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PREFACE (1983)

The Preface that I wrote fifteen years ago for the first edition of this textbook is still
applicable to the specific role that it plays in the education of astrophysicists. Were
that not so, a reprint edition would not be as useful as many of my colleagues appear
to believe that it will be. Some have urged me to write instead an expanded and
updated version; but most have reinforced my own opinion that the understanding of
principles needed by students remains about what it was. That being the case, we
have chosen to keep the cost accessible to students by offering this reprint edition.

Of course, scientific research itself has increased by leaps and bounds, both in
stellar evolution and in nucleosynthesis. The number of research papers and the
complexity of their results dwarfwhat was known fifteen years ago. But this textbook
was not conceived to be a review paper then, and neither need it be today. What we
choose instead is to provide in this Preface a brief commentary with selected references
to recent literature. These will be useful to students seeking to bridge the text to
recent research. In making these remarks, I strive for brevity. The recent references
that I selected update those topics that are addressed explicitly or implicitly in the first
edition. Rather than trying to be fairly complete in the references, I have singled out
some that Will help the student continue study of a particular topic, either because
they are readable accounts, or especially influential papers, or reviews possessing a
good reference list. In regard to stellar evolution, the AnnualReviews qfAstronomy and
Astrophysics are so useful that they are designated explicitly in this Preface (Ann. Rev.)
as well as listed in the reference list at the end. The many lAD Symposia published
by D. Reidel are also excellent sources to today's stellar evolution problems. One book
alone, Essaysin Nuclear Astrophysics, C. A. Barnes, D. D. Clayton, and D. N. Schramm,
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eds. (Cambridge University Press, Cambridge 1982), contains such a collection of
authoritative and interestingly written articles as to serve as a major reference source
for nuclear astrophysics. Many references will be to its contents. It is identified in
this text for convenience as EssNA. Most instructors will, in any case, have their own
references and supplementary material that fit their own emphases for the course.

Knowledge of the abundances of the elements in the solar system has greatly
improved and continues to provide the basic impetus for nucleosynthesis theory.
This includes improved knowledge of the abundances in meteorites, in the sun, and
in the solar wind. Two outstanding recent compilations are those of Cameron (1982,
in EssNA) and of Anders and Ebihara (1982), whose tables also indicate the nuclear
processes believed to be responsible for the synthesis of the abundance of each isotope.
A thrilling development was the discovery in the 1970s of small variations in isotopic
composition between differing meteoritic samples. The differences strongly point to
validation of key ideas of nucleosynthesis theory, ideas that had heretofore been
accepted on faith; specifically, that the solar system abundances comprise a mixture
of nuclei with different nucleosynthesis histories. I have myself taken pains (Clayton
1979) to demonstrate that these isotopic variations are not random but support the
expectations of nucleosynthesis theory. Their interpretation gives birth to a new field
of astronomy based on the chemical history of presolar dust (Clayton 1981).
Significant observations of overabundances of iron (Kirshner and Oke 1975) and of
the products of explosive oxygen burning (Chevalier and Kirshner 1979) in young
supernova remnants have provided a long-sought demonstration of the significance of
supernovae to nucleosynthesis (Woosley and Weaver 1982a, 1982b, in EssNA).

The discovery of pulsars was not anticipated by the text material. The subsequent
attention to neutron stars emphasized that the equation of state of matter at very high
derisities, up to and beyond the density of nuclear matter on earth (2 X 1014 g/cm''),
is an essential part of the problem of stellar evolution. The pressure in the idealized
(but unrealistic) case of a perfect neutron gas (degenerate) requires only that its mass
MNreplace the electron mass M,in chapter 2; however, that analysis gives a maximum
"Chandrasekhar mass" of only 0.7 M<3 for a neutron star. It is the imperfect nature
of the nn interaction (repulsion) that raises the maximum mass to about 2.5 .M<3.
Baym and Pethick (1979, Ann. Rev.) provide one good description of the physics of this
imperfect gas and associated uncertainties in it with special emphasis on the structure
of neutron stars. Canuto (1974,1975, Ann. Rev.) provides a more thorough review of
the physical principles of the equation of state itself. The problem at subnuclear
densities is obfuscated by the complicated clustering of nucleons into rather exotic
neutron-rich nuclei and by the degree of electron capture as the material becomes
more neutron rich. Careful treatment of that density regime is required not only for
the outer parts of the neutron star but also for the problem of presupernova- core
collapse (e.g., Bethe 1982, in EssNA). A direct measure of the radii of neutron stars
may be provided by a model of x-ray bursts based on the thermonuclear explosions
on the surfaces of neutron stars (Woosley and Tamm 1976; van Paradijs 1979).
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The problem of stellar opacity has been reviewed by Carson (1976, Ann. Rev.). The
difficult problem of energy transport by convection is usefully discussed by Spiegel
(1971, 1972, Ann. Rev.). These two problems remain at the heart of many aspects of
stellar structure and evolution, and there is still no assurance that they are being
correctly treated. Barkat (1975, Ann. Rev.) discusses theneutrino emitting processes
in stellar interiors along with a discussion of their influence on the various stages of
stellar evolution. Bahcall and Davis (1982, in EssNA) present an engaging review of
the solar neutrino problem.

Many improvements in thermonuclear reaction rates have outdated the limited
numbers tabulated in the text. Three reviews by Fowler, Caughlan, and Zimmerman
(1967, 1975, Ann. Rev.) and Harris et al. (1983, Ann. Rev.) have assumed major roles
as thermonuclear data evaluations. Hydrogen-burning reactions are discussed also
by Kavanagh (1982, in EssNA) and by Rodney and Rolfs (1982, in EssNA). More
advanced thermonuclear stages are described by Barnes (1982, in EssNA) and by
Tombrello, Koonin, and Flanders (1982, in EssNA). These sources will lead to
almost all of the nuclear data needed for the energy generation aspects of stellar
evolution.

The more advanced stages of thermonuclear burning require a physics treatment
slightly different than that in chapter 4, because the very high temperatures result in
energies that are significant fractions of the Coulomb barrier and because they usually
proceed through a large number of compound-nucleus resonances whose properties
cannot all be measured. It therefore becomes necessary to calculate many thermo
nuclear rates with the aid of a model of thermonuclear reactions and from statistical
data abou t the numbers and properties of such resonances. Such statistical theories
usually employ the Hauser-Feshbach formulation of compound resonances. The
validity of the results is measured by the degree (quite impressively good) to which
such calculations reproduce the reactions where the cross section is well measured.
Woosley et al. (1978) and Holmes et al. (1976) present a large and useful compilation
of such calculations. Barnes (1982, in EssNA) also summarizes the theory nicely and
shows how it compares with experiment. The most readable account was prepared
by W. A. Fowler (1974) for the 1973 George Darwin Lecture of the RAS. His
dedication to obtaining the correct thermonuclear rates provided the thrust for this
approach to high-temperature reactions, and his account of it is especially to be
recommended for those trying to understand for the first time the differences with
chapter 4. Ward and Fowler (1980) discuss the thermalization of long-lived isomeric
states that are not in thermal equilibrium at low temperatures.

The original material in chapter 5 is now inadequate on the nuclear problems of
carbon burning, oxygen burning, neon burning, and silicon burning. What was
missing then was a lot more nuclear data and the computer codes for reaction
networks capable of handling many reactions and their inverses. There are a number
of good discussions of these: carbon burning (Pardo, Couch, and Arnett 1974; Couch
and Arnett 1975); ne<?n burning (Arnett 1974a); oxygen burning (Woosley, Arnett,
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and Clayton 1972, 1973' Arnett 1974b); silicon burning (Woosley, Arnett, and Clay
ton 1973; Arnett 1977). ' Silicon burning approaches nuclear statistical equilibrium in
the manner introduced in Chapter 7; with later quantitative treatments by Woosl:y,
Arnett, and Clayton (1973), Hainebach et al. (1974), and Arnett (1977). Despite
some subsequent improvements in the nuclear data, these papers are very clear in
their displays of the nature of the burning, the setting of the burning, and the
nucleosynthesis that accompanies it. The numerical technique for solving the simul
taneous nonlinear differential equations for the rates of change of the abundances was
devised and described by Arnett and Truran (1969). See also section 2 of Woosley,
Arnett, and Clayton 1973 for further clarification.

Following these papers, it has become conventional, by the way, to let the variable
Yi or Y(i) designate the abundance of species i in units of moles per gram. Then the
number density N(i) = pNAVOY(i),and Y(i) clearly is equal to X(i)/A(i), the ratio of
mass fraction X(i) to atomic weight A (i). I note this here because of the now
widespread (and commendable) use of this notation. Notice that in a simple expan
sion of matter without nuclear reactions or mixing the abundance Y(i) remains
constant, whereas the abundance N(i) is proportional to p,

There is a large literature in stellar structure and evolution. But I make no attempt
here to review it; rather, in the spirit of the principles of the subject, I choose to point
the student to a few major works. In the same year that this textbook was published,
another monograph by Cox and Giuli (1968) appeared, containing in two volumes a
more exhaustive (though perhaps somewhat more demanding) treatment of the phys
ics of stellar structure. Perhaps the best educational format today is to have these
excellent volumes on reserve to elaborate specific sections of this text when desired.
The second edition ofGalacticAstronomy(Mihalas and Binney 1982) does an admirable
job of briefly reviewing stellar evolution (in chapter 3) and, more important, of
relating the many problems of stellar evolution to the general problems of the Galaxy.
This book is, in other words, to be highly recommended to the student seeking
interactions between stellar evolution and galactic structure and evolution.

The reviews by Iben (1967, 1974 Ann. Rev.) remain excellent quantitative expla
nations of the applications of stellar-structure theory to the important early phases of
stellar evolution. A series of papers by Arnett referred to above describes clearly the
advanced burning stages of the helium cores. The evolution of the entire massive
stars through carbon burning is quantitatively described by Lamb et al. (1976).
Woosley et al. (1978) presented the complete evolution through all six stages of
nuclear burning and core collapse of 15 M@ and 25 M@ stars. Particularly useful
papers in evolution through the asymptotic giant branch are Iben 1982 and Becker
and Iben 1979,1980. The related fascinating mystery of the carbon stars is addressed
by Iben (1981); and the whole question of the last phases of evolution of low and
intermediate mass stars « 8 M@) is reviewed by Iben and Renzini (1983, Ann. Rev.).
These few papers are singled out for the particularly relevant way in which they
extend the principles of this textbook. The series of IAU Symposia are also rich

. sources for the student. In particular, Physical Processes in Red Giants (I ben and
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Renzini 1981), Stellar Instability and Evolution (Ledoux 1974), Chemical and Dynamical
Evolution if Our Galaxy (Basinska-Grzesik and Mayor 1977) and Effects if Mass Loss in
Stellar Evolution (Chiosi and Stalio 1981) contain a host of stimulating treatments of
problems in stellar evolution.

One particular problem deserving special mention is the thermal instability in
evolved stars with two burning shells (He and H). This instability, which was
discovered by Schwarzschild and Harm (1965), has led to very rich interplay between
the principles of stellar evolution and of nucleosynthesis. It is this interplay that
makes it noteworthy in the context of this text. In particular, Iben's work (1975a,b;
1976) is rich in its treatment of the thermal instability and in its relation to the
r-process of nucleosynthesis. Going beyond these, Iben's (1978) study of thermal
oscillations during carbon burning is typically thorough and physically illuminating.

Many problems concern stellar rotation. Dicke (1970, Ann. Rev.) and Gilman
(1974, Ann. Rev.) discuss the issues and evidence for the sun. General features of
stellar rotation are reviewed by Strittmatter (1969, Ann. Rev.), and the evolution of
rotating stars is discussed by Fricke and Kippenhann (1972, Ann. Rev.).

One very important problem that is also related to the problem of stellar rotation
is that of star formation. It is fairly well established that stars form in molecular
clouds when they reach a density so great that self-gravitation takes over, leading to
an extended period of almost free fall onto a growing hydrostatic core. Hydro
dynamic models now exist (e.g., Larson 1973, Ann. Reu.; Woodward 1978, Ann. Reu.;
Bodenheimer and Black 1978). The major issue is whether spherical symmetry is a
good approximation as matter falls onto a growing core, or whether the angular
momentum barrier will require an intermediate disk phase for redistributing the
angular momentum. Most of the calculations are of spherical protostar collapse, and
the problem is brilliantly described in a series of papers by Stahler, Shu, and Tamm
(1980a,b; 1981) and by Winkler and Newman (1980a,b). Such calculations are,
however, irrelevant if rotation forces the collapse in another direction. The general
theory of accretion disks is laid out by Pringle (1981), but there are not yet many
calculations of the growth ofstars in such a way. But the structure of such prestellar
accretion disks has become a new branch of stellar evolution, as described most clearly
in papers by Lin (1981) and Lin and Bodenheimer (1982). Another issue is the first
optical appearance of protostars. Where on the almost vertical Hayashi track does
the spherically symmetric collapse first appear, and how does that compare to the
T-Tauri phenomena? What does star formation look like if stars are instead grown
via a disk? This has become perhaps ths most important problem in stellar evolution
because of the crucial way in which it relates to the larger issue of the evolution of the
phases of the interstellar medium and the exciting derivative issue of the formation of
the solar system.

Interest in white dwarfs (Weidemann 1968, Ann. Reo.; Liebert 1980, Ann. Rev.) has
increased over the years as questions beyond that of their structure have come to the
fore. Ostriker (1971,.Ann. Rev.) reviews many modern developments in their theory.
Salpeter (1971, Ann. Rev.) summarizes the arguments for their being the central stars
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of planetary nebulae. Important questions for stellar evolution hinge on the evo
lutionary state ofthe preplanetary nebula stars and its connecti.on to the .mass and
composition of the white dwarfs. Another line of development Involves bInary sys
tems, wherein mass transfer onto the dwarfleadingto a thermonuclear runaway In the
hydrogen-rich skin has become the accepted model of the common nova (Gallagher
and Starrfield 1978, Ann. Rev.; Truran 1982, in EssNA). A related fascination is the
Type I supernova explosions, some of which may be triggered when a white dwarf
mass surpasses the Chandrasekhar limit owing to either electron capture or accretion,
or both. This has led to a lot of study of an initially degenerate carbon-detonation
model (Arnett 1969). See, for example, the proceedings of the Texas Workshop on
Type I supernovae (Wheeler 1980) or the book Supernovae (Rees and Stoneham 1982)
or Trimble's work (1982, 1983). These books are excellent literature on the super
nova explosion itself, which is the single most important event in stellar evolution and
nucIeosynthesis. Arnett (1982a, in EssNA, 1982b) reviews general arguments about
the supernova phenomenon. Bethe (1982, in EssNA) describes the physics relevant
to the collapse models of supernovae. Woosley and Weaver (I 982a, 1982b, in EssNA)
review the nucleosynthesis expected in massive supernovae. And I (Clayton, 1982,
in EssNA) describe the hope of confirming nucleosynthesis theory by detecting gamma
rays from the freshly synthesized radioactive nuclei expected to be synthesized in these
explosions. Many other chapters in Rees and Stoneham's 1982 study address the
many astrophysical problems related to supernovae. Hillebrandt (1978) reviews the
relation of supernova hydrodynamics to the r-process of nucleosynthesis. Let it be
said quite frankly that the supernova involves every single principle of stellar physics,
and because it is also the primary source of heavy atomic nuclei, its central role in
astrophysics is appreciated ever more fully.

Chapter 7 remains a useful introduction to the nucleosynthesis of the heavy ele
ments, even though many improvements and clarifications have occurred. More
modern e-process calculations are presented by Hainebach et al. 1974. The s-process
is reviewed by Ulrich (1982, in EssNA) , who played a leading role in the development
of the idea that successive neutron-liberating pulses followed by mixing within a single
star produce the exponential distribution ofneutronfluences that characterizes solar
abundances. The neutron-liberating reactions in these pulses are either 13C(a,n) 160,
which requires some episodic mixing of hydrogen into a pulsationally .unstable
helium-burning shell (Iben and Renzini 1982), or the 22Ne(a,n) 25Mg reaction, which
requires the high helium-burning-shell temperatures of moderately massive stars.
The detailed problems associated with the required mixing are not yet fully solved.
Especially to be recommended for this problem are the many papers of the Illinois
group-Iben, Truran, and colleagues-as referenced above and in Ulrich's review.
The interplay between stellar models and the nuclear physics has been very re
warding. The latest and best compendium of cross-section data and the good support
it gives to the exponential-distribution model is the work of Kappeler et al. (1982). A
major analysis of the mathematics of branching competition between neutron capture
and beta decay is to be found in Ward, Newman, and Clayton 1976.
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The r-process of heavy-element nucleosynthesis is updated in three excellent recent
reviews (Schramm 1982, in EssNA; Hillebrandt 1978; Klapdor et al. 1981). Four
related questions are dominating modern research: (1) Where in stellar evolution do
the sites for intense (nn;;?;: 1020 cm") bursts of free neutrons occur? (2) Is it the
neutron-separation energies, the beta-decay rates, or the neutron-capture cross sec
tions along the capture path in neutron-rich nuclei that are dominating the abundance
pattern? (3) Are the seed nuclei iron or are they heavier nuclei that have been
produced in excess by an s-process during the prior evolution of the star? (4) How
does the freeze-au t during expansion set the final abundances? The view taken in
chapter 7 was that the temperature and free-neutron densities were so high during the
explosion that neutron-separation energies do regulate the flow and that the waiting
point approximation is a physically valid one. Important improvements to the
beta-decay rates are described by Klapdor et. al. 1981. The alternative now receiving
much study is that relatively low-temperature shock waves through the helium shell
can liberate neutrons that drive s-process seed through neutron-magic, neutron-rich
nuclei in circumstances where the (n;y) cross sections dominate. See Cameron,
Cowan, and Truran (1983) for a provocative study of this process and of the contro
versy over the "waiting-point approximation" within the context of helium-burning
shells hit by a supernova shock wave. This is an interesting and important contro
versy that may be resolvable within a few years' time. The studies of presup ernova
structure strongly influence the problem through their control of allowable shock
structures and of the pre-explosion nuclear evolution. It has also become apparent
that the origins of rare neutron-rich nuclei in brief explosive neutron bursts (Howard
et al. 1972; Wefel et al. 1981) are a key diagnostic aspect of such neutron bursts, many
of which are too weak to produce the r-process peaks in the heavy elements.

Schramm (1982, in EssNA) and Thielemann, Metzinger, and Klapdor (1983) also
review readably the implications from the r-process nucleosynthesis of long-lived
radioactivities. The decays of sss, 23SU, and 187Re continue to show that nucleo
synthesis (r-process) began between 10 and 16 Gyr ago; but it has still not been
possible to derive the exact answer with high precision. This age stands comfortably
with those of the globular clusters and of the universe based on the Hubble expansion,
but the possibility of improvement or of rude shocks remains. The discoveries and
interpretation of the shorter lived extinct radioactivities 22Na, 26Al, 41Ca, 107pd, 1291,
135Ba, and 244pU (Wasserburg and Papanastassiou 1982, in EssNA) have been very
active and controversial (Schramm 1982 in EssNA; Clayton 1979). The major con
troversy revolves around (1) whether these nuclei were actually alive at one time in
the solar system bodies wherein their daughters are now found, or whether the
parent-daughter correlations now found in meteorites have been inherited from a
much larger correlation present in interstellar dust, and (2) if they were alive in solar
system objects, what those abundances imply for the conditions and causes of the
formation of the solar system (Clayton 1979). I have advanced an astrophysical
model (Clayton 1983) for the free-decay interval, prior to formation of the solar
system, based upon the rate of mixing offresh nucleosynthesis products into the dense
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phases of the interstellar medium. I cannot resist author's license to remark that the
last paragraph of this book has been abundantly borne out.. .

The p-process of nucleosynthesis of the proton-rich, neutron-shielded heavy nuclei
received almost no treatment in chapter 7; and, indeed, it has remained much the least
studied of the nucleosynthesis mechanisms. It is very clear that elucidation of the
explosive stars and their prior stellar evolution is to be found in the p-abundances,
however. The original concept of rapid proton capture in a hot proton-rich environ
ment was evaluated again by Audouze and Truran (1975), with good general fit to the
observed p-abundances, but some severe points of difficulty remain. A compelling
site for such a process has not been located, but hydrogen thermonuclear eruptions
on the skin of a white dwarf, the novae (Truran 1982, in EssNA), is a possibility.
Woosley and Howard (1978) made a thorough study of a separate process, a photo
ejection process in which (y,n) and (y,a) reactions strip down the normal heavy
elements to proton-rich isotopes. I believe that this process is the more believable of
the two, but the undecided question of stellar site remains elusive. Kappeler et al.
1982 also provides a useful discussion of this problem.

An ultimate goal of this science remains that of interpreting the full range of stellar
abundances within the natural evolution of stars and stellar systems. There is a wide
current literature for these problems, which can best be addressed according to the
interest of the instructor. Suffice it here to say that the types of problems include, for
example, (1) abundance gradients in galaxies, (2) the problem of the paucity of
metal-poor dwarfs, and (3) the underabundance patterns in younger stellar systems
such as the Magellanic Clouds. Problems of this type affect much larger issues in
astrophysics than the scope of this textbook, however. See chapter 4 of Mihalas and
Binney (1981) and Basinska-Grzesik and Mayor (1977).

It is my hope that these briefremarks will help this textbook remain as useful to new
students as it was to those studying the subject during the 1970s. I thank those good
friends and excellent colleagues, Dave Arnett, Willy Fowler, Icko Iben, and Stan
Woosley, for their helpful assistance in improving the review aspects of this Preface.

REFERENCES
Anders, E., and Ebihara, M. 1982. Geochim. Cosmochim, Acta46: 2363.
Arnett, W. D. 1969. Ap. Space Sci. 5: 180.

1974a. Ap.j.193: 169.
1974b. Ap. j. 194: 373.
1977. Ap. j. Suppl. 35: 145.
1982a. In Essays in Nuclear Astrophysics.

--. 1982b. In Supernovae) ed. M. J. Rees and R. J. Stoneham, p. 221. Dordrecht:
Reidel.

Arnett, W. D., and Truran, J. W. 1969. Ap. j. 157: 339.
Audouze, J., and Truran, J. W. 1975. Ap. j. 202: 204.
Bahcall, J. N., and Davis, R. 1982. In Essays in Nuclear Astrophysics.



PREFACE (1983) xvII

Barkat, Z. 1975. Ann. Rev. Astron. Astrophys. 13: 45.
Barnes, C. A. 1982. In Essays in Nuclear Astrophysics.
Basinska-Grzesik, E., and Mayor, M., eds. 1977. Chemical and Dynamical Evolution of

Our Galaxy. LA.D. Colloquium no. 45. Geneva: Observatoire de Geneve.
Baym, G., and Pethick, C. 1979. Ann. Rev. Astron. Astrophys. 17: 415.
Becker, S. A., and Iben, 1. 1979. Ap.]. 232: 831.
--.1980. Ap.]. 237: Ill.
Bethe, H. 1982. In Essays in Nuclear Astrophysics.
Bodenheimer, P., and Black, D. C. 1978. In Protostars and Planets, ed. T. Gehrels, p.

288. Tucson: Univ, Arizona Press.
Cameron, A. G. W. 1982. In Essays in Nuclear Astrophysics.
Cameron, A. G. W.; Cowan,].].; and Truran,]. W. 1983. Astrophys. and Space Sci.

In press.
Canuto, V. 1974. Ann. Rev. Astron. Astrophys. 12: 167.
--. 1975. Ann. Rev. Astron. Astrophys. 13: 335.
Carson, T. R. 1976. Ann. Rev. Astron. Astrophys. 14: 95.
Chevalier, R., and Kirshner, R 1979. Ap.]. 233: 154.
Chiosi, C., and Stalio, R., eds. 1981. Effects of Mass Loss in Stellar Evolution. Dordrecht:

D. Reidel.
Clayton, D. D. 1979. Space Sci. Rev. 24: 147.

1981. Quar.]. Roy. Astron. Soc. 23: 174.
---. 1982. In Essays in Nuclear Astrophysics.
--. 1983. In Ap.]. 268: 381.
Couch, R G., and Arnett, W. D. 1975. Ap.]. 196: 791.
Cox,]. P., and Guili, R T. 1968. Principles of Stellar Structure. New York: Gordon and

Breach.
Dicke, R H. 1970. Ann. Rev. Astron. Astrophys. 8: 297.
Fowler, W. A. 1974. Quar.]. Roy. Astron. Soc. 15: 82.
Fowler, W. A.; Caughlan, G. R.; and Zimmerman, B. A. 1967. Ann. Rev. Astron.

Astrophys. 5: 525.
--. 1975. Ann. Rev. Astron. Astrophys. 13: 69.
Fricke, K., and Kippenhann, R 1972. Ann. Rev. Astron, Astrophys. 10: 45.
Gallagher,]. S., and Starrfield, S. 1978. An!!. Rev. Astron. Astrophys. 16: 171.
Gilman, P. A. 1974. Ann. Rev. Astron. Astrophys. 12: 47.
Hainebach, K. L.; Clayton, D. D.; Arnett, W. D.; and Woosley, S. E. 1974. Ap.].193:

157.
Harris, M.].; Fowler, W. A.; Caugh1an, G. R; and Zimmerman, B. A. 1983. Ann. Rev.

Astron. Astrophys. 21. In press.
Hillebrandt, W. 1978. Spa. Sci. Rev. 21: 639.
Holmes,]. A.; Woosley, S. E.; Fowler, W. A.; and Zimmerman, B. A. 1976. Atomic

and Nuclear Data Tables. 18: 305.
Howard, W. M.; Arnett, W. D.; Clayton, D. D.; and Woosley, S. E. 1972. Ap.].175:

201.



xvlll PREFACE (1983)

Iben.T. 1967. Ann. Rev. Astron. Astrophys. 5: 571.
--. 1974. Ann. Rev. Astron. Astrophys. 12: 215.
--. 1975a. Ap.j. 196: 525.
--. 1975b. Ap.j. 196: 549.
--. 1976. Ap.j. 208: 165.
--. 1978. Ap, j. 226: 966.
--. 1981. Ap.j. 246: 278.
--. 1982. Ap.j. 260: 821.
Iben, 1., and Renzini, A., eds. 1981. Physical Processes in Red Giants. Dordrecht: D.

Riedel.
--. 1982. Ap. j. (Letters) 263: L23.
--. 1983. Ann. Rev. Astron. Astrophys. 21. In press.
Kappeler, F.; Beer, H.; Wisshak, K.; Clayton, D. D.; Macklin, R L.; and Ward, R.

A. 1982. Ap. j. 257: 821.
Kavanagh, R W. 1982. In Essays in Nuclear Astrophysics.
Kirshner, R, and Oke,]. 1975. Ap. j. 200: 574.
K1apdor, H. V.; Oda, .To; Metzinger, ].; Hillebrandt, W.; and Thielemann, F.-K.

1981. Zeitschrift f, Phys. A. 299: 213.
Lamb, S.; Iben, I,; and Howard, W. M. 1976. Ap. j. 207: 209.
Larson, R. B. 1973. Ann. Rev. Astron. Astrophys. 11: 219.
Ledoux, P., ed. 1974. Stellar Instability and Evolution. Dordrecht: D. Reidel.
Liebert,]. 1980. Ann. Rev. Astron. Astrophys. 18: 363.
Lin, D. N. C. 1981. Ap. j. 246: 972.
Lin, D. N. C., and Bodenheimer, P. 1982. Ap. j. 262: 768.
Miha1as, D., and Binney, ]. P. 1982. Galactic Astronomy, 2d edition. San Francisco:

W. H. Freeman.
Ostriker,]. P. 1971. Ann. Rev. Astron. Astrophys. 9: 353.
Pardo, R C.; Couch, R G.; and Arnett, W. D; 1974. Ap.j. 191: 711.
Pringle,]. E. 1981. Ann. Rev. Astron. Astrophys.19: 137.
Rees, M.]., and Stoneham, R]. 1982. Supernovae. Dordrecht: D. Reidel.
Rodney, W. S., and Rolfs, C. 1982. In Essays in Nuclear Astrophysics.
Sa1peter, E. E. 1971. Ann. Rev. Astron. Astrophys. 9: 127.
Schramm, D. N. 1982. In Essays in Nuclear Astrophysics.
Schwarzchild, M., and Harm, R 1965. Ap. j. 142: 855.
Spiegel, E. A. 1971. Ann. Rev. Astron. Astrophys. 9: 323.
--. 1972. Ann. Rev. Astron. Astrophys. 10: 261.
Stahler, S. W.; Shu, F. H.; and Tamm, R E. 1980a. Ap. j. 241: 637.
--. 1980b. Ap. j. 242: 226.
--. 1981. Ap.j. 248: 727.
Strittmatter, P. A. 1969. Ann. Rev. Astron. Astrophys. 7: 665.
Thielemann, F .-K.; Metzinger,].; and K1apdor, H. V. 1983. Zeitschriftf Phys. A. 309:

301.



PREFACE (1983) xix

Tombrello, T. A.; Koonin, S. E.; and Flanders, B. A. 1982. In Essays in Nuclear
Astrophysics.

Trimble, V. 1982. Revs. Mod. Phys. 54: 1183.
---. 1983. Revs. Mod. Phys. In press.
Truran,]. W. 1982. In Essays in Nuclear Astrophysics.
Ulrich, R. K. 1982. In Essays in Nuclear Astrophysics.
van Paradijs, J. 1979. Ap. J. 234: 609.
Ward, R. A., and Fowler, W. A. 1980. Ap. J. 238: 266.
Ward, R. A.; Newman, M. ].; and Clayton, D. D.1976. Ap.J. Suppl. 31: 33.
Wasserburg, G. J., and Papanastassiou, D. A. 1982. In Essays in Nuclear Astrophysics.
Weaver, T. A.; Zimmerman, A.; and Woosley, S. E. 1978. Ap. j. 225: 1021.
Wefe!,]. P.; Schramm, D. N.; Blake, J. B.; and Pridmore-Brown, D. 1981. Ap. j.

Suppl. 45: 565.
Weidemann, V. 1968. Ann. Rev. Astrun. Astrophys. 6: 351.
Wheeler, J. C., ed. 1980. 1jJpe I Supernovae. Austin: University of Texas.
Winkler, K. H., and Newman, M.]. 1980a. Ap. J. 236: 201.
--. 1980b. Ap.J. 238: 311.
Woodward, P. R. 1978. Ann. Rev. Astron. Astropbys. 16: 585.
Woosley, S. K; Arnett, W. D.; and Clayton, D. D. 1972. Ap. J. 175: 731.
--. 1973. Ap.J. Suppl. 26: 231.
Woosley, S. K; Fowler, W. A.; Holmes,]. A.; and Zimmerman, B. A. 1978. Atomic

Data and Nuclear Data Tables 22: 371.
Woosley. S. K, and Howard, W. M. 1978. Ap. J. Suppl. 36: 285.
Woosley, S. K, and Tamm, R. K 1976. Nature 263: 101.
Woosley, S. K, and Weaver, T. A. 1982a. In Supernovae, ed. M. J. Rees andR. J.

Stoneham, p. 79. Dordrecht: D. Reidel.
Woosley, S. K, and Weaver, T. A. 1982b. In Essays in Nuclear Astrophysics.



PREFACE
(1968)

The combined sciences of stellar evolution and nucleosynthesis comprise one of
the most active and intriguing areas in modern science. The advent of the
space age has been accompanied by an increased interest in the physics of natural
phenomena, and foremost among them is the star. Since the entire realm of
astrophysics is moderated to some degree by our concepts of the structure and
evolution of stars and the synthesis of the elements, the intensifying interest in
the physical principles of those subjects is readily understandable. In 1963 I
initiated at Rice University a graduate-level course covering the physical prin
ciples of the discipline, and this book is primarily the result of having taught that
course for three years. It seems to me that the subject is sufficiently well
founded to warrant a textbook devoted to those physical principles.

I have concentrated in this book on those ideas that will best enable the stu
dent to turn with understanding to the astrophysical literature in the field. In
the selection of the subject matter I have been guided by my students and by
my own experience as a student. I have forgone detailed results and specialized
interpretations in favor of the physics that underlies such efforts. I have
attempted to limit the length of the book to subject matter that can be intro
duced in one year's time, although it is neither possible nor desirable to reproduce
its entire contents in the classroom.

Material has been included that will be familiar to many senior physics stu
dents, either for the sake of continuity or because I deemed the particular sub
jects worthy of a brief review. Some material bas been adapted from other
sources, but much of it is original. My purpose at all times has been to cultivate
the physical thinking that will best accelerate the assimilation of more advanced
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treatments. I have tried to make the book self-contained, with no pretense of
completeness.

The prerequisites for a graduate-level course in a division of physics, astronomy,
or space science are a senior introduction to modern physics and graduate quan
tum mechanics, although I have arranged material so as to make concurrent
enrollment in the latter adequate. The basic thermodynamic and astronomical
concepts have been introduced as needed within each discussion. I regard the
result as an outline and discussion of the basic physical principles, the details of
which may be filled in by the student as his understanding matures. I have not
attempted to write a book for specialists; I try to make my own course profitable
to students in associated disciplines who may never do research in stellar evolu
tion and nucleosynthesis. The problems and answers I have placed within the
text have been found helpful in assimilating the material.

One additional word of explanation seems advisable. The book has a strong
orientation toward nuclear physics, a fact that might be interpreted as reflecting
my own specialized training. There is, however, a better reason for that empha
sis; viz., nuclear physics is the thread that unites the discipline. My personal
motivation has been to clarify the interplay of astronomy and nuclear physics in
the mind of the student. The region of overlap between those disciplines is
called nuclear astrophysics.

The book is divided into seven chapters, each of which is to be regarded as an
introduction to its subject matter. The chapters are not totally independent;
I have included selected comments in each discussion relating that subject to the
overall context of stellar evolution. I have included as footnotes to the text
those references which may serve the readers as an introduction to the literature.
Many of the figures have been borrowed from important publications on the
subject matter, and those sources are indicated in the legends. I have been
arbitrary in this selection process, choosing either major review articles or specific
research papers that extend a subject introduced in the text in a particularly
meaningful way. For a complete bibliography the reader may consult:

Kuchowicz, B.: "Nuclear Astrophysics: A Bibliographic Survey," Nuclear Infor
mation Center, Warsaw, 1965.

Langer, E., M. Herz, and J. P. Cox: "Recent Work on Stellar Interiors: A Bib
liographyof Material Published between 1958 and Mid-1966," Joint Inst.
Lab. Astrophys. Rept. 88, 1966.

I naturally hope that this textbook will be useful for advanced courses with a
slightly different emphasis from my own. The book is expandable at almost
any point according to the interests of the instructor and the level of the class.
I myself have found that, once the basic ideas were available in note form for
my students, I was able to advantageously extend the treatment without over
extending the student; I hope my book may have this usefulness elsewhere.

I am grateful to the administration of Rice University for allowing me the
freedom to develop the course on which this book is based, to the U.S. Air Force
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Office of Scientific Research for supporting the associated research program under
grant no. AFOSR 855-65, and to the Alfred P. Sloan Foundation for a Research
Fellowship during the year 1966-1967, when the final version was written. I
also wish to thank Prof. W. A. Fowler and Prof. F. Hoyle, who, respectively,
extended to me the hospitality of the California Institute of Technology, Pasa
dena, and of the Institute of Theoretical Astronomy, Cambridge, during 1966
1967. I am indebted to Prof. Peter B. Shaw for many helpful discussions about
the presentation of material and to Prof. Icko Iben, Jr., for a clarifying review
of Chap. 6.

I wish to express my special gratitude to Richard Feynman and Marshal
Wrubel. They gave me personal encouragement to complete a difficult task.

This book bears a double dedication: to the members of my family, who have
cheerfully borne the considerable investment of my personal time, and to William
Alfred Fowler, whose influence as my own teacher can be found on almost every
page.

Donald D. Clayton
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Fig. 1-1 The role of the star in astrophysics. Almost every subject in astrophysics and space
science is influenced by our conception of the structure and evolution of the stars.

reactions: (1) they provide, like a giant nuclear reactor, the internal power that
allows the stars to shine for long periods of time without cooling off; (2) they
synthesize heavy elements from lighter ones; and (3) they determine the evo
lution of the star. The proper sequence of reactions was and is being found by
careful laboratory study of nuclear reactions, the early demonstrations of which
prompted Eddington to exclaim in 1920, "And what is possible in the Cavendish
Laboratory may not be too difficult in the sun." The measured peculiarities of
nuclear structure enter into the quantitative theories of stellar evolution and
nucleosynthesis, with which we may hope to compute the age of a given cluster
and the abundances of elements created by the stars within it.

A general theory of stellar evolution allows (and demands) a much more
sophisticated picture of the sun than was permissible previously. Because the
sun is the dominating feature of the solar system, all of our immediate environ
ment has been shaped by the sun and the events attending its formation. In the
physics of its initial condensation are to be found tbe principles for understanding
the solar system as we know it. The formation of meteorites and the evolution
of the atmospheres and oceans of the planets were determined by those early
events. The electromagnetic radiation to which the earth is constantly exposed
along with the ever-expanding solar corona or solar wind results in countless phe-
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nomena studied by geophysicists. Even the problem of life itself is linked with
the problem of the origin and evolution of a star. Small wonder then that the
principles in terms of which stars are interpreted are sought by increasingly larger
numbers of scientists in these many interrelated fields.

This first chapter introduces those physical properties of stars which will be
basic to our subject and provides an introduction to the main body of the book.

1-1 LUMINOSITY

The most striking observational fact about stars is their enormous range in
apparent brightness. This fact is obvious just from looking at the night sky.
The brightest star in the sky, Sirius, is 2 billion times as bright as the faintest star
that can be seen with modern telescopes. Today even the untrained observer
knows that a large part of the variation in brightness is due to a large range of
distances of the various stars from us. Astronomers at one time considered the
possibility that all stars had the same luminosity as the sun and tried to derive
the distances of stars from how bright they appeared to be. This working
hypothesis, although a good idea at the time, led to a number of inconsistencies.
For instance, at many places in our own galaxy, clusters of stars can be seen that
are well isolated from surrounding matter. The stars of such clusters are all in
approximately the same location; i.e., the distance between the stars appears to
be much less than the distance from the earth to the cluster. The only sensible
thing to assume is that all such stars are the same distance away. One such
example,perhaps the most famous, is the cluster called the Pleiades. Its bright
est star, quite visible to the eye, is a blue star with a luminosity that is 0.4 times
that of the North Star. Its faintest star, visible only by large telescopes, is a
red star 1 million times fainter than the North Star. This variation must be
an intrinsic luminosity difference. Observations of many other clusters of stars
show that the optical luminosity of stars varies roughly between one-millionth
and 1 million times the luminosity of the sun.

1O-6L0 < L < 106L0

Because the science of observing the stars is so old, the historical paths traced
to the modern definitions of luminosity are replete with ancient traditions and
nomenclature. Systematic observations of the stars were made at least 4,000
years ago in China. By 2000 B.C. the Chinese had constructed a working calen
dar based on the apparent motions of the planets. There is a story that two
astronomers, Hi and Ho, were executed for failing to predict an eclipse, but
modern authorities suspect that their "crime" was actually one of carelessness
in the preparation of the official calendar.

The first significant conceptual development of astronomical science was made
by the Greeks, in particular Hipparchus, who introduced several advanced con
cepts to astronomy during his working years, 160 to 127 B.C. in Rhodes and
Alexandria. His life testament was a catalog of about 1,000 stars, which



4 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

remained the standard reference of the sky for 16 centuries. He assigned to
these stars six categories of visual brightness, which are now called magnitudes.
The brightest stars were placed in the first magnitude, whereas those at the limit
of detectability by the unaided eye were of the sixth magnitude. The classifi
cation system has survived to the present day with a quantitative definition of
the magnitudes.

In this book the luminosity of a star will be defined as the total power required
of the star to sustain the energy efflux from a large surface surrounding the star.
The energy flux is primarily of three types, photons, neutrinos, and mass loss.
Photons constitute the traditional luminosity, and it is this form which is gener
ally of most importance, inasmuch as photons are usually the dominant lumi
nosity mechanism and the only form that is generally observable. In most cases
these photons come directly from a thin surface layer of the star called the photo
sphere, although, in principle, they must include photons radiated by circum
stellar matter deriving power for emission from the central star, e.g., fluorescence.

Neutrino luminosity is today unmeasurable and must be calculated from a
model of the structure of the star. These neutrinos are basically from two differ
ent sources: (1) nuclear reactions in the interior and (2) a weak interaction of
photons with matter. In either case the neutrinos produced escape immediately
from the star and result in a form of luminosity that is so far invisible.

Mass loss from a star requires power to raise the matter from its gravitational
binding in the photosphere and disperse it to large distances. Although a wide
variety of stars are now known to lose mass at greatly differing rates, most mass
loss has not yet been observed. The power output of the star is represented by
the sum of these three luminosities:

L = Loy + L. + L m (1-1)

The last two forms of luminosity will be discussed later. For the moment we
turn our attention to the generally measurable photon luminosity.

PHOTON LUMINOSITY

The photon energy flux from a star is measured with the aid of a telescope and a
detector of known sensitivity. The conversion of the observed energy flux into
the photon luminosity of the star also requires a measurement of the distance to
the star. Research in stellar distances began with nearby stars, whose distances
could be determined by methods of angular parallax. Opposite points in the
earth's orbit about the sun provide a broad base line for viewing a given star
against the field of stars at infinity. The angular displacement of the star rela
tive to the direction of the fixed field stars can then be measured if it is greater
than the angular resolution of the instrument, as is illustrated in Fig. 1-2. This
measurement determines the angle subtended at the star by the radius of the
earth's orbit; this angle is called the parallax of the star.

Stellar parallaxes are very small, being only about 1 sec of arc for the nearest
stars, and thus require careful work with a precise instrument for their measure-
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ment. The first successful measurements took place in about 1838, when Bessel
(in Germany), Henderson (at the Cape of Good Hope), and Struve (in Russia)
detected the parallaxes of the stars 61 Cygni, Alpha Centauri, and Vega,
respectively.

The radius of the earth's orbit and the parallax of the star determine the dis
tance to that star. The nearest star, Alpha Centauri, produces 1.52 sec of arc
of angular displacement to the total diameter of the earth's orbit. Therefore, it
has a parallax of 0.76 sec of arc. The distance to a star having 1 sec of parallax
is defined as 1 parsec (pc). (One must take into account the direction of the star
relative to the plane of the earth's orbit.) One parsec is equal to 3.086 X 1018 em,
or 3.262 light-years. The distances to about 7,000 stars have been determined
by this method. Only for about 700 stars, however, are the parallaxes large
enough (about 0.05 sec of arc or more) to be measured with a precision of 10 per
cent or better. There are other ways of determining the distances to farther
stars, but the parallax method provided the starting point for determining astro
nomical distance scales.

It often happens that relative distances can be determined more accurately

OSun

Fig. 1-2 The parallax of a star is a direct measure
of its distance from the solar system. The angular
displacement from season to season of a nearby star
relative to the direction of distant field stars is
inversely proportional to the distance to the star.
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than absolute distances, as whenever groups of stars can be observed, such as
those located in globular star clusters or in open galactic clusters, like the Pleiades,
in which we know from the spatial arrangement of the stars that they are approxi
mately.the same distance from us. In those cases, very accurate measurements
of the ratio of apparent brightnesses can be made which are often preferable to
those obtained by applying individual corrections for the distances to the stars.

Once the distance to a star has been determined, its photon luminosity can be
calculated from its apparent brightness. The energy received at the earth from
the star can be corrected for the inverse-square-distance relationship, thus deter
mining the absolute rate of energy output of the star. It is only necessary for
this end to make an additional assumption concerning that fraction of radiant
energy flux recorded in the measurement of the apparent brightness. This last
requirement comes about because part of the energy flux is absorbed in the earth's
atmosphere (or in interstellar space) before reaching the detector, and, in general,
part of the energy reaching a given detector will not be recorded by it. Further
more, the several different types of detectors in common use have different spec
tral sensitivities.

The photon luminosity of the star is given by

(1-2)

where FA d'A is the net outgoing energy flux at wavelength 'A in the interval d'A
from a surface of radius R surrounding the stellar atmosphere. If the earth is
a distance r from the star, the incident energy flux on the top of the earth's
atmosphere is!

(1-3)

It is clearly from a measurement of r 2f A at the earth that the corresponding
product R2FA can be determined.

The determination of fA is the basic observational problem in astronomy. It is
not fA that is directly measured but rather the response of a specific type of
detector after fA has been degraded by the earth's atmosphere. The apparent
brightness of a star may be expressed as

(1-4)

where 7ra2 = collecting area of telescope
AA(z) = fraction of energy transmitted through earth's atmosphere at wave

length 'A and zenith angle z; AA(z) :::: e&"secz

RA = efficiency for recording photon of wavelength 'A in detector

1 Equation (1-3) is correct only in the absence of interstellar absorption. For many distant
stars absorption is not negligible, and an appropriate correction for interstellar extinction
must be applied. .
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In practice, the dependence on collecting area is removed by measuring bright
ness ratios of stars. Atmospheric extinction presents a more complicated prob
lem, both because of the extensive observational research required to determine
Ax and because it is not constant either in time or from place to place. The
method of dealing with this problem consists of the careful calibration of the
spectral intensity of a set of standard stars, which are then compared to stars
being observed. Ax must be measured absolutely for the standard stars, how
ever, and this is done by observing the rate of change of extinction with zenith
angle. The measurements of Ax indicate the nature of one problem in stellar
luminosity. The earth's atmosphere absorbs almost all radiations with wave
lengths shorter than about 3000 A and most radiations longer than about 10,000 A.
The region between these limits is called the optical window. The maximum sen
sitivity of the human eye (4500 to 7500 A) lies squarely in the middle of the
optical window.' It is largely from the radiant flux in the optical window (to
date!) that the rate of energy output of a star must be deduced, a process requir
ing a correction for the energy absorbed by the earth's atmosphere.

The ancients, particularly Hipparchus, set the tradition for the magnitude scale.
Modern measurements of stellar brightness have revealed that their magnitude
scale is nearly logarithmic in apparent brightness," and in such a way that a
difference of 5 magnitudes corresponded to nearly a factor of 100 in apparent
brightness. To preserve the value of astronomical records and tradition, it was
decided by international agreement that the ancient nomenclature should be
retained but with the precise definition

(1-5)

where m2 and ml are the apparent magnitudes of two stars of apparent bright
ness b1 and b2• It will be noted that a difference of 1 magnitude (1m) corre
sponds to a brightness ratio of 2.512 in the sense that the larger magnitude is the
smaller brightness. An alternative form for Eq. (1-5) is"

b1
m2 - ml = 2.500 log b

2
(1::6)

Although it is generally true that a magnitude difference corresponds to a bright
ness ratio in the sense of Eq. (1-6), there exist several different magnitude scales

• corresponding to the various types of detectors used in making the brightness
comparisons. The ancient scale was, of course, based on the human eye, and
the corresponding visual magnitude is designated by m.. With the advent of

1 It may seem remarkable that the world would be dark if our eyes were not so constructed as
to operate best at those frequencies. What possible explanations may account for this
coincidence?

2 The human eye has a nearly logarithmic subjective response to radiant energy flux.

3 Astronomers conventionally measure all logarithms to the base 10. We shall follow that
custom throughout this book, using In for log,.
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photographic techniques, however, there arose a brightness scale based on the
photochemical effect of starlight on standard emulsions. Since photographic
plates respond to a much bluer part of the spectrum (3700 to 5000 A) than the
human eye (4500 to 7500 A), the brightness ratio of two stars of differing tem
peratures does not have the same value in the two systems. The photographic
magnitude is designated by m pu• Two other magnitude scales designed to approxi
mate m v by using detectors having response similar to the eye are m p v , the photo
visual magnitude, measured with a photographic plate plus yellow filters, and V,
the photoelectric visual magnitude, measured by a combination of photocathode
and filters. Equations like (1-5) and (1-6) can be written for each of these mag
nitude systems, and for others as well.

Equation (1-6) defines only the differences in two magnitudes but is clearly
equivalent to

m = - 2.5 log b + c (1-7)

where c is the zero-point constant that depends on the system of magnitudes used
as well as on the units of brightness. The zero point of the m v scale was essen
tially set by the historical definition. The photographic scale is set such that
m p u = m; for a special type! of star, AO, but m pu will differ slightly from m v for
other stellar types. Similar relationships exist for normalizing the zero point of
each scale.

For an absolute comparison of intrinsic brightness it is common to discuss the
magnitudes the stars would have if they were all at the same geocentric distance.
The absolute magnitude of a star is defined as its magnitude viewed from a dis
tance of 10 pc. From the inverse-square law it follows that the ratio of the
absolute brightness B to the apparent brightness b is, for a star at a distance r
(in parsecs),

(1-8)

From Eq. (1-7) it then follows that the difference between the absolute and
apparent magnitudes is

M - m = 5 - 5 log r (1-9)

This equation and the concept associated with it are used in each system of mag
nitude scales. By use of the distance modulus [Eq. (1-9)], absolute comparisons
between stars can be made.

For our purposes the most significant physical quantity is the rate at which
photon energy is radiated from the star. In terms of the language of magnitudes,
the luminosity is measured by a quantity called the absolute bolomeiric magnitude,
which is the absolute magnitude the star would have if the detector were able to
respond to its entire radiant spectrum. It has already been noted that this quan-

1 The spectral types will be discussed later.
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(1-10)

tity is not amenable to direct physical measurement because a considerable por
tion of the energy arriving from a star may be absorbed in the earth's atmosphere
and not be measured visibly, on photographic plates, or with photoelectric instru
ments. To obtain the total energy radiated from a star therefore requires mak
ing what is called a bolometric correction. The bolometric correction adds to the
received energy from the star that amount of energy which is believed to be
absorbed in the earth's atmosphere or is otherwise unmeasured by the detector.
Although it might not seem so, this correction can be made. To first approxi
mation, the emission spectrum of stars resembles that of a blackbody having a
temperature equal to the surface temperature of the star. By measuring the
spectrum of the star over the visible range of frequencies, one can determine
the temperature of the surface of the star and then calculate what fraction of
the energy output lies outside the range of atmospheric transmission. For the
hottest stars, the greatest intensity of visible radiation lies in the blue and
decreases, gradually becoming very dim, in the red. For these stars, most of
the energy may be radiated in the ultraviolet. For most stars, the peak in the
spectrum will lie somewhere in the visible region. The sun, for instance, has its
maximum radiation intensity near 5000 A, which is in the yellow. Cool stars
will appear very red to the eye, the bulk of their energy being radiated in the
infrared.

In terms of the notation used earlier, the bolometric correction (BC) will be
defined as

BC = 2.500 10 incident energy flux
g recorded energy flux

If},. d'A
= 2.500 log If},.A},.R},. d'A

Although at first this may seem a cumbersome definition, Eq. (1-10) is defined
to be of the same form as Eq. (1-6) in order that the BC will be a magnitude
increment.

Problem 1-1: Show that m - Be = -2.500 log If},. d"A + canst.

Of course, the actual surface of the star is not a blackbody, since many factors
may cause a deviation from local thermodynamic equilibrium on the surface of
the star. However, even the deviations of the continuous spectrum from that of
a blackbody spectrum are made understandable by modern calculations of the
model atmospheres of stars. By understanding why the deviations occur, it is
still possible to calculate a complete continuous spectrum from the observed con
tinuous spectrum. The important theoretical problem is to determine what frac
tion of the energy flux lies outside that part of the star's radiation which is
recorded by the instrument and therefrom to compute an absolute bolometric
magnitude of the star.
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In short, then, astronomers measure the apparent magnitude, spectrum, and
distance of a star. The absolute magnitude of the star is computed by mentally
viewing it from a distance of 10 po. This absolute magnitude is then converted
to the absolute bolometric magnitude of the star by correcting for the amount of
radiant energy lying outside that portion received by the detecting instrument.
If the bolometric correction is designated by Be and the absolute visual magni
tude by M., then the absolute bolometric magnitude is defined by'

We then have

M b = -2.5logL + c

(1-11)

(1-12)

where L is the luminosity and c is a constant that depends upon the units used in
expressing the luminosity. The luminosity might, for instance, be expressed in
ergs per second, in which case c = 88.70. Or we may rewrite the equation,
expressing the luminosity in units of the luminosity of the sun, 2

L
M b = -2.5log

L-
+ 4.72

o
(1-13)

It will be apparent from this last equation that the absolute bolometric magni
tude of the sun is +4.72. If the luminosity is different from that of the sun, the
bolometric magnitude changes on a logarithmic scale in such a way that the most
luminous stars have the smallest magnitudes. In fact, if a star is very bright, its
absolute bolometric magnitude becomes less than zero. Equation (1-12) may be
inverted to read

(1-14)

where

L 0 = 3.90 ± 0.04 X 1033 ergs/sec

This equation will be useful for understanding the language of astronomy. In
resume, M b is a number determined observationally on a comparative basis. To
convert this quantity to an absolute luminosity requires comparison with some-'
thing whose luminosity is well known, i.e., the sun. Further elaboration of these
points can be found in any textbook on astronomy.

Problem 1·2: The naked eye can see only stars brighter than 77tv = 6.0. Assuming that no
bolometric correction is required for the sun, how far away could it be seen by the eye?
Ans: 56 light-years.

1 The minus sign is arbitrarily inserted in Eq. (1-11) so that the BC will be a positive quantity.
This convention is not uniformly followed, however.

2 C. W. Allen, "Astrophysical Quantities," University of London Press, Ltd., London, 1963.
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Problem 1-3: The 200-in. telescope on Mount Palomar has a light-gathering diameter roughly
103 times that of the human eye. How far away could the sun be seen with the aid of such a
telescope?

NEUTRINO LUMINOSITY

The mean free path of a neutrino in water is 1 billion times greater than the
radius of the sun. Because they interact so weakly with matter, neutrinos pro
duced in a stellar interior almost always escape from the star without further
interaction. The only commonly discussed exception to this general rule occurs
for matter at extremely high density and temperature such as may be found in
the imploded core of a supernova. Because of this lack of interaction, neutrino
emission provides a heat loss directly from the stellar interior. As such, the
neutrino luminosity plays a logically different role in stellar evolution than-pho
ton luminosity or mass-loss luminosity. In the latter two types of luminosity,
the interior energy must be transported to the stellar surface before being emitted,
and the rate of energy transport is proportional to the temperature gradient in
the star. The neutrino losses, however, represent a localized depletion of the
thermal store of energy; they are emitted directly from the interior point into
space without the need of interactive transport from the interior to the surface.

Because of its unique role in stellar evolution, neutrino luminosity is treated
separately from the other (surface) luminosities. The energy of those neutrinos
emitted in nuclear reactions is simply subtracted from the total energy released
by the reaction in determining the effective magnitude of the thermonuclear
energy sources. The energy of those neutrinos created by the weak interaction of
photons with matter, on the other hand, is regarded as an instantaneous localized
heat sink insofar as the structure of the star is concerned. By this treatment the
observable properties of neutrino emission on stellar structure are deployed at
their source.

Another peculiar aspect of the neutrino luminosity is that it is unobserved.
Unlike the photon luminosity, it is not determined from observations as one of
the requirements to be explained by stellar models. Quite the contrary; the
neutrino luminosity must be calculated from the model of the star in question,
and the observable tests of the correctness of the neutrino luminosity are to be
found in the effects it has upon the observable evolution of the stars. Certain
stages of stellar evolution are found to depend critically upon the inner structure
of the star through the detailed physics of the neutrino-production mechanisms.
In this way knowledge of the neutrino-emitting processes is leading to sensitive
checks of understanding of stellar structure rather than to unobservable ambi
guities, as might at first seem the case.

It should be added that very extensive experimental arrangements are being
used in attempts to detect cosmic neutrinos, and hopes are high for the ultimate
future of neutrino astronomy. But the difficulty in observing discrete sources
other than the sun (which by its proximity produces the most easily detectable
flux) is very great, and it remains to be seen what can be accomplished when the
full power of scientific technology is directed toward this problem.
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MASS-LOSS LUMINOSITY

Many different types of stars are observed to lose mass from their surfaces.
Some of these, like supernovas, explosively eject a large amount of mass with
high energy, characteristically masses comparable to the solar mass being blasted
off with velocities measured in thousands of kilometers per second. Such short
duration single events are called catastrophic mass loss because they result in a
rapid and violent change in the structure of the star. The associated theoretical
problems are of such a special type that they require special treatment and will
not be considered further here. Another type of star, 'the planetary nebula,
shows evidence of a very large amount of mass loss, but it is still uncertain
whether the loss occurreil .in a catastrophic event or whether the 'surrounding
nebula is a stagnated accumulation of matter continuously ejected over a rela
tively long time scale. In certain other types, specifically red giants and T .Tauri
stars, matter can be observed to be f1.owing away from the star with velocities of
tens or hundreds of kilometers per second in amounts as great as 1O-7M0 ! year.1

But for the vast majority of stars, the escaping matter cannot be seen at all with
ground-based telescopes, because it is probably a nearly collisionless plasma in a
high degree of ionization relative to the photosphere from which it came. Ultra
violet astronomy from space may be the key to the mass-loss problem.

As the best known of all stars, the sun provides an example of the type of
nearly invisible phenomenon that may be almost universal.' The solar photo
sphere is the opaque boundary of the sun from which nearly all the light origi
nates with a continuous spectrum similar to a blackbody heated to nearly 6000°R.
A variety of nonthermal processes originating in the photosphere and chromo
sphere produce a hot and tenuous overlying layer called the corona. The ionized
gas of this .overlying layer is linked by magnetic fields that contribute to the
complicated plasma phenomena observed in the solar chromosphere. Hydro
magnetic waves steepen into shock waves in the outer layers. The dissipation
and eventual thermalization of these waves provide mechanical heating of the gas
and result in the phenomenon of the corona. At a distance of about 2R0 the
plasma has a thermal temperature of 1 - 2 X 106 OK, more 'than two orders of
magnitude greater than the photospheric temperature. This plasma is not con
tained by the sun but continually expands into space. Heated from below, the
plasma accelerates as it moves outward, eventually moving faster than the Alfven
plasma speed (commonly called eupersonic), after which point it expands freely
into the vacuum. Various space probes have observed this plasma streaming
past the earth's orbit at velocities between 300 and 1,000 km/sec with an internal
temperature of a few times 105 OK and an average density of about 10 amu/cm",

Problem 1-4: Assuming at the earth a characteristic velocity of 400 kIn/sec and density of
10 amu/cm! for the solar wind, calculate the rate of mass loss for the sun.
Ans: 0.4 X 1O-13M0/year.

1 R. Weymann, Ann. Rev. Astron. Astrophys., 1 :97 (1963) is a good review of mass loss in stars.
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(1-15)

Since the solar wind and outer solar corona are nearly invisible (except in the
ultraviolet), the analog stellar winds in stars in general may be optically undetect
able. Nor can stellar winds be computed for other stars, because the situation is
not even well enough understood in the sun to permit computation of the proper
ties of the corona (or even its existence) and the rate of the wind. In spite of
this lack of fundamental understanding, the power required t.o maintain a stellar
wind can be expressed in terms of its properties.

In translating each gram of photospheric material, designated by the sub
script e (Qa = -GM/R, T = T e, v = 0), to its condition at large distance
(Qa = 0, T = T~, v = v~), energy is required to overcome the gravitational
binding, to heat the plasma to its asymptotic temperature, to alter the degree
of ionization, and to produce the asymptotic kinetic energy. The corresponding
luminosity is

i; = [G~ + (U~ - Ue) + iV~2J d:i
where U is the internal energy per gram (see Chap. 2) and dM /dt is the rate
at which mass crosses an appropriate circumstellar sphere. For ionized matter
U = ikT X (number of particles per gram).

Problem 1-5: Consider the example of the sun, again assuming v'" = 400 kro /sec and
T", = 3 X 105 "K, What are the magnitudes of the three terms in the mass-loss luminosity
associated with the rate of solar mass loss computed in the previous problem? (Neglect
ionization.) .
Ans: 5 X 1027, 1 X 1026, 2 X 1027 ergs/sec.

Since the optical luminosity is L 0 = 3.9 X 1033 ergs/sec, the total mass-loss
luminosity of the sun is only about 2 X 1O-6L

0 • This is certainly a negligible
number for the sun in that it is much less than the uncertainty in the optical
luminosity, but it would be unsafe to extend that conclusion to all stars, especially
since mass-loss rates as great as 107 times the solar rate have been observed.

It should be emphasized here that the phenomenon being discussed is not
described by hyperbolic orbits of individual masses with velocities in excess of
the stellar escape velocity. At least in the sun the mass is pushed away hydro
dynamically, the fluid properties of an otherwise almost collisionless gas being
provided by the magnetic field permeating the plasma. Because of its high con
ductivity, the magnetic-field lines are "frozen into" the plasma, and all parts of
the plasma expand collectively. As proof of this it need only be noted that the
solar wind accelerates rather slowly for the first few solar radii and achieves its
peak velocity at distances far from the solar photosphere. The magnetic-field
energy and the energy of associated hydromagnetic waves have been omitted
from Eq. (1-15). In principle they should be included, but it seems most likely
that at large distances they will be unimportant.

The overall point to be made is that the necessary power for mass loss must be
derived from the body of the star. If the surface of the star is not to cool off,
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this power must be generated in the bulk of the star and transported to the
surface, in exact analogy to the situation for the photon luminosity. In this
sense it would be appropriate to define a bolometric correction for stellar winds
which could be applied to the apparent magnitude to convert it into a total sur
face power. Furthermore, the effect of this added luminosity on stellar evolution
may be appreciable. Because of the extra power demand, the star will evolve
faster with a stellar wind than it would with only the photon luminosity to
demand power. The actual role of stellar winds in evolution is unknown, how
ever, largely because of the paucity of information on the magnitude of mass
loss rates.

1-2 STELLAR TEMPERATURES

The physical concept of temperature is linked to the concept of thermal equi
librium. A given mechanical system has many possible configurations corre
sponding to the available distribution of the energies among its subsystems. For
instance, the many configurations of a gas can be described in terms of the num
bers of particles of given energies moving in given directions. Among all these
configurations there is one that is most probable, the configuration of thermal
equilibrium. That configuration is computable by the techniques of statistical
mechanics. For a gas, the most probable configuration depends upon the nature
of the gas particles, which for elementary particles, fall into three classes: (1) in
the classical limit we may have identical but distinguishable particles, (2) identi
cal but indistinguishable particles of half-integral spin angular momentum, e.g.,
electron, neutrino, proton, (3) identical but indistinguishable particles of integral
spin angular momentum, e.g., photon, He 4 nuclei, 11" mesons.

If the number of gas particles of energy e is designated by n(e) and the number
of possible particle states of energy e by g(e), the most probable configurations
corresponding to the three types of gases are!

n(e)
g(e)

Maxwell-Boltzmann statistics (l-16a)ea+./kT + 0

n(e)
g(e)

Fermi-Dirac statistics (1-16b)ea+./kT + 1

n(e)
g(e)

Einstein-Bose statistics (1-16c)ea+./kT - 1

The parameter ex is a real number whose value depends upon the density of
particles. If at any given temperature n(e) is the number density of particles
of energy e, then fn(e) de (which is a function of ex) must give the total particle
density. For small density, ex is a large positive number, whereas for very high
density, ex is a large negative number. These formulas are arrived at by con-

I For a physically oriented discussion and derivation of these three types of statistics, the
reader is referred to R. B. Leighton, "Principles of Modern Physics," chap. 10, McGraw-Hill
Book Company, New York, 1959.
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sidering the various ways of arranging a fixed number of particles in individual
energy states such that the total energy of the gas is conserved.

A qualification of major importance occurs for photons, which are zero-mass
bosons. Since a photon has energy hv, it takes vanishingly small amounts of
energy to create photons of vanishingly small frequency. This has the effect
that only the total energy of the photon gas, not the number of photons, must be
conserved in establishing the most probable configuration for a photon gas. For
this reason, a does not appear in the photon distribution (or, alternatively, a = 0).
Thus

gee)
nee) = e./k T _ 1 for photons (1-16c')

In each type of gas, the number of particles of energy e is proportional to the
number of distinct particle states of energy e. Simple physical consequences of
the distribution laws can best be seen by considering the ratio n(e)/g(e), which is
the intrinsic probability that a state of energy e is occupied. This probability,
sometimes called the occupation index, will be designated by pee). Then,
respectively,

Pee) = e-ae-·/k T Maxwell-Boltzmann (1-17a)

Pee)
1

Fermi-Dirac (1-17b)ea+./k T + 1

Pee)
1

photons (l-17c)
e·/kT - 1

The behavior of these occupation indices (Fig. 1-3) is interesting. The
Maxwell-Boltzmann distribution is a pure exponential in the energy for all
temperatures and all values of a. The associated probability pee) that any
state be occupied depends on both temperature and density and may, therefore,
have any possible value for given (e,T) depending on the value of the param
eter a. Actually, however, Maxwell-Boltzmann statistics are valid for real
particles (which are really indistinguishable) only when a is a large positive
number, i.e., when the occupation is much smaller than unity.

The occupation index of the Fermi-Dirac system, on the other hand, never
exceeds unity. This limit is an expression of the Pauli exclusion principle for
fermions, whichsays that no more than one identical particle of half-integral spin
may be in the same state. This limitation was built into the statistical argu
ment that led to the distribution function.. It is apparent, however, that if the
temperature and density fall into a domain for which a is a large positive num
ber, the Fermi-Dirac statistics reduce to Maxwell-Boltzmann statistics. The
major practical application of the Fermi-Dirac statistics in stars lies in computing
the pressure of an electron gas, which the reader will find in Chap. 2.

For a gas of Einstein-Bose particles there is a tendency for large occupation
indices to occur at low energies, depending on the size of a. For the special case



16

P(e)

PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

Maxwellian positive ex

P(e)
Tr--~ ~

kT

Fermi-Dirac
with negative ex

-exkT e

Photons

Fig. 1·3 Schematic occupation
index. The Maxwell-Boltzmann
distribution, which is a pure ex
ponential curve at all temperatures
and all values of E, is valid only if
ex» O. The Fermi-Dirac distri
bution has, because of the Pauli ex
clusion principle, an upper bound
of unity on the occupation index.
This upper bound is approached at
low energy and low temperature
(or high density). The Einstein
Bose distribution for photons has a
large occupation index for E « kT
and an exponentially decreasing
index for E » kT

of a photon gas (a = 0), pee) increases without bound at zero energy. This
effect also has a quantum-mechanical analog, viz., that the mutual wave func
tions of bosons must be symmetric in the pair of particles. This symmetry has
the physical effect of causing bosons to cluster into the same state. One would
say that a boson prefers to be in a state already populated by other bosons, an
effect that is in some sense the opposite of the exclusion principle for fermions.
For the specific case of a photon gas of prescribed total energy, the distribution
therefore favors a very large number of low-energy photons. For energies much
greater than kT, on the other hand, the occupation index changes asymptotically
to an exponential in the energy.

The use of these statistical-equilibrium distributions in the calculation of the
properties of a gas requires counting the states available to free particles. The
number of gas particles in each free state of given energy is a product of the occu
pation index and the number of free states having the given energy. In the con-
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tinuum of states, of course, all energies are possible, because the energy becomes
a continuous variable for free particles, so that it is common to talk of the density
of free states g(e), defined such that gee) de is the number of states per unit volume
of energy e in the range de. It is somewhat easier, moreover, to discuss the den
sity of states in momentum space rather than in energy space. The analogous
density of states g(p) is defined such thatg(p) dp; dp; dp; is the number of momen
tum states per unit volume with momentum p in the range dp; dpu dpz. It.is use
ful to think of this .as the number of states per unit volume for which the set of
momentum vectors terminates within a differential momentum volume dpx dpu dp,
at the end of p, as illustrated in Fig. 1-4. It is somewhat difficult to grasp the
meaning of the density of momentum states for the continuum of free particles
because any value of the momentum is possible for a free particle. Yet the num
ber of independent free-particle states per unit volume is a finite quantity which
may be calculated most easily in terms of a convenient representation of con
tinuum states. The physical applications of the density of continuum states are
almost countless, and a sketch of their enumeration follows.

z
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Fig. 1-4 A differential volume dpz dpy dp, about the point p in momentum space. The density
of states g(P) is defined such that g(P) dpz dpy dpz is the number of denumerable momentum states
per unit volume having momentum p in the rangedp, dpu dpz.
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The conceptual difficulty stems from the propensity to think classically,-that
the position and momentum of the particles are simultaneously definable. Yet
from elementary wave mechanics we know that particles are describable by wave
packets possessing characteristic spreads Lix and Lip", in the conjugate coordinates
such that the product of the uncertainties is greater than h/27r-the so-called
uncertainty principle of Heisenberg. If a particle is localized in space, it posesses
a spread in the expectation values of its momenta determinable from the Fourier
transform of the spatial wave function.' The actual wave function of the free
particle is expressible as a linear combination (or integral) over the plane-wave
momentum eigenstates. Since the momentum operator is pop = h/27riv, the state
of a particle with a specific expectation value for, say, the x component p", of the
momentum is described by the factor 1/1 a: exp [(27ri/h)p",xl. Imagine space to be
divided into an infinite lattice of rectangular volumes of linear dimensions a, b,
and c. It can be shown that the number of distinguishable free-particle states
can be counted by demanding that the wave functions be periodic in this lattice
(the so-called periodic boundary condition). 2 Then, by the Fourier theorem, the
wave functions can all be expanded in terms of the momentum eigenfunctions

[ .(lX my nz)J1/1 a: exp 27r~ a + b + c (1-18)

where l, m, and 1j, are integers. The z component of the momentum is p", = hl/a.
In the next momentum eigenstate of the complete set, the value of p", must be
increased by the discrete step op", = h/a. Evidently the number of otherwise
identical states with p; lying in the interval Lip", near p", is given by the number of
discrete momentum steps that can be fitted into the interval Lip",:

N ber i Lip", aum er in Lip", = op", = li Lip", (1-19)

The total number of states in the box lying in the differential momentum volume
Lip", Lipu tsp, about any value of p is then

(1-20)

Since abc is the volume of the box in which the states are counted and
Lip", Lipu Lipz is the volume of momentum space in which the states lie, the factor
h3 represents the volume of a continuum state in six-dimensional phase space.
The number of states per unit volume with momentum p in the range dp", dpu tip;

1 E. Merzbacher, "Quantum Mechanics," chap. 2, John Wiley & Sons, Inc., New York, 1961.

2 The reader may find informative A. Messiah, "Quantum Mechanics," vol. 1, sec. 11, p. 190,
John Wiley & Sons, Inc., New York, 1961.
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is then

1
g(p) dp", dpy dpz = h3 dp", dpy dp;
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(1-21)

(1-22)

This technique of counting continuum states has employed the periodic boundary
condition. One can also calculate the density of energy states by considering
particles confined to the inside of a box by an impenetrable wall.!

The result expresses only the spatial density of states. The particles may
possess internal degrees of freedom that increase the total density of states. For
instance, electrons are spin s = t particle. The spatial density of states exists
for each of the two projections of the spin along a chosen z axis. In the same
vein, photons possess two additional degrees of freedom corresponding to the two
possible modes of polarization. For both photons and electrons, therefore, the
total density of states is twice as great as Eq. (1-21). The introduction of the
box was, of course, a crutch, and its dimensions do not appear in the final answer.
The density of states is independent of these dimensions.

The fact that there should be a volume h3 associated with each distinguishable
state in six-dimensional phase space can be approximately understood by the
following argument. For states to be resolvable, they must be distinguishable
in the face of the uncertainty principle, which demands that the product of the
dynamically conjugate uncertainties be as great as Planck's constant, viz.,
flPi flXi :::< h. If we consider only particles of some specific momentum p in the
range dp", dpy dpz, the associated position uncertainties are

h h h
flx :::< - fly :::< - flz :::< -

dp; dpy dp,

The particles must be spread over a volume of uncertainty

h3

Vpar = flx fly flz :::< d d dp", py Pz

The demand for resolvability of particle states may be crudely interpreted as the
demand that there be no more than one state within each volume of uncertainty.
It follows that the number of resolvable states per unit volume is the reciprocal
of the volume of each particle state. That is,

1 1
g(p) dp", dpy dp; :::< -V = h

3
dp", dpy dp,

par

which reexpresses Eq. (1-21). This simplified picture relates the density of
continuum states to I/h3 in a simple and intuitive (though not precisely correct)
manner.

The statistical distributions of Eq. (1-21) apply to a gas in a state of thermo
dynamic equilibrium. In such a gas the particle momenta are isotropic. For
that reason one usually needs to know the density of states with Ipl = p in

1 See Leighton, op. cit., p. 159.
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(1-23)

(1-24)

the range dp rather than the density of states with momentum p in the range
dp; dpu dpz. The volume of momentum space for which the radius vector p has .
constant magnitude p in the range dp is simply the volume of a spherical shell,
41rp2dp. By taking into account the doubling of states due to the two degrees
of polarizationfor electrons and photons, the density of states may be written

(
2

g p) dp = h3 41rp2dp

for photons and electrons.

Problem 1·6: Show that the density of free electrons of energy E in the range dE is, if the
electrons are nonrelativistic,

8« E! dE
neE) dE = - (2m 3)! ----.,---::--

h3 • exp (ex + E/kT) + 1

The size of the parameter ex is determined from the condition that fn(E) dE = n., the total
density of free electrons.

At the low density of the outer layers of stars, the parameter a is such a large
positive number that the unity term in the denominator of Eq. (1-24) becomes
irrelevant. This situation reflects the unimportance of the Fermi-Dirac nature
of the electrons at low density, where the density of electrons is given to high
accuracy by Maxwell-Boltzmann statistics,

n.(p) dp = Ae-p'/2mkT47rp2 dp

where the normalization constant A is determined from the condition

In.(p) dp = n;

Problem 1·7: Show by performing the above integral that

n.47rp2 dp p2
n.(p) dp = (2«m.kT)t exp - 2m.,kT (1-25)

This equation expresses the Maxwell-Boltzmann distribution of electron momenta in thermal
equilibrium.

Problem 1-8: Using the Einstein-Bose distribution for photons, the fact that ex = 0 for a
photon gas, and the fact that the photon momentum is p; = hv/c, show that the energy density
of photons of frequency v in the range d» in thermal equilibrium is

8«hv 3 . d»
u(v) d» = --;;3 I!'vikT 1

(1-26)

Problem 1-9: Show that the total energy density of the photon field in thermodynamic equilib
rium is

(1-27)
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(1-29) .

The constant a is called the Stejan-Bo/lzmann constant and is equal to a = 7.565 X 10-1•

erg cm-a deg",

Equation (1-27) shows that the energy density of photons in an equilibrium
situation is a function only of the temperature, a result that will be demonstrated
later from classical thermodynamic arguments. The immediate point of this
entire discussion is that the temperature of a gas is defined by matching the observed
distribution of particle states to the appropriate equilibrium distribution for the same
type of particles. If the observed distribution functions do not match the equi
librium distributions, the gas is not in thermodynamic equilibrium, and a concept
of temperature must be employed with caution. The single greatest simplifi
cation of the physics of stellar interiors results from the fact that the stellar
interior is very nearly in the state of thermodynamic equilibrium, so close in fact
that for most problems the assumption of thermodynamic equilibrium yields
answers with nearly vanishing errors.

One method of assigning a temperature to a stellar photosphere is to match the
energy spectrum of the photons leaving the star to those leaving a surface in
thermodynamic equilibrium. Such a surface is called a blackbody, and the radi
ant flux leaving a blackbody is equal to that exiting from a hole cut in the surface
of a container containing interior photons in thermal equilibrium. The energy
flux leaving such a surface has the same spectrum shape as the internal energy
density. The specific result of the calculation is that the power radiated per
unit area per unit wavelength interval is

21rc2h 1
T, =~ echO,kT _ 1 (1-28)

whereas the total power radiated per unit area is

fa'" t, d'A = UT4

where the constant a is equal to ac/4,

a = 5.67 X 10-5 erg cm-2 sec-1 deg"

The spectrum represented by this formula is a smooth one, having a single
maxunum.

Problem 1-10: Show that Eq. (1-28) is the same spectral shape as Eq. (1-26). Note that
Eq. (1-28) is displayed per wavelength interval.

Statistical mechanics provides astronomy with several techniques for ascribing
a temperature to stellar photospheres. In each case the temperature is defined
to be such that the value of some observed physical property most nearly resem
bles the value it would have in thermodynamic equilibrium. There are four
simple concepts of stellar temperatures in common use: the effective tempera
ture, the color temperature, the excitation temperature, and the ionization tern-
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perature. These temperatures are not observed to be equal to each other in
stellar photospheres, the reason being that a stellar photosphere is not in thermo- .
dynamic equilibrium. The stellar photosphere is near the point where the pres
sure and density drop rapidly to near zero. Roughly speaking, there is approxi
mately one mean free path of matter for an optical photon above the photosphere.
But the combined facts of variation of optical depth with optical frequency, the
temperature and density gradients, and the large net outward flux of radiation
result in a disparity between the various surface temperatures in stars. This dis
parity is resolved by calculations of model atmospheres for stars which can yield
simultaneously all the observed spectral features without recourse to definitions
of special temperatures.

THE EFFECTIVE STELLAR TEMPERATURE

The effective temperature 'I', of a star is defined as the temperature of a black
body having the same radiated power per unit area. The stellar luminosity is
related to the radius and effective temperature by

(1-30)

The direct determination of 'I', is not generally possible because it demands
knowledge of the surface area of a star, and stellar radii are not generally measur
able because of the small angles they subtend at the earth. But for at least one
important star, the sun, the effective surface temperature can be calculated from
the surface brightness.

Problem 1-11: The radius of the sun is 16 min of arc as seen from the earth. The radiant flux
at the top of the earth's atmosphere is 1.388 X 106 ergs crrr? seer". Calculate the effective
temperature of the sun using only the data given. The quantity 1.388 X 106 ergs em"? sec"!
is called the solar constant. From its value and the distance of the sun the solar luminosity
is calculated.

Because stellar radii are not measurable with high accuracy, it has been neces
sary to use some other techniques for determining effective temperatures. This
technique is that of the model atmosphere, which relates the radiated power to
other photospheric temperatures which are measurable. Equation (1-30) is then
used to determine the stellar radius.

THE COLOR TEMPERATURE

This technique also matches the radiated photon power to a blackbody, but the
matching is to the shape of the continuous spectrum rather than the integrated
power; i.e., the observed continuous spectrum is matched to Eq. (1-28) rather
than to Eq. (1-29).

Problem 1-12: Calculate the position of the maximum of the blackbody spectrum in the form
AmnxT = const. The wavelength of maximum intensity in the solar spectrum is 5000 A.
Assuming the sun radiates as a blackbody, compute its surface temperature. Compare with
the previous problem.
Ans: AmT = 0.290 cm OK.
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Fig. 1-5 Comparison of the visible solar energy-distribution curve with that
from a blackbody at 6000oR. The overall resemblance is good, although the
sun is quite deficient in the ultraviolet. [D. P. Le Galley and A. Rosen (eds.),
"Space Physics," p. 111, John Wiley & Sons, Inc., New York, 1964.]

Superimposed upon the continuous spectrum are marked absorption features,
prominent among which are the famous Fraunhofer lines for resonance absorp
tion. Also observable are sizable discontinuities in the level of the continuous
energy spectrum as the energy of the radiation crosses absorption thresholds.
For instance, a drop in the intensity of the continuous spectrum occurs for fre
quencies higher than the Balmer limit of the hydrogen atom, since frequencies
higher than this limit are capable of ionizing that fraction of hydrogen atoms
lying in the first excited state. The composition of the stellar atmosphere can
also influence the shape of the continuous spectrum of stars. For instance,
ionized metals have numerous resonance lines in the ultraviolet. Thus, a star
rich in metals may be expected to show less ultraviolet radiation than a metal
deficient star of equal temperature. These continuous absorption features dis
tort the blackbody nature of the spectrum. However, with the aid of model
atmospheres, it is still possible to calculate a surface temperature from the shape
of the observed spectrum.' Figure 1-5 shows the observed continuous spectrum
of the sun and a comparison blackbody spectrum for a surface temperature of
6000oK.

Absorption lines are not the only features which destroy the blackbody nature

1 J. L. Greenstein (ed.), "Stellar Atmospheres," The University of Chicago Press, Chicago,
1960, contains several excellent review articles on the problems of stellar atmospheres.
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of the continuum. The opacity of the stellar gases is a function of frequency;
therefore, the depth of sight into a stellar surface depends upon the frequency of
observation. Since the temperature of a star is a decreasing function of its radius,
light of different frequencies will penetrate to different temperatures, and there
will be an associated effect upon the shape of the continuous spectrum. An
atmosphere is not in a state of thermodynamic equilibrium. Strictly speaking,
thermodynamic equilibrium does not admit the possibility of temperature gradi
ents. There may even be extremely hot, but extremely rare, gases above the
surface of the star, such as the solar corona. The density of the corona is so low
that it has almost no effect at all on either absorption or emission in the total
continuous spectrum. Yet its temperature is some millions of degrees, a factor
of several hundred higher than that of the surface of the star from which the
continuous spectrum originates. The region of a star from which the bulk of
the continuous spectrum originates is called its photosphere. That is where the
approximation to the visible blackbody is. The mere existence of a solar corona,
however, clearly indicates some violation of local thermodynamic equilibrium.
These difficulties are, nonetheless, surmountable, and an average temperature
may be calculated for the photosphere of a star from its observed continuous
spectrum. Often it is not even necessary to measure a spectrum in detail. Suf
ficient data may be taken by broadband color photometry, using filters of various
colors and recording the energy transmitted by the filter. Measurements of a
star's apparent brightness in two or three colors are often ample to ascertain an
approximate surface temperature of the star. The temperature of a true black
body is completely determined by the intensity at two distinct wavelengths.

It is common, therefore, to speak of the color index of a star. This quantity is
defined by measuring the luminosity of the star with a blue-sensitive photographic
plate and with a yellow-sensitive plate and a yellow filter. The former quantity
is called the blue or photographic luminosity, whereas the latter is called the photo
visual, or simply visual, luminosity. The associated magnitudes are called Band
V, the blue and the visual magnitude, respectively.' As stars become hotter,
they get bluer; hence the magnitude measured in the blue compared with the
magnitude in the visual spectrum gives an indication of the surface temperature
of the star. The color index itself is defined as the difference in these magnitudes,
B - V. In keeping with the inverse logarithmic relationship of magnitude to
luminosity, the color index B - V is greatest for cool stars and smallest (in fact,
even negative) for very hot stars. By properly defining the way in which Band
V are to be measured, astronomers are able to make a one-to-one correlation
between the color index B - V and the color temperature of the star. Figure 1-6
shows the sensitivity functions for the filters and detectors that define the Band
V measurements.

1 Technically, there is a slight difference between the older photographic and photovisual mag
nitudes lrfp u and M p o and the new blue and visual magnitudes Band V. These differences
stem from different color classification systems for stars, and the reader is referred to Allen,
op, cit., p. 194, for technical definitions.
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Fig. 1-6 A schematic comparison of the spectral responses of the U, B, and
V detector systems used in multicolor photometry. The response of the
human eye is shown for comparison.

THE EXCITATION TEMPERATURE

This method uses the fact that one given kind of atom or ion may have visible
absorption lines originating from different initial states. Again, to take the sim
plest case, hydrogen certainly will absorb Lyman alpha (although that feature is
not visible through the earth's atmosphere): There is also a certain fraction of
hydrogen atoms which, as a result of thermodynamic .equilibrium, are already in
the first -excited state of hydrogen. This fraction of the hydrogen atoms may
absorb all the lines of the Balmer series of the spectrum of hydrogen. One may
find, for instance, H, iii absorption. From the intensities of these absorption
lines and from the intrinsic transition strengths of the atomic transitions involved,
it is possible to calculate the ratios of the populations of the various excited states
of atoms or ions. Let. ET,k denote the excitation energy of the kth state of an
r-times-ionized species of some nucleus; then Boltzmann's formula yields the
population ratio of two states of the ion,

nT,k gT,k ET,k - ET,i- = - exp - --'--,-;;;--'-
nT,i gr,i kT

(1-31)

In this. formula gr,k represents the statistical weight of the state (r,k). It is equal
to the degeneracy of that particular level of the ion; i.e., it is the number of states
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with differing quantum numbers that have the same energy. When the Zeeman
splitting of magnetic substates is neglected, all projections of the angular momen
tum are degenerate in energy, and we have

gr,k = 2Jr ,k + 1

where Jr,k is the angular momentum of the atomic state.'

(1-32)

Problem 1-13: It turns out by the nature of a pure liT potential that the hydrogen atom has
additional degeneracy, such that states lie in degenerate groups characterized by a principal
quantum number n.

13.6
En = - -z-ev

n
qu,« = 2n 2

The visible spectrum of hydrogen is dominated by a red line called H a , which corresponds to
an atomic transition between the n = 3 and n = 2 levels. Calculate the frequency of H a •

Assuming that the temperature of the sun's surface is about 5700oK, what is the ratio of the
population of the first excited state of hydrogen to the ground state of hydrogen?

Problem 1-14: Suppose that an ion has two effective electrons in the configuration (3p)(4p).
Give the spectroscopic designation of the states that can be formed from that configuration.
Draw a schematic energy-level diagram showing the order you expect for those terms. If the
configuration were (3p)2 rather than (3p)(4p), which of those terms would be forbidden by the
exclusion principle?
Ans: See Leighton, op, cit., p. 264.

1 An appropriate introduction to the quantum mechanics of atomic states and their spectro
scopic designations may be found in Leighton, op. cit.

€ I ev

Fig. 1-7 An approximate term diagram for
the electronic configuration of the element
sodium. The excitation energy above the
energy of the ground state is labeled by the
quantum numbers of the configuration.
The letter designates the orbital angular
momentum of the electrons (in this case of
a single-valence electron), and the subscript
designates the total angular momentum of
the states.
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Problem 1-15: An approximate term diagram for sodium is shown in Fig. 1-7. (a) At what
temperature are the combined populations of the two 3.6-ev states and the 3.2-ev state equal?
(b) At that temperature, what fraction of all sodium excited states are in the Pi state? (Ignore
higher-lying states not shown.)

Astrophysicists make calculations of this type often. An excitation tempera
ture of the stellar atmosphere may be determined in this way from the ratios of
populations of two different excited states of the same atom. This procedure
can often be followed for many different kinds of atoms as a check on inner
consistency. Caution must be exercised in comparing excitation temperatures
determined from differing species, however. Molecular transitions may indicate
somewhat cooler temperatures than atomic-hydrogen transitions, for instance, if
molecules exist only in relatively cool parts of the photosphere whereas appreci
able population of the excited states of hydrogen occurs in deeper regions. To
achieve complete consistency one must reproduce the complete stellar spectrum
from a model atmosphere for the star.

The foregoing application of Boltzmann's formula is a simple example of the
application of statistical mechanics to inverse reactions in thermal equilibrium.
The population ratio of the two final states in an inverse pair of reactions is
proportional to the ratio ot the statistical weights of the two states times a
Boltzmann factor favoring the state of lower energy. The Boltzmann factor is
a negative exponential of the number of units of thermal energy kT that must be
concentrated into one process to produce the final state of higher energy from the
state of lower energy. In the case just considered, the inverse processes are just
the photoexcitation of a state and its radiative deexcitation.

E j

J, t---r----------,..---l

Fig. 1-8 Electromagnetic transitions between
two states of an atom or ion may be accom
plished by the emission or absorption of
photons of frequency hVi; = E, - Ej • The
inverse lifetimes of the states against the three
types of transitions are given by the Einstein
coefficients.
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(1-33)

That the Boltzmann formula depends on the assumption of thermal equilibrium
can be seen from the detailed balance of these inverse processes. Let Vii be the
frequency of a photon emitted during a spontaneous transition between statesi
and j with E, - E, = hVij (Fig. I-S), and let the atoms be bathed by isotropic
radiation with spectral energy density u(v). The presence of the photon gas
causes two other first-order transitions between the two states: (1) by absorbing
a photon of energy hVij an atom in state j may make an upward transition to
state i, and (2) by interacting with a photon of energy hVij an atom in state i
may be induced to emit another photon of energy hVij in the same direction as
the stimulating photon.. The rates of these photon-induced transitions must be
proportional to U(Vij). There are three transition probabilities, called the Einstein
coefficients, which describe radiative transitions between states i and j: (1) A ij is
the probability per atomic state i per unit time of spontaneous radiative decay
to statej; (2) Bi{u(Vij) is the probability per atomic state i per unit time of induced
radiative transitions from state i to state j; and (3) Bjiu(Vij) is the probability per
atomic state j per unit time of radiative absorption to state i. There is, further
more, a definite quantum-mechanical relationship between these coefficients,' viz.,

Cs
Bij = -Sh sAij

tr Vij

s; 2Jj + 1 gj
Bji = 2Ji + 1 = g;

In thermodynamic equilibrium it is required that the number of transitions per
unit time from i to j equal the number from j to i. Quantitatively, this require
ment demands that

ni[Aij + Biju(Vij)] = nABjiu(Vij)]

Solving this expression for u(Vij) yields

( ) Aii/Bij
U Vij = N.B ..jNB.. 1

J]1 t t1

Equation (1-35) can be matched with Eq. (1-26) only if

(1-34)

(1-35)

(1-36)N, Bji hVij gi hVij- = - exp - - = - exp - s, Bij kT gj kT

In this way the Boltzmann formula follows from the energy distribution of equi
librium radiation and the quantum-mechanical principles of inverse radiative
reactions. Of course, the equation follows immediately from statistical thermo
dynamics and encompasses all pairs of inverse reactions; i.e., the excitation and
deexcitation may involve inelastic-particle collisions as well as the radiation field,
but the result remains the same as long as the system is in true thermodynamic
equilibrium.

1 Further discussion may be found in Sec. 3.3.
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THE IONIZATION TEMPERATURE

A similar principle leads to a third method for determining the photospheric tem
peratures. In this method, the inverse reactions involved are the ionization of an
atom or ion and the inverse recombination process. By comparing the strength
of absorption lines of two different states of ionization of the same atom, it is
often possible to determine the relative number densities of the two stages of
ionization of that atom. For example, the Hand K lines of singly ionized
calcium often appear in the same spectrum with a line of neutral calcium at
4226 A. The relative strength of these lines can be made to yield the relative
numbers of singly ionized calcium atoms and neutral calcium atoms in a stellar
photosphere. In such cases, that population ratio can also be used to determine
a stellar temperature. The corresponding ionization equation was first derived
by Saha,' and the equation bears his name today.

If we let nrH be the number density of the (1' + 1)-times-ionized species of a
certain atom, n; be the number density of the r-times-ionized species of the
same atom, and ne be the number density of free electrons, the Saha equation
demands that

(1-37)

In this equation Gr+1, GT) and ge are the so-called partition functions of the
(1' + 1)-times-ionized species, the r-times-ionised species, and the electron, respec
tively. The partition function of an atom is similar to, but slightly more compli
cated than, the statistical weight of a quantum-mechanical state. It is, in fact,
the sum of the statistical weights of all bound states of the atom, each one
weighted by the Boltzmann factor indicating the relative population of that level
in the structure of that atom. Specifically, we have

(1-38)

(1-39)

where gr,k is again the statistical weight of the lcth level of the r-times-ionised

atom. The energies appearing in the Boltzmann exponentials are, of course, the
energies of the excited states of the species l' relative to the ground state of the
species 1'.

The partition function possesses a physical interpretation related to the ques
tion: What fraction of the number density of an atom resides in a specific state
of the atom? The ratio of the density ofthe species in that state to the density
in any other individual state is given by the Boltzmann formula in Eq. (1-36).
If the Boltzmann formula is summed to obtain the ratio of the density of ions in
the state in question to the total density of the ion, it follows immediately that

nr,k gr,k exp (- Er,k/lcT)n; = G
r

1 M. N. Saha, Phil. Mag., 40 :472 (1920).
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where Gr is the partition function of species r as given by Eq. (1-38). It will be

obvious that l n~,k = 1, a fact consistent with the definitions of nr,k and n r•
k r

A conceptual difficulty associated with the application of the partition function
lies in the fact that it appears to be a sum of an infinite number of finite terms.
All isolated atoms have an infinite number of excited states with much the same
characteristics as the infinite number of excited states of the hydrogen atom.
Strictly speaking, then, the partition function is infinite, and the fraction of atoms
in anyone excited state approaches zero. The solution to this apparent dilemma
lies in the existence of a physical cutoff to the number of excited states that any
one atom may have. Just as in the case of the hydrogen atom, the radius of the
electron orbit for highly excited electrons is proportional to the principal quan
tum number of the state. In a real gas a point is reached at which the size of
the atoms in highly excited states becomes comparable to the atomic separation.
The electrons can then no longer be associated with anyone atom but must pass
into a band of continuous states, a situation somewhat analogous to metals.
This physical limit to the number of bound states makes the partition function
finite. In most applications, in fact, the numerical value of the partition func
tion can be estimated by taking only a few terms (in many cases only one term)
of the sum. In the stellar interior this phenomenon becomes quite important.
Bound electrons greatly increase the opacity of matter to the thermal radiation,
and it becomes necessary to consider the interactions in the gas in order to real
istically calculate the number of bound electrons. This problem will be dis
cussed further in Sec. 2-3.

It is therefore common to estimate partition functions by first estimating the
temperature and the number of terms of the series that need to be kept to have
a good approximation to the answer. It is also fortunate that the number ratios
are, in general, considerably more sensitive to the temperature than to the ratio
of the partition functions. For this reason, great accuracy in evaluation of the
partition functions is often not necessary for astrophysical application. In the
Saha equation one of the partition functions, viz., that of the electron, is particu
larly simple. Since the electron has no excited states, its partition function is
just the statistical weight of the electron. Since the electron has a spin equal to
t, its statistical weight is g. = 2.

The other quantities appearing in the Saha equation have obvious meanings.
They are the mass of the electron, the Boltzmann constant, the Planck constant,
the temperature, and Xr , which is the ionization energy of species 1".

In many books on astrophysics the Saha equation is written in terms of the
electron pressure instead of the electron density. In a perfect nondegenerate gas
the electron pressure is given by P. = n.kT, so that an alternative expression for
the Saha equation is

(1-40)
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We shall, however, generally prefer to use Eq. (1-37). For computational pur
poses it is often desirable to take the logarithm of this equation and evaluate the
constants:

log nr+In• = log Gr+l + 15.6826 + t log T
n r G;

5039.95xr

T (1-41)

s,«,

-r (r+l)+e

Xr

gr 1
(r)

The temperature T is expressed in degrees Kelvin and the ionization potential x,
in electron volts. The Saha equation is intrinsically more complicated than the
Boltzmann formula because of three factors: (1) the explicit appearance of the
electron density, (2) a more involved functional dependence upon the tempera
ture, and (3) the cumbersome nature of partition functions as compared with
statistical weights of atomic states. These difficulties are surmountable, how
ever, and the equation is a valuable source of information concerning stellar
temperatures.

The Saha equation can be derived from the statistics of photon and electron
gases with the aid of the Einstein electromagnetic-transition coefficients. The
calculation is quite similar to the one leading to the Boltzmann equation in that
it is constructed from the detailed balance of the electrodynamic processes. The
calculation will be easiest to follow in terms of single-bound-state models of the
1'- and (1' + I)-times-ionized species. Figure 1-9 shows these idealized atoms in
an energy-level diagram indicating the ionization potential x, of species 1'. Now
consider the three first-order electrodynamic processes involving combination and
dissociation with an electron of momentum p: (1) spontaneous emission, i.e.,
radiative recombination; (2) induced emission, i.e., induced radiative recombi
nation; and (3) absorption, i.e., photoionization. The rates of these three proc-

Fig. 1-9 An energy-level diagram for the ionization of
idealized ions possessing only a single bound state.
The r-times-icnized species must absorb energy
greater than or equal to x, to make a transition to the
(r + l j-times-ionized species plus a free electron.
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esses are as follows:
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(1-45)

(1-46)

(1) Spontaneous recombination:

(1' + 1) + e(E = ~:) -t r+ ~ (hv = x- + ~:)
Rate = (density of species r + 1) X (density of electrons of momentum p)

X (spontaneous Einstein emission coefficient)

= Nr+1n.(p)Ar+1,r (1-42)

(2) Induced recombination:

(1' 1) + e (E = ~:L) + ~ (hv = x-+ ~:) -t r + 2~ (hV = Xr + ~:L)
Rate = (density of species r + 1) X (density of electrons of momentum p)

X (energy density of hv = x- + ~: Photons)

X (induced Einstein coefficient)

= Nr+ln.(p)U(Vr,T+l)Br+l,r (1-43)

(3) Photoionization:

r + ~ (hv = XT + ~~) -t (1' + 1) + e(E = :~)

.Rate = (density of species 1') X (energy density of h» = x- + :~ Photons)

X (Einstein absorption coefficient)

= Nru(vr,T+!)Br,r+l (1-44)

In the steady state characteristic of equilibrium the rate of ionizations equals the
rate of recombinations; therefore

Nr+1n.(p)[Ar+1,r + U(Vr,r+l)Br+1,r] = Nru(Vr,r+l)Br,r+l

The equilibrium is given by

N T+ln.(p) Br,r+dBT+1,r
N; 1 + Ar+l,r/U(Vr,r+!)Br+l,r

In most cases of ionization equilibria the electron gas is nondegenerate, which is
to say that the Maxwell-Boltzmann approximation to Fermi-Dirac statistics will
apply. In that case n.(p) is given by Eq. (1-25). The energy density u(v) is
given by Eq. (1-26), and the ratios of Einstein coefficients are given by Eq. (1-33).
The demonstration is, therefore, complete except for one important point involv
ing the ratios of the B coefficients, That ratio is equal to the ratio of the sta-
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tistical weight of the upper state to the statistical weight of the lower state. In
the present problem, .the upper state involves a free electron of momentum p,
so that the statistical weight of that state must include the density of available
momentum states. Thus

Problem 1-16: Show from these assembled equations that

u.;», gr+lg. (211"rnkT)! x-
~ = ---;;:- h3 exp - kT

(1-47)

(1-48)

Equation (1-48) is clearly the form taken by Eq. (1-37) for ions containing
only a single state, but it is easy to generalize the result by considering real ions.
In equilibrium Eq. (1-48) applies between any state 1', k of species r and any state
l' + 1, j of species r + 1. In terms of the more realistic diagram shown in Fig.

€r+ 1,1'

(r+ 1) +e

(r)

Fig. 1-10 An energy-level diagram for the ionization of ions possessing their
full coterie of bound levels.
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1-10, Eq. (1-48) should read

N r+1.jne gr+uge (27f:mkT)!= ----- exp
Nr,k gr,k h3

Xr + Er+l,i - Er,k

kT
(1-48')

Problem 1-17: Show that the combination of Eqs. (1_48')and (1-39) results in the Saha equation.

It will be clear from this simple derivation that the Saha ionization equation is
actually correct in its stated form only for a nondegenerate electron gas. If the
density were so high as to produce degeneracy, the number of states into which
the ionized electron could be ejected would be reduced. Other complications,
furthermore, such as pressure ionization.' accompany the high densities of degen
erate configurations. This discussion is also inadequate in its neglect of collisional
ionization and the inverse (three-body) recombination. In strict thermodynamic
equilibrium, where the electron temperature equals the photon temperature, the
same result is obtained. In those environments (e.g" solar corona, planetary
nebulas) where deviations from local thermodynamic equilibrium are large, the
Saha equation is not applicable. A grasp of the simple arguments leading to it
will enable the reader to understand complicated situations more easily, however.
The reader may also make a mental note that these same three radiative proc
esses will be of importance in the discussion of the opacity of stellar matter. The
ionization equation will, moreover, be important for other applications than the
present context. It may be applied in any equilibrium process in which some
species is dissociated into two other species in thermal equilibrium. Thus, the
equation could, for instance, be applied to the dissociation of a molecule into its
constituent atoms or even to the dissociation of a nucleus into two nuclei. We
shall, in fact, use this same equation in many ways throughout other discussions.

Problem 1-18: Consider a gas cloud composed of hydrogen atoms (no H 2 molecules and no
H- ions). Relate the temperature at which one-half of the hydrogen atoms are ionized to
the density in grams per cubic centimeter. In an interstellar gas cloud, the density may be
10-27 g/cm3• How hot must that cloud be (if it is in thermal equilibrium) to be one-half
ionized? In the outer layers of a star, the density may be of the order 10-4• How hot must
that stellar atmosphere be in order that the hydrogen be 50 percent ionized? You will notice
that the required temperature changes by slightly more than 1 order of magnitude when the
density changes by 23 orders of magnitude.

Problem 1-19: Show that in thermal equilibrium, the ratio of positive hydrogen ions to negative
hydrogen ions at temperature T is given by

H+ =.2..~ (2-;rm,kT)3 x- + x+
H- n,2 GH- kG exp - kT

where x" and x+ are the binding energies of electrons to a neutral hydrogen atom and to a
proton, respectively, and GH- is the partition function of the negative hydrogen ion. Equations
similar to this one are very important for nuclear astrophysics.

1 For a qualitative discussion of pressure ionization, see Chap. 2.
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Problem 1-20: Actually, the interstellar medium is far from being in a state of thermodynamic
equilibrium, because the spectral distribution of photons is a roughly planckian distribution
characteristic of average starlight whereas the energy density of photons is comparable to that
which a thermodynamic enclosure would have at a few degrees absolute. If the hydrogen
ionization is predominantly due to starlight, and if the electrons have a maxwellian distribution
corresponding to the same temperature T. that characterizes the spectral shape of average
starlight, but the photon energy density is WaT.4, argue that the level of hydrogen ionization
is approximately .

N(H+) (27rm.kT)! XH

N(II) n. = W h3 exp - kT

The factor W is called the dilution factor and is often used for approximate calculations.

Problem 1-21: Show that if hydrogen gas is in thermodynamic equilibrium, the ratio of the
number of hydrogen atoms in the principal energy level n to the number of ionized hydrogen
ions is

Nn(H) nNn2 XH
_.-- = exp +--
N(H+) (27r71!.kT)! n 2kT

Problem 1-22: A certain stellar atmosphere with a pressure 1,000 dynes/em 2 consists entirely
of hydrogen. By ignoring statistical weights, i.e., setting the ratio of partition functions
equal to 1, find the temperature at which the II2 molecules are 50 percent dissociated. The
binding energy of the H2 molecule is 4.48 ev. (The problem here is that the dissociated par
ticles have comparable mass. How will that fact modify the ionization equation?)

These last two techniques for determining stellar temperatures may sometimes
give slightly lower temperatures than the measurement of the blackbody con
tinuum. The reason for this small difference is that many of the absorbing atoms
which contribute to the absorption lines lie above the base of the photosphere
and are therefore somewhat cooler. In a detailed theory of stellar atmospheres,
a correction for this difference may be made.

The application of both the Boltzmann and the Saha equations depends upon
the ability to convert the intensity of absorption lines into abundances of the
absorbing species. The spectroscopic trace of an absorption line in a stellar spec
trum reveals how much energy was absorbed by the specific transition from the
continuous radiation. .The conversion of the amount of energy absorbed by a
spectral line into the abundances of the absorbing species involves the entire
theory of line formation. This theory must be invoked to obtain the population
ratios necessary for application of the Boltzmann and Saha equations. The same
theory must also be invoked to calculate from stellar spectra the abundances of
elements in stellar atmospheres. The theory of line formation is so specialized
and so extensive that it will not be taken up in this book. The shape of an
observed absorption line depends upon the physical conditions in the stellar
atmosphere, i.e., its temperature, density, and composition, as well as upon the
intrinsic strength of the atomic transition involved. There are several excellent
treatises upon the theory of line formation. For our purposes, we shall simply
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note that there exists a way of converting the strength of absorption lines to
abundances.

THE SPECTRAL TYPES

One of the earliest results of observational astronomy was the realization that
there existed a correlation between properties of the stellar surface, such as its
surface temperature, and the strength of specific absorption lines as seen in the
spectrum of the star. In 1863 the Jesuit astronomer Angelo Secchi classified
stars into four groups according to the prominent absorption lines in their spectra.
An empirical classification scheme was subsequently developed in which stars
were sorted into seven principal spectral types, each type being characterized by
a certain range of surface temperature and the appearance of characteristic
absorption lines. The detailed understanding of the correlation between surface
temperatures and prominent absorption lines rests almost entirely in various
applications of the Boltzmann and Saha formulas.

The principal classification groups of stars are traditionally labeled by the
letters 0, B, A, F, G,· K, and M. The significances of the actual letters of the
alphabet chosen to represent the spectral classes are mostly historical and are
remiriiscent of the analogous importance of the letters chosen to represent the
various angular-momentum states in quantum mechanics. Each spectral class
corresponds to a certain range in surface temperatures. Each of these major
divisions or classes is further subdivided into 10 groups. For instance, the spec-

.tral type B is further subdivided into io subclasses labeled BO, B1, B2, ... ,
B9, in order of decreasing temperature. A rough correlation of the surface
temperatures of each spectral type with the prominent absorption lines appear
ing in the spectra Of those stars is as follows:

Class 0: Temperatures of 25,000oK and up. Lines of ionized helium are promi
nent. From the discussion of the Saha equation it is apparent that lines of
ionized helium will appear only in such an extremely hot gas. Other atoms in
high degrees of ionization are observed.
Class B: 25,000 to 11,000oK Theiines of hydrogen and neutral helium are
conspicuous at class BO. Ionized oxygen and ionized carbon become strong at
class B3. Neutral helium lines are strongest at class B5. Hydrogen lines
become progressively stronger in the higher-numbered subdivisions of this class.
By hydrogen lines we mean, of course, the Balmer series of hydrogen lines appear
ing in absorption. The intensity of such lines will, among other things, be pro
portional to the fraction of hydrogen atoms existing in the first excited state of
hydrogen in thermal equilibrium.' Thus, the strength of hydrogen lines is pri
marily determined by combined application of the Boltzmann and Saha formulas.
Class A: 11,000 to 75000K At class AOhydrogen and ionized magnesium lines
are strongest, whereas the helium and ionized oxygen lines have disappeared.
Hydrogen lines weaken continuously in the higher subdivisions of this class,
whereas ionized metals (Fe, Ti; Ca.vetc.) strengthen. The hydrogen lines will
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.continue to weaken as we progress toward cooler stars, because the temperature
becomes less and less sufficient to maintain a significant fraction of hydrogen
atoms in the first excited state. The lines of ionized metals are growing stronger
because the relative number of metals in low degrees of ionization is increasing.
In the hotter stars, the higher degree of ionization of the metals produces reso
nance lines that lie in the ultraviolet. The resonance lines of the slightly ionized
metals, however, lie in the visible, and these grow stronger as the temperature
cools.
Class F: 7500 to 6000 0 K Class FO is rich in lines of the ionized metals, the
strongest being the Hand K lines of singly ionized calcium. Metallic lines,
particularly iron, strengthen and hydrogen lines weaken in the higher-numbered
subdivisions of this class.
Class G: 6000 to 50000 IL In this class the lines of the neutral metals become
strong, whereas the hydrogen lines continue to weaken. Lines of ionized cal
cium are very strong. Molecular bands of CN and CR appear. The sun belongs
to the class G2.
Class K: 5000 to 35000 K In general, molecular bands and lines of neutral
metals become much stronger, whereas the lines of hydrogen and ionized metals
continue to weaken. At K5 the lines of TiO are weakly visible.
Class 111: 3500 to 2200 0 IL The characteristic feature of the spectrum of class
M stars is the appearance of complex molecular oxide bands, of which TiO bands
are strongest.

The majority of stars fall into one of these spectral classes. There are, how
ever, some exceptions to this classification scheme: some stars have temperatures
in a range parallel to one of the existing classes but show strikingly different
spectral lines. Therefore, some additional spectral classes have been established
which parallel the above classes in temperatures:

Class S: A low-temperature class parallel to class IVL This class is still charac
terized by molecular oxide bands, but the most prominent feature is the ZrO
bands. The elements Zr, Y, Ba, La, and Sr give strong atomic lines and oxide
bands. Lines of neutral technetium are usually seen. It is believed that these
abundances are enhanced because of nucleosynthesis within the interior which
has been mixed to the surface.
Classes Rand N (or Class C): Parallel in temperature to the ordinary classes
K and Iv1. The spectrum is characterized not by oxide bands but by molecular
carbide bands, such as those of CN, C2, and CR.
Class W: Extremely high-temperature type 0 objects, called Wolf-Rayet stars,
with bright, broad emission lines of ionized helium and highly ionized carbon,
oxygen, and nitrogen. Two sequences exist: (1) the WC stars have strong car
bon lines and weak nitrogen lines, and (2) the WN stars have strong nitrogen
lines and weak carbon lines. These stars are generally found to be emitting gas
rapidly in space. The progression of spectral properties through the sequences
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Fig.1-U The progression of selected spectral properties through the sequence
of spectral classes. (G. Abell, "Exploration of the Universe," Holt, Rinehart
and Winston, Inc., New York, 1964.)

of spectral classes and the correlation of color with surface temperature and spec
tral type are shown in Fig. 1-11.

Problem 1-23: What is the spectral type of a normal star having a maximum in its continuous
spectrum at H a ? "
Ans: K3.

Problem 1-24: What is the spectral type of a star for which the number of hydrogen atoms in
the first excited state exceeds the number in the second excited state by the ratio of 4: I?

Problem 1-25: Absorption lines of singly ionized helium cannot be seen if the temperature is
too low, because the helium is mostly neutral and what little ionized helium there is lies in
the ground level and cannot make" visible absorption lines. On the other hand, the lines
cannot be seen if the temperature is too high, because all the helium becomes doubly ionized.
The helium absorption lines arising from a state in level n of singly ionized helium will be
strongest when the largest possible fraction of the helium lies in that level, i.e., when Hen+/
(He + He" + He H ) , the fraction of He in state n of He+, is a maximum. Show that this
condition occurs when the quantity

[( 1) x+J n,h
3

{x
O + [(n2 1)/n2lx+}

G(He+) exp 1 -;;; kT +G(He) 2(21rmkT)t exp kT

2 (27rmkT)t x"
+ n,h3 exp - n2kT

is a mimmum. The ionization potential of neutral helium is XO = 24.58 ev, and x+ is the
ionization potential of the He t, Calculate for n = 4 and electron densities in the range
logn, "" 19 (the answer is not very sensitive to n,) that temperature yielding the largest frac
tion of He" ions in the n = 4 level (assume G = 1). You may also notice that most of the
helium is doubly ionized at this temperature. What is the spectral type?
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One of the objects of this book will be to illustrate how the elements may be
synthesized by nuclear reactions in stellar interiors. Normally, the atmosphere
of a star shows the abundances of those elements which were present at the time
the star formed. The newly formed elements in the stellar interiors do not
usually migrate to the surface. However, examples of cases in which nuclear
reactions in a stellar interior have changed the surface composition of the star
into something abnormal may be seen in the classification list of stars already
presented. For example, the S stars show strong enhancements of the spectral
lines of those nuclei having exceptionally stable, or magic, neutron configurations,
Zr, Y, Ba, La, and Sr. For some reason these particular elements are over
abundant in the surfaces of class S stars. Apparently these species are produced
in the interior of the star and mix to the surface of the star, an exception to the
usual course of events. Further evidence of this fact may be seen in the appear
ance of the lines of Tc, an element that is unstable. Certainly the appearance
of an unstable nuclear species must indicate the recent formation of that species.
The nuclear processes going on in the interior of the type S stars apparently are
such that the species with magic neutron configurations are produced in abun
dance. The details of this nuclear mechanism, called the 8 process, will be
examined in Chap. 7.

Another example of an abnormal nuclear history may be seen in types R
and N stars. In normal stars of that temperature, oxide bands are formed
because oxygen, being normally more abundant than carbon, remain in excess
after the formation of CO. The excess oxygen may then form less stable oxide
bands. In Rand N stars, such does not appear to be the case. Some nuclear
process or vicissitude of evolutionary history has augmented carbon relative to
oxygen; therefore, the CO exhausts the oxygen and leaves excess carbon for the
formation of carbide bands. One of the most fascinating problems in stellar evo
lution and nucleosynthesis is that of separating abundance abnormalities into
those contained in the star at birth and those produced by the star during its
own lifetime.

1-3 MASS

The masses of stars can be measured only when they occur in a binary pair and
when the orbital motion of the pair has been measured. In the best cases one can
measure the separation of the pair of stars and their relative motion about their
center of mass. The difference of the Doppler shift of lines from the two compo
nents can also be made to yield the orbital velocity. The masses are computed
by a simple application of Kepler's third law. Let 1111 and M 2 represent the
masses of the pair of stars; then

M1+M2 A3
-=-=--=-:---::-;;-- = - (1-49)
1110 + l11enrth p2

where A is the distance (semimajor axis) between the two stars expressed in
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astronomical units (1 AU = 1.496 X 1013 em) and P is the period of the binary.
system in years. The ratio of the masses is determined in those additional cases
where the center of mass of the pair can be found. It is then possible to calculate
each mass individually.

Because of the restriction to observable binaries, the mass is certainly one of
the most difficult quantities to determine for stars. The only star for which the
mass is known with great precision is the sun:

M 0 = 1.989 ± 0.002 X 1033 g

That value is derived from the accurately known orbits of the planets.
Measured masses of stars are found to lie in the range of one-tenth of the

solar mass to about 20 solar masses. Considerably larger masses probably have
been observed, because whenever the inclination of the orbital plane cannot be
determined, it is possible to calculate only a lower limit on the mass of a binary
pair. There are theoretical indications that masses greater than 60 solar masses
are unstable and that masses smaller than 0.08 solar masses do not become hot
enough to cause nuclear reactions.

Interestingly enough, most stars with known masses display a striking rela
tionship between their luminosity and their mass: the luminosity is proportional
to a rather high power of the mass; that is,

L = const X M' (1-50)

where v lies in the range of 3.5 to 4.0. This relationship is found to be violated
strongly only by the white dwarfs, which are much too faint for their observed
masses. It is theoretically certain that the relationship is also violated for a
class of stars called giants, whose masses have unfortunately not been measurable.
Basically Eq. (1-50) may be thought of as an approximation applicable to a class
called main-sequence stars. At any rate, the mass-luminosity law is important in
that it roughly correlates the luminosity of main-sequence stars with their masses,
a fact to be interpreted in terms of the theory of stellar structure.

1-4 RADIUS

The radii of stars, extremely important quantities for the theory of stellar evo
lution, have generally not been measurable. The recently developed technique
of the intensity interferometer! has not yet yielded accurate results for a large
number of stars. Only for a few dozen stars, mostly giants, do direct measure
ments exist. The values of known diameters range up to a thousand times that
of the sun (Betelgeuse). These measurements are helpful, but for tests of stellar
structure theory one is generally forced to determine the radii from the Planck
emission law

(1-51)

1 See Sky and Telescope, 28 :64 (1964) and Science, 153 :581 (1966) for a discussion of this
technique.
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Since the luminosity and effective surface temperatures of the stars are measur
able by independent techniques, as we have seen, the radius of a star can be
calculated. There are hidden problems, however, in Eq. (1-51), which logically
stands as the definition of the effective temperature Te• But stars are not black
bodies, so that the measured temperatures differ in some unknown way from the
value of 'I', that satisfies Eq. (1-51). What must be done is to construct model
stellar atmospheres that are capable of reproducing the continuous spectrum and
the line spectrum of various stars and to see ho~v much energy is actually radi
ated by such an atmosphere. It turns out in practice that all surface tempera
tures are nearly equal for those stars radiating primarily in the visible portion of
the spectrum, but Eq. (1-51) shows that an error in T; is amplified in the determi
nation of R. Because of inadequacies in the theory of convection, moreover,
current models of stars are incapable of accurately predicting the radii of stars
having surface convection zones. The problems of understanding stellar radii
are vexing. The sun is still the only star whose radius is known with high
precision: R0 = 6.9598 ± 0.0007 X 1010 cm.

In summary, we observe that the science of stellar structure deals with four
basic large-scale properties of a star which can be measured with varying degrees
of accuracy. They are the luminosity, the surface temperature, the radius, and
the mass. Also observable are certain spectral features from which the compo
sition of stellar surfaces may be inferred. From this set of data, in itself a remark
able tribute to observational astronomy, the science of stellar evolution has been
derived. The values of these macroscopic properties of stars lead immediately to
the conclusion that stars are gaseous throughout. From their long lifetimes it
may be presumed that the star must be a structure in hydrostatic equilibrium,
the pressure at each point in the interior being just sufficient to support the
weight of the layers above. The additional considerations of energy generation
and transport make possible the construction of a theory of stellar evolution.
An introduction to the physical principles of this theory constitutes a major
objective of the subsequent chapters of this book. "

1·5 ENERGETICS

The pressure, temperature, and density in the interior of a star are quantities
related by the equation of state of the gas. The equation of state may be com
plicated, depending as it does upon specific physical effects that occur at various
locations in the 'I'o plane, but the relatioriship P = P(T,p) nonetheless exists.
Even for a star in hydrostatic equilibrium, however, there remains considerable
freedom of structure. A specified pressure may be produced by high density
and a relatively low temperature or by a low density and "a relatively high tem
perature. Finding the proper combination of temperature and density to pro
vide a self-consistent stable structure for the star is the major problem of stellar
structure, and the demand for hydrostatic equilibrium is in itself insufficient to
generate a unique solution.
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The rate at which energy is transported from the deep interior of the star to
the surface to be radiated depends upon the temperature gradient of the stellar
structure. Furthermore, the central temperature must have the proper value in
order that the nuclear reactions which maintain the internal heat proceed at the
rate required to counterbalance the luminosity. Because the rates of nuclear
reactions are, in general, strongly temperature-dependent, the last condition
imposes a severe restriction upon the allowable temperatures of stellar interiors.
And it is the requirements regarding energy generation and transport that fix the
structure of the star.

One associated problem is the question of how the energy is transported to the
surface of the star from the interior. Interior heat is removed by four mecha
nisms, conduction, convection, radiation, and neutrinos. The process of heat
conduction depends upon collisions between particles in which excess concen
trations of thermal energy are transferred via elastic collisions to neighboring par
ticles, a process that slowly spreads and distributes the excess energy. Although
this process is extremely efficient in a metal, it is, except for degenerate electron
gases, extremely inefficient in the gaseous state. The competition most often lies
between radiation and convection as the means of transporting energy. If the
hot region in a gaseous configuration releases its excess energy by radiating it to
cooler parts of the gaseous configuration, the process is called radiaiioe transfer..
Because thermal emission is proportional to the fourth power of the temperature,
a hot spot will radiate energy faster than it is receiving it from the cooler sur
roundings. If the opacity of the gas to radiation is not too large, the energy
can be transported very efficiently by photons. Convection, too, is a relatively
efficient way of transporting energy. A mass of gas in a hot region of a star
may be moved bodily to a cooler region of the star where it may distribute its
excess thermal energy. But by one (or a combination) of these mechanisms,
the large thermal-energy store in the interiors of stars is transported to the sur
face and radiated. Whenever neutrinos are created in the stellar interior, how
ever, they generally escape without interaction. Neutrino emission may be
regarded as an instantaneous local heat sink.

Historically, it was difficult to determine the source of the large amounts of
energy radiated by stars. Probably the best incomplete answer was provided by
Helmholtz and Kelvin, who suggested that stars gain their energy from the work
done by gravitation contraction. Because of the conservation of energy it is
clear that a star cannot radiate more energy from this energy source than is
liberated by its gravitational binding. The order of magnitude for the total
gravitational binding of the sun is

-GM2 (7 X 10-8)(2 X'1033) 2
n = -R- = - 7 X 1010 = -4 X 1048 ergs (1-52)

If the entire amount of this energy were radiated at the present luminosity of the
sun, the age of the sun would be given by the formula

t0 L0 = 4 X 1048 (1-53)
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Since L0 = 3.9 X 1033 ergs/sec, the age would be to "'" 1015 sec"'" 30 million
years. This time is much too short for a maximum lifetime of the sun. It is
known that the sun has existed over 100 times longer than this, because the age
of the earth itself is about 4.6 billion years. Of course, one could argue that the
earth is older than the sun. However, even with that unrealistic assumption
the gravitation energy source would be insufficient. There exist fossilized algae
whose ages are on the order of 1 billion years or more, a time which is again
considerably longer than a gravitational contraction time. Thus the energy of
contraction is not in itself sufficient for the sun.

It is now believed that stars provide their energy by conversion of rest mass
into kinetic energy according to the Einstein mass-energy relationship

(1-54)

According to this interpretation, the sun is radiating energy at the expense of its
own mass; i.e., the mass of the sun is slowly decreasing, being radiated away by
some physical process that effects the conversion of matter into energy. The
supply of energy is very large. The total rest-mass energy of the sun is given by

1l10c
2 = (2 X 1033)(3 X 1010) 2 = 2 X 1054 ergs (1-55)

Since this supply of energy is almost a million times greater than the gravitational
binding energy of the sun, it could in principle account for the sun's luminosity
for a million times as long at the same rate of emission. Of course, there is no
plausible way of converting all the mass into radiant energy. Only a certain
fraction of the rest-mass energy of the sun can be converted. Even then it is
necessary to find the detailed nuclear reactions by which this transmutation
comes about. Fascinating astrophysical possibilities emerge from the details of
these nuclear reactions.

Perhaps the strongest clue to the correct solution was the observation that
stars are predominantly hydrogen. Approximately 90 percent of all nuclei in
stars appear to be hydrogen nuclei. Because of the great binding energy of the
helium nucleus, furthermore, the most abundant source of energy in stellar inte
riors appears to be the fusion of four hydrogen atoms into one helium atom.
The amount of energy liberated by each such conversion is given by

(1-56)

The total rest-mass energy of 1 amu is equal to 931 Mev.' Since the rest mass
of the system being considered is very nearly 4 amu, the fraction of the rest-mass

1 In nuclear physics the Mev is a very convenient unit, one that will be employed in the nuclear
discussions of this book. It is defined as the work done upon a unit atomic charge moved by
an electric field through a potential difference of 106 volts, and in fact it was just such electro
static particle accelerators that gave impetus to the experimental science of nuclear physics
as we now know it. This energy unit is characteristic of the significant energies found in nuclear
structure, moreover, in just the same way that the electron volt is a convenient unit for atomic
physics.
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energy converted into radiation in each of these transmutations is given by

F ti d 26.7 0 007rac IOn converte = 4 X 931 =. . (1-57)

i.e., the transmutation of hydrogen into helium will liberate 0.7 percent of the
rest mass of the system in the form of energy. Even this energy source is suf
ficient to account for the lifetime of the sun, since the amount of available energy
from this transmutation alone is then 0.007 of the total rest-mass energy of the
sun, which is (0.007) (2 X 1054) "'" 1.4 X 1052 ergs. This available energy would
sustain a total lifetime for the sun at its present rate of energy emission equal to

Lifetime = 1.4 X 10
52

= 3 X 1018 sec = 1011 years
4 X 1033

This very long time, 1011 years, is longer than the age of any known object,
including our galaxy.

Problem 1·26: The mass of the hydrogen atom is equal to 1.007825 amu, and the mass of the
helium atom is equal to 4.002603 amu. Calculate the energy released by nuclear binding
when four hydrogen atoms combine to form one helium atom. How much energy is liberated
when 1 g of hydrogen is converted to 1 g of helium?
Ans: 6.4 X 1018 ergs/g.

The energy given off by the conversion of hydrogen to helium comes very close
to being the maximum amount of energy that can be liberated by nuclear reac
tions in stellar interiors. The release. of the maximum available energy from
nuclear reactions is accomplished by the conversion of hydrogen into that form
of nuclear matter for which the binding energy per nucleon is the maximum.
The nuclear species is an isotope of iron, Fe 56• However, the conversion of H
into Fe 56 liberates only 0.8 percent of the rest-mass energy. Apparently, there
fore, the conversion of hydrogen to helium liberates seven-eighths of the total
energy available from nuclear reactions.

The recognition that the source of energy in stars must be nuclear reactions,
or even that the specific nuclear reaction likely to dominate is that which con
verts hydrogen into helium, is still not a sufficient explanation of the nuclear
energy source in stars. We must also define the specific nuclear mechanism and
reactions for bringing four protons together and somehow changing them into a
helium atom, which is composed of two protons, two neutrons, and two electrons.
Certain questions must be answered:' How many protons must come together at
one point, and how and when do the two required beta decays occur? Histori
cally, there was an even greater problem to be encountered in bringing two pro
tons together, the coulomb repulsion between two positive charges. The work
done in bringing two charges to a separation 1" is given by the potential energy

1 In awarding the 1967 Nobel Prize in physics to Hans Bethe, the Swedish Academy of Science
cited especially Bethe's discovery of the details of the fusion of hydrogen.
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(1-58)Mev

at the separation 1',

V = q1q2 = 1.44Z1Z2

r r(fm)

where the first form is in cgs units and the second form is in units that will be
most useful for nuclear reactions. In discussions of nuclear physics it is con
venient to express energies in millions of electron volts and distances in units of
1 fm = 10-13 cm. The fermi, or femtometer, is the unit of distance used in
nuclear physics for two reasons. (1) The size of a nucleus is characteristically
a few fermis. Since a nucleus does not have an unambiguous boundary, its size,
or radius, is a somewhat uncertain quantity. However, the distribution of
nucleons in the nucleus can be measured by observing the scattering of high
energy electrons from the nucleus. The results of such scattering experiments
reveal that the nucleons are bound into a small volume with a radius of a few
fermis. Additionally it is known from experimental nuclear reactions that the
radius of a nucleus is a few fermis. (2) It is implicit in the present theory of the
nuclear force that nucleons must approach to a separation of only a few fermis
before the effects of the strong (but short-range) nuclear force can be felt. The
nuclear force is believed to exist because of a field of pi mesons, with which
nucleons are known to have very strong reactions, in much the same way that
the electromagnetic force exists because there is a field of photons which interact
strongly with charges. As such, the range of nuclear forces is determined theo
retically by the Compton wavelength of the pi meson, hjm"c = 1.41 fm. For
nuclear reactions to occur, two nucleons must come to a separation of approxi
mately the range of the nuclear force plus the sum of their own radii, a separation
of a few fermis.

The radius of a proton is measured to be approximately 0.8 fm, and the range
of the nuclear force is about 1.4 fm. Accordingly two protons will interact only
if they come to a separation of something like 2 to 3 fm. From Eq. (1-58) the
potential energy for two protons at a separation of 2 fm is given by

V = 1.:4 = 0.7 Mev

This result indicates that two classical particles with a relative kinetic energy less
than 700 kev could not come so close to each other as the distance 2 fm, The
coulomb potential for like charges is somewhat like a hill between the two parti
cles. Classically speaking, a particle either has sufficient energy to roll to the
top of a hill, or it does not. If it does not, it turns around and rolls back down.
On the other hand, the average thermal energy in a gas in thermal equilibrium is
of the order kT, which is numerically equal to

kT = 0.862 X 1O-7T kev (1-59)

It is apparent that at the sun's center, where T is approximately 107 OK, the
average thermal energy is only about 1 kev. This energy is considerably less
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than the 700 kev required to bring two protons to a separation of 2 fm, a dis
tance characteristic of that necessary for them to interact via nuclear forc~s.
We may view this dilemma in a slightly different way, asking instead to what
separation protons of energy 1 kev can come.

1.44 = 10-3 Mev
Tmin

rmin ~ 103 fm

Thus, the separation rmin at the classical turning point for two protons at 1 kev
energy is approximately 1,000 times as great as the separation required for them
to interact. Because of this difficulty it seemed for some time that the tempera
tures in stellar interiors were not adequate to cause nuclear reactions. Eventu
ally it was shown by Gamow and his associates, who were considering the similar
question of how an alpha particle can escape from the interior of a nucleus, that
particles can penetrate barriers that they cannot surmount classically. That is,
even though the coulomb potential is too high to be surmounted by a particle of
a few kilovolts of energy, those particles may, with low probability, penetrate
through the barrier. The introduction of this quantum-mechanical effect
resolved the conflict by revealing that the fusion reactions could proceed in
the interiors of stars at a rate sufficient to account for the energy liberated from
the surface. This subject will be discussed in Chap. 4.

1·6 THE HERTZSPRUNG-RUSSELL DIAGRAM

A fundamental correlation between observable stellar properties was initiated by
the Danish astronomer E. Hertzsprung in 1911, when he plotted the apparent
magnitude of stars within a given star cluster against their colors. The Ameri
can astronomer H. N. Russell made a similar investigation in 1913 of the abso
lute magnitudes of stars in the solar neighborhood. The H ertzsprung-Russell
diagram, or simply H-Rdiagram, is the name given to the graph of a quantity
that measures the luminosities of stars (luminosity, absolute bolometric magni
tude, apparent visual magnitude, etc.) versus the effective surface temperature
(or color index B - V or spectral class). It is one of the most valuable corre
lations established in observational astronomy. For the purposes of this dis
cussion we assume here that the fundamental quantities mentioned in the fore
going material are ascertainable for individual stars, i.e., the star's luminosity and
effective surface temperature. Both the luminosity and effective temperature
can be measured by related quantities, however. Thus, possible H-R diagrams
might be (1) luminosity versus surface temperature, (2) luminosity versus color
index B - V, (3) absolute bolometric magnitude versus spectral class, (4) abso
lute visual magnitude versus color, etc.

We shall mention here two observational problems associated with these dia
grams. Often it is not possible to determine accurately the distance to faraway
star clusters; therefore, the H-R diagrams of such objects are best plotted in
terms of apparent magnitudes rather than absolute magnitudes. The relative
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magnitudes in such cases are much more accurate than the absolute magnitudes.
In determining surface temperatures for distant stars it is often not feasible,
because of time limitations, to use the many techniques available for nearby
stars. The spectral lines are just too faint. The indicator of surface tempera
ture that is easiest to measure for very faint objects is the color index, the blue
magnitude minus the visual magnitude. For distant stellar clusters, therefore,
it is common to display the H-R diagram in terms of the apparent magnitude
plotted against the color index. The accuracy of a subsequent conversion to
absolute bolometric magnitude and surface temperature depends upon the valid
ity of the translating assumptions. Details of this very important problem may
be found in books on observational astronomy. Remembering always that the
problem does exist, we shall nonetheless think of the H-R diagram as the rela
tionship of the absolute bolometric magnitude or luminosity to the surface
temperature.

When such a diagram has been constructed for a large number of observable
stars, it is clear that a very large percentage of the stars fall on a heavy diagonal
curve, called the main sequence. This curve is such that the brightest objects in
the sky are those with the highest surface temperatures and are blue in color.
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Fig. 1-12 A schematic representation of the heavily populated areas in the H-R diagram.
A high percentage of stars lie near the main sequence. The next most populous groups are
the white dwarfs and the giants. The subgiant and horizontal branches are conspicuous in
those collections of stars having large numbers of giants, e.g., globular clusters.
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Table 1-1 The main sequencer

Logarithm
Absolute Effective Absolute of

visual Color surface Color bolometric luminosity
Spectral magnitude index Bolomeiric temperature temperature magnitude L

type 11L B-V correction T" oK r; oK 111bol log-
L0

05 -6.0 -0.45 4.6 35,000 70,000 -10.6 6.13
BO -3.7 -0.31 3.0 21,000 38,000 -6.7 4.56
B5 -0.9 -0.17 1.6 13,500 23,000 -2.5 2.88
AO 0.7 0.00 0.68 9,700 15,400 0.0 1.88
A5 2.0 0.16 0.30 8,100 11,100 1.7 1.20
FO 2.8 0.30 0.10 7,200 9,000 2.7 0.80
F5 3.8 0.45 0.00 6,500 7,600 3.8 0.37
GO 4.6 0.57 0.03 6,000 6,700 4.6 0.05
G5 5.2 0.70 0.10 5,400 6,000 5.1 -0.15
KO 6.0 0.84 0.20 4,700 5,400 5.8 -0.43
K5 7.4 1.11 0.58 4,000 4,500 6.8 -0.83
MO 8.9 1.39 1.20 3,300 3,800 7.6 -1.15
M5 12.0 1.61 2.1 2,600 3,000 9.8 -2.03

t C. W. Allen, "Astrophysical Quantities," University of London Press, Ltd., London, 1963.

The dimmest objects in the sky are red in color and lie in the lower right-hand
end of the main sequence. Figure 1-12 offers a schematic representation of the
heavily populated areas in the H-R diagram. Our sun lies at a point about in
the middle of the main sequence. The stars lying on the main sequence with
luminosities less than that of the sun are often given the collective name duxir]«.
The properties of the main sequence are listed in Table 1-1. The difference in
the fourth and fifth columns reflects the difficulty of equating the several surface
temperatures. In the lower main sequence, where the peak of the Planck spec
trum is in the visible, the agreement is reasonably satisfactory, especially when
the detailed features that distort the blackbody spectrum are taken into account.
It is not surprising that disagreement grows for the hot main-sequence stars,
considering that the visible continuum lies on the long-wavelength tail of the
continuous spectrum.

Problem 1-27: If an 05 star were a 35,000oK blackbody, where would the peak in the con
tinuous spectrum be? What fraction of the energy radiated by an 05 star is visible?
Ans: 830 A, 1.4 percent.

The sixth column contains the absolute bolometric magnitude of the stars,
which is the difference between its visual magnitude and the necessary bolometric
correction. The final column lists the logarithm of the luminosity expressed in
solar units, as in Eq. (1-14). This grouping of stars, called the main sequence,
is remarkable in that it represents about 80 to 90 percent of observed stars. The
main sequence. consists primarily of those stars which are burning hydrogen in
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their stellar interiors as their source of energy. A few stars in advanced stages
of evolution may also fall on or very near the main sequence, however.

Problem 1-28: Calculate the radii of BO, A5, and MO main-sequence stars. Compare to the
solar radius.

Several other important classes of stars appear as high concentrations on the
H-R diagram, the most obvious being a large group of stars above and to the
right of the main sequence. These stars are fairly luminous, having an absolute
bolometric magnitude near zero, but they are very red in comparison with main
sequence stars of the same luminosity. This class of stars, whose detailed prop
erties are given in Table 1-2, is called collectively the red giants. It will be
obvious that the redness of these giants, as compared with their main-sequence
counterparts of the same luminosity, is accounted for by their relatively large
radii. The red giants are not actually very numerous as a class, representing
only a few percent of the stars, but the class is easily discernible because of the
large luminosities of these stars; i.e., the class is more prominent to the eye than
in number.

A relatively smaller number of stars are found in old clusters to delineate a
curve in the H-R diagram leading from the lower main sequence upward to the
giant region. These stars, called subgiants, are believed to be stars whose enve
lopes are expanding while their helium cores contract to a point where the helium
begins to produce energy by nuclear reactions. Stars are also found on a hori
zontal branch to the left of (bluer than) the giant region. These stars are believed
to be in various phases of helium burning. The search for an adequate expla
nation of the relative numbers of stars at various positions on these two branches
comprises a major objective of current research in stellar evolution.

There is also a class of very luminous stars (L ~ 104L
0 ) of all colors that

spreads a horizontal strip across the top of the H-R diagram. Collectively called

Table 1-2 Red giantst

Effective Logarithm
Absolute surface Color Absolute of

visual Color tempera- tempera- bolometric luminosity
Spectral magnitude index Bolometric ture iure magnitude L

type Mv B-V correction T., -s: r; -s: "AIbol
log-

L0
GO 1.8 0.65 0.1 5400 6000 1.7 1.21
G5 1.5 0.84 0.3 4700 5000 1.2 1.41
KO 0.8 1.06 0.6 4100 4400 0.2 1.81
K5 0.0 1.40 1.0 3500 3700 -1.0 2.29
MO -0.3 1.65 1.7 2900 3400 -2.0 2.69
M5 -0.5 1.i?5 3.0 3000 -3.5 3.29

t C. W. Allen, "Astrophysical Quantities," University of London Press, Ltd., London, 1963.
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supergiants, these stars are probably in advanced stages of stellar evolution and
are perhaps approaching the end of their energy-generating lifetime.

Far below the main sequence in the lower left-hand part of the H-R diagram
lies another important class of stars, the white dwarfs. These stars are very
much smaller than the sun in radius, although many of them have masses com
parable to the sun. Their densities must therefore be very high. With their
very small surface area, they must have high surface temperatures, making them
blue or white, in order to radiate their admittedly low luminosity. Numerically,
the main sequence contains more stars than all other groups put together, but
the white dwarfs are the next most numerous class, perhaps 10 percent or so of
all stars. These stars constitute the "stellar graveyard" in that they represent
the end products of stellar evolution. They consist of degenerate matter, having
such a high density that the electrons have effectively filled all the available cells
in momentum space. This situation results in large internal pressures, which are
capable of supporting the structure. They have no internal energy sources left,
so that their residual supply of thermal energy is being gradually radiated into
space. They are presumably cooling off with no future expectation of active
stellar life. Although there are few white dwarfs for which good parallax meas
urements exist, and although the appropriate relation between color indices and
surface temperature is somewhat uncertain, as a result of peculiarities in the
equation of state, the H-R diagram of the white dwarfs is still remarkable. It
certainly indicates that these stars are very hot (when observable!) objects with
very small radii. The average radius would appear to be approximately one
hundredth of the sun's radius.'

Problem 1-29: Calculate the radius of a white dwarf having a luminosity L = 10-2£0 and an
effective temperature T. = 104OK.

The H-R diagrams of clusters of stars offer a number of important opportuni
ties for the study of stellar evolution. Since the stars in such clusters are all
essentially the same distance from the observer, their relative luminosities can be
measured with high accuracy. The absolute luminosity of every star in the clus
ter can be determined as soon as the absolute luminosity of one star is found.
The distance must often be determined by the apparent magnitude of a charac
teristic type of star whose absolute magnitude is believed known. Another
advantage of clusters is that all stars in a cluster have essentially the same age;
i.e., they probably formed at approximately the same time from the interstellar
medium. Of course, all stars in a cluster cannot have formed at exactly the same
time. It seems reasonable that formation times in a given cluster may differ by
times of the order 108 years. Accordingly, the assumption of simultaneous for- .
mation is believed to be a good one for clusters having ages much greater than

1 For a discussion of white dwarfs read W. J. Luyten, "Advances in Astronomy and Astro
physics," vol. 2, p. 199, Academic Press Inc., New York, 1963, and O. J. Eggen and J. L.
Greenstein, Astrophys. J., 141 :83 (196,5).
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108 years. It turns out that the H-R diagram of a star cluster is different from
that of field stars in general, and, in addition, the clusters differ greatly from
each other. Their very striking H-R diagrams provide important clues for deter
mining the history of the galaxy.'

1·7 STELLAR POPULATIONS

Significant differences in average properties exist between the various types of
star clusters, which may be sorted by various criteria into a sequence of associ
ated characteristics, called sequences of stellar populations. This classification
sequence apparently amounts to sorting the clusters according to their age and
composition. The population concept has been a very useful one for the science
of galactic dynamics and evolution. We shall consider briefly several criteria for
making such a classification.

A star cluster is identified as a group of stars that have a much stronger gravi
tational attraction to each other than to general field stars (nonmembers). The
number of stars in a cluster varies from about 105 for the richest clusters to loose
associations of only a few stars. The richest clusters are massive spherical ones
containing typically 105 stars called globular clusters. All are located very far
from the sun, although a few are barely visible to the naked eye, appearing as a
single fuzzy star. The distances to globular clusters are usually determined by
the apparent magnitude of RR Lyrae variable stars characteristically found there.
The diameter of the high-star-density region is typically tens of parsecs, and the
central densities are as great as 103 per", a very high star density.

Problem 1·30: If the apparent magnitude of the 111. = 0 RR Lyrae variables in a given cluster
is +15, what is the distance to the cluster?

The open clusters are more irregular groupings of a few to a few hundred stars
arranged more or less at random and showing no concentration toward the clus
ter center. They are often called galactic clusters because they are found only in
the disk of the galaxy, in contrast to the globulars, found far from the galactic
plane. A special type of open cluster containing the most luminous main
sequence stars of type 0 and B is called an association. They are detectable
by the fact that 0 stars are not randomly distributed in the sky but tend to be
relatively near other 0 stars, usually as a group of several 0, B, and often Wolf
Rayet stars, scattered over a characteristic dimension of 100 pc. A small open
cluster is often found near the center of an association, and it is generally assumed
that these stars share a common origin reflecting the peculiarities of star for
mation. Table 1-3 lists the gross characteristics of star clusters. The locations

I A rather complete discussion with extensive bibliography may be found in H. C. Arp, The
Hertzsprung-Russell Diagram, in S. Flugge (ed.), "Handbuch der Physik," vol. 51, Springer
Verlag OHG, Berlin, 1958 (in English).
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Table 1-3 Characteristics of star clusterst

Color
Num- Location Number of Density,

ber in Diameter, of brightest stars
known galaxy pc stars stars pc3 Examples

Globular 119 Corona and 50-100 10'-105 Red 0.5-103 M3
nucleus

Open 867 Disk 10 50-10 3 Red or blue 0.1-10 Hyades,
Pleiades

Associations 82 Spiral arms 30-200 10-100? Blue 0.01 Orion

t G. Abell, "Exploration of the Universe," Holt, Rinehart and Winston, Inc., New York, 1964.

of these stars may be conceptually aided by the schematic drawing of the galaxy
shown in Fig. 1-13.

The brightest stars in stellar systems generally show a striking correlation to
the geometry of the system. In most galactic associations the brightest stars are
blue giants of type 0 or B, whereas in globular clusters they are the luminous
red giants. In open clusters the brightest stars are either upper-main-sequence
stars or red giants, depending on the age of the cluster. A corresponding effect
can be found in galaxies. Spiral galaxies contain types 0 and B stars as their
brightest members, whereas elliptical galaxies contain luminous red giants as
their brightest members. There are several reasons for believing these types of

o

Fig. 1-13 Schematic representation of the galaxy. (G. Abell, "Exploration of the Universe,"
Holt, Rinehart and Winston, Inc., New York, 1964.)
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clusters have different ages. (1) Highly luminous blue stars are found in or near
clouds of interstellar gas and dust, out of which they have presumably just
formed, not having had time enough to move away. The galactic clusters (or
associations) in which blue stars are found often appear to be associated with
large clouds of interstellar gas. (2) Some galactic associations with blue giants
as their most luminous members are observed to be expanding from a common
center. The rate of expansion and the present size of the cluster give an esti
mate of the age of the cluster. In some cases, this age is less than 108 years,
and for certain associations only a few million years, a small age indeed in terms
of stellar time. (3) For the globular clusters there is no direct observational
estimate of their ages, but they contain no observable interstellar gas and are
highly stable dynamical systems capable of long life. Age seems to account for
the redness of the brightest stars in globular clusters. The theory of stellar
evolution suggests that main-sequence stars turn red and luminous as they age.
The quantitative correspondence with the H-R diagrams of the globular clusters
indicates likely ages of 1 to 2 X 1010 years. It therefore appears that the globu
lar clusters are old objects indeed. It is now conventional, following Baade, to
divide stars into a relatively young class with blue giants as the most luminous
members, called population I, and an old class with red giants as the most lumi
nous members, called population II. Figures 1-14 and 1-15 show typical exam
ples of two stellar clusters. The brightest star in the Pleiades, a galactic cluster
of stars with a common origin, is blue. The cluster M 3, typical of globular clus
ters, consists of about 105 stars with spherical symmetry, and its brightest stars
are red giants.

A related comparison of these two clusters stems from their H-R diagrams.
It will be seen in Fig. 1-16 that the H-R diagram for the Pleiades falls along the
main sequence. The H-R diagram of the globular cluster j'v13 (Fig. 1-17), on the
other hand, shows that the main sequence terminates at about B - V = 0.4.
The concentration of stars then appears to veer off to the right, passing through
the subgiant region into the more populated region of the red giants. The bright
est stars in this cluster are red. The marked contrast of this jVI 3 diagram to that
of the Pleiades, or almost any galactic cluster, is due to the evolution of stars
from the upper tip of the remaining main sequence into the giant region. This
evolution is typical for globular clusters and indicates an old age for them.

There also appears to be a correlation between the kinematical behavior of
stars and their age. A useful measurement is that of a star's velocity relative to
the orbital velocity about the galactic center. Stars in the solar neighborhood,
for instance, may be arbitrarily divided into a high-velocity group and a low
velocity group. It has been found that the high-velocity group contains many
red giants and has a collective H-R diagram similar to that of globular clusters.
The clusters themselves have similar properties: galactic clusters have low rela
tive velocities, often lingering near the interstellar gas out of which they have
just formed, whereas globular clusters have high relative velocities, moving in
large orbits about the galactic center. The average space velocity may also be
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Fig. 1-14 The Pleiades, an open star cluster visible to the naked eye. Because the stars of this'
cluster are in close proximity to each other, they probably had a common origin. (Dominion
Astrop[tysicalObservatory, J. A. Pearce.)
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correlated with the average distance from the galactic plane. Clearly, such a
correlation should exist, because the stars with high kinetic energy may convert it
into potential energy by rising to large distances from the galactic plane, whereas
those with low kinetic energy cannot overcome the gravitational attraction pre
sented by the mass of the galaxy. In keeping with this observation, the blue
stars of types 0 and B are confined in a flat system to the galactic plane. The
globular clusters, however, occupy a large spherical volume reaching to enormous
distances from the galactic plane.

Fig. 1-15 The globular cluster M 3. This great spherical shower of about 105 stars had a com
mon origin in the early epochs of the galaxy. (Photographjrom the Mount Wilson and Palomar
Observatories.)
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Fig. 1-16 Color-magnitude diagram of the Pleiades with reddening and absorption removed.
This young galactic cluster falls very close to the zero-age main sequence, although the upper
end appears to have moved rightward. [Afler R. I. MilcheZland H. L. Johnson, Astrophys. J.,
125 :418 (1957). By permission of The University of Chicago Press. Copyright 1957 by The
University of Chicago.]

The correlation between age and average space velocity must certainly reflect
the initial state of our galaxy. Suppose, for example, that our galaxy consisted
of gases in a highly turbulent state at the time it formed and became an inde
pendent system. If the initial scale of the turbulence was quite large, massive
quantities of gas may have moved coherently with high velocities relative to
other large masses of gas. Any stars formed then will have inherited that same
velocity. As time passed, however, the turbulent velocities of these large masses
of gas must have dissipated into heat during viscous collisions. Eventually, the
gas would have gravitationally contracted to the galactic disk,preserving only
its angular momentum. Thus, late-forming stars and star clusters will have
inherited low space velocities appropriate to the interstellar medium after the
dissipation of the larger bulk velocities. If the initial state of the galaxy was
as we have just imagined it, the observed correlation between ages and space
velocities is not too difficult to accept. It must be kept clear, however, that
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these considerations of population classes apply to the statistics of groups of
stars, and not to individual stars. For example, a few blue stars will individu
ally have high relative velocities and may be found at large distances from the
galactic plane. Some globular clusters may be found with low velocities. It is
to the average properties of the objects under consideration that the generali
zations of stellar populations may be applied.

Interesting photographic evidence of the spatial distribution of population
classes in the spiral galaxy NGC 5194 can be seen in Figs. 1-18 and 1-19, which
are, respectively, composites of a blue negative and a yellow positive, accentu
ating population I, and a blue positive and yellow negative, accentuating popu
lation II. By all odds the most dramatic feature of these photographs is the
concentration of bright blue stars in the gas and dust lanes in the spiral arms.
The older red component, on the other hand, occupies a much more nearly spheri
cal volume. This may be an indication that spiral arms themselves are not static
features of galaxies but are formed continuously by natural dynamic effects.

Globular cluster, M3

14.0

16.0

. ~

18.0

20.0

Blue

B-V

Red

',':..

Fig. 1-17 Color-magnitude diagram of the old globular cluster M 3. The main sequence
terminates near B - V ~ 0.3 and swerves upward along the subgiant branch into the giant
region. [After H. L. Johnson and A. Sandage, Astrophys. J., 124 :379 (1956). By permission
of The University of Chicago Press. Copyright 1956 by The University of Chicago.]
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. .

Fig.l-la Composite photograph of the galaxy NGC 5194 and its smaller companion NGC 5195
made by superposing a blue negative on a yellow positive. The resulting dark patches show
the concentrations of blue stars in the dusty spiral arms where they are formed. (Official U.S.
Navy photograph.)
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Some further classification of population I stars has been made on the basis of
spectroscopic differences. Recall that population I stars are relatively young
groups of stars, their most frequent location being in or near the interstellar gas
and dust that concentrates in the spiral arms of spiral galaxies. Since the sun
has such a location, we may expect that the solar neighborhood is predominantly
of population 1. It is, therefore, only for the population I stars, or nearby stars,
that extremely good statistics about spectral characteristics exist. A particu
larly useful study has been made of the strength of the absorption lines of metals
in stellar atmospheres. Presumably, the strength of these absorption lines, for

..

Fig. 1-19 Composite blue positive and yellow negative of NGC 5194/5. Comparison with Fig.
1-18 shows the yellow region to be much smoother and concentrated in the nucleus and inner
arms. (Official U.S. Navy photograph.)
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stars of the same spectral type, will be proportional to the abundance of the
metallic elements in the stellar atmospheres. Because there are some small dif
ferences in the strength of these metallic lines in population I stars, these stars
are further subdivided into two classes called weak-line stars and strong-line stars.
The strong-line stars are found to have slightly smaller relative velocities than
the weak-line stars. In keeping with the previous assumption about the mean
ing of relative velocities, the weak-line stars would be interpreted as the older of
the population I class. Recalling that stellar atmospheres show in general the
abundances of products that were there at the time the star formed, and noting
that nucleosynthesis accompanying stellar evolution is believed to have gradually
enriched the metal content of the interstellar medium, we would expect that stars
formed relatively recently would be richest in metals and would therefore show
the strongest metallic lines. Population I stars formed in the more distant past
would be expected to be weak-line stars.

