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PREFACE

This edition, like its predecessors, is written from the viewpoint of the applied
mathematician, whose interest in differential equations may be sometimes quite
theoretical, sometimes intensely practical, and often somewhere in between. We
have sought to combine a sound and accurate (but not abstract) exposition of the
elementary theory of differential equations with considerable material on methods
of solution, analysis, and approximation that have proved useful in a wide variety of
applications.

The book is written primarily for undergraduate students of mathematics, science,
or engineering, who typically take a course on differential equations during their
first or second year of study. The main prerequisite for reading the book is a working
knowledge of calculus, gained from a normal two- or three-semester course sequence
or its equivalent. Some familiarity with matrices will also be helpful in the chapters
on systems of differential equations.

To be widely useful, a textbook must be adaptable to a variety of instructional
strategies. This implies at least two things. First, instructors should have maximum
flexibility to choose both the particular topics they wish to cover and the order in
which they want to cover them. Second, the book should be useful to students who
have access to a wide range of technological capability.

With respect to content, we provide this flexibility by making sure that, so far as
possible, individual chapters are independent of each other. Thus, after the basic
parts of the first three chapters are completed (roughly Sections 1.1 through 1.3,2.1
through 2.5, and 3.1 through 3.5), the selection of additional topics, and the order and
depth in which they are covered, are at the discretion of the instructor. Chapters 4
through 11 are essentially independent of each other, except that Chapter 7 should
precede Chapter 9 and that Chapter 10 should precede Chapter 11. This means that
there are multiple pathways through the book, and many different combinations
have been used effectively with earlier editions.
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With respect to technology, we note repeatedly in the text that computers are ex-
tremely useful for investigating differential equations and their solutions, and many
of the problems are best approached with computational assistance. Nevertheless,
the book is adaptable to courses having various levels of computer involvement,
ranging from little or none to intensive. The text is independent of any particular
hardware platform or software package.

Many problems are marked with the symbol &'2 to indicate that we consider them
to be technologically intensive. Computers have at least three important uses in a
differential equations course. The first is simply to crunch numbers, thereby gen-
erating accurate numerical approximations to solutions. The second is to carry out
symbolic manipulations that would be tedious and time-consuming to do by hand.
Finally, and perhaps most important of all, is the ability to translate the results of
numerical or symbolic computations into graphical form, so that the behavior of
solutions can be easily visualized. The marked problems typically involve one or
more of these features. Naturally, the designation of a problem as technologically
intensive is a somewhat subjective judgment, and the Q'Q/ is intended only as a guide.
Many of the marked problems can be solved, at least in part, without computa-
tional help, and a computer can also be used effectively on many of the unmarked
problems.

From a student’s point of view, the problems that are assigned as homework and
that appear on examinations drive the course. We believe that the most outstanding
feature of this book is the number, and above all the variety and range, of the prob-
lems that it contains. Many problems are entirely straightforward, but many others
are more challenging, and some are fairly open-ended and can even serve as the basis
for independent student projects. There are far more problems than any instructor
can use in any given course, and this provides instructors with a multitude of choices
in tailoring their course to meet their own goals and the needs of their students.

The motivation for solving many differential equations is the desire to learn some-
thing about an underlying physical process that the equation is believed to model.
It is basic to the importance of differential equations that even the simplest equa-
tions correspond to useful physical models, such as exponential growth and decay,
spring—mass systems, or electrical circuits. Gaining an understanding of a complex
natural process is usually accomplished by combining or building upon simpler and
more basic models. Thus a thorough knowledge of these basic models, the equations
that describe them, and their solutions is the first and indispensable step toward the
solution of more complex and realistic problems. We describe the modeling process
in detail in Sections 1.1, 1.2, and 2.3. Careful constructions of models appear also in
Sections 2.5 and 3.7 and in the appendices to Chapter 10. Differential equations re-
sulting from the modeling process appear frequently throughout the book, especially
in the problem sets.

