eigenvector form Afand the originalA give the same result
acting on an arbitrary vectay).

A has eigenvalues 1 andl and corresponding eigenvectcéé;s) and((l’). ConstructA.

1 0
ANS. A= (0 _1).

A non-Hermitian matri¥A has eigenvalues; and corresponding eigenvectdus). The
adjoint matrixAT has the same set of eigenvalues iferent corresponding eigen-
vectors,|v;). Show that the eigenvectors fornbeorthogonal set, in the sense that

(Viluj) =0 for Af #Aj.
You are given a pair of equations:

Alf,) = AnlQn)

Algy) = Alf,)  with Areal.

(a) Prove thaif,) is an eigenvector ofAA) with eigenvaluexﬁ.
(b) Prove thatg,) is an eigenvector ofAA) with eigenvaluaﬁ.
(c) State how you know that

(1) The|f,) form an orthogonal set.
(2) The|g,) form an orthogonal set.
() AZisreal.

n
Prove thatA of the preceding exercise may be written as

A= ulGa)(ful.

with the|g,) and(f,| normalized to unity.
Hint. Expand your arbitrary vector as a linear combinatioff of.

=502 %)

(a) Construct the transpogeand the symmetric form&A andAA.

(b) FromAA|g,) = A§|g,,) find A, and|g,,). Normalize thdg,).

(c) FromAA|f,,) = A$|gn) find &,, [same as (b)] an{f,,). Normalize thef,).
(d) Verify thatAlf,) = ,g,) andA|g,) = A,[f,).

(e) VerifythatA="73", 1,|0.)(fsl.

Given
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3.6.15

3.6.16

3.6.17

3.6.18

3.6.19

Given the eigenvalues; = 1, 1o = —1 and the corresponding eigenvectors

1 1
=(5)  m=(1) m=(7). amd e=—(1)

(@) construct;
(b) Verify thate‘”n) = AnlOn);
(c) verify thatA|g,) = 1, f,).

1 /1 -1
ANS.A:E<1 1).

This is a continuation of Exercise 3.4.12, where the unitary matrad the Hermitian
matrix H are related by

U= giaH

(a) IftraceH =0, show that ddt) = +1.
(b) If detU =+1, show that tracél = 0.

Hint. H may be diagonalized by a similarity transformation. Then interpreting the ex-
ponential by a Maclaurin expansidd,is also diagonal. The corresponding eigenvalues
are given by ; = exp(iah;).

Note. These properties, and those of Exercise 3.4.12, are vital in the development of the
concept of generators in group theory — Section 4.2.

An n x n matrix A hasn eigenvaluesi;. If B = ¢, show thatB has the same eigen-
vectors as\, with the corresponding eigenvaluBs given by B; = exp(A;).
Note. ¢* is defined by the Maclaurin expansion of the exponential:

Az A3

=1+A+ o+ o+
3

A matrix P is a projection operator (see the discussion following Eq. (3.138c)) satisfying
the condition

P2=P.
Show that the corresponding eigenvalge$), andp; satisfy the relation
(p?), = (02)% = pa.
This means that the eigenvaluesRoére 0 and 1.
In thematrix eigenvector—eigenvalue equation
Alri) = ailri),

A is ann x n Hermitian matrix. For simplicity assume that iisreal eigenvalues are
distinct, 11 being the largest. Ifr) is an approximation t¢r1),

ry=Ir1) + Za Iri),



3.6.20

3.6.21
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FIGURE 3.8 Triple oscillator.

show that
(rlAlr)
(rir)
and that the error in4 is of the orders;|2. Take|s;| < 1.

Hint. Then |r;) form acomplete orthogonal set spanning tlhedimensional (complex)
space.

<A1

Two equal masses are connected to each other and to walls by springs as shown in
Fig. 3.8. The masses are constrained to stay on a horizontal line.

(@) Setup the Newtonian acceleration equation for each mass.
(b) Solve the secular equation for the eigenvectors.
(c) Determine the eigenvectors and thus the normal modes of motion.

Given a normal matriXA with eigenvalues.;, show thatAT has eigenvaluesj, its
real part(A + A")/2 has eigenvaluedi(i;), and its imaginary partA — A"/2i has
eigenvaluess( ).

Additional Readings

Aitken, A. C.,Determinants and Matrices. New York: Interscience (1956). Reprinted, Greenwood (1983). A read-
able introduction to determinants and matrices.

Barnett, S.Matrices. Methods and Applications. Oxford: Clarendon Press (1990).

Bickley, W. G., and R. S. H. G. Thompsoklatrices—Their Meaning and Manipulation. Princeton, NJ: Van
Nostrand (1964). A comprehensive account of matrices in physical problems, their analytic properties, and
numerical techniques.

Brown, W. C.,Matrices and Vector Spaces. New York: Dekker (1991).
Gilbert, J. and L.Linear Algebra and Matrix Theory. San Diego: Academic Press (1995).

Heading, J.Matrix Theory for Physicists. London: Longmans, Green and Co. (1958). A readable introduction to
determinants and matrices, with applications to mechanics, electromagnetism, special relativity, and quantum
mechanics.

Vein, R., and P. DaleDeterminants and Their Applicationsin Mathematical Physics. Berlin: Springer (1998).
Watkins, D. S.Fundamentals of Matrix Computations. New York: Wiley (1991).
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CHAPTER 4

GROUP THEORY

Disciplined judgment, about what is neat
and symmetrical and elegant has time and
time again proved an excellent guide to
how nature works

MURRAY GELL-MANN

4.1 INTRODUCTION TO GROUP THEORY

In classical mechanics theymmetry of a physical system leads tmnservation laws.
Conservation of angular momentum is a direct consequence of rotational symmetry, which
meansnvariance under spatial rotations. In the first third of the 20th century, Wigner and
others realized that invariance was a key concept in understanding the new quantum phe-
nomena and in developing appropriate theories. Thus, in quantum mechanics the concept
of angular momentum and spin has become even more central. Its generalizabemis,

in nuclear physics and thigavor symmetry in particle physics, are indispensable tools

in building and solving theories. Generalizations of the concegaabe invariance of
classical electrodynamics to the isospin symmetry lead to the electroweak gauge theory.

In each case the set of these symmetry operations forms a group. Group theory is the
mathematical tool to treat invariants and symmetries. It brings unification and formalization
of principles, such as spatial reflections, or parity, angular momentum, and geometry, that
are widely used by physicists.

In geometry the fundamental role of group theory was recognized more than a cen-
tury ago by mathematicians (e.g., Felix Klein's Erlanger Program). In Euclidean geometry
the distance between two points, the scalar product of two vectors or metric, does not
change under rotations or translations. These symmetries are characteristic of this geom-
etry. In special relativity the metric, or scalar product of four-vectors, differs from that of

241
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Euclidean geometry in that it is no longer positive definite and is invariant under Lorentz
transformations.

For a crystal the symmetry group contains only a finite number of rotations at discrete
values of angles or reflections. The theory of sdiécrete or finite groups, developed
originally as a branch of pure mathematics, now is a useful tool for the development of
crystallography and condensed matter physics. A brief introduction to this area appears in
Section 4.7. When the rotations depend on continuously varying angles (the Euler angles
of Section 3.3) the rotation groups have an infinite number of elements. Such continuous
(or Liel) groups are the topic of Sections 4.2—4.6. In Section 4.8 we give an introduction
to differential forms, with applications to Maxwell's equations and topics of Chapters 1
and 2, which allows seeing these topics from a different perspective.

Definition of a Group

A group G may be defined as a set of objects or operations, rotations, transformations,
called the elements af, that may be combined, or “multiplied,” to form a well-defined
product inG, denoted by a *, that satisfies the following four conditions.

1. If a andb are any two elements @, then the product * b is also an element af,
whereb acts befores; or (a, b) — a * b associates (or maps) an elementb of G
with the pair(a, b) of elements ofG. This property is known asG is closed under
multiplication of its own elements.”

2. This multiplication is associativéu * b) x ¢ = a * (b * ¢).

3. Thereis a unit elemeht in G such that  a = a x 1 = a for every element in G.
The unitis unique: E1'x1=1".

4. There is an inverse, or reciprocal, of each element G, labeleda—1, such that
axa l=a"lxa=1. Theinverse is unique: H~1 anda’~! are both inverses af,
thena’ l=da1x@xad H=w1xa)xal=a"1

Since the * for multiplication is tedious to write, it is customary to drop it and simply let it

be understood. From now on, we writé instead ofz x b .

e If asubsetG’ of G is closed under multiplication, it is a group and callesugroup
of G; that is,G’ is closed under the multiplication @f. The unit ofG always forms a
subgroup ofG.

e If gg'g1is an element of5’ for any g of G andg’ of G’, thenG’ is called anin-
variant subgroup of G. The subgroup consisting of the unit is invariant. If the group
elements are square matrices, thefig ! corresponds to a similarity transformation
(see Eq. (3.100)).

e If ab=ba for all a, b of G, the group is calledbélian, that is, the order in products
does not matter; commutative multiplication is often denotedbysign. Examples are
vector spaces whose unit is the zero vector aads the inverse of: for all elements
ainG.

LAfter the Norwegian mathematician Sophus Lie.
2FoIIowing E. Wigner, the unit element of a group is often labetedrom the Germarkinheit, that is, unit, or just 1, of for
identity.
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Example 4.1.1  ORTHOGONAL AND UNITARY GROUPS

Orthogonal x n matrices fprm the grouP(n), andSO(n) if their determinants are-1
(S stands for “special”). IfO; = Olfl for i =1 and 2 (see Section 3.3 for orthogonal
matrices) are elements 6f(n), then the product

0102 =0,0; = 0510;1 = (0107t
is also an orthogonal matrix i®(n), thus proving closure under (matrix) multiplication.
The inverse is the transpose (orthogonal) matrix. The unit of the groupssdireensional
unit matrix 1,. A real orthogonah x n matrix hasn(n — 1)/2 independent parameters.
Forn = 2, there is only one parameter: one angle. #ef 3, there are three independent
parameters: the three Euler angles of Section 3.3.

If O; = Ol.‘1 (fori =1 and 2) are elements &0(n), then closure requires proving in
addition that their product has determinarit, which follows from the product theorem in
Chapter 3.

Likewise, unitaryn x n matrices form the groupl(n), andSU(n) if their determinants
are+1. If U;r = Ui_l (see Section 3.4 for unitary matrices) are elementd(af, then

(U1Up)T = Ujul = usturt = (uup) 4,

so the product is unitary and an elementgh), thus proving closure under multiplication.
Each unitary matrix has an inverse (its Hermitian adjoint), which again is unitary.

If UlT = Ul.‘1 are elements ddU(n), then closure requires us to prove that their product
also has determinantl, which follows from the product theorem in Chapter3. R

e Orthogonal groups are calléde groups; that is, they depend on continuously varying
parameters (the Euler angles and their generalization for higher dimensions); they are
compact because the angles vary over closed, finite intervals (containing the limit of
any converging sequence of angles). Unitary groups are also compact. Translations
form a noncompact group because the limit of translations with distdreexc is not
part of the group. The Lorentz group is not compact either.

Homomorphism, Isomorphism

There may be a correspondence between the elements of two groups: one-to-one, two-to-
one, or many-to-one. If this correspondence preserves the group multiplication, we say
that the two groups areomomor phic. A most important homomorphic correspondence
between the rotation grolpO(3) and the unitary grougU(2) is developed in Section 4.2.

If the correspondence is one-to-one, still preserving the group multiplicitiben the
groups areésomor phic.

e If agroupG is homomorphic to a group of matric€g, thenG’ is called arepresen-
tation of G. If G andG’ are isomorphic, the representation is calledhful. There
are many representations of groups; they are not unique.

3Suppose the elements of one group are labglethe elements of a second grolup Theng; <> h; is a one-to-one correspon-
dence for all values of. If g;g; = gx andh; 1 j = hy, theng; andi must be the corresponding group elements.
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Example 4.1.2  ROTATIONS

Another instructive example for a group is the set of counterclockwise coordinate rotations
of three-dimensional Euclidean space aboui-igis. From Chapter 3 we know that such a
rotation is described by a linear transformation of the coordinates involving 8 Matrix

made up of three rotations depending on the Euler angles. -thés is fixed, the linear
transformation is through an angfeof the xy-coordinate system to a new orientation in
Eq. (1.8), Fig. 1.6, and Section 3.3:

x X cosp sing O X
Y =R @) y]|=]|—-sing cosp O y (4.2)
7 z 0 o 1/ \:z

involves only one angle of the rotation about thaxis. As shown in Chapter 3, the linear
transformation of two successive rotations involves the product of the matrices correspond-
ing to the sum of the angles. The product corresponds to two rotalRo0s;) R (¢2), and

is defined by rotating first by the ang® and then byp;. According to Eg. (3.29), this
corresponds to the product of the orthogonal 2 submatrices,

cospr  Sing; COSy2  Singo
—singy COoSp1 —singy COoSp2
B ( coSp1+¢2)  Sin(p1+ ¢2) )

~ \ —sin(p1 4+ ¢2) codgr + ¢2)

using the addition formulas for the trigopnometric functions. The unity in the lower right-
hand corner of the matrix in Eq. (4.1) is also reproduced upon multiplication. The productis
clearly a rotation, represented by the orthogonal matrix with apgley,. The associative
group multiplication corresponds to the associative matrix multiplication.dbnsmuta-

tive, or abelian, because the order in which these rotations are performed does not matter.
The inverse of the rotation with anggeis that with angle—¢. The unit corresponds to the
anglegp = 0. Striking off the coordinate vectors in Eq. (4.1), we can associate the matrix
of the linear transformation with each rotation, which is a group multiplication preserving
one-to-one mapping, an isomorphism: The matrices form a faithful representation of the
rotation group. The unity in the right-hand corner is superfluous as well, like the coordinate
vectors, and may be deleted. This defines another isomorphism and representation by the
2 x 2 submatrices:

(4.2)

cosp sing O

R;(¢p)=| —sing cosp O —>R(¢)=<
0 0 1

cosp simo) | “3)

—sing cosp

The group’s name iSO(2), if the angleyp varies continuously from 0 to/2 SO(2) has
infinitely many elements and is compact.

The group of rotation®; is obviously isomorphic to the group of rotations in Eq. (4.3).
The unity with anglep = 0 and the rotation witlp = 7 form a finite subgroup. The finite
subgroups with angles@n/n, n an integer aneh =0, 1, ...,n — 1 arecyclic; that is, the
rotationsR(2rm/n) = R(2w /n)™. ]
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In the following we shall discuss only the rotation grop®(n) and unitary groups
SU(n) among the classical Lie groups. (More examples of finite groups will be given in
Section 4.7.)

Representations — Reducible and Irreducible

The representation of group elements by matrices is a very powerful technique and has
been almost universally adopted by physicists. The use of matrices imposes no significant
restriction. It can be shown that the elements of any finite group and of the continuous
groups of Sections 4.2—4.4 may be represented by matrices. Examples are the rotations
described in Eq. (4.3).

To illustrate how matrix representations arise from a symmetry, consider the station-
ary Schrodinger equation (or some other eigenvalue equation, such=ad;v; for the
principal moments of inertia of a rigid body in classical mechanics, say),

Hy =Evy. (4.4)
Let us assume that the Hamiltoni&hstays invariant under a group of transformations
R in G (coordinate rotations, for example, for a central poteritial) in the Hamiltonian
H); that is,
Hr =RHR'=H, RH = HR. (4.5)

Now take a solution) of Eqg. (4.4) and “rotate” ity — Ry. ThenRy, has thesame
energy E because multiplying Eq. (4.4) By and using Eg. (4.5) yields

RHY = E(Ry) = (RHR )Ry = H(RY). (4.6)

In other words, all rotated solutioi&y)r aredegener atein energy or form what physicists
call amultiplet. For example, the spin-up and -down states of a bound electron in the
ground state of hydrogen form a doublet, and the states with projection quantum numbers
m=—1,—1+1,...,1 of orbital angular momenturhform a multiplet with 2 + 1 basis
states.