Although the foregoing division of stars into population classes has been
extremely suggestive of the correlation with age, it is certainly misleading to
think that stars fall into two or, for that matter, any number of classification
groups. All the available evidence seems to indicate that the sequence of stellar
populations is continuous and that divisions of it are a matter of research con
venience. The correlation of population groups with age should be regarded as
a working hypothesis for research in the fields of stellar evolution and galactic
structure. It is definitely known that the youngest of the population I objects,
the galactic associations containing luminous blue giants, are only a few million
years old. By careful spectroscopic comparison with other G stars, the sun has
been classified as a weak-line star, i.e., a relatively old population I star. Since
from geophysical arguments the age of the sun is thought to be 4.6 billion years,
an age of 5 billion years can be thought of as representative of the oldest of what
astronomers call population I stars. At the other extreme, recent research into
the evolution of stars has indicated ages for some globular clusters in the neighbor
hood of 10 to 20 billion years, an age roughly corroborated by research into radio
active ages of the elements. It may be, therefore, that extreme population II
objects have an age as great as 20 billion years. These characteristics of the
population classes are summarized in Table 1-4.

The differences in composition between the population classes are active areas
for contemporary astronomical research. The abundances of the elements are
difficult to ascertain accurately in any stellar atmosphere, let alone in the very
distant population II stars. Yet the results of very ingenious observations are
accruing at a rapid rate.! and the present information has some striking impli
cations. Excluding those highly evolved and peculiar stars whose atmospheres
reflect the element building actually going on within their own interior, we may
distinguish among three broad types of stellar-composition problems: (1) the sun,

1 See H. Hubenet (ed.), "Abundance Determinations in Stellar Spectra" (lAD Symposium
No. 26), Academic Press Inc., London and New York, 1966.
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Table 1-4 Sequence of stellar populations

61

Population class

Young population I
Intermediate population I
Old population I
Mild population II
Extreme population II

Typical members

Blue giants, galactic clusters
Strong-line stars, solar neighborhood
Weak-line stars
Majority of high-velocity stars
Bright red giants, globular clusters, sub

dwarfs

Average
velocity
V.,
kmfsec

8
10
16
25

75

Shape oj
subsystem

Flat
Intermediate
Intermediate
Intermediate

Spherical

whose composition presumably represents the original composition of the solar
system and is, as we have pointed out, an old population I star; (2) the very
ancient stars, such as the members of globular clusters and the subdwarfs, or
extreme population II stars, which show low metal-to-hydrogen ratios; and (3)
the present interstellar medium and stars that are formed therefrom, the very
young population I stars. In order to determine composition differences between
stars from different population groups, it is advantageous to select stars which
are otherwise as similar as possible in such large-scale properties as surface tem
perature and absolute magnitude. In this way one can hope to minimize the
effects of differences in these two very important large-scale parameters. Both
the class F dwarfs and the class G and class K giants are well represented among
the brighter stars of various populations. As such, they have been the object of
extensive abundance comparisons.

The results of these observations seem to indicate that nucleosynthesis in stars
has slowly enriched the galaxy in heavy elements. This conclusion is quite firm
if the initial composition of the gas now in the disk of the galaxy was the same
as that of population II. There is still an unfortunate uncertainty regarding the
helium abundance in extreme population II objects. It has been both tempting
and common to think of the galaxy as being initially composed of hydrogen, but
it is yet to be shown whether extreme population II objects are as deficient in
helium as they are found to be in heavier elements.. The difficulty with helium
is that its lines can be excited only in hot stars, whereas extreme population II is
almost entirely red. The most abundant elements other than hydrogen and
helium, viz., carbon and oxygen, are smaller by at least a factor of 50 in extreme
population II than they are in the sun. But their abundance in mild population
II stars appears to be smaller by only a factor of 3 than it is in population I stars.
It is not clear whether these abundances have increased noticeably with time in
population I itself, however. This important question requires extensive accu
rate analyses of stellar atmospheres.

The situation is more dramatic for the heavy metals. Abundance analyses of
certain K giants in globular clusters have shown heavy-metal concentrations that
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are less than 1 percent of the present-day metal concentrations in the interstellar
medium. The elements Mn, Fe, and Ba are found in some instances to be rarer
by a factor of 1,000 than in the present sun. At first glance, it would appear
from these observations that some synthesis of carbon, nitrogen, and oxygen
(and helium?) in our galaxy occurred more rapidly than the synthesis of the
heavy metals did. That is not certain. But the understanding of these obser
vations probably lies in the application of the principles of stellar evolution and
nucleosynthesis, although uncertainties in the initial composition of the galaxy
complicate the argument. There is no doubt that these abundance features are
an essential part of the population classifications.

The scarcity of the metals in the population II groups led to the introduction
of some extra classes of stars. One of the best examples is provided by a group of
stars which falls just below the main sequence in ordinary color-versus-magnitude
diagrams, a class of stars called subduxufs. Spectra and color classifications were
initially difficult to make in conventional systems based on normal compositions
because of the weakness of the metallic lines in these stars. As previously men
tioned, most ionized metals have their very numerous resonance lines lying in the
ultraviolet. The result is a reduction in the amount of energy radiated in the
ultraviolet by stars that are rich in metal content. For the subdwarfs the reverse
is true. These high-velocity stars rather clearly belong to population II, having
eccentric and far-reaching orbits about the center of the galaxy. When it was
discovered that the low metal content allowed a much higher amount of energy
to be radiated in the ultraviolet, it became apparent that a larger bolometric
correction was required for low-metal stars than for high-metal stars. When the
larger bolometric correction was made, it was found that these population II sub
dwarfs have essentially the same position on the H-R diagram as the population I
dwarfs, their natural brothers.

In summation, it should be emphasized that there appear to be no sharp dis
tinctions between population classes. Intermediate objects always seem to exist
in any classification scheme. The ultimate observational aim in this regard
seems to be the description of clusters in terms of their age, composition, and
dynamic properties. 1

1-8 STELLAR EVOLUTION

Science provides a description-a logical map that integrates countless individual
observations into a prescription which neatly summarizes old facts and correctly
predicts new ones. The science of stellar evolution describes how the observable
properties of stars may sensibly change as time passes. Therein lies the peeuli-

1 See, particularly, O. J. Eggen, D. Lynden-Bell, and A. Sandage, Astroplujs. J., 136 :748 (1962);
W. Baade, in C. Payne-Gaposhkin (ed.), "Evolution of Stars and Galaxies," Harvard University
Press, Cambridge, Mass., 1963; A. Blaauw, The Concept of Stellar Populations, in L. H. Aller
and D. B. McLaughlin (eds.), "Stars and Stellar Systems," The University of Chicago Press,
Chicago, 1965.
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arity of the science: man's lifetime and even recorded history are hopelessly short
compared to most characteristic times over which we believe the appearance of a
star may change. There are exceptions; very rarely stars explode, some stars are
variable, and certain characteristics of the sun recur with an ll-year cycle, for
instance; but basically the sun is thought to be as it was hundreds of millions of
years ago. Indeed, for the vast majority of stars it seems that gross changes are
hopelessly unobservable. Then how can such a science be given a firm obser
vational basis?

The basic idea can most clearly be isolated by imagining the following situ
ation. Suppose the billions of observable stars were identical at birth but had
birthdays ranging continuously from today into the farthest reaches of history.
A snapshot of the sky would then reveal the same sequence of stars as would be
obtained by watching the history of a single star, with, however, one major
difference: there would be no explicit clock labeling each star. By careful inter
play of auxiliary observations with theoretical arguments based upon known
physical principles, the stars of the snapshot could be ordered with respect to
age. As clues were found relating one stellar age to another, a self-consistent
description of the evolution of a single star could be developed. If one then adds
the facts that stars are born with a spectrum of masses out of interstellar gas
whose composition varies from place to place and time to time, one obtains the
framework of the science of stellar evolution.

The history of stellar evolution as a quantitative physical science is dominated
by four books. The first of these, "Gaskugeln," written by Emden in 1907,
treated the theory of polytropic gas spheres (see Chap. 2). In this approxi
mation the equation of state of the gas was combined with the condition of
hydrostatic equilibrium to yield the properties of dynamically stable gas spheres.

Eddington, in his classic work "The Internal Constitution of the Stars" (1930),
showed that the energy was commonly transported from the center to the surface
by the process of radiative transfer. He developed the corresponding theory
relating energy flux to temperature gradient and opacity in detail (see Chap. 3).

In a book' first published in 1939, Chandrasekhar reviewed and formalized
the results of Emden and Eddington. Even more important, he applied the
theory of quantum statistical mechanics to the degenerate gas and constructed
therefrom a theory of the white dwarfs. Degenerate matter is now known to be
of importance in many stages of stellar evolution, particularly of low-mass stars.
Chandrasekhar's book was also the first to include a discussion of thermonuclear
reactions as the internal source of stellar energy. The work of Bethe and von
Weizsacker showing that hydrogen could be fused into helium nuclei was occur
ring at just the time Chandrasekhar's monograph was being completed.

With the aid of the intensive laboratory work in nuclear physics conducted in
the 1940's and 1950's it became possible to compute the rate at which energy is
liberated in a hot gas. For the first time astronomers were able to compute

1 S. Chandrasekhar, "An Introduction to the Study of Stellar Structure," Dover Publications,
Inc., New York, 1957.
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numerical models of stars in which full account is taken of the budget relating
energy production and energy transfer in a static situation. Particularly influ
ential was the work of Hoyle and .coworkers in England, Schwarzschild and
coworkers at Princeton, and Henyey and coworkers at Berkeley. These develop
ments are detailed in the fourth milestone, "Structure and Evolution of the
Stars," published by Schwarzschild in 1958.1 This book has served as a point
of departure for the large number of active workers in stellar evolution in the
sixties. The electronic digital computer revolutionized the science, and the ele
gant hand integration techniques discussed in Schwarzschild's book are no longer
required.

The chemical change brought about by the nuclear reactions provided the key
to stellar evolution. It was found that homogeneous stars burning hydrogen lie
on the main sequence and that stars with chemical inhomogeneities can lie in the
red-giant region. It was, in fact, shown that the exhaustion of hydrogen over a
sufficient central fraction of the star will cause it to move in the H-R diagram
from the main-sequence to the giant region. Eddington had argued, however,
that stellar rotation would provide circulational mixing of the stellar material
(see Chap. 6). It remained for the work of Sweet and Mestel in the early 1950's
to show that the mixing is much slower than Eddington had estimated and that
the chemical inhomogeneities can develop. Present theories of stellar evo
lution are based almost entirely on models having concentric shells of differing
composition.

The quantitative theory of stellar evolution confirms and strengthens the belief
in the scale of ages outlined in Sec. 1-7. Calculations have been made of the time
required for stars to age, and the results provide another relationship between the
structure of the H-R diagram of star clusters and the division of the clusters into
population classes. For example, in the schematic representation of the H-R
diagram shown earlier (Fig. 1-12), a dashed line leads from the main sequence
up toward the giant region and back again along a horizontal branch. In old
star clusters the upper main sequence is not observed. Instead one finds that
the locus of stars turns from the lower main sequence in just such a manner as
outlined by this dashed curve. The H-R diagram of the globular cluster M 3 is
a beautiful example of such an observation. To understand why that subgiant
branch is observed instead of the upper main sequence it is necessary to use the
results of the study of stellar evolution.

When stars form from gas in the interstellar medium, they are composed pre
dominantly of hydrogen. They contract until the central temperature becomes
sufficient to cause hydrogen thermonuclear reactions to begin, at which time they
radiate energy at a rate equal to that liberated by the nuclear reactions in their
interiors. They remain static structures for a lifetime that is determined by
how long it takes them to consume the available hydrogen fuel in their centers.
When the innermost 10 to 20 percent of the hydrogen in the core of the star has

1 M. Schwarzschild, "Structure and Evolution of the Stars", Princeton University Press
Princeton, N.J., 1958.
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been exhausted, the star changes its observable characteristics in the sense that
its outer regions expand and the inner core contracts. The net effect of this
change in upper-main-sequence stars is to preserve roughly the luminosity of the
star but to change its surface color toward the red. In this way stars are said to
evolve off the main sequence into the giant region. The first stars to do so are
the most massive members of the main sequence and also the most luminous.
The mass-luminosity relationship is evidence of the fact that the luminosity is
proportional to the third or fourth power of the mass; therefore, as the mass of
stars increases, their rate of converting hydrogen into helium increases at an
even faster rate. Thus a massive star will exhaust 10 percent of its hydrogen
much more quickly than will a star of lower mass.

To see how this affects the H-R diagram of a cluster, let it be assumed that
all stars within a given cluster form at the same time. Figure 1-20 then shows a
schematic representation of the H-R diagram of that cluster of stars at three
different points in time: (1) at the time of the cluster's formation, (2) after a
relatively short time of perhaps some hundreds of millions of years, and (3) after
a very long time, say, 10 billion years. It will therefore be expected that the
appearance of the H-R diagram of a cluster of stars will be determined by the
age of the cluster. The older the cluster is, the smaller the fraction of its upper
main sequence that remains. This statement may be made semiquantitative
since the conversion of hydrogen to helium releases 6.4 X 10' 8 ergs/g of hydrogen
converted. Suppose then that a star of mass 111 must build up a helium core of
mass j1liI before evolving from the main sequence. If Xli is taken to be the frac
tion of hydrogen by weight in the original uniform composition, the buildup of
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Fig. 1·20 Schematic representation of the H-R diagram of a cluster of stars at three different
epochs in its history. After a short period of evolution, say about 108years, the zero-age main
sequence has become an evolved main sequence similar to the Pleiades. After a long period of
evolution, say about 1010 years, the diagram resembles those of the globular clusters. Super
giants and white dwarfs have been omitted from this diagram because their participation is
poorly understood.
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the necessary hydrogen-exhausted core requires the conversion of jXH 1I1 g of
hydrogen into helium. During that time the total energy radiated from the star
will be given by the mass of hydrogen converted times the energy released per
gram converted:

(1-60)ergs

E = jXH 1I1(6.4 X 1018)

= 1.3 X 1052jXH 111
1110

The evolutionary lifetime TE of the star on the main sequence may be estimated
as the ratio of the total energy radiated during the main-sequence lifetime to
the average luminosity of the star on the main sequence. Quantitatively, we
have TE = ElL, or

years (1-61)

Problem 1-31: Confirm Eq. (1-61).

(1-62)years

The fraction of the stellar mass at the star's core that must be depleted of its
hydrogen before the star expands rightward from the main sequence is near 15
percent for stars with a mass and composition near the solar values. Introduc
ing this number yields

T = 12 X 109X 111/1110
E H L/L0

An approximate statement of the mass-luminosity relationship may also be
introduced:

J.11 (L)t
M 0 "'" L 0

If we take X H = 0.6 as characteristic of most stars, the lifetime becomes

(L)_a
TE "'" 12 L

0
• X 109 years (1-64)

Problem 1-32: Estimate the approximate main-sequence lifetime of a star with absolute visual
magnitude Mvis = +3.0; with Mvis = -2.

By Eq. (1-64) we may roughly associate with each magnitude on the main
sequence a time required for such a star to evolve from the main sequence. The
most luminous stars in a stellar cluster still remaining on the main sequence can
then be made to yield the age of the cluster. A reliable calculation of the age
must proceed along a considerably more detailed route than the simple argu
ments leading to Eq. (1-64), which is by no means correct in detail. It is the
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Fig.1-21 A composite color-magnitude diagram of 10 galactic clusters and 1 globular cluster.
Ages corresponding to the various main-sequence termination points are given along the right
hand ordinate. The zero-age main sequence is taken to be the blue envelope of the observed
sets of main-sequence stars. Noti~e the rapidly evolved red giants in h + x Persei, which are
apparently no more than 2 million years old. Some white dwarfs are known in the Hyades,
indicating that itis possible to form them in a few million years, either directly or as the end
product of the evolution of upper-main-sequence stars. Curiously enough, the Hyades has
no red giants. The oldest galactic cluster, M 67, is older than the sun and has scores of white
dwarfs. Many fascinating problems are uncovered in the attempts to interpret the star
densities in these diagrams quantitatively. [After A. Sandage, Astrophys. J., 125 :435 (1957).
By permission of The University of Chicago Press. Copyright 1957 by The University of Chicago.]
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possibility of making such a calculation that should be evident to the reader.' .
Figure 1-21 shows a composite color-magnitude diagram for several galactic
clusters. The approximate length of time required for stars of given magnitude
to evolve off the main sequence is shown on the right. "I'he crucial point for
determination of the age of each cluster lies in determining the absolute magni
tude of the turnoff point of the cluster, or equivalently the surface temperature
of the turnoff point of the cluster.

The foregoing discussion has been a simplification in another respect; viz., the
characteristics of a star also change somewhat during its lifetime on the main
sequence. The conversion of hydrogen to helium at the stellar center changes
the central composition continuously from the initial composition of the star to
a hydrogen-exhausted core. During this time, the stellar luminosity and radius
both increase, resulting in a nearly vertical small rise of the star's position in the
H-R diagram. The concept of the main sequence, as used to this point, is there
fore somewhat imprecise. Identical clusters of differing ages will have slightly
different main sequences due to this effect: the main sequence rises slightly with
age. As a more precise concept Johnson and Sandage introduced the notion of
the zero-age main sequence, which is, as the name implies, the locus of hydrogen
burning stars of uniform composition (there having been no burning time to aug
ment the central helium). For a given composition, the zero-age main sequence
is a perfectly well defined concept. Operationally it is determined by close com
parisons of clusters of differing ages. Unfortunately, the possible composition
differences between clusters reintroduces ambiguity into the measured zero-age
main sequence. 2

The physical cause of the star's leaving the main sequence as it turns toward
the right on its path to the giant region is the onset of the collapse of the hydrogen
depleted core. As the hydrogen in the core is exhausted, the core ceases to gen
erate energy and becomes isothermal. When this condition becomes true for a
sizable fraction of the mass, say about 15 percent, the central region of the star
becomes unable to generate sufficient pressure to support the overlying layers. 3

As it begins to collapse, its temperature will begin to rise because of the gravi
tational work. This increase in central temperature causes the outer layers of
the star to expand in order that the temperature gradient not be too great. The
surface therefore reddens. The gravitational contraction will be stopped when
energy-producing thermonuclear reactions start with helium nuclei. 4 The red
giants are believed to gain their energy from just such a source. The. star will
remain somewhere in the giant region while helium is being converted into carbon

1 Incorrect assumptions used in obtaining Eq. (1-64) are (1) an exact mass-luminosity relation
ship, (2) constancy of stellar mass, (3) constancy of main-sequence luminosity, (4) uniformity
of original composition, and (5) uniformity of central mass fraction f.
2 See, particularly, 1. Then, Jr., .AstTophys. J., 138 :452 (1963) for Hyades-Pleiades discussion.

3M. Schonberg and S. Chandrasekhar, Astrophsj«. J, 96:161 (1942).

4 Electron degeneracy halts the collapse in low-mass stars.
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and oxygen in the deep interior of the star and while hydrogen is being depleted
ina shell around the core of the star. Eventually, of course, a point will be
reached where even the helium in the deep interior is also exhausted. At that
time the star will undertake further gravitational contraction, and the by-prod
ucts of helium burning begin to be heated toward the temperature at which they
will interact. The details of stellar evolution regarding these points are by no
means clear. It is obvious simply from the store of available energy, however,
that after its time in the giant region the luminosity of the star must eventually
begin to decrease unless the star ends its lifetime catastrophically. If it burns
out slowly, its radius will shrink, and the surface temperature of the star will
begin to increase again. Such a star will tend to move in some path that is not
well determined from the giant region back down toward the lower left-hand
corner of the H-R diagram, ending eventually in its probable fate as a white
dwarf. In the trip from the red-giant region to the white-dwarf region of the
H-R diagram, each star that is to remain visible must reduce its mass below a
certain value known as the Chandrasekliar limit. Failing to achieve a sufficiently
small mass, the star will encounter an instability leading to a supernova explosion.
The details of mass loss of stars are also not at all well known. Stars may emit
mass regularly, via a mechanism much like the solar wind, or spectacularly, as in
a nova or even a supernova explosion. During the relatively rapid journey
toward the white-dwarf region or toward the supernova, many exciting nuclear
reactions occur in the stellar interior. These nuclear reactions probably account
for the synthesis of most of the heavy elements that have been added to the
interstellar medium since the formation of our galaxy. We shall attempt to
trace the broad outline of the reactions that can occur and the possible effect
they may have upon the evolution of the stars, but it will lie outside the scope
of this book to discuss the details of the present status of the theory of stellar
evolution.'

1-9 NUCLEOSYNTHESIS

The science of nucleosynthesis attempts to interpret the measured abundances of
the nuclear species in terms of their nuclear properties and a set of environments
in which nuclei can be synthesized bynuclear reactions. An older word, nucleo
genesis, is now generally reserved for the question of the origin of matter itself,
in whatever its primordial form. The connotations of the latter word reflect the
primeval nature of that question. The science of nucleosynthesis is by common

1 For such information the reader is referred to Aller and Mcl.aughlin, op. cii.; R. F. Stein
and A. G. W. Cameron (eds.), "Stellar Evolution," Plenum Press, New York, 1966; L. Gratton
(ed.), "Star Evolution," Academic Press Inc., New York, 1963; and C. Hayashi, R. Hoshi, and
D. Sugimoto, Evolution of the Stars, Proqr. Theoret. Phys. Kyoto Suppl. 22, 1962. These vol
umes contain a host of modern articles with extensive bibliographies on special facets of stellar
evolution and will often be referred to in this book. The chapters to follow will attempt only
to introduce the basic physical principles common to the subject.
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definition restricted to the attempt to trace in time and space the evolution of
the chemical composition of the universe. The question of the origin and com
position of primordial matter and the relationship of the primordial matter to
the space-time structure of the universe is certainly one of the fundamental ques
tions of natural philosophy. The present configuration of the universe can be
factored into an initial configuration and its subsequent evolution, so that the
cosmological questions of the initial composition may be postponed until the
peculiarities of nucleosynthesis have been introduced. Indeed it may be said
that one cannot fairly attack the cosmological problem of the genesis of nuclei
until the science of evolution of nuclear composition by nucleosynthesis has been
explored thoroughly.

The earliest attempts to construct a theory of the origin of the chemical ele
ments relied upon the postulation of extreme conditions in a primordial state of
the universe. Mayer and Teller I suggested that the abundances were deter
mined by the fragmentation of polyneutron clumps from a large neutron ball.
Gamow, Alpher, and Herman I also took neutrons as a starting point, assuming
that in the subsequent expansion the decay of neutrons into protons would initiate
a chain of neutron captures resulting in the observed abundances. The lack of
stable nuclei at atomic weights 5 and 8 proved a difficult hurdle for this theory,
and quantitative analysis shows many abundance features unaccountable by the
theory. Klein, Beskow, and Treffenberg! suggested that nuclear statistical equi
librium in specific environments might account for the abundance features, but
this suggestion also fails at key points.

Each of these early theories has attractive features that have influenced subse
quent developments. In particular, the nonequilibrium theory of Gamow et al.
first used chains of single-particle reactions, and reaction chains today are promi
nent in nucleosynthesis. Their specific suggestion of neutron-capture chains,
moreover, has been widely employed to account for the abundances of elements
heavier than iron. Although the equilibrium theory fails overall, the abundance
peak near Fe 56 may be intimately connected to the idea of nuclear statistical
equilibrium introduced by Klein et al.

The major development of the last decade has been the placement of nucleo
synthesis in the context of the evolution of stars rather than in the primordial
state of the universe. Many different environments and compositions are
encountered in the evolution of single stars, and, as a result, many types of
naturally occurring nuclear reactions may be examined as potential sources for
the elements. The basic working hypothesis, due primarily to von Weizsacker,
has been restated by Chandrasekhar as follows:

Apart from secondary effects of minor importance, the transmutation of ele
ments is the entire cause of the presence of all elements in the stars; they are

1 A review of the development of these theories was written by R. A. Alpher and R. C. Herman,
Ann. Rev. Nucl. Sci., 2:1 (1953).
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all being synthesized continually in the stars which are assumed to have started
as pure masses of hydrogen; further, transmutations are the only source of
stellar energy. 1

Nucleosynthesis in the primordial universe is still an active subject, however,
especially since the discovery of a background of thermal radiation in the uni
verse. 2 This thermal background, characterized by a 3°l( spectrum, has been
interpreted as the expanded residue of a primordial fireball. This primordial
fireball may have produced many of the lightest elements," but it now seems clear
that most of those with nuclear charge Z 2:: 6 are in fact the ashes of nuclear
burning during stellar evolution. We shall adopt that viewpoint in this book,
but no serious restriction of the relevance of the physical principles to be dis
cussed is made thereby. The principles of nuclear astrophysics exist apart from
specific assumptions regarding the relevant natural environments.

A necessary prerequisite for the development and testing of a theory is obser
vational data. For nucleosynthesis the important data are the abundances of
the nuclear species, now and as a function of time past. This information comes
from the composition of the earth, of meteorites, and from the spectra of stars.
Data from solar-system objects are regarded as a measure of the abundances in
our region of the galaxy at the time of formation of the solar system. The com
position of stellar surfaces is interpreted as a measure of the abundances at that
point at the time that star formed unless it can be argued that nuclear products
of that star have reached the surface. It was the development of abundance
curves, along with their suggestive features to nuclear physicists, that exposed
the many nuclear mechanisms now invoked in nuclear astrophysics.

Far and away the best abundance data in existence are those for the solar
system. The pioneers in compiling abundance data were Goldschmidt, who per
formed geochemical analyses of terrestrial and meteoritic samples, and Russell,
who first derived abundances from solar spectra. The 20 to 30 years following
this work saw countless improvements culminating in influential reviews. 4 A
modern estimate of these solar-system abundances is shown in Fig. 1-22. It is
the features of this abundance curve that motivate most of the theories of nucleo
synthesis. Many of these features willbe discussed in subsequent chapters.

One of the most significant of the astronomical observations is that the heavy
elements in extreme population II objects are less abundant compared to hydro
gen than they are in population I objects by a factor of 100 or more. If the

1 S. Chandrasekhar, "An Introduction to the Study of Stellar Structure," p. 469; reprinted
from the Dover Publications edition, Copyright 1939 by The University of Chicago, as reprinted
by permission of The University of Chicago.

2 A. A. Penzias and R. W. Wilson, Astrophys. J., 142 :419 (1965).

3 P. J, E. Peebles, Astrophys. J., 146 :542 (1966). See also R, V. Wagoner, W, A. Fowler, and
F. Hoyle, Astrophus. J., 148:3 (1967).

4 H. E. Suess and H. C. Urey, Rev. Mod. Phys., 28 :53 (1956); and L. Goldberg, E. A. Muller,
and L. H. Aller, Astrophys. J. Suppl., 5:1 (1960).



72 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

+9,----,----, --,- --,- ---,- -,- -,- -,-__--,

+8

°0

ONe

ON

°c Mg

° ·S;

+7

+6

s +5
c
Cll

"tJ
c
:::l
.0
Cll
u +4
'E
:5
';::
Cll
tlO

.3+3

+2

+1

o

P

'~"
\ Cd ~a 0Ce

o Ga WO 0 Sb

Pd La Eu
Ag Lu

o Sn Gd'
RhO

In O PrO Tm 0 00s

Hfo W
Er O 0 Ta

o Ir

-1 '------:-':,.----""':----='=-----'-::-----:~--___7::__--_==_--__:"':_-.......J

Atomic number, Z

Fig. 1-22 The abundances of the elements in the solar system. The dots represent values
obtained from the strengths of absorption lines in the spectrum of the sun, whereas the line
represents the historic compilation of Suess and Urey, which was based mainly on chemical
evidence from the earth and meteorites, Many of the estimates from both techniques have been
improved since 1956, but the general features remain the same. It has been these abundance
features which have inspired the nuclear physicists to seek the sets of thermonuclear circum
stances that will reproduce this figure in a natural way_
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initial chemical composition of the galaxy is taken to be uniform, and if no physi
cal mechanisms capable of concentrating the heavy elements in the disk of the
galaxy can be found, one is forced to the conclusion that the galaxy has synthe
sized at least 99 percent of its own heavy elements. This single fact is the pri
mary motivation of the hypothesis that nucleosynthesis occurs in the natural
evolution of stars.' As the stars evolve through their various phases of nuclear
burning, the initial hydrogen (and to a lesser extent helium) are fused into heavier
nuclei, which are assumed to be dispersed into the interstellar medium in the ter
minal phases of the stellar lifetime. This basic idea has been developed into an
elaborate scheme for interpreting the abundances of the nuclear species. Of the
large number of scientists who have contributed to this modern astrophysical sci
ence, the most influential have been A. G. W. Cameron, W. A. Fowler, F. Hoyle,
E. E. Salpeter, and their associates, who have erected the nuclear superstructure,
and E. M. Burbidge, G. R. Burbidge, J. L. Greenstein, and their associates,
who have painstakingly analyzed the abundance features of stars in the attempt
to correlate them with the appropriate nuclear mechanisms.

Although this basic idea has been found to work very well, there are several
significant features unaccounted for by it. The major one is the question of the
initial abundance of helium in the galaxy, a figure that is still uncertain because
of the difficulty in detecting helium lines in the relatively cool population II
objects. The stars on the blue end of the horizontal branch in population II
have weak He lines compared to their population I counterparts. On the face
of it this seems to indicate that helium is virtually absent in extreme population
II. 2 If, on the other hand, the galaxy formed with a significant abundance of
helium, it must be interpreted as the residual of some earlier history. Much the
same situation occurs for rare light elements which are primarily bypassed in
stellar nucleosynthesis, specifically D2, He 3 , Li, Be, and B. The initial galactic
abundances of these species are unknown, and it may be that their abundances
are primarily remnants of an early cosmological phase of the universe. Many
alternative schemes have been suggested for the synthesis of the rare light nuclei,
but the correct solution has not yet been demonstrated with certainty. The
difficulty with these elements is that they are so rare in comparison with those
species which are naturally synthesized as a by-product of the major nuclear
burning stages that their small abundances may be accounted for by a variety of
secondary processes of low efficiency. The theories adopt basically three differ
ent points of view regarding the rare light elements: (1) they are primordial in
the galactic sense, in which case they carry cosmological information; (2) they
are synthesized in nonthermal events at stellar surface, either spallation of heavier
nuclei by energetic flare particles- or by shock phenomena in supernova envelopes;

1 An excellent discussion has been presented by B. E. J. Pagel, Chemical Composition of Old
Stars, in A. Beer (ed.), "Vistas in Astronomy," vol. 9, Pergamon Press, New York, 1968.

2 L. W. Sargent and L. Searle, Astrophys. J., 146 :652 (1966).

3 W. A. Fowler, E. M. Burbidge, and G. R. Burbidge, Astrophys. J. Suppl., 2 :167 (1955).



74 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

or (3) they were produced and/or modified in the early history of the solar sys
tem.! Although the solution of this problem has widespread implications, it will
not be discussed further in this book, largely because the complicated arguments
cannot be fully appreciated without an understanding of the main line of nucleo
synthesis in stellar evolution, the principles of which constitute the burden of
this book,

Not only does the astronomical evidence indicate a growth in time of the ele
ment abundances in the galaxy, but one finds considerable variations in abun
dance ratios from star to star as well. The extraordinary abundances observed
in some stars seem to demand nucleosynthesis within the star itself. Since the
surfaces of most stars retain their initial composition as the center evolves, the
stars of peculiar composition seem to require either mixing of central material to
the surface or large-scale mass loss of the outer layers. Probably the most dra
matic evidence along these lines was the discovery by Merrill, in 1952, of spectro
scopic lines in S-type stars of the element technetium, all of whose isotopes are
radioactive, with half-lives shorter than a few million years, and not found ter
restrially. The same stars are strongly overabundant in other elements, e.g.,
barium, that one now expects to be synthesized along with Tc. The combined
evidence is a clear indication of nucleosynthesis within a given star. Much other
evidence of this type has been observed, but we shall not attempt to chronicle
this development here.>

The English physicist Lord Rutherford first produced another argument capa
ble of demonstrating that the elements must have had some point of origin in
time. The argument is based on the long-lived radioactive species naturally
occurring in the solar system. Rutherford's argument was actually directed
toward the determination of the solidification ages of rocks. By comparison of
the density of helium atoms trapped following the alpha decay of uranium to the
density of the parent uranium, he was able to establish ages greater than any
known at that time. A slight extension of Rutherford's reasoning shows that
the uranium itself cannot have an indefinitely great age. Because uranium
decays to lead, one can argue that the abundance of the daughter lead would
be infinitely greater than that of the parent uranium unless, in fact, uranium was
created (synthesized) at times in the past not overwhelmingly greater than the
uranium half-life. Today careful measurements of abundance ratios can be
coupled with the details of the mechanisms of heavy-element nucleosynthesis to
yield valuable information regarding the age of the elements.

The radioactive evidence for nucleosynthesis may be divided into two groups:
(1) the naturally occurring long-lived radioactivities and (2) the extinct radio
activities. Because the earth is about 4.6 billion years old, the naturally occur
ring radioactivities (Th232, U238, U235, Re l87, Rb 87, 1(40) must necessarily have

1 W. A. Fowler, J. L. Greenstein, and F. Hoyle, Geophys. J. Roy. Aslron. Soc., 6:148 (1962).

2 In their famous review paper E. M. Burbidge, G. R. Burbidge, W.A. Fowler, and F. Hoyle,
Rev. 111od. Phys., 29 :547 (1957) present much of the observational evidence.
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very long half-lives. That feature allows them to be used to measure the time
of galactic nucleosynthesis. The evidence is that heavy-element nucleosynthesis
began long before the solar system formed but probably after the formation of
the globular clusters. Although it is difficult to be precise because the various
methods do not give concordant ages, it appears that the major early phase of
galactic nucleosynthesis began somewhere between 8 and 15 billion years ago.

The extinct radioactivities, on the other hand, can be detected only by their
daughter products. The significant ones have half-lives so short that they do not
survive today yet sufficiently long that they could have been incorporated into
the formation of solid bodies at the time the solar nebula withdrew from the
interstellar gas. The most celebrated example is based on the discovery by John
Reynolds that an isotope of xenon, Xe 129, is overabundant in certain meteorites.
A majority of scientists believe that this overabundance is likely due to the trap
ping of 1129 , with a half-life of 17 million years, in the meteorites at the time of
their solidification. If that is so, the point to be established for the present dis
cussion is this: no single event of galactic nucleosynthesis seems capable of pro
ducing the various radioactivities. The long-lived radioactivities integrate the
rate of nucleosynthesis far into the past and indicate that nucleosynthesis occurred
as far back as about 10 billion years ago, whereas the extinct radioactivities require
nucleosynthesis shortly before the solar nebula condensed. Both requirements
may be satisfied by continuous nucleosynthesis; so that one may observe that the
abundances of radioactive parents and daughters in the solar system are both
consistent with the notion that nucleosynthesis has occurred continuously in the
galaxy as a by-product of the birth and death of stars.

Measurements of the relative abundances of the elements further strengthen
the idea that nucleosynthesis occurs in stars. There is no doubt that hydrogen
is the most abundant element in the galaxy. The next most abundant nuclear
species is He4, an unknown percentage of which may have been present initially
in the galactic gas. But inasmuch as the primary nuclear burning stage in stars
is that which fuses hydrogen into helium, one might also expect He 4 to be the
major product of stellar nucleosynthesis.The next most abundant species after
He4 are those light nuclei with nuclear charge and mass numbers given by an
integral multiple of the He 4 nucleus (C I 2, 0 16, Ne 20) . It has seemed sensible to
tentatively associate the synthesis of these nuclei (especially C12 and 0 16) "lith a
stellar burning stage in which helium nuclei are fused in a dense, hot helium gas.

The nuclear abundances generally decrease with increasing atomic weight until
a large abundance peak is encountered, with Fe·6 as its dominant member. That
Fe·6 is also a very special nucleus is revealed by the fact that the nuclear binding
energy per nucleon has a maximum at Fe·6, which means that successive nuclear
fusion reactions cease to liberate energy when all light nuclei have been fused
into Fe 56 : further fusion into heavier nuclei would require energy. Thus this
major abundance feature may reflect the termination- of the energy-generating
stages of nuclear fusion. The phenomenon of the abundance peak may be viewed
in a somewhat different way: under a wide range of conditions a nuclear gas
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assembles itself in statistical equilibrium into such a form that the binding energy
per nucleon is maximized. This result of statistical mechanics (essentially a gen- .
eralized Saha equation) economically characterizes the peak at iron, and the
corresponding thermodynamic states are not unlike those anticipated in the ter
minal stages of stellar evolution.

It might at first seem that one would expect the synthesis of heavy elements
to terminate with iron, at least if one envisions only equilibrium states of nuclear
matter in which the total mass is converted to heavy nuclei. As an alternative,
it was necessary to seek circumstances in which small traces of heavy nuclei could
be processed to even heavier nuclei by nuclear reactions occurring as a by-product
of the reactions among the dominant lighter nuclei. Capture of light charged
nuclei (protons, for example) by heavy nuclei is inadequate because the coulomb
barrier is much too large for barrier penetration at the temperatures character
istic of the burning of light nuclei. The solution appears to have been found by
the demonstration that the very heavy nuclei can be formed efficiently by the
capture of free neutrons liberated as a by-product of reactions between light
charged particles. Such a strong correlation has been established between heavy
nuclear abundances and their neutron-capture characteristics that the assump
tion must be considered as correct.

Thus by and large, one can say that the nuclear reactions in stars can produce
the various nuclear species in abundances consistent with the anticipated reac
tions. The major features of the science are now so well demonstrated that few
people doubt the existence of a correlation between nuclear abundances and
nuclear properties. The major efforts are presently directed toward fitting the
details of nuclear abundances to the various mechanisms and locating the sites of
nucleosynthesis within the context of stellar evolution. It has become increas
ingly evident that the major problems lie not with synthesizing the elements in
stars but with reinjecting them in a natural way into the interstellar medium.
The question of the evolution of the chemical composition of the galaxy is inextri
cably entwined with the details of the rate of star formation throughout galactic
history and the question of the composition of matter presently bound in stars.

Such considerations illustrate the nature of the problems in stellar evolution
and nucleosynthesis. The remainder of this book is devoted to the basic physi
cal principles from which the science may be constructed. In closing this intro
duction we note that the spirit of the inquiry was expressed by the poet:

I believe a leaf of grass is no less
than the journeywork of the stars.

WALT WHITMAN

"Leaves of Grass"



chapter

THERMODYNAMIC STATE
OF THE STELLAR INTERIOR

The macroscopic ,properties of a star are intimately related to the microscopic
phenomena occurring in the interior material. These phenomena and their rates
depend upon the thermodynamic state of the material. One can calculate that
in the interior environment the particles move very short distances compared to
distances over which the temperature changes significantly before they collide
with other particles. The rates of the fundamental atomic collision processes
are, furthermore, very fast in comparison with rates of change of the local thermo
dynamic state. These facts enable one to assume a very important simplification
in the description of the matter, viz., local thermodynamic equilibrium. In the
state of thermodynamic equilibrium, all properties of matter are calculable in
terms of the chemical composition, the density, and the temperature. In his
pioneering book "The Internal Constitution of the Stars," Sir Arthur Eddington
has given the following vivid description:

The inside of a star is a hurly-burly of atoms, electrons, and aether waves.
We have to call to aid the most recent discoveries of atomic physics to follow the
intricacies of the dance. We started to explore the inside of a star; we soon find
ourselves exploring the inside of an atom. Try to picture the tumult! Dishev
elled atoms tear along at 50 miles a second with only a few tatters left of the
elaborate cloaks of electrons torn from them in the scrimmage. The lost elec
trons are speeding a hundred times faster to find new resting places. Look out!
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there is nearly a collision as an electron approaches an atomic nucleus; but put
ting on speed it sweeps round it in a sharp curve. A thousand narrow shaves
happen to the electron in 10-10 of a second; sometimes there is a side-slip at the
curve, but the electron still goes on with increased or decreased energy. Then
comes a worse slip than usual; the electron is fairly caught and attached to the
atom, and its career of freedom is at an end. But only for an instant. Barely
has the atom arranged the new scalp on its girdle when a quantum of aeiher
waves runs into it. With a great explosion the electron is off again for further
adventures. Elsewhere two of the atoms are meeting full tilt and rebounding,
with [urther disaster to their scanty remains of vesture.

As we watch the scene we ask ourselves, "Can this be the stately drama of
stellar evolution?" . . .1

This chaotic situation is reduced to tractable proportions by application of
the principles of statistical mechanics. Because thermodynamic equilibrium is
quickly achieved on the atomic (but not nuclear) scale, the rates of all atomic
(i.e., electromagnetic, but not nuclear) reactions equal those of their inverse
reactions. The hurly-burly of the individual electron is replaced by a steady
macroscopic state whose properties are embodied in the principles of statistical
physics. The functions of state are determined by the chemical composition,
density, and temperature. Foremost among these is the pressure P = P(p,T),
commonly called the equation of state, from which the star derives its structural
support against gravity. The burden of this chapter will be the discussion of
the equation of state and related phenomena.

Near the surface of the stars, the equation of state of the gas is extremely
complicated. The atomic constituents of the outer layers are in varying degrees
of ionization. Application of the Saha ionization equation reveals that the
hydrogen constituent becomes almost completely ionized by the time the tem
perature has risen to about 104 OK, whereas the helium is almost completely
ionized by the time the temperature has risen to 105 OK, at which temperature
the heavier elements have also lost a sizable number of their electrons to the
continuum and are in relatively high stages of ionization. For temperatures
higher than 105 OK, it becomes increasingly more accurate, insofar as the pres
sure is concerned, to talk of a completely ionized gas. Other important proper
ties of the gas, such as its internal energy and its opacity to radiation, are strongly
dependent upon the degree of ionization. For the common stellar composition,
in which hydrogen and helium comprise more than 95 percent of the mass, the
pressure at temperatures greater than 105 OK can be calculated to high accuracy
by assuming complete ionization. Significantly, a large fraction of the mass of
most stars does lie at temperatures higher than 105 OK. The bulk of the struc
ture of most stars is determined, therefore, by an equation of state appropriate to
completely ionized "matter. From an analytical point of view, it is extremely

1 A. S. Eddington, "The Internal Constitution of the Stars," p. 19, Dover Publications, Inc.,
New York, 1959.
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fortunate that this is so. A completely ionized gas behaves like a perfect gas
to extremely high densities. Terrestrial matter reaches a density of only a few
grams per cubic centimeter before it begins to resist compression, and the perfect
gas law begins to break down even before that density is reached. The rather
large size of atoms and the interatomic forces between the electron clouds of the
various atoms set a rather sudden limit to the density of un-ionized matter.
The radii of nuclei, on the other hand, are only 10-5 of the radii of most atoms.
A gas composed of nuclei and electrons, therefore, occupies only about 10-15 of
the volume occupied by atoms. We may anticipate, therefore, that highly ion
ized matter can be compressed to extremely high densities before the perfect-gas
law will break down as a result of the volume effect.

A perfect gas is defined as one in which there are no interactions between the
particles of the gas. Although this criterion is never satisfied exactly in real
gases, the approximation is physically sound if the average interaction energy
between particles is much smaller than their thermal energies. This last con
dition may be satisfied by a weak interaction or by a sufficiently rarefied gas.
In the ionized gas of a stellar interior the real interactions between particles are
predominantly the coulomb interactions. It is fortunate that most physical cir
cumstances in the stellar interior are such that the average coulomb energy of
particles is much less than their characteristic kinetic energy, which is of the
order kT for a nondegenerate gas. For this reason it will be adequate for most
applications to use the equation of state of a perfect gas. We shall return later
to the question of the real ionized gas and its applications.

2·1 MECHANICAL PRESSURE OF A PERFECT GAS

The microscopic source of pressure in a perfect gas is particle bombardment."
The reflection (or absorption) of these particles from a real (or imagined) surface
in the gas results in a transfer of momentum to that surface. By Newton's
second law (F = dp/dt), that momentum transfer exerts a force on the surface.
The average force per unit area is called the pressure. It is the same mechanical
quantity appearing in the statement that the quantity of work performed by the
infinitesimal expansion of a contained gas' is dW = P dV. In thermal equilib
rium in stellar interiors, the angular distribution of particle momenta is isotropic;
i.e., particles are moving with equal probabilities in all directions: When reflected
from a surface, those moving normal to the surface will transfer larger amounts of
momentum than those that glance off at grazing angles. Imagine that the sur
face in Fig. 2-1 is one of the surfaces of an evacuated can under particle bombard
ment. When particles are specularly reflected from that surface, the momentum
transferred to the surface is t:.pn = 2p cos O. Let F(O,p)dO dp be the number of
particles with momentum p in the range dp striking the surface per unit area per
unit time from all directions inclined at angle 0 to the normal in the range dO.

1 In a nonperfect gas strong forces between the particles will represent an additional source or
sink of energy for expansions and will therefore contribute to the pressure.
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Fig. 2-1 A conical shell defining the set of
directions having a spread de about the
angle e to the normal. The number of
particles having Ipi = p in the range dp that
strike a unit area in unit time within this
conical shell of directions is designated
F(e,p) de dp.

The contribution to the pressure from those particles is

dP = 2p cos 0 F(O,p) dO dp

so that the total pressure is

r"j2 roo
P = }o=o }p=o 2p cos 0 F(O,p) dO dp

(2-1)

(2-2)

In thermodynamic equilibrium, the angular distribution of momenta is isotropic,
whereas the distribution of the magnitudes of the momenta Is given by statistical
mechanics. The flux F(O,p) dO dp may be calculated as the product of the
number density of particles with momentum p in the range dp moving in the cone
of directions inclined at angle 0 in the range dO times the volume of such particles
capable of passing through the unit surface in unit time. That volume is the
volume of the parallelepiped shown in Fig. 2-2 and is equal to the product of Vp ,

the velocity associated with momentum p, and cos 0, the cross-sectional area of
the column. That is,

F(O,p) dO dp = Vp cos 0 n(O,p) dO dp (2-3)

where n(O,p) dO dp is the number density of particles moving in the prescribed
cone. For isotropic radiation, furthermore, the fraction of the number of parti
cles moving in the cone of directions at angle 0 in the range dO is just

n(O,p) dO dp _ 27T sin 0 dO
n(p) dp - 47r (2-4)
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Fig. 2·2 The parallelepiped whose vol
ume when multiplied by the density of
particles about momentum p yields the
number of particles per unit time of
momentum p passing through the unit
area D.

p

which is the fraction of the total spherical solid angle defined by the conical set
of directions. The total number density of particles of momentum p in dp is
n(p) dp. Evidently the gas pressure is

p = 10"/2 10'" 2p cos 0 Vp cos 0 n(p) dp i sin 0 dO

The explicit integration over angles is easily performed to yield

(2-5)

1 r'"p = 3" 10 pvpn(p) dp perfect gas (2-6)

This pressure integral, valid for a perfect isotropic gas, must be evaluated for
several sets of relevant astrophysical circumstances. The relationship of Vp to p
depends upon relativistic considerations, whereas the distribution n(p) depends
upon the type of particles and the quantum statistics. The simplest perfect gas
is the monatomic nondegenerate nonrelativistic one considered in the next sub
section, which will be followed J:>y a discussion of the degenerate electron gas and
then a discussion of radiation pressure.

THE PERFECT MONATOMIC
NONDEGENERATE GAS

In the most common case for which the gas density is small enough to be non
degenerate and for which the thermal velocities are nonrelativistic, the pressure
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of a perfect gas is simply

P, = NkT

where N is the number of free particles per unit volume.

(2-7)

(2-11)

Problem 2-1: From Chap. 1, the momentum distribution of a nondegenerate nonrelativistic
gas in thermal equilibrium is maxwellian;

N4 7rp2dp p2
n(p) dp = (27r17lkT)! exp - 2mkT

For a nonrelativistic gas, derive Eq. (2-7) from the pressure integral. The contribution from
the several constituents of the gas are additive (Dalton's law of partial pressures). Is Eq. (2-7)
also correct for relativistic velocities?

Let the mean molecular weight of the perfect gas be designated by p.. Then
the density is

p = Np.M" (2-8)

where M" is the mass of 1 amu. The number of particles per unit volume can
then be expressed in terms of the density and the mean molecular weight as

N = -p- = Nop (2-9)
p.M" p.

where No = 11M" is Avogadro's number and is equal to 6.0225 X 1023 mole<.

Substitution into Eq. (2-7) gives the pressure of the gas in terms of the density
and the mean molecular weight:

P = N ok pT (2-10)
g p.

The mean molecular weight rather clearly will depend upon the composition
of the gas. It is common to let Kz represent the fraction of the gas by weight of
element Z j that is, 1 g of gas contains X» g of the element of the atomic num
ber Z. It follows that l;Xz = 1. Let us also suppose that each atom of ele
ment Z contributes nz free particles to the gas. For complete ionization, for
instance, it will be true that nz = Z + 1, Z electrons plus the nucleus. Now let
N z be the number density of atoms of element Z in the gas. From the definitions
of all these quantities it is apparent that

pz X z
N z = A

z
No = p A

z
No

Now the total number of free particles per cubic centimeter will be given by

N = I Nznz = pNol~z

where the sum is over all the elements Z.

(2-12)

From a comparison of this last equa-
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tion with Eq. (2-9), the mean molecular weight is given by

! = \' Xznz (2-13)
JL '"' A z

It is conventional to use a slightly different terminology for the fraction by
weight of the two most common elements in the stellar composition. In keeping
with this convention, let X be the weight fraction of hydrogen, let Y be the
weight fraction of helium, and let 1 - X - Y be the weight fraction 1 of all
species heavier than helium. Then the mean molecular weight becomes

[
x nH YnHe )/nz\]-l

JL = 1.008 + 4.004 +(1 - X - Y \Az/ (2-14)

The quantity (nz/A z) is the average of nz/A z for Z > 2, each term being weighted
proportional to X z .

Equation (2-14) can be further simplified for the case of complete ionization in
the inner regions of stars. For complete ionization, the numbers of free particles
contributed by the atoms of each element are nH = 2, nHe = 3, and nz = Z + 1.
When averaged over the species as they occur in nature, it is a convenient fact that
the average atomic weight of element Z is approximately given by A z = 2Z + 2.
The use of that approximation should be adequate in most cases where the frac
tion by weight of the species heavier than helium is small. With this approxi
mation (nz/A z) in Eq. (2-14) becomes equal to t:

1 2
JL ::::: 2X + 3Y/4 + (1 - X - Y)/2 = 1 + 3X + 0.5Y (2-15)

It will also be convenient to have an auxiliary expression for the number den
sity of electrons. Using exactly the same notation as above, we have

n; = LNz(nz - 1) = pN ol ~; (nz - 1) (2-16)

In the case of complete ionization nz = Z + 1, so that the number density of
electrons becomes

(2-17)complete ionization\,XzZ
n. = pNo'"' A z

Insertion of the composition-by-weight parameters given above for hydrogen and
helium yields

n = pN 0 [X + 2Y + (1 - X - Y) / .!.\] (2-18)
e 4 \Az/

where (Z / A z ) is the average for Z > 2, the average being taken with respect to
X z . If the fraction by weight of elements heavier than He is small, it is often

1 It is common to denote this last weight fraction by Z. To avoid confusion with the nuclear
charge in the present discussion, we forego that notation for the moment. We shall use the
symbol Z later, however, where the context will make its meaning clear.
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adequate to assume (Z / A z ) = i, in which case

n; = ipNo(l + X) (2-19)

I t is also common to use a quantity called the mean molecular weight per electron
J1.e, which is numerically equal to the average number of atomic mass units for
each electron in the gas. From Eq. (2-17) it is evident that

! = \' XzZ n e = pN0 (2-20)
J1.e L A z J1.e

If the ionization is complete, and if (Z / A z ) = i for Z > 2,

2
J1.e = 1 + X (2-21)

It is advisable for the reader to pause long enough to gain familiarity with the
composition parameters and to mentally evaluate .the errors in the various
approximations.

Problem 2-2: To be sure of understanding the mean molecular weight of the completely ionized
gas, calculate and interpret the values of JL under the following circumstances: (a) all hydrogen,
that is, X = 1, Y = 0; (b) all helium, that is, X = 0, Y = 1; (c) all heavy elements, that is,
X = 0, Y = 0. Which of these three values is exactly given by the approximate equation
(2-15)?

Problem 2-3: Calculate the mean molecular weight per electron JL. for completely ionized con
ditions of all hydrogen (X = 1) and for all helium (Y = 1). Is Eq. (2-21) exact for X = Y =
0.5? Is it exact for X = Z = 0.5? What if the Z component is all cn and QIG?

Problem 2-4: Show that for conditions under which Eq. (2-15) is valid, the rate of change of
the mean molecular weight with respect to the heavy-element content Z, always holding the
hydrogen fraction constant, is equal to JL2/4; that is,

(:;)x = ~

In calculations of stellar structure, and particularly of the structure of evolving
stars, a large variety of compositions will be encountered. The statement was
made in Chap. 1 that the average composition of the surfaces of population I
stars and of the interstellar medium is more or less uniform. It is appropriate,
therefore, at this time to present a simplified table of the abundances of the ele
ments (Table 2-1), which are the best that can be inferred for population I objects.
Most of the entries are derived from abundances of elements in the solar system,
because those are the ones for which the most extensive data exist. The most
important exceptions are He and Ne, which are observed only in objects hotter
than the sun: It is common to think of the chemical composition of the solar
system as a standard, against which other compositions are to be compared.
This procedure is no more than a matter of convenience, however, and it must
be remembered that the composition of our solar system has no special cosmo-
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Table 2·1 Relative abundances of most common species
in population It

Relative abundance

85

Element Atomic weight By"number By weight

H 1 1,000 1,000
Het 4 160 640
0 16 0.90 14
Net 20 0.50 10
C 12 0.40 4.8
N 14 0.11 1.5
Si 28 0.032 0.9
Mg 24 0.025 0.6
S 32 0.022 0.7
A 40 0.008 0.3
Fe 56 0.004 0.2
Na 23 0.002 0.05
Cl 36 0.002 0.07
Ai 27 0.002 0.05
Ca 40 0.002 0.08
F 19 0.001 0.02
Ni 59 0.001 0.06
>Ni >60 ~1O-< ~0.01

t L. H. Aller, "The Abundance of the Elements," Interscience
Publishers, Inc., New York, 1961.

t Because the sun is a G2 star, its helium abundance is not well
known. The value in this table comes from the hotter B stars
in the solar neighborhood, which are much younger than the sun.
There are some indications that in the sun He/H se 0.10 by num
ber, which is about 60 percent of the amount of He found in B
stars. A similar situation occurs for Ne, and it is more likely, but
not certain, that in the sun Ne/O ~ 0.1.

logical significance. A simple calculation reveals that the abundance parameters
corresponding to Table 2-1 are

X = 0.60 Y = 0.38 Z = 0.02

These composition parameters may be thought of as characteristic of the majority
of population I stars. It must be reemphasized, however, that it is in the devi
ations of composition from uniformity that some of the most intriguing problems
of stellar evolution and nuc1eosynthesis are to be found.

Problem 2·5: The center of a certain star contains 60 percent hydrogen by weight and 35
percent helium by weight. Evaluate numerically the equation of state. What is the pressure
at the center of the star if the density there is 50 g/cm3 and the temperature is 15 X 106OK?

Of course, some error has been introduced by simplifying assumptions made in
obtaining the equation of state. Atoms are never completely ionized, and it is
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the Saha ionization equation that reveals the fraction of any given species that is
ionized. In the relatively cool outer portions of a star, the number of free parti
cles will depend upon the temperature. Elaborate techniques have been con
structed for calculating a more realistic equation of state applicable to incomplete
ionization. The reader who understands the ideas about it presented here, along
with its restrictive assumptions, will have little trouble with a more sophisticated
treatment of the equation of state.

Other than the lack of complete ionization in the cooler regions of the star,
there are two extremely important physical circumstances that cause the equa
tion of state for a perfect nondegenerate monatomic gas to be insufficient: (1) the
pressure due to electromagnetic radiation in the interior of the star becomes com
parable to the pressure due to particles, and (2) the electron gas becomes degen
erate. We shall consider the second of these sets of circumstances, electron
degeneracy, first.

ELECTRON DEGENERACY

Because electrons are particles with half-integral spin, the electron gas must obey
Fermi-Dirac statistics. The density of electrons having momentum Ipl = p in
the range dp is accordingly

2
n.(p) dp = h3 4'lI'p 2 dp pep) (2-22)

where the occupation index for the Fermi gas is

Pcp) = [exp (a + k~) + ITl (2-23)

That Pcp) has a maximum value of unity is an expression of the Pauli exclusion
principle, to which electrons must adhere. When Pcp) is unity, all the available
electronic states of the gas are occupied. It follows that the maximum density
of electrons in phase space is

(2-24)

It is this restriction upon the number density of electrons in momentum space
which creates degeneracy pressure. If one continually increases the electron den
sity, the electrons are forced into high-lying momentum states because the lower
states are occupied. These high-momentum electrons will make a large contri
bution to the pressure integral.

For any given temperature and electron density n., the value of the param
eter a is determined from the demand that

n. = 10'" n.(p) dp = n.(a,T) (2-25)

This relationship will be explored quantitatively at a later time, but for the
present we note from Eq. (2-23) that if a is a large positive number, Pcp) will be
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much less than unity for all energies. In this case the Fermi distribution reduces
to the maxwellian distribution. As the electron density is increased at constant
temperature, the parameter a becomes smaller, going to large negative values at
high density.

In the limit of large negative a

E
for kT < lal

E
for kT > lal

complete degeneracy (2-26)

This transition occurs smoothly over a range of energy of several kT near the
energy E = lalkT. If the energy -r ak'I' is much larger than kT, the distribution
function is nearly a step function. This limit is called complete degeneracy, and
in this limit the quantity lakTI = E f is called the Fermi energy.

In the following discussion we shall calculate the pressure of a completely
degenerate gas. The calculation will first be made for densities such that the
energy E f is nonrelativistic. It will then be repeated for densities high enough
for E f to correspond to relativistic electron velocities. Finally we shall calculate,
in the nonrelativistic limit, the pressure of an electron gas for densities such that
the distribution function is intermediate to the maxwellian and the completely
degenerate distributions.

Complete degeneracy In a completely degenerate gas, the density is high enough
so that all the available electron states having energies less than some maximum
energy are filled. Since the total number density of electrons is to be finite, the
density of states can be filled only up to some limiting value of the electron
momentum

p < p«

p > Po
(2-27)

It is clear that complete degeneracy is the state of minimum kinetic energy,
the ground state, so to speak, of a degenerate perfect electron gas. The total
number density of electrons in a completely degenerate electron gas is related to
the maximum momentum by

(PO ) 871" 3
n, = Jo n.(p dp = 3h 3 po (2-28)

Inversion of this last equation shows that the maximum momentum of a com
pletely degenerate gas is determined by the electron density:

(
3h3 )1

po = 871" n,

The energy associated with the momentum P» is the Fermi energy.

(2-29)
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The pressure of a completely degenerate perfect electron gas can be computed
from the integral of Eq. (2-6) by inserting Eq. (2-27) for n.(p). Because it is also
necessary to insert the velocity of a particle of given momentum, it is common to
distinguish between a nonrelativistic and a relativistic degenerate electron gas.

Nonrelativistic complete degeneracy If the energy associated with p« is much
less than m.c', or 0.51 Mev, then Vp = p tm. for all momenta in the degenerate
distribution, and the pressure integral is elementary:

P _ 87T 5
e.nr - 15mh 3 po (2-30)

(2-31)

(2-32)dynes/em-

where nr signifies nonrelativistic electrons. Since the maximum momentum of the
completely degenerate distribution is related to the electron density by Eq. (2-29),
the electron pressure is determined by the electron density:

h
2 (3)JP.,nr = ~O - n.a

~ 1n 7T

The number density of the electrons may be written in terms of the mass density:

h
2 (3)J (p)ap. nr = -- - N oa -

, 20m 7T P,.

= 1.004 X 1013( p)a
-: P,.

(2-33)

The value of P,. is generally about 2 unless the gas contains considerable amounts
of hydrogen. Inspection of this equation shows that the nonrelativistic-electron
pressure varies as the t power of the density. Since the pressure of a nondegen
erate electron gas varies linearly with the density, it is clear that as the density
increases, a point will be reached where the degenerate electron pressure becomes
greater than the value that would be given by the formula for the pressure of a
nondegenerate gas.

We may thereby define an approximate boundary line in the pT plane, dividing
it into regions of nondegenerate and degenerate gas, respectively, by the condition
that the pressures given by the nondegenerate-gas equation and the completely
degenerate electron-gas equation be equal. That is, when1

Nok h2 ···.(3)J (p)a-pT = - -. (No)a -
P,. 20m 7r P,.

Numerical evaluation of this equation shows that the completely degenerate elec
tron pressure exceeds the nondegenerate electron pressure when

e. > 2.4 X 1O-8T~
P,.

g/cm3 (2-34)

1 It should perhaps be emphasized that Eq. (2-33) is never "true," since a gas cannot be simul
taneously degenerate and nondegenerate. One might say that if p and T satisfy this equation,
the state of the gas must be intermediate to nondegeneracy and complete degeneracy.
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For densities greater than this value, the electron gas must be degenerate. Need
less to say, the transition from nondegenerate to degenerate is not sudden and
complete. The transition occurs smoothly for densities in the neighborhood of
Eq. (2-34). The appropriate equation of state in the transition region will be
discussed in the section on partial degeneracy.

It is instructive to apply Eq. (2-34) to two well-known astrophysical environ
ments. At the center of the sun P/~e ~ 102, and T ~ 107• For these values the
inequality of Eq. (2-34) is strong in the opposite direction, so that one will antici
pate using the nondegenerate electron pressure at the solar center. White-dwarf
densities, on theother hand, are observationally known to be of order P/~e ~ 106,

whereas the interior temperatures are of order T ~ 106• For these values the
inequality of Eq. (2-34) is strongly satisfied, and one must expect degeneracy
pressure to dominate.

Relativistic complete degeneracy As the electron density is increased, the maxi
mum momentum in a completely degenerate electron gas grows larger. Eventu
ally a density is reached where the most energetic of the electrons in the degen
erate distribution become relativistic. When that condition is reached, the
substitution Vp = pfm. leading to Eq. (2-30) becomes incorrect. The velocity
to be associated with the momentum p must be determined by relativistic
kinematics.

Before calculating the pressure, let us estimate those densities for which it is
necessary that some of the electrons be relativistic. For a relativistic particle,
the total energy, which is the sum of the rest-mass energy plus the kinetic energy,
forms a right triangle with the rest-mass energy and the momentum times the
velocity of light, as illustrated in Fig. 2-3. The right-triangle relationship follows

Fig. 2-3 The right triangle
representing the relationship
of the total energy of a par
ticle to its momentum. The
kinetic energy is the excess of
the hypotenuse beyond the
rest-mass energy.

m oc2

pc
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from the relativistic expression for the total energy of a particle,

W2 = p2C2 + mo2c4 (2-35)

where mo is the rest mass of the particle. The total energy is also given by the
square of the velocity of light times the relativistic mass:

• 1noC2
W = me: = 1 _ (vjC)2 (2-36)

Equating W2 in Eq. (2-35) to W2 in Eq. (2-36) yields

v
pc =-W

c
(2-37)

What convenient order-of-magnitude criterion will ensure that particles are
relativistic? One may say with adequate accuracy that particles become rela
tivistic when vjc approaches unity and when the total energy W becomes appreci
ably greater than the rest-mass energy. As an order-of-magnitude criterion, it
suffices to compute the density at which the electrons of maximum momentum
have a total energy equal to, say, twice the rest-mass energy; from Eq. (2-37) the
quantity pc will then be approximately poC "-' 2moc2. On the other hand, the
numerical value of poC is

pee = he (8~ neY = 6.12 X 10-I Ine! Mev (2-38)

In terms of the density and the mean molecular weight per electron, Eq. (2-38)
may be expressed as .

PoC = 5.15 X 10-3 (:eY Mev (2-39)

This last equation reveals that poC ",. 2moc2 ",. 1 Mev when

E. = 7.3 X 106 g/cm!
Jle

relativistic (2-40)

The natural conclusion is that as the density approaches this value, relativistic
kinematics must be used in relating the velocity of an electron to its momentum.
Densities this large are encountered in astrophysics, in white dwarfs, for instance.

The pressure integral for a completely degenerate gas may be evaluated with
out difficulty for relativistic particles. Since the momentum of a relativistic
particle. is given by Eqs. (2-36) and (2-37) as

p = [1 - (vjC)2J!

one can determine by inversion that

pjmov = ,,-,--,,--'7-""':---,.-,=
[1 + (p/moc)2J!

(2-41)

(2-42)
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(2-43)

Insertion of this value for Vp in the pressure integral yields

87r (po p4 dp
p, = 3mh3 io [1 + (pjme)2J!

In Eq. (2-43) and those which follow, the electron rest mass is designated simply
by m. For evaluation of this integral it is convenient to define a new param
eter (J such that

sinh (J = L
me

dp = me cosh (J d(J

In terms of this new variable the pressure integral becomes

P = 87rm4e5
(80 • h4 (J d(J

e 3h 3 io sin

which may be integrated to give

p = 87rm4e 5 (sinh3
(Jo cosh (Jo _ 3 sinh 2(Jo + 3(Jo)

e 3h3 4 16 8

When written in terms of the Fermi momentum,

(2-44)

(2-45)

r. = 7r~~~5 f(x) = 6.003 X 1022f(x)

where

po h (3 )1
x = me = me 87r n e

f(x) = x(2x2 - 3) (x2 + I)! + 3 sinh"! z

dynes/em- (2-46)

(2-47)

The numerical value of the dimensionless parameter x is

x = 1.195 X 1O-1on e1 = 1.009 X 10-2 (:e)' (2-48)

Problem 2-6: The limit of small x, that is, po« mc, must correspond to nonrelativistic par
ticles. Show that

f(x) "" !x 5 - tx7 + ... X-40

and confirm that the pressure obtained from this limiting value of f(x) reduces to the completely
degenerate nonrelativistic electron pressure determined previously in Eq. (2-30).

Problem 2-7: The limit of large x must correspond to highly relativistic degeneracy. Show that

f(x) "" 2x 4 - 2x 2 + ... X -4 00

Show that the pressure obtained by inserting this limiting value of f(x) into Eq. (2-46) is iden
tical to that obtained by letting Vp = c in the integral for the pressure given in Eq. (2-6).
Does that make sense? Evidently the pressure is proportional to p! at very high density.
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Table 2-2 Pressure of a complete degenerate gast

z I(x) z I(x)

0 0 2.0 26.7
0.1 1.60 X 10- 5 2.1 32.9
0.2 5.05 X 10-4 2.2 40.1
0.3 3.77 X 10- 3 2.3 48.4
0.4 1.55 X 10-2 2.4 58.0

0.5 4.61 X 10-2 2".5 68.9
0.6 0.111 2.6 81.2
0.7 0.232 2.7 95.2
0.8 0.436 2.8 110.8
0.9 0.756 2.9 128.3

1.0 1.23 3.0 1.48 X 102

1.1 1.90 3.5 2.80 X 102

1.2 2.82 4.0 4.85 X 102

1.3 4.05 4.5 7.85 X 102

1.4 5.63 5.0 1.21 X 103

1.5 7.64 5.5 1. 78 X 103

1.6 10.1 6.0 2.53 X 103

1.7 13.2 6.5 3.49 X 103

1.8 16.9 7.0 4.71 X 103

1.9 21:4 8.0 8.07 X 103

t S. Chandrasekhar, "An Introduction to the Study of
Stellar Structure," p. 392; reprinted from the Dover
Publications edition, Copyright 1939 by The University
of Chicago.' as reprinted by permission of The University
of Chicago.

Table 2-2 lists some numerical values of f(x). From this table and Eq. (2-46)
the electron pressure can be evaluated for cases of semirelativistic complete degen
eracy. The quantity x is to be evaluated from Eq. (2-48). This result is correct
only for a completely degenerate gas. Approximate relativistic expressions for a

-partially degenerate gas can be obtained if desired.' However, densities must
exceed 106 gjcm3 for a degenerate gas to be relativistic [Eq. (2-40)J, for which the
degeneracy will be essentially complete unless T > 109 OK [Eq. (2-34)J. Densi
ties greater than 106 g/cm" at a temperature greater than 109 OK are probably
found only in very late stages of stellar evolution. For all other classes of stars,
degeneracy sets in at sufficiently low temperatures so that nonrelativistic kine
matics should be adequate for the examination of partial degeneracy.

1 See, for instance, S. Chandrasekhar, "An Introduction to the Study of Stellar Structure,"
p. 392, Dover Publications, Inc., New York, 1957, or D. H. Menzel, P. L. Bhatnagar, and
H. K. Sen, "Stellar Interiors," p. 35, John Wiley & Sons, Inc., New York, 1963.
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(2-49)

Probem 2·8: Show that the kinetic energy per unit volume of a completely degenerate gas is

(!!-) = 1r1n
4

C

5

g(x)
V kin 3h3

where g(x) = 8x 3[(X2 + I)! - 1] - I(x). Show also that U ~ lpV in the limit of small z
and U~ 3PV in the limit of large x,

Partial degeneracy The dividing line between degeneracy and non degeneracy
given in Eq. (2-34) defines only the region of the onset of degeneracy in the elec
tron gas. That is, it indicates only the approximate condition under which elec
tron degeneracy is becoming important in the equation of state. Actually, of
course, there is a gradual transition from non degeneracy toward complete degen
eracy as the density rises. There is certainly no sharp transition between those
extreme conditions. The electron occupation index gradually takes on the shape
of a degenerate distribution with increase in density, as illustrated in Fig. 2-4.

The distribution of electron momenta is

2 47Tp 2 dp
ne(p) dp = h3 exp (a + E/kT) + 1

where a is a number that depends upon the electron density and the temperature.
That is, a is fixed by the requirement that the total number of electrons equal the
electron density ne:

[" 2 47Tp2 dp
ne = Jo h3exp (a + E/kT) + 1 = ne(a,T)

The integral for the pressure of the perfect electron gas becomes

p _ 87T f'" p3Vp dp
e - 3h3 Jo exp (a + E/kT) + 1

P(e)

P3

(2-50)

(2-51)

e

Fig. 2-4 Schematic illustration of the occupation index of an electron gas for three different
degrees of degeneracy. In this particular case P3 > P2 »PI and T 2 > T 30
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(2-52)

As stated at the end of the last section, for temperatures of less than 109 "K non
relativistic electron degeneracy sets in before relativistic degeneracy. Therefore,
in considering the partially degenerate gas, we shall restrict ourselves to non
relativistic kinematics, keeping in mind that the results will be somewhat in error
for extremely high temperatures (T > 109) . That is, we shall once again let
Vp = pfm, whereupon

87l" [" pv dp
P; = 3h3m Jo exp (a + p2/2mkT) + 1

and

(2-53)
87l" i" p2 dp

n e = h 3 Jo exp (a + p2/2mkT) + 1

With the aid of a dimensionless energy u = p2/2mkT, these equations may be
written in the form

87l"kT fa:> u! du
P, = 3h3 (2mkT)! Jo exp (a + u) + 1

_ 47l" ') ! fa:> u' du
n; - h3 (..,mkT) Jo exp (a + u) + 1

(2-54)

(2-55)

(2-56)

These two equations constitute a parametric representation of the equation of
state, the parameter being the quantity a. The parametric representation is
made more explicit by conventionally defining two new functions, 1

t : us du.
F,(a) = Jo exp (a + u) + 1

i " u! du
F!(a) = Jo exp (a + u) + 1

(2-57)

in which case the electron pressure and the electron density may be written as

87l"kT •
P, = 3h3 (2mkT) 'F! (a)

47l" .' .
n e = h3 (2mkT)!F,(a)

The functions F, and F! have been tabulated for selected values of a in Table 2-3.
Their values for other values of a may be interpolated in the range of a listed,
and asymptotic values will soon be derived for extreme values of a.

1 In much of the literature the negative of a is used as the degeneracy parameter, in which case
it is usually designated by 7J or '±'j or '±' = 7J = -a. Another common notation is -akT = p.,

which is called the chemical potential. Many people prefer to normalize the F's in a different
way, defining

1
Un(a) = r(n + 1) Fn(a)
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Table 2-3 Table of Fermi-Dirac functionsT

a iF! Ft a iF! Ft

4.0 0.016179 0.016128 0.0 0.768536 0.678094
3.9 0.017875 0.017812 ~0.1 0.839082 0.733403
3.8 0.019748 0.019.670 -0.2 0.915332 0.792181
3.7 0.021816 0.021721 -0.3 0.997637 0.854521
3.6 0.024099 0.023984 -0.4 1.086358 0.920505

3.5 0.026620 0.026480 -0.5 1.181862 0.990209
3.4 0.029404 0.029233 -0.6 1.284526 1.063694
3.3 0.032476 0.032269 -0.7 1.394729 1.141015
3.2 0.035868 0.035615 -0.8 1. 512858 1.222215
3.1 0.039611 0.039303 -0.9 1.639302 1.307327

3.0 0.043741 0.043366 -1.0 1.774455 1.396375
2.9 0.048298 0.047842 -1.1 1.918709 1.489372
2.8 0.053324 0.052770 -1.2 2.072461 1.586323
2.7 0.058868 0.058194 -1.3 2.236106 1.687226
2.6 0.064981 0.064161 -1.4 2.410037 1.792068

2.5 0.071 720 0.070724 -1.5 2.594650 1.900833
2.4 0.079148 0.077 938 -1.6 2.790334 2.013496
2.3 0.087332 0.085864 -1. 7 2.997478 2.130027
2.2 0.096347 0.094566 -1.8 3.216467 2.250391
2.1 0.106273 0.104116 -1.9 3.447683 2.374548

2.0 0.117200 0.114588 -2.0 3.691502 2~502458

1.9 0.129224 0.126063 -2.1 3.948298 2.634072
1.8 0.142449 0.138627 -2.2 4.218438 2.769344
1.7 0.156989 0.152373 -2.3 4.502287 2.908224
1.6 0.172967 0.167397 -2.4 4.800202 3.050659

1.5 0.190515 0.183802 -2.5 5.112536 3.196598
1.4 0.209777 0.201696 -2.6 5.439637 3.345988
1.3 0.230907 0.221193 -2.7 5.781847 3.498775
1.2 0.254073 0.242410 -2.8 6.139503 3.654905
1.1 0.279451 0.265471 -2.9 6.512937 3.814326

1.0 0.307232 0.290501 -3.0 6.902476 3.976985
0.9 0.337621 0.317630 -3.1 7.308441 4.142831
0.8 0.370833 0.346989 -3.2 7.731147 4.311 811
0.7 0.407098 0.378714 -3.3 8.170906 4.483876
0.6 0.446659 0.412937 -3.4 8.628023 4.658977

0.5 0.489773 0.449793 -3.5 9.102801 4.837066
0.4 0.536710 0.489414 -3.6 9.595535 5.018095
0.3 0.587752 0.531931 -3.7 10.106516 5.202020
0.2 0.643197 0.577 470 -3".8 10.636034 5.388795
0.1 0.703351 0.626152 -3.9 11.184369 5.578378
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Table 2-3 Table of Fermi-Dirac functionst (Continued)

a iF} F; a iF} F;

-4.0 11. 75180 5.77072 -8.0 52.90173 15.38048
-4.1 12.33860 5.96580 -8.1 54.45385 15.66224
-4.2 12.94505 6.16356 -8.2 56.03424 15.94580
-4.3 13.57140 6.36396 -8.3 57.64307 16.23114
-4.4 14.21793 6.56698 -8.4 59.28052 16.51826

-4.5 14.88489 6.77257 -8.5 60.94678 16.80714
-4.6 15.57253 6.98070 -8.6 62.64201 17.09776
-4.7 16.28111 7.19134 -8.7 64.36639 17.39013
-4.8 17.01088 7.40445 -8.8 66.12009 17.68423
-4.9 17.76208 7.62001 -8.9 67.90329 17.98004

-5.0 18.53496 7.83797 -9.0 69.71616 18.277 56
-5.1 19.32976 8.05832 -9.1 71.55886 18.57677
-5.2 20.14671 8.28103 -9.2 73.43157 18.877 68
-5.3 20.98604 8.50606 -9.3 75.33445 19.18026
-5.4 21.84799 8.73339 -9.4 77.26768 19.48451

-5.5 22.73279 8.96299 -9.5 79.23141 19.79041
-5.6 23.64067 9.19485 -9.6 81.22582 20.09796
-5.7 24.571 84 9.42893 -9.7 83.25106 20.40715
-5.8 25.52653 9.66521 -9.8 85.30730 20.71797
-5.9 26.50495 9.90367 -9.9 87.39471 21.03042

-6.0 27.50733 10.144 28 -10.0 89.51344 21.34447
-6.1 28.53388 10.38703 -10.1 91.66365 21.66013
-6.2 29.58481 10.63190 -10.2 93.84552 21.977 38
-6.3 30.66033 10.87886 -10.3 96.05918 22.29622
-6.4 31.76065 11.12789 -10.4 98.30481 22.61664

-6.5 32.88598 11.37898 -10.5 100.58256 22.93862
-6.6 34.03652 11.63211 -10.6 102.89259 23.26217
-6.7 35.21247 11.88726 -10.7 105.23505 23.58728
-6.8 36.41404 12.14440 -10.8 107.61010 23.91393
-6.9 37.64142 12.40354 -10.9 110.01789 24.24212

-7.0 38.89481 12.66464 -11.0 112.45857 24.57184
-7.1 40.17441 12.92769 -':11.1 114.93231 24.90309
-7.2 41.48041 13.19267 -11.2 117.43924 25.23586
-7.3 42.81301 13.45958 -11.3 119.97953 25.57013
-7.4 44.17239 13.72839 -11.4 122.55332 25.90591

-7.5 45.55875 13.99910 -11.5 125.16076 26.24319
-7.6 46.97227 14.27168 -11.6 127.80201 26.58195
-7.7 48.41315 14.54612 -11.7 130.47720 26.92220
-7.8 49.88156 14.82241 -11.8 133.18650 27.26393
-7.9 51.377 69 15.10053 -11.9 135.93004 27.60712
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Table 2-3 Table of Fermi-Dirac functionst (Continued)

a tFt Ft a tFt Ft

-12.0 138.70797 27.95178 -14.0 201.70950 35.14297
-12.1 141.52044 28.29789 -i4.1 205.24249 35.51700
-12.2 144.36760 28.64545 -14.2 208.81295 35.89238
-12.3 147.24958 28.99446 -14.3 212.42101 36.26908
-12.4 150.16654 29.344 91 -14.4 216.06681 36.64712

-12.5 153.11861 29.69679 -14.5 219.75048 37.02649
-12.6 156.10594 30.05009 -14.6 223.47215 37.40718
-12.7 159.12868 30.40482 -14.7 227.231.96 37.78918
-12.8 162.18696 30.76096 -14.8 231.03003 38.17250
-12.9 165.28092 31.11851 -14.9 234.86650 38.55712

-13.0 168.41071 31.47746 -15.0 238.74150 38.94304
-13.1 171.57646 31.83781 -15.1 242.65515 39.33027
-13.2 174.77831 32.19956 -15.2 246.60759 39.71879
-13.3 178.01642 32.56268 -15.3 250.59895 40.10859
-13.4 181.29090 32.92720 15.4 254.62936 40.49969

-13.5 184.60190 33.29308 -15.5 258.69893 40.89206
-13.6 187.94956 33.66034 -15.6 262.80781 41.28571
-13.7 191.33401 34.02896 15.7 266.95612 41.68064
-i3.8 194.75540 34.39894 -15.8 271.14398 42.07683
-13.9 198.21385 34.77028 -15.9 275.37153 42.47429

t Taken from J. McDougall and E. C. Stoner, Phil. Trans. Roy. Soc., 237 :67 (1938).

Problem 2-9: Show that in a perfect nonrelativistic electron gas

for any degree of degeneracy.

Problem 2-10: (a) Show that as a -> <Xl, Ft/Ft -> i, for which case P. -> n.k'I', the pressure
of a maxwellian electron gas. (b) Show that as a -> <Xl, Ft/Ft -> fUo, for which case
P.-> (81r/15mh 3) po5, the pressure of a completely degenerate nonrelativistic electron gas.

From Eq. (2-57) it is apparent that

P., = n.kT G~:)

Thus, the factor 2PV3Ft measures the extent to which the electron pressure
differs from that of a nondegenerate gas. This multiplication factor is plotted in
Fig. 2-:5 as a function of the parameter Q!. It can be seen that the gas pressure is
essentially that of a nondegenerate gas for Q! > 2.
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Fig. 2-5 The ratio 2F!/3F! as a function of the degeneracy parameter a. This ratio is equal
to the ratio of the pressure of an electron gas to the pressure it would have if it were maxwellian
at the same density.

On the other hand, Eq. (2-57) may be written in terms of the mass density,

pNo 4-n-
-;: = h3 (2mkT)!F!(a) (2-59)

from which it follows that

log (:e T-i) = log Fi(a) - 8.044 (2-60)

This equation is plotted in Fig. 2-6, which relates log [(P/lle)T-!] to the degen
eracy parameter a.

-10

-9--N
<,

'"I
E-<

Q.\ :t -8----tID
..9

-7

-6
-20 -16 -12 -8

a

Fig.2-6 The value of (P/p.,)T-! determines the degeneracy parameter
a of an electron gas.



THERMODYNAMIC STATE OF THE STELLAR INTERIOR 99

These equations describe the behavior of the equation of state of an electron
gas in the partially degenerate region. For given p, T, Eq. (2-59) determines
F!(a), which in turn allows F!(a) to be interpolated from Table 2-3. These cal
culations have used nonrelativistic kinematics because, in most stars, relativistic
degeneracy is important only for such high densities that the degeneracy is essen
tially complete.

For many problems in nonrelativistic partial degeneracy, however, it is instruc
tive to have appropriate expansions of the equation of state. Expansions that
converge rapidly for weak degeneracy (nearly maxwellian) and for strong degen
eracy (nearly complete) are easily obtained.

Weak nonrelativistic degeneracy For notational ease, define A = exp (-a).
Then for a > 0, which is seen from Fig. 2-5 to correspond to weak degeneracy,
the number A is less than unity. Then F!(A) may be expanded:

_ roo u! flu _ roo -u! 1
F!(A) - Jo (1/A)eu + 1 - Jo Ae u 1 + Ae-u flu

= A 1000

e-uu![1 - Ae- U + (Ae-u)2 - (Ae-u)3+ ...J flu (2-61)

which may be integrated term by term to give

A<I

or equivalently

V; ~ (-I)ne-na
F!(a) = - 2 L n!

n=l

Then Eq. (2-57) becomes

n; = 2(21r~~kT)! ! (-I)n+l e:~a
n=l

a>O

a>O

(2-62)

(2-63)

Problem 2-U: Show by the same technique used in obtaining Eq. (2-63) that

2kT(2trmkT)!I
OO

e- n a
P = (_l)n+l-

e h3 n~
n=l

",>0 (2-64)

Problem 2-12: For large 0:, the series may be approximated by one term. Show that Eqs.
(2-63) and (2-64) then reduce to the maxwellian distribution.

Problem 2-13: Suppose that 0: is large enough for only the first two terms of the series to be
important. Show, then, that

[
n.h3 ]P, ~ nekT 1 + + ...

2~(2trmkT)!

= n.kT(l + 1O-16.435n.T - ! + ...)
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Strong non relativistic degeneracy The degeneracy becomes strong when 0:

becomes a large negative number or, equivalently, when the parameter A becomes
a large positive number. The expansion for large A employs a lemma due to
Sommerfeld, which, as stated by Chandrasekhar;' is:

LEMMA: If rjJ(u) is a sufficiently regular function which vanishes for u = 0,
then we have the asymptotic formula

t- du drjJ(u) [(d
2rjJ)

(d
4rjJ)

]10 (1/A)e u + 1 f:[i;:- = rjJ(uo) + 2 C2 du 2 uo + C4 du4 uo + ...
(2-65)

uihere Uo = log A and C2, C4, . . . are numerical constants defined by

111
c. = 1 - ~ + 3' - ;rv + ...

The series for the constants c. can be summed. 2 For instance,

'1l'2 7'1l'4 31'1l'6
C2 = 12 C4 = 720 C6 = 30,240

Problem 2-14: By applying Sommerfeld's lemma to the integrals Ft and F;, show that

(

71'2 771'4 )
Ft(a) = ~(-a); 1 +- +-- + .

8a 2 640a4

(

511'2 711'4 )
F;(a) = t(-a)~ 1 + -. - -- + .

8a- 384a 4

(2-66)

is a good expansion for a < -1. These three-term expansions are accurate to three decimal
places for a < -5.6 and are quite useful for a < -3.

Problem 2-15: Calculate F.(a) and ~F!(a) for a = -3 and compare the results with the
values in Table 2-3. .

Since

(2-67)

(2-68)

it is evident from Eq. (2-66) that the physical meaning of 0: in the limit of strong
degeneracy is

1 (3hSne) ;
-0: <::> 2mkT s;-

1 S. Chandrasekhar, "An Introduction to the Study of Stellar Structure," p. 389; reprinted
from the Dover Publications edition, Copyright 1939 by The University of Chicago, as reprinted
by permission of The University of Chicago.

2 See, for instance, H. B. Dwight, "Tables of Integrals and Other Mathematical Data," eq. 47.2,
p. 11, The Macmillan Company, New York,' 1947.
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which from Eq. (2-29) is

P02 E1
-a ~ 2mkT = kT

101

(2-69)

where E1 is the Fermi energy (the kinetic energy of an electron at the top of the
Fermi sea). This result is the same one that was obtained from an inspection
of the Fermi distribution function for large negative a. For incomplete degen
eracy, however, the energies lakTj and E1 have different definitions and physical
meanings.

If the three-term expansion of F!(a) is retained, Eq. (2-59) can be written as
an approximate equation relating the value of a to the density and temperature:

(
7r2 77r4 I) p(-a)i 1 + -. + -- + ... = 1.66 X 108 - T-i
8a- 640a4 JLe

for a < -3 (2-70)

Problem 2·16: Show that the electron pressure is twice that of the maxwellian electron-gas
formula when p//-l. = 5.0 X lO-sTi. Compare this result with the approximate boundary
of Eq. (2-34), which gave the density for which a completely degenerate gas formula yields the
same pressure as the maxwellian gas formula.

The properties of the equation of state of the perfect electron gas are shown
graphically in Fig. 2-7, where the pT plane is divided into various zones accord
ing to the extent of the electron degeneracy. The diagonal line represents the
approximate boundary between nondegenerate and degenerate electron gas as
given by Eq. (2-34). In the neighborhood of this boundary the equation of state
is to be evaluated from the parametric equations (2-57), which apply to partial
degeneracy. For densities as high as indicated by Eq. (2-40), an electron gas
becomes relativistic. This boundary is shown by the vertical line in Fig. 2-7.
In the neighborhood of this line, the pressure of a completely degenerate gas can
be evaluated from Eq. (2-46). For very high temperatures (T > 109

) not con
sidered in this discussion, the electron gas can be both relativistic and only par
tially degenerate. This situation presents a slightly more difficult form of the
equation of state. We shall not consider it here. Suffice it to say that the
Fermi statistics yield the same expression for the pressure as Eq. (2-53), the
difference being that relativistic kinematics are to be used.

Several additional comments concerning a degenerate electron gas are appro
priate at this time. With regard to the mechanical pressure which is to support
a star, it is clear that the calculations presented here account only for the pres
sure due to the electrons. The contribution from the particle pressure of the
nuclei in the gas must be added. Since nuclei are never degenerate in common
stars, the pressure due to them is simply that of a maxwellian gas, whose equa
tions have been developed previously. To calculate the partial pressure of this
perfect nuclear gas one must, of course, use the appropriate value of the mean
molecular weight. Since the electrons have in this case been accounted for inde
pendently, one must use only the mean molecular weight of the remaining ions
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Fig. 2·7 Zones of the equation of state of an electron gas. The non
relativistic transition region between nondegeneracy and extreme
degeneracy is located according to Eq. (2-34), and the pressure is
given by Eq. (2-57) in this region. As p approaches 107 g/cm', many
of the electrons become relativistic, and the distribution becomes
highly degenerate, in which case Eq. (2-46) adequately represents the
pressure.

(2-71)

and nuclei. Let J.l.i designate the mean molecular weight of the ions. The pres
sure due, to particles is then the sum of the electron pressure and the nucleus
pressure:

P Nok
gas = P; + --pT

J.l.i

In most practical cases where electron degeneracy does occur, the remammg
nuclei are generally those of more advanced phases of stellar structure, consist
ing of helium nuclei, carbon nuclei, oxygen nuclei, or perhaps even heavier nuclei.
In these circumstances the bulk of the pressure will be provided by the degen
erateelectron gas, the nuclei providing only a small additional term.

Problem 2·17: A gas composed of C12 and 0 16has a density of 2.5 X 105 g/cm3 at 108 OK. Is
this gas in the degenerate or nondegenerate region of the equation of state? Assuming the
degeneracy is complete, is it completely nonrelativistic, partially relativistic, or extremely
relativistic? Calculate the electron pressure from Table 2-2. Assuming that the degeneracy
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is incomplete and nonrelativistic, calculate the electron pressure from Table 2-3. Why is the
pressure calculated under assumptions of partial degeneracy greater than the pressure calcu
lated for assumptions of complete degeneracy? Which numerical answer is more correct for
the present problem? Why? What is the ratio of the electron pressure to the ion pressure?

Another interesting feature of the pressure of a completely degenerate gas is
that it does not depend explicitly upon the temperature. Of course, at any finite
temperature the electron gas is never completely degenerate, but in many cases
the actual momentum distribution may be closely approximated by complete
degeneracy. Whenever the energy associated with the momentum po of the com
pletely degenerate distribution greatly exceeds kT, the distribution of electron
momenta will closely resemble that of complete degeneracy. It is in this case
that the pressure is approximately independent of the temperature, being abso
lutely independent of the temperature for complete degeneracy.' This fact has
the interesting consequence that a small rise in the temperature of an almost
completely degenerate electron gas causes almost no change at all in the pressure.
This last fact has far-reaching effects on stellar structure and on the evolution of
stars. Those stages of stellar structure in which the electron gas is degenerate
and is providing the main source of pressure for the gas must admit the possi
bility of abrupt rises in temperature with no corresponding increase in pressure.
This situation actually occurs in certain stages of stellar evolution and leads to
runaways in nuclear reaction rates (flash phenomena).

Problem 2·18: Show that the nonrelativistic electron pressure changes with temperature at
constant volume according to

(ap,) = 87rk 2mkT)~ (liP, _ 3F dF~/dO!.)
er t.; 3h3 ( 2."2" ~ dF~/dO!.

= p, (~ _ ~ F~ dF~/dO!.)
T 2 2 F~ dFt/dO!.

The quantity in parentheses in the second expression is unity for a nondegenerate gas and zero
for a completely degenerate gas. Confirm this by evaluating it with the aid of the appropriate
expansions.

Another important feature of the degenerate electron distributions is related to
the transport of heat energy in the interiors of stars. The normal processes of
energy transport in stellar interiors are altered somewhat when the electron gas
becomes degenerate. The most important fact is that heat conductivity, which
normally plays a secondary role to radiative transport and to convective trans
port, becomes important. In the case of nondegeneracy, the mean free path of
charged particles is so small that heat conduction is extremely inefficient. When
an electron gas is degenerate, however, the mean free path of electrons becomes

1 Mathematically one shows that aP/ aT is very small by making an expansion of the parametric
equation of state and evaluating for non complete degeneracy. The reader is referred to
Chandrasekhar, op. cit., chap. 10.
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quite long. In order for an energetic electron to lose energy, it must fall into a
lower-lying cell in momentum space as well as impart a new energy and momen- .
tum to the particle from which it scatters. The filling up of the available states
in momentum space below a certain level hinders this process and renders ener
getic electrons quite free to move about in even a partially degenerate electron
gas. This very good conductivity will tend to make partially degenerate elec
tron gases isothermal.

White-dwarf stars are, to good approximation, supported by a completely
degenerate electron gas. As those stars radiate their thermal energy, becoming
increasingly cooler, the nearly degenerate momentum distribution becomes
increasingly rectangular. Eventually the thermal energy is radiated away, the
temperature falls toward zero, the light goes out, and the object remains an
inert mass supported by a dense sea of completely degenerate electrons, or so the
story goes. This picture is in keeping with the observed properties of white
dwarfs, which, from their observed masses and radii, are known to have densities
as large as 106 g/em3•

Pioneers in stellar structure encountered a subtle paradox in contemplating
the above picture, however. Faithful application of the hitherto successful ion
ization equation seemed to imply that ions and electrons recombine at low tem
peratures. Since the density of un-ionized matter is at most a few grams per
cubic centimeter, it would appear necessary that white dwarf expand as it cools.
Yet it could be shown that the thermal energy is, at all stages, insufficient to do
the necessary gravitational work. Eddington expressed the paradox as follows:

I do not see how a star which has once got into this compressed condition is ever
going to get out of it. So far as we know, the close packing of matter is only
possible so long as the temperature is great enough to ionize the material. When
the star cools down and regains the normal density ordinarily associated with
solids, it must expand and do work against gravity. The star will need energy
to cool. Sirius comes on solidifying will have to expand its radiu« at least
tenfold, which means that 90 percent of its lost gravitational energy must be
replaced. We can scarcely credit the star with sufficient foresight to-retain. more
than 90 percent in reserve for the difficulty awaiting it. It would seem that the
star will be in an awkward predicament when its supply of subatomic energy
ultimately fails. Imagine a body continually losing heat but with insufficient
energy to grow cold!1

The physical basis for the resolution of this problem is the thermodynamic
peculiarity of a degenerate gas: the temperature no longer corresponds to kinetic
energy. The electrons in a zero-temperature degenerate gas must still have large
kinetic energy if the density is great. The classical ionization equation showed
that at high densities atoms become ionized as kT approaches the order of magni
tude of the electron binding energy, which is when the kinetic energy of the free-

lOp. cit., p. 172.
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electron gas approaches the kinetic energy of the bound electrons. The same
approximate result applies in degenerate circumstances. Atoms are in an ion
ized state when the kinetic energy of the electron gas exceeds the kinetic energy
of a hound electron.

The approximate truth of this statement can he seen from the following con
siderations. In a completely degenerate gas, all available- electron states with
momentum less than po are occupied. The exclusion principle thus forbids the
presence of bound electrons unless they are bound so tightly that their momen
tum exceeds po, for otherwise there would be "too many" electrons in a momen
tum interval. Whereas a rigorous description of quantum statistics is consider
ably more complicated than this simple argument, the physical necessity of the
result is evident.

The physical idea is also similar to that of the band structure of electronic states
in solids. Ignore considerations of temperature completely for the moment.
When the interatomic separations of atoms are large, the energy levels of elec
trons are just those associated with isolated atoms. Each energy level possesses
a degeneracy equal to that of the atomic level times the total number of atoms.
When the interatomic separation is decreased to the point where electronic levels
of adjacent atoms overlap, however, a new feature is introduced by the exclusion
principle. Since electrons are identical fermions, the mutual wave function of
overlapping electrons must be antisymmetric in the electron coordinates. This
antisymmetrization introduces a sharing of the indistinguishable electrons by all
the atoms. In order that the electrons not be in exactly the same state, the
many degenerate atomic energy levels of discrete energy regroup into a continu
ous band of energies for which each electron is shared by all atoms. The wave
functions of those electrons in the band can be expressed by wave functions
analogous to free electrons. This is what happens in a metal, for instance, for
which the continuous band of quasifree electrons provides the source of electric
conductivity. The same feature is carried to extremes at the densities of stellar
interiors. Careful analysis shows that atoms are completely ionized by this
mechanism for densities greater than about 103 g/cm3 independent of the tem
perature. This physical effect has come to be called pressure ionization, and it
resolves in a natural manner the paradox stated by Eddington.

This completes the introduction to the perfect electron gas. We have
attempted to focus attention onto the physical principles rather than on the
mathematical details. The serious student of stellar structure who has grasped
these ideas may turn to more complete treatments for appropriate formulas
applicable to the computation of physical problems.

THE PHOTON GAS

Particles are not the only source of mechanical pressure in a perfect gas. Pres
sure is also exerted by the radiation field in the interior of the star. By the radi
ation field we mean electromagnetic radiation, the omnipresent flux of photons
inside a thermal enclosure. The pressure of the photon gas results from the fact
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that each quantum of electromagnetic energy h» carries with it a momentum
equal to hllie. If we imagine these photons being specularly reflected from a
mirror, it is clear that momentum will be transferred to the mirror by the photons.

If the environment is in thermodynamic equilibrium, the radiation flux is iso
tropic. In that case, the pressure integral for isotropic flux gives immediately
the following interesting result for the radiation pressure FT :

1 t: hll 1 r'"
F T = "3 Jo C cn(lI) dll = "3 Jo hlln(lI) dll

= tu (2-72)

where u is the energy density of photons, which was shown in Chap. 1 to be
given by u = aT4.

It often happens in cases of physical interest that an enclosure is not strictly in
thermodynamic equilibrium. In such objects as stars there exists a radiation
field which is slightly anisotropic, resulting from the fact that there is a net excess
of radiant energy flowing in one particular direction. In the case of a star, for
instance, there is a net excess in the flux of electromagnetic radiation in the radial
direction. At each point in the interior of such a star the situation corresponds
nearly to one of thermodynamic equilibrium; i.e., the radiation field is nearly
isotropic. It is convenient when considering such a slightly anisotropic radi
ation field to define the polar direction of a coordinate system as the direction
of the net excess heat flow. In these cases of physical interest, azimuthal sym
metry obtains about the direction of net flow. This symmetry corresponds to
the assumption that there is no temperature gradient perpendicular to the direc
tion of the net heat flow. In terms of this coordinate system we define a quan
tity called the intensity of the radiation field 1(0). Quantitatively, 1(0) dn is the
energy flux per square centimeter per second moving at a direction angle 0 rela
tive to the chosen axis inside a cone of directions defined by the solid angle dn.
Figure 2-8 shows the cross-sectional unit area inclined at angle 0 to the cho-sen
polar direction in the cone of directions corresponding to the solid angle dn.

Let u(O) dn represent the energy density of radiation moving at angle 0 in the
set of directions. dn. It is clear from Fig. 2-8 that the flux 1(0) dn passing through
the unit area per second is given by the corresponding energy density u(O) dn
times a unit column of length e, where e is the velocity of light:

1(0) dn = eu(O) dn (2-73)

Since the integral of the directed energy density over the total solid angle of 47r is
just the total energy density, we have

J
4.. '1 J4sr

u = u(O) dn = c 1(0) dn (2-74)

Let H designate the net flux of energy transported per square centimeter per
second in the polar direction. The flux per solid angle through a unit surface
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1(0) dn

Flow

Fig.2·8 The intensity 1(0) of the radiation field is defined such that 1(0) dn is
the energy flux moving in direction 0 within the set of directions dn.

normal to the polar direction is equal to 1(8) cos 8, since the unit area has a
projected area equal to cos 8 when viewed from the direction 8. It is apparent
from Fig. 2-9 that the net flow of energy is given. by

H = r"" 1(8) cos 8 dQ (2-75a)

If, as is usually the case, the radiation field possesses azimuthal symmetry about
the H axis,

H = 21T fa"" 1(8) cos 8 sin 8 ae (2-75b)

Evidently the heat flow vanishes for an isotropic radiation field [1(8) = const].
From the relationship between the energy E = hv and the momentum p = hvjc

of a single photon, it follows that the flux of radiant energy 1(8) corresponds to a
momentum flux I(8)jc. The resulting radiation pressure may be visualized as
the compression force on a spring separating two imaginary unit areas between
which the radiation field is excluded, as shown in Fig. 2-10. If the radiation
field 1(8) is to remain unaltered by this imaginary mechanical system, a photon
absorbed in plate I must be emitted in the same direction from plate II. The
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1(8) cos 8

1

..:::....-f--l.------J....H

Fig.2·9 The energy flux I(e) dn has associated with it an energy flow per unit
area normal to the polar axis H equal to I(e) dn cos e.

resulting compressional force on the spring is, per unit area,

r, = r I(B) cCos B cos Bdn

21r fc"" I( ) .= - B cos- Bsin BdB
c 0

(2-76)

It is clear from these three simple calculations that the energy density u, the
net flux of energy in the polar direction H, and the radiation pressure P, are
related to the three moments of the radiation field I(B):

u = ! JI(B) dn = 21r ("" I(B) sin Bae
c c }o

H = JI(B) cos Bdn = 21r 10"" I(B) cos Bsin BdB (2-77)

r, = ! JI(B) cos" Bdn = 21r ("" I(B) cos" Bsin BdB
c c }o

For cases appropriate to the interiors of stars, where near thermodynamic
equilibrium obtains, the radiation field may be approximated by

I (B) = 10 + II cos B+ . . . (2-78)

where 10 represents the isotropic part of the radiation field and II represents the
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anisotropy in the radiation field corresponding to the net flux in the polar direc
tion. Equation (2-78) represents the first two terms in the Fourier cosine expan
sion of the general radiation field. The integrals corresponding to the above
discussion are easily evaluated for this radiation field, yielding

u = 21T f (10 + 11 cos 0) sin 0 dO = 47r 1 0c c

H = 21T f (10+ 11 cos 0) cos 0 sin 0 dO = 711 (2-79)

21T f . 41TP r = C (10 + 11 cos 0) cos- 0 sin 0 dO = 3c 1 0

In this approximation the energy density in the radiation field and the radiation
pressure are independent of the anisotropic term in the radiation field. On the
other hand, the net heat flux carried by radiation flow is dependent upon the
existence of the anisotropic term. The relationship between the energy density u
and the radiation pressure P, is the same as that for an isotropic radiation field:

(2-80)

where the constant a = 7.565 X 1015 ergs cm-3 deg". For a more general form
of the radiation field involving higher powers of cos 0 in the expansion, this rela
tionship between the energy density and the radiation pressure is not strictly

--II-------H

Fig. 2-10 Two imaginary plates separated by a spring. The radiation is
excluded from the area between the plates, and each plate is required to emit
the same radiation absorbed by its counterpart in order that the radiation
field not be disturbed, The radiation pressure is the resulting compressional
force on the spring.
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(2-82)

correct, but in the cases of physical interest in the interiors of stars, the expres
sion given by Eq. (2-78) is adequate. Judging from the relationships implied by
Eq. (2-79), we may in fact rewrite Eq. (2-78) as

e 3
1(0) "'" 471" U + 471" H cos 0 (2-81)

We shall see shortly that the second term in Eq. (2-81) is numerically much
smaller than the first in the interior of stars.

Problem 2-19: Suppose we have a radiation field in the form I(IJ) = 1 0 exp (a cos IJ). Note
that the limit of small a corresponds to Eq. (2-78) with a = IdIo. Calculate the relationship
between u, H, and PT' Does PT = u/3? Do the expressions reduce to Eq. (2-79) to first
order in a?

We may consider one slight variation of Eq. (2-75a) at this point in order to
clear up a relationship used in Chap. 1. Instead of calculating the net energy
flux inside an enclosure, as in Eq. (2-75a) , we may ask for the total flux which
would emerge from a hole cut in the surface of the container. This calculation
will correspond to the energy emitted per unit area from the surface of a black
body. In this case the appropriate limits of the integral in Eq. (2-75b) are only
from 0 to 71"/2, resulting in an emission

( sr/2 . 271"
J = 271")0 (10 + II cos 0) cos 0 sin 0 dO = 71"10+ 3" II

For an isotropic radiation field (or invoking the fact that in all real cases of
interest the second term is very much less than the first) the radiation per square
centimeter from the surface of a blackbody is related to the internal energy den
sity inside the blackbody by the relationship

J = 71"10 = -leu = rrT4 (2-83)

This is the source of the ratio between the two radiation constants introduced in
Chap. 1; a = (ej4)a [see Eq. (1-29)J.

We shall return to these three moments of the radiation field when we consider
the question of the radiative transfer in stellar interiors. At that time the heat
flow H will be related to the temperature gradient of the star. From Eq. (2-79)
above, however, it is apparent that the energy density and the pressure in the
enclosure are independent of a small anisotropy.

Problem 2-20: In a star like the sun, the entire luminosity originates from a region inside
r = 3 X 1010 em, at which point the temperature T = 3 X 106 OK. Calculate from L0 the
energy flux H and show that the second term in Eq. (2-81) is very small compared to the first
term.

The mechanical pressure of a perfect gas is to be computed as the sum of
three terms:

P = Pions + Pelectrons + Pradiation (2-84)
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(2-85)

If the electron gas is nondegenerate, the sum of the first two terms is given by
Eq. (2-10), where J1. is the mean molecular weight of all free particles. If the
electron gas is degenerate, the second term must be computed from one of the
appropriate equations for degenerate electron pressure. In this case, the first
term will be of the form of Eq. (2-10) except that J1. will then represent the mean
molecular weight of the ions only. Equation (2-84) will apply to all normal
stellar interiors. It requires modification at extremely high temperatures (T >
109) , when positron-electron pairs may be produced from energetic photons, and
at high densities, where particle interactions may invalidate the perfect-gas
approximation. If magnetic fields are present in low-density regions, Eq. (2-84)
may require the addition of magnetic-field pressure. The difficult question of
the coulomb interactions in the gas will be postponed to a later discussion.

Finally, we note that the pressure due to a perfect nondegenerate gas equals
the pressure due to the radiation field when

Nok T - 1 T4--p -"Jl"a
J1.

9,--,-----,---,-----,-----,----,---,----.--,---r-.,
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Fig. 2-ll Zones of the equation of state of a gas in thermodynamic equilibrium. Radiation
pressure dominates the gas pressure in the upper left-hand corner. The remaining boundaries
are similar to those in Fig. 2-7. Also included for comparison are the transition strips in a
hydrogen-dominated gas between HO and H+, between He? and He", and between He" and He++.
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or when

T = 3.20 X 107 (~y ~ 3.6 X 107p! (2-86)

By this equation and the equations of the previous section the pT plane may be
roughly divided into three major regions in which:

(1) The pressure is dominated by the photon gas.
(2) The pressure is dominated by a nondegenerate gas.
(S) The pressure is due to a degenerate electron gas.

Figure 2-11 shows this rough division into the various zones of the equation of
state, calculated for a composition of nearly all hydrogen, as is characteristic of
most stellar interiors. We have included for comparison the various ionization
zones of hydrogen and helium calculated from the Saha equation for a compo
sition predominantly of hydrogen. These lines correspond to those values of
temperature and density for which the ionization is 50 percent accomplished.

2-2 QUASISTATIC CHANGES OF STATE

A star is not a static thing. It undergoes large expansions and contractions in
the course of its evolution. Individual mass elements in convection zones rise
and fall along the radius of the star. The very stability of the stellar structure
is determined by its response to small perturbations. In this section we intro
duce the physical principles, mainly thermodynamic, of slow expansions.

According to the first law of thermodynamics, the internal energy of a gas may
be changed by adding or withdrawing a quantity of heat energy or by doing work
upon the gas by expansion or contraction. Specifically

dU = dQ + dW (2-87)

If the process of change is performed infinitely slowly, so that one can think of
the state of the system at any moment as being one of equilibrium, the process is
referred to as quasistatic. Since quasistatic processes can be conducted in a
reverse sense, they are generally referred to as reversible processes. An infinitesi
mal change of the volume of an enclosure containing a gas requires an infinitesi
mal amount of mechanical work on the gas given by

dW = -PdV (2-88)

We shall explicitly introduce this equation into the first law of thermodynamics,
whereupon it may be written

dQ = dU + PdV (2-89)

It is from considerations of the equation of state that the proper expression to be
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used for the pressure may be determined. The proper formula depends, as we
have seen, upon the exact temperature and density of the gas in a star.

It is a fundameutal proposition of thermodynamics that for quasistatic changes
of state the heat increment may be written

dQ = T dS (2-90)

where S is a function of state called the entropy. Because the entropy is a func
tion of state, it may be computed for matter in thermodynamic equilibrium and
depends only upon the equilibrium state of matter and not upon its past history.
The change in entropy between two equilibrium states may be computed by the
combination of Eqs. (2-90) and (2-89):

TdS = dU + PdV (2-91)

(2-93)

wherein the change is evaluated along a sequence of equilibrium states reached
by quasistatic changes. The internal energy is also a function of state, which
means that for a given quantity of gas in equilibrium, U may be regarded as a
function U(V,T). For a quasistatic change of state of the gas, therefore,

dS = ."! [(au) + pJ dV + -!. (au) dT (2-92). T aV T T aT v

Because the entropy is a function S(V,T) of the state of matter, dS may also be
written

dS = (as) dV + (as) dTav T . aT v

Because the second partial derivatives are independent of the order in which
they are taken, that is,

a as a as
aTaV - aV aT

there exists an integrability condition for dS, viz.,

(2-94)

The application of these simple ideas may lead to quite useful results. As an
example of this fact, we now show thermodynamically that the energy per unit
volume of an equilibrium photon gas is proportional to the fourth power of the
temperature.

THE STEFAN-BOLTZMANN LAW

In the interior of an evacuated container in thermal equilibrium, the energy den
sity of photons can be a function only of the temperature: u = u(T). If the
contemplated box has volume V, the internal energy in the box is then

U = Vu(T) (2-95)
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whereupon the partial derivatives are

(au) = u(T)av T (au) = V du
aT v dT

(2-96)

(2-97)

.Independent of the photon energy density and spectrum, one knows that P, = ul3
for an isotropic photon gas simply from the fact that photons are massless. (All
massless particles move at the velocity of light and carry momentum p = Elc.)
If these physical observations are inserted into Eq. (2-94), there results

a (1 4) a (1 dU)
aT T"3 u = aV TV dT

If the differentiation is carried out, one obtains

du = 4 dT
u T

which has the integral

u = aT4

(2-98)

(2-99)

This thermodynamic argument does not reveal the fact that the arbitrary con
stant of integration is the Stefan-Boltzmann constant, but it does show that the
elementary thermodynamic properties of a photon gas are consistent with the
quantum-statistical properties discussed in Chap. 1.

SPECIFIC HEATS AND ADIABATIC CHANGES
OF A PERFECT NONDEGENERATE GAS

Because a nondegenerate gas represents the simplest case, and because many
interesting concepts were historically introduced from considerations of such a
gas, we shall first discuss the concepts of specific heats and adiabatic changes
within that context.

The equation of state of the nondegenerate gas may be written in a thermo
dynamically more convenient form by introducing the specific volume, defined to
be the volume of one gram of gas, in place of its reciprocal quantity, the density.
Then Eq. (2-10) becomes

R
PV = - T (2-100)

J.I.

where R is the molar gas constant with a value R = Nok = 8.314 X 107 ergs
mole? deg-1• The ratio RIJ.I. may be thought of as the gas constant for 1 g of gas,
and its value depends upon the composition of the gas. Equation (2-100) com
bined with U = U(T) defines the properties of a perfect nondegenerate gas. The
first law of thermodynamics,

dQ = dU + PdV (2-101)

has units of ergs per gram when V is defined to be the specific volume. For some
other purposes one might want to discuss the thermodynamics interms of 1 mole
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of gas, in which case V would be the volume of 1 mole, the factor J.L would not
appear in Eq. (2-100), and Eq. (2-101) would then have units of ergs per mole.
We shall normally choose to work with 1 g of gas, however.

In keeping with the assumption U = U(T), Eq. (2-101) can be written

dU
dQ = dT dT + P dV (2-102)

The specific heats of the gas are defined in the following way. Let a be a func
tion of the physical variables. Then the rate of heat addition per unit rise in
temperature, all the time keeping the function (X constant, is called the specific
heat at constant (x, and is designated by Ca :

(2-103)

This rate is to be determined from Eq. (2-102) in such a way that (X remains con
stant. This demand is met in principle by changing the physical variables from
(T,V), as in Eq. (2-102), to the pair (T,a). Then there exists an alternative
differential expression

(2-104)

where F 1 and F2 represent two functions of the physical variables. When this is
accomplished, the value Ca = F 1 can be read off.

For instance, the specific heat at constant volume can be read immediately
from Eq. (2-102):

Cy = (~~)y = ~~ (2-105)

In the special case where the gas particles possess no excited states, e.g., an ion
ized gas, the internal energy is simply the kinetic energy of translation, and Cv is
a constant. To calculate the specific heat at constant pressure Cp , the first law
must be changed to a form of Eq. (2-104) where a is to be equal to P. This
may be easily done with the help of the equation of state, Eq. (2-100), whose
differential is

P dV + V dP = R dT
J.L

This result allows Eq. (2-102) to be transformed to

(2-106)

(2-107)dQ = (dU + R) dT - V dP
dT J.L

which has the desired form. In conjunction with Eq. (2-105) it is evident that
for a perfect nondegenerate gas

RCp = Cy +-
J.L

(2-108)
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Problem 2-21: Show for a nonperfect gas [U = U(V,T)] that

Demonstrate that the right-hand side reduces to RIp. for a perfect gas. This result will be
useful in regions of partial ionization.

For many thermodynamic applications, the ratio of the specific heats, cplcv, is
an important quantity, hereafter designated by 'Y. From the point of view of
the classical kinetic theory of gases; 'Y depends upon the number of degrees of
freedom associated with the molecules of the gas. Quantum mechanics has
explained the fact that 'Y also depends upon the temperature. When kT becomes
smaller than rotational or vibrational quantum of energy, those degrees of free
dom "freeze out. "1 Specifically,

2
'Y=1+

f
(2-109)

where f is the number of "unfrozen" degrees of freedom (translational, rotational,
vibrational) of a molecule. In stellar interiors the gases are ionized particles
possessing only the three translational degrees of freedom. Hence, for appli
cations in the interiors of stars

'Y = 'Yperfect monatonic gas = %

Problem 2-22: For 1 mole of a perfect monatomic nondegenerate gas

(2-110)

U = jNokT and PV = NokT

Show that the amounts of heat required to raise the temperature by an amount t::.T at constant
volume and constant pressure, respectively, are

t::.Qv = jNok t::.T t::.Qp = tNok t::.T

Compare with Eq. (2-110).

Problem 2-23: Show that the ratio of the isothermal to isentropic compressibilities is always
equal to the ratio of the specific heats cplcv, just as it is for a perfect gas. In other words,
show that

XT Cp
-=-
Xs Cv

The notation constant S means constant entropy, or dQ = o.

By employing the equation of state (2-100) and Eq. (2-105) the first law may
be written for an ideal gas:

RT
dQ = Cv dT + J.LV dV (2-111)

1 See, for instance, "F. K. Richtmyer, E. H. Kennard, and T. Lauritsen, "Introduction to
Modern Physics," 5th ed., p. 405, McGraw-Hill Book Company, New York, 1955.
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An adiabatic change is defined as a quasistatic change of state during which
no heat is added, that is, dQ = o. Setting dQ equal to zero and substituting
RIp. = Cp - Cv from Eq. (2-108) yields

dT dV
Cv T + (cp - cv) V = 0 ideal gas (2-112)

For an ideal gas Cp and Cv are constants, in which case Eq. (2-112) may be
integrated:

TV'Y-,-l = const (2-113)

Problem 2-24: With the aid of the equation of state, show that the track of the quasistatic
adiabatic change in Eq. (2-113) has these three equivalent forms:

TV'Y- j = const PV'Y = const (2-114)

Problem 2-25: Show that the differential adiabatic change of the perfect nondegenerate gas is

dT dV- + (" - 1) - = 0
T V

dP "dT-+---=0
P 1 "T

dP dV-+,,-=0P V
(2-115)

(2-116)

When the effects of radiation are considered in the next section, we shall see
that the values of 'Yare not the same in each of the three equations (2-115),
nor are they constant along the adiabatic track, nor are they equal to the ratio
of specific heats.

QUASISTATIC CHANGES IN AN ENCLOSURE
CONTAINING MATTER AND RADIATION

To good approximation the matter in a stellar interior is in thermodynamic equi
librium. Thus the particle gas at each interior point is accompanied by a photon
gas characteristic of the local temperature. The presence of the photons intro
duces two important effects into quasistatic expansions, radiation pressure and
ionization change.

Effects of radiation pressure From Eq. (2-86) it can be concluded that radiation
pressure will be important only for temperatures high enough so that matter is
essentially completely ionized. It will also be true in practically all common
cases that radiation pressure will be relatively unimportant except for densities
low enough for the electron gas to be nondegenerate. Thus with a small sacrifice
in generality we can evaluate the effect of radiation pressure by considering adi
abatic expansions of an ideal nondegenerate monatomic gas plus radiation pres
sure. Then the pressure becomes

P P Nok= g + P; = -- pT + taT4
p.

Since the particle internal energy is, for monatomic particles, just the kinetic
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(2-118)

energy, the internal energy per gram is

U = aT4V + ~oGkT) (2-117)

where V is the volume of 1 g of gas. Now for a quasistatic change, the first law
of thermodynamics requires

dQ'= (au) dT + (au) dV'+ P dV
aT v aV T

and the partial derivatives are evaluated as

(au) = aT4av T (au) = 4aTav + ~ Nok
aT v 2 JL

(2-119)

(2-120)

Then Eq. (2-118) can be written at once as

dQ = ( 4aT av + ~ N;k) dT + (taT4 + N;k ~) dV

The differential expression for an adiabatic change is obtained by setting
dQ = O. For many purposes it is useful to rearrange that equation into a form
resembling that for the adiabatic changes of a particle gas. Following Chandra
sekhar, it is useful to define the adiabatic exponents r 1, r 2, and r a by the equations

dP + r, dV = 0
P V

dP +~dT =0
P 1 - r, T

dT dV
T + (ra - 1) V = 0

(2-121a)

(2-121b)

(2-121c)

where the changes of state involved are adiabatic.
The definitions of the adiabatic exponents are made in this form to retain the

analogy to the corresponding equations (2-115) for a perfect nondegenerate parti
cle gas, for which all three adiabatic exponents are equal to 'Y. For a perfect gas
with constant 'Y it is possible to integrate the equations immediately, of course,
as in Eq. (2-114).. The present equations are not immediately integrable because,
as we shall see, the adiabatic exponents are functions of the thermodynamic state.
Rather clearly, these definitions demand that r a - 1 = (r2 - 1)r1/r2•

Now from Eq. (2-116) it follows that

dP = (taT4 + Nok T) dT _ Nok T dV
JLV T JLVV

dT dV
= (4PT + Po) T - P ov (2-122)
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The substitution of dP j Pinto Eq. (2-121a) yields

dT dV
(4P T + Po) T + [r1(P T + Po) - Po] V = 0

Equation (2-120), on the other hand, can be written for dQ = 0 as

3 dT dV _
(12PT + 7J:Po) T + (4PT + Po) V - 0
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(2-123)

(2-124)

Comparison of Eqs. (2-123) and (2-124) defines I'i in terms of the partial pressures

r1(PT + Po) - Po
4P T + Po

(2-125)

It is conventional to designate by {3 the fraction of the total pressure contributed
by the particle pressure

(1 - (3)P = PT (2-126)

Problem 2-26: By substituting Eq. (2-126) into (2-125), show that

32 - 24{j - 3{j2
T' - --:----'-:----'-

, - 24 - 21{j
(2-127)

For a particle gas ({3 = 1), r 1 reduces to %, the value of 'Y for a monatomic gas.
For a photon gas ({3 = 0), r 1 reduces to t, the value of'Y for a photon gas.

The second adiabatic exponent is found by similar algebraic steps. Substi
tuting dPjP from Eq. (2-122) into Eq. (2-121b) and comparing with Eq. (2-124)
gives

12(1 - (3) + j{:J 4 - 3{:J
{3

(2-128)

Problem 2-27: Solve for r2 and show that it has the same limits as I'r for {j ...... 0, 1.

Problem 2-28: Show that

32 - 27{j
r, = -24---21-{j

(2-129)

(2-130)

Each adiabatic exponent decreases monotonically from a value of %for {3 = 1
to a value of t for {3 = o. Thus the logarithmic derivatives in Eqs. (2-121a) to
(2-121c) are seen to be related by coefficients (r1, r 2, r a) whose values depend on
the relative importance of gas pressure in the total pressure.
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(2-131)

Later discussions will indicate instabilities in stellar structure associated with
values of I' less than t. A careful analysis shows that stellar instability occurs
if r l , when appropriately averaged over a star, becomes smaller than t. The
present discussion shows that radiation pressure cannot (in the absence of
positron-electron-pair production or ionization) reduce r below t. However,
it is quite clear that stars dominated internally by radiation pressure will have
adiabatic exponents close to t. Their binding energy is relatively small com
pared to stars for which particles provide the pressure.' The adiabatic expo
nents will also be relevant in the model of convection to be discussed later and
to the theory of pulsation.

From the equations developed, it is possible to calculate the specific heats at
constant volume and at constant pressure for an enclosure containing an ideal
monatomic gas and radiation. From Eq. (2-120) we see that

c, = (dQ) = 4aT3V + ~ Nok = ~ Nok (1 + 8aT!/3)
dT y 2 JI. 2 JI. Nok/Jl.V

( 8PT) [ 8(1 - (3)] 8 - 7{3
Cy = Cy 1 + Po = Cy 1 + {3 = Cy --{3-

where Cy = 3N ok/2J1. is the specific heat of the particle gas alone.

Problem 2-29: Show that

¥- - 8{:J - {:J2
CP = Cy ""-'-----'---'-'

{:J2
(2-132)

Problem 2-30: It was proved in Prob. 2-23 that Cp/CY = xrtx« for any gas. Evaluate these
compressibilities for the present case of a monatomic gas plus radiation and prove thereby that

Cp r 1

Cy = {i

Check this result by Eqs. (2-131) and (2-132).

(2-133)

What is the meaning of the infinity as {:J -> O?

Equations (2-121) are not integrable as they stand. It is a simple matter,
however, to rearrange variables until an integrable form of the adiabatic track is
obtained. From the second law of thermodynamics, dQ/T must be the differ
ential of the entropy S. From Eq. (2-120) we see that for an ideal monatomic
nondegenerate gas

dS = ( 4aT 2V + 3N ok) dT + (taT3+ Nok) dV
2J1.T uV

Problem 2-31: Confirm that S satisfies the integrability condition

a2S a2s
aTaV=aVaT

(2-134)

1 See the discussion of the virial theorem later in this section for a simplified demonstration.
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Show also that the elimination of the variable V in favor of a new variable W = T3V allows
dB to be written as

d
3NokdT 4a NokdW

B= ----+-dW+-
2p.T 3 p.W

(2-135)

(2-136)

Equation (2-135) can be integrated by inspection.

S = const + N okIn T! + 4a T3
J1. P 3p

The second term is just the entropy per gram of an ideal nondegenerate mona
tomic gas, whereas the third term measures the entropy per gram of the photon
component. The entropies are additive. Evidently the last term can be written
in terms of the partial-pressure ratio, so that alternate forms are

S Nok( T! Pr)
= const + -;;: In p + 4 PQ

and

N ok (T! 1 - (3)S = const + - In - + 4--
J1. p (3

(2-137a)

(2-137b)

(2-138)

The increase in entropy of the final state f over that of the initial state i is

~S = N;k {In [(~:Y :;] + 4e;/1 _1 ; (3i)}

If a portion of a stellar interior is allowed to expand (or contract) reversibly
without exchanging heat with its surroundings, then ~S = 0, and the change is
an adiabatic one. Two examples of such changes might be (1) the gravitational
contraction' of a stellar core following the exhaustion of a nuclear fuel supply and
(2) the expansion of a rising convective mass of gas. In no case is it obvious
that such a change will be adiabatic. That no heat be exchanged demands that
the expansion occur in times short enough so that only an insignificant fraction
of the photon energy can diffuse into the surroundings during the expansion.
For any physical expansion, therefore, it will be necessary to compute the heat
exchange by radiative transfer during the expansion. If the entropy increase
during the expansion,

~S = (I dQ
}i T

can be computed, Eq. (2-138) still provides one relationship between the initial
and final states. Of course, these equations are valid only for temperatures high
enough for ionization to be complete and for densities low enough for electrons
to be nondegenerate. More elaborate formulas can be derived to apply to more
general circumstances.
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(2-141)

(2-143)

(2-144)

Problem 2-32: A gas composed of equal numbers of C12 and 0 16 is initially at a density of
100 g/cm 3 and a temperature of 108 "K, What is its density after an adiabatic compression
to a temperature of 10' OK?

The foregoing treatment was based on the assumption of a nondegenerate gas.
Because the entropies are additive, however, the results can be generalized to a
partially degenerate gas by separately computing the entropy for the Fermi elec
tron gas. Using the fact that for any degree of degeneracy the internal energy
per gram of a nonrelatiyistic gas is U = iPV, where V is the specific volume,
the first law can be expressed as

dQ = dU + P dV = tP dV + i V dP (2-139)

With the aid of Eq. (2-57) for the electron pressure, dQ becomes

dQ = ~ [8;~; (2mkT) W! (a) ] dV + tV [~:~~ (2mkT)W!(a)] dT

+ tV [8;~; (2mkT)! ~!Jda (2-140)

Although this expression is in terms of three increments, dV, dT, and da, it will
be realized that these increments are not independent. From the fact that

pNo No 1 47r )ne = - = -- = 3" (2mkT)W!(a
J1.e J1.e V h

it follows that dV can be expressed in terms of dT and da. This operation yields

dV = - J1. eV 2dn, = _ J1.eV 2 [47r (2mkT)! (dF! da + iF! dT)J
No No h3 da T

= _ No (dF!/da da + §.. dT) (2-142)
J1.ene F! 2 T

When this expression for dV is inserted into Eq. (2-140), the result for dB = dQjT
IS

es = Nok (_ !!. FJ dF! + dFJ/da) da
J1.e 3 F!2 da F!

It will be noticed that dB is a function of a times the increment da. It follows
that the electron entropy is a function only of a.

Problem 2-33: It can be shown that dFJ/da = -3F!/2. Confirm this result from the expan
sions appropriate for weak degeneracy, Eq. (2-62), and from the expansions appropriate for
strong degeneracy, Eq. (2-66). Then show that the function

Sea) = Nok (~F! + a)
p. 2Ft

reproduces dS.
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(2-145)

From the additive properties of the entropy per gram, the generalized form of
the entropy becomes

S = const + Nok In T~ + Nok [~F~(a) + aJ + 4a T3
J.Li P J.Le 3 Fl(a) 3 p

The three terms are the entropies of the ions, the electrons, and the radiation,
respectively. The result is correct only if the electrons are nonrelativistic,
however.

Problem 2-34: Can you derive an expression for the entropy of a partially degenerate relativistic
electron gas?

Effects of ionization If the ionization of matter is incomplete, quasistatic changes
will be accompanied by changes in the degree of ionization. From the Saha
equation it follows that even a slight rise in the temperature of a partially ion
ized gas may considerably increase the ionization, which in turn may require a
large amount of energy. A large energy requirement for a small temperature rise
corresponds to a large value of the specific heat. It will therefore be expected
that the thermodynamics of a partially ionized gas will differ considerably from
that of a completely ionized (or completely neutral) gas. The differences occur
because the number of free particles per gram is not constant and because energy
is required to increase the number of free particles.

As the simplest of examples we shall compute Cv for a partially ionized gas of
pure hydrogen. Now by definition Cv = (dQ/dT)v = (aU/aT)v, so that the
first requirement is an expression for the internal energy of the partially ionized
gas. Actually only the change in internal energy must be correctly represented.
This end may be accomplished by noting that each free particle possesses trans
lational energy equal to 3kT/2'ithat an amount of energy approximately equal to
XH is required for each hydrogeh ionization, and that the internal energy of atoms
represented by their population of excited states will change with temperature.
For hydrogen the situation is simplified by the fact that the fractional population
of excited states is very small, so that the internal energy per neutral atom can
be neglected, and the average ionization potential can be taken to be that for the
ground state. Then if N, H, and H+ represent, respectively, the numbers per
unit volume of free particles, of neutral hydrogens, and ionized hydrogens, the
internal energy per gram is very nearly

U(T, V) = tNkTV + xHH+V (2-146)
•

where V is the specific volume. Then

dU = [tNkV+tkTVG~)v +XHvea~+)vJdT

+ [tN kT + t kT V (:~)T + xHH+ + XHV (aa~+)TJdV (2-147)
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and

c, = (~~)v = iNkY + i kT V (~~)v + XHV (aa~+)v

From the condition of charge neutrality in pure hydrogen,

n. = H+

and the density of free particles is

N = H + H+ + n. = H + 2H+

(2-148)

(2-149)

(2-150)

Because the electron mass is negligible in comparison with the proton mass, the
specific volume is related to the number densities by

H++H = No
V

where No is Avogadro's number.
sities it follows that

(2-151)

From these relationships between number den-

(~~)v = e~+)v = - (~~)v
Thus

Cv = iNkV [ 1 - :~G+ ~t) (~~)vJ
Inasmuch as

iNkY = cv(O)

(2-152)

(2-153)

(2-154)

is the specific heat for a constant number of particles, the second term in Eq.
(2-153) may be regarded as Ii correction term. The partial derivative in the
second term must be evaluated from the Saha equation:

H+n. = (H+)2 = (21rmkT)! exp _ XH = geT) (2-155)
H H h3 kT

By eliminating H+ in favor of H with Eq. (2-151) we obtain

(No/V - H)2 = geT)
H

so that

_ [(No/V)2 + 1J (aH) = (ag )
H2 aT v aT v

Problem 2-35: Show by further manipulation that

(aH) 1 (3 XH) H+iI
aT v = - 7ft 2+ kT H+ + 2H

(2-156)

(2-157)

(2-158)
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Equation (2-153) now yields

_ (0) [1 + 2 (3 + XH)2 H+H ]
Cv - Cv "3"2 kT (H + 2H+) (2H+ + H)
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(2-159)

where cv(O) = 3NkV12. Because the sum of H+ and H is constant, the correction
factor has a maximum at H+ = H, the stage of 50 percent ionization.

Problem 2-36: It has already been pointed out that for most common densities hydrogen
ionizes near 104 "K. Using that approximation for T, estimate the maximum enhancement
factor for Cy(O).

Problem 2-37: Using the equation of state PV = NkT, show that

[5 1(5 XH)2 H+H ]
Cp = Cy(O) 3+ 3 2+ kT (H+ + H)2 (2-160)

(2-161)

The specific heats for the pure hydrogen gas are shown in Fig. 2-12 as a func
tion of the percent of hydrogen ionized. It can be seen that both Cv and c» have
maximum values about 30 times as great as their normal values. In exami
nation of this figure it should be noted that NV = No for neutral hydrogen and
NV = 2N0 for completely ionized hydrogen. Thus the specific heats per gram
are twice as great at 100 percent ionization as for neutrality, and there is a slight
asymmetry in the curves toward high ionization.

It is also evident that the rat\o cplcv drops below its normal value of t, leading
one to wonder about the values of the adiabatic exponents in the regions of partial
ionization. The first thing to notice is that the adiabatic exponents differ from
each otherin an ionization zone and they all differ from the ratio cplcv. The
adiabatic exponents are again defined by

dP + r, dV = 0
P V

dP +~dT =0
P 1 - r, T

dT dV
T + (ra - 1) V = 0

for adiabatic changes. Each function can easily be derived in terms of the
specific heats and certain other partial derivatives. We first note the following
relationship between the specific heats whenever the internal energy U(V,T) is
not independent of the volume, as is the case in regions of partial ionization.
From the first law,

dQ = (~~)v dT + [(~~)T + pJ dV (2-162)



126

50

PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESrS

40

30

20

10

Ul~ 8
"'I'"

6

5

4

3

2

20 40 60

Percent ionized

80

Fig. 2-12 The specific heats per gram Cp and Cv for a pure hydrogen gas as a function of its
degree of ionization. In regions of partial ionization both specific heats are increased by
large factors as a result of the large energy requirements for ionization changes. The
specific heats at full ionization are twice as great as those of the neutral gas because the
number of particles per gram is twice as great. Numerical values are given in Table 2-4.

and from the definitions of specific heats it follows that

Cp = (~~)p = (~~)v + [(:~)T + pJ (:~)p

.; Cv + [(: ~)T+ P ] (:~)p
By rearrangement we have

(:~)T + P = (cp - cv) (:~)p
which yields in the first law

dQ = Cv dT + (cp - cv) (:~)p dV

(2-163)

(2-164)

(2-165)
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For an adiabatic change

dT + (cp - cv) (aT) dV = 0 adiabatic (2-166)
T cvT av p
Comparison with Eq. (2-161) yields

I'a - 1 = V cp - Cv (aT) (2-167)
T Cv av p

To obtain r 1 it is necessary only to express dQ as a differential in dP and dV.
To do so we express dT as

dT = (aT) dP + (aT) dV (2-168)er v av p
so that

dQ = G~)v (~~)v dP + [G~)v + P + G~)v G~)p] dV

With the aid of Eq. (2-164) this expression reduces to

dQ = Cv G~)v dP + Cp G~)p dV

Setting dQ = 0 and dividing by cv(aT/ap)vp yields

dP + cp(aTjaV)p dV = 0 adiabatic
P pcv(aTjap)v
By use of the cyclic relation,

We obtain for an adiabatic change.

dP _ V Cp (ap) dV = 0 adiabatic
P P Cv aV T V

Comparison with Eq. (2-161) finally gives r 1 :

I'i = _ Cp V (ap)
Cv P av T

Problem 2·38: Show that

r, cpT
--=-
1 - r 2 (cp - cv)(aTlaP) I' P

(2-169)

(2-170)

(2-171)

(2-172)

(2-173)

(2-174)

(2-175)

Equations (2-167), (2-174), and (2-175) define the adiabatic exponents. Their
evaluation in an ionization zone requires use of the formulas for Cp and Cv as well
as evaluation of the partial derivatives appearing in the expressions. These
quantities are relatively simple in the example of a pure hydrogen gas, as illus
trated by the next problem.
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Table 2-4 Properties of a hydrogen gas near T = 104 "K

Fraction Cv Cp

ionized r , r 2 r 3 iNok iNok
0.00 1.6666 1.6666 1.6666 1.0000 1.6666
0.05 1.2097 1.1593 1.1662 5.8974 7.3037
0.10 1.1688 1.1160 1.1214 10.5264 12.8572
0.15 1.1537 1.1000 1.1049 14.8650 18.2437
0.20 1.1460 1.0920 1.0965 18.8891 23.3797
0.25 1.1415 1.0872 1. 0915 22.5716 28.1816
0.30 1.1386 1.0842 1.0884 25.8826 32.5659
0.35 1.1368 1.0822 1.0864 28.7882 36.4492
0.40 1.1356 1. 0810 1. 0851 31. 2503 39.7478
0.45 1.1349 1.0803 1.0844 33.2262 42.3783
0.50 1.1347 1.0801 1.0842 34.6670 44.2572
0.55 1.1349 1.0803 1.0844 35.5176 45.3010
0.60 1.1356 1. 0810 1. 0851 35.7147 45.4261
0.65 1.1368 1.0822 1.0864 35.1856 44.5490
0.70 1.1386 1.0842 1.0884 33.8465 42.5862
0.75 1.1415 1.0872 1. 0915 31. 6003 39.4542
0.80 1.1460 1.0920 1.0965 28.3336 35.0695
0.85 1.1537 1.1000 1.1049 23.9133 29.3486
0.90 1.1688 1.1160 1.1214 18.1820 22.2079
0.95 1.2097 1.1593 1.1662 10.9524 13.5640
1.00 1.6666 1.6666 1.6666 2.0000 3.3333

Problem 2-39: Show for the pure hydrogen gas that

r _ 10(H+ + H)2 + 2(~ + XH/kT)2H+H
1 - 3-=(=H=-+-+--'-:2-H-=)"":(2=H=-+'=-+":"Hc--')"'-+'-'-2(-=i=+:'-"-X-:"H-:/k-=T=)-2H==-:-+H=

Analogous expressions for r 2and r3 can be derived with the necessary manipulation.

(2-176)

The values of the adiabatic exponents for the hydrogen gas at 104 OK are shown
in Table 2-4 along with the values of Cv and cr in units of iNok. The striking
feature is that all three adiabatic exponents fall to values near unity for partial
ionization. Table 2-4 was computed by simply assuming T = 104 OK, but the
values will not be much different if, for each density, one actually computes the
temperature corresponding to the desired degree of ionization. These adiabatic
exponents are displayed on an expanded scale in Fig. 2-13.

The situation in a star will be further complicated by the mixture in compo
sition, because each element will undergo stages of ionization at appropriate tem
peratures.! Since hydrogen will probably be the dominant element in the outer
portions of the star, the adiabatic exponents will be similar to those of the table

1 See P. Ledoux, Stellar Stability and Stellar Evolution, in L. Gratton (ed.), "Star Evolution,"
Academic Press Inc., New York, 1963; also a series of papers by C. Rouse, Astrophys. J.,
134:435 (1961); 135:599 (1962); 137:1286 (1963); 139:339 (1963).
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in the hydrogen ionization zone. After hydrogen ionization the helium will ionize
at a higher temperature, but because of its smaller abundance the helium ioniza
tion will not usually cause such a large drop in the adiabatic exponents. Heavier
elements will be of even less importance, but it will be prudent to remember that
the adiabatic exponents may be significantly smaller than %even up to tempera
tures of around 106 °IC

Several important effects in stellar evolution are related to the small adiabatic
exponents in ionization zones. Because a star with r < -! is unstable, hydro
static equilibrium cannot be achieved in star formation until the hydrogen, and
perhaps the helium, has been ionized in the interior. Even in hydrostatic equi
librium many stars pulsate because of peculiarities traceable to the ionization
zones. The pulsation phenomenon is discussed in Chap. 6.

Finally we would mention that in convection zones the temperature gradient is
usually assumed to be the adiabatic temperature gradient. The presence of par-
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Fig. 2-13 The adiabatic exponents of a pure hydrogen gas as a function of its degree of ioniza
tion. Only the initial 50 percent is shown because the second 50 percent is its mirror image.
The exponents change rapidly in the regions 0 to 1 or 99 to 100 percent ionization. Between
5 and 95 percent ionization, the values are considerably less than -! and therefore have a
destabilizing influence on the structure. Numerical values are given in Table 2-4.
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tial ionization will modify that temperature gradient from the ones computed
under the 'Y = t assumption.

Radiation has another interesting effect upon the adiabatic exponents at high
temperatures. In the presence of the coulomb field of a nucleus a photon may
create a positron-electron pair if h» > 21nec2

:

'Y + Z ~ Z + e+ + e:

This process is thermodynamically similar to ionization in that increased tempera
ture is accompanied by an increase in the number of free particles at great expense
to the energy of the photon gas. It is physically clear that the specific heats are
increased thereby. Interestingly enough, it turns out that r l drops below t for
T > 1 X 109 oK if p = 103 gjcm3 and for T > 5 X 109 OK if p = 106 g/cm",
Adiabatic exponents are somewhat academic quantities in those conditions, how
ever, because the associated annihilation of the electron pairs into neutrino pairs
produces such a large heat loss that adiabatic changes are not really possible.'

HYDROSTATIC EQUILIBRIUM AND
UNIFORM CONTRACTION

The pressure plays a primary role in the structure of stars because it provides
resistance against gravitational collapse. Consider a static massive sphere held
together by gravity. If a volume element of gas is to be held mechanically at a
certain position in a star, neither being expelled outward by pressure nor falling
to the center of gravitational attraction, then it will be necessary for the pressure
and gravity forces on a volume element to sum to zero. This condition is called
hydrostatic equilibrium. The balance in the case of a spherical gas cloud like the
one illustrated in Fig. 2-14 leads to a simple differential equation for the pressure
gradient. Consider the small cylindrical volume element with axis of length dr
parallel to the radius vector at the point r and having a cross-sectional area equal
to dA. Let dP be the pressure increment associated with dr. Then the radial
force on this volume element due to the pressure differential is

Fp = P dA - (P + dP) dA = -dP dA (2-177)

Since the pressure will actually decrease in the radial direction, the differential
dP will be negative, and the pressure force will then be positive. If the volume
element is not to be accelerated upward by F», it is necessary that it be exactly
cancelled by the central gravitational force on the volume element. If dm. is the
mass of the volume element and M(?·) is the mass interior to the spherical surface
at radius r, the gravitational force is

F = _GM(r) dm
G r 2

(2-178)

1 For a thorough discussion see W. A. Fowler and F. Royle, Astrophys. J. Suppl., 9 :201 (1964),
app. B.
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where
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(2-179)

The gravitational constant G = 6.670 X 10-8 dyne em? g-2. In writing these
equations, we have clearly considered only the spherically symmetric problem.
The important perturbation of rotation is discussed in Chap. 6. Because the
mass of the small volume element is p dA dr = dm, we have

dP pMo =Fp+FG = -- -G-
dr r2

(2-180)

This force balance, together witb the definition of Eq. (2-179), constitutes one of
the most important conditions to be satisfied by static stellar structures. It
applies equally well to the quiescent stages of contraction and expansion that
normally occur during a stellar lifetime. These slow changes in stellar struc
tures require times of the order of 106 years for their accomplishment, whereas
any violations of Eq. (2-180) would cause sizable changes of structure to occur
in a matter of hours. Only in highly dynamic situations is this condition vio
lated, the most common examples being pulsating stars and exploding stars. If

P+dP

P

Fig. 2-14 In the hydrostatic' equilibrium of a spherical body under
self-gravitation, the weight of a small mass element is counterbalanced
by the excess pressure on its lower surface.
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(2-181)

(2-182)

(2-183)

(2-185)

very rapid adjustments of the structure are to be made, the inertial force result
ing from the acceleration term must be added to the force balance. The result
is rather clearly

dP GM d2r
ell' = - P 1'2 - P .elt2

Since GMjl'2 is the local acceleration of gravity g(r) at the interior point, it is
clear that the last term will be negligible unless the mass acceleration d2l'jdt2is a
significant fraction of g. Such a situation would be tantamount to free fall or
free explosion; in the vast majority of the less dramatic cases, Eq. (2-180) holds
with high accuracy.

Even a casual examination of the condition of hydrostatic equilibrium reveals
that very high central pressures will be demanded to support objects as massive
as characteristic stars. In fact, we may estimate the order of magnitude of the
sun's central pressure simply from the observed number gn;o = 2 X 1033 g and
Ro = 7 X 1010 em. We can consider a point at half the solar radius and assume
that (1) the pressure gradient is roughly the central pressure divided by the
radius, (2) the density is roughly the average density of the sun, and (3) the
interior mass is roughly one-half a solar mass. Making these insertions, we find
that the central pressure is to order of magnitude given by

6 Ggn; 2
Pco """ 4- R ~ = 5 X 1015 dynes/ern" = 5 X 109 atm

7r 0

Problem 2-40: Perform the steps leading to Eq. (2-182) and make the numerical substitutions.

The rough substitutions made for the properties of the median point of the sun
may not appeal to some readers; however, the following inequality, due to Milne,
places a lower limit on the central pressure of a star. Equations (2-180) and
(2-179) may be combined to

dP GM dM
dr = - 47rl· 4 dr

Since

i. (p + GM2) = elP + GM dM _ GM2 (2-184)
ell' 8m,4 dr 4m·4 dr 2m,5

the cancellation by Eq. (2-183) of the first two terms on the right-hand side
shows that

i. (p + GM2) < 0
dr 8m·4

Since this function in parentheses decreases with increasing r, it must be greater
at the center, where its value is Ps, than it is at the radius of the star, where its
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value is G;m2/8·rr-R·, where ;m is the total mass. Thus

P > G;m2 = 44 X 1014 ( ;m )2 (RO)4 dynes/em"
c 81rR4' ;mo R
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(2-186)

This lower limit is a full order of magnitude less than the more realistic estimate
in Eq. (2-182), but the lower limit has the advantage of demonstrating rigorously
that very high central pressures in terms of terrestrial standards are required.
It is also physically interesting to note that the pressure estimated in Eq. (2-182)
can be generated only if the temperature is around 107 OK for a gas with an
average density near that of the sun. The point of this discussion is that the
elementary demand for hydrostatic equilibrium sets at once the order of magnitude
of the physical variables in a stellar interior.

At various stages in their lifetimes stars undergo expansions and contractions.
For instance, the condition of hydrostatic equilibrium sets in long before a newly
formed star has shrunk to its eventual main-sequence radius. It must undergo
a rather extended period of slow contraction before settling into its static con
figuration. Or, as another example, when the necessary amount of hydrogen
has been exhausted from a main-sequence core, it once again contracts gravi
tationally whereas the outer regions expand. It is of interest, therefore, to
examine the thermodynamics of the simplest type of contraction, that of a
uniform contraction. Chandrasekhar has stated the definition of such a process
in the following words: "An expansion or contraction of a spherical distribution
of matter is said to be uniform if the distance between any two points is altered
in the same way as the radius of the configuration."! That is, if the subscripts
f and i are associated with the final and initial configurations, whose correspond
ing points are related by

(2-187)

then y is to be for a uniform contraction a constant scale factor that represents
the ratio of the size of the final sphere to the size of the initial sphere. The final
density is related to the initial density by

(2-188)

The condition of hydrostatic equilibrium is maintained throughout, so that

a», GMf dPi GMi
drf = - r; Pf dri = - rF Pi (2-189)

If these equations refer to corresponding points, as defined in Eq. (2-187), the
interior masses will be equal: M f = Mi. Then

GMf GM· GM·
dP f = - -- Pf drf = - --' y-3piy dr, = y-4 --' Pidr,1'/ (yri) 2 1'i2

(2-190)

- Op, cii., p. 45.
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Since Eq. (2-190) applies to the pressure difference between corresponding points, .
it applies equally well to the pressures themselves, so that

(2-191)

Problem 2-41: Show that a uniform contraction of a perfect nondegenerate gas results in the
following ratios for the physical variables:

Pf = (Ri)4
Pi Rf

e: = (Ri)3
Pi R,

(2-192)

To the extent that contractions of real stars resemble uniform contractions of a perfect gas,
the pressure rises much more rapidly than the temperature.

THE VI RIAL THEOREM

The virial theorem is a statistical statement about mutually interacting particles.
Consider a general system of mass points m; with positions t, under influence of
the force F i . Then the equations of motion are

d
dt Pi = F, (2-193)

Consider the quantity 2: Pi . r., where the sum is over all the particles of the sys
i

tem. The time derivative of the sum is

d \' \' dPi \' ds,
dt ~ Pi • t, = ~ dt . r, + ~ Pi • d[
iii

(2-194)

The second term in a nonrelativistic case is just "i,'YniVi2 = 2K, where K is the
total kinetic energy of the assembly of particles. The left-hand side may be
rewritten as

where I = 2: 'YniTi 2 is the spherical moment of inertia.
i

into account, Eq. (2-194) may be written as

1 d21

2 dt2 = 2K + I Fi • t,
i

(2-195)

By taking these features

(2-196)

The sum in Eq. (2-196) is called the virial of Clausius. It includes only the long
range field forces and the external forces, for all collisions at a point contribute
two terms whose sum is zero. For static configurations, furthermore, the moment
of inertia is constant, giving

K= ~\'F·.r.2 ~ , ,
c

static (2-197)

As a first application of this important theorem, consider 1 g of gas contained
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under pressure in a box of volume V. The forces in the virial fall into two a
categories, the external pressure force at the surface of the container and the e
interparticle forces. For the external pressure force we have

'\' Fi • Ii = r (-P) dS· I = -P r I· n dB
~ jsurface j S

pressure

(2-198)

where n is a unit vector normal to the surface. By Gauss' theorem this integral
becomes

-pJv V· r dV = -3PV (2-199)

The interparticle forces on the other hand may be thought of as occurring in pairs:

r F, . r, = r Fii· r, + Fii • Ii (2-200)
i pairs

where Fi j = -Fj i is defined as the force on particle i due to particlej. Reassem
bling the virial equation, we have

K = !PV - ~ I Fii · (r, - Ij) (2-201)
pairs

Consider first the case of the perfect gas, where the interparticle forces are zero
by definition. The kinetic energy K is in the nondegenerate case the product of
!kT times the number of particles. Thus with N representing the number of free
particles per unit volume, we have

P =NkT (2-202)

in keeping with Eq. (2-7).
In the case of a star, the situation is different. The gas experiences two forces.

The virial contains electric forces from coulomb collisions between the charged
particles of the ionized gas as well as gravitational forces. Although electric
forces are intrinsically much stronger than gravitational forces, their contribu
tio~to the virial is generally quite small. The strong electric forces maintain
charge neutrality in the ionized gas, so that there is no net electric force from the
blllk.of the star. Only in close scattering events do the particles experience
unbalanced electric forces, and in those cases the contribution to the virial con
sists of two nearly equal and opposite terms. There will exist a weak radial
electric field that prohibits the positive nuclei from falling to the center and
leaving the electrons behind, but this field exerts equal and opposite forces on
the electrons and nuclei within any small volume element dV and hence does not
contribute to the virial. So let us temporarily ignore the coulomb force, a sub
ject to which we shall return for closer analysis in Sec. 2-3. For a perfect-gas
star, the only forces on the particles are gravitational, and explicitly

F Gmimi
ij= - (rii)3 (r, - rj) (2-203)
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The static virial theorem becomes in this case

1 2: 1 2: Gmnn,K = - '5' Rj . (r, - rj) = '5' -.-..-
~ . ~. 111pans pairs

(2-204)

Each term in the sum equals the negative of the potential energy due to the
interaction of mi with mj. When summed over all pairs,

nK =-
2

(2-205)

where n is the total potential energy of the star. This well-known result of the
inverse-square force is itself often referred to as the »irial theorem. Because the
kinetic energy of nondegenerate particles in a star is measured by the average
temperature, Eq. (2-205) has the very important consequence that the tempera
ture of a stellar interior rises as the star contracts gravitationally.

Problem 2-42: Consider the Bohr model of the hydrogen atom with an electron circling a
proton. Show that Eq. (2-205) is satisfied.