The main reason for including fairly extensive material on applications and math-
ematical modeling in a book on differential equations is to persuade students that
mathematical modeling often leads to differential equations, and that differential
equations are part of an investigation of problems in a wide variety of other fields.
We also emphasize the transportability of mathematical knowledge: once you mas-
ter a particular solution method, you can use it in any field of application in which an
appropriate differential equation arises. Once these points are convincingly made,
we believe that it is unnecessary to provide specific applications of every method
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of solution or type of equation that we consider. This helps to keep this book to
a reasonable size, and in any case, there is only a limited time in most differential
equations courses to discuss modeling and applications.

Nonroutine problems often require the use of a variety of tools, both analytical
and numerical. Paper-and-pencil methods must often be combined with effective
use of a computer. Quantitative results and graphs, often produced by a computer,
serve to illustrate and clarify conclusions that may be obscured by complicated ana-
lytical expressions. On the other hand, the implementation of an efficient numerical
procedure typically rests on a good deal of preliminary analysis—to determine the
qualitative features of the solution as a guide to computation, to investigate limit-
ing or special cases, or to discover which ranges of the variables or parameters may
require or merit special attention. Thus, a student should come to realize that investi-
gating a difficult problem may well require both analysis and computation; that good
judgment may be required to determine which tool is best suited for a particular task;
and that results can often be presented in a variety of forms.

We believe that it is important for students to understand that (except perhaps
in courses on differential equations) the goal of solving a differential equation is
seldom simply to obtain the solution. Rather, we seek the solution in order to obtain
insight into the behavior of the process that the equation purports to model. In
other words, the solution is not an end in itself. Thus, we have included in the text
a great many problems, as well as some examples, that call for conclusions to be
drawn about the solution. Sometimes this takes the form of finding the value of the
independent variable at which the solution has a certain property, or determining
the long-term behavior of the solution. Other problems ask for the effect of variations
in a parameter, or for the determination of a critical value of a parameter at which
the solution experiences a substantial change. Such problems are typical of those
that arise in the applications of differential equations, and, depending on the goals
of the course, an instructor has the option of assigning few or many of these problems.

Readers familiar with the preceding edition will observe that the general structure
of the book is unchanged. The revisions that we have made in this edition are in
many cases the result of suggestions from users of earlier editions. The goals are
to improve the clarity and readability of our presentation of basic material about
differential equations and their applications. More specifically, the most important
revisions include the following:

1. Sections 8.5 and 8.6 have been interchanged, so that the more advanced topics appear at
the end of the chapter.

2. Derivations and proofs in several chapters have been expanded or rewritten to provide
more details.

3. The fact that the real and imaginary parts of a complex solution of a real problem are also
solutions now appears as a theorem in Sections 3.2 and 7.4.

4. The treatment of generalized eigenvectors in Section 7.8 has been expanded both in the
text and in the problems.

5. There are about twenty new or revised problems scattered throughout the book.
6. There are new examples in Sections 2.1,3.8,and 7.5.

7. About a dozen figures have been modified, mainly by using color to make the essen-
tial feature of the figure more prominent. In addition, numerous captions have been
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expanded to clarify the purpose of the figure without requiring a search of the
surrounding text.

8. There are several new historical footnotes, and some others have been expanded.

The authors have found differential equations to be a never-ending source of in-
teresting, and sometimes surprising, results and phenomena. We hope that users of
this book, both students and instructors, will share our enthusiasm for the subject.

William E. Boyce
Grafton, New York
March 13,2012



Preface

xiil

Supplemental Resources for Instructors and Students

WileyPLUS

WileyPLUS

An Instructor’s Solutions Manual, ISBN 978-0-470-45834-1, includes solutions for all
problems not contained in the Student Solutions Manual.

A Student Solutions Manual, ISBN 978-0-470-45833-4, includes solutions for se-
lected problems in the text.

A Book Companion Site, www.wiley.com/college/boyce, provides a wealth of re-
sources for students and instructors, including

e PowerPoint slides of important definitions, examples, and theorems from the
book, as well as graphics for presentation in lectures or for study and note taking.

e Chapter Review Sheets, which enable students to test their knowledge of key
concepts. For further review, diagnostic feedback is provided that refers to per-
tinent sections in the text.

® Mathematica, Maple, and MATLAB data files for selected problems in the text
providing opportunities for further exploration of important concepts.