Let us assume that this vector spdég of transformed solutions has a finite dimen-
sionn. Let 1, ¥2, ..., ¥, be a basis. SincRy; is a member of the multiplet, we can
expand it in terms of its basis,

Ry = rjcii. (4.7)
k

Thus, with eaclR in G we can associate a matrix;;). Just as in Example 4.1.2, two
successive rotations correspond to the product of their matrices, so thR mag- ;) is a
representation of;. It is necessary for a representation toifreducible that we can take
any element ofV,, and, by rotating withall elementsR of G, transform it intoall other
elements ofVy,. If not all elements oV, are reached, theW, splits into a direct sum of
two or more vector subspacelg, = V1 @ V> @ ---, which are mapped into themselves
by rotating their elements. For example, thes?ate and 2 states of principal quantum
numbem = 2 of the hydrogen atom have the same energy (that is, are degenerate) and form
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a reducible representation, because thetate cannot be rotated into the 8tates, and

vice versa (angular momentum is conserved under rotations). In this case the representation
is calledreducible. Then we can find a basis iy, (that is, there is a unitary matrid) so

that

ri O
Urpuf=]0 rz - (4.8)

for all R of G, andall matrices(r;;) havesimilar block-diagonal shape. Herg, ro, ...
are matrices of lower dimension thary, ) that are lined up along the diagonal and e
are matrices made up of zeros. We may say that the representation has been decomposed
intory+ro+--- alongwithVy, =vVi@ Vo @ ---.

The irreducible representations play a role in group theory that is roughly analogous to
the unit vectors of vector analysis. They are the simplest representations; all others can be
built from them. (See Section 4.4 on Clebsch—Gordan coefficients and Young tableaux.)

Exercises

411

412

413

414

415

Show that am x n orthogonal matrix has(n — 1)/2 independent parameters.
Hint. The orthogonality condition, Eq. (3.71), provides constraints.

Show that am x n unitary matrix has:® — 1 independent parameters.
Hint. Each element may be complex, doubling the number of possible parameters. Some
of the constraint equations are likewise complex and count as two constraints.

The special linear groufL(2) consists of all 2 2 matrices (with complex elements)
having a determinant 6f1. Show that such matrices form a group.

Note. The SL(2) group can be related to the full Lorentz group in Section 4.4, much as
theSU(2) group is related t&O(3).

Show that the rotations about theaxis form a subgroup 08O(3). Is it an invariant
subgroup?

Show that ifR, S, T are elements of a grou@ so thatRS =T andR — (ri), S —
(six) is a representation according to Eq. (4.7), then

(rin) (sik) = <tik = Zrmsnk>,

n

that is, group multiplication translates into matrix multiplication for any group repre-
sentation.

4.2 GENERATORS OF CONTINUOUS GROUPS

A characteristic property of continuous groups known as Lie groups is that the parameters
of a product element are analytic functifrs the parameters of the factors. The analytic

4Analytic here means having derivatives of all orders.
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nature of the functions (differentiability) allows us to develop the concept of generator and
to reduce the study of the whole group to a study of the group elements in the neighborhood
of the identity element.

Lie's essential idea was to study elemeRtén a groupG that are infinitesimally close
to the unity of G. Let us consider th&0(2) group as a simple example. Thex2 ro-
tation matrices in Eg. (4.2) can be written in exponential form using the Euler identity,
Eq. (3.170a), as

cosp  sing )

R(p) = _ =1,c0sp + io2Sing = exp(iozy). (4.9)
—sing cosp

From the exponential form it is obvious that multiplication of these matrices is equivalent

to addition of the arguments

R(¢2)R(¢1) = explioagz) expliozg1) = expioa(p1 + ¢2)) = R(p1 + ¢2).

Rotations close to 1 have small angle: 0.
This suggests that we look for an exponential representation

R=expieS) =1+ieS+0(s?), -0, (4.10)

for group element® in G close to the unity 1. The infinitesimal transformations &®e
and theS are called generators @f. They form a linear space because multiplication
of the group elementR translates into addition of generatafs The dimension of this
vector space (over the complex humbers) isdider of G, that is, the number of linearly
independent generators of the group.

If R is a rotation, it does not change the volume element of the coordinate space that it
rotates, that is, déR) = 1, and we may use Eq. (3.171) to see that

detR) = exp(tracgInR)) = exp(i¢ tracgS)) = 1

impliese tracgS) = 0 and, upon dividing by the small but nonzero parametéhnatgen-
eratorsaretraceless,

traceS) = 0. (4.11)

This is the case not only for the rotation gro® () but also for unitary groupSU(n).
If R of G in Eq. (4.10) is unitary, thes™ = § is Hermitian, which is also the case for
SO(n) andSU(n). This explains why the extrahas been inserted in Eq. (4.10).
Next we go around the unity in four steps, similar to parallel transport in differential
geometry. We expand the group elements
R; =exp(ie;S;) =1+i¢S; — %Sizsiz +---,
Ri_l =exp(—ig;S;))=1—igS; — %81-2812 +---,
to second order in the small group parametebecause the linear terms and several
guadratic terms all cancel in the product (Fig. 4.1)

Ri_lR;lRiRJ- =1+¢¢j[S;,Sil+-,

(4.12)

=1+8i8ch]]‘»iSk+"~, (4.13)
k
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FIGURE 4.1 lllustration of Eq. (4.13).

when Eqg. (4.12) is substituted into Eq. (4.13). The last line holds because the product in
Eq. (4.13) is again a group elemeR;;, close to the unity in the groug. Hence its
exponent must be a linear combination of the genereédgrsand its infinitesimal group
parameter has to be proportional to the prodiiej. Comparing both lines in Eq. (4.13)

we find theclosure relation of the generators of the Lie groGh

[Si.Sj1=) ckSk. (4.14)
k

The coefficients:ff. are the structure constants of the grasipSince the commutator in
Eq. (4.14) is antisymmetric inand j, so are the structure constants in the lower indices,
cfy=—ch;. (4.15)

If the commutator in Eq. (4.14) is taken as a multiplication law of generators, we see
that the vector space of generators becomes an algebiaehkgebra G of the groupG.
An algebra has two group structures, a commutative product denotecibgyambol (this
is the addition of infinitesimal generators of a Lie group) and a multiplication (the commu-
tator of generators). Often an algebra is a vector space with a multiplication, such as a ring
of square matrices. F@U(/ + 1) the Lie algebra is calledl;, for SO(2/ +1) itis 5;, and
for SO(2)) itis Dy, wherel =1, 2, ... is a positive integer, later called thank of the Lie
groupG or of its algebraj.

Finally, theJacobi identity holds for all double commutators

[1Si,S;1.S¢] + [1S;, Skl Si] + [ISK. Si1, S;] =0, (4.16)

which is easily verified using the definition of any commutdtor B]= AB — BA. When
Eq. (4.14) is substituted into Eqg. (4.16) we find another constraint on structure constants,

> el 1Sm. Sl + 7 [Sm. Sil + ci[Sm. Sj1} =0. (4.17)

m

Upon inserting Eq. (4.14) again, Eq. (4.17) implies that

Z{cgc;’nksn + i CmiSn + i€y S }=0, (4.18)

ki“mj=n
mn
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where the common fact@,, (and the sum over) may be dropped because the generators
are linearly independent. Hence

Z{CZ!CZk'FCTkCZn +C1’$C”;¢j} =0. (4.19)
m
The relations (4.14), (4.15), and (4.19) form the basis of Lie algebras from which finite
elements of the Lie group near its unity can be reconstructed.
Returning to Eq. (4.5), the inverse Bfis R~1 = exp(—ieS). We expand{ according
to the Baker—Hausdorff formula, Eq. (3.172),

H = Hg = expieS)H exp(—ieS) = H +ie[S, H] — 3£[S[S, H]]+---  (4.20)

We drop H from Eq. (4.20), divide by the small (but nonzere),and lete — 0. Then
Eq. (4.20) implies that the commutator

[S, H]=0. (4.21)

If SandH are Hermitian matrices, Eq. (4.21) implies tlaand H can be simultaneously
diagonalized and have common eigenvectors (for matrices, see Section 3.5; for operators,
see Schur’s lemma in Section 4.3).9fand H are differential operators like the Hamil-
tonian and orbital angular momentum in quantum mechanics, then Eq. (4.21) implies that
S and H have common eigenfunctions and that the degenerate eigenvaliesaf be
distinguished by the eigenvalues of the genera®r¥hese eigenfunctions and eigenval-
ues,s, are solutions of separate differential equatiddg, = s/, SO group theory (that
is, symmetries) leads to a separation of variables for a partial differential equation that is
invariant under the transformations of the group.
For example, let us take the single-particle Hamiltonian
219 ,9 n?
“aniZar ozt HVO
that is invariant undeBO(3) and, therefore, a function of the radial distancéhe radial
gradient, and the rotationally invariant operakdr of SO(3). Upon replacing the orbital
angular momentum operatbf by its eigenvalué(l 4+ 1) we obtain the radial Schrédinger
equation (ODE),
2 1d ,d RAI+D)
)= [‘%—zd—r’ ot o
whereR,(r) is the radial wave function.
For cylindrical symmetry, the invariance &f under rotations about theaxis would
requireH to be independent of the rotation angleleading to the ODE

HR;(z, p) = EnRiu(z, p),

with m the eigenvalue of. , = —id/d¢, thez-component of the orbital angular momentum
operator. For more examples, see the separation of variables method for partial differen-
tial equations in Section 9.3 and special functions in Chapter 12. This is by far the most
important application of group theory in quantum mechanics.

In the next subsections we shall study orthogonal and unitary groups as examples to
understand better the general concepts of this section.

+ V(V)] Ri(r) = E1R(r),
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Rotation Groups SO(2) and SO(3)

ForSO(2) as defined by Eq. (4.3) there is only one linearly independent generatand
the order ofSO(2) is 1. We geb from Eq. (4.9) by differentiation at the unity &0O(2),

thatis,p =0,
T (4.22)
= — = 02. .
oo \-1 0) 77

For the rotation®R, (¢) about thez-axis described by Eq. (4.1), the generator is given
by

) [ —sing  cosp
—idR(p)/dply=0 = —i ( . )
—cosp —sing

0 —i 0
—idR.(¢)/d¢ly=0=S.=|i 0 OF, (4.23)
0 0 0

where the factor is inserted to mak&, Hermitian. The rotatiofR, (§¢) through an infin-
itesimal angleSg may then be expanded to first order in the smalbs

R;(6¢) =13+ id8¢S;. (4.24)
A finite rotationR(¢) may be compounded of successive infinitesimal rotations
R:(8¢1+8¢2) = (1 +i8¢1S;)(1+i8¢2S;). (4.25)
Letdyp = ¢/N for N rotations, withV — co. Then

R.(¢) :N"Lnoo[H (ip/N)S;]" = expligS,). (4.26)

This form identifiesS, as the generator of the grodip, an abelian subgroup &O(3),
the group of rotations in three dimensions with determinght Each 3x 3 matrix R (¢)
is orthogonal, hence unitary, and tr&8e) = 0, in accord with Eq. (4.11).

By differentiation of the coordinate rotations

1 0 0 cos¥ 0 —sind
Ry(¥)=10 cosy siny |, R,(0) = 0 1 0 , (4.27)
0 —siny cosy sind 0 co¥

we get the generators

0 0
ss=|0 0 -i|]. s,=[0 o0 (4.28)
0

0 i O —i

o o ~

of R, (Ry), the subgroup of rotations about the(y-)axis.
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Rotation of Functions and Orbital Angular Momentum

In the foregoing discussion the group elements are matrices that rotate the coordinates.
Any physical system being described is held fixed. Now let us hold the coordinates fixed
and rotate a function (x, y, z) relative to our fixed coordinates. WitR to rotate the
coordinates,

X' =RX, (4.29)
we defineR on ¢ by
Ry (x,y,2) =v'(x,y,2) =¥ (X). (4.30)

In words, R operates on the functiott, creating anew function v’ that is numerically
equal toy (x'), wherex’ are the coordinates rotated B If R rotates the coordinates
counterclockwise, the effect & is to rotate the pattern of the functignclockwise.

Returning to Egs. (4.30) and (4.1), consider an infinitesimal rotation agai,d¢p.
Then, usindR; Eq. (4.1), we obtain

R:Gp)¥(x,y,2) =¥ (x + ydp,y — x3¢, 2). (4.31)
The right side may be expanded to first order in the sialio give
R.(8@) ¥ (x, y,2) = ¥ (x, y,2) — 8{xdy/dy — ydyr/dx} + O (89)°
=A—-idpL)¥(x,y,2), (4.32)

the differential expression in curly brackets being the orbital angular momedturex-
ercise 1.8.7). Since a rotation of figgtiand thenSg about thez-axis is given by

R:(¢ +89)¥ =R:(69)R:(9) = (1 —idpL )R (9) ¥, (4.33)
we have (as an operator equation)
ARz _ jim Re@ 99 “R0) _ ) g 0. (4.34)
dp  8¢p—0 1Y%

In this form Eq. (4.34) integrates immediately to
R;(p) =exp(—ipL,). (4.35)

Note thatR, () rotates functions (clockwise) relative to fixed coordinates andihas
the z component of the orbital angular momentiumThe constant of integration is fixed
by the boundary conditioR,(0) = 1.

As suggested by Eqg. (4.32), is connected t&, by

3/0x ) )
Ly=(x,y,2)S;| 9/dy | = —i<x8— - y—>, (4.36)
y dax
0/0z

soL,, Ly, andL, satisfy the same commutation relations,

[Li,L;jl=isijxLg, (4.37)

asS;, S, andS; and yield the same structure constaiatg, of SO(3).
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SU(2) — SO(3) Homomorphism

Since unitary 2x 2 matrices transform complex two-dimensional vectors preserving their
norm, they represent the most general transformations of (a basis in the Hilbert space of)
spin% wave functions in nonrelativistic quantum mechanics. The basis states of this system
are conventionally chosen to be

m=(5) w=(3).

corresponding to spir% up and down states, respectively. We can show thasjbeial
unitary group SU(2) of unitary 2x 2 matrices with determinantl has all three Pauli
matriceso; as generators (while the rotations of Eq. (4.3) form a one-dimensional abelian
subgroup). S&U(2) is of order 3 and depends on three real continuous paranjetgrs,

which are often called th€ayley—Klein parameters. To construct its general element, we
start with the observation that orthogonak2 matrices are real unitary matrices, so they
form a subgroup o8U(2). We also see that

is unitary for real angle with determinang-1. So these simple and manifestly unitary ma-
trices form another subgroup 8U(2) from which we can obtain all elements 8U(2),

that is, the general 2 unitary matrix of determinant1. For a two-component spi%l
wave function of quantum mechanics this diagonal unitary matrix corresponds to multipli-
cation of the spin-up wave function with a phase faetérand the spin-down component
with the inverse phase factor. Using the real angiastead ofy for the rotation matrix

and then multiplying by the diagonal unitary matrices, we construck  2initary matrix

that depends on three parameters and clearly is a more general eler8elnf

v 0 cosy sinp\ [ef 0
0 e )\ —sinp cospy 0 ¢
e'* cosy e siny e'h 0

—e~i%siny e cosy 0 ¢

< e!@+P) cosy e @=P) siny )

_e—i(a—ﬂ) Sinn e—i(ﬂl+ﬁ) cosn

Defininga + 8 =&, o — B = ¢, we have in fact constructed the general eleme&df2):

'€ cosy e siny a b
UE¢.n.0)= =\ e ) (4.38)

—e~itsing e~ cosy a

To see this, we write the gener8U(2) element adJ = (g Z) with complex numbers
a,b,c,d so that detU) = 1. Writing unitarity, UT = U~1, and using Eq. (3.50) for the
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a* c* d —b
b* da*] \=c a )’
implying ¢ = —b*, d = a™*, as shown in Eq. (4.38). It is easy to check that the determinant

detU) = 1 and thatU™U = 1 = UU" hold.
To get the generators, we differentiate (and drop irrelevant overall factors):

inverse we obtain

1 0

—10U/0&1g=0,n=0 = (0 _1> =03, (4.39a)
0 —i

—19U/0ny=0,;=0 = (i 0 ) = 09. (4.39b)

To avoid a factor 1siny for n — 0 upon differentiating with respect tp, we use in-
stead the right-hand side of Eq. (4.38) farfor pure imaginary = i with 8 — 0, so
a=+/1— B2 from |a|? + |b|? = a® + B2 = 1. Differentiating such &, we get the third
generator,

o (VI-F ip N =2 0 1
—]— = —1 B = =01.
ﬂ—O lﬂ2 ﬂ=0

a8 iB /1— B2 —1i 1 0

The Pauli matrices are all traceless and Hermitian.
With the Pauli matrices as generators, the elementd),, Uz of SU(2) may be gener-
ated by

U1 =exp(iaio1/2), Uo = exp(iazoz/2), U3z = exp(iazos/2). (4.40)

The three parametets are real. The extra factor/2 is present in the exponents to make
S; = 0; /2 satisfy the same commutation relations,

(4.39¢c)

[Si,Sj1=1i¢ijrSk, (4.41)

as the angular momentum in Eq. (4.37).