·Notice that K was defined to be the translational kinetic energy of particles
and does not include the energy of internal degrees of freedom (rotational, vibra
tional, or excitation energy) or the kinetic energy of trapped photons. For the
sake of illustrating an important principle in a simple way, consider a perfect gas
characterized by a uniform value of the adiabatic exponent 'Y. It follows that
for adiabatic expansions

dU = -PdV

dT dV- + ('Y - 1) - = 0T V
(2-206)

(2-207)

By elimination of dV we havethe second condition coming from Eq. (2-115).

dU=PV .a:
T 'Y - 1

Nok dT 2 dK
= -;- 'Y - 1 = 3''Y - 1

The assumption of uniform 'Y allows Eq. (2-207) to be integrated over the entire
star:

K= i('Y - l)U (2..:208)

(2-209)

Let us define an energy E as the sum of the gravitational energy n and the
internal energy U. Then by the virial theorem

E = U+ n = U - 2K

3'Y - 4
-(3'Y - 4)U = 3('Y _ 1) n
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The energy E contains all the particle energy but does not include photons.
Some straightforward implications of Eq. (2-209) follow.

(1) For the perfect monatomic gas 'Y = t and E = - U = flj2. The total
energy (excluding that in photons) is negative and equal to half of the gravi
tational binding energy. But the total amount of energy must be conserved.
Thus, as a star shrinks, one half of the binding energy appears as thermal motion
whereas the other half must go into the production of radiation, most of which is
usually lost into space. This reasoning lay behind the discussion in Chap. 1 of
the inadequacy of gravity as a source of energy for the full lifetimes of stars.

This result has great significance for stellar evolution, however. Static stellar
structures are those in which the luminosity is replenished by energy-liberating
nuclear reactions in the interior, but whenever a given nuclear fuel is exhausted
in the interior, a gravitational contraction ensues to replace the energy radiated
from the star. This contraction increases the magnitude of fl, one-half of which
appears as additional kinetic energy; i.e., the temperature rises. This rise con
tinues until the temperature becomes sufficient to ignite the next source of nuclear
fuel, which usually halts the contraction. Thus it is that gravitation provides
the driving source whieh-eompels the stars to evolve through a sequence of nuclear
burning phases.

(2) The energy E changes from negative to positive as 'Y decreases through a
value 'Y = t. If the sum of internal and gravitational energies is positive, the
mass can fly apart. This result would be contradictory to the initial assumption

of the virial theorem that the mass is static (~~;; = 0), and hence that assump

tion must itself be incorrect for 'Y :::; t. Thus dynamic radial instabilities occur
when v reaches a value as low as t] In real stars, the constant 'Y must be gener
alized to include effects of radiation pressure and ionization. When that gener
alized 'Y has an average value over the star that is less than t, radial instabilities
ensue. 1 Since'Y = 4 for a photon gas, we note that a star internally dominated
by radiatiOn pressure will have a relatively "loose" structure.. Effects of ioni
zation can cause 'Y to drop well below t in the regions of ionization.

Problem 2-43: The gravitational binding of the sun is of the order

GM2
n "" - R = -4 X 1048 ergs

Since the sun is predominately a perfect gas, the thermal kinetic energy is about K "" 2 X 1048

ergs by the virial theorem. If the internal temperature of the sun were 107(1 - r/RF "K,

1 An introduction to stellar stability is contained in the discussion of pulsation in Chap. 6.
The principles of stability are complicated in detail, however, and a full discussion cannot be
included in this book. Fortunately there are monographs that expertly summarize the current
state of knowledge. See particularly P. Ledoux, Stellar Stability, in L. H. Aller and D. B.
McLaughlin (eds.), "Stellar Structure," The University of Chicago Press, Chicago; 1965, and
other papers cited in that review.
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(2-210)

what is the total trapped energy in the radiation field? Apparently most of the radiant energy
escaped during the contraction.

The virial theorem can be approached in a different way that employs only
macro~co.p,.J9q~!1ntities. The assumption that the star is static, which is neces
sary to1ira"~Lanyuseful information from the virial theorem, is expressible by the
condition of hydrostatic equilibrium:

elP = _ GJJ1(r)
ell' p 1'2

Multiply both sides of this equation by

V(r) ell' = pr3 ell'

Then one obtains

V(r) elP = -J..4:rr-r2p ell' GJJ1(r)
~ r

(2-211)

(2-212)_ ! GJJ1 elJJ1
3 r

When this equation is integrated over the star, the left-hand side becomes

Jv s» = PV I: - JP dV

In an idealized star, the pressure goes to zero near the surface r = R, whereas
the volume vanishes near the center, The right-hand side of Eq. (2-212), on the
other hand, is just one-third the gravitational potential energy. Thus we have

-3IP dV = n (2-213)

The result is somewhat more general than the previous treatment because no
assumption has been made about the nature of the interior particles, However
the earlier results are easily recovered as special cases. For the perfect gas

nonrelativistic
(2-214)

relativistic

which gives immediately the earlier result

i
-2Kn=
-K

nonrelativistic

relativistic
(2-215)

relativistic

nonrelativistic

whereas the total energy of a monatomic gas

E~{~+K~~ (2-216)
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As a final application of the virial theorem we shall consider what effect the
coulomb interactions of the ionized gas are likely to have on the value of the
pressure:--To-do·so,return·to·Eq.(2.:201)desc!'ioiiigthe nonrelativistic gas in a
container. In this case we ignore the gravitational interaction in the sum over
pairs. Because the coulomb force between pairs is an inverse-square force, the
sum is easily related to the coulomb potential energy.

Problem 2-44: Show that for the ionized nonrelativistic gas in a box

K = !PV - tUc

where U« is the coulomb potential energy.

From Eq. (2-217) we see that the pressure on the walls is

p = ~ K +~ Uc

3 V 3 V

In the nondegenerate.case

P = NkT +! Uc

3 V

(2-217)

(2-218)

(2-219)

where N is the number of free particles per unit volume. The interesting point
is that there is an additional coulomb ]2ressure_e.qllaLtD_one::thir.d_oLthecoulomb
energy density. The reason that this term has been neglected in the discussion
·c;(tnevi"fi:iltneorem is that it was argued to be small. If the positive charges
are, on the average, equidistant from both positive and negatIve charge8,1Fieiiet
couTonlo-ene-rgY-ls-zero.---TiW-gra:vi"ta:tionaTenergy·aoiiiinates-in'thestaf-becl111Se
~ftnerndiViauannIeractfonsoccur-,vlth~he·sameslgii;-wheI:~~a_8."]hejiigiYidii1illY
muCligreatercoufomb inteI:actl"ons·cancel olltbecause~{ch~rge neutrality. The
coulomb lllteractlOnS',d9_ ~Inay'~a IsfgmficanCrole-I~-so~~--phe~~~~~~, however,
b h 1 CQr-~ c£.,.f-A;2J:, th lIt h .ecause t e p asma polarizes: i.e., e e ectrons c us er near t e IOns to some
extent. A discussion of this phenomenon follows.

2-3 THE IONIZED REAL GAS

(lases having interactions between constituent particles are called 1.fflaJ.3!kSes.
The name reflects the fact that nature always provides some interaction, and
for the dynamics of the gas the relevant question is the relative magnitude of
the average interaction and the average lUiieticenergy.lii-anionized gastlie
~forcesaie-tlie-coUlQmIiJorces-=--b~h~es.l\~~i~
~aret~v£en-magnatic_m.omen.ts_aQd_the_nuclear-foI:.g.EL~_t~r::
actions. Although the latter is guite strong, the particles are seldom within the
~•.,__.' . ::----- -.- ._"-__.. ._"__.""",...,_--,,~...~.,.....,,~ ...._~__. •...r-"""".,"""-_;"--..c_',.,"_,..".~.__"'.., '..._'''''''''_...,,..~

range of the nuclear force exc<D:Jt at nuclear density:(,q > 1014 gjcm3) .

--·Fo~ the st~ifari;te~ior~th~-ir~;.p~~ta:n.tp~~bie~i;t;~;~;t~inwhich properties
of the real gas may introduce observable consequences into astrophysics. The
first of these is that the particle pressure deviates from that of an ideal gas, the
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size of the effect depending upon the coulomb energy density. A second impor
tant consequence is that ~E.g_~~t!E~<~Lll,~~:glig.a,gg.Ill1.gl~l;Ll'J.'~actionsjsmodi
fied, the most importa,Il,La,pplication_..being.to....the.ionisation.equilibrium. And
thIr(CtheTianspo~tphenomena in the ioniz~~gas_!!!:(:)~,i!li'hJ_~nc~py .collective
phenomenaoItne :Q!a,:s.illa,,,,-"--------- , ,...

~liltllepresenc;~f'forces, th~jnternal en~xgy. ofJ:l:..~..:tomic ~~~J!l:!:1~t include
the potential energy of the interactions

(2-220)

where cI> is the potential energy. Because cI> deJ?ends uRon the ayerage inter
particle distaIl2.~Jjt.itL~..9gIl:s.ij;y;:gl:lPl:lggl:lI),tql111!ltity~~--ifh-;;·-p~~-;su;ei~ 'given by
the change'1;;:- internal energy associated with adiabatic compression,

dU ad = -p dV (2-221)

If the internal energy is density-dependent because of the interactions, a corre
sponding pressure results.

All the important effects to be discussed occur because the charge density is
made nonuniform by the coulomb interactions. To have a concise notation for
the composition of the ionized gas, let iiz represent the average number,gSlJJ.iSity
9f each species of charge Z, with Z ::::- -1 corresp·onaingToibe--eIE;ctr~·density.
Because the gas is macroscopically neutral,

(2-222)

To calculate the electrostatic energy of the gas one must know the electrostatic
potentIal epz at each cb.arge-Z'duetoaZtlhe'other'p'al:UcTesorthe ga8:'-Tlliin-the
c6Til<:mio'energy'per'uD.1ivo]ume-Is· ..... ..... 'c'- ..-'

(2-223)

In the material to follow we shall estimate the important effects for two limiting
cases of physical interest, the nearly perfect gas and the zero-temperature gas.

THE NEARLY PERFECT GAS AT LOW DENSITY

The g~may be called neaTly pe1fect if the Q.QuloIllb_l:lneJ.'gy_hetween,paJ.'ticlesjs
much smaller than their thermal energy., If the ions have charge Z, the coulomb
energy between neighbors is of order (Ze)2{r, wnere r ~. nz-l~is tne-averagesepa~
ra tion_o.f,tlw~iQ.!l§.~-- 'FortlllscoUIOfuo-inergy'to'fle-s'mallcompared tokl' re(iUi~e~
that

(kT)3
nz« Z2e2

(2-224)
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For an ionized gas satisfying this low-density requirement, the coulomb inter
actions may be estimated in a manner devised by Debye and Hiickel.! Each
charge will polarize the. ~~~ghborlJ.0od to som~_~_~e.~t."._9n~~pe.?-Y~r:ll,g~,ll,sphgr!:·.

/cally symmetric-·bu(lnh(}J.n()g~neollslic1ia:r~edion cloud surrounds e_~q!L!QJJ..
Tne-poteJitiji]aroundeach-{on ()(ch~rge z, due to alrCharges~lJI})~~=;' ~hi~L<ied

coul0Iilb potential Vi(r) , wher!3,..Li§jhe=-distanc~lrom::theJOri, as illustratedjn
Fig-:-2=IK-LThe-den'Sity-of each type of ion is described by some function nz(z:)J

The potential energy of each charge ~j~ the._!i~MJ:L(?:2.•o1J~E!J.<J!1_~QhEErejYillJ).~_.
Ze Vi(rL Hence from Boltzmann's formula the average density will be per
turbed to

ZeV
tiz = iis exp - kT' (2-225)

The coefficient is set equal to iiz because Vi falls rapidly to zero as one moves
away from the shielded charge Zi, where the density of nz must fall to its average
value.

The potential in the ion cloud Vi is related to the charge density by Poisson's
equation

(2-226)

1 This treatment follows L. D. Landau and E. M. Lifschitz, "Statistical Physics," chap. 7,
Addison-Wesley Publishing Company, Inc., Reading, Mass., 1958.

z.
-----

r

Fig. 2-15 The electrostatic potential Vi as a function of the distance
from the ion of charge Zi. This potential drops more rapidly than
the coulomb potential Zie/r because of elec~ron clustering near the ion.
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(2-228)

(2-227)

Consistent with the assumption that the coulomb energy is small compared to
k/I' is the assumption that each density may be expanded:

_ ZeVi _ ( ZeVi )
nZ = nZ exp - kT "'" nz 1 - kT + . . .
Substitution of this approximation in Poisson's equation gives

'<'7'V 4 \' Z- (1 ZeVi) + 47re
2
\' Z·- V

Y- i "'" - 'Ire L nz kT = kT L -nz i

the last step resulting from the charge-neutrality condition.
The equation for the potential in the ion sphere may now be written:

\12Vi - K2Vi = 0

where K is an inverse length defined by

K2 = 7;2 I Z2fiz

Problem 2-45: Show that the spherically symmetric solution of Eq. (2-229) is

Vi = const e- Kr IT

(2-229)

(2-230)

(2-231)

From the result of the preceding problem and the fact that Vi ----7 eZ,.jr as
r ----7 0, the potential in the ion sphere must be

(2-232)

(2-233)

(2-234)

Thus the field drops off rapidly for distances r > 1/K. The length, 1/K = RD is
called the Debue-Huckelradius and is a measure of the size of the ion cloud. The
condition of weak interaction energy (compared to kT) can easily be seen to be
equivalent to the assumption that 1/K is much greater than the average distance
between neighboring particles.

The potential at Z, due to all other charges in its ion cloud may be obtained
by expanding Eq. (2-232) very near to Zi:

eZ·Vi(r) = -' - eZiK + ...
r

where the higher-order terms in the expansion vanish as r ----7 O. The first term
is the coulomb field of the ion itself, whereas the second must be the potential
at the ion due to the other charges. It is perhaps instructive to notice that the
potential at the ion (but not elsewhere) is the same as if the charge Zi were sur
rounded by a charge -Zi spread over a spberical shell at the Debye-Huckel
radius. The potential at any charge Z due to all other charges is then

eZ
<Pz "'" -eZK = - R

D
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where
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(2-235)

(2-236)

Problem 2·46: In the sum ZZ'fiz the electrons are represented by Z = -1. Show with aid
of the charge-neutrality condition that the sum may be expressed as a sum over positive ions
only as

I Z'fiz = I (Z' + Z)fiz = I (Z' + Z) P:z No
z +z +z z

It will frequently be convenient to define a quantity dependent only upon the composition by

\' x;r == L (Z' +Z)-
+z Az

whereupon

(2-237)

(2-238)

The coulomb potential energy per unit volume is immediately obtainable by
inserting Eq. (2-234) into Eq. (2-223):

(2-239)

(2-240)

With the aid of these results it becomes possible to discuss two rather complex
features of the nearly perfect ionized gas, the pressure due to the coulomb energy
and the effective ionization potential. fb.lthough the phenomena themselves are
general, the correctness of the subsequent results is limited to the temperature
density domain for which the Debye-Hiickel treatment is valid... Since .Jj}J;).
kinetic energy per unit volume is just !kT times the number of particles per
urnt volumg, tli~ Debye-:F:J:1lCkel treatment rsvalid O~I}rinpl\TaT~YflCT-rs-much
greater than Eq. (2~239r'

Coulomb pressure In analy':zing thermodynamic changes of state one considers
a,specificquantity..of=-gas;· -iTthat quantity is chosen to be 1 g:its Interniil·
energy U is the internal energy density times the volume of 1 g (V = lip).
The coulomb energy per gram is then

o, = -e3 (k;Vy(Nos)! = (V~)!

By so defining a constant B the dependence U, ex: (VT)-! = (piT)! is simple
and explicit. Furthermore, let the number of particles in 1 g of gas be repre
sented simply by N. Then the internal energy and pressure can be simply
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expressed as the corresponding quantities for the ideal gas plus the corrections
necessitated by the coulomb imperfection:

u = jNkT + U, (2--241)

The differential of the entropy is

dS = .! [(au) + pJ dV +.! (au) dT
T av T T aT v

Insertion of these values gives

1( 1 B N ) 1( 1 B)as = T -"2 V!T! + V kT + r, dV + T iNk - "2 V!T! dT

Problem 2-47: Show that the integrability condition on d.S demands that

a r, 1 B
aT T = -"2 V!T~

The integral of Eq. (2--245) is

r, 1 B (V)
T ="3 V!T! + f

(2-242)

(2-243)

(2-244)

(2-245)

(2-246)

where f(V) is some arbitrary function of V. But since the coulomb pressure
must vanish as T -7 co, the function f(V) = O. By reincorporating the defi
nition of B it follows that

1 (U) e
3

( 7r )!P = - - = - - - (pNor)!
c 3 V c 3 kT (2-247)

The coulomb J?!ess"ure is negative, corrf)§P-9Il<ij.!J:gJ()_Jh~Jll.(l~Jhll.~_(l()I!l:P!5~~~()!1:_qf__
th{Lcharges_E~ffdfrn~ork rathe_Lt]:l-lL!u·_egllir~~_",-o!~. This calculation has con
firmed Eq. (2-219), which was derived from the virial theorem.

The totalpressure.is.then

Nok e3 (7r .)!P = -pT - - - (pNor)!
JL 3 kT

(2-248)

This result can be valid only if the second term is a small correction to the
perfect-gas pressure, as can easily be seen by the following consideration. The
coulomb pressure is one-third of the coulomb-energy density, whereas the perfect
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gas press.1!l:~jEli;YQ::t9.:irsl~_.2L~~e kin~tic-energy density; but the Debye-Huekel
"treatment is vagd .only ift.heco1ir()-ilift~ii~l'gi(I~!lsiti)§·~iiiucli]~[[=tlia:nJlie
klnetic~energY:d.~DjIty'._":Qu~ntit~ti~elY the criterion dem'ands ..

u:« o.:
~I/, ( 7l")1 l 3 N ok
J e3 kT ("Not)!« 2--;-IT

T» 105ptr

(2-249)

This condition will not be satisfied in majorjportions of many-stars, so that Eq.
(2-247) for the coulomb pressure should be used with caution.

Problem 2·48: Compute the coulomb pressure and the perfect-gas pressure for a helium gas
at T = 106 "K and p = 10-2 g/cm3•

Ans: P, = -4.8 X 109 dynes/em", p. = 6.3 X 1011dynes /cms.

Depression of the continuum and effective ionization potential Interactions
between gas particles alter the energetics of the gas. The ionization of an ion
~ec.t...gasj)LIlO diffeL~.ill.Jr.Q.~_~he ionization in a vacuum, but ma rear
i.?~ZE3(:Lga.§ ..th~.. p_()~~I!~i.a,l ..~.Il~r.~L?!."b~oihJ.b!i~J:>Qyrii;ljii!(rfl'ee "elect.t.opfj~~~l~~J:ed
by the coulomb energy. In the present section these effects will be discussed
witllliltnEnrame,vo:Fk6f the Debye-Huckel model.

From Eq. (2-233) the average potential around each electron is

e
Veer) = - - + e«r

(2-250)

so that the potential energy of each free electron due to interactions with other
charges is

(2-251)

This negative energy reflects the fact that the free electron isa.~tually bound to
the.plasllla .. as. a w~ol~ougilTflsfree'To-iiaVigatethrough -thepTasma.
The-IonizatIon-of.an atom requires sufficient energy togberate the electron to. the
c~tin;tim:of:-stateswitfi'zel.-(t1Uiielicel'iel'gy.·But the••~Ilergyofa.~ero:~inetic~
in~~Y~~!~.DJi:1L.:_.:;:::~ and one commonly says that~~nu':.D:l_.?f
states (as opposed to discrete bound states) hJLS been dePTf}ssed by .anTI:iholmt-----...--- .-' -. ,....... ..' .....-.... .. '.FJo= e2j RDllJ,nd .the energYJ:e~uiredtQjonize a~bound electron is accordinzlv
fEidUce=d:--
'"T~nergy required for ionization is further reduced by the fact tha] the
energiortne'})olIfill-elB"ctron'sta:tei1falsochallgedand in the direction such that
t~e-J;!i!.~Qg~~~~~gY~js_.reduG§.i;r'fThis'-effect' comes~'abouf because- the electron
'~~;es in a shielded potential r~therthana pure 1jr potentijill Consider a single
bound electron. Since it is sensible to assume that the radius of the ground-state
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(2-252)

9~Lis..ID~~J~ss__~!!-~"Q~!?_t_~,.~le~!!(m.hQund to charge Z movesin a potential
that is approximated by

VCr) ~ Ze _ (Z - l)e
r RD

The first term is just the l/r potential from the charge Zthat provides the .IlorD:1al
bindi.mr"efiergy~for tIle-atom,. wliere;.sJh~:S-e(;()n,:a:lir:~J~IheRQt~iiiIiGrJl~jQ)he
bebyesphere-'surro-undi~g the i~~ ~f charge Z .,1. 'The p~tential energy of the

E

E = ol------------------r-

E 3

z

Fig. 2-16 The effective ionization potential xi. The laboratory
ionization potential is reduced by coulomb interactions in the dense
plasma. The energy of continuum electrons is lowered by e2/ RD,
whereas the energy of it tightly bound electron with Bohr radius
a «RD is-raised by (Z 1)e2/RD. Thus the ionization potential
is effectively reduced by the amount Ze 2/ RD.
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bound electron is

147

(2-253)(PE). :::: _ Ze
2 + (Z - 1)e

2

a RD

where a is the radius of the orbital. (For a hydrogenlike ion a = ao/Z.)
From Eq. (2-253) it can be seen that, to first approximation, the ground-state

energy is elevated by an amount (Z - 1)e2/ RD. Figure 2-16 shows the energy
level diagram of an ion, where Xz is the laboratory ionization potential and x~ is
the effective ionization potential in the plasma. In the calculation of the ioni
zation equilibrium, therefore, the J.ab.m:ato.r-¥-ionization.potentiaLmust_he_replac.ed
by an effective ionization potential whose value is

Ze 2

X~ = Xz -RD
(2-254)

The excited bound states are also shifted upward in energy, so that_ some .~L~~.e

states that are ..§oUn(nIL't@.l!'\.b~Q.nlj;m:Y m.QYQ.J·1J! iI.!0_th~Q.QJ;l.tinuum._oLstatesin

a aense··pla~~a. This phenomenon resolves in a natural way the paradox men
tibneaiii"Chap. 1, viz., that the partition functions appear to be infinite. In the
crudest approximation, one would simply regard all those states bound by less
than Ze 2/ RD in the laboratory as being unbound in the star; and even though
Ze2/R

D might be .a much smaller energy than Xz, that energy range is the one
which contains the infinite number of bound states,so that its elimination not
only makes the partition functions finite-but often means that they can be esti
mated by the sum of only a few terms. In a more exact calculation, the excited
state energies will be increased by an amount different from that of the ground
state because there are smaller energy shifts because of the differences in radii of
the excited states. The present simplified discussion should be regarded only as
an illustration of the dominant terms of a problem that is extremely complicated
in its details.' Correction of the ionization potential is an important part of the
calculation of the radiative opacity of the gas.

Problem 2-49: Estimate the partition function for a five-times-ionized carbon atom (hydrogen
like) if it is embedded in a hydrogen gas at T = 5 X 105 oK and p = 5 X 10-3 g/cm3• In the
simple approximation of the text, how much is the binding energy of that electron reduced
from its normal value of 36 Ry?
Ans: G; = 2.6, Ax "'" -1.0 Ry.

THE ZERO-TEMPERATURE IONIZED GAS

As the density of the gas increases, the coulomb energy increases, and one says
that the gas becomes less perfect. At densities high enough fo!:.j~.b.!L.electr.o.nga§

to be deg~!1.EJ!~t5lJ..however, that-rule of thumb. becomes incorrect. 4-9:e.gEJIlerl1te
gas becomes more perfect as the density rises. This peculiarity comes about

1 J. C. Stewart and K. D. Pyatt, Asirophus, J., 144 :1203 (1966), and C. A. Rouse, Phys. Reu.,
169 :41 (1967).
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because the relevant energy for the gas becomes the Fermi en€lrgYE:j rather than
the thermal energy7tT. Tlie'perfect=-gas'condition E, « kT must be replaced 1:>Y
Eo « Ell but because the Fermi energy i~creas~sasa-liigh~rpo,v~rof the de~~ity
than the coulomb energy, a nearly perfect degenerate gas is more nearly perfect
at higher density. Quantitatively the argument goes as follows. If (1') is an
appropriate average separation of electrons from the ions of charge Z,then the
condition that the gas be perfect becomes

(2-255)

or

(2-256)

This equation clearly becomes true for sufficiently large values of the electron
density, in fact, for n c > 1023Z\ a conditiollthat seems ahv.~ys S~~!sfi€l.cljg as~rQ..
physical degenerate"electro;--g;se~~-Th·~~c~Il~eg~~~Q~~~Q.r:=this:fuclis that the el~c
lrongas·rs~nearry:uIliforlll;-Le.,~the electronic charge density is, in first approxi-
matlon;constant:<" .. . .

As was discussed earlier, as long as E, » kT,Jl?e .9i.lI,te.of .the electron gas is
almost independent of T. 'TKesame -cann2iJi~ saigQfth_eions,.becausetheir
'""- , -., '.. .,. - .. ~~::::.",.-._-"~-~.. _.,.-'"._.,..- -.:._ _-'~-.~ -
energY·is predominantlytliermaLF'or arbitrary temperature, the configuration
Oftlie gas may be quitecomplicated, but it is not too difficult to see what must
happen as the temperature is reduced to very low values. Assume for this dis
cussion that the density i~_grea~ enough so that the matter ~mainp1'essu1'e
i~nized eV~I1.!l&~~ro tell1peratu;e~-AST-~'OtQ.~~JJt~rmaLe:iliigi.oL.the~lons
~anlsiles;s"o·tha:rthe:i·,vilrass·umea configur~tion that. minimizes .the potential
energy. This~ab!~ c()"rI:~gl!t~~iQri:~iii\i~~Jli~(lI1ejQi~:ml}~!iillz~.theJ~te~-ion
separation-and is more like a lattice than a gas. For small displacements of an

..•.. """ ,....._ "",<,,".~, •. """""'", ,..'"-CO" ''', " .., ,,, ...---:-::---_ .o;.r""'~--:',,-['.~ --=" ';"0",< :,L'
ion from .its equilibrium.pointin..th€llattige, there wil1oeai:estotirrgf'()fCe-re§ur~

ing frorila~ inciease'l~ thecoulomb_p~tentiale'D.~Jg'y:- 'The result' is thatea~h ion
is situated in a'liarmoniC":osciITa1of1lOten-naf.·"No'W although a classical~
~ergy;·-a-qua;ftIYrrf::{5~rIitQ-r:"(;annot. It must oscillate with a zero
point. energy equal tglh-;", ~.h~!~_UJ..;is th~ fJ-:eql:lency of.the-()s-~ili;:t(;"r'(;;;'';;;;'~~
w~ere lc.iil tlle, f9.r..Q€lc9.Q§,t~.t:lt.gUheeglliya,leIltoscllllJ,tor). '.. Salpetes...~~ .<ith~is
hl1Y,e...dis.cllsse.d.J;his,pheIl.Q.ID€lnOn.,and..shQ.F:e:d..t!lJ1t.,thel?;ero~:e!!ergywin ..be
less thanthe coulomb energy h91ding the iol1.s in the lattice'st'ructure' and' h~nce
the lattiflG structure is!l.Q!,rect at zerotemperature.'AIthough-mostdnteresting
astrophysicaI-environ~ent~aie)i<5Jstrictiyat:zero' temperatureiitmay'ttiriiout'
at high 'densIty' thattlie-oscili~toLeIl~rgy dominates kT, in which case a zero
iej;;p'erii:tu~e'approxima:ti~~ is ~~IEie: Because 'the major coulomb~effects'are-"
easy to e;tim~tei;'-thisli~e-nowturn our attention to those effects in the
zero-temperature ionized gas.

1 E. E. Salpeter, Astrophys. J., 134 :669 (1961).
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Draw an im3;gggI.ITspb!l:r~.ofradius Iiz around each ionized nucleus of charge Z
such that the sph~~QQIltain~·:.?'fr~~lectronswhich neutralize the entire sphere.
Tbans;'tlie'gas'is imagined as being divided into neutral spheres about each
nucleus Z which contain the Z electrons closest t() tha~ p.l1~~e).ls,"I.Assume, further-

.. . -, . ·,"r<, ..·)
more, that the Z electrons III each Ion sphere are spreaClumformly ov~r th.!2.yolume-_
of the sphere and that the average electr~n density is unperturbed bY' the IJ,ll<::l~ar
charges._ (These assumptIOns are IncorrecCihdetail;'oufas'-a: simple-approxi
mation th~y allow an easy numerical estimate of the physical effects being con
sidered. (.rhe nuclear charge will actually polarize the electron density to a degree
dependent-upon density and temperature.)

Since the ion spheres are spherically symmetric and neu~ral, the electrostatic
potential energy of'electronsiilagiveil--ron-~ph(;~e~~(;i:Lg"~~--;alcUiate~rf:rQ~~the,
giome~:§Rh~r~ilQg~:.~_--An(rthe-firsrpointto notice is that the free elec
trons do posse'ss ;:LIl.fl,Y§mg~PQt.eIlj;iaL_energy whichi.snegative. Coiislder the
totarefectro-~taticenergyof one sphere. It may be calculated as the sum of
the potential energies from electron-electron interactions and of electron-nucleus
interactions.

(1) The electron-electron interaction: To assemble the uniform sphere.with.total
charge Ze requires electrostatic energy equal to

U = + (Rz qrdq
ee I» r

as illustrated in Fig. 2-17, where

(2-257)

47rr2 dr
dq=~R3Ze

1f7r" z
(2-258)

The integration gives

U = +(Z )2~ (Rz .4d' = ~ (Ze)2
ee e R

Z
6 Jo 1 1 5 Rz

(2-259)

(2) The electron-nucleus interaction: To assemble the uniform sphere of charge
Ze about the nucleus Z requires electrostatic energy

Thus the total electrostatic energy of the ion sphere is

U = U'; + U
eZ

= (~ _ ~) (Ze)2 = _ ~ (Ze)2
5 2 Rz 10 Rz

(2-260)

(2-261)

Since this electrostatic energy is shared by Z electrons, an electron in a given ion
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Fig. 2·17 The ion sphere in a degenerate zero-temperature plasma.
The electron gas is uniform in these circumstances, and each ion Z
is surrounded by a sphere of radius Rz which contains Z free elec
trons. In this zero-temperature limit other ions are excluded from
the sphere so that -§-1rRz3n. = z)

sphere has an average potential.energy equal to

9 Ze2

(-eV)z = - lOR
z

(2-262)

(2-263)

This negative energy physically reflects the fact that the electrons are actually
bound to the ionized gas. This is again the idea behind the depression of the
continuum, viz., that continuum electrons moving with kinetic energy p2j2m
have total energy equal to p2/2rn + Eo, where Eo is the electron potential energy
averaged over all the ion spheres of the system.

The magnitude of the continuum depression can be calculated with this model.
The number oLion_spheres_.pecunitvolumeoftyp~..~i§

pXznz = --NoAz

and each one contains Z electrons with potential energy (-eV)z, so that the
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potential energy per unit volume from ion spheres of charge Z is

ZXz(-eV)zZnz = (-eV)z A
z

pNo

151

(2-264)

and the total electron potential energy per uIlit voluIIlei§jus~~he sum over all
ion spheres:

(U) L ZXz- = pNo (-eV)z-V • Azz
(2-265)

(2-266)

Since the total number of electrons per unit volume is n. = oN0/p.., the average
potential energyper electron is.

Eo = (U/V). = p.. \' (-eV)z ZXz
n. L Azz

To evaluate Eo numerically requires evaluation of (-eV)z for each ion sphere.
It is evident that for this purpose the radii of the ion spheres are required. Since
the electrons are assumed to be uniformly distributed, the volume, of each ion
sphere must be such that

or

Rz = (~Z)!47r n.

Substituting into Eq. (2-262) give

Eo = _II \' ~ Ze
2

ZXz = _ ~ (47r)! II n !e2 \' zgxz
,... f 10 (~ Z)! A z 10 3 ,.... f Az

47r n.

or

Eo = - 1~ (~ p.e
2pN oy e2(X + 2-!Y + Zf2 Z~~z)

(2-267)

(2-268)

(2-269)

(2-270)

The most useful way to evaluate this energy is to multiply numerator and denomi
nator by the Bohr radius ao = 0.528 X 10-8 em and to note that e2/ao = 2ffi.,
where ffi. is the Rydberg constant and numerically equals the binding energy of
the hydrogen ground state. Then the continuum depression in Rydbergs is

Ry (2-271)

It is evident that, in this approximation, the continuum depression depends upon
the density as p! ana uQQ!L111e·comi).Q~H!9:ri·:t\In~amore·~complete-treatmeiit;

Eo also depends upon the temperature, a dependence that results from the spatial
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nonuniformity of the electron density and the oreakup' of the ion lattice.) The
continuum deiFessiSln i'LIlJ.sQ.J3e.eILtQ_i)J.Qr§l1llJL1Yi~h .thl'l a,.yerageZ of the IOns,
being smallest for ~~ntially pure. hy<:lr()geIl. For population I composition
(X-= O.6O:Y·;:;O:38:~Z··;;;;;-O..P·2f······ .. .. ..
Eo ~ -1.44ptm (2-272)

All free electrons in this approximation are considered as having total energy
E ~ p2/ 2m + Eo. Tliis fact makes a sIightCliange ill -the prevIouS-expression
for th~ ~~;;;b~~ensityorelectrolrs~--NOWwe-liIive··' -- - ---- .. "

2 47rp 2 dp
n.(p) dp = h3 exp (a + E/kT) + 1

_ 2 47rp 2 dp
- h3 exp (a + EojkT + p2j2mkT) + 1

Thus

t : 47r (Eo)n, = jo n.(p) dp = h3 (2mkT)!Ft a + kT

(2-273)

(2-274)

~xactly the same thing occurs in the IJI'essure integral for a perfect gas, so that
th"e··e·ciu~ti~~·~·~t;;:t;-i; represent~d~~p~~rimation, by the same para
metric representation as before, where a is replaced~ a~+~EojkT., The coulomb
energy does contribute a correction -to "thepressure which must be computed
separately, however.

The fact that the coulomb potential energy is neg~ti.Y"EL~!1djJJ.creases with den
sitym:ean-s·tha£Ttmus-Credu~~·the~i)reSsUre frqIr1~.t~·~_y'a,.lu~.apPl:()priate to a non
interacting gas. Alth()ughacompreSsI()nIn:~-;tdo work ag~inst the free-particle
momenta, it does negative work against the coulomb fiel<Lj

Problem 2·50: Show from the first law of thermodynamics that the coulomb pressure from the
homogeneous-ion-sphere model is

3 (4.".), (pNo)~ ( 2: ZaX z )Pc = - - - -- e2 X + 2-ty + --
10 3 Pet A z

Z>2

It. will be noticed from Eq. (2-275) that

(2-275)

(2-276)

where (U jV)c is the energy density in the coulomb field. It is remarkable that
the relationship of the pressure to the coulomb-energy density is the same as that
obtained for the photon gas and for the Debye-Htickel gas, in both cases .9.Qn
firming the result of the virial theorem.' Of course the calculation is inexact. L!n
the present case, for example, the next/largest correction (much smaller than this
one) comes from distortion of the electron density. This calculation proceeds
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from a Thomas-Fermi model of ion sphere.' The coulomb corrections to the
pressure are not always negligible and should, for example, be included in models
of white dwarfs."

dyne/ems

Problem 2·51: Show that the numerical value of the coulomb.pressure is

( \' Z!Xz)r. = -5.68 X lO12}.'.-tp! X + 0.79Y + '"'~
Z>2

(2-277)

Problem 2·52: Calculate in this approximation the density for which completely (pressure)
ionized iron has zero pressure.
Ans: p = 260 g/cm3•

Just as in the D~e-Hiickelea.s~, thecoul0rnb interactionsred~cethe ioni
z~tionI1otentia1.of'hbo~d:~;j;~t;'~~~.···Ag~iD.-i"O simplify"t1ie-iiiatter;' assume. that ...~~- -,-- ".".." ...,,--" . -
the only bound electrons are in orbitals having a Bohr radius much.sll1aller thanthe ion sphere:--------------·-·.····.--·· -.- ---.-----..-- - '.

n 2

ae« = Z ao < Rz

Then to the normal energy

1 Ze2

Ezn = ---
2 az«

. (2-278)

(2-279)

must be added the interaction of an electron at the center of the ion sphere to
the otherelectronsOfthesPhere:

3 Ze2

E~n = s.. + "2 R
z

(2-280)

Ry

Problem 2·53: Show that in Rydbergs

za (pza)i
E~n = - 2" + 2.16 -

n }.'.
(2-281)

Equation (2-281) is only a r<!~gh aQpro£i~tion_l>Jlcl1:!!§~Jt.ll!;tslk~~!!~!3=(lJn;a~
homogeneous electron density, (2) that the nuclear charge Z is unshielded by
freeeIectroiis~-ana13TTh~t-the"bo~nd:eleCtr?~'\Vave !i!~~!,i£iiJ[iiEP:(f~tqip'g:a~py·."··
t~~f~e~~l~9~!'.IlIJ.§.··11. -moresatisfactorytreatirienfwotild .actually involve the
soluii6il'¥6~ihebound-electron wave function in a shielded rather than a pure
coulomb. potential. If, however, the bound-electron radius is mucllless than the
ion-sphere radius, tillS expression will gi~~~a"~;bi~PP~oX1matlon-to-~tlie"
energy·oftl1e-bOunaelectron:-------··- ..··-------~---"--·----·----..--...-...-.----.....

1 The reader is referred to Salpeter, op. cit., for this treatment.

a For a thorough discussion of coulomb effects on white dwarfs see H. Van Horn, Astrophys. J.,
151 :227 (1968).
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Ry (2-282)

Now the effective ionization potential is the differ~Il!le.jJL.energY:,".b.e:tweenthe
lowest energy, (zero kinetic eneJ;g:yt o(j;h~Lcogiinuum electron states and the
energy (negative) of the bound' electron; that is,

1 Ze2 3 Ze2

X.ff = Eo - E~n = Eo+-- - ---2 aZn 2 Rz

= :: - 2.16 (
pZ2)! _ 1.30(Jot.2p) ! (x + O.79Y + LZ:XZ)