® Projects that deal with extended problems normally not included among tradi-
tional topics in differential equations, many involving applications from a variety
of disciplines. These vary in length and complexity, and they can be assigned as
individual homework or as group assignments.

A series of supplemental guidebooks, also published by John Wiley & Sons, can be
used with Boyce/DiPrima in order to incorporate computing technologies into the
course. These books emphasize numerical methods and graphical analysis, showing
how these methods enable us to interpret solutions of ordinary differential equa-
tions (ODEs) in the real world. Separate guidebooks cover each of the three major
mathematical software formats, but the ODE subject matter is the same in each.

e Hunt, Lipsman, Osborn, and Rosenberg, Differential Equations with MATLAB,
3rd ed., 2012, ISBN 978-1-118-37680-5

e Hunt, Lardy, Lipsman, Osborn, and Rosenberg, Differential Equations with
Maple, 3rd ed., 2008, ISBN 978-0-471-77317-7

e Hunt, Outing, Lipsman, Osborn, and Rosenberg, Differential Equations with
Mathematica, 3rd ed., 2009, ISBN 978-0-471-77316-0

WileyPLUS is an innovative, research-based online environment for effective teach-
ing and learning.

WileyPL US builds students’ confidence because it takes the guesswork out of
studying by providing students with a clear roadmap: what to do, how to do it, if they
did it right. Students will take more initiative so you’ll have greater impact on their
achievement in the classroom and beyond.

WileyPLUS, is loaded with all of the supplements above, and it also features

® The E-book, which is an exact version of the print text but also features hyper-
links to questions, definitions, and supplements for quicker and easier support.


http://www.wiley.com/college/boyce
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Guided Online (GO) Exercises, which prompt students to build solutions step-
by-step. Rather than simply grading an exercise answer as wrong, GO problems
show students precisely where they are making a mistake.

Homework management tools, which enable instructors easily to assign and
grade questions, as well as to gauge student comprehension.

QuickStart pre-designed reading and homework assignments. Use them as is,
or customize them to fit the needs of your classroom.

Interactive Demonstrations, based on figures from the text, which help reinforce
and deepen understanding of the key concepts of differential equations. Use
them in class or assign them as homework. Worksheets are provided to help
guide and structure the experience of mastering these concepts.
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CHAPTER

1

Introduction

In this chapter we give perspective to your study of differential equations in several
different ways. First, we use two problems to illustrate some of the basic ideas that we
will return to, and elaborate upon, frequently throughout the remainder of the book.
Later, to provide organizational structure for the book, we indicate several ways
of classifying differential equations. Finally, we outline some of the major trends
in the historical development of the subject and mention a few of the outstanding
mathematicians who have contributed to it. The study of differential equations has
attracted the attention of many of the world’s greatest mathematicians during the
past three centuries. Nevertheless, it remains a dynamic field of inquiry today, with
many interesting open questions.

1.1 Some Basic Mathematical Models; Direction Fields

Before embarking on a serious study of differential equations (for example, by read-
ing this book or major portions of it), you should have some idea of the possible
benefits to be gained by doing so. For some students the intrinsic interest of the
subject itself is enough motivation, but for most it is the likelihood of important
applications to other fields that makes the undertaking worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world are
statements or relations involving rates at which things happen. When expressed
in mathematical terms, the relations are equations and the rates are derivatives.
Equations containing derivatives are differential equations. Therefore, to understand
and to investigate problems involving the motion of fluids, the flow of current in elec-
tric circuits, the dissipation of heat in solid objects, the propagation and detection of

1



Chapter 1. Introduction

EXAMPLE

1

A Falling

Object

seismic waves, or the increase or decrease of populations, among many others, it is
necessary to know something about differential equations.

A differential equation that describes some physical process is often called a math-
ematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy to
solve. It is noteworthy that even the simplest differential equations provide useful
models of important physical processes.

Suppose that an object is falling in the atmosphere near sea level. Formulate a differential
equation that describes the motion.