To connect and compare our results, Eq. (4.3) gives a rotation operator for rotat-
ing the Cartesian coordinates in the three-sgaéeUsing the angular momentum ma-
trix Sz, we have as the corresponding rotation operator in two-dimensional (complex)
spaceR, (¢) = exp(ipos/2). For rotating the two-component vector wave function (spinor)
or a spin }2 particle relative to fixed coordinates, the corresponding rotation operator is
R, (p) = exp(—igo3/2) according to Eq. (4.35).

More generally, using in Eq. (4.40) the Euler identity, Eq. (3.170a), we obtain

a\ . (a;
U; = co{é) +io; sm(?’). (4.42)

Here the parameter; appears as an angle, the coefficient of an angular momentum matrix-
like ¢ in Eg. (4.26). The selection of Pauli matrices corresponds to the Euler angle rotations
described in Section 3.3.
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FIGURE 4.2 lllustration of
M = UMU" in Eq. (4.43).

As just seen, the elements 8fJ(2) describe rotations in a two-dimensional complex
space that leavig1 |2 + |z2|2 invariant. The determinant is1. There are three independent
real parameters. Our real orthogonal gr&@(3) clearly describes rotations in ordinary
three-dimensional space with the important characteristic of leaing y? + z2 invari-
ant. Also, there are three independent real parameters. The rotation interpretations and the
equality of numbers of parameters suggest the existence of some correspondence between
the groupsSU(2) andSO(3). Here we develop this correspondence.

The operation 08U(2) on a matrix is given by a unitary transformation, Eq. (4.5), with
R =U and Fig. 4.2:

M =umu’. (4.43)

Taking M to be a 2x 2 matrix, we note that any 2 2 matrix may be written as a linear
combination of the unit matrix and the three Pauli matrices of Section 3.4VilLket the
zero-trace matrix,

z X —1iy

M =xo1+ yoo2 + zo3 = ) , (4.44)
X +1iy -z

the unit matrix not entering. Since the trace is invariant under a unitary similarity transfor-

mation (Exercise 3.3.9M’ must have the same form,

/

z x' =iy
M =x'o1+ y'o2+ 703 = ( iy /y ) (4.45)
x' +iy -z

The determinant is also invariant under a unitary transformation (Exercise 3.3.10). There-
fore

—(X2+y2+22)=—(x/2+y/2+2/2), (446)

or x? + y? + z? is invariant under this operation 8U(2), just as withSO(3). Operations
of SU(2) on M must produce rotations of the coordinates, z appearing therein. This
suggests thaBU(2) andSO(3) may be isomorphic or at least homomaorphic.
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We approach the problem of what this operatioSbf(2) corresponds to by considering
special cases. Returning to Eq. (4.38) det ¢¢ andb =0, or

= (< ° (4.47)
3= 0 ei6)° .

In anticipation of Eq. (4.51), thi§ is given a subscript 3.
Carrying out a unitary similarity transformation, Eq. (4.43), on each of the three Pauli
o’s of SU(2), we have

[ 0\ [0 1\ (e 0
Vao1ls = 0 e 1 0 0 ¢t

0 o2t
(5 ) (4.48)

We reexpress this result in terms of the Paulias in Eq. (4.44), to obtain

Usxo1UL = xo1c0s Z — xopsin 2. (4.49)
Similarly,

U3y02U$ = yo1SiNnZ% + yo,COS Z,

UszasU] = zo3. (4.50)

From these double angle expressions we see that we should start with a
halfangle: ¢ = «/2. Then, adding Egs. (4.49) and (4.50) and comparing with Eqgs. (4.44)
and (4.45), we obtain

x' = x cosa + y sina

y = —xsina + y cosu (4.51)

I =2

The 2x 2 unitary transformation usings(«) is equivalent to the rotation operatBy«)
of Eq. (4.3).
The correspondence of

(4.52)

cosB/2 sing/2
—sing/2 cosB/2

U2(B) = (
andR,(8) and of
cosp/2 ising/2
Uilp) =1 . . (4.53)
ising/2  cosp/2
andR1(p) follow similarly. Note thatU, (/) has the general form
Ui () = 1xcosy /24 iog Sinyr/2, (4.54)
wherek =1, 2, 3.
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The correspondence
)2 0 cosey sina O
e
U3((x)=( 0 ia/2><—> —sine cose O | =R;(a) (4.55)
e
0 0 1

is not a simple one-to-one correspondence. Specifically, iasRk, ranges from 0 to 2,
the parameter itv3, «/2, goes from 0 tor. We find

Rz(a +27m) = Rz ()
_eioc/2 0
Us(e +27) = ( o —e—ia/Z) = —Us(a). (4.56)

Thereforeboth Us(«) andUz(a + 27) = —U3(a) correspond tdR, («). The correspon-
dence is 2 to 1, 08U(2) andSO(3) arehomomor phic. This establishment of the corre-
spondence between the representatior® fR) and those 080(3) means that the known
representations &U(2) automatically provide us with the representationSoxf3).
Combining the various rotations, we find that a unitary transformation using

U(e, B, y) = Us(y)U2(B8)Us() (4.57)
corresponds to the general Euler rotat®y(y)R, (8)R;(«). By direct multiplication,

U B ez 0 cosB/2  sing/2\ (%% 0
@f.y)= 0 e 72)\ —sing/2 cosB/2 0 e w2

£t/ 2cos8/2 & V=®/2sing/2
= . _ . . (4.58)
—emir=®/2ging/2 ¢~ r+®)/2cosp )2

This is our alternate general form, Eq. (4.38), with
E=(v+w/2.  n=p4/2, =F-wo)/2 (4.59)
Thus, from Eqg. (4.58) we may identify the parameters of Eq. (4.38) as
a=e'Vt)/2¢cos8/2

b=¢""92ging/2. (4.60)

SU(2)-Isospin and SU(3)-Flavor Symmetry

The application of group theory to “elementary” particles has been labeled by Wigner
the third stage of group theory and physics. The first stage was the search for the 32
crystallographic point groups and the 230 space groups giving crystal symmetries —
Section 4.7. The second stage was a search for representations sucB@&3pfand
SU(2) — Section 4.2. Now in this stage, physicists are back to a search for groups.

In the 1930s to 1960s the study of strongly interacting particles of nuclear and high-
energy physics led to tH&U(2) isospin group and theU(3) flavor symmetry. In the 1930s,
after the neutron was discovered, Heisenberg proposed that the nuclear forces were charge



4.2 Generators of Continuous Groups 257

Table 4.1 Baryons with Spin% Even Parity

Mass (MeV) Y 1 I3
Ch 1321.32 -1
= 1 1
= 2
=0 1314.9 +3
- 1197.43 -1
by %0 1192.55 0 1 0
=+ 1189.37 +1
A A 1115.63 0 0 0
n 939.566 -1
N 1 3
P 938.272 +1

independent. The neutron mass differs from that of the proton by only 1.6%. If this tiny
mass difference is ignored, the neutron and proton may be considered as two charge (or
isospin) states of a doublet, called thacleon. The isospinl hasz-projectioniz = 1/2

for the proton andiz = —1/2 for the neutron. Isospin has nothing to do with spin (the
particle’s intrinsic angular momentum), but the two-component isospin state obeys the
same mathematical relations as the spif 4tate. For the nucleoh= /2 are the usual

Pauli matrices and th21/2 isospin states are eigenvectors of the Pauli magrix (é 72).

Similarly, the three charge states of the pian(x°, 7 ~) form a triplet. The pion is the
lightest of all strongly interacting particles and is the carrier of the nuclear force at long
distances, much like the photon is that of the electromagnetic force. The strong interaction
treats alike members of these particle families, or multiplets, and conserves isospin. The
symmetry is thesSU(2) isospin group.

By the 1960s particles produced as resonances by accelerators had proliferated. The
eight shown in Table 4.1 attracted particular attenfidthe relevant conserved quantum
numbers that are analogs and generalizations.aindL? from SO(3) are/s and 12 for
isospin and’ for hypercharge. Particles may be grouped into charge or isospin multiplets.
Then the hypercharge may be taken as twice the average charge of the multiplet. For the
nucleon, that is, the neutron—proton doublet= 2 - %(0 + 1) = 1. The hypercharge and
isospin values are listed in Table 4.1 for baryons like the nucleon and its (approximately
degenerate) partners. They form an octet, as shown in Fig. 4.3, after which the corre-
sponding symmetry is called theéghtfold way. In 1961 Gell-Mann, and independently
Ne’eman, suggested that the strong interaction should be (approximately) invariant under
a three-dimensional special unitary grogdJ(3), that is, hasU(3) flavor symmetry.

The choice ofSU(3) was based first on the two conserved and independent quantum
numbersH; = I3 and Ho = Y (thatis, generators with/z, Y] = 0, not Casimir invariants;
see the summary in Section 4.3) that call for a group of rank 2. Second, the group had
to have an eight-dimensional representation to account for the nearly degenerate baryons
and four similar octets for the mesons. In a sei®d(3) is the simplest generalization of
SU(2) isospin. Three of its generators are zero-trace Hermitiar3 3natrices that contain

5All masses are given in energy units, 1 MeML0% eV.
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FIGURE 4.3 Baryon octet weight
diagram forSU(3).

the 2x 2 isospin Pauli matrices in the upper left corner,

Ti 0
A = o, i=123 (4.61a)
0 0O

Thus, theSU(2)-isospin group is a subgroup 8tJ(3)-flavor with I3 = A3/2. Four other
generators have the off-diagonal 1'smf and—i, i of t2 in all other possible locations to
form zero-trace Hermitian 8 3 matrices,

00 1 0 0 —i

am=|0 0 o], ax=[0 0 0],

100 i 0 0
(4.61b)

000 00 O

w=|0 0 1|, =0 0 —i

010 0i O

The second diagonal generator has the two-dimensional unit matiix the upper left
corner, which makes it clearly independent of 8ld(2)-isospin subgroup because of its
nonzero trace in that subspace, arlin the third diagonal place to make it traceless,
1 0 O
ra=—|0 1 0]. (4.61c)
0 0 -2
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FIGURE 4.4 Baryon mass splitting.

Altogether there are®3— 1 = 8 generators foBU(3), which has order 8. From the com-
mutators of these generators the structure constari@b/(8) can easily be obtained.

Returning to theSU(3) flavor symmetry, we imagine the Hamiltonian for our eight
baryons to be composed of three parts:

H= Hstrong+ Hmedium+ Helectromagnetic (4-62)

The first part, Hswrong has theSU(3) symmetry and leads to the eightfold degeneracy.
Introduction of the symmetry-breaking termimedium removes part of the degeneracy,
giving the four isospin multiplet$=—, £°), (£—, £% =), A, andN = (p, n) different
masses. These are still multiplets becaggium hasSU(2)-isospin symmetry. Finally,

the presence of charge-dependent forces splits the isospin multiplets and removes the last
degeneracy. This imagined sequence is shown in Fig. 4.4.

The octet representation is not the simpl8kk(3) representation. The simplest repre-
sentations are the triangular ones shown in Fig. 4.5, from which all others can be generated
by generalized angular momentum coupling (see Section 4.4 on Young tableaux). The
fundamental representation in Fig. 4.5a contains the (up), d (down), ands (strange)
quarks, and Fig. 4.5b contains the corresponding antiquarks. Since the meson octets can
be obtained from the quark representationg@swith 32 = 8 + 1 states, this suggests
that mesons contain quarks (and antiquarks) as their constituents (see Exercise 4.4.3). The
resulting quark model gives a successful description of hadronic spectroscopy. The reso-
lution of its problem with the Pauli exclusion principle eventually led to $43)-color
gauge theory of thetrong interaction calledquantum chromodynamics (QCD).

To keep group theory and its very real accomplishment in proper perspective, we should
emphasize that group theory identifies and formalizes symmetries. It classifies (and some-
times predicts) particles. But aside from saying that one part of the Hamiltonig3l {23
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FIGURE 4.5  (a) Fundamental representationSi(3), the weight diagram for
theu, d, s quarks; (b) weight diagram for the antiquaikst, s.
symmetry and another part has)(3) symmetry, group theory says nothing about the par-
ticle interaction. Remember that the statement that the atomic potential is spherically sym-
metric tells us nothing about the radial dependence of the potential or of the wave function.
In contrast, in a gauge theory the interaction is mediated by vector bosons (like the photon
in quantum electrodynamics) and uniquely determined by the gauge covariant derivative
(see Section 1.13).
Exercises
421 (i) Show that the Pauli matrices are the generatorSW{2) without using the para-
meterization of the general unitary>22 matrix in Eq. (4.38). (ii) Derive the eight
independent generatoks of SU(3) similarly. Normalize them so that(#; 1 ;) = 25;;.
Then determine the structure constantSof(3).
Hint. TheA; are traceless and Hermitian<33 matrices.
(iii) Construct the quadratic Casimir invariant80(3).
Hint. Work by analogy withr? + o2 + o2 of SU(2) or L of SO(3).
422 Prove that the general form of 22 unitary, unimodular matrix is
U=
-b* a*
with a*a + b*b = 1.
423 Determine thre&U(2) subgroups o8U(3).
424 A trandlation operatorT (a) convertsy (x) to ¥ (x + a),

T(@yx)=v(x+a).
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In terms of the (quantum mechanical) linear momentum opegates —id/dx, show
thatT (a) = expliapy), thatis, p, is the generator of translations.
Hint. Expandy (x + a) as a Taylor series.

425 Consider the gener&U(2) element Eq. (4.38) to be built up of three Euler rotations:
(i) a rotation ofa/2 about thez-axis, (ii) a rotation ofv/2 about the new-axis, and
(iii) a rotation of ¢/2 about the newg-axis. (All rotations are counterclockwise.) Using
the Paulic generators, show that these rotation angles are determined by

a=f-(+T=a+}
b=2n =p
c=E+i-5=v—7%.

Note. The angles: andb here are not the andb of Eq. (4.38).

4.2.6 Rotate a nonrelativistic wave functioh = (¥, ¥)) of spin 1/2 about thez-axis by
a small angle/6. Find the corresponding generator.

4.3 ORBITAL ANGULAR MOMENTUM

The classical concept of angular momenturgass=r x p, is presented in Section 1.4

to introduce the cross product. Following the usual Schrodinger representation of quantum
mechanics, the classical linear momentuis replaced by the operateti V. The quantum
mechanical orbital angular momentwper ator become$

LQM=—ir X V. (4.63)

This is used repeatedly in Sections 1.8, 1.9, and 2.4 to illustrate vector differential oper-
ators. From Exercise 1.8.8 the angular momentum components satisfy the commutation
relations

[Li,Ljl=ieijxLk. (4.64)

Thee;ji is the Levi-Civita symbol of Section 2.9. A summation over the inklésunder-
stood.
The differential operator corresponding to the square of the angular momentum

L?=L-L=Li+L5+1L2 (4.65)
may be determined from
L-L=(xp)-(rxp), (4.66)

which is the subject of Exercises 1.9.9 and 2.5.17(b). Sirfcas a scalar product is in-
variant under rotations, that is, a rotational scalar, we exh&ctZ; ] = 0, which can also
be verified directly.