Jot. Z>2 Z

The first term is the normal low-density ionization potential;, x = Z2jn2 Ry.
The remaining terms represent the reducti()1JjJ:.t!()m"~ation,b:rough:t..!LbQ.1I.:tby:the
~~~2~~~!£1~i~,~!~~~~:. TTI1esEtinreractf~;-; reduc~ x by a constant amount, the
continuum depression Eo, plus another term which varies from state to state.
This reduction will rapidly cut off the ~Il...fEP..l?:ti.o.I!§,.gflQ1l.lLhy~res.t.ric:ting..•
their aIIOWable ,~tare£§.J_he ~P.2!.ll~El$!J.tly,J?l!ItIgIQ,nes.. ' Nh.~e~rgy of ,~
§2..un~le~~t~I:..!~.~~~~g~~~. th~~.Eo,"_th~,g!1.§,.?J:e,iQJ;>.~~{toJ~§.@~re!;[@Jree:·~ ,
Wel1Isom5te Hereanother VIew of t~El121!on=QiP.J;!i§!1l!!.~J.QgJ;~a.tlon, because
there exists, for each Zd~'''§ll1licj~!1tlyhigh density. ~h.l].~.XeIL.::::: ..Q,.•..~ '" ,"',0

~ .._" ~' ... =---_'"""-'.....--.~, ...... " ' .. ,," '. ",,",,,,-,,,,-,,,,;,c,,,;;,,,,,,,.~ .._.,.•..,·,,,.·.··c.•.,,"~_·'_·'=·"' .'_

Problem 2-54: Estimate the density at which iron must be completely pressure-ionized.
Ans: p "'" 2 X 104•

A summary is in order at this point. The coulomb interactions render the
ionized gas imperfect. The two most important effects are a negative coulomb
pressure .anda reductionoftli"e"ic;~~n=~Qtint1ig~~These eft'ects~have"been
quantitatively-investigate(no-r~tw-o'extrerD"~'e~vironments:(1) at sufficiently low
density and high temperature, kT dominates coulomb energies, and the non
degenerate gas may be treated approximately by the Debye-Hiickel method;
(2) at high density and low temperature, the electron gas is degenerate and near
perfect, but the ions are forced into a lattice because their coulomb energies
exceed kT. The treatments given were only the simplest approximations possi
ble in a very difficult subject, so that the formulas derived should be regarded
with caution 'inasmuch as' the assumptions made may not be satisfied in most
astrophysical environments. J )

As a final note, the reader may be interested to know that the same type of
problem occurs in the equation of state of nuclear matter. :fhe---Rroperties of

,;/ ,~.._",..=-, .•"" ·,...·.<.:;,;:::.>'4"" ..~' ..",~.",'~,~·.,·

neutron stars, if they exist, depend upon the corrections to the independent-

~fQ~~~~~J?,:.q!§it~~ce~dot'i§ir~!!~~ii:l~~~~:t:s~af~~cIear
jen~~~,L§(per:t~~~g_i.E:~~~a.ctions,~fm:{02\mthe nuclear;
force,El:l,th~Lt:b.an_thecp_uloIJ:!.!?Jorc!=l.l ....::::~ I '.:.::J

~J.l.Q!isa)i91L9Lt~_~.JgqJQIJ:!.!?-int~Ea.ctiQ,l1s will be postponed until Chap.
4, where It will be seen that the energetics of nuclear reactions is shifted by a

1 J. N. Bahcall and R. A. Wolf, Phys. Rev., 140:1445 (1965).
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sufficient amount to alter the reaction rates. This phenomenon is generally
called electron screening in nuclear reactions.

2-4 POLYTROPES

The static configuration of a gaseous sphere held together by self-gravitation
must satisfy the condition of hydrostatic equilibrium. The essence of the equa
tion of hydrostatic equilibrium is that the pressure at each point in a stellar
interior is sufficient to just balance the weight of the overlying layers of the star.
Furthermore, the pressure itself is determined by the equation of state applicable
to the local conditions in the stellar interior. These considerations do not in
themselves determine the structure of a star. Any specified pressure that may'
be required to support the overlying layers is obtainable from an unlimited num
ber of combinations of density and temperature at that point. What are clearly
needed are more conditions on the density and temperature in a stellar interior
that relate to other physical processes that go on there.

It was about the beginning of the twentieth century when several notable
physicists, viz., Lane, Ritter, Kelvin, Emden, and Fowler, considered the ques
tion of what limitations could be placed on the structure of a star just from the
condition of hydrostatic equilibrium alone. They quickly concluded that some
other condition relating the physical variables in the stellar interior is necessary
in order to be able to specify the structure. The necessary relationships are to
be found in the production and transport of thermal energy, subjects to be dis
cussed in subsequent chapters. One explicit auxiliary condition that has been
found to correspond to certain idealized physical situations, however, is a pres
sure expressible in terms of some power of the density only. For historical
reasons! the assumed pressure-density relationship is written as

P = Kp(n+l)fn (2-283)

where the number n is called the polytropic index. Gaseous spheres in hydro
static equilibrium in which the pressure and density are related by Eq. (2-283)
at each point along the radius are called polytropes. The constant K depends
upon the nature of the poly trope. It was shown by Lane and Emden that if a
polytropic pressure-density relation is assumed, the properties of the structure
can be computed.

Since, of course, any explicit relationship between the pressure and the density
would make possible the solution for the structure of a self-gravitating gaseous
sphere in hydrostatic equilibrium, one might ask why a relationship of the form

1 The nomenclature is patterned after quasistatic changes of state of an ideal gas for which a
generalized specific heat is held constant. It was found by early workers in kinetic theory
that for such changes of state, called polytropic changes by R. Emden in his classical treatise
"Gaskugeln," B. G. Teubner, Leipzig; 1907, the variables change along a track P = Kav',
where -y' is determined by Cp , Cv, and C, the specific heat characterizing the process. These
matters of historical interest are elegantly summarized in Chandrasekhar, op. cit., chaps. 2 and 4.
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of Eq. (2-283) should be chosen for study. The reason lies in the fact that some
idealized physical circumstances for a star would lead naturally to equations of
that form. To clarify this point, we shall consider examples of stars that can be
represented by polytropes.

As a first example, we may follow Kelvin in considering a star that is "boiling"
in a state that hedescribedj<is adiabatic convective equilibrium. If the whole
interior of a star is completely convective, mass elements are both rising and
falling in the interior of a star. A star is said to be in convective equilibrium if
any mass element after rising and falling from its initial temperature and density
to a new temperature and density finds itself at the same temperature and den
sity as the surroundings. The convective equilibrium is adiabatic if the con
vective cells move without heat exchange. It will be evident that if some mech
anism continuously stirs and mixes the entire interior of a star, it must soon come
to a condition of convective equilibrium, for any differences in temperature and
density of the surroundings in a star from those of an element that has risen from
some lower portion of a star will quickly be eliminated. If radiation pressure is
an unimportant determinant in the structure, adiabatic changes are of the form

P = Kp-r (2-284)

where 'Y = t for an ideal monatomic gas. If such a rising or falling element is,
furthermore, at the same conditions of temperature, density, and pressure as the
surrounding matter at all times, it follows that the run of pressure and density in
the star is such that

(2-285)

(2-286)P, = taT4 = (1 (3)P

It seems, therefore, that a star in convective equilibrium in which radiation pres
sure is not important is a polytrope of exponent 'Y = t, which is also a polytrope
of index n = 1.5. In such a way Kelvin was led quite naturally to at least one
physical possibility that would correspond to the structure of a poly trope.

As a second example, consider a star in which radiation pressure is not unimpor
tant. We have defined the quantity {3 such that

NokPo = - pT = {3P
p.

(2-287)

for a nondegenerate gas.
Equating the values of the pressure from these two equations gives immedi

ately at each point

T= (Nok~ 1 - (3)! p!
p. a {3

Since we also have

(2-288)
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we see that
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(2-289)p = [(N;kY ~ 1 ; pr p~

This equation is true at each point in the interior of the star we are considering.
The ratio of gas pressure to total pressure P does, in general, depend upon the
distance from the center of the star. If, however, one had a special configu
ration in which the quantity P was a constant, i.e., such that the gas pressure was
a constant fraction of the total pressure throughout the star, then the expression
in brackets in Eq. (2-289) reduces to a constant, and one has an equation of the
form

p = Kp~ (2-290)

This model star would correspond to a polytrope of polytropic exponent! or of
index 3. We,can see later that this particular poly trope corresponds more closely
to stars in radiative equilibrium, i.e., stars for which the energy is transported by
radiative transfer rather than by convection. It will, in fact, be shown that the
polytrope of index 3 corresponds to that star in radiative equilibrium such that
at each distance T from the center of the star, the product of the energy liberated
per unit mass from all the material interior to T times the opacity of the gas at
the point r is a constant. The properties of a nondegenerate polytrope of index 3
have also been highly developed in the analytical study of gaseous configurations,
especially by Eddington. This model star is frequently called the sumdard model.
We shall use the standard model often in an attempt to get a first approximation
to the runs of temperatures and densities in the interiors of stars.

A third example may be provided by stars supported by the pressure of a
completely degenerate electron gas (white dwarfs?). That pressure has been
shown to vary as p~ or p~., according to whether the electron velocities are non
relativistic or relativistic. The corresponding polytropes can provide useful
insights into their structure.

These examples give some indication of the physical reasons that lie behind
considering the structure of gaseous spheres in hydrostatic equilibrium for which
the pressure and density are related by an equation of the form of Eq. (2-283).
Motivated by the fact that the density is proportional to T» in a nondegenerate
polytrope of index n, a convenient definition is

(2-291)

where A is a scaling parameter whose value depends upon the definition of the
quantity rjJ. This representation for the run of density throughout the star will
be convenient for the study of poly tropes, where we shall identify the param
eter Awith the central density of the star, thereby normalizing the function rjJ to
unity at the center. For this representation, the pressure is

(2-292)
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(2-294)

The solution for the structure of a polytrope, then, depends upon the coupling of
Eq. (2-283) to the condition of hydrostatic equilibrium

dP = _p GMTdMT = 4n-r2p (2-293)
dr r2 dr

from which it follows that

1 d (r
2

dP) 1 d-- -- = -- (-GMT) = -4n-Gp
r2dr p dr r2dr

Substitution of the values of pressure and density for a polytrope of index n into
this last equation yields

(n + l)KAlin.!. !!:.- (r2dcf» = -4n-GAcf>n
r2dr dr

This equation can be made more attractive by defining a unit of length

= [(n + l)KA(l-nlln]l
a - 4n-G

(2-295)

(2-296)

and by defining a dimensionless distance variable ~ = ria, whereupon Eq. (2-295)
reduces to

(2-297)

This equation is called the Lane-Emden equation for the structure of a polytrope
for index n. The solution for cf> as a function of ~ completely determines the
structure of the polytrope except for the choice of the central density. By setting
A equal to the central density, it is easy to see that the temperaturelike variable cf>
must obey certain boundary conditions at the center of the star, i.e., at ~ = 0; viz.,

cf> = 1 dcf> = 0
d~

at ~ = 0 (2-298)

Problem 2·55: Show that (d</>jdf;)o = O. Hint: Expand the equation of hydrostatic equilib
rium near the center.

The solution cf> which satisfies the Lane-Emden equation of index n under these
boundary conditions is called the Lane-Emden function of index n.

Explicit solutions of the Lane-Emden equation for general values of n appar
ently do not exist. For values of n other than n = 0, 1, and 5, numerical tech
niques must be employed for the determination of the Lane-Emden function.
We first note that if cf>W is a solution of the equation, then cf>( -~) is also a solu
tion. This observation implies that if cf> is expressed as a power series in ~, only
even powers of ~ appear; that is,

(2-299)
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Problem 2-56: By substituting Eq. (2-299) into the Lane-Emden equation, show that the first
three terms of the series for </> are

n
</>=1_·W+_~4_ ...

120
(2-300)

By taking a sufficient number of terms in this alternating series for cP, one can
calculate the solution to any desired accuracy for values of ~ < 1. For values of
~ > 1, this solution can be continued from the differential equation by standard
numerical methods. The solutions are found to decrease monotonically from the
center and for values of n less than 5 have a zero for some finite value of ~, say,
~ = h At ~ = h it is clear that cP's being equal to zero makes the pressure
vanish, and the configuration may be said to have a physical boundary at that
point. Table 2-5 lists the value of h and the derivative of cP at ~ = h for the
various Lane-Emden functions of index n. We shall shortly see that the value
of h and the slope of cP at ~ = h are important for determining large-scale prop
erties of the various gaseous configurations.

It is evident that the structure of each polytrope is specified in terms of the
dimensionless length g, An inspection of the length a used in forming this dimen
sionless length shows that its value is determined by two numbers; the first is the
constant K, which occurs in Eq. (2-283) relating the pressure to the density, and
the second is the parameter A, which we have taken to he the central density for
the solution of this problem. It is apparent, therefore, that each Lane-Emden
function cPn represents, for a specified value of the constant K, a one-parameter
family of solutions, the parameter being the central density A. As an example,
we may turn to the poly tropes that were considered in introducing this whole
discussion. In the case of the completely convective polytrope of index 1.5, it is
easy to see that the value of K is determined hy the particular adiabat of the gas.
In adiabatic convective equilibrium the entropy per gram of material is constant,
and it specifies the value of K.

Problem 2-57: Ignore the entropy of the radiation and show from Eq. (2-136) that the entropy
per gram can be written

3Nok P
S = --In- + const2 p, pg

that is, S = S(K).

(2-301)

In the case of the standard model, or poly trope of index 3, we see from Eq.
(2-289) that the value of the constant K is given by

(2-302)

where {3 represents the ratio of the gas pressure to the total pressure and is a
constant throughout the standard model. The selection of a value of K in either
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of these two instances still allows a complete run df corresponding solutions as
determined by the dentral density x.. It is quite clear that considerable leeway
still exists for the actual structure of the various polytropes being considered.
To understand the way in which these various factors come into play, we need to
consider several more large-scale properties of the configuration that can be
derived from the material presented so far.

(1) Radius: The radius of the configuration is by definition determined by the
first zero of the Lane-Emden function of order n. Thus

R = a~l = [(n~)KrX.(1-n)J2n~1

(2) Mass: The mass M interior to the normalized radius ~ is given by

(2-303)

(2-304)

By using the Lane-Emden equation itself, the integral in Eq. (2-304) can be
transformed to

(2-305)

Substituting for the unit of length a and evaluating the above expression at ~ = ~l

Table 2-5 Constants of the Lane-Emden functionst

~l (d~) Pc
n ~12 -

d~ ~-~1 P
0 2.4494 4.8988 1.0000
0.5 2.7528 3.7871 1.8361
1.0 3.14159 3.14159 3.28987
1.5 3.65375 2.71406 5.99071
2.0 4.35287 2.41105 11.40254
2.5 5.35528 2.18720 23.40646
3.0 6.89685 2.01824 54.1825
3.25 8.01894 1.94980 88.153
3.5 9.53581 1.89056 152.884
4.0 14.97155 1.79723 622.408
4.5 31.83646 1.73780 6,189.47
4.9 169.47 1.7355 934,800
5.0 00 1.73205 00

t S. Chandrasekhar, "An Introduction to the Study of Stellar
Structure," p. 96; reprinted from the Dover Publications edition,
Copyright 1939 by The University of Chicago, as reprinted by
permission of The University of Chicago.
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(2-309)

gives the total mass of the star:

;ill = -47r [en + l)KJ! 1-.<3-n)/2n (e dcP) (2-306)
47rG d~ ~,

We note that in the case n = 3, the mass depends only upon K and is independ
ent of 1-.. The product of h 2 times the slope of cP evaluated at the first zero, h,
is one of the quantities listed in Table 2-5.

Problem 2-58: Show that the mass of the standard-model polytrope of index 3 is given numeri
cally by

V1="P
m7; = 18.0 m7;0 (2-307)

J.l.2(32

For a given composition J.I., the mass determines the value of (3.

Problem 2-59: Imagine that a white dwarf is a body supported by the pressure of completely
degenerate electrons. As the mass of the structure is increased, the central density becomes
so high that the degeneracy becomes relativistic at the center, such that (confirm this)

r.:« 1.244 X 1015 (;.y dynea/cm- (2-308)

and falls off to nonrelativistic degeneracy in the outer portions of the star. As the mass is
continually increased, the star shrinks to ever higher densities and ever smaller radius, until
the electrons become highly relativistic everywhere. Then Eq. (2-308) is applicable throughout
the star. Show that at this point the mass is

5.80
m7; = - m7;0

J.l.c2

This mass is called the Chandrasekhar limit, since Chandrasekhar showed that this was the
maximum mass that could be supported by electron degeneracy. (Other physical effects such
as rotation and inverse beta decay have been ignored.) It seems clear that this value must
represent a limiting mass because the electrons can be relativistic throughout only if the mass
is sufficient to squeeze the volume to a point. Inasmuch as white. dwarfs are observed to have
nonzero radii, their masses must be less than Eq. (2-309). The question of what happens if
the mass exceeds this limit is a difficult one and will not be considered here.

(3) Ratio of mean density to central density: The mean density of the config
uration is given by the total mass of the configuration divided by the volume
of the configuration, whereas the central density is equal to 1-.. Thus, the ratio
of the mean density to the central density can be determined from Eqs. (2-303)
and (2-306) to be

~ = - :1 (~~) ~, (2-310)

It is evident that the ratio of mean density to central density depends only upon
the index of the polytrope. In fact, we may take this to be the main feature of
the polytropic index; viz., the extent to which the matter is concentrated toward
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the center of the star. Although we have not shown it here, the ratio of the
central density to the mean density varies between the limits of unity (a star of
uniform density) for a polytrope of index zero to value of infinity (a star infinitely
concentrated toward the center) for a poly trope of index 5, passing through all
intermediate values as n increases from zero to 5.

Problem 2·60: Show that the central density in the standard model exceeds the mean density
by the factor Pc/ji = 54.2.

(4) The central pressure: Since t/J is normalized to unity at ~ = 0 by the inter
pretation of A, the central pressure may be written, from Eq. (2-292), as

P, = KA(n+ll/n (2-311)

(2-312)

To express the central pressure in terms of macroscopic properties, we note that
Eq. (2-303) can be written in the form

R = [(n:
G

1) 62r [KAO-nl/n]!

from which

(2-313)

(2-314)

Hence, the central pressure is given by

P, = (KA(l-nl/n)A 2 = KA(1-nl/npc2

47rR2G [6 1 J2
(n + 1H12 "3 (dt/J/d~)~l p2

1 G;m:2
= 47r(n + l)~t/J/d~)~~~ R4

Problem 2·61: Show that for the standard model the central pressure is given numerically by

dynes /cm! (2-315)

This result gives a larger and more realistic estimate of the central pressure of the sun than the
earlier rough arguments because it allows for the central condensation.

(5) The central temperature: The central temperature may be computed from
the central pressure and the central density by use of the appropriate equation
of state. For the case of the ideal ionized nondegenerate gas the relevant rela
tionships are

(2-316)
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Fig.2-18 The value of 1 - {3for the
standard model of low-mass stars.
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(2-317)

where P, equals the total pressure (gas plus radiation) at the center of the star.
Thus the central temperature is given by

T = .E: f3cPc

c Nok pc

Problem 2-62: Show that for the standard model the central temperature is

T. = 4.6 X 1Q6p.{3 (~y P.t (2-318)

We may note that the equation above forthe central temperature of the stand
ard model contains quantities that are not independent of each other. In Prob.
2-58 it was demonstrated that the mass of the standard model is related to the
ratio of gas pressure to total pressure; therefore, fora fixed value of p. it is appar
ent that f3 is a function of the mass (or vice versa), although the solution cannot
be written explicitly. Figures 2-18 and 2-19 show graphically the dependence
of f3 upon the quantity p.2(mrj;)Tle). These figures indicate the growing impor
tance of radiation pressure with increasing mass. Since the mean molecular
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Fig. 2·19 The value of 1 - fJ for the standard model of high-mass stars.

weight J.L lies between t and 2, the quantity J.L2(mIj mI0 ) is not greatly different
from the mass expressed in solar masses. At any rate, this additional constraint
must be taken into account when using Eq. (2-318) for the central temperature
of the standard model.

We may in fact use Eq. (2-318) at this point to make an estimate of the central
temperatures of main-sequence stars. Main-sequence stars certainly are not
polytropes of index 3, but we may nonetheless expect to see the trend of central
temperatures by representing all main-sequence stars by the standard model.
It is clear that the central density is an unknown in Eq. (2-318); however, an
earlier problem demonstrated. that Pc = 54.2p for the standard model, so that
Eq. (2-318) may be altered to read

r, = 17.4 X 106J.L.B ( mI)J pi (2-319)
mI0

Problem 2·63: A certain type 0 star has ~ = 30~0, R = 6.6R0, X = 0.70, and Y = 0.30.
Estimate the importance of radiation pressure and the central temperature by approximating
the star by the standard model. A much better calculation! on electronic computers yields
e, = 0.77, r, = 3.7 X 107•

The mean density p is just the mass divided by the volume, so that we can
obtain these properties of main-sequence stars from Table 1-1. In fact, when
the properties of Table 1-1 are coupled with the mass-luminosity relationship
and with the fact that P0 = 1.4 g/cm", it appears that an approximation to the

1 R. Stothers, AstTophys. J., 138 :1074 (1963).
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average density of main-sequence stars is

165

g/cm! (2-320)

Problem 2-64: Using the data of Table 1-1, show that a main-sequence star of 6~0 has an
average density approximately equal to 0.28 gjcm 3. What is the percentage difference between
this value and that inferred from Eq. (2-320)? How much of a percentage error in the central
temperature would be introduced by that percentage error in the average density?

It is of some interest that the density of main-sequence stars decreases with
increasing mass. This fact is a consequence of the virial theorem, which demands
higher temperatures for higher values of the potential energy of self-gravitation.
These higher temperatures hecome sufficient to support the star in a more dis
tended configuration of lower density.

It is also clear from Fig. 2-18 that f3 "'" 1 for stars of main-sequence mass.
The mean molecular weight has a value near 0.7 for the centers of stars that
have partially depleted their hydrogen (say, X "'" 0.5, Y "'" 0.5). By combining
these approximations, Eqs. (2-319) and (2-320) yield

To "'" 14 X 106 (~y (2-321)

as anticipated central temperatures for main-sequence stars. When the question
of thermonuclear reactions is considered, Eq. (2-321) will prove a helpful guide.

Many other interesting physical quantities can be calculated for these model
stars called polytropes. An extensive discussion of the mathematical consider
ations related to this well-developed subject will be found in the monograph on
stellar structure by Chandrasekhar. Furthermore, we have considered only uni
form polytropes of homogeneous composition, whereas it is possible to divide
stars into polytropic shells or mixed polytropes. A great deal of intuitive appre
ciation for the complexities of the physics of stellar structure may be obtained by
an extensive analysis of the structure of polytropes. We have employed only
the simplest features in this section as an introduction to the subject. Modern
research has shown that the usefulness of polytropes is for the most part limited
to this introductory acquaintance. Accurate and detailed models of the struc
ture of real stars may be obtained only from detailed computer calculation. The
additional physics needed to make these detailed calculations will constitute the
burden of the following chapter.



chapter 3
ENERGY TRANSPORT

IN THE STELLAR INTERIOR

What are the fundamental principles governing the structure of a star? The
criterion of hydrostatic equilibrium is a good one as far as it goes, but the pres
sure required at a given point can be supplied by infinitely varied combinations
of density and temperature. The assumption of a polytropic pressure-density
relationship is convenient in that it does allow the stellar structure to be deter
mined by the condition of hydrostatic equilibrium, but except for a few cases,
one has little assurance that the resulting polytropes correspond to real stars.
For most stars it is to be expected that the pressure-density relationship will vary
throughout the star. From the considerations to be presented in this chapter
it will be apparent that the luminosity of a static star is determined from two
independent conditions: (1) the rate of energy flow, and hence the luminosity £,
is determined by the temperature gradient and the details of energy transport;
and (2) the luminosity of a static star must equal the rate at which energy is
being liberated by nuclear reactions in the interior of the star. For a correct
model of a star, the two luminosity criteria must yield the same answer, a situ
ation seldom true for polytropes. The conditions that have allowed accurate
models of stars to be constructed are those provided by the details of energy
generation and transport in the stellar interior. The latter subject constitutes
the topic of this chapter, and thermonuclear energy generation will be introduced
in Chap. 4.
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The transport of energy is caused by a temperature gradient. The common
ways by which a star transfers heat from its hotter parts to its cooler parts are
by the mechanisms of radiative transfer, convection, or conduction. The fourth
major mechanism, neutrino emission, emits energy directly from the interior into
space without interactive transport through the stellar matter. Since the equi
librium energy density in the radiation field is u = aT4, the hot portions of the
star contain more photon energy than the cool portions do. Since no walls exist
to contain the photons, they may diffuse toward cooler regions, hindered only by
their atomic interactions with the stellar matter. The associated mechanism of
heat transport is called radiative transfer and is proportional, among other things,
to the temperature gradient. If the energy is carried by the particles themselves,
rather than by photons, the heat transport is called conduction. It is also pro
portional to the temperature gradient but is, except in a degenerate electron gas,
much less efficient than radiative transfer. There is a limit to the rate at which
energy can be transported by these two mechanisms, however, for if the temper
ature gradient becomes too large, the gas develops convective instability. Then
rising bubbles of gas are hotter than their surroundings and continue to rise until
they dissipate their excess heat content by equilibrating with the lower-temper
ature environment. We shall see that this extremely efficient mechanism results
in stellar interiors in a temperature gradient that is calculable from hydrostatic
equilibrium, the so-called adiabatic temperature gradient. And lastly, the mecha
nisms of neutrino emission will be outlined.

3-1 ENERGY BALANCE

One of the principles that must be satisfied in all of science is that of energy
conservation. The stars radiate large amounts of energy from their surface, and
if the interior energy is not to disappear, the radiated energy must be replaced in
the interior. It was pointed out in connection with the virial theorem that self
gravitating gaseous spheres will be provided with gravitational energy during a
contraction, but the amount of energy liberated in this way is not sufficient to
maintain a stellar luminosity for a stellar lifetime. Most stellar structures are
essentially static; i.e., the distribution of temperature, density, and pressure in
the star hardly changes with time. If that is to be the case, the power radiated
must be supplied at the same rate in the stellar interior. As is now commonly
known, this energy is provided by exothermic nuclear reactions that proceed near
the center of the star.

The rate at which energy is liberated by thermonuclear reactions in the interior
of a star will be a function of position, being determined by the local values of the
density p, the temperature T, and the set of composition parameters {Xz }. We
shall designate the power liberated per gram of stellar matter by nuclear reactions
by the symbol e:

e(ergs g-I sec-I) = e(p,T,{Xz})
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Fig. 3-1 The energy balance in a static
spherical shell of thickness dr. The net
rate of radial energy flow through a sphere
of radius r is designated by L(r). The
value of L(r + dr) is greater than L(r) in
a static spherical body by virtue of the
thermonuclear power generated within
the shell. In a nonstatic spherical star
the rate of change of the entropy of the
gas within the shell must also be included
in the balance.

From the definition of e it follows that the rate at which energy is liberated per
cubic centimeter of stellar matter is given by the product pe, Then for a perfectly
static stellar structure, the balance of energy can be written

.e = Iv ep dV = foR ep47rr2dr (3-1)

where £ is the total luminosity of the star. We might emphasize at this point
that no stellar structure is exactly static. For even when the energy liberated is
being replaced by nuclear reactions, these same nuclear reactions are slowly
changing the composition of the stellar interior in which they are occurring,
leading thereby to very slow changes in the overall structure of the star. This
type of change is called stellar evolution. Changes of this type usually occur so
slowly that as a good approximation one can think of evolution as a sequence
of static. structures.

Equation (3-1) can be expressed in a differential form. The balance of energy
that is represented by that equation must also hold in a shell located at each
value of the radius 1". If we denote the energy flowing outward through a spheri
cal surface at radius r by L(r) and the energy flowing outward through a spherical
surface at r + dr by the quantity L(r + dr), as in Fig. 3-1, then clearly

L(r + dr) - L(r) = e(r)p(r)47rr2 dr

or

dL(r)
-- = e(r)p(1')47rr2

dr
(3-2)
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(3-3)

Equation (3-2) will represent one of the major relationships that must be satisfied
in a static stellar structure. It will often be expressed as a mass gradient instead
of radial gradient:

dL(r)
dM(r) = fer)

M(r) = foT 47rr2p dr

One might ask whether this equality must be maintained at all times. The
answer is clearly no. If the nuclear energy sources were at any time turned off,
the ensuing energy imbalance would cause diminution of the internal energy of
the star. That energy loss would start a slow contraction of the stellar structure.
However, the virial theorem indicates that a contraction of the star may liberate
in the form of radiant energy one-half of the increase in the gravitational energy.
This energy source could keep the star burning for a rather long period of time.
The point is that no cataclysmic consequences would occur from the sudden
absence of an energy source in a star. On the contrary, the star's settling into
configurations of smaller and smaller radius would be quite slow.

The analog of Eq. (3-3) when the star is slowly contracting can easily be
written. It is a simple application of the first law of thermodynamics. The
amount of heat that must be added per gram per second to stellar matter is equal
to the rate of increase in internal energy plus the rate at which the mass of gas
does expansion work:

(3-4)

(3-5)

This equation has units (cgs) of ergs per gram per second if V is the specific vol
ume (V = lip). The rate of heat addition during quasistatic changes is given in
terms of thermodynamic functions by dQ/dt = T dS/dt. Reconsideration of the
spherical shell of Fig. 3-1 shows that

dQ = fer) _ L(r + dr) - L(r)
dt p47rr2 dr

or

(3-6)

The special case of the static structure is easily recovered by setting the time
derivative equal to zero. On the other hand, if the star is expanding quasi
statically, Eq. (3-6) gives the amount by which e must exceed dLldlv!. It will
obviously be an important equation in the computation of stellar models during
evolutionary change.

For example, if the gas is a simple monatomic gas without significant radiation
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pressure, Eq. (2-137) shows

Nok T!
S = - In - + const

J.L p

= ~ N ok In P + const (3":7)
2 J.L p~

(3-10)

Then

T dS = T ~ N ok t. !!:.. P
dt 2 J.L P dt p~

_ 3 i d P
- 2P dt~

For such a gas, then, we have

dL _ asdP
dM - E - 2P dt P~

Problem 3-1: Show that if radiation pressure is significant but the gas is nondegenerate,

dL 3 NokT d e8u /3y!
- = E -----In--
dM 2 JL dt T

(3-8)

(3-9)

where y = (1 - (3)/{3.

It must be emphasized that Eq. (3-6) does not determine the luminosity ofa
star. It simply shows what the luminosity must be for the rate of energy gener
ation by nuclear reactions (coupled where necessary by the energy liberated from
gravitational work) to balance the loss by radiation. The actual rate of flow of
energy is determined by the mechanisms of the energy transport. Whether this
energy transport is due to radiative transfer, convection, or even conduction, its
magnitude is determined in some manner by the temperature gradient of the star.
If, on the other hand, neutrinos are emitted by stellar matter, the power per gram
of emitted neutrinos is entered in Eq. (3-6) as a negative E. Thus we shall find
that a star Ofprescribed structure automatically has a certain outflow of energy,
regardless of whether that energy is simultaneously being replaced by nuclear
reactions or not. In fact, since the nuclear reactions and neutrino emission are
themselves dependent upon temperature, density, and composition, we can see
that quite a delicate balance must be struck between the structure of the star,
i.e., the temperature gradient, and the temperature and composition. It is just
the establishment of this balance that is the determining factor of stellar structure.

3-2 RADIATIVE TRANSFER

It has been noted that there are basically three means by which the energy
liberated in stellar interiors can be transferred to the surface to be radiated, viz.,
conduction, convection, and radiation. Of the three, conduction turns out to be
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the least important, at least in terms of the frequency of environments in which it
is important. The bulk of all energy transport in stars occurs by the mechanisms
of radiative transfer and convection. Let us now consider the first of these two
mechanisms. The idea of radiative transfer is simply that photons emitted ther
mally in hot regions of a star and absorbed in cooler regions transfer energy from
the hotter regions to the cooler regions. The effectiveness of the transport will
be a function, among other things, of the temperature gradient and of the ability
of photons to travel freely from one region of the star to another. It happens
that photons in stars are able to travel distances of only about 1 em or less before
having some interaction with matter, so that it is only because of the small tem
perature differences that may exist over distances of the order of 1 em that radi
ative transfer can occur at all. Since the thermal emission of matter is propor
tional to the temperature to the fourth power, we shall expect that, in general,
the rate of energy transport will be proportional to the gradient of the fourth
power of the temperature. Furthermore, the effectiveness of the transport will
depend upon how opaque the gas is to the characteristic photons, i.e., how far
they can travel before interacting with matter. The opacity of the stellar gas
will be the subject of Sec. 3-3. It should be physically clear that the existence
of a temperature gradient will be a necessary condition for radiative transfer of
a thermal type, for if no temperature gradient exists, and if matter is in thermo
dynamic equilibrium, the density of photons of all frequencies is isotropic, and
no net flux ofradiation in any direction can occur.

The physical basis of the theory of radiative transfer in stars can easily be seen
in the following simplified problem. Consider two plane semi-infinite blackbodies
with a small temperature difference dT, as shown in Fig. 3-2. What is the heat
transfer per unit area from the hotter plane to the cooler plane? The solution is
quite simple. The emission per unit area from the surface of the blackbody is

Fig. 3-2 A simplified model of radiative
transfer in a plane stratified atmosphere
is given by two plane blackbodies sepa
rated by the average distance a photon
travels before absorption.

1+-----1-----+1"
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just equal to rrT4, whereas a blackbody absorbs all radiation that falls upon it.
Thus, the net difference in the exiting flux over the entering flux per unit area
is given by

H = rr[(T + dT)4 (3-11)

This simple expression determines the heat flow in a vacuum between two parallel
blackbodies of temperature difference d/I', The problem may seem oversimplified
with regard to anything really occurring in the world, but a star can be thought of
as just such stratified temperature layers with the temperature increasing toward
the center of the star. The temperature difference between two such stratified
blackbody layers will be given by the product of the temperature gradient and the
characteristic distance photons travel before absorption; that is, dT = (dTjdx)l,
where l is something like an average mean free path of photons in stellar matter.
Thus, the energy flux per unit area may be written as

- dTH = -4lrrT3
dx

(3-12)

where the minus sign indicates that the heat flux is opposite to the temperature
gradient.

It is clear from the foregoing equation that the heat flux in a stellar interior
will be determined by the temperature structure of the star, the only unknown
remaining in Eq. (3-12) being the average distance l traveled by photons before
their absorption by the stellar matter; This length is determined by the various
ways in which photons interact with matter. The reduction in intensity of a
beam of photons as it passes through matter of density p is conventionally written
as

dI
- = -RpI
dx

(3-13)

where R is the mass absorption coefficient and is a function of the photon fre
quency. The bar over K indicates the necessity of some type of average over the
photon-frequency spectrum. Over a limited range of distances for which Rand
p may be a constant, Eq. (3-13) has an integral form:

I(x) 0:: exp -Rpx (3-14)

From this integral form it is apparent that (Rp)-l is the approximate distance l
that photons travel before absorption. Noting also that the emission constant
for a blackbody is a = caj4, Eq. (3-12) becomes approximately

H ::::; _ ac T3 dT (3-15)
Rp d»

This result, obtained by a simple argument, is correct to factors of order unity
(there is an error of a.factor t). It also does not show how the average mass
absorption coefficient is to be determined. We shall return to these problems
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during a detailed discussion of the sources of the opacity to photons in a stellar
interior. What this simple example does show is that in the presence of a tem
perature gradient in a gas that is approximately in thermal equilibrium, the :flux
of energy is proportional to the gradient T4 and to (iCp)-l.

In Chap. 2 we introduced the intensity of the radiation field I, the net radi
ation :flux per unit area H, and the radiation pressure Pro The radiation field
intensity may be decomposed into an integral over the specific intensity in the
frequency interval dv such that

1(0) = 10'" 1.(0) dv (3-16)

It will be necessary to consider each frequency separately, because the number
density of the photons and the energy of each photon as well as the absorption
coefficient of stellar matter for those photons are all quantities that depend upon
the photon frequency. We may then define the mass absorption coefficient for
frequency v in the following way. Think of a monochromatic pencil of radiation
moving in some specified direction. The specific. intensity in this small solid
angle will be altered by absorption from its value I. to a value I. + dl'; upon
passing through a thickness ds of matter of density p:

dl, == -K.pI. ds (3-17)

The quantity K. is called the mass absorption coefficient of frequency v and is
defined by this equation. The coefficient K. will, of course, be a function of the
frequency and of the thermodynamic state and chemical composition of the
material. Equation (3-17) represents the total energy :flux removed from the
pencil by interaction with matter in moving through the thickness ds. Accord
ingly, it includes energy lost both by processes of true absorption and by proc
esses of scattering. It is clear, however, that absorption and scattering are
physically different processes, and we shall have to differentiate between them
throughout the following discussion. By true absorption we shall mean inter
actions of photons with matter whereby the energy of the photon is converted
into some other form of energy, e.g., the ionization of an atom. By scattering we
mean simply those processes by which the direction of the photon is changed.
In the deep interiors of stars, where matter is almost completely ionized, the bulk
of scattering occurs from Thompson scattering by free electrons, whereas in cool
stellar atmospheres the bulk of the scattering may be due to scattering from
molecules. Therefore, when thinking of this reduction of the specific intensity
we must not assume that the decrease in photons corresponds to photons that
have disappeared. Quite the contrary; it will often happen that the energy lost
from the pencil will reappear as scattered radiation moving in other directions.
The true-absorption process corresponds to incident photons that disappear from
the radiation field.

1 Pencil of radiation is a term used to designate a set of directions contained in a differential of
solid angle dn centered about a specific direction, in this case to be defined by the angle (J to
the radial direction.
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We shall differentiate between the true absorption and the scattering absorp
tion by designating the corresponding opacities with different subscripts. Spe
cifically, we shall write for true absorption

tiI, = -K.apI. de (3-18)

and for scattering absorption

dn'
d.I; = -K••ol; ds r p(cos 0') -4 (3-19)In' 11"

In this last equation we have introduced the scattering phase function p(cos 0')
which gives the angular distribution of the scattered energy removed from the
beam, the angle 0' being defined as the angle of the scattered radiation relative to
the direction of the incident pencil. Furthermore, the phase function is normal
ized such that

dn'f p(cos 0') 411" = 1 (3-20)

Thus, the total reduction in the pencil is the sum of the reductions due to true
absorption and due to scattering. Accordingly,

dIp = - (K.a + K••)pI. ds (3-21)

The scattering phase function appears at first glance to be somewhat of a needless
complexity. Such is not the case, and once its very simple meaning is appreci
ated, no great difficulties will be met in applying it to most of the problems dealing
with stellar interiors. For instance, if the scattering is isotropic, p(cos 0') = 1.
In that case the energy removed from the beam by scattering is equally redis
tributed to all solid angles dn'. In fact, for the removal of specific intensity from
the beam, the scattering phase function is a needless complexity, since the inte
gral of the phase function over all solid angles into which scattering may occur is
defined to be unity. It is for the computation of the amount of energy scattered
into the beam from incident pencils in other directions that the scattering phase
function will be needed. For scattering. from most atomic particles and from
free electrons in stellar interiors, the angular distribution is that of Rayleigh
scattering, which is proportional to 1 + cos- 0'.

Problem 3-2: Show that the normalization of the phase function for Rayleigh scattering is

p(cos 8) = ~ (1 + cos! 8) (3-22)

Of course, radiation is not only absorbed in stellar interiors; it is also emitted
by the material in question. The equation that describes radiative transfer com
putes the balance between true absorption, scattering, and true emission. The
sources of emission are divided into true emission and scattered emission, in
analogy to the division of absorption into true absorption and scattering. We
define i.(O) to be the true emission of radiation of frequency v per unit frequency
interval in the direction 0 per unit solid angle from each gram of stellar matter.
Thus, the specific intensity in the pencil of radiation at angle 0 will be increased
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by true emission in moving through a distance ds by the amount

dI.(8) = +i.(8)p ds
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(3-23)

In the general theory of radiative transfer, this emission term may be quite
troublesome, but in stellar interiors it is greatly simplified by the assumption
of local thermodynamic equilibrium. This assumption is that matter radiates
spontaneously in stellar interiors exactly as it would in thermodynamic equilib
rium; i.e., the stellar matter is approximately described as having a local temper
ature T, and the assumption of local thermodynamic equilibrium is that matter
at temperature T radiates exactly as it would if it were in surroundings in thermo
dynamic equilibrium at the same temperature. This assumption should be accu
rate enough for our purpose. In Prob. 2-20 it was demonstrated that the devi
ation from local thermodynamic equilibrium for the radiation field in stellar
interiors is of the order 10-10 ; that is, the second term in Eq. (2-81), which
represents the anisotropy in the radiation field, is of the order 10-10 of the first
term. Interior stellar matter is therefore extremely close to the state of thermo
dynamic equilibrium. The temperature gradient is very small, furthermore, so
the fact that photons travel only about 1 em before interaction implies that they
are absorbed at essentially the same temperature at which they were emitted.
In thermodynamic equilibrium the emission per gram is very simple, for what is
then required is that the material radiate exactly the same power that it absorbs
and with the same spectrum of frequencies, viz., the spectrum appropriate to
thermodynamic equilibrium. We can easily see what this requirement implies
for the true-emission coefficient i •.

Consider a thin slab of stellar matter having unit cross-sectional area and
thickness dx, as illustrated in Fig. 3-3. What is the rate of absorption of energy

Fig. 3-3 A thin slab of unit area and thickness
dx absorbs energy from the radiation field
I.(o). In thermodynamic equilibrium the
slab must reradiate the same power.

k-dx-l
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from the radiation field by this mass element? From Eq. (3-18) we may write
that the energy absorbed in 1 sec from the radiation field moving in a direction 0
to the normal to the unit slab per unit frequency interval about v is given by

dEv(O) = ~KvaP dl I v(O) cos 0 (3-24)

The factor I v(O) cos 0 is equal to the specific intensity impinging upon a unit area
at an inclination angle o. The absorbing path length in the slab is dl = dx] (cos 0).
Then the true absorption of energy at frequency v is given by the integral over
all solid angles:'

dE v = ~KvaP dx Ilv(O) dn = KvaP dx cu, (3-25)

Since the mass contained in the slab of unit area is just P dx, the power truly
absorbed per unit frequency interval per unit mass is just equal to

as,
dm = ~KvaCUv (3-26)

The emission from the slab must have exactly the same value, or deviations from
local thermodynamic equilibrium can be shown to occur; i.e., the material will
heat up, cool off, or change the spectrum in such a way that some cycle can be
constructed for doing work from the radiation field. This balance may be repre
sented by demanding that

(3-27)

where the factor of 4n- takes account of the fact that the true-emission. coefficient
jv is defined per unit solid angle and that in local thermodynamic equilibrium
the true emission is isotropic. The combination of quantities cuv/4n- in thermo
dynamic equilibrium is given the special symbol Bv(T) to distinguish it from the
quantity cuv/4n- for those cases when the real energy density is not that of local
thermodynamic equilibrium:

where

B (T) = 2hv
3

1
v c2 exp (hvjkT) ~ 1

(3-28)

(3-29)

Bv(T) is called the source function for true emission in local thermodynamic equi
librium. This balance between absorption and emission in local thermodynamic
equilibrium is called Kirchhoff's law.

One must be cautious to avoid making a mistake in extending properties of
radiation computed for conditions of local thermodynamic equilibrium to the

1 The meaning of u ; in this equation is that of the energy density of radiation of frequency
v per unit frequency interval. We have used Eq. (2-74) for the specific frequency v; that is,
IIv(8) dn = CUv.
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Fig. 3·4 Radiative transitions between two states of an
atom are of three types, spontaneous and induced decays
from the upper state to the lower state and absorption by
the lower state. The transition matrix element is the
same for each transition, so that the ratios of their rates
are determined entirely by statistical weights and by the
density of photons at energy Vij.

(3-30)
1

slightly anisotropic radiation field appropriate in stellar interiors, where, strictly
speaking, thermodynamic equilibrium does not exist. Part of the emission con
tained in the equilibrium statement of Kirchhoff's law is spontaneous emission
resulting solely from material temperature, and part of the emission is induced
emission. The induced emission comes from atomic transitions caused by the
radiation field. These transitions are exactly those which were considered in
the discussion of the Boltzmann equation in Chap. 1, where it was pointed out
tbat there exists a probability measured by the Einstein coefficient B i i for the
radiation field to cause downward transitions in atomic structure. Induced emis
sion is a type of sympathetic reaction, and it produces radiation of the same fre
quency moving in the same pencil of direction as the incident radiation. It is
correct to think that the incident radiation causes the state to make a downward
transition faster than it would have if it were left alone.

To see how induced emission should be treated, return to the two states of an
atom shown in Fig. 3-4. The emission resulting from radiative transitions of
state i to state j in thermodynamic equilibrium has two terms. The first is a
spontaneous transition rate, which is, per unit solid angle, equal to (lj411")NiA i j .

The second is the induced decay rate caused by encounters of atoms in state i
with photons of frequency Pi;' which can cause a second photon to be emitted in
the same direction, the rate of which per unit solid angle is equal to (lj411")NiBi j u v, j .

We can compute from these ~o expressions the fraction of the total emission
that is spontaneous:

Spontaneous
Total

(3-31)

From the ratio of Einstein coefficients it follows immediately that

Spontaneous emission = 1 _ e-h . /kT

Total emission

The quantum theory of radiation requires that this ratio of spontaneous to total
emission in local thermodynamic equilibrium apply to any mechanism of true
absorption. There are mechanisms other than transitions between discrete
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atomic states that represent true emission and absorption. For instance, ioni
zation is an example of true absorption, whereas its inverse process, radiative
recombination, is an example of true emission. Quantum-mechanically it can be
shown that the radiative recombination of an ion and an electron with the emis
sion of a photon of frequency lJii can be induced to occur by the presence of a
second photon of frequency lJii' In this manner one reaches a ratio of spontane
ous emission for radiative recombination to total emission by radiative recombi
nation that is the same as Eq. (3-31).

If deviations from strict thermodynamic equilibrium occur, the emission must
be separated into two terms. The spontaneous emission is still determined by
the temperature of the matter and the source function Bv(T), whereas the induced
emission is proportional to the actual specific intensity of radiation 1v(O), instead
of to the isotropic function Bv(T). Quantitatively, this statement can be
expressed by

(3-32)

It is easy to see that in thermodynamic equilibrium this expression for the emis
sion reduces to Kirchhoff's law, since in that case the specific intensity 1v(O) is
equal to Bv(T).

There is yet another term that must appear in the emitted power, the energy
introduced into the pencil by scattered photons. From the definition of the
scattering phase function, one can immediately write down that the energy scat
tered per unit solid angle into the pencil moving in the direction 0, ep from a
pencil moving in the direction 0', ep' is given by

. 1 J7 J2'" ( , ')1 (' ')' I d ' d 'Jv.scattered = K V8 41l' P O,ep;O ,ep v O,ep sm 0 0 ep (3-33)

where p(O,ep;O',q/) is the scattering phase function corresponding to the angle
between the direction of the pencil under consideration (O,ep) and any other
pencil (O',ep'). The geometry is shown in Fig. 3-5.

At this point the energy balance that determines the equation of transfer can
be established. Consider a small pencil of directions contained in a solid angle
dn about an angle 0 relative to the direction of the temperature gradient (direc
tion of net heat flow). Further consider a small circular cylinder having unit
cross section and length dl coaxial with the pencil of radiation under consider
ation, as shown in Fig. 3-6. It is now a simple matter to write a statement of
the conservation of energy for the radiation flowing in the chosen pencil of direc
tions. With regard to the cylinder constructed in Fig. 3-6, we demand that the
radiation leaving the top of the cylinder equal the sum of the radiation that
enters the bottom of the cylinder minus the absorption in the cylinder plus the
emission in the cylinder, all within the chosen pencil of directions.

The power per unit area exiting from the top of the cylinder is given by

(~~}op = -1v (1' + dr, 0) dn (3-34)
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Fig. 3-5 The geometry of photon scattering. Photons are scattered into
the solid angle an from all other pencils designated by anI. The z axis is
regarded as being the direction of the temperature gradient so that the
radiation field has azimuthal symmetry.

whereas the power per unit area entering the bottom is given by

(3-35)

The power per unit area absorbed during transit of the cylinder is given by Eq.
(3-21) as

(3-36)

The power per unit area emitted into the pencil of direction inside the cylinder
is a sum of three terms, the spontaneous emission, the induced emission, and the
scattered emission. From our earlier discussion, it is evident that the total emis-
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dn

Fig. 3-6 The equation of radiative transfer is obtained by applying the con
servation of energy to photons absorbed and emitted within this cylinder
and within the pencil of directions indicated by dn.

sion is just the sum of Eqs. (3-32) and (3-33):

(~~)em = +KvaP dl [(1 - e-hv/kT)Bv(T) + e-hv/kTIv(r,O)] dn

dl dn f""f2" ( .or ')1 (r , '). 'd' d f+ KvsP 47T P 0,c/J,0,c/J v 1,0,c/J sin 0 0 c/J (3-37)

By summing these various contributions with the proper algebraic signs, the
statement of conservation of energy may be written

I v(1' + dr, 0) - Iv(r~O) = aaI v
dr

r

-(Kva + K,s)Iv(r,O)p dl + Kva(1 - e-hv/kT)Bv(T)p dl

+ Kvae-hv/kTI,.(r,O)p dl

+ Kvs p:;'l In, p(Oc/JjO'c/J')Iv(r,O',c/J') dn' (3-38)
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Dividing Eq. (3-38) through by the total mass p dl of the cylinder and regrouping
terms gives

.-!- aI. dr = .! aI. cos 0
p dl ar p ar

- (K;a + ~..)I.(r,O) + K;aB.(T)

+ K•• Lh, p(Oep;O'ep')I.(r,O',ep') dn' (3-39)

where we have used the fact that dr/ dl = cos 0, and where we have defined a
reduced absorption coefficient to be

K* = K (1 - e-h . /k T )va va (3-40)

(3-44)

Equation (3-39) is the desired equation of radiative transfer for a plane parallel
atmosphere under conditions of local thermodynamic equilibrium. What is
desired for the computation of the structure of the star, however, is an equa
tion of transfer that gives the energy flow per unit area directly in terms of an
average opacity and the temperature gradient. This result may be achieved by
multiplying the equation of transfer by cos 0 and integrating overall solid angles
dn. The various terms in the integral become

(i) J'! aI. cos" 0 dn = .! i. JI. eos- 0 dn = !3. aP. (3-41)
p~ p~ p~

where we have used the spectral form of Eq. (2-77),

(it) -J(K:a+ K••)I. cos 8 dn = - (K:a+ K••)H. (3-42)

Also from Eq. (2-77),

(iii) fK;aB.(T) cos 0 dn = 0 (3-43)

since B.(T) is isotropic,

(iv) K•• LIn In' cos 0 p(Oep;O'ep')I.(r,O',ep') dn dn'

The value of this integral depends upon the form of the scattering phase function.
However, it is not difficult to see that the integral vanishes if p contains only
even powers of the cosine of the angle between the scattering beams. Ignore for
a moment the integration over dn' and consider first the integration over dn.
Pick any incident pencil defined by 0', ep' and hold that pencil fixed. Then the
integral over dn may be thought of as sums of pairs of pencils taken in the direc
tion of 0 and in the direction opposite to 0. For these two pencils, p has the
same value if it involves only even powers of cos 0, whereas the factor cos 0 itself
occurring in the integrand has equal but opposite values for the two pencils.
Hence the sum of the two terms vanishes, as does therefore the integral. The
remaining discussion will be limited to scattering phase functions having that
property.
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The result of these operations on the equation of transfer leaves then a very
simple equation, which is

(3-45)

(3-46)

It was shown in Chap. 2 that even in the case of a slightly anisotropic radiation
field the radiation pressure P, == tu. and that the energy density u; is still that
of thermodynamic equilibrium. What is desired then is simply the total heat
flux per unit area, which is

H = roo H. dv = _ ~ roo * 1 du· dv
Jo 3p Jo K.a + K.. dr

Since the energy density u. is a function only of the temperature in the approxi
mation of local thermodynamic equilibrium,

du, du, dT
dr = dT dr

Hence,

H = _ ~ roo 1 du. dT dv
3p Jo K:a + K•• dT dr

(3-47)

(3-48)

(3-49)

(3-50)

The temperature gradient can, of course, be withdrawn from the integral over
frequencies. The equation will also have a nicer symmetry if it is multiplied
and divided by the integral

roo du; _ d J _du _ 3
Jo dT d» - dT u, d» - dT - 4aT

for then the equation for the heat flow becomes

. roo 1 dU' d
H = _ 4ac T3 dT Jo K:a + K•• dT v

3p dr roo dU' dJo dT v

Since the function u. in thermodynamic equilibrium differs from the Planck
source function B.(T) only by a constant, it is conventional to replace the ratio
involving u. in Eq. (3-50) by a similar ratio involving the function B.(T).

It is apparent that the ratio of integrals in Eq. (3-50) is simply a normalized
average of the inverse opacity, the average to be taken in a specified way over
the radiation spectrum. Following Rosseland, we define the Rosseland mean
opacity K by

1
K

roo 1 dB' dJo K.a[l - exp (-hv/kT)] + K•• dT v
·roo dB. d
Jo dT v

(3-51)
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With this definition of K, the radiative heat flux hecomes

H ;; 4ac T3 dT (3-52)
3Kp dr

which is just what we argued it should be before we started. The lengthy calcu
lation has discovered the factor t, which was not obvious in the beginning, and
has also demonstrated how the average opacity is to be determined from the
spectral opacity.

The Rosseland mean opacity has several interesting features. It is an average
over frequency

~ = (Kva[l - exp (~hv/kT)] + K)

the average being taken with respect to the weighting factor

a», 2h 2v4 exp (hv/kT)
dT = c2k T 2 [exp (hv/kT) - 1]2

(3-53)

(3-54)

From Eq. (3-53) it is apparent that the sources of radiative opacity are essen
tially additive except for the fact that the true-absorption coefficients are reduced
by the factor 1 - exp (-hv/kT) to correct for induced emission. This correc
tion factor is clearly such as to devalue low-energy (hv < kT) absorption. The
weighting function dBv/dT, on the other hand, has the following physical sig
nificance: the photon frequencies most important for radiative transfer are those
for which the difference in the product of photon number density times photon
energy between two points of slightly different temperature is maximal. (This
statement ignores, however, the possible frequency dependence of the opacity.)
The factor dBv/dT devalues the opacity at very low and at very high frequencies.
Thus the Rosseland mean is a specific compromise between those frequencies for
which the opacity is the greatest and those frequencies for which the greatest
number of effective photons exist.

Problem 3-3: Show that the weighting factor dBv/dT is such as to place the greatest weight
on the opacity near p = 4kTjh.

Equation (3-52) gives the heat flow per unit area by radiative transfer. To
obtain the net outflow of energy through a shell of radius r, we need only multi
ply by 47rr2• Thus

L(r) = -47rr24ac T3 dT (3-55)
3Kp dr

This last equation, along with the definition of the mean opacity, represents one
of the basic equations of stellar structure (whenever radiative transfer is the
dominant mode of energy transport).

Several interesting integral properties of stars in radiative equilibrium can be
demonstrated. Equation (3-55) for the radiative energy flow can be rearranged
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as an expression for the gradient of the radiation pressure:

dP r = _..!!.!!- L(r)
dr 417"cr2

If the star is, in addition, static, then

dL(r) 4 2--;r;:- = 17"1' pe

and

dP GM(r)
dr = - -r-2 - P

Division of Eq. (3-56) by Eq. (3-58) yields

d.I'; _ KL(r)
dP - 417"cGM(r)

(3-56)

(3-57)

(3-58)

(3-59)

Define the quantity 7](1') to be a ratio of the average rate of nuclear energy gener
ation interior to point l' to the corresponding average for the whole star:

7](1') == ~ = LIM (3-60)
E cC/m?:

where cC and m?: are the luminosity and mass of the star. In terms of 7], Eq.
(3-59) becomes

~~ = 4n-:am?: K1/ (3.61)

The integral of this equation from an interior point r to the surface is

.e (P(r) cC_
Pr(r) = 4n-cGm?: 10 K(r)7](r) dP = 4n-cGm?: P(r)K7] (3-62)

where K7] is the pressure average of K7] between " = rand r = R.
Equation (3-62) is the proof of a theorem due to Stromgren: the ratio of the

radiation pressure to the total pressure at a point inside a star in radiative equilib
rium is proportional to the average value of K7] for the regions exterior to the point r,
the average being taken with respect to dP, where P is the total pressure. A par
ticular case obtained from evaluation at the center is

cC = 4n-cGm?:(1 - (Jc)
K7]

where K7] is pressure averaged over the entire star and (Jc is the ratio of gas pres
sure to total pressure at the stellar center. Chandrasekhar has termed Eq. (3-63)
the luminosity formula for stars in radiative equilibrium,

A second particular case of interest occurs if K7] is a constant, in which case
K7](r) is also a constant, whereupon, from Eq. (3-62), (J(r) must then be constant.
In the discussion of polytropes in the last chapter, we pointed out that constant {J
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yields the nondegenerate polytrope of index 3, the standard .model. Thus the
constancy of {3, in stars in radiative equilibrium, depends on the constancy of K7J.

From the discussions that will follow later in this chapter it will be apparent that
K increases by several orders of magnitude from the center to the surface, whereas
7J decreases by several orders of magnitude from its central value 7Jc = Ec/e to its

. value at the surface 7J(R) = 1. This compensating feature accounts for the for
tuitously good resemblance of the standard model to real stars.'

Problem 3-4: What is the luminosity of a standard model of 1M0 in which K1J = 1 (cgs) and
p. = t- Recall that fJ = fJ(M).

The application of crude scaling arguments to Eq. (3-55) can also provide some
insight into the mass-luminosity relationship for main-sequence stars. Assume
for the sake of argument that the values of stellar opacity are relatively insensi
tive to the mass of the star. In Chap. 2 the central temperature of the standard
model was found to scale with mass as

T; cc ;m!pt

whereas p cc ;mIR3. Thus the characteristic internal temperatures scale as T; cc

;mlR. Assuming also that the characteristic temperature gradients scale as
dTjdr cc TcIR, the luminosity would scale according to Eq. (3-55) as .

.e R2 (:J!l1R)3 ;m/R = ;m3 (3-64)
cc ;mIR3 R

This result is not unlike the observed facts for main-sequence stars. The con
clusion that the luminosity should be proportional to the third (or so) power of
the mass will soon be indicated by another point of view, the temperature depend
ence of thermonuclear reaction rates.

3·3 OPACITY OF STELLAR MATTER

Evaluation of the rate of energy transport by radiative transfer requires calcu
lation of the Rosseland mean opacity, but before the mean opacity can be calcu
lated, one needs detailed knowledge of the atomic absorption cross sections as a
function of the photon frequency. All the processes which impede the free
motion of a photon must be calculated and added together. We shall find that
the opacity of the gas depends rather strongly on both the composition of the
gas and its thermodynamic state. Thus the Rosseland mean opacity is a func
tion of state, both by virtue of the average over the Planck spectrum and by
virtue of its dependence upon the state of matter, and one can write for each
composition a function K = K(p,T).

Photons interact with matter in a large number of ways. Most of these inter-

1 This and other theorems on radiative equilibrium may be found in S. Chandrasekhar, "An
Introduction to the Study of Stellar Structure," chap. 6, Dover Publications, Ine., New York,
1957.
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actions have been exhaustively studied, both in the laboratory and by the theo
retical techniques of quantum electrodynamics, and the agreement between
experiment and theory is essentially perfect, being limited only by experimental
uncertainty or by the approximations necessary in making some calculations.
Fortunately it turns out that from regions just beneath the photospheres of stars
all the way to their centers the radiative opacity is almost entirely due to four
basic types of event. With very little loss of generality, therefore, we may
restrict ourselves to an introductory discussion of those four processes, which
may be described as follows:

(1) Bound-bound absorption: This is the absorption of a photon by an atom
during which a bound electron makes a transition to a bound state of higher
energy. It is a true-absorption process, and its inverse is the normal emission
of light by atoms accompanying downward transitions.
(2) Bound-free absorption: This is the absorption of a photon by an atom
during which a bound electron makes a transition to a continuum state, also
called photoionization. It is a true-absorption process, and its inverse is radiative
recombination.
(3) Free-free absorption: This is the absorption of a photon by a continuum
electron as it passes an ion and makes a transition to another continuum state
of higher energy. It is a true-absorption process, and its inverse is called
bremsstrahlung.
(.~) Scattering from free electrons: This is the scattering of photons by indi
vidual free electrons in the gas, commonly called Compton scattering, or in the
nonrelativistic approximation usually applicable in stars, Thomson scattering.
It is not true absorption, inasmuch as the scattered photon energy equals the
incident energy.

Calculation of the cross section for these processes involves the quantum
mechanics of atomic transitions. For most astrophysical energies the electro
magnetic field can be treated as a classical perturbation on a quantum-mechanical
atomic system, although in a complete theoretical treatment the electromagnetic
field is also quantized. The technique employed to calculate the transition rates
is called time-dependent perturbation theory.

The quantum theory of the opacity of matter depends upon the interactions of
charged particles and electromagnetic waves such that energy is either absorbed
from the electromagnetic wave or emitted as an electromagnetic wave. In the
absorption or emission process the charged particles must change their state.
We shall introduce the physical ideas within the framework of the quantum
mechanics of atomic transitions, an outline of which follows.'

1 The treatment is standard. As a guide we follow the discussion in E. Merzbacher, "Quantum
Mechanics," chaps. 19 and 20, John Wiley & Sons, Inc., New York, 1961. The point of the
following material is not so much to provide a discourse on quantum mechanics as it is to illus
trate how the opacity problem fits within that framework.
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When the hamiltonian is independent of time, the development in time of the
particle wave function is relatively straightforward. The Schrodinger equation

in dif;(t) = "Hif;(t)
dt

is first solved for the orthonormal energy eigenstates given by

(3-65)

(3-66)

The wave function is then expressible (by completeness) as a linear superposition
of energy eigenstates

(3-67)

which clearly satisfies Eq. (3-65). This wave function can be matched to an
initial state if;(to) by choosing the coefficients as

Cn = (if;nlif;(to» exp (~Ento) (3-68)

where the bracket represents the overlap integral of the initial state with the
energy eigenfunction. It can be seen that if the particles are initially in one of
the energy eigenstates, all other values of Cn are zero for all time: the state is
stationary..

In characteristic opacity problems, the stationary states of charged particles
are altered by a momentary perturbation, a passing electromagnetic pulse, for
instance, or the time-varying electric field produced by the near passage of a
charged particle. In such cases, the total hamiltonian for the particles being
considered is not constant in time, and there are no stationary states. But if the
perturbation is limited in space and time, the system may be regarded as being in
a stationary state before the perturbation appears and in a stationary state after
the perturbation has vanished. If the final state differs from the initial state,
it is said that the perturbation has produced a transition. This sequence of
events suggests that the total hamiltonian be considered as a sum,

H = u, +V(t) (3-69)

where H 0 is the time-independent operator and Vet) is the time-dependent pertur
bation. (The treatment is still correct, and very useful, even if V is independent
of the time and represents only a small perturbation to an easily solvable hamil
tonian.) Both before and after the transition the system is regarded as being
approximately in a stationary state of H o. If the perturbation V were in fact
absent, the eigenfunctions would be given by the equation

H oif;n (0) = En(O)if;n (0) (3-70)

where the zero superscripts designate the quantities as being the zero-order
approximations relevant to the unperturbed hamiltonian. In the absence of
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perturbation, the development of the wave function in time would again be as in
Eq. (3-67). The presence of the perturbation renders that treatment incorrect,
but it will be legitimate to expand if;(t) in terms of the unperturbed eigenfunc
tions if the coefficients are now regarded as functions of time:

if;(t) = I cn(t) exp ( - i En(Olt) if;n(Ol (3-71)
n

The coefficients

cn(t) = i1n(Ollif;(t» exp (i En(Olt) (3-72)

are the probability amplitudes for finding the system in the nth unperturbed state.

Problem 3-5: By substituting Eq. (3-71) into the equation of motion and using the ortho
normality of eigenstates, show that the coefficients en change in time according to

(3-73)

where fLWkn "" Ek(Ol - En(O) and Vko "" (t/tk(O'IVI"'n(O,). Vkn is called the matrix element of the
perturbation between unperturbed eigenstates k and n. The notation used here is a standard
shorthand:

("'klVlift.> "" J"':(x,y,z) V(x,y,z,t)",.(x,y,z) dx dy dz
space

Solution of Eq. (3-73) will delineate the way in which the state of the system
changes. As each Cn changes, the probability that the system is in the unper
turbed eigenstate if;n(Ol changes as Icn (t)i2.

Suppose for simplicity that the system at the initial time to = - co is an eigen
state 8 of the unperturbed hamiltonian. Suppose furthermore that H 0 possesses
only discrete energy levels. The treatment can easily be extended to continuous
eigenstates later. Then the initial conditions are described by

C.( - co) = 1 for k ;;= 8 (3-74)

If the perturbation is weak enough and acts for a time short enough for the
system to have only a small probability of admixing other states k into the initial
state 8, then the approximation

C.(t) "'" 1 » cit) (3-75)

can be made. Then from Eq. (3-73) the coefficient Ck(t) is given approximately by

(3-76)

If the perturbation is of short duration and sufficiently small in magnitude, each
amplitude Ck will remain small throughout the passage of the pulse, and this fact
has been used in writing Eq. (3-76). Because Vk.(t) is a transient, the integral
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converges to a definite value:

189

(3-77)

(3-78)

(3-79)

The probability that a transition to state k has occurred is equal to 'eke+ <Xl) '2.
It is proportional to the absolute square of the Fourier component of the pertur
bation matrix element V k s evaluated at the transition frequency Wk,.

As an example of these formulas and their application to the opacity problem;
consider an atom in a radiation field. To simplify the problem, electron spin
will be neglected, and it will be assumed that only one electron participates-in the
interaction with the radiation, In the absence of radiation, the hamiltonian of
the electron is

p2
tt, = -2 + V cm.

where Vc is the coulomb interaction of the electron with the ion to which it is
bound. The perturbation of the atom is due to an external electromagnetic field,
which can be described by a scalar potential cf> plus a vector potential A. When
this perturbation is added, the total hamiltonian becomes!

H = [p + (e/e)A]2 + V
c

- ecf>
2m

Because 'the electromagnetic field has no sources near the atom, the field can be
described in terms of A alone:

cf>=0 v :« = 0 (3-80)

Problem 3·6: Using the fact that in coordinate representation the electron's momentum
operator is p = (hji)v, show that the hamiltonian is

e e2

H = H o +-A·p +_-A2
mc 2mc 2

(3-81)

In first-order interactions, the final term gives a much smaller effect than the
second term, and so the perturbing potential for atoms is V = (e/me)A· p. It
turns out that the term in A 2 is important for scattering of electromagnetic waves
from free electrons, however, so that one should not forget its presence in case the
A . p term gives no first-order transition.

An arbitrary pulse of radiation can be written as a Fourier superposition of
harmonic plane waves

A(r,t) = 1-'''", A(w) exp [ -iw (t - n ~ r) ] dw

1 This expression is also the classical one. See H. Goldstein, "Classical Mechanics," p. 222,
Addison-Wesley Publishing Company, Inc., Reading, Mass., 1953. The electron charge is
q. == -e.



190 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

(3-84)

(3-83)

(3-85)

where n is the unit vector in the propagation direction and Fourier component
A(w) must satisfy A*(w) = A( -w) in order that A be real. The condition
V • A = 0 further requires the wave to be transverse: n- A(w) = O.

The perturbation V is then written

e f'" [. ( n . r)JV = _. exp -~w t - -- A(w) • p dw
mc -'" c

The matrix element Vks between two states whose wave functions are symbolized
by the bra (lei and the ket Is) is

v., = .!- t: (lei exp (i ~ n . r) pis) . e-iwtA(w) dw
mc -'" c

giving the transition amplitude

Ck( + (0) = _.i:!- ff'" (lei exp (i ~ n . r) pis) . A(w)ei(W.,-w)t dt dw
hmc c

-'"

The integral J-"'", ei(Wk.-W)t dt is equivalent to 21l'O(Wks - w), where O(Wks - w) is the

so-called delta function,! defined such that

J-"'", f(w)o(wks - w) dw = f(wks) (3-86)

It follows that

Ck(+ (0) = - ~1l'ie (lei exp (i Wks n . r) pis) . A(Wks) (3-87)
Itmc c

The result shows that only the radiation field at frequency Wks contributes to the
absorption. This is the frequency condition originally postulated by Bohr, viz.,
that the photons absorbed in making an atomic excitation between states k and s
must have frequency nWks = Ek - Es'

This treatment has corresponded to the absorption of photons of frequency
Wks in the excitation process from s to k, but the .same pulse can also cause down
ward transitions from k to s provided atoms exist in the state k. This process
corresponds to stimulated emission. Because the energy of the transition is then
Wsk = -Wk., and because the perturbation hamiltonian is a hermitian operator.?
which means that inv». = J(Vif;k)*if;s, it is immediately demonstrable that .the
transition amplitude from k to s is

which means that the two transition probabilities are equal. This property is
known as detailed balancing. The excess energy nWsk appears as an added photon
of energy nWsk in the radiation field. When the electron spin and its coupling
to form the total angular momentum of the atomic states are taken into account,

1 See Merzbaeher, op, cit., p. 80.

2 See ibid., p. 141.
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(3-89)

along with the different numher of substates in the initial and final levels of an
atom, one obtains the ratio of two of the Einstein coefficients described in Eq.
(1-33) :

Bk8 2Js + 1 (3-88)
B sk = 2Jk + 1

If we let the electromagnetic pulse be plane polarized with the direction of
polarization e, then A(w) = A(w)e, and the transition probability is

47T
2
e

2

I ( Wk ) 1
2

!Ck(+ 00 )1 2 = 7i2m2c2IA(Wk8)!2 (k! exp i -; n· r p. ejs)

The stellar opacity problem deals with the concept of the absorption cross sec
tion, which enters into the mass absorption coefficient. From the photon point
of view, the cross section is given by the ratio of the number of photons in the
small frequency interval dw absorbed per atom to the total number of photons in
the interval dw per unit area to which the atoms were exposed. The discussion
of the radiation field has been presented in a classical way, however, so that the
equivalent operation is to compare the average energy absorbed per atom from
the pulse to the total energy of the pulse, again within a small frequency interval.
From the classical field point of view, the energy flux in the pulse is given by
Poynting's vector, which is in gaussian cgs units,

C
S = -E xH

47T
(3-90)

The field vectors E and H for the electromagnetic waves being discussed are
derivable from the vector potential according to

1 aA
E = --

C at H = vxA (3-91)

By employing these relationships along with the representation of the radiation
field used in Eq. (3-82), the energy flux is

S = ~ E X H = ~ (- ! aA) X (v X A)
47T 47T C at

- ~ {J_OOoo -t·wA (w)e exp [ -iw (t - n ~ r)]dW}

HI~oo iw'A(w')(n X e) exp [ -iw' (t - n ~ r)]dw'} . (3-92)

Because the wave is transverse (e' n = 0), the triple product is e X (n X e) = n,
giving

S = - 4:c Jj ww'A (w)A (w") exp [ -i(w + w') (t - n ~ r)]dw dw' (3-93)
-a>
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The energy carried by the pulse through unit area is given by the time integral
of the flux as the pulse passes by

E = I-"'", Set) . n dt (3-94)

This time integral again yields the delta function 21ro(w + w'), and since
A *(w) = A (-w), it follows that

(3-95)

(3-98)

Thus the energy per unit frequency interval in the pulse is E(w) = (w2/c)IA(wW,

and that value can he inserted in Eq. (3-89) when forming the energy absorhed
from the pulse:

iiWk.lck(+ 00 )1 2 = 4~e2~(wk') I (lei exp (i Wk. n- r) p' ejs) 1
2

(3-96)
m CWk. C

The absorption cross section at frequency W is defined as

( ) energy absorbed/initial state s at frequency W (3-97)
uw = incident energy/unit area at frequency w

where both numerator and denominator are measured in the same infinitesimal
frequency interval. Apparently Eq. (3-96) is now in that form. The absorption
events are basically of three types: (1) the bound-bound absorption, characterized
by line transitions between discrete states; (2) the bound-free absorption events,
where the final electron state lies in the continuum; and (3) the free-free absorp
tion events, where both the final and initial electron states are in the continuum.
The type of process determines the wave functions used for the states represented
by (lei and Is).

(1) BOUND-BOUND ABSORPTION

If the two states are discrete, the absorbed energy is at the unique frequency Wk•.
From Eq. (3-96) the cross section must be (designating e2/iic == a = 1/137.04)

41r
2
a 1 ( Wk) 1

2
u(w) = -2- (kl exp i -2 n . r p. ejs) o(w - Wk.)

111 Wk. C

such that the integral fE(w)u(w) dw gives the energy absorbed from the pulse.
The form of this cross section is such that it is infinite for an infinitesimally
narrow range of frequencies at Wk., as represented by the delta function. Actual
atomic lines are not infinitely sharp in energy because the initial and final electron
states are not. All excited states have finite lifetimes against decay. Because
time and energy are conjugate variables, a localization in time must introduce an
uncertainty in energy in the spirit of the uncertainty principle. Since the life
time r represents the uncertainty in time with which the state can be localized,
the uncertainty in energy r must satisfy rr = h, When account is taken of the
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finite width, the analog of Eq. (3-98) must be

r u(w) dw = 4:
2a

I (k/ exp (i Wk, n . r) p . e]s) 1
2

(3-99)
}Aw m Wk, C

where Aw is a small frequency band that contains the line shape, that is, ti Aw is
of the order r, and it is assumed that the spectral energy E(w) remains roughly
constant at E(Wk') over the width of the line. Equation (3-99) measures the area
under the cross-sectional curve. The shape of the cross section itself is not given,
although it has apeak at w = Wk.. and a width of order r. The idealized line
shape can be seen from the following argument, however.

When placed in a quasistationary state 1fk(O), the wave function will not only
change its phase in time, as for a stationary state, but will also decay expo
nentially with its mean life T, giving a wave function of the form

1fk(t) ::::< exp ( - ~T) 1fk(O) exp ( - ~ Ek(O)i) for t > 0 (3-100)

such that fl1fk/ 2dV = exp (-tiT). But because the energy operator is

ti as; = -""[ at

the probability that the state has energy E is given by a Fourier decomposition
into. energy eigenfunctions:

1f(t) = j:", q,{E) exp ( - ~ Et) dE (3-101)

where /q,(E)12 measures the probability that the state has energy E. By the
Fourier integral theory q,(E) must then be proportional to

q,(E) a: t : exp [i. (E - Ek(O»t - !:-J dt (3-102)
}o ti 2T

The probability that the state has energy E must be unity when summed over
all energies.

Problem 3·7: Show that the normalized probability distribution for the state energy is

h dE
P(E) dE = 211"'T (E - Ek (O»)2 + (h/2r)2 (3-103)

It is evident that the probability has fallento one-half maximum at the energy
E! = Ek(O) ± ti/2T, giving a full width at half maximum equal to r = tilT, as
inferred from the uncertainty principle. Although it is off the present subject,
we note that the same state profile will be important for nuclear states when con
sidering the thermonuclear reaction rates (Chap. 4). For present purposes we
note from this result that the line-absorption cross section takes the form

u(w) = 1';::. I(k/ exp (i w;, n . r) p . e]s)r(w Wk~~2~h(rl:tli)2 (3-104)
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(3-105)

This cross section displays the characteristic Lorentz resonance shape observed
in absorption lines. In much of the astrophysical literature the cross sections
are discussed in terms of so-called oscillator strengths of the transition. For a
linear harmonic oscillator with direction of motion parallel to the polarization e,
the integrated cross section is equal to!

f
27f"2e2 27f"2Jia

u(w) dw = -- = --
ilw me ni

Actual lines are measured against this standard by multiplying the oscillator
cross section by a factor j, the oscillator strength, which represents how strongly
the line absorbs. Specifically

() 27f"2e2 I. r/27rn (3-106)
a w == mc ks (w - wks)2 + (r/2li)2

Evidently the oscillator strength is contained in the matrix element of Eq. (3-104):

fks = .l< 2 I (lei exp (i Wks n . r) p . els) 1

2

(3-107)
nmoi, C

The evaluation of the importance of atomic lines in the radiative transfer
opacity problem depends upon the extent to which lines block out the spectrum.
This in turn depends upon the oscillator strengths of the lines, the density of the
lines in frequency, and the widths of the lines. With regard to the last point it
will be noted only that the lines are much broader than their laboratory counter
parts, because all atomic states are broadened by the state of the plasma
Doppler broadening, Stark broadening, and collisional broadening. Other per
turbations caused by the charged-particle gas shorten the lifetimes of states and
therefore increase their widths. Several different attempts have been made to
estimate the line widths in the ionized gas. The subject is difficult but fortu
nately does not appear to be extremely important to the interior opacity problem,
where the number of absorbing lines is usually great enough for the overall opacity
to be relatively insensitive to the uncertainties in line widths and shapes."

Quantitative application of these results depends upon the simplification and
evaluation of the matrix element. The commonest and most important simplifi
cation results from the observation that the wavelength of the incident light is
usually long compared to the dimensions of the absorber. That is,

A = 27rc» f (3-108)
Wk.

where f represents some average dimension over which the interaction occurs.
In that case the exponential operator in the matrix element may advantageously

1 See ibid., p. 454, for the quantum treatment, or W. Panofsky and M. Phillips, "Classical
Electricity and Magnetism," eq. 21-59, Addison-Wesley Publishing Company, Inc., Reading,
Mass., 1955, for the classical treatment, which gives the same result.

2 A. N. Cox, J. N. Stewart, and D. D. Eilers, Astrophys. J. Suppl., 11:1 (1965).
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be expanded,

exp (i w;s n- r) ",. 1 + iw;s n- r + (3-109)

and because each term is successively smaller, the matrix element may be approxi
mated by the first nonvanishing term in the corresponding series of matrix
elements

(kip. e]s) + (kli Wk. (n- r)p • e]s) +
c

(3-110)

The rapidity of this convergence can be seen by noting from hydrogenlike atoms
that hWks must be of the order of the binding Z2e2/ao, whereas f must be of the
order ao/Z. Thus

w;f = :::: ~o = Z ~: = aZ = 1~7 (3-111)

is a measure of the ratio of the intrinsic size of succeeding terms in the expansion.
The first term of the expansion gives, as we shall see, the electric-dipole matrix
element (commonly called allowed since these are the strongest lines except when
the matrix element vanishes), whereas the second term gives the electric-quad
rupole and magnetic-dipole matrix elements (commonly called forbidden since
they. are generally important only if the electric-dipole transition is forbidden by
the vanishing of its matrix element). Only the electric-dipole transitions need be
considered in the stellar opacity problem, although forbidden transitions have
very important astrophysical applications in low-density gases such as gaseous
nebulas. Higher-moment transitions are strong in nuclear transitions because
characteristic nuclear energies are 106 times as great as atomic energies, and
although the nuclear size is about 10-4 of the atomic size, the ratio wf/ c is no
longer extremely small. In fact, the adjective forbidden is not even used in
discussion of nuclear gamma rays.

What must be evaluated in the electric-dipole transitions is then the component
of the matrix element (klpls) in the" direction of the photon polarization e.
Although this analysis can be carried through with aid of the momentum operator
itself, the common practice is to further simplify the problem with the aid of a
formal quantum-mechanical result. Suppose

p2 1i2 (a2 a2 a2)
H o = 2m + V(x,y,z) = - 2m dx2 + ay2 + az2 + V(x,y,z) (3-112)

as in the case of an atom. Then the commutator of any position coordinate with
the unperturbed hamiltonian is

HoX'- »H« = _!E... (~x - x~) = -2~~ (3-113)
2m ax 2 ax 2 2m ax

Problem 3-8: Confirm Eq. (3-113). Keep in mind that this commutator is an operator on
some other function of position.



196

Evidently

PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

iii
H or - rHo = - m P

With this operator result, the matrix element can be transformed to

im
(klp\s) = T (klHor - rHols)

(3-114)

(3-115)

By the hermitian property of H 0 the first term yields the energy eigenvalue of
state (k\, and the second yields the energy eigenvalue of state Is):

(klp\s) = i;; (Ek(O) - E.(O»)(klrls)

= imwks(klrls) (3-116)

With the aid of this result, the integrated cross sectionin Eq. (3-99) becomes

E.", u(w) dw = 41r2aWk.l(klr· els)12 (3-117)

and the oscillator strength becomes

(3-118)

In the interior of a star the directions and polarizations of the photons are iso
tropic. It is accordingly appropriate to average the product r- e over the
directions:

I(klr· els)12 = tl(klrls)\2 (3-119)

For the problem of bound-bound absorption the states k and s are spatially
represented by wave functions. If electron spin is ignored, as is justified for
electric-dipole absorption, and if only the electron making the transition is
considered, then the functions

tfk = RkZm(r)Yr(O,t/J)

are the eigenfunctions of the bound-state Schr6dinger equation1

li2
- 2m \!2tf!k + V(r)tfk = Ektfk

The spherical harmonics> for m 2:: 0,

"[2l+1(l-m)!J! .Yzm(O,t/J) = ~ (l + m)! (-l)me,m<PPzm(O,t/J)

are orthonormal in that

1 See Merzbacher, op, cit., chap. 9.

2 For m < 0 we have Y1m = (_l)mY,m*.

(3-120)

(3-121)

(3-122)

(3-123)
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and the radial functions are normalized such that
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(3-124)

For the special case of a hydrogenlike atom, V = -Ze2/r, and the functions Rk 1m

become the well-known Laguerre polynomials of the hydrogen atom. For more
complex ions the effective potential must be found by an approximate self
consistent technique, from which the function R can be calculated by numeric
techniques and tabulated. For the moment we may ignore the form of R(r) and
obtain the selection rules for electric-dipole radiation.

Problem 3·9: Show that the matrix element may be written

I(klrls)12 = tl(klx + iyls)I2 + tl(klx - iYls)12 + l(klzls)12

= tl(klr sin 0 ei4>ls)12 + tl(klr sin 0 e-i4>Is)12 + I(klr cos 01s)12

With the results of the preceding problem, the three matrix elements are

(n'l'm'lx ± iYlnlm) = R~?, f YZ:'* sin 0e±i4>Y1m dn

(n'l'm'lzlnlm) = R~?, f Yi'* cos 0 Yr dn (3-125)

where

(3-126)

The spherical harmonics have the property that the angular integrations vanish
and no electric-dipole transitions occur unless

l-l'=±1 m. - m' = 0, ±1 (3-127)

(3-128a)

These are the familiar angular-momentum selection rules for electric-dipole
transitions. If l' = l + 1,

I(n' l ' m + 1lrlnlm)12 = ~ (l ± m + 1)(l ± m + 2) (Rn'I')2
, - 2 (2l + 1)(2l + 3) nl

1< 'l' [r] l )1 2 = (l + m + l)(l - m + 1) (Rn'I')2
n m n m (2l + 1) (2l + 3) nl

and if l' = l - 1,

I( '1' + 111 l )12 - 1 (l:+ m)(l :+ m ~ 1) (Rn'I')2
n ,m - r n m. - 2 (2l + 1)(2l _ 1) nl

I( 'l' III )12 - (l + m)(l - m)
n ,m r n m. - (2l + 1)(2l _ 1)

(3-128b)

The total transition rate from a given state nlm. to all the substates of the level
n'l' is obtained by summing over the allowed values of m', The result for
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l' = l + 1 is

Ll(n'l'm'lrlnlm)12 = ~l~ 11 (R~t)2
m'

and for l' = l - 1

Ll(n'l'm'lrlnlm)12 = 2l ~ 1 (R~n2
m'

(3-129)

(3-130)

These matrix elements yield the oscillator strengths and the cross sections. It is
worth noting that the transition rate is independent of the m quantum number
of the particular initial substate.

Problem 3-10: Let the upper of two atomic states have angular momentum l' and the lower
have angular momentum l. Show that the ratio of the absorption rate per atomic state l to
the induced-emission rate per atomic state l' is given by

B!l' 2l' 1
Bill = 2l + 1

As an example, consider the Lyo absorption cross section, i.e., from the Is to
the 2p level of hydrogen. We have in this case

fks = 2m",Wk' l(k lr . els)12 = 2~;k' l(klrls)12

_ 2mwk8 (R21)2 (3-131)-3h 10

inasmuch as l' = l + 1 and l = 0 in Eq. (3-129). For this transition

1 3 e2

/iwk, = 1 - 22 Ry = "4 2ao

where ao is the Bohr radius (ao = /i2/me2).

Problem 3-11: Show that the oscillator strength is a dimensionless number.

Problem 3-12: The normalized radial wave functions for the Is and 2p levels of hydrogen are

RI • = 2ao- !e- r /a o

1
R 2 = -- ao- ire-r/2ao

1J 20
Calculate the square of the radial matrix element- (Rn)2.
Ans: 1.66ao2•

I The radial matrix elements for hydrogen may be found in E. U. Condon and G. H. Shortley,
"The Theory of Atomic Spectra," p. 133, Cambridge University Press, New York, in a slightly
different notation.
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Problem 3-13: Calculate the oscillator strength for Lya.
Ans: f = 0.42.
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(3-132)

(3-133)

Problem 3-14: The lifetime of the 2p state is given by h/r = 0.16 X 10-8 sec. Calculate the
peak cross section at the Ly« resonance.
Ans: 7.2 X 10-11 em".

Although this example is the simplest of all atomic absorption cross sections, it
has illustrated the major features of the physics.

(2) BOUND-FREE ABSORPTION

In the ionization process the absorption of a photon by an ion leads to the emis
sion of an electron into a continuum state. The wave functions Vtk and VtB

must accordingly correspond to those for a continuum state and a bound state,
respectively. The conservation of energy requires the photon energy to be equal
to the sum of the electron binding energy plus its kinetic energy upon ejection:

p2
ftWkB = X + 2m

These features alone introduce several differences from the bound-bound absorp
tion case. First, there exists a threshold in frequency for each ionization process
such that a = 0 if ftw < x. Second, we expect a smoothly varying cross section
for tu» > X inasmuch as suitable continuum states of all energies are available.

A brief simplified review of the laboratory interaction of x-rays with matter
will provide a good starting point for the discussion. It is found that when a beam
of monochromatic x-rays of intensity 10 is passed through a thickness x of absorb
ing material, the intensity decreases exponentially with absorbing path length.
One may write I = 10 exp (-j.Lx), where j.L is called the linear absorption coefficient.
By changing the density of the absorbing material, it is found that the attenuation
is proportional, for a given absorber, not to the path length but rather to the
number of absorbing atoms in a column of unit cross-sectional area. (For instance,
a gas target could easily be compressed for comparisons at differing density.)
The fact that the reduction in intensity is exponential in the number of absorbing
atoms per cubic centimeter led directly to an interpretation based on the prob
ability per atom of absorbing photons. That probability is measured by the
atomic absorption cross section, which is defined by imagining one atom in a flux
of photons:

probability of photon absorption/unit time sec-1
u = "---'._--=---;;---:;-~---:---"-----'----- ---;:----:

flux of photons cm-2 sec?

It then follows that the reduction of intensity in traversal of thickness dx of
absorber having Nop/A absorbing atoms per cubic centimeter is given by

Nopst = -uT1dx
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According to Eq. (3-13), then, the mass absorption coefficient K is

No
K = TU (3-134)

Experiments reveal that for a target of given atomic species, the mass absorption
coefficient varies with wavelength in the manner illustrated in Fig. 3-7. The
opacity is found to rise monotonically until it reaches a critical wavelength,
whereupon it drops discontinuously, to be followed by another smooth rise, etc.
The opacity is due to the absorption of a photon, its energy being converted into
that necessary to ionize an electron plus the kinetic energy of the liberated
electron. The discontinuous drops in absorption occur when the wavelength
becomes so long that the photon energy nil = ne/A becomes insufficient to ionize
a given type of electron. For instance, the first abrupt drop in Fig. 3-7 occurs
for wavelengths too long to ionize the most tightly bound atomic electrons (the
K electrons; n = 1). The next abrupt drop occurs for wavelengths too long to
ionize the n = 2 (L shell) electrons (there are actually three different classes Li,
Ln , and Ian of n = 2 electrons with approximately equal binding energy).
Between the shell edges, it is found that the absorption increases as A3 and as the
fourth power of the charge of the nucleus of the atom, so that the atomic cross
section can be represented by the formula

U "'" { CKZ
4A3 + bs:

CL IZ 4A3 + bL I

(3-135)

where the constants b are small and the characteristic wavelengths are

he
AK = XK

he
- = XLI
ALI

K binding energy

Lr binding energy

and so on. The first two constants are measured to be CK = 2.25 X 10-2 em"!
and CL I = 0.33 X 10-2 om:". .

From the shape of the observed cross sections one can see that u(w) is largest
near the threshold and falls off smoothly at higher frequencies. In the stellar
opacity problem there can clearly be no absorption unless there are bound
electrons. From the Saha equation it is clear that at moderate density there will
be no bound levels except those for which X is comparable to, or greater than, kT.
Since the most important frequencies in the Rosseland mean are of order of a few
times kT, we shall expect absorption near the thresholds to dominate in the
stellar opacity problem. This fact introduces considerable computational
complexity into the calculation for this reason: for photons with energy slightly in
excess of the threshold the ejected electrons have small kinetic energy, which in
turn means that the continuum wave function Vtk will be appreciably perturbed by
the coulomb potential of the ion from which it is ejected. For accurate calcula-
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Fig. 3-7 The dependence of the mass absorption coefficient of neutral atoms
of lead on the wavelength h. Photons having wavelengths shorter than the
K absorption edge have sufficient energy to photoeject a K electron from
the atom, and the coefficient is found to decrease as h 3• Larger absorption
edges beginning at longer wavelengths correspond to the less tightly bound
electrons in the L shells. (From F. K. Richtmyer, E. H. Kennard, and
T. Lauritsen, "Introduction to Modern Physics," 5th ed. Copyright 1955.
McGraw-Hill Book Company. Used by permission.)
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tions, therefore, it is necessary to use coulomb functions for if!k' that is, free wave
functions describing a particle moving in a coulomb field.

As a simpler example of the process, however, we shall ignore the coulomb
interaction and assume that the ejected particles may be represented by plane
waves. This assumption can be correct only for photon energies much greater
than X in order that the ejected electron not be too slow. We shall also assume
that the energies are small enough to be nonrelativistic for the electron. It will
also be assumed that the bound-state wave function is hydrogenlike.

The fact that the final state lies in the continuum means that there is a con
tinuum of transition probabilities lek ( + co)l2, one for each final electron state.
Thus if du(w) represents the differential cross section for photoejection into a
differential solid angle dn, its value is

471"2
a I (w) 1

2
Sn.du(w) = m 2w (kl exp i en. r p' e]s) Li.w (3-136)

(3-138)

where Li.n is the number of continuum electron eigenstates in the solid angle dn and
in an energy band corresponding to the frequency interval Li.w about the average
energy Ek = nw - X = nw + E a-

To evaluate this expression a useful crutch is to imagine the problem to be
confined to a very large cube of dimension L containing the atom. Then the
normalized electron plane waves are

n2k2

if!k = L-! exp (~k . r) E k = 2m (3-137)

From the fact that the number of continuum eigenstates with momentum p in the
intervals Li.pz Li.PlI Li.pz is (see Chap. 1)

Li. _ L3 Li.pz Li.PlI Li.pz _ L 3471"p 2 dp
n - h3 - h3

it is easily shown that

Li.n m! v'E L3
Li.E = V2 7I"2fi3

Problem 3-15: Derive Eq. (3-139).

(3-139)

(3-140)

It follows that within a differential solid angle dn

Li.n dn m! v'E L3
Li.w = 471" V2 7I"2h2

If it is assumed that the photoejection occurs from the K shell, the initial wave
function is

1 (Z)! Zrif!. = Rls Yoo =.y; a exp - a (3-141)
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Assemblage of these results in Eq. (3-136) yields

du(w) ok (Z)3IJ (w ) h (Z1') 1
2

-- = --- - exp (-zkor) exp i-nor eo-;-Vexp -- dV
dfJ 21l"2mhw a c z a

(3-142)

Evaluation of the integral can be simplified by using the fact that the momentum
operator is hermitian and that eon = 0; thus

Jexp [i (-k 0 r + ~ nor)] e 0 ~ V exp ( - Z:) dV

= eo J{~V exp [i (k - ~ n) 0 r]}* exp (- ~) dV

= he 0 k Jexp [i (~n - k) 0 r - -::] 1'2 dr dfJ (3-143)

N ow define the vector

q k - ~n
c

(3-144)

Inasmuch as hk is the electron momentum and h(w/c)n is the photon momentum,
hqmust represent the momentum transfer.

Problem 3-16: The angular part of the integral is contained in the factor exp (-iq 0 r). Show
that

J sin qr
exp (-iq 0 r) dO = 411"-

qr

Then evaluate the radial integral using the trick

Jr sin qr exp ( - ~) dr = - :q Jcos qr exp ( - ~) dr

Gathering all the factors yields

du(w) = 32a1ik(e 0 k)2 (~)li(Z2 + 2)-4
dfJ mw a a2 q (3-145)

(3-146)

This formula, which is in good agreement with observations for hw » x. can easily
be converted into a total cross section for the same energy region. Let the angle
between the photon direction and that of the ejected electron be designated by 0,
and let the angle between the photon polarization and the plane of the photon and
electron momenta be designated by cP, as illustrated in Fig. 3-8. Then from
q = k (w/c)n it follows that

(Z)2 (Z)2 (w)2 WII + q2 = a + k2 + C - 2k C cos 0
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Fig. 3-8 Kinematic vectors for the photoionization process. The direction
of photon propagation is n, and its polarization e makes an angle", with the
plane defined by n and the wave number k of the ejected electron. For the
opacity problem one needs the total cross section obtained by averaging over
'" and integrating the differential cross section over 8.

From the conservation of energy, furthermore,

ti,2k2 Z2e2
2m = ti,w - X = ti,w - 2a

where the Bohr radius a = ti,2jme2.

Problem 3·17: Show that

Z2 mw (hk hW)-+q2=2- !--cos8+--
a2 h me 2me2

(3-147)

Consistent with the assumption that the electron velocity is nonrelativistic
we may ignore the photon energy in comparison with the electron rest-mass energy
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and replace tik/mc = vic = (3. Then the differential cross section becomes
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d,q(oo) = 2ak(e. k)2 (.!!-)5 (~)5 (1 - (3 cos 8)-4
dn moo a

(
ti )5 (Z)5 sin? 8 cos- ep= 2ak3 - -moo a (1 - (3 cos 8)4

(3-148)

Problem 3·18: The total cross section may be obtained by integrating over angles. Realizing
that the factor {3 may be ignored in the nonrelativistic domain, show that

811"a (Z)5 ( 11, )5
oo(w) = 3; mw k

3 (3-149)

Both the electron momentum and the photon frequency appear in Eq. (3-149).
From Eq. (3-148) it can be seen, however, that for tioo» X we have k2 """ 2moo/ti.
It follows that at high frequency

(3-150)

(3-151)

This formula is not quite the same form as the empirical results, but near the
absorption edge, where the cross section is largest, one has approximately
At """ A3Ak1, where hC/Ak = Z2e2/2a. Thus near the edge Z5At a: Z4A3. Of
course, this entire treatment is not valid near the absorption edge, but the Z4A3

dependence is approximately correct.
The approximation of replacing the free-electron wave function by a plane

wave leading to this result is called the Born approximation. It is inadequate
near the threshold, where the electron wave function is strongly perturbed by the
coulomb interaction. Because these are the most important frequencies for the
stellar opacity problem, it is necessary to use exact coulomb waves for Y;k. This
calculation will not be detailed here because of its complexity, but the results are
that the cross section for ionization of a hydrogenic electron in a state with
principal quantum number n may conveniently! be written

a = 64n-4mel O Z4 g(lI,n,l,Z)
h-f 3 V3 ch6 n 5 113

= 2.82 X 1029 ~43 g(lI,n,l,Z)
nil

where II is the photon frequency. This result, except for the factor g, was first
derived by Kramers! in a semiclassical calculation. The factor g is commonly

1 For a detailed discussion of this procedure see W. J. Karzas and R. Latter, Astrophys. J.
Suppl., 6:167 (1961), and H. Y. Chiu, "Stellar Physics," Blaisdell Publishing Company, Wal
tham, Mass., 1968.

'Phil. Mag., 46:836 (1923).
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Fig. 3·9 The bound-free Gaunt factors for the photoionization of l = 0
electrons from hydrogenlike atoms. The abscissa is the energy of the
liberated electron in units of Z2 Rydbergs. Near the absorption edge
(log E = - 00), where the cross section is the greatest, the Gaunt factors
are near unity. [W. J. Karzas and R. Latter, Astrophys. J. Suppl., 6:167
(1961). By permission of The University of Chicago Press. Copyright 1961
by The University of Chicago.)
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called the Gaunt factor. Its value depends upon the initial-state quantum num
bers and is a slowly varying function of the photon frequency. For hydrogenlike
atoms, the Gaunt factors are almost all within 20 percent of unity near the
absorption edges, where the cross sections are the largest. Recent accurate
calculations of hydrogenlike Gaunt factors can be found in Karzas and Latter.'
Their values for l = 0 and l = 1 are shown in Figs. 3-9 and 3-10, where they are
plotted against the free-electron energy expressed in Rydbergs per Z2. It can be
seen that they are nearly constant and near unity near the threshold. This
feature has the advantage that in the calculation of the Rosseland mean an
appropriate average g may be used, and the frequency dependence can be regarded
as simply v-3 •

In the interior of a star, where matter is highly ionized, there will be a large
number of hydrogenlike ions from the elements of high atomic number. (When
an ion has more than one bound electron, the nuclear charge Z is usually replaced
by an effective nuclear charge z* that takes into account the shielding of the
nucleus by other bound electrons-no mean calculation in itself!) Each element
in the mixture contributes its share to the total opacity. In analogy with
Eq. (3-134) the bound-free opacity contributed by each bound-electron state is
the product of the ionization cross section from that state and the number of such
bound electrons per gram. One must sum at each photon frequency the absorp
tions due to all processes. The result is that photons can be absorbed by liber
ating bound electrons from all those shells of all atomic species for which the
binding energy is less than the photon energy. Although the absorption cross
section is largest near the edge, one must sum over possible absorptions far from
the edge, since a large number of bound electrons per unit volume in some shell
may dominate the absorption far from the edge. For increasingly higher fre
quencies, one must sum over an increasing number of initial bound states.

Apparently the bound-free opacity will depend upon the numbers of electrons
that are bound in the various atomic states. When the temperature becomes
so high that the ionization is complete, the bound-free opacity falls to zero. But
the average abundance of iron is so high that its bound-free absorption by the
K-shell electrons holds the bound-free opacity up even for temperatures of
several million degrees. What must be done is to calculate, at each temperature
and density and chemical composition, the complete ionization equilibrium to
obtain the occupation numbers for each atomic state. This is a very difficult
calculation in itself, for it introduces not only the uncertainty inherent in the
structure of the many-electron atom but also other collective features such as the
coulomb interactions with the plasma.

Problem 3-19: Show that in the limit of high ionization the average number of bound electrons
of principal quantum number n is

h3
n = n n 2 e+xnfkT

n '2(211"17lkT)!

1 Loc. cit.
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(3) FREE-FREE ABSORPTION

The free-free absorption process is imagined as follows: a free electron of momen
tum p. approaches an ion of charge Z, and in the process of scattering it also
interacts with the radiation field, absorbing a photon of energy nw, and exits with
a new momentum Pk. The conservation of energy applies to the overall process,
so that the relation

2 2
l!!:.- = l!!- + nw
2m 2m

(3-152)

shows that energy was truly absorbed from the radiation field and converted
into kinetic energy of particles. The inverse of this process is called brems
strahlung and is the corresponding process of true emission.

That the ion of charge Z plays a fundamental role in this process can be easily
seen by trying to ignore it. Suppose we naively try to calculate the matrix
element

Vk• = (kJ exp (i~n. r) p' els)

in the Born approximation of representing if;k and if;. by plane waves.
cross section would be proportional to the absolute square of

Jvexp (-'ikk • r) exp (i~n. r) e : ~ V exp (ik.· r) dV

= ne .k, Jexp (-iq . r)r 2 dr dQ

411" 1'" .= e . p. - sm qr r dr
q 0

where

w
q = kk - n - k,

c

Then the

(3-153)

Although the radial integral does not appear to be well defined, it can be thought
of as the limit

Jsin qr r dr = lim Jsin qr e-arr dr = lim ( 2 ~ 2) 2
",-.0 a-lO a q

(3-154)

This limit clearly equals zero unless q = 0; that is, the matrix element vanishes
unless kk = k, + (w/c)n, which can be seen to be a statement of the conservation
of momentum in the interaction of photon and electron. But this requirement is
incompatible with the conservation-of-energy requirement 'in Eq. (3-152).

,

Problem 3·20: Confirm the incompatibility. Evidently a free electron cannot truly absorb a
photon.
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The presence of the ion solves this problem by itself absorbing some of the
momentum. (Because of its large mass that momentum transfer absorbs
negligible kinetic energy, however.)

Proper treatment of this process requires that the interaction of the electron
with the coulomb field of the ion be included. The interaction hamiltonian must
be expressed as a sum of two terms,

H t ot = H f r ee + Ve + Hint (3-155)

where Ve= - Ze 21r is the coulomb interaction and Hint represents the interaction
of the charges with the radiation field.

At this point one faces a choice. If the unperturbed hamiltonian is taken to
be H« = Hf r ee + V e, the zeroth-order wave functions if!kCO) are coulomb wave
functions representing the scattering of the electron by the ion. Then the
perturbation theory can be carried out in first order in the interaction with the
electromagnetic field, although the formal manipulations are rather messy.
Alternatively, one may regard Ho as being H f r ee, in which case the zeroth-order
wave functions are plane waves but the perturbing hamiltonian is the sum of
Ve + Hint. This is the Born approximation again, but because neither piece of
the perturbation hamiltonian acting alone can cause the transition in question,
the simultaneous treatment of these two perturbations requires a more compli
cated form of perturbation theory than that outlined so far. Whereas the
transition probability is proportional to Wk.12 in first order, when that matrix
element vanishes, as it does in this case, a higher order of the theory must be
invoked. In second order the matrix element (kWls) must be replaced by'

V \' VkmVm•
k. ---7 ~ E. - Em

m

This effective transition matrix element describes the transition as a two-step
process in which a virtual transition from the initial state 8 to an intermediate
statem is followed by a second virtual transition from the state m to the final state
k, summing over all intermediate states. An interesting feature is that energy
need not be conserved in the intermediate state m inasmuch as it exists for only a
very short time, during which energy conservation may be violated (the uneer
tainty principle). In the overall transition from 8 to k energy will be conserved,
of course, as in Eq. (3-152). The factor involving the interaction of the electron
with the radiation field conserves momentum, as we have seen, but the interaction
with the ion changes the momentum by any amount, the ion absorbing the recoil.
Thus there are two time sequences for the intermediate state, as illustrated
schematically in Fig. 3-11. (1) The electron absorbs the photon by the Hint
term, yielding electron momentum km = k, + (wlc)n. Then the second matrix
element due to Ze 21r causes a scattering transition from km to kk. (2) The
coulomb matrix element first causes a transition from k, to km, with km chosen such

1 See, for instance, Merzbacher, op, cit., chap. 20.
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Fig. 3-n Feynman diagrams illustrating the calculation of free-free absorption in second-order
perturbation theory. The incoming plane-wave electron is perturbed by the coulomb potential
Vo and by the interaction Hint, with the electromagnetic wave being absorbed. The perturba
tions act in either order, and energy need not be conserved in the virtual intermediate state.
Alternatively, the calculation can be made in first-order perturbation theory if coulomb waves
are used for the unperturbed wave functions.

that Hint has a momentum-conserving matrix element for the absorption of the
photon; kk = km + (wjc)n. The sums must be performed for both sequences of
intermediate states and added together. Then by the "golden rule" of time
dependent perturbation theory, the transition probability per unit time (or the
transition rate) is

_ 2'lT I\' VkmVm'12 (E)
r - n 1.., E. _ Em P km __

(3-156)

where peEk) is the density of final states.
Because of the complexities of this calculation it will not be repeated here.

Calculations of the inverse process (bremsstrahlung) may be found in the litera
ture.! The relationship between the bremsstrahlung cross section and the free
free absorption cross section is discussed by Karzas and Latter." The result is
that in the nonrelativistic region the cross section for an ion of charge Z to absorb

1 See, for instance, W. Heitler, "Quantum Theory of Radiation;" 3d ed., p. 242, Oxford Uni
versity Press, Fair Lawn, N.J., 1954; H. Bethe and E. E. Salpeter, "Quantum Mechanics of
One- and Two-electron Atoms," Springer-VeriagOHG, Berlin, 1957.

2 Loc. cit.
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Fig. 3·12 The free-free Gaunt factors averaged over the maxwellian
energy spectrum of the free electrons. (a) The abscissa is 7 2 =
Z2/kT, with kT expressed in Rydbergs. Each curve is labeled by
the photon energy u = hll/kTj (b) the roles of abscissa and curve
parameter are reversed. [W. J. Karzas and R. Latter, Astrophys.
J. Suppl., 6:]67 (1961). By permission of The University of
Chicago Press. Copyright 1961 by The University of Chicago.]
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Fig. 3·12 (Continued)

1.21-111~--+----l-----+----+-----+-----f

a photon of frequency 1I by a free-free transition can be written

47rZ2e6gf_f(V,1I)

Mf_f(Z,lI,V) = 3 . 1"il3 h 2 3 ne(v) dv
'V o em VlI

(3-157)

where v is the electron velocity, ne(v) dv is the density of electrons having velocity
v in the range dv, and gf_f(V,lI) is called the Gaunt factor for free-free transitions.
The Gaunt factor depends upon the electron velocity and the energy of the
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absorbed photon, and is defined in this conventional way as a correction to 0 a
semiclassical calculation of Kramers.!

If it is assumed that the electron gas is nondegenerate, as is most often the case
when the free-free opacity is of astrophysical importance, the electrons possess a
maxwellian velocity distribution:

( m)! (mv2
) 2n.(v) dv = 41l"n. 21l"kT exp - 2kT v dv

Then the average free-free cross section for photons of frequency v is

(3-158)

Problem 3-21: Carry out this integral to show

(3-159)

(3-160)

where x = mv 2/ 2kT .

The integral in Eq. (3-159) is called the temperature-averaged Gauntfactor:

fi!·f(V,Z,T) = h'" e-"'gf_f(X,V,Z,T) dx

The values of average free-free Gaunt factors are shown in Fig. 3-12. Each
curve is labeled by the photon frequency u = hv/kT. Then fir-f is plotted against
the ratio of Z2 to the temperature in Rydbergs. A little study will show that {ir.f
will be expected to be near unity in almost all astrophysical circumstances.

Numerically Eq. (3-159) becomes

- (Z TO) 3 69 X 108Z2nefir-ftTf.f ,v, =.. T! v3 (3-161)

(3-162)

The free-free opacity is obtained from multiplication by the number of ions of
type Z per gram and summing over Z:

Kf-f(V) = I XA~o itf_f(Z,v)

This contribution to the opacity must be added to other sources before performing
the average over frequencies required for the determination of the Rosseland
mean, but because the free-free opacity dominates the total opacity in some
important areas of the pT plane, it is instructive to examine the Rosselandmean
of the free-free opacity alone. With the substitution u = hv/kT, Eq. (3-51) can

1 Its detailed value is given in ibid., eq. (16) together with several graphs of its characteristic
values.
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easily be reduced to

1 21!"k4 rec u4 exp 2u du
~ = ac3h3 Jo K(u)[exp (u) - 1]3
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(3-163)

(3-164)

(3-165)

(3-166)

which is applicable to all types of true absorption. For the specific case of free
free absorption, however, the opacity can be written approximately as

Kf_f(V) ~ Kv-3 = K (k~Yu-3

where K is a constant dependent only upon the composition if we temporarily
ignore the variation of gf_f(V) with frequency. The resulting expression is

1 21!"k4 (kT)3 1 r'" u7 exp 2u du
K = ac3h3 h K Jo [exp (u) - 1]3

Inasmuch as the integrand has a maximum at u = 7, the average Gaunt factor to
be used in calculating K is approxiinately (gf-f) ~ (h-f(U = 7). Evidently
Eq. (3-165) may be thought of as being of the form

1 1
K= K(v-3)

where (v-3 ) is the average of v-3 introduced by the Rosseland mean.

Problem 3-22: Show by evaluating (approximately) the integral in Eq. (3-165) that

[ (kT)3J-l(v-a) = 197 h (3-167)

The results of this problem show that the act of performing the Rosseland mean
for free-free opacity is approximately equivalent to replacing v3 by 197(kTjh)3 in
the formula for Kf_f(V). Note that kTjh is the frequency of a thermal photon, and
so the effective photon energy for free-free absorption is

(hV)eff ~ 5.82kT free-free (3-168)

With the aid of this result, Eq. (3-161) for the Rosseland mean cross section for
free-free absorption is

(O"f_f) = 2.07 X 10-25 ~~. (h-f(U = 7) em-

= 1.25 X 10-1 Z2{h_f .E: cm2

11,. T3.5

~ 6.25 X 10-2(1 + X)Z2{ir_fPT-3.5 (3-169)
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From Eq. (3-162) the Rosseland mean opacity becomes

(3-170)

Kramers first made this demonstration, and for that reason any opacity of the
form pT-3.5 is called a Kremers opacity. Approximate formulas with that density
and temperature dependence have frequently been used in investigations of
stellar structure because it turns out the bound-free opacity follows approximately
the same form over a limited region. For detailed computations of stellar struc
ture on digital computers, however, it is preferable to interpolate opacities from
published tables.

If the electron gas is partially degenerate, the averaging process is somewhat
more complex in that the Fermi-Dirac distribution must be used for ne(v), and a
factor should be included to contain the probability that the final electron state is
not already occupied. In the higher range of electron density, moreover,
shielding (collective interactions) may playa role in the absorption cross section.
The cross sections discussed here are those for a pure coulomb potential and are
slightly larger than those obtained with a Debye-Huckel potential, say.

(4) SCATTERING FROM ELECTRONS

The fourth major source of radiative opacity in the interior of a star results from
the scattering of photons by free electrons in the gas. This scattering opacity is
always present when there are free electrons, but because the cross section is so
small, it is dominated by the bound-free opacity until the ionization is essentially
complete and by the free-free opacity until the temperature is sufficiently great.
In the high-temperature range free electrons represent the major impediment to
the propagation of a photon.

In one way the quantum mechanics of scattering is more complicated than the
true-absorption processes discussed previously; viz., two photons are involved
rather than one. In a full theory of quantum electrodynamics the vector
potential A is expanded linearly in terms of creation and destruction operators for
single photons; therefore, in the other three processes mentioned the interaction
term p . A gives rise to the absorption of a single photon. It is this. quantization
of the radiation field that theoretically describes the fact that energy is generally
emitted as a single photon with transition energy tiw rather than as several
photons. But the matrix element for scattering must involve the destruction of
the initial photon and the creation of the final (scattered) photon, as indicated
schematically in Fig. 3-13, and must accordingly be quadratic in the vector
potential A. If

e e2

No t = - p . A +-- A • A == H.<ll + H!2l
10 mc 2mc2 lOt lOt

(3-171)

then the matrix elements quadratic in A involve the second-order perturbation of
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Fig. 3-13 Feynman diagram for the scattering of a photon
from a free electron. The interaction with the electro
magnetic field must occur twice in this process, with the
result that the cross section is proportional to the square of
the length e2/mc2•

A

A

m~~ and the hitherto neglected m~~:

(kIHintls) = l (kIH(~.m2:~~(l)ls) + (kIH(2)ls)
m

(3-172)

It is immediately obvious that this matrix element is proportional to e2 (instead
of e), giving a cross section proportional to e4 (instead of e2) . The actual calcula
tion of the cross section will not be described here. 1 It turns out that for photon
energies much less than mc2 the answer can be obtained simply from classical
electromagnetism.

When an electromagnetic wave is incident on a free particle of charge -e and
mass m, the particle will be accelerated by the electric field of the wave. This
acceleration will cause radiation to be emitted indirections other than that of the
incident plane wave, viz., scattering. For photon energies much less than me'
the scattered radiation has the same frequency as the incident radiation in the
stellar rest frame. A common result of classical electrodynamics is that the
power radiated into solid angle dn at angle if! to the direction of acceleration a is,
for nonrelativistic particles,

(3-173)

The scattered wave is polarized in the plane containing a arid the direction of
viewing. If the plane wave is moving initially in the Z direction with propaga
tion number k = 2'11-/>- and unit polarization vector e (in xy plane), then the

1 See Reitler, op, cit., p. 211 or J.. M..Jauch and F. Rorlich, "Theory of Photons and Electrons,"
chap. 11, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1955.
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electric field can be written
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E(z,t) = £Eo cos (kz - wt)

Then from Newton's second law of motion

a = -£.!!..Eo cos (kz - wt)
m

(3-174)

(3-175)

The radiated power is a function of time since a itself is a function of time, but
because we are interested only in the average power radiated (scattered), we
content ourselves with the average value of a2, which is

(3-176)

(3-177)

(3-178)

Substitution of Eq. (3-176) into Eq. (3-173) yields the following average for the
scattered power:

dP _ e2 1 e2 E 2 • 2 .1.
dn - 411"c3"2 m2 0 SID 'f'

C 2 ( e2)2 . 2= -Eo - SID if;
811" mc2

The differential scattering cross section may be defined in this classical calculation
as the ratio of the power scattered into unit solid angle to the incident power per
unit area:

da- .:power radiated/unit solid angle
dn - incident power/unit area

But the flux of energy per unit area in an electromagnetic wave is just given by
Poynting's vector for a plane wave:

(3-179)

(3-180)

Substitution yields the differential scattering cross section,

da- ( e2)2. 2- = - SID if;dn mc2

The reader may note with some interest that the constants appearing here are
those which come from the square of the term Hl~~ in the interaction hamiltonian.
The number 1'0 = e2/mc2 = 2.818 X 10-13 em is called the classical radius of the
electron because it represents the radius of a shell of charge e having potential
energy equal to the rest-mass energy of the electron. Apparently it also gives the
effective area of an electron to a photon.

Equation (3-180) is still not in the most useful form for our needs. The angle if;
is the angle between the direction of observation (at angle (J to the z axis) and the
acceleration of the charge (the polarization direction e, which we now take to define
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Fig. 3-14 Kinematic vectors of the scattering of a photon from an
electron. (a) The direction of photon propagation is taken as the
z axis; (b) E is the polarization of the photon; (c) the photon is scat
tered by angle 8 and makes an angle "'with E.

the x axis). The situation is illustrated in Fig. 3-14, from which it is evident that

sin2 1/! = 1 - sin? (J COs 2 ep (3-181)

If the initial wave is unpolarized, the average value of sin2 1/! viewed at anyone
direction (J to the propagation vector of the initial wave is

sin2 1/! = 1 - sin" (J cos2 ep = 1 - t sin- (J (3-182)

This average gives the Thomson formula for the differential scattering cross
section of unpolarized photons:

;; = (~:2)2~ (1 + cos? (J) (3-183)

Several comments should be made about the Thomson scattering cross section.
It is not valid for relativistic particles or for photon energies comparable to me',
Since these restrictions are violated only for very high temperatures (T > 109 OK),
it appears that Eq. (3-183) will be satisfactory to explain the scattering of photons
from free particles in ordinary stellar interiors. The value of the cross section is
seen to be proportional to (1/m)2. Free-electron scattering is, therefore, much
more important than scattering from nuclei, which can henceforth be neglected.
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From an earlier problem we see that in terms of the normalized scattering
phase function the differential cross section may be expressed as .

811" ( e2 )2 dndu = - - p(cos 8) -
3 mc2 411"

= UT [p(COS 8) :~J (3-184)

(3-185)

where UT is total cross section for scattering of photons into all angles by a free
electron, and is called the Thomson cross section:

811" ( e
2)2UT == - - = 0.665 X 10-24 em"

3 mc2

The Thomson cross section is independent of frequency; thus the term K •• in
the Rosseland mean will simply be a constant if the entire scattering opacity is
due to free electrons. Other types of scattering do occur in stellar structure.
For example, photons scatter from ions and molecules in the cooler outer regions
of a star, where ionization is incomplete. The cross section for scatterings of this
type (essentially from harmonically bound electrons) is frequency-dependent and
is called Rayleigh scattering. Inclusion of this type of scattering is important in
the construction of model atmospheres for stars, but for these problems the entire
method of radiative transfer is different. It is sometimes unsatisfactory to rise
the assumption of local thermodynamic equilibrium in stellar atmospheres, which
assumption was instrumental in leading to the definition of the Rosseland mean
opacity for radiative transfer. The complications of atmospheric transfer are
great and have led to the special science of model atmospheres for stars (and
planets). Our major concern in this book, however, is with the problems of the
stellar interior. For temperatures high enough for the scattering opacity to be
significant in comparison with true absorption, it is almost entirely from the
Thomson electron scattering cross section.

Equation (3-:-185) gives the energy removed from a pencil per electron. Since
the opacity is defined in terms of the energy removed per gram, its value may be
obtained simply by the product of UT and the number of free electrons per gram.

Problem 3-23: Show that in the limit of complete ionization

00400
Ke• = -- "" 0.200(1 + Xa)

Pe

where X« is the hydrogen mass fraction.

(3-186)

Equation (3-186) has been found adequate for most of the problems of stellar
interiors. It certainly does not apply when the temperature drops to the point
where the majority of the electrons are not free. In those cases other types of
scattering also occur. The problem is academic, however, since other sources of
opacity (bound-free, free-free transitions) become many orders of magnitude
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greater than Kes in those circumstances, and scattering can be neglected entirely
in the total opacity.

Problem 3-24: Show that in an ionized gas composed of hydrogen and helium the electron
scattering opacity exceeds the free-free opacity only if

T > 4.5 X 106p o.286 Ke. > Kf-f (3-187)

(3-188)

The Thomson cross section is a particularly simple and convenient. one.
Because it is frequency-independent, there is no Rosseland mean to perform
(if other opacity sources are negligible). Because the scattering phase function
is proportional to 1 + cos- 8, the cancellation made in the diffusion theory of
radiative transfer is also satisfied. Unfortunately this happy situation is not
valid at the highest temperature ranges of importance in stellar structure. When
the photon energies become significant fractions of me', recourse must be made to
the quantum-mechanical calculation. The differential cross section is then given
by the Klein-Nishina formula

dO" = dn 0"T!(1 + cos2 8) [1 + 4e
2

sin4 t 8 J
471" (1 + 2e sin2tB)2 (1 + cos- 8)(1 + 2e sin- t8)

where e = hv/mc2• The integrated cross section is

0"=3
T

{1 + e [ 2 + 2e _ In (1 + 2e)J + ln (1 + 2e) _ 1+3e 1
TT e2 1 + 2e e 2e (1 + 2e)2J

Problem 3-25: Show that lim U = UT•

.-.0

(3-189)

At high temperatures tbese exact formulas introduce significant corrections to
the problem of radiative transfer. Not only does the scattering cross section
decrease below the Thomson value, but it can be seen that the scattering phase
function no longer contains only even powers of cos 8. Thus the scattering of
photons into and out of a pencil of radiation no longer cancels.' The energy of
the scattered photon, furthermore, is significantly reduced by the scattering proc
ess at high energy because the fractional shift in frequency tlv/v is of order hvfmc".
The effective result is that the opacity is even smaller than that indicated by the
Klein-Nishina formula.

Problem 3-26: Show that for moderate photon energies. the angular factor 1 + cos- 0 in the
Thomson differential cross section becomes approximately

[
h J-2(1 + cos- 0) 1 + --!- (1 - cos 0)

mc 2

1 D. H. Sampson, Astrophys. J., 129 :734 (1959). For the inclusion of electron degeneracy,
see also C. Chin, Astrophys. J., 142 :1481 (1966), for the effects of degeneracy.
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Finally, it should be noted that at high energy the photons may create a
positron-electron pair in the field of a nucleus; 'Y + Z ~ Z + e+ + e if h» > .
2mc2• The cross section is of order

h» » 2mc2

and so this cross section will not be an important source of opacity. The created
positrons and electrons may be important, however. They increase the number
of scatterers for the scattering opacity, and their annihilation may result in an
important source of neutrinos.

(5) THE TOTAL RADIATIVE OPACITY

In the stellar interior the four sources of opacity discussed previously are the
only ones of major importance. Which form of opacity dominates depends upon
the thermodynamic state, but the general trend is as follows. At low tempera
ture, when a significant number of nuclei are only partially ionized, the opacity is
dominated by bound-bound and bound-free absorption by the bound electrons.
As the ionization nears completion, the opacity due to free-free transitions
becomes dominant, but because the Rosseland mean of Kf-f decreases with increas
ing temperature, a temperature will ultimately be reached where the scattering
by free electrons dominates. Of course, all forms of opacity contribute simul
taneously, and what must be done is first to sum the frequency-dependent opaci
ties, correcting the true absorption for induced emission,

and then form the Rosseland mean. It should also be emphasized that in general
the sum of the Rosseland mean opacities of each component is not equal to the
Rosseland mean of the sum. That is, if K1(V) and K2(V) represent two different
sources of opacity with Rosseland means

1 J f(v) d 1 J f(v) d
(K1) = K1(V) v (K2) =. K2(V) v

then (K1) + (K2) ;6 (K1 + K2).

Problem 3·27: Show that the Rosseland means (k 1) and (k 2) are additive if they are both true
absorption opacities and if they have the same frequency dependence, e.g., free-free absorption
from two different ions Zl and Z2.

The Rosseland mean of an individual component therefore has little meaning
in radiative transfer unless that opacity is the dominant one. It will be instruc
tive, however, to compare the means of specific components of the opacity to the
mean of the total opacity as a nonlinear measure of the importance of the com
ponent. The following simplified problem of a pure hydrogen gas illustrates
some of these features.
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Problem 3-28: Calculate the following details of the opacity of a pure hydrogen gas at a density
p = 10-3 g/cm3• (a) At what temperatures are the Rosseland means of the free-free opacity
and bound-free opacity equal? (Use the Debye-Hiickelmodel to estimate the degree of ioniza
tion.) (b) What are the values at that temperature of (Kb-f) = (Kf-f), Kes, and (Kwt)? (c) At
what temperature does (Kf-f) = Kes? (d) Is the total opacity in this last case equal to (Kf_f) + Kes?
Note: The lengthy calculation of part (a) contains several subtleties for the serious student.
The temperature is found by self-consistent iteration.

The trends in opacity problems can best be illustrated with a few figures.
Figure 3-15 shows a rough division of the pT plane into the dominant sources of
opacity for an average population I mixture. In the high-temperature region
the electron-scattering opacity K,s = 0.20(1 + XH) dominates. As the tempera
ture decreases, Kb_f overtakes Kes at low densities and Kf_f overtakes Kes at inter-

8

-4

Electron scattering

2

/

/

Conduction by
degenerate electrons

Fig. 3-15 The total opacity of population I composition. The pT plane is divided into four
domains according to which opacity source is the most important for energy transport,
electron scattering, bound-free transitions, free-free transitions, and conduction by degener
ate electrons (to be discussed in Sec. 3-4). The lines designating these boundaries are
cross-hatched. Contours of constant opacity are labeled by the value of K in terms of the
opacity K. due to electrons. A dashed "line shows where the degeneracy parameter a = O.
(After C. Hayashi, R. Hoshi, and D. Sugimoto, Proqr. Theoret. Phys. Kyoto, Suppl.22, 1962.)
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mediate densities. At a given value of temperature (say 3 X 106 OK) the domi
nant mechanisms are electron scattering at very low density, bound absorption
at low density, free-free absorption at intermediate density, and electron con
duction (to be discussed later) at high density. (Electron conduction is not a
radiative opacity. It is a physically different mechanism of heat transport,
which becomes more efficient than radiative transport at very high density.)
Also shown as fine-lined curves are the loci of constant opacity, each curve being
labeled by a factor indicating how much greater the opacity is than the electron
scattering opacity.

10 5

10'
10-1L;-----IL..;;~-----:~----_=_=_...---_::_l~----....J

10 3

10 3

10 0

10 '

10 4

Temperature, 0 K

Fig. 3-16 The total opacity of material of solar composition as a function of tem
perature. Each curve is labeled by the value of the density. The range of values
shown was chosen to illustrate the characteristic values of the opacity within the
sun. [After D. Ezer and A. G. W. Cameron, Icarus, 1:422 (1963).]
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Arthur Cox and his coworkers1 at Los Alamos have computed opacities for
11 different composition mixtures. Many of their results for the composition
X = 0.596, Y = 0.384, Z = 0.020 serve as outstanding illustrations of the results
obtained from detailed computations. Figure 3-16 shows the value of the total
opacity as a function of temperature for various values of the density. Two
outstanding features of this figure deserve explicit comments. The large peak
between 104 arid 105 OK is due to the ionization of the principal constituents,
hydrogen and helium. At lower temperatures there are relatively few photons
with sufficient energy for these ionization processes, so that the Rosseland mean
of the cross section is small, whereas at higher temperatures the ionization greatly
reduces the number of bound electrons per gram, with the result that the bound
absorption must again be small. The important result is that the largest radi
ative opacities are found in the hydrogen and helium ionization zones in stars.
As a result the temperature gradients required to radiatively transport energy
through these ionization zones are so large that the zones are almost always
unstable against convection. Second, we note that the opacity approaches the
electron-scattering opacity at high temperature.

One of the outstanding contributions of the Los Alamos group has been their
demonstration of the importance of the hitherto neglected bound-bound absorp
tion. Figure 3-17 shows their calculation of the ratio of the total opacity includ
ing bound-bound absorption to the opacity neglecting that contribution. Appar
ently the bound-bound absorption can increase the opacity by as much as a factor
of 3 in special regions of the pT plane. A diagonal line shows the present con
ditions in the sun, from which it can be seen that the contribution of the lines is
very relevant in astrophysics. This result is for a given composition, but much
the same thing is to be expected for other compositions. Of course, the bound
absorptions and the free-free absorptions are both strongly dependent upon the
fraction by weight Z of the heavy elements. Thus in first approximation the
true absorption is proportional to Z. For a given heavy-element concentration
Z, on the other hand, it is not difficult to see how the opacity depends upon the
abundance of hydrogen relative to helium. The opacity is approximately pro
portional to the number of free electrons per gram for the following reasons:
(1) from the Saha equation it follows that the number of bound electrons in a
highly ionized gas is proportional to the free-electron density, so that for a given
temperature and mass density the number of bound electrons is proportional
to p..-l; (2) the free-free absorption and the electron scattering are explicitly
dependent upon the number of free electrons per gram, i.e., to p..-l. Since
p..-l ~ (1 + X)/2, the opacities for fixed density, temperature, and heavy-ele
ment concentration are nearly proportional to 1 + X.

Although the Rosseland means are nonadditive, the comparison of the mean
of a constituent opacity to the mean of the total opacity is nonetheless a useful
indication of the importance of the constituent. Several curves of this type will

1 For a review see A. Cox, Stellar Coefficients and Opacities, in L. H. Aller and D. B. McLaughlin
(eds.), "Stellar Structure," The University of Chicago Press, Chicago, 1965; also Cox, Stewart,
and Eilers, loco cit.
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Fig. 3·17 The ratio of the total radiative opacity with discrete atomic lines included to its
value without the discrete lines. The conditions within the sun are shown as a point of
reference. It can be seen that atomic transitions increase the value of the opacity by a
significant factor in the sun. [Reprinted from A. Cox, Stellar Coefficients and Opacities, in
L. H. Aller and D. B. McLaughlin (eds.), "Stellar Structure," The University of Chicago
Press, Chicago, 1965. By permission of The University of Chicago Press. Copyright 1965
by The University of Chicago.]

be presented. They are also based upon the work of Cox et al.! on a mixture
X = 0.596, Y = 0.384, Z = 0.020. The number fractions are:

H 0.859
He 0.139
C 0.000342
N 0.000096
o 0.000766
Ne 0.000431
Na 0.000002
Mg 0.000022
AI 0.000001
Si 0.000027
A:r 0.000029
Fe 0.000004

1 Cox, Stewart, and Eilers, Zoe. cit.
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Figure 3-18 indicates how much of the opacity is due to hydrogen by presenting
the ratio of the Rosseland mean of the bound-bound and bound-free opacity from
hydrogen to the mean of the total opacity. It is evident that hydrogen con
tributes most of the opacity in the ionization zone near 104 OK At tempera
tures higher than 105 OK the density of neutral hydrogen becomes insignificant.

Figure 3-19 shows, in a higher temperature-density domain, the importance of
free-free opacity from H and He nuclei only. The decrease at high temperature
reveals the T-3.5 dependence of the free-free opacity, electron scattering taking
over at high temperature. It is equally apparent that free-free opacity is a much
more important source at high density than at low density. In fact, we have
seen that Kf_f is proportional to the density whereas Kes is constant.

Figure 3-20 shows the fraction of the total opacity due to 0, N, 0, and Ne,
the most abundant of the minor constituents of the gas. In the lower-tempera
ture regions of the graph, these elements contribute significantly, especially at

1.0

Fig. 3-18 Ratio of the opacity due to
hydrogen bound states to the total opacity
in a population I gas. This source of
opacity is very important in the hydrogen
ionization zone, but it is negligible deep in
the interior. (Prepared from calculations
provided by Arthur N. Cox.)
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Fig. 3·19 Ratio of the opacity due to free-free transitions in the
field of H and He nuclei to the total opacity in a population I
gas. The transitions are most important at relatively high
densities and at moderate temperatures. Their importance
decreases rapidly with increasing temperature for T 6 > 10.
(Prepared/rom calculations provided by Arthur N. Cox.)

lower densities. This contribution is largely due to the bound-absorption proc
esses. It can be seen that at densities as great as p = 103, on the other hand,
these elements never contribute more than 10 percent of the total opacity, the
reason being that free-free absorption from the more abundant H and He is very
strong at densities that large, as was seen in Fig. 3-19. But at a density p = 0.1
and temperature T = 106, electrons bound to these nuclei account for about half
of the total opacity of the gas.

And finally Fig. 3-21 shows the ratio of the electron-scattering opacity to the
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total opacity. Electron scattering becomes the dominant opacity near 108 "K
for the three densities shown. It takes over more rapidly at low density, where
the competition from free-free absorption is less strong than at high density.
Below 106 "K electron scattering is negligible for all densities of interest.

Much more interesting information is contained in the details of the Los Alamos
results. It should be mentioned that in numerical construction of stellar models,
analytic approximations to opacities are generally discarded in favor of opacity
tables, which may be stored in a computer memory as a grid between whose
points the opacity can be interpolated for any T,.p, and composition. Outstand-
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Fig. 3-20 Ratio of the opacity due to C, N, 0, and Ne to the
total opacity in a population I gas. (Prepared from calculations
provided by Arthur N. Cox.)
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1.0

10-2

5.0 10

Fig. 3-21 Ratio of the opac
ity due to scattering from
electrons to the total opacity
in a population I gas. At
high temperatures the opac
ity is dominated by electron
scattering. The ratio de
creases markedly with in
creasing density as a result of
an increase in the importance
of the other opacity sources.
(Prepared from calculations
provided by Arthur N. Cox.)

20 30 50

ing among these tables are those of Cox et al.,! who evaluate opacities for 11
different astrophysical compositions. Of course, interpolation within a grid is
only a particularly complex form of an analytic opacity, and it is sometimes
found by comparison against computed tables that a relatively simple formula
may adequately represent the opacity over the range of thermodynamic states
anticipated for a particular calculation. The advantage of an analytic approxi
mation, say the Kramers opacity K= KopT-a.s, is that it often allows interesting
theorems to be analytically established from the differential equations. The out
standing account of analytic investigations of stellar structure is to be found in
Chandrasekhar.!

1 Ibid.

2 S. Chandrasekhar, "An Introduction to the Study of Stellar Structure," Dover Publications,
Inc., New York, 1957.
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In particular, he derives (following Eddington) the luminosity of the standard
model with Kramers opacity. From the luminosity formula, Eq. (3-63), we have

£ = 411'cGmt~ - f3c) (3-190)
KTJ

Both the factors 1 - f3 and KTJ are constant within the standard model. If the
opacity is taken to be

K = KopT-3.5 (3-191)

then

which is, for a nondegenerate gas, equal to

- _ a J.I. f3c T-i
KTJ - KOTJc"3 N ok 1 - f3c c (3-192)

Problem 3-29: Use the foregoing formulas along with the others appropriate to the standard
model, Eq. (2-318) for 'I'; and Eq. (2-307) for the relationship of ffil: to 1 - {lc, to show that
for the standard model

.e 1 (ffil: )5.5 (R0)O'5- = 1.8 X 1025- - - (p.{lc) 7.5
£0 K07]c ffil:0 R

(3-193)

Although this formula results in a somewhat steeper mass-luminosity relation
ship than the observed £/£0 <=::: (mt/mt0 ) 4, it does show that the mass enters as
a fairly high power. Equation (3-193) also shows that for a given mass and
energy source, the luminosity depends upon composition roughly as

J.l.7.5
£ 0:: - (3-194)

KO

This rule of thumb will aid in understanding the main sequence.
Chandrasekhar also demonstrates! that the outer layers of stars in radiative

equilibrium having Kramers opacity and low radiation pressure are very similar
to the standard model. Furthermore, he demonstrates- that the interior strue
ture of such stars is a polytrope of index n = 3.25 if the energy generation e is
constant, again much like the standard model. If the energy is all liberated at
the center, on the other hand, the polytropic index varies continuously from the
value n = 3.25 at the radiative surface to the value n = 1.5 at the convective
center. Such conclusions are very illuminating, and although they will not be
repeated in this book, their study is recommended to the serious student.

The energy-transport problem is probably the most difficult one of the many
that enter into the theory of the structure of stars, and one of the most involved

1 Ibid., chap. 8.

2 Ibid., chap. 9.
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aspects of that problem is the radiative opacity. Much has been accomplished,
but much more remains to be done.

3·4 CONDUCTION

Consider the motion of charged particles in an ionized gas. If the gas is non
degenerate, each particle has average energy ET = j;kT. That energy corre
sponds to a velocity VT = (2ET/m)t = (3kT/m)t. It is apparent that electron
velocities are greater than ion velocities by a factor like

(3-195)

If the electron gas is degenerate, the ratio is even larger, since the electrons are
forced into higher momentum states whereas the ions retain the same thermal
velocity. Thus it is physically correct to think of the electron gas as being
composed of fast-moving particles relative to a nearly stationary background of
positive ions.

If the electron gas has a temperature gradient, it seems perfectly clear that
the high-velocity, high-density, high-temperature electrons will migrate more
rapidly toward lower temperatures than the converse. If that is so, a net flux
of electrons will move down the temperature gradient! Such a particle flux in
a star obviously contradicts the usual assumption of constant particle density in
a static star. It would also destroy charge neutrality. But after the charge
neutrality is thrown slightly out of balance, the resultant electric field will retard
the further efflux of electrons. Thus a somewhat more refined picture of the gas
in a star will include a small radial electric field capable of canceling the tendency
of the heavy ions to settle toward the center and the tendency of the fast-moving
electrons to migrate outward. Under those circumstances, there will be no net
motion of electrons in any direction, and the configuration may be regarded as
static.

There may, on the other hand, be a net transfer of energy without any net
transfer of electrons. Figure 3-22 shows a unit area normal to the direction of
the temperature gradient (chosen to be the z direction). The number of elec
trons per unit time passing through unit area in the ±x direction is designated
by is- Particle conservation demands that i+ = j.: On the other hand, the
average energy E+ of the particles passing through in the +x direction need not
equal the average energy E_ of those passing through in the -x direction, espe
cially if the electrons on the left (say) are hotter than those on the right. The
net energy flux Qx = i-rE+ - i-E- need not vanish, and, in fact, it will not van
ish in a stellar interior. This simple discussion shows that the conduction heat
flux will be proportional to the product of the electron current i± and the excess
energy per particle moving in the direction of the heat flow. The value of i will
depend only on the density and velocity of the electrons. It is the calculation of
the excess energy E+ - E_ that is the difficult problem in conductive transport.
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Fig.3.22 The electron current per E_
unit area in the +xdirection is j+,
and the average energy of those
electrons is E+. The current j_ L ...----1
in the -x direction must equal j+
in the steady state, but there is
nonetheless a net energy transport
if E_ ,= E+.

1
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One can see that this excess energy will be roughly proportional to the product
of how steeply the average energy changes with position times the average dis
tance traveled by electrons between (major) collisions. The hotter electrons and
ions will tend to lose energy to their cooler neighbors immediately down the tem
perature gradient. The many collisions will thereby transfer energy in a diffusion
process not completely unlike that of radiative transfer. On the other hand, this
mechanism of transporting energy is usually less efficient than radiative transfer,
a fact that essentially comes about because photons travel much farther between
collisions than electrons do; i.e., photons can "see a bigger temperature drop"
than particles can. The following problem demonstrates this fact for a charac
teristic stellar environment.

Problem 3·30: Consider the problem of an ionized carbon gas at 106OK and a density p = 1
g/cm3• The radiative opacity is dominated by free-free transitions, and the Rosseland free
free absorption coefficient is given by Eq. (3-169):

62(6.02 X 1023)/2

(uJ J) = 207 X 10-25 = 2.3 X 10-21 cm 2

.: (105) 3.5

The l/e length for the characteristic photon is then 4.5 X 1020 ions per square centimeter.
The same ions will scatter nondegenerate electrons according to the Rutherford differential

cross section

:~ = (~::y (1 _ ~os 8)2 5.2 X 10-
27 [E(~eV)T(1 _ ~os 8)2 cm

2/sterad

Compute the number of ions per square centimeter in a 1/elength for electrons of average thermal
energy to backscatter (8 > 11"/2) in a single scattering. (It turns out that many small-angle
scatterings accomplish the same thing in an even shorter distance.)
Ans: 3.1 X 1016 ions per square centimeter.

Now describe at each point r the distribution of electron velocities by a func
tion f(r,v). The notation fer,v) is used as shorthand for f(x,y,z,v z,vll,v.) ; that is,
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it is a scalar function of position and of the magnitude and direction of the elec
tron velocity. Let it physically represent the fraction of electron momentum
states occupied. In thermodynamic equilibrium (no temperature gradient) the
distribution function is isotropic and is equal to (for electrons)

1
fo = exp (a + E/kT) + 1 (3-196)

The subscript zero is attached to designate i« as the equilibrium distribution.
Let the discussion be restricted to nonrelativistic electrons.' The energy E is
just the kinetic energy minus the continuum depression Eo (regarded here as a
positive number), which accounts, as we have seen, for the fact that the electrons
are not electrostatically free. Then, defining

~ = -akT + Eo K = E + Eo = tmv2 (3-197)

we have
1

i« = exp [(K - ~)/kT] + 1 (3-198)

This distribution function is isotropic; its value depends only upon the magnitude
of v. The steady-state distribution function in a temperature gradient will differ
somewhat from fo, however, and in a nonisotropic manner.

The current of particles and current of kinetic energy along any axis can be
expressed in terms of the distribution function:

j", = 2;;(f v",f(v) d3v (3-199)

2m
3 fQ", = 7i3 K(v)v",f(v) d3v

Problem 3-31: Deduce Eqs. (3-199) and (3-200).

(3-200)

The task is to compute the energy flow Q", subject to the steady-state demand
that there be no particle current; that is, [; = o. (Here and in what follows
we shall think of the z axis as being in the same direction as the temperature
gradient.)

For small temperature gradient it is useful to linearize the problem in the first
order perturbations of the distribution function; i.e., it will be useful to write

fey) = fo(v) + (fey) (3-201)

if (fey), the perturbation of fo, is very small compared to fo. This perturbation is
the explicit result of three physical features: (1) the temperature gradient, (2) the
electric field, and (3) collisions. Since the distribution function is to be constant

1 Conduction will be important only in a degenerate gas. The restriction to nonrelativistic
electrons therefore restricts the calculation to densities less than a few times l06 g/cm3• The
relativistic problem may be treated in a similar way, as for instance in Chiu, op. cit.
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in time in spite of the fact that it is not constant in space or direction, its time
rate of change must be zero:

df = (af) + (a
f) + (~) = 0

dt at temp grad at elee field at coli
(3-202)

Each of these three circumstances would cause the distribution function to change
in a calculable way, but since f is unchanging, it must be of such a form that the
physically distinct sources of change cancel each other. The derivatives in Eq.
(3-202) are not partial derivatives in the mathematical sense (time nowhere
appears explicitly) but are total derivatives with respect to specific partial causes.
The student will be well advised to clarify this distinction in his own mind. The
first two terms will be rather easy to evaluate, whereas the third will prove
difficult.

Let us first ask how it is that a temperature gradient will lead to change of dis
tribution function. Consider an infinitesimal pencil of particle velocities about
the velocity v. The number of such particles in a small volume will, after a
short time, be replaced by new particles that have entered the volume from some
other starting point. Because the points differ in temperature; the fraction of
states occupied at the two points differs. The situation is illustrated in Fig. 3-23.
If f(r,v) is the distribution function at r at time t = 0, after a short time t it will
have been replaced by particles that were at t = 0 at the position r' = r - vt.
The rate of change is

(
af ) = lim f(r - vt, v) - f(r,v) = -v", af _ Vl/ af _ V

z
af (3-203)

at vT HO t ax ay az

Since the temperature gradient is taken to be in the x direction, the factors
aflay and afI az vanish. Thus

(~\T = -v", a:x = -v", tf ~; (3-204)

Since the gradient dT[d» is assumed small, the retention of first-order terms in its
effect requires only the use of dfoldT in place of dfldT. That is, the change of
the distribution function with respect to temperature will be given in zeroth order
by the change of the equilibrium function.

Problem 3-32: Show that

dfo = _ afo (dt; + K - t;) dT
dx et: dT T dx

(3-205)

Do you understand that the term dt;/dT is required because all the factors that entered the
definition of t; are functions of the local thermodynamic state?

The change in f due to the electric field can be computed in a similar manner.
In this case, however, the acceleration changes the velocity at all points in space.
That is, the change in the distribution function results from the motion of parti-
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(3-206)

Fig. 3-23 The rate of change of the distribution function due to the
existence of a temperature gradient. In a short time interval t the par
ticles at r' having velocity v move to the point r, but f(r',v) ;;e. f(r,v) if
there is a temperature gradient, so that this spatial migration tends to
alter the distribution function.

cles in velocity space rather than in coordinate space. In a short time /:it, the
electric field E would change velocity to a velocity v - (e/m)E /:it, thereby chang
ing f(r,v) to fer, v - (e/m)E /:it). From this we conclude that

( af ) e E af
at clec field = m '" av",

where the electric field is, like vT, in the z direction. To first order in the per
turbations f may again be approximated by fo, since E",~ 0 in the equilibrium
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state; i.e., the linear dependence on E", already makes this expression correct to
fust order in the perturbations.

From Eq. (3-202) it must follow that

(~)COll =v",:f ~~ + ~ E", :~ (3-207)

Equation (3-207) is called the Boltzmann transport equation. When, as in this
case, the perturbation to f will be small, the linearized Boltzmann transport
equation results:

(
af ) = v dfo dT +!- E afo (3-208)
at call '" dT dx m '" av",

Problem 3-33: Show by manipulating the right-hand side of Eq. (3c208) that

(
af ) afo [ (d~ K - ~) dTJ- -v- eE -+---at coli - % aK % dT T d»

(3-209)

The calculation of conduction usually proceeds along the following lines. 1 One
next tries to calculate from the details of the scattering processes the rate at which
the distribution function would be changed by collisions. That is, given the elee
tronf(v), one calculates explicitly the rates of electron scatterings into and out of
specific volumes in phase space. In fact, for f(v) = fo(v) + g(v), we try to calcu
late the term in the form

(af ) g(v) (3-210)
f)t COll.= - rev)

where rev) is the relaxation time for the perturbation of the distribution function.
That is, if the temperature gradient and electric field were suddenly turned off,
we see that the distribution function would relax to its equilibrium value due to
collisions according to

f(v,t) = fo(v) + g(v,O)e-I/T(V) (3-211)

It remains to be shown, of course, that Eq. (3-210) can conveniently be obtained
in such a form. If it can, the idea will be to insert it in Eq. (3-209) and to calcu
late g(v) in terms of E", and dT[dx. That g(v) can then be used to calculate i,
and Q",. Finally, the demand that i; = 0 will allow E", to be eliminated, thereby
giving Q", in terms of dT[dx.

The calculation of the scattering rates in a very dense plasma is a difficult
problem, however. The coulomb force actually yields an infinite total cross sec
tion for an isolated particle, but in the plasma collective effects become very

1 The treatment is that of L. Mestel, Proc. Cambridge Phil. Soc., 46 :331 (1950). It is a rela
tively simple argument that gives the correct answer for the most common circumstance,
but see the later discussion. Mestel's treatment was adapted from that of R. E. Marshak,
Ann. New York Acad. Sci., 1941 :49, who was-apparently the first to adapt the theory of metallic
conductivity to the stellar problem.
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important in determining the scattering. The energy is of course carried by the
electrons. Because conduction is important only in a degenerate electron gas,
the electrons are faster than the ions by at least a factor of 100. Thus the ions
can be considered as static, but their average position relative to each other does
turn out to be important. Since differing problems are met in considering the
scattering from electrons and the scattering from the ions, we shall briefly con
sider them both.

The scattering of electrons by electrons is usually ignored except in a special
sense to be mentioned shortly. For one thing the scattering from electrons must
be smaller than from ions because the scattering cross section is proportional to
Z2. But even more compelling reasons are to be found in the degeneracy of the
electron gas. For reasons mentioned in Chap. 2 the. electron gas becomes more
perfect as the density increases. Thus the best zero-order approximation to a
degenerate electron gas is a uniform sea of negative charge. And to the extent
that the charge density is uniform, the electrons do not scatter from it at all.
In the scattering of an electron from an electron, furthermore, the momenta of
both electrons are charged; but the rate of any process involving the change of
momentum of an electron in a degenerate gas must be multiplied by the proba
bility that the final electron state is unoccupied. This feature significantly
reduces the scattering of electrons from ions, and it will suppress electron
electron scattering even more because both electrons must have an empty final
state. For all these reasons electron-electron scattering is ignored in the conduc
tivity calculation. The exception occurs to the extent that the ions are shielded
by ion-induced perturbations of the uniform electron density.

The scattering from the ions, then, constitutes the major scattering with which
we are concerned. Here, too, the collective effects may be very important. One
effect is that the ions also shield each other in the following sense. One can think
of an electron as scattering from a given ion if it comes so close to the ion that
the interaction is dominated by that ion. As one imagines larger and larger
impact parameters, which lead to more and more forward scattering, a point is
eventually reached where the impact parameter is halfway to the next ion.' In
such cases the electron cannot be thought of as scattering from an individual ion.
This cutoff has the happy feature of removing the infinity in the coulomb-scatter
ing cross section, an infinity that results from extreme forward scattering due to
collisions at very large impact parameters.

This cutoff due to the collective action of neighboring ions suggests another
difficult feature of the calculation: the scattering depends upon the average rela
tive position of the ions. The value of the conductivity depends upon whether
the positions of the ions are correlated (an extreme example being a lattice) or
uncorrelated (an extreme example being a classical-gas). The amount of scatter-

1 The situation is actually much more complicated. See; for instance, R. S. Cohen, L. Spitzer,
and P. McR. Routly,' Phys. Rev., 80 :230 (1950); L. Spitzer and R. Harm, Phys. Rev., 89 :977
(1953), and references contained therein, particularly to the work of Chandrasekhar.



ENERGY TRANSPORT IN THE STELLAR INTERIOR 239

ing depends upon this correlation. If the ions are arranged in a perfect lattice,
the potential is exactly periodic, and the electrons move as if they were free. For
example, in many solid-state problems where the lattice is nearly perfect the
scattering is due solely to imperfections or impurities in the lattice structure. If
the distribution of scattering centers is random, on the other hand, the scattering
is due to an incoherent sum of the scattering from individual ions. An example
is the gaseous state. Thus in a high-density degenerate gas the conductivity
depends upon the state of the ion component. The ions are, in fact, most often
in a state analogous to a gas, but at very high density and low temperature, the
coulomb interactions of the gas become greater than kT, and the ions arrange
themselves into a solidlike lattice. For intermediate conditions the ions behave
more like a liquid. The division of the pT plane according to the state of the ion
component is shown in Fig. 3-24. The upshot is that a general calculation of the
conductivity should proceed by a fundamental treatment capable of incorporating
the positional correlation of the ion component. In the treatment to follow,
however, which follows Mestel's analysis, the ions are regarded as being inde
pendent and uncorrelated. In defense of this approximation it may only be
surmised that for those astrophysical calculations for which the exact value of the
conductivity is important, the ions are usually in the gaseous state. For such
high density that the ions are liquidlike or solidlike the conductivity is so large
that the medium willbe very nearly isothermal. And inasmuch as the importance
of conductivity in stellar structure lies in its role in the determination of the
temperature gradient required to transport a given heat flux, the greatest accu
racy is required in the lower range of conductivities. We shall therefore use
Mestel's treatment of uncorrelated ions, although it seems fair to say that much
more work could usefully be performed on the conductivity problem. I

Let R+(r, v) dx dy dz do; dVII do; be the rate at which electrons in the volume
dx dy dz at r are scattered into the velocity-space volume dv", dVII dvz about veloc
ity v, and let R_(r,v) be the corresponding differential rate for scattering out of
that volume. R+ and R_ can be computed from the distribution function and
the differential-scattering cross section for electrons on ions. The differential
scattering cross section da/dQ (8,v) has the following meaning: if an ion is bom
barded by a flux F (errr'? sec:") electrons, the number of electrons scattered per
unit time by an angle 8 into a solid angle dQ is F(dajdQ) dQ. The scattering
occurs because of the coulomb force, and the differential cross section is a func
tion of the charge of the scattering ion, the velocity of the electron, and the
scattering angle 8. Let us therefore picture a pencil of electrons of velocity v'
in the range d3v' and calculate the rate of scattering into and out of that pencil.
The distribution function has been so defined that the number density of elec
trons moving in the pencil is the product of the number of continuum states in

1 Considerable clarification has been provided by W. B. Hubbard, Astrophys. J., 146 :858
(1966), whose approach by way of the Kubo relations avoids dependence on the Boltzmann
equation.
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Fig.3-24 The state of the ions in an ionized medium depends upon temperature and density.
Those two quantities determine the relative importance of the coulomb interaction energy per
ion and kT. When Uc/kT is greater than unity, the ions are forced into a lattice structure in
order to minimize the potential energy, and the state may be described as solid. In region II,
Uc/kT rv 1, the ion spheres interpenetrate to a considerable degree, and the state may be
described as semisolid. At the somewhat smaller values of Uc/kT in region III, the electron
gas remains strongly degenerate, but the ions now move as a nondegenerate gas. In region IV
both ions and electrons are nondegenerate gases. The conductivity depends not only upon
the state of the electron gas but on the state of the ion gas as well, by virtue of the degree of
correlation among ionic scattering centers. [R. A. Wolf, Phys. Reo., 137 :B1634 (1965).]

(3-212)

the pencil times the distribution function:

2m3

n.(v') d3v' = h3 d3v' f(v')

With this definition the distribution function f(v') is the probability that an avail
able electron state is occupied. [Note that Eq. (3-212), as well as all that follows,
is limited to nonrelativistic momenta, since the number of continuum states
(2jh3) d3p' has been replaced by (2m3jh3) d3v'. It should also be clear that the



ENERGY TRANSPORT IN THE STELLAR INTERIOR 241

symbol d3v' is being used to designate the .differential volume element dv~ dv~ dv~ in
velocity space.] The flux of electrons in the pencil is the product of the number
density of electrons in the pencil times their velocity:

?m3

F(v') d3v' = v' "'h3 f(v') d3v' (3-213)

(3-214)

It will be more convenient to represent the flux of particles in terms of the
cone of directions dn' in which they move. Just as a differential volume in space
dx dy dz can be replaced by 1'2 dr dn, so the flux of particles of velocity v' in the
interval dv' moving in the set of directions dn' can be written

2m 3

F(v')v'2 dv' dn' = v' Ji3 f(v')v'2 dv' dn'

Now consider the fluxes contained in two cones of particles as shown in Fig.
3-25. We next compute the rate of change of the flux of particles in the (v,dn)
pencil by' scattering into and out of that pencil. Only two other considerations
must first be mentioned. The Rutherford scattering of an electron from an ion
does not (to high accuracy) change the speed of the electron, only its direction.
Thus for the scattering into and out of the phase-space pencils, [v] = [v'], Sec
ond, du/dn is usually taken to mean the cross section computed without con
siderations of the exclusion principle, but conduction will eventually prove most
important in degenerate gases, where the exclusion principle is important. Thus
the differential cross section for scattering into the pencil at v must be multiplied
by 1 - f(v). Sincef(v) is, as we have seen, the probability that an electron state

v

Fig. 3-25 Scattering of electrons from the
pencil of directions tin' into the pencil tin
alters the distribution function because
f(r,v') ~ f(r,v).

v'
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is occupied, the factor 1 - fey) represents the probability that it is empty, i.e.,
that the scattered electron has an unoccupied final state to go into.

The rate of increase in the electron flux in the pencil (v,dv,dQ) due to scatter
ings of electrons from other pencils (v',dv',dQ') is

r 2m3 du(O)
R+(v)v 2dv dQ = N, In' v' h3 f(V')V'2 dv' dQ'IEf" [1 fey)] dQ (3-215)

where by elasticity we have v = v' and dv = dv', and where 0 is the angle between
v and v' and N, is the number density of ions. Likewise the loss of electron den
sity from the pencil is

r ~m3 du(O)
R_(v)v2dv dQ = N i In' v V f(v)v2dv dQIEf" [1 - f(v')] dQ (3-216)

Several extraneous factors can now be eliminated. The difference between R+
and R_ must represent the rate of change due to collisions of the specific electron
flux in the pencil:

[R+(v) - R_(v)]v2dv dQ = 2;::3 [a~;) 1011 v2dv dQ (3-217)

Taking the indicated difference and recalling that the speeds are equal, one obtains

[af~;)1011 = vNi h, d~~) {f(v')[l - f(v)] - f(v)[l - f(v')]} dQ (3-218)

which is the desired result. For the present problem, this result takes an even
simpler form when it is recalled that we are assuming that the distribution func
tion is only slightly perturbed from its equilibrium value by the small tempera
ture gradient. That is, fey) = fo(v) + g(v). Expanding the products of distri
bution functions yields

[
af (v)] = vNi r, du(O) [g(v') - g(v)] dQ'

at call in dQ
(3-219)

(3-220)

This equation emphasizes the fact that it is the nonisotropic nature of the per
turbed distribution function that causes the change. (Remember that Ivl = Iv'I.)

Two expressions, one from the Boltzmann transport equation and one from the
last explicit calculation, have now been derived for (af/at)coll. For convenience
Eq. (3-209) from the Boltzmann equation will be written

(
af ) afo [ (d~ K - ~) dTJat call = v", aK eE", - dT + -T- dx == v",II(v)

where II(v), so defined, is a function of the magnitude of v but not its direction.
From Eqs. (3-219) and (3-220) we seek a relaxation solution of the form

(af ) = _ g(v) (3-221)
at call rev)

An equation of this form may be obtained by the following manipulations. Put
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the desired form, g(v) = -r(v)(af/at), into Eq. (3-219):

( af ) = +vN,"T(v) Jdu {[af(v)] - [af(v
/)]

} dU'at cell dU at call at call

243

(3-222)

Substitution of Eq. (3-220) from the Boltzmann equation into the integrand of
Eq. (3-222) produces

v:JJI(v) = (~)COll = vN,"T(v)II(v) J~~ (v", - v~) dU' (3-223)

From this last equation it is apparent that rev) can be found if the integral yields
something proportional to v",. If it does, v", cancels out, and a r that is a function
only of the magnitude of v results.

The next step in the calculation thus becomes the evaluation of the integral in
Eq. (3-223). Careful definition of a coordinate system permits successful ana
lytic evaluation of the integral over U/, but the result can be seen directly from
Fig. 3-26. The cross section du/dU is a function of the angle between v and v'.
Thus the integral over U' can be thought of as an azimuthal rotation of v' about v,
for which the cross section is constant, followed by a polar integral from the v
axis. In the azimuthal integral of v' about v, the average value of v' along v is
v cos O. Thus the average of v~ over the azimuthal integral (for which du/dU is a

Fig. 3-26 The integral over n' can be
thought of as a rotation of v' about
v followed by a polar integral from the
v axis.
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constant) is v: = V:r; cos O. Then the remainder of the integral over n' is just the
polar integral. Thus Eq. (3-223) becomes

V:r; = NiVT(V) 10 d~~) (v:r; - V:r; cos O)27r sin 0 dO (3-224)

The velocity V:r; divides out, and inversion yields

1 f" du(0) ( ). d
rev) = 27rVNi Jo --;[{'l 1 - cos 0 sin 0 0

as a collision relaxation time in the desired form.
The Rutherford cross section for scattering from an isolated charge is

(3-225)

(3-226)da (Ze2)2 1
dn = mv2 (1 - cos 0)2

If this cross section is integrated in Eq. (3-225), an infinite result obtains. It is
a well-known fact that the total coulomb-scattering cross section of charged parti
cles is infinite because the long-range coulomb force scatters particles with indefi
nitely large impact parameters into nonzero angles. The divergence of the
Rutherford cross section comes from the forward scattering.

In the dense plasma of a stellar interior, however, such a picture is unrealistic
because of the collective effects. Reconsider the homogeneous-ion-sphere model
of an ionized ion in a stellar interior, as described in Sec. 2-3. The nuclear charge
Z is shielded by an ion sphere of radius Rz such that frrR z 3n• = Z. Thus for
impact parameters greater than Rz, a classical picture of coulomb scattering
would give a vanishing cross section (instead of an infinite one!) because the
nuclear charge is completely shielded for larger impact parameters. This radius
Rz is also the average half-distance to the next ion, if one wants to think of it
that way. And in fact, there will be some shielding even for smaller impact
parameters. A quantum-mechanical calculation of scattering from a shielded ion
results in a cross section that tends toward some constant value at small angles.
As an approximation, let the cross section be described by

l(
Ze2)2 1

da _ mv2 (1 - cos 0)2
dn - t du(Oo)

cons =~

0> 00

0<00

(3-227)

where 00 is some small angle that characterizes this cutoff due to shielding.

Problem 3-34: Show that with this approximation to the coulomb scattering the relaxation
time for ()o « 1 is approximately

~ "" 2trvN; (_Z_e
2)2(~ + In __2__)

T mv2 2 1 - cos ()o

The first term is evidently quite negligible for ()o « 1.
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(3-228)

It is the usual treatment to take

! = 27r1JN. (_z_eZ)zIn c::--_
2_ -:

r t mo? 1 - cos 00

and to perform some detailed calculations to see what the appropriate value of
00 is. When one calculates the scattering from a shielded potential by some
standard technique of quantum mechanics, e.g., the Born approximation, the
result is

ft
00:;:'<-

mvRz
(3-229)

The essential correctness of this simple result can be motivated from an appli
cation of the indeterminacy principle. The product of the uncertainties of two
conjugate dynamical variables (in this case angle and angular momentum) must
exceed ft. The uncertainty of the angular momentum must be less than muli; to
ensure that the electron strikes the ion sphere; hence the angle of the beam must
be uncertain by !:l0 ;;::: ft/mvR z • This angular uncertainty must then correspond
(at least roughly) to the minimum scattering angle of the problem. In using this
approximation to 00 it will be necessary to decide what to use for the average elec
tron momentum. For the time being, however, we shall be content to note from
Eq. (3-228) that rev) is inversely proportional to the function

2
e(v) == -k In 1 _ cos Oo(v) (3-230)

Having obtained a relaxation time that is a function only of electron speed (as
opposed to its direction), let us return to the larger problem of relating rev) to the
conductivity. The forms we have found valid for the distribution function are

fey) = I«+ g(v) = fo - v:z:r(v)rr(v) (3-231)

(3-232)

(3-233)

The whole idea is to insert the distribution function into the equations for particle
flux and heat flux. The unperturbed distribution function yields no fluxes since
f V:z: dn = O. Insertion of g(v) into the fluxes yields

. - 0 - J2 m
3

d3 z ( ) dfo [ E (d~ + K - ~) dTJ
J:z: - - hf v V:z: r V dK e :z: - dT -T- dx

and

o. = - J2 ~33 d3v v:z:zKr(v) r~ [eE:z: - (:~ + K -;; ~) ~~J

The first of these equations will allow the elimination of eE:z: from the second,
which will give Q:z: in terms of dT/ d». To see how this can be done, define a
modified electric force es; by

eE' = eE _ (d~ _1) dT
:z: - :z: dT T dx (3-234)
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(3-235)

Since Ex and ~ are functions of the local thermodynamic state but not of particle
velocity, the combination eE~ can be pulled out of the integral over velocity
space. Equations (3-232) and (3-233) can then be written

E ' I d3 2 ( ) dfo - 1 dT Id3 2K ( ) dfoe x v Vx T v dK - T dx v u; T v dK

and

h
3

Q E' I d3 2 ( )K dfo + 1 dT I d3 2K2 ( ) dfo2m3 x = -e x v Vx TV dK T dx v Vx TV dK (3-236)

(3-237)

Problem 3-35: Reduce the above integrals by transforming the integral over d3v to a spherical
integral about the x axis, that is, Vx = v cos 0, d 3v = 21r sin 0 dO v2 dv. Then by changing the
integral over v to an integral over K, show that Eqs. (3-235) and (3-236) become

eE' i" K
3dfo

dK = ~ dT i" K
4dfo

dK
x io e dK T dx io e dK

(3-238)

The results of the previous problem reduce the calculation of Ac to a matter of
algebra. Recalling that the definition of Ac is Qx = -Ac(dT/dx), it follows that

(3-239)

The four integrals may, in principle, be evaluated numerically for each thermo
dynamic environment. What is usually done, however, is to withdraw e from
the integrals by replacing it by an appropriate average. It is, in fact, Eq. (3-239)
that shows explicitly howe is to be averaged. Inasmuch as the entire treatment
is an approximate one, reasonably reliable estimates of the importance of conduc
tivity in energy transfer can be obtained from the following simple argument.
The function e is a slowly varying function of velocity:

e = 1,. In ::--__2-;;:-;~~
2 1 - cos (li/mvRz)

(3-240)

whereas the remainder of the integrand has strong zeros for very low and very
high values of the kinetic energy. Therefore a large error in e will not be made
if it is simply evaluated for an important intermediate electron velocity.

Problem 3-36: Assume that for anondegenerate gas the most important velocities are those
near the peak in the distribution (K = jkT) and that the shielding radius Rs is approximately
that of a sphere containing Z electrons. (Perhaps one should use the Debye radius instead.)
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(3-241)nondegenerate

Show then that

110 ~ 0.058 [P(~;ZX)r
Assume for a degenerate gas that the most important electron velocities are those at the top
of the Fermi sea since they are the ones that can most easily find vacant final states into which
to scatter. Show for that case that

(3-242)degenerate110 = (9:Zy= 0.53Z- i

Examination of the dependence of e on 11 0 will reveal that only small errors in the conductivity
result even if these characteristic values of 110 are in error by a factor of 2. Show that, an error
of a factor of 2 in 110 can make at most an error of a factor of 1.74 in he.

Problem 3-37: If the values of e in the integrals of Eq. (3-239) are all replaced by a constant
average value, a further simplification of the conductivity integrals can be made. Show by
integrating by parts that

j '" dfo ( ~)Kn - dK = -n(kT)nF -1 --o dK n kT

where

( ~ ) r'" xn
-

1 dx
Fn_1

- kT =}o exp (x - ~/kT) + 1 (3-243)

is a Fermi-Dirac integral of the same type as defined in Chap. 2.

In terms of the Fermi-Dirac integrals, Eq. (3-239) becomes

A = 16mk5T4 15F2F4 - 16Fa2
c 3haZ2e48Nz 3F2

(3-244)

The argument of the Fermi-Dirac functions is - ~/kT = a - Eo/kT, which is
just the degeneracy parameter reduced by the continuum depression. In stellar
problems involving Fermi statistics, the potential energy of the electron is always
eliminated by absorbing it into a redefinition of the degeneracy parameter. To
save space the continuum depression will not be explicitly written. Rather the
argument of the Fermi functions will, as in Chap. 2, be called a.

Equation (3-244) is valid for a single type of ion. If there are several types
of ions present, the factor N ZZ2 is replaced by the sum "2NzZ2. It is obvious
from the derivation that this result is correct only for nonrelativistic electrons.
Relativistic expressions may be found in the literature.'

The immediate question of astrophysical interest is how efficient conduction is
as a means of heat transport. To really place this question in perspective, it is
necessary to compare conduction to radiative transfer, the other mechanism of
diffusive energy flow. For conduction we have computed a conductivity, whereas

1 E. Schatzman, in S. Flugge (ed.), "Handbuch der Physik," vol. 51, Springer-Verlag OEG,
Berlin, 1958, or Chiu, op. cit.
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for radiation we have computed an opacity. It is common to compare them in
the following way. The conductive heat flow Qx can be written

Q = _ A dT = _ 4ac T3 dT
x C dx - 3PKc da:

where the second equality is the definition of a conductive opacity

4acT3
Kc = 3pA

c

(3-245)

(3-246)

(3-247)

The usefulness of such a definition is that it places the heat-conduction equation
in the same form as that of radiative transfer. The heat flux by radiative trans
fer is proportional to 1/K, whereas the heat flux by conduction is proportional to
1/Kc , the other factors being identical. ThuS it is clear that conduction will be
more important than radiative transfer only if Kc < Kr • Both processes clearly
occur simultaneously, so that the total rate of heat flow is just the sum of the
rates from each mechanism. This means that the radiative-transfer equation
can be made to contain both effects if a generalized opacity is defined by

!=-!+-!
K Kr Ke

If Kc « Kr, then K ~ Kc; conversely, if Kc » Kr, then K ~ Kr• The opacities repre
sent a "resistance" to heat flow and have an electrical analogy in the resistance to
current, inasmuch as the well-known resistance of two parallel resistors R1 and
R 2 is

The two methods of diffusive transfer are parallel, and hence their resistances to
heat flow (opacity) add like parallel resistors. Note that this situation is quite
unlike that of the various sources of opacity to photons (Kb-f, Kf-f, Ke, etc.), for
which the resistances add in series (but in a complicated way because of the
essential difference between scattering and absorption). As soon as a conduc
tivity has been calculated, it can be converted into an opacity by Eq. (3-246) for
direct comparison with the radiative (Rosseland mean) opacity at the same point.

WEAK DEGENERACY-THE MAXWELLIAN GAS-

In Chap. 2 the Fermi integrals were evaluatedin the limit of large positive ex to be

F
8
(ex) = 10'" e-(u+a)u8 (1 - e-\·+a) + e-2(u+a)

( «» )= s'e-a 1 - - + .... 28+1 .

...)

(3-248)

Using this result, it is a simple matter to evaluate the combination of Fermi inte-
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grals in the limit of large a:

15F2F4 - 16Fa2 "'" 24e- a

3F2

249

(3-249)

(3-251)

(3-250)

It was also shown in Chap. 2 that the limit of large a corresponds to a maxwellian
gas and that in that limit

r-a neha

e "'" 2(27rmkT)!

Putting these results into Eq. (3-244) gives

16 V2 k'fT~
Ae = -7r-!- -m'!e-:-4z";;e-=-

or in cgs units .

T~
Ae = 7.82 X 10-5 ze

Problem 3-38: Show that the retention of the next term in the expansion gives

128m.k5T4x ~ e- a(l Me-a)
• h3e4Z2N.8 "M

where

(3-252)

(3-253)

(3-254)

(3-255)

Problem 3-39: Using the approximations outlined thus far, calculate the conductive opacity
of a helium gas at a temperature of 108 oK and a density of 103 g/cm3• How does Kc compare
with the radiative opacity?
Ans: Kc» Kr•

STRONG DEGENERACY

In the limit of strong degeneracy (large negative a) the Fermi integrals can be
evaluated explicitly with the aid ofthe Sommerfeld lemma, as outlined in Chap. 2.

Problem 3-40: By using the Sommerfeld lemma, show that the leading term in the conductivity
for large negative a is .

16".2mk5T 4
hc ~ 9h3e4Z2N.8 (-a)3

Retention of terms of order a results in a multiplicative correction factor 1 + 61"2/5a2 • . . •

From Eq. (2-68) it is apparent that for values of alpha large enough to justify
retaining only the first term of the expansion,

_ ~ _1_ (3hane)!
a ~ 2mkT 87r
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Insertion of this value in Eq. (3-254) gives for the degenerate (nonrelativistic)
conductivity

k2h3Tn
e

2

Ae = =-;--;;-;:~~32e41/L2Z2N
ze

1 1 k2h3NopT
= 32 Jle e41/L2Ze

= 2.36 X 103~ pT
JleZe

(3-256)

Problem 3-41: Calculate the conductive opacity of a helium gas at 108 OK and a density
p = 4 X 105 g/cm3• Show also that near those conditions the opacity depends upon tempera
ture and density as Ke ex: (T / p)2.

From the results of the previous problem it will be apparent that Ke becomes
very small at high density. The physical reason for this fact is that in the limit
of high degeneracy, it becomes very difficult for an electron to scatter, because
most of the states are occupied. Thus the mean free path of an electron becomes
quite long, enabling it to traverse a significant temperature drop even for small
temperature gradient.

It is not an easy matter, however, to compare the conductive opacity under
such conditions to the radiative opacity. The formulas we have developed for «;
are not applicable to a degenerate gas. Even though Ke < Kes in circumstances
like the previous problem, it is not clear that the conductive opacity is less than
the true radiative opacity. Filling up available states will also inhibit the scatter
ing of a photon from an electron, since the electron momentum must change
according to the photon recoil. It does turn out, however, to be true that the
opacity is essentially conductive in highly degenerate matter:

INTERMEDIATE DEGENERACY

For the conductivity in the important intermediate region of partial degeneracy