We begin by introducing letters to represent various quantities that may be of interest in this
problem. The motion takes place during a certain time interval, so let us use ¢ to denote time.
Also, let us use v to represent the velocity of the falling object. The velocity will presumably
change with time, so we think of v as a function of ¢; in other words, ¢ is the independent
variable and v is the dependent variable. The choice of units of measurement is somewhat
arbitrary, and there is nothing in the statement of the problem to suggest appropriate units,
so we are free to make any choice that seems reasonable. To be specific, let us measure time
t in seconds and velocity v in meters/second. Further, we will assume that v is positive in the
downward direction—that is, when the object is falling.

The physical law that governs the motion of objects is Newton’s second law, which states
that the mass of the object times its acceleration is equal to the net force on the object. In
mathematical terms this law is expressed by the equation

F = ma, 1)

where m is the mass of the object, a is its acceleration, and F is the net force exerted on the
object. To keep our units consistent, we will measure m in kilograms, a in meters/second?, and
F in newtons. Of course, a is related to v by a = dv/dt, so we can rewrite Eq. (1) in the form

F = m(dv/dr). (2)

Next, consider the forces that act on the object as it falls. Gravity exerts a force equal to
the weight of the object, or mg, where g is the acceleration due to gravity. In the units we have
chosen, g has been determined experimentally to be approximately equal to 9.8 m/s> near
the earth’s surface. There is also a force due to air resistance, or drag, that is more difficult to
model. This is not the place for an extended discussion of the drag force;suffice it to say that it
is often assumed that the drag is proportional to the velocity,and we will make that assumption
here. Thus the drag force has the magnitude yv, where y is a constant called the drag coefficient.
The numerical value of the drag coefficient varies widely from one object to another; smooth
streamlined objects have much smaller drag coefficients than rough blunt ones. The physical
units for y are mass/time, or kg/s for this problem; if these units seem peculiar, remember that
yv must have the units of force, namely, kg-m/s?.

In writing an expression for the net force F, we need to remember that gravity always acts
in the downward (positive) direction, whereas, for a falling object, drag acts in the upward
(negative) direction, as shown in Figure 1.1.1. Thus

F=mg—y 3)
and Eq. (2) then becomes
d
mdii =mg — yv. O]

Equation (4) is a mathematical model of an object falling in the atmosphere near sea level.
Note that the model contains the three constants m, g, and y. The constants m and y depend
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EXAMPLE

2

A Falling
Object
(continued)

very much on the particular object that is falling, and they are usually different for different
objects. It is common to refer to them as parameters, since they may take on a range of values
during the course of an experiment. On the other hand, g is a physical constant, whose value
is the same for all objects.

Y0
Om

mg

FIGURE 1.1.1 Free-body diagram of the forces on a falling object.

To solve Eq. (4), we need to find a function v = v(¢) that satisfies the equation. It
is not hard to do this, and we will show you how in the next section. For the present,
however, let us see what we can learn about solutions without actually finding any of
them. Our task is simplified slightly if we assign numerical values to m and y, but the
procedure is the same regardless of which values we choose. So, let us suppose that
m = 10 kg and y = 2 kg/s. Then Eq. (4) can be rewritten as

dv v
i 9.8 — 3 (5)

Investigate the behavior of solutions of Eq. (5) without solving the differential equation.

Firstlet us consider what information can be obtained directly from the differential equation
itself. Suppose that the velocity v has a certain given value. Then, by evaluating the right side of
Eq. (5), we can find the corresponding value of dv/dt. For instance, if v = 40, then dv/dt = 1.8.
This means that the slope of a solution v = v(¢) has the value 1.8 at any point where v = 40.
We can display this information graphically in the fv-plane by drawing short line segments
with slope 1.8 at several points on the line v = 40. Similarly, if v = 50, then dv/dt = —0.2, so
we draw line segments with slope —0.2 at several points on the line v = 50. We obtain Figure
1.1.2 by proceeding in the same way with other values of v. Figure 1.1.2 is an example of what
is called a direction field or sometimes a slope field.