Equation (4.64) presents the basic commutation relations of the components of the quan-
tum mechanical angular momentum. Indeed, within the framework of quantum mechanics
and group theory, these commutation relations define an angular momentum operator. We
shall use them now to construct the angular momentum eigenstates and find the eigenval-
ues. For the orbital angular momentum these are the spherical harmonics of Section 12.6.

SFor simplicity, 71 is set equal to 1. This means that the angular momentum is measured in units of
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Ladder Operator Approach

Let us start with a general approach, where the angular momehiwgrconsider may rep-

resent an orbital angular momentlima spine /2, or a total angular momentuin+ o /2,

etc. We assume that

1. Jis an Hermitian operator whose components satisfy the commutation relations
i, J1=iijx i, [, 5] =0. (4.67)

Otherwisel is arbitrary. (See Exercise 4.3.1.)
2. |AM) is simultaneously a normalized eigenfunction (or eigenvectoy) @fith eigen-
value M and an eigenfunctidrof J2,

JAM) = M|AM), J2IAM) = A |AM), (AM|AM) = 1. (4.68)
We shall show that = J(J + 1) and then find other properties of theM). The treat-
ment will illustrate the generality and power of operator technigques, particularly the use of

ladder operator8.
Theladder operatorsare defined as

Jy=Jx+ily, Jo=Jy—ily. (4.69)
In terms of these operatodd may be rewritten as
P=3pi+ I+ J2 (4.70)

From the commutation relations, Eq. (4.67), we find

(LI d=~+Ty, [0 1=—J_, [Js,J_1=2J. (4.71)

SinceJ;. commutes with)? (Exercise 4.3.1),
P (I aM)) = J4 (BP1AM)) = A(J41AM)). (4.72)

Therefore,J|AM) is still an eigenfunction ofl? with eigenvaluex, and similarly for
J_|»M). But from Eq. (4.71),

JoJy=Jp(Uz + 1), (4.73)
or

J(J4IAM)) = T (J; + DIAM) = (M + 1) JL|AM). (4.74)

"That|AM) can be an eigenfunction dioth J, andJ? follows from [J;, J2] = 0 in Eq. (4.67). FoiSU(2), (AM|AM) is the

scalar product (of the bra and ket vector or spinors) in the bra-ket notation introduced in Section BQ(BpriAM) is a

functionY (8, ¢) and|AM’) is a functionY’ (6, ¢) and the matrix elemeri M |AM') = f(pzlo JooY*(0,0)Y' (0, ¢)sing do dy

is their overlap. However, in our algebraic approach only the norm in Eq. (4.68) is used and matrix elements of the angular
momentum operators are reduced to the norm by means of the eigenvalue equakioiépr(4.68), and Eqgs. (4.83) and (4.84).
8Ladder operators can be developed for other mathematical functions. Compare the next subsection, on other Lie groups, and
Section 13.1, for Hermite polynomials.
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Therefore,J|A M) is still an eigenfunction of, but with eigenvalué/ + 1. J, has raised
the eigenvalue by 1 and so is calledsésing operator. Similarly, J_ lowers the eigenvalue
by 1 and is called éowering operator.

Taking expectation values and usimﬁ: Jy, JyT =J,, we get
(AM|32 — J2M) = (AM|J2 + JZ|AM) = |1 MY [P+ [Ty M) [P

and see that — M? > 0, soM is bounded. Let/ be thelargest M. ThenJ,|AJ) =0,
which impliesJ_J|1J) = 0. Hence, combining Egs. (4.70) and (4.71) to get

P=J U+, +1D), (4.75)
we find from Eq. (4.75) that
0=J_Jiad) = (P = J2 = 1)ad) = (A = J2 = J)IAJ).
Therefore
Ar=J(J +1) >0, (4.76)

with nonnegativeJ. We now relabel the statgaM) = |JM). Similarly, let J’ be the
smallest M. ThenJ_|JJ') =0. From

P=JJ +J., -1, (4.77)
we see that
0= JyJ_|JJ )= (PP + I, = JAII )= (A + T = J'?)JJ). (4.78)
Hence
A=JU+D=J' U -D=(I(-J -1
SoJ' = —J,andM runs ininteger stepsfrom —J to +J,
—J<M<]. (4.79)

Starting from|J J) and applying/_ repeatedly, we reach all other stat¢d/). Hence the
|J M) form an irreducible representation 80(3) or SU(2); M varies and/ is fixed.
Then using Eqs. (4.67), (4.75), and (4.77) we obtain

J_J M) =[J(J+1D) —MWM+D]|IM) = —M)(J +M+1)|J M),

(4.80)
JeJ_|IM)y=[J(J+D) = MM - D]|IM)=(J +M)(J — M+ )| M).
Because/, andJ_ are Hermitian conjugates,
h=r, 1=y, (4.81)

the eigenvalues in Eq. (4.80) must be positive or Z8rBxamples of Eq. (4.81) are pro-
vided by the matrices of Exercise 3.2.13 (spji2)} 3.2.15 (spin 1), and 3.2.18 (spif23.

9The Hermitian conjugation or adjoint operation is defined for matrices in Section 3.5, and for operators in general in Sec-
tion 10.1.

10For an excellent discussion of adjoint operators and Hilbert space see A. Ma3szatim Mechanics. New York: Wiley

1961, Chapter 7.



264

Chapter 4 Group Theory

For the orbital angular momentum ladder operatars, andL _, explicit forms are given
in Exercises 2.5.14 and 12.6.7. You can now show (see also Exercise 12.7.2) that

(TMIJ_(J41TM)) = (J41TM) T 1T m). (4.82)

Since J4 raises the eigenvalugf to M + 1, we relabel the resultant eigenfunction
|J M + 1). The normalization is given by Eq. (4.80) as

JIMYy=V(J —MYJ+M+DIM+1)=/J(J+1) —MM+1)|JM+1),
(4.83)
taking the positive square root and not introducing any phase factor. By the same argu-
ments,

J_IMy=JJ+M(J-M+D|IM -1 =/ +1)—MM—-1)|JM—1).
(4.84)

Applying J; to Eq. (4.84), we obtain the second line of Eq. (4.80) and verify that Eq. (4.84)
is consistent with Eq. (4.83).

Finally, sinceM ranges from-J to +J in unit steps, 2 must be an integet] is either
an integer or half of an odd integer. As seen lated, ig an orbital angular momentuln,
the set|LM) for all M is a basis defining a representationS(3) and L will then be
integral. In spherical polar coordinatesy, the functiong L M) become the spherical har-
monichi”(e, @) of Section 12.6. The sets af M) states with half-integral' define rep-
resentations dBU(2) that are not representations3®(3); we get/ = 1/2,3/2,5/2,....
Our angular momentum is quantized, essentially as a result of the commutation relations.
All these representations are irreducible, as an application of the raising and lowering op-
erators suggests.

Summary of Lie Groups and Lie Algebras

The general commutation relations, Eq. (4.14) in Section 4.2, for a classical Lie group
[SO(m) andSU(n) in particular] can be simplified to look more like Eq. (4.71) 80(3)
andSU(2) in this section. Here we merely review and, as a rule, do not provide proofs for
various theorems that we explain.

First we choose linearly independent and mutually commuting generdtaxhich are
generalizations of, for SO(3) andSU(2). Let/ be the maximum number of suéh with

[H;, H]=0. (4.85)

Thenl is called therank of the Lie groupG or its Lie algebraj. The rank and dimension,
or order, of some Lie groups are given in Table 4.2. All other gener@igisan be shown
to be raising and lowering operators with respect to alliheso

[Hi,Eq]=Eq, i=12...,1 (4.86)

The set of so-calledoot vectors (a1, a2, ..., o) form theroot diagram of G.

When theH; commute, they can be simultaneously diagonalized (for symmetric (or
Hermitian) matrices see Chapter 3; for operators see Chapter 10H;Tiw®vide us with
a set of eigenvaluesy, mo, ..., m; [projection or additive quantum numbers generalizing
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Table 4.2 Rank and Order of Unitary and Rotational

Groups

Lie algebra A B; Dy
Lie group SU(l +1) SO(2 +1) SO(2)
Rank / / /
Order 10+2) 12 +1) 12 — 1)

M of J, in SO(3) andSU(2)]. The set of so-calledeight vectors (m1, mo, ..., m;) for
an irreducible representation (multiplet) formvaight diagram.

There arel invariant operators”;, called Casimir operators, that commute with all
generators and are generalizationgaf

[C;,Hj1=0,  [Ci,Eq]=0, i=12...,1 (4.87)

The first one(1, is a quadratic function of the generators; the others are more complicated.
Since theC; commute with allH;, they can be simultaneously diagonalized with the

Their eigenvaluess, ca, ..., ¢; characterize irreducible representations and stay constant
while the weight vector varies over any particular irreducible representation. Thus the gen-
eral eigenfunction may be written as

|(cl, C2,...,c))m1,mo, ..., m1>, (4.88)

generalizing the multiplgt/ M) of SO(3) andSU(2). Their eigenvalue equations are
Hi}(cl, c2,...,c)my1, mo, ..., m1> =m,-|(cl, c2,...,c)my1, mo, ..., m;) (4.89a)
C; |(cl, c2,...,c1)my, mo, ..., ml) =g |(c1, C2,...,C1)M1, M2, ..., ml). (4.89b)

We can now show thatEy|(c1,c2,...,c)m1, mo,...,m;) has the weight vector
(m1 + a1, m2 + a2, ...,m; + o) using the commutation relations, Eq. (4.86), in con-
junction with Egs. (4.89a) and (4.89b):

HiEa|(cl,cz, .. .,cl)ml,mz,...,ml)
= (EqH; + [H;, Eq)|(c1, 2, ....com1, ma, ... my)
=(m; + oti)Ea|(c1, €2,...,c1)m1, ma, ..., m1>. (4.90)
Therefore
Ea’(cl,cz, ..., C)my, my, ...,m;) ~ ’(cl, coemitan, ..., my +(x1),

the generalization of Egs. (4.83) and (4.84) fr8@(3). These changes of eigenvalues by
the operatoi&,, are called itselection rulesin quantum mechanics. They are displayed in
the root diagram of a Lie algebra.

Examples of root diagrams are given in Fig. 4.6 &J(2) andSU(3). If we attach the
roots denoted by arrows in Fig. 4.6b to a weight in Figs. 4.3 or 4.5a, b, we can reach any
other state (represented by a dot in the weight diagram).

Here Schur’s lemma applies: An operatoH that commutes with all group operators,
and therefore with all generatofg of a (classical) Lie grous in particular, has as eigen-
vectors all states of a multiplet and is degenerate with the multiplet. As a consequence,
such an operator commutes with all Casimir invariaptg,C;] = 0.
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FIGURE 4.6 Root diagram for (apU(2) and
(b) SU(3).

The last result is clear because the Casimir invariants are constructed from the generators
and raising and lowering operators of the group. To prove the regt, betan eigenvector,
H+v = Ey. Then, for any rotatiorR of G, we haveH Ry = E Ry, which says thaRys
is an eigenstate with the same eigenvatualong withy. Since[H, C;] = 0, all Casimir
invariants can be diagonalized simultaneously witland an eigenstate @f is an eigen-
state of all theC;. Since[H;, C;] = 0, the rotated eigenstatég) are eigenstates af;,
along withyr belonging to the same multiplet characterized by the eigenva)ussC; .

Finally, such an operatdid cannot induce transitions between different multiplets of the
group because

((c/l,c/z, o, Cpmy, my, ...,m2|H|(c1, €2, ...,cl)my, mo, . m1> =0.
Using[H, C;]1=0 (for anyj) we have
0= <(c’l, Chyvvvy €)M, MYy, . ..,mﬂ[H, Cj]|(cl, C2,...,Ccl)m, ma, . ..,m;)
=(cj— c})((c/l, Chy ooy Cpymy, my, .. .,m”H|(c1, Co,...,cl)m1, ma, ..., m1>.

If c} # ¢; for somej, then the previous equation follows.

Exercises

Show that (a] J;, J?]1 =0, (b)[J_, J?] =0.

Derive the root diagram dU(3) in Fig. 4.6b from the generatoks in Eq. (4.61).
Hint. Work out first theSU(2) case in Fig. 4.6a from the Pauli matrices.

4.4 ANGULAR MOMENTUM COUPLING

In many-body systems of classical mechanics, the total angular momentum is the sum
L =3, L; of the individual orbital angular momenta. Any isolated particle has conserved
angular momentum. In quantum mechanics, conserved angular momentum arises when
particles move in a central potential, such as the Coulomb potential in atomic physics,
a shell model potential in nuclear physics, or a confinement potential of a quark model in



4.4 Angular Momentum Coupling 267

particle physics. In the relativistic Dirac equation, orbital angular momentum is no longer
conserved, bul = L + Sis conserved, the total angular momentum of a particle consisting
of its orbital and intrinsic angular momentum, called sia o /2, in units of#.

It is readily shown that the sum of angular momentum operators obeys the same com-
mutation relations in Eq. (4.37) or (4.41) as the individual angular momentum operators,
provided those from different particles commute.

Clebsch—Gordan Coefficients: SU(2)-SO(3)

Clearly, combining two commuting angular momeatdo form their sum
J=J1+J2, [Ju, J2i1=0, (4.91)
occurs often in applications, addsatisfies the angular momentum commutation relations
i, Jill=[J1j + J25, Jue + Ja) = [J1j, Jul + [z, Jal =ieju(Juy + J2) =igjp Ji.
For a single particle with spin/2, for example, an electron or a quark, the total angular
momentum is a sum of orbital angular momentum and spin. For two spinless particles
their total orbital angular momentum= L 1 + L. ForJ? andJ, of Eq. (4.91) to be both
diagonal,[J2, J.] = 0 has to hold. To show this we use the obvious commutation relations
[Jiz, 351 =0, and
P=024034201-0=024+05+ J1 Jo + J1_Joy +2J1, 02, (4.97)
in conjunction with Eq. (4.71), for botby, to obtain
(92, 1) = Joy + Jre Jo, Ji + J2:]
= [J1-, Ji o4 + J1-[J2+, J2c 1 + 14, J1lJ2— + J14[J2—, J2]
=J1-Joy — J1-Joy — J14+J2- + J14J2- =0.

Similarly [J2, J,.Z] =0 is proved. Hence the eigenvalues]ész, J, can be used to label
the total angular momentum statdsJoJ M).
The product statels/im1)|Jom2) obviously satisfy the eigenvalue equations

J | Jima)|Jomo) = (J1; + J2p) | Jima)|Jomp) = (m1 + m2)|Jim1)|Jomo)
= M|Jim1)|Jom3), (4.92)
J2|ima) | Jama) = Ji (J; + 1)|Jama)|Jama),

but will not have diagonall? except for the maximally stretched states with =
+(J1+ J2) andJ = J1 + J» (see Fig. 4.7a). To see this we use Eq. (4.@gain in con-
junction with Egs. (4.83) and (4.84) in

P Jima) Joma) = {J1(J1+ 1) + Jo(J2 + 1) + 2mymo}| Jymy) | Jomo)
{11+ D) — mioma+ DY a2 + 1) — ma(mz — D)2
x |Jim1 + D1 Jomz — 1) + {J1(J1 + 1) — mam1 — D)2

x {J2(J2 + 1) — ma(ma + D} 2| Jimy — 1) Jamz + 1), (4.93)
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FIGURE 4.7 Coupling of two angular momenta:
(a) parallel stretched, (b) antiparallel, (c) general
case.