one must resort to tabulated values of the combination (15F2F4 - 16F32)/3F2.
Cox and his coworkers at Los Alamos have tabulated the quantity

N oT4exp (-a)
161/Lk5e'" 15F2F4 - 16F32

3h3e4No 3F 2
(3-257)

which is a function only of a. Their results are reproduced in Table 3-1.
Included in Table 3-1 is the value of Oozt, which they find also to be a function
only of a. The values of 00 in the table are somewhat different from the crude
approximations used in this text because those authors used more elaborate
techniques for averaging e. The results listed in Table 3-1 may be used to
estimate he for conditions of intermediate degeneracy. The comparison with
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Table 3-1 Conductivity integra/st

a

4.0
3.0
2.0
1.0
0.2

-0.4
-1.0
-1.6
-2.2
-2.8
-3.4
-4.0
-5.0
-6.0
-7.0
-8.0

oozt
0.1548
0.2146
0.2946
0.3952
0.4842
0.5494
0.6084
0.6582
0.6982
0.7292
0.7531
0.7712
0.7926
0.8066
0.8161
0.8228

pZ 2e
x, T---'--:- ea

,
PIon

erg moles seer!
cmr» deg-6

X 10-1 3

6.252
6.218
6.142
5.948
5.634
5.268
4.779
4.188
3.543
2.895
2.290
1. 759
1.070
0.6133
0.3346
0.1752

t Reprinted from A. Cox, Stellar Absorption Coefficients and Opacities, in L. H. Aller and
D. B. McLaughlin (eds.), "Stellar Structure." By permission of the University of Chicago
Press. Copyright 1965 by The University of Chicago.

radiative opacity in this case is a difficult problem because the weak degeneracy
also lowers the electron-scattering opacity and the free-free absorption. The
conductive opacity of a helium gas as calculated from Table 3-1 is shown in
Fig. 3,..27.

It will be apparent that the physics of diffusive energy transport is decidedly
complicated. We have presented only the simplest considerations in this chap
ter.. Much more important detailed work remains to be done on the associated
problems. Opacity is an extremely important determining factor in stellar struc
ture, and confidence in computed opacities presently limits the confidence with
which stellar structure can be fixed with computer models. It is to be hoped
that the next few years will bring increasingly accurate opacity calculations along
the lines of the efforts of Cox and his coworkers at Los Alamos. The treatment
of conductivity also needs refinement, especially in extremely dense matter, where
the large coulombic energy tends to correlate the ion positions. Ion correlation
has been neglected completely in this treatment of conduction. Its effect will be
to increase the conductivity, and the increase is probably large when the ions
have been forced into a lattice.
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p(g/cm 3)

(3-258)

Fig. 3-27 Conductive opacity of a helium gas. The conductivities were computed from
Table 3-1. The density at which the conductive opacity equals the radiative opacity due to
scattering from the electrons is seen to increase by roughly one order of magnitude for each
order-of-magnitude increase in the temperature.

3·5 CONVECTIVE INSTABILITY OF THE TEMPERATURE GRADIENT

In the diffusive mechanisms of energy transport the heat flux is proportional to
the temperature gradient and inversely proportional to the total opacity:

H = 4ac T3 dT
3KP dr

To the extent that the stellar structure resembles the standard-model polytrope
of index 3 the ratio T3/p is constant. In that approximation the flux is propor-

tional to 1 dd·T. In a static stellar model the heat flux must be sufficiently great
K r

to carry out all the energy liberated within a given sphere. Evidently this
demand establishes the temperature gradient. Inasmuch as a rather large tem
perature gradient may be required to carry large fluxes or to carry a moderate
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flux through a region of very high opacity, it is sensible to question whether the
temperature gradient can increase without bound. The answer is that it cannot,
as demonstrated by a simple argument presented in 1906 by Karl Schwarzschild.!
What he showed is that an instability to convective gas motion occurs if the tem
perature gradient is too great.

A system is stable if it presents a restoring force to arbitrary imagined dis
placements. In convective motion matter moves in a coherent fluid way rather
than as individual particles, and one commonly visualizes macroscopic mass ele
ments as rising and falling in the interior. The way to test for stability against
this kind of motion is to give a mass element a small radial displacement and see
whether it keeps going or falls back to its original position. It may be helpful in
considering such displacement to imagine the mass element as being contained in
a perfectly elastic balloon whose only function is that of maintaining the identity
of the mass element.

Suppose now that the mass element is displaced a small distance dr without
exchanging heat energy with the environment, as illustrated in Fig. 3-28. The
pressure forces will immediately expand the balloon until it has the same pressure
as the environment. But in establishing this pressure balance, the density p*
inside the balloon will not in general equal the surrounding density per + dr).
Because the perturbation has been made adiabatically, the density p* after the
displacement will be related to the pressure change in the environment by the

1 K. Schwarzschild, Gottingen Nachr., 1906 :41.

---------p(r), T(r)

Fig. 3-28 Convective instability occurs
when the density p* of a gas element
which has been adiabatically elevated by
a distance dr is less than the surrounding
density.

dr

---- p(r + dr), T(r + dr)
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(3-259)

(3-260)

Thus the expanded density will be

first adiabatic exponent:

dP = _ r
l

dV = r
l

dp
P V p

where dP = Per + d?') - P(?·) = (dPI dr) dr.

p* = per) + (dp)s = per) + ilP(~~) dr

Now, if p* > pc?· + d?'), the displaced element will be denser than the surround
ings and will settle back under the influence of gravity. If, on the other hand,
p* < per + dr), the displaced element will experience a net bouyant force that
will cause it to continue upward. Thus the stability condition becomes

S bili' di . { stable
ta ty con tion = unstable

if p* > pc?· + dr)
if p* < pc?· + dr)

(3-261)

Because p(r + dr) = per) + (dpldr) dr, we have stability if

..!..e. dP > dp
rIP dr dr

(3-262)

The stability condition can easily be expressed in terms of the temperature
gradient. Physically it is clear that if p* > per + dr), we must have T* <
T(?' + dr) in order for the balloon to have the same pressure as the environ
ment. Because the temperature decreases radially, it is also clear that the sta
bility condition demands that the temperature decrement for a radial adiabatic
displacement be greater than the temperature decrement of the environment.
Thus the layer is stable if

(3-263)

where (dT Idr) ad is the so-called adiabatic temperature gradient. Itis defined by
the second adiabatic exponent. Inasmuch as both gradients are negative, the
algebraic condition for stability is

( dT) > (1
dr star

1) T(dP)
r z P dr star

(3-264)

Many readers "rill find it easier to remember the stability condition in terms of
the absolute magnitudes, as in Eq. (3-263). If the temperature changestoo rapidly
with distance, instability against convection exists.

The occurrence of this instability limits the energy :flux that can be carried
diffusively outward in a star. If the macroscopic-transfer equation is solved for
the temperature gradient

dT 3 Kp L(r)
dr - - 4ac T3 47rr2

(3-265)



ENERGY TRANSPORT IN THE STELLAR INTERIOR 255

the stability condition becomes

- 4~C ;~ ~~..?> (1 - i2) ~ ~~ (3-266)

The pressure gradient may be eliminated with the aid of the condition of hydro
static equilibrium, resulting in the condition

L(r) S 161facG (1 _~) T4 M(r) (3-267)
3K r, p

If the luminosity required to maintain energy balance exceeds this amount, the
energy will have to be carried by convective transport.

Problem 3-42: Show that if the equation of state is that for an ideal nondegenerate gas, the
luminosity is limited in zones of radiative equilibrium to (in.cgs units)

L(r) ~ 1.22 X 10-18 ~T3M(r)
Kp

A physically simple motivation for the fact that convection frequently occurs
in the hydrogen and helium ionization zones may be found in the results of the
preceding problem. If a star is approximated by the standard model, T3 / p is a
constant, and L(r) is limited to a number proportional to M(r)/K. In the outer
layers M(r) is also nearly constant, so that the maximum radiative luminosity is
proportional to K-1• Because the opacity is so large in the ionization zones (see
Fig. 3-16), the luminosity there often exceeds the upper limit for radiative
equilibrium.

Convection is being discussed as a mechanism of energy transport, but wehave
not yet demonstrated that the convective instability results in a transport of
energy. The demonstration is very simple. Suppose that the medium is unsta
ble, in which case an adiabatically rising element is less dense and hotter than the
environment. Because the balloon temperature exceeds that of the surround
ings, heat will leak from the balloon to the surroundings. The net effect is the
transport of heat to material at a lower temperature.

Problem 3-43: Make an adiabatic displacement downward in the unstable situation. Show
that the element continues to fall and that the tendency toward thermalization will cool the
underlying gas.

Presumably, then, convection is characterized by macroscopic fluid motions,
which must be directed both upward and downward to conserve mass, and which
have the effect of heating the outer regions and cooling the inner regions. The
heat transfer results from the fact that the magnitude of the temperature gradi
ent exceeds the magnitude of the adiabatic temperature gradient. The moving
element would remain at the surrounding temperature if the two gradients were
equal, and there would be no thermal imbalance to be equalized. It is evident
that the heating of outer layers and the cooling of underlying layers has a tend-
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ency to reduce the magnitude of the temperature gradient. Convection will in
fact reduce the gradient until it is just sufficient to carry the excess thermal
energy at the appropriate rate. Such a state is called convective equilibrium.

For the problem of stellar structure one needs to know how great the tempera
ture gradient must be to carry the luminosity of the star. We have argued only
that IdTfd?'1 must exceed IdTfdrlad in order that energy be transported by con
vection, but what is clearly needed is some indication of the extent to which the
adiabatic gradient must be exceeded to carry a given amount of energy. The
solution of this problem is extremely difficult, in fact no general solution has yet
been found, but fortunately it can be argued that this uncertainty has no large
effect upon the internal structure of stars. This conclusion results from the great
efficiency of convection as a means of energy transport. By a great efficiency we
mean that a very slight excess in the temperature gradient is ample to transport
the luminosity convectively. The necessary excess in the temperature gradient
is so small compared to the temperature gradient itself that it becomes a good
approximation to replace the actual temperature gradient by the adiabatic tem
perature gradient. The argument runs as follows.

One must first devise a physical model for convective energy transport. The
simplest and most popular is the mixing-length model. Each mass element is
envisioned as rising or falling adiabatically for a distance l, called the mixing
length, which is characteristic of the environment in some way. After traveling
that distance the mass element thermalizes ...vith the local environment. After
adiabatically rising a distance l, a mass element will be hotter than the surround
ings by an amount approximately given by

!:J.T = (I dT I-I dT 1)l = l tJ.'VTdr dr ad
(3-268)

where tJ.'VT is a symbol defined as the excess of the absolute magnitude of the
temperature gradient over the absolute magnitude of the adiabatic temperature
gradient. The mass element then thermalizes at constant pressure, releasing an
amount of heat per unit mass given by

(3-269)

If the average velocity of the adiabatic cells. as they pass any given level is
designated by V, the average excess heat:fl.ux is

(3-270)

Evaluation of this heat :fI.ux requires an estimate of the average velocity V of the
convective cells. This estimate can be made by assuming that the mass element
is accelerated for the distance l by a bouyant force given by Archimedes' principle.
Inasmuch as tJ.p = 0 at the outset of a cell's motion and is

tJ.p = l (I ~~ I-I ~~ L) = i«'Vp
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after rising a distance l, the average density deficiency in the rising element may
be taken to be

tip = il ti'Vp

The average bouyant force per unit volume is then

(3-271)

F = g tip = igl ti'Vp (3-272)

where g = GM/r2 is the local gravity. This average force per unit volume causes
a radial acceleration

F ~ (a = - = - ti'Vp 3-273)
p 2p

Acting through a distance l, this acceleration produces a terminal velocity
V = V2lil, which may be taken to be twice the average velocity. Thus we
obtain

iT = ! (gl2 ti'VP)!= ! (GM ti'VP)!l (3-274)
2 p 2 pr2

Problem 3-44: Show that for the ideal monatomic nondegenerate gas

/lVp = .':../lVT
T

This result may be used because convection occurs' only in nondegenerate regions.

Assembling these approximate results yields

(
GM)! »H = cpP Tr2 (ti'VT)! 2" (3-275)

According to this model of convection, the heat flux is proportional to the excess
of the temperature gradient to the! power and to the square of the average mix
ing length. From experience with convection in fluids one estimates that the
cells will not dissipate until they have moved a sufficiently great distance such
that the pressure and density will have changed by a significant fraction of their
initial values, i.e. until they have moved a distance of the order of a scale height,
which is usually at least 109 em in a star. With such values for the mixing length
it is a simple matter to demonstrate that very small values of ti'VT are required
for normal fluxes,

Problem 3-45: Show that if the entire solar luminosity were carried by convection through the
midway point of the sun with a mixing length of 109 em, the required excess of the temperature
gradient would be only about 10-6 of.the temperature gradient itself.

From arguments similar to that in the previous problem it is believed that
whenever convection occurs in the interior of a star, the temperature gradient is very
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nearly the adiabatic temperature gradient. That is, IlVT is very important as far
as the heat flux is concerned but is negligibly small as far as the structure of a
star is concerned. For a prescription for stellar models, one is forced to com
pare the temperature gradient that would be necessary to transport the flux
radiatively with the adiabatic temperature gradient at each point; if the adia
batic gradient is greater in magnitude, the layer is stable, and the flux is carried
radiatively; whereas if the required radiative gradient is the greater, the flux is
carried convectively along a temperature gradient given to high accuracy by

dT _ (1 _1..) '£ dP (3-276)
dr - r 2 P dr

Although the approximation of this prescription appears to be a good one in
the interior of a star, it runs into difficulty in the important outer layers of stars,
where convection so often occurs. The difficulty arises because the pressure and
density change so rapidly there compared to their small values. The mixing
length accordingly becomes very short, but because the heat flux is proportional to

H 0: pl2(1lVT)!

the low density and small mixing length together demand a large value for IlVT,
so large, in fact, that it is no longer adequate to use the adiabatic temperature
gradient in the computation of the structure of the outer layers. One can also
see that the exact temperature gradient is needed to determine the radius (and
hence T.) of a stellar model. Suppose the bottom of a surface convection zone is
imagined to be :fixed in temperature and position. The additional radial distance
required for that temperature to fall to its near-zero photospheric value clearly
depends upon the size of the temperature gradient. Accordingly we find that
one of the most vexing problems in stellar structure today is the inability to cal
culate stellar radii with precision for those stars having surface convection zones.
In general one can say that stars will possess a surface convection zone when the
photospheric temperature is low enough for the hydrogen to be largely neutral,
for in that case there must exist an interior region of very large opacity in the
hydrogen ionization zone. If, on the other hand, the photosphere is hot enough
for the hydrogen to be ionized there, the underlying layers will probably be in
radiative equilibrium. Accordingly we note that the radii of the upper-main
sequence stars can be computed with greater precision than those of the lower
main-sequence stars.

What is badly needed is a theory of convection that compellingly relates the
temperature gradient to the heat flux. Several authors have expressed this need
as being the need for a theory of the effective mixing length, even though the
idealized mixing-length model is inappropriate. Examination of characteristic
numbers of fluid mechanics shows that the convection in a star will be turbulent
rather than orderly. It is accompanied, furthermore, by continuous exchange of
energy via photons, microturbulence, hydromagnetic waves, and viscous inter
actions of one mass element with another. The theories of turbulent convection
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are mathematically complicated,' however, and in keeping with the introductory
nature of this book we shall drop the subject at this point.

As a final point on convection we add that the macroscopic velocities involved
are negligible in comparison with the thermal velocities of the particles, so that a
negligible kinetic energy is contained in the collective motions. The turbulent
pressure, on the other hand, may need to be included in the outer layers. Since
the turbulent mixing is fast in comparison with evolution times, one generally
regards each convective region as being of homogeneous composition. Material
of different composition injected at any point into a convection zone becomes
distributed uniformly over that zone in a time small compared to evolutionary
time scales.

In spite of the fact that detailed knowledge of convection is probably not
required for adequate understanding of the structure of a stellar interior, much
work remains to be done to develop a theory adequate for the outer layers. It is
particularly discouraging to have uncertainties in surface convection undermine
the confidence with which model stars can be placed on the H-R diagram. It is
that placement which provides the basic test of our understanding of the stellar
interior, and so the deficiency in knowledge jeopardizes the whole theory to
some degree.

3-6 NEUTRINO EMISSION

The power carried by the neutrino flux has not traditionally been associated with
the problem of energy transport in stars, but it is now evident that neutrino
power is the dominant consideration in the late evolutionary stages of many stars.
As a final subject in this chapter on energy transport in the stellar interior we
shali outline the role of neutrino emission in stellar evolution and the basic
neutrino-emitting mechanisms of astrophysical importance. The point to be
emphasized at once is that neutrino emission is dissimilar to the other mecha
nisms of energy transport in one major way; viz., neutrinos interact so weakly
with matter that they usually emerge directly from the stellar interior 'without
any interaction with stellar matter. The other mechanisms require the trans
port of internal energy to the surface, from which it can be radiated, and as a
consequence the rate of energy outflow is related to the temperature gradient of
the star. Because neutrinos emerge directly from their point of origin, the energy
outflow is given directly by the rate at which neutrinos are produced. Insofar as
stellar structure is concerned, the creation of neutrinos in stellar matter is equiva-
lent to a local refrigeration. .

The existence of a massless, spin-j- particle called the neutrino was hypothe
sized by Pauli in 1933. The hypothesis was made as the simplest way of simul-

1 Some comments on the theory of turbulent convection along with references to major works
in the field will be found in P. Ledoux, Stellar Stability, in Aller and McLaughlin, op. cit. An
interesting variation involving magnetic tangles has been discussed by A. Finzi and R. A. Wolf,
Astrophys. J. (1968).
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taneously saving fundamental conservation laws of physics that were apparently
being violated in nuclear beta decay. In the simplest decay, which suffices to
illustrate the utility of the hypothesis, the neutron decays into a proton, electron,
and antineutrino:

n-7p+e-+ji

Before the postulation of the neutrino the apparent decay n -7 p + e: seemed to
violate three conservation laws: (I) momentum-the combined momenta of p
and e- did not sum to the momentum of the neutron; (2) energy-the combined
kinetic energy of p and e: varied from decay to decay, although it was observed
to have an upper limit; (3) spin angular momentum-there is no way to couple
s = t for both p and e- to yield s = t for the neutron. The emission of a neutral
particle of half-integral spin and small (probably zero) mass in the decay allowed
each conservation law to be satisfied. In the following year, 1934, Enrico Fermi
proposed a theory of nuclear beta decay that not only saved the conservation laws
by the use of Pauli's neutrino idea but also explained such features as the electron
energy spectrum and the dependence of beta-decay rates on the total energy
liberated by the decay. Fermi's theory has survived to this day in an expanded
and enriched form that has been indicated by countless ingenious laboratory
experiments revealing the nature of the interaction involved and by beautiful
theoretical formulations, mostly notably by Feynman and Gell-Mann.

Of particular importance were the experiments made by Cowan, Reines, and
their collaborators to detect the neutrino.' Not only was the neutrino shown to
exist, but the neutrino emitted in electron beta decay was found to differ from
that emitted in positron beta decay or in electron capture. This fact fits beauti
fully into the field theories of half-integral-spin particles, which seemed to demand
that fermions be created in particle-antiparticle pairs. New conservation laws
requiring the conservation of the number of nucleons and the number of leptons
were found to be consistent with both field theory and experimental fact. Lepton
is a Greek word meaning "light thing" and is used to stand for the class of light
particles involved in the beta-decay processes. This conservation of numbers is
achieved by demanding that the number of particles minus the number of anti
particles in each class be constant. For example, in the decay

n-7p+e-+ji

the number of nucleons is unity, and the numbers of leptons is zero before the
decay. The same numbers remain after the decay if the electron is taken to be
"the particle" of the positron-electron pair in the lepton class and the neutrino
emitted in this decay is taken to be "the antineutrino" of the neutrino-anti
neutrino pair in the lepton class. The field theory presents a logical equiva
lence between the creation of a particle and the destruction of its antiparticle.
Thus instead of creating an antineutrino in the above decay, a neutrino may be

1 For a review see F. Reines, Ann. Rev. Nucl. Sci., 10:1 (1960).
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destroyed:

v+n~p+e-

The neutron in this reaction has decayed by absorbing a neutrino rather than by
emitting an antineutrino. The same operation is legitimate for the electrons;
viz., the emission of the electron can logically be replaced by the destruction of
a positron:

n + J3+~ p + ii

This reaction also may go the other way in time,

p + ii~ n + J3+

and in fact this very reaction was used by Cowan and Reines to measure the
cross section for the interaction of antineutrinos "with hydrogen, and the value
they found was a = (11 ± 4) X 10- 44 cm-, Numbers of this size are character
istic for the interaction of neutrinos with matter. These are very small cross
sections. By contrast the interaction of light with atoms is of order 10-16 cm-,
and the interaction of nuclei with each other by the nuclear force is of order
10-24 cm-, Because of its weakness this interaction is called the weak interaction.
Its weakness is also measured by the relative slowness of beta decay when com
pared with electromagnetic transitions of the same energy. Dimensionless meas
ures of the relative strengths of the known interactions are (1) nuclear 1I"-meson
field = 10, (2) electromagnetic field = Th-, (3) weak interaction = 10-23, and
(4) gravity = 10-45• One might note that gravity is the weakest interaction by
far, and its effect would be undetected to this day were it not for the possibility
of assembling huge masses; but it is absurd to contemplate the measurement of
gravity by the scattering of one elementary particle from another, as one does
for the other forces.

When the variety of interactions of neutrinos with matter is examined, one
finds that an average cross section for neutrinos of energy E, to interact with
other particles is of order

a; ~ 10-44 (Ev2)2 em-
m»

In most forms of neutrino emission from stars the factor E v/ mec2 is within a
factor 10 of unity, so that 10-44 cm2 represents a crude estimate of neutrino cross
sections. Consider matter of unit density, which is about the average density of
most stars. Then each cubic centimeter contains about 1024 particles. It follows
that the mean free path of characteristic stellar neutrinos is about 1020 em, which
is equal to 109 solar radii! No wonder then that most neutrinos shoot right out
of the star with the velocity of light, at which they all travel.

There is an important exception to the transparency of stellar matter to neu
trinos, the supernova. In the dynamic collapse of a supernova core to near
nuclear densities it is found that the large thermal energy of the emitted neu-
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trinos, coupled with the considerably greater amount of mass per column of unit
area, causes the imploded core to be partially opaque. For this problem, which .
cannot be adequately covered in a book of this type, one must develop a theory
of neutrino transfer. Only under very extreme conditions of condensation, such
as an imploded supernova core, can a significant number of neutrinos actually
interact with stellar matter, and so in most cases one considers neutrino energy
as being lost to the internal energy of the star.

The weak interaction is further complicated by the fact that other fermions
participate. The muon is very much like a "heavy electron" in its interactions.
For instance, electron capture by a proton,

has an analogous muon capture,

where the prime superscript on the last neutrino emphasizes the fact that the
neutrinos involved in muon weak interactions differ from those in electron weak
interactions. The v' in the second reaction cannot be absorbed by a neutron
and change to p + e: by the inverse of the first reaction because v' ~ v. Thus
the particles with which one deals in weak interactions are proton p, neutron n,
electron «: electron neutrino v, negative muon p.-, mu neutrino v', and the anti
particle for each of them. The question is how one can construct a theory which
not only summarizes which of the host of possible reactions actually occur in
nature but also correctly predicts their rates. The detailed theory involves far
too many complications for a book at this level, but the general structure of the
theory will be illuminating in light of the large number of weak reactions of
importance in astrophysics. A sketch of this general structure follows.

In each of the example reactions one sees the involvement of four fermions.
The weak interaction is envisioned as one which occurs when four fermions (but
not any four) come together at a point (or at least a very small region) in space
time. The four interacting fermions are always comprised of any two of the
following pairs:

(1) Antineutron proton (iip)
(2) Antiproton neutron (fin)
(3) Positron neutrino (ev)
(4-) Antineutrino electron (ve)
(5) Positive muon mu neutrino (iiv')
(6) Mu antineutrino muon (ii'p.)

The interaction is constructed in terms of these six pairs of particles.
The weak reactions also change the particle population of the universe.

Returning to the initial example of the decay of the neutron, for instance, one
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finds that the reaction destroys a neutron and creates a proton, an electron, and
an antineutrino. Thus the interaction must involve operators that create and
destroy fermions but in combinations that conserve the lepton number and the
baryon number. These operators are just the six pairs of fermions listed above,
and in writing the interaction, the particle symbol may conveniently be taken to
represent an operator capable either of creating the particle or of destroying its
antiparticle. For example, the pair (iip) is taken to mean a product of two
operators with the following possible interpretations:

(1) Creation of antineutron and proton
(2) Destruction of neutron and creation of proton
(3) Destruction of neutron and destruction of antiproton
(4-) Creation of antineutron and destruction of antiproton

Because the fermions are grouped only in pairs of nucleon-antinucleon or lepton
antilepton operators, the restriction of the interaction to these pairs will have the
effect of conserving both baryons and leptons.

The rate of weak reactions is calculated from the "golden rule" of time
dependent perturbation theory,

(3-277)

where k and s represent the final-state and initial-state wave functions, Hint is the
weak-interaction hamiltonian capable of matrix elements between k and s, and
peE) is the density of states for the final particles. Perhaps the greatest clarifi
cation of Fermi's original theory lay in his demonstration that beta-decay rates
were energy-dependent in a way largely accounted for by the phase space peE)
available to the ejected electron-neutrino pair, in quite the same way that the
electric-dipole photon-emission rates in atomic transitions are dominated by the
phase space available to the emitted photon. In order for the weak-interaction
hamiltonian to have matrix elements bet...veen states k and s having differing
populations of fermions, it must contain as factors the appropriate creation and
destruction operators for the fermions involved. In terms of the Feynman-Gell
Mann theory now believed applicable to weak interactions, the hamiltonian is
written as the square of a Fermi interaction current,

(3-278)

where g is a universal coupling constant measuring the strength of the weak inter
action and the interaction current JI' is a space-time four-vector:'

(3-279)

1 We shall write only the strangeness-conserving terms of the interaction current because they
seem to be the only ones of importance to astrophysics, but the weak decays of strange particles
involve a strangeness-changing current that is analogous to the one discussed here.
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The "II' are the vector Dirac operators "11, "12, "13, and "14, and

a = HI - i"l1"12"13"14)

is another Dirac operator giving the proper mixture of vector and axial-vector
currents in the so-called V - A theory suggested by experimental results. The
vector Jt is the hermitian conjugate of Jp.. For the purposes of this outline the
nature of the Dirac operators need not concern us, and if the components of the
interaction current are suppressed, we may write in a schematic way

J = (tip) + (ev) + (ilv')

Jt = (pn) + (iie) + (ii'p.)

In the universal weak-interaction theory the pairs of fermion operators are
weighted equally in the current and share the universal strength g of the weak
interaction.

In the matrix elements of Hint, therefore, the four fermions occurring in any
one term are those obtained by the product of any pair in Jp. with any pair in i;
I t is this restriction of the fermion groupings that may occur which gives rise to
the selection rules determining which reactions are possible. The corresponding
experimental situation is interesting in that the cross-product terms in the inter
action are all well studied in the laboratory and share the universal strength of
the interaction, whereas the squared terms in the interaction are difficult to
observe and have not been well verified. This situation is of particular impor
tance to astrophysics, inasmuch as the squared terms give rise to important reac
tions capable of causing significant neutrino emission in stars.

THE CROSS-PRODUCT TERMS

The interaction term arising from the product of any pair in J p with a different
pair in Jt gives rise to interactions in which the four fermions are different types
of particles. The corresponding reactions have been well studied in the labo
ratory, where it has been found that each of the three cross-product terms exists
in nature with equal! intrinsic strength. It will be instructive to see what reac
tions come from these products.

The interaction (tip)(iie) and (pn)(ev) As described earlier, these products of
operators may give rise to any of the following events:

n--7p+ii+e

p--7n+v+e+

v+n--7p+e

e++n--7p+ii

1 Experimental uncertainty combined with uncertainty in the magnitude of some required
theoretical corrections results in an uncertainty of a few percent.
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as well as those obtained by changing each particle to its antiparticle and/or
reversing the arrows of the reaction. What these terms produce is the known
varieties of nuclear beta decay. If that nucleus consisting of Z protons and
N neutrons with atomic weight A = Z + N is designated by the convenient
symbol (Z,A), the major nuclear beta decays- of importance can be written as
follows.

(1) Negative beta decay: An internal nuclear neutron is converted to a proton,

(Z - 1, A) -7 (Z,A) + e: + ji

Since the electron and antineutrino must be emitted with nonzero kinetic energy,
this reaction is energetically possible only if

Mn(Z - 1, A) > Mn(Z,A) + m,

where Mn(Z,A) represents the mass of the nucleus (Z,A). By adding (Z - l)m.
to both sides of the equation the inequality can be expressed in terms of the
masses MA(Z,A) of the atom (Z,A):

MA(Z - 1, A) > MA(Z,A) (3-280)

The two conditions actually differ slightly in that there is a very small (almost
always negligible) difference in the binding energy of the atomic electrons in the
two atoms. Because the atomic binding energy actually contributes to the
energy of the decay, the second form is more nearly correct, but for our pur
poses the two equations can be thought of as synonymous.
(2) Positive beta decay: An internal nuclear proton is converted to a neutron,

(Z + 1, A) -7 (Z,A) + e+ + p

This reaction is energetically possible only if

Mn(Z + 1, A) > Mn(Z,A) + m;

Problem 3-46: Show that in terms of atomic masses the energy requirement for positron decay
becomes

M.A(Z + 1, A) > M.A(Z,A) + 2m.

(3) Electron capture: An internal proton is converted to a neutron,

e: + (Z + 1, A) -7 (Z,A) + P

This reaction is energetically possible only if

m; + Mn(Z + 1, A) > Mn(Z,A)

or alternatively if

MA(Z + 1, A) > MA(Z,A)

(3-281)

(3-282)

1 A thorough discussion of nuclear beta decay may be found in M. A. Preston, "Physics of the
Nucleus," chap. 15, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962.
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In the laboratory this reaction usually proceeds by the capture of a K-shell (Is)
electron because those electrons have the greatest probability of being found at
the nucleus, where the reaction must occur. In a star the situation will usually
differ in that the nuclei are generally ionized. In that case the capture will be of
free electrons in the gas, and the rate will accordingly depend upon the electron
density. I In principle the electron kinetic energy should also be included in the
energy balance, but it too is usually negligible in comparison with the other
energies. A major exception occurs at extremely high density, where the Fermi
energy of the degenerate electron gas may become sufficiently great to cause
otherwise stable nuclei to capture the energetic electrons from the top of the
Fermi distribution. For example, a hydrogen gas at high density may be forced
to capture free electrons and change to a neutron gas. This mechanism may be
responsible for triggering a special type of supernova explosion.
(4) Free-positron. capturez" An internal neutron is converted to a proton. This
must also be considered if a significant density of free positrons exists in the gas.
It has not been demonstrated that this last alternative is ever of astrophysical
importance, however, and the first three reactions may be thought of as the
dominant nuclear decays in astrophysics.

One other general comment must be made about the energetics of all nuclear
decays. In the laboratory nuclei exist only in their ground states, and the nuclear
and atomic masses are those of the ground states of the species. In the hot ther
mal environment of a stellar interior, however, the nuclei may have a small but
significant admixture of excited states. Because the intrinsic decay rate of an
excited state may be much greater than that of the ground state, which may even
be stable, the beta-decay rates in stars may be strongly temperature-dependent,
a feature first exploited by Cameron. 3 Figure 3-29 shows a two-level nucleus
(usually all that need be considered) with ground-state spin J I and decay rate
Ap(l) and an excited state of excitation E*, spin J 2, and decay rate Ap(2). The
nuclear partition function for (Z 1, A) is in this case

. E*
G(Z - 1, A) = (2JI + 1) + (2J 2 + 1) exp - kT

The fraction of nuclei (Z - 1, A) in the ground state is then

2J + 1
PI(Z - 1, A) = G(Z _ 1, A)

and the fraction in the excited state is

2J 2 + 1 E*
P 2(Z - 1, A) = G(Z _ 1, A) exp - kT

1 J. N. Bahcall, Astrophys. J., 139 :318 (1964).

2 H. Reeves and P. Stewart, Astrophys. J., 141 :1432 (1965).

3 A. G. W. Cameron, Astrophys. J., 130:452 (1959).

(3-283)

(3-284)

(3-285)
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Fig. 3·29 Excited-state beta decay occurs
when thermally populated excited states
undergo beta decay. The effective decay
rate may be very temperature-dependent
if the beta-decay rate A.8(2) of the excited
state is much greater than that of the
ground state.

E*

(Z,A)
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The total beta-decay rate of the species is then given by the weighted sum of the
two rates:

(3-286)

These formulas can easily be generalized to an arbitrary number of excited states.
Because A.8(2) may be many orders of magnitude greater than A.8(I) in some cases,
the total decay rate may be strongly temperature-dependent. If the ground state
of (Z - 1, A) were stable, the excited-state beta decay could provide a means by
which stable species undergo beta decay in a star.'

Problem 3·47: The nucleus In115 is nearly stable in the laboratory, having a half-life of 5 X 1014

years for beta decay to Sn1l5, but an excited state of Inus at E* = 0.335 Mev decays to Sn 1l5

with a half-life of 4.5 hr. Compute the total half-life of In1l5 in thermal equilibrium at T
7.5 X 108 oK.
Ans: T~ = 0.83 year.

The excited states may be involved in positron decay or in free-electron cap
ture, moreover, so that one must be alert to the possible role of excited states in

1 More esoteric reactions can have the same effect. P. B. Shaw, D. D. Clayton, and F. C.
Michel, Phys. Reo., 140 :B1433 (1965) showed that a photon may be absorbed in a virtual beta
decay, thereby contributing its energy to the energy of the decay. This mechanism seems to
be less important than excited-state beta decay, however.
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all types of nuclear beta decay in stars. The energy criteria previously written
down must be modified in such cases to include the excited-state energy. The·
simplest way is to replace Mn(Z,A) by Mn(Z,A) + E*/c2, where E* is the exci
tation energy and Mn(Z,A) is the mass of the nuclear ground state.

A certain amount of nuclear beta decay accompanies the cycles of nuclear .
reactions which provide the internal heat source for the stars. For example,
there exist sets of reactions capable of fusing four hydrogen atoms into a helium
atom (or said another way, four protons into an alpha particle). But because
the alpha particle consists of two protons and two neutrons, two positive beta
decays must occur somewhere in the cycle. Without knowledge of the details
of the reaction chain we may nonetheless write

4p--7 a + 2e+ + 211

As noted in Chap. 1, this accomplishment liberates 6.4 X 1018 ergs/g of hydrogen
converted. The energy created as neutrinos, however, must be subtracted from
the total energy release insofar as heat input to the interior is concerned. This
procedure is typical of the handling of the neutrino production that accompanies
the energy-generating processes; viz., the effects of neutrino emission in energy
generation are deployed at their source by subtracting the average neutrino energy
from the total energy liberated. These corrections are usually only a few percent.

There does exist one important nuclear decay cycle, however, that has nothing
to do with energy generation but serves only as a producer of neutrinos. The
process of alternate electron capture and beta decay of the same nucleus was
invented by Gamow and Schonberg and is commonly called the Urcaprccess.:
Specifically

e: + (Z,A) --7 (Z - 1, A) + II (3-287)

is followed by

(Z - 1, A) --7 (Z,A) + e: + ii

The sum of the two reactions yields

e: + (Z,A) --7 e: + (Z,A) + II + ii

(3-288)

(3-289)

A neutrino-antineutrino pair has been produced with no change of composition,
but the neutrinos run off with energy. It is not immediately clear where that
energy came from except that it must somehow have been 'provided by the ther
mal environment. From the energy conditions one sees that both the electron
capture reaction and the beta decay cannot happen spontaneously. Thus energy
must be provided to one or both reactions to allow them to occur. Energy may
be provided to the first in the form of kinetic energy of the captured electron or
in the form of excited-state energy of the nucleus (Z,A). The beta decay may
be provided energy by occurring from an excited state of (Z - 1, A). Thus
thermal energy in the form of electron kinetic energy or excitation energy of an

1 Named after a Rio de Janeiro casino where the customer lost little by little.
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excited state, or both, is lost to two neutrinos by the full cycle. The calculation
of neutrino loss rates by the Urea process is a detailed problem in applied nuclear
physics. Not only does it depend in obvious ways on temperature and density,
but the detailed nuclear properties of the catalyst. nuclei (Z,A) determine whether
the process can happen efficiently. Its rate is therefore strongly dependent upon
the nuclear composition.

The actual rate of energy loss by neutrinos accompanying nuclear beta decay is
small in most astrophysical applications. The neutrinos emitted during nuclear
energy-generation cycles provide a small correction to the energy-generation rate,
and the Urea process becomes important only at very high density and tempera
ture. At sufficiently large temperature and density the nuclear matter usually
achieves the state of nuclear statistical equilibrium, to be described later, which is
characterized by heavy-element abundances usually in the range 50 < A < 70.
Tsuruta- has calculated the details of the Urea neutrino-loss rates from nuclear
matter in statistical equilibrium. Her results are shown in Fig. 3-30, where each
curve is labeled by the Fermi energy Ef of the electron gas. It will be noted
from Chap. 2 that Fermi energies of a few Mev for a relativistic degenerate elec
tron gas" correspond to large densities:

Ef(Mev) :;:;< 0.5 X 1O-2pl relativistic (3-290)
a > 107

At the lower densities found in the common stars other nonnuclear mechanisms
of neutrino emission have more astrophysical importance than the Urca process.
They will be discussed later.

The interaction (jIp')(iie) and (ep)(ii'p,) These operator products also define a
variety of reactions. We need list only the commonest. example, muon decay,

p,- ---+ e- + v' + ii

The rates observed for this cross product of interaction-current pairs are con
sistent with its sharing the same strength g which characterizes nuclear beta
decay. Inasmuch as muons are probably not of importance in stellar evolution,
however, they will not appear in the remainder of the book. This reaction and
the next have been included only to display the logical structure of the particle
operators in the weak-interaction current.

The interaction (jIp/)(pn) or (iip)(ii'p,) This product describes, among other
things, the carefully observed capture of muons by hydrogen:

p,- + p ---+ n + p/

1 S. Tsuruta, Ph.D. thesis, Columbia University, New York, 1964. A good treatment is
H. Y. Chiu, Ann. Phys., 15:1 (1961). The most thorough calculations and tabulations are
those of C. J. Hansen, Ph.D. thesis, Yale University, New Haven, Conn., 1967.

2 At zero temperature the total Fermi energy, including rest mass, is

Wp = (0.511 Mev)[l + (P/Pe)I(9.82 X 105 g/cm3)-1]1
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Fig. 3·30 The rate of libera
tion of neutrino energy by
the nuclear Urea process
from matter in nuclear sta
tistical equilibrium. The
power is strongly tempera
ture-dependent. The den
sity dependence is reflected
by the Fermi kinetic energy
of the degenerate electron
gas, the values of which label
the curves. [So Tsuruta and
A. G. W. Cameron, Can. J.
Phys., 43:2056 (1965).]

This reaction shares the strength g of the other two. It is the equality of these
cross-product terms that constitutes the major evidence for the universality of
the weak interaction. The squared or self-interaction terms in the hamiltonian,
which are the ones that give rise to the major neutrino-emitting reactions in
astrophysics, have either not been observed at all or have only been inferred.

Problem 3-48: Assuming the hamiltonian to be correct, do the reactions

n + ,,-4 p.+ + e

occur in nature?

and p + ii-4 e+ +"

THE SELF-INTERACTION TERMS

One could have constructed a weak-interaction theory that arbitrarily yields zero
for the squared terms in the current-current interaction, thereby leaving only the
cross products observed so far. From a theoretical point of view it has been
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more attractive to consider each product of pairs as occurring with equal strength.
Laboratory evidence for one of the self-interaction terms has been claimed,
furthermore, though probably not conclusively. The question of whether these
self-interaction terms do in fact occur is an important one for astrophysics,
because they are capable of producing more dramatic energy loss than nuclear
beta decay does. Let us consider briefly the three self-interaction products.

The interaction (iip)(pn) This interaction leads to the reaction

n+p-tn+p

which represents the scattering due to the weak interaction of a proton from a
neutron. The scattering amplitude (cross section) for this process is much too
small to be observed directly. Its effects are masked by the stronger nuclear
force, which gives rise to the same event. Because the weak interaction violates
the symmetry of parity (equivalence of rates to those in a space-inverted coordi
nate system), whereas the nuclear interaction does not, the existence of this weak
scattering process will admix into every nuclear state a small amount of the
opposite parity, I and this admixture may lead to observable effects. Although
the parity-nonconserving amplitudes for electromagnetic transitions are small
compared to the parity-conserving ones, the interference of the two amplitudes,
which is linear rather than quadratic in the small amplitude, should be measur
able by modern techniques. Michel? has made a detailed investigation of the
nuclear transitions capable of demonstrating the existence of this weak force.
The quest was undertaken experimentally by Boehm and coworkers, who suc
cessfully detected a small parity admixture in a gamma decay in Tal SI in an
amount consistent with this current-current hypothesis of the weak interaction.3

At the present time it appears that one can say that experimental evidence for
the nucleon self-interaction terms exists. If this is correct, the assumption that
all the self-interaction terms exist seems even more plausible than before.

The interaction (p.v')(j'/JL) This product leads to the scattering of mu neutrinos
from muons. It seems completely undetectable and will be ignored, inasmuch as
muons are not generally believed to be important in stellar evolution, although
they may playa role in the gravitationally collapsed supernova core.

The interaction (liv) (iie) These operator products may be viewed as the
destruction of an electron and a neutrino accompanied by the creation of an
electron and a neutrino,

e-+v-te-+v

which once again describes a weak scattering, this time of neutrinos (or anti
neutrinos) from electrons (or positrons). The cross section is expected to be

1 Parity in nuclear states will be discussed further in Chap. 4.

2 F. C. Michel, Phys. Rev., 133 :B329 (1964).

3 F. Boehm and E. Kankeleit, Phys. Rev. Letters, 14 :312 (1964).
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of order 10-44 em", so that even near a reactor flux of 1014 p/cm-2 sec-1 about
106 moles is required to produce one scattering event per second! In spite of
such enormous difficulty, elaborate experiments are being contemplated in an
attempt to detect this very important interaction. It is not primarily the scat
tering of neutrinos from electrons that is of interest astrophysically but rather the
several other reactions that will be possible if the scattering interaction exists.
It is, in fact, from this one single term that all the important neutrino-emitting
reactions (with the exception of nuclear beta decay) arise. It should be noted
that this is a nonnuclear process. It involves only an interaction between neu
trinos and electrons. It follows from quantum electrodynamics that an inter
action with an electron automatically implies interaction with photons, inasmuch
as a photon is electrodynamically a virtual positron-electron pair, and interactions
with virtual particles are the same as with the free particles. (For instance,
photons may scatter from other photons by the same principle.) Thus this self
interaction term of. the hamiltonian, if it exists, links neutrinos to the most
abundant constituents of the gas, photons and electrons. There are, moreover,
a variety of ways in which this interaction will be expected to appear. It will lie
outside the scope of this book to calculate the rates involved, but an enumeration
of the major processes follows.'

(1) e+ + e: --'> P + ii: This reaction is obtainable from neutrino-electron scat
tering simply by transposing an electron and a neutrino by switching them to
antiparticles, an operation consistent with the field-theoretic interpretation of the
particle operators. The annihilation of a positron-electron pair into two photons
is well known. It comes about via the electromagnetic interaction. Because the
weak rates are so small in comparison with electromagnetic rates, the branching
ratio is calculated as

e+ + e- --'> P + ii ~ 10-19 (3-291)
e+ + e --'> 'Y + 'Y

Any terrestrial attempt to observe this very small fractional competition would
be hopeless,but if this self-interaction term in the weak current-current hamil
tonian exists, as assumed, this reaction may be the most prolific source of
neutrino emission in nature.

Another interesting electrodynamic feature arises from the interpretation of a
photon as a virtual positron-electron pair. If the weak interaction is capable of
converting the electron pair into a neutrino pair, as assumed, the possibility
arises that photons may be replaced by a neutrino pair if the process is allowed
by conservation laws.

Problem 3..1l9: It is well known that a photon, even if it has sufficient energy, cannot spon
taneously transform into a real electron pair without violating conservation of momentum or
of energy. This results from the finite electron mass. The neutrino, however, is also massless.

1 Probably the most complete account available is in Chiu, "Stellar Physics," loco cit. A very
extensive bibliography of work prior to 1964 is contained in W. A. Fowler and F. Hoyle,
Astrophys. J. Suppl., 9 :201 (1964). The reader should consult these works for more details.
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It must therefore travel with the velocity of light and satisfy the relation E = pc, just as a
photon does. Spin-i particles traveling at the velocity of light are in a state of definite helicity,
however, which is to say that the spin is either parallel or antiparallel to the momentum.
The current interpretation is that the neutrino is left-handed and the antineutrino is right
handed. Show, then, that the reaction "y -> v + v is not prohibited by conservation of energy
and linear momentum but that it is prohibited by those principles if the spins of the neutrino
pair are required to couple to unity to match the spin of the photon.

It turns out that the photon can be replaced by a neutrino pair when it inter
acts with a third body, in much the same way that the high-energy photon
becomes capable of conversion to an electron pair during interaction with a
third body.

One is not used to thinking, perhaps, of the presence of positrons in a star,
because they annihilate quickly into two photons with the dense electron gas.
But at high temperature (T > 109 OJ{) quite a large density of photons have
energies in excess of the threshold for pair production in the field of an ion:

for pair production

(3-292)

At sufficiently high temperatures, therefore, pairs are also created at a large rate.
Thus if n+ designates the density of positrons, its value will be given by the
differential equation

dn+ . d ti t n+-d = pair pro uc IOn ra e - -t T an n

where Tan n is the mean lifetime of free positrons against annihilation with the
free electrons. Because of the short lifetimes involved, the positron density will
quickly achieve an equilibrium value such that dn+/dt = O. In that case the
equilibrium density of free positrons is numerically equal to the number pro
duced per unit volume within the annihilation lifetime:

(n+)eq = pair production rate X T ann (3-293)

At temperatures of several billion degrees the pair production rate becomes so
large that the positron density becomes a significant fraction of the electron den
sity. Of course the positron density also depends upon the electron density,
because the annihilation lifetime is inversely proportional to the electron density.

Since equilibrium is achieved so quickly, one may assume that the positron
density is always in equilibrium. In that case the details of the creation and
annihilation reactions can be ignored, and one can calculate the positron density
from statistical mechanics alone. One sets the number densities equal to the
usual integral over the Fermi-Dirac momentum spectrum and uses the auxiliary
condition relating the chemical potential» of the positrons to that of the electrons.

1 See L. D. Landau and E. M. Lifschitz, "Statistical Physics," Addison-Wesley Publishing
Company, Inc., Reading, Mass., 1958, for the meaning of chemical potential and ibid., chap. 11,
for the positron density. Fowler and Hoyle, loco cit, present a thorough discussion of this
neutrino mechanism.
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(3-295)

(3-294)

The result is that [compare Eq. (2-53)]

1 (mec)3 ('" x2 dx
n± = 1T2 T }o exp [O(x2 + I)! ± ¢] + 1

1 (mec) 3
" l " w(w2

- I)! dw
n± = 1T2 T ]I exp (Ow ± ¢) + 1

where 0 = mec2j kT = 5.930jTg, X = p/mec, w is the total energy of electron or
positron in units of mec

2, and ¢ is the chemical potential divided by kT. For
any temperature these equations determine n+ and n_ parametrically, the param
eter being ¢. The parameter ¢ can be determined from the condition

(3-296)

(3-297)

(3-299)

where ne(Ol is the electron density required to neutralize the nuclei (ne(Ol would
equal the electron density were it not increased somewhat by production of pairs).
If the gas is nondegenerate (as expected at high temperatures), and if kT < mec

2,

the integrals may conveniently be expanded to give approximately

- ne(O) [(ne(O»)2 "J!
n± <=:: + 2 + 2 + n1

2

where

(~-298)

Problem 3-5D: Calculate the positron number density at 109 OK in an oxygen gas having a
nuclear density of 103 g/cm3•

Once the number densities n+ and n.: are determined, the rate of neutrino
emission can be calculated from

~; = 2n+n_(uv)

where a is the cross section for annihilation into a neutrino pair and (uv) is the
average value of the cross section times the relative velocity of positron and
electron, the average being taken with respect to the velocity distribution of the
particles. To calculate energy loss during stellar evolution, however, one needs
not the number of neutrinos emitted per second but the power emitted in the
form of neutrinos. In the annihilation the total energy W, including the rest
masses of the electron pair, is converted into neutrino energy. Thus the neu
trino power per unit volume is

(3-300)
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The annihilation cross section turns out to be (for the moderate energies found in
stars)!

0' = 1.42 X 10-45 ~ (w2 - 1) em! (3-301)
v

where v is the relative velocity of the pair and w is the center-of-momentum total
energy (including rest mass) in units of m.c 2

• This cross section has the charao
teristicsmallness of all neutrino cross sections because it must be proportioned
by g2. Performing the integral over the spectrum is somewhat tedious, the
answer being expressible in terms of modified Hankel function. 2 Reasonably
good simple approximations exist for nondegenerate electrons in the nonrelativ
istic limit (low temperature) and in the relativistic limit (very high temperature):

d~v "'" 4.9 X 10 l 8T
9 3 exp -~~86 T 9 < 1 (3-302)

(3-303)

The temperature T 9 is in units of billions of degrees, and the power emitted is,
in cgs units, ergs per cubic centimeter per second. The importance of these
results can be seen by noting that at high temperature the neutrino luminosity
may radiate the thermal energy in a short time. It will also be noted that the
neutrino power is independent of the density. This surprising result occurs
because in a nondegenerate gas the product n+n_ is independent of the den
sity, as may be easily confirmed from Eq. (3-297). Because the positrons are
destroyed by electrons, their concentration tends to be inversely proportional to
the electron density, and the product of the concentration is essentially constant.

Problem 3-51: In a gas at a temperature 3 X 109OK, what is the ratio of the energy density
in the thermal photon gas to the neutrino power? Discuss the implications.
Ans: About 2 hr.

The results of numerical calculations are conveniently displayed in Fig. 3-31.
The upper solid curve is the neutrino luminosity (measured by the left-hand
ordinate), which rises asymptotically as T9. Also shown as dashed curves are
the high- and low-temperature approximations to the neutrino luniinosity as
given in Eqs. (3-302) and (3-303). The middle solid curve shows the product
n+n_ (as measured by the right-hand ordinate). That product increases like the
sixth power of the temperature. The bottom solid curve shows the averaged
product (uvW), and is measured by the right-hand ordinate under the hiatus.
It rises roughly like T3.

(f1) 'Yplasmon -7 ji + v: Even though a photon is virtually a positron-electron
pair, it cannot decay into a neutrino pair because the neutrinos, with their peeul-

1 At ultrahigh energy the reaction may proceed via an intermediate Bose particle.

2 See Fowler and Hoyle, op, cit., p. 213.
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Fig. 3·31 The neutrino emissivity from the annihilation of positron-electron
pairs, the product n+n_ of the pair densities, and the average (rrvW) for their
reaction are shown as functions of the temperature. Note that the latter
two ordinates are located on the right-hand margin. This neutrino source
depends upon the universality of the weak interaction. [W. A. Fowler and
F. Hoyle, Astrophsjs. J. Suppl., 9 :201 (1964). By permission of The Uni
versity of Chicago Press. Copyright 1964 by The University of Chicago.]

iar helicity properties, cannot couple to unit spin unless they move in opposite
directions. If the neutrinos must move in opposite directions, the decay cannot
conserve energy and momentum, inasmuch as all three particles obey the energy
momentum relationship E = pc. Although this situation prevents the decay in
a vacuum, the situation is more complicated in a star. The stellar plasma is a
dialectric for photon propagation, such that the dispersion relation for angular
frequency and wave number becomes

w2 = k 2c2 + wo2 (3-304)

where Wo is called the plasma frequency. In a nondegenerate plasma, the plasma
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frequency is given by the well-known expression1

277

2 47l"nee2

Wo =-
me

nondegenerate (3-305)

or, in cgs units,

Wo = 5.6 X 104ne1

In nondegenerate stellar interiors this frequency is so small in comparison with
the frequency of a thermal photon, nWth :::; kT, that no significant modification of
photon processes results. However, nwo becomes comparable to kT in many
high-density astrophysical situations. The electron gas in these cases is degen
erate, a feature which modifies the plasma frequency somewhat:

wo2 = 41re
2n

e [1 + (!!:-)2 (31r2n
e)t]-1 degenerate (3-306)

me mec

Returning now to the photon moving through the dialectric of the dense
plasma, we observe that the dispersion relation

w2 = k 2c2 + wo2

is kinematically equivalent to the energy-momentum relation for a massive
particle:

(3-307)

Such an electromagnetic wave, when quantized, has been called a plasmon, and
it behaves like a relativistic Bose particle with a rest mass.

Problem 3-52: Show that the equivalent rest mass for the plasmon is

fu"o
mpla.stoon = 7

The dispersion relation describes the fact that the electromagnetic wave in the
plasma has, for a given momentum, an excess energy. The energy excess allows
the wave to decay into a neutrino pair in which the neutrino and antineutrino
move in opposite directions. In a sense then, the plasmon is energetically unsta
ble against the neutrino-decay mode, whereas the free photon is not.

A corollary is that the minimum energy of a propagating photon is liwo. The
medium is completely absorbing, and electromagnetic disturbances are damped
out rather than propagated for w < woo In the theory of radiative transfer this
feature is taken into account by setting the opacity equal to infinity for w < woo
This usually has very little effect on the Rosseland mean, because in situations
where radiative transfer is important in stars one usually finds that Wo « kTlli,
and the values of the opacity at very low frequencies do not influence the energy
transfer. In the degenerate gas, where liwo becomes greater than kT, however,

1 T. Stix, "The Theory of Plasma Waves," McGraw-Hill Book Company, New York, 1962.



278 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

the spectrum of electromagnetic waves is considerably altered by the frequency
threshold imposed by the plasma. The plasmons still obey Bose-Einstein sta
tistics, but since they must be thermally excited, the electromagnetic waves can
be "frozen out" if nwo > kT. At high densities one finds that only the waves
far out on the exponential tail of the Planck spectrum can propagate. Under
those circumstances the energy density in the radiation field may fall consider
ably below the value u = aT4 for a blackbody spectrum at the same tempera
ture.! This feature is in itself probably of no importance for stellar structure,
inasmuch as the equation of state of the gas is dominated by the degenerate
electron gas, and the major importance of plasmons probably lies in their decay
into neutrinos.

Because of these thermal properties of plasmons the associated neutrino power
will depend upon the energy ratio,

hwo 3.345 X 1O-4(p/ p..)!
x == kT = T 9[1 + 1.0177 X 10 4(p/p..)i]i

It has been shown that" in ergs per cubic centimeter per second

d~. = 3.07 X 1021(~~2Y x9F(x)

where

F(x) = ~ K 2(nx)
~ nx

n=1

(3-308)

(3-309)

(3-310)

(3-311)

and the function K 2 is a modified Bessel function of the second kind.
For large values of x, a situation implying that the plasma quantum is com

parable in energy to kT, the series for F(x) can be approximated by the first term,

F(x) ~ r;,y x-Je-'"

which leads to

du. ~ 3.85 X 1021 (hwo)7.5 (kT )1.5 e:»
dt mec

2 mec
2 (3-312)

For small values, x < 0.5, the series for F(x) converges very slowly but is well
approximated by

2.404 1 [(1) ] xF(x) ~ X""3 + x 2'ln x - 0.5966 + 96 [(In z) - 2.851J (3-313)

1 C. L. Inman, Astrophys. J., 142 :201 (1965).

2 C. L. Inman and M. Ruderman, Astrophys. J., 140:1025 (1964). These published rates
have been decreased by a factor of 4 as a result of an observation of Zaidi's.
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For very small x the leading term dominates, giving

duv ~ 7.4 X 1021 (kT)3 x6 (3-314)
dt 1n.c2

This limit corresponds to a high-temperature limit, where emission by the annihi
lation of pairs usually dominates the plasmon emission. Note that each neu
trino power has been expressed in ergs per cubic centimeter per second. If one
wishes to define a neutrino term in the energy generation, then

Ev == - ~ d~v (3-315)

Figure 3-32 shows the neutrino power per gram radiated from plasmon decay
as a function of density for several different temperatures. As the density
increases for a given temperature, the neutrino power initially increases, because
the increasing plasmon mass liberates increasing energy in each decay. But the
plasmon modes require energy for their excitation, which must be derived from
the thermal environment, so that when tiwo becomes greater than kT, the num
ber of plasmons decreases as exp ( -tiwo/kT) ; that is, the plasmons are frozen out
at a very high density, and the neutrino power, after passing through a maxi-

<J
ell
(J)

bD
<,
l:ll
ell-,...
bD
.E 10

Fig. 3-32 The neutrino emis
sivity resulting from the decay
of plasmon modes into neutrino
pairs. At each value of the
temperature the emissivity in
creases with density until the
plasma frequency becomes so
large that its quantum modes
cannot be thermally excited.
This source depends upon the
universality of the weak inter
action. [Constructed from nu
merical tables in C. L. Inman
and M. Ruderman, Astrophys.
J., 140 :1025 (1964).]

6

log p
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E F == 23Mev

Fig. 3-33 The competition be
tween the Urea neutrino emis
sivity from matter in nuclear
statistical equilibrium and the
plasma emissivity at high tem
perature and density. The
former does not depend upon
the universality of the weak
interaction, whereas the latter
does. [8. Tsuruta and A. G. W.
Cameron, Can. J. Plujs.,
43 :2056 (1965).]
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mum, falls off with further increases in density. For the same reason increasing
the temperature increases the neutrino power by increasing the density of excited
plasmons. At very high temperatures, however, the annihilation of positron
electron pairs becomes a stronger neutrino source than plasmon decay.

At a combination of extremely high density and temperature, such as may be
found in the imploded core of a supernova or a neutron star, the plasma neu
trinos may be competitive instead with the nuclear Urea process. Figure 3-33
shows this rather special competition, again labeled by the Fermi energy of the
electron. gas. At the densities encountered in the calmer stages of stellar evolu
tion, the plasma neutrinos give way to annihilation neutrinos at high temperature.
(3) 'Y + e -l-e + II + ii: The analog of Compton scattering, with the excep
tion that a neutrino pair replaces the outgoing photon, this process has come to
be called the photoneutrino process. The electron modifies the momentum-energy
balance in such a way that the emerging photon can appear as a neutrino pair.
One Feynman diagram for the reaction is shown in Fig. 3-34. The rates have
been calculated! for a variety of conditions in the electron gas. We shall only

1 V. Petrosian, G. Beaudet, and E. Salpeter, Phys. Reo., 154:1445 (1967).
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summarize approximate nonrelativistic expressions for the neutrino power in cgs
units, ergs per cubic centimeter per second:

(i) Nonrelativistic nondegenerate

(ii) Nonrelativistic degenerate

du. ~ 4.8 X 1011 (!!.)! T 99

dt J.l.

(3-316)

(3-317)

The photoneutrino process competes with pair annihilation only at tempera
tures sufficiently low so that electron pairs cannot be created, and it competes
with the plasma neutrino process only at densities so low that the plasmon quan
tum tiwo becomes trivially small. Figure 3-35 shows the domains in the temper
ature-density plane which are dominated by these three neutrino sources arising
from the (ev)(iie) interaction term (the nuclear Urea neutrinos are not included,
although they do compete at high temperature and high density, as was shown.in
Fig. 3-33). There exist many other mechanisms for neutrino emission in stars, 1

but since they appear to be less efficient than those discussed so far, they are
omitted here.

1 See Fowler and Hoyle, loco cit., or Chiu, "Stellar Physics."

II

e

Fig. 3-34 A Feynman diagram for the
photoneutrino process. It can be seen
that one vertex involves the electromag
netic annihilation of a positron-electron
pair, which is well known, whereas the
other vertex involves the unchecked
annihilation into neutrino pairs. The
rate for the neutrino emissivity depends
therefore upon the same weak-interaction
physics as the annihilation of real pairs.
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Fig. 3-35 The temperature-density plane is divided into three regions showing the dominant
neutrino-emitting mechanisms arising from the (ev)(iie) interaction. If this interaction shares
the strength of a universal weak interaction, these neutrino-emitting processes are very impor
tant in stellar evolution.

Problem 3-53: Calculate the temperature at pip.. = 105 g/cm3 for which the photoneutrino
emissivity equals the plasma-neutrino emissivity.

In summary, it will be noted that, except for the corrections to the energy
generating nuclear reactions, the importance of neutrino emission in stellar evo
lution seems to be limited to the late evolutionary stages. The most impor
tant of these, the electron-pair annihilation into a neutrino pair, the plasmon
decay into a neutrino pair, and the photoneutrino pair, stem from an interaction
that has not yet been observed in the physics laboratory, the (ev)(iie) term in the
current-current interaction. The neutrino emission becomes potentially impor
tant whenever the temperature exceeds 5 X 108 OK and/or whenever the density
exceeds 105 g/cm", It seems fair to say that a cloud of uncertainty hangs over
calculations of the terminal stages of stellar evolution until the proof or disproof
of this weak-interaction term has been demonstrated convincingly.



chapter

THERMONUCLEAR
REACTION RATES

The heart of stellar evolution and nucleosynthesis is the thermonuclear reaction.
In the foregoing discussions, the rate of energy liberation per gram of stellar
material has been designated by the symbol E. It is the fusion of light nuclei
into heavier nuclei that liberates kinetic energy (at the expense of mass) and
serves as the interior source of the energy radiated from the surface. The con
dition that the power liberated internally balance the power radiated from the
surface determines a steady state in the structure of the star. That situation
cannot be a truly static one, however, because the very reactions that liberate
energy necessarily change the chemical composition of the stellar interior. It is
the slow change of chemical composition that causes the structure of the star to
evolve. If, after a fuiite lifetime, a star ejects all or part of its mass into space,
the chemical composition of the interstellar medium will have been altered by the
thermonuclear debris. Stated most simply, it is the working hypothesis of the
stellar nucleosynthesistthat all or part of the heavy elements found in our galaxy
have been synthesized in the interiors of stars by these same fusion reactions.
For these reasons the subject of thermonuclear reaction rates is a focal point of
this book.

A complete science of thermonuclear reaction rates is formidable. It involves
complicated details of nuclear physics, many of which are still unsolved. The

.mechanism of each reaction must be scrutinized to achieve assurance of the proper
prescription for the stellar reaction rate. Still there are a few basic physical
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principles that are common to the computation of all thermonuclear reaction
rates, and it is to these general principles that we address ourselvesin this chapter.

4·1 KINEMATICS AND ENERGETICS

A nuclear reaction in which a particle a strikes a nucleus X producing a nucleus Y
and a new particle b is symbolized by

For example, a reaction in which a deuteron strikes a 0 12 nucleus producing a.
0 13 nucleus and a proton is written

An alternative notation in common usage is

X(a,b)Y

The incoming or outgoing particle may often be a photon, as in the reaction

p + N14 ~ 0 16 + 'Y

In all such nuclear reactions, the total energy, momentum, and angular momen
tum are conserved quantities.

The necessity for conserving the total linear momentum in a nuclear reaction
suggests that the kinematical description be in terms of the motion of the center
of mass (or strictly speaking the center of momentum) of the nuclear system plus
the motion of the particles relative to their center of mass. Just as in classi
cal mechanics, the total energy or the total momentum of the system may be
expressed as the sum of the energy or momentum in the center-of-mass system
plus the energy or momentum of the motion of the center of mass itself. The
conservation of momentum demands, among other things, that the motion of the
center of mass be unaltered by the reaction.

For two particles of masses ml and m2 and nonrelativistic velocities VI and V2,

Fig.4-1 A particle of mass ml and velocity Vl in colli
sion with a particle of mass m2 and velocity V2.
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the velocity V of the center of mass is given by the value of the momentum:

mlvl + m2v2 = (ml + m2)V

or

285

V = mlvl + m2v2
ml+ m2

(4-1)

This discussion will be entirely restricted to the nonrelativistic kinematics appro
priate to the low kinetic energy in stellar interiors.

The momentum of particle 1 relative to the center of mass is

(4-2)

where p. is the reduced mass

(4-3)

and v is the relative velocity of ml and m2

Problem 4·1: Confirm Eq. (4-2). Write an analogous expression that is relativistically correct.

In the same manner the momentum of m2 relative to the center of mass is

(4-5)

Thus in _,the center of mass the particles approach each other with equal and
opposite momenta; the total momentum is zero in the center-of-mass system.
We can think of the whole center-of-mass picture as sliding along with the veloc
ity V, as in Fig. 4-2. The conservation of momentum will be satisfied by demand
ing that the velocity of the center of mass be unchanged by the collision and that
the total momentum in the center-of-mass system be zero after the collision just
as before. The kinetic energy before the collision is

(4-6)

Problem 4-2: Use Eqs. (4-2) and (4-5) to show that

(4-7)

Equation (4-7) indicates that the kinetic energy of the two particles can be
thought of as the sum of those associated with a mass ml + m2 moving with the
velocity of the center of mass plus a mass p. moving with the relative velocity v.
The first term is the kinetic energy of the center of mass itself, which must be
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.. v

Fig. 4-2 The collision of Fig. 4-1
in the center-of-mass coordinates.
In the frame of reference moving
with the velocity V of the center
of mass of the two particles, the
particles collide with equal and
opposite momenta ±/Lv.

HOM E, S WEE THO M E

the same after the collision as before it.' The second term,. ,uv2/2, represents
that portion of the kinetic energy available for doing work against any force
separating the two particles. It is commonly called the kinetic energy in the
cenier-oj-mass system.

Problem 4-3: H it is imagined that the particles are held apart by a repulsive spring, it is clear
that the extent to which the spring may be compressed by relative motion is most simply
obtained using the center-of-mass system in Fig. 4-2, because only the equal and opposite
components of the particle momenta can be expended in doing work against the spring without
violating the law of momentum conservation. Show that this energy in the center-of-mass
system is

(4-8)

These nonrelativistic formulas are applicable to nuclear reactions only if the
combined mass of the final particles equals the combined mass of the initial
particles. But the source of new kinetic energy comes from a reduction of mass
according to the Einstein relationship

AKE = -AMc2

In low-energy nuclear reactions, however, AM/ M ~ 10-3~ 10-4, so that the
assumption of constant mass is accurate to better than 0.1 percent. For our

1 This statement once again assumes that the total mass of the particles will change by a
kinematically negligible amount in the reaction. The assumption is consistent with the assump
tion that the particles may be treated nonrelativistically.
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purposes it is adequate to consider that to be equality. Since the kinetic energy
of the center of mass is accordingly unchanged by the reaction, the kinetic energy
in the center-of-mass system must be increased or decreased according to whether
the final mass is less than or greater than the initial mass.

Thus if we return to the reaction

a+X-7Y+b

the conservation-of-energy principle demands the equality

Eax + (Ma + M X)c
2 = Eby + (Mb + M y)c2 (4-9)

where Ess is the center-of-mass kinetic energy of a and X and Eby is the kinetic
energy in the center of mass of the bY system. The second terms on each side
of the equation represent the fact that the sums of the rest masses before and
after the reaction are not necessarily exactly equal and that kinetic energy may
be either liberated or absorbed by that inequality. This is the well-known
Einstein mass-energy relationship. The masses involved are the masses of the
nuclei a, X, b, and Y. For instance, in the example C12(d,p)CI3

Ed,c" + c2[M (d nucleus) + M(CI2 nucleus)]
= Ep,c" + c2[M(proton) + M(CI3 nucleus)] (4-10)

Notice, however, that the net amount of electric charge is conserved in normal
nuclear reactions. It follows that the number of electrons in the neutral atoms is
equal on both sides of the reaction equation. Thus we may, if we choose, replace
nuclear masses by atomic masses, since the same number of electron rest masses
is added thereby to both sides of the equation. The replacement of nuclear
masses by atomic masses does introduce a small error due to the difference in the
binding energies of the electrons on the two sides of the equation; however, the
difference in total binding of atomic electrons on the two sides of the equation is
very small compared to the difference in nuclear masses. We shall, therefore,
use atomic masses in this book, always keeping in mind that errors in the mass
energy relationship on the order of a few electron volts are introduced. Thus we
shall write, instead of Eq. (4-10),

Ed,e" + c2[M (D 2) + M(CI2)] = Ep,eu + c2[M(HI) + M(CI3)] (4-11)

where the masses are those of the neutral atoms. The great utility in using
atomic masses is that these are the quantities that are traditionally measured in
atomic-mass measuring experiments, i.e., a mass spectrograph.

Another quantity that is clearly equal on both sides of the nuclear-reaction
equation is the total number of nucleons (nucleon is the generic name of a neutron
or a proton). Hence the atomic weight, which is defined as the integer nearest in
value to the exact mass expressed in atomic mass units, remains the same on both
sides of the mass-energy equation. The energy balance itself is not disturbed,
therefore, by subtracting the atomic weight times the rest-mass energy of 1 amu
from both sides of the equation. The masses then become the excesses of mass
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over the integral number of atomic mass units. We define the atomic mass excess
in units of energy by the quantity

!:i.MAZ = (MAZ - AMu)c
2

= [MAZ(amu) - A]c 2M
u (4-12)

where M u is the mass of 1 atomic mass unit (amu), defined as one-twelfth of the
mass of the neutral C12 atom.' In the convenient numerical units of Mev, Eq.
(4-12) becomes

!:i.MAz = 931.478(MAZ - A) Mev

where 931.478 is the rest-mass energy of 1 amu in Mev and M AZ is the mass of
species (A,Z) in atomic mass units. With this definition the energy-balance
equation becomes

(4-13)

where !:i.M are expressed in energy units, generally in Mev, as defined above.
Table 4-1 shows the values of the atomic mass excesses for various atoms
expressed in units of Mev. Notice that the atomic mass excess of Cl2 is zero
by definition. A numerical example of the use of Table 4-1 may be useful at
this point. For the reaction CI2(d,p)Cl3, for instance, we see from the mass table
that

Ed,cu + 13.1359 + 0 = Ep,clI + 3.1246 + 7.2890

or

Ep,clI = Ed,cu + 2.7223 Mev (4-14)

There is an increase of kinetic energy equal to 2.722 Mev for each such reaction.

Problem 4-4: Calculate the energy generated by the reaction He 3(He3,2p)He4•

ADs: 12.860 Mev.

4-2 CROSS SECTION AND REACTION RATE

The energy-balance equation yields the energy liberated by each nuclear reaction.
From that energy and the number of reactions per unit volume per second the
energy liberated per unit volume per second can be calculated as a simple product.
Thus the second half Of the calcuiation of energy-liberation rates involves the use
of the concept of the cross section for a reaction. The cross section is a measure
of the probability per pair of particles of occurrence of a reaction. Consider once
more the reaction a + X ~ Y + b. Envision some nuclei of type X being hom-

1 Before 1960 the atomic mass unit was defined as one-sixteenth of the 0 16 atom.
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Table 4·1 Atomic mass excessest

Z Element A M A, Meo Z Element A M -A, Me»

0 n 1 8.07144 19 3.33270
1 H 1 7.28899 20 3.79900

D 2 13.13591 9 F 16 10.90400
T 3 14.94995 17 1.95190
H 4 28.22000 18 0.87240

5 31.09000 19 -1.48600
2 He 3 14.93134 20 -0.01190

4 .2.42475 21 -0.04600
5 11.45400 10 Ne 18 5.31930
6 17.59820 19 1.75200
7 26.03000 20 -7.04150
8 32.00000 21 -5.72990

3 Li 5 11.67900 22 -8.02490
6 14.08840 23 -5.14830·
7 14.90730 24 -5.94900
8 20.94620 11 Na 20 8.28000
9 24.96500 21 -2.18500

4 Be 6 18.37560 22 -5.18220
7 15.76890 23 -9.52830
8 4.94420 24 -8.41840
9 11.35050 25 -9.35600

10 12.60700 26 -7.69000
11 20.18100 12 Mg 22 -0.14000

5 B 7 27.99000 23 -5.47240
8 22.92310 24 -13.93330
9 12.41860 25 -13.19070

10 12.05220 26 -16.21420
11 8.66768 27 -14.58260
12 13.37020 28 -15.02000
13 16.56160 13 Al 24 0.1000

6 C 9 28.99000 25 -8.9310
10 15.65800 26 -12.2108
11 10.64840 27 -17.1961
12 0 28 -16.8554
13 3.12460 29 -18.2180
14 3.01982 30 -17.1500
15 9.87320 14 Si 26 -7.1320

7 N 12 17.36400 27 -12.3860
13 5.34520 28 -21.4899
14 2.86373 29 -21.8936
15 0.10040 30 -24.4394
16 5.68510 31 -22.9620
17 7.87100 32 -24.2000

8 0 14 8.00800 15 P 28 -7.6600
15 2.85990 29 -16.9450
16 -4.73'655 30 -20.1970
17 -0.80770 31 -24.4376
18 -0.78243 32 -24.3027
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Table 4-1 Atomic masses excessest (Continued)

Z Element A M - A, Mev Z Element A M - A, Mev

15 p 33 -26.3346 45 -40.8085
34 -24.8300 46 -43.1380

16 S 30 -14.0900 47 -42.3470
31 -18.9920 48 -44.2160
32 -26.0127 49 -41. 2880
33 -26.5826 21 Se 40 -20.9000
34 -29.9335 41 -28.6450
35 -28.8471 42 -32.14iO
36 -30.6550 43 -36.1740
q7 -27,0000 44 -37.8130
38 -26.8900 45 -41.0606

17 Cl 32 -12.8100 46 -41. 7557
33 -21.0140 47 -44.3263
34 -24.4510 48 -44.5050
35 -29.0145 49 -46.5490
36 -29.5196 50 -44.9600
37 -31.7648 22 Ti 42 -25.1230
38 -29.8030 43 -29.3400
39 -29.8000 44 -37.6580
40 -27.5000 45 -39.0020

18 Ax 34 -18.3940 46 -44.1226
35 -23.0510 47 -44.9266
36 -30.2316 48 -48.4831
37 -30.9509 49 -48.5577
38 -34.7182 50 -51.4307
39 -33.2380 51 -49.7380
40 -35.0383 52 -49.5400
41 -33.0674 23 V 46 -37.0600
42 -34.4200 47 -42.0100

19 K 36 -16.7300 48 -44.4700
37 -24.8100 49 -47.9502
38 -28.7860 50 -49.2158
39 -33.8033 51 -52.1989
40 -33.5333 52 -51.4360
41 -35.5524 53 -52.1800
42 -35.0180 54 -49.6300
43 -36.5790 24 Cr 48 -"42.8130
44 -35.3600 49 -45.3900
45 -36.6300 50 -50.2490
46 -35.3400 51 -51.4472
47 -36.2500 52 -55.4107

20 Ca 38 -21.6900 53 -55.2807
39 -27.3000 54 -56.9305
40 -34.8476 55 -55.1130
41 -35.1400 56 -55.2900
42 -38.5397 25 Mn 50 -42.6480
43 -38.3959 51 -48.2600
44 -41.4596 52 -50.7020
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Table 4-1 Atomic mass excessest (Continued)

Z Element A !If - A, Mev Z Element A M - A, Mev

25 Mn 53 -54.6820 65 -65.1370
54 -55.5520 66 -66.0550
55 -57.7048 29 Cu 58 -51.6590
56 -56.9038 59 -56.3590
57 -57.4800 60 -58.3460
58 -55.6500 61 -61.9840

26 Fe 52 -48.3280 62 -62.8130
53 -50.6930 63 -65.5831
54 -56.2455 64 -65.4276
55 -57.4735 65 -67.2660
56 -60.6054 66 -66.2550
57 -60.1755 67 -67.2910
58 -Q2.1465 68 -65.4100
59 -60.6599 30 Zn 60 -54.1860
60 -61.5110 61 -56.5800
61 -59.1300 62 -61.1230

27 Co 54 -47.9940 63 -62.2170
55 -54.0140 64 -66.0003
56 -56.0310 65 -65.9170
57 -59.3389 66 -68.8810
58 -59.8380 67 -67.8630
59 -62.2327 68 -69.9940
60 -61.6513 69 -68.4250
61 -62.9300 70 -69.5500
62 -61.5280 71 -67.5200
63 -61.9200 72 -68.1440

28 Ni 56 -53.8990 31 Ga 63 -56.7200
57 -56.1040 64 -58.9280
58 -60.2280 65 -62.6580
59 -61.1587 66 -63.7060
60 -64.4707 67 -66.8650
61 -!J4.2200 68 -67.0740
62 -66.7480 69 -69.3262
63 -65.5160 70 -68.8970
64 ~67.1060

t Based on the scale Cl2 == 0; 1 amu = 931.478 Mev. This table of masses, prepared byT,
Lauritsen, is largely adapted from the comprehensive review by J. H. E. Mattauch, W. Thiele,
andA. H. Wapstra, Nucl. Phys., 67:1 (1965). Terminal zeros are generally not significant
digits.

barded by a uniform flux of particles of type a, as illustrated in Fig. 4-3. The
cross section for the reaction under consideration is defined under such circum-
stances as

2 _ number of reactions/nucleus X/unit time
(4-15)u(cm) - number of incident particles/ems/unit time

The name cross section arose because of the units of area and because the formula
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X
a a X X

Xa X X
a a X

X X Fig. 4-3 Stationary particles of
a a type X are bombarded with a uni-X

)oo-u X form flux of particles of type a.a a X This situation corresponds to that
X X

a X of the nuclear experiment in the

a a X X laboratory.

X
a a X X

a a X
X X

a X

for the number of reactions per unit time can also be computed by assuming that
each nucleus X has a cross-sectional area a and that a reaction occurs each time
an a particle strikes in that area. Although such a picture is not physically cor
reet, it is sometimes a helpful mnemonic. Notice that this definition of the cross
section is actually symmetric in the two types of particles, since the relative veloc
ity is the same viewed from either particle. This definition actually defines u(v),
since it is assumed that the flux of particles has relative velocity v.

Now suppose that the target nuclei X are considered to be in the form of a gas
of uniform density Nx. Then the reaction rate per unit volume will be given by
the product of «Nx and the flux of particles of type a. Suppose further that the
flux of particles of type a is due to the uniform translation with velocity v of a
uniform gas of type a particles having number density N a' Then the flux of
a particles is given by the product vN a, so that finally we can write the expression
for the reaction rate,

(4-16)

If both a and X particles are moving, v is the magnitude of their relative velocity.
In a mixture of gases in the state of thermodynamic equilibrium, there exists

some spectrum of 1"elat2ve velocities between particles of type a and type X, just as
a and X individually have well-defined velocity spectra. Call this relative veloc
ity spectrum rjJ(v) , and let it be defined such that f rjJ(v) dv = 1. In that case
rjJ(v) dv is to be the probability that the relative velocity of the pair of particles
has magnitude v in the range dv. Then, generalizing Eq. (4-16), the total reac
tion rate per unit volume is

(4-17)

where the bracketed quantity (uv) is a common notation for the average value of
the product of relative velocity times cross section. The problem of computing
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thermonuclear reaction rates reduces to the evaluation of (uv) for the reactions
that occur in stellar interiors.

As one last point here, we note a small but important correction to Eq. (4-17),
which is correct only insofar as particle a is not identical to particle X. The
product NaNX is equal to the total number of unique pairs of particles (a,X) per
unit volume. However, if the reaction occurs between identical particles of type
a, the total number of pairs of particles per unit volume is not N a2 but rather
iNa2. The factor i must, therefore, be introduced into the reaction-rate equa
tion if the two types of interacting particles are identical, in order to avoid count
ing each pair of particles twice. This factor can be formally introduced into the
reaction-rate formulas as

(4-18)

(4-21)

where OaX is the Kronecker delta, defined as unity if a = X and as zero otherwise.
We shall also use the notation

A == (uv) (4-19)

which will be called the reaction rate per pair of particles. Then

Problem 4-5: Make the following thought experiment. Suppose a = X and you think of the
density N a as being divided into two components, half of which are stationary and half of which
are moving with translational velocity Vo. Then the target density is iNa, and the flux is
iN aVO, giving a reaction rate

T = iN a2vO<T(vo)

which, on the face of it, differs from Eq. (4-18) by a factor of 2. Resolve this discrepancy.
Hint: What is cf>(v)?
Ans: cf>(v) = io(v - vo) + io(v).

In discussions of time scales in nuclear astrophysics it is often useful to com
pute the mean lifetiines of nuclear species in a given environment. Explicitly
one defines the lifetime Ta(X) of species X against reactions with species a, such
that the rate of change of the abundance of X due to reactions with a satisfies
the equation

(
aN x) Nx

at a = - Ta(X)

The partial derivative in Eq. (4-21) does not have the usual mathematical mean
ing; in this case it is a mnemonic indicating the rate of change of N x due to a
partial cause. Since (aNx/at)a is also equal to -rax, we have

(4-22)
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A little thought reveals that the factor 1 + OaX appearing in Eq. (4-20) does not
appear in the lifetime calculation; i.e., if a ~ X, the factor is unity, so that its
inclusion is superfluous, and if a = X, the rate rsx is divided by 2, but each
reaction destroys two particles, in which case (aNxjat)a = -2raa, and the prod
uct again yields Eq. (4-22).

Problem 4-6: Show that if species X can be destroyed by several reactions, the total lifetime
T(X) is given by

1 L 1
T(X) = T,(X)

What is the form of the function ¢(v) which enters the calculation of the reaction
rate? The nuclei in stellar interiors are, with the exception of neutron stars,
always nondegenerate. In a state of thermodynamic equilibrium, the differing
types of nuclei will separately be described by Maxwell-Boltzmann distributions
of velocities. It is, perhaps, not so obvious what the distribution of relaiiueveloc
ities between two different sets of particles will be. A little thought will show
that it is also maxwellian.

From the statistics of Chap. 1 it is apparent that particles of type 1 have a
distribution of velocities VI given by

NI(VI) dVlz dVly dVlz = N I (2:~TYexp (- ~~~2) dVlz dVly dVlz (4-23)

It is then clear that the reaction rate will involve a double integral over

N I(VI) dlllz dVly dVlzN2(V2) dV2:z; dV2y dV2z

- N N (mlm2)! (_ mlVl
2 + m 2V22)

d3 d3 (4-24)
- 1 2 (27rkT)3 exp 2kT Vl V2

which physically represents the product of the probability that particle 1 has
velocity Vl in the range d3v l times the probability that particle 2 has velocity V2

in the range d3v 2.

In terms of the relative velocity and the velocity of the center of mass, the
individual velocities become

(4-25)
ml

V2 = V - V
ml + m2

We have already pointed out that the total kinetic energy appearing in the expo
nential of Eq. (4-24) may also be written as the sum of the kinetic energy of the
center of mass and the kinetic energy of relative motion in the center-of-mass
coordinates. The probability product may thus be expressed as

3 _ - (mlm2)! [ (ml + m2)V2 J.1.V2 J 3 3
N I(Vl) d Vl N 2(V2) d3v2 - N IN2 (27rkTP exp - 2kT - 2kT d VId V2

(4-26)
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. Because the cross section appearing in the reaction-rate integral is a function
only of the relative velocity, the integral over the velocity of the center of mass
can be done at once if the integral over d3Vl d3V2 can be related simply to an inte
gral over d3V d3v. This transformation can easily be done with the aid of the
theory of jacobian determinants, which, in its simplest form, states that given two
functionsf(x,y) and g(x,y) of two variables x and y, an integral over d» dy may be
replaced by an integral over df dg, but the ratios of the two differential areas are
given by the absolute magnitude of the determinant of partial derivatives:

dAJ,u = magnitude of
dA""1I

af af
ax ay
ag ag
ax ay

(4-27)

The jacobian determinant in the case at hand has unit magnitude, as can easily
be seen by considering one component of the transformation. The ratio of the
differential area dVb dV2'" to the differential area dV",do; is given by the magnitude
of the determinant

aVb aVlz
1

m2
aV", av", ml+m2 -1 (4-28)
aV2z alJ2z -ml
aV", av",

1
ml+m2

Using this fact and the definition of the reduced mass, one sees that the proba
bility product in Eq. (4-26) may be written as the product of two factors,

{(
m 1 + m2)! [ (ml + m2)V2] 3 } [( JL)! ( JLv2) 3 ]. 27rkT exp - 2kT d V 27rkT exp - 2kT d v (4-29)

(4-30)

(4-31)

the first of which represents a Maxwell-Boltzmann velocity distribution of the
velocity of the center of mass and the second of which represents a Maxwell
Boltzmann distribution of relative velocity. Because these distributions are
normalized, the integral over d3V can be done at once and yields unity. Thus
the reaction-rate integral has reduced to

r = JN l(Vl)N2(V2)VU(V) d3vl d3v2

= N 1N2Jvu(v) (2~TY exp ( - ;;;) d3v

which is to correspond to Eq. (4-17). The correspondence is made by noting
that d3v may be replaced by 47rv2 dv, giving a probability that the relative veloc
ity has magnitude v in the interval dv equal to that obtained from a maxwellian
based upon the reduced mass:

( JL)! ( JLV
2

)ep(v) dv = 27rkT exp - 2kT 47rV2dv
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The corresponding reaction rate is

(4-32)

The calculation of (uv), which is required for the reaction rates, reduces to per
.forming the integral

(
If. )! t" (p.v2

)" = (av) = 47r 27rkT [o v3a(v) exp - 2kT dv (4-33)

To calculate the thermonuclear reaction rates in stars, additional expressions
giving the details of a(v) for the important reactions will be required.

4·3 NONRESONANT REACTION RATES

The integral required for the calculation of the reaction rate per pair of particles
has been established in the preceding section. The essential feature still missing
in the calculation is the value of the nuclear cross section itself. It was pointed
out in Chap. 1 that nuclear reactions in the centers of the stars can proceed only
because the reacting particles penetrate the repulsive coulomb barrier that sepa
rates them. It was noted there that the coulomb barrier between two particles
is given by

whereas the kinetic energy of the interacting particles is determined by a Maxwell
Boltzmann distribution of velocities corresponding to a thermal energy

kT = 8.62 X 1O-8T kev

It is obvious from a comparison of these two numbers that for temperatures on
the order of tens to hundreds of millions of degrees, the average kinetic energies
of interacting particles are many orders of magnitude smaller than the coulomb
barriers which separate them. The particles with the best chance of penetrating
this coulomb barrier are those having the largest energies in the Maxwell-Boltz
mann distribution; however, the expression for €/J(v) given in Eq. (4-31) shows
that the number of pairs of particles with center-of-mass energies much greater
than kT decreases rapidly with energy. The upshot is that some compromise
must be struck between the demand for the most energetic particles in the distri
bution and the rapidly decreasing number of particles of higher energy.

Gamow first showed, in connection with the problem of alpha decay, that the
probability for two particles of charge Zl and Z2.moving with relative velocity v
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to penetrate their electrostatic repulsion is proportional to the factor

. 2'rr.zlZ 2e2
Penetration a:: exp - nv
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(4-34)

It follows that the cross sections for nuclear reactions will also tend to be pro
portional to such a factor, since reactions can hardly occur unless particles pene
trate this repulsion. We shall consider the reasoning leading to this functional
dependence at a later time, when we discuss the penetration probabilities for a
pair of particles. At the present time, we shall simply use this general fact as a
guide to the construction of a suitable representation of the nuclear cross section
at low energy. It will also become apparent later that the quantum-mechanical
interaction between two particles is always proportional to a geometrical factor,
7r;V, where Ais the de Broglie wavelength:

7rA2
a:: (~y a:: ~ (4-35)

At low energy both Eqs. (4-34) and (4-35) are rapidly varying functions of the
energy. These considerations provide the motivation for choosing to define the
cross section at lowenergy as a product of three separate energy-dependent factors:

(E) - SeE) 27rZ1Zle
2

(4-36)
IT =~exp - nv
This equation is to be thought of as defining the factor SeE). That is,

SeE) == IT(E)E exp 27rZ;:2
e2

(4-37)

The advantage of writing the cross section in this way is that two of the strongly
energy-dependent factors appearing in the nuclear cross sections are factored
explicitly, leaving a residual function of energy, SeE), which may, in favorable
circumstances, be extremely simple itself. This factor, S(E) , represents the
intrinsically nuclear parts of the probability for the occurrence of a nuclear
reaction, whereas the other two explicit factors represent well-known energy
dependences that are nonnuclear in nature. The fortunate upshot is that when
the interaction energy of the pair of particles is not nearly equal to an energy at
which the two particles resonate in a quasistationary state (a discussion of which
will appear later), the factor SeE) is often found to be constant, or at least a
slowly varying function of energy over a limited energy range.

These features can be illustrated with the experimental facts regarding the
nuclear reaction C12(p,'Y)N 13. Figure 4-4 shows the measured cross section
for this reaction as a function of the laboratory energy of protons striking a
C12 target. Since nuclear cross sections represent very small areas, it is tra
ditional to use as the unit of cross-sectional area the barn, which is defined as
1 barn = 10-24 cm2• The convenience of this numerical unit results from the
natural size of the de Broglie geometrical cross section for kev nucleons, viz, ,
7rX2 = 657E-l barn, where E is in kev and the reduced mass is 1 amu, That
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Fig. 4-4 The measured cross section for the reaction C12(p,'Y)N13 as a function of
laboratory proton energy. A four-parameter theoretical curve has been fitted
to the experimental points. An extrapolation to E p = 0.025 Mev, which is an
interesting energy for this reaction in astrophysics, appears treacherous.
(Courtesy of W. A. Fowler and J. L. Vogl.)

(4-38)

unit of cross section is used in Fig. 4-4. The energy abscissa is seen to be the
laboratory proton energy, tmpv

2, whereas the energy to be used in Eq. (4-37) is
the energy of the pair of particles in the center of mass, which is
Til _ 1 . mlm2 2 _ 1 2
.l'< - - v - -p.V

2 m1 + m2 2
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It is evident that the energy of a pair of particles in their center of mass is related
to the laboratory energy of particle 1 by the relationship

(4-39)

Several interesting features are immediately obvious from Fig. 4-4. The cross
section has a maximum of about 10-4 barn near the energy E l a b = 460 key and
falls by seven orders of magnitude as the energy falls from 500 to 100 key.
It is further apparent that near 100 key, the cross section is changing by about
one order of magnitude per 25 key. In other words, the nuclear cross sections
for the interactions of charged particles vary extremely rapidly with energy at
low energies. The maximum in this cross section at 460 key is due to a res0,..

nance in the compound N13 system. Such resonances will be discussed later.
The point to be made at this time is that the rapidly falling cross section at

low energies is due almost entirely to the effects of the exponential factor in the
cross section. This exponential, sometimes called the Gamow velocity factor, is
proportional to the probability of penetration through the coulomb repulsion.
Quantitative definitions of the penetration factors will be described later. As
factual evidence for the foregoing statements, the nuclear cross-section factor
S(E), as defined in Eq. (4-37), is shown in Fig. 4-5, along with the experimental
data, which are plotted as points. The interesting fact is that the cross-section
factor S(E) is seen to be almost independent of energy, changing by less than a
factor of 2 between 0 and 100 key. Whereas the cross section itself changed by
an order of magnitude in 25 key near 100 key, the cross-section factor changes
by not more than 10 percent or so in 25 key near 100 key. These facts cor
roborate the statement that the cross-section factor is quite often a slowly vary
ing function of energy that can be represented over a limited energy range as
either a constant or a slowly increasing linear function of energy. We shall
return to these two instructive figures often in the material that follows.

Problem 4-7: Show that if the cross section is written

S(E)
u(E) = -- exp - ss-«

E

the value of the parameter bois

(4-40)

kev i (4-41)

where A is the reduced atomic weight, defined to be

(4-42)

and M u is, as before, the mass of Ljnnu. That is, if the center-of-mass energy E is expressed
in units of kev, Eq. (4-41) may be used for numerical convenience. It is conventional to use
these energy units in preference to egs units in nuclear astrophysics.
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1Range of stellar energies

100 200 300
Laboratory proton energy (kev)

Fig. 4-5 The cross-section factor S(E) for the radiative capture of protons by C12• The
differing types of data points represent five different experiments performed at different times
and laboratories by the workers indicated. Detailed references and discussion may be found in
D. F. Hebbard and J. L. Vogl, Nucl. Phys., 21 :652 (1960). This curve is more readily extrapo
lated than the one in Fig. 4-4.

The velocity distribution may be written as the following normalized energy
distribution:

2 E (E) dEif/(E) dE = cP(v) dv = - v:;;: kT exp - kT (kTE)~ (4-43)

In the nonresonant-reaction case, the cross-section factor S(E) is slowly varying
over the range of energies that are important in stellar interiors, and so in that
case Eq. (4-37) may be a useful substitution for u(E) in the calculation of the
reaction rate per pair of particles:

A = (uv) = fa'" u(E)v(E)if/(E) dE

t- S(E) -i /2E 2 E (E) dE
= }o Jr exp (-bE )"\jj; v:;;: kT exp - kT (kTE)i

= C~y(k~)! fa'" S(E) exp ( - k~ - bE-i) dE (4-44)
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(4-45)

The behavior of the integrand is largely determined by the exponential factor,
since it is a rapidly varying function of energy. Notice that since exp (-E/kT)
goes rapidly to zero for large E whereas exp (-bE-!) goes rapidly to zero for
small E, the major contribution to the integral will come from values of the
energy that are such that the exponential factor is near its maximum. It will
soon be apparent that most stellar reactions occur in a fairly narrow band of
stellar energies, so narrow that the factor SeE) will have a nearly constant value
over the band of energies. This effective range of stellar energies was schemati
cally indicated in Fig. 4-5 for the C12(p,'Y)N13 reaction. A good approximation
to Eq. (4-44) will be obtained by replacing SeE) by its (nearly constant) value
at the energy for which the exponential factor is maximal. Let So represent
that constant value [strictly speaking the average value of S(E) , the average
being taken with respect to the exponential factor]. There results

(8)! So t- (E b)
A = /1:11" (kT)!}o exp - kT - VE dE

which can be evaluated by approximating the integrand by an appropriate
gaussian.

Such a procedure is the simplest example of a method of doing a certain class
of integrals, called the method of steepest descent. The method is applicable to
integrals of the form

fg(x)e-f{z) dx

where g(x) is a slowly varying function of x and the function f(x) has a value
much larger than unity and a single sharp minimum at Xo. In those circum
stances, the integral may be approximated by expanding f(x):

(x - XO)2
f(x) = f(xo) + f'(xo)(x - xo) + f"(xo)· 2 +

~ f(xo) + f"(xo) (x -; XO)2

since the first derivative vanishes at the minimum, and higher terms are dis
carded as being important only for those relatively large values of x - Xo for
which f(x) »f(xo), a fact necessitating that there be little contribution to the
integral. Then a good estimate for the value of the integral becomes

f '" [ (x - XO)2]g(xo)e-!(zo) _'" exp -f"(xo) 2 dx

which has an elementary value.

Problem 4-8: Show that the integral is approximately

Jg(x )e- / (z) ax ""~ 2lr g(xo) e-/(:o)
f" (xo) .

Of course this approximation is useless unless [(x) has the properties prescribed for it.
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Fig. 4·6 The dominant energy-dependent factors in thermonuclear reac
tions. Most of the reactions occur in the high-energy tail of the max
wellian energy distribution, which introduces the rapidly falling factor
exp (-EjkT). Penetration through the coulomb barrier introduces the
factor exp (-bE-i), which vanishes strongly at low energy. Their
product is a fairly sharp peak near an energy designated by Eo, which is
generally much larger than kT. The peak is pushed out to this energy by
the penetration factor, and it is therefore commonly called the Gamow
peak in honor of the physicist who first studied the penetration through
the coulomb barrier.

Standard techniques exist for determining the extent of the error made in the
method of steepest descents. It will be more instructive to apply such analysis
to the problem at hand, however, than to concern ourselves further with the
general technique.

The integrand in Eq. (4-44) is a sharply peaked function, being the product of
an exponential that vanishes at large energy, exp (-E jkT), and an exponential
that vanishes at low energy, exp (-bE-i), as illustrated schematically in Fig. 4-6.
All other things being equal, the particles that are most effective in causing nuclear
reactions are those pairs having energies near Eo. The value of Eo is determined
from the location of the maximum of the integrand:

s.(~+ bE-i) = J... - !bEo- ! = 0
dE kT E=Eo kT 2

or

Eo = e~TY (4-46)



THERMONUCLEAR REACTION RATES 303

Problem 4-9: Show that

Eo = 1.220(Z12Z22AT02)! key (4-47)

where To is the temperature in millions of degrees. This energy is frequently called the most
effective energy for thermonuclear reactions.

Evaluation of Eq. (4-47) shows that for normal light nuclei and temperatures
of some tens of millions of degrees, the most effective energy Eo is usually 10 to
30 kev. This energy is greater than kT = 0.086T6 kev, reflecting the fact that
the barrier-penetration factor has favored the selection of particles on the high
energy tail of the Maxwell-Boltzmann energy distribution.

The method of steepest descent is equivalent to the replacement of a sharply
peaked exponential function by a gaussian function having a maximum of the
same size and the same curvature at the maximum, in this case at E = Eo.
That is, the integral will be evaluated by the replacement

( E ) (E - Eo)2exp - - - bE-~ "'" C exp -. kT !!./2 (4-48)

(4-49)

where clearly

C = exp ( - f~ - bEo-~)

and where the l/e width, !!./2, is estimated by the requirement that the second
derivatives match at Eo.

Problem 4-10: Show that the constant C is also equal to

3EoC=exp-
kT

and the full width at l/e is

4
!l = - (EokT)!va

(4-50)

(4-51)

(4-52)

It is apparent from Eq. (4-51) that the full width is approximately twice the
geometric mean of kT and the peak energy Eo but is still smaller than Eo itself.

Problem 4-11: Show that, for the reaction C 12 (p ,'Y)N 13,

Eo = 3.93Toi kev

!l = 1.35Toi kev

and evaluate at the center of the sun, where T = 15 X 100OK. The numerical value of the
exponential factor for To = 30 is plotted in Fig. 4-7. The energies at l/e of maximum are
shown.
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C 12(p, y)N 13
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Fig;4-7 The Gamow peak for the reaction C12(p,oy)N 13at T = 30 X 106"K,
The curve is actually somewhat asymmetric about Eo, but it is nonetheless
adequately approximated by a gaussian.

The most effective particles have energies ranging only about 10 kev from the
most effective energy Eo. This range of energies is quite small compared to the
average energy separation of quasistationary nuclear states in the light nuclei
and accounts for the fact that the effects of nuclear forces, which are lumped
into SeE), may often be considered to be constant. The factor SeE) will gener
ally change by a large percentage of its value over the range A only if there is a
nuclear resonance near the range of effective stellar energies, but in that case the
resonant reaction rates must be employed. These will be discussed later.

Suffice it to say, then, that the experimentally measured cross-section factor
can be plotted, as in Fig. 4-5 for the C12(p,-y)N13 reaction, and extrapolated to
the range of stellar energies. This extrapolation can be made with considerably
greater accuracy than could the extrapolation of the cross-section itself. In fact
the solid line of Fig. 4-5 is a semitheoretical fit to the points, made in a manner
to be explained later. From this analysis one can describe SeE) at low energies
by its intercept and slope. In the particular case of the C12(p,-y)N13 reaction,
for instance, one finds that SeE = 0) = 1.20 kev barns and dS/dE = 5.81 X 10-3

barn. In like manner, the cross-section factor has been determined with varying
degrees of accuracy for most. of the important energy-generating reactions in
stellar interiors.
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Making the approximate substitution

(
E ) (E - EO)2exp - - - bE-! """ e-T exp -
kT 6./2
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(4-53)

(4-54)

where the quantity 3Eo/kT has been designated by -r, the reaction rate per pair
of particles may be written from Eq. (4-44) as

A = C:y (k~Y e: 10= S(E) exp [ - (E6./2
E oy]dE

Once again it is obvious that if S(E) is nearly constant, most of the value of the
integral comes from values of E near Eo. The first approximation for well
behaved cross-section factors is to treat S(E) as a constant So defined as the
value of S(Eo). It is also evident that negligible error will be committed by
extending the lower limit of the integral to minus infinity.'

Problem 4·12: Show that when So is expressed in cgs units of erg em" and when the approxima
tions indicated above are performed, one obtains for the reaction rate per pair

cm3/sec (4-55)

(4-56)

Since kev is a more appropriate energy unit than ergs, and barns a more appro
priate cross section than em", it is more common to express So in units of kev
barns, e.g., Fig. 4-5. We shall follow that practice throughout this book. The
reaction rate per pair then becomes numerically

720 X 10-19

A = . AZ
1Z2

So (kev barns)r2e-T

whereas the reaction rate is obtained by multiplying by the number of pairs per
unit volume:

(4-57)

The convenience of writing the reaction rate in this form is that the all-important
temperature dependence of the rate is entirely contained in the parameter -r,

Problem 4·13: Show that

For any given reaction, r is proportional to T-!; thus one can write

-r = BTa- !

(4-58)

(4-59)

1 See, for instance, a table of the normal probability integral for a characteristic value of ZEo/ .6..
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(4-60)

where B = 42.48(Z12Z22Ap. Then the temperature dependence is explicitly dis
played in a simple analytic form. It is this feature of the approximate inte
gration which makes it so useful: one can quickly and simply determine the
manner in which a chosen reaction rate depends upon the temperature.

Problem 4-14: Show that for temperature T near some value T 1 the reaction rate varies with
temperature as

TIZ(T) "" T12(T1) (;)"

where

r-2
n=--

3
(4-61)

. (4-62)

It is also convenient for purposes of stellar-structure computations to explicitly
introduce the local density into the reaction rate. Since

X·
N i = pNoA;

where Xi is the fraction by mass of species i, we have

2.62 X 10
29

2X 1X 2S (k b ) 2 - 3 1
T12 = (1 + 012)AZ1Z2p A 1A2 0 ev arns T e T em" sec-

These equations, along with the definitions of the associated quantities, comprise
the basic nonresonant stellar reaction-rate formulas in first approximation.

Three corrections to the above expressions for nonresonant thermonuclear reac
tion rates are important enough to be mentioned in this book. Having used
approximations in the integration, we must concern ourselves with the extent of
the error introduced. For one thing, a better approximation to SeE) than a
simple constant would seem to be

SeE) = S(Eo) + (~i)EO (E -- Eo) (4-63)

Furthermore, even if a constant is used for SeE), some error is introduced into
the reaction-rate integral by substituting a gaussian for the sharply peaked expo
nential. And finally it will be noted that the high density of free electrons near
the nuclei in stellar interiors increases the reaction rate somewhat by reducing
the coulomb repulsion. The first two corrections can be considered at this time,
but discussion of the last effect will be postponed until the physics of barrier
penetration has been introduced.

Perhaps the most interesting question is that of the extent of the error intro
duced by replacing the factor exp (-E/kT - bE-f), the area under which is
proportional to the rate, by the gaussian e-T exp {-[(E - E o)/(6./2)]2}, the area
under which is «: V; 6./2. It is clear that the reaction rate, as derived, should
be multiplied by a correction factor which is simply the ratio of those two areas.
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Let that correction factor be denoted by F(T):

10'" exp ( - -fr, - bE-i) dE

«: v:;;: A/2

Problem 4-15: It is not obvious that F is a function only of r.
may be written

where the newly defined dimensionless energy is E = EIEo•
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(4-64)

Show that the correction factor

(4-65)

Hence F = F(r).

Perhaps the simplest procedure would be to numerically integrate Eq. (4-65)
on a computer for a large number of values of T. The value for any specific
value of T could then be interpolated. For pedagogical and historical reasons
we outline instead an approximate technique for evaluating Eq. (4-65).

From Eq. (4-58) it is evident that the parameter T is usually a large number.
Thus another simple procedure will be to define some new parameter that varies
inversely with T, and is hence small, and then expand F in powers of that small
parameter.

Problem 4-16: Show that in terms of a new variable y = -yr;; - 1,

F(r) = (;Y J:1 (1 + y)e-nt' exp [3(~3 y)] dy

Then show that

(3)' f'" ( 2r
3{:J

)F({:J) = - exp - 3r 2 +-- (1 + (:Jr) dr
7T" -fJ-' 1 + {:Jr

where (:J = (3Ir)! is the new small parameter and r = yl{:J.

(4-66)

(4-67)

(4-68)

The point of the previous manipulative problem is that the expression for F(fJ)
may be expanded by a Taylor series:

F(fJ) = F(O) + G:)~ fJ + ~ (:;)0 fJ2 + ..'
which gives the correction factor to the integral when fJ = (3IT)! is reintroduced.
The first term of that expansion is

(4-69)

which simply expresses the fact that the reaction rate is correct in zeroth order:

(iJF) 1 (iJ 2F)

F(fJ) = 1 + - fJ +- - fJ2 + ...iJfJ 0 2 iJfJ2 0 (4-70)
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Problem 4-11: Show that
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(aF) = 0
a{3 0

(4-71)

It follows immediately from Eq. (4-71) and the definition of (3 that

5 1
F(r) = 1 + 127 + order:;:2 (4-72)

is the correction factor to be applied to the reaction-rate equations to account for
the error due to the gaussian approximation. Because 7 is a large number, we
see that the correction is generally small. Of course, cine must also demonstrate
rapid convergence of the series.

The second correction is attendant to the case of a cross-section factor that
changes linearly with energy, as in Eq. (4-63). In almost all cases where accu
rate experimental data exist or where an accurate theoretical calculation is possi
ble, SeE) is found not to be precisely constant over the 25 kev or so of energy
that are most important in stellar interiors. It is again possible to write a cor
rection factor that can be expanded in powers of 1/r. In doing so, one cannot
use the 'gaussian approximation because it is symmetric about Eo.

Problem 4-18: (This is a lengthy problem.) Show that the explicit introduction of

SeE) = S(Eo) + (:;)Eo (E - Eo)

into the reaction-rate integral causes the basic reaction-rate formula to be multiplied by the
correction factor

5 Eo (as) 1 1GH = 1 +- -- - - + order-
2 S(Eo) aE Eo T T2

Show also that the original asymmetric (about Eo) integrand must be retained.

This correction factor is subject to a very simple interpretation.
definition 7 = 3Eo/kT is inserted, there remains

5 kT (as)
G(T) = 1 + "6 S(Eo) aE Eo

(4-73)

When the

(4-74)

(4-75)

This correction factor indicates how SeE) is to be averaged to obtain the appro
priate constant So. That is, one should define So such that

5 (as)So == S(Eo)G(T) = S(Eo) +"6 aE Eo kT

Equation (4-75) may be immediately interpreted as prescribing that the constant
cross-section factor So be the value. of SeE), not at the energy Eo, but rather at
the energy Eo + tkT. In the remainder of the book we shall adopt the con-
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vention for nonresonant reaction rates that

So S(Eo+ -ij-kT)
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(4-76)

This convention will allow us to ignore explicit use of the correction factor G(T).
The third refinement is that the penetration of the particles through their

mutual coulomb barrier is aided by the dense electron gas surrounding the nuclei.
Laboratory experiments measure SeE) for penetration through a pure coulomb
barrier (except at very large distances, where atomic electrons provide shielding,
but with a negligible enhancement of the penetration factors). For this reason
the reaction rates must be multiplied by an electron-shielding enhancement fac
tor, which is traditionally designated by the letter f. Thus, for example, Eq.
(4-62) becomes

_ 2.62 X 10
29

2 X IX2 -ret (1 +~) 2 -T (4-77)
TI2 - 1 + 012 P AIA2AZIZ2JDO 12T T e

where So = S(E o+ -ij-kT) in units of kev barns and j is the screening factor. The
evaluation of f must wait until the penetration factors have been calculated.

Problem 4-19: The cross-section factor for C12(p,1')N13 shown in Fig. 4-5 can be characterized
by the value of its zero-energy intercept S(O) = 1.20 kev barns and its slope dS/dE = 5.81 X
10-3barn. Compute the lifetime of a C12 nucleus against proton capture in a stellar interior
containing 80 percent hydrogen by weight and having a density of 15 gm/em3and a temperature
of 30 X 106OK. (Ignore electron screening.) .
Ans: About 160 years.

This discussion more or less sums up the calculation of nonresonant reaction
rates for which experimental data are available, an empirical approach to non
resonant reaction rates. If aU nuclear reactions occurring in stellar interiors
were similar to the C12(p ,'Y) N 13 reaction, no more discussion would be necessary.
Two important practical considerations render the foregoing discussion inade
quate for some nuclear reactions, however: (1) for many nuclear reactions the
nonresonant cross section at low energies is too small to be measured with suf
ficient accuracy to allow a small extrapolation of SeE) to stellar energies; and
(2) for many nuclear reactions there exist resonances in the range of effective
stellar energies that invalidate the assumption of a slowly varying SeE). In
fact, a different approach must be developed to calculate the reaction rate when
resonances occur in the range of effective stellar energies. For both of these
reasons it will be necessary to take a small detour into elements of nuclear physics
before proceeding onward.

4-4 NUCLEAR STATES

The nucleus bears many resemblances to the atom. Both are many-body prob
lems that are interpreted in terms of interactions between constituent particles.
Both show sets of bound states characterized by discrete binding energies and
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auxiliary quantum numbers characteristic of the symmetries of the collective
states. More success has been encountered in the interpretation of the atom
because the hamiltonian is almost entirely due to well-known terms:

H a tom <::: L (:~ + v)
electrons

where V is dominated by the well-understood coulomb potential between charges,
although a relatively small L . S interaction must be added to account for the
fine-structure splitting between nearly degenerate states. The largest coulomb
interaction, furthermore, exists between the electrons and the massive nucleus,
which provides an essentially' stationary center of mass for the total structure.
Because the problem is well defined, the properties of atomic 'states can be well
calculated with the necessary computational labor.

The interpretation of the nucleus is comparatively obscured by several features.
The potential representing the dominant force between nucleons is not well known
in detail, other than that it is a strong force which acts over relatively small dis
tances, characteristically represented by a deep potential well of 25 Mev or so for
a distance of a few centimeters X 10-13• The analogous 1 . s spin-orbit inter
action for nucleons is relatively much stronger than in atoms, furthermore. Even
more complicated phenomenological potentials appear to be necessary to interpret
the observations. Then, too, the nucleons are of equal mass, so that no single
particle can represent a massive point to which the structure can be attached.
To a certain extent the nucleus is somewhat like a very imperfect gas held
together by the strong short-range attraction; and although the description of
nuclear structure is contained in the complete wave function of the nucleus,
formidable theoretical difficulties are faced in an attempt to calculate the wave
functions. Basically the hamiltonian is still written as the sum of the kinetic
energies and the potential energies between all constituent particles, but the
uncertainty in the form of the potential and its dependence upon the state of
all the nucleons renders the problem extremely intractable.

Nonetheless, the nucleons are found to cluster into bound states characterized
by a discrete energy and a quantized angular momentum that may be thought of
as the sum of the orbital and spin angular momenta of the constituent nucleons.
These bound states are analogous to the bound energy eigenstates of the atom.
Just as in the atom, however, states are not quite stationary, because interaction
terms exist in the complete hamiltonian, leading to transitions between states.
These transitions cause each state to have a width in energy

r = ~ (4-78)
r

where -r is the mean lifetime of the decaying state. The states therefore have an
energy profile

h/21rT
peE) = (E _ E

i
)2+ (h/2r)2 (4-79)
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as argued in Eq. (3-103). But if the state lifetime-r is sufficiently long, the
width r of the state is sufficiently small compared to the energy difference
between states for one to see good approximations of stationary energy eigen
states. The discovery of schemes for interpreting these quasistationary nuclear
states is one of the major objectives of the science of nuclear physics.

THE SHELL MODEL

One of the most successful models for interpreting the properties of nuclear
states is the nuclear shell model, a model for which Mayer! and Jensen shared the
1963 Nobel Prize in physics. Anyone interested in discussing nuclear reactions
in stars will be aided by a passing familiarity with this model. It is patterned
after the shell model of the atom, in which electrons fill consecutively the lowest
lying available bound states. It is assumed in this model that the interaction of
each nucleon with the remainder of the nucleus is well approximated by a spheri
cal potential VCr). The motion of each nucleon is then an independent single
particle orbit with fixed angular momentum and energy. The energy of the
nucleus is then given by the sum of the single-particle energies, and the total
angular momentum of the nucleus is obtained by coupling the angular momenta
of the independent orbits together by the usual rules of. addition of angular
momentum. It is no simple matter to see why this model should give a good
description, although advanced theoretical arguments can provide partial justifi
cation. But the model has been highly successful, and because it is conceptually
simple, it has been a very popular framework within which many of the gross
properties of nuclei fall naturally into place.

The bound states of a particle in a spherically symmetric potential are described
primarily in terms of two quantum numbers. In a central potential the orbital
angular momentum of each nucleon is a constant of the motion. For each orbital
quantum number l there is a series of energy levels, which are distinguished by a
quantum number n related to the number of nodes in the radial wave function.
For example, the state of lowest energy, having l = 1, is called the Ip state; the
fifth lowest state, with l = 3, is called the 5f state, etc. For any spherically sym
metric potential the energy of each orbital is determined by some function of n
and l which depends upon the shape of the potential. For instance, for the
l/r potential of the hydrogen atom the energy of the states is proportional to
1/(n + l)2, and in that case one defines a principal quantum number N = n + l
such that EN = -R/N2 and N > l. For potentials other than l/r, however,
the energy depends upon both nand l. For this reason the concept of a princi
pal quantum number is discarded for nuclear potentials, and one deals instead
with nand l themselves. The way in which E(n,l) depends upon the quantum
numbers depends upon the shape of the potential.

For preliminary understanding of the ordering of nuclear energy levels, the
nuclear average potential is often approximated by two simple potentials for which

1 M. Mayer's Nobel lecture, The Shell Model, reprinted in Science, 146 :999 (1964), makes
excellent reading.
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the energy levels are easily soluble. These are the harmonic-oscillator potential

V = -Va + tMc,h2 (4-80)

where M is the nucleon mass and w is a number which depends upon the range of
the oscillator potential, and the infinite square well

{
- V a

V=
00

r<R

r> R
(4-81)

These potentials represent opposite extremes in the sense that the oscillator
potential rises smoothly from its value V(O) = - Va whereas the square well
arises abruptly at the radius R. For the oscillator potential the energy levels are

E(n,l) = -Va + nw(2n + l - t) (4-82)

(4-83)

which depend only upon the combination 2n + l and differ by multiples of nw.
Empirically it is found that nw ~ 30 Mev/ At. Because the energy depends only
upon 2n + l, these energy levels are highly degenerate, each energy consisting of
several different states. For the square well, on the other hand, the energy is
determined from the nodes of the spherical Bessel functions:

J [J2M(E + Va) RJ = 0
z+t V h2

The corresponding energy levels are approximately expressible as

E(n,l) ~ - Va + 211~~2 [7T2(n + ~y - l(l + 1)J
This potential is seen to split the degeneracy of the harmonic-oscillator potential.
These energy levels are shown in Fig. 4-8. Shown adjacent to the quantum
numbers of each level are the number of nucleons that may occupy that orbital
without violation of the exclusion principle, in analogy to the atom. Also shown
in square brackets above each level is the total number of protons (or neutrons)
that may occupy that plus all lower levels. These numbers characterize the
"shells" for the respective potentials.

Problem 4-20: Taking into account the spin t of the nucleon, confirm the number of independent
states shown in parentheses beside each level.

Problem 4-21: Confirm that 40 neutrons may occupy oscillator energy levels with E =:; 3h",.

A more realistic nuclear potential is believed to lie intermediate in shape
between the oscillator well and the square well. A corresponding level spacing
has been arbitrarily interpolated, as demonstrated in the middle column of Fig.
4-8. This sequence of levels, then, represents the approximate ordering of bound
nucleon states to be anticipated. A model for the ground states of nuclei is then
constructed by placing Z protons and N neutrons in the lowest-lying levels
available.
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Fig. 4·8 The energy levels of a harmonic oscillator are shown on the left, and those of a square
well are shown on the right. The characteristic energies ftw and E are determined by the range
of the potentials. The quantum configuration 'of each level and the number of degenerate
states within it are shown in parentheses. The nuclear potential has a shape intermediate to
these two, and the corresponding sets of energy levels are indicated schematically in the middle
column. The energies of bound nucleons within the nucleus would be expected to resemble this
middle column were it not for the spin-orbit interaction, which has not been taken into account.
(M. A. Preston, "Physics of the Nucleus," Addison-Wesley Publishing Company, Inc., Reading,
Moss., 1962.)

It is useful in the coupling of the angular momenta to use a representation
based on the total angular momentum of each nucleon orbital (the so-called j-j
coupling). Since the nucleon spin is one-half the total angular momentum of
each orbital,1

j=l+s
1 The letters j, l, and s will be used as vectors to designate the total, orbital, and spin angular
momenta, respectively, and as scalars to designate the eigenvalues of those angular momenta.
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can assume the eigenvalues j = l ± ~ for each l > O. The j of each nucleon
must have a half-integral value, which is usually attached as a subscript to the
orbital quantum numbers in giving the spectroscopic designation of the nucleon,
that is, (nl)j. For instance, an n = 1 nucleon with l = 1 can be in either state
(lp)j or state (lp)!, the first of which has four independent substates, the second
only two.

The j representation of orbitals is useful in that there exists an important non
central force in nuclear physics which splits the degeneracy between the two j
states. This interaction, based largely on phenomenological evidence, is written
as a spin-orbit interaction between the I of the orbit and the s of the nucleon,

v = -aI- s (4-84)

where a """ 13A-l Mev from study of nuclear-level splittings. This potential is
not to be confused with the electromagnetic interaction of the same form, which
leads to fine-structure splitting in atoms. This interaction is much stronger, is
specifically nuclear in origin, and lowers the state with larger j ("parallel" I and s)
relative to the state of smaller j.

Problem 4-22: Using the fact that j - j = (1 + s) . (1 + s), show that

1· S = ~[j(j + 1) - l(l + 1) - s(s + I»)

Show also that the zeroth-order energy of the states is shifted by

1
- ~l

6.E = 2

+i (l + 1)

j=l+f

j = l- t
(4-85)

These energy splittings are very large and separate considerably the two j
states; in fact, in some cases they are even greater than the zeroth-order level
spacings shown for the spherically symmetric potential in Fig. 4-8 (middle col
umn). The shell structure of the nucleus must then be recalculated by super
imposing the spin-orbit energies on the energies of Fig. 4-8. When this is done,
one gets an ordering of states like that shown in Fig. 4-9. Comparison of this
figure 'with the preceding one shows the reordering introduced by the spin-orbit
interaction. An s state (l = 0) is of course not split, and the splitting of the
p states is not very large. The order of the first eight states is unchanged; The
d-state splitting is sufficiently large so that the Id~ is elevated above the 2s!.
The Idr2s! reversal is the first of several such that are caused by the spin-orbit
interaction. At a somewhat higher energy, one sees that the 19£ orbital is pulled
down almost to the energy of the 2P! orbital. Similarly the Ih"" is now near
the 2d l .

This ordering of states and the positions of large energy gaps between states
will have very significant repercussions upon nucleosynthesis. Each of these
levels represents a minor shell which may be filled with nucleons in the con-
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Fig. 4·9 The energy levels of the first 126 neutrons in the simple shell
model. The energy shifts caused by the spin-orbit interaction have been
added to the central column of Fig. 4-8. (M. A. Preston, "Physics of the
Nucleus," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962.)

struction of a nucleus. For instance, two neutrons and two protons may be
assigned to the 1P! subshell, etc. Of particular importance for nucleosynthesis
are those shells at which the energy gap to the next shell is much larger than the
average. These gaps occur at the nucleon numbers 2; 8, 20, 28, 50, 82, and 126,
the so-called magic numbers of nuclear structure. The major effect is the high
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Fig. 4·10 The difference between the measured mass of the most stable nuclear isobar at
each value of the atomic weight and a smooth semiempirical mass law. (M. A. Preston,
"Physics of the Nucleus," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962.)

stability (binding energy) of those nuclei consisting of.major filled shells of pro
tons or neutrons or both when compared to nearby nuclei in the chart of nuclides.
Figure 4-10 shows the difference between the observed nuclear masses and a
smooth semiempirical curve fitted to the masses. The smaller than average
masses at the magic numbers reflect their relatively large binding energy.
(Remember that a negative energy is the equivalent of a negative mass.) Many
properties of nuclear systematics show dramatic changes at magic numbers of
particles. For example, the cross section for capturing a neutron is quite small
(relatively) for those nuclei having magic numbers of neutrons, a fact that will
be quite important for heavy-element nucleosynthesis by neutron capture. In
fact, the whole structure of the theory of heavy-element nucleosynthesis (to be
discussed in Chap. 7) is dominated by the magic numbers N = 50, 82, and 126.
Smaller effects of the same type happen near other subshells.

As examples, the following nuclei are particularly stable as a result of their
closed-shell structure:

2Hei = (Is,) 2

80~6 = (ls,)2(lPt)4(lp,)2

20Caig = (Is,) 2(1Pi) 4(lp,) 2(ldj ) 6(2s,) 2(ldt) 4
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etc., where the superscript on each nucleonic state is equal to 2i+ 1, which is
the number of neutrons and protons assignable to that filled shell. A massive
doubly magic nucleus is Pb208 with 82 protons and 126 neutrons. Many proper
ties of nuclear ground states are clarified by noting the shell-model configuration
of the nucleus. As one other example, the ground-state configuration of C13

according to the shell model would be

C13 _ {protons: (ls!)2(IP!)4
6 7 - neutrons: (ls!)2(IP!)4(IP!)

The first benefit of the shell model is that it enables one to understand nuclear
spins. First one observes that every closed shell of nucleons has a total angular
momentum of zero. That this must be so results from the fact that the sum
of i., taken along any z axis, for all the particles in a subshell must be zero if the
shell is full. Thus the sum of all the individual i vectors in a shell sum to a total
vector whose component along any axis is zero. Such a vector must itself be
zero. Thus all the doubly magic nuclei in the previous listing have J = O. (It
also happens, because of the angular-momentum coupling of lowest energy, that
all nuclei having even numbers of neutrons and even numbers of protons have
J = 0, but this fact is not obvious a priori.) It follows that the angular momen
tum of nuclei having some numbers of nucleons in excess of closed shells is deter
mined by the angular momentum of the extra nuclei. For example, the N13

nucleus has one IP! proton outside the C12 core, and hence has J = i in the
ground state. Similarly, 0 17 has one Id~ neutron outside the 0 16 core and hence
has J = t in the ground state. An example of two nucleons outside a closed
core is provided by N14 = C12 + (IP!)2. The total angular momentum of N14

must be given by

1 1
J(N14) = - + - = lor 02 2

Because symmetric states have lower energy, the ground state of N14 has J = 1,
whereas the first excited state is the J = 0 member of the ground-state configu
ration. Further examples of this system, which we only illustrate here, can be
found in any textbook on nuclear physics.

PARITY

The parity of a nuclear state describes the behavior of the wave function of the
nucleus if the space coordinates are reversed (z, y, z --7 -x, -y, -z), the spins of
particles remaining fixed. Under such a reflection, the wave function must either
remain the same or change to the negative of itself. States having wave func
tions of the first type are called even-parity states, whereas states of the second
type are called odd-parity states. A quick outline of the reasoning is as
follows. The basic hamiltonian

(4-86)
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is invariant to reflection of coordinate system, so that the eigenfunctions can
simultaneously be eigenfunctions of the hamiltonian operator and of the parity
operator P, which changes x --7 -x, etc. That this is so comes from the fact
that the time rate of change of any operator that does not depend explicitly on
time is proportional to the commutator of the operator with the hamiltonian.
If H is invariant under space reflection, then HP - PH = 0, and P is a constant.
Thus for such a hamiltonian the space-inverted wave function

Pif;(x,y,z) == if;(-x, -y, -z) (4-87)

is also an energy eigenfunction of the problem. Two applications of P must give
back the same function:

P'lif;(x,y,z) = Pif;(-x, -y, -z) := if;(x,y,z) (4-88)

Thus the eigenvalues of P are given by p2 = 1, and P .= + 1. That is, invert
ing the space coordinates must change if; to ±if;. Thus every nuclear state has
either even parity or odd parity.'

It is not difficult to see what the parity of a nuclear state is in terms of the
shell model. Each nucleon is described by a wave function

if; = !(r)Yr((),ep) (4-89)

The parity operator changes () --7 7r - () and ep --7 7r + ep. Since

and

(4-90)

it follows that

(4-91)

Thus the parity of each nucleon orbital is (-I)!. Since the wave function for the
nucleus is, in this model, just the product of the wave functions for the individual
nucleons in the nucleus, the parity of a nuclear state containing n nucleons is

(4-92)

The first and most obvious conclusion from Eq. (4-92) is that a nucleus con
sisting of closed shells must have even parity, since there is an even number of
nucleons characterized by each value of l. Thus the parity of a complex nucleus
is determined by the product of the parities for the extra nucleons outside closed-

1 If terms are included in the hamiltonian which are not invariant to space inversion, the result
does not follow. Such a force comes from the (np)(pn) term in the weak-interaction current
discussed in Chap. 3. Thus the weak interaction may introduce a very small parity impurity
into nuclear states. F. C. Michel, Phys. Rev., 133 :B329 (1964).
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shell configurations. Reconsider the same examples used for the angular momen
tum of ground states. Using the standard notation in which the parity (even/
odd) is designated by placing a superscript (+/ -, respectively) on the angular
momentum, the ground state of NI3 must be

J"(N13) = i-

since there is one extra IP! proton outside the 0 12 core. Similarly for 0 17

since 0 17 has one extra l = 2 neutron.

Problem 4·23: Show that for the N14 ground state

J"(N14) = 1+

Problem 4·24: The first two negative-parity states of N14 have J .. = 0- and 2-. To what
configuration do these states likely belong?
Ans: (lP!)(2s!) for 0-, (lP!)(ldi) for 2-.

Further discussion of the role of angular momentum and parity in nuclear states
will be found when we consider the problem of resonances in nuclear reaction rates.

COMPOUND NUCLEAR STATES

If the reaction involving particles a and X proceeds through a resonant state
of the compound nucleus W, it will be convenient to think of the process

a+X~W~Y+b

as a two-body interaction between particles a and X that is described by a poten
tial VCr) which characterizes the interaction of these two particles. Indeed the
chance that the interaction can happen is directly proportional to the proba
bility that the state of W can be so described. Then the motion of the pair of
particles in a stationary state will be given by the Schrodinger equation

h2

- - \l2if; + V(r)if; = Eif;
2p.

(4-93)

(4-94)

(4-95)

where- p. is the reduced mass of a and X and the spatial coordinates are relative
ones. When VCr) is, as assumed, only a function of separation, one usually writes
the laplacian in spherical coordinates:

2 a2 2 a 1 (1 a2 1 a. a )
\l = ar2 + r aT + T2 sin 2 0 aep2 + sin 0 ao sin 0 ao

The angular-momentum operator is

h .
L=rxp=..,.rxv

~
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When L is expressed in spherical coordinates, it is

t; = - ~ (sin c/J :0 + cot e cos c/J aac/J)

L h( a . a)
y = -:r cos c/J ao - cot 0 sm c/J ac/J

The sum of the squares of these components reveals

(4-96)

(4-97)

(4-98)

L2 = L x2 + L y2 + L z2

h" (1 a + 1 a. a)= - " sin20 ac/J2 sin 0 ao sm 0 ao

which is seen to be proportional to the angular part of the laplacian. Thus the
kinetic-energy term of the Schr6dinger equation is

h2 h2(a2 2a) L2
- 2J.L \72 = - 2J.L ar2 +rar + 2J.Lr2

Pr2 L2
= 2J.L + 2J.Lr2

This result parallels the classical one that the- kinetic energy of a central-field
problem can be "written as the sum of the energy of radial motion plus an energy
associated with an angular momentum.

Problem 4-25: Confirm that the kinetic energy of a classical particle moving in a circular orbit is

L2
KE=-

2p.r2

Problem 4-26: Show by taking the root of pr2 that

pr = ~ (~+!)
2 ar r

The conventional procedure for central-field problems is to separate the radial
and angular parts of the wave functions by

(4-99)

(4-101)

where functions y1m(0,c/J), the so-called spherical harmonics, are eigenfunctions of
L2 and Lz, viz.,

Y1m(0,c/J) = Areim4>P1m(cos 0) (4-100)

and AImis a constant such that IIYrl dn = 1. Because they are eigenfunctions,

L2Y1m(0,c/J) = l(l + 1)n2Yr(0,c/J)

LzY1m(0,c/J) = mnYr(O,c/J)
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(4-102)

where land m are restricted to integers such that m :::; l. The angular momen
tum is a constant of the motion in central-field problems. Thus the radial part
of the wave function describing an encounter must bear a subscript designating it
to be the solution for a particular value of l. Insertion of the separated wave
function into the Sohrodinger equation gives the radial equation

11,2 (a2 2 a) [l(l + 1)11,2 ]- 2p. ar2 + rar fl(r) + 2p.r2 + V(r) fl(r) = Efl(r)

Problem 4·27: Show that the substitution jrjr) = Xl(r)/r leads to

_ 11,2 d2
Xl + [l(l + 1)11,2 + VCr) _ E] Xl(r) = 0

2JL dr 2 2JLr2
(4-103)

(4-104)for r > R

Although it is not possible to describe in detail the complete potential repre
senting the forces between the two particles, certain general factors can be stated
with confidence. The nuclear force is a very strong attractive one that oper
ates only at short distances (on the order of the pi-meson Compton wavelength,
1i/mrc = 1.4 X 10-13 em). Until the surfaces of the nuclear particles come that
close to each other, there is no nuclear force. For greater separations the poten
tial is just that of the coulomb repulsion, VCr) = Z1Z2e2/r.

One other feature is plainly evident from Eq. (4-102). As far as the radial
motion is concerned, the kinetic energy associated with angular motion appears
only as an additive term to VCr). Indeed the quantity l(l + 1)1i2/2p.r2 is often
interpreted as a centrifugal potential, in direct analogy to its classical counterpart
L2/2p.r2. That is, since L2 is a constant of the motion, the kinetic energy L2/2p.r2

must be supplied by the initial energy E to reach a separation r. Viewed that
way, L2/2p.r2can be interpreted as a repulsive potential as far as the radial motion
is concerned. Thus we can define a radial potential

Vz(r) = l(l -; 1;11,2 + VCr)
p.r

= l(l + 1)11,2 + Z 1Z2e2

2p.r2 r

where R is the radial separation outside of which the nuclear forces cannot be felt.
It is apparent that the potential Vz(r) can be schematically represented as in

Fig. 4-11. The potential is the classical repulsive one for r > R. R is the inter
action radius, sometimes called the nuclear radius, and must be approximately
the sum of the radii of the two nuclear particles plus the range of nuclear forces.
In practice it has been found that

R = 1.4(.A:1
f + A2f ) X 10-13 em (4-105)

is a very good approximation to the interaction radius, where Al and A 2 are the
atomic weights of the interacting particles. At r = R the force becomes strongly
attractive as a result of the nuclear pi-meson field, and the potential drops preeip-
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v

--------------------------.-r
r=R

Fig. 4-11 The potential governing
the motion of one nucleus relative
to another. For r < R the nuclei
are essentially in contact, and the
strongly attractive short-range
nuclear force results in a deep
negative potential. For r > R
the nuclear force can no longer be
felt, and the coulomb potential
dominates. When one considers
the radial motion of the two nuclei,
the angular momentum adds an
effective centrifugal potential.
The total extranuclear radial po
tential is designated by VI.

itously. Near r = 0 the potential becomes relatively flatter (in some unknown
manner) since the nucleon-nucleon forces tend to produce little net radial force
near the center of the nuclear matter. In practice one often approximates Vz(r)
by a square well for r < R. For considerations relevant to understanding nuclear
reactions in stellar interiors, it will not be necessary to have a good understanding
of the form of Vz(r) for r < R.

Resonances can occur in nuclear reactions if the kinetic energy E of the parti
cles at infinity is just such that the total energy coincides with one of the quasi
stationary states of the compound nucleus. The situation is illustrated on a
suggestive energy diagram in Fig. 4-12. Quasistationary states having positive
energy like the one labeled En can exist because the high potential walls give the
state a long lifetime against breakup. Classically the energy E at infinity would
be expended against the radial energy Vz(r) by the time the particle has reached
a distance R« such that

(4-106)

Classically the particle would rebound at R o, which is called the classical turning
point, and move back outward to a kinetic energy of separation at infinity equal
to E. In quantum mechanics, however, there is a probability that the particle
can penetrate the. potential wall and reach the nuclear force at r = R. In Fig.
4-12 this energy E does not coincide with the energy of a quasistationary' state,
and the reaction is nonresonant, but in practice one of the states En will often lie
close enough to the energy E so that a resonant reaction rate will have to be
employed.

If a state of the compound nucleus is to mediate a reaction, the formation of
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the state must satisfy the conservation laws. That the center-of-mass. kinetic
energy of a and X should be such as to coincide with the energy En of an excited
state of the compound system ensures only that energy and momentum can be
conserved in the formation of that excited state. Additional requirements for
the formation or breakup of the compound system are that angular momentum
and nuclear symmetries (parity and isotopic spin) must also be conserved. The
angular-momentum requirement is the most elementary. If In is the angular
momentum of the excited state of energy En in the compound nucleus W, Ja and
Jx the spins of particles a and X, and L the orbital angular momentum of a rela-

V.E

I
I
I-E = 0-- 1 -t- __

R Ro r

---E·--- ---------------------~'OIiiiiiii;;;;;;;;;:;;;~=~;;;;::::;;"e-_\T_tt_ttlil_

etc.

Fig.4·12 The stationary nuclear states in the compound nucleus formed by the coalescence
of the two colliding particles are designated by E l , E 2, • • •• The increasing wavelength of
the incoming wave reflects the loss of momentum as the kinetic energy E is expended against
the repulsive extranuclear potential VI. Within the context of classical mechanics the incoming
particle would be expected to rebound from the potential at the classical turning point R OJ but
in the quantum treatment the wave has a nonzero probability of tunneling through the potential
barrier to the interaction radius R. The compound nucleus formed has an energy E that, in
this case, falls between the natural resonances of the compound nucleus, so that the cross section
will have a slowly varying dependence on the energy. The zero of energy is determined rela
tive to the ground state E l of the compound nucleus by the extra mass of the colliding particl'es.
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tive to X, then one demands that

In = J, + Jx + L (4-107)

where the vector addition must be made by the standard quantum rules for the
addition of angular momenta.

The major importance of the concept of parity on nuclear reactions in stellar
interiors is that the character of the possible resonances is limited by the demand
that parity be conserved. The nuclear force is of a type that does not change
the parity of a wave function by an interaction. This means that if there is to
be a resonance in the interaction of a + X, the parity of the resonant state of the
compound nucleus W must be the product of the parity of a, the parity of X, and
the parity of the relative motion of a and X. Symbolically,

(4-108)

where 1r(a) is the parity of a, etc., and l is the relative angular momentum of a
and X when they interact. It should be added that the parities of both proton
and neutron are positive by definition.

Problem 4-28: In the reaction Cl 2 + p, what are the values of the relative angular momenta
that can form the following resonant states: (a) t- (b) t+ (c) !+ (d) !- (e) t-?
Ans: p, 8, d, P, f.

The foregoing problem demonstrates that the knowledge of spin and parity of
a resonant state will often determine the l wave of a reaction. Knowledge of l is
necessary when the penetration factor must be calculated. This need arises often
for resonances so low in energy that the cross section cannot be measured in the
laboratory.

Problem 4-29: What are the possible spins and parities of states in Ne 20 that can serve as
resonances for the reaction 0I6(a,'Y)Ne20?

Ans: 0+, 1-, 2+, 3-, 4+, etc.

In the previous two problems at least one of the particles had zero spin. For
reactions in which both of the particles have nonzero spin, the J1f' of the resonance
does not uniquely determine the l wave of the reaction.

Problem 4-30: What I waves can form a 2+ resonance in NH in the reaction C13(p,'Y)N14?
Ans: I = 1, I = 3.

Before leaving the subject, two other observations on nuclear parity seem in
order. The first is that the strongest nuclear electromagnetic transitions (gamma
rays) are between states of opposite parity that differ in angular momentum by
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one (vector) unit. This situation is analogous to the atomic case, where electric
dipole transitions are almost all that are seen. A favorite laboratory technique
of nuclear physicists for measuring the spin and parity of some state is to meas
ure the angular distributions (relative to some other particles) of gamma rays
from that state. Finally, it should be added that Yang and Lee shared a Nobel
prize for their prediction that parity of wave functions is not an invariant in
beta decay, a prediction that was dramatically confirmed by Wu and coworkers.
Although parity is not an inviolable quantum number, it is conserved to very
high accuracy in interactions of nuclei by the nuclear force.

An even more fundamental nuclear symmetry has important applications in
nuclear astrophysics. The foregoing discussion has been applicable to all reac
tions except those between identical particles; but pairs of identical particles obey
a more complete and fundamental symmetry that depends upon their spin. The
total wave function (space X spin) of a pair of identical fermions (half-integral
spin) must have the property that it changes sign when the particles are inter
changed. This property is called total antisymmetry. The total wave function
of a pair of identical bosons, on the other hand, must be unchanged by switching
the particles. This is a fundamental rule of quantum mechanics, total antisym
metry for a pair of identical fermions and total symmetry for a pair of identical
bosons. It is this fundamental rule which lies at the heart of quantum statistics.
Although we shall not prove it here, if the total wave function describing the spin
and space coordinates of two identical particles is symmetric to exchange of the parti
cles, then collections of the particles obey Bose-Einstein statistics, whereas if the wave
function is antisymmetric to exchange, collections of the partides obey Fermi-Dirac
statistics.

Rather than dwelling on this principle, we shall illustrate its application to
interactions of importance to nuclear astrophysics. For a pair of particles, the
total wave function can be factored into the product of a space function describ
ing the relative motion of the particles and a spin function describing the vector
coupling of the two spins into a total spin. The symmetry of the total wave
function is equal to the product of the symmetry of the space function times the
symmetry of the spin function. But the space symmetry is just the parity of the
wave function, whereas the spin symmetry is given by the angular-momentum
coupling rules.

Consider, for example, the proton-proton interaction. This interaction results
in the first nuclear reaction in a star of pure hydrogen. Because of the cen
trifugal barrier, the easiest interaction at low energy (temperature) is between
a-wave protons. That wave function has even parity, so that the spin function
must be antisymmetric for the whole wave function to be antisymmetric. The
spin function of the two protons is symmetric if the spins are parallel, giving
S = 1, and antisymmetrie if the spins are antiparallel, giving S = O. Thus the
s-wave interaction of two protons must occur with antiparallel spins, the so-called
singlet interaction.
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Problem 4-31: What is the spin wave function for the p-wave interaction of two protons that
has no angular-momentum component in the direction of relative motion (taken to define the
z axis)?

Ans: ~ [j(l)1(2) + 1(1)1'(2)].

This peculiar feature manifests itself in the laboratory cross section for proton
proton scattering.

An alternative example of this principle, featuring bosons instead of fermions,
is given by the interaction of two alpha particles. Since they have zero spin,
the total spin must also be zero, a necessarily symmetric situation. Since the
total symmetry of two bosons must be symmetric, it follows that the space func
tion of the two alpha particles must have even parity. Thus the interaction of
two alpha particles is limited to the states J: = 0+, 2+, 4+, ....

The effects of nuclear states on nuclear reactions in stars are intimately related
to problems of barrier penetration. In Fig. 4-12 it was apparent that all reso
nant states by which the incoming particles can interact are unbound nuclear
states; since they can be formed by a and X with positive kinetic energy at
infinity, they can decay into a and X with positive kinetic energy. The reso
nant states for a and X have positive energy compared to separated a and X
particles at infinity. These quasistationary resonant states can live for relatively
long times, however, because the potential barrier Vz(r) inhibits the breakup into
a and X in just the same way that it inhibits the formations of the states by those
particles. Nuclear states of increasingly higher excitation energy are increas
ingly uninhibited by Vz(r), and hence they break apart increasingly rapidly, and
into more and more possible combinations of final particles, i.e., other than a
and X. The larger the rate of breakup, the larger the energy width of the state
according to the relationship I' = tilT, where T is the mean lifetime of the state.
For sufficiently high excitation energies, the lifetimes become so short (hence the
width I' so great) that neighboring quasistationary states overlap each other to
large degree. At this point, the notion of quasistationary states must be dis
carded in favor of a continuum theory; but for the low kinetic energies in stellar
interiors, the lifetimes for breakup into charged particles are long enough for the
widths to be much less than the energy separation of nuclear states in the light
nuclei. (Excited states that can decay into neutrons will tend to be broad com
pared to those which cannot, since there exists no coulomb barrier for neutrons.)

Several of these features of the decay .of nuclear states are well illustrated by a
conventional energy-level diagram of the nucleus Bll, illustrated in Fig. 4-13.

(1) The ground state of Bll is stable: T = co, I'(O) = O.
(2) All excited states of Bll can decay to a lower-lying state with the emission

of a gamma ray. They are also energetically capable of beta decay to the ground
state of Cll, but the beta decays of excited nuclear states occur so slowly that
they are never seen in practice. Therefore I', = ti/T-y» r ll- = ti/TIl' and the
energy width of the states is determined by their gamma lifetime. The widths
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Fig.4-13 Energy-level diagram of the Bll nucleus. Energy is plotted vertically on this diagram
in units of Mev, with the ground state of Bll taken as the zero of the energy scale. Each known
bound state of Bll is labeled by its excitation energy and by the spin and parity of the state.
Also shown is the energy required to separate Bll into two particles, for example, Li7 + Ct, and
the mass-energy released in the formation of Bll by specific reactions, for example, Be9 +Re 3 - p.
This energy-level diagram is typical of those encountered in the nuclear literature, e.g., T. Laurit
sen and F. Ajzenberg-8elove, Energy Levels of Light Nuclei VII, A = 5-10, Nucl. Phus.,
78:1 (1966).
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of states which may only decay by gamma emission are characteristically on the.
order of 1 ev.

Problem 4·32: The second excited state of Bll has an excitation energy of 4.45 Mev and decays
by gamma emission with a mean lifetime of 1.2 X 10-[5 sec. What is the natural width of that
state? (11, = 6.582 X 10-16 ev sec.)
Ans: r-y = 0.55 ev.

Problem 4·33: Compute from the table of atomic mass excesses the excitation energy of Bll
such that all higher-lying states can decay in the channel Bll -> LF + 0:.

Ans: 8.664 Mev.

(3) States with excitation energy greater than 8.664 Mev can also decay by
breaking up into Li7 and an alpha particle. For instance, the width of the state
at 9.27 Mev, which is observed to be 1'(9.27) = 5 kev, must be the sum of the
partial widths; 1'(9.27) = l'-y(9.27) + 1'1l(9.27) + I'a(9.27) ~ I'-y(9.27) + l'a(9.27)
since the beta-decay width is negligible.

Problem 4·34: What is the mean lifetime r(9.27) of Bll? One can compute theoretically that
the width contributed to this state by gamma decays is about r-y(9.27) = 5 ev. What is the
probability that this excited state will emit a gamma ray in preference to alpha-particle breakup?

This last problem has indicated that I'a(9.28) ~ 5 kev. Lower-lying states
will have a smaller alpha width, however, since the coulomb barrier will then
offer greater inhibition to the alpha decay. In fact, there exists an energy in the
Li7 a system below which 1'~ would be smaller than I'-y, and most of the decays
would be by gamma emission. (There need not actually be such a state in BU,
of course.) The immediate physical point is that the partial width is to be pro
portional to the rate at which particles can escape through the barrier to infinity.

Many of the principles of nuclear reactions are well illustrated by the following
problem, which consists of a schematic summary of laboratory data on the inter
action Li7 + p, plus questions regarding the interpretation of those data.

Problem 4·35: This is a special problem on LF + p data. Questions follow the numbered
statements.

(1) A schematic graph of the cross section for the reaction

is shown in Fig. 4-14 in terms of the laboratory proton energy.
(2) The increase of the cross section with increasing energy is due to the greater ease of pene

tration of the coulomb barrier at higher energies. By dividing the observed cross section by
the penetration factor, exp (-bE-!), a much smoother curve is obtained, shown in Fig. 4-15.

(3) There is another channel through which a reaction can proceed, viz., Li7 + p -> Be8* ->

Be8 + 'Y. The corresponding cross section, U-y, is shown in Fig. 4-16. At E p = 441 kev the
scattering cross section is 500u-y.

(4) The resonance shown in U-y is distorted by the ease of penetrating the coulomb barrier
at the higher energies. The product exp (bE-!)u-y yields the symmetric dispersion curve of
Fig. 4-17. The width of the Be8* compound nuclear state is measured by the width of this
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441 key E p (lab)

"---------
441 key

Fig. 4-14 A schematic representation of the
measured cross section for the reaction
Li7(p,a)He4• The scale is logarithmic and
encompasses an increase of several orders of
magnitude between 100 and 1,000 key.

Fig. 4-15 The product of the cross section for
the .reaction Li7(p,a)He4 and the factor exp
(bE-i) is approximately constant, showing
that the nuclear mechanism changes very
slowly with energy.

Fig. 4-16 A schematic representation of the
measured cross section for the reaction
Li7(p,'Y)Be8 shows a large resonance at
Ep = 441 key. The cross section for scatter
ing the protons shows the same resonance.

441 key

Fig. 4-17 The product of the cross section
for the reaction Li7(p,'Y)Be8 and the factor
exp (bE-i) is symmetric about the resonance
energy. The full width at half maximum
is r == 12 key.

1,881 key

Fig. 4-18 A schematic representation of the measured cross section for the reac
tion Li7(p,n)Be7. The yield of neutrons appears to be zero for laboratory proton
energy less than 1,881 key.
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(4-109)

curve to be r = 12 kev. The angular distribution of scattered protons shows that the angular
momentum J of Be8* is less than 2.

(5) Another channel of the possible reactions is Li7 + P -> Be 7 + n. The neutron cross
section a« is observed to be zero below 1,881 kev and rises abruptly with energy above that
value, as shown in Fig. 4-18.

Questions

(1) What is the excitation energy in Be 8 of the Be8* resonance at 441 kev proton energy?
Ans: 17.64 Mev.

(2) Why are no neutrons made for Ep < 1,881 kev?
(3) What are likely causes for the absence of a resonance in «« although one does appear

in u-y?
(4-) What is the gamma-ray lifetime of the 441-kev resonance?

Ans: 3 X 10-17 sec.
(5) Assume that the 441-kev resonance occurs by the simple addition of an l = 1 proton to

the J1f = j- ground state of Li7. What are the spin and parity J1f of Be8*?

The discussion of particle widths is usually carried on with the aid of two con
cepts, the penetration factor and the dimensionless reduced width. The definitions
of these quantities are motivated by the following considerations.

The Schrodinger equation

ih iJif; = _ h
2

\12if; + Vif;
at 2p.

is physically interpreted to give the probability density for the particle according
to p = if;*if;. If the Sohrodinger equation is multiplied on the left by «: if the
complex conjugate of the Sehrodinger equation is multiplied on the left by if;,
and if the difference is taken between those two equations, the result is

- h
2

(if;* \12if; - if; \12if;*)
2p.

- h
2

V • (if;* Vif; - if; Vy'*)
2p.

which has the form of the equation of continuity

ap-+V·J=Oat

if

(4-110)

(4-111)

(4-112)

p = if;*if;

J = !;.- (if;* Vif; - if; Vif;*)
22P.

In the same sense that if;*if; is the probability density of the particle, J is the
probability current of particles. To obtain a simple physical feeling of these
ideas, consider a flux of particles with momentum p moving in the x direction..
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(4-113)

(4-115)

Then since p = -ifiv, the wave function is a plane wave of the form

1/I(x) ex: exp (i PhX)

In fact if there are n particles per unit volume, the normalized plane wave will be

1/I(X) = ...;n exp (i ~x)
for then 1/1*1/1 = n, the particle density.

Problem 4-36: Show that the probability current for the same plane wave is just

J z = n J!. = nv
m

which is the classical particle flux. For such a simple case the flux is just J = vift*ift.

Suppose that the wave function for the relative motion of particles a and X
has been obtained. To first approximation the particles are initially thought of
as bound by the nuclear potential in the quasistationary excited state of the com
pound nucleus. There is an exponential decrease of the wave function through
the potential barrier which turns into an outgoing wave of particles at infinity.
The decay rate of that excited state (for particle emission) is

A = 1:. = probability/sec for particle from decaying system to cross large
T

spherical shell

= lim v ff 11/I(r84» 1
2r2 sin 8 d8 d4>

T-Jo a:I 8,ep

= ~~ v ff I~zr1Y zm(8,4>)J2r2 sin 8 d8 d4>
8.<1>

= vlxz( 00)J2 (4-114)

The penetration factor for particles of relative angular momentum l is defined in
this case by

Pi = xi( 00 )xz( 00)
xi (R)xz(R)

whereupon the decay rate may be written

A = vPzlxz(R)12

It is obvious by the same manipulations that

Ixz(R)12 = ff 11/Iz(R,8,4»12R2 sin 8 d8 d4>
8.<1>

(4-116)

(4-117)
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(4-118)

gives the probability per unit radial distance that the particle a is to be found
at the interaction radius R, where the potential switches from the nuclear poten
tial to the external potential Vz(r). Thus the decay rate is thought of as a
product of three factors:

A = (velocity at infinity) X (penetration factor) .
X (probability/unit dr that particle is at nuclear radius)

The velocity at infinity is determined simply by the energy of the excited state
relative to the combined masses of a and X.The penetration factors can be
calculated with sufficient accuracy by a separate wave-mechanical calculation
that is independent of the uncertainty in the nuclear forces provided one knows
the nuclear radius R.· The major uncertainty in the particle widths arises from
the last factor, the probability of finding the particle at the nuclear surface.
That probability depends very much on the detailed nature of the nuclear state
involved and hence on the potential inside the nuclear radius. It can only be
calculated for certain specific models of a particle in a potential well. This
uncertainty is usually concentrated into a dimensionless number, called the
dimensionless reduced width, which turns out to vary ill a rather predictable
manner for nuclear states. The simplified raison d'etre of the usual definition
of the dimensionless reduced width is as follows. .

The attractive nuclear force tends to produce the largest probability density
near the center of the nucleus, although the combination of the exclusion princi
ple plus orbital angular momentum makes that conclusion not strictly true. But
for the most part one expects that Ixz(R) 12 should not exceed its value for a uni
form probability density. For uniform probability density,

* 4"ll"R2 dr 3
xz (Rhz(R) dr = t"ll"R3 = Rdr

With this result as a guide, the dimensionless reduced width 8z2 is defined by

(4-119)

For various simple potentials that can be calculated it is found that 8Z
2 is some

thing somewhat less than unity, and empirically it is found for nuclear states
that usually

(4-120)

In a sense 8Z
2 turns out to be a measure of the degree to which the actual quasi

stationary nuclear state can be described by the relative motion of a and X in a
potential. Even though the quantum numbers of the nuclear state may be cor
rect, its actual wave function may bear little similarity to a bound state of parti-
cles a and X, in which case the reduced width is small. .
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Problem 4-37: Show that with the above definitions, the partial width of a state to particle
decay can be written

(4-121)

(4-122)

(4-123)

The advantage of such an expression for r 1 is that once the interaction radius R
has been estimated, everything in r 1 with the exception of 812 can be evaluated.
Empirical rules from nuclear systematics and carefully chosen experiments can
independently provide good estimates of 81

2 in many cases. The really useful
feature is that the dependence of r 1 on the energy, that is, v, can be made explicit,
since the explicit dependence of Pion v can be calculated. Before considering
the effects of resonances due to nuclear states on the thermonuclear reaction rates,
we shall want to calculate expressions for the penetration factors.

4-5 PENETRATION FACTORS

The wave function describing the relative motion of particles a and X with rela
tive angular momentum l has been found to be expressible as

1ftl(r8c/J) = Xl(r) y 1m(8,c/J)r

where xl(r) satisfies the differential equation

[- ~: ::2 + lel ~r~)h2 + VCr) - E ] Xl(r) = 0

This second-order differential equation has the form of a wave equation

d2x l 2p.
dr2 + h2 [E - V1(r)]xl(r) = 0

where Vl(r) is the effective radial potential for the lth partial wave:

!
ui + 1)h2+ Z lZ2e

2 r > R
2p.r2 r

V (r) -
I - l(l + 1)h2

2p.r2 + V c + Vnne r < R

This potential was shown schematically in Fig. 4-11. The calculation of the
penetration factors demands solution of the radial wave equation to give the ratio

PI = xi( 00 hl( 00) (4-124)
xt(R)xl(R)

The exact solution of the radial wave equation is impossible because the nuclear
potential is not well known. Fortunately, the penetration factors can be calcu
lated without detailed knowledge of the nuclear force, because the equation is
well defined for r > R. Therefore the equation defines precisely the ratio of



334 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

Ixz( co) 12 to Ixz(R)12 although the absolute value of the wave function cannot be
calculated without knowledge of the nuclear potential. The wave function for
r < R must be matched (value and derivative at r = R) to the wave function
for r > R, so that the absolute value of xz(r) depends upon knowing the poten
tial everywhere. As far as the penetration factor is concerned, one could pick
any value of xz(R) and integrate Eq. (4-123) numerically from r = R to r = co

to obtain the penetration factor. Such a program has been carried out by many
investigators.

Accurate calculations of penetration factors are also derivable from the ana
lytic solutions of the radial Sehrodinger equation in a coulomb field. This
method depends upon the fact that the two independent solutions to Eq. (4-123)
are well known.! Those functions are called coulomb 'Wave junctions for angular
momentum l or coulomb partial waves. The regular coulomb wave function is
called Fz(r), and it has the asymptotic values

Fz(O) ~ 0

( l ) (4-125)
Fz(r)r-:'" sin kr - ; - 7J In 2kr + (J'Z

It is the only allowed solution for problems in which the origin is not excluded
since xz(O) must vanish. The other independent solution is called the irregular
coulomb wave Gz(r), and it has the asymptotic values

Gl(O) ~ co

( )
(4-126)

Gz(r)r-:'" cos kr - l i - 7J In 2kr + ai

In these equations k = p/Ii is the wave number (k = 2tr/"A), 7J = ZlZ2e2/fiv, and
ai is the argument of a complex gamma function:

(4-127)

Since the origin is excluded in the present problem (the coulomb waves are solu
tions only for r > R), the solution for l' > R is a linear combination of regular
and irregular solutions:

xz(r) = AFz(r) + BGz(r) (4-128)

Since the time dependence of the wave is exp [-i(E/Mt], the demand that the
linear combination represent an outgoing wave at infinity is equivalent to demand
ing A = iB. Only then is the asymptoticform of xz(r) = exp (+ikr). It follows
immediately that

Ixz( co )1 2 1
Pi = Ixz(R)12 = F I2(R) + GI2(R) (4-129)

1 An exhaustive discussion of coulomb wave functions may be found in M. H. Hull and G. Breit,
"Handbuch der Physik," S. Fliigge (ed), vol. 41, p. 408, Springer-Verlag OHG, Berlin, 1959; also
C. E. Froberg, Rev. Mod. Phys., 27:399 (1955).
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(4-131)

An exact solution of the problem is then to have recourse to tabulated values
of E, and Gz• This approach, though exact, would require a very extensive set of
tables, since P, is not only a continuous function of E but is parametrized in l,
Z lZ2, IJ., and R, the last of which cannot easily be prescribed exactly. Not only
is such an approach tedious, but for discussions of this type, it is also not very
illuminating. For bombarding energies much smaller than Vz(R) it is more
instructive to have approximate expressions for the penetration factors that
show in functional form the explicit dependence upon all the variables and
parameters of the problem. Fortunately, accurate approximations exist for
E« Vz(R). One approach is based upon an expansion of GZ2 (which is much
greater than FZ2 for E « V) in terms of modified Bessel functions. These for
mulas are the ones used by Burbidge et al. in their historic paper.' A more
illuminating approach pedagogically is based on the WKB technique (named for
the inventors, Wentzel, Kramers, and Brillouin) for obtaining approximate
solutions.

The WKB method is an approximate treatment of equations of the type

d2y- == y" = -f(x)y (4-130)
dx 2

If f(x) is a constant, the solution is obvious: it is a sinusoidal oscillation if f(x) is
positive and an exponential if f(x) is negative. Even if f(x) is not a constant,
we expect solutions similar to sin (0 x) or exp (0 x) if f(x) is a slowly varying
function. Since the characteristic distance over which the approximate solution
undergoes large changes is of the order ~x ~ 1/0, the possibility of writing an
approximate solution should be good if the change ~f(x) over the distance ~x is
much less than f(x) itself. That is, we expect an approximate solution if

Af(x) ~ 1'(x) ~x ~ _f}x) «f(x)
vf(x)

With this thought in mind, let us seek a solution to Eq. (4-130) of the form
y(x) = eic/>(x). The sign of f(x) has not been specified, so that ¢(x) may be real,
imaginary, or complex. Substitution of the trial solution into Eq. (4-130) yields

i¢" - (¢')2 + f(x) = 0 (4-132)

If we are to obtain a solution, ¢(x) must be slowly varying, so that we shall
temporarily discard ¢" as being negligibly small, with the reservation that the
validity of this assumption must eventually be checked when a solution is
obtained. When this step is made, ¢' ~ ± Vf(x) and ¢" = H'/0. From
Eq. (4-132) we see that the neglect of ¢" is valid only if ¢" « f(x), which is
equivalent to the condition anticipated by Eq. (4-131).

The solution for ¢(x) may be exactly specified by letting

¢'(x) == ± v'J(Xj + 1](x) (4.-133)

1 E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys., 29 :547 (1957).
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where the additional function 7] (X) represents whatever must be added to ± VJ(Xj
in order to reproduce cf/ exactly. The advantage of this representation is that
7](x) is very small if f(x) is slowly varying, going to zero in the limit of constant
f(x). Of course, nothing has been gained in the search for an approximate solu
tion if 7](x) is not small compared to 0, an assumption that must be checked
after the solution is obtained. Differentiating a second time and substituting
into Eq. (4-132) gives

. f'
± ~ V] + in' =+ 27] 0- 7]2 = 0 (4-134)

If 7] is to be small compared to 0 and slowly varying as well, then i7]' - 7]2 may
tentatively be neglected in Eq. (4-134). This neglect will be justified if

17]2 - in'1 « IL I (4-135)20
Assuming momentarily that this condition is met, we see from Eq. (4-134) that

if'7] <':< - - (4-136)
4f

Problem 4·38: Show from this last result that Eq. (4-135) is satisfied if

)- ~7+ 1~ ~y)« /2~I (4-137)

The results of the previous problem provide the condition that must be satis
fied if the approximate solution is to be valid. It is apparent that this condition
will be met by well-behaved functions for which f» f'. However, Eq. (4-137)
indicates clearly that the approximate solution will be of no value where f(x) ---7 o.
Without any of these difficulties, however, Eq. (4-133) may be integrated to give

ep(x) = ± r' VJ(Zj dz + i In /f(x)/i (4-138)

The absolute-magnitude sign is used in the logarithm to render the integral of
1'lf independent of the sign of f. Therefore by the original assumption

y = ei
</> <':< Alf(x)/-i exp [ ±i I'" vf(z) dzJ (4-139)

A general solution consists of an arbitrary linear combination of terms containing
positive and negative exponentials. The two arbitrary constants are to be estab
lished by boundary conditions.

Problem 4·39: What is the solution to the equation

u" + e%/lOOy = 0

with boundary conditions y(O) = 1 and y' (0) = 0, and over what range of x is the solution
valid?
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As was mentioned previously, the approximate solution becomes incorrect as
f(x) approaches zero. Equation (4-139) blows up, but this effect is spurious,
since the result is invalidated by the violation of the requirement of Eq. (4-137)
in the same region. It is often the case in problems of physical interest, however,
that the functionf(x) passes through zero at some valuez = Xo but is sufficiently
well behaved on both sides of Xo so that the approximate solution can be validly
written down in both regions except in the vicinity of xo. On one side of Xo the
solution is approximately exponential, and on the other side of Xo the solution is
approximately sinusoidal. The situation is illustrated in Fig. 4-19.

The function f(x) is slowly varying and is shown as changing sign at xo. The
curve labeled y(x) is intended to represent the exact solution to the differential
equation, whereas the dashed curves represent WIm approximations to the solu
tions in the two asymptotic regions. Both of these approximate solutions, y_(x)
for x «Xo and y+(x) for x» Xo, are adequate solutions far from Xo, but since
both solutions are invalid near Xo, special considerations are required to deter
mine which solution y_(x) is to be joined onto a given solution y+(x). The pre
scription for identifying the corresponding solutions in the two asymptotic regions
was first discovered by Kramers. These are commonly called the WKB con-
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Fig. 4-19 The correct solution to the differential equation (4-130) is y(x).
The approximate WKB solutions are y_(x) and y+(x) for lex) < 0 arid/ex) > 0,
respectively. The approximate solutions are quite good except near xo. With
knowledge of only two boundary conditions the difficult analytical problem is
deciding which approximate solution y_ corresponds to the approximate solu
tion y+.
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nection formulas. The way of establishing them and the types of solutions for
which connections may validly be made are somewhat complicated and need not
be discussed here.' Instead we shall quote the connection for the case of an out
going wave at infinity. The solution

(i) y+(x) = Af(x)-1 exp «L: V] dX)

transforms to

x» Xo
f(x) > 0

(4-140)

(ii) y_(x) "'" Aei1l"/4/f(x)/-i exp [LXO v/f(x)/ dx x «Xo
f(x) < 0

(4-141)

(4-142)

(4-143)

Actually, if the first solution is a pure outgoing wave, the second solution is a
linear combination of increasing and decreasing exponentials. But regardless of
their relative admixture near the turning point Xo, the decreasing exponential is
all that remains for x« Xo, whereupon the connection indicated by Eq. (4-141)
becomes valid. This special result quickly gives a good approximation to the
penetration factors, because the Sehrodinger equation is of such a form as to be
an appropriate candidate for the WKB method in the region r > R, where we
have the equation

x;' (1') + f(r)xl(r) = 0

with the function fer) identified as

fer) = 2f.L [E _ Z lZ2e2 _ l(l + 1)lVJ
h2 r 2f.Lr2

The function fer) changes sign at the classical turning point R o, shown in Fig.
4-12. By the connection formulas just quoted we have

xI(r» R o) = A[E - VI(r)]-1 exp [ i j;o v'f(Tj drJ

xI(R < r «Ro) = Aei1l"/4[VI(r) - E]-i exp [jrROV -fer) drJ

Then the WKB value of the penetration factor is

P = xz*( co )xl( co) = [VI(R) - EJl { _ 2 V2f.L r- [V ( ) _ E]l d }
xi(R)xI(R) E exp h JR I r r

(4-144)

(4-145)

(4-146)

(4-147)

A first step in evaluation of Eq. (4-146) is to introduce some notation and
numerical values for the heights of the coulomb and centrifugal potentials at the
nuclear surface. Let E; be the height of the coulomb barrier:

E - Z lZ2e2 - 144(M f) Z lZ2
c - --R- -. .r ev m -r

1 See, for instance, J. Mathews and R. Walker "Mathematical Methods of Physics," W. A.
Benjamin, Inc., New York, 1964.
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The quantity R, which we have called the nuclear radius, really represents the
separation of the respective centers of mass of particles 1 and 2 at that point
where the attractive nuclear force overcomes the repulsive barriers. This sepa
ration R is of necessity somewhat "fuzzy," but it is intuitively appealing and
supported by experimental results to adopt R as being about equal to the sum of
the radii of the two interacting nuclei. Data for the radii of nuclei come both
from experimental nuclear reactions and from the scattering of relativistic elec
trons from nuclei. The effects in nuclear reactions indicate that the radius of
anyone nucleus is approximately given by

fm (4-148)

(4-149)Mev

A good rule of thumb for the height of the coulomb barrier may be obtained by
using this result to evaluate the coulomb energy of two touching spheres:

ZlZ 2

B, <=::< A
l
! + A

2
!

Let E, be the height of the centrifugal barrier at the nuclear surface. Then

E = l(l + 1)1/.2 = 209(1\'" f 2) l(l + 1)
z 2p.r2 . l.Y.Lev m AR2 (4-150)

Finally, the barrier energy EB is defined to be the sum of these two potential
barriers, EB == E; + Ez• Using these definitions, the WKB solution for the pene
tration factors becomes

(4-151)

Clearly both B, and E, are of the order Mev. The energies of interest in stars,
however, are of the order E <=::< Eo, viz., Eq. (4-47), which is characteristically
some tens of kilovolts in magnitude. Thus it is common in most astrophysical
problems to neglect E in comparison to E B in Eq. (4-151). In fact, it has been
found that better agreement with exact computation is obtained by replacing
(EB - E)! with E e!. We make that replacement from here on. It will also be
convenient to denote the exponent in Eq. (4-151) by - Wz, to which we now turn
our attention.

(1) l = 0: The case of zero angular momentum is of interest because it is the
simplest and because most reactions occur through l = 0 (a-wave) interactions
when there is no resonance in the region of effective stellar energies. The domi
nance of s-wave interactions comes about because the penetration factor is small
est for l = O.

Problem 4-40: Show by integrating with 1 = 0 that

Wo = 4Z1Z2e
2

[:: _ sin"? (E)! _(E)! (1 _E)!J
~ 2 ~ ~ ~

(4-152)
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In cases of stellar interest, EIE. is a small number.
terms of this ratio, becomes

2.Z,Z2e
2

[ 4 (E)i 2 (E)i JW o = 1 - - - + - - ...
h» '. E. 3. E.

Equation (4-152), when expanded in

(4-153)

Problem 4-41: The second term in Eq. (4-153) is independent of energy. Show that it is

_ 2.Z,Z2e2 ~ (E)i = -4 (Z,Z2e2 2J.lR2)i
flv • E. R fl2

= -0.88(AR2E.)i = -l.05(ARZ,Z2)i (4-154)

where, as before, E. is in Mev and R in fermis.

The first term of Wo is just the exponent bE-i that was adopted without-justi
fication in the discussion of the nonresonant cross-section factors in Sec. 4-3.
The second term, considered in the previous problem, vanishes in the limit as
R -7 0 and may be thought of as a correction term due to nonzero radius in the
penetration factors. It is physically clear that the size of the penetration factor
must depend strongly upon the separation R to which the particles must pene
trate. In the limit of vanishing R the particles would have to penetrate the
complete potential, whereas only a small portion of the barrier must be pene
trated for large values of R.

Problem 4-42: The correction term for nonzero radius gave the first good measurement of the
radius of radioactive alpha emitters. It has been found that the dimensionless reduced width
for heavy alpha emitters is near unity. The decay

with T! = 1,620 years and Ea = 4.78 Mev, is such a decay. Show that the interaction radius
of Rn222 with an alpha particle is R = 10 to 11 fm. (Because ground states of even-even nuclei
have J1r = 0+, we have l = 0.)

The third term in Eq. (4-153) is again energy-dependent. It represents a sig
nificant correction factor to the first term when the energy becomes a significant
fraction of the coulomb barrier. Therefore

Wo= _4,.(zli2e2 2~~2Y + ss-» [1 + 3~ (:cYJ (4-155)

where we have once again used b = 31.28Z1Z2A! (kev)!.
The s-wave particle width, on the other hand, is given by Eq. (4-121) as

r, = 6802(2~2 EcY exp (-Wo) (4-156)

If the correction in E/Ec is ignored, it is clear that the energy dependence is
approximately

ro a:: exp (-bE-!)
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(4-159)

Nonresonant reactions discussed in Sec. 4-3 occur via the wings of broad s-wave
resonances whose central energy is far from the bombarding energy. Thus non
resonant reaction rates are proportional to the s-wave particle width. It is now
clear why the cross-section factor SeE) was defined as in Eq. (4-37), i.e., in order
to be a slowly varying function of energy. We note from Eq. (4-155) that this
definition of SeE) factors out almost the entire energy dependence as long as

~(E)!« 1
311" Eo

As the bombarding energy becomes a significant fraction of the coulomb barrier
(a situation encountered in the late high-temperature stages of evolution of the
stellar interior), the penetration factors take on a more complicated energy
dependence:

r, a: exp [ -ie-) (1 + :11" ~YJ (4-157)

Some authors maintain that this more complete energy dependence should be
employed for the definition of S(E) , so that it becomes advisable to make a
mental note regarding the correction term.
(2) l ¢ 0: The expression for Wz was found to be

Wz = 2 Y? t: [Eo ~ + e, (~r - Erdr (4-158)

The integration can be performed with the aid of some lengthy algebra.' The
result is cumbersome, however, and can be easily interpreted only by an expan
sion. A much simpler approach which yields the leading terms is to expand the
integrand before integration. Suppose that Eois greater than Ez; both, of course,
are much greater than E. Since the range of integration is R < r < R«; we see
that the ratio R/r is everywhere less than unity. In fact, since R/Ro ~ 10-3,

the ratio R/r is quite small over most of the range of integration. As a conse
quence the second term in the square-root bracket never dominates, and the inte
grand may be expanded, whereupon the two leading terms become

W ~ 2~ fRo (E !i _ E)! dr + V2; fRoEzR,! dr
z h jR 0 r h jR Eo! r!

The first term is just equal to W 0, the exponent for l = 0, whereas the second
term reflects the additional effects of the centrifugal barrier.

Problem 4-43: Show that Eq. (4-159) becomes

WI = Wo + 2 [l(l ~~)Elr [ 1 - (:)!J
1 See, for instance, H. B. Dwight, "Tables of Integrals and Other Mathematical Data," formula
380.311, The Macmillan Company, New York, 1957.
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(4-161)

The correction in (E/Ec)! may be neglected in this approximation, giving the
following approximate expression for the penetration factor:

r, ~ (~Y exp [ - 21rZ~:2e2 + 4 (h2/~:R2Y - 2l(l + 1) e2/~~R2YJ (4-160)

The correction of order (E/Ec) ! to the first term in the exponent of W o has also
been dropped. For numerical work one finds better agreement with more accu
rate calculations by replacing the product l(l + 1) with (l + .~-)2. Making this
substitution and using nuclear numerical units, we have

P, ~ (~cY exp [-bE-! + 1.05(ARZ1Z2)! - 7.62(l + i)2(ARZ1Z2)-!]

This approximation is adequate for most applications in nuclear astrophysics,