Remember that a solution of Eq. (5) is a function v = v(f) whose graph is a curve in the
tv-plane. The importance of Figure 1.1.2 is that each line segment is a tangent line to one
of these solution curves. Thus, even though we have not found any solutions, and no graphs of
solutions appear in the figure, we can nonetheless draw some qualitative conclusions about
the behavior of solutions. For instance, if v is less than a certain critical value, then all the line
segments have positive slopes, and the speed of the falling object increases as it falls. On the
other hand, if v is greater than the critical value, then the line segments have negative slopes,
and the falling object slows down as it falls. What is this critical value of v that separates objects
whose speed is increasing from those whose speed is decreasing? Referring again to Eq. (5),
we ask what value of v will cause dv/dt to be zero. The answer is v = (5)(9.8) = 49 m/s.

In fact, the constant function v(¢) = 49 is a solution of Eq. (5). To verify this statement,
substitute v(f) = 49 into Eq. (5) and observe that each side of the equation is zero. Because
it does not change with time, the solution v(f) = 49 is called an equilibrium solution. It is
the solution that corresponds to a perfect balance between gravity and drag. In Figure 1.1.3
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we show the equilibrium solution v(f) = 49 superimposed on the direction field. From this
figure we can draw another conclusion, namely, that all other solutions seem to be converging
to the equilibrium solution as ¢ increases. Thus, in this context, the equilibrium solution is often
called the terminal velocity.
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FIGURE 1.1.2 A direction field for Eq. (5): dv/dt =
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FIGURE 1.1.3 Direction field and equilibrium solution for Eq. (5): dv/dt = 9.8 — (v/5).

The approach illustrated in Example 2 can be applied equally well to the more
general Eq. (4), where the parameters m and y are unspecified positive numbers.
The results are essentially identical to those of Example 2. The equilibrium solution
of Eq. (4)is v(t) = mg/y. Solutions below the equilibrium solution increase with time,
those above it decrease with time, and all other solutions approach the equilibrium
solution as ¢ becomes large.
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Direction Fields. Direction fields are valuable tools in studying the solutions of
differential equations of the form

dy
E_f(t’y)v (6)

where f is a given function of the two variables ¢t and y, sometimes referred to as the
rate function. A direction field for equations of the form (6) can be constructed by
evaluating f at each point of a rectangular grid. At each point of the grid, a short line
segment is drawn whose slope is the value of f at that point. Thus each line segment
is tangent to the graph of the solution passing through that point. A direction field
drawn on a fairly fine grid gives a good picture of the overall behavior of solutions of
a differential equation. Usually a grid consisting of a few hundred points is sufficient.
The construction of a direction field is often a useful first step in the investigation of
a differential equation.

Two observations are worth particular mention. First, in constructing a direction
field, we do not have to solve Eq. (6); we just have to evaluate the given function
f (¢, y) many times. Thus direction fields can be readily constructed even for equations
that may be quite difficult to solve. Second, repeated evaluation of a given function
is a task for which a computer is well suited, and you should usually use a computer
to draw a direction field. All the direction fields shown in this book, such as the one
in Figure 1.1.2, were computer-generated.

Field Mice and Owls. Now let us look at another, quite different example. Consider
a population of field mice who inhabit a certain rural area. In the absence of
predators we assume that the mouse population increases at a rate proportional
to the current population. This assumption is not a well-established physical law
(as Newton’s law of motion is in Example 1), but it is a common initial hypothesis!
in a study of population growth. If we denote time by ¢ and the mouse population by
p(1),then the assumption about population growth can be expressed by the equation

dp

= —p, 7

=P ™)
where the proportionality factor r is called the rate constant or growth rate. To be
specific, suppose that time is measured in months and that the rate constant r has the
value 0.5/month. Then each term in Eq. (7) has the units of mice/month.

Now let us add to the problem by supposing that several owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate this information
into the model, we must add another term to the differential equation (7), so that it
becomes

dp

— = 0.5p — 450. 8

= P ®)
Observe that the predation term is —450 rather than —15 because time is measured
in months, so the monthly predation rate is needed.

1A better model of population growth is discussed in Section 2.5.
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EXAMPLE

3

Investigate the solutions of Eq. (8) graphically.