The last two terms in Eq. (4.93) vanish only when = J; andmy = J, ormy = —J; and
mo = —Jo. In both caseg = J1 + J; follows from the first line of Eq. (4.93). In general,
therefore, we have to form appropriate linear combinations of product states

|J1J2d My =" C(JaJat|mimaM)|Jim1)|Jama), (4.94)

miy,m2

so thatJ? has eigenvalud (J + 1). The quantitie (J1J2J |m1maM) in Eq. (4.94) are
calledClebsch—Gordan coefficients. From Eq. (4.92) we see that they vanish unléss
m1 + m2, reducing the double sum to a single sum. Applyihgto |J M) shows that the
eigenvaluesV of J, satisfy the usual inequalities/ <M < J.

Clearly, the maximalimax= J1 + J2 (see Fig. 4.7a). In this case Eq. (4.93) reduces to a
pure product state

|J1J2J = J1+ oM = J1 + J2) = |J1J1)|J2J2), (4.953)
so the Clebsch—Gordan coefficient
C(J1rJod = J1+ Jo|J1J2Jd1+ J2) = 1. (4.95b)

The minimalJ = J1 — J» (if J1 > J2, see Fig. 4.7b) and = J, — J1 for J> > J; follow if
we keep in mind that there are just as many product statesMs states; that is,

Jmax

> @7+ = (Jmax— Jmin + D (max+ Jmin + 1)
J=Jmin

=21+ 12 +1). (4.96)

This condition holds because tha JoJ M) states merely rearrange all product states into
irreducible representations of total angular momentum. It is equivalent toimgler ule:

A(J1J20) =1, if |Jo—Jo| <J <J1+Jo;

(4.97)
A(J1J2J) =0, else
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This indicates that one complete multiplet of eatlvalue from Jmin to Jmax accounts

for all the states and that all thé M) states are necessarily orthogonal. In other words,
Eq. (4.94) defines a unitary transformation from the orthogonal basis set of products of
single-particle stateg/im1; Jomo) = |Jium1)|Jomo) to the two-particle statels/; JoJ M).

The Clebsch—Gordan coefficients are just the overlap matrix elements

C(J1JoJ | imimoM) = (J1JoJ M| J1my; Jomo). (4.98)

The explicit construction in what follows shows that they are all real. The states in
Eq. (4.94) are orthonormalized, provided that the constraints

> C(J1J2J i mimaM)C (J1J2J |mimaM’)
m1,mp, mi+mo=M (4996\)
== (Jl]2]M|J1]2J/M/> = (SJJ/SMM/

> C(Jad lmimaM)C (J1J2d [mymyM)
T (4.99b)
= (Juma|Jam) (Jom2|J2m5) = 81t 8ynpm,

hold.

Now we are ready to construct more directly the total angular momentum states starting
from |Jmax= J1 + J2 M = J1 + J2) in EqQ. (4.95a) and using the lowering operafar=
J1— + Jo— repeatedly. In the first step we use Eq. (4.84) for

1/2
T30y = (i Ui + D) = 5 (i = DY 210:0; = 1) = @IpY210;0; = 1),
which we substitute int@qJ;— + Jo—)|J1J1)|J2J2). Normalizing the resulting state with
M = Jy+ Jo — 1 properly to 1, we obtain
1/2
|J1J2J1+ J2J1+ Jo — 1) = {J1/(J1+ J2)} P2 = 1)1J20)

+ {2/ 1+ I} 2| ) | Jad2 — 1), (4.100)

Equation (4.100) yields the Clebsch—Gordan coefficients

CULRIL+ TalJ1— 112 Ju+ T2 = D) = {J/ (1 + )} 2, (4.101)

1/2
CUrhJi+ JolJ1 Jo—LJi+ Jo—1) = {Jo/(J1 + )} 2.

Then we apply/_ again and normalize the states obtained until we r¢ach J1 + JoM)
with M = —(J1 + J2). The Clebsch—Gordan coefficient§J1J2J1 + Jo|mimoM) may
thus be calculated step by step, and they are all real.

The next step is to realize that the only other state wWitk- J1 + J> — 1 is the top of the
next lower tower ofJ; + Jo — 1M) states. Since/1 + J» — 1 J1 + Jo — 1) is orthogonal to
|J1+ J2J1+ J2 — 1) in EqQ. (4.100), it must be the other linear combination with a relative
minus sign,

1/2
i+ Ja— L+ Jo— 1) = ={Ja/(J1 + )} 210101 — V1T d2)

{1/ + DY )2l — 1), (4.102)

up to an overall sign.
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Hence we have determined the Clebsch—Gordan coefficientg for/1)
1/2
C(hhlo i+ =11 —-1J 1+ J2—1) = —{Jz/(J1+ Jz)} / ,

2 (4.103)

C(l2 i+ 2= 11 Jo—1J1+ J2— 1) ={J1/(J1+ J2)}

Again we continue using_ until we reachM = —(J; + J> — 1), and we keep normalizing
the resulting statelg; + Jo> — 1M) of the J = J1 + Jo — 1 tower.

In order to get to the top of the next towédy + Jo — 2M) with M = J1 + Jo, — 2, we
remember that we have already constructed two states withWthd&oth |J1 + JoJ1 +
Jo— 2y and|J1 + Jo — 1 J1 + Jo — 2) are known linear combinations of the three product
states|J1J1)|JoJo — 2), |J1J1 — 1) x |JaJo — 1), and|J1J1 — 2)|J2J2). The third linear
combination is easy to find from orthogonality to these two states, up to an overall phase,
which is chosen by th€ondon-Shortley phase conventions!! so that the coefficient
C(J1J2 J1+ J2—2|J1 Jo — 2 J1+ J2 — 2) of the last product state is positive fol J2 J1 +
Jo — 2 J1+ Jo — 2). Itis straightforward, though a bit tedious, to determine the rest of the
Clebsch—Gordan coefficients.

Numerous recursion relations can be derived from matrix elements of various angular
momentum operators, for which we refer to the literattfre.

The symmetry properties of Clebsch—Gordan coefficients are best displayed in the more
symmetric Wigner’s 3-symbols, which are tabulatéd:

J1J2J3 (=1)J1—J2—ms3
e | WC(thJsImlmz, —m3), (4.104a)
1mam3
obeying the symmetry relations
J1J2J: Je i J,
< 1278 >=(_1)11+f2+13< kA ) (4.104b)
mimoms mjiminiy

for (k,1,n) an odd permutation ofl, 2, 3). One of the most important places where
Clebsch—Gordan coefficients occur is in matrix elements of tensor operators, which are
governed by the Wigner—Eckart theorem discussed in the next section, on spherical ten-
sors. Another is coupling of operators or state vectors to total angular momentum, such
as spin-orbit coupling. Recoupling of operators and states in matrix elements legds to 6
and 9j-symbols!? Clebsch-Gordan coefficients can and have been calculated for other
Lie groups, such aSU(3).

11, u. condon and G. H. ShortleYheory of Atomic Spectra. Cambridge, UK: Cambridge University Press (1935).

12There is a rich literature on this subject, e.g., A. R. Edmoidspular Momentum in Quantum Mechanics. Princeton, NJ:
Princeton University Press (1957); M. E. RoBEementary Theory of Angular Momentum. New York: Wiley (1957); A. de-Shalit

and I. Talmi,Nuclear Shell Model. New York: Academic Press (1963); Dover (2005). Clebsch—Gordan coefficients are tabulated
in M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, The 3j- and 6j-Symbols. Cambridge, MA: Massachusetts
Institute of Technology Press (1959).
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Spherical Tensors

In Chapter 2 the properties of Cartesian tensors are defined using the group of nonsin-
gular general linear transformations, which contains the three-dimensional rotations as a
subgroup. A tensor of a given rank that is irreducible with respect to the full group may
well become reducible for the rotation gro@®(3). To explain this point, consider the
second-rank tensor with componeflg = x; y; for j, k =1, 2, 3. It contains the symmet-

ric tensorS ;. = (xjyx + xxy;)/2 and the antisymmetric tensdr, = (x; yx — xxy;)/2, SO

Tjr = Sjx + Aji. This reduced’j; in SO(3). However, under rotations the scalar product

X -y is invariant and is therefore irreducible 80(3). Thus, S can be reduced by sub-
traction of the multiple ok - y that makes it traceless. This leads to 8@(3)-irreducible

tensor

S =3 (X vk +xky;) — 3% Y8k

Tensors of higher rank may be treated similarly. When we form tensors from products of
the components of the coordinate vectathen, in polar coordinates that are tailored to
SO(3) symmetry, we end up with the spherical harmonics of Chapter 12.

The form of the ladder operators f&O(3) in Section 4.3 leads us to introduce the
spherical components (note the different normalization and signs, though, prescribed by
theY;,,) of a vectorA:

A+1=—%(Ax+iAy), A_1=%2(Ax—my), Ag=A,. (4.105)

Then we have for the coordinate vectan polar coordinates,
ry1= —%r sinfe’? =r,/ %”Yn, r_1= %r sinfe™i% =r,/ %”YL_L

f’ozr\/%”Ym,

whereY;,, (8, ¢) are the spherical harmonics of Chapter 12. Again, the spheric@om-
ponents of tensorg;,, of higher rankj may be introduced similarly.

An irreduciblespherical tensor operator T;, of rank j has 2/ + 1 components, just
as for spherical harmonics, andruns from—j to 4. Under a rotatiorR(«), wherea
stands for the Euler angles, tlig, transform as

(4.106)

Yin )= Yiw (D, (R), (4.107a)

m

wheref’ = (', ¢) are obtained fronfi = (9, ¢) by the rotatiorR and are the angles of the
same point in the rotated frame, and

Dil,m (a, B,y) = (Jm|expliaJ;) expipJy) expiy J;)|Jm')

are the rotation matrices. So, for the operdtgy, we define

RTjwR™ =Y TjwD, (. (4.107b)

m
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For an infinitesimal rotation (see Eq. (4.20) in Section 4.2 on generators) the left side of
Eq. (4.107b) simplifies to a commutator and the right side to the matrix elemeishaf
infinitesimal generator of the rotatid:

Uns Tjm) =Y Tj (| Il jm). (4.108)

m/

If we substitute Egs. (4.83) and (4.84) for the matrix elementk,ofve obtain the alterna-
tive transformation laws of a tensor operator,

1/2

[Jo. Tjml =mTjm, s, Tjm] = Tjmza{(j —m)(j £m + 1)} (4.109)

We can use the Clebsch—Gordan coefficients of the previous subsection to couple two
tensors of given rank to another rank. An example is the cross or vector product of two
vectorsa andb from Chapter 1. Let us write both vectors in spherical componeptand
b,,. Then we verify that the tensat,, of rank 1 defined as

V2

SinceC,, is a spherical tensor of rank 1 that is linear in the componerdsaoflb, it must
be proportional to the cross produ€t,, = N(a x b),,. The constan can be determined
from a special cas@ = X, b =¥, essentially writingk x § = Z in spherical components as
follows. Using

Cn= ) CALUmimom)am,bm, = —=(@x b (4.110)

mima

@=L  ni=-1/vV2, ®a1=1V2

Mi=—i/v2,  1=-i/V2
Eq. (4.110) form = 0 becomes

C(1111, -1,0[®1(9)-1 — ®)-1(N1] = N(@o) =N
1 1 i 1 i i

Al )
where we have use@(111101) = % from Eq. (4.103) forJ1 = 1 = Jp, which implies
C(1111, -1,0) = % using Egs. (4.104a,b):

S P PCTC PEET X S S (i) WL WCCL PR
10 1) AWM =5= 1 1 o) T RO

A bit simpler is the usual scalar product of two vectors in Chapter 1, in wai@hdb
are coupled to zero angular momentum:

a-b=—(ab)ov3=—-+3)  C(110m, —m,O)amb . (4.111)

Again, the rank zero of our tensor product implesb = n(ab)o. The constankz can
be determined from a special case, essentially writthg- 1 in spherical components:

52 1 __ — _n
22 =1=nC (110000 = — 2.
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Another often-used application of tensors istbeoupling that involvesj-symbolsfor
three operators andj%or four operators? An example is the following scalar product,
for which it can be showdt that

1
0‘1-r0’2-r=§r20‘1-0‘2+(0'10‘2)2-(l’r)2, (4.112)
but which can also be rearranged by elementary means. Here the tensor operators are de-
fined as
(©102)2n = Y C(A12Am1mam)oLm,02m,, (4.113)
mimy
(rr) —ZC(llZ]m Mom) T —,/8—”r2Y (f) (4.114)
2m = - 1m2 m1lmoy = 15 2m s .

and the scalar product of tensors of rank 2 as

(0102)2- (()2=Y (=1)" (010220 ("2 —m =v5((6102)2(11)2),.  (4.115)
m
One of the most important applications of spherical tensor operators M/theer—
Eckart theorem. It says that a matrix element of a spherical tensor opefatpof rankk
between states of angular momentjiand j’ factorizes into a Clebsch—Gordan coefficient
and a so-callededuced matrix element, denoted by double bars, that no longer has any
dependence on the projection quantum numberg’, n:

(' | Tl jm) = Ckjj' lnmm") (=D G T ) V(25 + D). (4.116)

In other words, such a matrix element factors into a dynamic part, the reduced matrix
element, and a geometric part, the Clebsch—Gordan coefficient that contains the rotational
properties (expressed by the projection quantum numbers) fro®@{&) invariance. To

see this we coupl&, with the initial state to total angular momentyih

li'm'Yo=_ Ckjj' lnmm) Ty | jm). (4.117)
nm
Under rotations the statg’m’)g transforms just like j'm’). Thus, the overlap matrix ele-
ment(;j'm’|j'm’)q is a rotational scalar that has nd dependence, so we can average over
the projections,

518 ptm
(JM|j'm')o= 2’,+"11 Z J'uli’mo (4.118)

Next we substitute our definition, Eq. (4.117), into Eq. (4.118) and invert the relation
Eq. (4.117) using orthogonality, Eq. (4.99b), to find that

(M Tl jm) = 3 €k ) 222202 (JMIJM)O, (4.119)

_] 'm’

2]+1

which proves the Wigner—Eckart theorem, Eq. (4.146).

13The extra facto(—l)k‘f*‘f//\/(Zj’ +1) in Eq. (4.116) is just a convention that varies in the literature.
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As an application, we can write the Pauli matrix elements in terms of Clebsch—Gordan
coefficients. We apply the Wigner—Eckart theorem to

(37 |ow|38) = (0a)ys = = 5C(133]eBy) (3]0 3) (4.120)
Since(3 3lo0l23) = 1 with og = 03 andC (133 | 03 3) = —1/+/3, we find
(zle]2)= 6. (4.121)
which, substituted into Eq. (4.120), yields
(0a)yp = —v/3C(133|aBy). (4.122)

Note that thex = £-1, 0 denote the spherical components of the Pauli matrices.

Young Tableaux for SU(n)

Young tableaux (YT) provide a powerful and elegant method for decomposing products
of SU(n) group representations into sums of irreducible representations. The YT provide
the dimensions and symmetry types of the irreducible representations in this so-called
Clebsch—-Gordan series, though not the Clebsch—Gordan coefficients by which the prod-
uct states are coupled to the quantum numbers of each irreducible representation of the
series (see Eq. (4.94)).

Products of representations correspond to multiparticle states. In this context, permuta-
tions of particles are important when we deal with several identical particles. Permutations
of n identical objects form theymmetric group S,,. A close connection between irre-
ducible representations ¢f,, which are the YT, and those &U(n) is provided by this
theorem: Every N-particle state of, that is made up of single-particle states of the fun-
damentak-dimensionalSU(n) multiplet belongs to an irreducib®U(n) representation.

A proof is in Chapter 22 of Wybourn¥.

For SU(2) the fundamental representation is a box that stands for thel-s})(mlp) and
—% (down) states and has dimension 2. Bal(3) the box comprises the three quark states
in the triangle of Fig. 4.5a; it has dimension 3.