although more accurate expressions can be obtained if the nuclear knowledge
warrants the improvement. It can be seen that the penetration factor is a prod
uct of three exponential factors: (Gamow velocity factor) X (finite-radius factor)
X (angular-momentum factor). The angular-momentum factor shows that for
a given reaction

kev

r, [ (h
2/2

R2)!]Po ~ exp -2l(l + 1) E~ = exp [-7.62l(l + 1)(ARZ1Z2)!]

The corresponding particle width from Eq. (4-121) is

(
h2 )!

rl ~ 6812 2p.R2 E; exp - W l

(
Z l Z 2) != 3.33 X 10481 2 ARa exp (-Wl)

(4-162)

(4-163)

where R is again expressed in fermis. We have replaced the penetration factor
with its approximate value based on the WKB method. The student should be
aware, however, of the fact that other methods of computing P, are in common
use, in which case they may be used in Eq. (4-121).

Problem 4-44: The peak shown in Fig. 4-4 is due to a Jr = i+ resonance in 0 12 + P at 424 kev
center-of-mass energy. The resonance has a full width at half maximum r = 40 kev. This
width is essentially the proton width, since the only other channel is r'Y' which is much less than
r". What is the value of the dimensionless reduced width 0,,2for that state?

4-6 MAXIMUM CROSS SECTION AND RESONANT REACTIONS

When resonances (quasistationary states in the compound nucleus) occur in the
range of effective stellar energies, the stellar reaction rate is usually dominated
by them. Resonant cross sections are many orders of magnitude greater than
nonresonant cross sections at energies near the resonance, so that a resonance
can dominate the reaction rate in spite of the required integration over the parti
cle energy spectrum. At resonances the reaction cross section may approach the
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geometrical limit imposed by quantum mechanics. Since this limit increases
linearly with the relative orbital angular momentum of the resonance, the reso
nant reaction rate may dominate even for large values of l required to form the
resonant state. The geometrical limit comes about as follows.

The radial Schrodinger equation can be written

[~ + ~i. _ l(l + 1) _ 2/L VCr) + k 2JN r) = 0
dr2 r dr 1'2 h2

where k 2 = 2/LE/it2
• The solutions to this equation for a free particle (V = 0)

are well known. They are

fl(r) = jl(kr) = (2~rY JIH(kr) (4-165)

where the functions jl are called spherical Bessel functions. They are related in
the indicated manner to ordinary Bessel functions of half-integral order. Explicit
forms for the first three solutions are

'(li) sinkrJ 0 cr =--rr;;:-

. (k ) _ sin kr _ cos kr
JI r - (kr) 2 kr

j2(kr) = - [~r - (k~)3Jsin kr - (k~)2 cos kr

Furthermore, all spherical Bessel functions have the asymptotic behavior

. (k ) sin (kr - l11/2)
Jl r ~ k

T-io co r

Thus for a free particle moving with angular momentum L2 = l(l + 1)it2, Lz = mit,
and energy E = (itk)2/2m, the wave function is proportional to

(4-168)

If the direction of particle motion is defined to be the z direction, then L, = 0, and

1/;(1',8) a: jl(kr)PI(cos 8)

On the other hand, the free-particle wave equation could have been written in
rectangular, rather than spherical, coordinates: (V2 + k2)1/; = 0, with solution
1/; a: eikz• This solution is just the plane wave and contains all values of orbital
angular momentum. Since both solutions are for free particles, and since the
value of the wave function does not depend on the type of coordinate system
used for description of the motion, it follows that a plane wave must be a well
defined sum of motions characterized by a definite l value. That is,

'"
eikz = I Azjl(kr)PI(cos 8)

1=0
(4-169)
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where Azare the coefficients that can be shown to be Az = (2l + l)iz.. Suppose
further that the plane wave is examined at large values of r, that is, in the asymp
totic region:

eikz -7 \' (2l + l)iZpz(cos 0) sin (kr - l1r/2)
_.k ~

1=0

= ~ \' (2l + l)iZ+lP z(e- i (kr--Zr /2) - ei(kHr/2») (4-170)
2kr k

1=0

Accordingly, one sees that when viewed from the origin, a plane wave traveling in
the z direction looks like a superposition of incoming and outgoing spherical waves
for each value of l.

Now suppose a short-range potential exists about the origin. How can such a
potential change the asymptotic form of Eq. (4-170)? Because the potential is
assumed short range, it will not alter the incoming wave (the negative expo
nential) but can only affect the wave leaving the origin (the positive exponential).
Thus the outgoing wave may be multiplied by a complex number ~z, where
17JZ12 S 1 is required in order that the outgoing flux not exceed the ingoing flux.
Then,

f(r,O) = 2~r I (2l + l)iZ+lP z(e- i (kr--Zr /2) - ~zei(kr--Zr/2») (4-171)

1=0

The scattered wave is the difference between this wave function and the wave
function in the absence of a potential:

fac = f - eikt

= l-. \' (2l + 1)il+lPz(1 - ~z)ei(kr-Zr/2)
2kr k .

1=0

Now from Eq. (4-112) the scattered flux is

Jac(O) = 2~ (f:" '\Ifac - fac '\If:")
1,JJ.

The total rate of particle scattering, furthermore, is

s: = for Jac(0)r 221r sin 0 dO

(4-173)

(4-174)

Since the only term in Jac of order l/r2 comes from the radial derivative acting
on the exponential, the calculation of the rate of particle scattering is elementary.

Problem 4-45: Show that

h7r \'
N •• = - k (2l + 1)11 - iil/2

Ilk 1=0

Recall that [I [PI (u)J2 du = 2/(2l + 1).
-1

(4-175)
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The scattering cross section is defined as the ratio of the number of particles
scattered per unit time to the incident flux. Since the incident flux is 7ikjJL, the
cross section is

~ ~

usc = ;2 L(2l + 1)11 - 7hl 2 = 1f'l'2 L(2l + 1)11 - 71z1 2

1=0 1=0·

(4-176)

(4-178)

The cross section contains a sum over all values of l. Each term is usually inter
preted as apartial-wave cross section Usc,z, where

Usc,Z = 1f'l'2(2l + 1)11 - 71z1 2 (4-177)

in like manner, the reaction cross section can be calculated. If a sphere of
large radius is drawn about the origin, the number of reactions per unit time
must equal the difference between the rate at which the incident particles enter
the sphere and the rate at which they come back out; but this difference is just
the total flux integrated over the sphere:

h fc" (aif; aif;*) .N· - N t = - - if;* - - if; - 21f'r2sin e de
In au 2iJL 0 ar ar

where if; is the complete wave function.

Problem 4-46: Show that the reaction cross section for the lth partial wave is

Ur,Z = 'lrX2(2l + 1)(1 - liizl 2) (4-179)

It is this last equation which contains the most important information. It is
clear from its derivation that the restriction l71zl 2 :::s; 1 corresponds to the demand
that the flux out of the bombarded sphere not exceed the flux into the sphere.
.With this restriction it is. also evident that the maximum value of the l-wave
reaction cross section is

ur,z(max) = (2l + 1)1f'l'2 (4-180)

Thls maximum occurs for 71z = 0, which clearly corresponds to a situation in
which all the particles are absorbed and there is no outgoing wave.

The fact that the partial wave cross section increases With l does not mean
that the physics of reactions favors large l but rather that there are more parti
cles of large l in a plane wave. In fact the result can be understood in the
following semiclassical way. Since the momentum of the incoming particles is
p = n/l' == nk, it follows that the angular momentum is L = bp = bn/l', where b is
the classical impact parameter. But since the angular momentum is restricted
to the quantized values L = In, it follows that in a semiclassical picture the
impact parameters are quantized; that is,

L = bh = lhx
b = ll'
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Fig. 4·20 A classical particle
with an angular momentum In
has an impact parameter equal
to lX. In the quantum cal
culation the maximum cross
section for the partial wave hav
ing angular momentum lh is
equal to the area of the lth zone
of this diagram. This cor
respondence is no more than a
mnemonic device, however, be
cause interactions having a
given angular momentum are
not in reality restricted to one
specific zone.

The semiclassical interpretation is that the plane of impact parameters is divided
into zones of differing values of l, as indicated in Fig. 4-20. The area of the lth
zone, which is the maximum possible cross section if all particles react, is just
equal to that of Eq. (4-180):

ur,l(max) = 7l"[(l + l)X)2 - 7l"(lX)2 = (2l + 1)7l"X2 (4-181)

This maximum can be attained in the reaction

u(a + X -t W -t b + Y)

only if the compound state is physically similar, both a + X moving in a common
potential and b + Y moving in a common potential. For instance, the maxi
mum cross section could be attained in the reaction

Q12 + p -t N13 + 'Y

for an energy coinciding with a quasistationary state of N13 that is physically like
a proton moving in the nuclear potential of a C12 nucleus.

However, every state has a natural width

I' = r p + r n + r a + I', + r p + ...
and the rate at which the state decays (once formed) to each mode is propor
tional to the partial width of that mode. The total width is associated with the
fact that the energy of the state is indeterminate, the probability of the state's
having energy E being given by Eq. (4-79). The rate of forming the state with
particles of energy E must be proportional to the probability that the state has
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(4-182)

energy E, that is, proportional to peE). If the reaction is to be initiated by an
incoming particle of type a, furthermore, the cross section must be proportional
to r a' A reaction occurs if the excited state breaks up in any other channel the
rate of which is proportional to I' - I'a' Thus the reaction cross section at reso
nance (E = E T ) must be proportional to

U T ex: raCr - ra)p(ET )

raCr - r a )

ex: -=-C('=r-;:/2~)-;;-2z:

Problem 4-47: Show that the maximum occurs in Eq. (4-182) if ra = r/2.

Since the maximum value of the factors in Eq. (4-182) is unity, they should be
multiplied by the maximum value of the reaction cross section. Thus the reac
tion cross section for the lth partial wave is

(4-183)

The factor r - I'a represents the sum of all of the partial widths for breakup of
the compound state into a channel different from the one which formed this state.
The reaction cross section for the b + Y products is obtained by using only the
partial width for that channel:

uT,z(a,b) = (2l + 1)1rh2 (E _ E~;r~ (rj2)2 (4-184)

This result is called the Breit-Wigner single-level formula. In the example of the
resonance described at E p = 441 kev in the- special problem on Li7 + p (Prob.
4-35), we have I', = r p and I', = I'; for the Li7(p,'Y) reaction and r b = r", = 0
for the Li7(p,a) reaction. The case in which the outgoing particle equals the
incoming particle corresponds to resonant scattering rather than to a reaction.
Although it might at .first seem that the maximum reaction cross section would
be unaccompanied by scattering, such is not the case. It is impossible in quan
tum mechanics to have a reaction without also having scattering. In fact, a
comparison of Eq. (4-177) with Eq. (4-179) shows that the maximum reaction
cross section, which occurs whenever ~z = 0, is accompanied by an equal scatter
ing cross section.

Problem 4-48: Show that the maximum possible resonant-reaction cross section obtainable
from the Breit-Wigner formula is accompanied by an equal resonant scattering cross section.
In the case of the E p = 441 kev resonance in LF + p, the scattering cross section is 500 times
the reaction cross section. One concludes from that fact that r p = 500r')'.

One simplification in Eq. (4-184) is that it has ignored the spins of the particles.
Consider the example of a J = i resonance formed by l = 1 protons interacting
with C12. The possible values of the total angular momentum that can be formed
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by l = 1 protons are

J = J(C12
) + J(p) + L

131
= 0 + - + 1 = - or 222
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Since the statistical weight of each J is 2J + 1, it is evident that two-thirds of
the l = 1 protons form J = ~ states whereas one-third form J = t states. If
the resonance in question has J = -i, the maximum possible cross section is two
thirds of Eq. (4-184), since only two-thirds of the l = 1 protons can be used.
Thus, in general one writes

_ 2 r 1r2
0"1(1,2) - 11";\ W (E _ E

r
)2+ (rj2)2

2J + 1
W = (2J1 + 1)(2J2 + 1)

(4-185)

(4-186)

where J is the angular momentum of the resonance and J 1 and J 2 are the spins
of particles 1 and 2.

Problem 4-49: Show that the numerical value of the geometrical cross-section factor is

656.6
1rl\2 =--

AE
barns (4-187)

where E is the energy in kev. The fact that the omnipresent factor 1rl\2 is proportional to liE
explains why the factor liE was removed from the cross section for the definition of S(E) in
Sec. 4-3.

4·7 RESONANT R~ACTION RATES IN STARS

The principles of resonances in nuclear reactions and of the particle widths have
widespread application to the calculation of reaction rates in stellar interiors.
These applications are of considerable importance to both stellar evolution and
nucleosynthesis. In this section we demonstrate how knowledge of the proper
ties of resonances greatly enlarges our capacity to calculate thermonuclear reac
tion rates.

REACTIONS IN THE WINGS OF RESONANCES

It often happens that it is impossible to measure a nonresonant cross section
over a sufficiently wide range of energies to allow extrapolation of S(E) experi
mentally to stellar energies. Such an unfortunate experimental situation could
occur, for instance, if the reaction in the laboratory were accompanied by a large
background of counts from undesired reactions that hopelessly contaminate
the reaction of interest. It still is often possible to calculate So from the knowl
edge that the reaction at stellar energies is proceeding by compound nuclear cap
ture into the wing of a known resonance at higher energies. For instance, it is
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an easy matter for a nuclear physicist to argue thatthe C12(p ,-y)N 13 reaction in
stars proceeds through the low-energy tail of the s-wave resonance at E = 424 kev
(see Fig. 4-5) even though the effective stellar energy Eo is only about 25 kev.
A look at the N13 energy-level diagram shown in Fig. 4-21 reveals no other reso
nance in N13 anywhere ne-ar the energy of C12 + p, 80 that the most likely Inuclear
structure jor the proton to be-captured into is the str~bture of the state at 424 kev.
The likelihood of this surmise is strengthened by-the added knowledge that
J» = t+ for the resonance, assuring that it is the' (2Si ) state which will have a
reasonably large 8p

2 for s-wave protons. Since the properties of the resonance
can be measured at the energy of the resonance itself, much better than at low
energy, these properties could be used to calculate a value of So even if it hap
pened that it was experimentally impossible to measure SeE) at low energies.

E,Mev

3.56
5+
'2

3.51 ~-
2

>
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> >-'<:
<ll <ll
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l!) Ol
rt? l').....

2.367 1 +
II II"2
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<l Rl

J
u[C 12(p, or)]

1.943
C 12 + p

Fig. 4-21 An energy-level
diagram of N13, which serves
as the compound nucleus for
the reaction C12(p',-y)N 13.
The measured cross section
for that reaction is displayed
vertically just to the right
of the discrete-level structure
of N13. The cross section is
dominated at low energy by
an a-wave resonance at E p =
460 kev. Also shown as a
hatched band is the range of
effective stellar energies near
Eo. At that energy the
bombarding protons are cap
tured into the wing of the
resonance at 460 kev.

o .1.
2

N13
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Fig. 4·22 A schematic representation of the major energy-dependent factors for a reaction, like
that in Fig. 4-21, which proceeds through the wing of a broad distant resonance. In such a
case the nonresonant-reaction formulation is used, and SeE) is calculable by Eq. (4-188).

(4-188)kev barns

The extrapolation would be accomplished with the use of the Breit-Wigner
single-level resonance formula, where for C12 (p ,'Y) N I3 we have r l = rp and
r 2 = roy. In this reaction, a characteristic one, T 2 = roy is a number independ
ent of bombarding energy, whereas r l = I'p is strongly dependent upon E through
the penetration factor. That is, r p varies markedly over the resonance, whereas
roy is constant. Another common type of reaction is a (p,a) reaction, for exam
ple, NI5(p,a)C12• In these cases the 'reaction is usually strongly exothermic, such
that r 2 = I'a is .also independent of relatively small changes of the energy of the
incident particle. The incident-particle width r l is once again a strong func
tion of energy via the penetration factors at the low incident energies of stellar
interiors.

The definition of the cross-section factor SeE) leads, with the aid of Eqs.
(4-185) to (4-187), to

'e ) - 657 wrl(E)r2 (Z Z A! -!
(E - A (E _ E

r
)2+ (r/2)2 exp 31.28 1 2 E )

The situation is illustrated in Fig. 4-22. The product of the Maxwell-Boltzmann
velocity distribution times the factor exp (-bE-!) common to all the incident
aarticle widths produces the usual maximum at the energy Eo in the a priori
lapability of causing reactions. The wing of a resonance occurring at quite a
lifferent energy than Eo can be extrapolated to the energy Eo by use of the
Breit-Wigner single-level formula. This extrapolation may be made using only
he properties of the resonance as measured in the immediate vicinity of the peak
n the cross section and can, therefore, be performed with reasonably good accu
acy even in those cases which are experimentally unfavorable to the laboratory
neasurement of the cross section at lower energy.
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Problem 4-50: Confirm Eq. (4-188) and show that when the expression for rtis used, it reduces to

So = 3.95 X 10
3~2 (2:~2 EcY (Eo _ E~~2+ (r/2)2

X exp [4 (h2/:;R2Y - (I + t)2 (h2/~R2Y] kev barns (4-189)

Problem 4-51: Calculate So for the C12(p,oy)N13 reaction from Eq. (4-189) using the value of
81

2 = 8p
2 computed in Prob. 4-44 and roy = 0.77 ev. Assume Eo = 24 kev for this calculation.

Compare this value of So with the measured one shown in Fig. 4-5. Although the percentage
difference between the two values of So is appreciable, only a small adjustment of the tempera
ture would be needed to produce equal reaction rates from these two values of So.

The calculation of the previous problem has indicated the manner in which So
can be calculated from the parameters of a resonance when there is confidence
that the reaction is occurring in the wing of the resonance. The curve through
the points of Fig. 4-5 is a theoretical one computed from an equation like (4-189)
with, however, one additional theoretical parameter that allows the points to be
fitted by a resonance curve.'

RESONANCES IN THE RANGE
OF STELLAR ENERGIES

In some cases the compound nucleus provides a resonance in the range of effective
stellar energies. Just what the range of stellar energies is, is somewhat hard to
define. It is clear that if the resonance is very far from Eo, the reaction must
proceed through the wings of the resonance, and the nonresonant-reaction-rate
formalism must be used. For resonances in the vicinity of Eo, on the other hand,
the full height of the resonant cross section must be employed.

Performing the following thought experiment will illustrate that a different
type of calculation is required for resonances in the vicinity of Eo. Imagine that
the resonance energy E, in Fig. 4-22 can be continuously lowered toward Eo.
What changes come about? The first thing that comes to mind is that the
value of So is increased as the two peaks come nearer. Although that conclusion
is correct, it is hardly the whole story. Equally important effects come about
as a result of the shrinkage of the incident-particle width I'i at the resonance
energy and the translation of the main peak of the resonance up the high-energy
tail of the Maxwell-Boltzmann energy distribution. A point is eventually
reached, thanks to the great size of resonant cross sections at their peak, where
the product of the area under the resonant cross section times the Maxwell
Boltzmann probability at E, exceeds the product of the cross section in the wing
of the resonances times the Maxwell-Boltzmann probability integrated over the
peak at Eo. At energies lower than this, more reactions occur into the main peak
of the resonance than occur near Eo. The total width of the resonance is usually
very small for resonances near Eo. Suppose, for example (as is common), that

1 See D. F. Hebbard and J. L. Vogl, Nucl. Phys., 21 :652 (1960).
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the reaction is a (p,y) reaction and that the low-energy resonance can only break
up into two channels I'i = I'p and"r 2 = I''Y' Then the total width of the reso
nance would be r = r p + I''Y' Gamma widths are usually on the order of elec
tron volts, which are, therefore, usually small compared to particle widths if the
breakup energy of the state is not extremely low. At very low energies, however,
the penetration factors reduce I'p markedly, until it becomes much smaller than
the already narrow gamma width. This type of situation often occurs, and its
end result is that the resonance at low energy is very narrow. [This statement
is invalid if other exothermic particle channels are open, such as (p,a) reactions,
for instance.] Thus the resonance becomes a narrow spike which interacts
strongly with particles only in a narrow "window of the Maxwell-Boltzmann
distribution.

Problem 4·52: Suppose there had been a resonance with JT = j- in e l2 + p at E; = 50 kev
with a dimensionless reduced width 8p

2 = 0.2. What would be the value of the proton width
r p at the resonance? It is clear that the total width of such a state would be given by r'Y'

To see how the correct calculation should be made, it is helpful to return to
the initial expression for the reaction rate,

where the maxwellian energy distribution is

2 E (E) dE
!feE) dE = Y; kT exp - kT (kTE)~

(4-190)

(4-191)

The circumstance that makes the integral easy to perform is" the narrow-width I'
of the low-energy resonances. Since I' will, in most cases, be about 1 ev, and
since t/t(E) and vee) change only minutely over an energy range corresponding to
I', the values of t/t(E) and vee) in the integral may be replaced by their values at
resonance:

(4-192)

The value of Iu(E) dE is easy to compute if we once more assume that because of
the narrowness of the resonance, 7i. 2 and r 1 may be replaced by their values at Er •

Problem 4·53: Show that with the assumptions of the previous paragraph

(4-193)

Notice that the area under the cross-section curve is (... j2)r times the peak value of the cross
section. The factor f again represents an enhancement due to the collective effects of the
dense electron gas in stars and will be discussed shortly.
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Pulling the factors together gives

353

(4-194)

(4-195)

(4-196)

where in the last two of these equations, the widths I' are in units of kev, as is E r ,

and the temperature T 6 is measured in millions of degrees Kelvin.

Problem 4-54: Show that the resonant reaction rate varies with temperature as t», where

11.61Er 3
n=-----

T 6 2

Problem 4-55: Return to Prob. 4-52, where it was imagined that there is a j- resonance in
the 0 12 + P system at E; = 50 kev having a diniensionless reduced width IJp2 = 0.2. .Assume
further that at that resonance, r1' = 1 ev. Under these circumstances, what would be the
lifetime of a 0 12 nucleus against proton capture in a stellar interior containing 80 percent H by
weight, 'having a density of 15 glcma, and with a temperature of 30 X 106OK? It was found
in an earlier problem in this chapter that under the same conditions the lifetime of 0 12 is about
160 years for the nonresonant conditions that actually correspond to. the experimental facts
for 0 12 + p. What this present problem demonstrates is how the effect of resonances can be
handled if IJ12 can be determined and that lifetimes may be vastly shortened by resonances
occurring near Eo. (For this problem again set f == 1.)

From the previous problem it will be clear that in those light-element reac
tions of importance to stellar evolution one must locate all resonances near the
range of effective stellar energies. This Investigation must often be performed
with the aid of a reaction different from the one of interest in stars. An .example
can be seen in the energy-level diagram of N14 shown in Fig. 4-23, which can
conveniently be discussed within thehistorical context. The nucleus N14 serves
as the compound nucleus for the reaction CI3(p,')')NI4, which participates in the
CN cycle of hydrogen burning. The cross section for the reaction could be meas
ured in the laboratory to energies slightly below 100 kev, yielding nonresonant
behavior quite similar to that shown in Fig. 4-5. The corresponding SeE) could
be extrapolated downward to Eo to obtain the nonresonant reaction rate, but
that rate would be quite inappropriate if there existed a resonance in NI4 between
the mass of CI3 + p and the first 90 kev of laboratory proton energy. That
region of N14 was not explorable by CI3 + p directly because of the small cross
section at such low bombarding energy, and so it had to be explored by other
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Fig. 4-23 Energy-level diagram of N14, which serves as the compound nucleus for the reaction
C13(p ,I')N 14. It was necessary to perform the reaction N15(He 3,a)N14 to see whether the
N14 nucleus possessed undetected states near the mass of Cl3 + P which would provide
resonances near the effective stellar energy for the reaction Cl3(p,-y)N14. The existence of
such states haderroneously been suggested by inelastic-scattering experiments and by the
reaction C13 (d,n) N14, as shown on the left. Such laboratory experiments are an essential
part of the calculation of thermonuclear reaction rates. [D. D. Clayton, Phue. Reu., 128 :2254
(1962).]

reactions. The inelastic scattering of protons from CI3 had indicated' the exist
ence of N14 states at 7.40 and 7.60 Mev of excitation, the latter falling directly
in the region of interest. To check for the existence of those states with higher
accuracy, the experiment N15(He3,He4)Nl4 was performed. It found no evidence
of those states, whereupon the inelastic proton scattering was repeated with
greater precision and was found also not to have truly indicated such states.
With this assurance, the nonresonant treatment of Sec. 4-3 could be safely
applied. This parable of nuclear astrophysics illustrates the close tie of the
nuclear laboratory to the astrophysical theory.

One can easily see that Eqs. (4-194) to (4-196) have two limiting cases of con
siderable interest. The different cases correspond to the possibilities for the
ratio r1rdr, which is common to the three expressions. The most frequent
situation is that of having only two possible channels of decay for the resonance,
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that is, r = r 1 + r 2• Then the two limiting cases are:

(i) r..» r 1: r~2~ r.

(ii) r..» r 2: r~2 ----') r,

In case (i) the reaction rate is independent of r 2• The physical reason for this
fact is clear. Eachtime the state is formed, a reaction occurs, since I's (the reac
tion channel) is much greater than I'i (the scattering channel). Thus the reac
tion rate depends only on the rate for forming the resonant state. That rate is
proportional to r 1. Inserting the value of r 1 from (4-163) into Eq. (4-195) shows
that for the case (i) limit:

(i) r..» r 1 :

1'10 = 2.70 X 1O-7N
1No(Z~~oY ;2 08T6- ! exp ( - WI - 11.61 ::) (4-197)

1'10 = 9.80 X 1040p2 ~:;: (Zf;°Y ;2 01 2j T 6- ! exp ( - WI - 11.61 ~:) (4-198)

The applications of these formulas for the reaction rate are usually found with
resonances in the lowest energy range where penetration factors reduce the
incident-particle width to a value much below the natural width of the state.
This situation is the usual one.

Case (ii), on the other hand, is valid only for resonances of energy sufficiently
high for the incident-particle width still to dominate the natural width of the
state; i.e., the state predominantly decays by the reemission of the incident
particle.. For this limit, we have:

(ii) r..» r 2 :

1'10 = 8.10 X 10-12 NINo (~~62)! exp (-11.61 ~:) (4-199)

- 294 X 1036 2 X 1XO jwr2 (11 61 Er) (4-200)
1'10 - . p A

1A o (AT
6
P exp - . T

6

An observation of significance for the limit of case (ii) can be established by
forgoing the numerical expressions and returning to Eq. (4-194), simultaneously
introducing r 2 = li/T2' Then

(;;) 1 N N h
3

•.r Er )
"" 1'10 =:;:; 1 0 (27f'p,kT)! WJ exp - kT (4-201

Now let Nio be the number density oj excited nuclei existing in the resonant state
oj particles 1 and O. It then follows that the number of reactions per cubic centi
meter per second must also be given by the formula

Nio
1'10 =

T2
(4-202)



356 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

Equations (4-201) and (4-202) can both be correct only if

N * NN ,-I' h
3 s, (4203)

10 = 1 0 WJ (27rp.kT)! exp - kT -

Equation (4-203) is reminiscent of the Saha ionization equation. If we view
N'to as a bound state of 1 and 0, then the binding energy is negative: x- = -Er •

The laboratory value of En valid at low density, needs modification for electron
screening. The coulomb interactions in the gas change the effective energy of
the excited state to E; + Us, where Uois the interaction energy (negative) of the
two shielding charge clouds, and so the binding energy (negative) at high density
is x- = - (Er + Uo). Since, as we will show in the next section, the electron
shielding factor is f = exp (- Uo/kT), the two exponentials can be combined.
By further introducing the explicit expression for the statistical factor w, Eq.
(4-203) can be reshuffled to read

NINo (281 + 1)(280 + 1) (27rp.kT)! x- (4-204)
Nfo = 2811i + 1 h3 exp - kT

which is exactly Saha's equation, written in this case for a completely different
process than the ionization of an atom. Naturally, the physical nature of the
binding force nowhere appeared in the considerations leading to Saha's equation,
which is statistical in its content. It is really not surprising, then, that in this
case (ii) an equation of the same type is obtained. The condition I'2 « I'1 ensures
that the decay of the compound state into the reaction channel occurs so seldom
that the process of formation and dissolution of »: into 1 and 0 is essentially
uninfluenced by the possibility of the reaction. Viewed this way, it is clear that
the population of the resonant state should be determined by statistical factors
alone.

Problem 4-56: The ground state of Be8 with spin and parity J1r = 0+ is unstable by 94 kev
against breakup into two alpha particles. In a stellar interior composed entirely of helium at
a density of 105 g/cm! and a temperature of 108 OK, what is the number of Be8 nuclei per cubic
centimeter? (Ignore the coulomb interactions of the gas.)

The previous problem is an example of the fact that some reaction rates of
interest in stars can be computed from applications of statistical mechanics. One
need only ascertain that the conditions are suitable for equilibrium. It should be
clear that an equilibrium 'calculation is entirely inappropriate to case (i) because
a reaction occurs every time the resonance is formed. Under such conditions
there can clearly be no equilibrium between' absorption and reemission. But
whenever equilibrium does apply, it can be very useful. The most important
application of this technique is to the reaction 3He4~ C12, where the small equi
librium concentration of BeS nuclei serves as a target for the capture of the third
alpha particle. A generalization from two particles to many particles provides
the calculational tool for nuclear statistical equilibrium, which will be discussed
in Chap. 7.
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(4-205)

(4-206)

Finally, it should be mentioned that in the medium and heavy nuclei the den
sity of resonances becomes large, and all reactions are resonant. Many reso
nances contribute to the thermal reaction cross section. In analogy with Eq.
(4-194) for a single resonance we have

( ) _ (27f'h2)t\' (wrlr2) _Er

au - p.kT 1.. hr r exp kT
r

where the sum over r designates a sum over the resonances in the compound
nucleus. In some cases the properties of the contributing resonances can be
measured in the laboratory. In other cases one can determine only the density
of resonances, in which case one often expresses the average cross section in
terms of the level density of compound nuclear states. The student may find
such treatments in the literature.'

4·8 ELECTRON SHIELDING

Thermonuclear reaction rates in stars are increased over their laboratory analogs
because of the presence of the dense electron gas. The1fJt negative charge sur
rounding each nucleus reduces.the coulomb repulsion to a value smaller than
ZlZ2e2/r. This reductionmake~ the penetration of the coulomb barrier easier,
which in turn increases the cross section in comparison with the cross section
between bare nuclei having the same relative velocity at infinity. In-she-previ
ousJllaterial,_the-el'oss-section-was-evaluated-as-if-there-were-a;-pw:e-cuulomb···law
Iietween.ZI··andZ 2' The-present-section~discusses·briefl.ythis·modification-oHhe

reaetien-rates;" ",.>_;7""

Each nucleus, e';terltholrih completely ionized, attracts neighboring electrons
somewhat. The subject of. the ionized real gas was introduced in Sec. 2-3.

• • V'-' /""~'-1.£ Or t t2.... •
There will exist, on the average, some sphere around each nucleus Z which con-
tains :~ilbligb.'negativ~.ch¥ge to neutralize the cloud. This sphere should not
be tli~1igii:t'i>f as 't'6~tairiillg' just Z free electrons, for it will usually contain other
positive nuclei with sufficient electrons to neutralize them as well (the Debye
Hiickel ion sphere). Only if the average coulomb energy between neighboring
particles is greater than kT (usually not the case) will the cloud tend to reduce to
Z free electrons. When two nuclei Zl and Z2 approach each other, the shielding
charge density introduces a perturbing potential on the coulomb one. We write
the total coulomb interaction energy as

Z lZ2e2 )Utot(rl2) = -- + U(rl2
rl2

where U(rl2) obviously represents the added interaction due to shielding.
The shielding cloud must be "at leaSt as large as the average interparticle dis-

1 Particularly recommended to students who have mastered the principles of this chapter is
W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. Ser., 9 :201 (1965), app. C.

2 The discussion is based upon a paper by E. E. SaIpeter, Australian J. Plvus., 7:373 (1954).



358 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

tance and perhaps much larger, and U(1'12) will change by large amounts only
over distances on the order of the radius of the shielding cloud. Equation (4-146),
on the other hand, shows explicitly that the penetration factors depend upon the
integral of (U tot - E)! between the classical turning point Ro and the nuclear
radius R. Since reactions are most favored for the energy Eo, a characteristic
classical turning radius is of the order

R o "'" Z lZ2e
2

(4-207)
Eo

Problem 4-57: Calculate R o for the C12(p,I')N13 reaction at T. = 30 and compare to average
interparticle distances near p = 50.

This turning radius is usually much less than the radii of the shielding clouds.
Thus the shielding interaction U(rd must be essentially constant over the rele
vant range of interparticle distances for which both particles are near the center
of the shielding clouds. To good approximation U(r12) in the penetration factor
can be replaced by Uo, the shielding potential at the origin. The potentials are
shown schematically in Fig. 4-24.

E

Shielding potential

Fig. 4-24 The effective radial potential VI modified by the screening potential. The polariza
tion of the electron-ion plasma results in a small attractive potential, which is here drawn
beneath the E = 0 axis. This small negative potential has the effect of reducing VI and
thereby increasing the penetrability of the barrier.
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The reaction-rate integral is

r12 = N IN 2 fa'" if;(E)v(E)u(E) dE (4-208)

where if;(E) is the probability that the center-of-mass kinetic energy at large
separation is E. The cross section u(E) can be written as the product of a pene
tration factor P(E) times a nuclear factor unuc(E):

u(E) = P(E)unuc(E)

The s-wave penetration factor is, for instance,

(4-209)

(4-210)

The potential U« has the effect of making the penetration factor in a star for
energy E equal to the laboratory penetration factor for the energy E - Us.
Since U« is negative, the appropriate penetration factor is that for a slightly
increased energy. By the same token, the nuclear part of the cross section is
that for the energy E - U«, since the potential U(r12) has effectively increased
the kinetic energy by the magnitude of U« Thus the corrected form of Eq.
(4-208) is

r12 = N 1N2 fa'" if;(E)v(E)P(E - UO)unuc(E - U o) dE (4-211)

r12 cc fa'" E'e-EfkTP(E - UO)unuc(E - U o) dE (4-212)

The simplest way of relating this result to the reaction rate computed without con
sideration of electron screening is to define a new energy variable E' = E - Uo.
Then

r12 cc f-"'uo (E' + Uo)8'e- (EI+Uo>'kTP(E')unuc(E') dE' (4-213)

In practice, it turns out that - U0 is small compared to the most effective energy
Eo (but not necessarily small compared to kT). Thus (E' + Uo)' ~ (E')t-. The
penetration factor, furthermore, is so small for E' = - U« that the lower limit of
the integral can be extended to zero without changing the value of the integral
significantly. It follows that the corrected reaction rate is approximately

r12 ~ e-u•fkTN 1N 2 fa'" if;(E)v(E)u(E) dE (4-214)

so that electron shielding has increased the rate by the factor

f = e-U.'kT (4-215)

Such a simple form results from the fact that the shielding potential increases
the energy at small distances relative to that at large separations by the amount
- Uo. This energy enters the rate exponentially because the particles involved
are onthe high-energy tail of the maxwellian distribution. Thus the calculation



360 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

of the effect of electron screening on thermonuclear reaction rates is reduced to
the computation of Ue, the value of the shielding interaction energy at the origin.

Most thermonuclear reactions in stars occur at sufficiently high temperature
and sufficiently low density for kT greatly to exceed the average coulomb energy
between adjacent ions. In that case the Debye-Huckel treatment gives a fair
representation of the potential around each ion. From Eq. (2-232) the potential
around the ion Z1 is

eZl r
Vl ""-exp--

r RD

where the Debye radius is

(4-216)

(4-217)

(4-218)

and

t = \' (Z2 + Z)Xz
~ Az

If one of the ions Z 2 of this ion sphere passes very close to Z 1, the interaction is

eZ2VI "" Z1Z2e2
_ Z lZ2e

2 + . . . (4-219)
r RD

By analogy to Eq. (4-206) we have in this limit

u, Z lZ2e2/RD

- kT = kT

and

- f; = 0.188Z1Z2pitiTe-J

(4-220)

(4-221)

This result carr be accurate only if - Uo/kT is considerably smaller than unity,
inasmuch as the Debye-Huckel treatment fails otherwise. As a result, the
enhancement of the reaction rate in this case is also approximately expressible as

f = 1 _ Uo + ...
kT

This limit has come to be called weak screeninq, following Salpeter, who discussed
its conditions of applicability and the effect of electron degeneracy on the result.
The weak-screening formula is the one applicable to the majority of the thermo
nuclear reactions encountered in astrophysics.

The most difficult region for screening calculations is that in which the coulomb
energy of neighboring ions is roughly comparable to kT. At even higher density,
where the coulomb energy dominates, the situation again simplifies. In that
case, the large coulomb repulsive energy squeezes all other positive ions out of
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the ion sphere, leaving only a sphere of electrons of sufficient size to neutralize
the charge of the ion. The energetics of such ion spheres was estimated in the
discussion of the zero-temperature ionized gas in Chap. 2. The total electro
static energy of an ion sphere is given by Eq. (2-262),

U = -~ (Ze)2 (4-222)
10 Rz

where

ev

Rz = (.-! Z)!
41r n e

Problem 4·58: Show that in this limit we have

-U = 17.6ZR(.!!-)!
. P.e

(4-223)

(4-224)

(4-226)

Equation (4-224) gives the electrostatic energy of each ion when they are sepa
rated. Since the penetration enhancement is determined by the difference in
potential energies at the origin and at large distances, we have

- U» = 17.6 (:eY [(ZI + Z2)R - ZIg - Z2R] ev (4-225)

or

U« ' (p)!- - = 0.205 [(ZI + Z2)R - Z I8 - Z28] - Ta-l
kT ~

It turns out that this result, commonly called strong screening, does not have
great significance for astrophysics, because it is applicable only at very high den
sity, where its value exceeds unity. At ultrahigh density reactions proceed even
at zero temperature, and a more careful evaluation of the inter-ion potential is
necessary. I We close the discussion by repeating that Eq. (4-221) has been the
one used in most studies of nuclear reactions during stellar evolution.

Problem 4·59: By what factor does electron screening enhance the rate of the C'2(p,'Y) reaction
in a hydrogen gas at p = 15, T s = 30?

Problem 4·60: Convince yourself that for the case (ii) resonant reactions that can be treated
by statistical mechanics (I'i » r2) the enhancement due to interactions with electrons is identi
cal with that obtained by the argument presented in this section. This may seem surprising
at first, because the penetration factor in the incident channel never enters the discussion if
r l » r 2, so that the treatment of this section is not relevant for such reactions. For this case
the name electron shielding is particularly inappropriate. The reason for modification of the
rates is that the polarizability of the plasma changes the energetics of,the reaction. By what
factor is the density of Be8 nuclei increased in a helium gas at p = 105 and T = 108?

1 R. A. Wolf, Phys. Rev., 137 :B1634 (1965); another thorough analysis has been made by H. Van
Horn, Ph.D. thesis, Cornell University, Ithaca, N.Y., 1965.



chapter 5
BURNING

EVOLUTION
MAJOR NUCLEAR

STAGES IN STELLAR

Stars are formed from interstellar gas by a gravitational instability of that gas.
Whenever a sufficiently large mass of gas is compressed to a small enough vol
ume, its force of self-gravitation becomes sufficiently great to cause gravitational
collapse. Because the acceleration of gravity at the edge of a givengas cloud is
inversely proportional to the square of the radius of the cloud, the collapse will be
accelerated by the decreasing size of the cloud. For a short time after the onset
of the instability, the cloud may be nearly in a condition of free fall. Eventually
pressure forces begin to restrict the collapse. The directed motion of free fall is
converted into random thermal energy in the gas, and its temperature begins to
rise. By the virial theorem, discussed in Chap. 2, it can be concluded that when
the acceleration of the moment of inertia has become small, one-half of the gravi
tational energy must have been converted to internal thermal energy. The com
bination of increasing temperature and increasing density causes the pressure to
rise so rapidly that the collapse is decelerated to a slow quasistatic one. As the
collapse slows down, the virial theorem becomes quite accurate and, in fact, is
the dominant principle governing the subsequent evolution of the star. Half of
each increment in the magnitude of the gravitational energy is converted to
kinetic energyof the particles, and half is consumed in the production of radi
ation. Although the radiation escapes at first, the stellar matter becomes opaque
as its collapse is decelerated by the pressure buildup. The situation of thermo
dynamic equilibrium is then established for the first time, the internal radiation
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(5-1)

field being describable by a local temperature equal to the kinetic temperature
of the gas. Much of the radiation still escapes. A great deal of it is consumed
in ionizing the constituent matter, which was probably initially neutral. Because
about 90 percent of the atoms are hydrogen, the interior temperature cannot rise
above 104 "K until hydrogen has been ionized. Hydrostatic equilibrium can be
established when the hydrogen and helium in the bulk of the interior have been
ionized. In the case of the sun, insufficient gravitational energy had been released
for this purpose until the radius had shrunk to about 60 times the present radius
of the sun, or about one-fourth the distance from the sun to the orbit of the
earth. Once hydrostatic equilibrium has been established, the subsequent slow
contraction to the main sequence can be calculated with reasonable confidence.

It was shown by Hayashi that a star cannot achieve hydrostatic equilibrium
if its surface is too cool. It follows that stars contracting toward the main
sequence have very large luminosity as a consequence of the required high sur
face temperature and the large radius. The combination of the large luminosity
and large opacity during the contraction phase demands that the star be con
vective to get the energy out fast enough. What Hayashi showed is that a star
contracts along a nearly vertical path in the H-R diagram until reaching the
vicinity of the main sequence. Figure 5-1 shows such a contraction path calcu
lated for the sun and also the time required for the star to reach each point on
the track. The early contraction is seen to be rapid and very luminous. The
energy source for this luminosity is entirely due to the gravitational work of the
contraction. As the star approaches its final luminosity on the main sequence,
the evolution becomes slow. The star is fully convective for a few million years,
after which time a central core in radiative equilibrium begins to grow. That
radiative core slowly moves outward in the star until it achieves its final main
sequence size. Correspondingly, the subsurface convection zone shrinks to its
final main-sequence size. During the entirety of this process the central tem
perature has been increasing. And there is the main point. The temperature
rises until it becomes sufficient to cause thermonuclear reactions to occur at a
rate adequate to supply the power radiated from the surface. When that bal
ance is achieved, the stellar configuration becomes almost perfectly static. It
would be perfectly static were it not for the fact that the thermonuclear reac
tions cause a very slow change in the composition of the interior gas. The task
of the present chapter is to outline the major static burning phases encountered
in stellar evolution.

Which nuclear reactions are of importance in any particular environment
depends in an obvious way upon the composition of the gas. The results of the
last chapter have indicated the ways in which reaction rates depend upon the
properties of the particles and the temperature. Most energy-generating reac
tions involving light particles are nonresonant, in which case Eqs. (4-56) to (4-58)
indicate that.the reaction rate contains, among other things, the factors

\/~ .

T12 cr::(ir.~\XNN~)exp [ -42.48 (
Z12;:2AYJ \ .J~ -Z (~ ~-J :;

VI l \
/
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Fig. 5-1 The path on the H-R diagram of the contraction of the sun to
the main sequence. The interior has become sufficiently hot to burn
deuterium after about 105 years. The contraction ceases near the main
sequence when the core has become hot enough to replenish the solar
luminosity with the thermonuclear power generated by the fusion of
hydrogen into helium. [After D. Ezer and A. G. W. Cameron, The Con
traction Phase of Stellar Evolution, in R. F. Stein and A. G. W. Cameron
(eds.), "Stellar Evolution," Plenum Press, New York, 1966.]
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(5-2)

It is clear that as the temperature rises during gravitational contraction, the
rates increase rapidly. Because the exponent is large, however, the major reac
tion tends to be that one for which the product Z lZ2 is as small as possible. In
the vast majority of stars the initial abundances are dominated by hydrogen and
helium, so that one is led to search for reactions involving these nuclei. His
torically a major impasse was connected with the fact that all the major two
particle combinations have unstable ground states:

p + p --7 Re2 (unstable) --7 p + p

p + Re4 --7 Lis (unstable) --7 p + Re4

Re4 + Re4 --7 Be8 (unstable) --7 Re4 + Re4

That is, the nuclear force produces no two-particle exothermic reactions in a gas of
protons and alpha particles. Thusone is led to look either for more peculiar reac
tions between those particles or for reactions with rarer constituents of the gas.

The primary candidates would seem to be the minor isotopes of hydrogen and
helium. The first thermonuclear reaction to proceed at a significantly rapid rate
occurs between the two isotopes of hydrogen:

(5-3)

This reaction converts deuterium to Re 3 during the pre-main-sequence con
traction of the star; but there is probably so little deuterium that it is quickly
exhausted, and its only effect on the star is to slow the contraction somewhat
during the phase marked "deuterium burning" in Fig. 5-1. It is worth noting,
however, that this phase may have provided an important source of Re3 in the
early sun if D2 was initially more abundant than Re3• The Re3 made in this
way may survive to this day in the outer layers of the sun.

Similar results apply to the elements Li, Be, and B, which are destroyed effec
tively by reactions with protons at temperatures of a few million degrees. It is
a matter of current interest to see how much of these elements can survive the
deep surface convection zones of the contraction phase, but again one finds that
their abundances are so small that they are quickly consumed in the interior,
with only a small brief effect on the evolution of the star.

The most important reactions needed are those capable of converting hydro
gen into helium. The two major ways by which this can be accomplished are
the so-called proton-proton. chains and the eNG cycle. From the table of atomic
mass excess it is evident that whatever reactions result in the conversion of four
hydrogen atoms into an Re4 atom liberate 26.731 Mev of energy. The sequence
of reactions must also change two protons into two neutrons, however, so that
each alpha particle created in the sun must be accompanied by the emission of
two neutrinos. Thus the internal heat energy liberated per alpha particle fused
from protons is 26.731 Mev minus the average kinetic energy of the two neu
trinos. The amount of energy carried away by the two neutrinos will depend
upon the detailed sequence of reactions by which the alpha particle is assembled.
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Problem 5-1: Assuming that-the energy for the sun's luminosity is provided by the conversion
of 4H -> He 4 and that the neutrinos carry off only about 3 percent of the energy liberated, how
many neutrinos are liberated each second from the sun? What is the neutrino flux at the earth
from the sun?
Ans: 9.4 X 1031 v/sec; 6.6 X 1010 v cm-2 sec:".

5-1 THE PROTON-PROTON REACTION

It was Hans Bethel who first realized that the weak nuclear interaction was
capable of converting a proton into a neutron during the brief encounter of a
scattering event. Since the neutron is more massive than a hydrogen atom, such
a decay would require energy (be endothermic) except for the fact that the neu
tron can appear in a state bound to the proton in the form of the deuterium
nucleus. The binding energy of the deuteron is sufficient (2.2245 Mev) to make
the reaction exothermic.

Problem 5-2: Show that the reaction

HI + HI -> D2 + {3+ + v (5-4)

liberates 0.420 Mev of kinetic energy to the positron and neutrino. The subsequent annihila
tion of the positron and an electron brings the total energy release to 1.442 Mev.

The beta decays that proceed at the greatest rate are the so-called allowed
decays, in which the two leptons (e, ji or e, II) are emitted without orbital angular
momentum. The leptons mayor may not carry off spin angular momentum in
allowed decays, depending upon whether the electron spin (e, = t) and the neu
trino spin (s, = t) add vectorially to zero or to unity. IfSe + s, = 0, the allowed
decays are called Fermi transitions, for which the nuclear spin cannot change. If
s, + s, = 1, the allowed decays are called Gamoui-Teller transitions, for which the
nuclear spin must change by one vector unit.

The allowed decays do not change the orbital angular momenta of nucleons in
nuclei, and they do not change the spatial arrangement of nucleons. One of the
nucleons in the composite wave function changes from proton to neutron (or
vice versa), and in the Gamow-Teller case flips its spin, but the spatial wave
function remains the same, and to the extent that the initial and final wave func
tions are dissimilar the transition is suppressed. The quantum statement of this
requirement is that the rate be proportional to the square of an overlap integral
over all nucleon coordinates,

(5-5)

which quantitatively measures the degree to which the final nucleon wave func
tion iflr is similar to the initial wave function ifli. There are several examples of
beta decay in nuclear physics wherein the initial and final wave functions are

1 Phys. Rev., 66 :103, 434 (1939).
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believed to be nearly identical; i.e., the overlap integral is unity. The best known
of these are the decays

which is used to determine the Gamow-Teller coupling constant, and

014(Jr = ()+) -7 N14*(Jr = 0+) + (3+ + p

which is used to determine the Fermi coupling constant. 1 These decays are
called superalloued because not only are they allowed decays, but the overlap
integral is essentially unity.

The beta-decay rates are also proportional to the volume of phase space into
which the leptons can be emitted. The combined momentum space into which
the leptons can be emitted is given by

(5-6)

subject to the restriction that the combined energy equal the energy release in
the decay, viz.,

Ep +E. = W (5-7)

When this restriction is imposed on the differential momentum-space volume,
and when the result is integrated over all possible ways in which the pair can
share the energy, the rate becomes proportional to a function called f(W), which
measures the phase-space volume into which the decay products can gO.2 It
turns out that the rate of the proton-proton beta decay can be factored into

(5-8)

(5-9)

where g = (6.9 ± 0.3) X 10-4 sec-1 is the appropriate beta-decay coupling con
stant, IMs p I2 is a spin matrix element that includes the sum over the possible
projections of the involved spin states, and the momentum-space volume feW) is

(
W4 3W2 2)feW) = (W2 - I)! - - - - - + +W log [W + (W2 - I)!]
30 20 15 '"

where W is the total decay energy (including the electron rest mass) in units of
mec

2, that is, the kinetic energy released is (W - I)mec
2. This factor contains

the empirical rule of thumb A a: W5 observed for decays having W » 1.
The reaction p + p -7 d + (3+ + v is a rather special kind of positron decay

because the initial wave function is that for the scattering of protons. Since the

1 See, for instance, R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger, Phys. Rev.,
127 :583 (1962).

2 It would be somewhat out of place to develop the theory of beta decay in this book. Qualified
readers will find a thorough discussion in M. A. Preston, "Physics of the Nucleus," chap. 15,
Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962.
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(5-10)

final wave function is contained in the volume' of the deuterium nucleus, the
overlap integral f J/!;J/!pp dV will be a small number. Only those parts of the
initial scattering wave at small separation can contribute to the overlap integral.
As the deuteron is a surprisingly large nucleus (because it is weakly bound), very
small separations in the scattering wave are not required, and the largest contri
bution to the overlap integral comes from the tail of the deuteron wave function
that extends outside the potential well. Although there is some difficulty in
defining an interaction radius for this reaction, it is nonetheless clear that the
rate must contain the penetration factor for two charge-1 particles. Salpeter!
has discussed the uncertainties in the reaction rate introduced by the uncertain
ties in the deuteron wave function.

The ground state of the deuteron is predominantly describable as "a bound
s state (zero orbital angular momentum) of the neutron and proton with the
nucleon spins aligned to give a total J = 1 to the nucleus. Since the allowed
beta decays do not alter orbital angular momentum, the protons must scatter in
an s-wave (l = 0) state for the decay to occur. From the symmetry principles
of identical fermions, the proton spins must be antiparallel (S = 0) before the
decay. The decay must therefore be of the Gamow-Teller type, which flips the
spin of one of the protons as it changes to a neutron in the deuterium (S = 1)
ground state. These observations allow unambiguous evaluation of the spin
matrix element in Eq. (5-8).

The inclusion" of the factor feW) produces little complication. The kinetic
energy released (0.420 Mev) is so much greater than the kinetic energies of the
protons before the collision that feW) is nearly constant. The major tempera
ture dependence is in the penetration factor. Suffice it to say that all these
factors can be pulled together and evaluated "with considerable confidence in the
calculation of the stellar reaction rate. The resulting cross section is about
10-47 em- at 1 Mev of laboratory energy, which is much too small for detection.
A thick hydrogen target would have to be bombarded for 10 years with 1 amp of
I-Mev protons to obtain one reaction! But the theoretical understanding of this
process is so good that the cross section can be computed with great confidence.
It is in fact the weakness of the beta-decay interaction that allows stars as we
know them to exist at all. Because of the low coulomb barrier in the p-p reac
tion, a star would consume its hydrogen quickly if it were not slowed down by
the weakness of the beta interaction.

To preserve the similarity to the other thermonuclear reaction-rate formulas,
the resulting cross section is usually expressed in terms of its cross-section factor
SeE). It suffices to give S(O) and dS/dE, the values of which are

S(O) = 3.78 ± 0.15 X 10-22 kev barn

dS
dE = 4.2 X 10-24 barn

1 E. E. Salpeter, Phys. Reu., 88:547 (1952). See also E. Frieman and L. Motz, Phys. Rev.,
83:202 (1951), and J. N. Bahcall and R. M. May, Asirophsjs. J., 152 (April, 1968).
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Problem 5·3: Show that the thermonuclear rate of the POp reaction (without the electron
screening correction) is

Tp p = 3.09 X 1O-37n/ T 6- 1 exp (-33.81T 6- ' )

X (1 + 0.0123T6' + 0.0109T 61 + 0.00095T6 ) cm-3 sec"! (5-11)

The factor 3.09 X 10-37n/ can be replaced by the factor 11.05 X1010p 2X H 2.

Problem 5-4: Calculate the lifetime of protons against the pop reaction at a temperature
T = 15 X 106 OK, density p = 100 g/cm", and composition X H • = Xli = 0.5. This partial
lifetime is defined as the quantity which satisfies

Ans: About 1010 years.

Not all the 1.442 Mev released by this reaction is converted into local heat.
The neutrinos carry away some kinetic energy (nominally about one-half of the
kinetic energy of the leptons). It takes a detailed calculation of the lepton spec
trum to determine the average energy of the neutrinos. The result of such a
calculation is that E~ = 0.262 Mev. The average heat input from each reaction
is then equal to 1.442 - 0.262 = 1.180 Mev,

5·2 PPI CHAIN

The conversion of hydrogeninto helium involves a chain of reactions which have
that conversion as their net product. The determination of the actual chain
requires the calculation of the rates of all possible reactions between all the
pairs of particles present. Experience shows, however, that such complexity is
unnecessary in practice. Many reactions proceed at a negligible rate, either
because the cross section is too small or because the product of the abundances
of the interacting species is too small. As an example, after the deuterium has
been formed, one could imagine that He 4 might be produced by the reaction
D + D ---+ He 4 + 'Y. .This reaction, however, suffers from a small cross section
and, more importantly, from the fact that the deuterium abundance is kept very
small by its interaction with protons. By that type of analysis one can pick out
the reactions responsible for the conversion. The simplest chain is the only one
that OCC"!1rs in a pure hydrogen gas, and is called PPI. The reactions and their
respective rates are

Reaction

Hl + H! ---+ D2 + {3+ + v

Rate
H2

1'pp = APP2

1'pd = ApdHD

(He 3) 2
r33 ~ A33 --2-

(5-12)
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where the number densities are designated by the chemical symbols in the rate
equations. That these are the major reactions comes about because the reac
tions between H + He 3

, D + D, and D + He 3 all proceed at a negligible rate,
the major reasons being that Li4 is unstable and that D can build up only to a
very small abundance. A rather complete discussion of all the possibilities can
be found in a paper by Parker et al.!

Once the relevant reactions are restricted to those of PPI, the differential
equations for the abundances can be written. The deuterium abundance is
given by

(5-13)

If the deuterium abundance is very small, dD/dt is positive, and the D abund
ance builds up until the right-hand side of Eq. (5-13) vanishes; alternatively, if
D is initially large, dD/dt is initially negative, and the D abundance decays until
the right-hand side vanishes. Equation (5-13) is self-regulating in the sense that
the D abundance seeks an equilibrium value, (D/H).:

(5-14)

The deuterium burning reaction is so fast that the lifetime of deuterium inside a
star may be on the order of seconds. The cross-section factor is characterized by

S(O) = 2.5 X 10-4 kev barn and
dS

.dE = 7.9 X 10-6 barn

The form of this reaction is similar to that of the p-p reaction. The much greater
cross section occurs because the transition-causing interaction is electromagnetic
rather than weak.

Problem 5-5: Compute the equilibrium ratio (Dill). for T = 15 X 10· "K. This ratio is
actually not very dependent upon the temperature, as shown in Fig. 5-2.
Ans: (Dill). = 2.8 X 10-18•

Because the deuterium lifetime is so short, it takes very little time for D to
reach its equilibrium value at high temperature. In fact, Eq. (5-13) can to excel
lent approximation be solved with the assumption that H is constant. This
assumption is justifiable on the grounds that D achieves equilibrium in a time
so short that the H abundance cannot change.

1 P. D. Parker, J. N. Bahcall, and W. A. Fowler, Astrophys. J., 139 :602 (1964). The nuclear
data on thermonuclear reaction rates have been thoroughly reviewed by W. A. Fowler, G. R.
Caughlan, and B. A. Zimmerman, Ann. Rev. Astron. Astrophys., 5:525 (1967).
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Fig.5-2 The equilibrium ratio (D IH). expected after deuterium has achieved
a steady-state abundance during hydrogen burning.

Problem 5-6: Show that with the assumption of constant H the D abundance is given by

(~). = (~). - [(~). - (~)J exp - TP~D) (5-15)

Thus the initial D decays exponentially to its equilibrium value with a lie time equal to Tp(D).

The lifetimes of deuterium against the equilibrium amount of deuterium,
against the equilibrium amount of He 3, and against protons are shown in Fig.
5-3. The lifetime of deuterium against protons is by far the shortest, showing
that the assumption of Eq. (5-13) [that the D(p,'Y)He3 reaction is the only impor
tant one for deuterium destruction] is justified.

The short lifetime of deuterium has important astrophysical implications that
have by no means been deciphered. The terrestrial abundance, as determined
from sea water, for instance, is D/H = 1.5 X 10-4• This ratio is very large
compared to the value (D/H). "'" 10-17 to be expected from the remnants of
hydrogen burning in stars and has necessitated auxiliary investigations of the
source of the deuterium abundance. Burbidge et al.! ascribed synthesis to spall
ation reactions in stellar surfaces. The high-energy particles would presumably
be accelerated by flares, as in the case of solar cosmic rays. Their interaction
with heavier nuclei could knock out deuterons as products, thereby contaminat
ing the surface with deuterium. The problem is further complicated by the fact

l E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys., 29 :547 (1957).



Fig. 5-3 The lifetimes of
deuterium (H2) against the
equilibrium amount of deu
terium, against the equilib
rium amount of He 3 (here
designated by r), and against
protons for a proton density
of 50 g/cm", By far the
shortest lifetime is the· one
against protons. Also shown
is the lifetime of protons
against protons. [After P.
D. Parker, J. N. Bahcall, and
W. A. Fowler, Astrophys. J.,
139 :602 (1964). By permis
sion of The University of
Chicago Press. Copyright
1964 by The University of
Chicago.]
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that the deuterium abundances in the interstellar medium and in the sun are
unknown. Fowler et al.! subsequently proposed that terrestrial deuterium is
not the product of stars at all but rather has resulted from spallation in small
planetesimals bombarded with high-energy protons from the young sun. It has,
therefore, become a crucial scientific question whether the interstellar D/R ratio
is as large as the terrestrial ratio. The question is very much open. . If the
interstellar D/R ratio is as large as the terrestrial ratio, it must follow that the
first thermonuclear energy source to become operative in a newly contracting star
is that of deuterium burning, D(p,y)Re3• There is a resulting uncertainty in the
time scale with which a newly formed star can contract through the deuterium
burning phase shown in Fig. 5-1.

A convenient practical consequence of the short deuterium lifetime is that the
deuterium abundance may always be safely assumed to be in equilibrium. The
differential equation for the Re3 abundance in the PPI chain,

dRe 3
_ ~ RD _ ')~ (Re3

) 2
dt - I\pd -"1\33 2

1 W. A. Fowler, J. L. Greenstein, and F. Hoyle, Geophys. J., 6 :148 (1962).
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(5-17)

(5-18)

(5-19)

can therefore be simplified to

dHe3 H2 (He3)2
-a:t = Ap p 2 - 2A33 -2-

This equation is also of a self-regulating type, in that He 3builds toward an equi
librium abundance given by

{H~) e = (~;:3Y
The cross-section factor for the He 3(He3,2p)He4 reaction is not well known,
because of experimental difficulties 'with gas targets. A frequently quoted value
has been S = 1.1 X 103kev barns at all low energies, but recent measurements!
indicate that S :;::< 5 X 103 kev barns is more nearly correct. With the aid of
Eq. (5-18), Eq. (5-17) can be written in a more suggestive form,

d~t = A33H~ [(~)e2 - (H~3YJ

which clearly demonstrates the tendency of He 3/H to seek its equilibrium value.
Figure 5-4 shows the equilibrium He3concentration.

1 At the time of writing H. C. Winkler and M. R. Dwarakanath at the California Institute of
Technology are improving their measurements of this important reaction; see, for example,
Bull. Am. Phys. Soc., 12:16 (1967).
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Fig. 5-4 The equilibrium concentration of He 3 during hydrogen burning.
The curve is dashed for T 6 < 8 because the length of time required for He 3 to
achieve equilibrium at such low temperatures is unreasonably long.
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The question of the equilibrium of Re 3 is an important one. It will shortly
be demonstrated that the energy generation from PPI may be expressed very
simply if Re3 has achieved equilibrium in the chain. Because of the larger
coulomb barrier (Z lZ2 = 4) for this reaction, the lifetime of Re3 against itself is
much longer than the lifetime of deuterium against protons. Consequently Re3

must build up to a much larger abundance than D must in order to achieve
equilibrium. An important question for the PP chain is the length of time
required for that buildup. The lifetime of Re3 against Re3 is

(5-20)

which obviously depends not only on the temperature (via A33) but upon the Re 3

abundance itself. Early in the burning, when the Re3 abundance may be very
small, the lifetime T3(3) is extremely long, and to the extent that Re3 is burned
at all, it is burned not by interactions with itself but by the following interaction
with deuterium:

Re3(d,p)Re4

B(O) = 6.7 X 103 kev barns

dB
dE = 27 barns

(5-21)

Since the deuterium abundance may be assumed to be in equilibrium after very
short times on the order of seconds, the lifetime of Re3 against deuterium may be
unambiguously calculated for a given temperature and hydrogen density. That
lifetime, r«(He 3) , is shown in Fig. 5-5, along with the lifetime [ra(3)]. of Re3

against Re3 after Re3 has reached its equilibrium. value. The latter lifetime is
given from Eqs. (5-20) and (5-18) as

[T3(3)]. = C\3~PPY ~ (5-22)

The lifetime 73(3) falls from infinity (for zero initial Re 3 content) to the value in
Eq. (5-22) as Re3 builds up to its equilibrium value. It is clear from Fig. 5-5
that since [73(3)]. «Ta(Re3) , the Re3 is predominantly destroyed by interactions
with itself after it has reached equilibrium. In fact, the destruction of Re3 is pre
dominantly by interactions with itself after it has built up to only 1 percent of
its equilibrium value. Only for very low Re3 abundance (compared to its equi
librium value) will the destruction of Re 3 occur predominantly by interactions
with deuterium. But under those circumstances, Re 3 is being produced by the
first two reactions of the PPI chain at a rate so much greater than it is being
destroyed that the destruction reactions may probably be neglected. As far as
the energy-generation rate is concerned, only the primary reactions of PPI need
be considered. Since the destruction of Re3 is negligible except when its abund
ance is high enough for it to interact with itself, the destruction-term approxi
mation in Eq. (5-19) is justified.
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Fig. 5-5 Comparison of the
lifetimes of' He 3 against the
equilibrium concentrations
of He 3 and D shows that
destruction of He 3 by reac
tions with deuterium is un
important when the chain is
in equilibrium. The proton
density for this calculation
was taken to be 50 g/cm 3•

If the alpha-particle den
sity is high, however, the He 3

may be "destroyed by inter
actions with He4, a reaction
that leads to the chains PPII
and PPIII. The lifetime
against He 4 shown above
is computed for Y = x.
[After P. D. Parker, J. N.
Bahcall, and W. A. Fowler,
Astrophys. J., 139 :602
(1964). By permission of
The University of Chicago
Press. Copyright 1964by The
University of Chicago.]

10 25

(5-23)

There still exists the important question of the length of time required for He 3

to achieve its equilibrium value. This time is a very steep function of tempera
ture. Figure 5-4 shows that the equilibrium abundance (He3/H). is reasonably
small for temperatures greater than about 107 OK but rapidly rises toward unity
at temperatures of a few million degrees. This last part of the curve is shown
dashed because, as we shall see, the time required to actually achieve such high
equilibrium abundances is excessive. This time may be estimated in the follow
ing way. If (He3/H). is small, say less than 0.01, very little hydrogen must be
consumed in achieving equilibrium, so that Eq. (5-19) can be solved assuming H
to be constant.

Problem 5-7: If the ratio He3/H is defined to be W, and if it is assumed that H is constant,
Eq. (5-19) is

dWat = A33H(W.2 - W2)

Integrate this equation to show that if the He 3 abundance is initially zero, its abundance at
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(He3) (He3) [ (He3) ]II = II . tanh A33H II . t

(He3
) t

= II ,tanh [T3(3)], (5-24)

From Eq. (5-24) the time required for Re3 to build its abundance to some
fraction f of its equilibrium.value is seen to be

tf = [73(3)]. tanlr? f (5-25)

The time required to achieve 99 percent of the equilibrium abundance is dis
played in Fig. 5-6. Specifically it can be seen that the required time exceeds
109 years for temperatures less than 8 X 106 oK. For this reason it is seldom
relevant to use arguments based on equilibrium amounts of Re3 at T 6 < 8. The
energy generation from PPI must be handled in two different ways depending
upon whether Re3has achieved equilibrium or not, and it is Fig. 5-6 that divides
the time-temperature plane into equilibrium and nonequilibrium regions. For
stellar ages less than the curve, the equilibrium energy-generation rate cannot be
used. For example, since it may take a few times 107 years for a newly formed
star to settle onto the main sequence, only those regions at temperatures higher
than 107 OK will have achieved Re3 equilibrium at that time. Of course, there
may exist some initial amount of Re3 in the nebula from which a star formed
that would modify the calculations leading to Fig. 5-6.

The rate of energy generation from PPI must in general be split into two parts.
Since the proton-proton reaction is rapidly followed by the D(p,'}')Re3reaction,
the net effect is

3R-7 Re3+ v

at the rate 1'pp. The energy liberated is 6.936 Mev, which must be reduced by
the 0.263 Mev carried off by the neutrino. Since 1 Mev = 1.602 X 10-6 erg,
this part of the PPI chain liberates energy at the rate

pE(3R-7 Re3) = 1.069 X 1O-51·p p erg cm-3sec-1 (5-26)

Likewise, the Re~(Re3,2p)Re4 reaction liberates 12.858 Mev of kinetic energy.
The energy-generation rate is expressible as the sum of both contributions:

pEPPI = 1.069 X 1O-51'p p + 2.060 X 10-51.33 erg cm-3sec-1 (5-27)

The expression for 1'pp was given in Eq. (5-11), and 1'33 can be computed from the
cross-section factor S = 5.0 X 103and the Re3abundance. In light of the previ
ous discussion, it is apparent that the Re3abundance depends upon the length of
time the star has been burning. In numerical computations of stellar structure
one must follow the Re3abundance numerically from time step to time step until
it has built up to its equilibrium value (if it ever does). A stellar model is com-
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Fig. 5-6 The time required for He 3 to build up to 99 percent of its equilib
rium abundance. Because this time exceeds 1 billion years for T 6 < 8, it is
seldom reasonable to assume that He 3 has achieved equilibrium at such low
temperatures.

puted at t = 0 from a known composition. Suppose for the sake of argument
that initially He 3(O) = O. That model will have a calculable rate rp p for the
production of He 3 at each point in the star. The next model, say at time t = Dot,
will be constructed with a helium abundance He 3 (Dot) = r p p Dot, unless that amount
of He 3 is already of the same order of magnitude as He:. In the next model,
say at time t = 2Dot, the He3 will be calculated from

He3(2Dot) = He3(Dot) + ?'pp Dot - 2r33 Dot
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etc. And in each model the energy generation is calculated from Eq. (5-27)
(provided, of course, that PPI is the dominant energy source). An alternative
if the star is already static is to use Eq. (5-24) for the Re3 abundance. The
assumptions of Eq. (5-24), viz., (Re3/R). < 0.1 and the temperature is constant,
are often met with sufficient accuracy for it to be a useful approximation. After
a period of burning indicated by Fig. 5-6 the Re 3 abundance may safely be
assumed to be in equilibrium; i.e., the rate of Re 3 destruction has become as
large as its rate of synthesis.

Once equilibrium has been attained, the energy-generation rate can be simpli
fied. Since dRe3/dt :::: 0 at equilibrium, it follows from Eq. (5-17) that 21"33 = I"PP"

The rate of production of Re4 is then

dRe4 r-- = 1'33 = 2P. (5-28)
dt 2

where the second equality is true only at Re3 equilibrium. Since two proton
proton reactions are required for the production of each alpha particle, the rate
of production of alpha particles is exactly half of the rate of production of deu
terons. Substituting into Eq. (5-27) results in

penn = 2.099 X 1O-51"pp

at equilibrium.

erg cm-3 sec-1 (5-29)

Problem 5-8: Show that at He 3 equilibrium

epPI = 2.32 X 106pXH2T6-lexp( -33.81T6-!)(1 + 0.0123T6! + 0.0109T6j +O.00095T6)

erg g-I sec"! (5-30)

Problem 5-9: Show that the correction for electron screening in the weak-screening limit
(appropriate to main sequence) is

(5-31)

in a predominantly hydrogen gas.

5·3 PPII AND PPIII CHAINS

The discussion of PPI has ignored the role of Re4 in the completion of the hydrogen
fusion process, but the reaction Re3(Re4,')')Be7 has been found to have a suffi
ciently large cross-section factor that Re4 may, if it is abundant and if the
temperature is not too low, provide the main source for consuming Re3 • This
possibility leads to two new cycles for converting hydrogen into helium. These
cycles are commonly called PPII and PPIII, and they correspond to the two
possible fates for the Be7 nucleus. The atom Be7 is radioactive, and in the
laboratory its only energetically allowed decay involves the capture of an atomic
electron:

Be7 + e -7 Li7 + V
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Fig. 5-7 The alternative PP chains.
When He 3 is destroyed by the cap
ture of an alpha particle, the chain
is completed either through PPII
or PPIII, depending upon the fate
of the Be 7 nucleus.

H 1+H 1->D 2+e++"

D 2+ H I_He 3+ 'Y

~ He 3+He 3->He 4+2H 1

~-. He 3+ He 4_Be 7 + 'Y

«
Be 7 + e- -> Li 7 + "

Li7+ H1->He4+He4

or

Be 7+H 1_B B+'Y

BB_Be B+ e++"

BeB- 2He 4

PP I

PPII

PPIII

At the center of a star the Be7 nucleus is ionized, but the decay can still occur by
the capture of free electrons. Once the decay occurs, the Li7 is quickly destroyed
by the reaction Li7(p,a)He4•

The Be 7 nucleus may instead react with protons to form the nucleus B8 by the
reaction Be7(p,'}')B8. Which fate accrues to the Be7 nucleus will depend upon the
relative lifetimes of Be 7 against electron capture and against proton capture.
Once B8 is formed, it decays to Be8,

B8 _ Be8 + {3+ + p

and the Be8, which is unstable, breaks up into two alpha particles, Be8_ He 4 +
He 4• These various possibilities are diagramed in Fig. 5-7, which reveals that
the He4 nucleus initiating these alternate cycles serves only as a catalyst which
allows He 3 and a proton to be converted to He 4 and a neutrino. Thus the total
energy released is the same for either cycle, but there will be a difference in the
energy carried away by the neutrino in the two cases. Another look will reveal
an important difference from PPI; viz., an alpha particle is produced with only
one proton-proton reaction. Thus, if all of the subsequent reactions come into
equilibrium, the rate of production of alpha particles can be as great as 1"pp rather
than the value 1"pp/2, as in PPI. This fact will increase the energy generation by
a significant amount (up to a factor of 2 minus the increased neutrino loss). Of
course, PPI, PPII, and PPIII all operate simultaneously in a hydrogen-burning
star containing significant amounts of He4, and the details of the cycle will
depend upon the density, temperature, and composition. The computation cf
these details requires the various reaction rates. The cross-section factors are
listed in Table 5-1, along with other numerical information for each reaction. It
should also be noted that other reactions than the ones indicated are possible and
in fact do occur to some extent. For example, He 3 could react with Li7, but in
this case Li7 interacts much more rapidly with protons both because of the lower
coulomb barrier and because protons greatly outnumber He 3 nuclei. Similar
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Table 5·1 Reactions of the PP chains

Q value,
Reaction 1J{ev

H1(p,f1+v)D2 1.442
D2(p,')')He 3 5.493
He3(He3,2p)He4 12.859
He 3(a,')')Be7 1.586
Be7(e-,v)LP 0.861
LF(p,a)He4 17.347
Be7(p,')')B8 0.135
B8(f1+v)Be8*(a)He4

18.074

Average
v loss,
Mev

0.263

0.80

7.2

So,
kev bams

3.78 X 10-2 2

2.5 X 10-4

5.0 X 103

4.7 X 10-1

1.2 X 102

4.0 X 10-2

dS-,
dE

bams

4.2 X 10-2 4

7.9 X 10-6

-2.8 X 10-4

B
33.81
37.21

122.77
122.28

84.73
102.65

T12,

yearst

7.9 X 109

4.4 X 10-8

2.4 X 105
9.7 X 105
3.9 X 10-1

1.8 X 10-5

6.6 X 101

3 X 10-8

t Computed for X = Y = 0.5, p = 100, T 6 = 15 (sun).

analyses of all such possibilities indicate that the reactions listed in Fig. 5-7 are
the significant ones.

The reactions of the PP chains are the most carefully studied of all the rnajor
sequences in nuclear astrophysics. Tombrello! has provided a vivid account of
the interplay of theory and experiment in the study of these reactions. They are
unusual in that the mechanisms of the reactions involve direct transitions from
scattering states to bound final states rather than the mediation of a compound
nuclear state. That feature has given these reactions extraordinary interest to
nuclear physicists.

The functioning of the complete chain is described by the set of differential
equations governing the abundances. If the only sources of abundance change
are nuclear reactions, i.e., no expansions, mixing, etc., the time derivatives are

dH H2 (He3)2
df = -2Ap P "2 - ApdHD + 2A33 -2- - A17HBe7 - A~7HLi7

dD H2
df = APP "2 - ApdHD

dHe3 (He3)2--a:t = ApdH D - 2A33 -2- - A34He3He4

dHe4 (He3) 2---a:t = A33 --2- - A34He3He4 + 2A17HBe7 + 2A~7HLj7

dBe7

--;],t = A34He3He4 - AC7n eBe
7 - A17HBe7

dLi7 "\ B 7 "\1 HL·7at = l\e7nc e - 1\17 1

(5-32a)

(5-32b)

(5-32c)

(5-32cl)

(5-32e)

(5-32/)

1 T. A. Tombrello, Astrophysical Problems, in J. B. Marion and D. M. Van Patter (eds.),
"Nuclear Research with Low Energy Accelerators," Academic Press Inc., New York, 1967.
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(5-33)

The notation of these equations is largely self-explanatory. The reaction rates
per pair for Be7+ p and for LF + p are designated respectively by A17 and A~7'

and the rate of the Be7 electron capture is proportional to the free-electron
density no, the proportionality constant being A07. One simplification has been
made in writing this set of equations: the B8 abundance has been eliminated.
This is possible because the Br lifetime against positron decay is so short (0.78 sec)
that the sequential reactions Be7 (p,'Y) B8(I3+v) Be8(a) He 4 can be considered as a
simple step Be7+ H -7 2He + u, Since Eqs. (5-32a) to (5-32f) are complicated
and nonlinear, their solution can best be accomplished by using approximations
valid under a prescribed set of circumstances. Consider the following sequential
simplifications.

(1) Deuterium equilibrium occurs in times comparable to Tp(D), which, as
discussed previously, is a matter of seconds to hours. Thus dD/dt vanishes after
short times, the deuterium equation (5-32b) can be eliminated, and the term
ApdHD in (5-32a) and (5-32c) can be replaced by AppH2/2.

(2) Li7 and Be7 equilibrium occurs on a relatively short time scale because at
temperatures and densities of interest both nuclei have lifetimes of a year or less.
This fact effectively means that those two abundances quickly come into equi
librium with He 3, because the sum of Eqs. (5-32e) and (5-32f) gives <:

d(Be
7 + Li7) _ \ H 3H 4 \ HB 7 \ I HL'7 0dt - 1\34 e e - 1\17 e - 1\17 1 =

Since this equation is true after times on the order of years, it means that Be7and
Li7 will thereafter follow the buildup of He 3. Equation (5-33) is satisfied long
before He3 achieves equilibrium. This result produces a greatly simplified
equation for the rate of He 4 production:

dHe 4 (He3)2

(It = A33 -2- + A34He
3He4 (5-34)

The fact that the last term appears with a positive sign even though the corre
sponding reaction actually consumes an alpha particle reflects the fact that two
alpha particles are returned at the end of the cycle. .The hydrogen equation
becomes

(5-35)

With the approximations made to this point, the equations involve only H,
He 3, and He 4 and are accurate after a few years of high-temperature burning.
The equations still have no simple solution. The procedure that must in general
be followed is analogous to that in PPI: the three differential equations must be
followed from time step to time step in the sequence of stellar models until He3

has achieved equilibrium. An alternative if the star is static is to integrate
Eq. (5-32c) with the aid of the assumptions that both Hand He 4 are constants.
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Actually, these assumptions are not bad, since the Re3 equilibrium abundance is
generally so small that little R is destroyed and little Re4synthesized in the time
required for Re3to approach equilibrium. This integration will not be presented
explicitly here. The solution is much like the one obtained in PPI, and the time
required for Re3 to achieve 99 percent of its equilibrium value is not greatly
different from that shown in Fig. 5-6.

(3) The next simplification occurs when Re3 reaches equilibrium. The
equilibrium abundance of Re3will be somewhat less than in PPI because there is
an additional reaction destroying Re3. The solution to the energy generation
will again be simplified when Re3 achieves equilibrium. Then dRe 3

/ dt ::::< 0, and
from Eq. (5-32c)

(5-36)

which has the solution

(5-37)

Problem 5-10: Show that Eq. (5-37) has the proper limits as He 4 -> 0 and as H -> O. Show
also that inJerms of the fractions by weight

(5-38)

(5-39)

It is actually Eq. (5-38) with X = Y = 0.5 that was plotted in Fig. 5-5, rather
than the PPI approximation. The two expressions differ under those circum
stances only for Ts > 14, however, because for Ts < 14 and X = Y, the-He" is
primarily destroyed by Re3. Only for Ts > 14 (if X = Y) does the lifetime of
Re3 against Re4 become shorter than the lifetime against itself.

It is important to have a good physical appreciation of the competition for the
Re3 nuclei, because it is that competition which determines whether it is PPI or
PPII and PPIII that dominate. The ratio of the rate of alpha-particle produc
tion by PPI to the rate of alpha-particle production by PPII and PPIII is

PPI = 1'33 = A33(Re3)2/2 1 A33 Re3

PPII + PPIII 1'34 A34Re3Re4 = 2 A34 Re4

One can see right away that this branching ratio (1) varies inversely with Re4

~or Y), arid thus will change with age even if p and T remain constant; (2) is zero
nitially (Re3 = 0) and rises to a maximum as Re3 builds to its equilibrium con
ientration; and (3) decreases with temperature since (Re3/R). decreases rapidly
vith increasing temperature. Once Re3 equilibrium has heen achieved, the
-atio is

(
PPI ) 1 1. 33Re~

PPII + PPIII e = 2 A34 Re4 (5-40)
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(5-41)

which by Eq. (5-37) becomes

(
PPI ) = -A34 + [A342+ 2AppA33(H/He4)2J!

PPII + PPIII e 4A34

For analysis of this and other related problems, it is convenient to define a
function of temperature and composition:

ex (T, He
4)

== A34
2

(He4)2 (5-42)
H A33ApP H

Problem 5-11: Show that with this definition of a

PPI
PPII + PPIII

Show also that

(1 + 2/a)! - 1

4
(5-43)

(
He4) 8 342

(He4)
2

a T, - se -- -- exp (-100T 6- ! )
. H 811833 H

(
He4)

2

= 1.2 X 1017 II exp (-lOOT6-!) (5-44)

From the value of ex it is a simple matter to see the relative numbers of alpha
particles made by the He 3+ He3 interaction and the He3+ He4 interaction.
Figure 5-8 shows the fraction of Re3 nuclei destroyed by He 4 and by He~ in the
special case X = Y, that is, He/H = l It can be seen in this special case that
the crossover occurs near T« = 14.

Problem 5-12: Show that the rate of production of alpha particles in PPI equals that in PPII
and PPIII for a value a = -12. Show that if X = Y, this value of a occurs near T 6 = 14.

The system of differential equations is further simplified when He 3 achieves
equilibrium:

dRe
4

1 ~ H2 + 1 ~ H 3H 4--a:t" = "4l\pp 21\34 e; e

dHdi = - AppH2 - 2A34He~He4

Thus when the entire PP chains operate in equilibrium,

dHe4 1 dH
--a:t" = - 4; di

(5-45)

(5-46)

(5-47)

(5-48)

as it must for 4H --+ He 4• It is conventional to write the He 4 production rate as
its value for PPI times a correction factor brought about by the operation of PPII
and PPIII:

dHe4 =.1.A H2 (1 + 2A34He~Re4)
dt 2 pp 2 Ap pH 2
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40

Fig. 5-8 The fraction of He 3 nuclei destroyed by reactions with an equilib
rium concentration of He 3 and by reactions with He 4, respectively. For
purposes of this calculation the mass fractions of hydrogen and helium are
taken to be equal, so that the relative rate of destruction due to He 4 must be
moved either up or down by the factor Y IX. For any common mixture,
however, destruction of He 3 by reactions with He 4 dominates for T 6 > 14.
[After P. D. Parker, J. N. Bahcall, and W. A. Fowler, Astrophsj«.J., 139 :602
(1964). By permission of The University of Chicago Press. Copyright] 964
by The University of Chicago.l

Problem 5-13: Show by inserting the value of He~ into Eq. (5-48) that the He 4 production rate
can be written

(5-49)

where

(5-50)

Notice that qi(a) -7 1 as a -70, that is, He 4 -70, which corresponds to the
operation of PPI by itself. As a -7 co, which implies Y IX -7 co and high tem
perature, qi(a) -7 2. This last feature reflects the fact that only one p-p reaction
is required for each alpha particle when the chain is completed exclusively by
PPII and PPIII. Figure 5-9 displays the function qi(a) for the specific compo
sition X = Y, a restriction which allows qi to be displayed as a function only of
temperature. It is clear that for X = Y the transition from PPI to PPII and
PPIII occurs smoothly between T 6 = 13 and T 6 = 20.

The energy-generation rate would be solved by the foregoing were it not for
. the fact that the neutrino losses are different in each PP chain. If there were
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no neutrino losses, the energy-generation rate would be the product of Eq. (5-49)
and the energy released in the fusion of each He 4 atom from four H atoms.
From the third column of Table 5-1, however, it is apparent that the neutrino
losses differ markedly:

(i)

(ii)

(iii)

2 X 0.263
PPI: 26.73 = 2.0%

PPII . 0.263 + 0.80 = 0
. 26.73 4. %

0.263 + 7.2
PPIII: 26.73 = 27.9%

(5-51)

Thus the total rate of energy liberation, i.e., including neutrino energy, must be
multiplied by 0.980FFPr + 0.960FFPII + 0.721FFPm, where FFPr is the fraction
of the alpha particles produced by the PPI set of reactions, FFPII is the fraction
of the alpha particles produced by the PPII set of reactions, and FFPm is the
fraction via PPIII. The rate of energy generation is

dHe 4

P€ = (It (4MH - MHe.)c2(0.980FFPr + 0.960FFPII + 0.721FFPm)

Since the case FFPr = 1 reduces to PPI, it follows that

€ppr
e = 0.980 CI>(a) (0.980FFPr + 0.960FFPII + 0.721FFPm) (5-52)

2.0

1.6

:...
II

1.2
~

.E,.... 0.8
~
-e-

0.4

0 10 20 30 40

Ts

Fig. 5·9 The rate of production of He 4 is increased over its rate in PPI by a
factor <1>(a), which is shown here as a function of temperature for the particular
composition X = Y. [After P. D. Parker, J. N. Bahcall, and W . .4.. Fowler,
Astrophys. J., 139 :602 (1964). By permission of The University of Chicago
Press. Copyright 1964 by The University of Chicago.]
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Thus the energy generation for the complete PP chains operating in equilibrium
can be written with the aid of Eq. (5-30) as

e = 2.36 X 105pX
H

2T
5- 1 exp (-33.81T5-I)JP.(a)(1 + 0.0123T51

+ 0.0109T51 + 0.00095T5) erg g-l sec" (5-53)
where

JP.(a) = <I>(a)(0.980FppI + 0.960Fppn + 0.721Fp P III) (5-54)

It is apparent that the function JP.(a) represents the correction of the PPI energy
generation rate necessitated by the simultaneous occurrence of PPII and PPIII.

Problem 5-14: Show that Eq. (5-53) reduces to Eq. (5-30) for Y = o.

The F factors must be calculated from the branching in the nuclear reactions.
From the discussion of the competition between He; and He 4 for the He 3 nuclei
leading up to Eq. (5-43) it follows that

F p P I (1 + 2/a)! 1
1 - F PPI 4

Problem 5-15: Show that

(5-55)

The competition between PPII and PPIII rests upon the fate of the Be7

nucleus created by He 3(He4,'Y)Be7 reaction. In the laboratory Be 7 decays by
capturing a IS electron from its innermost atomic shell:

T! = 53 days

The rate of this reaction is, among other things, proportional to the density of
IS electrons at the nucleus, viz., IJPlS(1' = 0)1 2• In the stellar interior the Be7

nucleus is ionized and would be stable were it not for its encounters with the
free electrons in the gas. Since the other factors in the reaction are approxi
mately the same, the decay rate is multiplied by the ratio of the free-electron
density at the nucleus in a star to the bound-electron density at the nucleus in
the. atom. The calculation is relatively straightforward. Rather than assume
a uniform density of free electrons, however, one must use the coulomb wave
functions appropriate to an electron scattering from a 4e charge. These coulomb
waves introduce a l/v factor in the rate. When this l/v is averaged over the
maxwellian electron distribution (assuming nondegeneracy), the l/v becomes a
factor T-!.l The result of the calculation is

(5-56)

1 This type of average occurred also in the free-free opacity in Chap. 3. The calculation was
made by J. N. Bahcall, Phys. Rev., 128:1297 (1962).
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N ear the centers of characteristic main-sequence stars the Be7 lifetime against
electron capture is about 1 year. It is also evident that this lifetime is, in
contrast with nuclear lifetimes against positive particles, only very weakly
dependent upon the temperature. Specifically, the lifetime of Be 7 against pro
tons, which is the competing reaction leading to the PPIII branch, is strongly
temperature-dependent.

Problem 5·16: Show that

(5-57)
1-- = A17np = 6.3 X 1O-17npT 6-\ exp (-102.65T6-!)

T p (B e7)

This lifetime is greater than T. for T 6 < 23 but becomes considerably shorter at higher
temperature.

(5-58)

Problem 5·17: Show that

T p (B e7)

FppI! = (1 - FpPI) Tp(Be7) + T.(Be7)

and F pPIII = 1 - FpPI - Fppu.

An example of Fpp! , Fppu , and Fppm calculated for the composition X = Y is
shown in Fig. 5-10. This example shows the characteristic feature of the PP

<Il
c:

~
t1l 1.0c:.§
.s
'"::::l
0-;:
t1l
>
>.
.c 0.5
"0
Q,)
o
::::l
"0
0
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:I:

'0 \

0 ..... -
<Il
c:

:8 0 10 20 30 40<.>
t1l
"- Tsu,

Fig. 5·10 The fraction of the He 4 production due to PPI, PPII, and PPIII,
respectively. The chains are assumed to be in equilibrium, and for the pur
pose of this figure it was assumed that Y == X. [After P. D. Parker, J. N.
Bahcall, and W. A. Fowler, Astrophys. J., 139:602 (1964). By permission of
The University of Chicago Press. Copyright 1964by The University of Chicago.]
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chains. The alphas are produced predominantly by PPI at low temperatures.
Near T 6 = 14, depending moderately upon the value Y IX, PPII takes over from
PPI. Near T 6 = 23, depending moderately on the hydrogen mass fraction X,
PPIII takes over from PPII. Of course all three modes operate simultaneously.
Bahcall and W01£1 have considered other modes of completion that involve elec
tron captures and have shown them to be important only for p > 104 g/cm",

Considerable interest currently exists in the operation of PPIII in the sun,
because the decay B8(t3+11)Be8, which occurs only in PPIII, is the major solar
source of neutrinos of sufficiently high energy to be absorbed efficiently by a Cl37
target. This reaction, Cp7 + 11 ---7 Ar37 + er, is endothermic (Q = -0.81lVIev)
and thus can detect only the Be7+ e: neutrinos and the B8 neutrinos. Since
the central temperature of the sun is about 16 million OK, the energy generation
is predominantly via PPII. For this reason, the neutrino flux from Be7is much
greater than that from B8. These neutrino fluxes have been calculated from
solar models. The results of Sears" are

ipv(Be7) = (1.2 ± 0.5) X 1010 11 cnr? sec"!

ipv(B8) = (2.25 ± 1) X 107 11 cm-2 sec-l

Although the Be7 neutrinos are more abundant by a factor of about 500, the B8
neutrinos are actually more capable of producing the Cl37 absorption reaction.
This curious fact comes about because only the B8 neutrinos have sufficient energy
to make the more favorable transitions to excited states of the Ar37 nucleus.
Bahcall" has computed the cross sections and shown that about 90 percent of the
absorptions are due to the B8 neutrinos and about 10 percent to the Be7neutrinos.
But even so, the cross sections are very small, and the rate of absorption of
neutrinos from all transitions is quoted as (4 ± 2) X 10-35 sec -1 per Cl37 atom.
Thus it is that any detector of these neutrinos must contain a lot of chlorine.
Nonetheless Davis- has undertaken the sizable task of building a detector with
100,000 gal of C2C14 at the bottom of a mine. From his experience with a similar
1,OOO-gal tank, Davis believes the solar neutrino flux can be measured. This
measurement not only would be an experimental tour de force but would produce
an astrophysical datum of great importance. There is no way known other than
by neutrinos to see into a stellar interior. There is no other known direct
experimental observation of nuclear reactions occurring at high temperatures in
the center of a star. The rather elaborate theoretical structure of stars is built
upon inference from known physical principles rather than from measured facts.
Of course, the inferences are cogent ones and are generally accepted as being
correct. There can be no doubting, however, the philosophical importance of
direct measurement. It flies in the face of history to say there will be no surprises.

1 J. N. Bahcall and R. A. Wolf, Astrophys. J., 139 :622 (1964).

2 R. L. Sears, Astrophys. J., 140 :477 (1964). This paper also discusses uncertainties in the
neutrino fluxes.

3 J. N. Bahcall, Phys. Rev. Letters, 12 :300 (1964).

4 R. Davis, Jr., Phys. Rev. Letters, 12 :302 (1964); R. Davis, Jr., D. S. Harmer and K. C. Hoffman,
Ph,JR R"" Leiiers, 20 ~120!l f1 (lRR)



MAJOR NUCLEAR BURNING STAGES IN STELLAR EVOLUTION

1.8

1.4

.;. 1.0 :::::;..,..c::::;;...---

0.6

0.2

389

o 10 20

Ts

30 40

Fig. 5-11 The function 1ft., which measures the rate of thermal-energy release
relative to the rate of the proton-proton reaction, is plotted for three different
choices of composition. [After P. D. Parker, J. N. Bahcall, and W. A. Fowler,
Astrophys. J., 139 :602 (1964). By permission of The University of Chicago
Press. Copyright 1964 by The University of Chicago.]

Even if our general understanding is correct, a good measurement can yield the
central temperature of the sun. The branching between PPII and PPIII is
strongly temperature-dependent. Bahcall has stated that a measurement of the
B8neutrino flux accurate to ±50 percent would fix the central solar temperature to
better than ±10 percent.

Returning to the energy generation for a moment, it is apparent that ift.(a) /0.981
is the factor that multiplies the rate EPPI to convert it to the energy-generation
rate for the complete chain. This function ift.(a) is a function of the temperature
and the composition. Figure 5-11 displays it as a function of temperature for
three different ratios of He 4/H. The main features of the function ift. are easily
understandable:

(1) ift -70.98 at Ts = 8 to 10, where only PPI is effective.
(2) ift -7 1.44 at high T, since the alpha-particle production rate doubles
[.p(a) -7 2] but only 72 percent of the energy release is converted to heat in
PPIII, which dominates.
(3) The intermediate maximum in ift. corresponds to domination by PPII, for
which the relative rate of alpha-particle production .p(a) is approaching the
value 2, but the neutrino losses are not large.

It is apparent that the computation of the energy-generation rate even when
He 3 is in equilibrium is somewhat involved. In the construction of stellar models
on electronic computers a fairly elaborate subroutine would be required to
calculate E as accurately as possible. Such a subroutine mayor may not be desir-
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(5-59)

able in all cases. One may prefer to approximate the energy generation by
simpler expressions that are accurate over a limited range of temperature and
composition. When a small error in E is introduced into a structure computation,
the end result is generally a star having a much smaller percentage error in the.
temperature at each point. Any such approximations can easily be constructed
for specific problems when the more complete solution has been appreciated.

A final comment on the PP chains concerns the abundance of LF. Although it
is produced in PPII, the Li7 is destroyed so rapidly that its abundance at any
point in hydrogen burning is almost vanishingly small. It seems certain that the
LF in the universe is not the result of hydrogen burning. The LF abundance is
rather linked to the whole problem of the origin of the isotopes of Li, Be, and B.
The nuclei are generally believed to be the results of high-energy spallation reac
tions in locations other than stellar interiors or of poorly understood circumstances
in supernova explosions.

5-4 THE CNO BI-CVCLE

The PP chains must be invoked to synthesize He 4 from hydrogen in a gas consisting
only of helium and hydrogen. If any stellar systems are formed of essentially
pure hydrogen, their main-sequence stars can obtain energy only from those
PP chains. With the exception of the extreme population II objects (globular
clusters, high-velocity subdwarfs, etc.), however, most stars have apparently
formed from gas having a healthy admixture of the heavier elements. It then
becomes necessary to consider other reactions as possible sources of energy.
Because lifetimes rise rapidly with increasing coulomb barrier, the reactants must
have nuclear charges such that the product ZlZ2 is as small as possible. To
provide significant energy generation, moreover, the reactants must also be
abundant. It was independently suggested by Bethe and by von Weizsaoker in
1938 that reactions of protons with carbon and nitrogen nuclei would provide
competition with PP chains. They showed that a series of reactions, called the
CN cycle, had the property that the CN nuclei served only as catalysts for the
conversion of hydrogen to helium but were not themselves destroyed. The basic
CN cycle is as follows:

C12(p, /,) N13 ({3+v) C13

C13(p,/,)N14

N14 (p,/, )015({3+v)N15

N15(p,a)CI2

By summing the particles before and after the cycle one obtains

C12 + 4H --t C12 + He 4 + 2{3+ + 2v

The C12 nucleus only plays the role of catalyst. It is also evident that the same
cycle occurs with any of the four nuclei C12, C13, N14, or N15 as catalysts, or any
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Fig. 5-12 The reactions of
the eNO bi-cycle.

C 12 + H 1~ N 13 + 'Y

N"13 ~CI3+ e " + lJ

C 13 + H 1~ N 14 + 'Y

N 14 + H I~ 0 IS + 'Y

OI5~NI5+e++lJ

NI5 + HI ~C12 + He4

N IS + H I 0 16 + 'Y

OI6+H I ~FI7+'Y

F 17 ~ 0 17 + e+ + lJ

0 17+ H 1~ N 14 + He 4

{

T= 870sec

log T (years) = - 4.56

{

T = 178sec

log T (years) = - 5.25

{

T = 95sec

log r (years) = - 5.52

(5-60)

mixture of them. In fact a mixture of those nuclei must soon result regardless of
the initial composition. It is also clear that the energy generation per catalyst
will be related to the reciprocal of the time it takes to go around the cycle multi
plied by (4M H - M H. ')C2minus the energy loss in the two neutrinos.

It was later realized that oxygen plays a role in the CN cycle. If oxygen is
initially present, the reactions

016(p,'Y)F17({J+v) 0 17

017(p,a)N14

feed nuclei into the CN subcycle at N14. It ..vas also discovered that the bom
bardment of N15 with protons does not always result in C12 + a: about 4 times in
104 the result is 0 16 + 'Y. Thus CN nuclei are slowly drained into 0 16, and 0 16

nuclei are reinjected into the CN cycle at N14. There are really two cycles, and
the combination has been christened the CNO bi-cycle. Figure 5-12 shows the
full set of reactions and the positron decay lifetimes. The other lifetimes depend,
of course, on the proton density and the temperature. The cross-section factors
and other relevant data for each reaction are listed in Table 5-2. The quantity B
in the last column is the same one as defined in Eq. (4-59).

The key to understanding the CNO-cycle reactions lies in appreciating the
lifetimes of the nuclei against protons. From Eq. (4-22) the lifetime of species 2
against protons is T p (2) = (Ap 2Np ) - 1.

Problem 5-18: Show that the lifetime in yearsfor nonresonant reactions is given by

yr-I (5-61)
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Table 5-2 The eND reactions
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dS
Average S(E = 0),

-,
Q value, dE

Reaction Mev v loss, Mev ke» barns barns
C12(p,'Y)N13 1.944 1.40 4.26 X 10-3
N13(,B+V)C13 2.221 0.710
C13(p,'Y)N14 7.550 5.50 1.34 X 10-2

N14(p,'Y)015 7.293 2.75
015(,B+,v)N15 2.761 1.00
N15(p,a)C12 4.965 5.34 X 104 8.22 X 102

N15(p,'Y)01S 12.126 2.74X101 1.86 X 10-1
016(p,'Y)F17 0.601 1.03 X 101 -2.81 X 10-2

F17(,B+v)017 2.762 0.94
017(p,a)N14 1.193 Resonant reaction

where
dS

So = S(E = 0) + dE (Eo + -ikT) kevbarns

= S(E = 0) + :~ [1.220 (Z~:A~Tty+ 0.072TsJ

and f is the electron-screening factor.

B

136.93

137.20
152.31

152.54
152.54
166.96

167.15

(5-62)

From Table 5-2 it can be seen that all the CNO reactions, with the exception of
017(p,a)Nl4, are presently believed to be nonresonant. This belief is based upon
research into the structure of the compound nuclei of the several reactions. 1

Only the 0 17 + p reaction has been found to have resonant states of the com
pound nucleus (FISin that case) so close in energy to the range of stellar energies,
i.e., near Eo, that the resonant-reaction-rate formula must be used. For others,
the data are much like those for the C12(p,"y)NI3 reaction, which was used as a
nonresonant example throughout Chap. 4. Equation (5-61) can therefore be
used with the nuclear information of Table 5-2 to calculate the lifetimes of all the
species except 017~ Since the lifetimes are inversely proportional to the hydrogen
abundance, the product TpXH is a function only of the temperature (except for a
weak density and composition dependence in the electron-screening factor I,
which is, however, not very important in hydrogen burning). Since pX H may be
of order of magnitude 100 g/cm' at the centers of main-sequence stars, the
logarithm of the product

pX H
log 100 Tp

has been tabulated for each reaction in Table 5-3, with r» expressed in years.

1Much of this research has been conducted at the Kellogg Radiation Laboratory of the Cali
fornia Institute of Technology, which, under the guidance of W. A. Fowler, has made a specialty
of the CNO reactions. Most of the reactions proceed via a compound nucleus, exceptions
being found in the important captures by N14 and 01S.
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Table 5-3 Dependence of log (TpXH / 100) on temperaturet

Temper- Reactiont
ature,

T 6 C12(p,-y)N13 C13(p,-y)N14 N14(p,'Y)015 N15(p,a)C'2 1041' 016(p,'Y)Fl1 Ol1(p,a)Nl<

5 16.32 15.73 19.79 15.53 4.649 22.95 21.92
6 14.32 13.73 17.57 13.29 4.598 20.51 20.02
7 12.72 12.13 15.79 11.50 4.551 18.56 18.26
8 11.41 10.81 14.32 10.03 4.508 16.95 16.50
9 10.29 9.69 13.08 8.78 4.468 15.59 15.10

10 9.33 8.73 12.02 7.70 4.431 14.42 14.05
11 8.50 7.90 11.09 6.76 4.396 13.39 13.15
12 7.75 7.15 10.26 5.93 4.363 12.49 12.38
13 7.09 6.49 9.52 5.18 4.332 11.68 11.68
14 6.49 5.89 8.86 4.51 4.303 10.95 11.02
15 5.95 5.35 8.26 3.90 4.275 10.29 10.32
16 5.45 4.85 7.71 3.34 4.248 9.68 9.55
17 5.00 4.39 7.20 2.83 4.223 9.13 8.70
18 4.58 3.97 6.73 2.35 4.198 8.61 7.86
19 4.18 3.58 6.30 1.91 4.175 8.14 7.01
20 3.82 3.21 5.89 1.50 4.152 7.69 6.18
22 3.16 2.55 5.16 0.75 4.110 6.89 4.78
24 2.57 1.97 4.51 0.09 4.071 6.18 3.63
25 2.30 1. 70 4.21 -0.21 4.052 5.85 3.10
26 2.05 1.44 3.93 -0.50 4.034 5.54 2.62
28 1.58 0.97 3.41 -1.03 4.000 4.97 1. 75
30 1.15 0.54 2.93 -1.51 3.967 4.45 1.05
35 0.23 -0.38 1. 91 -2.55 3.893 3.33 -0.42
40 -0.53 1.14 1.07 -3.42 3.829 2.41 -1.50
45 -1.18 -1.78 0.36 -4.14 3.771 1.64 -2.33
50 -1.73 -2.33 -0.25 -4.77 3.719 0.97 -2.99
55 -2.21 -2.82 -0.78 -5.32 3.673 0.39 -3.53
60 -2.64 -3.24 -1.25 -5.81 3.630 -0.12 -3.97
65 -3.02 -3.63 -1.67 -6.24 3.590 -0.58 -4.33
70 -3.37 -3.97 -2.05 -6.63 3.554 -0.99 -4.65
75 -3.68 -4.28 -2.39 -6.99 3.521 -1.37 -4.91
80 -3.97 -4.57 -2.71 -7.32 3.489 -1.71 -5.14
85 -4.23 -4.83 -2.99 -7.62 3.460 -2.02 -5.35
90 -4.48 -5.08 -3.26 -7.90 3.433 -2.31 -5.52
95 -4.70 -5.30 -3.51 -8.15 3.407 -2.58 -5.68

100 -4.91 -5.51 -3.74 -8.39 3.383 -2.83 -5.82

t Adapted from G. R. Caughlan and W. A. Fowler, Astrophys. J., 136:453 (1962). By permis-
sion of The University of Chicago Press. Copyright 1962 by The University of Chicago.

t The lifetimes against protons are expressed in years, and the density p is in grams per cubic
centimeter.
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Also listed in Table 5-3 is the parameter 'Y = 1 - a, which is the fraction of the
N15 + p reactions which occurs in the 0 16 + 'Y channel. This quantity is
approximately 'Y = 4 X 10-4 but has a weak temperature dependence due to
slight changes with temperature of the excitation energy of the compound nucleus.
From the point of view of the compound nucleus, there is a probability propor
tional to I'a that N15 + p -7 0 16* will decay into 0 16* -7 0 2+ a and a prob
ability proportional to roy that it will decay into 0 16* -7016+ 'Y. The first
probability is far greater in this particular case, but both quantities depend some
what upon the energy of 0 16*. Then 'Yla = (roy/ra ) , where the brackets indicate
an average of the ratio over the energies corresponding to the maxwellian distribu
tion of proton energies responsible for the state. The role of the quantity 'Y will
be discussed later. From Table 5-3 it can be seen that near T 6 = 25, which is
characteristic of most CNO burning temperatures, the sequence of lifetimes is,
in increasing order.' 1'15, 1'13, 1'12, 1'17, 1'14, and 1'16. That is, the fastest-burning
species is N15, and the slowest is 0 16. In performing the calculations resulting in
Table 5-3, Caughlan and Fowler treated the electron screening in an approximate
way by arguing that for main-sequence stars one has log! "'" O.025Z1Z2• If more
exact expressions for f are used, the entries in Table 5-3 should therefore be
decreased by the amount log f - O.025Z1Z2• The lifetimes serve as a guide to
physical approximations necessary for subsequent analysis of the CNO bi-cycle.

The differential equations for the CNO nuclei are

dC12 C12 N15
-- = -Ap12HC12 + aAp15HN15 = - - + a - (5-63a)

dt 1'12 1'15

dN13 C12 N13 N13
lit = 1'12 - TIl(l3) - Tp(N13)

dC13 N13 C13
(jJ: = TIl(13) - 1'13

dN14 C13 N14 0 17
-=---+-

dt 1'13 1'14 1'17

d015 N14 0 15 0 15
(jJ: = -:;:T4 - TIl(15) - Tp(015)

dN15 0 15 N15
lit - TIl(15) - 1'15

d016 N15 0 16
--='Y---

dt 1'15 1'16

TIl(N13) = 870 sec

Til( 0 15) = 178 sec

(5-63b)

(5-63c)

(5-63d)

(5-63e)

(5-63f)

(5-63g)

dF17 0 16
(jJ: = -;;;;

d0 17 F17
(jJ: = TIl(17)

F17 F17
TIl(17) - Tp(F17)

0 17

TIl(F17) = 95 sec (.5-63h)

(5-63i)

1 Here, and in what follows, we shall use the less cumbersome notation

etc.
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(5-64)for Tp(NI3) » 870 sec

These equations include explicitly the possibility of the reactions N13(p,'Y)014,
015(p,'Y)F16, and F1i(p,'Y)Ne18, although the equations for 0 14, F16, and Ne 18 are
not displayed. If those nuclei are formed, they quickly decay to N14, 0 16, and 0 18,
respectively. But below 108OK these complications are unwarranted and allow
the first simplification of the set of equations to be made. For T < 108, the
lifetimes of N13, 0 15, F17 against protons are much longer than their beta-decay
lifetimes. Thus, for instance, Eq. (5-63b) becomes
dN13 CI2 NI3
(It "" T12 - Tp(13)

The branch to 0 14 and the equation for 0 14 are then unnecessary. A similar
situation occurs (even more strongly) for the other two short-lived positron
emitters. Since in hydrogen-burning main-sequence stars the hydrogen tem
perature is never so high as 108 OK, for most applications the approximation of
Eq. (5-64) is entirely justifiable. One should keep in mind, however, that there
may be special astrophysical circumstances in which protons may interact with
carbon at temperatures higher than 108 OK and that in those circumstances the
interaction of N13 with protons may be important. Such a situation will occur,
for instance, when protons are liberated during carbon burning. The remainder
of the discussion will be limited to the approximation T < 108 (the range of
Table 5-3).

Problem 5-19: Show that the abundance of NI3 is

NI3(t) = rp(13) C12(l _ e-t/Tp{I3»)
1"12

(5-65)

for times short enough for CI2 and rl2 to be essentially constant.

(5-66e)

(5-66f)

(5-66c)

(5-66b)

(5-66a)

(5-66d)

Equation (5-65) indicates the next approximation to the CNO bi-cycle equa
tions, for it shows that N13 approaches an equilibrium value (N13/02). = Tp(13)/T12
in times on the order of Tp. Thus after times on the order of minutes Eqs. (5-63b),
(5-63e), and (5-63h) may be set equal to zero. Then N13, 0 15, and F17 can be
eliminated from the system of equations. There results
dC12 C12 N15
--= --+a-

dt Tn T15
dCJ3 C12 CI3
fIt=T12-~

dN14 C13 N14 0 17
-=---+-

dt T13 T14 Tl7

dN15 N14 N15
--;It = ~ - T15

d016 N15 0 16
--=1'---

dt T15 T16
d017 0 16 0 17
fIt = T16 --;;;:;
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This much simplified set of equations, then, is adequate to describe the ONO
abundances after a few minutes of burning at a temperature of less than 108 oK.

Problem 5·20: Show that the sum of the eNG abundances is a constant.

The shortest proton lifetime among the ONO nuclei belongs to N15. At tem
peratures near 25 million "K, which is roughly characteristic of ONO burning
on the upper main sequence, T 15 is on the order of years. Equation (5-66d)
shows that the N15 abundance seeks the equilibrium value

(5-67)

with 1/e time equal to T15. After a very short time in hydrogen burning, there
fore, the N15 equation may also be eliminated from the set of equations. This
ratio leaves the observed N15 abundance as inexplicable in terms of hydrogen
burning, however, for (NI5/NI4). ~ 4 X 10-5 at all temperatures, whereas the
observed isotopic ratio on the earth is N15/N14 = 3.7 X 10-3• That is, the N15
abundance is two orders of magnitude greater than the residue expected from the
ONO cycle. It has been suggested many times that there may be an undetected
resonance in the N14 + p reaction, in which case (NI5/NI4). would be a larger
number. The present nuclear evidence seems to point firmly to the conclusion
used here, however, that the N14 + p reaction is nonresonant, with the cross
section factor listed in Table 5-2. The observed N15 abundance is so small,
however, that it may easily be the result of the relatively rare nonthermal
reactions (such as spallation) that are invoked in the solution of the Li-Be,..B
problem.

In spite of the linearity of the set of equations, they are somewhat difficult to
solve even with the aid of the simplifications made to this point. To reduce the
complexity to a manageable level it is helpful to notice that the complete bi-cycle
can be separated with high precision into two cycles, the ON cycle and the ON
cycle. The ON cycle is just the set of reactions in Eq. (5-59), the ones originally
proposed by Bethe and von Weissacker, This would be the· complete set of
reactions if the branching ratios were "y = 0, a = 1 (instead of "y ~ 4 X 10-4,
a ~ 0.9996) and if there Were no oxygen. Of course these two ifs are untrue,
but a little thought about the comparative lifetimes shows that the ON cycle is
independent anyway. The motivation is as follows. Since "y ~4 X 10-4, it
would take on the order of 103 complete ON cycles before a significant fraction
of the ON nuclei could be shunted off into the ON cycle. The time required
would be of order 103T H . On the other hand, the time required for a significant
amount of 0 16to be shunted into the ON cycle is of the order T16. Both of these
times, 103T 14 and T16, are several thousand times greater than the time required
for the ON cycle to come to equilibrium. To understand this requires an analy
sis of the ON cycle.



MAJOR NUCLEAR BURNING STAGES IN STELLAR EVOLUTION 397

(5-68)

APPROACH TO EQUILIBRIUM OF THE CN CYCLE

The basic equations of the CN cycle with N15 in equilibrium with N14 and with
a:=::< 1 are

dC12 = _ C12 + N14
dt T12 T14

dC13 C12 C13
(It = T12 - T13

dN14 C13 N14
(It = T13 -~

which may conveniently be written as a matrix equation

[0"] [< 0
1

][0']T14

!!:.. C13 = l:.. 1 o C13
dt T12 T13

N14 0
.l

- T~4 N14
T13

which is of the form

d- U = [A]U
dt

(5-69)

(5-70)

(5-71)

where the three components of the vector U are C12, C13, and NU, and [A] is the
3 X 3 matrix in Eq. (5-69). The solution consists in finding the three eigen
vectors of [A], defined as those vectors satisfying the equations

[A]U1 = A1U1

[A]U2 = A2U2

[A]U3 = A3U3

where the quantities AI, A2, and A3 are the three eigenvalues of [A]. From Eq.
(5-70) it follows that if U(t) is expressed as a linear combination of the eigen
vectors with exponential time dependence

U(t) = Aeh,tU
l + Beh,tU

2 + Ceh,tU
3

then Eq. (5-70) is exactly satisfied.

(5-72)

Problem 5-21: Confirm that Eq. (5-72) is a solution of Eq. (5-70). The constants A; B; and C
are evidently determined by the initial abundances: U(O) = AU l + BU 2 + CU3•

Before proceeding with this solution, we note that it is correct only if the
individual nuclear lifetimes are constant. This condition is not strictly met
because of a gradual depletion in hydrogen and the possibility of changes in
temperature. In most cases when a star has settled into a static configuration
and is obtaining energy from the CNO cycle, however, the lifetimes do not change
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very much over the length of time required to achieve equilibrium in the CN
portion of the cycle, in which case this solution is physically meaningful. What
must always be done with analytic solutions of coupled equations in nuclear
astrophysics is to make an ex post facto self-consistency check, i.e., to see whether
the assumptions leading to the analytic solution are consistent with the conditions
of the environment in which the solutions are presumed to hold. The present
case is no exception to this rule.

From elementary algebraic theory it is known that solutions for eigenvalues as
in Eq. (5-71) can be obtained only if the eigenvalues themselves are such that the
determinant of the matrix [[A] - ,,[I]] vanishes. That so-called secular equation
is, in this case, the cubic equation

- (~+ ,,) 0
1

TI2 T14

1 - (~+ ,,) 0 =0
TI2 TI3

0
1 - (~+ ,,)

TI3 T14

Problem 5-22: Show that the eigenvalues are

(5-73)

-1; +d
A~ = 2

where

1 1 1
1; ==-+-+-

T12 713 T}.4

and

(5-74)

[ (
1 1 1 )J!d == 1;2 - 4 -- +-- + --

TI21"13 7}2T14 T137H

Problem 5-23: The eigenvector belonging to the first eigenvalue (AI = 0) is determined from
the equation

(AjUl = 0 (5-75)

Show that the first eigenvector, normalized such that the sum of the components is unity, is

1 [T12]U1 = T13
T12 + T13 + Tl<

Tl<

(5-76)

The first eigenvector has the property that if CI2, CI3, and N14 exist in this
] ratio, each of those abundances is constant in time. These are the equilibrium
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abundance ratios in the CN cycle, and the fact that 1..1 = 0 corresponds to the fact
that abundances in this ratio do not change in time. Since the sum of the
abundances is constant, U1 may also be written

(5-77)

where C;2 designates the equilibrium abundance of C12. It is the other two
eigenvectors that show how the equilibrium abundances are approached.

Problem 5·24: Show that the other two eigenvectors are

[

1/~l2 ]
U. = l/r13 - (1: - /:,,)/2

1/T l2
-1 - --~:-----:-:::

1/T13 - (1: - /:,,)/2

[

- 1 _ 1/T 12

1_

(1: + /:,,)/2]
U 3 = 11TH

1/Tl2 - (1: + /:,,)/2

11TH

(5-78)

No particular normalization is needed, because the sum of the three components is identically
zero. Why should that be so?

By grouping these eigenvectors together into a solution of the form of Eq. (5-72)
we obtain

(5-79)

The eigenvalues 1..2 and 1..3 are negative, corresponding to the fact that the abun
dances decay exponentially to the equilibrium values. It is also evident that
the sum of the components of U2 and of U3 must vanish, or the number of CN
nuclei would not be constant with time. The constants Band C are determinable
from the initial abundances. It follows almost by inspection that

and

- 1/T12 B + l/Tl2 - (:Z + 11)/2 C = CI3(0) _ C13
1/T13 - (:Z - 11)/2 l/T14 e

(5-80)

These formulas represent the formal solution to the eN abundances when the
nuclear lifetimes are constant. To appreciate the time scale for the approach to
equilibrium it is best to consider a specific numerical example.
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Problem 5-25: Evaluate the eigenvalues and eigenvectors of the CN cycle for T 6 = 25 and
pXn = 25 and write the solution to the CN abundances if C12(0) = C13(0) = N14(O) = Nj3.
Ans:

[
C12 ] [00122 ] [1]

.
C13 = N 0:00305 + 0:320N 0.336 exp (-1.274 X 1O-3t)
Nt' 0.985 -1.336

0.222 [ 1 j+-20 N 240.5 exp (-4.983 X 1O-3t)
4 .2 -241.5

where t is expressed in years.

Several interesting observations can be made from the numerical results of
the previous problem. First note that for the environment of that problem,
1/1'12 = 1.25 X 10-3 and 1/1'13 = 4.99 X 10-3. Thus A2 and A3 are very nearly
equal to the reaction rates of C12 and of C13 in the proton bath. The second decay
mode corresponds primarily to the distribution of the initial C13. It is apparent
from the equilibrium vector that the end product of the CN cycle is primarily N14,
and so the only things that must be accomplished to reach equilibrium involve the
conversion of C12 and C13 to N14. Obviously that conversion must proceed at
rates determined by the C12 and C13 lifetimes. The slowest mode decays away
with a l/e time that is approximately equal to 1'12. From the table of lifetimes it
is apparent that the crucial point has been demonstrated; viz., the CN cycle
reaches equilibrium in a time of order Tl2, which is much faster than any significant
interchange of nuclei between the CN cycle and the ON cycle. Those two
interchange times are characteristically 1031'14 and 1'16.

APPROACH TO EQUILIBRIUM OF THE ON CYCLE

Because of its long lifetime, 0 16 is the slowest species to come into equilibrium in
the CNO bi-cycle. The establishment of its equilibrium involves significant
interchange of nuclei between the ON and the CN portions of the cycle. Once
equilibrium has been achieved, of course, all the abundances remain constant
thereafter.

It might be mentioned at this time that the seed nuclei for the CNO cycle are
believed to be predominantly C12 and 0 16, since these are the nuclei produced in
helium burning. Only after C12 and 0 16 have been synthesized in a previous
generation of stars can the CNO cycle operate. Of course, a young star that has
formed recently from the interstellar medium will also contain N14, N15, C13,
and 0 17. But the solar abundance ratio seems to be

CI2:N14:016 = 5.5:1:9.6

and much smaller amounts of the other nuclei. These ratios are probably fairly
representative of the entire population 1. The values of C13, N15, and 0 17 are
quite small (though uncertain) in interstellar gas, and so they clearly are not
significant seed nuclei for the cycle. The major seed nuclei are C12 and 0 16, with
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N14 a distant third. We have just seen that in the ON portion. of the cycle, the
nuclei are converted predominantly ("'98 percent) to N14 at equilibrium, which is
achieved in several 0 12 lifetimes. The 0 16will also he converted predominantly
to N14 at equilibrium but on a much slower time scale. In fact 0 16equilibrium is
often not achieved at all in the ONO cycle.

The essential points required for achieving the simplest understanding of the
ONO hi-cycle are the following; (1) for short times when the ON cycle is approaching
equilibrium the oxygen can be ignored, because only vanishingly small amounts of
oxygen can burn in the time required for ON equilibrium (except for 0 17 at high
temperature, but 0 17 is not a significant seed); and (2) for times long enough to con
sider oxygen burning, as well as the transfer of ON nuclei to the ON cycle via the 'Y

branch, it may safely be assumed that the ON nuclei have already achieved their
equilibrium distribution. With these thoughts in mind, the relevant differential
equations can be written from a new point of view. Picture in your mind's eye
the ON cycle racing around and around its track, while every now and then
('Y = 4 X 10-4) the N15 + p reaction, which in equilibrium is proceeding at the
same rate as the N14 + p reaction, produces an 0 16nucleus. The same reaction
removes one nucleus from the ON cycle, which means it removes T14/ (T14 + T12 +
T13) nuclei from N14. At the same time, there is a slow addition of nuclei into the
ON cycle by 017(p,a)NI4. Each such reaction addsT14/(T14 + T12 + T13) nuclei to
N14. Thus

dN14 T14 N14 T14 0 17

---- 'Y-+ -
dt - T14 + T12 + T13 T14 T14 + T12 + T13 T17

(5-81)

Although this equation has been carefully formulated to allow for the redistribu
tion among the ON nuclei, the care is warranted only in principle. The factor
T14/ (T14 + T12 + TI3), which is approximately equal to 0.985, might as well be set
equal to unity, considering that T14 and T17 are not known well enough (1.5 percent)
to make retention of this factor meaningful. Thus to a high degree of accuracy,
the equations for N14, 0 16, and 0 17 are

[

N14] [- T~4
.!!:.- 0 16 <=;;:

dt T14

0 17 0

o
1

T16

1
T16

(5-82)

Since Eq. (5-82) is exactly the same as Eq. (5-69), it has exactly the same solu
tion. All the eigenvalues and eigenvectors are calculable by the substitution
1/r12~ 'Y/r14' 1/r13~ 1/T16, and 1/r14~ 1/r17in the equations for the solution of
the ON cycle. The solution therefore takes the form

(5-83)
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Since this solution applies after CN equilibrium, in the evaluation of Band C the
value of NU(O) must be taken to represent the initial abundance of all the CN
nuclei. The equilibrium distribution (the eigenvector belonging to A = 0) has
components in the ratios

(

0 17) T17

016 e = T 16 (5-84)

(5-85)

The second ratio is particularly interesting since its value shows that only 1 per
cent or so of the 0 16 remains as 0 16; the bulk of it is converted to N14. This
result emphasizes the fact that the CNO bi-cycle, if it has time to achieve equilibrium,
essentially converts all the CNO nuclei to N14.

Examination of the lifetimes in Table 5-3 shows that in the higher-temperature
regions another approximation exists that further reduces the complexity of
Eq. (5-83). For T 6 > 25 the 0 17 lifetime becomes as short as the C12 lifetime,
although for T 6 < 25 the 1'17 is much greater than T12. This fact means the 0 17

will come into equilibrium with 0 16 as fast as the CN cycle comes to equilibrium
for T 6 > 25. Moreover, for T 6 > 22 the ratio (017/016). is less than 10-2, which
means that to excellent approximation, all the oxygen is 0 16and all the CN nuclei
are N14. Thus the interchange between the two cycles reduces to a single
equation:

dN14 /' 0 16 dOl6
--a:t "" - T14 N14 + T16 "" --cIt

Problem 5-26: Derive Eq. (5-85).

To 1 percent accuracy, moreover,

N14(t) + 016(t) "" const = NCN(O) + N 0(0) (5-86)

where NCN(O) and No(O) represent the initial CN abundances and oxygen
abundances, respectively.

Problem 5-27: Show that the solution of Eq. (5-85) when TI4 and TIG are assumed constant is

NCN(O) + No (0) [ (1' 1) ] ( l' 1)N14(t) = 1 - exp - - - - t + NCN(O) exp - - - - t
(/'TIGIT14) + 1 T14 TIG T14 TIG

(5-87)

Derive the formal solution if it is assumed instead that the temperature remains constant but
that the hydrogen density decreases exponentially as exp (-tITH). Estimate the value of TH.

Equation (5-87) shows in a simple way that N14(t), which represents the num
ber of nuclei participating in the CN cycle, rises from its initial value NCN(O)
to its equilibrium value N;4, because

N14 ~ NCN(O) + N 0(0)
t-H_ (/,T16/T14) + 1
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An alternative form for Eq. (5-87) is

N14(t) = N!4 + (NCN(O) - N~4) exp (- .1.. - 1-) t (5-88)
714 716

This equation presents a much simpler solution than Eq. (5-83). Of course, it is
not exact,nor is Eq. (5-83), but they are both accurate in the case of constant 7

to about 1 percent for times greater than several T12. It seems that Eq. (5-88) is
to be preferred for those circumstances for which it is valid; viz., for T 6 > 22
and t > 71i. With some thought about these solutions, the student should
acquire a good physical feeling for the operation of the eNO bi-cycle.

The equilibrium abundances themselves may, of course, be obtained from the
initial set of differential equations (5-66a) to (5-66f) by setting all time derivatives

Fig.5·13 The fractional abundance
of each eNG nucleus when the
cycle is operating in equilibrium.
[After G. R. Caughlan and W. A.
Fowler, Astrophys. J., 136:453
(1962). By permission of The Uni
versity of Chicago Press. Copy
right 1962 by The University of
Chicago.]
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Fig. 5·14 Ratios of abundances of
CNO nuclei when the cycle is oper
ating in equilibrium. [After G. R.
Caughlan and W. A. Fowler,
Astrophys. J., 136 :453 (1962). By
permission of The Univers£ty of
Chicago Press. Copyright 1962 by
The University of Chicago.]

equal to zero. The fractional equilibrium abundances are displayed in Fig. 5-13
and the ratios of equilibrium abundances in Fig. 5-14.

At this point a few summary comments regarding the abundances in the CNO
bi-cycle seem in order. Since the basic CNOequations are linear in the abund
ances, the entire set could be written as one vector equation

dU- = [A]U
dt

where the complete vector has six components and [A] is a 6 X 6 matrix. With
the aid of computers, that matrix could be diagonalized by solving for the eigen
values and eigenvectors, and complete solution could be expressed as a linear
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combination of the equilibrium eigenvector plus five exponentially decaying eigen
vectors.1 In this chapter we have sacrificed 1 percent or so in accuracy to make
a sequential treatment that is more physically instructive and adequate for any
application. For times of order T12 one need only consider the CN portion of the
bi-cycle, which approaches equilibrium like Eq. (5-79). For longer times, in
which some interchange between the CN and ON cycles can occur, it is adequate
to 'regard the CN portion as having already achieved equilibrium. Then the
solution is accurately represented by Eq. (5-83) for T 6 < 22 and Eq. (5-88) for
T6 > 22. These are rules of thumb. The bi-cycle is sufficiently complicated so
that the user should make his own approximations consistent with the use to
which the cycle is to be put. This critical judgment can be developed from the
material presented here. As a graphical example to sum up the way the abund
ances develop, Fig. 5-15 indicates the abundances as a function of time and of
protons consumed by the CNO nuclei at T 6 = 20 for an initial abundance that is

1 This solution has been performed by G. R. Caughlan, Astrophys. J., 141 :688 (1965).

N

o....
x

Q) 0.1
o
c:
Cll

"Ce
:I
.c
Cll
Q)

£
Cll

&0.01

N

o....

Time, years T(PXH )0

100
M M .... ~ ~ ~ ~ ~

0 0 000 0 0 0 0 0.... .... .... ........ .... .... .... .... ....
x x x

0.1

Protons consumed per initial nucleus

..
o.... .

x

..
o....

Fig. 5·15 The approach to equilibrium in the CNO bi-cycle as a function of the number of
protons captured per initial CNO nucleus. This particular calculation started with equal
concentrations of Cl2 and 0 16• [After G. R. Caughlan, Astrophys. J., 141 :688 (1965). By per
mission of The University of Chicago Press. Copyright 1964 by The University of Chicago.)
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50 percent 0 16 and 50 percent C12. Particularly note that 0 16 has not yet
achieved equilibrium after even 1,000 proton captures. For population I stars,
therefore, there may well be insufficient hydrogen ever to drive oxygen to equi
librium. The hydrogen is consumed so rapidly by the CN cycle that it vanishes
before the oxygen can be depleted. The formal solutions valid for constant 7

have been presented only to develop physical insight into the operation of the
cycles, and they are not correct for a real star in which X H and T both change
with time. The student will be well advised to review the second part of Prob.
5-27.

There is considerable observational evidence in stars confirming the rates of
the CNO cycle. As a result of mixing or mass loss or both many stars have
apparently exposed interior matter that was burning on the CNO cycle: Both
McKellar and Climenhaga have studied the molecular bands of the C2 molecule
in carbon stars, and from the relative intensity. of the lines of the C12_CI3 molecule
they have reported C13/02 ratios as great as t, approximately the value expected
in the CNO cycle. Note that on the surfaces of stars in general this ratio will be
expected to be much smaller than t, because the star will have formed from
matter much enriched in C12 by the remnants of helium-burning nucleosynthesis.

Wallerstein and coworkers1 have studied the hydrogen-poor star HD 30353,
whose surface ratio H/He "'" 10-4 shows that the hydrogen has been almost
completely consumed in the layer now exposed. At the same time they find
N/C "'" 103 and N/O "'" 50, a composition so nitrogen-rich that it can easily be
understood only as the remnants of the CNO cycle.

ENERGY GENERATION BY THE CNO BI-CYCLE

The rate of energy generation is the sum over all reactions of the product of the
reaction rate and the difference of the energy release (Q value) and the neutrino
loss. The relevant quantities are all listed in Table 5-2.

For the CN portion of the cycle it follows from Eq. (5-79) that at constant
temperature and constant hydrogen density

(5-89)

In this computation, the energy release is considered as occurring in three sepa
rate pieces:

CI2(p,,¥)NI3(,8+v) C13

CI3(p,'¥)N14

NI4(p,,¥)015(,8+v) N15(p,a) C12

The numerical value of ECN" is

5.534 X 10-6erg/reaction

12.093 X 10-6erg/reaction

22.453 X 10-6 erg/reaction

(5-90)

(
C12 C13 N 14)

pECN" = 5.534 .zs: + 12.093 -.-" + 22.453 -" X 10-6

712 713 714
erg cm-3sec-1

1 G. Wallerstein, T. F. Greene, and L. J. Tornley, Astrophus. J., 150:245 (1967).
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But from Eqs. (5-76) and (5-77)

and so the energy generation by the equilibrated cycle reduces to

NCN
peCNe = 4.008 + + X 10-5

7"12 7"13 7"14

407

(5-91)

The sum 7"12 + 7"13 + 7"14 is [neglecting 7"15, 7",8(NI3) , and 7",8(0 15)] called the cycle
time and is approximately equal to 7"14, since that lifetime is so much greater than
the other two.

Problem 5-28: Show that

fCN. ~ 8 X 1027 pXHXCN!NTo-! exp (-152.31To- l ) erg g-I sec-1 (5-92)

The uncertainty in this expression is about ± 20 percent, which is a reasonable measure of the
uncertainty in So for N14(p,1')OI5. The value of the temperature required to produce a given
value of fCN., however, is certain to much better than 20 percent accuracy.

Equation (5-91) displays a point that has been made many times in the liter
ature, viz., in a specific environment the energy-generation rate would be greatly
increased if there should exist an undetected resonance in the N14 + p reaction.
If that were the case, it would probably follow that 7"14 < 7"12, and the energy
generation rate would be determined by the C12 lifetime. All the available
nuclear evidence indicates that the reaction is nonresonant, however.

The second term in Eq. (5-89) is given by

peCN2 = B (5.534 U2,1 + 12.093 U2,2 + 22.453 U2'3) X 10-6 erg cm-3 sec-1

7"12 7"13 7"14

(5-93)

where U2,1' U2•2, and U2•3are the three components of the second CN eigenvector
given in Eq. (5-78) and B is one of the two initial-composition constants to be
obtained from solution of Eq. (5-80). A similar expression exists for peCN3 with
B replaced by C and U2 replaced by U3.

Problem 5-29: Return to the problem of the CN cycle at To = 25, pXH = 25, and C12(O) =
CI3(0) = N14(O) = N cN/3. Write the numerical expression for the energy generation if
NCN/H = 5 X 10-4 and p = 50.
Ans: fCN = 3.0 X 103 + 4.1 X 104e- I •27 x 1O-'t(yr) + 6.3 X 104e - 4.9 8 x 10·'I(yr).

Although the preceeding problem is of little practical value, it does reveal an
interesting feature qualitatively. The initial rate of energy generation is some
30 times as great as feNe, and after 4 X 103 years E is 'within 10 percent of feNe.
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These times are to be compared to T12 :=::: 200 years. Thus fCN is more than twice
as great as ecx- for burning times of order IOrI 2• Although this time seems fairly
short at T 6 = 25, it becomes significantly long for T 6 < 15 to be comparable to
contraction times onto the main sequence. Iben1in particular has considered in
detail the effects associated 'with the approach to CN equilibrium that occur as a
star settles onto the main sequence. In such a calculation it is usually necessary
to follow the changes of the abundances in the computer program, however.
The integral solution for the CN abundances is not correct unless the various
lifetimes are constant. As stars settle into their static main-sequence configura
tion, the internal temperatures (and hence the lifetimes) change as the CN cycle
moves toward equilibrium. Thus the lifetimes have to be recomputed at each
time step of the evolutionary sequence.

For the longer static-burning periods it is sufficient, so far as energy generation
is concerned, to regard the CN cycle as being in equilibrium. In the lower range
of temperatures, where a long time is required for CN equilibrium, the major
energy generation comes from the PP chains, whereas for those temperatures high
enough for fCN to dominate the energy generation the CN cycle reaches equilibrium
by the time the star is fully settled on the main sequence. This is not to say that
there is no interest in the effects of nonequilibrium CN abundances persisting
over long periods of time at relatively low temperature; rather, those abundances
are not significant sources of energy generation. On the longer time scales, the
only feature that need be watched relative to energy generation is the distribution
of CNO nuclei between the CN cycle (operating in equilibrium) and the oxygen
isotopes.

The solution to the energy-generation problem is derived in this case from
Eq. (5-83). In this equation N14 stands for NC N ' the number of nuclei circulating
in the CN portion of the bi-cycle. The energy generation due to that abundance
is obtained by inserting NI4(t) for NC N in Eq. (5-91). The remainder of the
energy generation is contained in the following two steps:

o16(p,'Y)F17 ({3+v)0 17

0 17 (p,a)N14

3.87 X 10-6 erg/reaction

1.91 X 10-6 erg/reaction
(5-94)

erg cm-3 sec-1

It is quite evident by comparison with Eq. (5-90) that these two reactions are
relatively low with respect to Q values. This small energy release from the
oxygen isotopes means that the energy-generation rate can be approximated by

(
NCN N CN O - N CN)

PfCNO = 40.08 + + + 5.78 X 10-6
1"14 1"13 "1"12 1"16

(5-95)

which is employable in conjunction with Eq. (5-85). If we make the rather poor
assumption in this case that the lifetimes are constant during the burning, the

I!. Iben, Jr., Astrophys. J., 141 :993 (1965).
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auxiliary condition is simply

NCN(t) ~ N CND - [NCND - NCN(O)] exp (- .2. ~) t (5-96)
714 716

It will be found that in practical applications all the energy generation effectively
comes from the first term in Eq. (5-95). Only if the initial oxygen abundance is
overwhelmingly greater than carbon and nitrogen will this conclusion be incorrect.

Problem 5-30: A newly formed star with Cl2:N14: 0'6 = 4: 1: 10 begins burning at the center
with T 6 = 25 and pXH = 25. Assuming constant lifetimes, write an expression for the energy
generation valid for t > 104 years. Assume N oNo/H = 1.5 X 10-3

• It will be seen that in
this example the energy generation triples over a period of time of about 107 years;
Ans: fONO Z 9.0 X 103 6.0 X 103 exp [-3.6 X 1O-7t(yr)] erg g-' seer",

Whether the complications of the time changes of energy-generation rates as
the various cycles approach equilibrium should be incorporated into models of
stars is a question requiring some judgment. As has been emphasized many
times, an error in the energy-generation rate may be transferred to a temperature
error in the construction of a stellar model. It is quite incorrect to think that
doubling the rates of all nuclear reactions will double the luminosity of a star,
because a star is a self-regulating machine that selects temperatures such that the
energy generation is balanced by the energy flow down the temperature gradient.

Problem 5-31: Show that the temperature dependence of the CN energy-generation rate near
T 6 = 25 is

fCN(T6) ZfON(25) (~;)'607

(5-97)

From Eq. (5.,.97) it can be calculated that a factor of3 in E can be compensated
by a 7 percent change in the temperature. When faced with an effect like that in
the previous problem, therefore, anyone constructing stellar models must ascertain
whether an error of a few percent in the temperature is important to his calcula
tion. It is more important to include all the major energy-generating effects in
the PP chains than it is in the CNO bi-cycle, because the temperature dependence
of the proton-proton reaction is much weaker than the temperature dependence
of the N14(p,')') reaction.

How far in error a naive instinct about the effect of nuclear reactions of stars
may be is illustrated by a demonstration of Donald Morton's.' He showed that
if the N14(p,')') reaction is resonant, which would cause ECN to be greater by a factor
of 102 since 712 would. then dominate the cycle, the luminosity of upper-main
sequence stars would actually be smaller by about 30 percent. The "reverse"
effect occurs because the star must have a major readjustment in structure. The
great increase in E would generate more energy than could be carried out along the
existing temperature gradient. To reduce E to compatible proportions; the
central temperature must decrease, which causes the star to expand to remain in

1 Astrophys. J., 129 :20(1959).



410

8

PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

6

o

-2

Fig.5-16 A comparison of thermonuclear power from the PP chains and the
CNO cycle. Both chains are assumed to be operating in equilibrium. The
calculation was made for the choice XCN/XH = 0.02, which is representative
of population I composition.

hydrostatic equilibrium. The attendant decrease in the temperature gradient
in radiative zones causes the luminosity to decrease. The point to be emphasized
is that considerable experience and physical insight must be brought to bear on
the question of how accurately E must be represented in stellar-structure calcula
tions to achieve a good stellar model.

In most hydrogen-burning stars the PP chain and the CNO bi-cycle operate
simultaneously. The question of which source dominates the energy generation
depends on the relative abundances of hydrogen and the CN nuclei and on the
temperature. Since

(5-98)

the quantity e!pXH 2 is a function only of temperature for PPI and is XCN/XH
times a function of temperature for the CN cycle. To present a rough idea of the
relative importance of these sources, Fig. 5-16 displays EPPr!pXH 2 when the cycle
is in equilibrium and ECN/pXH 2 for the specific value XCN/XH = 0.02. For other
values of XCN/XH the ECN curve can be moved up or down by the logarithm of the
ratio. The value XCN/XH = 0.02 was chosen because that value is fairly char
acteristic of population I composition. We note here that for XCN/XH = 0.02
the CN cycle takes over from the PP chains near T 6 = 18.

This concludes the discussion of hydrogen burning, which has been considered
in some detail, not only because of its prominence in studies of stellar structure,
but also because it illustrates many principles encountered in any nuclear burning
stage. Hydrogen burning in stars is found to occur as the central energy source
for main-sequence stars and as a shell source in later stages of stellar evolution.
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5.5 HELIUM BURNING

Some of the historical puzzles in nuclear astrophysics are very interesting. One
was discussed in the last section, the problem of initiating nuclear reactions in
stars in the face of the fact that there exist no stable nuclei composed only of
protons. With the solution of that problem it became possible to synthesize
nuclei up to A = 4 (the small number of A = 7 nuclei synthesized in PPII and
PPIII are very rare and do not survive the exhaustion of hydrogen). The
clarification of this nuclear physics suggested a solution to the problem of why He 4

should be the second most abundant nucleus in the universe. At least, there
exists the possibility that the present ratio He 4/ H ,,-, 0.1 reflects the results of
hydrogen burning in early cosmological stages followed by about 13 billion years
of star formation, death, and remixing. When scientific attention turned to the
next two most abundant nuclei, C12 and 0 16, another temporary stumbling block
was encountered; viz., there are no stable nuclei at A = 5 and A = 8. In
particular, the latter fact seemed to forbid the fusion of two alpha particles into
an A = 8 nucleus. Careful analysis showed that there exist no chains of light
particle reactions that efficiently hurdle these gaps. The fact that C12 and 0 16

are composed of numbers of protons and neutrons numerically equal to three and
four He 4 nuclei, respectively, led to the idea that these nuclei may be the results
of more-than-two-body alpha-particle collisions. As appealing as this idea was,
it encountered numerical difficulty from the very low probability of many-body
collisions. The quantum treatment of collisions showed that some special reso-

I

nant interactions between alpha particles would be required to achieve a sufficient
stellar rate. The resolution of this problem took shape from an interesting
interplay between experiment, inference, and theory.'

THE 3" REACTION

The heart of the reaction by which 3He4 ~ C12 + 'Y is the temporary formation
of Be" from two alpha particles. Although it was shown in the late 1940's that
Be" is unstable against breakup into two alpha particles, it is unstable by only
92 kev. The ground state has a width of 2.5 ev, which corresponds to a natural
Bes lifetime of 2.6 X 10-16sec. Although short, this lifetime is much longer than
the time required for two alpha particles to scatter past each other in some
nonresonant way. Thatis, each time a Be S nucleus is formed from two alphas, it
sticks together much longer than it would if the two alphas simply scattered. As
a result, a small concentration of Be" nuclei builds up in the helium gas until the
rate of breakup of Be S is equal to its rate of formation; that is, Be s comes into
equilibrium (Fig 5-17):

He 4 + He 4 p Be-

1 E. E. Salpeter, Astrophys. J., 116 :326 (1952), and Ann. Rev. Nucl. Sci., 2 :41 (1953); E. J.
Opik, Proc. Roy. Irish Acad., A64:49 (1951), and Mem, Soc. Roy. Sci. Liege, 14:131 (1954);
F. Hoyle, Astrophys. J. Suppl., 1:121 (1954); W. A. Fowler and J. L. Greenstein, Proc. Nall.
Acad. Sci. U.S., 42 :173 (1956); C. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen,
Phys. Rev., 107 :508 (1957); arid E. E. Salpeter, Phys. Rev., 107 :516 (1957).
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This equilibrium can be calculated from the resonant cross-section rate and the
breakup time of Be8• The prototype calculation was described in Sec. 4-7. This
is a case (ii) resonance inasmuch as r 2 « r l • In the laboratory r 2 = 0, since
there is no other mode of decay for Be" than into the initial channel of two alphas,
but in a dense helium gas the interaction of Be8 with a third alpha particle con
stitutes the counterpart of r 2• Therefore from Eq. (4-203) we have

v : e.
N(BeS

) = N a 2wj (21r}LkT)! exp - kT

::::: 1.87 X 1O-33N
a2j T s- j X 1O-4•64 /T , (5-99)

where T s is the temperature in units of lOS "K. At T s = 1 and p = 105 there
exists about 1 Be" nucleus for 109 He 4 nuclei. Although 1 part in 109 may seem
small, it is quite sufficient to allow a third alpha particle to interact with the Bes
nuclei:

Be" + He 4 ---7 C12 + 'Y

Even after the recognition by Salpeter of the two-stage nature of the 3a reaction,
Hoyle pointed out that the overall reaction would still not be sufficiently fast
unless the Be" + He 4 reaction were also resonant at stellar energies. Since Be"
and He 4 are both Jr = 0+ nuclei, an.s-wave resonance in stars demands that C12
have a 0+ state with energy near Eo ± 2/lEo above the mass of Be" + He 4• The
work of Cook, Fowler, Lauritsen, and Lauritsen in the Kellogg Radiation Labora
tory at the California Institute of Technology demonstrated the existence of such
a state.

Problem 5-32: Calculate Eo and AEo for Bes + He 4•

Ans: Eo = 146Ts! kev, AEo = 82T sA kev.

Fig. 5-17 The ground state of Be" is unstable against
breakup into two alpha particles.

-92 kev
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Fig. 5·18 The energy-level diagram of Cu. Alpha
particles may fuse with the transient Be8 nuclei to
form the 7.644-Mev state of Cu. This state usually
breaks up by rejecting the alpha particle, but with a
smaller probability it also decays electromagnetically
to the 4.433-Mev state.

9.64 3-

r; 7.644 0+
7.366

Be B + He 4 r,

4.433 2+

0+

(5-100)

The J» = 0+ excited state of C l2 is found to lie at a resonance energy E; = 278
kev above the combined mass of Be8 + He4• Thus the reaction Be 8 + He4--t C12
is also a resonant reaction', and its rate in stellar interiors is also calculable from
the resonant-reaction-rate formulas.

The energy-level diagram of C12 is shown in Fig. 5-18. Before applying the
reaction-rate formulas it is necessary to examine the partial widths of the C12
excited state. It so happens that this state of Cl2 breaks up almost every time
it is formed into Be8 + He4 rather than by decay to the C12 ground state via
two successive gamma rays. (The gamma decay cannot go directly to the
ground state because 0+ -7 0+ gamma transitions are forbidden.) Thus in a
star the state usually decays back into He4 + Be8• The best present estimates
of the widths are I'a "'" r = 8.3 ev and I'; = (2.8 ± 0.5). X 10-3 ev.' From the
point of view of resonant reaction rates, therefore, this resonant reaction also
falls into the case (ii) limit of Sec. 4-7 (r2 «r1) . In the spirit of that discussion,
therefore, it is possible to calculate the equilibrium concentration of C12* and
obtain the reaction rate by multiplying N(C12*) by the gamma-decay rate. It
follows that

N(C12*) = N(Be8)N
al (21r~;T)! exp - ~T

where w = 1 since the particles are all spin zero and the I, IL, and E; refer to the
Be 8 + a reaction. .

1 Fowler, Caughlan, and Zimmerman, lac. cit. These widths are measured relative to the width
for decay of the 7.64-Mev state to the ground state by the emission of a positron-electron pair.
That rate is calculated in turn by measuring the monopole matrix element for inelastic electron
scattering from Cu. Thus even an electron linear accelerator enters nuclear astrophysics in
an important way.
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Problem 5-33: Show that

h6(3)t X
N(C 12*) = N a3f aaf aBe (2trM

a
kT )3exp - kT (5-101)

where faa and faBe are the electron-screening factors for the two successive reactions and x is
the energy difference between C12* and the alpha part!cles: x = 92 + 278 = 370 kev.

Since the decay rate for C12* -7 C12 + 'Y is I''"(/h, the number of reactions per
cubic centimeter per second is (using I', = 2.8 X 10-3 ev)

1"3a...... C12 = N(C~*)r'"( = 9.8 X 10-54 ~:33 f exp - 42T~4 cm-3 sec'? (5-102)

The numerical uncertainty in Eq. (5-102) is about 60 percent, most of which is
due to the uncertainty of the total width of the C12 excited state. [The total
width r did not enter into the calculation leading to Eq. (5-102), but it does
enter linearly into the experimental determination of r '"(.] Since each reaction

zoonsumea three alpha particles, the lifetime of alpha particles against the 3a reac
tion is given by

N a == 31"3a
T3a .

which reduces numerically to

l... = 6.7 X 10-7 (pXa) 2 f exp _ 42.94
T3a T a3 r, sec-1 (5-103)

(5-104)erg g-l sec"!

The energy generation from the 3a reaction is given by the product of the rate
and the energy liberated per reaction: Q3a = [3Ma - M(C12)]c2 = 7.274 Mev.
Therefore

e3a = r3aQ3a = 3.9 X 1011 p2Xa3f exp _ 42.94
p Ta3 r,

Problem 5-34: Show that the weak-electron-screening formula for the 3", reaction is approxi
mately f3a """exp (2.76 X 1O-3p! T a- t) .

One of the most dramatic features of the 3a reaction is the very strong tem
perature dependence. Near some value of the temperature To the energy
generation rate is

.- (T)ne(T) = e(To) To

Problem 5-35: Show that n = 42.9/Ta - 3.

Thus near Ta = 1, for instance,

erg g-l sec-1 (5-105)

This very strong energy dependence means that the energy generation in a star



MAJOR NUCLEAR BURNING STAGES IN STELLAR EVOLUTION 415

will be very strongly peaked toward the regions of highest temperature. It also
means that an error of a factor of 2 in E corresponds to a very small error in the
temperature. At sufficiently high temperatureand density a helium gas is very
explosive in the sense that a small temperature rise greatly accelerates the rate
of energy liberation. In a stellar center supported by electron degeneracy, the
onset of helium burning is believed to be accompanied by just such an explosive
reaction, the so-called helium flash.

NUCLEOSYNTHESIS DURING HELIUM BURNING

The three-alpha-particle reaction suggests (from the point of view that the ele
ments were synthesized from hydrogen in stars) why it is that C12 is the fourth
most abundant nuclear species. The third most abundant, 0 16, may logically
be formed by the capture of yet another alpha particle. The fifth most abundant
is apparently Ne20 (its abundance is hard to determine), which presumably can be
synthesized by the capture of another alpha particle by 0 16. Continued suc
cessive alpha-particle captures can occur in principle, but calculation shows that
the increasing coulomb barrier severely limits the number of alpha-particle cap
tures at temperatures low enough for some helium still to remain. The main line
of nucleosynthesis during helium burning is found to consist of the reactions

3He4 -7 C12

CI2(a,"}')016

and perhaps

016(a,"}')Ne20

The C12(a,"}')016 is a nonresonant reaction; i.e., there are no 0 16states near Eo.
The reaction is presumed to occur in the tail of an 0 16state lying just below the
mass of C12 + He 4 which spreads into the positive-energy region by virtue of its
natural width, The 7.115-Mev state of 0 16 has a width of only I''Y = 0.066 ev
and has J» = 1-, so that the capture of an alpha particle into its tail must occur
by an l = 1 alpha wave. An additional complication is that the rate is prop or-

7.161

7.115
Fig. 5-19 A portion of the energy-level diagram of
0 16• The 7.115-Mev state is stable by 46 kev
against breakup into e l2 + He 4• The el2 nucleus
may nonetheless capture an alpha particle to form
the high-energy' wing of this state.
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(5-106)

tional to Oa 2 for the 7.115-Mev state, and Oa 2 is unknown for that state (it is not
actually observed to break up into 0 12 + He4 because it has insufficient energy
except on the very high-energy tail of the state). Most workers agree that it
should be safe to assume Oa 2 = 0.1 within a factor of 2. Then the Breit-Wigner
resonance shape can be extrapolated into the positive-energy region for 0 12 + He4

and an So calculated. The resulting rate

3.6 X 10-14 69.18
Aa 12 <:::: Ta2 exp Tat

should be within a factor of 2 of the correct value. The corresponding lifetime
in years is

(5-107)year"!1 1 7 1017 pXa 69.18
Ta(C12) <:::: • X T a2 exp - Tat

An interesting situation occurs in the subsequent 0 16(a,'Y)Ne 20 reaction that
illustrates several physical features of the physics of thermonuclear reactions.

30

+.+.
~2

~1

.0 ~

6.722~0.005 '"'E-

0+

5.8.0
1-

5.631~0.006

3

4.969:t0.006
2-

4.730:t .001

0 1 6 + He4

4.248:t0.006
4+

...

20

Ta

Fig. 5·20 The energy-level dia
gram of Ne 20• The arrows to the
right indicate the most effective
stellar energy Eofor the C12(a,'Y)016

reaction for several different values
of T 8. It can be seen that the ques
tion of which states of Ne 20 are
important for this reaction depends
upon the temperature.
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(5-108)

(5-109)

The relevant energy-level diagram for Ne20is shown in Fig. 5-20. Also designated
by arrows to the right of the diagram is the energy range Eo ± flEo that is the
most favored energy range for various values of the temperature of helium
burning.

Since helium burning starts at about T s = 1, for which Eo = 246 kev, it is
evident that the 4.969-Mev state falls almost at the center of the Gamow peak.
Thus that state would serve as the dominant resonance in the 0 16+ He 4 reaction
if it were allowed to do so by the nuclear quantum numbers. But the spin and
parity of that state (Jr = 2-) cannot be formed from 0 16 (Jr = 0+) and He 4

(J7f: = 0+) with any l-wave capture contributing a factor of (-1)/ to the parity.
Thus that state is "invisible" to the 0 16 + He 4 system. By an analogous argu
ment, the states at 5.63,5.80, and 6;72 Mev are allowed in the 0 16+ He 4 system.

Problem 5-36: Confirm the availability of the 5.63-, 5.80-, and 6.72-Mev states to the 0 1 6 + He 4

system and determine the required l wave of the alpha-particle capture.
Ans: l = 3, l = 1, and l = 0, respectively.

Thus near T s = 1 the 016(a,'Y)Ne20reaction will be nonresonant; the So for the
reaction will be provided by the tails of the higher-lying resonances extending
downward to the energy Eo. From the form of the Breit-Wigner cross section it
is apparent that far from the peak of the resonance, where (E - Er )2» (r/2)2,
the cross section (hence So) will be proportional to

S rar,,(
o cc (Eo _ E r)2

Because the widths of the 5.63-Mev state are so much smaller than the widths of
the other two states, it turns out that the nonresonant value of So is largely due to
the 5.80- and 6.72-Mev states. According to Reeves,' the nonresonant lifetime is
valid for 1 < T s < 2.1 and is given by (within a factor of 10)

1 1 4 1017pXa! 85.66
T

a
(0 16) = . X Tal exp - Tal

From Fig. 5-20, however, it is evident that as T a increases, a point will be reached
where the resonant reaction rate will come into play. The higher-lying states
"ill be importantwhen this reaction occurs in some later stage of nuclear burning.

Problem 5-37: Assuming that for the 5.63-Mev state r a = 6 X 10-3 ev and r"( = 4 X 10-4 ev,
show that the lifetime in years due to alpha-particle capture into this state is given by

1 pXa ! 104.6
-- = 1.9 X 1010 -- exp - --
Ta(0)16 Tsl r, (5-110)

1 Good discussions of the nuclear physics problems can be found in H. Reeves, Stellar Energy
Sources, in L. H. Aller and D. B. McLaughlin (eds.), '~Stellar Structure," The University of
Chicago Press, Chicago, 1965, and in A. G. W. Cameron, Yale Lecture Notes in Nuclear Astro
physics (unpublished).
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(5-111)

Comparison shows that Eqs. (5-110) and (5-109) become equal near T s = 2.1.
Actually the 5.80-Mev level begins to dominate when T s > 8, but such high
temperatures are apparently. of little importance in helium burning. This
reaction is a good example of the way a nonresonant reaction rate changes into a
resonant rate as temperature increases bring new compound states into play.

The lifetimes of the three nuclear species He4, C12, and 0 16 against alpha
particles are listed in Table 5-4 as a function of temperature. The density
dependence is noted explicitly, and the entries in the table are calculated without
electron screening. The numbers can be corrected for electron screening by
dividing each· entry by the appropriate value of f. It can be seen that for the
rather dense case pXa = 105 g/cm3, the lifetime of He4is the shortest of the three
over the entire temperature range listed. As the helium is depleted at p = 105,

that is, X a -> «1, or for helium burning at lower density, however, the Ct2 life
time may be shorter than the He4lifetime. The effect of the resonance in 0 16+
He 4 can also be plainly seen, because Ta(016) becomes shorter than Ta(Ct2) at the
higher temperatures in spite of the larger coulomb barrier. This table of life
times will be of assistance in understanding the properties of helium burning.

The lifetime of Ne20 against the next reaction in the chain, Ne 20(a,'Y)Mg24, has
not been included in Table 5-4. That reaction is not of much importance in
helium burning in low-mass stars, because almost no Ne20 can be synthesized
there as a result of the long 0 16lifetime. For those cases when considerable Ne20

is produced in helium burning, however, one should also add on the next reaction.
The lifetime of Ne20 against alpha particles is (from Reeves)

log [Ta(Ne 26) (p~:) yrJ = -32.3 + jlog r, + 43.73Ts- ! - 0.09Ts!

Since this lifetime is actually shorter than T a(016), the reaction should be included
if much Ne20 is produced. It prevents Ne20 from ever being the major product
of helium burning. \. . •

The interesting question for nucl~synthesis is that of the abundances at the
end of helium burning, i.e., when the helium is exhausted. Early in the burning
the main synthesis must be 3He -> C12, but since the rate of that reaction is
proportional to the cube of the helium density, the helium nuclei will mainly be
captured by CI2 and 0 16 as the helium abundance becomes small. To explore
this problem it is simplest (and reasonably realistic because very little Ne 20 will
be synthesized) to temporarily ignore all captures past Ne20 by assuming that
the capture chain ends there. Then the three reactions and their rates are

r(3He4-> C12) = A3a(He4)3

r[C12(a,'Y)016] = Aa 12He4C12

r[016(a,'Y)Ne20] = Aa16He4016

(5-112a)

(5-112b)

(5-112c)

and the differential equations for the abundances are (again using chemical
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Table 5-4 Helium-burning lifetimes

419

Ts

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

(
pX a)

2

T3a(He 4
) li)S »years

1.0 X 1012

3.9 X 109

4.2 X 107

1.1 X 106

5.2 X 104

4.1 X 103

4.6 X 102

7.2 X 10
1.4 X 10

3.4
1.0

3.3 X 10-1

1.2 X 10-1
4.9 X 10-2

2.3 X 10-2

1.1 X 10-2
5.5 X 10-3

3.2 X 10-3

1.8 X 10-3

6.6 X 10-4

2.9 X 10-4

1.4 X 10-4

7.5 X 10-5

4.5 X 10-5

2.9 X 10-5

1.9 X 10-5

pXa
T (C 12) -, years

a 105

9.3 X lOS
9.6 X 107

1.3 X 107

2.3 X 106

4.9 X 106

1.2 X 105
3.3 X 104

1.0 X 104

3.6 X 103

1.4 X 103

5.4 X 102

2.4 X 102

1.0 X 102

5.1 X 10
2.6 X 10
1.3 X 10

7.2
4.0
1.4

5.2 X 10-1

2.1 X 10-1

9.6 X 10-2

4.5 X 10-2

2.3 X 10-2

1.2 X 10-2

pXa
T (016) -, years

a 105

1.1 X 1015
7.7 X 1013

7.7 X 1012

9.6 X 1011
1.5 X 1011
2.6 X 1010

5.8 X 109

1.4 X 109

3.8 X lOS
1.1 X lOs
3.6X107

1.0 X 107

1.2 X 106

1.5 X 105
2.4 X 10·
4.4 X 103

9.3 X 102

5.6 X 10
5.0

6.2 X 10-1

9.6 X 10-2

1.9 X 10-2
4.3 X 10-3

1.2 X 10-3

symbols for number density)

dHe4

--cit = -3A3a(He4)3 - Aa12He4CIZ - AaI6He40 I6

dCIZ
(JT = A3a(He4)3 - AaIZHe4CIZ

dOI 6

(JT = AaIZHe4CIZ - AaI6He40 I6

dNe ZO
_ A H 4016--a;:- - a16 e

(5-113a)

(5-113b)

(5-113c)

(5-113d)

Actually the symbol "Nezon represents here the sum of the number densities of
Ne zo and of any nuclei formed by subsequentalpha capture (MgZ4, Siz8, etc.).
This set of equations may be followed numerically''in the time steps of an evolv
ing stellar model.

To develop an appreciation of the likely products of helium burning and the
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dependence of those results on the rates it is more instructive to examine them in
a convenient representation devised by Cameron.' His particularly illuminating
discussion runs as follows. To obtain the abundances as a function of the He 4

consumed it is appropriate to change the independent variable from time to the
He 4 abundance. For instance,

dC12 dC12/dt
dHe 4 = dHe4/ dt = -3A3a(He4)3 - Aa12He4C12 - Aa16He4016

Aa12 C12
1---

A3a (He4)2
(5-114)

(5-115)

and likewise for the other two equations. These equations are simplified by the
definition of two dimensionless temperature-dependent parameters

R Aa12 R Aa16
12= A3aHel(O) 16 = A3aHe4(O)

where He 4(O) is the initial He 4 number density, and by the definition of four
dimensionless variables

0 16
V = He 4(O)

Problem 5-38: Show that with these dimensionless quantities the differential equations are

du 1 - R12u/X
2

-=---=----:-"'--'-:::---:--
dx -3 - R12u/X

2 R16V/X2

dv R12u/X
2 - R16V/X2

-=----=:-:....---:-..::.:..,:'--~

dx -3 - R12U/X2 - R16v/X
2

dw R16V/ X2

- = --_--=.::.,.:------:--
dx -3 R12u/X

2 R16V/X2

(5-116)

Then the abundances may be obtained by numerical integration of the coupled
set of equations. When the helium is exhausted, for instance, the carbon abun
dance is given by

(0 du
u(O) = ]I dx d»

In a completely realistic calculation one more equation would be needed, one
relating the helium abundance x to the temperature. Since the quantities R12
and R 16 are functions only of the temperature [although inversely proportional to
He 4(O) also], they will change in general as the He 4 is exhausted. The relation
ship of x to T can be computed only by acomplete set of evolving stellar models,
but a good estimate of the results should be obtainable by considering helium

1 A. G. W. Cameron,op. cit. and Atomic Energy of Canada Limited Rept, AECL 454, 1957.
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Figs. 5·21 to 5·28 Abundances of C 12, 0 16, and "Ne20" produced by
helium burning as a function of the fraction of He' remaining.
These eight figures represent calculations with values of R 16 = 0.1
and 1.0 for each of the values R 12 = 0.1, 1.0, 10, and 100. As the
value of R 12 is increased; the amount of C12 that survives is de
creased. For R 16 = 0.1 or less, the 0 16 produced exceeds that of
"Ne20, " whereas "Ne20" is the greater for RIG = 1.0 or greater.
For these calculations the alpha-particle captures were artificially
terminated after capture by 0 16, so that the "Ne20" symbolizes the
abundance of Ne20 plus heavier alpha nuclei. It does not appear to
be possible that Ne 20 can actually be a major product of. helium
burning, because when "Ne20" is abundant it is largely Mg24 rather
than Ne 20• [After A. G. W. Cameron, Atomic Energy of Canada
Limited Rept. AECL 454, 1957 and Yale Lecture Notes in Nuclear
Astrophysics (unpublished).]
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burning at constant temperature, in which case R 12 and R 16 are constants and the
equations can be numerically integrated.

Cameron has performed such integrations. The results of constant-tempera
ture helium burning are computed for R 12 = 0.1, 1.0, 10, and 100, coupled with
two values of R 16 = 0.1 and 1.0, and are plotted (per initial He 4) in Figs. 5-21 to
5-28. In Fig. 5-21, 'with the smallest values of the parameters, the C12 abun
dance is initially linear but passes through a maximum as the He 4 is depleted, and
the final He 4 nuclei are scoured out by production of small amounts of 0 1 6 and
Ne 20. When R 16 is increased to unity, the C12 production is hardly changed,
as illustrated in Fig. 5-22, but the final concentration of "Ne20" exceeds that of
0 16. In both cases the end product of helium burning is primarily C12.



MAJOR NUCLEAR BURNING STAGES IN STELLAR EVOLUTION 423

0.22

0.20
R I 2 = 1

0.18

0.16 RIG = 0.1

lI) 0.14Q)
o
c:
ro

"'C 0.12c:
:::I
.0
ro 0.10
tl
:::I

"'C
0 0.08...
n,

0.06

0.04

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Helium concentration

Fig. 5-23

0.22

0.20

0.18

0.16

lI)
Q)
o
c:
ro

"'C
c:
:::I
.0
ro
tl
:::I

"'Coa:

Helium concentration



PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

0.6 0.5 0.4

Helium concentration

424

0.22

0.20

0.18
R I 2 = 10

0.16

lJ)
R I 6 = 0.1

Ql 0.14o
<::
I1l

<:l
0.12<::

::l
.0
I1l- 0.10o
::l

<:l
0
Q: 0.08

0.06

0.04

Fig. 5-l5

0.22

0.20

0.18
R I 2 = 10

0.16

R I 6 = 1
lJ) 0.14Ql
(,)

<::
I1l

<:l 0.12<::
::l
.0
I1l

0.101)
::l

<:l
0 0.08....
a.

0.06

0.04

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Helium concentration



MAJOR NUCLEAR BURNING STAGES IN STELLAR EVOLUTION 425

0.22

0.20
RI 2 100

0.18

0.16
RIG = 0.1

V> 0.14Q)
u
C
I1l

"tJ 0.12c
:::l

.Q
I1l

0.10.....
o
:::l

"tJ
0 0.08a:

0.06

0.04

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Helium concentration

Fig. 5·27

0.2 0.1 0.00.50.8 0.7

0.22

0.20

RI 2 100
0.18

0.16
RIG

V>
Q) 0.14u
c
I1l

"tJ
0.12c

:::l
.Q
I1l..... 0.10o
:::l

"tJ
E 0.08a.

0.06

0.04

Helium concentration



426 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

In Figs. 5-23 and 5-24 the parameter R 12 is increased to unity. This change
increases the rate of C12(a,'Y)016 relative to r3a such that the final product is not
predominantly C12: with R 16 = 0.1 it is predominantly 0 16, and with R 16 = 1.0 is
mostly "Ne20," "with 0 16 and CI2 not far behind.

When R 12 is increased again to 10, the CI2 is only the dominant product early
in the burning, and none of it survives to the end. With R 16 = 0.1 the results
are nearly equally 0 16 and "Ne20," but with R 16 = 1.0 the results are entirely
"Ne20." In these cases, of course, the Ne20(a,'Y)l\Ig24reaction should be included.
Whenever the final "Ne20" exceeds 0 16, the "Ne20" (which really stands for the sum
Ne20+ I\Ig24+ Si28+ ...) is predominantly Mg24, since the Ne 20 lifetime is
shorter than the 0 16lifetime. It is doubtful whether Ne20itself can ever be the
major product of helium burning. The major end products are C12, 0 16, or Mg24,
depending upon the values of the R's. The final Ne 20 abundance probably can
not exceed 15 percent by mass. This is a very interesting result, because the
Ne 20 abundance is very near the CI2 abundance in most astronomical objects.

The results of "increasing R 12 to 100 are self-evident in Figs. 5-27 and 5-28.
By interpolating among these eight figures a good appreciation of the depend
ence of the end products on the parameters R 12 and R 16 can be obtained. When
temperature changes are included in the calculation, one finds that the appro
priate values of R 12 and R 16 are those nearer the end of helium burning than the
beginning-but not too near the end. (When the alpha particles are almost
gone, the temperature does not matter, because there cannot b.e enough addi
tional captures to alter the composition further.) In summary, C12 will be the
major final abundance if R12 is much less than unity, and the major uncertainty
in R12 lies in the uncertainty of the dimensionless reduced width Ba 2 for the
7.12-Mev state of 0 16. If R 12 is of order unity or greater, the final products are
predominantly 0 16, Ne20, and lVIg24. If R 16 is about unity or greater, the final
products are mostly IVlg24 with some Ne20. A particularly good discussion of
this problem from a slightly different approach can be found in an account of
the burning of pure helium stars by Deinzer and Salpeter.1

The values of R 12 and R16 can be c~uted for any temperature and density
from their" definitions. Of course, almost any values may be obtained for arbi
trary choices of temperature and density. To understand what the likely results
of helium burning in stars are requires some restriction to the range of tempera
tures and densities relevant to helium burning. Cameron has found an interesting
way to display the relevant range. From the luminosities of stars believed to be
burning helium (giants) and from models of helium-burning stars it is known that
energy-generation rates on the order of 102 to 108 ergs g-l seer" are required in
the various burning phases. The exact value of e depends, of course, upon the
mass of the star and the location of the interior point. Equation (5-104) has been
plotted in Fig. 5-29 in such a way as to show the locus of temperature versus
density with X; = 1, resulting in a given energy generation. Stars near one solar
mass must have e ,-...J 102to 104ergs g-l sec"? and burn at relatively low tempera-

1 W. Deinzer and E. E. Salpeter, Astrophys. J., 140 :499 (1964).
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Fig. 5-29 The locus of points in the temperature-density plane resulting in a
given value of the energy generation. The values of E labeling the curves span
those of primary significance for helium-burning stars.

ture T s t'J 1.0 to 1.2 and relatively high density p t'J 104 to 105• On the other
hand, stars of 10 solar masses and more require E t'J 106 to lOB and burn at higher
temperatures T s = 2 to 3 and lower densities p t'J 102 to 103• For a given rate of
energy generation, the parameters R 12 and R 16 are functions only of the tempera
ture, and they are so displayed in Figs. 5-30 and 5-31. For a one-solar-mass star
with E ~ 104 and Ts ~ 1 the value of R12 is near unity. The earlier curves show
that this value of R 12 is near enough to the dividing line between C12 and 0 16

production to make it clear that the final product cannot be emphatically stated.
It appears likely that both C12 and 0 16 are produced in significant amounts by
stars of moderate mass but that the final product is almost entirely 0 16 for
mr > lOmr<:j. Figure 5-31 shows that for the same star the value of R 16 is almost
vanishingly small, which means that no N e20 can be produced. From the same
figure it can be seen that the large value R16 > 0.1 required for appreciable pro
duction of Ne20 and heavier nuclei occurs only at high temperatures, which
automatically restricts their synthesis in helium burning to massive stars (say
mr» 20mr0 ).l

1 In detailed calculations of the evolution of a 15mI0 star through He 4 burning, Iben finds that
the final weight fraction of Ne20 at the center is only 1 percent; Astrophys. J., 143 :516 (1966).
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These general results are quite important for the interpretation of the following
abundance ratios: '

CI2:N14:016:Ne20:M g24 = 5.5:1.0.:9.6:5:0.3

The N14 is included because its synthesis is presumed to be due to the operation of
the CNO bi-cycle upon the C12 and 0 16which were synthesized in helium burning
in another star. That interpretation of the N14 abundance can be correct if, from
the above ratios, about 6 percent of the C12 and 0 16has been reincorporated into
another star burning' on the CNO cycle and ultimately rejected (without destruc
tion) back into the interstellar medium. If 6 percent of the C12 + 0 16is to have
that fate, a considerably larger amount must actually have been remixed into
later-generation stars, for the bulk of the N14 produced in the CNO cycle will
probably not be ejected intact into the interstellar medium; most of it 'will be
destroyed in later burning phases of the same star in which it was synthesized.
The abundance of N14 is regarded (from the point of view of stellar nucleo-

'Fig. 5-3D The value of the
parameter R' 2 as a function
of temperature for several
values of the energy genera
tion. The important value
R 12 = 1 lies near the center
of the expected requirements
for helium-burning stars.
[After A. G. W. Cameron,
Yale Lecture Notes in Nuclear
Astrophsjsic« (unpublished).]

Temperature, 10 8 • K
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alpha particles during helium
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synthesis) as a remixing problem in the chemical evolution of the galaxy. It is
worth adding at this point that the same remixing ratio is not adequate to account
for the abundances of Q!3 and N15, which are terrestrially found to be C13/C 12 = lo
and N15/N14 = rls.

Problem 5-39: Show that the remixing ratio necessary to account for the N14 abundance
results in a ratio CI3/C12 = 10-3, a full factor of 10 less than the terrestrially observed ratio.
(The solar ratio appears to be less but is not well known, so that the solar C13/C12ratio may be
consistent. with the simple remixing idea, in which case a special source for enhancing the
terrestrial C13 by a factor of 10 must exist.!

One may try to interpret the remainder of the abundances as remnants of
helium burning. No particular difficulty results from the ratio 016/C12 = 1.7,
especially if Oa 2 (which enters linearly in R 12) for the 7.12-Mev state of 0 16 is
smaller than 0.1. Such an 016/C12 ratio may well be the logical consequence of
helium burning in the spectrum of stellar masses. The abundances of Ne20 and
Mg24 present severe problems, however. There seems to be no way to produce
Ne20 with roughly half of the 0 16 abundance without simultaneously creating
more Mg24 than Ne20. It 'would seem to require that some reaction rates be in

1 See, for example, Fowler, Greenstein, and Hoyle, lac. cit., for a detailed suggestion.
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(5-117)

error if the abundances are to be the result of He burning. The difficulty lies
with the high abundance of Ne20. Either the Ne20abundance is an overestimate
(by a factor of 10 or so), or one must conclude that it is probably not the result
of helium burning. The situation could be eased by a large increase in the
016(a,'Y)Ne20 reaction rate, but there is no indication in the nuclear data on Ne 20

suggesting such a possibility. In summary one can only say that these abun
dances are not easily explainable in terms of helium burning, but the knowledge
of nuclear physics and of stellar evolution is not secure enough to claim a definite
conflict.

The uncertainty in the products of nucleosynthesis during helium burning
causes a corresponding uncertainty in the subsequent evolution of the star. If
C12 is a substantial remnant, the next nuclear burning phase will be from inter
actions of carbon with itself. If little C12 is produced, that burning phase will
be omitted, and the star will progress directly from helium burning to oxygen
burning. If substantial Ne20 can be produced in helium burning, moreover,
there will be a special burning phase involving the photodisintegration of Ne 20.

At the time of writing the indications are that C12 and 0 16are both produced but
that Ne20 is not.

The question of energy generation in helium burning is a complicated one. In
principle it is easy enough, for all one must do, as usual, is multiply the rate of
each reaction by the energy release and then sum. By far the best technique is to
actually do this in a computer subroutine in the construction of stellar models.
Since all the rates have already been given, they need only be multiplied by the
Q values:

Q(3a -7 C12) = 7.274 Mev

Q(CI2 -7 0 16) = 7.161 Mev

Q(016 -7 Ne 20) = 4.73 Mev

Q(Ne2° -7 1VIg24) = 9.31 Mev

At the beginning of burning the energ~enerationis due entirely to the 3a reac
tion, and e is as given in Eq. (5-104). After sufficient He 4 depletion and C12
buildup the rate of the C12(a,'Y)016 reaction becomes as great as the rate of for
mation of C12 with the effect that e ~ 2€a". As the helium is further exhausted,
the 3a reaction becomes an insignificant portion of the energy generation. There
seems to be no general way of expressing this change easily, and it seems best to
compute € in the computer program in terms of the composition.1

5·6 ADVANCED BURNING STAGES

When the helium burning ceases to provide sufficient power to the star, gravi
tational contraction begins again. By the virial theorem the temperature of the

I Deinzer and Salpeter, op, cii., present a graph of the correction factor to '3" as a function of X"
for pure helium stars.
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helium-exhausted region rises during the contraction, which continues until the
next nuclear fuel begins burning at an adequate rate or until electron degeneracy
provides enough pressure to halt the contraction. Stars more massive than
0.71110 must contract until the temperature is large enough for carbon to inter
act with itself, although less massive stars may settle into degenerate white
dwarf configurations.

Following helium burning the most abundant nuclei in the gas are expected
to be C12 and 0 16, although in relative amounts that are somewhat difficult to
predict with certainty; but both will be abundant in most stars. Essentially
all the initial hydrogen and helium has been converted into these two nuclei,
which are therefore far more abundant than the traces of the original heavy ele
ments. Because the product Z1Z2 is smallest for the case of carbon interacting
with itself, one expects that reaction to be the next to burn at a significant rate.

The combined mass of C12 + C12 falls at an excitation of about 14 J'IIev in the
compound M g24 nucleus. At this high excitation energy in Mg24 there exist
many compound nuclear states. Furthermore, the most effective range of stellar
energies, .el, is nearly 1 Mev broad, so that a large number of resonances may
contribute significantly to the reaction rate.

Problem 5·40: What are the spins and parities of Mg24 states that can resonate in the Cl 2 + cn
system?
Ans: J1r = 0+, 2+, 4+, ....

Because the centrifugal barrier has relatively small effect on penetration fac
tors for massive nuclei, even the large-angular-momentum resonances may be
important. The properties of all the relevant resonances are not easily deter
minable, furthermore, so that some statistical analysis of the compound nucleus
must be employed. Basically one assumes that the cross-section factor observed
at the higher energies observable in the laboratory is not greatly different from
the average over resonances in the astrophysical region of energies. Unfortu
nately an intensive study of this reaction at the lowest energies achievable in the
laboratory has not yet been made.

One complication for this reaction that has not been encountered in the earlier
burning stages is a multiplicity of energetically allowable reaction channels:

Reaction Channel Q, 111ev

C12 + C12 -t l\Ig24 + 'Y 13.930

-t Na23 + p 2.238

-t Ne20 + a 4.616 (5-118)

-t l\Ig23 + n -2.605

-t 0 16 + 2a -0.114

A..LtlliUempetature of 6 to 7 X 10!~K, wheDLthJL.QJ1J:b_oJLbJ.)gins to react with
itself,--the-neutron::rrbffi-a:trr;g reaction req]1kes-too.-Ill.uch_2..!!-rticle_e~ergy·to·be
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(5-121)

very important. Laboratory experiments at higher energy show that the electro
magnetic channel, M g24 + 'Y, and the three-particle channel, 0 16+ 2a, have low
probability in comparison with the two-particle channels, Na23+ p and Ne 20+ a,
which occur with nearly equal probability. Thus the direct products of the car
bon reaction are believed to be Na23, Ne20, protons, and alpha particles. Accord
ing to Reeves, the rate of C12 reactions per pair is

36.55(1 + O.ITg)! 2
log 1.12,12 = log !t2,12 + 4.3 - T

g
! - slog T g (5-119)

where T 9 is the temperature in billions of degrees Kelvin. This value of "12,12 is
judged to be within a factor of 10 of the actual value.

Arguments of nucleosynthesis and, to some extent, energy generation during
carbon burning depend upon the fate of the liberated protons and alpha particles,
'which will certainly be consumed quickly at the temperatures of carbon burning.
There are many possible alternatives;' solution of which requires numerical analy
sis of the rates in a reaction network. Most of the protons seem to be captured
by 012, thereby forming N13, which usually beta-decays to C13. The C13 reacts
with liberated alpha particles by the reaction C13(a,n)016. The net effect of this
important sequence is the conversion of the free proton into a free neutron while
converting C12 and He4 into 0 16. The C13 builds up a rather high abundance,
roughly 1 percent of the initial C12 concentration, shortly after the carbon reac
tions begin. The free neutrons are available for capture by all the species in
the gas, a very important circumstance for the synthesis of heavy elements by
neutron-capture chains (see Chap. 7). The alpha particles are also captured by
C12, 0 16, Ne20, and Mg24. By the end of carbon burning the initial C12 nuclei
have been converted primarily to 0 16, Ne20, Na23, Mg24, and Si28. It seems likely
that this burning phase is a major source of Na23 and perhaps also of Mg24.
Reeves and Salpeter found a synthesis ratio Na23:Mg24 in the range 1: 2 to 1: 5,
rather larger than the ratio of about 1: 20 observed in nature. It is a very diffi
cult problem, however, to estimate the products, especially since only those
returned to the interstellar medium are actually observed.

These secondary reactions greatly augment the energy released by the initial
carbon reaction. Reeves has estimated that each C12 + C12 reaction liberates
an average of about 13 Mev. The corresponding energy generation is

pe; <::< (20.8 X 10-6ergjreactiOn)1"12,12
(C12)2

= 20.8 X 10-6"12,12 -2- (5-120)

In terms of the C12 weight fraction one obtains

Ee <::< 2.6 X 1040pX122A12,12 ergs g-l sec-1

We note that the temperature is sufficiently high so that in this and all subsequent
nuclear burning stages the role of neutrino emission must be examined with care ..

1 A good published discussion is H. Reeves and E. Salpeter, Phys. Rev., 116 :1505 (1959); also
H. Reeves, Ph.D. thesis, Cornell University, Ithaca, N.Y., 1960.
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Reactions between C 12 and 0 16 are not important. At the carbon-burning
temperatures the larger coulomb barrier (Z lZ2 = 48 instead of 36) renders the
rate too slow to be of importance. The carbon is nearly completely exhausted by
the time the temperature has risen to a sufficient value for C12 + 0 16 reactions.
The next reactions are those between 0 16 and 0 16 (although photodisintegration
rearrangement of Ne 20 happens at about the same temperature). For reactions
between two 0 16 nuclei the energetically accessible channels are

Reaction Channel

0 16 + 0 16
-? 832 + 'Y

-? p31+ p

-? 83l + n

-? 8i28 + 0:

-? I\1g24 + 20:

Q, Mev

16.539

7.676

1.459

9.593

-0.393

(5-122)

This reaction network is similar to that of carbon burning. A slightly larger
network of secondary reactions is involved, and the major nuclei are more
massive. Because of the larger coulomb barrier, the reaction occurs near T g = 1, .
and the major final nucleus synthesized appears·t5jYe·8i~lthougha wide range
of reaction products survives. The rate is given to an order of magnitude by

59.02(1 + 0.14Tg)! 2
log A16,16 = log fr6,16 + 17.9 - T

g
1 " - "3 log T g (5-123)

The nuclear energy generation is

ergs g-l sec" (5-124)

Neutrino losses "ill be high during oxygen-burning phases, so much so that most
of the energy generated is radiated in the form of neutrinos. In fact the oxygen
must burn at temperatures in excess of T» = 1 to replace the heavy neutrino
losses. An extensive study of the competition between oxygen burning and
neutrino losses in massive stars has been made by Fowler and Hoyle.' Both the
time scale and the internal temperature of the oxygen-burning stage depend upon
whether lthe (ell)(jie) term in the weak-interaction hamiltonian exists with the same
strength as is shared by the known weak interactions.

5·7 PHOTODISINTEGRATION

At the temperatures encountered in carbon and oxygen burning a new type of
nuclear reaction becomes important, the disintegration of nuclei by the thermal
photon bath. The process is an exact analog of the ionization of atoms with
increasing temperature near 104 "K, the difference being that the particles are
bound together by the nuclear force and with such large binding energies relative

1 Astrophys. J. Suppl., 9 :201 (1964).



434 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

(5-128)

to atomic binding energies that nuclear disintegration can occur only at very high
temperatures.

The photodisintegration rates are related in a very simple way to the inverse
radiative-capture reactions. We have written the radiative-combination rate
of nuclei 1 and 2 as 1"12 = nln2Al2. Let us now designate the rate at which the
composite nucleus 12 is photodisintegrated into 1 and 2 by r; = nI2A-y. We seek
here the value of A-y. It could be calculated without much difficulty by a calcula
tion similar to the one that yielded the thermonuclear reaction rates, but is is
somewhat simpler to appeal to the conditions that would prevail in thermo
dynamic equilibrium. If the gas were allowed to sit for a sufficient length of
time to establish thermodynamic equilibrium, the concentrations nl, n2, and n12
would achieve equilibrium values such that the combination and disintegration
rates would be equal,

A,.(nI2). = (nl).(n2).AI2 (5-125)

and such that the Saha statistical relation would apply,

(
n 1n 2) = (211"JL~T)t G1G2 exp _ !L (5-126)
n12. h G12 kT

Here JL is the reduced mass of 1 and 2, G is the nuclear partition function, and Q is
the binding energy of 1 to 2. The thermodynamic equilibrium may never be
achieved in a given astrophysical environment, but the photodisintegration rate,
which depends only upon the photon density, must nonetheless be given by

). (211"JLkT)t G1G2 ( Q) ).
I\-y = h3 G

12
exp - kT 1\12 (5-127)

The advantage of writing the rate in this way is that all the nuclear properties
(except the statistical weights and Q values) are contained in the calculation of
1..12. The previous results on radiative-capture rates may thus be inverted into
photodisintegration rates. The rate per pair, 1..12, must of course be evaluated at
the temperature for which A-y is desired. Numerically we have

i; = 5.943 X 1033~~2 (ATg)t exp ( - 11.~~5Q) 1..12

where A is the reduced atomic weight and Q is in Mev.
Probably the first photodisintegration of importance is that of N13, formed

when C12 captures a proton liberated in carbon burning. If Tg > 0.75, it turns
out that the photodisintegration of N13 is faster than its beta decay, with the result
that the C13 concentration is sharply reduced, as is its eff~ctivenessas a source of
free neutrons. It turns out that most carbon-burning stages are at T» > 0.75,
moreover.

The role of photodisintegration becomes very important in oxygen burning and
later phases, however, which probably occur at 'I', > 1 if the (ev)(iie) neutrino
terms exist. At such high temperatures many nuclei become subject to photo-



MAJOR NUCLEAR BURNING STAGES IN STELLAR EVOLUTION 435

disintegration. The first major disintegration phase is the Ne 20 :

"f + Ne 20 --7016 + a (5-129)

At Tg > 1 the capture, and hence the photodisintegration, is dominated by the
5.63-Mev:level in Ne20

, shown in Fig. 5-20.

Problem 5-41: Using the results of Prob. 5-37, show that the photodisintegration rate of Ne 20 is

28.4
log A.y{Ne20

) = 12.7 - T; (5-130)

Around Tg ~ 1.3 this rate becomes greater than the rate for 016(a,"f)Ne 20,

whereupon the Ne20 is effectively disintegrated. The liberated alpha particles are
probably captured primarily by the remaining Ne20, so that the net effect is

2Ne 20 --7 0 1 6 + 1\1g24 + 4.583 Mev (5-131)