A direction field for Eq. (8) is shown in Figure 1.1.4. For sufficiently large values of p it can
be seen from the figure, or directly from Eq. (8) itself, that dp/dt is positive, so that solutions
increase. On the other hand, if p is small, then dp/dt is negative and solutions decrease. Again,
the critical value of p that separates solutions that increase from those that decrease is the
value of p for which dp/dt is zero. By setting dp/dt equal to zero in Eq. (8) and then solving
for p, we find the equilibrium solution p(¢) = 900, for which the growth term and the predation
term in Eq. (8) are exactly balanced. The equilibrium solution is also shown in Figure 1.1.4.

p
10004 - - - - - - - - - -
4 7 7 Ve Ve Ve Ve Ve Ve Ve Ve
A 7~ 7~ e e e e e e e e
e e - - - - - - - - e
A - - - - - ~ ~ ~ ~ ~
950 — — — — — — — — — —
— — — — — — — — — — —
-1 _— _— - - - - - - - -
-+ — — — — — — — — — —

900
o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~+~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
8501 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
+~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ N N ~N ~N ~N ~N ~N ~N ~N ~N
N N N N N N N N N N N
800+ ~ ‘\ ~ \‘ ~ \‘ ~ \‘ ~ \‘

1 2 3 4 5 ¢

FIGURE 1.1.4 Direction field and equilibrium solution for Eq. (8): dp/dt = 0.5p — 450.

Comparing Examples 2 and 3, we note that in both cases the equilibrium solution
separates increasing from decreasing solutions. In Example 2 other solutions con-
verge to, or are attracted by, the equilibrium solution, so that after the object falls far
enough, an observer will see it moving at very nearly the equilibrium velocity. On
the other hand, in Example 3 other solutions diverge from, or are repelled by, the
equilibrium solution. Solutions behave very differently depending on whether they
start above or below the equilibrium solution. As time passes, an observer might see
populations either much larger or much smaller than the equilibrium population, but
the equilibrium solution itself will not, in practice, be observed. In both problems,
however, the equilibrium solution is very important in understanding how solutions
of the given differential equation behave.

A more general version of Eq. (8) is

dp
5 =Pk )
where the growth rate r and the predation rate k are unspecified. Solutions of this
more general equation are very similar to those of Eq. (8). The equilibrium solution
of Eq. (9) is p(t) = k/r. Solutions above the equilibrium solution increase, while
those below it decrease.

You should keep in mind that both of the models discussed in this section have
their limitations. The model (5) of the falling object is valid only as long as the
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object is falling freely, without encountering any obstacles. The population model
(8) eventually predicts negative numbers of mice (if p < 900) or enormously large
numbers (if p > 900). Both of these predictions are unrealistic, so this model becomes
unacceptable after a fairly short time interval.

Constructing Mathematical Models. In applying differential equations to any of the
numerous fields in which they are useful, it is necessary first to formulate the appro-
priate differential equation that describes, or models, the problem being investigated.
In this section we have looked at two examples of this modeling process, one drawn
from physics and the other from ecology. In constructing future mathematical mod-
els yourself, you should recognize that each problem is different, and that successful
modeling cannot be reduced to the observance of a set of prescribed rules. Indeed,
constructing a satisfactory model is sometimes the most difficult part of the problem.
Nevertheless, it may be helpful to list some steps that are often part of the process:

1. Identify the independent and dependent variables and assign letters to represent them.
Often the independent variable is time.

2. Choose the units of measurement for each variable. In a sense the choice of units is
arbitrary, but some choices may be much more convenient than others. For example, we
chose to measure time in seconds for the falling-object problem and in months for the
population problem.

3. Articulate the basic principle that underlies or governs the problem you are investigating.
This may be a widely recognized physical law, such as Newton’s law of motion, or it may be
amore speculative assumption that may be based on your own experience or observations.
In any case, this step is likely not to be a purely mathematical one, but will require you to
be familiar with the field in which the problem originates.

4. Express the principle or law in step 3 in terms of the variables you chose in step 1. This
may be easier said than done. It may require the introduction of physical constants or
parameters (such as the drag coefficient in Example 1) and the determination of appro-
priate values for them. Or it may involve the use of auxiliary or intermediate variables
that must then be related to the primary variables.