An array of boxes shown in Fig. 4.8 witky boxes in the first rowp, boxes in the
second row, .., andx,_1 boxes in the last row is called a Young tableau (YT), denoted
by [A1, ..., Ay—1], @and represents an irreducible representatio®ldfn) if and only if

A =A== A1 (4.123)

Boxes in the same row are symmetric representations; those in the same column are anti-
symmetric. A YT consisting of one row is totally symmetric. A YT consisting of a single
column is totally antisymmetric.

There are at most — 1 rows forSU(n) YT because a column of boxes is the totally
antisymmetric $later determinant of single-particle states) singlet representation that
may be struck from the YT.

An array of N boxes is anV-particle state whose boxes may be labeled by positive
integers so that the (particle labels or) numbers in one row of the YT do not decrease from

14B. G. WybourneClassical Groups for Physicists. New York: Wiley (1974).
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S

FIGURE 4.8 Young tableau (YT) foSU(n).

left to right and those in any one column increase from top to bottom. In contrast to the
possible repetitions of row numbers, the numbers in any column must be different because
of the antisymmetry of these states.

The product of a YT with a single box1], is the sum of YT formed when the box is
put at the end of each row of the YT, provided the resulting YT is legitimate, that is, obeys
Eq. (4.123). FoSU(2) the product of two boxes, spinf2 representations of dimension 2,
generates

11 ®[1]=[2]® [1,1], (4.124)

the symmetric spin 1 representation of dimension 3 and the antisymmetric singlet of di-
mension 1 mentioned earlier.

The column ofz — 1 boxes is the conjugate representation of the fundamental represen-
tation; its product with a single box contains the columm dfoxes, which is the singlet.
For SU(3) the conjugate representation of the single hakor fundamental quark repre-
sentation, is the inverted triangle in Fig. 4.5b, 1], which represents the three antiquarks
i, d, 5, obviously of dimension 3 as well.

The dimension of a YT is given by the ratio

dimYT = %. (4.125)

The numeratoV is obtained by writing am in all boxes of the YT along the diagonal,
(n+ 1) in all boxes immediately above the diagonal;— 1) immediately below the diago-

nal, etc.N is the product of all the numbers in the YT. An example is shown in Fig. 4.9a for
the octet representation 81J(3), whereN =2-3-4=24. There is a closed formula that

is equivalent to Eq. (4.125F The denominatoD is the product of alhooks.'® A hook is
drawn through each box of the YT by starting a horizontal line from the right to the box in
question and then continuing it vertically out of the YT. The number of boxes encountered
by the hook-line is the hook-number of the bdx.is the product of all hook-numbers of

15see, for example, M. HamermedBroup Theory and Its Application to Physical Problems. Reading, MA: Addison-Wesley
(1962).
16F. Close Introduction to Quarks and Partons. New York: Academic Press (2979).
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3 4 N=234=24
2
(a)
v
1
A\
by 3

FIGURE 4.9 lllustration
of (@) N and (b)D in

Eq. (4.125) for the octet

Young tableau oSU(3).

the YT. An example is shown in Fig. 4.9b for the octetS#(3), whose hook-number is
D =1.3.1= 3. Hence the dimension of tl&J(3) octet is 243 = 8, whence its name.

Now we can calculate the dimensions of the YT in Eq. (4.124). $0(2) they are
2x2=3+1=4.ForSU@3)theyare 33=3-4/(1-2+3-2/(2-1)=6+3=09. For
the product of the quark times antiquark YT®(3) we get

[1,1I®[1]=121]&I[1,1,1], (4.126)

that is, octet and singlet, which are precisely the meson multiplets considered in the sub-
section on the eightfold way, tH#&J(3) flavor symmetry, which suggest mesons are bound
states of a quark and an antiquaglj, configurations. For the product of three quarks we
get

(1e1]) @1 = (21®[11]) ® [1]=[31® 2[2, 1] & [1, 1, 1], (4.127)

that is, decuplet, octet, and singlet, which are the observed multiplets for the baryons,
which suggests they are bound states of three quatkspnfigurations.

Aswe have seen, YT describe the decomposition of a product of SU(n) irreduciblerepre-
sentations into irreducible representations of SU(n), which is called the Clebsch—-Gordan
series, while the Clebsch—Gordan coefficients considered earlier allow construction of the
individual statesin this series.
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Derive recursion relations for Clebsch—Gordan coefficients. Use them to calculate
C (A1) |mimaM) for J =0, 1, 2.
Hint. Use the known matrix elements &f = Jy, + Joy, Ji+, andJ? = (J1 + J»)2, etc.

Show that(YlX){w = ZC(Z%J|mlmsM)Ylm,xm$, where x+1/> are the spin up and
down eigenfunctions of3 = o, transforms like a spherical tensor of rafk

When the spin of quarks is taken into account, 3t 3) flavor symmetry is replaced by
the SU(6) symmetry. Why? Obtain the Young tableau for the antiquark configuration
g. Then decompose the produgi. Which SU(3) representations are contained in the
nontrivial SU(6) representation for mesons?

Hint. Determine the dimensions of all YT.

Forl =1, Eq. (4.107a) becomes

1
YO @)=Y Dh, (B Y ©. ).

m'=—1

Rewrite these spherical harmonics in Cartesian form. Show that the resulting Cartesian
coordinate equations are equivalent to the Euler rotation matex s, v), Eq. (3.94),
rotating the coordinates.

Assuming thatD/ («, 8, ) is unitary, show that

I
D ¥ (01, 91 Y (02, 92)

m=—I

is a scalar quantity (invariant under rotations). This is a spherical tensor analog of a
scalar product of vectors.

(@ Show that the: andy dependence db/ («, 8, y) may be factored out such that
D/ (e, B, y) = Al (@)d/ (B)C/ ().

(b) Show tha‘Af (@) andCf(y) are diagonal. Find the explicit forms.
(c) Show thad’/(g) =D/’(0, 8, 0).

The angular momentum—exponential form of the Euler angle rotation operators is
R=Ry(y)Ry(BR:(x)
= exp(—iy J,») eXp(—iBJy ) exp—ia ;).
Show that in terms of the original axes
R = expiiaJ,) exp(—if Jy) exp(—iy J).

Hint. The R operators transform as matrices. The rotation aboutytfexis (second
Euler rotation) may be referred to the originabxis by

exp(—ifJy) = exp(—ia ) exp(—ifJy) explialy).
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448 Using the Wigner—Eckart theorem, prove the decomposition theorem for a spherical

: . jm'|3-T1lj
vector operatol j'm’| Ty, | jm) = %@,.
449 Using the Wigner—Eckart theorem, prove the factorization
(j'm'|Ind - Taljm) = (jm'| Iy jm)8;(jm|d - Ta|jm).

4.5 HOMOGENEOUS LORENTZ GROUP

Generalizing the approach to vectors of Section 1.2, in special relativity we demand that
our physical laws be covaridrdtunder

a. space and time translations,
b. rotations in real, three-dimensional space, and
c. Lorentz transformations.

The demand for covariance under translations is based on the homogeneity of space and
time. Covariance under rotations is an assertion of the isotropy of space. The requirement
of Lorentz covariance follows from special relativity. All three of these transformations
together form the inhomogeneous Lorentz group or the Poincaré group. When we exclude
translations, the space rotations and the Lorentz transformations together form a group —
the homogeneous Lorentz group.

We first generate a subgroup, the Lorentz transformations in which the relative velocity
v is along thex = x!-axis. The generator may be determined by considering space—time
reference frames moving with a relative velodsty, an infinitesimal® The relations are
similar to those for rotations in real space, Sections 1.2, 2.6, and 3.3, except that here the
angle of rotation is pure imaginary (compare Section 4.6).

Lorentz transformations are linear not only in the space coordinatest in the timer
as well. They originate from Maxwell’s equations of electrodynamics, which are invariant
under Lorentz transformations, as we shall see later. Lorentz transformations leave the
quadratic forme?¢2 — x2 — x2 — x2 = x3 — x? — x3 — x3 invariant, wherexg = ct. We
see this if we switch on a light source at the origin of the coordinate system. Atrtime

light has traveled the distanee=,/}" x?, soc?? — x? — x5 — x2 = 0. Special relativity

requires that in all (inertial) frames that move with veloaity ¢ in any direction relative
to thex;-system and have the same origin at time 0, ¢?#'2 — x{2 — x,? — x}2 = 0 holds
also. Four-dimensional space—time with the metrie = x2 = x3 — x2 — x2 — x2 is called
Minkowski space, with the scalar product of two four-vectors defined &s= agpho — a- b.
Using the metric tensor

1. 0 0 O
; 0 -1 0 O

() =(g"") = o 0 -1 o (4.128)
0 0 0 -1

17To be covariant means to have the same form in different coordinate systems so that there is no preferred reference system
(compare Sections 1.2 and 2.6).
18This derivation, with a slightly different metric, appears in an article by J. L. Stre8ker). Phys. 35: 12 (1967).
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we can raise and lower the indices of a four-vector, such as the coordirfate$xg, x),
so thatr,, = guwx” = (xo, —X) andx*g,,x" = x2 — x2, Einstein’s summation convention
being understood. For the gradiet, = (3/dxg, —V) = d/dx, andd,, = (3/dxo, V), SO
32 =019, = (3/dx0)2 — V2 is a Lorentz scalar, just like the metnié = x3 — x2.

Forv « ¢, inthe nonrelativistic limit, a Lorentz transformation must be Galilean. Hence,
to derive the form of a Lorentz transformation along theaxis, we start with a Galilean

transformation for infinitesimal relative velocidy:
x't=xt—svr =x1 — x958. (4.129)
Here, = v/c. By symmetry we also write
x'0=x0+ aspxt, (4.129)
with the parametez chosen so that? — x2 is invariant,
xp2 —xp2=xg —x%. (4.130)

Rememberx* = (x0, x) is the prototype four-dimensional vector in Minkowski space.
Thus Eq. (4.130) is simply a statement of the invariance of the square of the magnitude of
the “distance” vector under Lorentz transformation in Minkowski space. Here is where the
special relativity is brought into our transformation. Squaring and subtracting Egs. (4.129)
and (4.129 and discarding terms of ordésg)?, we finda = —1. Equations (4.129) and
(4.129) may be combined as a matrix equation,

x/O xO
(x/l) = (12 — 8Bo1) (xl); (4.131)

o1 happens to be the Pauli matrix;, and the parametég represents an infinitesimal
change. Using the same techniques as in Section 4.2, we repeat the transfonriaties
to develop a finite transformation with the velocity parameter N5S. Then

/0 N 0
<i1> - (12 - %) (;) . (4.132)

N
. pPO1 _ _
Nlﬁ;noo <12 — T) = eX[X pGl). (4133)

In the limit asN — oo,

As in Section 4.2, the exponential is interpreted by a Maclaurin expansion,
1 2 1 3
exp(—po1) =12 — po1 + E(,O(Tl) - g(,oal) - (4.134)

Noting that(o1)? = 15,
exp(—po1) = 1o coshp — a1 sinhp. (4.135)

Hence our finite Lorentz transformation is

%0 cosho —sinhp\ [ x° (4.136)
x't] "\ =sinhp coshp J\x1)’ '
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o1 has generated the representations of this pure Lorentz transformation. The quantities
coshp and sintp may be identified by considering the origin of the primed coordinate
systemx’! =0, orx! = vz. Substituting into Eq. (4.136), we have

0=x'coshp — x%sinhp. (4.137)

With x1 = vr andx® = ¢,
tanhp =8 = v
C

Note that theapidity p # v/c, except in the limit a» — 0. The rapidity is the additive
parameter for pure Lorentz transformations (“boosts”) along the same axis that corresponds
to angles for rotations about the same axis. Usirgtantf p = (costf p)~1,

coshp = (1 - ﬁz)_l/z =y, sinhp = By. (4.138)
The group of Lorentz transformations is not compact, because the limit of a sequence of
rapidities going to infinity is no longer an element of the group.

The preceding special case of the velocity parallel to one space axis is easy, but it illus-
trates the infinitesimal velocity-exponentiation-generator technique. Now, this exact tech-
nique may be applied to derive the Lorentz transformation for the relative velocity
parallel to any space axis. The matrices given by Eq. (4.136) for the case &b, form
a subgroup. The matrices in the general case do not. The product of two Lorentz transfor-
mation matrice$.(v1) andL(v2) yields a third Lorentz matrix,.(v3), if the two velocities
v1 andv, are parallel. The resultant velocitys, is related tov, andv; by the Einstein
velocity addition law, Exercise 4.5.3.V¥f andv2 are not parallel, no such simple relation
exists. Specifically, consider three reference frase®, ands”, with S andS’ related by
L(vq1) andS’ andS” related byl (vy). If the velocity of S” relative to the original systeifi
isvs, §” is not obtained fron$ by L(v3) = L(v2)L(v1). Rather, we find that

L(v3) = RL(v2)L(v1), (4.139)

whereR is a 3x 3 space rotation matrix embedded in our four-dimensional space—time.
With v1 andvz not parallel, the final systen$”, is rotated relative toS. This rotation

is the origin of the Thomas precession involved in spin-orbit coupling terms in atomic
and nuclear physics. Because of its presence, the pure Lorentz transfornhatiproy
themselves do not form a group.

Kinematics and Dynamics in Minkowski Space-Time

We have seen that the propagation of light determines the metric
222 0=r2_ %2

wherex* = (ct, r) is the coordinate four-vector. For a particle moving with velogitthe
Lorentz invariant infinitesimal version

cdt =./dxtdx, = \/czdt2 —dr? =dt\/c2 — V2

defines the invariant proper timeon its track. Because of time dilation in moving frames,
a proper-time clock rides with the particle (in its rest frame) and runs at the slowest possible
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rate compared to any other inertial frame (of an observer, for example). The four-velocity
of the particle can now be defined properly as
dx* M c \
— =Uu = N N
dt V22 S22

sou? = 1, and the four-momentup¥* = cmu' = (%, p) yields Einstein’s famous energy
relation

mc2

E=7=mc2+%vzﬂ:~~.

V1-v2/c2

A consequence ai? = 1 and its physical significance is that the particle is on its mass
shell p? = m?c2.

Now we formulate Newton’s equation fosangle particle of massn in special relativity
as%“ = K*, with K* denoting the force four-vector, so its vector part of the equation

coincides with the usual form. Fer= 1, 2, 3 we usedt = dt/1 —v2/c? and find
1 dp F _K
J1=v2/2dt J1-v2i2

determiningK in terms of the usual forcE. We need to findk °. We proceed by analogy
with the derivation of energy conservation, multiplying the force equation into the four-
velocity
du’  mdu?
mu, —

iv ~2dr

becausa? = 1 = const. The other side of Newton’s equation yields

1 KO F-v/c
O=-u-K= — 5
c V1=v2/cz /1 \2/c2
S0k = —E¥< s related to the rate of work done by the force on the particle.
1-v2/c2

Now we turn to two-body collisions, in which energy—momentum conservation takes
the formp1 + p2 = p3 + pa, Wherepf‘ are the particle four-momenta. Because the scalar
product of any four-vector with itself is an invariant under Lorentz transformations, it is
convenient to define the Lorentz invariant energy squared(pi + p2)? = P2, where
PH is the total four-momentum, and to use units where the velocity of lightl. The
laboratory system (lab) is defined as the rest frame of the particle with four-momentum
p’z‘ = (m2, 0) and the center of momentum frame (cms) by the total four-mome®ttim
(E1+ E»,0). When the incident lab energ‘;“/f is given, then

s =pi+p5+2p1- p2=m] +m5+2moE]
is determined. Now, the cms energies of the four particles are obtained from scalar products

p1- P =E1(E1+ E2) = E14/s,
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o]
2 2 2
Eq= p1-(p1+p2) mi+pi-p2 mj—mz+s
Vs Vs 25
£y P21t p2) mi+pi-p2  m3—mi+s
Vs Vs 2s
g P (P3tpa) _ m3+ p3-pa _ m3—mi+s
Vs Vs 2s
g, Pa (p3tpa) _ mi+p3-ps  mi—m5+s
’ NG NG PN
by substituting
2p1-p2=s—m%—m%, 2p3'p4=s—m%—m§.
Thus, all cms energieg; depend only on the incident energy but not on the scattering
angle. For elastic scatteringys = m1, mgq = mp, S0 E3 = E1, E4 = E2. The Lorentz
invariant momentum transfer squared
t=(p1— p3)?=mi+m5—2p1-ps
depends linearly on the cosine of the scattering angle.
Example 4.5.1  KaoN DEcAY AND PION PHOTOPRODUCTION THRESHOLD

Find the kinetic energies of the muon of mass 106 MeV and massless neutrino into which
a K meson of mass 494 MeV decays in its rest frame.
Conservation of energy and momentum gives = E,, + E, = \/s. Applying the rela-
tivistic kinematics described previously yields
2
_ P (pu+ pv) _ mu+pM'pV

E s
. my m

£ v putpy) P py
v — —_ .
meg meg

Combining both results we obta;inl% = mﬁ +2pyu - pv, SO

m%—i—mi
2 2
m% —m
a:nz—%;izmwmw.