The corresponding energy generation is

ergs g-l sec-1 (5-132)

There may be a quite significant Ne 20 abundance as a by-product of the previous
carbon-burning state, so that a significant amount of energy may accompany this
particular photodisintegration and rearrangement. The reaction also has some
interesting implications for nucleosynthesis. Since the Ne20 is destroyed around
Tg = 1.3, it must have been ejected from the star before that temperature was
achieved. If the Ne 20 is in fact synthesized primarily during carbon burning,
those carbon-burning remnants must be rather quickly ejected, an awkward
requirement for carbon burning at the center of a star. The relevant carbon
burning stage for nucleosynthesis is probably one in a shell surrounding an even
more advanced core of a star in the terminal phases of its lifetime.

At the conclusion of oxygen burning the gas continues to heat up. The sub
sequent nuclear reactions are primarily of a rearrangement type, in which a
particle is photoejected from one nucleus and captured by another. The effect
of such a rearrangement network is that of converting nuclear particles to their
most stable forms. There exists a maximum in the binding energy per nucleon
at the nucleus Fe 56 ; thus the rearrangement attempts to convert oxygen-burning
remnants into nuclei in the vicinity of Fe 56• The time scale for this conversion is
controlled primarily by the photodisintegration of Si28• Many exciting problems
are associated with this terminal stage of nuclear burning. The aftermath of that
holocaust will be discussed briefly in Chap. 7.



chapter

CALCULATION OF
STELLAR STRUCTURE

The preceding chapters have introduced the basic physical principles from which
one can attempt to compute numerical models of stars. The complexity of the
physical principles used in such calculations has generally been restricted to a
minimum. Whereas real stars frequently occur in binary pairs, have observable
magnetic fields, and rotate, almost all model studies of stellar evolution have
ignored the special physics of these perturbations. This seems a reasonable
procedure, especially since it can be argued that the corresponding physical
effects on most stages of stellar evolution are not terribly great, and, moreover,
there seems to be as yet no general way of including these effects, which are
really not well understood. The clearest approach parallels the historical one,
and with the exception of some comments to be found in later sections of this
chapter, we shall consider the problem of an isolated nonrotating nonmagnetic
spherical mass of gas held together by gravity. Such gas spheres have been shown
by many investigators to have properties nearly identical to those of stars.
Subsequent inclusion of additional effects can be thought of as a perturbation to a
realistic model of a star.

The relationships to b13 satisfied by the physical variables of the stellar model
can be assembled from the preceding chapters. The internal pressure is related
to the local weight and acceleration by

(6-1)

where rp is the position of the mass element p and is thought of as moving with it.
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The last term vanishes for a star in hydrostatic equilibrium.
represents the mass enclosed within a sphere of radius 1':

dM _ A~2
--':rlft P
dr

437

The function M(?')

(6-2)

(6-3b)

The mass and density are here regarded as rest masses, but relativistic effects! do
alter the equations and the meaning of the variables in extreme astrophysical
conditions.

Once the star achieves hydrostatic equilibrium and there is negligible kinetic
energy in-collective mass motions, the conservation of thermal energy will require

d~;r) = 41rr2p [lO(r) - T ~~] (6-3a)

where L(r) is the energy emerging each second from the sphere of radius r, lO(r) is
the power generated per gram of matter by nuclear reactions, and S is the entropy
per unit mass. The energy source lO may be negative if the dominant reactions are
endothermic. Before applying Eq. (6-3a) to stellar structure one must decide
how one will do the bookkeeping on energy losses in the form of neutrinos. As it
stands, the power L(r) in Eq. (6-3a) contains the neutrino power as well as the
thermal transport. It is more convenient and common, however, to transfer the
neutrino component of L to the right-hand side of the equation, where it plays the
role of a negative lO, viz.,

1 dLv(r)
lO = ------v 41rr2p dr

This meaning will be followed from here on, viz., that the neutrino power produced
per gram will be regarded as a negative contribution to e, whereas the symbol L will
represent only the thermal luminosity. This system is the one that has been used
in most research papers in the field.

The thermal luminosity L(r), being the by-product of the mechanisms of
thermal-energy transport, is related to the temperature gradient. If the material
is in radiative equilibrium, the temperature gradient is related to the luminosity by
the diffusion approximation to radiative transfer;

dT 3 Kp L(r) (6-4a)
dr = - 4ac T3 41rr2

If the temperature gradient required is excessive, the matter becomes convectively
unstable. The material mixes nearly adiabatically, i.e., such that dS(r)/dr "" O.
The corresponding temperature gradient is
dT I's - 1 T dP .
dr = --r;- P dr (6-4b)

Equation (6-4b) is used in place of (6-4a) whenever the magnitude of dT/dr
calculated from (6-4a) exceeds that calculated from (6-4b). Stated another way,

1 See K. S. Thorne, The General-relativistic Theory of Stellar Structure and Dynamics, in L.
Gratton (ed.), "High-energy Astrophysics," Academic Press Inc., New York, 1966.
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one uses whichever temperature gradient is smaller in absolute magnitude.
Equation (6-4b) is often inadequate near the stellar surface, however.

These four equations govern the stellar structure, which is considered as solved
when the functions P(r), p(r), T(r), 1l1(r), and L(r) are specified. The solution
for these five structural variables involves also five specific functions of the local
thermodynamic state:

P = P(p,T, {Xz })

K = K(p,T, {X z })

E = E(p,T, {Xz })

S = S(p,T,{Xz })

r, = r2(p,T , {X z })

where {Xzl represents the set of composition parameters. The specific forms of
these functions depend upon the physical circumstances. Although they may be
complicated, these functions are explicitly and uniquely defined in the state of
local thermodynamic equilibrium. It should be noted at once that the existence
of the first of these functions, the equation of state, means that three of the struc
tural variables, P, p, and T, are not independent of each other. From the point
of view of the differential equations, the five functions to be specified are actually
only four in number.

The differential equations involve both space (structure) and time (evolution).
The time enters in Eqs. (6-1) and (6-3). Fortunately the second-order time
derivative in Eq. (6-1) is too small to be of significance except in stars in a state
of free fall or explosion. Inasmuch as G1l1/r2 is the local value of the gravi
tational acceleration, the mass accelerations must be comparable to g to be of
importance. This term will accordingly be set equal to zero for the following
discussion, although it must be reintroduced in certain dynamical situations.
The first-order time derivative of Eq. (6-3) is, however, essential to calculations
of stellar evolution. It can be ignored only in the long-lived static phases of
stellar evolution. But when a star contracts or expands, even at a modest rate,
that time derivative becomes important. It is called a gravitational energy source
in some research papers, although that terminology is not entirely appropriate.
The importance of this time derivative is an essential complication because it means
that the structure of a star cannot be computed without specific knowledge of the star's
previous history. The structure of a static star (none really exist) can be com
puted by setting the time derivative equal to zero, but for a star that is changing,
the structure depends not only on the values of all the physical variables but also
upon how fast they are changing.

6·1 BOUNDARY CONDITIONS

What is it, we might ask, that one tries to calculate in an attempt to interpret
a star? First of all it should be clear that one does not try to compute the
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(6-5)

So two boundary conditions

structure of a given star-Deneb, say, or Sirius A, or Capella. For one thing,
the relevant physical quantities of very few stars are completely known. Even
if one knew the mass, radius, luminosity, and surface composition of a star, one
would not know its age. Without knowing the extent of a star's evolution, one
could not hope to know the interior composition. The accepted operational pro
gram is the following. For a given stellar mass and composition, a sequence of
models describing the star as it ages is computed. This procedure is repeated
for a spectrum of masses and compositions, whereupon an attempt can be made
to locate each observed star in the resulting mass-age grid. Many subtle features
come into play in this semiempirical correlation, but the upshot is, for the present
discussion, that the calculations are begun with the selection of a mass for the
model. This choice immediately gives one trivial, and worthless, boundary con
dition, viz., M( (0) = ;m, where ;m is the mass of the star. (In this chapter we
shall use ;m and £, for the surface values of M and L, respectively, although this
convention was not adhered to in Chap. 1.) This condition is not at all what is
desired, for presumably the stellar atmosphere terminates rather abruptly at
some value r = R for which J.ll(R) =;m. But the value of this radius is not
known in advance; in fact, the value of R is one of the desired results of the
calculation.

Consider the stellar center, on the other hand. For a small sphere of radius or
located there we have

4Ir
M(or) = "3 (M)3pc

L(or) = ~ (or)3pc (ec - t: d~c)

both of which must vanish as or approaches zero.
at the center must be

r = 0: M(O) = 0 L(O) = 0 (6-6)

There can be no more central boundary conditions because, clearly, the values of
the central pressure P, and of the central temperature T; are to be results of the
computation. If the calculation were in fact started by specifying P, and T c,

one would obtain the mass of the star only as one of the results of the compu
tation, a rather hit-and-miss arrangement if one does in fact want to evolve a
star of a given mass.

To achieve simultaneous solution of the four first-order differential equations
for a given mass, it is necessary to prescribe the two additional boundary con
ditions at the surface. This is somewhat troublesome in that one does not know
in advance the radius R of the photosphere or the photospheric temperature and
pressure, which together constitute the real boundary conditions. Fortunately
this problem is not so serious as it might seem, for it turns out that the internal
structure of the star is not overly sensitive to errors in the photospheric values,
at least for surfaces in radiative equilibrium. For such stars the internal varia-
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(6-7)radiative

bles converge rapidly to the correct values for any reasonable choice of photo
spheric temperature and pressure. This rapid convergence occurs in radiative
envelopes because the opacity behaves appropriately, as can be seen by the follow
ing argument. If Eq. (6-1) is divided by Eq. (6-4a), one obtains

dP 167racG.il1(1') T3
dT = 3L(r) -;

Near the surface kl and L are constant and equal to their surface values, so that

dP = A T3 A = 167racG~ = 1.33 X 10-10 ~/~0 (6-8)
dT K. 3£ £/£0

Problem 6-1: • Show that if the opacity can be written in the form

(6-9a)

valid near the surface, then the pressure and temperature differ from their photospheric values
P, and T. according to

(6-9b)

From Eq. (6-9b) it will be clear that if 1 + a and 4 - 'Yare both positive, the
first terms on each side of the equationwill dominate when P and T exceed P e

and 'I'; by only modest amounts. Thus the relationship between P and T rapidly
becomes independent of P; and T, as we proceed inward from the photosphere of
a star in radiative equilibrium. Because convective instability occurs in the
hydrogen ionization zones because of their very great opacity, the stars with
radiative surfaces are those for which hydrogen is predominately ionized (Te >
8000°I{). Under such conditions, the quantities 1 + Ci. and 4 - 'Yare in fact
both positive. Because the interior structure is then insensitive to the surface
conditions, it is common to choose the simplest possible choices for the surface
boundary condition:

r = R: P = 0 T=O radiative surface (6-10)

The choice of Eq. (6-10) is commonly referred to as the zero boundary conditions.
The justification for its use is that it correctly describes the interior, although it is
clearly no description of the observed surface. The computed model may be
placed at the appropriate point in the H-R diagram by the following reasoning.
Consider again the radiative temperature gradients of Eq. (6-4a). This equation
requires that the temperature drop rapidly near the surface, because the com
bination K.p/T3 becomes very large as T approaches zero in radiative surfaces.

"For that reason the artificial boundary condition T = 0 introduces no significant
error in the computed radius R. Because the internal structure has been accu
rately computed, moreover, the luminosity £ is well known and is equal to the
total power emerging from a sphere well below the photosphere. Since £ and R
are both known, the effective surface temperature computed from the Planck.
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(6-11)

equation is

.e
IJ'T.4 = 41rR2

which is accurately given by the zero boundary condition. Inasmuch as the
calculated model yields the observable properties n, R, ;m, and T., the zero bound
ary condition is adequate for the stars on the upper main sequence.'

For stars in the lower range of surface temperatures the situation is somewhat
more complicated. If the hydrogen is largely neutral at the surface, the opacity
is quite large beneath the surface, with the result that convection will generally be
required to transport the luminosity to the surface. The temperature gradient
must accordingly be determined at the surface in accordance with a physical
picture of convection. For the low-density surfaces of cool stars, however, the
adiabatic approximation to the convective temperature gradient, which leads to
Eq. (6-4b), is not really adequate. The temperature gradient must often be
considerably supemdiabatic to carry a sufficient energy f1.ux. The necessary
excess in the temperature gradient can only be computed with a theory" of con
vection, such as the mixing-length theory, for example. Once the hydrogen
ionization zone has been penetrated, Eq. (6-4b) is probably adequate, but for the
present discussion the question is how that zone is penetrated in a realistic way in
setting up the equations.

The boundary condition is implicit, rather than explicit as in the radiative case."
A set of trial photospheric boundary conditions must be estimated from the
theory of stellar atmospheres. Because of its extreme transparency, the outer
most region (down to the photosphere, by definition) is radiative. The
photosphere itself is approximately at an optical depth equal to i, that is, such
that

(6-12)

For a model of mass ;m and given composition, trial values of .£ and R can be
assumed, at least provisionally, ill advance. These assumed boundary conditions
yield a trial value of the surface temperature T. (from the Planck law) and a trial
value of the surface gravity (J (from the law of gravity). These quantities are
sufficient to allow a computation of the photospheric pressure from the theory of
radiative outer atmospheres. These values of T. and P. can then be regarded as
tentative boundary conditions, and a detailed theory of convection can be used to
integrate inward through the hydrogen ionization zone, where the basic equations
of interior stellar structure become valid. In general it will happen that the

1 The theory of model stellar atmospheres must be used to obtain the relationship of T. to the
other observed surface temperatures.

2 The true boundary condition is implicit even for the radiative surface, but because the interior
solution is independent of the boundary condition, it was possible to make the explicit choice
T. = P. = o.



442 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

assumed surface "ill not successfully join onto a solution in the interior, because
. either £ or R or both will have been guessed incorrectly, but by repeating the
procedure with alternative guesses of'£ and R, a grid of convective envelopes can
be generated, and the proper one can be interpolated from the grid. This general
technique will be discussed later in the description of the fitting method associated
with the integration of the equations of stellar structure, but for the moment we
return to the discussion of the logical structure of the overall problem.

When the four differential equations are solved in conjunction with the four
boundary conditions, they yield the values of lJ1, L, p, and T as functions of r from
the center of the star to its surface. The corresponding tables of numbers
constitute the solution to the problem. Note particularly, however, that this
solution is only specified in terms of the structure of the star as it was a time I::.t
earlier. The time derivative dSjdt in a stellar model is generally estimated by the
ratio of the difference in S between the present model and the previous model to
the time difference I::.t between the two models. It is for this reason that the state
of a star can be calculated only by a sequence of stellar models which advance the
time from the starting model to the one desired. This necessity greatly increases
the time required to compute a model of an evolved star. It also means that if
one chooses a poor initial model, the mathematically correct solution a short time
later need not bear any resemblance to actual stars.'

6·2 M AS THE INDEPENDENT VARIABLE

As they have been written, the equations of stellar structure contain one awkward
feature, viz., the range of the independent variable r is unspecified. This situa
tion reflects the fact that one usually sets out to construct a model of a star of mass
gn; rather than a star of radius R. The value of R is one of the results desired
from the calculation. This situation is awkward in that it is conceptually
simpler in performing numerical solutions to simultaneous differential equations
to have the boundary values specified at fixed end points of the range of the
independent variable.

Matters are simplified by the choice of M(r) as the independent variable rather
than 1'. Then each point in the spherical structure is labeled by the value M of
the mass interior to that point, and the distance scale of the structure is obtained
by solving for the function reM). The solution of the differential equations then
consists of specifying the values of the functions 1'(M), P(M), .T(M), and £(M).
Another advantage of this change of variable occurs in the specification of chemi
cal composition. If a star does nothing but expand or contract, the composition
parameter X z OI1) remains constant, because the coordinate M moves with the
gas, whereas the function Xz(r) changes simply by virtue of describing a different
mass element. A coordinate that moves with the bulk motion of a mass element
is called a lagrangian coordinate.

1 P. Bodenheimer has examined this point for the important case of pre-main-sequence con
traction; Astrophys. J., 144 :709 (1966).
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(6-13)

This change in the differential equations results in the inversion of Eq. (6-2),

dr 1
dM = 47rr2(M)p(M)

whereas the others become

dP(M) GM
lIM = - 47rr4(M )

dL(M) _ . _ T dS
aM - E dt

and

dT 3 K L
dM = - 4ac T3 161r2r4

or

dT r, - 1 T dP
dM = ---r;- P dM

radiative

convective

(6-14)

(6-15)

(6-16a)

(6-16b)

One extra advantage of this change is that the density appears only in Eq. (6-13),
which defines reM).

Problem 6-2: Confirm Eqs. (6-14) to (6-16).

The independent variable now ranges from M = 0 to M = :m:, which is a fixed
range (except for the circumstances discussed in the next paragraph), and the
boundary conditions are

M = 0: r = 0

M =:m:: T = T.

L=O
P = P,

(6-17)

Although the range of the independent variable at any epoch of time is fixed,
it may change as time progresses if the star loses or gains mass. It seems virtu
ally certain that all stars lose mass at some rate, but it is not yet known which
ones lose mass fast enough to affect evolutionary calculations. Observed rates
of mass loss for those very few stars for which the loss is observable range from
about 10-7 to 10-13M 0 per year, the first number corresponding to certain blue
giants, red giants, and T Tauri stars and the second number corresponding to
the stellar wind from the sun.' The problem here is that mass loss itself may be
unobservable and yet have profound observable consequences. Several authors
have suggested that important classes of observations may be explained by mass
loss. The real role of mass loss is unresolved, however, largely due to the lack of
observational data. If the rate of mass loss is known, it can be included in the

I A recent review of mass loss is R. Weymann, Ann. Rev. Astron. Astrophys., 1 :97 (1963).
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(6-19)

sequence of evolutionary models by altering the total mass at each time step:

;met + t1t) = ;met) + d; t1t (6-18)

In performing such calculations, account must be made of the power appearing
as mass-loss luminosity (see Chap. 1). Because of the observational uncertain
ties, almost all calculations of evolutionary sequences have been carried out at
constant mass. Many of these calculations will no doubt require revision because
of the effects of mass loss. Most of the subsequent discussion, however, will be
of evolution at constant mass.

6-3 COMPOSITION CHANGES

Any evolutionary calculation is begun with an initial composition which is usu
ally taken to be homogeneous throughout the star. In the course of time that
composition changes for a variety of reasons. The corresponding development
of chemical inhomogeneities is intimately tied up with the evolution of the star.
A successful scheme of computation, therefore, must do a careful job of book
keeping on the composition. The two most important mechanisms for altering
composition appear to be nuclear reactions and mixing by turbulent convection.

The time derivative in Eq. (6-3) is not the only way in which time explicitly
enters the calculation. The thermonuclear generation of power is proportional
to the rates of key reactions among the constituent nuclei, and a local change in
chemical composition necessarily occurs with the same rates. Within any iso
lated mass element, say a unit volume, the abundance of each nuclear species
changes at constant mass density, according to

[
aN (A ,Z ) ]at = r+(A,Z) - r-(A.,Z)

nuc rene

where 1·+ is the rate at which nuclei (A,Z) are synthesized per unit volume by
nuclear reactions and r.: is the rate at which they are consumed. If no material
of differing composition is being mixed in by convection,' Eq. (6-19) will give the
total rate of composition change. More generally the composition parameter at
time t + t1t in a radiative region can be related to those at time t,

Xz(t + t1t, M) = Xz(t,M) + (a~z)nucreec t1t (6-20)

where M is the lagrangian mass coordinate of the element. Notice that this
equation would not be correct during an expansion if the radius 1· were used as the
independent variable instead of the mass M. Nor would it be correct if number

I Convection is, of course, not the only type of mixing. Diffusion also sorts the elements.
Eddington concluded that diffusive separation due to gravity is too slow to cause the star to
evolve, but the phenomenon should probably be reinvestigated with particular attention to
diffusion near the boundaries of abrupt changes in chemical composition. Circulation currents
along meridian planes are also induced by rotation. The basic idea of this effect will be dis
cussed later in this chapter.
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density were used instead of mass fraction. The partial derivatives, i.e., the rates,
are also evaluated at the point M and the time t. Equation (6-20) is clearly only
the first term of an expansion and will not be correct if one takes too large a time
step tot.

The way in which convection alters this simple prescription reflects the physical
nature of convection in the stellar interior. For a turbulent mixing length of order
109 to 1010 em, it is an easy matter to estimate that turbulent velocities of order
103 em/sec are required to transport most anticipated stellar heat fluxes along the
slightly superadiabatic temperature gradient. It follows that mixing throughout
stellar convection zones is expected to occur on time scales measured in months.
This time is so short compared to the time scales of most phases of stellar evolution
that it is commonly assumed that the chemical composition in stellar convective
zones is homogeneous. This is not to say that nuclear reactions do not proceed
preferentially in the hottest regions of the convective zone, but rather that the
new nuclei are redistributed throughout the convective zone faster than a sig
nificant inhomogeneity can be built up.

Suppose then that a star has a convective zone whose boundaries are at
M(?') = M 1 and M(r) = M 2, as shown in Fig. 6-1. Because of evolutionary
changes in the structure, both zone boundaries may be changing at the rates
dMI/dt and dMddt. Let X represent the mass fraction of any nuclear species,
whose value at each point is being altered at the rate [aX(M)/atJnuc due to nuclear
reactions' alone; let X 1 and X 2 respectively represent the values of X on the radiative

Fig. 6-1 Cross section of a
star with an intermediate
convection zone. The cen
tral radiative zone extends to
mass coordinate M 1. The
mass fraction of any nuclear
species is equal to X 1 on the
radiative side of that bound
ary and is equal to X;
throughout the convection
zone, which extends from M 1

to M 2 • At M 2 the star
switches to radiative equi
librium, where the mass frac
tion in question is equal to
X 2•
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side of the boundaries M 1 and 1112 ; and let K, represent the homogeneous value
of X throughout the convective region. The value of Xc changes for two reasons: .
(1) nuclear reactions within the convective zone change K; at a rate equal to the
mass average of [aX(M)/at]nne over the zone; and (2) enlargement of the con
vective zone mixes material of different composition into the convective zone.
The situation is somewhat tricky, because material of composition X 2 is admixed
only if 1112 is increasing with time, whereas material of composition Xl is admixed
only if M 1 is decreasing with time. These conditions can be incorporated simply,
but somewhat clumsily, into an equation expressing the rate of change of the
composition in the convective zone:

dXc = 1 rM
, [aX(M)] su

dt 1112 - 1111 [u, at nne

+ X 2 - Xc 1:. (dM2 + IdM2D
M2 M1 2 dt dt

+ Xl - Xc 1:. (I dMl 1_ dM1) (6-21)
1112 - lvl12 dt dt

The first term gives the rate of change for a zone with static boundaries, whereas
the second and third terms give the rates of change associated with motion of the
boundaries. The last two terms have been constructed in such a way that they
vanish if the convection zone is shrinking. If the zone does recede at either
interface, however, it will leave behind a discontinuity in the composition in the
radiative zone. Since any of these composition changes may prove crucial to
stellar evolution and nucleosynthesis, they must be followed with care during the
calculation. It will be obvious that the choice of M as the independent variable
has greatly simplified this discussion.

Problem 6-3: Confirm Eq. (6-21) by simple hypothetical examples.

6-4 NUMERICAL TECHNIQUES

From the equations one would like to construct a numerical model of a star. As
numerical problems go, this is a fairly extensive one. The science advanced
considerably with the development of large electronic computers, which made it
possible to construct a sequence of models rapidly and accurately. Within this
framework a "stellar model" may be thought of as a set of tables stored in the
memory of the computer which give the physical variables and chemical composi
tion at selected discrete points and times in the stellar interior. The basic prob
lem of stellar evolution as a numerical rather than an observational science is to
compute from the set of tables describing the initial configuration assumed for
the star the corresponding tables for future times.'

1 This statement of the problem, as well as the logical structure of this section, has been adapted
from M. H. Wrubel's chapter in L. Gratton (ed.), "Star Evolution," Academic Press Inc.,
New York, 1963.
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The procedure for solving a problem on a computer is called the program. The
program expresses the logical sequence of numerical manipulations that the
computer must perform to arrive at the answer. Large programs are frequently
constructed from small programs, called subroutines, each of which has a limited
and specific function in the main program. Examples of subroutines in the
stellar-structure program are the calculations of the equation of state, the opacity,
the nuclear energy generation, the entropy, and the adiabatic exponents from the
local thermodynamic conditions.

The logical recipes for solving specific problems are called algorithms. There
are often many suitable algorithms for the solution of a specific problem, and it is
important to choose a good one. A poor choice of algorithm may inordinately
increase the time required to reach the answer. One of the most generally
successful types of algorithm is a rapidly converging iterative procedure, in which
an approximate solution is repeatedly improved until two successive approxima
tions differ by a negligible amount.

In this section we shall discuss two commonly used algorithms for solving the
stellar-evolution problem. The first of these consists of a stepwise procedure for
integrating the differential equations. The second technique forces the structure,
which is described by a series of concentric shells, to relax to a stable configuration
satisfying the differential equations. These two techniques are commonly called
by a variety of names, the first most commonly the integration method, the stepwise
method, or the fitting method and the second the relaxation method, the difference
method, the shell method, or the H enyey method.: We choose the first names given,
simply because they seem to convey the basic idea most clearly.

THE INTEGRATION METHOD

The basic algorithm is most easily described in terms of a much simpler example.
Suppose one wants to estimate the solution to the equation

dy
dx = !(x,y) (6-22)

subject to some boundary condition, say, yeO) = Yo. The slope at the origin is
then known to be

(~~) :<=0 = !(O,Yo) (6-23)

so that the value of y a short distance z = h from the origin is given approxi
mately by

y(h) = Yo + !(O,yo)h (6-24)

1 After L. R. Henyey, one of the most active developers of this method. The numerical
techniques are analyzed by R. D. Richtmeyer, "Difference Methods for Initial Value Prob
lems," Interscience Publishers, Inc., New York, 1957.
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whereupon the slope at x = h can- be computed and the solution continued,

y(2h) = y(h) + f(h,y(h))h (6-25)

etc. This procedure, known as Euler's method, is quite easy to program if a
subroutine is available for computing f(x,y).

Although this procedure generates the solution y(x) in the form of numerical
values at selected discrete points, the value at each point is subject to numerical
error. The first source of error is that the differential equation itself is not
solved, but rather an approximation to it. In this case the approximation is a
difference equation generated by the first term in a Taylor series. An inaccuracy
caused by the fact that the differential equation has been approximated to some
order is called truncation error. It is proportional to some power of the step size h
and is therefore decreased by making the step size smaller and using more steps..

A second type of error inherent in numerical solutions of differential equations
is due to the fact that the calculations are carried out with a finite number of
significant figures. The last digit in each number is rounded off, depending upon
the size of the remainder, before the calculation can be continued. The corre
sponding error is called rounding error, and it accumulates at each step, gradually
decreasing the true number of significant digits. To minimize this error it is
necessary to begin the calculation with the largest convenient number of signifi
cant figures and to make as few steps as possible in achieving the answer. Round
ing error prohibits, for instance, allowing the step size h of the previous example to
be made arbitrarily small, for eventually the rounding error exceeds the trunca
tion error (to say nothing of the increased time involved).

The truncation error can be reduced by using more elaborate procedures in
making each step h. To do so one must make the approximation to the differen
tial equation correct to higher order. Each step forward in Euler's method
requires that the subroutine for f(x,y) be evaluated once, and the corresponding
truncation error is proportional to the first power of h. But the approximation is
easily improved. It is easy to verify, for instance, that the error is reduced to
second order in the foregoing example merely by evaluatingf(x,y) in the middle of
each step rather than at the beginning, as illustrated by the following problem.

Problem 6-4: Show that steps are correct to order h2 (and hence that the truncation error is
proportional to h2) if one uses

y(x + h) = y(h) +! (x +~, y(h) + !(x,y) ~) h

The most widely used of these improved methods is the Runge-Kutta method.
To cross the interval h requires four evaluations of the subroutine, and the
corresponding truncation error is proportional to h», The procedure is that the
increment t:,.y is given by

(6-26)
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where

k1 = f(x,y)h

(
h k1)

k z = f z + "2' y +"2 h

( h kz)
ka = f x + "2' y + 2 h

k4 = f(x + h, y + ka)h

449

The stellar problem, as it has been defined, consists of four first-order differential
equations and four boundary conditions. These boundary conditions are at two
different points, however, so that it is not possible to generate the complete
solutions by progressing away from any single point at which the solution is
known. The central thermodynamic state, embodied in the values of P; and T e,

is initially unknown, whereas at the surface the radius and luminosity are initially
unknown. (We continue to assume that the given problem is to compute a model
of a star of mass mr rather than one of radius R, or one of luminosity £, etc.
Such a change in the logical object of the calculation would necessarily alter the
logistical basis of the following discussion.) The existence of two-point boundary
conditions rather than single-point boundary conditions requires that one assume
values of P; and T; to begin integrations outward from the center or alternatively
that one assume values of R and£ to begin integrations inward from the surface.
In most instances, integrations begun at one boundary will lead to values of
variables at the other boundary which do not satisfy the correct boundary condi
tions there.

Problem 6-5: Using Eqs. (6-1) to (6-4), show that the variables near the center have the values

(6-27)

radiative

convective

The boundary-value problem has generally been handled by integrating away
from both boundaries to a predetermined intermediate point where the two solu
tions are joined. In general, some type of fitting procedure is required at the
intermediate point, which is hereafter designated by M J• The outward inte-
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grations are begun by assuming values for T, and Pc, whereupon the values of
the dependent variables are specified out to MI' The inward integrations are
begun by assuming values for Rand £, whereupon the value of the dependent
variables are specified inward to 1111, If the starting conditions 'were correctly
guessed, the dependent variables will match at the fitting point, and a correct
model will have been achieved. In general, of course, the solutions will not
match. The usual procedure in that case is to vary one of the parameters, R or
£, characterizing the inward integration and one of the parameters, 'I'; or Pc,
characterizing the outward integration and to repeat -the integration. By
observing the extent to which the discontinuities at the fitting point have been
reduced, it is possible to interpolate new starting conditions which give a satis
factory model. Usually six trial integrations, three inward and three outward,
are run 'with the trial values:

Outbound Integrations

r; t:
r, + sr; r.
r; t: + ss:

Inbound I -nteqration»

£,R

.e + tl£, R

.e, R + tlR

From these trial integrations one computes the derivatives of the discontinuities
at the fitting point with respect to the values of the trial parameters. Then the
new trial values can be interpolated from those derivatives. The procedure may
be visualized as a search in a four-dimensional space for that point, with coordi
nates Ps, T c , R, and £, which characterizes that pair of integrations having con
tinuity in the dependent variables at the fitting point. The entire procedure
can be executed automatically on a computer.

The discussion to this point has ignored the time derivative in Eq. (6-15), and
so we shall now briefly consider how the calculation of the model can be made.
It bears repeating at this point that a model of a star can be computed only in
terms of the model a short time earlier. Therefore the first problem is that of
how the calculationis begun. The initial model is obtained by assuming a value
of T(dS/dt) at each point M. The resulting model, calculated by the algorithm
just described, will clearly depend upon that initial assumption, so that the first
model can be no better than one's guess regarding the value of the time deriva
tives. Because of this dependence, one must be sure that the desired goal of the
calculation is independent of the starting assumptions. Fortunately this prob
lem is not serious, because it can be shown in most cases of interest that the third
or fourth model is nearly independent of the first model; i.e., the model has relaxed
to a solution nearly independent of the starting model. If this relaxation has
occurred in a time short compared to the lifetime of the evolutionary stage under
investigation, the calculation will have been successful. Because the most fre
quent calculations have been of main-sequence stars, which are nearly static
structures for a very long time, the most common assumption for the starting
model has been that the time derivative is equal to zero. Although this assump-
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tion yields very good models of all but the most massive main-sequence stars,
it clearly will not give a satisfactory initial model of an evolving star, one con
tracting to the main sequence, say. For the particular investigation of contrac
tion to the main sequence, one must choose an initial model that has contracted
so little that the subsequent contraction quickly becomes independent of the
initial model.

Once an initial model has been constructed by assumption, the subsequent
models can be calculated explicitly. The values of the temperature and the
entropy per unit mass for the initial model are stored in the memory of the com
puter. One then chooses a time step !:It that is to be the age of the first evolved
model relative to the initial model. From the value of !:It and the structure of
the initial model the change in composition due to nuclear reactions and due to
mixing by convection is computed. This calculation gives the run of the compo
sition for the first evolved model. One then calculates the new model in the same
manner as the previous one, with one exception: at each point 111 in the inte
gration the new value of the entropy must be computed and compared with its
value in the initial model as an estimate of the time derivative:

T dS ~ T(M) S(M,!:lt) - S(M,O)
dt !:It

(6-28)

This estimate must be inserted in Eq. (6-15) during the construction of the model.
Once the proper set of values (Pc,Tc,R,£h has been found for the first evolved
model, the procedure is repeated with a new time step. A simplified flow dia
gram is shown in Fig. 6-2. It is clear that calculation of an evolving star requires
a more complicated algorithm than calculation of a static star, because not only
do the values of the variables enter into the coefficients of the differential equa
tions, but their differences from those of the previous model enter as well. A new
dimension of self-consistency is imposed on the equations. For rapidly evolving
stars the algorithm has been found somewhat awkward by many workers. The
relaxation method has proved more popular for such stars, but the integration
technique is rapid and accurate for those stages of stellar evolution for which
€» IT(dSjdt)l·

THE RELAXATION METHOD

The idea of this method is as follows: one first assumes a structure for the star and
notices that the differential equations are not satisfied; corrections to the physical
variables are calculated by a specific prescription at each point, thereby rendering
the differential equation more nearly satisfied; the corrective process is repeated
until the magnitude of the corrections becomes insignificant. The algorithm is
best illustrated by the example

I

~~ = !(x,Y) yeO) = Yo

Suppose that y is to be computed for values of x between x = 0 and z = XN.
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A

Outward integration with
trial values of pc. T c
Inward integration with
trial values of R.£

At fitting point Mj evaluate
discontinuities 6Pj• 61j. 6rj. 6Lj

Calculate from the discontinuities and their
partial derivatives with respect to boundary
conditions improved trial values P c.Tc.R'. £.
and repeat integrations

At fitting point M j evaluate new
discontinuities 6Pi.6Tj.6r /.6L /

Outward trial with Pc.Tc + IlTc
Inward trial with R.£ + Il£
Compute derivatives of discontinuities
with respect to boundary conditions

8(6Pj.61j.6rj.6Lj)

8(IlTc.ll£ )

Outward trial with Pc + IlPc.Tc
Inward trial with R + 1lR. £
Compute derivatives of discontinuities
with "respect to boundary conditions

8(6Pj.61j.6rj.6Lj)

8(llPc.llR)

Yes

No

B

Select time step Ilt for next model.
Store entropy S(M) in memory for
comparison with next model.
Compute changes in composition.
Estimate pc. Tc.R. £ for new model

Yes

Fig. 6·2 Flow diagram for the integration method. The sequence of logical decisions and
steps" employed in the compution of the stellar structure is indicated by the arrows. [Adapted
from R. L. Searsand.R. R. Brownlee, Stellar Evolution and Age Determinations, in L. H. Aller
and D. B. ~McLaughlin (eds.), "Stellar Structure," The University of Chicago Press, Chicago,
1965, by permission of The University of Chicago Press. Copyright 1965 by The University of
Chicago.]

Divide that range of x into zones by selecting specific points Xl, X2, ••• ,XN, as
illustrated in Fig. 6-3. These points will remain fixed throughout the calculation.
Suppose one now makes a guess of the form of y(x) and labels it yO(x). The
object will be to calculate corrections to yO(x) making it more nearly equal to y(x),
the function being sought. The functions are represented in the computer
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(6-30)

(6-29)

memory by a table giving their numerical value at each of the selected discrete
points Xl, X2, • • • ,XN.

The differential equation is first approximated by a series of difference equa
tions, which in this case can be quite simple:

(
dY) _ Yi+l Yi _ f (Xi+! + Xi Yi+! + Yi) = f.
- - - 2' 2 - ,+!da: iH Xi+! Xi

i.e., the derivatives are replaced by the ratio of differences across each interval
and the functions occurring in the differential equation are evaluated at the
middle of the interval. The known function could be evaluated at Xi instead, but
evaluation in the middle of the interval makes the truncation error second order
rather than first order in the interval size. Thus, except for the truncation error,
which can be made small by using enough points, the single differential equation is
replaceable by N difference equations of the form

(Yi+l - Yi) - fi+!(Xi+! - Xi) = 0 0 ~ i ~ N - 1

For the trial function these equations will not in general be satisfied:

(yf+l - YiO) - f?+!(Xi+! - Xi) Y£ 0 (6-31)

Inasmuch as the points Xi are predetermined and fixed, the problem reduces to
finding those corrections to each YiO which bring Eq. (6-31) closer to the desired
null value.

etc.

Fig. 6·3 A coordinate grid for application of the relaxation method to the
simple differential equation dyjdx = f(x,y). The true solution is
designated by y(x), and the initial trial solution is designated by yO(x).
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The problem can be solved by an iterative procedure for converging to the root
of a function if the function can be differentiated. Newton first derived the
following geometrical conception of the location of that value of x for which a
known function g(x) vanishes. Select a test value x = XOand evaluate g(XO) = o".
which will in general not vanish. The tangent to g(x) through the point (XO,gO)
intercepts the x axis at point Xl, which is taken as the new trial value of x:

Xl = XO _ g(XO)
(dgjdx) ", 0

The process is continually repeated,

'+1 ' g(x i
)x' = x' - ~'-7--::-'-::-

(dgjdx)""

and the root is approached along a saw-toothed path, illustrated in Fig. 6-4.

Problem 6-6: Use Newton's method on the function g(x) = x 2 - c to find an algorithm for'
computing ye.

Ans: Xi+! = t (Xi +;}
g

Fig. 6-4 Newton's method for finding the root of a function g(x). By suc
cessive iterations the root is approached along a saw-toothed path.
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(6-34)

For the solution of the differential equation, we have simultaneously to find
the roots of the N functions of the form of Eq. (6-30):

gi(YI,Y2, ... ,YN) == (Yi+l - Yi) - !i+l(Xi+l Xi) (6-32)

This simultaneous root is approached by an analogous prescription. The func
tions gin evaluated at the trial values of the variables YIO, Y20, ... , YNO are not
generally zero, so that increments are computed to make them more nearly zero:

N

gin + L(~g~)O OYiO = 0 (6-33)
i=1 YJ

This linear system is solved for the values of the oY/, which are added to the trial
values to give the first approximation to the solution:

Yo l = Yon = Yo boundary condition

YII = Ylo + OYIO

Y2 I = Y20 + OY20

The entire process is then repeated until the corrections 0Yi become as small as
desired or until truncation error limits the convergence.

Problem 6-7: Show that for this special example one obtains for the kth iteration

k k (iJfi+l)k k ( iJf;+l)k
Yi+l - Yi

k
- fi+0i + 1 - iJYi+1 hi IlYi+l - 1 + iJYi IlYi

k
= 0

where hi Xi+1 - Xi is the size of the ith interval. This set of equations is very simple in that
only two increments appear in each equation. Thus for any stage k of iteration, the increment
IlYf+1 to Yf+1 can be found in terms of the increment IlYik to Yik. Inasmuch as Ilyo = 0 because
of the boundary condition, each IlYi can be solved for in turn. Then the new set of variables
can be constructed and the procedure repeated.

Problem 6-8: Set up the numerical algorithm for solution of the differential equation

dy
- = xly
dx

and show that it can be written in the form

(1 - Zi)Yf+1 - (1 + Zi)Yik + (1 - Zi) IlY7+1 - (1 + Zi) IlYik = 0

where Zi is defined to be

Establish a five-point grid between X = 0 and z = 1 and find the numerical approximation to
the differential equation subject to the boundary condition y(O) = 1. That is, choose a trial
solution and iterate the equations until the solution ceases to improve. Compare the results
to the exact integral of the differential equation. You will note that after rapid early con-
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vergence toward the solution it ceases to improve. This is a manifestation of truncation error.
and could be improved by increasing the number of zones in the grid. Students with access
to digital electronic computers may wish to program this or other equations for automatic
solution.

This example has shown that a trial solution to a differential equation can be
made increasingly like the exact solution by successive correction. In this self
correction the trial solution "relaxes" to its correct value. This aspect of the
technique gives it its name. Consider now its application to the stellar problem.

The natural selection for the independent variable is the lagrangian coordinate
lJ1. It has a prescribed range from lJ1 = 0 at the center to lJ1 = ;m; at the
surface. Thus the star will be subdivided into a number (somewhere between
10 and 1,000, generally, depending upon the problem) of concentric shells whose
boundaries (in the lJ1 coordinate) are preselected and remain fixed during the
calculation. For this calculation the lagrangian coordinate has the obvious
advantage of labeling each shell with a coordinate which remains fixed during
expansions and contractions. The total mass is by no means divided equally
among the zones. The amount of mass in each zone is something that can be
selected only on the basis of experience in such a way that the computing time
and accuracy of the calculation are optimized. The following general rules apply.
In the energy-generating regions, where the temperature and density must be
known with relative accuracy, the mass fraction must be small, say about 10-4

of the total mass. For main-sequence stars this demand requires a small central
zone, but for stars with inert (and therefore nearly isothermal) cores the central
zone may be much larger, whereas an energy-generating shell around the core
must be smalL Because of the steep gradients and low density near the surface,
the outermost zone should probably contain no more than 10-4 of the total mass.
These small zones are compensated by large zones (as much as 0.1;m;) in interior
regions without energy generation. Larger zones may generally be used in static
stars than in rapidly evolving ones. These general rules are best amplified by
actual experience in the construction of stellar models.

There is no unique lagrangian coordinate, and because the mass is unevenly
distributed among the zones, it may be preferable to employ a dummy variable ~

chosen as a specific explicit function of the mass lJ1 such that'

lJ1 = lJ1W (6-35)

Such a function must be monotonic and have as end points

lJ1(0) = 0 and lJ1(1) = ;m; (6-36)

It must be clearly understood that such a change is merely a change in represen-

1 The subsequent discussion draws heavily on the papers of L. G. Henyey and his collaborators.
See especially L. G. Henyey, J. E. Forbes, and N. L. Gould, Astrophys. J., 139 :306 (1964), and
other papers cited there.
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tation and enumeration and does not introduce any new unknowns into the prob
lem, because lVI(~) is a function selected before the problem is begun. The
advantage of the change can be a more nearly linear dependence of the varia
bles upon coordinate. The method is unchanged, but the equations are more
generally flexible if allowance for this transformation is included. The problem
then is to compute the dependent variables P, T, r, and L as a function of ~.

The basic equations (6-13) to (6-16) of stellar structure then are

dP + GlVIp dr = 0
d~ r2 d~

dr
lVI' - 4n-r2p - = 0

d~

dL _ lVI' (E - T dB) = 0
d~ dt

and either

or

radiative

(6-37)

(6-38)

(6-39)

(6-40a)

convective (6-40b)

The symbol lVI' represents the derivative of lVIW and is a known function of ~.

The derivatives all have been written as ordinary derivatives although each
physical variable also depends upon time.

When approximating the differential equations by difference equations it· is
necessary to use both differences and averages of the variables at neighboring
points in the grid. To minimize truncation error it is desirable to work with
variables that are as nearly linear as possible. The pressure and density vary
by so many orders of magnitude through the star that they may not be the best
variables for performing differences and averages. To minimize that difficulty,
Henyey and his coworkers replace them with the artificial variables

p =pt

and

q = pi

(6-41)

(6-42)

These particular exponents are chosen by analogy to the standard-model poly
trope of index 3, for which p is proportional to q. And because the luminosity L
usually rises abruptly near the stellar center, where the energy is generated, it is
also convenient to moderate its variation by the use of pseudoflux F defined by

(6-43)
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Problem 6-9: Show that in terms of these variables the structural equations become

dp GiVlq3 dr
-+---=0
dl; 4p 3r2 dl;

dr
M' - 41rr2q3 - = 0

dl;

dF (dB)1;2 - + 21;F - M' E - T - = 0
dl; &

and either

(6-44)

(6-45)

(6-46)

or

radiative (6-47a)

dB
- =0
dl;

convective (6-47b)

where a new function of state playing the role of a pseudopacity is defined as

(6-48)

(6-50)

(6-51)

Show also that an increment in the entropy per unit mass may be written in terms of these
variables as

3p4
dB = dU - - dq (6-49)

q4

where U is the internal energy per unit mass. (Many papers use the symbol E for internal
energy.)

Imagine the star to be divided into J shells, whose boundaries are at the points
~i (j = 0, 1, ... , J) arranged in order of position proceeding from the center
(~o = 0) to the surface aJ = 1). For simplicity the values of the physical
variable at those points will be designated by the corresponding subscripts; for
example, T(~i) = Tj, gai) = gj, etc. The mass and its derivative will often be
evaluated in the center of a zone, in which case a half-integral subscript is attached:

mi-tt m(~i-H) == m (~i-t 12+ ~i)

There is no unique prescription for preparing a difference equation from a dif
ferential equation. What is usually done, however, is to use variables as nearly
linear as possible so that their value in the center of a zone can be approximated by
the average of their values at the two boundaries. Consider, for example,
Eq. (6-44) evaluated at the center of the j + 1 zone as a difference equation.
There results

. GMj+t(qj+l + qi)3 .
Pi+l - Pi + (Pi+! + p;)3(ri-l-l + ri)2 (1i+1 - ri)
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Note that five factors of t times the 4 in the denominator have canceled the three
factors of t occurring in the numerator. The remainder of the differential
equations are similarly cast as the following difference equations:

For Eq. (6-45):

~ 11[;+!(~i+1 - ~j) - (qj+1 + qj)3(1'j+i + 1';)2(1'j+1 - 1'j) = 0
7f'

(6-52)

(6-53)

(6-54a)

For Eq. (6-47b):

Uj+1 - u, - 3 [;::: : ~jJ(qj+1 - qj) = 0 (6-54b)

Equation (6-53) requires special comment because it contains the nuclear energy
generation and because it contains the time derivative linking one model in the
evolutionary sequence to the previous one.

The energy generation is very temperature-dependent, varying as e 0: T»,
where 4 < n < 40 in most stars. For such steep temperature dependence, the
average of € at the two boundaries of the zone need not be a good estimate of its
average throughout the zone unless that zone is sufficiently small. This fact
emphasizes the general comment made earlier that the energy-generating
zones must have small mass. It has been suggested that a geometric mean,
€jH = (€j+1€j)!, might better represent the average energy generation within a shell
than €jH = (€;+1 + €j)/2 does, but no prescription is in fact safe unless € is not
greatly different at opposite ends of the zone. .

The time derivative is estimated as the ratio of the increment in the quantity
from its value at the same coordinate in a model a time t1t earlier to the time
interval t1t. Thus the construction of a model requires knowledge of the values
of the entropy at the zone boundaries in the previous model. Quantities asso
ciated with the previous model are designated by the superscript (- t1t). It will
also be noticed that although the space derivatives are evaluated symmetrically,
i.e., in terms of variables on both sides of the point where the derivative is eval
uated, the time derivative is not. It involves only a "backward difference" in
time. This scheme is actually preferred over a time-centered one for most
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stellar problems because it quickly damps out short-period oscillations in the
structure.

Whether Eq. (6-54a) or (6-54b) determines the temperature structure depends
upon the usual considerations of stability against convection. The structure is
computed with the provisional assumption that Eq. (6-54a) applies, but at each
point the temperature gradient must be compared against that implicit in
Eq. (6-54b), and if the former is the greater of the two in absolute magnitude,
Eq. (6-54b) must replace Eq. (6-54a). Of course, the transition from the radiative
to the convective gradient will generally lie somewhere between two of the
preselected shell boundaries, h and ~k+l, say. The location of the boundary may
be made by interpolating between two models, one for which the radiative
equation is terminated at h and one for which it is terminated at ~k+l. The
excess of the provisional radiative temperature gradient over the adiabatic one is
of opposite algebraic sign at the provisional boundaries of the radiative zones
of the two models, and the magnitude of the change allows the proper boundary to
be interpolated. When there is either an interior convection zone or both a
central and a surface convection zone, the interpolation procedure is more
complicated. In those cases there are two boundaries between radiative and
convective zones, and a minimum of three models is required to simultaneously
interpolate the positions of both boundaries. It may be preferable to use such
fine zoning near the interface that interpolation becomes unnecessary.

As mentioned in the previous section, the surface introduces an added compli
cation when it is convective. In that case the adiabatic approximation leading
to Eq. (6-54b) is invalid. As far as the logical structure of this discussion is con
cerned, it is convenient to relegate these matters to a separate program which
treats the entire stellar atmosphere down through the helium ionization zone as
the outermost zone of the star from j = J - 1 to j = J. Because the mass and
composition of the star are preselected, the assumption of values of Rand £ is
sufficient to calculate the variables at the base of the atmospheric zone:

TJ-l = ft(R,£)

FJ-l = J2(R,£) (6-55)

TJ-l = Ja(R,£)

qJ-l = J4(R,£)

Another scheme of interpolation must be established for obtaining these bound
ary values from a small but representative collection of model-atmosphere calcu
lations. Once this scheme has been established, the values of the variables at
h-l are set by the self-consistency requirement that the atmosphere match the
rest of the stellar model. 1

Equations (6-51) to (6-54) are then solved by the same technique illustrated in
the introductory example. The variables whose values are to be found are Til

1 A full description of the interpolation procedure may be found in Henyey, Forbes, and Gould,
loco cit.
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Fil Til and qi at each point ~i. All other functions in the equations, including the
pressure Pil are functions of state calculable in terms of T, q, and the chemical
composition. The total number of variables is given by the product of the four
variables times the number of grid points and is equal to 4(J + 1). The four
difference equations are evaluated in the center of each shell, so that the number
of equations is equal to 4J. The existence of four boundary conditions, two
explicit ones at the center and two implicit ones from the theory of stellar atmos
pheres at the surface, allows the problem to be solved. The four equations of
each shell can be thought of as four functions of the variables, each of which
equals zero for the proper values of the variables. Therefore the problem is to
find the simultaneous roots of 4J equations in 4J unrestricted variables, and the
method is the Newton-Raphson scheme. The 4J equations

k = 1,2, ... ,4J (6-56)

(6-57)

are solved by assuming trial values X10, X20, •• ,xuo of the set of variables,
which are then corrected by amounts OX10, OX20, ••• determined by

4J ( )0
gkO + L ~~~ ox;o = 0

;=1 '

where the gkO'S will not generally vanish because the initial assumption of the
values of the variables was not correct. The increments are added to the initial
values, and the process is repeated. For a reasonable initial guess the method
converges rapidly to the solution.

Problem 6-10: Set up the incremental equation (6-57) for the second of the structural equations
(6-52).
Ans:

- 3(q~+1 + ql)2(r~+1 + r;O)2(r~+l - r;O)(oq~+l + oq;O)

(q~+l + q;O)3(r~+1+ r;O)[(3r~+1 - r;O) or~+l + (r~+l - 3rl) or;O] = 0 (6-58)

This equation has a simple geometrical interpretation if or~+l = orin. Can you derive this
meaning and state it verbally?

The other structural equations, although somewhat more complicated than
this one, are incremented in much the same way. Notice that when the iter
ation algorithm is employed to find the values of the variables, the identity of the
unknowns shifts from the variables themselves to the increments to be applied to
the assumed values of the variables, a subtle but important difference. Equation
(6-58) illustrates another important feature of the problem; viz., although there
are 4J unrestricted variables, only a few at adjacent coordinates occur in any
single equation. In this particular case the only unknowns appearing are or and
oq at the adjacent points ~i and ~i+I- It is this general feature that allows the
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construction of a logic ladder in which the values of the increments at one point
are expressed in terms of the values of the increments at the previous point.
Because four of the increments at the boundaries are tied down by the boundary
conditions, the increments at successive points are evaluated in turn. Henyey,
Forbes, and Gould1 give a proof by mathematical induction of the existence of
such a solution. The principle is identical to that illustrated by the example of
the single differential equation y' = f(x,y).

When the values of all the increments are smaller than some predetermined
value, the model is regarded as satisfactory. A time step !:It is chosen for the
relative age of the next model. The composition changes due to nuclear reac
tions and mixing are calculated and added to the existing composition to obtain
the composition of the next model. For evolving stars, a good trial value for
the variables in the next model can be obtained by a linear extrapolation of the
rates of change of the variables from the last two models. It is for just those.
stages of rapid evolution that the relaxation method handles the problem most
elegantly.

Lest confusion occur, it should perhaps be emphasized that both of these
numerical methods treat only stars in hydrostatic equilibrium. Many dynamic
stars exist for which a hydrodynamic treatment including both the momentum
and acceleration of mass elements must be used. The most notable examples
are to be found in pulsating stars and in supernovas. In such hydrodynamic
problems the lagrangian shell coordinates are used but in such a way that the
structure relaxes simultaneously in space and in time, rather than in space at a
given time as outlined in the previous material.

6-5 CONTRACTION TO THE MAIN SEQUENCE

A brief discussion of the contraction of a star to the main sequence served as an
introduction to Chap. 5, and will not be repeated here. The dominant feature
of contraction to the main sequence is that it occurs on a nearly vertical path in
the H-R diagram. At any given luminosity hydrostatic equilibrium is unachiev
able for stars of a given mass whose outer layers are too cool. For a given mass,
therefore, there exists a forbidden region to the right of some critical curve, as
illustrated in Fig. 6-5. A star to the right of this boundary collapses rapidly
until the critical surface temperature for that mass is reached, whereupon it fol
lows the quasistatic evolutionary sequence of a star in hydrostatic equilibrium.
The boundary of the forbidden region is somewhat difficult to locate accurately
because it depends upon the opacity and the detailed theory of convective energy
transport.

The static structure of a star of mass ;m is the main-sequence structure. At
the time when the star first achieves hydrostatic equilibrium at the boundary of
the forbidden region, its luminosity is much greater than the main-sequence

1 Ibid.
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Fig. 6-5 The forbidden region in the H-R diagram. For a star of given mass
and composition, hydrostatic equilibrium cannot be established for a surface
temperature that is, for each £, less than a critical value. The boundary of
the forbidden zone is commonly called the Hayashi track because Hayashi
first argued that a star contracting toward the main sequence should descend
that boundary.

luminosity for the same mass. At that time the subphotospheric layers have
such high opacity and the total luminosity is so great that the star is convective
throughout. The star then contracts, maintaining the largest radius consistent
with hydrostatic equilibrium. This means that it approaches the main sequence
by descending the boundary of the forbidden zone.' Such a track computed for
the sun was shown in Fig. 5-l.

As the star descends this track, the central opacity drops rapidly by virtue of
the increasing central temperature. Eventually the radiative temperature
gradient becomes smaller than the adiabatic one, and a central core in radiative
equilibrium develops. As the contraction slows its pace, the luminosity reaches a
minimum, but it then begins to rise again for the following reason. As the hot
radiative core, which has low opacity, encompasses more and more of the star, the
star becomes less opaque. Thus more energy can flow out radiatively as the
opacity continues to fall (recall that the fairly representative Kramers opacity
varies as pT-3.5). Because the star is still shrinking as its luminosity rises, its
surface is becoming hotter, and the star moves up and to the left in the H-R
diagram but at a considerably slower rate of evolution than in the descent.

A feature peculiar to the pre-main-sequence evolution is characteristic of deep

1 The existence of the forbidden zone was first demonstrated by Hayashi. See C. Hayashi,
Ann. Rev. Astron. Astrophys., 4 :(1966).
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Fig. 6·6 Computed paths in
the H-R diagram for the con
traction of a one-solar-mass
star to the main sequence.
The two tracks shown differ
only in the metal abundance,
which affects the structure of
such stars by virtue of its
effect on the surface opacity.
The solid curve corresponds
to a metallic mass fraction
XM = 5.4 X 10-5, and the
dashed curve corresponds to
X M = 5.4 X 10-6• [After I.
Iben,Jr., Astrophys. J., 141:
993 (1965). By permission
of The University of Chicago
Press. Copyright 1965 by
The University of Chicago.]

convection zones; viz., the structure of the whole star is sensitive to the photo
spheric opacity. This situation reflects the fact that in any model atmosphere the
relationship between photospheric pressure and temperature shows strong
dependence upon photospheric opacity. Because the photospheric values serve
as boundary conditions for an inward development based upon a theory of con
vection (roughly P = KT~), the internal values in the convective zone depend
strongly on the photospheric values. If the convection zone is deep, the whole
star is affected. Figure 6-6 shows a contraction path of a normal Im?:0 star and,
for comparison, the corresponding track when the abundances of the metals of low
ionization potential are reduced by a factor of 10. The tracks are similar, but the
more transparent photosphere results in a track of higher surface temperature.
Low-temperature opacity remains an important problem in stellar structure.

It can be seen from Fig. 6-6 that the luminosity and surface temperature pass
through a maximum before they both decrease to the main-sequence position.
This decrease occurs, paradoxically enough, when the central temperature
becomes great enough to burn nuclear fuel. The nuclear fuels of importance at
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that stage are the onset of the PP chain and the conversion of the initial C12
into N14 by two successive proton captures. These processes happen simul
taneously, and the second deserves a brief explanatory comment. As discussed
in Chap. 5, the equilibrium abundance of the nuclei in the CN cycle is almost
entirely N14, because the reaction N14(p,'Y)015 is about two orders of magnitude
slower than the other reactions of the CN cycle. But the initial abundance of C12
may be large, and its conversion to N14 proceeds at temperatures that are com
petitive with those of the PP chain. When the C12 has been scoured out by con
version to Nl4, however, that energy source disappears and is replaced by the
slower equilibrium CN cycle. Now the significance of the temporary C12 energy
source is that the corresponding value of e has strong temperature dependence.

Problem 6-11: Show that near T 6 = 12, where the C l2(p,-y) reaction begins at a significant
rate, the corresponding energy generation varies as E 0: T19.

It is almost a general rule that when a large fraction of a stellar luminosity is
provided by nuclear reactions having a strong temperature dependence, the energy
generating zone is convective. The reason for this can be made physically clear.
Because energy is flowing out of the zone, the zone itself must possess a tempera
ture gradient. (An inert central zone on the other hand tends to be isothermal.)
Because of the strong temperature dependence of the nuclear rates, the nuclear
power is strongly concentrated into the hottest portion of the zone, in this case the
center of the star. Thus a very temperature-dependent central source is some
what like a point source at the center.

Problem 6-12: Show that if a highly temperature-dependent energy source exists at the center
of a star, there exists some minimum distance from the center for which the star can be in
radiative equilibrium.

When the C12 burns, the change of the core from a radiative state to a con
vective state, which is much less centrally condensed, halts the general contrac
tion and causes the central structure to readjust in a way that requires work
against gravity. Power converted into gravitation work is unavailable for radia
tion, of course, so that the luminosity falls, and hence the surface temperature as
well. Only about 80 percent of the energy liberated by nuclear reactions during
this phase is available to be radiated. As the C12 is exhausted, the radiative core
reappears in a low-mass star because the PP chain has a sufficiently weak tempera
ture dependence to be distributed smoothly over the stellar center. The lumi
nosity drops during this process to its main-sequence value. In stars of higher
mass, however, the core remains convective because it becomes hot enough for the
equilibrium CN cycle to dominate the PP chains in importance.

The developments in time of several of the characteristic quantities of the
collapse of a ImL0 model are shown in Fig. 6-7. Shown there are the quantities
log £, log R, log Te, log Pc/p, and the mass fraction QRC of the stellar core in radia-



466 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

logR

.-.._ .._ .. -
'\ /' " I T

\ QRC: ! \ og e" / .1\ v; - - - - - - --

\ : / I \ log (Pcl,,)
\ / .: . .-'-'-'

\ : / I -
log,c\ / . I

\ : / I
\ / • I

\ . /:
\ I /' :

\ .' I
\ • I
\ .I"","- I

~~P.:.!.~l-._ ._~\.-:.t· ,/
\ / "
\: "
.j\ ..,,'

_I~~!e-__ - j ~'\--"

.. " I
/ "/'-"

log t

Fig. 6·7 The variation with time t (in seconds) of the surface temperature,
the luminosity, the radius, the ratio of central density to mean density, and
the mass fraction QRC within the radiative core during the contraction of a
one-solar-mass star to the main sequence. .The full-scale limits correspond
to 3.78 > log T, > 3.58, 0.6 > log (£/£0) > -004, 0.6 > log (R/R0) >
-004, 2.0 > log (Pc/p) > 0, and 1 > QRC > O. [After I. Iben, Jr.,
Asiroplnjs, J., 141 :993 '(1965). By permission of The University of Chicago
Press. Copyright 1965 by The University of Chicago.]

tive equilibrium. Each of these quantities has its own ordinate scale, which is
stated in the legend to the figure. The abscissa is log t, with t expressed in seconds,
and ranges from epochs of about 3 X 105 to 108 years after the initial model. The
interpretation of this age at early epochs is somewhat ambiguous because it is not
known at what point the dynamically collapsing protostar first joins the Hayashi
track. The early evolution is so fast, however, that this initial time uncertainty
represents a negligible correction to the age during the final approach to the main
sequence. There is no unique specification of the time when the star reaches the
main sequence, but gravitational contraction is contributing less than 1 percent of
the luminosity after log t = 15.2, or about 5 X 107 years.

Notice from Fig. 6-7 that as the size of the radiativecore QRC grows, the star
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becomes more centrally condensed. In keeping with the discussion of polytropes
in Chap. 2, the gradual change in Pclp may be thought of as a change in the
effective polytropic index. The early value log Pclp = 0.78 corresponds to a
polytrope of index 1.5, appropriate to a star in convective equilibrium, whereas
the late values are near log Pclp = 1.74, which corresponds to a polytrope of
index 3.0.

The final drop toward the main sequence begins near log t = 14.9. At this time
the central nuclear reactions begin burning rapidly, and a small convective core
develops at the center of the larger radiative core (although not reflected in QRC,
which indicates the interface between the convective envelope and the radiative
interior). At this time the star becomes less centrally condensed, and the
gravitational energy release drops markedly. Finally the central convective core
disappears again near log t = 15.2, when the star has effectively reached the main
sequence.

Contraction tracks in the H-R diagram calculated by Iben are shown in
Fig. 6-8. Each track there is labeled by the mass of the star. Each track has
several points enumerated on it, and the times required for that model to approach
each point on the track are listed in Table 6-1. It will be noted that the more
massive stars do not come so far down the Hayashi track before achieving
radiative equilibrium in their interiors. They arrive at the main sequence much
faster than low-mass stars:

8 X 107 mL £0
tcontraction ~ mL0 £ years (6-59)

where £ is the final main-sequence luminosity. It must be borne in mind,
however, that these tracks and ages were computed with the assumption that
the star maintains constant mass during the contraction. When the details of
pre-main-sequence mass loss are known, it may well turn out that both the
tracks and the time required are considerably in error. It is quite clear that if
the mass loss is extensive, the associated power requirements (stellar-wind
luminosity) will make the total contraction time much less than that of a star of
equal final mass which has contracted without mass loss. And it is now known
that the T Tauri stars, which are believed to be in the final stages of contraction
to the main sequence, are losing mass at a very significant rate.'

There is one final point of great significance to be gathered from Fig. 6-8; viz.,
the final states of the stars at the end of their contraction. tracks reproduce the low-Te
envelope of the obsetvational main sequence quite accurately. Thus the zero-age
main sequence is identified as those stars of initially uniform composition which
have ceased gravitational contraction and which obtain their luminous power
from the thermonuclear conversion of hydrogen into helium.

1 L. V. Kuhi, Astrophys. J., 140 :1409 (1964). Parenthetically it may be added that the effects
of angular momentum due to rotation on the contraction may also be appreciable, and certainly
warrant investigation.
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Fig. 6·8 Pre-main-sequence contraction paths for models of mass ;m:j;m:0 = 0.5, 1.0, 1.25, 1.5,
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Table 6-1 Evolutionary lifetimes, yearst.

mt/mt0

Point 15.0 9.0 5.0 3.0 2.25 1.5 1.25 1.0 0.5
1 6.740 X 10' 1.443 X 103 2.936 X 10' 3.420 X 10' 7.862 X 10' 2.347 X 106 4.508 X 106 1.189 X 106 3.195 X 106

2 3.766 X 103 1.473 X 10' 1.069 X 106 2.078 X 106 5.940 X 106 2.363 X 10° 3.957 X 10° 1.058 X 10° 1.786·X 10°
3 9.350 X 103 3.645 X 10' 2.001 X 106 7.633 X 106 1.883 X 10° 5.801 X 10° 8.800 X 10° 8.910 X 10° 8.711 X 10°
4 2.203 X 10' 6.987 X 10' 2.860 X 106 1.135 X 10° 2.505 X 10° 7.584 X 10° 1.155 X 107 1.821 X 107 3.092 X 10'
5 2.657 X 10' 7.922 X 10' 3.137 X 106 1.250 X 10° 2.818 X lOG 8.620 X lOG 1.404 X 10' 2.529 X 10' 1.550 X 108

6 3.984 X 10' 1.019 X 106 3.880 X 106 1.465 X 108 3.319 X lOG 1.043 X 10' 1.755 X 10' 3.418 X 10'
7 4.585 X 10' 1.195 X 106 4.559 X 106 1.741 X lOG 3.993 X 10° 1.339 X 10' 2.796 X 10' 5.016 X 10'
8 6.170 X 10' 1.505 X 106 5.759 X 106 2.514 X 108 5.855 X 10° 1.821 X 107 2.954 X 107

t 1. Iben, Jr., Astrophys. J., 141 :993 (1965). By permission of The University of Chicago Press. Copyright 1965 by The University of
Chicago.
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6·6 THE MAIN SEQUENCE

For a given chemical composition, the zero-age main sequence can be defined as
the locus of points in the H-R diagram characterizing static stars of homogeneous
composition which are burning hydrogen at their centers. Although the position
of a given star in the diagram depends rather strongly on the composition, the
main sequence itself does not. To understand why this is so, it is helpful to
examine the dependence of the luminosity of the standard model upon mass and
composition. From Eq. (3-193) we have

(6-60)

Although this formula is correct only for the standard model with Kramers
opacity K = KopT-a.5, its qualitative features are correct. The mass dependence
is exaggerated for the massive stars by the fact that the Kramers opacity is
invalid at nearly complete ionization. If the opacity is given a weaker tempera
ture dependence, the corresponding luminosity has a weaker mass dependence;
for instance, £ cc ;m;4.5 if K cc T-2.5. Thus the observed power-law dependence
upon the mass is not difficult to understand and is, in fact, accurately reproduced
by the models constructed with electronic computers. Above 7;m;0 the depend
ence weakens to £ cc ;m;a.

The luminosity varies inversely with the mean opacity, a fact already obvious
from the luminosity formula for the standard model. It is clear simply from the
equation of radiative transfer that if the opacity is changed while the temperature
structure is held fixed, the rate of energy flow changes inversely with the opacity.
It was pointed out in Chap. 3 that the major contribution to the Rosseland mean
opacity between 106 and 107 OK is due, roughly speaking, to the elements of high
atomic number (if they are present). Thus to first approximation for popula
tion I stars, KO is proportional to Z, the mass fraction of the elements heavier than
helium. The luminosity is more strongly dependent upon the mean molecular
weight. If the mean molecular weight J.L is changed, the central temperature
increases by roughly the same factor. The associated reduction in interior
opacity greatly increases the radiative flux. The radius R, on the other hand,
varies only little with these quantities.

These general features are sufficient to understand why it is that the position
of the zero-age main sequence is not very sensitive to the makeup of the composite
stars. Because of the relative insensitivity of the radius of a model to composi
tion change, the surface temperature must increase as T e4 cc £ cc J.L7.5 if the
radius is to be nearly constant. Thus changes in composition of main-sequence
stars tend to slide the star along a line that is approximately parallel to the main
sequence itself. The zero-age main sequence, then, shows only a weak dependence
upon composition, although that difference may be of importance.'

The problems are more acute, however, if one wants to calculate the age of an

1 For a discussion of the differences between the Hyades and Pleiades in terms of numerical
models, see 1. Iben, Jr., Astrophys. J., 138 :452 (1963).
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(6-61)

(6-62)

(6-63)

old cluster by calculating the time at which the most luminous member of the
main sequence would begin to move up the giant branch. From the discussion
of Sec. 1-7 we see that the main-sequence lifetime is roughly proportional to

;m;XH
t~~

The quantity generally observed is the luminosity, which is a function of both
mass and composition. From (6-60) the mass of a star of given luminosity varies
with composition according to

,
KO'

;m; (given B) ~ J.L1.4

so that the formula

KOAX H
t~~

displays how the main-sequence lifetime of a star of luminosity .£ varies with the
chemical composition. It is clear that the errors in the calculation of opacity do
not greatly disturb the age calculation, whereas errors in the mean molecular
weight are serious. This problem has been reflected as a major uncertainty in the
calculation of the ages of the globular clusters, because the helium content of the
extreme population II stars has not been well fixed. But it is clear from Eq. (6-63)
that increasing the initial helium content reduces X H and increases J.L, and both
changes reduce the main-sequence lifetime.

Problem 6-13: Consider extreme population II stars composed only of hydrogen and helium
(Z = 0). The interior opacity will then be dominated by free-free transitions in the field of
protons or alpha particles. Show that the compositional dependence of the opacity is then
simply

KO 0: 1 + X

Show then that the main-sequence lifetime of a star of given £ varies with hydrogen composition
according to

a 1 7.0
aX log t = X + 5(X + 1) + 5X + 3 "" 2

for 0.5 < X < 1.0. Thus the age t is proportional to 102X.

Probably the most characteristic features of the structure of main-sequence
stars are the location and extent of convection zones. The main sequence is
commonly divided into an upper main sequence, with a radiative surface and a
convective core, and a lower main sequence, with a convective surface and a
radiative core. To a certain extent, these properties depend upon the composi
tion of the stars. The surface convection zone is due to the very high opacity in
the subsurface layers, which are cool enough for hydrogen to be partly neutral.
The depth of the convection zone, however, depends upon the opacity beneath
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the hydrogen ionization zone, which in turn depends upon the composition. The
central convection zone, on the other hand, occurs for central temperatures high
enough for energy generation from the CN cycle to dominate that from the
PP chain. Its extent depends in part on the abundances of the CNO nuclei.

There are no upper-main-sequence stars remaining in population II clusters
because the cluster ages exceed the stellar burning time on the main sequence.
All upper-main-sequence stars in our galaxy, therefore, are of population I com
position. It is not surprising then that almost all calculations of their structure
have been based on the population I composition, although massive stars of pure
hydrogen are of interest because of their possible role in the initial nucleosynthesis
in the galaxy. The lower main sequence, on the other hand, is represented in both
populations I and II, so that both types of composition have been used in the
calculation of their structure.

DEPTH OF THE OUTER CONVECTION
ZONE IN MAIN-SEQUENCE STARS

Important questions hinge on the depth of the outer convection zone in the stars
of the lower main sequence. That depth is computed in the following way.
Given the mass and composition of the star, representative values of Rand cC are
specified. The equation of hydrostatic equilibrium is then applied to a model
atmosphere (a separate calculation) of known surface gravity and effective
temperature. The values of P and T at an optical depth T = i then serve as
boundary conditions for inward integrations. In the low-density outer layers,
the adiabatic approximation to convection is inadequate, so that what is usually
done is to relate the temperature gradient to the energy flux by the simple mixing
length model of convection (which may also be inadequate). Because the mixing
length model is not a fundamental theory, the effective mixing length is not
given. It is usually assumed to be some multiple ex of the pressure scale height
H», That is, one takes

l = aHp

where

H -1 = .!.I dP I= GMp
P P dr Pr2

(6-64)

(6-65)

The parameter ex is then regarded as a parameter of the model. Its value has
been argued to be of order unity on the basis of hydrodynamic principles. With
each assumed value of ex the structural equations can be integrated to the base
of the convection zone. Then, of course, the family of models must be fitted
there to an internal structure to uniquely specify those values of Rand cC appro
priate to the given mass, composition, and mixing length. The results of such
calculations have important implications for astronomy.

Figure 6-9 displays the depth of the convection zone AT in terms of the total
radius R as a function of the surface temperature of the star. The four different
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Fig.6·9 Depth of the outer convection zone of main-sequencestars as a
function of T«. The four separate curves were computed for four differ
ent choices of the mixing-length parameter a. [After N. Baker, The
Depth of the Outer Convection Zone in Main-sequence Stars, Inst. Space
Studies Rept., New York (undated).]

curves shown correspond to four different choices of the mixing-length parameter
a. For each value of a the convection zone is quite thin at the highest tempera
tures. .AB one considers stars of lower and lower surface temperature, a fairly
well-defined transition temperature is reached, where tJ.r/ R changes from a small
value to an almost linear increase with decreasing Te• Figure 6-10 is a quite
similar display of the temperature T, at the lower boundary of the convection
zone. It will be apparent from these figures that a theory of convection is needed.
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Fig. 6-10 The temperature T; at the base of the outer convection zone
as a function of T.. [After N. Baker, The Depth of the Outer Convec
tion Zone in Main-sequence Stars, Inst. Space Studies Rept., New York
(undated).]

Problem 6-14: Try to understand why changes of the mixing length affect these two figures in
the way that they do. Why, for instance, does the convection zone become deeper as'a is
increased? Hint: Does increasing a cause the absolute magnitude of the temperature gradient
to increase or decrease?

Several interesting composition changes on the surface are related tothe depth
of the convective zone. It will suffice to illustrate three of them at this point.
Many stars are observed to have lithium in their photosphere.' Because lithium

1 G. H. Herbig, Astrophys. J., 141 :588 (1965); G. Wallerstein, G. H. Herbig, and P. S. Conti,
Astrophys. J., 141 :610 (1965).
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is destroyed by interactions with protons at sufficiently high temperature, the
surface lithium will slowly be depleted in those stars having convection zones
extending downward to temperatures in excess of 106 "K, The lithium is, of
course, destroyed only in the lower portions of the convection zone, but the
complete mixing throughout the zone has the effect of decreasing the surface
lithium as well.

It has been estimated! that the surface abundances of many of the rarer nuclear
species may be the results of spallation reactions in the stellar surface induced by
high-energy particles accelerated in flares. If surface convection zones are pres
ent, the nuclei produced over periods long compared to the convective mixing
time must be redistributed evenly throughout the convection zone. In some
cases-that of lithium or deuterium, perhaps-the nuclei could conceivably be
produced by spallation at the surface and destroyed by thermonuclear reactions
deep in the convection zone. In that case the corresponding abundance will
tend to build up to an equilibrium concentration such that the rate of produc
tion at the surface is balanced by the rate of destruction in the convective zone.

A third interesting possibility involves surface convection zones that grow
deeper with time. There exists the possibility in that case of bringing nuclear
products synthesized in the interior to the surface. This type of phenomenon is
probably related in some way to Merrill's observation of the radioactive element
technetium in red giants, which also have deep surface convection zones.

Whenever a nuclear species is to be distributed throughout the convection zone,
the relevant measure of the zone is its total mass rather than its depth in radius.
Because of the low density near the surface, the convection zone extends over a
much smaller fraction of the stellar mass than the corresponding fraction of the
stellar radius. The fraction of the stellar mass contained in the surface con
vection zone of main-sequence stars is illustrated in Fig. 6-11.

For mixing-length parameters in the range 1.0 < IX < 2.S, the transition tem
perature below which deep convection zones occur is T. = 7300 ± SOooK. The
surface temperature T. = 73000K corresponds to a main-sequence star of mass
:m: = 1.S:m:0 and of spectral type FO. Thus one may roughly designate spectral
types of class F and cooler as lower-main-sequence stars and spectral types of
class A and hotter as upper-main-sequence stars. Finally, it should be mentioned
that rotation may be strongly coupled to the convection-zone problem. We shall
not consider this complicated possibility except to point out the coincidence (?)
that, in general, upper-main-sequence stars are fast rotators whereas lower-main
sequence stars are slow rotators.

CENTRAL STRUCTURE OF
MAIN-SEQUENCE STARS

The most characteristic feature of the internal structure of main-sequence stars
is the extent of the central convection zone. In stars with masses smaller than
about 1.2:m:0 , the central temperature is low enough for only the PP chains to

1 W. A. Fowler, E. M. Burbidge, and G. R. Burbidge, AstTophys. J. Buppl., 2 :167 (1955).
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Fig. 6-11 The fraction of the stellar mass contained in the outer con
vection zone of a main-sequence star as a function of T.. [After N.
Baker, The Depth of the Outer Convection Zone in Main-sequence Stars,
Inst. Space Studies Rept., New York (undated).]

contribute significantly to the thermonuclear power. Because of the relatively
weak temperature dependence of that energy source, it is distributed over a rela
tively large region of the stellar center. The luminosity L(r) builds up slowly at
increasing distances from the center, so that the heat flux is never very large
inasmuch as L(r) is moderated by the inverse square of the distance from the
center. It turns out that the flux can be carried adequately by radiative trans
fer along a temperature gradient smaller than the adiabatic one.

In stars of larger mass the central temperature is greater, with the result that
the coulomb barrier for the CN cycle is more easily overcome. Provided that
C, N, and 0 occur in representative amounts in the interior, the energy liberated
by their radiative capture of protons becomes more important with increasing
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mass. But because of the stronger temperature dependence of these reactions,
the energy from them is primarily liberated very near the center of the star.
Such a pointlike source of energy produces very large fluxes near the center,
fluxes that cannot be carried by underadiabatic gradients. The size of the con
vective core increases with mass, representing about half of the total mass at
:m = 15:m0 .

Some of the fine details of the transition from the radiative to the convective
core are displayed in Fig. 6-12 as a function of the stellar mass. The particular
composition used in this case was X H = 0.7, Y = 0.28, Z = 0.02 with carbon
and nitrogen present in the amount X CN = 0.18Z = 0.0036. The parameter R,
represents the ratio at the stellar center of the temperature gradient that would
be required to carry the heat flux by radiative transfer to the adiabatic tempera
ture gradient. It follows- that the center is convectively unstable when R, > 1.
Note that Ii, increases markedly with mass, being greater than 2 for sn > 1.7:m0 .

The value of R; also depends upon the calculation of the central opacity; i.e., the
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Fig. 6·12 Variation with stellar mass of the central structure of a main-sequence star. R;
is the ratio of the temperature gradient that would be required to carry the central flux
radiatively to the adiabatic temperature gradient. L ee /£ is the fraction of the total lumi
nosity generated within the convective core. LeN/5Lpp is a measure of the nuclear power
generated respectively by the eN cycle and by the PP chains, the power' being summed over
the entire star. [After I. Iben, Jr., and J. R. Ehrmann, Astrophus. J., 136 :770 (1962). By
permission of The University of Chicago Press. Copyright 1962 by The University of Chicago.]
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Table 6-2 Zero-age model for three compositions with ~ = 2.82~0 t

R .e-
X y Z R0 £0 log T,

Surface 0.60 0.36 0.04 2.1 93 4.10
0.60 0.37 0.03 2.0 110 4.12
0.70 0.27 0.03 2.0 63 4.07

r M(r) L(r)

R X y Z ~ .e log T log p K

0.95 0.60 0.36 0.04 1.000 1.00 5.42 -4.81 7.6
0.60 0.37 0.03 1.000 1.00 5.44 -4.74 7.0
0.70 0.27 0.03 1.000 1.00 5.41 -4.73 8.9

0.85 0.60 0.36 0.04 1.000 1.00 5.92 -3.04 4.1
0.60 0.37 0.03 1.000 1.00 5.94 -2.97 3.5
0.70 0.27 0.03 1.000 1.00 5.91 -2.97 4.4

0.75 0.60 0.36 0.04 0.998 1.00 6.20 -2.09 3.8
0.60 0.37 0.03 0.998 1.00 6.22 -2.02 3.3
0.70 0.27 0.03 0.998 1.00 6.19 -2.02 4.0

0.65 0.60 0.36 0.04 0.992 1.00 6.43 1.43 3.8
0.60 0.37 0.03 0.992 1.00 6.44 -1.36 3.2
0.70 0.27 0.03 0.992 1.00 6.42 -1.36 4.0

0.55 0.60 0.36 0.04 0.975 1.00 6.60 -0.85 2.78
0.60 0.37 0.03 0.973 ·1.00 6.61 -0.77 2.31
0.70 0.27 0.03 0.974 1.00 6.59 -0.77 2.90

0.45 0.60 0.36 0.04 0.926 1.00 6.75 -0.26 1.78
0.60 0.37 0.03 0.922 1.00 6.76 -0.18 1.45
0.70 0.27 0.03 0.925 1.00 6.74 -0.19 1.86

0.35 0.60 0.36 0.04 0.806 1.00 6.90 +0.34 1.20
0.60 0.37 0.03 0.795 1.00 6.92 0.41 1.01
0.70 0.27 0.03 0.804 1.00 6.89 0.41 1.25

0.25 0.60 0.36 0.04 0.546 1.00 7.06 0.91 0.80
0.60 0.37 0.03 0.527 1.00 7.08 0.96 0.72
0.70 0.27 0.03 0.544 1.00 7.05 0.98 0.84

0.20 0.60· 0.36 0.04 0.365 1.00 7.15 1.14 0.66
0.60 0.37 0.03 0.347 1.00 7.17 1.18 0.60
0.70 0.27 0.03 0.362 0.99 7.14 1.21 0.71

0.15 0.60 0.36 0.04 0.190 0.98 7.24 1.32 0.56
0.60 0.37 0.03 0.179 0.98 7.25 1.35 Cony.
0.70 0.27 0.03 0.188 0.97 7.22 1.38 0.59

0.10 0.60 0.36 0.04 0.065 0.82 7.31 1.43 Cony.
0.60 0.37 0.03 0.062 0.80 7.32 1.45 Cony.
0.70 0.27 0.03 0.065 0.79 7.30 1.49 Cony.

0.05 0.60 0.36 0.04 0.010 0.26 7.35 1.49 Cony.
0.60 0.37 0.03 0.008 0.24 7.36 1.51 Cony.
0.70 0.27 0.03 0.009 0.25 7.34 1.56 Cony.
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Table 6-2 Zero-age model for three compositions with ;m = 2.82;m0 t (Continued)

R .e-
X Y Z R0 £0 log T.

Surface 0.60 0.36 0.04 2.1 93 4.10
0.60 0.37 0.03 2.0 110 4.12
0.70 0.27 0.03 2.0 63 4.07

r M(r) L(r)

R X Y Z ;m .e log T log p K

0.00 0.60 0.36 0.04 0.000 0.00 7.36 1.51 Cony.
0.60 0.37 0.03 0.000 0.00 7.37 1.53 Conv.
0.70 0.27 0.03 0.000 0.00 7.35 1.58 Cony.

0.148t 0.60 0.36 0.04 0.183 0.98 7.24 1.32 0.55
0.155t 0.60 0.37 0.03 0.194 0.98 7.24 1.33 0.53
0.147t 0.70 0.27 0.03 0.179 0.97 7.23 1.39 0.59

t Adapted from B. Stromgren, Stellar Models for Main-sequence Stars and Subdwarfs, in
L. H. Aller and D. B. Mcl.aughlin (eds.), "Stellar Structure." By permission of The Univer-
sity of Chicago Press. Copyright 1965 by The University of Chicago.

t Boundary of the convective core.

value Ii; = 2, for instance, means that either the core is convective or the calcu
lated value of the central opacity is too great by a factor of 2. Thus one must
examine the opacity calculation carefully when predicting the existence of margi
nal convection zones. In the example just cited, the central opacity near R, = 2
was computed to be about three times as great as the opacity due to the scatter
ing from free electrons, and the electron-scattering opacity clearly is a lower
bound to the central opacity of such a star.

The ratio Lee/£ in Fig. 6-12 represents the ratio of the power generated within
the convective core to the total luminosity of the star. About half of the power
is generated within the convective core at mJ: = 1.5mJ:0, but the ratio is nearly
unity at mJ: = 3;)170' The ratio LcN/5Lp p measures the ratio for the entire star
of the rate at which energy is provided by the CN cycle to the rate provided by
the PP chains. The respective contributions are equal near mJ: = 2mJ:0, but the
CN cycle becomes much more dominant ::j,t larger masses. From this ratio it can
be seen that the convective core develops before the CN cycle takes over as the
major source of power. It must be dear that these ratios depend upon the num
ber of CN nuclei in the initial composition. In extreme population II stars
(which no longer survive in this mass range) with X CN smaller by a factor of 100
or more, core convection may not appear at all.

Tables 6-2 and 6-3, respectively, show the characteristics of zero-age models
of upper-main-sequence stars of 2.8mJ:0 and 7.1mJ:0' Each model is dis
played for three sets of composition parameters: {X,Y,Z} = {0.60,0.36,0.04},
{0.60,0.37,0.03}, and {0.70,0.27,0.03}. The generally small effects of compo
sition difference can be interpolated over a small range of composition changes.
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Table 6-3 Zero-age model for three compositions with mJ: = 7.08mJ:0t

R .e-
X Y Z R0 £0 log T.

Surface 0.60 0.36 0.04 3'.5 2,800 4.35
0.60 0.37 0.03 3.4 2,800 4.36
0.70 0.27 0.03 3.3 2,000 4.35

r M(r) L(r)

R X Y Z mJ: .e log T log p K

0.95 0.60 0.36 0.04 1.000 1.00 5.59 -4.77 1.88
0.60 0.37 0.03 1.000 1.00 5.61 -4.70 1.72
0.70 0.27 0.03 1.000 1.00 5.58 -4.72 2.09

0.85 0.60 0.36 0.04 1.000 1.00 6.09 -3.06 1.34
0.60 0.37 0.03 1.000 1.00 6.10 -2.99 1.22
0.70 0.27 0.03 1.000 1.00 6.08 -2.99 1.42

0.75 0.60 0.36 0.04 0.997 1.00 6.38 -2.18 1.33
0.60 0.37 0.03 0.997 1.00 6.39 -2.10 1.19
0.70 0.27 0.03 0.997 1.00 6.37 -2.10 1.43

0.65 0.60 0.36 0.04 0.987 1.00 6.59 -1.52 1.10
0.60 0.37 0.03 0.987 1.00 6.60 -1.44 0.95
0.70 0.27 0.03 0.987 1.00 6.58 -1.44 1.16

0.55 0.60 0.36 0.04 0.958 1.00 6.75 -0.92 0.81
0.60 0.37 0.03 0.955 1.00 6.77 -0.85 0.70
0.70 0.27 0.03 0.957 i.oo 6.74 -0.85 0.87

0.45 0.60 0.36 0.04 0.880 1.00 6.91 -0.35 0.64
0.60 0.37 0.03 0.872 1.00 6.93 -0.28 0.58
0.70 0.27 0.03 0.878 1.00 6.90 -0.28 0.68

0.35 0.60 0.36 0.04 0.705 1.00 7.07 +0.18 0.50
0.60 0.37 0.03 0.689 1.00 7.08 0.24 0.47
0.70 0.27 0.03 0.702 1.00 7.06 0.25 0.53

0.25 0.60 0.36 0.04 0.410 1.00 7.23 0.61 0.41
0.60 0.37 0.03 0.393 1.00 7.24 0.65 0.39
0.70 0.27 0.03 0.407 1.00 7.22 0.67 0.44

0.20 0.60 0.36 0.04 0.252 1.00 7.31 0.75 Cony.
0.60 0.37 0.03 0.239 0.99 7.32 0.78 Cony.
0.70 0.27 0.03 0.249 1.00 7.30 0.82 Cony.

0.15 0.60 0.36 0.04 0.123 0.94 7.37 0.86 Cony.
0.60 0.37 0.03 0.116 0.93 7.38 0.89 Cony.
0.70 0.27 0.03 0.125 0.94 7.36 0.93 Cony.

0.10 0.60 0.36 0.04 0.041 0.66 7.42 0.94 Cony.
0.60 0.37 0.03 0.038 0.64 7.43 0.96 Cony.
0.70 0.27 0.03 0.040 0.67 7.41 1.00 Cony.

0.05 0.60 0.36 0.04 0.006 0.16 7.45 . 0.99 Cony.
0.60 0.37 0.03 0.005 0.11 7.45 1.01 Cony.
0.70 0.27 0.03 0.005 0.16 7.44 1.05 Cony.
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Table 6-3 Zero-age model for three compositions with mr = 7.08mr0t (Continued)

R .e- -
X Y Z R0 £0 log T.

Surface 0.60 0.36 0.04 3.5 2,800 4.35
0.60 0.37 0.03 3.4 2,800 4.36
0.70 0.27 0.03 3.3 2,000 4.35

r M(r) L(r)

R X Y Z mr .e log T log p K

0.00 0.60 0.36 0.04 0.000 0.00 7.45 1.00 Conv.
0.60 0.37 0.03 0.000 0.00 7.46 1.02 Conv.
0.70 0.27 0.03 0.000 0.00 7.45 1.06 Conv.

0.21lt 0.60 0.36 0.04 0.282 1.00 7.29 0.73 0.39
0.218t 0.60 0.37 0.03 0.290 1.00 7.30 0.74 0.38
0.207t 0.70 0.27 0.03 0.270 1.00 7.29 0.80 0.42

t Adapted from B. Stromgren, Stellar Models for Main-sequence Stars and Subdwarfs, in
L. H. Aller and D. B. McLaughlin (eds.), "Stellar Structure." By permission of The Univer
sity of Chicago Press. Copyright 1965 by The University of Chicago.

t Boundary of the convective core.

It is generally believed that the hydrogen content of the population I stars,
which are the only ones left at masses this great, falls somewhere in the range
0.60 < X < 0.70. It remains a major theoretical problem to understand how it
is that the whole range of population I stars share this narrow band of hydrogen
concentration if the galaxy began as essentially pure hydrogen. It may well be
that a major stage of galactic evolution separates population II and population I.

AB the upper-main-sequence stars consume their central hydrogen, several
effects occur simultaneously: (1) the convective core shrinks, thereby leaving
behind a continual gradation of hydrogen concentration, (2) the r-adius expands,
(3) the core contracts gravitationally to larger central density and temperature,
and (4) the luminosity increases but in such a way that the surface temperature
drops relatively little because of the expanding radius. This last effect means
that the evolved main sequence is shifted upward to higher luminosity than the
zero-age star of the same surface temperature. The principal characteristics of
evolutionary sequences for models of four different masses of initial composition
X = 0.70, Y = 0.27, and Z ::: 0.03 are listed in Table 6-4. Most of the entries
are self-explanatory. The entry q(core) represents the fraction of the total mass
in the convective core, whereas I.1.Mb l represents the increase of the luminosity
over that. of the zero-age star of the same surface temperature. The bolometric
magnitudes Mb decrease as the luminosity increases, so that IMbl represents the
magnitude of the decrease.

The change of the lower main sequence can be illustrated with two models of
the sun, the first at zero age and the second after 4.5 X 109 years, i.e., today.
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Table 6·4 Evolved main sequence for four massest

mL Age, R Tc, Pc,- -
mL0 Xc 106 years R0 u, log T. IMhl q(core) 106 oK g/cm3

1. 78 0.70 0 1.54 2.1 3.93 O.D 0.12 20 68
0.60 210 1.64 2.0 3.92 0.1 0.11 20 72
0.50 390 1. 74 2.0 3.92 0.3 0.10 21 76
0.40 540 1.86 2.0 3.90 0.5 0.09 21 82
0.30 670 1.99 1.9 3.89 0.7 0.08 22 89
0.20 770 2.14 1.9 3.88 0.9 0.07 22 99
0.10 860 2.28 1.9 3.86 1.0 0.06 24 117

2.82 0.70 0 1.96 0.2· 4.07 0.0 0.18 23 38
0.60 70 2.11 0.1 4.07 0.2 0.16 23 39
0.50 120 2.28 0.0 4.06 0.4 0.14 24 41
0.40 170 2.46 -0.1 4.05 0.6 0.12 24 43
0.30 210 2.67 -0.1 4.03 0.8 0.10 25 46
0.20 240 2.91 -0.1 4.02 1.1 0.08 25 50
0.10 260 3.15 -0.1 4.00 1.3 0.07 27 59

4.47 0.70 0 2.54 -1.7 4.20 0.0 0.22 25 21
0.60 23 2.75 -1.8 4.20 0.2 0.20 26 21
0.50 42 2.99 1.9 4.19 0.4 0.17 26 22
0.40 56 3.26 -2.0 4.18 0.7 0.15 27 22
0.30 68 3.57 -2.0 4.16 0.9 0.12 28 24
0.20 78 3.91 -2.1 4.15 1.2 0.10 28 26
0.10 86 4.27 -2.1 4.13 1.5 0.08 30 30

7.08 0.70 0 3.3 -3.5 4.32 0.0 0.27 28 12
0.60 9 3.6 -3.6 4.32 0.2 0.24 29 12
0.50 16 3.9 -3.7 4.31 0.4 0.21 29 12
0.40 21 4.3 -3.8 4.30 0.7 0.18 30 12
0.30 26 4.7 -3.9 4.29 1.0 0.16 31 13
0.20 29 5.2 -3.9 4.27 1.3 0.13 32 14
0.10 32 5.8 -4.0 4.26 1.5 0.11 33 16

t Adapted from B. Stromgren, Stellar Models for Main-sequence Stars and Sub dwarfs, in
L. H. Aller and D. B. McLaugWin (eds.), "Stellar Structure." By permission of The Univer
sity of Chicago Press. Copyright 1965by The University of Chicago. The initial composition
is X = 0.70, Y = 0.27, Z = 0.03.

t

The physical properties are listed in Tables 6-5 and 6-6 as a function of the mass
coordinate.

Problem 6-15: Calculate the change of the effective surface temperature T. of the sun over
the period 4.5 X 109 years.

For lower-main-sequence stars there is interest in a considerable range of
compositions.. The heavy-element concentration ranges between Z = 0.04 in
young population I to Z = 0.001, or perhaps less, in extreme population II. The
mass range 0.6 < ffitjml:0 < 1.3 is of particular interest to population II com
position, because this is the mass range of the globular-cluster main sequences.
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Table 6-5 Zero-age model of the sun t

M(r), r, T, p, L(r), 0, K,

solar masses 1011 em 106 -tc g/em3 1033 ergs/sec ergs a». see-1 em 2/g

0.0 0.00 13.7 90 0.00 13.9 1.38
0.05 0.07 12.3 74 0.95 7.2 1.64
0.1 0.09 11.6 65 1.54 4.8 1.82
0.2 0.11 10.4 51 2.20 2.3 2.16
0.3 0.14 9.4 40 2.53 1.1 2.50
0.4 0.16 8.5 30.5 2.68 0.5 2.87
0.5 0.18 7.6 22.4 2.75 0.2 3.3
0.6 0.20 6.8 15.7 2.77 0.04 3.8
0.7 0.23 5.9 10.0 2.78 0.01 4.4
0.8 0.26 5.0 5.5 2.78 0.00 5.2
0.9 0.32 3.8 2.09 2.78 0.00 7.0
0.95 0.37 3.0 0.87 2.78 0.00 8.6
0.99 0.46 1.73 0.142 2.78 0.00 11.1
0.99968 0.60 0.62 0.0057 2.78 0.00 Conv.
1.0 0.659 2.78

t B. Stromgren, Stellar Models for Main-sequence Stars and Sub dwarfs, in L. H. Aller and
D. B. McLaughlin (eds.), "Stellar Structure." By permission of The University of Chicago
Press. Copyright 1965 by The University of Chicago.

Table 6-6 Model of the sun at 4.5 X 109 yearst

M(r), r, T, p, L(r), 0, K,

solar masses 1011 em 106 OK g/cm3 1033 ergs/sec ergs g-l see-1 em 2/g Xli

0.0 0.00 15.7 158 0.00 17.5 1.09 0.36
0.05 0.06 13.8 103 1.30 10.0 1.32 0.52
0.1 0.08 12.8 83 2.13 6.8 1.48 0.58
0.2 0.10 11.3 59 3.09 3.3 1. 78 0.65
0.3 0.13 10.1 43 3.55 1.6 2.09 0.68
0.4 0.15 9.0 31.5 3.77 0.7 2.42 0.69
0.5 0.17 8.1 22.4 3.86 0.3 2.79 0.70
0.6 0.20 7.1 15.2 3.90 0.06 3.2 0.70
0.7 0.23 6.2 9.4 3.90 0.02 3.8 0.71
0.8 0.26 5.1 5.0 3.90 0.00 4.5 0.71
0.9 0.32 3.9 1.84 3.90 0.00 6.0 0.71
0.95 0.38 3.0 0.74 3.90 0.00 7.4 0.71
0.99 0.48 1. 73 0.117 3.90 0.00 9.6 0.71
0.99955 0.62 0.66 0.0063 3.90 0.00 Conv. 0.71
1.0 0.694 3.90 0.71

t B. Stromgren, Stellar Models for Main-sequence Stars and Subdwarfs, in L. H. Aller and
D. B. McLaughlin (eds.), "Stellar Structure." By permission of The University of Chicago
Press. Copyright 1965by The University of Chicago. Initial composition X = 0.71, Y= 0.27.
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Since the globular clusters are believed to be the oldest objects in the galaxy,
considerable effort has been expended in an attempt to compute their age by
matching their color-magnitude diagrams to those calculated for stars in this
mass range. A star of low heavy-element content has a greater luminosity than
its population I counterpart of equal mass because its interior opacity is reduced.
It is also bluer, and the zero-age main sequence for extreme population II lies
about half a magnitude below that of population 1. But because the population
II stars have a greater fuel supply per unit mass, their main-sequence lifetimes are
longer than their population I counterparts of equal luminosity.

For sufficiently low mass, the central temperature of lower-main-sequence stars
will not become great enough to cause the hydrogen to burn at a rapid enough rate
to stop the contraction. Kumar! has calculated that for ;m; < O.07;m;0 the
contraction proceeds until it is stopped by electron degeneracy, and the star eools
to invisibility.

6-7 ADVANCED STELLAR EVOLUTION

The preceding sections illustrate the fact that stellar evolution is continuous.
Nuclear reactions begin in the interior before the star has completed the shrinkage
of its radius to its minimum value on the zero-age main sequence. This process
merges continuously into evolution within the main-sequence band. This evolu
tion is characterized by the depletion of central hydrogen accompanied by slow
core contraction and heating while the radius begins to slowly expand from the
zero-age value. During the depletion of the central hydrogen the star's position
in the color-magnitude diagram moves somewhat upward. The overriding
features of this evolution, as well as those of subsequent stages, are embodied in
the principles of hydrostatic equilibrium and the virial theorem. When light
nuclei are fused into heavier ones, the :Mtf~rQR of the mean molecular weight
leads to a pressure deficiency. This deficiency in turn allows (or should we say
demands?) the contraction of the core under the excessive weight of the overlying
layers. The physics of the virial theorem implies that the gravitational con
traction will be accompanied by a rise in central temperature, and in this way
hydrostatic equilibrium can be reestablished. The rising central temperature
tends to steepen the temperature gradient, which usually implies that energy will
flow out at a faster rate than it is being provided. To maintain the energy
balance, the outer layers expand to reduce the temperature gradient once again
to a level consistent with the rate of energy production. All of stellar evolution
is dominated by similar physical principles; only the details of the energy genera
tion, the opacity, the equation of state, etc., change. Gravity continually sends
its incessant order to contract, an order that can be delayed and compromised for
varying lengths of time but not ignored. So far as is known, the contraction can
come to an absolute halt only if the star can be stabilized as a ball of degenerate
matter that has ceased to radiate (a black white-dwarf star or neutron star).

1 S. S. Kumar, Astrophys. J., 137 :1121 (1963).
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With the application of these simple principles (and a large amount of hind
sight!), it is possible to give a rough verbal description of the sequence of events
subsequent to the exhaustion of hydrogen in the core of a star. The core con
tinues to contract as the hydrogen is exhausted, leaving a central region of helium
plus heavier trace elements. This helium core will tend to be isothermal because
nuclear energy generation has ceased to send out energy, although a relatively
small temperature gradient will be required to transport the energy released by
continued contraction of the core. Because of the continuity of temperature and
the increasing value of the core temperature, the temperature of a shell of hydro
gen surrounding the core will be elevated to temperatures sufficient to liberate
significant amounts of energy. The increased internal temperatures require the
expansion of the stellar radius to keep the temperature gradient at a consistently
low level. The star therefore reddens at a relatively rapid rate while the hydro
gen-burning shell slowly increases the mass of the helium core. As the outer
layers cool as a result of the great increase in radius, the luminosity may decrease
as a result of both a decreasing rate of energy production in the hydrogen shell
source and an increased radiative opacity in the portions of the star outside the
shell"source.

This trend is terminated by the following development. When the surface
becomes cool enough for the ionized metals to recapture electrons and become
neutral, the surface opacity drops. It does so because the main source of opacity
is the H- ion, which cannot be easily formed without free electrons. The smaller
surface opacity allows energy to be radiated at a faster rate. To supply this
energy the high-opacity subphotospheric layers become convective, thereby
drawing energy directly from the low-opacity interior. The radius continues to
increase. with increasing luminosity, so that the outer convective zone becomes
deeper and deeper as the core continues its contraction. During this phase the
star moves upward on a nearly vertical path in the H-R diagram that bears many
similarities to the Hayashi track that was descended during the original con
traction phase.

Eventually the center becomes hot enough for the helium gas to begin fusing
to C12, whereupon the core becomes convective once more. For structural
balance the surface contracts again as the star enters a phase characterized by a
helium central energy source and a hydrogen shell source. In relatively low-mass
stars the history is somewhat modified. Because of a larger central density, the
helium core is supported by a degenerate electron gas at the time the 3a reaction
begins at a significant rate. Because of the weak temperature dependence of
degeneracy pressure (see Chap. 2), a thermal runaway occurs, the so-called helium
flash. The manner in which the star reorganizes itself following this flash is a
major unsolved problem in stellar evolution, particularly so because of its impor
tance to the understanding of the globular-cluster H-R diagrams.

In subsequent stages of evolution, the same types of events occur. When the"
helium is exhausted, the core contracts until the temperature has risen to the
value required for the C12 + C12 reactions to begin. Such a star may then have
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Fig. 6·13 The evolutionary track of a star of three solar masses in the H-R diagram. The
time required to reach the enumerated points is given in Table 6-7. [After I. Iben, Jr.,
Astrophys. J., 142 :1447 (1965). By permission of The University of Chicago Press. Copy
right 1965 by The University of Chicago.]

a helium shell source and perhaps even a third energy source in a hydrogen shell.
The initial burning of 0 12 also often occurs in a degenerate electron gas, so that
the carbon flashes too. The next stage, oxygen burning, is the last one capable of
providing adequate power to delay further collapse for any significant length of
time. By this time the neutrino losses have become important.

Let us now illustrate some of these developments in a more quantitative way. 1

Figure 6-13 shows the evolution of a population I star of three solar masses in the

1 The following material was taken primarily from the published papers of 1. Then, Jr., who has
conducted very detailed examinations of stellar evolution. The student should also read the
papers of Hayashi, Henyey, Schwarzschild, Kippenhahn, and their associates, each of whom
has made major contributions to the modern science of stellar evolution. In this literature
the student will find references to the early exposition of the concepts of stellar evolution.
Many of the older papers are very illuminating insofar as the conceptual framework of stellar
evolution is concerned.
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H-R diagram. Several key points along the evolutionary track are labeled by
numbers. The time required for the model to evolve to each point is listed in
Table 6-7. The model points listed represent only a small fraction of the 560
models constructed in this sequence. These evolution times are not in them
selves accurate to six significant digits for a real star of three solar masses, because
the real star may do things that have not been included in the model, e.g., rotate,
mix by circulation, or lose mass. The difference in time between two models is
probably accurate to the degree shown, however, unless the star's structure is for
some unknown reason different from that of the model at the corresponding point.
The way in which many quantities vary in time is illustrated in Figs. 6-14 and 6-15.
The time abscissa on these figures may be correlated with the evolutionary track
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Fig.6-14 The variation with time of the luminosity, the surface temperature, the mass fraction
M ee within the convective core, and the central mass fractions of H, He 4, C l2, 0 16, and 0 18 during
the evolution of a three-solar-mass star. The full-scale limits correspond to 2.45 > log £/£0 >
1.95,4.3 > log T; > 3.3, andt > Mee > O. The scale for the composition parameters changes
at t = 2.25 X 108 years. To the left of the break 0.02 > X 16 > 0 and 1.0 > XH, X4 > 0, and
to the right of the break 0.1 > X 18 > 0 and 1.0 > X 4, Xu, X 16 > O. [After I. Iben, Jr.,
Astrophys. J., 142 :1447 (1965). By permission of The University of Chicago Press. Copyright
1965 by The University of Chicago.]
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Fig. 6·15 The variation with time of the radius, the central density, the central temperature,
and the ratio of the helium-burning power to the hydrogen-burning power during the evolution
of a three-solar-mass star. To the left of the break at t = 2.25 X 108 years the full-scale limits
correspond to 5 > R/R0 > 0, 31 > Tc/ 10s > 21, and 80 > Pc > 30. To the right of the
break the full-scale limits correspond to 50 > R/R0 > 0,2.3 > log Tc/lOs > 1.3,5.5 > log Pc >
0.5, and 1.0> Lae/La > O. [After I. Iben, Jr., Astropluje. J., 142:1447 (1965). By permission
of The University of Chicago Press. Copyright 1965 by The University of Chicago.]

Table 6-7 Evolutionary lifetime for 3mL0 t

Point t, 108 years Point t, 108 years Point t, 108 years

1 0.024586 7 2.47004 14 2.55850
2 1.38921 8 2.47865 15 2.78295
3 2.23669 9 2.48429 16 2.94233
4 2.34089 10 2.48925 17 3.06968
4' 2.34222 11 2.49817 18 3.19043
5 2.40119 12 2.50728 19 3.23566
6 2.44420 13 2.53163 20 3.26323

t 1. Iben, r-, Astrophys. J., 142 :1447 (1965). By permission of The
University of Chicago Press. Copyright 1965 by The University of
Chicago.
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by the use of Table 6-7. A thumbnail sketch describing the evolution between
characteristic points follows:

(1-3) The track between points 1 and 3 corresponds to the main-sequence
depletion of hydrogen and the reduction in size of the convective core, as illus
trated in Fig. 6-14. The time required to evolve through this portion is about
two-thirds of the total time represented on the entire evolutionary track. The
long time spent by stars near the main sequence accounts for the fact that most
observed stars are in their main-sequence phases.

(3-4) The star contracts for about 107 years, during which time the mass
fraction in the convective core decreases rapidly.

(4'-6) A thick hydrogen-burning shell is formed near 4'. At the same time
the convective core disappears, and the central hydrogen vanishes. The core
contracts very rapidly and becomes nearly isothermal. The main phase of
hydrogen burning in the shell lasts about 107 years and ends at point 6.

(6-10) Between 6 and 10 the core contracts, and the central temperature rises
rapidly. The envelope expands rapidly while hydrogen burning continues in an
intermediate shell. This phase requires about 4.5 X 106 years. The luminosity
falls during this phase because the hydrogen shell source becomes less and less
able to provide energy as a result of overall structural changes in the star. The
expanding and cooling envelope is also absorbing a great deal of energy. As
point 10 is approached by the 3mr0 star, the contraction of the core liber
ates energy at the rate Leore .", 7£0' the hydrogen-burning shell contributes
Lshell .", 122£0, and the expanding envelope absorbs Lenv .", 42£0.

(10-13) Near point 10 the surface has become so cool that a deep outer
convection zone appears. The star ascends a nearly vertical track as the core
contracts, the radius expands, and the mass contained in the outer convective
core increases roughly in proportion to log £. This process is halted temporarily
at point 11, where the N14 at the center begins to burn rapidly by radiative capture
of an alpha particle; N14(a,'Y)F18, followed by F18(,8+1')018. The N14 is reasonably
abundant at this stage, because almost all the original CNO nuclei were converted
to N14 during the main-sequence phase. This burning produces a short core
expansion, during which time the luminosity regresses to point 12. When the
N14 has been converted to 0 18, the central energy source disappears, and the core
contracts again. The luminosity and radius then continue their increase to
point 13, where the 3a reaction halts the contraction of the core.

(14-18) This portion of the track is characterized by helium burning in the
core and hydrogen burning in a shell. This phase lasts about 7.3 X 101 years
for the 3mr0 star, which is about one-quarter of the total lifetime of the star.
The onset of energy production in the core as the temperature there reaches
108"K leads to expansion of the core, which becomes convective. Simultaneous
with the core expansion, the luminosity falls because the energy production in
the hydrogen-burning shell is decreased and the surface contracts, becoming bluer
as it does so. During helium burning, the hydrogen shell remains the major
source of power, producing as it does about 6 to 8 times as much energy as the core.
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Fig.6-16 Evolutionary paths in the H-R diagram for population I stars of mass :mj:m0 =
1.0, 1.5, 3, 5, 9, and 15. The initial point is on the zero-age main sequence. The ages of
the stars at the enumerated points are listed in Table 6-8. [After I. Iben, Jr., Astrophys.
J., 140 :1631 (1964). By permission of The University of Chicago Press. Copyright 1964
by The University of Chicago.]

(18-20) This portion of the track represents the exhaustion of helium in the
core. When the helium abundance has been reduced to small values, the reac
tion C12(a ,'Y)0 16 becomes more important than the 3a reaction. The physical
principles governing the exhaustion of helium are quite similar to those of the
earlier exhaustion of hydrogen. The core contracts and heats up the surround
ing layers until helium begins to burn in a shell around the helium-exhausted
core. At point 20 the star has two major shell sources, an inner one of helium
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and an outer one of hydrogen, burning around a contracting core of C12, 0 16, and
heavier trace elements. In the future life of this star, the C12 core will eventually
contract enough as it grows in mass for carbon burning to begin.

The evolution of this 3m1o star affords an illustration of the interplay between
photospheric abundances and nucleosynthesis within the interior. Prior to the
growth of the outer convection zone, the surface abundances of the elements Li,
C, and N retain the values they had when the star was on the main sequence.
When the star begins its vertical climb in the H-R diagram at point 10, the
surface convection zone begins reaching further into the star. As the lower
boundary of the convection zone moves inward past the point where lithium
has been destroyed by interactions with protons (T '" 2 X 106 OK), the unburnt
lithium is mixed convectively with matter in which the lithium has already been
destroyed. The surface abundance of Li therefore drops. By the time the star
has ascended to point 11, the convective zone has reached inward to the point
where C12 has been converted to N14 by the CN cycle. Thereafter C12 is con
vected inward, and N14 is convected outward, with the result that the surface
ratio of N14 to C12 begins to increase. When the star reaches the tip of the red
giant branch (point 13), the convective envelope contains the outer 82 percent
of the star's mass. The abundance of lithium at the surface has been reduced
by a factor of about 60, and the ratio N14jC12 has been increased by somewhat
more than a factor of 3. These effects may be observable. The situation is
somewhat clouded by the likelihood of mass loss on the subgiant branch, how
ever. Even so, the analogous effects can be computed if the rate of mass loss is
known.

Paths of evolution in the H-R diagram for a spectrum of stellar masses of
population I composition (X = 0.708, Z = 0.02) are shown in Fig. 6-16. The
times required for the initial pre-main-sequence model to evolve to the enumer
ated points are listed in Table 6-8. On each path the main phase of core hydro-

Table 6-8 Evolutionary lifetimes, yearst

Point 15.0
1 6.160 X 104

2 1.023 X 107

3 1.048 X 107

4 1.050 X 107

5 1.149 X 107

6 1.196 X 107

7 1.210 X 107

8 1.213 X 107

9 1.214 X 107

10

9.0

1.511 X 105

2.129 X 107

2.190 X 107

2.208 X 107

2.213 X 107

2.214 X 107

2.273 X 107

2.315 X 107

2.574 X 107

2.623 X 107

5.0

5.760 X 105

6.549 X 107

6.823 X 107

7.019 X 107

7.035 X 107

7.084 X 107

7.844 X 107

8.524 X 107

8.782 X 107

3.0

2.510 X 105

2.273 X 108

2.394 X 108

2.478 X 108

2.488 X 108

2.531 X 108

2.887 X 108

3.095 X 108

3.262 X 108

1.5

1.821 X 107

1.567 X 109

1.652 X 109

2.036 X 109

2.105 X 109

2.263 X 109

1.0

5.016 X 107

8.060 X 109

9.705 X 10'
1 .0236 X 1010

1. 0446 X 1010

1.0875 X 1010

t 1. Iben, Jr., Astrophys. J., 140 :1631 (1964). By permission of The University of Chicago
Press. Copyright 1964 by The University of Chicago.
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1

Fig. 6·17 Evolutionary track of lower-main-sequence population I stars of mass .
;m;/;m;0 = 1.0, 1.25, and 1.5. The ages of the stars at the enumerated points along
each track are listed in Table· 6-9. The circled numbers along the tracks represent the
factors by which the surface Li7 abundance has been depleted by the deepening of the
outer convection zone. A diagonal line of constant radius has been included for added
physical insight. [After 1. Iben, Jr., Astrophys. J., 147 :624 (1967). By permission of
The University of Chicago Press. Copyright 1967 by The University of Chicago.]
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gen burning is represented by the segment joining points 1 and 2. The previ
ously mentioned fact that the main-sequence lifetime is a steeply decreasing function
of stellar mass is without doubt the single most important conclusion of the quanti
tative science of stellar evolution. This fact is the basic stepping stone into most
discussions of galactic chronology. A clear understanding of these tracks and the
time scales involved will enable the student to follow most of the semiempirical
interpretations of the diagrams of clusters of young stars. It would be profitable
at this point to return to the composite color-magnitude diagram for galactic
clusters shown in Fig. 1-16. In the relatively young clusters, stars remain on
the main sequence above zero magnitude. The red giants in such clusters have
luminosities not greatly different from the most luminous main-sequence mem
ber, a fact that is explained naturally by the evolution of upper-main-sequence
stars to the right as they age. In old clusters, however, the stars at the tip of
the red-giant branch are considerably more luminous than those at the tip of the
main sequence, a fact that can be interpreted naturally in terms of the shape of
the 1;m;0 track.

For the stars ;m;j;m;0 = 3, 5, and 9, helium burning in the core starts at the tip
of the red-giant branch, point 6. In the 15mt0 model the central temperatures
are so great that helium burning occurs on the way to the red-giant tip. The
models for 1;m;0 and 1.5;m;0 are terminated before helium burning begins, how
ever, because of difficulties in computing the subsequent evolution.

More details of the tracks for low-mass stars of population I are shown in
Fig. 6-17, and the corresponding evolution times are listed in Table 6-9. These
tracks are identical to those in Fig. 6-16, but the scale has been expanded, and
more ages along the track are explicitly noted. The phase of central hydrogen

Table 6.9 Evolutionary lifetimes (10 9 years>t

Point
1
2
3
4
5
6
7
8
9

10
11
12
13

1.0m'l:0
0.05060
3.8209
6.7100
8.1719
9.2012
9.9030

10.195

10.352
10.565
10.750
10.875

1.25m'l:0
0.02954
1.4220
2.8320
3.0144
3.5524
3.9213
4.0597
4.1204
4.1593
4.2060
4.3427
4.4505
4.5349

1.50m'l:0
0.01821
1.0277
1.5710
1.6520
1.8261
1.9666
2.0010
2.0397
2.0676
2.1059
2.1991
2.2628

t 1. Ihen, Jr., Astrophys. J., 147 :624 (1967). By permis
sion of The University of Chicago Press. Copyright
1967 hy The University of Chicago.
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burning (points 1 to 3) shows interesting differences that reflect differences in the
central structure. In all three stars energy generation from the PP chains
dominates that from the CN cycle, but the CN cycle contributes sufficient central
power for the cores of the 1.5;)1(;0 and 1.25;)1(;0 models to be convective, as discussed
in Sec. 6-6, whereas the core of the 1;)1(;0 model is in radiative equilibrium. This
difference accounts for the difference in the early evolution of these models. The
1;)1(;0 model initially evolves toward hotter surface temperatures, in spite of the
fact that the radius is increasing, whereas the 1.5;)1(;0 and 1.25;)1(;0 models initially
evolve toward the red as the central hydrogen is consumed. When the con
vective core disappears in the two more massive stars at point 3, the restructuring
of the star causes the short kink toward bluer surfaces. Because the core is
always radiative in the 1;)1(;0 model, however, this transition does not occur there,
and the evolution proceeds smoothly. During the remainder of the tracks, the
CN cycle contributes a progressively larger fraction of the energy generation in
the hydrogen-burning shell source until, along the giant branches, the CN cycle
dominates in all three models.

Another principle of importance to stellar evolution can be derived from the
results embodied in Fig. 6-17; viz., the ratio of the time spent by a star burning
hydrogen in a shell around a hydrogen-exhausted core to the time spent in the core
hyd1'ogen-burning phase is small. This fact is especially important near 1;)1(;0'
It can be demonstrated from Table 6-9, which shows the ratio of times to be

t(4 -> 13) = 033
t(l-? 4) .

That is, for stars near 1;)1(;0, the time required to evolve through the subgiant
branch is small compared to the time spent near the main sequence. Since the
main-sequence lifetime is a strong function of mass, it follows that in a highly
evolved cluster, the stars along the entire subgiant region are only slightly more
massive than the most luminous members near the main sequence. In first
approximation, then, the H-R diagram of the subgiant branch in an old cluster is
very nearly equal to the evolutionary track of the most luminous member of the
main sequence. This feature allows one to estimate the mass of the star involved
by comparing the subgiant branch to the evolutionary tracks of single stars.
Another important argument can be made if the number of giant stars in the
cluster is large. Over the small range of masses represented by the giant branch
the number of stars per unit mass interval should be nearly constant. As a result
one expects the number of stars between two points on the track to be proportional
to the time required for the star to evolve between the two points.

Problem 6-16: Consider a cluster whose subgiant stars are 1.25ml0. What number ratios
should one expect statistically for stars on the segments 2 -> 3, 3 -> 4, and 4 -> 5?
Ans: N(2-> 3):N(3-> 4):N(4-> 5) = 7.8:1.0:2.9.

These features are illustrated in Fig. 6-18, which represents a fit to the observed
H-R diagrams of the old galactic clusters lVI 67 and NGC 188. These subgiant
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Fig. 6-18 A characteriza
tion of the observed H-R
diagrams of two old galactic
clusters. The ages of these
clusters are estimated by the
age of an ensemble of stellar
models having the property
that the locus of H-R posi
tions of the individual stars
within the ensemble, which
differ with respect to mass
only, best reproduces the
observed diagram of the
cluster. [After I. Iben,
Jr., Astrophys. J., 147 :624
(1967). By permission of
The Un.iversity of Chicago
Press. Copyright 1967 by
The University of Chicago.]
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branches bear strong resemblance to the evolutionary tracks of 1.25ffil:0 and
1.00ffil:0 stars, respectively. The gap in the M 67 diagram corresponds to a
paucity of observed stars, which may reflect the anticipated deficiency of the
segment 3 -.; 4 as illustrated in Prob. 6-16. By attempting more exact matching,
Iben has estimated the ages of these clusters to be:

M 67: T = (5.5 ± 1) X 109 years

NGC 188: T = (11 ± 2) X 109 years

Many details render analyses of this type uncertain, but the reader will be aware
that estimating the ages of clusters is a considerably more sophisticated process
than was indicated in the first chapter.

In contrast to the case of more massive stars, electron degeneracy is responsible
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for a major fraction of the pressure, and electron conduction is the dominant
means of energy transport in the hydrogen-exhausted cores of all three stars of
Fig. 6-17. The good conductivity results in an isothermal core which grows
slowly over an extended period of hydrogen burning in an extremely thin shell
around the core. The narrowness of this shell requires the use of small time steps
in the calculation and makes the evolution hard to follow to the ignition of core
helium. When the helium gets hot enough to burn, furthermore, it does so
explosively. The high degree of degeneracy of the gas means' that a rise in
central temperature is at first not accompanied by a comparably rapid rise in
central pressure. The temperature shoots up rapidly, causing the 3a reaction to
proceed at ever greater rates. This runaway process is halted when the tempera
ture has risen to the point where the electrons are no longer strongly degenerate.
In this helium flash, as the event is called, the central temperature doubles, and
the instantaneous rate of nuclear energy production reaches a very short-lived peak
of about 1011£ 0 ' The time steps between successive models may have to be as
short as seconds! to follow the flash! The large central power lasts only a short
time and liberates only enough energy to lift the degeneracy of the electrons and to
expand the core, whereupon the temperature falls again. The details of this
crucial phase of low-mass evolution have been exceedingly difficult to follow, but
it appears likely that the stellar structure simply readjusts to one appropriate to
the burning of helium in a nondegenerate core plus the burning of hydrogen in a
shell. The subsequent evolution is probably similar to that of more massive
stars, for which the flash problem does not cloud the issue. The flash is a very
interesting and important phenomenon and probably warrants further physical
analysis. The tracks in Fig. 6-17 were terminated quite short of the flash which
will occur when log (£/£0) ~ 3.0.

As the stars evolve into the giant region, the surface convection zone dips below
the outer regions, where the primordial lithium has remained intact. The mixing
to the surface of lithium-depleted material reduces the abundance of lithium on
the surface. The circled numbers on Fig. 6-17 represent the factor by which the
surface lithium has been reduced. They also represent, therefore, the growth in
mass of the convective envelope.

This brief survey of the features of stellar evolution must be terminated at this
point. The reader should be aware that only the general ideas of stellar evolu
tion have been discussed. The particulars could easily fill an entire book. Some
of the more important subjects that have not been discussed are (1) the evolution
of extreme population II stars and the uncertainty in the helium abundance,
(2) semiempirical studies of stellar evolution, (3) carbon- and oxygen-burning
stars and the effect of neutrino emission on their time scales, (4) the presupernova
star and supernova explosions, (5) white-dwarf structure and evolution, and
(6) the problem of star formation. It is hoped that the principles outlined in this
book will make these more detailed problems more accessible to the uninitiated.
1 See R. Harm and M. Schwarzschild, Astrophys. J., 145 :496 (1966), as well as their earlier
papers on the subject cited therein.
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The discussion has centered on nonrotating stars of constant mass. It seems
quite clear, however, that the problems of mass loss and rotation, which may
often be coupled to each other, must soon be injected in a natural way into studies
of stellar evolution. This chapter will continue with a brief discussion of the
major physical effects involved, and in the final section we consider the principles
of pulsational stability.

6.8 ROTATION

Rotation can affect the evolution of a star in at least two very important ways.
The most obvious consideration is that a new principle, the conservation of
angular momentum, becomes relevant to any structural change. Second, we
shall find that fluid circulation may be necessary to maintain the energy balance
in the nonspherical star. In this section we shall introduce these ideas in the
simplest possible way, not making any attempt to discuss the full complexity of
this important stellar problem.

If a star is envisioned as rotating, it seems sensible that the centrifugal forces
will render it nonspherical. Although we may still choose to think of an isotropic
scalar pressure at each point in the interior, it no longer seems likely that the
pressure gradient will be perfectly radial. The equation of hydrostatic equi
librium must be written so as to contain any additional forces:

vP = -pVcPG + pF (6-66)

(6-67)

where cPG is the gravitational potential, which may be nonspherical, F is any
additional force per unit mass acting on each mass element, and vP is the gradient
of the pressure and is also nonradial. For the case in point, the additional force F
will be regarded as a centrifugal force, although it could also represent forces due
to magnetic fields or due to the tidal distortion by a companion star in a binary.

Although it is certainly not necessary to do so, the effect of rotation is most
easily seen by imagining all parts of the star to be rotating at a uniform angular
velocity [l. Then the components of the centrifugal force on each mass element,

F; = [l2r sin" 8

Fe = [l2r sin 8 cos 8

F", = 0

can themselves be written as the gradient of the centrifugal potential

cPo = _·~Wr2 sin- 8

Then the hydrostatic equilibrium can be expressed as

vP = -pVcP

where

cP = cPG + cPo

(6-68)

(6-69)

(6-70)
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Concentrate for a moment on Eq. (6-69). Although the equipotentials are no
longer spherical, the pressure gradient remains perpendicular to the surfaces of
constant potential. The pressure is therefore constant on a given equipotential
surface, so that the pressure at each point can be regarded as a function of the
potential labeling the equipotential surface passing through the point: P = P(cf».
Equation (6-69),

dP
- = -p (6-71)
dcf>

implies that the density is also a function only of cf>. It follows from the equation
of state, then, that the equipotential surfaces are also surfaces of constant
temperature.

Consider a region of a rotating star in radiative equilibrium, where the heat
flux is

H = _ 4ac T3 vT
3 Kp

= _ 4ac T3 dT V cf> (6-72)
3 Kp dcf>

Inasmuch as all quantities are a function only of cf>, ,the radiation flux must be
proportional to the potential gradient, and, furthermore, the absolute value of the
heat flux along a potential surface is proportional to the magnitude of the potential
gradient. This last point is important, because in the nonspherical star, the
potential gradient cannot have constant magnitude -at--all points on the equi
potential surface. For a rotating star, the equipotential surfaces will be more
widely spaced in the equatorial plane than at the corresponding values along the
axis of rotation. Therefore the heat flux will be greater in the polar direction
than along the equatorial planes. This asymmetry raises an important question,
for although the star may adjust its temperature structure in such a way that the
net heat flow out of an equipotential surface is equal to the integrated power
generated within, it is not clear whether energy balance can be satisfied locally.
For the sake of simplicity consider a region outside the central region of energy
generation. If the thermodynamic state of that mass element is to be truly
static, it must be true that

V·H = 0 (6-73)

From Eq. (6-72) and the knowledge that all functions of state are functions only
of cf>, we have, on the other hand,

v. H = _ 4ac T3 dT tj2cf> _ /Vcf>12~ (4ac T3 dT) (6-74)
3 Kp dcf> dcf> 3 «p dcf>

Problem 6-17: Confirm Eq. (6-74). Then evaluate the laplacian to show that its magnitude

\72.p = 4arGp - 202

is a function only of .p.

(6-75)



CALCULATION OF STELLAR STRUCTURE

n

499

Fig. 6-19 A meridian plane cut through
a rotating star. Circulation along the
directions indicatedis established to main
tain the thermal balance of the star.

When Eq. (6-75) is reincorporated in (6-74), we see that all terms in V • Hare
functions only of cP with the exception of the factor IvcPl. But the value ofv cP
depends also on 8, being greatest for a given value of cP on the axis of rotation and
having a minimum in the equatorial plane. It follows that V • H cannot vanish
everywhere on the equipotential.

Under such circumstances it may be that the best a star can do is to adjust its
temperature structure so that the integrated heat flow through an equipotential
surface is balanced by the energy generation from within. But in a given local
region V • H will not vanish. As a result, the gas along the axis of rotation heats
up and begins to rise, whereas gas elements in the equatorial plane lose heat energy
and begin to fall. This pattern amounts to the establishment of fluid currents,
as illustrated in Fig. 6-19. This circulation along meridian planes has the
potentially important effect of mixing the composition of the gas. The speed of
this circulation adjusts itself so that the heating by compression of a falling
element is balancing at each point the cooling due to the divergence of the
radiation flux. When Eddington first calculated the mixing speeds, he concluded
that they were great enough to prevent the development of chemical inhomo
geneity. Subsequent corrections by Sweet and by Mestelshowed this conclusion
to be a great overestimate, and the velocity of circulation in the sun was found to
be of the order 10- 9 ern/see. Such a velocity requires about 1012 years to mix
center and surface in the sun and therefore appears negligible. But it is by no
means certain that special effects cannot occur in important thin layers of more
rapidly rotating stars. (The sun is a slow rotator, compared to upper-main-
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sequence stars.) In particular one may wonder about the status of thin shells of
nuclear burning and whether such circulations could bring lithium-depleted
material to the lower bound of a surface convective zone. Although it seems
likely that the chemical inhomogeneities upon which stellar evolution is based are
secure, very few workers in the field believe that important applications of merid
ian currents do not exist anywhere.' Much modern research is directed toward
finding a nonuniform QCr) which allows V • H = 0, in which case circulation may
not be required.

Because of the contribution of the centrifugal force, the internal pressure in a
rotating star will be somewhat less than in an otherwise identical nonrotating star.
The reduced interior temperature will liberate less thermonuclear power, so we
may expect rotating stars to be slightly subluminous. For main-sequence stars
constrained to rotate rigidly, the luminosity is reduced by about 10 percent."

Another very important principle to be satisfied by isolated rotating bodies is
the conservation of angular momentum. This principle must be considered
during expansions and contractions of a star. There will be a tendency for a star
to contract more easily along the axis of rotation than along the equatorial plane
because of the centrifugal barrier for the latter case. The expansions may be
very large. When a typical main-sequence star evolves to a giant, for example,
the core may contract in radius by an order of magnitude, whereas the outer
radius may expand by about the same factor. A relatively small amount of
effort has been expended on the evolution of numerical models of rotating stars.
The theoretical advances that have been made are only slowly digested by the
field as a whole, but it may safely be said that stellar rotation is emerging as a
problem of prime importance in stellar evolution.

Rotation also interacts with convection in such a way as to cause the inner
portion of a star to rotate more rapidly than the outer portion. Because of the
conservation of angular momentum, a falling convection cell will attempt to
increase its angular velocity, whereas a rising cell will tend to decrease its angular
velocity. The tendency of convection is to make the angular momentum per
unit mass constant, which in turn demands greater rotational velocity in the
central portion.

One of .the most fascinating of the rotation problems is the apparent abrupt
decrease in rotational velocity observed for main-sequence stars cooler than
about type F4. Upper-main-sequence stars have long been observed to be fast
rotators, whereas the dwarfs are not. One of the active areas in contemporary
research is the attempt to relate these observations to the fact that the surface
convection zone also begins near type F4 and deepens for cooler surfaces. The
idea is that stellar winds may provide a sufficient drag on stellar surfaces to slow

1 For a modern discussion of this problem the reader is referred to L. Mestel, Meridian Circula
tion in Stars, in L. H. Aller and D. B. McLaughlin (eds.), "Stellar Structure," The University
of Chicago Press, Chicago, 1965. Very informative also are papers of 1. Roxburgh, Monthly
Notices Roy. Astron. Soc., 126:67; 128:157, 237 (1964).

2 J. Faulkner, 1. W. Roxburgh, and P. A. Strittmatter, Astrophys. J., 151:203 (1968).
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down the rotation of the surface convection zone while the radiative core con
tinues to rotate rapidly underneath. In this case the angular momentum per
unit mass of main-sequence stars would be a smoothly changing function of
stellar mass rather than one having two apparently distinct branches. The
question is one of cosmological importance, moreover, because Dicke's observa
tiona' of the solar oblateness may be consistent with a rapidly rotating solar core,
in which case the argument that solar oblateness augments the precession of the
perihelion of Mercury becomes more compelling.

6·9 MASS LOSS

Mass loss is a self-descriptive term that is used to describe any process by which
the main body of the star, defined as the gravitationally bound mass, reduces its
mass by ejecting surface layers. It is obvious that mass loss in sufficient amounts
can have a large effect on evolutionary calculations. Mass loss can occur in a
variety of forms and can be initiated by a variety of physical mechanisms. Any
catastrophic event in which a massive outer layer is lifted off into space by some
internal instability must result in a drastically new structure for the remaining
core. So special are these circumstances that they will not be discussed here.
The frequency of such events and whether they occur at all has not been well
established.

It is not unlikely, however, that all luminous stars lose mass at some small
continuous rate as a result of the mechanical heating of the most tenuous outer
layers by the dissipation of sonic, hydromagnetic, and gravity waves." For
steady mass loss of this type the residual stellar structure changes quasistatically,
and the modification of its evolution can be calculated if the details of the mass loss
are known. Such slow rates of mass loss, which can sensibly be called stellar winds
to contrast them with discontinuous and disruptive mass loss, can conceivably
change the evolution in at least three major respects.

(1) If the mass of surface layer lost over the total evolutionary lifetime is a
nonnegligible fraction of the total mass, the chemical composition of the evolved
surface may reveal nuclear products that would not be expected on the surface of
a star of constant mass.

(2) The rotational velocity of the surface may be reduced if the mass lost is
able to carry away more angular momentum per unit mass than it had on the
photosphere. A mechanism for accomplishing this involves the magnetic field.
If the field is strong enough near the photosphere, the tenuous plasma corona will
corotate out to some distance from which it 'will drift away freely. The require
ment of corotation out to some distance from the surface provides a drag on the

1 R. H. Dicke and H. M. Goldenberg, Phys. Rev. Letters, 18 :313 (1967); for a readable account
of the cosmological relevance read R. H. Dicke, Phys. Today, 20(1) :55 (1967).

2 For an illuminating discussion of the best-known case, the sun, the reader is referred to a review
by A. J. Dessler, Rev. Geophys., 6:1 (1967), and to references listed therein.
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stellar angular momentum. It is in principle possible that the angular momentum
per unit mass of an evolving star may decrease by this mechanism.

Problem 6-18: Suppose that a spherical rotating star of radius R loses mass in a spherically
symmetric manner in such a way that the escaping gas corotates, i.e., maintains the same
angular velocity as the surface, out to some distance R', whereafter it escapes to infinity as a
free body. Calculate the ratio of the average angular momentum per unit mass lost to infinity
to the angular momentum per unit mass on the surface.

(3) If a star radiates mass quasistatically, the age of the star will be less than
its age computed with the assumption of constant mass. This result follows from
the fact that the core of the star must necessarily have provided power at a greater
rate in the past than in the corresponding star of constant mass. The extra power
demands result from the work required to deposit the ejected matter at infinity
and from the greater rate of nuclear burning that will have existed in the earlier
more massive progenitor of the final star.

The power required to radiate mass was described in Chap. 1 by the term
mass-loss luminosity. It is given by

(6-76)

where Ua> - U. represents the amount by which the asymptotic internal energy
per unit mass of the ejected gas exceeds its corresponding value at the photo
sphere, Va> is the translational velocity of the ejected matter at large distances
from the surface, and :m is the rate of mass loss. In the present sun this power
is only equal to 2 X 10- 6£ 0 and can be neglected. Observed rates of mass loss
in some other stars exceed that of the sun by as much as the factor 101, however,
so that the possibility of significant power requirements should not be overlooked.
Unfortunately the observation of mass loss is difficult because of the high degree
of ionization relative to the photosphere, and so the present information is rela
tively meager. It is to be hoped that ultraviolet observations from space will
clarify the extent of mass loss in stars of differing types.

Problem 6-19: Consider a white dwarf of one solar mass with optical luminosity £ = £0 and
radius R = 1O-2R0 that is losing mass with an asymptotic velocity no greater than the solar
case. At what rate must the star be losing mass in order for there to be an error of 1 mag-
nitude in the cooling rate? .

Because the luminosity of a main-sequence star varies roughly as the fourth
power of the mass, the past power expenditures of a star that has radiated a non
negligible mass will have been greater than that of the corresponding star of con
stant mass. In such a case the main-sequence lifetime of the observed star will
be less than would have been computed with the assumption of constant mass.
Consider, for example, the evolution of a lower-main-sequence star with and
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Fig.6·20 The comparison of the
true age T of an old star cluster
with the evolutionary time TE
computed without mass loss.
The curves are labeled with the
rate of mass loss, which was
taken to be constant, in units of
mJ:0 per year. [After D. D.
Clayton, Astrophys. J., 140 :1604
(1964). By permission of The
University of Chicago Press.
Copyright 1964 by The University
of Chicago.l

Age without mass loss TE • Gy;

without mass loss. Assume that the internal structure of the two stars is essen
tially identical and compare the stars of equal final mass at a time in their evo
lution where they have converted ..equal amounts of hydrogen to helium. That is,
consider identical evolved main-sequence stars but assume that one of them has
evolved for a time T at constant mass whereas the other has evolved for a time
T' by losing mass from an initial model of greater mass. If the evolved struc
tures are identical, they will have transformed equal amounts of hydrogen into
helium in their respective cores. Assuming for the sake of example that £ = mI4

exactly, the respective evolution times will be given by equating the time-inte
grated luminosities:

[T'
10 [mI(t)]4 dt = mIiT (6-77)

where mI(T') = mIll the final mass of the stars compared. Because mI(t) has
decreased from its initial value to the final value mIll the true age T' will be less
than the age T computed by assuming a constant mass. The rates of mass loss
required to affect the computed age of globular clusters in this way are much less
than the rates required to achieve a significant mass-loss luminosity. Figure
6-20 shows the comparative ages of globular clusters if it is assumed that the
rate of mass loss was constant. Since the oldest globular clusters may be as old
as 20 X 109 years, mass-loss rates of about 10-llmI0 ! year, or about 100 times as
great as the solar rate, would be required to alter the computed ages. Mass-loss
rates of this size would be very difficult to detect in globular clusters.
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Problem 6·20: Consider two lower-main-sequence stars that evolved to identical final states by
losing equal amounts of mass. Suppose, though, that the stars did not both lose mass at a
constant rate during their lifetime. For definiteness assume that the first star lost mass faster
in its early years than near the evolved final state, whereas the second star lost mass slowly at
first and faster as it neared to time of comparison. If the stars are identical at the time of
comparison, which star is older?
Ans: T , > T 2•

In summary it may be said that mass loss can seriously affect the course of
stellar evolution in a variety of ways, but the observational evidence of its impor
tance has not been obtained.

6·10 PULSATION

The phenomenon of pulsating, or variable, stars is one of the most intriguing in
the heavens. It is one of the few cases in which man can watch a type of stellar
evolution in real time, evolution in the sense that the observable properties change.
Practically every observable feature of the regular variables, e.g., the Cepheids
and RR Lyrae variables, undergoes a periodic (but not sinusoidal) variation."
Such variations do not represent nuclear evolution, and in fact, the time average
of the observable is generally constant. These average quantities are a function
of mass, composition, and state of nuclear evolution, and so they may change on
time scales appropriate to the nuclear evolution of the core of the pulsating star.
But the attempt to understand the pulsation of stars provides a fundamental test
of the theories of stellar structure and evolution. For the purposes of this book,
the physical ideas behind pulsation will illustrate significant dynamic principles
that have been ignored in the previous discussions.

The first serious explanation of pulsation was the hypothesis that the phenome
non represented the free radial pulsations, much like a harmonic oscillator, in
which the spring constant corresponds to the adiabatic compressibility of the gas.
Eddington examined the theory of adiabatic radial oscillations and succeeded in
showing that they must quickly die out as a result of dissipation in the gas. An
early suggestion that variables represented partially eclipsing binaries was easily
discounted by mounting observational evidence. By 1930 it was clear, thanks
largely to the work of Eddington, that a pulsating star must in fact be some type
of heat engine, in which some continuously operating mechanism transforms ther
mal energy into the mechanical energy of the oscillation.

. Imagine that an element of gas within the star can be isolated and studied. Its
thermodynamic state will be altered in the pulsation, and the first law of thermo
dynamics requires the heat absorbed in a small change to be equal to the sum
of the rise in internal energy and the work done by the gas element on the

1 For a review of the properties of variable stars, see P. Ledoux and T. Walraven, in S. Flugge
(ed.), "Handbuch der Physik," vol. 51, pp. 353-604, Springer-Verlag OHG, Berlin, 1958; also
L. Plaut, in A. Blaauw and M. Schmidt (eds.), "Galactic Structure," The University of Chicago
Press, Chicago, 1965.
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(6-78)

If the mass element is followed through a complete cycle, the value of the int~rnal
energy U returns to its initial value, so that the work done during the cycle is

W = + §dQ (6-79)

The element does positive work on the surroundings, i.e., drives oscillations, only
if it absorbs a net amount of heat.

The way in which the absorption must be accomplished to be effective is
dictated by the second law of thermodynamics. Because the gas returns to its
initial state at the end of the cycle, the entropy must also have returned to its
initial value:

(6-80)

This well-known theorem demands that in a cyclic process absorbed heat must be
partially given back up, the heat exchange being moderated by liT. If, for
example, the pulsation were isothermal, we would have immediately that
§ dQ '= 0, and no work could be done. Suppose then that we imagine the cycle
progressing in time and represent the heat gain by dQ(t) and the temperature
variation of the cycle by

T =To+ AT(t) (6-81)

where AT(t) is a small cyclic modulation of the temperature. Then from Eq.
(6-80). we have

,(.. dQ(t) ,{.. dQ ( AT)
o = 'f To + AT(t) "'" 'f To 1 - To

It follows that

(6-82)

(6-83)

From this result follows the important physical principle that if positive work on
the surroundings is to be done, heat should be absorbed while the temperature is high
and reemitted when the temperature falls. Because the entire star oscillates to some
extent, and because some portions of the star may absorb work, the entire star
can drive the oscillation if

feb AT
W = if To(M) dQ(M) dM > 0

1 Note the sign of W used in this discussion.

(6-84)
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where the cyclic integral is over each mass element and the mass integral is over
the entire star. /

This principle is used in the simplest gasoline engine, where the heat is added
by the burning of fuel while the gas is heated by compression, and the heat is
partially reejected after the gas is cooled by expansion. Eddington suggested
two similar principles that could work in the stellar case, the nuclear-energy
mechanism and the valve mechanism.

Nuclear reaction rates are proportional to positive powers of density and
temperature. In a central pulsation, therefore, one will expect heat to be
liberated during the compression. Although the timing is proper to drive
oscillations, the magnitude of the effect is much too small. The central portions,
where the energy is liberated, oscillate with very small amplitude, and the work
derivable from the central heat engine is quite inadequate to overcome the
dissipation in layers farther out from the center. (We shall see later that the
regions of Kramers opacity and r = i are dissipative.)

The valve mechanism calls for the modulation of the radiant energy flux by the
stellar material. Eddington described this mechanism in an analogy to the
combustion engine:

Suppose that the cylinder of the engine leaks heat and that the leakage is made
goodby a steady supply of heat. The ordinary method of setting the engine going
is to vary the supply of heat, increasing it during compression and diminishing
it during expansion. That is the first alternative we considered. But it would
come to the same thing if we varied the leak, stopping the leak during compression
and increasing it during expansion. To apply this method we must make the
star more heat-tight when compressed than when expanded; in other words, the
opacity must increase with compreeeion:t

Many of the modern discussions of stellar pulsation haveconcentrated only
on the attempt to determine the conditions under which pulsation will occur
rather than on the attempt to calculate the full-blown details of the pulsation.
The former problem can be analyzed by a simpler technique, the stability analysis
of linearized equations of motion. An equilibrium configuration is assumed to
exist, and the oscillations of infinitesimal amplitude about that configuration are
studied. For small amplitudes, all the equations are linear in the perturbations
of the equilibrium values of the variables. These infinitesimal amplitudes will
either. grow in time, in which case they are assumed to exist, or die out in
time, in which case the equilibrium is stable. The technique is a very general
one used in stability analysis. It can identify the modes of instability, but the
linearized solution becomes invalid when the amplitudes become too large.
Although the full solution of the pulsation problem requires the analysis of the

1 A. S. Eddington, "The Internal Constitution of the Stars," p. 202, Dover Publications, Inc.,
New York, 1959.



CALCULATION OF STELLAR STRUCTURE 507

nonlinear equations, we shall introduce the linear analysis because it clarifies
many important features of stability.'

Consider r, P, T, and L to be the dependent functions of M, and let ro, Po, To,
and L« represent the values of a satisfactory stellar model in equilibrium. The
procedure is to consider small perturbations of the variables to see whether they
grow or decay. To do so, define infinitesimal fractional changes of these variables
as r', p', t', and l', and regard these as functions of time. Specifically

r(M,t) = ro(M)[1 + r'(M,t)]

P(M,t) = Po(M)[1 + p'(M,t)]

T(M,t) = To(M)[1 + t'(M,t)]

L(M,t) = L o(M)[1 + l'(M,t)]

(6-85)

The equations of stellar structure are then expanded to first order in these
increments. The radial equation of motion, for example,

aP
aM =

(6-86)

becomes

aPo(1 + p') 1 [GM a2ro(1 + r')]
aM = - 47rro2(1 + r')2 ro2(1 + r')2 + at2

Expansion to first order in the increments gives

ap o+ aPop' = _ (1 - 2r') [GM(1 - 2r') + a2r'J
aM aM 47rro2 ro2 ro at2

Because the initial model is in equilibrium,

er, 1 GM
aM = - 47rro2 ro2

With the aid of Eq. (6-89), Eq. (6-88) reduces to

GM ap' 4r'GM 1 a2r'
- 41rro4 p' + Po aM = 41rro4 - 41rro 7ii!

or alternatively

Bp' 1 [ a2r' JaM = 41rroPo lTo2(4r' + p') - 7ii!

(6-87)

(6-88)

(6-89)

(6-90)

(6-91)

1 The subsequent discussion follows that of N. Baker in A. G.W. Cameron and R. F. Stein
(eds.), "Stellar Evolution," Plenum Press, New York, 1966. See also articles by J. Cox and
R. Christy in the same volume and the bibliographies of those papers. Other important reviews
are R. Christy, Ann. Rev. Astron. Astrophys., 4 :353 (1966) and S. Zhevakin, ibid., 1 :367 (1963).
For a numerical scheme for the nonlinear problem, see R. Christy, Rev. Mod. Phys., 36 :555
(1964).
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where we define
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Problem 6-21: Show in a similar manner that the continuity equation

ar 1
aM = 4lrr 2p

becomes when linearized

sr' 1 (3' , ')-=--- r+ap-ot
aM 4lrro3po

where the bulk moduli are defined as

a = ~ ( ap
) 0 = _! ( ap

)
p aP T p aT p

Show that the radiative-diffusion equation

64w-2acr 4T3aT
L= - -

3K aM

becomes when linearized

at' 1 aTo [l' , '( ) ,aM = To aM -"4r' + Kpp + KT - 4 t]

where the logarithmic derivatives of the opacity are defined as

(6-93)

(6-94)

(6-95)

Kp= ~ (aK)
K aP T

KT =! (aK)
K aT p

(6-96)

For the linearization of the energy equation

et. dB dQ
aM = E - T (jj = E - (jj (6-97)

we must proceed in such a way that the heat gained is expressed in terms of the
differentials of the variables T and P with which we are working. Because the
pulsation is largely due to the outer layers, let us further simplify the problem
by ignoring nuclear energy generation and by assuming that the unperturbed
model is truly static. Then

aLo = 0
aM

as is appropriate to the outer layers of a static star.

Problem 6-22: Show that in terms of dT and dP

dQ = CpdT + [(:~)T +P ] (:;)T dP

(6-98)

(6-99)
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Then show that the linearized energy equation is

al' dt' [(au) ] a dp'Lo- = -CpTo- + - +Po--aM dt aV T PO dt

It will be convenient tu write Eq. (6-100) in the form

al' [(au) ] IX (dt' dP')
aM = - aV T + Po poLo C dt - di

where the new parameter of state is

poTo
C = c; IX ((aUjaV)T + Po]
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(6-100)

(6-101)

(6-102)

(6-104)

We shall see later that C is related simply to the second adiabatic exponent.
This completes the set of linearized equations. From Eqs. (6-91), (6-93), (6-95),
and (6-101), along with the definitions of the auxiliary parameters of state, we
must ascertain the stability of the equilibrium model.

The test of stability of these four coupled equations for an entire star is still
difficult, because all the coefficients of the perturbations are functions of the
coordinate M. The stability of the star depends upon the stability analysis of
each mass element and how they couple together. But the rudiments of the
physics can be seen by taking a simplified model consisting of a single thin zone,
If the zone is thin enough, the coefficients in the linearized equations may be
thought of as constants throughout the zone. That is, the question of the sta
bility of the star is replaced with the question of the stability of a thin zone.
Once the zone is understood, the star can be thought of as a succession of thin
zones of differing stability.

If the fluctuations are assumed constant throughout the thin layer, we have

ar' ap' at'
aM = aM = aM = 0 (6-103)

If the same assumption were made for l', however, we would lose the essential
physics of the heat engine, because the interaction to be studied is the modulation
of the photon flux by its interaction with a mechanical system. Let the flux vari
ation of the lower boundary of the shell be l~, and that of the upper boundary l~,

as illustrated in Fig. 6-21. Then for the thin shell we may sensibly take

l' = If; + l~
2

and

(6-105)

In the spirit of analyzing the simplest of shells with an eye toward the physical
effects, assume that the flux at the lower boundary is constant; that is, l~ = O.
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lu

Fig.6-21 A thin shell of mass m within the
interior isolated for stability against pul
sation. The zone is chosen to be small
enough to permit taking the unperturbed
quantities ro, Po, To, and L« as constant
throughout the shell. The flux variations
at the lower and upper boundaries of the
shell are designated by l~ and l~, respec
tively.

Then from the previous two equations we have

er 2l'
aM- m (6-106)

(6-107)

When these simplifications are applied to the linearized equations, there results
this set of four equations:

a2r'7fi2 = uo2(4r' + p')

3r' + ap' - at' = 0

l' - 4r' + KPP' + (KT - 4)t' = 0
at' ap' ,c- - - = -Kuol
at at

where the parameter K is defined as

K _ 2Lopo
- muoa[(aUjaV)T + P]

(6-108)

Problem 6-23: Show that by elimination and differentiation the four equations (6-107) can be
combined into a single third-order equation

a3r' a2r' ar'- + KuoA - + uo2B - + Kuo3Dr' = 0 (6-109)
at3 at2 at
where the coefficients are

"'(KT - 4) + OKP
A = - --'---"'----

",C - 0

B = 3C - 4(",C - 0)
. ",C - 0

(4", - 3)(KT - 4) + 40(Kp + 1)
D = ",C - 0



CALCULATION OF STELLAR STRUCTURE 511

Problem 6·24: Using the definition of Chap. 2 for the adiabatic exponents in a partially ionized
gas, show that

Cr 2 = - -
C-l

1r 3 -1 =-
«C - 0

(6-110)

(6-115)

(6-116)

The stability test can be performed on Eq. (6-109) by assuming that the
fluctuation has exponential time dependence

r'(t) = ~e8t (6-111)

whereupon we obtain a cubic equation for s:

S3 + KuoAs2 + uo2Bs + Kuo3D = 0 (6-112)

Consider first the adiabatic oscillations. It is evident from the manner in
which the equations were established that the demand dQ = 0 is equivalent to

dt' dp'
C di - dt = 0 adiabatic (6-113)

From Eqs. (6-107) this may be formally accomplished by setting K = 0, where
upon Eq. (6-112) becomes quadratic, with the solutions

Sad = ±i VB Uo = ±i V3r1 -" 4 Uo (6-114)

The case r 1 > t allows for sinusoidal adiabatic oscillations. These will damp
out relatively quickly, however, when the total solution is considered, and they
do not account for the variable phenomenon. It is also apparent that the case
I'i < t allows for an exponentially growing perturbation, i.e., instability. This
type of dynamic instability phenomenon was mentioned in Chap. 2 in connection
with the adiabatic exponents.

In order that the nonadiabatic case (K rf 0) be stable, however, all three roots
of the cubic equation must have negative real parts. ThiS can happen only if

To
2B > 0

Kuo3D > 0

Kuo3(AB - D) > 0

The first condition simply ensures dynamic stability, as outlined in the previous
paragraph. For our present purposes it Will suffice to assume that the first two
conditions are met and to examine the third.

Problem 6·25: By multiplying out the terms in the quantity AB - D, as given after Eq. (6-109),
show that the zone is stable if

4 (KT ) 4-- -+KP - >0
C C 3rI

The examination of Eq. (6-116) shows clearly the physical effects contributing
to the status of the stability of the zone. The first term always contributes to
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stability because it is positive. On the other hand, the quantity

C =~ (6-117)r z - 1

becomes very large as I'a approaches unity. It was illustrated in Chap. 2 that r z
is only slightly greater than unity in ionization zones. Thus we see that the
stabilizing term is diminished in ionization zones. This effect has been called the
I' mechanism. The physical reason behind the presence of this stabilizing term
is the tendency of gas to lose heat by radiation when its temperature rises and to
gain heat when it falls, just the opposite of a pulsation driving mechanism.

The second term reflects the way in which the opacity varies during the pulsa
tion. Positive values of KT and «» would imply that the opacity increases upon
contraction, which would remove more energy from the radiation flux (reduce
Eddington's leak) at the proper time to drive mechanical work. The destabilizing
effect of positive KT and «» has been called the K mechanism by Baker and
Kippenhahn.

Problem 6-26: Show that in the inner regions where Kramers opacity applies and where I's = t,
the K mechanism is stabilizing because

- (~ +KP) = +t
This fact contributes to the pulsational stability of the stellar interior.

In the ionization zones, the larger value of C reduces the importance of KT,

whereas «» is always positive. There are also regions where KT is positive, but all
these destabilizing features are related to the major ionization zones.

The third term is always destabilizing and reflects the spherical geometry of the
star. It is not present in the analysis of a plane atmosphere. The total stability
of the zone is, of course, determined by the sum of the three terms. The total
stability of the star depends upon the cumulative effect of all the zones.

The most elaborate calculations to date of stellar pulsation have been performed
by Christy. In order to solve the entire nonlinear problem, he has divided the
outer portion of the star into a large number (about 40) of concentric mass shells.
The differential equations were replaced by difference equations and followed in
real time by a technique similar to the relaxation techniques of following stellar
evolution. The relaxation technique described earlier, however, relaxes only in
space at a given moment of time and is followed by a time step to the next model.
For the study of pulsation, which is a very fast phenomenon in terms of stellar
time scales, the relaxation in space. and time must be followed together. There
are many numerical pitfalls lurking in such a complicated task, and so continued
improvements in the computational scheme are to be expected.

The results of Christy's models of RR Lyrae variables are very illuminating.
Figure 6-22 shows the temperature variation in specific mass shells. Mass shells
32 and 33 are, in the static model, in the region of hydrogen ionization and, less
importantly, of the first ionization of helium. Zones 26 and 27 are correspond-
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Fig. 6·22 The variation of temperature with time in several mass zones of an RR Lyrae model.
The hydrogen ionization zone centers at shell 33, and the Hell ionization zone centers at shell
27. The amplitude of the temperature oscillations in these zones is even larger than the
quiescent temperature in the static model, and the overall problem is nonlinear. [After R. F.
Christy, Astrophys. J., 144 :108 (1966). By permission of The University of Chicago Press.
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(6-118)

The work performed by any given shell is then

(6-119)

ingly centered on the Herr ionization zone. It can be seen that the oscillations .
are large and very nonlinear in the outer regions.

It is not clear from Fig. 6-22 what the major driving source of the pulsation is.
To determine this it is necessary to compute the. mechanical work per cycle
generated by each mass element. Some zones will generate more work than
others, and some will absorb work, i.e., dissipate the oscillations. If the total
mechanical work generated exceeds that absorbed, the star may pulsate. The
mechanical work per cycle per gram is just .

Work/gram = §P dV

where V is the specific volume.

Wj = AMj § r, zv,
and the total work derived from the engine is

(6-120)
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Fig. 6·23 The PV cycles for
selected mass shells within a
model of an RR Lyrae variable.
A clockwise cycle performs posi
tive mechanical work equal to
the enclosed area. [After R. F.
Christy, Rev. Mad. Phys., 36 :555
(1964).J
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positive work comes from the ion
ization zones of hydrogen and heli
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[After R. F. Christy, Rev. Mod.
Phys., 36:555 (1964).]

Mass point

The PV cycles for several key zones are shown in Fig. 6-23. Note that a clock
wise cycle does positive work equal to the enclosed area, whereas a counterclock
wise cycle is dissipative by the same amount. The work per period done by the
several zones is shown in Fig. 6-24. The first peak is due to hydrogen ionization,
the major peak is due to HeII ionization, and the internal region is dissipative,
although the amplitude quickly dies out. Hydrogen contributes one-third, and
HeII contributes two-thirds of the positive work, which is 6.3 X 1038 ergs/cycle,
or about 7 percent of the luminosity. At this. point in the calculation, the
dissipation was only 4.9 X 1038 ergs/cycle, so that the kinetic energy of' the
pulsation is still growing. The motion eventually saturates when the amplitude
is large enough for the work done and the dissipation to cancel. It should also be
remarked that Christy's calculations show many details apparent in the real
phenomenon.

Our introduction to calculations of stellar structure must end here, although
there are countless interesting applications that have not been discussed at all.
It should perhaps be restated in conclusion that the object is to learn something
of stars by comparing them to calculated models. The interplay between obser
vationand calculation is the heart of the science and is the hardest of the tasks.
By careful study of the peculiar properties displayed by stars we may hope to
slowly refine our theoretical conception of their structure. For the science of
nucleosynthesis we must learn how stars expel matter and be able to follow the
entire thermonuclear history of that matter, a challenging task indeed. The key
stellar event in this regard is probably the supernova, theoretically a more
difficult dynamical problem than the variable stars. The supernovas will not be
discussed here, but the nuclear events leading to the presupernova state will be
outlined in the next chapter.



chapter 7
SYNTHESIS OF THE

HEAVY ELEMENTS

The elementary scheme of nucleosynthesis of the light elements assigns the
sources of the light elements to those energy-generating stages of thermonuclear
fusion in stars which terminate with significantly increased abundances of the
species in question. An abbreviated summary of the main line is 'as follows:

(1) He 4from hydrogen burning; He 3 from incomplete PP chain.
(2) D, Li, Be, B are bypassed, and their small abundances relative to the
main line are interpreted as being due to nonthermal processes.
(3) C12 and 0 16from helium burning; 0 18 and Ne 22 partially due to alpha cap
turesby N14 present during helium-burning processes.
(4) N14 from conversion of CNO to N14 in hydrogen burning; some CI3, N15,
and 0 17 also results from conversion of CNO catalysts.
(5) Ne 20, Na, Mg, Al, SP8 partly due to carbon burning.
(6) Mg, Al, Si, P, S partly due to oxygen burning.

One can, with a fair share of success, understand the relative abundances of the
light elements in terms of the ashes of these- burning stages. The success is
hardly an unqualified one, however. Many abundance ratios make little sense
in terms of a simple picture. A quantitative theory of the evolution of the
galactic abundances of the light elements is badly clouded by fundamental uncer
tainties in the structural evolution of galaxies and in the details of mass loss in



SYNTHESIS OF THE HEAVY ELEMENTS 517

highly evolved stars. Years ago, for example, it was somewhat narvely assumed
that the relative abundances of He4 and 0 12 reflected in a natural way the fact
that 4H~ He 4 represents the primary stage of nuclear fusion, whereas 3He4 ~

0 12 represents a secondary stage that can only follow the synthesis of He 4• But
there remains the fundamental problem of why it should be so, that the hydrogen
burning mass expelled from stars so greatly exceeds the helium-burning mass that
is expelled. The fusion into helium at a stellar center can hardly be retained as
a source of interstellar helium unless one can find a way of removing the helium
from the star without allowing it to progress through the helium-burning stage.
A similar problem exists in the interpretation of each of the light-element abund
ances. It seems that most of the nucleosynthesis is more easily imagined as
happening in shells surrounding the cores of highly evolved stars, but it is not at
all clear how much may ever be expelled from the star in its death throes.

It is likely that the conventional concept of stellar nucleosynthesis is not com
plete. The large abundance of He 4 may reflect instead the residue of a primordial
fireball in the early condensed universe. Or perhaps one or many supermassive
stars (or quasistars?) have exploded at our galactic center. 1 May they not even
have contributed the lion's share of the population I elements? Such questions
have not been resolved. But it seems certain that the thermonuclear burning
stages are still relevant even if conventional stars should turn out to be only a
secondary source of nucleosynthesis. The principles of nuclear astrophysics may
be regarded as a physical probe of astrophysical circumstances.

The nuclear principles involved in the synthesis of heavier elements differ in
many respects from those discussed previously. In this chapter we shall outline
the major conceptual features surrounding the nucleosynthesis of heavy elements,
and we shall emphasize the astrophysical clues hidden in the heavy-element
abundances.

7-1 PHOTODISINTEGRATION REARRANGEMENT AND SILICON BURNING

The stages of thermonuclear energy generation share the feature that light nuclei
are fused into heavier ones. Each epoch of nuclear burning comes to a close
when the light fuels have been scoured out, leaving only the heavier ashes. Each
stage discussed so far,

4H~ He4 2016~ S32

where the reactions are schematic rather than literal, has been of this type.
These fusion reactions liberate energy as long as the binding energy per nucleon
of the compound system exceeds the binding energy per nucleon of the constitu-

1 For a delightful and opinionated discourse on the relevance of cosmological astrophysics to
nucleosynthesis, the reader may profitably turn to Fred Hoyle's short book, "Galaxies, Nuclei,
and Quasars," Harper and Row, Publishers, Incorporated, New York, 1965. The technical
basis for nucleosynthesis in fireballs was elaborated by P. J. E. Peebles, Astrophys. J., 146 :542
(1966), and by R. V. Wagoner, W. A. Fowler, and F. Hoyle, Astrophys. J., 148:3 (1967).
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Fig. 7·1 The binding energy per nucleon of the most stable isobar of atomic weight A. The
solid circles represent nuclei having an even number of protons and an even number of neutrons,
whereas the crosses represent odd-A nuclei. (M. A. Presion, "Physics of the Nucleus," Addison
Wesley Publishing Company, Inc., Reading, Mass., 1962.)

ents. To illustrate the peculiarities of nuclear binding, a graph of the nuclear
binding energy per nucleon is displayed in Fig. 7-1 as a function of the atomic
weight (the binding energy being that of the most stable isobar at each value
of A). These binding energies may be related by a brief calculation to the atomic
mass excesses that were listed in Table 4-1, and the student may profitably
attempt such a calculation. One finds in the light nuclei that the binding is
markedly increased by a fusion of nuclei. The most tightly bound nuclei per
nucleon are those with 50 < A < 60, the maximum occurring at the Fe56 nucleus.
It might well be noted here, however, that the binding per nucleon decreases
again as one progresses to yet heavier nuclei. It would appear that thermal
fusion is energetically favorable until the mean atomic weight reaches the iron
group.' The reader may already surmise that this feature of nuclear structure
is closely related to the large natural-abundance peak near iron. For the time
being we discuss the way in which the products of carbon and oxygen burning
are transmuted to the iron group.

1 The term iron group is commonly used to designate the nuclei in the abundance peak centered
on Fe56, primarily Cr, Mn, Fe, Co, and Ni. The utility of the term comes from the apparently
common origin of these nuclei in nucleosynthesis.
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(7-1)

At the conclusion of carbon and oxygen burning, the dominant nuclei are Si28

and S32, with significant amounts of lVIg24 and, to a lesser degree, the non-alpha
particle nuclei. One might imagine, by analogy with earlier burning phases,
that the material again gravitationally contracts until these nuclei begin to fuse
with each other. The first important reaction might be sensibly assumed to be
lVIg24+ lVIg24. Quantitative examination shows that the true sequence of events
follows a quite different course, however. The coulomb barrier between two
magnesium nuclei is so great that very high thermal temperatures would be
required to effect their fusion. Before such high temperatures can be achieved
in the contraction, the intense thermal gamma-ray flux begins the photodisinte
gration of key nuclei. The important reactions are ('Y,p), ('Y,n), and ('Y,a), and
the first nuclei to be stripped down are those with the smallest binding energies
for protons, neutrons, and alpha- particles.' The photodisintegration rate is
dominated by the factor

Q
Ay ex: exp - kT

where Qis the binding energy of the particle (p, n, or a). Consider what happens
to the least tightly bound particles after their photoejection. They are quickly
recaptured (because of the small coulomb barrier), perhaps to be photoejected
once more. The inverse reactions attempt to establish an equilibrium such that
the number of photoejections per second is balanced by the number Of recaptures
per second. But many of the photoejected particles will be captured by nuclei
in which they are more tightly bound than in the nuclei from which they were
liberated. In fact, that is to be expected, since the photoejections of the least
tightly bound nucleons are the first to occur. What happens then, as the tem
perature rises, may be described as a redistribution of loosely bound nucleons
into more tightly bound states. We choose to call this process by the descrip
tive term photodisintegration rearrangement.

Problem 7-1: Charged-particle reactions in this intermediate mass range proceed through one
or several important resonances in the compound nucleus, and so the value of (<Tv) for the radia
tive reaction is a sum over resonances of the resonant reaction-rate. Show that in this case the
rate of the inverse photodisintegration reaction is given by

_ exp (-Q/kT) \' (2J r + l)rIrry r e _ l!!-
Ay - G

12
L.. hTr xp kT
r

where the sum is over the resonances of the compound system of the two particles. Each
resonance r is characterized by a spin J r, by the center-of-mass energy Er, and by r Ir, r y r, and
rr, which are respectively the particle width, the radiative width, and the total width of the
resonant state. GI 2 is the partition function for the compound nucleus, and Q is the binding
energy of the two particles in the ground state of the compound nucleus. Draw a figure showing

1 The binding energy for a proton in the nucleus (Z,A) is given by

Qp(Z,A) = [M(Z - 1, A-I) + M p - M(Z,A)]c2

and similarly for the binding of other particles.
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the various energies in an energy-level diagram. Note that the resonance energies E; are
generally small compared to the nucleon binding energies, which are of order Q ~ 8 Mev.

Nuclear energy mayor may not be liberated as a result of the photodisintegra
tion rearrangement. The relocation of nucleons into more tightly bound nuclei
certainly liberates energy, but the high photon flux also maintains an equilibrium
density of free nucleons at great cost to the total binding energy. The rearrange
ment of 8i28and 832into the iron group liberates energy if it occurs at sufficiently
low temperature for the vast majority of the nucleons to be bound to some iron
group nucleus, but if it occurs at high temperature, T g > 5, say, the large free
nucleon density will render the energy generation small. The energy balance
during this stage of stellar evolution is thus somewhat uncertain. The neutrino
losses above 3 X 109"K are quite large, moreover, and they must be reimbursed
by the nuclear energy generation and the gravitational work.

Many beta-radioactive nuclei are produced during the rearrangement process,
and their decays tend to slowly reduce the total proton-to-neutron ratio Z/N of
the nuclear gas. Later we shall see that a reduction of only a few percent from
the initial ratio of unity has a major influence on the composition of the iron-group
products. The number of beta decays is determined in first order by the length
of time of the rearrangement, which will in turn depend upon the temperature of
the rearrangement. As a rule of thumb it will be found that durations in excess
of 104 sec for the rearrangement will force one to keep track of the beta decays,
whereas faster rearrangements, i.e., higher-temperature rearrangements, will occur
quickly enough for Z/N to retain its initial value of unity. It is difficult to pre
dict the time available for the rearrangement because it is very likely imposed by
the rapid evolution of the stellar structure in the face of severe neutrino losses.
In their 1964 investigation;' Fowler and Hoyle concluded that the nucleons
rearranged at Tg ::::: 3.5 to 28Ni;: as the dominant constituent, with the release of
about 10 Mev of thermal energy per Ni 56 nucleus formed. Truran, Cameron,
and Gilbert,' on the other hand, found at T g = 5 that the final composition is

1 W. A. Fowler andF. Hoyle, Astrophys. J. Suppl., 9 :.201 (1964). These authors followed
their original Rev. Mod. Phys., 29 :547 (1957) article in designating the photodisintegration
rearrangement by the name a process. The name originally arose because the first photo
disintegrations of importance were shown by them to be (",a) reactions, and it was assumed
that recapture of the alpha particles synthesized the heavier Z = N nuclei. In their 1964
paper, Fowler and Hoyle showed this idea to be an oversimplification for rearrangement
between SP8 and the iron group, but they nonetheless chose to label the rearrangement process,
which does in fact synthesize mainly .alpha-particle nuclei, by the name a process (see pp.
240-241 of their paper). J. W. Truran, A. G. W. Cameron, and A. A. Gilbert, Can. J. Phys.,
44 :576 (1966), performed detailed numerical integrations of the differential equations of the
reaction network and showed that the non-alpha-particle reactions were important. D.
Bodansky, D. D. Clayton, and W. A. Fowler [to be published: a preliminary report of their
results may be found in Phys. Rev. Letters, 20 :161 (1968)1 greatly clarified the nature of the
process and presented many numerical results by analyzing the burning in terms of a partial
equilibrium model. All three papers are important for the serious student, and this entire
section is a digest of their results.
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(7-2)

dominated by 26Fe~: + 2p, in which case the conversion is endothermic by
1.3 Mev per Fe 54 nucleus produced. Until one has selected the specific cir
cumstance of an astrophysical event, it cannot be said whether the phase of
photodisintegration rearrangement liberates nuclear energy or not. This
question has a secondary effect on the final nuclear composition, moreover, by
virtue of its effect on the time scale of gravitational contraction. That is, does
the star "hold" for hours, say, while the rearrangement occurs at nearly constant
temperature and nuclear energy makes good the neutrino loss, or does the star
contract and heat up to make good the neutrino loss? In the latter case, the iron
group is reached at higher temperature, and the final abundance distribution
in the iron peak is somewhat broader than at a lower temperature. We shall
return to this question of the final iron-group composition in Sec. 7-2. Forthe
time being it will suffice to assume simply that the nuclei near A = 28 are rear
ranged into nuclei near A = 56.

With the foregoing overview of the process we may profitably turn to some of
the details of how it occurs. Near the conclusion of oxygen burning, the domi
nant nuclear constituents are SP8 and S32. Without doing violence to the physical
idea we may consider those to be the only two nuclei. The binding energies of