As another example, in the production of a neutral pion by an incident photon according to
y + p — 79+ p’ at threshold, the neutral pion and proton are created at rest in the cms.
Therefore,

s=(py +p)? =m5+2m,EL = (pr + p)° = (mz +mp)>,
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SOEL =m, + my = 1447 MeV. []
y T T 2mp,

Exercises

45.1 Two Lorentz transformations are carried out in successigralong thex-axis, then
v2 along they-axis. Show that the resultant transformation (given by the product of
these two successive transformationajnot be put in the form of a single Lorentz
transformation.
Note. The discrepancy corresponds to a rotation.

452 Rederive the Lorentz transformation, working entirely in the real speec!, x2, x%)
with x0 = xg = ¢r. Show that the Lorentz transformation may be writletv) =
exp(po), with

0O —A —pu —v
-~ 0 0 O
- 0 0 O
-v 0 0 O

anda, u, v the direction cosines of the velocity

453 Using the matrix relation, Eq. (4.136), let the rapidity relate the Lorentz reference
frames(x’?, x’1) and (x%, x1). Let p relate (x”9, x”1) and (x'°, x’1). Finally, let p
relate(x”9, x”1) and (x%, x1). From p = p1 + p> derive the Einstein velocity addition
law

v1 + v2
v=————.
1+ vlvg/c2

4.6 LORENTZ COVARIANCE OF MAXWELL'S EQUATIONS

If a physical law is to hold for all orientations of our (real) coordinates (that is, to be in-
variant under rotations), the terms of the equation must be covariant under rotations (Sec-
tions 1.2 and 2.6). This means that we write the physical laws in the mathematical form
scalar= scalar, vectog= vector, second-rank tensersecond-rank tensor, and so on. Sim-
ilarly, if a physical law is to hold for all inertial systems, the terms of the equation must be
covariant under Lorentz transformations.

Using Minkowski spacect = x°; x = x1, y = x2, z = x%), we have a four-dimensional
space with the metrig,,, (Eq. (4.128), Section 4.5). The Lorentz transformations are linear
in space and time in this four-dimensional real sp&ce.

19 group theoretic derivation of the Lorentz transformation in Minkowski space appears in Section 4.5. See also H. Goldstein,
Classical Mechanics. Cambridge, MA: Addison-Wesley (1951), Chapter 6. The metric equaion x? = 0, independent of
reference frame, leads to the Lorentz transformations.
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Here we consider Maxwell's equations,

Vszig, (4.140a)
VxH= % + pv, (4.140b)
V.D=p, (4.140c)
V.B=0, (4.140d)
and the relations
D = o, B = uoH. (4.141)

The symbols have their usual meanings as given in Section 1.9. For simplicity we assume
vacuum ¢ = gg, 1L = o).

We assume that Maxwell’s equations hold in all inertial systems; that is, Maxwell's
equations are consistent with special relativity. (The covariance of Maxwell's equations
under Lorentz transformations was actually shown by Lorentz and Poincaré before Ein-
stein proposed his theory of special relativity.) Our immediate goal is to rewrite Maxwell’s
equations as tensor equations in Minkowski space. This will make the Lorentz covariance
explicit, or manifest.

In terms of scalarg, and magnetic vector potentials, we may solvé® Eq. (4.140d)
and then (4.140a) by

B=V xA
IA
E=-7"~Vo. (4.142)

Equation (4.142) specifies the curl Af the divergence oA is still undefined (compare
Section 1.16). We may, and for future convenience we do, impose a further gauge restric-
tion on the vector potentia.:

V.-A+ So,uoz(;—(f =0. (4.143)
This is the Lorentz gauge relation. It will serve the purpose of uncoupling the differential
equations forA andg that follow. The potential®\ and¢ are not yet completely fixed.
The freedom remaining is the topic of Exercise 4.6.4.
Now we rewrite the Maxwell equations in terms of the potentiédlaand ¢. From
Egs. (4.140c) foiv - D, (4.141) and (4.142),

A
vigyv. AP (4.144)
ot £0
whereas Egs. (4.140b) f& x H and (4.142) and Eqg. (1.86c) of Chapter 1 yield
32A k1) 1 2 pV
— — 4+ —1{VV.-A—-V°Al=—. 4.145
a2 Jat + Eo,lLo{ } €0 ( )

20Ccompare Section 1.13, especially Exercise 1.13.10.
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Using the Lorentz relation, Eq. (4.143), and the relatigng = 1/¢2, we obtain

1 92
v 22— oo

c2 912
1 92 0
VoS le=——. 4.146
|: 2 3t2j|(p £0 ( )
Now, the differential operator (see also Exercise 2.7.3)
1 92
2 2
—=-—5=-0°=-9"0
c? 912

is a four-dimensional Laplacian, usually called the d’Alembertian and also sometimes de-
noted byd. It is a scalar by construction (see Exercise 2.7.3).
For convenience we define

A A
Al= 25 =cgpA,,  A%= "% =ceoA,,

Hoc Hoc (4.147)
A2=ﬁ—ch Ag = egp = A°
= e 0Ay, 0=¢éop =A".

If we further define a four-vector current density

poVU . pv . PV . . .
Cx =4, Ty = j?, TZ =3 p=jo=j° (4.148)

then Eq. (4.146) may be written in the form
F2AH = jH (4.149)

The wave equation (4.149) looks like a four-vector equation, but looks do not constitute
proof. To prove that it is a four-vector equation, we start by investigating the transformation
properties of the generalized curreitt.

Since an electric charge elemefetis an invariant quantity, we have

de = pdxtdx?dx3, invariant (4.150)

We saw in Section 2.9 that the four-dimensional volume elemiex* dx? dx3 was also
invariant, a pseudoscalar. Comparing this result, Eq. (2.106), with Eq. (4.150), we see that
the charge density must transform the same way @s°, the zeroth component of a four-
dimensional vectaix*. We putp = j°, with j° now established as the zeroth component

of a four-vector. The other parts of Eq. (4.148) may be expanded as

.1 PUx 1Y dxt .odxl
¢ cdt =/ dx0’
Since we have just shown thift transforms agx?, this means that! transforms agx?.
With similar results forj2 and j3, We have;* transforming asix*, proving that;* is a
four-vector in Minkowski space.

Equation (4.149), which follows directly from Maxwell’'s equations, Eqgs. (4.140), is
assumed to hold in all Cartesian systems (all Lorentz frames). Then, by the quotient rule,
Section 2.8 A* is also a vector and Eq. (4.149) is a legitimate tensor equation.

(4.151)
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Now, working backward, Eg. (4.142) may be written

80Ej=—%—a—A(.), j=1,2,3,
ox= ox/ (4.152)
I i, j, k) = cyclic (1,2, 3
Toc i ™ PR (i, j, k) =cyclic (1, 2, 3).
We define a new tensor,
dA* DA

HA* — A = — —

=F" =—F*  (u,1=0,1,23),
0x,  0xy

an antisymmetric second-rank tensor, sidéeis a vector. Written out explicitly,

0 E E, E 0 —-E. —-E, -—E

Fu —E, 0 —c¢B; c¢B, FHA E, 0 —cB; c¢B

€0 —E, ¢B, 0 —cB, [’ co |E, ¢B, 0 —cB,
—-E, —cB, c¢B, 0 E, —cBy, cBy 0

(4.153)

Notice that in our four-dimensional Minkowski spagendB are no longer vectors but to-
gether form a second-rank tensor. With this tensor we may write the two nonhomogeneous
Maxwell equations ((4.140b) and (4.140c)) combined as a tensor equation,
IFu
dx,

Ja- (4.154)

The left-hand side of Eq. (4.154) is a four-dimensional divergence of a tensor and therefore
a vector. This, of course, is equivalent to contracting a third-rank tehgbdt /dx, (com-

pare Exercises 2.7.1 and 2.7.2). The two homogeneous Maxwell equations — (4.140a) for
V x E and (4.140d) fovV - B— may be expressed in the tensor form

oF; aF: oF
28 O3t of12

0 (4.155)
0x1 0x2 0x3
for EqQ. (4.140d) and three equations of the form
dF: d F JdF:
_EN SR B (4.156)

dx2 0x3 d0xg
for Eq. (4.140a). (A second equation permutes 120, a third permutes 130.) Since

Y = —3Fl“‘ = (MY
8)()L
is a tensor (of third rank), Egs. (4.140a) and (4.140d) are given by the tensor equation
(Y Mk (4.157)

From Eqs. (4.155) and (4.156) you will understand that the indicesandv are supposed
to be different. Actually Eq. (4.157) automatically reduces te O if any two indices
coincide. An alternate form of Eq. (4.157) appears in Exercise 4.6.14.
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Lorentz Transformation of E and B

The construction of the tensor equations ((4.154) and (4.157)) completes our initial goal of
rewriting Maxwell’s equations in tensor fordt.Now we exploit the tensor properties of
our four vectors and the tenssy,, .
For the Lorentz transformation corresponding to motion along: the)-axis with ve-
locity v, the “direction cosines” are given &y

0=y (x0 — pxd)

P2y pr0). (4.158)
where
B=-
and
y=(1-p3)""2 (4.159)

Using the tensor transformation properties, we may calculate the electric and magnetic
fields in the moving system in terms of the values in the original reference frame. From
Egs. (2.66), (4.153), and (4.158) we obtain

-t (g _Yp
x 1_52 X CZY’

1 v
! - .
E, = Ny (Ey + . Bx>, (4.160)
E.=E,
and
B—_* (p ik
g\ e
1 v
/ — —_— —
B, = 41_/32 <By = Ex), (4.161)
B, =B,

This coupling ofE andB is to be expected. Consider, for instance, the case of zero electric
field in the unprimed system

E.=E,=E,=0.

21Modern theories of quantum electrodynamics and elementary particles are often written in this “manifestly covariant” form
to guarantee consistency with special relativity. Conversely, the insistence on such tensor form has been a useful guide in the
construction of these theories.

225 group theoretic derivation of the Lorentz transformation appears in Section 4.5. See also Gdlutsteiin, Chapter 6.
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Clearly, there will be no force on a stationary charged particle. When the particle is in
motion with a small velocitw along thez-axis?3 an observer on the particle sees fields
(exerting a force on his charged particle) given by

whereB is a magnetic induction field in the unprimed system. These equations may be put
in vector form,

E'=vxB
or (4.162)
F=gv x B,

which is usually taken as the operational definition of the magnetic induBtion

Electromagnetic Invariants

Finally, the tensor (or vector) properties allow us to construct a multitude of invariant
gquantities. A more important one is the scalar product of the two four-dimensional vectors
or four-vectorsd, andj,. We have

v v v
Aty = _CEOAxp_X - CSOAyu - csoAzu + eopp
C C C
=go(pp —A-J), invariant (4.163)

with A the usual magnetic vector potential ahdhe ordinary current density. The first
term, pg, is the ordinary static electric coupling, with dimensions of energy per unit vol-
ume. Hence our newly constructed scalar invariant is an energy density. The dynamic in-
teraction of field and current is given by the prodActJ. This invariantA” j, appears in

the electromagnetic Lagrangians of Exercises 17.3.6 and 17.5.1.

Other possible electromagnetic invariants appear in Exercises 4.6.9 and 4.6.11.

The Lorentz group is the symmetry group of electrodynamics, of the electroweak gauge
theory, and of the strong interactions described by quantum chromodynamics: It governs
special relativity. The metric of Minkowski space-time is Lorentz invariant and expresses
the propagation of light; that is, the velocity of light is the same in all inertial frames.
Newton's equations of motion are straightforward to extend to special relativity. The kine-
matics of two-body collisions are important applications of vector algebra in Minkowski
space-time.

23if the velocity is not small, a relativistic transformation of force is needed.



Exercises

4.6.1

4.6.2

4.6.3

4.6.4

4.6.5
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(&) Show that every four-vector in Minkowski space may be decomposed into an or-
dinary three-space vector and a three-space scalar. Exanylas;, (o, pv/c),
(e0@, ceoA), (E/c, p), (w/c, K).
Hint. Consider a rotation of the three-space coordinates with time fixed.
(b) Show that the converse of (a)ist true — every three-vector plus scalar does
form a Minkowski four-vector.

(&) Show that
9j
Mj,=0-j=—2=0.
. 0xy
(b) Show how the previous tensor equation may be interpreted as a statement of con-
tinuity of charge and current in ordinary three-dimensional space and time.
(c) If this equation is known to hold in all Lorentz reference frames, why can we not

conclude thay, is a vector?

Write the Lorentz gauge condition (Eqg. (4.143)) as a tensor equation in Minkowski
space.

A gauge transformation consists of varying the scalar poteptiahd the vector poten-
tial A1 according to the relation

dx
=p1+ -,
Y2 =¢1 ey
A=A1—Vyx.
The new functiony is required to satisfy the homogeneous wave equation
1 9%y
VZy - S —% =0.
X c2 912

Show the following:

(a) The Lorentz gauge relation is unchanged.

(b) The new potentials satisfy the same inhomogeneous wave equations as did the
original potentials.

(c) The fieldsE andB are unaltered.

The invariance of our electromagnetic theory under this transformation is craileg
invariance.

A charged particle, chargg massn, obeys the Lorentz covariant equation
dp" g

= Flwpw
dt gome

where p” is the four-momentum vectaiE /c; pt, p2, p®), t is the proper timedr =
dt/1—v2/c2, a Lorentz scalar. Show that the explicit space—time forms are

dE dp
o "V E o g(E+vxB)
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4.6.6

4.6.7

4.6.8

469

4.6.10

From the Lorentz transformation matrix elements (Eq. (4.158)) derive the Einstein ve-
locity addition law

, u—v or u' +v
= uzi’
1— (uv/c?) 14 (u'v/c?)

whereu = cdx3/dx% andu’ = cdx’3/dx'°.

Hint. If L12(v) is the matrix transforming system 1 into systenl23(x’) the matrix
transforming system 2 into systemL3;3(«) the matrix transforming system 1 directly
into system 3, theth13(x) = Los(u')L12(v). From this matrix relation extract the Ein-
stein velocity addition law.

u

The dual of a four-dimensional second-rank terBanay be defined b, where the
elements of the dual tensor are given by

1
B = Egl.lkl Bkl-
Show thatB transforms as

(@) asecond-rank tensor under rotations,

(b) a pseudotensor under inversions.

Note. The tilde here doesot mean transpose.

Construct, the dual ofF, whereF is the electromagnetic tensor given by Eq. (4.153).
0 —c¢By —cBy —cB,

. ¢cB, O E, —Ey
ANS. F*Y = ¢g
cBy —E; 0 E,
¢B, E, —E, 0
This corresponds to
cB — —E,
E — ¢B.