protons, alpha particles, and neutrons are smaller in S32 than in Si28, so that as the
temperature rises, the S32 will be the first to be photodisintegrated. But before
calculating the different photodisintegration rates, we must consider a simplifica
tion of Eq. (7-1).

For the sake of an explicit illustration, concentrate for a moment on the example
reaction S32(-y,p)P3l. In this case Qp = 8.86 Mev is the binding energy of the
proton in the S32 nucleus and is the value of Q to be used in Eq. (7-1). The
system p3l + p has many resonances E r , however, and we may sensibly wonder
which ones will dominate in the sum appearing in Eq. (7-1). Recall that this
formula was derived by balancing the photodisintegration rate against the
recombination rate (uv) for the p3l + p system. It was shown in Chap. 4 that
the most effective bombarding energy for stellar reactions is

Eo = O.122(Z12Z22AT92)! Mev

If there are a large number of resonances, one may be sure that the ones domi
nating the average (av) are those with E, near Eo. The same thing must be true
for the photodisintegration reaction. To good approximation, then, Eq. (7-1)
may be rewritten as

A = exp [-(Q + Eo)/kTJ \' [(2J + l)rlr1'] _ E r - Eo
l' G12 1..{ hr r exp kT

r

The advantage in writing the equation this way, rather than in the simpler form
of Eq. (7-1), is that the largest temperature-dependent term, which must include
Eo, is displayed in front of the summation. The major contributions to the sum
occur for resonances with E, near Eo, so that the temperature dependence of the
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sum is relatively small. Without this conceptual aid, one cannot easily under
stand the relative magnitudes for the photoejection rates of differing light-nuclear
constituents, because the value of Eo depends upon the type of particle ejected.
In the case of 8 32, for example, the binding energies of alpha particles, protons,
and neutrons are Q" = 6.95, Qp = 8.86, and Qn = 15.09 Mev, so that one might
expect, on the basis of the appearance of Eq. (7-1), that the alpha photodisintegra
tion rate will much exceed the others. It turns out, on the other hand, that near
Ts = 2.5, for example, the effective energies Eo for the reactions (-y,a), (-y,p),
and (-y,n) are respectively 3.14, 1.34, and 0 Mev, with the result that the proton
photodisintegration rate is the greatest. What is reflected by the value of Eo is
the increasing coulomb barrier as the charge of the photoejected particle is
increased.

Let us examine this point with somewhat more precision by understanding once
more why it is that the sum in Eq. (7-2) is dominated by terms with E; near Eo.
For E; » Eo the charged particle width r 1 becomes much greater than r -y, and we
have

rr
.....!-! -7 r -y :::: constr s.» Eo

e. «Eo

At high resonance energy the exponential therefore truncates the sum. At low
energy, on the other hand, the penetration factor renders r 1 much smaller than r-y,

r.r, b-r -7 r 1 a: exp - E
r
!

so that I'i truncates the sum at low energy. The situation is exactly analogous to
that of charged-particle reactions as described in Chap. 4. The energy that most
effectively compromises these two effects is E; :::: Eo. From the point of view of
experimental nuclear astrophysics a nice feature is that the yield of a radiative
capture reaction measures the factor (2J + 1)r1r-y/r directly. The excited
states of the compound nucleus are usually far enough removed from the ground
state, moreover, to permit approximation of G12 by 2J12 + 1, where J 12 is the spin
of the ground state of the compound nucleus. Many of these features are
quantitatively illustrated by the following problem.

Problem 7-2: Laboratory measurements show that the sums

\' [ r1r-yJ Er - Eo(ren) == ~ (2J + 1) r r exp - kT
r

over the resonances in 832 appropriate for To = 2.5 and for the three modes of photodisintegra
tion of 8 32 are given by

Reaction Q, Mev (relf), Mev

832 ( 'Y,a)8i28 6.95 10-5

832('Y,p)P31 8.86 2 X 10-4

832 ( 'Y,n)831 15.09 10-3
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Calculate the photodisintegration lifetimes at T = 2.5 billion "K, You may also wish to
check these Q values from Table 4.1.
Ans: T"'(a "'" 10' sec, T"'(p "'" 103 sec, T"'(n "'" 1012 sec.

Near the end of oxygen burning the temperature reaches the neighborhood of
T» = 2.5. Thus the S32 will begin to be disintegrated at that time, primarily by
the photoejection of protons. The binding energy of a proton in p3l is only
7.29 Mev, and so the reaction P31(')',p)Si30rapidly follows. This in turn is rapidly
followed by two photoneutron reactions Si3°(')',n)Si2g and Si2g(')',n)Si28. The
liberated protons and neutrons effectively regroup into alpha particles, leaving
Si28 as the overwhelmingly dominant constituent. Little more of importance
happens until the temperature rises to the point where photoejection from Si28

becomes possible. For this reason the process is often called silicon burning, and
to illustrate the main features most clearly we shall assume the gas to be pure Si28

at this point.
The Si28 nucleus is very tightly bound and is the last one in this intermediate

mass range to be photodisintegrated. The binding energies of a, p, and n are
9.99, 11.58, and 17.18 Mev, respectively. The coulomb barrier renders the (')',a)
reaction slower than the (')',p) reaction, just as in Prob. 7-2, so that the major
initial reaction. of importance is Si28(')',p)A127• The lifetime in seconds of the Si28

nucleus is easily found to be approximately

I (S·28) ~ -17 5 + 3.36 + 58.3og T"'( 1 ~ . Tgt T
g

This lifetime is shown in Fig. 7-2 for a relevant range of temperatures for the
rearrangement process.

The flurry of nuclear activity following the photodisintegration of Si28is difficult
to describe. Each disintegration is rapidly followed by the photoejection of less
tightly bound nucleons from the isotopes of AI, Mg, Ne, and 0, and so at first
glance it appears that the Si gas is decomposed into an alpha-particle gas. But
the Si28 nuclei do not all break apart at the same time. Therefore the protons,
neutrons, and alpha particles liberated by the disintegration of one Si28 nucleus
may, in pal t, be captured by another Si28nucleus; but those nuclei too are subject
to reasonably rapid photodisintegration. Thus a great profusion of (a,'Y) ,
(p,'Y) , (n,')') reactions and their inverses occur simultaneously. Each pair of
reactions attempts to strike an equilibrium. In some cases, those corresponding
to the fastest reactions, the equilibrium is achieved, but in the slower reactions it
is not. It is Fig. 7-1 that contains the clue to what happens. Notice again that
matter is more tightly bound in the form of an iron-group nucleus than it is in the
form of two Si28nuclei. It follows that the buildup of heavier nuclei in the reac
tion network is accompanied by an increase in nuclear binding. Superimposed
on the relatively rapid pairs of inverse reactions, therefore, will be a slow leakage
of nuclei from the intermediate-mass region toward the iron group. The nucleons
liberated from the Si28 nuclei are thereby fused with other intermediate-mass
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Ie

Fig. 7-2 The lifetime of the
Si28 nucleus against photodis
integration. The lifetime has a
strong temperature dependence,
and the photoejection of pro
tons is found to be somewhat
faster than the photoejection
of alpha particles. [After J. W.
Truran, A. G. W. Cameron, and
A. A. Gilbert, Can. J. Phys.,
44:576(1966).1
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nuclei in a slow progression toward greater atomic weight. It should not be
assumed that all the reactions are radiative, however. One must also include the
strictly nuclear reactions (p,n), (a,n), (a,p) and their inverses, many of which are
of importance in the total reaction network.

To systematically investigate what happens in the reaction network one must
calculate the rates of all the reactions indicated, at least until it is determined
which ones are of practical importance. The nuclear information is quite incom
plete in this mass range, and it has been necessary in many cases to calculate the
rates from the binding energies, which are mostly well known, plus estimates of
nuclear level densities and level widths derived from semiempirical nuclear
systematics. Fortunately, the wen-known Qvalues are the nuclear quantities of
greatest importance for this problem, and so the trend of events is not badly
obscured by the relatively meager nuclear measurements.'

1 The appendix to the paper by Truran, Cameron, and Gilbert, op. cit., tabulates (<TV) for each
reaction of importance in the network. This listing is particularly useful, but each entry
must be multiplied by the factor 10-24 to convert to cgs units.
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The number density N(A,Z,t) of each nucleus is given by the differential
equation linking all reactions that create or destroy that nucleus

dN(A,Z)
dt = - A-y(A,Z)N(A,Z) + A'Y.n(A. + 1, Z)N(A + 1, Z)

+ h'Y.p(A + 1, Z + l)N(A + 1, Z + 1)

+ h'Y.a(A + 4, Z + 2)N(A + 4, Z + 2)

+ nn(t) [ -(cr(A,Z)v)n''YN(A,Z) + (cr(A - 1, Z)v)n.'YN(A - 1, Z)]

+ np(t) [ -(cr(A,Z)v)p''YN(A,Z)

+ (cr(A - 1, Z - l)v)p."N(A - 1, Z - 1)]

+ na(t)[ -(cr(A,Z)v)a''YN(A,Z)

+ (cr(A - 4, Z - 2)v)a.'YN(A - 4, Z - 2)]

+ nn(t)[-(cr(A,Z)v)n.~(A,Z)+ (cr(A, Z + l)v)n.~(A, Z + 1)]

+ (p,n) + (n,a) + (p,a) + (a,n) + (a,p) ...

- hfl(A,Z)N(A,Z) + Afl(A, Z - l)N(A, Z - 1)

- (electron capture) - (positron decay) ...

The student may profitably write out the other reaction-rate terms that have been
suggested by the parenthetical notations. Note that each quantity h'Y and (crv) is
a function only of the temperature.

Each differential equation appears rather formidable, even when the reactions
are restricted to those involving a, n, and p. Further progress involves deciding
which rates are big enough to warrant keeping track of. Considerable experience
and thought are needed to see what approximations may safely be made, but, for
example, one finds that for the light alpha-particle nuclei only the reactions (a,'Y)
and ('Y,a) need be followed explicitly. It also happens that almost all beta-decay
rates are insignificant, at least until most of the nuclei effectively reach the iron
group. This last conclusion is extremely important, because if it is correct, it
means that the total number of neutrons and protons remains equal. Of course,
that cannot be strictly true, because some radioactive nuclei are produced, but
for T» > 3.5 negligibly few beta decays occur during the time required for Si28 to
be processed to the iron group by photodisintegration rearrangement. The
abundances of radioactive nuclei are just too small. It should be added, however,
that this conclusion rests on the existence of the neutrino emission processes
implied by the universal Fermi interaction, as discussed in Chap. 3. If there
should be no (ev) (ve) interaction term, the photodisintegration rearrangement will
take longer to occur because the temperature rise associated with gravitational
contraction will occur more slowly. Or if the conversion occurs at T» ::s:; 3, it may
occur so slowly that beta decays are 'significant. The alternatives are quite
important for nucleosynthesis, as we shall soon see, because the final nuclear com
position of the iron group depends markedly on whether beta decays occur during
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Fig. 7-3 The nuclides which participate in the reaction network established during silicon
burning. The solid dots designate stable nuclei, whose relative abundances during silicon
burning must be scrutinized for correlations with natural abundances. The open dots designate
unstable nuclei. Their relatively low abundances may be very important for determination of
the overall rate of beta decays. [After J. W. Truran, A. G. W. Cameron, and A. A. Gilbert,
Can. J. Phys., 44 :576 (1966).]

the time interval of the rearrangement. The nuclear-rearrangement time is
governed by the rate of photodisintegration of Si28 , a rate that is strongly tempera
ture-dependent. In the hottest environments, the time interval is much too short
for beta decays to play any role, and the gas is constrained to maintain Z = N.l
If the rearrangement occurs with Tg < 3, however, it will take at least 106 sec for

1 The statement Z = N does not mean that only nuclei having Z = N exist but rather that the
density of protons (free plus bound) is equal to the density of neutrons (free plus bound).
Should beta decay occur during the rearrangement, the iron group will be reached by a gas
having Z/N < 1. The nuclear equilibrium of the iron group is strongly dependent on the
value of Z /N. F. E. Clifford and R. J. Tayler, M em. Roy. Astron. Soc., 69 :21 (1965), have
thoroughly discussed the way in which the equilibrium composition of nuclear matter depends
on Z/N. We shall refer to this work again in the next section.
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most of the Si28 to be converted to the iron group. During time intervals as long
as this, the beta decays lowering the value of ZjN will be quite important.

Analysis of the possible reactions between the nuclei shown in Fig. 7-3 and
neutrons, protons, and alpha particles shows that many of the reactions can be
neglected, some for energetic reasons and others because the nuclei involved are
hopelessly rare. Each dot in Fig. 7-3 corresponds to a nucleus included in the
analysis of the reaction network by Truran et al. The solid dots are stable,
whereas the open ones correspond to the potentially important beta emitters.
These unstable nuclei must be included in the reaction network even if the
rearrangement is so rapid that beta decays are unimportant, because many of
the important reaction links involve these nuclei; and, of course, the abundances
of the unstable nuclei are needed to ascertain the extent of the beta decays.
The upper left-hand corner of Fig. 7-3 shows the translation in charge and mass
caused by each of the nuclear reactions involving protons, neutrons, and alpha
particles.

The early phase of the nuclear rearrangement at T» = 5 is shown in Fig. 7-4.
The composition at t = 0 was taken to be pure Si28• The abundances of Mg24,

10 29

Fig. 7·4 The early phase of
the nuclear rearrangement of
initially pure Si28 at the tem
perature 5 X 109 oK and
density 1.3 X 107 g/cm3•

The abundances grow very
rapidly at first, when the
liberated alpha particles are
being consumed in a rapid
flow toward the iron group.
[After J. W. Truran, A. G.
W. Cameron, and A. A. Gil
bert, Can. J. Phys., 44:576
(1966).]
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Fig. 7·5 Number densities of
key nuclei during silicon burn
ing at 5 X 109 OK at later
times than those shown in Fig.
7-4. The densities of free
protons and neutrons have
become nearly quasistatic as a
result of the near equilibration
of their rates of capture and
photoejection in the nuclei
heavier than Si28• All the
heavier nuclei have ap
proached a quasiequilibrium
with Si28 and the pool of free
nucleons, so that their abun
dances also change very
slowly. [After J. W. Truran,
A. G. W. Cameron, and A. A.
Gilbert, Can. J. Phys., 44:576
(1966), and D. Bodansky,
D. D. Clayton, and W. A.
Fowler (to be published).]
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Ne 20, 0 16, and C12 build up rapidly as alpha particles are liberated. As the den
sity of free alpha particles, protons, and neutrons is established, the rearrange
ment into heavier nuclei is facilitated, and S32, Ar36, Ca40, and heavier nuclei in
the iron group begin to build up. The number densities of key nuclei at later
times are shown in Fig. 7-5. A very interesting thing becomes evident here.
The secondary nuclei build up to an equilibrium with the residual SP8 and the
light particles. To very good approximation, the rates of inverse reactions

Si28+ ex ~ S32 + 'Y

S32 + ex ~ Ar36 + 'Y

become equal to each other. The abundances of the alpha-particle nuclei are
then determined by the abundance of Si28and the density of free alpha particles.
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Problem 7-3: Show that the equality of the first pair of inverse reactions implies that the
number densities satisfy the relationship

(7-3)

(7-4)

(7-5)

where M u is the atomic mass unit and Qa is the energy released by the reaction Si28(a,'Y)S32.
This result has correctly assumed that the particles are spinless and have no important excited
states. Similar statistical relationships can be written for the other inverse reactions that have
achieved balance. A useful quantity appearing in all such equations is numerically

9 == (21r~:kTY = 5.94284 X 1033Ts!

Problem 7-4: Suppose that the density of alpha particles has risen to 2.7 X 1028 cm-3 during
the time required for 75 percent of an initially pure Si28 gas at p = 1.3 X 107 g/cm3 to be
rearranged at Ts = 5 into heavier nuclei. Compute the number densities of S32, Ar3S, and
Ca 40, which have alpha-particle binding energies of 6.946,6.640, and 7.044 Mev, respectively.
Compare these results with Fig. 7-5 at t = 9 X 10-3sec, which corresponds to the conditions
assumed.

Problem 7-5: Show that if the heavy alpha nuclei are in equilibrium with the residual SP8
and the free-alpha-particle density, then as Si28 is burned, the value of Na increases slowly as

u; = (~i:8SY :~ exp ( - ~ A~32~;)
where xo; = 49.382 Mev is the sum of alpha-particle binding energies in the alpha nuclei.
Show also that in the neighborhood of Ts = 3 this result is numerically

N "" 1023.s(Ts)28.8 (NiS8)~
a . 3 Si28

This result shows that N a is strongly dependent on the temperature but only weakly dependent
upon how much Si28has been converted to Niss.

The many inverse reactions also maintain a steady-state density of the protons
and free neutrons. The non-alpha-particle nuclei quickly come into equilibrium
with the density of alpha-particle nuclei and this density of free nucleons, but
(with the possible exception of the iron group) their abundances are much smaller
than those of the alpha-particle nuclei. This situation is very reminiscent of the
abundances found in nature, and it may be that silicon burning truncated before
it is complete is the major source of nucleosynthesis between A = 30 and A = 50.

It may be helpful to provide a verbal description of this equilibrium that
emphasizes the rates of key reactions. The intermediate nuclei are synthesized
by alpha capture on SP8, forming a chain of alpha-induced reactions. These
reactions would exhaust the supply of free alpha particles were they not replen
ished by photoejection from nuclei heavier than SP8. The Si28itself is so tightly
bound that its slow rate of disintegration allows that equilibrium to be estab
lished. Perhaps silicon melting is a more appropriate term than silicon burning
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because it emphasizes that the rate of the process is determined by the rate at
which the silicon can be decomposed. Thus the reactions above Si28 come into 
equilibrium with the residual Si28 and the free densities of alpha particles, pro
tons, and neutrons, whose gradual assimilation into heavier nuclei is replenished
by the slow breakdown of Si28.

Equilibrium is established in a few of the reactions below Si28. Especially
important is the fact that Mg24 comes into alpha-particle equilibrium with Si28,

an equilibrium in which (Mg24)ea = 10-3 Si28. When this equilibrium is estab
lished, the rate of IVIg24(a ,-y)Si28 very nearly cancels the rate of photodisinte
gration of Si28. In this case the effective rate of photodisintegration of Si28 is
given by the leakage from Mg24by photodisintegration of the tightly bound l\'Ig24;

that is, if alpha capture by Ne20 can be neglected, we have

Photodisintegration rate of Si28 = A-y(Mg24)(Mg24)ea

In the higher range of temperature, say 'I', = 5, many of the other reactions
come into equilibrium also, but it is not too difficult to see how to compute the
rate of flow downward from Mg24. Let

(7-6)

be the effective alpha-particle flow downward from A. Because the Mg24achieves
equilibrium to high accuracy with Si28, the effective rate of photodisintegration of
Si28is

(7-7)

where we now have reverted to the convention of designating the number density
by the chemical symbol. All the light alpha nuclei are much less abundant than
Si28, and so their abundances come to a steady state in which the downward
photodisintegration current from them is replenished by the flow in from above.
.This demand means that the J's are equal:

J = J(24) = A-y(24)Mg24 (uv)2oNaNe20

J = J(20) = A-y(20)Ne20 -;- (uv)r6Na016

J = J(16) = A-y(16)016 - (uvh 2N aC 12

"
J = J(12) = A-y(12)C12 - f3a

(7-8a)

(7-8b)

(7-8c)

(7-8d)

where 1'3a is the rate of the 3a reaction, which depends upon N a 3. This system
of equations can be solved for J in terms of a ladder logic. For example, from
Eq. (7-8d) we have

C12 = J + f3a

A-y(12)

which can be inserted into Eq. (7-8c) and solved for 0 16:

0 16 - _1_ [J + Aa (12) (J + )J
- A-y(16) A-y(12) f3a
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Problem 7-6: Show by repeating this process to the top of the ladder that

Xa(20)Aa(16)Aa(12)
A'Y(24)lVIg

24
- A'Y(20)A'Y(16)A'Y(12) T3a

J = Aa(20) { Aa(16) [ Aa(12)]}1+-- 1+-- 1+--
A'Y(20) A'Y(16) A'Y(12)

531

(7-9)

This result gives the effective photodisintegration rate of lVIg24 in terms of the alpha-particle
density and the temperature. Because lVIg24 is always in near equilibrium with Si28, it is also
the rate of breakdown of SP8. This result is the major one required to be able to calculate
the time scale for the nuclear burning at a given set of conditions.

It turns out that J ~ A'Y(24)l\1g24 near T g = 3;but it falls to less than one
tenth of that value near T g = 5, because the radiative alpha captures become
more significant corrections to the photodisintegration rates as the temperature
increases.

As a result of this and similar cases of near balance, the effective rate of con
sumption of Si28 falls much below the photodisintegration rate of Si28. The net
flow downward, J, from Si28is the excess of the photodisintegration rates over the
inverse-fusion rates. Such a net leakage persists as long as Si28remains a domi
nant member of the gas. As it is consumed, however, the ratio of the net down
ward flow rate to the photodisintegration rate decreases, as shown in Fig. 7-6.
Inasmuch as the disintegrated nuclei are being used to build up toward the iron
group, the rate of upward flow is also decreasing as the Si28burns. Eventually
all flow rates go to zero when the Si28has been consumed, and nuclear statistical
equilibrium is approached.

Figure 7-7 shows the net rates of nuclear flow in a typical case of rearrange
ment where Si28is still the dominant nucleus. The intensity of the flow is desig
nated by the intensity of the lines. The continued breakup of Si28, Mg24, Ne20,

0 16, and C12 into alpha particles produces a net flow downward. The recapture
of the light nuclei produces a net flow upward. At the lower end the (a,'Y) and
('Y,a) reactions produce the major net flows, whereas the (a,p) reactions produce
the major net flows above Ca40. Figure 7-8 shows the abundance distribution
after 10 sec at T« = 4.2. This figure, and others like it for different pairings
of time and temperature, is remarkable in its similarity to the distribution of ele
ment abundances found in nature above Si28. The alpha-particle nuclei dominate
the abundances between Mg24 and Ca40, there is a general abundance minimum
between 45 < A < 50, and there is an abundance peak in the iron group. This
last feature occurs because the general fusion processes do not carry the matter
to atomic weights much in excess of 60. This fact reemphasizes the physical
content of Fig. 7-1; viz., the most tightly bound nucleons are those in nuclei in
the iron group. The composition of the iron group is a sensitive function of the
temperature and the extent of the beta decays. In the next section we shall see
that the end product of the photodisintegration rearrangement is Ni56 over a
wide range of temperatures and densities, in which case the rate of energy gener-
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ation for the symbolic process 2Si28 -+ Ni 56 can be written in cgs units as!

1 - X S i Tg 6L67
log €Si ~ 30.47 + log X S i - +log X

S i
+ 6.31 log "3 - ---rr;- (7-10)

If, on the other hand, the temperature is too high, the major product may be
Fe54 + 2p, in which case

esi ~ 0

To gain further insight into this unusual situation, we must consider the problem
of nuclear statistical equilibrium.

1 For a clear discussion of energy generation, the reader must consult Bodansky et aI., op, cit.
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Fig. 7-6 The ratio of the disinte
gration current J to the rate of
Si28 photodisintegrations. The
much smaller value for J reflects
the fact that the Si28photodisinte
gration is almost exactly balanced
by an upward current from Mg24.
AB the burning progresses, the dis
integration current falls markedly.
[After J. W. Truran, A. G. W.
Cameron, and A. A. Gilbert, Can.
J. Phys., 44:576 (1966), and D.
Bodansky, D. D. Clayton, and
W. A. Fowler (to be published).)

0.0011.-__.1.-__.1.-_--:.1..:-_--::-':-__:"':"__-:
0.7

Fraction of initial Si2 8 remaining



SYNTHESIS OF THE HEAVY.ELEMENTS

30

533

28

26

24

22

... 20
Gl.c
E
~ 18
ese 16
a.

14

12

10

8

6 8

____ >10 335ec-1

---- 1031-10335ec-1

--- - ---1030-10315ec-1

10

Neutron number

o

o 0

Fig. 7-7 A typical example of the net flow due to major reactions in the silicon-burning network.
Each reaction is partially balanced by the inverse reaction, and the magnitude of the excess is
here designated by the intensity of the lines connecting the nuclei linked by that reaction. As
the burning progresses, each flow becomes a relatively small difference between two large and
nearly equal opposing rates, in which case the composition of the gas may be approximated
by an equilibrium. [After J. W. Truran, A. G. W. Cameron, and A. A. Gilbert, Can. J. Phus.,
44:576 (1966).]

7-2 NUCLEAR STATISTICAL EQUILIBRIUM AND THE e PROCESS

Understanding of the composition of the iron group of elements is greatly aided by
the study of nuclear statistical equilibrium. Suppose that the rates of all
nuclear reactions (excepting beta decays) are exactly equal to the rates of the
inverse reactions. During silicon burning these rates are only very nearly equal,
because there is a small net flow of intermediate-mass nuclei toward the iron
group superimposed upon the much faster pairs of inverse reactions. But even
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Fig. 7·8 A comparison of the abundances during silicon burning with the natural
solar-system abundances. In this case, which is typical, the silicon has been burning
for 10 sec at the temperature T g = 4.2, and about 35 percent of the original silicon
remains. The solid dots represent the natural solar abundances, and isotopes of the
same element are connected by a solid line. The open dots represent the quasiequilib
rium abundances of the silicon-burning process, and isotopes of the same element are
connected by dashed lines. The natural abundance of Fe 56 is compared with the
quasiequilibrium abundance of Ni 56, which decays after expulsion. The great simi
larity between the abundances of the most abundant nuclei strongly suggests that
truncated silicon burning has been important in nucleosynthesis. [After D. Bodansky,
D. D. Clayton, and W. A. Fowler, Phu«. Rev. Letters, 20:161 (1968)].
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then the rates of inverse reactions within the iron peak are balanced to considerable
accuracy. As the Si28 disappears, the gas is more and more describable as being
in a steady state with respect to the nuclear reactions. In such a state, the
nuclear abundances are determinable from statistical principles. The situation
is exactly analogous to that of the ionization equilibrium of an atomic gas. The
ratio N(A - 1, Z)jN(A,Z) is determined by the free-neutron density and the
temperature,

N(A - 1, Z)nn _ 2G(A 1, Z) (21rp.kT)! Qn
N(A,Z) - G(A,Z) hS exp - kT

_ 2G(A - 1, Z) (A - 1)! 8 Qn (7-11)
- G(A,Z) -r exp - kT

where Qn is the binding energy of a neutron in the nucleus (A,Z) and
8 = (21rMl'kT)!jhs. By the same reasoning,

N(A - 2, Z - l)np _ 2G(A - 2, Z 1) (A - 2)! 8 Qp (7-12)
N(A - 1, Z) - G(A - 1, Z) A - 1 exp - kT

where Qp is the proton binding energy in (A - 1, Z). Note that if one takes the
product of Eqs. (7-11) and (7-12), all the properties of the nucleus (A - 1, Z)
divide out except its binding energy. In fact a whole series of such equations can
be written, until the nucleus (A,Z) is related to the number densities of free
neutrons and protons only.

Problem 7-7: Show by repeated action of this nuclear Saha equation that

n zn.<1-Z Q(A Z)
N(A Z) = G(A Z)A! _P_n_ 111-.<1 exp --'-

, '2.<1 kT

where

Q(A,Z) = c2[ZM R + (A - Z)Mn - M(A,Z)]

(7-13)

(7-14)

(7-15)

is the binding energy of the nucleus (A,Z). Note that the abundance of every nuclide is given
in terms of its properties and the densities of free protons and neutrons. It may also be noted
that the principles of statistical mechanics yield Eq. (7-13) by a more direct route than the
chain argument applied here. .

Problem 7-8: Show that when Eq. (7-13) is applied to the two nuclei (A,Z) and (A - 1, Z),
the ratio of results is Eq. (7-11).

Equation (7-13) is in itself inadequate to yield the equilibrium abundance of
each nucleus, because npand nn are not given; but if, as is usually the case, nuclear
equilibrium is achieved faster than any significant number of beta decays can
occur, we must impose an auxiliary constraint: the total number densities (free
plus bound) of protons and neutrons must preserve the ratio

Z "1;ZN(A,Z) + np
N = "1;(A - Z)N(A,Z) + nn
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(7-16)

Inasmuch as the number density of nucleons (free plus bound) is determined by
the mass density, it follows that the values of p, T, and ZIN prescribe the equi
librium abundance of each nucleus.'

Beta decays playa special role in nuclear equilibrium. They cannot participate
in a true equilibrium because the inverse reaction to a beta decay requires the
absorption of a neutrino. For example, the inverse of theneutron decay n ---7 p +
e: + jj is the reaction p + e: + jj ---7 n. Because neutrinos escape from the local
environment (at least in the astrophysical circumstances under discussion here),
their density is much too low for the inverse reaction to have a significant rate.
Thus true equilibrium is impossible. The manner of including beta decays is as
follows. The equilibrium with respect to the strong (nuclear) interactions is
computed with the constraint ZIN = (ZIN)t. The abundances of the radio
active nuclei and their decay rates yield the rate at which ZIN is changing.
Then the equilibrium a short time Ilt later is computed with the constraint

(Z) _(Z) + Ilt!.. (Z)
N tHt - N t at N t

This approximation is justifiable only because the beta rates are sufficiently slow
so that equilibrium at any specific value of ZIN can be established in a time short
compared to the time required for a significant change in the value of ZIN.
Needless to say, this assumption must be checked for self-consistency, because
environments may be imagined where the approximation is invalid.

The nature of the beta decays is somewhat different than in the laboratory.
Because of the high temperatures involved in the approach to nuclear equilibrium,
the beta decays of thermally populated excited states make a significant con
tribution. It is necessary to estimate the beta-decay rate of each excited state
in order to assess its contribution to the total decay rate. This can usually be
done on the basis of the spins and parities of the states and the systematics of
nuclear beta decay. Even more important is the capture of continuum electrons
from the gas. The most tightly bound nuclei in the iron group are not those with
Z = N but those with neutron excesses of two or four. The nuclear binding is
increased, therefore, by those decays which change protons into neutrons,
positron decay or electron capture. In the process under discussion, the free
electron density is about 100 times greater than it is at the nucleus of a terrestrial
iron-group nucleus. As a result, the electron capture in the star in many cases
significantly shortens the nuclear lifetime.? As we shall see, these decay rates

1 A particularly thorough study of nuclear statistical equilibrium under conditions likely to
prevail during formation of the iron group has been provided by Clifford and Tayler, op. cit.
For results at extreme density, see S. Tsuruta and A. G. W. Cameron, Can. J. Phys., 43 :2056
(1965).

2 A thorough discussion of beta-interaction rates within this context is given in Fowler and
Hoyle, op. cit., app, A, and in C. J. Hansen, Ph.D. Thesis, Yale University, New Haven, Conn.,
1967. Hansen's very complete work has also been issued as "Neutrino Emission from Dense
Stellar Interiors," Goddard Institute for Space Studies, New York, 1967.
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must be followed with care, because even a small decrease in ZjN greatly affects
the composition of the iron group.

For values of ZjN very near unity, it turns out that the most abundant iron
group nucleus is either Ni 56 or Fe 54• Important questions hinge upon the identity
of the dominant nucleus. In the first place, the conversion 2Si28 -7 Ni 56 is exo
thermic by 10.9 Mev and may stall collapse for a short while, whereas the con
version 2Si28 -7 Fe 54 + 2p is slightly endothermic by -1.3 Mev and can provide
no hindrance to the collapse. In the absence of beta decays (ZjN = 1), the
dominant nucleus at moderate temperatures (Tg < 5, say) is Ni 56, because it has
the greatest binding energy per nucleon of the Z = N nuclei. At very high
temperatures, however, the intense photon flux keeps two protons driven off, and
one obtains Fe 54 + 2p as the dominant component. For values of ZjN near 0.97,
there is a sufficient neutron excess for Fe 54 to be the dominant nucleus even at
moderate temperatures. In this case the effective reaction can be summarized as
54Si28 -7 28Fe 54, which has been accompanied by 28 beta decays. Relatively
little energy is associated with the beta decays, and this process releases about
15 Mev per Fe 54 nucleus produced. At even smaller values of ZjN ,:::< 0.90, the
dominant nucleus is generally Fe 56, which has the maximum binding energy per
nucleon of all nuclei.

Problem 7-9: The binding energy of Si28 is 8.448 Mev per nucleon, that of Ni 56 is 8.644 Mev per
nucleon, and that of Fe 54 is 8.736 Mev per nucleon. Calculate the increase in nuclear binding
per iron-group nucleus produced associated with the reactions 2Si28 ...... Ni 56, 2Si28 ...... Fe 54 + 2p,
54Si28 ...... 28Fe54•

Another issue at stake here is the large natural abundance of Fe 56• Reference
to Fig. 1-22 shows that iron in the solar system is much more abundant than its
immediate neighbors. Observations of stellar spectra confirm this result to be a
general abundance phenomenon. From the point of view of nucleosynthesis it is
comfortable to incorporate this large abundance of Fe 56 into the theory if it can be
interpreted as a natural consequence of nuclear equilibrium. Burbidge et al.!
tried, with encouraging results, to match the solar abundances to nuclear equi
librium in a gas having a sufficiently small value of ZjN for Fe 56 to be the domi
nant nucleus. They dubbed this nuclear process the e process as a mnemonic for
equilibrium. In their 1964 investigation, Fowler and Hoyle found that the
rearrangement of Si28 into iron-group nuclei occurs too quickly at Tg = 3.5 for
beta decays to reduce Zj N from its initial value of unity to a value low enough for
Fe 56 to dominate. In their model Si28 is converted to Ni 56, which decays later
into Fe 56• Not only is the explanation of the large natural Fe 56 abundance
retained thereby, but elegant auxiliary consequences emerge from the model.
If the conversion results largely in Fe 54, however, it will be somewhat more of a
problem to understand the large Fe 56 abundance.

Because of the importance of this problem of the competition between Ni 56

1 E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys., 29 :547 (1957).
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(7-17)

and Fe54, it is advisable to examine the physical principles of the competition in .
terms of a slightly simplified model. The ratio of Fe 54to Ni56in nuclear statistical
equilibrium may be expressed by the balance of the reactions Fe54+ p ~
C055+ 'Y and C055+ P ~ Ni56+ 'Y. By combining the two equations of the
form of Eq. (7-12) we have

Fe 54
2 _ 4G(Fe 54

) (54)! (J2 _ Qp(55) + Qp(56)
Ni56 np - G(Ni56) 56 exp kT

Problem 7-10: The proton binding energies in Ni 56 and C055 can be calculated from Table 4-l.
The ratio of partition functions is near unity because both Fe 54 and Ni56 are even-even nuclei
with J = 0 whose excited states lie too high to contribute much. Show that

Fe 54
- n 2 = T 31068.13-62.09IT,
Ni 56 p 9

(7-18)

(7-20)

The results of the previous problem can be easily employed to investigate the
competition between the Ni56and Fe 54phases of the nuclear gas. First consider
the case ZIN = 1, which will correspond to a conversion of Si28 to iron-group
nuclei in a time short compared to an effective beta-decay lifetime of the gas..
Near those thermodynamic conditions where Ni 56 and Fe54 are of comparable
abundance, the gas may be regarded as having to good approximation only two
nuclear components, 28Ni~: and 26Fe~: + 2p. Thus in those circumstances we
have n p ~ 2Fe54to preserve the charge ratio. Then Eq. (7-18) becomes

C~:5?3 ~ T931067.53-62.o9/T, (7-19)

What we wish to know is the location of the strip in the p'I' plane for which
Fe 54 ~ Ni56. Substituting that equality, expressing the number density of Fe 54

in terms of the mass density, and setting X 54 = X 56 = t, we have

X 54 ~ X 56 ~ t
Z
-= = 1
N

Equation (7-20) locates the transition strip separating regions where Ni56 or
Fe 54+ 2p dominate the composition. It is displayed in Fig. 7-9 for values of the
density between p = 106and 108g/cm", In the lower-temperature region Ni56is
the dominant equilibrium nucleus, whereas Fe 54+ 2p dominates at temperatures
high enough to keep two protons driven off the Ni56 nucleus. At very high
temperatures, the equilibrium shifts to 14 alpha particles, a fact that will be of
importance in triggering supernovas.

Problem 7-11: Use Eq. (7-13) to obtain the equilibrium densities of He 4 and of Ni 56• Then
show they are related to each other as

N a 14 421 14Q(a) - Q(Ni56
) (7-21)

Ni 56 = 56! 0
13

exp kT
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Fig. 7-9 The dominant nuclear constituent in a gas in nuclear statistical
equilibrium when Z/N = 1.

where Q(a) and Q(Ni56
) are the binding energies of He 4 and Ni 56 in the sense of Eq. (7-14); that

is, Q(Ni66) - 14Q(a) represents the energy required to dissociate Ni 66 in 14 alphas. Using the
masses of Table 4-1, show that the fractions by weight of Ni 56 and He 4 are equal when

(7-22)

This relationship has been plotted for X a near 0.5 in Fig. 7-9 as a rough indication of the transi
tion to an alpha-particle gas. The calculations displayed in Fig. 7~9 are illustrative of the
physical ideas involved. Neither boundary is sharp. Near the second boundary, particularly,
many secondary nuclei exist.

In summarizing the physical ideas illustrated in Fig. 7-9, we may say that the
photodisintegration of Si28 maintaining Z = N will lead to Ni 56 with energy release
for pT in the left-hand region, will lead to Fe 54 without energy release in the middle
region, and will decompose into alpha particles in the right-hand region. Many
other nuclei exist in smaller abundance in each zone. In particular Fe 54 + 2p
is accompanied by C055 + p, Fe 55 + 3p, Ni 58 + 2p, and others.

Now suppose that the rearrangement occurs slowly enough for the number of
beta decays not to be negligible. At densities greater than 106, for example, the
electron-capture lifetimes of Ni56 and C0 55 are on the order of 1 min or less.
Since the abundance of these and other radioactive nuclei are a few percent or less
during the rearrangement process, we may expect a significant number of beta
decays (1 percent or so) to occur if the time of the rearrangement is 104 to
105 sec, say, or greater. Because the rearrangement time is a strongly
decreasing function of the temperature, rearrangement times this long will of
necessity be restricted to temperatures less than Tg ~ 3.5, say. One cannot
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be more precise at the time of writing because the details of the problem are still
unsolved, but it is easy enough to see what the results of a few beta decays
will be. A small neutron excess 'will allow the dominant nucleus to be one with a
neutron excess. In the iron region, the most stable nuclei are those having excess
neutrons, the most tightly bound Fe 56 having N = Z + 4. At low temperatures,
neutron-rich nuclei cannot dominate unless Z/N is reduced to a value near that
of Z /N for the nucleus in question. On the basis of this simple principle alone,
the equilibrium switches from Ni56 to Fe 54 near

Z 26
-= "'" - = 0.93
N 28

Fe 54 maximum

and it switches to Fe 56 near

Z 26
-= "'" - = 0.87
N 30 .

Fe 56 maximum

Because the transition to Fe 54 occurs with many fewer decays, it is the one of
overriding importance for nuclear equilibrium in the important temperature
region 3 < T 9 < 4. It is instructive to consider this situation further by return
ing to Eq. (7-18), which expresses the competition between Ni56 and Fe 54, which
we may safely assume to be the dominant iron-group nuclei for values of Z/N
slightly less than unity. Near the transition strip, we no longer have np "'" 2Fe54,

however, because beta decays will have greatly reduced the free-proton density.
The approximate condition of the two-component gas may be expressed by assum
ing that essentially all the neutrons are bound in either Ni 56 or Fe 54 nuclei. Then
for the nucleon densities (free plus bound),

Z "'" 28Ni56 + 26Fe54 + np

N "'" 28Ni56 + 28Fe54
(7-23)

It should be noted that these equations are incorrect if there exists a large corn
ponent of unburned silicon; therefore, the two-component model can be an
appropriate approximation only for complete equilibrium.

Problem 7-12: Show that in the two-component model the proton density near the transition
strip can be estimated as

pNo [Fe54 (Z ) Z ].n se -X56 - -=- - 0,929 +-=--1
p 2 Ni 56 N N (7-24)

It is now possible to make the following argument. Suppose we concentrate
on a combination of o'I' having the property that if Z = N, the equilibrium would
have strongly favored Ni 56• That is, consider a o'I' that would have given from
Eq. (7-19) the result X543/X56« 1. It is then possible to show that one can



SYNTHESIS OF THE HEAVY ELEMENTS 541

have X 54 and X 56 of the same order of magnitude only if

[ Fe
54 (Z ) (Z )J2- -= - 0.929 + -= - 1 ~ 0

Ni 56 N N
(7-25)

Problem 7·13: Confirm the above assertion.

(7-26)

From Eq. (7-25) we have at once for the two-component gas that near the
transition strip between Fe 54 and Ni 56

Fe54 1 - ZIN
Ni 56 <::< ZIN - 0.929

in a pT region where Ni 56 would be strongly favored if Z = N. This result is
plotted in Fig. 7-10, where it can be seen that the transition from Ni 56 to Fe 54

occurs when the beta decays have reduced ZIN to a value near 0.97. This
impliesthat if only 1.5 percent of the protons have made beta transitions into
neutrons during the rearrangement, the equilibrium can be shifted from Ni 56 to
Fe 54• The switch occurs at values of ZIN much nearer to unity, however, if
there is a large component of unburned silicon. If the rearrangement occurs
slowly enough to allow Fe54 to dominate, there is an energy release of about
15 Mev per Fe 54 nucleus formed, but it becomes impossible to account for the
large natural abundance of Fe 56 by such rearrangements.' The dominance of
Fe 56 in nature allows the following conclusion: the e process in stars has either
occurred so rapidly that the dominant nucleus produced is Ni 56 (which decays later
to Fe D6) or has proceeded so slowly that beta decays have reduced ZIN to a value so low
(near 0.87) that Fe 56 is the dominant equilibrium nucleus.

On the basis of the foregoing principles, one can easily understand the results
of full calculations of equilibrium composition.' Figure 7-11 displays the frac-

1 Extensive tables and discussion have been published by Clifford and Tayler, op. cit. Their
results are strongly recommended for the serious student.
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Fig.7·10 The ratio of Fe 54 to Ni 56

in a gas in complete nuclear statis
tical equilibrium at a temperature
and density such that Ni 56 would
be the dominant nucleus at
ZIN = 1. This result is not valid
in a silicon-burning quasiequilib
rium, however, if there is a large
component of unburned silicon.
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z/FJ

Fig.7-11 Mass fractions of the most abundant nuclear species in nuclear statistical equilibrium
at T» = 4 and p = 106 g/cma• As the value of Z/N is reduced, the equilibrium shifts to more
neutron-rich nuclei. [After F. E. Clifford and R. J. Tayler, M em. Roy. Astron. Soc., 69 :21
(1965).]

tional equilibrium abundances by weight of several key nuclei as a function of
Z/N. The particular thermodynamic circumstances of this example are p = 106

and T 9 = 4, but the qualitative nature of the results is much more general. The
transition Ni 56 -7 Fe 54 -7 Fe 56 in the identity of the dominant nucleus is evident,
along with a corresponding transition in the identity of the major secondary
nucleus.

The extent of the reduction of Z/N from its initial value of unity will clearly
depend upon the length of time required for the rearrangement of a major por
tion of the Si28 into iron-group nuclei. This time depends upon the temperature
of the rearrangement. In Fig. 7-12 the final mass fractions of these three domi
nant nuclei are schematically displayed as a function of temperature. It is clear
that an important problem confronting astrophysics is that of sufficient under
standing of the astrophysical environment to determine the temperature of the
e process. In the evolution of the star, the temperature and time scale will be
dominated by the energy-balance equations. Neutrino losses are extensive at
the temperatures involved, and the dynamics of the late evolutionary stages is
poorly understood. When it is finally understood, we shall be faced with the
problem of which mass zones are reejected to the interstellar medium and with
what final history of density and temperature. This last problem remains one of
the most difficult in all of astrophysics.

A stellar center that has passed through the fiery furnace of the e process seems
headed for a catastrophic holocaust. No more nuclear energy remains, but the
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neutrino losses are large and insistent, so that the core contracts and the temper
ature continues to rise. Perhaps there may exist stars at this stage with suf
ficiently small mass to be stabilized by electron degeneracy, but at least for those
stars with ;m; > 1.5;m;8 the contraction and heating continues. In massive stars
the sequence of events seems inescapable. As the temperature marches upward,
the iron-group nuclei are photodisintegrated into alpha particles and neutrons.
Figure 7-9 showed the approximate location of the onset of Ni 56 -+ 14He 4, but
similar curves exist for other iron-group nuclei, Fe 54 -+ 13He4 + 2n, Fe 56 -+

13He 4 + 4n, etc. In any case, each photodisintegration absorbs about 100 Mev
from the photon gas and constitutes a highly endoergic undoing of the whole
history of fusion at the center of the star. That drain on the internal thermal
energy (to say nothing of the additional neutrino losses) can only be provided by
one remaining source, the compressional work accompanying gravitational col
lapse. As the collapse accelerates, the temperature rises further, and the alpha
particles give way to photodisintegration at the high price of 28 Mev per alpha
particle. The contraction must be so rapid that the core is nearly in a state of
free fall! As the Fermi energy of the electron gas is squeezed past the neutron
proton mass difference, the protons capture free electrons, further robbing the
gas of energy and pressure and promoting further collapse. Solid resistance is
encountered only when the neutrons become degenerate near the nuclear density

T9~

<-- Burning time

Fig. 7·12 A schematic diagram of the principal nucleus that results
from the burning of silicon. For T. > 4 the burning is so fast that
z/fl = 1 throughout the burning, leading to a composition dependence
upon the temperature like that in Fig. 7-9. The time required for the
burning increases markedly as the temperature is decreased, with the
result that the relatively slow beta decays lower the value of Z/fl during
the burning. Near T, = 3 the neutron-rich nucleus Fe 5' has sufficient
time to appear, and at even lower temperatures the beta decays drive
the equilibrium to Fe 55•



544 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

of 1014 to 1015 g/cm". The core has collapsed to a giant nucleus of neutrons. 1

Because of the extensive neutrino losses, the imploded core cannot have sufficient
energy to expand back outward but seems trapped as a neutron star. The intense
neutrinos do not flow out so easily in these extreme conditions, and a considerable
amount of the energy of the collapse is believed to be deposited in the noncentral
layers by neutrino interactions. The outer portions are believed to be dramati
cally ejected into space by the heating caused by the deposition of neutrino energy
plus possible nuclear explosions in the outer layers. This sequence of events is
the generally accepted model of the type II supernova explosion. 2

Problem 7-14: Devise some reasonable way of giving an approximate numerical answer to the
following question. Suppose a central core of 1mI0 collapses within a 10mI0 star converting
10 percent of the energy gained into neutrinos, which are subsequently absorbed with 1 percent
efficiency in the outer layers. To what radius must the core collapse to provide the outer
nine solar masses sufficient energy to escape from the star? To what radius must the core
collapse to reach a density of 1015 g/cm3?

A large amount of stellar nucleosynthesis (maybe even most of it) surely
accompanies the type II supernova. Proceeding outward from the imploded core,
one passes through mass shells representing each nuclear burning state in stellar
evolution: a very dense nucleon gas near the center; equilibrium nuclei somewhat
farther out; then, in turn, Si burning, C and 0 burning, He burning, and H
burning-all capped by an envelope where no nuclear burning has occurred. In
the dramatic shock heating that may accompany the expulsion of this material,
many significant nuclear reactions may still occur, but the dominant products
should be those same nuclei which lie on the main line of the nucleosynthesis
sequence. Figure 7-13 shows a schematic conception of a 30ml 0 presupernova
model. Much more work remains to be done on the physics of this model. The

1 Perhaps the collapse cannot even be halted by nuclear degeneracy. If the mass of the core is
too large, in analogy to the Chandrasekhar limit for electron degeneracy, the nuclei are squeezed
onward toward an exciting event, not well understood, in relativistic astrophysics. For a
profound account with extensive bibliography, see B. K. Harrison, K. S. Thorne, M. Wakano,
and J. A. Wheeler, "Gravitation Theory and Gravitational Collapse," The University of
Chicago Press, Chicago, 1965.

2 The thermal instability associated with iron-to-helium phase change was suggested by Hoyle
in: 1946 to be the triggering mechanism of a supernova explosion. The idea was described in
some detail by Burbidge, Burbidge, Fowler, and Hoyle, loco cit., in 1957, and further elaborated by
Fowler and Hoyle, op. cii., sec. 8. Colgate and his collaborators made the first working numeri
cal models of the implosion-explosion phenomenon [So A. Colgate and H. J. Johnson, Phys. Rev.
Letters, 5 :235 (1960); S. A. Colgate and R. H. White, Astrophys. J., 143 :626 (1966)]. See
also W. D. Arnett, Can. J. Phys., 44:2553 (1966), and Z. Barkat, G. Rakavy, and N. Sack,
Phys. Rev. Letters, 18 :379 (1967). H. Y. Chiu has questioned the mechanism, believing rather
that the instability is triggered by electron capture and the associated formation of very
neutron-rich matter (Pre-supernova Evolution, in A. G. W. Cameron and R. F. Stein (eds.),
"Stellar Evolution," Plenum Press, New York, 1966). Chiu was also largely responsible for
reviving the concept of neutron stars as the final state of the supernova core; Ann. Phys.,
26 :364 (1964).
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Evolution of a 30Mo star
Type II supernova

Postsupernova stage

Explosive burning
of oxygen

,,-o- Explosive burning
of hydrogen
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Fig. 7-13 The final evolution of a 30;m;0 star illustrating the presupernova in the center, the
type II supernova events on the right, and the postsupernova results on the left. It" has been
assumed that a braking action due to rotation or some other mechanism ultimately leads to a
mantle-envelope explosion following the core implosion caused by the endoergic nuclear phase
changes. The explosive burning of previously unburned oxygen is taken to be the source of
energy in the explosion as it is envisioned here. The explosion results in the ejection of unburned
material plus products of hydrogen burning, helium burning, oxygen burning, silicon burning,
and equilibrium material. Nuclear explosions may not be essential, however, if neutrino
deposition in the middle layers is sufficient. [After W. A. Fowler and F. Hoyle, Astroplujs. J.
Suppl., 9 :201 (1964). By permission of The University of Chicago Press. Copyright 1964 by
The University of Chicago.]

effects of rotation on the core collapse must be studied, and the numerical problem
of neutrino energy transport in a dynamic situation probably warrants reexamina
tion with great care. These are hard problems, but the supernova is probably
the major frontier for stellar evolution during the 1970's.

Finally, we note that the physics of the fusion reactions that proceed as portions
of the dense nucleon gas near the center expand outward may differ somewhat
from the circumstances along the main line of presupernova synthesis. At
densities greater than 109 g/cm", and temperatures of several billion degrees, the
compound nucleus may interact with a third particle in a time shorter than the
natural lifetime of the compound nuclear state.' The corresponding problems for
nucleosynthesis are both interesting and important.

1 P. B. Shaw and D. D. Clayton, Phys. Rev., 160 :1193 (1967).
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7·3 NUCLEOSYNTHESIS OF HEAVY ELEMENTS BY NEUTRON CAPTURE

For the science of nucleosynthesis the term heavy elements is generally taken to
designate those nuclei more massive than the iron-group nuclei. Their natural
abundances are far greater than can be produced in nuclear statistical equilibrium,
so that nuclear interpretation of their abundances seems to require a nonequilib
rium mechanism. There is no apparent way to make the interpretation in terms
of charged particles. The lifetime of a heavy nucleus against charged-particle
reactions increases rapidly with increasing nuclear charge. For moderate tem
peratures, these lifetimes greatly exceed the lifetime of the corresponding epoch
of stellar evolution. For high temperatures, on the other hand, the nuclear
composition tends toward a nuclear equilibrium that either favors the region in
the binding-energy maximum shown in Fig. 7-1 or the photodisintegration into
light-nuclear particles. In short, there seems to be no conceivable way to
synthesize heavy-element abundances as great as those shown in Fig. 1-22 by
means of charged-particle reactions.

This limitation does not exist for the capture of neutrons. With no coulomb
barrier to overcome, heavy elements capture neutrons easily even at extremely
low energies. Neutron cross sections, in fact, generally increase with decreasing
energy. Accordingly one concludes that heavy elements could be synthesized at
relatively moderate temperatures by exposing lighter nuclei to a flux of neutrons.
This suggestion has proved very useful because, as we shall see, the abundances of
the heavy elements are dramatically correlated with the nuclear systematics of
neutron capture. The most important of these systematic effects will be seen to
be an enhanced stability of nuclei with the magic numbers N = 50, 82, and 126
neutrons, which were introduced in Sec. 4-4.
. The difficulty with the idea is that free neutrons are not normally thought to be
abundant in the major phases of nuclear burning. The main line of nuclear
energy generation does not involve the liberation of neutrons until the carbon.
burning epoch is reached. Neutrons are liberated to some extent by secondary
reactions during helium burning, however, so that it will be necessary to follow
the course of many of these nuclear reactions as an auxiliary calculation to the
major problem of the evolution of the star. But for the time being it will be
advantageous to ignore the problem of the sources of the free neutrons until the
principles of synthesis by neutron capture have been surveyed.

The abundances of the nuclear species seem to suggest that two different types
of neutron-capture chains have participated in the synthesis of the heavy ele
ments. To better understand how this distinction is made operationally, it will
be helpful to examine Fig. 7-14, which is a schematic section of a nuclide chart.
The charge of each nucleus is plotted as ordinate, so that rows correspond to
isotopes of a given element. The columns are nuclei having the same neutron
number N, so that the atomic weight A = Z + N is the sum of the ordinate and
the abscissa. Thus, isobars, or nuclei of equal atomic weight, lie along a diagonal
line from upper left to lower right. Stable nuclei are distinguished by boxes



SYNTHESIS OF THE HEAVY ELEMENTS

'y-iJ
~

D
z

(Neutron-rich matter) .

N

547

Fig. 7-14 A characterization of a portion of the chart of nuclides showing the assignment of
nuclei to the classes s, r, and p_ The s-process path of (n,l') reactions followed by quick beta
decays enters at the lower left and passes through each nucleus designated by the letter s.
Neutron-rich matter undergoes a chain of beta decays terminating at the most neutron-rich
of the stable isobars, which are designated by the letter r, Those nuclei on the s-process path
which are shielded from r-process production are labeled "s only." The rare proton-rich
nuclei which are bypassed by both neutron processes are designated by the letter "p.

containing the letters s, r, p (to be explained shortly). Even values of Z
are found to have many stable isotopes, "whereas odd values of Z usually have
only one stable isotope, and at most two. Along the diagonal lines of constant
A (isobars), one finds that odd atomic "weights have only one stable isobar,
whereas even atomic weights may have one, two, or three stable isobars. These
generalizations, obtained from the laboratory study of heavy nuclei, can be sim
ply understood in terms of nuclear systematics, but it would take us somewhat
too far afield to explore the reasons here.

Imagine the sequence of events if nuclei are placed in a neutron flux. When a
nucleus captures a neutron, it becomes an isotope of the same element with one
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(Z,A) + n -----7 (Z, A + 1) + 'Y

If the nucleus (Z, A + 1) is stable, it waits until it captures another neutron, and
so on. If, however, the nucleus (Z, A + 1) is radioactive, the question whether
it beta-decays to (Z + 1, A + 1) or captures a second neutron depends upon the
relative lifetimes of (Z, A + 1) against beta decay and against capture of neu
trons. It is this question of relative lifetimes that distinguishes the two major
types of neutron-capture chains. The overwhelming majority of beta-decay life
times are of order hours, within perhaps a factor of 103 either way. Suppose then
that the neutron flux is so weak that it characteristically requires long times', say
104 years, within perhaps a factor 103 either way, for neutron captures to occur.
Then in first approximation one could say that neutron capture is slow compared
to beta-decay rates. In that case the neutron-capture chain "vill march through
the stable isotopes of an element until it reaches a radioactive species, at which
point beta decay "ill occur, and the capture chain will resume in the element
(Z + 1). This type of neutron-capture chain was named the s process by Bur
bidge, Burbidge, Fowler, and Hoyle. The letter s is a mnemonic for slow, which
in turn refers to the rate of neutron capture compared to the rate of beta decay
for radioactive nuclei. In Fig. 7-14 the slow-neutron capture path is indicated
by a solid line, and the stable nuclei through which the chain passes are labeled
with the letter s, The s-process path is frequently said to pass along the valley
of beta stability, which means that 'it sticks closely to the most tightly bound
isobar at each atomic weight. It will be noticed that the chain does not pass
through several of the most neutron-rich isotopes of the elements,; labeled r for
reasons soon to be explained, nor does it pass through the most proton-rich iso
topes, labeled p as a mnemonic for proton, The upshot is that if the s process
as described occurs in nature, it "ill synthesize only those; isotopes labeled s.
It is also clear that the abundances synthesized by this process will dependiri.
part on the neutron-capture cross sections of the ri.uclei along the chain. Those
nuclei with small cross sections will capture neutrons with such difficulty that the
abundance may be expected to pile up at that point, whereas those with large
cross sections will be so easily destroyed that they will not be expected to achieve
a very large abundance.

The nuclear abundances reflect the operation of another neutron-capture
sequence, however. Some astrophysical environment has produced very neutron
rich nuclei lying diagonally below and to the right of the valley of beta-decay
stability displayed in Fig. 7-14. After the synthesizing event, these nuclei
undergo chains of beta decay which terminate at the most neutron-rich of the
stable isobars at each value of atomic weight. These beta-decay chains are sche
matically identified by wavy lines in Fig. 7-14, and the stable neutron-rich isobar
which terminates the decay chain is labeled by the letter r. This mechanism
seems to be responsible for the synthesis of the neutron-rich isotopes of the
elements. It should also be noted, however, that this mechanism contributes to
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the abundances of many nuclei on the s-process chain as well. Those nuclei
which can be synthesized by both mechanisms have been labeled with the letters
sand r. Many nuclei lying on the s-proeess path, almost invariably even isotopes
of even-Z elements, are shielded from the r process, as it is called, by a stable
neutron-rich isobar. That is, a nucleus (Z,A) will not have received r contribu
tions to its abundance if the nucleus (Z 2, A) is stable. It occasionally
happens for odd-A isobars that the nucleus (Z - 1, A), although it cannot be
stable if (Z,A) is stable, nonetheless shields the nucleus (Z,A) from r contributions
because its half-life is so long as to be virtually stable. Important examples are
37Rb87 and nRe187, each with half-lives near 40 billion years, which shield the
absolutely stable 38Sr87 and 760S187 from r contributions. Shielded nuclei have
played a key role in the development of the theory, because their abundances
apparently reflect the yield of the slow-neutron-capture process alone.

Finally, it may be noted from the schematic Fig. 7-14 that some proton-rich
nuclei cannot be synthesized by either slow-neutron-capture chains or by the
decay of neutron-rich matter.. These nuclei are shielded from both processes and
are labeled with the letter p in deference to their proton-rich character. One
thing comes to mind immediately regarding the abundances of the p nuclei. If it
is to be true that the heavy-element abundances may be interpreted primarily
in terms of two processes, the sand 7' processes, then it must also be' true that the
abundances of the p nuclei are small compared to those of the sand r nuclei.
This expectation is borne out by detailed comparisons, so that one can sensibly
assume that whatever mechanism has been responsible for the synthesis of the p
nuclei has synthesized only a small fraction of the abundances of the sand 7'

nuclei. This conclusion allows the latter nuclei to be analyzed in terms of two
processes only, although it should be remembered always that this simplification
has been made. In summary, one attempts to regard the heavy nuclei as being of
four completions, which are respectively p, s, er, and r, The p nuclei are
separable as a class, which allows the possibility of interpreting the remainder of
the heavy nuclei as a superposition of contributions from the sand r processes.
Schematically the decomposition may be written

N(Z,A) = N.(Z,A) + NT(Z,A) + Np(Z,A)

:::< N.(Z,A) + NT(Z,A) (7-27)

For those s-only nuclei shielded from the r process we have NT = 0, whereas we
often have N. = °for the heaviest isotopes of the elements."

Several of these features are illustrated quantitatively in Fig. 7-15, which

1 Each of these processes was named and quantitatively analyzed by Burbidge, Burbidge,
Fowler, and Hoyle, lac. cit. Major discussions of the neutron-capture processes have been
made by D. D. Clayton, W. A. Fowler, T. E. Hull, and B. A: Zimmerman, Ann. Phys., 12 :331
(1961) and by P. A. Seeger, W. A. Fowler, and D. D. Clayton, Asiroplujs. J. Suppl., 11 :121
(1965). AlI three papers are recommended to the serious student. Their point of view and
results are the basis for this section.



550 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

Sb,51 P process s only

•112 114 115 116 117 118 119

SO,50

zt 1.02% 112d 0.69% 0.38% 8.5%

113

10,49
Slow process path

4.2%

110 111 112 113

Cd,48

12.4% 12.8% 24.0% 12.3% 28.8% 54h 7.6%
62 63 64 65 66 67 68

N--+

Fig. 7-15 The a-process path through the isotopes of cadmium, indium, tin, and antimony
The element Sn is particularly interesting in that it has 10 stable isotopes, of which numbers
116 to 120 lie on the s-process path. The r-process decay chains enter from the lower right.
Each stable isotope contains its solar-system abundance by percentage of the total element
abundance, and each unstable nucleus on the s-process path contains its terrestrial lifetime
against beta decay. [After D. D. Clayton, W. A. Fowler, T. E. Hull, and B.A. Zimmerman,
A·nn. Phys., 12 :331 (1961).]

traces the s-process capture path through the elements Cd, In, Sn, and Sb. The
isotopic composition of each element is given by percentage of the total element
abundance. The element Sn is particularly interesting in that it has more
stable isotopes than any other element, a fact that reflects its magic number of
protons Z = 50. First notice the p nuclei. In113, which is bypassed by both
sand r processes, is only 4 percent as abundant as Inll5 , which lies on the main.
line. Going on to the next element, we find that the three light isotopes of Sn
have a combined abundance of only 2 percent, less than that of any other single
isotope. To good approximation, therefore, the abundances of the heavier
isotopes can be analyzed in terms of sand r processes. The s-proeess path
through Sn includes A = 116, 117, 118, 119, and 120, and the r process con
tributes to A = 117, 118, 119, 120, 122, and 124. Thus Snll6 , shielded as it is
by Cdll6 , is an s-only isotope, whereas Sn 122 and Sn1 24 are due to the r process.
The challenge is to interpret these abundances as a natural consequence of the
two-neutron-capture mechanisms. The s-process abundance of each Sn isotope,
which is the difference between its abundance and the characteristic r-process
yield in its mass region, is expected to be anticorrelated with its neutron-capture
cross section. Thus the increasing abundances of the even isotopes, Sn ll6 , SnllB,

and Sn l2 O, reflect decreasing neutron-capture cross sections. The smaller
abundances of the odd isotopes, Sn 117 and Sn 119, reflect the larger cross sections
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generally encountered for odd atomic weight. We shall return to the details of
this correlation after discussing the 8 process.

It is clear that the r-process abundances cannot correlate with the neutron
capture cross sections, or any other nuclear property of the stable daughter
nuclei, because the r nuclei were presumed to have been formed far on the neutron
rich side of the valley of beta stability. There is no obvious correlation between
the nuclear properties of the neutron-rich parents and the nuclear properties of
the first stable isobar reached in a chain of subsequent beta decays. , We conclude
that the abundances of the r nuclei must reflect the nuclear properties of neutron
rich matter and the process for forming it. The generally accepted mechanism
for forming neutron-rich nuclei is the rapid capture of neutrons. Suppose the
neutron density is great enough for the neutron-capture rate of radioactive nuclei
to be greater than the beta-decay rate. Then the radioactive nuclei will quickly
make one successive neutron capture after another, the capture chain terminating
when no more neutrons can be captured because of insufficient binding. Very
heavy isotopes of the elements would be produced by such a rapid capture chain.
This is exactly the result desired, and the mechanism has been called the r process,
where the mnemonic r indicates the rapid rate of neutron capture compared to
the rate of beta decays.

NEUTRON-CAPTURE CROSS SECTIONS

Because the neutron-capture lifetimes depend upon the magnitude of neutron
capture cross sections, we may profitably digress into a brief discussion of the
determination of neutron-capture cross sections.' The neutron binding energy
in an average heavy nucleus is near 8 Mev, so that the excited compound nucleus
(Z, A + 1)* formed by the addition of a low-energy neutron to the nucleus (Z,A)
generally has an excitation of some 8 Mev in the nucleus (Z, A + 1). The den
sity of nuclear states at that excitation energy in a heavy nucleus is commonly
very large, there being on the average an energy of only 1 kev or so separating
adjacent resonances. The resonances are generally broad, moreover, because the
neutron widths I'n are large. This fact reflects the absence of a coulomb barrier
and is especially true for s-wave neutrons. The neutron capture in such a heavy
element occurs, therefore, through many wide overlapping levels of the compound
nucleus. The Maxwell-Boltzmann distribution of neutron velocities in a star
yields a weighted average of /TV over resonances primarily in the vicinity of kT.
It is experimentally difficult to obtain a neutron energy resolution comparable to
the level separation, so that the experimental measurements already yield /T aver
aged over an energy region sufficiently large for it to vary smoothly with energy.
It is found that /T varies as 111 at low energies, i.e., thermal cross sections, and

1 An outstanding program of this type has been pursued at the Oak Ridge National Laboratory.
The reader is referred to R. L. Macklin and J. H. Gibbons, Neutron Capture Data at Stellar
Temperatures, Rev. Mod. Phys., 37:166 (1965). See also their account in Science, 166:1039
(1967). A very interesting discussion is G. 1. Bell, Cross Sections for Nucleosynthesis in Stars
and Bombs, Rev. Mod. Phys., 39 :59 (1967).
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that this dependence changes over to v-2 in the kilovolt region as long as s-wave
capture alone is effective. However, in the heavy elements p-wave capture,
which is proportional to v+l, begins to contribute significantly just in that region
where the s wave begins to decrease more rapidly than V-I. The result is that to
a crude approximation (av) is very nearly constant. For the thermal problem,
it is convenient to define an average cross section (a) such that its product with
the average thermal velocity yields (av). That is,

(7-28)

(7-29)

where

(uv) = h'" avep(v) dv

ep(v) dv = 4! (..!!...)2 exp [_ (.!!.-)2J dv
'If" VT VT VT

VT == e:~Y
and J1.n = 111n111AI (111n + 111A) is the reduced neutron mass .: It then conveniently
happens for nuclei of the type under discussion that (a) is numerically very nearly
equal to aT, the cross section measured at the velocity VT.

Problem 7-15: As an example of what is involved here, consider capture cross sections q(v)
proportional to v- 2, V-I, vo. Show that the relationship between (q) as defined in Eq. (7-28)
ande-r = q(VT) is

{

1.13qT

(q) = a r

1.13qT

q(v) a: v- 2

q(v) a: V-I

q(v) a: Vo

Thus for smoothly falling cross sections it appears that a measurement of a near VT already yields
a good value for (q).

An example of the application of this technique can be seen in Fig. 7-16, which
shows as points measurements of the neutron-capture cross section of Ta l8l, a
nucleus with properties similar to those being discussed. A common way of
characterizing the cross sections between, say; 5 and 100 kev of neutron energy,
which includes the energies of astrophysical interest, is by the average radiative
width I'l' of the compound nucleus, an s-wave strength function So defined as an
average ratio of s-wave neutron width to the average energy spacing between
s-wave levels, a p-wave strength function SI defined analogously for p-wave neu
trons, and an average observed level spacing Dob s ' The capture cross section
can be expressed in terms of these quantities as long as sand p waves are alone
important and as long as there are a large number of broad overlapping levels
that moderate the capture process as compound nuclear intermediate states.
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Such a characterizatien of the experimental points is shown as a solid line in
Fig. 7-16. From this characterization of a the value of (u) may be computed
from Eq. (7-28). The result in this case is shown as a dashed line in Fig. 7-16, but
the curve is practically indistinguishable from a, showing that to good accuracy

(u) = U(VT) = UT

Another general characteristic of the capture cross sections of nuclei of this type
is that they are relatively large. The TaIBI cross section, for example, has a
value near 1,000 millibarns, or 10-24 ern", near En = 20 kev. This cross section
is some ten orders of magnitude greater than characteristic charged-particle cross
sections encountered in stellar evolution, and it is two to three orders of magni
tude greater than the corresponding neutron-capture cross sections in the light
elements or in nuclei with magic numbers of neutrons. It is as large as the cross
section for scattering a photon from a free electron!

Neutron capture by light nuclei or by magic-numbered heavy nuclei cannot be
treated so simply. The distinguishing feature in either case is that the number
of resonances is not so large for such nuclei. In either case the shell structure of
the nucleus becomes an important feature in reducing the level density of reso
nances. Consider, for example, the addition of a neutron to a magic closed
neutron shell, which may be thought of in simplest approximation as an inert
core with tight binding. The next neutron, like the valence electrons of the
alkali metals, is not so tightly bound and is accordingly received at a smaller
excitation energy in the compound nucleus. The number of resonances is smaller,
because the excitation energy is lower, and because the single extra neutron has
only a small number of single-particle states compared to the polyneutron con
figurations away from closed shells, where the host of couplings of the extra neu
trons provide a multiplicity of states. In short, one finds that the thermally
averaged cross section is dominated by a few discrete resonances, although the
thermal s-wave tail is also significant.

Problem 7-16: Show that the contribution of a single resonance to the effective cross section is

(7-30)

Except at extremely low energies, we find that rn» r -y, so that rn/r ses 1, and the contribution
is proportional to wr-y exp (-ET/kT). It becomes important in this case to locate all the low
energy resonances.

Problem 7-17: The cross section for the reaction Na23(n,-y)Na24 is dominated by two resonances:
(1) J1r = 1+, E T = 2.85 key, r-y = 0.34 ev and (2) J1r = 2-, E T = 54 key, r-y = 1 ev. For
Na23 the spin J = j. Calculate the contribution of each of these two resonances to (0-) at
T = 3 X 108 oK.
Ans: (1) 0.91 millibarn; (2) 0.59 millibarn.

Because of the small and strongly energy-dependent cross sections of the light
and magic nuclei, more experimental information is required and is harder to
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obtain. Figure 7-17 shows the data for neutron capture in vanadium, which has
the magic neutron number N = 28. The dots indicate measured values of the
capture cross section. At least four resonances are obvious in these data, and
several others are suggested. The arrows across the top of the diagram indicate
the positions of resonances that are known to exist from the total cross-section
data, largely V51(n,n)V51, which are much more easily detected because of the
much greater size of the resonant scattering cross section. It is clear from
Eq. (7-30) that the known resonances near 4 and 7 kev play an important role in
the evaluation of (u) even though they are undetected in the radiative-capture
data themselves. The solid curve represents the calculated value of (u), which is
seen to be much greater than the value of the cross section itself near En = kT
between 20 and 50 kev. About 50 percent of (u) at kT = 30 kev, for example, is
due to the resonances at En = 4, 7, and 11 kev. Unlike the example of Ta l8l , a
cross section measured at one energy may be a very poor approximation to (u) for
a magic-neutron nucleus. Because the cross sections of the closed-shell nuclei
play an important role in the s process, one would ideally like to have the ther-
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Fig. 7-18 Measured and estimated neutron-capture cross sections of nuclei on the s-process
path. The neutron energy is near 25 kev. The cross sections show a strong odd-even effect
reflecting average level densities in the compound nucleus. Even more 'obvious is the strong
influence of the closed nuclear shells, or magic numbers, which are associated with precipitous
drops in the cross section. Nucleosynthesis of the s-process nuclei is dominated by the small
cross sections of the neutron-magic nuclei.

mally averaged values (u) tabulated as a function of kT for these crucial nuclei.
Macklin and Gibbons have initiated such a program at Oak Ridge, but the
procedure is a painstakingly laborious one because each calculated value must
depend on the measured properties of the neutron resonances-measurements not
easily obtained. Their efforts have, as we shall see, provided the major nuclear
experimental evidence of the correctness of neutron capture as the major mode of
heavy-element nucleosynthesis.

In Fig. 7-18 the capture cross sections of the nuclei on the s-proeess path are
displayed against the atomic weight. Several systematic features are clearly i

evidenced there. There is an odd-even effect of something like a factor 2 or 3 .
between average adjacent points. The even-A nuclei, which all have even Z and "
even N, have smaller cross sections because the average density of resonant states.
in the compound nucleus is less than that of an odd-A nucleus, where the captured;
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neutron can couple in several ways to the unpaired nucleons. The smallest
cross sections are those in nuclei with a magic number of neutrons N = 50, which
are Srss, yS9, Zr90, or those having N = 82, which are Bal38 , La 139, CeI 40, Prl4l,

Nd142, or those having N = 126, which are Pb20S and Bi 209• These nuclei play an
important role in the s process.

The general order of magnitude of the capture cross sections can be used to
estimate the order of magnitude of the relevant neutron densities for the sand
r processes. A characteristic cross section is apparently (u) <::: 100 millibarns, and
a characteristic thermal velocity is VT <::: 3 X lOs ern/sec, so that we may crudely
take (uv) <::: 3 X 10-17 cm-/sec. The lifetime of a nucleus against neutron
capture is

1 3 X 1016 109

Tn = -(-) <::: sec <::: - years (7-31)
nn au n« nn

If we are to have times of order r« <::: 104 years for the s process, we should
encounter free-neutron densities within of few orders of magnitude of

s process

To form sufficiently neutron-rich matter in the r process, on the other hand, will
require that neutrons be captured in fractions of a microsecond, requiring neutron
fluxes within a few orders of magnitude of

r process

In principle one might expect to encounter astrophysical neutron fluxes in the
large region between these two densities and have thereby a process intermediate
to the sand r processes. Such events are apparently not common, and it is one of
the fortunate simplifications in the applied theory of synthesis by neutron capture
that the most common fluxes are either quite small or quite large. It may be of
interest to note by way of comparison that the thermal neutron density in a
reactor is of order nn <::: 107 cm-3• With this background in mind we may turn to
the. details of these processes.

DETAILS OF THE 8 PROCESS

For preliminary analysis of the details of the s process it is helpful to rigorously
accept the assumption of the process; viz., all beta decays of radioactive nuclei
are assumed to be quite rapid compared to the rate for capturing neutrons. This
assumption will be examined later, and it will be found not to hold in every case,
with, however, no general damage to the theory. The assumption makes
possible a great simplification in the equations because the nuclear chain generated
is in that case unique, and one can let N A represent the abundance at atomic
weight A on that s-process path; i.e., it is not necessary to specify the charge Z of
the nucleus of atomic weight A on the path because that charge is uniquely fixed
by the assumption. Because the beta-decay rates are assumed fast, moreover,
one can neglect the abundances of the radioactive species and assume that the
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nucleus (Z, A + 1) produced by

(Z,A) + n ---+ (Z, A + 1) + l'

immediately decays, if it is radioactive, to the nucleus (Z + 1, A + 1), which is
generally stable;

(Z, A + 1) ---+ (Z + 1, A + 1) + (3- + jj

Presume, then, that a group of heavy elements exists in some interior region
of a star. The region chosen is characterized by a temperature T and a free
neutron density nn(t) which is uniform over the region but may depend upon the
time. The differential equation for the abundance of the heavy nucleus is then

(7-32)

where (uv) is the quantity defined by Eq. (7-29) for the neutron-capture cross
sections, and it is dependent upon the time only to the extent that the tempera
ture depends upon the time. The s process no doubt occurs at several different
temperatures in astrophysics corresponding to the several different sources of free
neutrons that may come into play during the sequence of nuclear burning epochs,
but during any single irradiation the temperature will probably not change
greatly with time, as the mass zone burns at nearly constant temperature until
the neutron source and/or the burning epoch is exhausted. In the last section we
saw that the average (uv) is very insensitive to temperature changes, especially
for the nonmagic nuclei, so that we may with considerable justification make
the replacement

(7-33)

(7-34)

in the sense of Eq. (7-28) and additionally assume that (u) and VT are constants
corresponding to the nearly constant temperature of the neutron-liberation
phase. Because the reduced mass of a neutron and heavy nucleus is so nearly
equal to the neutron mass 111n, moreover, the velocity may be taken to be equal
to the absolute velocity of the neutron independent of the target mass. Then
Eq. (7-32) may be written

dN ..dt = Vrnn(t)[-uA(kT)NA(t) + u.4._1(kT)NA(t)]

where for convenience we have discarded the brackets about the thermally aver
aged cross sections. In all that follows we shall assume that the unbracketed
symbol a represents the average cross section. Under these assumptions it is
possible to define a new independent variable which will measure the progress of
the neutron captures uniquely. We define the neutron exposure r by

(7-35)
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whereupon Eq. (7-34) becomes simply

dNA Ndr = -uANA + UA_I A-I

559

(7-36)

Even if Eq. (7-36) does correctly depict the generation of that component of
the heavy-element abundances due to the 8 process, it cannot be solved without
boundary conditions. The suitable boundary conditions are by no means obvi
ous, because the s-process heavy nuclei can be synthesized by neutron-capture
chains beginning on any nucleus with A > 8. One is forced to remember that
the 8 process is not itself a major phase of nuclear burning but is a set of auxiliary
reactions accompanying such a phase. Some neutrons are liberated, for example,
by the reactions C13(a,n)016, 017(a,n)Ne20, Ne21(a,n)1\Ig24, and Ne 22(a,n)Mg2S
that occur to a certain extent during helium burning, which is itself primarily
characterized by He 4 fusion into C12 and 0 16• These other reactions occur
because CIa, 0 17, Ne 21, and Ne 22, in this case, are naturally present in trace
amounts in the composition of the star. In the same spirit, the liberated neu
trons may be captured by any of the trace abundances present in the gas as well
as by the very abundant C12 and 0 16• The most efficient way of producing the
heavy elements, however, is the capture of the neutrons by the iron-group nuclei,
which constitute the last major abundance peak synthesized without the aid of
neutron capture.

The neutron-capture cross sections for the light nuclei are on the average much
smaller than the cross sections for nuclei above the iron group. Therefore a
much larger integrated neutron flux would be required to convert silicon, say,
into a heavy element than would be required to convert iron into the same heavy
element. Yet reference to Fig. 1-22 shows that the iron group is comparable in
natural abundance to the more abundant lighter elements and thus will consti
tute an efficient seed. Because the number of free neutrons is distinctly limited,
it is much more profitable to synthesize heavy elements from the iron group as
seed nuclei than to synthesize them from lighter elements. These seed nuclei
must of course have been present in the original gas of the star, inasmuch as the
nuclear burning site of the 8 process occurs much earlier in the scheme of nuclear
evolution than the production of the iron group. The upshot is that we may
realistically assume as a boundary condition that the seed nuclei for the 8 process
are the iron-group nuclei.

The analysis of solar-system material shows the abundances of the iron group
to be strongly peaked at Fe S6• One roughly finds N ss ~ N S7 ~ O.INs6 coupled
with an irregular but rapid drop off at smaller and greater atomic weights. The
abundances at large atomic weight resulting from neutron irradiation of this
abundance peak will differ negligibly from that produced by the exposure of
Fe S6 alone. Thus the boundary conditions may be stated approximately as

A = 56

A> 56
(7-37)

and we shall concentrate on this approximation to the actual problem.
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The differential equation (7-36) becomes incorrect for large values of the atomic
weight. The s-process chain terminates at A = 209 because Bi 209 is the most
massive stable nucleus. The material at A = 210 resulting from neutron cap
ture by Bi 209 decays by alpha-particle emission to Pb 20 6, and so a small cycle of
capture and decay terminates the s process. I The details of this termination
affect the abundance of Pb, an important element for nucleosynthesis, but it will
take us too far afield to discuss them here. Suffice it to say that the system of
coupled equations reduces to

d~56 = -U56N56

57 ~ A ~ 209
A ~ 206

(7-38)

dN206
- -U206N206 + U205N205 + U209N 209a;;:- -

which are to be solved subject to the boundary conditions of Eq. (7-37). In the
discussion to follow, however, we shall omit the equations 206 ~ A ~ 209 and
concentrate on the simpler set 56 ~ A ~ 205. The reader is referred to the
paper by Clayton and Rassbaeh- for the termination solution.

Important features of the solution can be seen directly from the differential
equation

dNA N N
-d = -UA A + UA-I A-I

l' .

It is obvious that

dNA < 0
d1'

dNA> 0
d1'

if N
A

< UA_I N
A_I

UA

(7-39)

so that the solution is self-regulating in the sense that N A decreases if it is too
large with respect to N A-I and increases if it is too small. The coupled equa- .
tions have the property that they attempt to minimize the difference between
the product UANA and the product UA-INA-I. At atomic weights removed from
the closed shells we shall find that the cross sections are so large that the differ
ence between these two products is much smaller than the magnitude of either
one of them, so that

nonmagic (7-40)

This result is only satisfied locally in regions between magic neutron numbers
and has been called the local approximation. This very simple and powerful

1 D. D. Clayton and M. E. Rassbach, Astrophys. J., 148 :69 (1967).

2 Ibid.
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tributes to the abundances of the nuclei containing the solid clots. Two of the isotopes of
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result has provided the most striking demonstrations of the correctness of the
s-process idea. An outstanding example occurs in the isotopes of samarium.
The s-process path passes through the isotopes Sm I 47- l5O • It may also pass
through Sm151 and Sml52, because radioactive Sm151 has the long terrestrial half
life of 80 years, which may well be greater than the neutron-capture. lifetime of
Sm l5l• But the direction of the path at A = 151 will not enter into the present
discussion, which will concentrate primarily on those nuclei which definitely lie
on the s-process path. Of these Sm148 and Sm 150 are s-only isotopes because
they are shielded from r-process production by Nd14 8 and NdI 50 • If we assume
the local approximation to be valid, we then expect .

(7-41)

where the subscript s indicates that only the s-process part of the abundances is
to be used. The subscript is not required on N 148 and N 150 because they are
s-only nuclei. If Eq. (7-41) is to be satisfied, we should find in forming the «N
products that those for A = 148 and A = 150 will be equal to each other and
smaller than the products for A = 147 and A = 149, which are overabundant
because of their r-process components. How well these ideas are borne out is
indicated by Tabie 7-1, which lists the isotopic composition by percentage, the
measured neutron-capture cross sections, and the product of the two. Although
the expectations are impressively fulfilled, the agreement is even more convincing
when the data for the ratio of gamma-ray yields are examined, because the ratio
has a smaller error than the absolute error in the cross-section measurements.
The result is

U'148
N

148 = 1.02 + 0.06
U'150N150 -
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Table 7-1 Samarium isotopes at 30 kev]

A N A , % Class Uc, millibarns Nu

144 2.87 P 119 ± 55 342
147 14.94 rs 1,173 ± 192 17,600 ± 2,900
148 11.24 s 258 ± 48 2,930 ± 540
149 13.85 rs 1,622 ± 279 22,500 ± 3,900
150 7.36 s 370 ± 72 2,770 ± 535
152 26.90 r or rs 411 ± 71 11,100 ± 1,900
154 22.84 r 325 ± 61 7,430 ± 1,400

t Data of R. L. Macklin, J. H. Gibbons, and T. Inada, Nature, 197:369 (1963).

Tills equation and other results like it, obtained at great expense and effort, have
firmly established the operation in nature of the s process.

Problem 7-18: From the data of Table 7-1estimate the r-process contributions to the 'abundances
of Sm 147 and Sm U 9•

Ans: (N 147), = 12.5 ± 0.4, (N 149), = 12.1 ± 0.3.

Problem 7-19: Estimate by the local approximation the abundance that the p nucleus Sm 144

would have were it also to lie on the s-process path.

Over a large range of atomic weights the local approximation becomesa poor
one. Equation (7-39) implies a large degree of coherence between adjacent values
of atomic weight, however, such that one will expect the values of uA(NA). to vary
smoothly with atomic weight. The values deemed most reliable in the year 1965
are shown in Fig. 7-20, along with a calculated curve that need not concern us at
tills juncture except, perhaps, to point out that it "ill result from the very
simplest of theoretical assumptions, to be described later. Although a certain
amount of irregularity can be seen, the points nonetheless approximate a smooth
and monotonically decreasing function of atomic weight. A quick glance back
to Fig. 1-22 shows that these «N points are much more smoothly behaved than are
the abundances themselves. Probably the most dramatic demonstration of the
reality of tills correlation can be made by examining the corresponding figure for
r-process abundances. Here one expects no correlation between the cross section
of the first stable isotope reached in a beta-decay chain from neutron-rich matter
and the abundance, and Fig. 7-21 shows that there is none. We may regard the
smooth coherence of «N for the s-process nuclei as another confirmation of the
correctness of the s-process idea.

The task then is to solve the differential equations to see whether the observed
abundances can be simply interpreted in terms of the solution. The solutions are
not hard to find, but they are somewhat tricky to use. Equations of this type are
simply analyzed in terms of their Laplace transforms

Fh(s) = 10'" e-BTNk(r) dr (7-42)
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University of Chicago.]

(7-43)

where for convenience from here on we use the index k = A-55 in order for the
chain to start from k = 1. Using the fact that the Laplace transform of a
derivative is

t : e:« dNk(r) dr = sNAs) - Nk(O)
Jo dr

the transformed equations coupled with the boundary conditions chosen are

sNI(s)

sN2(s)

sNk(s)

-(jINI(s) + N I(O)

-(j2N2(S) + (jIN I(s)

-(jkNk(S) + (jk-INk- I(S)

(7-44)

Problem 7-20: Solve these equations algebraically to show

FIk(s) = N
1
(0) .. lTk-llTk_2 ••• lT2lTi

(s + lTk)(S + lTk_l) ••• (s + lT2)(S + lTl)
(7-45)
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Two things are convenient: (1) because each abundance is directly proportional
to the origin number of Fe56 seed riuclei, we can define the solution in terms of the
abundance per initial seed nucleus; and (2) inasmuch as the product uN is expected
to be smoothly varying, we choose that product rather than N itself as the set of
dependent functions. Then

1

(~ + 1) (_s + 1) ... (~+ 1)
Uk Uk-l Ul

(7-46)

It is apparent that 1{;k(S), and hence lh(r) , depends symmetrically on all the cross
sections Ul up to Uk. The solution depends upon the magnitudes of these numbers
but not on the order in which they occur.

The solution lh(r) is obtained by inverting the Laplace transform:

(7-47)
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This integral is easily evaluated in the standard way: perform a contour integra
tion by closing the path over an infinite half circle in the left-hand half of the
s plane. The contribution from this half circle vanishes, so that Eq. (7-47)
becomes equal to the sum of the residues at each of the first-order poles Sk = -1/<Tk.

Problem 7·21: Evaluate the residues to show that

k

'h(T) = ~ Ck,e-a i T

i=l

cTIG'2U"3 .. .. .. CTk_lUk .

<T,) (<Tk_1 - <T,) • • • (<T2 - <T,) (<T1 - <T')

where the factor 1/(<T' - <T') is omitted in Ck••

(7-48)

(7-49)

Problem 7-22: Confirm by substitution in the original differential equation that Eq. (7-48) is a
solution. With some algebraic manipulation one may also show that the boundary conditions
are satisfied.

This exact solution has been used in the study of radioactive decay chains, for
which the differential equations are of the same form, and it is useful for small
values of k in the S process, but it encounters severe numerical difficulties at large
atomic weight. One is interested in values of k up to 150 in the region of Pb, in
which case Eq. (7-48) becomes a sum of up to 150 terms. The terms differ
greatly in order of magnitude, moreover, but none can be discarded because of
the near cancellation of many of them; i.e., the answer is a small number com
pared to the magnitudes of most of the terms in the sum. Such a large sum is
very difficult to evaluate, even with the best of electronic computers. It has
therefore been necessary to find an approximate solution that characterizes the
exact solution in considerable degree. That solution bears an analogy to the
solution of the problem in which all cross sections are equal.

Problem 7·23: Consider an idealized s process in which all the cross sections are equal: <Tk = <T.
Find the solution in that case. If you cannot solve the problem, show that this answer works:

const <T (7-50)

Equation (7-50) is a Poisson-like distribution in k with a maximum at
km ax ':=' <TT + 1. As the neutron exposure T increases, the maximum in the
distribution moves to larger values of k. As the abundance distribution moves
out in k, the abundance at maximum decreases, and the width of the abundance
distribution increases because of the random nature of the capture process.

Problem 7-24: With the aid of Sterling's formula for (k - 1)!, show that the maximum abun
dance in the distribution for constant <T decreases as it moves out in k according to
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Since the total number of nuclei is normalized to unity, the width of the distribution must
increase like

The approximate solution for the general problem is constructed in analogy to
the constant-cross-section example. The Laplace transform of Eq. (7-50) is

const 0" (7-51)

which is to be compared to Eq. (7-46) for the general case. The approximate
solution is found by choosing for each k values of two numbers Ak and mi; such that

1 1

(~ + l)mk

"'" (~ + 1) (_8 + 1) .. (~ + 1)
Ak O"k O"k_1 0"1

for small values of 8. The details of this approximation1 lead to the choice

(7-52)

(7-53)

(7-55b)

(7-55c)

(7-55a)

Then the approximate solution is

(AkT)mk- 1

y.,k(T) "'" Ak r(mk) e-A kT (7-54)

This choice for mk and Ak has the property that the first three moments of y.,k(T)
with respect to T for the approximate solution are equal to those for the exact
solution. The values in each case are

10'" y.,k(T) dT = 1

k 1
f'" Ty.,k(T) dr = \' 

Jo /::10"i

(
k 1)2 k (1)2

10'" T
2y.,k(T)

dr = .f1;; + J1 ;;
Each function y.,k(T) with k > 1 begins at zero, rises to a single maximum at some
value Tk,max, and falls exponentially to zero at large T. The equality of these
first three moments between the exact and the approximate solutions has a simple
interpretation in each case. (1) The normalized area ensures that all the seed
nuclei, in this case one by normalization, pass through each value of k for some
1 As described by Clayton, Fowler, Hull, and Zimmerman, op cit.
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value of T. (2) That the area centroid about the T = 0 axis is conserved ensures,
when coupled with Eq. (7-55a) and the fact that lh(r) has a single maximum, that
the maximum for both solutions is near

k

Tk,max = \' 1:if1 ai

For the approximate solution one may easily show that

k 1 1
Tk,max = L- - >:

i=1 a; k

(3) The equality of moments of inertia about the T axis coupled with the two
previous equalities ensures that the 'width of the single maximum is correct in
first order. The advantage of the approximate solution is that it is easy to use
numerically once the sums leading to mk and Ak have been performed. Experience
has shown that the application of Eq. (7-54) to analysis of the s process leads
generally to errors of no more than 10 percent. Such errors are small compared
to the numerical uncertainty in experimental (TN products. What one tries to
obtain ultimately is the distribution of neutron exposures leading to observed
abundances, and the small error of this approximate solution leads to negligible
uncertainty for that problem.

The approximation is not a good one for small values of T, however. In this
case small is taken to mean T «Tk,max, that is, exposures so small that 1/!k is very
smail compared to the value it achieves as T approaches Tk,max' That the approxi
mation breaks down for small T can be seen from the asymptotic behavior:

{
C k-l exact

~ 1/!k(T) = C~Tmk-l approximate (7-56)

But because nu; is generally considerably smaller than k for large k, the exact
solution is much smaller than the approximate one for very small values of T.

For most applications this error has proved unimportant, but for problems in
which one needs the solution for small T, a power-series solution in T should be
generated.

The results of calculations of this type have considerable significance for
nucleosynthesis. Figure 7-22 shows the value of 1/!A as a function of A for
several different values of the neutron exposure of the iron. Each curve is
labeled by the number of neutrons captured per initial iron nucleus rather than
by the parameter T. There is, of course, a definite relationship between the
number of neutrons captured no and the neutron exposure T, a relationship that
depends upon the values of the cross sections in the capture chain. This rela
tionship is displayed in Fig. 7-23 for the particular values of the neutron-capture
cross sections near 30 kev used by Clayton et al. One should note also that the
relationship of no to T depends upon the temperature of the s process. Generally
the values of the thermally averaged neutron-capture cross sections are decreas-
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Fig.7-22 The distributions fA = uANA for differing levels of neutron irradiation. Each curve
is labeled by the parameter no, which is the average number of neutrons captured per initial
iron seed nucleus. [D. D. Clayton, W. A. Fowler, T. E. Hull, and B. A. Zimmerman, Ann.
Phys., 12 :331 (1961).]

ing functions of the temperature, so that a greater neutron flux will be required
at high temperatures to produce a given number of captures than will be required
at low temperatures. But the abundance distribution resulting from a given
number of captures as illustrated in Fig. 7-22 is nearly insensitive to the temper
ature, so that the parameter no has somewhat more generality than the parame
ter -r, None of the abundance distributions of Fig. 7-22 resembles in its entirety
the observed s-process distribution for the solar system. Indeed, Fig. 7-20, which
was plotted on a logarithmic scale, decreases by several orders of magnitude as A
increases, although there are two relatively flat regions, whereas the maxima in
the distributions of .Fig. 7-22 decrease only slowly as. the distribution moves to
larger atomic weights. It is natural, therefore, to regard the observed solar
system distribution of s-process abundances. as being a superposition of differing
amounts of iron seed exposed to differing integrated neutron fluxes. Let the
number of iron seed nuclei per 106 Si atoms exposed to an integrated flux -r in the
interval dT be represented by per) dr, Then because of the normalization chosen
for the functions 1/;, we have that the total s-process abundances should be given by

(JANA = 10= p(r)1/;A(r) dT (7-57)
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Comparison of Figs. 7-20 and 7-22 shows that a general feature of the super
position must be that the number of seed nuclei exposed must rapidly decrease
with increasing exposure. Such a situation seems to be consistent with the idea
that the neutrons are liberated by nuclear reactions in stars. Because the den
sity and temperature differ from point to point within a given star, and because
the stars that have provided the sites for nucleosynthesis span a range of masses
and compositions, the efficiency of neutron emission can hardly be expected to be
constant. Whatever the astrophysical conditions that have produced the maxi
mum s-process neutron flux, there must be many more similar conditions that
have resulted in weaker ones. And the majority of the iron nuclei swept up into
a newly formed star may be exposed to no appreciable neutron flux at all during
the evolution of that star. On very general grounds, then, one expects a rapidly
falling form for p(r). This conclusion is even more evident if one considers the
question whether p(r) is zero for exposures greater than the maximum that can
be encountered within a single star. For such exposures p(r) is nonzero only by
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virtue of the iron seed's having been through more than one star in its s-process
history; but the amount of mass that has been through N, say, stars during its
history must surely be a rapidly decreasing function of N.

An appealing form for investigation of the nature of superpositions is

(7-58)

where G is a normalizing constant and To is a parameter to be determined that
reflects how rapidly the exposure distribution falls off. The integral in Eq. (7-57)
can be performed for both the exact solution and the approximate solution for 'fA.

If the exact Eq. (7-48) is used, however, the resulting series still has the trouble
some difficulties in numerical evaluation. The approximate solution Eq. (7-54)
yields an integral that is easy to evaluate and reliably accurate for this purpose.
With that approximation we have

uANA ~ roo Ge-T/TOAA (t'AT)mrl e-hAT dr
jo r(mA)

= GC'A~:~ l)m
A

(7-59)

The solid curve through the points of Fig. 7-20 is the result of evaluating Eq.
(7:-59) for the exposure distribution characterized by the parameter G = 104 and

TO = 0.17 X 1027 cm-2•1

Problem 7-25: Using the approximate solution for fA, evaluate the integral in Eq. (7-57) for
the power-law flux distribution per) = G'«», The abundance distributions resulting from this
form of per) fall much more steeply at the small values of A, a feature that will improve the
fit in Fig. 7-20 at the small values of A, but fall less steeply at large values of A. Can you do
the integral for a mixed distribution per) = G"r-n exp (-rlro)?

The fact that such simple assumptions give a caricature of the observed abun
dance distribution as satisfactory as the one shown in Fig. 7-20 may be taken to
be a confirmation of the correctness of the s-process idea. The outstanding fea
ture of the distribution is the alternation of relatively flat regions with rapidly
decreasing ones. The local approximation, where uN is taken to be constant
over a limited range of atomic weights, is a particularly good approximation in
the regions 100 < A < 135 and 145 < A < 200. The product is expected to
decrease relatively rapidly, however, near A = 90, near A = 140, and near
A = 208. These rapid drops are apparent in the individual distributions in
Fig. 7-22, and they are caused by the very small neutron-capture cross sections
associated with the nuclei having magic neutron numbers (see Fig. 7-18). It is
therefore quite natural to expect the observed uN products to decrease rapidly in
these same regions. It is important to realize, however, that the abundances
themselves have peaks in these regions. The cross sections drop much more
precipitously near the magic numbers than the uN products do, and so the

1 The shape of the distribution for other choices for per) can be found in Seeger, Fowler, and
Clayton, loc cit.
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abundances N must show peaks in the magic-neutron nuclei. From a historical
point of view, it was the existence of abundance peaks at these magic nuclei that
motivated their explanation in terms of the neutron-capture mechanism.

Of course, the curve in Fig. 7-20 does not fit the points perfectly, nor is there
any reason why it should. The experimental errors in the «N products can easily
amount to a factor of 2 and perhaps more. The problems inherent in the deter
mination of the relative abundances of two different elements are severe and.
constitute major modern research fields in both geochemistry and astronomy,
and only a few of the neutron-capture cross sections have yet been measured
with the ultimate techniques warranted by this problem. The situation improves
yearly thanks to the large effort expended in this field by a large number of
researchers, but the correct answers are obtained only with great difficulty.
Even with the uncertainty of the present numbers, however, it appears that the
exponential distribution does not yield enough abundance for values of A near 65,
so that the correct form of peT) probably is greater than the exponential for small
values of T. It is also doubtful whether any ledge-precipice structure is war
ranted by the present data near A = 85 to 90. In fact, a smoothly falling curve
would seem to pass through the points nicely. The details of this drop-off and
the one in the Pb isotopes have been analyzed by Clayton,' and the reader is
referred to these papers for further discussion of such points. But the generally
satisfactory fit in Fig. 7-20 seems to indicate that the theory is correct.

The extraction of peT) from the macroscopic features of the «N curve provides
an important datum for the theory of the chemical evolution of the galaxy.
From the results on the solar system, for example, we may say that of all the
iron-group nuclei destined for incorporation. into the solar nebula 4.7 billion years
ago, a number of them equal to

[p(T) dT]solar system ~ 104 exp ( - 0.;7) dT per 106 Si atoms (7-60)

had at some time been exposed to an integrated neutron flux T in the interval dT.
It is probably sensible to assume that the composition of the primitive solar
nebula was characteristic of the average composition of interstellar gas in the
galaxy at that time. If that is the case, Eq. (7-60) is areasonable representation
of the efficiency with which the earlier generations of stars within the galaxy
had been able to s-process material and reinject it into space. In this way the
rates of birth and evolution of stars are coupled with the efficiency of the neutron
liberating reactions within individual stars.

We must digress to establish an important point here. The com'Position of
interstellar gas out of which new stars form reflects in some way a mixture of the
by-products of countless stars. The composition has been homogenized by inter
stellar mixing to the point where it reflects the average rate of nucleosynthesis
up to that time. There are, however, cases of individual stars with surface com
positions so far from the average that we must conclude that their surfaces show

1 J. Geophys. Res., 69 :5081 (1965); AstTophys. J., 148 :69 (1967).
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the results of nucleosynthesis 'within their own interiors. One must suppose in
such cases that either material from the interior mixes to the surface or, alterna
tively, a large amount of mass has been lost, leaving previously interior regions
exposed. Either mechanism seems well within the range of possibilities for
evolved stars. Historically the most dramatic such incident was the discovery
by Merrill in 1952 of lines of the element technetium in the spectra of S-type
stars. Since all isotopes of technetium are radioactive, its presence in the sur
face has been taken as proof of the processing of newly synthesized material to
the surface. Technetium, in fact, does lie on the s-process chain, and the spectra
of those S-type stars also seem to show an overabundance of those magic-neutron
nuclei, viz., Zr, Ba, which are produced in overabundance by the s process. Buf
ficient abundance data have been obtained for many stars to permit plotting
«N curves for their s-process elements. Unfortunately, the spectral lines do not
distinguish between isotopes, so that one must make some assumptions in going
from the abundance of an element in a stellar surface to the abundance of an.
isotope of that element. One certainly does not expect the isotopic composition
of the elements in the surfaces of such stars to be identical to their isotopic com
position in the solar system, but by making self-consistent assumptions regarding
the distribution of the elemental enrichment among the isotopes of the element,
it becomes possible to estimate s-process abundances. Figure 7-24 shows the
estimated «N diagrams for six stars, including the sun. The bottom curve is
from the old metal-deficient subdwarf 'Y Pavonis. Inasmuch as sub dwarfs are
not believed to show the results of internal nucleosynthesis on their surfaces, this
curve probably reflects the low heavy-element concentration at the place and
time long ago when this subdwarf formed. The discontinuity near A. = 140
appears greater for this subdwarf than for the sun, which seems to suggest that
the p(i-) appropriate to the gas from which it condensed not only has a generally
smaller value to account for the general underabundance but is also a more steeply
decreasing function of 7. The two barium stars HD 83548 and HD 116713 and
the two CH stars HD 26 and HD 201626, on the other hand, are overabundant
relative to the solar system in the heavy elements. These evolved stars are so
rich compared to main-sequence stars that they are believed to have exposed the
products of their interior. The CH stars in particular are old population II
evolved stars, and their overabundance greatly exceeds the population II main
sequence counterparts. Interestingly enough, the discontinuity near A. = 140 is
for these stars less than for the solar system, which implies that the appropriate
per) is flatter. In these cases, however, the per) is to be interpreted as the result of
the operation of the s process within the star itself, in contrast to the interpretation
for 'Y Pavonis and for the sun. The reader will note with interest the similarity
between these «N curves and the family of curves resulting from different choices
of ro, as illustrated in Fig. 7-25.

The question of where the neutrons come from is as old as the s-process idea
itself and still largely unsolved. The difficulty is that neutrons are not released
by the main line of nuclear reactions until a fairly late stage, carbon burning, is



SYNTHESIS OF THE HEAVY ELEMENTS 573

HD260
HD201626 x

:J~::3;:2:'::~~~ ~
4:l.-~ ~ ~

1::.1::. ~\ HD116713

CCC~ HD835481::.

C\"'" C
CD Cb Solar--------I. c-a--, system e

'-........y Pavon is CD

o

1.0

2.0

DO
.2

b

S

A

Fig. 7-24 The «N s-process curve as estimated for six different stars. Other
stellar systems do not have the same abundances as those in the solar system,
but the s-process correlation seems to be preserved with a change in shape.
[I. J. Danziger, Astrophys. J., 143: 527 (1966). By permission of The Uni
versity of Chicago Press. Copyright 1966 by The University of Chicago.]

reached. Reference to the section of Chap. 5 on carbon burning will illustrate
the ways in which neutrons can be liberated in substantial amounts in that
environment. The secondary reactions that liberate neutrons during helium
burning may be even more interesting because they should be more common,
according to the following argument. The products of helium burning, viz., C12,
0 16, are about one order of magnitude more abundant than the products of carbon
burning, viz., Mg24. It follows that roughly 10 times as many iron seed nuclei
have been through the helium-burning environment of a star as have been
through the carbon-burning environment. Thus the efficiency of neutron sources
in helium burning will require careful investigation.

The operation of the CNO cycle during hydrogen burning leaves calculable
amounts of C13 and 0 17behind for the onset of helium burning, and to a calcula
ble extent some Ne21is made during hydrogen exhaustion at higher temperatures
by the reaction Ne2°(p,-y)Na21(I1+v)Ne21. All three of these nuclei liberate neu
trons during helium burning by exothermic interactions with alpha particles:

C13(a,n)016

017(a,n)Ne 20

Ne21(a,n)Mg24
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Fig. 7-25 The «N, curves resulting from several distributions of neutron irradiations. The first three are the results of exponential dis
tributionsof neutron irradiations, as computed from Eq. (7-59). They show that the shapes of the distributions are almost the same at
differing temperatures, although the value of the parameter TO is temperature-dependent. The fourth figure shows several power-law
distributions of neutron irradiations, each curve being normalized to the same value at A = 65. [Po A. Seeger, W. A. Fowler, and D. D.
Clayton, Astrophys. J. Suppl., 11 :121 (1965). By permission of The University of Chicago Press. Copyright 1965 by The University of
Chicago.]
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The efficiency of these neutron sources can be calculated only within the con
text of an evolving model of a star. Such a program has not yet been carried
out in detail, and its necessity illustrates once again the unity of the subjects of
stellar evolution and nucleosynthesis. At the present time it appears that the
017(a,n)Ne20 reaction is the most promising of these three, simply because 0 17

seems to be left over in greater abundance than the other two.
Another promising possibility is afforded by the reaction Ne22(a ,n) jVl g25. The

Ne22 is created in great abundance by the helium burning itself. The CNO
nuclei were transmuted almost entirely into N14 during the operation of the CNO
cycle, and the N14 rather easily captures two alpha particles during the progress
of helium burning, ending thereby as Ne 22• If the temperature becomes as great
as 2 X 108 "K during the last stages of helium burning, the neutron-liberating
reaction on Ne 22 can proceed. Once again we see the necessity of using detailed
models of evolving stars to evaluate the neutron source. 1 The advantage of this
source is that the average ratio of abundance of CNO nuclei to iron-group nuclei
is of order 100, so that up to 100 free neutrons can be made available per iron
nucleus. Much more work remains to be done to ascertain whether the p(r)
observed in various objects can be easily provided for by a normal sequence of
events in stellar evolution. One must, for various stellar masses and compo
sitions, compute for each mass zone both the rate of neutron liberation and the
lifetime of a free neutron, the product of which yields the free-neutron density.
By following the free-neutron density in time, the exposure parameter r can be
calculated. Then for application to the s-process problem one must be alert to
the fact that because the cross sections generally decrease with temperature, the
effectiveness of a given value of the integrated flux -r in producing neutron cap
tures varies with temperature. But it is possible to normalize all fluxes to the
same temperature by a simple scaling law"

(
kT )0.7

r(kT) ~ 30 kev r(30 kev) (7-61)

which is accurate enough for the extraction of p(r). The concept of such a scaling
law allows successive irradiations at differing temperatures to be compounded.

In conclusion we must return to the basic assumption of the s process, that
neutron-capture rates are slow compared to beta-decay rates. In some cases the
radioactive nuclei produced have unusually ·long half-lives, and by examining

1 H. Reeves, AstTophys. J., 146 :447 (1966) has given a good discussion of the physics of neutron
emission. J. Peters, Ph.D. thesis, Indiana University, Bloomington, Ind.,1967 has evaluated
the efficiency of the Ne22 source in core helium burning in Iben's models. Interesting variants
that require mixing between hydrogen and helium zones have been analyzed by G. R. Caughlan
and W. A. Fowler, Astroplujs, J., 139 :1180 (1964), and in a different context by R. H. Sanders,
Asirophsjs. J., 160 :971 (1968).

2 D. D. Clayton, Distribution of Neutron-source Strengths for the s-process, in W. D. Arnette,
C. J. Hansen, J. W. Truran, and A. G. W. Cameron (eds.), "Nucleosynthesis," Gordon and
Breach, Science Publishers, Inc., New York, 1968.
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(7-62)
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Fig. 7·26 The s-process path through selenium, bromine, and krypton. An interesting branch
between neutron capture and beta decay occurs at Se7' , which has a laboratory half-life of
6.5 X 104 years. Both Kr80 and Kr82 are shielded from r-process production, by Se80 and Se82,

respectively. The ratio of s-process current through Kr 80 to that through Kr82 is equal to the
ratio of AIl(Se7. ) to AIl(Se7. ) + An(Se7' ) . The abundance of each nucleus per 108 silicon atoms
in the solar system is indicated.

such cases it should be possible to learn something of the average neutron-capture
rate by estimating the branching between the two alternatives. One of the more
useful of such cases is illustrated in Fig. 7-26. The element krypton has two
s-only isotopes, and it is apparent that only a fraction of the s-process current
passes through Er80, whereas all of it passes through lfr82. If the p abundances
are ignored, which seems justifiable in light of the small abundance of lfr78 and
other p nuclei not pictured, we have approximately

0"(Kr80) Kr80 All (8e79)

0"(Kr82)Kr82 ~ AIl(8e79) + .An(8e
79)

On the basis of nuclear systematics one expects 0"(Ifr80) to be about twice as great
as 0"(Kr82) . This expectation can be coupled with the known abundances to
estimate the branching ratio at 8e 79•

Problem 7·26: Assume that the p contributions to each isotope of krypton are identical and
calculate the ratio of An to All for Se7' .

Ans: An "" 2AIl.

It would appear that from the results of this problem one would know the value
of An(8e

7 9) and hence that a measurement of 0"(8e79) would yield the strength of
the neutron flux in the s process. Unfortunately life is not so simple. For one
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(7-63)

thing such a calculation yields only the average flux of the 8 process, although
that number in itself would be a highly desirable result. A more essential com
plication is that the beta-decay lifetime of 8e 7 9 is not a known constant but
instead depends upon the temperature. The ground state is found in the labo
ratory to have a half-life equal to 6.5 X 104 years. But 8e 79 has an excited state
at only 96 kev of excitation, and when the decay rate of that thermally popu
lated excited state is included in the total rate, one finds that the half-life becomes

(8 79) _ 6.5 X 104 years
T! e - 1 + 6.47 X 105 exp (-11.1/Ts)

which has a value of only 34 years at T = 2 X lOs "K. 80 although the argu
ment regarding the branching seems to be a sound one, arguments of this type
usually are temperature-dependent. The hope for this kind of argument is that
by carefully examining all such branches one can converge to the proper circum
stances for the 8 process. General agreement has not been reached on the results
of this kind of research, but it seems that kT = 30 kev is probably within a factor
of 2 of the most common temperature.

In summary it may be said that the 8 process works very well.' It is one of
our most successful theories, and its future for studies of the chemical evolution
of the galaxy appears bright.

DETAILS OF THE T PROCESS

Once the class of s-process nuclei has been isolated, it becomes possible to extract
the yield required of the r process. The majority of the heavy nuclei have both
8- and r-proeess components in their makeup. By demanding that the s-proeess
component be such that «N, fall on the smooth curve of Fig. 7-20 one can' attrib
ute the remainder of the abundance to the r process. That is, in the spirit of
Eq. (7-27) and Prob. 7-18 one calculates

f(A)
Nr(Z,A) = N(Z,A) - u(Z,A) (7-64)

where f(A) represents whatever smooth function seems best to characterize the
oN curve for the 8 process. In performing such a subtraction one clearly needs
values of the neutron-capture cross sections. Most of them have not been meas
ured, but nuclear systematics usually provides a reasonably reliable estimate of
their value. A theoretical estimate for a cross section is, however, only a poor
substitute for a carefully measured value, and one would ultimately like to have
a measured value for every cross section on the s-process chain. It should also
be noticed that because of numerical uncertainties, the subtraction will have
little significance when NT turns out to be a small difference between two larger
numbers.

1 The experimental evidence has been analyzed in R. L. Macklin and J. H. Gibbons, Quantitative
Tests of s-process Stellar Nucleosynthesis for Solar System Material, Astrophys. J., 149 :577
(1967).
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The estimated r-proeess abundances are plotted in Fig. 7-27 on the Si = 106

scale. Three different classes of points are indicated, based upon the relative size
of the s-process subtraction. No point is plotted for which NT is less than 20 per
cent of the total isotopic abundance. As a result numerous gaps appear in the
figure at the location of the s-process peaks. Isotopes of the same element are
connected by lines in the figure to illustrate the fact that changes in the elemental
abundances cannot in general change the major features. The major peaks in
the r-process abundances are fairly well established by the large slope in the
abundances of the isotopes of the elements in the peaks. For example, the
isotopic composition of Te and Xe strongly indicates an abundance peak near
A = 130, and small uncertainties in the abundances of Te and Xe affect only
the size of the peak. The outstanding features of this figure are those abundance
peaks at A = 195, A = 130, and probably A = 80. It is the existence of these
peaks, each about 10 units of atomic weight less than the s-proeess peaks near
A = 208, A = 140, and A·= 90, that leads to the identification of the r process.

It seems natural to assume that these r-process abundance peaks are also due
to magic-neutron-shell closure at N = 50, 82, and 126 but that the nuclei formed
are so far to the neutron-rich (or alternatively proton-poor) side of beta stability
that the atomic number Z of the magic-neutron nuclei is about 10 units less than
it is along the valley of beta stability, where the s process flows. Mter rapid
ejection into space these nuclei would then undergo a series of beta decays end
ing at the most neutron-rich stable isobar, and the neutron-rich abundance peak
would be preserved in the form of the observed peaks near A = 195, A = 130,
and A = 80. It is essential that the reader achieve clear understanding of this
primary idea of the r process, viz., the observed r-process abundance peaks will
be attributed to abundance peaks of neutron-magic progenitors in very neutron
rich matter. This assumption is not so arbitrary as it might at first appear,
because there are at least two physical ways of achieving the desired abundance
peaks in this way, whereas it has proved impossible to attribute the peaks to any
other physical idea. .

The first possibility for producing such peaks lies with the extension of the
ideas of nuclear statistical equilibrium to very high density. We have discussed
earlier the fact that at temperatures of a few billion degrees the nuclear equilib
rium favors the iron peak at the densities encountered in the cores of presuper
nova stars (say 104 < p < 108) . Heavier nuclei are not established with signifi
cant abundance at these densities because the photodisintegration rates are too
great, but the situation changes rather remarkably at very high densities, say
p > 1010, such as may be encountered in the collapse of the supernova core, and
it changes for two fundamental reasons: (1) on very general grounds one sees
from the statistical relations that N(A + l)jN(A) is proportional to the density,
so that very high density will shift the equilibrium toward more massive nuclei,
and (2) the exclusion principle will lead to such large values of the Fermi energy
for the electron gas that the electrons will be endoergically captured by nuclei,
thus driving matter far to the neutron-rich side. Both effects are in the direction
required for the phenomenon sought.
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Problem 7-27: Estimate the electron density required in a degenerate gas to force the conversion
of free protons to neutrons by electron capture.
Ans: 11, > 10 31 cm '",

Calculations of this phenomenon are illustrated in Figs. 7-28 and 7-29. In
Fig. 7-28 we see that the abundance peak has shifted to nuclei having N = 50 in
the neighborhood of A = 80 at p = 1.87 X 1010• If the density is increased still
further, a considerable component breaks through to nuclei with N = 82 and
120 < A < 130, as illustrated at p = 1.78 X 1011 in Fig. 7-29. These two exam-

Fig. 7-28 The composition of matter in nuclear statistical equilibrium at T = 5 X 10 9 "K and
p = 1.870 X 10' 0 g/cm', The electron Fermi energy is EF = 10 Mev at this density, and
electron capture has driven matter to the neutron-rich side of the valley of beta stability. The
abundance peak bears gross similarities to the first r-process abundance peak. [So Tsuruia and
A. G. W. Cameron, Can. J. Phys., 43 :2056 (1965).1
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Fig. 7-29 The composition of matter in nuclear statistical equilibrium at T = 5 X 10° "K and p = 1.776 X 10'1 g/cm3,

where the electron Fermi energy is Ep = 20 Mev. The matter is more neutron-rich than in-Fig. 7-28, and the two abun
dance peaks produced bear gross similarities to the first two r-proeess peaks. [So 'I'suruia and A. G. W. Cameron, Can. J.
Phys., 43 :2056 (1965).]
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ples demonstrate the possibility of producing the appropriate neutron-rich abun
dance peaks in this way, but very little quantitative work has been done in trying
thus to account for the details of r-process abundances. There is a very large
knowledge gap concerning how such nuclei can be injected into the interstellar
medium. The conditions illustrated are quite commensurate with the possibili
ties in the imploded supernova core, but as the material reexpands explosively,
why is it that the nuclear equilibrium does not shift to that appropriate for lower
densities, viz., back down into the iron-group peak? The preservation of the
parent peaks would seem to require such rapid cooling that the photoneutron
rates would be inadequate to drive the peaks back down to iron in the natural
time scale of the explosion. The uncertainties surrounding these possibilities
highlight once again the crucial role of the supernova in nucleosynthesis. Very
detailed and correct models are required of the implosion-explosion phenomenon
in order to be able to assess the nature of the nuclear debris.

Before passing on to the second r-process mechanism, however, we wish to
point out an uncertainty of these nuclear calculations that is common to both
mechanisms. The calculation of the abundances of neutron-rich nuclei invaria
bly involves the binding energy of those nuclei, but these binding energies are not
known from laboratory experiments. The nuclei involved cannot be produced in
the laboratory. It is, therefore, always necessary to use a semiempirical formula
for the nuclear binding. These formulas are obtained by applying the theories
of nuclear binding to the class of known binding energies in an attempt to obtain
a formula that can be extrapolated into regions of unknown nuclei. This prob
lem is a very difficult one, and no general agreement has been reached regarding
the best procedures to adopt. The associated uncertainties plague every dis
cussion of r-proeess nuclei.

The standard form for the binding energy of nuclei is

Bo(Z,A) = (a,- It) A - (f3 - It) 1
2

~4111 + 0 ( ± It' 0)
- 0.800 ~: (1 - 0.7;~61) (1 - l.:;t05

) (7-65)

where I = N - Z is the neutron excess. The five parameters a, f3, 'Y, 1], and 0
are commonly determined by a least-squares fit to the known binding energies of
more than 800 nuclei. The form of these terms is suggested by nuclear theory,
and each one has a simple intuitive meaning.' The term aA represents the
approximate fact that the binding energy per nucleon is roughly constant, espe
cially when it is reduced by the number of unsaturated nuclear interactions at
"the surface of the nucleus," which is proportional to 'YAt. The fact that the
radius scales as A t again appears in the last term, which is an approximation to
the coulomb energy. In the absence of coulomb effects, the maximum binding
would occur for Z "" N, because only under those conditions can all nucleons be

1 A discussion of these terms may be found in M. A. Preston, "Physics of the Nucleus," chap. 6,
Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962.
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assigned to the lowest available single-particle energy eigenstates. The second
term therefore reflects the quadratic decrease in binding necessitated by the
exclusion principle when the numbers of protons and neutrons are unequal. The
oterm reflects a pairing energy or symmetry energy and is taken as positive for
even-even nuclei, zero for odd A, and negative for odd-odd nuclei. Elaboration
of these points is easily obtainable from textbooks on nuclear physics.

This standard mass law will not successfully reproduce the abundance features
attributed to the r nuclei, and the reason for this is very simple. The postulated
models for the production of r nuclei depend upon the abrupt changes of binding
energy at the magic-nucleon-shell closures, but Eq. (7-65) takes no account of the
empirically known discontinuities at those nucleon numbers. This shortcoming
can be cured by adding such a term between each pair of magic numbers in Z
and N which is, for example, quadratic and has a value zero at each end of the
shell. Thus one might choose

B(Z,A) = Bo(Z,A) _ Sj (NjH - N)(N -: N J-) _ Sk (Zk+l - Z)(Z - Zk) (7-66)
(Ni+l - N J-) - (ZkH - Zk)2

where the magic numbers N, and Zk are at 20, 28, 50, 82, 126, and 184. These
S coefficients have been tabulated by Seeger et al;' 'who also added terms due to
increased stability associated 'with nuclear deformation in certain mass ranges.
Such attempts are typical of the lengths to which one must go to handle this
awkward problem."

Problem 7-28: Calculate the binding energy of a neutron in (Z,A) as the difference of the two
appropriate binding energies of the form Eq. (7-66).

A more common conceptual approach to the production of r nuclei- has the
advantage of not requiring such inordinately high densities, requiring instead
only a higher neutron density than is ordinarily encountered in advanced stages
of stellar evolution. The idea uses a flow concept rather than a nuclear-equilib
rium concept and is similar to an 8 process except that the neutron flux is pre
sumed to be so great that neutron capture is rapid (hence the mnemonic 1')
compared to beta-decay rates. Consider the fate of a heavy nucleus placed in
such an intense neutron flux, which was estimated by Eq. (7-31) to require
neutron densities of order nn = 1023 cm-3• Such a nucleus would capture
neutrons rapidly, one after another, until the neutron binding energy becomes so
low that it can capture no more. The nucleus would presumably then wait
until beta decay increases its charge, whereupon it would again capture as many
neutrons as would be consistent with neutron binding. This repetitive sequence
of events would lead to a waiting point for each charge Z at which beta decay

1 Seeger, Fowler, and Clayton, Zoe. cit.

2 See also A. G. W. Cameron and R. M. Elkin, Can. J. Phys., 43 :1288 (1965).

3 Devised by Burbidge, Burbidge, Fowler, and Hoyle, Zoe. cit.
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must occur before the capture chain can proceed. It is a simple matter to see
that under such conditions the abundance at each charge Z is governed by the
simultaneous set of differential equations

(7-67)

'where Az is the beta-decay rate at the waiting point for charge Z.

Problem 7-29: Compare these equations with those of the s process. Show that they have the
same formal solutions that were found for the s process. Write the explicit solutions if Fe 56

is the seed for the capture chain. In this case, however, the abundances vary inversely with
AZ rather than with the neutron-capture cross sections.

We see from Eq. (7-67) and from Prob. 7-29 that the abundance ne at the
waiting point for charge Z varies inversely 'with the beta-decay rate at the waiting
point. If the slowest beta-decay rates occur for neutron-magic nuclei, and if
the waiting points occur at neutron-magic nuclei with the proper neutron excess,
a successful r-process model can be constructed in this way. Before exploring
the model, however, we must refine it in several important aspects.

The first question to be answered is why it is that the sequence of rapid neutron
captures is halted. As neutrons are added, the general trend is that the neutron
binding energy decreases, and eventually such heavy isotopes may be created that
the neutron binding has fallen to zero. Before that point is reached, however,
the capture chain is halted by the photoejection of neutrons by the thermal
photons. When the neutron binding is reduced to the point where the lifetime
against photoejection of a neutron is less than the lifetime against neutron
capture, the sequence of captures will grind to a halt.

Problem 7-30: Show that the ratio of the rate per nucleus of neutron capture by (Z,A.) to the
rate per nucleus of photoneutron emission from (Z, A + 1) is given by

1 An(Z,A) G(Z, A + 1) 1
og (Z A 1) = log G(Z,A) + og nnA'Y , +

3 A
34.0749 - 2" log A + 1 T.

5.040+~ Qn(Z, A +1) (7-68)

where Qn(Z, A + 1) is the binding energy in Mev of a neutron in the nucleus (Z, A + 1):

Qn(Z, A + 1) = B(Z, A + 1) B(Z,A) (7-69)

Problem 7-31: For the conditions nn = 1024 cm-3 and T. = 1, how small must the neutron
binding energy be in order that A'Y(Z, A + 1) > An (Z,A) ?
Ans: Qn(Z, A + 1) < 2 Mev.

Neutrons are less tightly bound in an odd-N nucleus than in neighboring
even-N isotopes, so that the capture chain will tend to stop in some even-N
nucleus to which the binding of the next odd neutron would be so small that it
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would be rapidly reejected, Thus the waiting point for each element will be
identified with the lightest isotope having the property that A'Y(A + 1) is greater
than An(A). From Eq. (7-68) it is apparent, therefore, that the location of the
'waiting points depends upon the neutron density and the temperature. The
greater the neutron density, the more neutron-rich the waiting points. The
greater the temperature, the less neutron-rich the waiting points. The conditions
nn "'" 1024 and T 9 "'" 1 are typical of the ones commonly discussed for the r process,
and they lead to waiting-point binding energies of order Qn(Z, A + 1) "'" 2 Mev,
The neutron-capture path of the r process under these conditions is shown as the
shaded band in Fig. 7-30. This band is well to the neutron-rich side of the stable
isotopes represented by black dots. The capture path moves slowly upward in Z
as it races outward in N until a magic number of neutrons is encountered. The
extra stability of the magic neutron shell was able to maintain the neutron bind
ing at a high level as shell closure was approached. The next neutron after shell
closure has very small binding energy in such neutron-rich matter, however, and
is quickly photoejected. Thus magic neutron configurations "ill definitely be
expected to be waiting points. These neutron-magic waiting points have longer
than normal beta-decay lifetimes, moreover, and so they will build up to rela
tively large abundance in the flow.

After the beta decay of a neutron-magic nucleus, it captures only one more
neutron before it is again neutron-magic. At the shell closures, therefore, a
sequence of waiting points is encountered at the same neutron number until,
after several beta decays, the flow is sufficiently close to the region of stable
nuclei for the binding of the next neutron to become sufficiently great to allow
the path to "break through" the magic value of N. These series of magic-N
beta decays are clearly visible in Fig. 7-30, particularly at the values N = 82
and N = 126. Because the beta-decay rates are progressively smaller for these
nuclei, the r-process progenitors have abundance peaks at these places on the
path. Extrapolation along a line of constant A shows that these progenitors
"ill ultimately decay to stable abundance peaks near A = 130 and A = 195,
in good agreement with the requirements of the process.

Not all the nuclei waiting at a given value of Z will be concentrated into a
single isotope. The binding energies change sufficiently slowly on the average
for the inverse neutron captures and photodisintegrations to spread the concen
tration over a small range of isotopes. This will, in fact, establish a local equi
librium with the neutron bath and the photon bath. Thus the concentration
at the waiting point is described by an abundance distribution function p(Z,A),
defined as the probability for element Z that nuclei wait in the form of isotope A
and having the property therefore that r p(Z,A) = 1. Of course, the fact that

A

not all r processes will have occurred at identical values of nn and T g will spread
the distribution even more.

Because there will always be some free protons in the bath, the rate of the
(p,n) reaction must be added to the rate of the beta decay at the waiting points.
Nor is it clear, without a detailed model of the event, whether Ap,n or AfJ will
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dominate as the major charge-increasing reaction. It may even be necessary in
some circumstances to include (a,n) and (a,p) reactions, "which also increase the
nuclear charge, but this possibility has not been investigated. The function AZ
introduced in Eq. (7-67) must at least be generalized to include all the charge
increasing reactions:

AZ = Lp(Z,A)[AIl(Z,A) + Ap,n(Z,A) + ...J
A

(7-70)

Then the solution proceeds as before. The beta-decay rates show strong shell
effects of the required type, because for decays "with large end-point energies
All 0: W 5, "where the energy W released in the decay is also computed from the mass
law used for the problem. As the succession of waiting points at a closed shell
drives the nucleus nearer to the region of beta stability, the energy W decreases,
so that the lifetime, and hence the abundance, increases. This sequence is of the
type to augment the abundance peaks. It is not clear whether the competitive
(p,n) reactions have the same effect, at least to the same degree. Proton capture
by a neutron-magic nucleus "ill proceed through a lower density of resonances
than will the nonmagic nuclei, so that the rate of (p,n) reactions should be dimin
ished at closed neutron shells. This effect is again in the proper direction, but its
magnitude is uncertain. It seems that either type of charge-increasing reaction
can successfully lead to an 1" process of this flo," type.

The termination of the 1" process is 'considerably more dramatic than that of
the s process and places added emphasis upon the role of nuclear systematics.
It is impossible to build ever-larger nuclei because the coulomb energy, which is
proportional to Z2, becomes so great that the nuclei fission spontaneously. Indi
cations from the systematics of nuclear fission are that it will occur for nuclei in
this very neutron-rich region when the charge Z reaches 94. This occurs near
N = 175 in Fig. 7-30. In the fission the heavy nucleus splits into two nuclei,
with Z near 40 and 54, thereby returning two seed nuclei early into the capture
chain. The number of heavy nuclei is doubled in the time required for the chain
to build an average fission fragment back up to"fissionable size. Large abund
ances of heavy nuclei can be built up in this way in a matter of seconds if the
neutron supply holds out. For short times the fission can be ignored in favor"of
a simple flow problem toward greater atomic weights, as outlined in Prob. 7-29.
For long times the abundances assume steady-state proportions such that each
grows exponentially as nuclei pass around the fission cycle. The short-time solu
tions for three different values of the time are shown in Fig. 7-31. The conditions
nn = -1024 cm-3 and T g = 1 are the same as those mentioned earlier, and the times
are computed with the assumption that beta decays are the dominant charge
increasing reactions. It should be emphasized that the neutron captures are so
rapid under these circumstances that no significant time is spent in moving out
to the waiting points. The time is entirely due to the length of time the nuclei
must wait before the charge is increased, either by beta decay or by (p,n) reac
tions. Any or all of these assumptions could be badly in error for nature's 1"proc-
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Astrophys.J. Suppl., 11:121 (1965). By permission of The University oiChicaqoPress. Copyright 1965 by
The University of Chicago.]
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ess, but it is clear that one does obtain in this way the abundance peaks near
A = 80, 130, and 195. Changing ti; or T g (or both) changes slightly the location
of the peaks and changes rather drastically the time required for the process, but
the possibility of obtaining the r-processabundances in this way is evident.

The steady-state abundance distribution obtained for long times is shown in
Fig. 7-32. Fission terminates the process near A= 276, and the material cycles
in again at points just below the r-proeess abundance peaks at A = 130 and
A = 195. The time required for a given nucleus to pass through the full fission
cycle is 4.9 sec under the conditions shown. This time again assumes that beta
decays are the effective charge-increasing reactions..

Problem 7-32: Assume that the time tcycle required for the fission cycle is determined by the
beta-decay rates. From general principles, how do you expect that time to vary with nn and
T g? Explain.
Ans: (atjann) < 0, (atjaTg) > O.

Unfortunately, the r process does not have direct confirmation in the spectra
of stars that is as convincing as that for the s process. The major evidence for
the existence of an r process remains the existence of the abundance peaks on the
small A side of the s-process peaks and the natural existence of uranium and
thorium. These latter nuclei are known to be synthesizable by some natural
mechanism simply by virtue of their existence in solar material, the implications
of which will be outlined in the next section. No other mechanism seems able
to synthesize transuranic abundances. The most natural site for the r process
seems to be the supernova, so that a convincing confirmation in principle of the
location of the process would be the demonstration from spectra that supernova
remnants are rich in r-process heavy elements. Unfortunately the nuclei that
are largely due to the r process have, with the exception of the rare earths, very
unfavorable optical transitions and are thus difficult to detect in spectra of any
type. It would be very encouraging to see at least one convincing case of an
astronomical object that is definitely overabundant in r nuclei but not in s nuclei.
Considerable attention has been given to a proposal' that the nearly exponential
decline of supernova light curves reflects the power released from the spontane
ous fission of Cf254 and possibly of other transuranic nuclei. This phenomenon
has been often quoted as an observational indication of r process in supernovas,
but the proposal is subject to many doubts. A most striking test will be the
detection of line gamma rays emanating from the very heavy radioactive ele
ments, but their detection will be difficult! at best, even if they exist in supernova
remnants in the quantities required by the californium hypothesis.

If the flow mechanism of the r process is the one that occurs in astrophysics,
it is not yet clear where the process occurs. It is no trivial matter to find neu-

1 Burbidge, Burbidge, Fowler, and Hoyle, loco cit.

2 D. D. Clayton and W. L Craddock, Astrophys. J., 142 :189 (1965).
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tron densities great enough for the process to occur at temperatures small enough
for heavy nuclei to be formed at all. The most persistent suggestions have again
centered on the supernova. After the core collapse is halted, a shock wave propa
gates outward and raises the temperature of each layer momentarily to a value of
several billion degrees. :Keutrons may be liberated rapidly during this shock and
then rapidly recaptured as the temperature quickly falls back down, in a matter
of a few seconds. Such a site is intellectually appealing, but early estimates of
the free-neutron densities encountered have not been very encouraging. A much
more copious supply of neutrons exists in the imploded core, leading to the sug
gestion that the r process occurs as this matter is rapidly expanded from its com
pressed state. The problem with this idea is that one must rapidly establish
enough medium-weight seed nuclei for the r process to build on from the hot gas
of neutrons, protons, and alpha particles. Quantitative evaluation of this idea
has not been made because once again one needs an accurate dynamical model of
the supernova explosion upon which to base the calculation. A third idea has
been the thermal runaways associated with flash phenomena in a degenerate elec
tron gas. Further special requirements are needed to obtain a sufficient supply
of neutrons in the gas, however, and it is not clear whether these requirements
can be met realistically.

It can be stated with some confidence, however, that the proper interpretation
of the origin of the r nuclei will have considerable astrophysical significance.
The unusual demands placed by nuclear physics upon their circumstances of
synthesis will certainly put their origin within an unusual and special event.
The attempt to satisfy these nuclear demands within a natural astrophysical
context is an exciting adventure.

In concluding the discussion of the mechanisms of heavy-element nueleosyn
thesis, we must make a brief mention of the p nuclei. Their low abundance
attests to the relative infrequence of the site responsible for them, and perhaps
also explains the relatively small amount of workthat has been done on the
problem of their origin. Suffice it to say that the idea of Burbidge et al. seems
to be the correct one, that the p process is similar to the r process except that it is
the proton flux which is so intense that rapid-proton capture occurs.

NUCLEAR COSMOCHRONOLOGY

About this time, Iiutherford, walking in the Campus with a small black rock in
his hand, met the Professor of Geology; "Adams," he said, "how old is the earth
supposed to be?" The answer was that the various methods led to an estimate
of 100 million years. "I know," said Eutherford. quietly, "that this piece of
pitchblende is 700 million years old."

This was the first occasion when so large a value was given, based too on evi
dence of a reliable character; for Rutherford. had determined the amount of ura
nium and radium in the rock, calculated the annual output of alpha particles,



592 PRINCIPLES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS

was confident that these were helium, measured the amount of helium in the rock
and by simple division found the period during which the rock had existed in a
compacted form. He was the pioneer in this method and his large value sur
prised and delighted both geologists and bioloqiets.:

So says Eve in his biography of Ernest Rutherford, whose pioneering work on
natural radioactivity led to the science of nuclear cosmochronology. Ruther
ford's age for the piece of pitchblende was soon exceeded by many other minerals,
and today there is abundant evidence pointing to major solidification of the earth
and the meteorites about 4.5 to 4.6 billion years ago. The nature of this evi
dence and the geochemical problems associated with the formation of the solar
system constitute a fascinating story.> But for the science of nucleosynthesis
the essential question is that of the origin of the natural radioactive nuclei. To
what extent is it possible to use the abundances of the radioactive nuclei and
their daughters as they existed at the time of the formation of the solar system
to learn something of the previous history of nucleosynthesis? In this final sec
tion we shall outline the conceptual context of this investigation.

All the relevant observations have been made on solar-system material, so that
any implications for the history of nucleosynthesis within the galaxy are neces
sarily limited to apply to the history of only that material which was destined
for incorporation into the primitive solar nebula. The composition of the solar
nebula mayor may not have been the average composition of gas in the galactic
disk 4.6 X 109 years ago. To the extent that the two compositions were equal,
the history of material incorporated into the solar system may be identified with
the average nuclear history of the galactic disk, but it behooves one to remember
that there may be some differences. The galaxy seems to rotate and mix in a time
on the order of 2 X 108 years, so that if the galactic material were slowly enriched
by stellar debris over time periods much longer than that, one could expect the
galactic composition to be nearly uniform. But the abundances of radioactive
nuclei with half-lives on the order of 2 X 108 years or less may be expected to
reflect the local activity of synthesizing events, probably supernovas, in the recent
history of the region.

We cannot expect to see the effects of radioactivity in meteorites except for
those species having half-lives long enough to survive the period of time between
the isolation of the solar nebula from interstellar gas and the solidification of the
meteorites. It is generally believed that about 108 years, within a factor of 10
either way, is required to form solid objects from the gravitationally contracting
nebula of the protostar, so that one does not expect to find any remnant of
radioactivities having 7"! < 107 years in the meteorites. The number of longer
lived species is not large, and of them only six show promising possibilities for

1 A. S. Eve, "Rutherford," The Macmillan Company, New York, 1939.

2 For an absorbing review of meteorite ages, see E. Anders, Meteorite Ages, in B. Middlehurst
and G. Kuiper (eds.), "The Moon, Meteorites, and Comets," voL 4 of "The Solar System," The
University of Chicago Press, Chicago, 1963.
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application to this problem.

Tt(P29) = 16.9 X 106 yr

Tt(U 235) = 7.13 X lOB yr

Tj(Th232) = 1.39 X 1010 yr

Their half-lives in increasing order are

T!(PU244) = 82 X 106 yr

Tj(U23B) = 4.51 X 109 yr

Tj(Re1B7
) "'" 4 X 1010 yr

It is "with the abundances of these nuclei and their daughters that nuclear cosmo
chronology is concerned.

These nuclei divide naturally into two groups. The half lives of the first two
are so short that no detectable quantities of I129 and PU244 exist today in the solar
system. Their presence initially in the solar system can be inferred only by the
detection of anomalies in the abundances of nuclei to which they decay. They
are called extinct radioactivities. The other four nuclei are found to occur natu
rally today in the earth and in meteorites. In analyzing their implications for
cosmochronology one may use both their abundances and the abundances of
their daughters, at least in principle. In actual fact one is able to use only their
abundances themselves, because all four nuclei decay to three isotopes of Pb, and
the circumstances surrounding the nucleosynthesis of Pb are so complicated that
it is not clear what portion of their abundances may be attributed to the radio
active-decay chains.'

These two classes of radioactivities probe somewhat different epochs in the
history of nucleosynthesis, for which a model of the following type is generally
adopted. It is assumed that nucleosynthesis has occurred continuously over a
period of time T roughly equal to the age of the galaxy, or at least of the galactic
disk. That is, T is a period of something like 1 to 10 billion years preceding the
isolation of the solar nebula. Because of the large number of synthesizing events
that are homogenized by galactic mixing over large times, it is commonly sup
posed that the rate of this continuous nucleosynthesis is either constant over its
duration T or has decreased monotonically with time. In the popular models
the duration T is followed by a time interval t:.T, commonly believed to be on the
order of lOB years, that represents the time required for the solidification of the
solid bodies within the solar system. During this intervalt:.T all the radio
activities decay exponentially. The extinct radioactivities are measured by the
amounts of xenon gas, to which they both decay, trapped within the meteorites.
Obviously then, one measures the abundances of the extinct radioactivities at the
time of meteoritic solidification rather than at the time of the isolation of the
solar nebula. The two abundances are related by the laws of exponential decay
over the interval t:.T. To explore the history of nucleosynthesis, however, one
requires the abundances at the end of the duration period T of the continuous
nucleosynthesis, and thus one needs to know the decay interval t:.T. The follow
ing generalizations should be correct.

i But see D. D. Clayton, Astrophys. J., 139 :637 (1964) for a thorough discussion of the way in
which this may be done with sufficiently accurate measurements of the abundances- of Pb and
U and of the neutron-capture cross sections of the Pb isotopes. -
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(1) The extinct radioactivities are most sensitive to the amounts of nucleosynthesis
near the end of the duration T and, in addition, are strongly influenced by the length
of the decay interval t:.T. They are not good probes of the beginnings of nucleo
synthesis because their half-lives are so short that none of the early production
remains in the initial solar nebula. Several workers, particularly Cameron and
Kuroda, have emphasized that the discrete nature of the final synthesizing events
should be retained, especially if the sun was formed in a stellar association
wherein one or more local supernovas may have contributed a substantial amount
of fresh radioactivity just before the condensation of the solar nebula.

(2) The long-lived radioactivities, U 238, Th232, and Re l87, receive substantial
coniribuiions from the entire duration of nucleosynthesis, and their abundances are
practically independent of the decay interval t:.T. These features make them good
probes of the duration of riucleosynthesis or, as one sometimes says, of the age of
the elements. But the fact that their abundances change negligibly over the
decay interval t:.T makes them poor probes of that interval.

(3) U m is an intermediate case.

Problem 7-33: Suppose that the elements were synthesized at a constant rate. Show that
after long times the abundance of each radioactive species is equal to the number synthesized
during one mean lifetime T = T; In 2 of the nucleus. Go back over the preceding discussion
with this result in mind.

There is one enormous coincidence among these six nuclei; viz., each is almost
entirely due to the r process. Each of the four heavy transbismuth nuclei is
entirely due to the r process, for the slow processes cannot climb the hill of
transbismuth radioactivities. Reference to Fig. 7-27 and to the corresponding
calculation represented in Fig. 7-32 shows that 1129 and Re 187 are respectively in
the N = 82 and N = 126 r-process peaks, and almost all these nuclei ever pro
duced are believed to have resulted from r-process events. It will be clear,
therefore, that nuclear cosmochronology probes only the history of r-process
nucleosynthesis. Inasmuch as the site of the r process is probably the supernova,
these investigations probably explore the rate of supernova explosions in the
history of the galaxy,

Figures 7-30 to 7-32 show the l' process terminated by neutron-induced fission
near A = 270. There is considerable uncertainty about the largest masses
produced in the r process, but that uncertainty is not crucial to the production of
the transuranic nuclei, for the following reason. As these very heavy nuclei begin
their chains of beta decay after the synthesizing event, the nuclear charge
increases, and as it does, the nuclei fission spontaneously. The rate of spon
taneous fission is most strongly dependent upon the ratio of the coulomb energy
(E c 0:: Z2jA 1) to the surface energy (E s 0:: A!); that is, when thejission parameter
Z2j A becomes too large, the nucleus fissions spontaneously, For the heaviest
nuclei produced in the r process this fate seems unavoidable as they decay toward
the valley of beta stability. Only for values of atomic weight less than A <::: 256
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does it appear possible that the isobaric decay chain reaches beta stability 'without
fissioning and also begins alpha decay more rapidly than spontaneous fission.

The sequence of progenitors that ultimately decay to Th232, the so-called
4n group of transuranic nuclides, is shown in Fig. 7-33. Xl.aterial produced at
A = 256 undergoes spontaneous fission 96 percent of the time when the decay
chain reaches the beta-stable nucleus Fm256 • Nuclei produced at A = 252,
A = 248, and A = 244, however, predominantly decay by alpha emission and
hence tend to pile up at PU244 at times greater than 106 years. After times long
compared to 108 years, however, the PU244 has decayed primarily to Th232,

joining, as it does so, the nuclei produced by the r process at A = 240, 236,
and 232. From the study of such nuclear data one sees that for relatively short
periods PU244 exists by virtue of its three r-process progenitors plus a small
4 percent contribution from A = 256, but for relatively long times it joins the
three progenitors of Th232 to give it six progenitors in all. A similar section of the
transuranic nuclide chart for the 4n + 1 series shows five progenitors for Np237,
whose 2.1 X 106 year half-life is sufficiently short for it to decay unnoticed to
stable Bi 209. The 4n + 2 series reveals three progenitors plus about 10 percent
of a fourth one that end as U 238, whereas the 4n + 3 series shows a grand total
of at least six progenitors ending as U235. The systematic details of the r process
suggest that each of these progenitors should be synthesized in roughly equal
amounts because there is no shell structure nearby. One of the attempts at a
more detailed calculation of the expected abundances is shown in Table 7-2.
The progenitors of PU244are included as the final four entries in the Th232column,
and the numbers in parentheses indicate the fraction of the decays by alpha
emission, for these are the only decays resulting in a residual abundance for the

Table 7-2 Calculated r-process abundances for parents of the radioactive series (Si = 106)t

Th232(4n) N p237(4n + 1) U238(4n + 2) U235(4n + 3)

A Yield A Yield A Yield A Yield
232 0.049 235 0.054
236 0.056 237 0.059 238 0.061 239 0.065
240 0.066 241 0.065 242 0.059 243 0.051
244 0.043 245 0.038 246 0.036 247 0.032
248(0.89)t 0.029 249 0.033 250(0.10) 0.004 251 0.036
252(0.86) 0.033 253 0.040 255 0.047
256(0.04) 0.002 259 ?
Total 0.278 Total 0.235 Total 0.160 Total 0.285

X1.10=0.30 XO.90 = 0.21 X 1.10 = 0.18 X 0.90 = 0.26

t Taken from P. A. Seeger, W. A. Fowler, and D. D. Clayton, Astroplujs. J. Suppl., 11 :121
(1965). By permission of The University of Chicago Press.. Copyright 1965 by The University
of Chicago.

t Numbers in parentheses indicate the fraction of the decays by alpha omission.
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daughter. The numbers were normalized in such a way that the yield below
A = 200 of Fig. 7-32 matches the observed r-process abundances on the Si = 106

scale, and so the entries represent an estimate of the total number of the pro
genitors ever produced on the Si = 106 scale. There are independent indications
of an odd-even effect of about 20 percent that was not included in the calculations,
so that the even abundances have been augmented by 10 percent and the odd
abundances diminished by the same amount. This table may be used as a
guide to r-process production ratios when dealing with problems of nuclear
cosmochronology.

Let us now see how these ideas can be used to compute something of the
history of nucleosynthesis. Consider first the relative abundances of U 235 and
U238, a ratio that is very well known because it has not been subject to alteration
by geochemical reactions in the processes of meteorite formation. (The chemical
properties of U235 and U238 are, of course, essentially identical.) The present
ratio is (U235/U238)todny = 0.00723. With the aid of the exponential decay laws
one can compute the abundance ratio at the time of formation of the solar system.

Problem 7-34: Compute the value of the uranium-isotope ratio 4.6 X 109 years ago.
Ans: cum/U238) = 0.31.

It is clear that if all the uranium were produced in a single event, called sudden
synthesis, and if one knew the ratio in which the two isotopes were produced, one
could compute the time of nucleosynthesis by extrapolating the ratio backward
in time according to the exponential laws until its value equals the production
ratio. From Table 7-2 the production ratio R of U235 and U238 is expected to be

Production U235 = R ::::: 0.26 = 1 45
Production U238 0.18'

Without odd-even correction R ::::: 1.8

Progenitor ratio = R = 3~1 = 1.93

(7-71)

which would have been reached by purely exponential decay almost 7 billion
years ago.

On the other hand, one hardly expects all of nucleosynthesis to have occurred in
a single event, so that we return to the model of continuous nucleosynthesis
lasting for a duration T. It has been popular to characterize the rate of con
tinuous nucleosynthesis by an exponential time dependence in which the rate of
supernovas decreases as exp (-At) over the interval T. Differing values of the
parameter A generate physically distinct cases. The value A = 0 corresponds to
a constant rate of nucleosynthesis, and the value A~ 00 corresponds to sudden
synthesis, since it places all of nucleosynthesis at the initial time. With such a
model it is not difficult to calculate the ratio (U235/U238h applying at the end of
the period of nucleosynthesis.
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(7-72)

Problem 7-35: Show that

(
U23.) = R A - A238 exp [(A - A23.)T] - 1
Um T A - Am exp [(A - A238)T] - 1

and demonstrate that this expression has the proper limiting values for the cases of sudden
synthesis and constant rate of synthesis.

Any model of the rate of nucleosynthesis characterized by values of A and T
can also be labeled by T and the percentage of the initial rate of nucleosynthesis
still occurring at the end of the duration T. To see the results of such an exercise,
suppose we ignore the small decay interval AT required for the solidification of the
meteorites and search for all models that result in the ratio (U235/U238)r = 0.31 at
the end of the period of nucleosynthesis. These models are displayed in Fig. 7-34,
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Fig.7-34 The value of R required to produce the value U235jU238 = 0.31 at
the time of formation of the solar system as a function of the time of the
beginning of galactic nucleosynthesis. That time T is measured back
from the formation of the solar system. R is the production ratio or
U235jU238 in r-process explosions; its value is assumed to be in the range
1.4 < R < 1.8. The relationship is demonstrated for exponential models of
the rate of enrichment due to galactic nucleosynthesis of material destined
for incorporation into the solar system, each curve being labeled by the
percentage of the initial rate of enrichment still occurring at the time of
solar-system formation, which is placed at zero on the abscissa. For
nucleosynthesis rates proportional to exp (-At) over an interval T the
fraction of the initial rate at the time of solar formation isf = exp (-AT).
[D. D. Clayton, Astrophys. J., 139 :637 (1964). By permission of The Uni
versity of Chicago Press. Copyright 1964 by The University of Chicago.]
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where each curve is labeled by the steepness in the decrease in the rate of nueleo
synthesis. The time is measured backward, from the time of formation of the
solar system, not from today. For the expected values of R near 1.5, we see that
the models of continuous nucleosynthesis give much older elements than the
sudden-synthesis model does. Times for the beginning of the period of nucleo
synthesis go back as far as about 10 billion years before the solar system formed
for the model with constant rate of synthesis, whereas the sudden synthesis would
have occurred slightly more than 2 billion years before the solar system. In
fact, the results obtainable are so variable that when coupled with a liberal
uncertainty in the production ratio, say R = ~.6 ± 0.3, the uranium isotope ratio
is by itself unable to define the onset of nucleosynthesis.

The logical thing to do is to augment the possibilities from uranium synthesis
with those of another long-lived decay. The Th232jU238 ratio is the most attrac
tive insofar as the half-lives are concerned. The estimated production ratio is,
from Table 7-2,

Production Th
232 = 0.30 = 1.7 + 0.3 (7-73)

Production U238 0.18 -

where the error simply indicates an allowable uncertainty that would not do
violence to the theory. The problem with this technique, as with many others,
rests in the uncertainty of the measured abundance ratio. Unlike the two
isotopes of uranium, Th232 and U238 have different chemical properties. As a
result, their abundance ratio is variable. Because the chemical history of the
formation process for the meteorites is still unknown, one is not sure which
measured abundance ratio should be regarded as most representative of the solar
system as a whole.

Estimates of the present ThjU ratio range from values somewhat greater than 4
to somewhat less than 3. A popular value has been ThjU = 3.8. It is again a
simple matter to show that if that abundance is correct today, the value 4.7 X 109

years ago was (Th232jU238h = 2.33. This number is still greater than the antici
pated production ratio, so that one must again build a family of models of nueleo
synthesis to explore the range of possibilities. Figure 7-35 shows the family of
exponential models of nucleosynthesis for both of the abundance ratios discussed
so far. Although the curves are not easily concordant either for sudden synthesis
or for uniform synthesis, it does seem that the abundance ratios are consistent
with a model of nucleosynthesis that began about 11 billion years ago and
decreased in rate to about one-third of its original rate at the time the solar
system was formed. Both calculations have appreciable uncertainties, but the
point to be made here.is that the diligent demand for concordance between two
decay schemes sets the chronological model much more explicitly than the
constraint of a single decay scheme do.es.

In making any analysis of this kind, one must distinguish between the absolute
rate of nuc1eosynthesis in the galaxy and the rate of nucleosynthesis of nuclei
that are ultimately to be incorporated into the solar nebula. It is the latter that
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Fig.7 -35 The relative production rate of Th 232 and U 238 necessary to give
the abundance ratio Th 232/ U 238 = 2.33 at an epoch 4.7 X 109 years ago is
shown in the upper curves, whereas the lower curves, which are the same as
those of Fig. 7-34, show the relative production rate of U235. and U238

necessary to give the ratio U235/U238 = 0.34 at the same epoch.· Coinci
dentally it happens that both production ratios are expected to .lie some
where in the band 1.65 ± 0.15, so that concordance may be sought in the
form of intersections within this band of production ratios of curves cor
responding to the same exponential rate of enrichment of solar material.
The curves are labeled in terms of the present rate of enrichment of inter
stellar gas (per unit mass of gas) relative to the original rate of enrichment
of interstellar gas (per unit mass of gas then). The best agreement falls
near 12 X 109 years ago, but the uncertainties are great. [After W. A.
Fowler and F. Hoyle, Ann. Phys., 10 :280 (1960).]
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is measurable by the radioactive chronologies. A large amount of early synthesis
may have been mixed into a large mass of interstellar gas which may presently
be bound within stellar interiors. Such contributions to the solar heavy elements
require devaluation when compared with later synthesis that may have been
mixed with a less massive interstellar medium.

The Re 187 beta decay to stable OS187 is one of the most important decays for
nuclear cosmochronology. It must be treated in a different manner than the
U and Th decays, however. Its 40-billion-year half-life is so long that only a
modest fraction of all the Re 187 ever produced has decayed. This fact has the
consequence that no useful information can be obtained from the ratio of the
Re187 abundance to that of one of the other radioactivities. One must instead
measure the fraction of the Re 187 that has decayed over the internal T by meas
uring the extent of the enrichment of the daughter nucleus OS187. Normally this
would be a nearly impossible task, but the vicissitudes of nuclear structure have
taken a very favorable turn ill this region of the nuclear chart, a turn that allows
one to compute the fraction of the OS187 abundance that is the result of cosmo
radiogenic decay of Re 187• The relevant portion of the chart of nuclides is shown
in Fig. 7-36. Both 08186 and 08187 are shielded from r-process production, by
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Fig. 7·36 The synthesis of Re and Os. The s-process current passes through both
OS186 and OS187, which are shielded from r-process production by W166and Re187,

respectively. Over galactic time scales, however, a portion of the long-lived Re 187

will decay to OS187. [D. D. Clayton, Astrophijs. J., 139 :637 (1964). By permission
of The University of Chicago Press. Copyright 1964 by The University of Chicago.]
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(7-74)

W186 and Re l87, respectively. Because osmium lies on such a fiat portion of the
s-process curve, we would have equal values of «N for OS186 and OS187 were it not
for the fact that OS187 has been augmented by the decay of Re l87• That is, the
s-process portion of the OS187 abundance is equal to

O 187 - u(186) 0 186
S8 - u(187) s

where OS186 represents the total abundance of s-only OS186. (In principle one
must make allowance for the p-process contributions, but they are again very
small, as indicated by the abundance OS184 <=0:< 0.0120s186.)

Problem 7·36: Define "cosmoradiogenic OS187" as the abundance of OSl87 due to Re l87 decay
at the time the solar system formed, and designate it by OS~87. Show that its value is given by

Os]87 OSl87lOs - [u(186) lu(187)]OsI86lOs Os

Rel87 = Re l87 IRe Re
(7-75)

where all abundance ratios are at the time of solar-system formation. Their values are
OSl87lOs = 0.0132, OSl86lOs = 0.0159, Re l87IRe = 0.65.

One of the ratios requiring great caution is that of the abundances of the two
elements osmium and rhenium, but careful analysis of different phases of iron
meteorites has fairly well established its value as Os/Re = 11.3. Nature has
again been kind in that Os and Re are similar in their geochemical properties and
have not been strongly fractionated from each other. The major outstanding
problem is the measurement of the neutron-capture cross sections, which will be
measurable with high accuracy whenever sufficiently large samples of isotopically
pure OS186 and OS187 have been prepared. There seems little doubt from the sys
tematics of neutron capture, however, that one will findu(186) / u(187) = 0.4 ± 0.1.

Problem 7·37: If the estimates made above are correct, what percentage of the Re l87 decayed
before the solar system was formed?
Ans: 12 percent.

Problem 7-38: Using the same exponential models of the. history of nuc1eosynthesis that were
used in the uranium discussion, calculate the ratio of cosmoradiogenic OSl87 to the residual
Rel87 that will have been produced during the nuc1eosynthesis interval T in which the rate of
r-process production decreases as exp (-At).
Ans:

(OS~ 87) [A - A187 'T 1- exp (-AT) ]-- - --- e~187 - 1
Re187 T - A 1 - exp (-A + A167)T

(7-76)

Equation (7-76) has been plotted in Fig. 7-37 as a function of the ratio of the
duration T to the Re l87 half-life. There it can be seen that if u(186)/u(187) = 0.4,
as assumed for prob. 7-37, the interval of time between the beginning of nucleo
synthesis and the formation of the solar system varies from about 0.16T! for
sudden synthesis to 0.33T!for uniform synthesis. Taking the time of solar-system
formation to be 4.6 X 109 years ago and the half-life to be T! = 40 X 109 years,
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Fig. 7-37 The ratio of cosmoradiogenic OSl87 to parent Re l 87 at the time of formation of
the solar system calculated for various exponential models of the rate of enrichment due
to r-process nucleosynthesis of material destined for the solar nebula. The abscissa
measuresthe commencement time of that enrichment in terms of the Re l 87 half-life. It is
measured backward from the time of formation of the solar system. The curves are labeled
by the ratio of the rate of enrichment of solar material when the sun formed to the initial
rate of enrichment. The dashed horizontal line corresponds to the value OS~87/Re187 = 0.12,
which applies if the ratio of neutron-capture cross sec ions is near the expected value
00(186)/00(187) = 0.4. [D. D. Clayton, Astrophys. J., 139 :637 (1964). By permission of
The University of Chicago Press. Copyright 1964 by The University of Chicago.]

this estimate would place the beginning of galactic nucleosynthesis at a time
11 X 109 years ago for sudden synthesis and 18 X 109 years ago for uniform
synthesis. Although this range of chronologies differs somewhat from those
shown in Fig. 7-35, it should be understood that no disagreement really exists,
because all methods have sources of uncertainty. But it does seem that the
Re 187 chronology generally indicates an older galaxy than the other radioactive
decays. 1 This may well become the most important of the decays for its cosmo
logical implications, so that it is clear that very careful measurements are needed
of these three uncertain quantities: Os/Re, 0-(186)/0-(187), and 7"!.

1 For a discussion of the degree of concordance within the framework of these models the
reader should consult D. D. Clayton, Science, 143 :1281 (1964). That paper also defines a very
sensible format for making the comparison within which the effect of errors is shown explicitly.
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Study of the extinct radioactivities abounds with complications. Because
they are extinct, they can be detected only by the effects they leave behind. The
first discovered and most celebrated of such effects are the anomalies in the
isotopic composition of xenon gas trapped in the meteorites. 1 The so-called
special anomaly, a large overabundance of Xe 129 in the trapped gas, has been
interpreted as the product of the beta decay of 16.9-million-year 1129 , which is
presumed to have been incorporated into the lattice structure of the meteorites
before it decayed. There are anomalies of smaller magnitude at most of the
other of the many isotopes of xenon. Called the general anomaly, these over
abundances are interpreted as being produced as fission fragments, and the only
parent that seems to fit the necessary fission yields is the spontaneous fission of
PU244• A later experimental measurement than the one shown in Fig. 7-33
determines the ratio of the rate of spontaneous fission of PU244 to the rate for alpha
decay to be

Af(PU244
) = 1.03 X 10-11 yr1 = 1 2 X 10-3

Aa (PU244) 8.45 X 10 9 yr1 •

Even with this small branching ratio it turns out that the fission yields, generally
measured by the size of the Xe136 anomaly, are great enough to account for the
general anomalies. The data are highly variable, however, so that it is not
possible to state any firm value for the initial abundances of these extinct nuclei.
For example, the ratio of Xe 136 from fission to U 238 is found in three different
types of meteorites to be

(X 136) 10.075 X 10-5 achondrite
e fission ~ 0.5 X 10-5 ordinary chondrite
U238 3.8 X 10-5 carbonaceous chondrite

It is not clear whether these meteorites formed at differing times, or whether their
PU244/ U 238 ratio differs because of chemical fractionation, or both. The last of
these three values is so large, however, that if taken at face value it would imply a
ratio (PU244/ U 238) O ~ 0.26 at the time the meteorite solidified. This is far more
Pu244 than can be expected on a model of continuous nucleosynthesis. On the
other hand, the value (PU244/ U 238) O = 5 X 10-3 in the achondrite at the time of
its solidification is consistent with continuous galactic nucleosynthesis plus a
decay interval on the order of 108 years to allow for the solidification of the
meteorites. This abundance ratio is also consistent with the density of spon
taneous-fission tracks detectable in these minerals. By this technique- the ratio
(PU244/ U 238) 0 at the time of solidification has been estimated to be 3.1 X 10-3 and
11.4 X 10-3 for the meteorites Toluca and Moore County, respectively. It is
very difficult to interpret these numbers at the present time. The initial iodine

1 For a good exposition see J. H. Reynolds, Xenology, J. Geophys. Res., 68 :2939 (1963). For
more details of later developments see C. Merrihue, ibid., 71 :263 (1963), and J. H. Reynolds,
Isotopic Abundance Anomalies in the Solar System, in E. Segre (ed.), Ann. Rev. of Nuclear
Science, vol. 17, Annual Reviews Inc., Palo Alto, Calif., 1967.

2 R. L. Fleischer, P. B. Price, and R. M. Walker, J. Geophys. Res., 70:2703 (1965).
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ratio inferred from the Xe129special anomaly

(
P 29)
p27 0 = 10-4

seems also to be consistent with continuous galactic nucleosynthesis provided
shorter decay intervals, say tiT = 50 X 106 years, are allowed for the solidification.

Problem 7-39: Assuming that the duration of nucleosynthesis was several billion years or more
and that its rate was constant, what ratio (PU244/U235)T would have remained at the end of
nucleosynthesis? You may also wish to compute the corresponding solidification interval
t.T required to give (PU244/U238)o = 5 X 10-3.
Ans: (PU 244/U235)T = 0.051.

It seems likely that further laboratory work will solve the problem of the
extinct radioactivities in the sense that the abundance ratios at the end of nucleo
synthesis and the formation times required for the various classes of meteorites
will be determined. Only after a convincing concordance of this type has been
struck will it be possible to evaluate fully the implications for the history of
nucleosynthesis. However, it seems only appropriate to point out some of the
major issues that may ultimately be resolved by these investigations.

Fowler, Greenstein, and Hoyle constructed a model! of the early solar system
in which spallation reactions and associated neutron capture by elements in
planetesimals in the early solar system resulted in the observed terrestrial abun
dances of the rare light elements. Those authors also point out that spallation
and neutron capture by isotopes of tellurium can result, at least in part, in the
xenon anomalies. We may hope that further study of the extinct radioactivities
will clarify the relevance of this model to the problems of nucleosynthesis. The
origin of the rare light elements is still a mystery. This model cannot, of course,
produce any Pu244•

Several authors? have suggested that the material in the primitive solar nebula
should have had a larger portion of "last-minute" nucleosynthesis than would be
expected on a continuous model. Their reasoning is that stars tend to form in
associations in which the massive members may evolve to supernovas in a time
shorter than is required for the low-mass stars like the sun to form. Perhaps one
should expect one or more supernovas to have exploded nearby, mixing their
fresh radioactivities into the gas that would soon condense into the solar system.
Such a model will be strongly suggested if Pu244jU238 ratios are consistently and
unambiguously found to have larger values than uniform synthesis can provide.
Such a model, constructed essentially to account for the extinct radioactivities,
would necessarily have larger implications for the history of nucleosynthesis in
the galaxy. If it accounted also for a sizable portion of our supply of U235, the
history of the galaxy inferred from the remainder would be older.

1 Geophys. J., 6 :148 (1962).

2 The most thorough discussion of the idea has been made by A. G. W. Cameron, Icarus, 1:1
(1962).
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One must be optimistic for the future of nuclear cosmochronology. The old
methods continually improve, and occasionally new methods are discovered.
Perhaps more long-lived radioactivities can be made to yield useful results. The
natural radioactivities are the most convincing proof of the truth of nucleo
synthesis, just as the existence of stars is the most convincing proof that inter
stellar gas may somehow collapse into a star. Perhaps our notions of the sites
of nucleosynthesis are all wrong, but wherever the truth lies, one can be sure that
nuclear cosmochronology must provide a consistent factual framework. Those
who wrestle with this problem are grateful for the small peculiarities of nuclear
structure that have provided these marvelous clues to history.
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nuclear-force effects on, 154

Newton-Raphson method for many vari
ables, 461

Newton's method of roots, 454
NU, dominance of, in CNO cycle, 40D-406

evidence in stars, 406
enrichment on subgiant surface, 491
problem of ratio to C12 and 0 16, 428, 491
problem of ratio to N15, 396, 429
rate of reaction with protons, 392, 396,

407
effect of, on upper main sequence, 409

Nuclear statistical equilibrium, 533-545
effect of beta decay on, 536-537, 543
in neutron-rich matter, 579-582
Ni 56versus Fe54in, 538-542

Opacity, 185-232
absorption cross section, 192, 218
bound-bound absorption, 186, 192-199
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Opacity, bound-free absorption, 186, 199
208

conductive, 248
effect on main-sequence luminosity, 470,

484
effect on pulsational stability, 51~

effect on surface temperature of stars with
convective envelopes, 464, 485

free-free absorption, 186, 209-216
Rosseland mean of, 214-216

Kramers, 216, 231, 512
Rosseland mean, 182-183, 185
scattering from electrons, 186, 216-222

Klein-Nishina cross section, 221
Thomson cross section, 219-220

Open clusters, 51-56
ages of, 65-68, 495

Oscillator strength, 194
for Lya, 199

0 16, production of, in helium burning, 415
430

rate of capture of alpha particles, 416-417
rate of oxygen burning, 433

Parallax, 5
Parity of nuclear states, 317-319

forbidden compound nuclear states by,
324

violation of, 271
Photodisintegration, rate of, 433-435

rearrangement by, 519-520
silicon burning current of, 530-532

Photon gas, 105-112
Stefan-Boltzmann expansion law, 113
(See also Blackbody emission; Radiation

pressure)
Photosphere, 24, 441
Plasma, 139-155

corrections to nuclear cross sections, 309,
357-361

coulomb pressure due to, 139-145
at low temperature, 147-153

formation of lattice by, 148, 240
frequency of waves in, 276-278
neutrino production by, 275-280
reduction of ionization potential by, 145-

147
at low temperature, 153-154
for opacity calculations, 208, 223

scattering in, 237-239, 244-247
Polytropes, 155-165

convective models, 156, 159
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Polytropes, standard model, 156-165
luminosity of, with Kramers opacity,

231
white-dwarf models, 157, 161

Chandrasekhar limit to, 161
Positron-electron pairs, 130

annihilation into neutrino pairs 272-276
density of, 274 '

Pressure, of coulomb forces, 139-155
of degenerate electrons, 86-105
of perfect IVIaxwellian gas, 82
of radiation, 105-112

Pressure ionization, 30, 105, 145-147, 153
154

Pulsation, 139, 504-515

Radiation pressure, 105-112
in Eddington's standard model, 163-164
effect on adiabatic exponents, 117-120,

137
effect on specific heats, 117-120
effect on stellar stability, 137

Radioactivity (see Beta decay; Cosmoradio
genic chronology)

Reaction rate, 288-296
cross-section factor for, 297, 308
lifetimes against, 293-294
for nonresonant cross sections, 296-309
per pair of particles, 293
for resonant reactions, 348-357

in range of stellar energies, 351-357
in wings of resonances, 348-351

temperature dependence, nonresonant,
306

resonant, 353
Relaxation lifetimes of nuclei (see Lifetime)
Relaxation method of stellar computation,

451-562
Rosseland mean opacity, 182-183, 185

of free-free transitions, 214-216
of two opacity sources, 222

Rotation, 497-501
drag on, by stellar winds, 500-502
effect on main-sequence luminosity, 500

Rounding error, 448
T process, 546-551, 577-591

abundances in solar system, 578
and californium hypothesis, 589
chronology of, 594
in nuclear equilibrium, 579-582
path in NZ plane, 586
termination by fission, 587
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r process, waiting points for, 583-587
RR Lyrae variables, 504, 512-515
Runge-Kutta integration procedure, 448-

449

Saha equation, 29-36
in nuclear equilibrium, 356
photodisintegration rates from, 434

Scale height,472
Shell model of nuclei, 311-317
Silicon burning, 517-537

effects of beta decay on, 520, 525-526
free alpha density in, 529
quasiequilibrium in, 528-529
typical abundance pattern during, 534

Spallation reactions, 73, 475
Specific heats, effect of ionization, 123-125

effect of radiation pressure, 117-120
for nondegenerate gas, 114
of quantum molecules, 116

Spectral types, 36-39
Spin-orbit interaction in nuclei, 310, 314
8 process, 546-577

local approximation for, 560--562
neutron requirements for, 567-576
in other stars, 571-572
termination of, 560

Sub dwarfs, 62
Subgiant evolution, 484-496
Sun, continuous spectrum of, 23

luminosity of, 10
mass of, 40
neutrino flux from, 366, 388
oblateness of, 501
present model of, 483

Sun, radius of, 41
zero-age model of, 483

Supernova, 544-545

Technetium, 39, 74, 572
Temperature, 14-39

color, 22-25
effective, 22

effect of opacity on, 464
excitation, 25-28
ionization, 29-36

Truncation error, 448

Urea process, 268-270
competition with plasma decay, 280

Virial theorem, 134-139
coulomb effects on, 135, 139
gravitational contraction time, 137
for relativistic particles, 138

Von Zeipel's theorem, 498

White dwarfs, 47, 50, 104
coulomb corrections for, 153
due to insufficient mass to ignite, 484
effect of mass loss on cooling, 502
polytropic models for, 157, 161

Chandrasekhar limit for, 161
WKB method, 335-338

Zero boundary conditions, 440--441
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