This transformation, sometimes called@al transformation, leaves Maxwell’s equa-
tions in vacuum(p = 0) invariant.

Because the quadruple contraction of a fourth-rank pseudotensor and two second-rank
tensorse .o F* FY9 is clearly a pseudoscalar, evaluate it.

ANS. —8¢3cB - E.

(a) If an electromagnetic field is purely electric (or purely magnetic) in one particular
Lorentz frame, show thd& andB will be orthogonal in other Lorentz reference
systems.

(b) Conversely, iE andB are orthogonal in one particular Lorentz frame, there exists
a Lorentz reference system in whiEHor B) vanishes. Find that reference system.
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46.11 Show that?B2 — E2 is a Lorentz scalar.

46.12  Since(dx® dx',dx?, dx3) is a four-vectordx, dx* is a scalar. Evaluate this scalar
for a moving particle in two different coordinate systems: (a) a coordinate system fixed
relative to you (lab system), and (b) a coordinate system moving with a moving particle
(velocity v relative to you). With the time increment labeléd in the particle system
anddt in the lab system, show that

dr =dt,/1—v2/c2.

T is the proper time of the particle, a Lorentz invariant quantity.

4.6.13  Expand the scalar expression
1 1
. F, F* L — ;i AHF
4e my + 80]“

in terms of the fields and potentials. The resulting expression is the Lagrangian density
used in Exercise 17.5.1.

4.6.14  Show that Eq. (4.157) may be written

dFP

0x,

EaBys =0.

4.7 DISCRETE GROUPS

Here we consider groups with a finite number of elements. In physics, groups usually ap-
pear as a set of operations that leave a system unchanged, invariant. This is an expression
of symmetry. Indeed, a symmetry may be defined as the invariance of the Hamiltonian of a
system under a group of transformations. Symmetry in this sense is important in classical
mechanics, but it becomes even more important and more profound in quantum mechan-
ics. In this section we investigate the symmetry properties of sets of objects (atoms in a
molecule or crystal). This provides additional illustrations of the group concepts of Sec-
tion 4.1 and leads directly to dihedral groups. The dihedral groups in turn open up the study
of the 32 crystallographic point groups and 230 space groups that are of such importance
in crystallography and solid-state physics. It might be noted that it was through the study
of crystal symmetries that the concepts of symmetry and group theory entered physics. In
physics, the abstract group conditions often take on direct physical meaning in terms of
transformations of vectors, spinors, and tensors.

As a simple, but not trivial, example of a finite group, consider the set#, ¢ that
combine according to the group multiplication telfi¢see Fig. 4.10). Clearly, the four
conditions of the definition of “group” are satisfied. The elements, c, and 1 are ab-
stract mathematical entities, completely unrestricted except for the multiplication table of
Fig. 4.10.

Now, for a specific representation of these group elements, let

1—-1, a—1i, b— —1, c— —i, (4.164)

24The order of the factors is row—columab = ¢ in the indicated previous example.
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1 a E b E c

Al aibie
aja b el
b | b c 1 a
c c 1 a b

FIGURE 4.10 Group
multiplication table.

combining by ordinary multiplication. Again, the four group conditions are satisfied, and
these four elements form a group. We label this grap Since the multiplication of
the group elements is commutative, the group is labetedmutative, or abelian. Our
group is also ayclic group, in that the elements may be written as successive powers of
one element, in this casé,n =0, 1, 2, 3. Note that in writing out Eq. (4.164) we have
selected a specific faithful representation for this group of four objéuts,

We recognize that the group elements, 11, —i may be interpreted as successivé 90
rotations in the complex plane. Then, from Eq. (3.74), we create the set of foRm2atri-
ces (replacing by —¢ in Eq. (3.74) to rotate a vector rather than rotate the coordinates):

COSp —Sing
R(p) = ( : ) )
sing  cosp
and forp =0, /2, 7, and 3r/2 we have

S
(20) ()

This set of four matrices forms a group, with the law of combination being matrix multipli-
cation. Here is a second faithful representation. By matrix multiplication one verifies that
this representation is also abelian and cyclic. Clearly, there is a one-to-one correspondence
of the two representations

lolsl a<i<A b<—-1<B c< —i < C. (4.166)

(4.165)

In the groupC4 the two representationd, i, —1, —i) and(1, A, B, C) are isomorphic.
In contrast to this, there is no such correspondence between either of these representa-
tions of groupC4 and another group of four objects, the vierergruppe (Exercise 3.2.7). The

Table 4.3

1 Vi Vo V3
1 1 Vi Vo V3
Vi| v 1 V3 Vs
Vo | Vo V3 1 \Z
Va | V3 Vo Vi 1
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vierergruppe has the multiplication table shown in Table 4.3. Confirming the lack of cor-
respondence between the group represented by—1, —i) or the matricegl, A, B, C)

of Eq. (4.165), note that although the vierergruppe is abelian, it is not cyclic. The cyclic
groupC4 and the vierergruppe are not isomorphic.

Classes and Character

Consider a group elementtransformed into a group elemenby a similarity transform
with respect tqg;, an element of the group

gixg T =y. (4.167)

The group element is conjugate to x. A classis a set of mutually conjugate group ele-
ments. In general, this set of elements forming a class does not satisfy the group postulates
and is not a group. Indeed, the unit element 1, which is always in a class by itself, is the
only class that is also a subgroup. All members of a given class are equivalent, in the sense
that any one element is a similarity transform of any other element. Clearly, if a group is
abelian, every element is a class by itself. We find that

1. Every element of the original group belongs to one and only one class.
2. The number of elements in a class is a factor of the order of the group.

We get a possible physical interpretation of the concept of class by noting iz
similarity transform ofx. If g; represents a rotation of the coordinate system, thisrthe
same operation asbut relative to the new, related coordinates.

In Section 3.3 we saw that a real matrix transforms under rotation of the coordinates
by an orthogonal similarity transformation. Depending on the choice of reference frame,
essentially the same matrix may take on an infinity of different forms. Likewise, our group
representations may be put in an infinity of different forms by using unitary transforma-
tions. But each such transformed representation is isomorphic with the original. From Ex-
ercise 3.3.9 the trace of each element (each matrix of our representation) is invariant under
unitary transformations. Just because it is invariant, the trace (relabelelutteeter) as-
sumes a role of some importance in group theory, particularly in applications to solid-state
physics. Clearly, all members of a given class (in a given representation) have the same
character. Elements of different classes may have the same character, but elements with
different characters cannot be in the same class.

The concept of class is important (1) because of the trace or character and (2) because
the number of nonequivalent irreducible representations of a group is equal to the
number of classes.

Subgroups and Cosets

Frequently a subset of the group elements (including the unit eleientll by itself
satisfy the four group requirements and therefore is a group. Such a subset is salled a
group. Every group has two trivial subgroups: the unit element alone and the group itself.
The elements 1 and of the four-element grou, discussed earlier form a nontrivial
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subgroup. In Section 4.1 we consid&D(3), the (continuous) group of all rotations in or-
dinary space. The rotations about any single axis form a subgro8®¢38). Numerous
other examples of subgroups appear in the following sections.

Consider a subgroufl with elementd:; and a group elementnot in H. Thenxh; and
h;x are not in subgroupi . The sets generated by

xh;, i=12,... and hix, i=12,...

are calledcosets, respectively the left and right cosets of subgrdiipvith respect tox. It

can be shown (assume the contrary and prove a contradiction) that the coset of a subgroup
has the same number of distinct elements as the subgroup. Extending this result we may
express the original groug@ as the sum off and cosets:

G=H+x1H+x2H+---.

Then the order of any subgroup isa divisor of the order of the group. It is this result
that makes the concept of coset significant. In the next section the six-elementiggoup
(order 6) has subgroups of order 1, 2, and3.cannot (and does not) have subgroups of
order 4 or 5.

The similarity transform of a subgrou by a fixed group element not in H, x Hx 1,
yields a subgroup — Exercise 4.7.8. If this new subgroup is identical &ifbr all x, that
is,

xHx_le,

then H is called aninvariant, normal, or self-conjugate subgroup. Such subgroups are
involved in the analysis of multiplets of atomic and nuclear spectra and the particles dis-
cussed in Section 4.2. All subgroups of a commutative (abelian) group are automatically
invariant.

Two Objects — Twofold Symmetry Axis

Consider first the two-dimensional system of two identical atoms incthelane at (1,
0) and (1, 0), Fig. 4.11. What rotatioR3 can be carried out (keeping both atoms in the
xy-plane) that will leave this system invariant? The first candidate is, of course, the unit
operator 1. A rotation o radians about the-axis completes the list. So we have a rather
uninteresting group of two members (&1). Thez-axis is labeled a twofold symmetry
axis — corresponding to the two rotation angles, 0 anthat leave the system invariant.

Our system becomes more interesting in three dimensions. Now imagine a molecule
(or part of a crystal) with atoms of elemekit at +a on thex-axis, atoms of elemerk
at £b on they-axis, and atoms of elemeftt at ¢ on thez-axis, as show in Fig. 4.12.
Clearly, each axis is now a twofold symmetry axis. UsRygr) to designate a rotation of
7 radians about the-axis, we may

25Here we deliberately exclude reflections and inversions. They must be brought in to develop the full set of 32 crystallographic
point groups.
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FIGURE 4.11 Diatomic molecules H, N2, O,
Cly.
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FIGURE 4.12 Do symmetry.

set up a matrix representation of the rotations as in Section 3.3:

1 0 0 -1 0 0
R(m)=|0 -1 o0 |, Ry=[0 1 0],
0 0 -1 0 0 -1
(4.168)
-1 0 O 100
R(m)=| 0 -1 o], 1={0 1 0
0 0 1 001

These four elementfd, R, (), R, (1), R; (;r)] form an abelian group, with the group mul-
tiplication table shown in Table 4.4.

The products shown in Table 4.4 can be obtained in either of two distinct ways:
(1) We may analyze the operations themselves —a rotatian about thex-axis fol-
lowed by a rotation ofr about they-axis is equivalent to a rotation af about thez-axis:

R, (m)Ry () =R (). (2) Alternatively, once a faithful representation is established, we
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Table 4.4
1 Rx () Ry(ﬂ) Rz ()
1 1 Ry Ry Ry
Ry () Rx 1 R; Ry
Ry(rr) Ry R; 1 Ry
R;(m) R; Ry Ry 1

can obtain the products by matrix multiplication. This is where the power of mathematics
is shown —when the system is too complex for a direct physical interpretation.
Comparison with Exercises 3.2.7, 4.7.2, and 4.7.3 shows that this group is the vier-
ergruppe. The matrices of Eq. (4.168) are isomorphic with those of Exercise 3.2.7. Also,
they are reducible, being diagonal. The subgroupghrR,), (1, Ry), and(1,R;). They
are invariant. It should be noted that a rotationtoébout they-axis and a rotation of
about thez-axis is equivalent to a rotation af about thex-axis: R, ()R, () = R, (7).
In symmetry terms, ify andz are twofold symmetry axes, is automatically a twofold
symmetry axis.
This symmetry group® the vierergruppe, is often labeldab, the D signifying a dihe-
dral group and the subscript 2 signifying a twofold symmetry axis (and no higher symmetry
axis).

Three Objects — Threefold Symmetry Axis

Consider now three identical atoms at the vertices of an equilateral triangle, Fig. 4.13.
Rotations of theriangle of 0, 2/3, and 4r/3 leave the triangle invariant. In matrix form,
we have’

10
1=Rz(o)= (0 1)

cos2r/3 —sin2n/3>_<—1/2 —ﬁ/z)

A=R,(27/3) = (

sin2r/3  cosZ/3 V3/2 -1)2
B=R.(41/3) = (:\ZZ fi z) . (4.169)

The z-axis is a threefold symmetry axi€l, A, B) form a cyclic group, a subgroup of the
complete six-element group that follows.

In the xy-plane there are three additional axes of symmetry —each atom (vertex) and
the geometric center defining an axis. Each of these is a twofold symmetry axis. These rota-
tions may most easily be described within our two-dimensional framework by introducing

267 symmetry group is a group of symmetry-preserving operations, that is, rotations, reflections, and inversipmsnéric
group is the group of permutations @fistinct objects — of ordes!.
27Note that here we are rotating thréangle counterclockwise relative to fixed coordinates.
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4y

FIGURE 4.13 Symmetry operations on an
equilateral triangle.

reflections. The rotation of about theC- (or y-) axis, which means the interchanging of
(structureless) atomsandc, is just a reflection of the-axis:

Cerery= |t ° 4.170
=Rc(n) = o 1) (4.170)

We may replace the rotation about tfieaxis by a rotation of #/3 (about ourz-axis)
followed by a reflection of the-axis (x — —x) (Fig. 4.14):

D=Rp(7)=CB
-1 0\ /[ -1/2 /32
:( 0 1) <_J§/2 —1/2>
_( 1/2 —J§/2>

4.171
V32 —1/2 ( )

D~ax1s

A A A
VAR AR

FIGURE 4.14 The triangle on the right is the triangle on
the left rotated 18Dabout theD-axis.D = CB.
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In a similar manner, the rotation af about theFE-axis, interchanging andb, is replaced
by a rotation of Z/3(A) and then a reflectidf of the x-axis:

E=Rg(r)=CA

-1 0\ /-1/2 —-.3/2
=<o 1>(¢§/2 —1/2)
_( 1/2 ﬁ/z)

172
iz 12 (4.172)

The complete group multiplication table is

moOm®@>kRE
oOomePR @ > >
OmMmoO>»F W@
WrX>FEMmMOOO
>R, TmOMOO0
P m>00MmmMm

mooOm®>»r

Notice that each element of the group appears only once in each row and in each column, as
required by the rearrangement theorem, Exercise 4.7.4. Also, from the multiplication table
the group is not abelian. We have constructed a six-element group ararBeducible

matrix representation of it. The only other distinct six-element group is the cyclic group
[1,R,R? R3 R4 R5], with

(4.173)

R = eZn’i/G or R= e*ﬂi02/3 = ( 1/2 B \/§/2> .

V3/2 1/2

Our group[1, A, B, C, D, E] is labeledD3 in crystallography, the dihedral group with a
threefold axis of symmetry. The three ax€s 0, and E) in the xy-plane automatically
become twofold symmetry axes. As a consequentel), (1, D), and (1, E) all form
two-element subgroups. None of these two-element subgrouRs isfinvariant.

A general and most important result for finite group# aflements is that

> nf=h, (4.174)
i

wheren; is the dimension of the matrices of thth irreducible representation. This equal-

ity, sometimes called thdimensionality theorem, is very useful in establishing the irre-
ducible representations of a group. Here fay we have £ + 12 + 22 = 6 for our three
representations. No other irreducible representations of this symmetry group of three ob-
jects exist. (The other representations are the identitydahddepending upon whether a
reflection was involved.)

28Note that, as a consequence of these reflectiongCilet detD) = det(E) = —1. The rotationA andB, of course, have a
determinant oft-1.



4.7 Discrete Groups 299

FIGURE 4.15 Ruthenocene.

Dihedral Groups, D,

A dihedral groupD,, with ann-fold symmetry axis impliea axes with angular separation

of 2 /n radiansy is a positive integer, but otherwise unrestricted. If we apply the symme-
try arguments tarystal lattices, thenn is limited to 1, 2, 3, 4, and 6. The requirement of
invariance of the crystal lattice under translations in the plane perpendicular tefdick

axis excludes: =5, 7, and higher values. Try to cover a plane completely with identical
regular pentagons and with no overlappfidror individual molecules, this constraint does
not exist, although the examples with> 6 are raren =5 is a real possibility. As an ex-
ample, the symmetry group for ruthenoce(@s Hs)2Ru, illustrated in Fig. 4.15, i©5.30

Crystallographic Point and Space Groups

The dihedral groups just considered are examples of the crystallographic point groups.
A point group is composed of combinations of rotations and reflections (including inver-
sions) that will leave some crystal lattice unchanged. Lim