5. Make sure that all terms in your equation have the same physical units. If this is not the
case, then your equation is wrong and you should seek to repair it. If the units agree, then
your equation at least is dimensionally consistent,although it may have other shortcomings
that this test does not reveal.

6. Inthe problems considered here, the result of step 4 is a single differential equation, which
constitutes the desired mathematical model. Keep in mind, though, that in more complex
problems the resulting mathematical model may be much more complicated, perhaps
involving a system of several differential equations, for example.

PROBLEMS

In each of Problems 1 through 6, draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as ¢t — co. If this behavior depends
on the initial value of y at t = 0, describe the dependency.

¢ 1Ly=3-2 ¢ 2y=2-3
."Z 3.y =3+2y ."2 4.y =-1-2y

¢ 5 y=1+2 ¢ 6.y=y+2
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In each of Problems 7 through 10, write down a differential equation of the form
dy/dt = ay + b whose solutions have the required behavior as t — oo.

7. All solutions approach y = 3. 8. All solutions approach y = 2/3.
9. All other solutions diverge from y =2.  10. All other solutions diverge fromy = 1/3.

In each of Problems 11 through 14, draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t — oco. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that in these problems the
equations are not of the form y’ = ay + b, and the behavior of their solutions is somewhat
more complicated than for the equations in the text.

1.y =y@d—y) ¢ 12y =—y5-y
13,y =)? ¢ 14y =y(y -2
Consider the following list of differential equations, some of which produced the direction

fields shown in Figures 1.1.5 through 1.1.10. In each of Problems 15 through 20 identify the
differential equation that corresponds to the given direction field.

(a) y=2y-1 (b) y'=2+y (©y=y-2
(d) y=yy+3) (e) Y =y(y—-3) ) y=1+2y
(& y=-2-y (h) y =yB-y) i) y=1-2y
() y=2-y

15. The direction field of Figure 1.1.5.
16. The direction field of Figure 1.1.6.
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FIGURE 1.1.5 Problem 15. FIGURE 1.1.6 Problem 16.
17. The direction field of Figure 1.1.7.
18. The direction field of Figure 1.1.8.
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19. The direction field of Figure 1.1.9.
20. The direction field of Figure 1.1.10.
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FIGURE 1.1.9 Problem 19. FIGURE
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0 Problem 20.

A pond initially contains 1,000,000 gal of water and an unknown amount of an undesirable
chemical. Water containing 0.01 g of this chemical per gallon flows into the pond at a rate
of 300 gal/h. The mixture flows out at the same rate, so the amount of water in the pond
remains constant. Assume that the chemical is uniformly distributed throughout the pond.
(a) Write a differential equation for the amount of chemical in the pond at any time.

(b) How much of the chemical will be in the pond after a very long time? Does this limiting
amount depend on the amount that was present initially?

A spherical raindrop evaporates at a rate proportional to its surface area. Write a
differential equation for the volume of the raindrop as a function of time.

Newton’s law of cooling states that the temperature of an object changes at a rate propor-
tional to the difference between the temperature of the object itself and the temperature
of its surroundings (the ambient air temperature in most cases). Suppose that the ambient
temperature is 70°F and that the rate constant is 0.05 (min)~!. Write a differential equation
for the temperature of the object at any time. Note that the differential equation is the
same whether the temperature of the object is above or below the ambient temperature.

A certain drug is being administered intravenously to a hospital patient. Fluid containing
5 mg/cm? of the drug enters the patient’s bloodstream at a rate of 100 cm?/h. The drug is
absorbed by body tissues or otherwise leaves the bloodstream at a rate proportional to
the amount present, with a rate constant of 0.4 (h)~!.

(a) Assuming that the drug is always uniformly distributed throughout the bloodstream,
write a differential equation for the amount of the drug that is present in the bloodstream
at any time.

(b) How much of the drug is present in the bloodstream after a long time?

For small, slowly falling objects, the assumption made in the text that the drag force
is proportional to the velocity is a good one. For larger, more rapidly falling objects, it is
more accurate to assume that the drag force is proportional to the square of the velocity.?
(a) Write a differential equation for the velocity of a falling object of mass m if the mag-
nitude of the drag force is proportional to the square of the velocity and its direction is
opposite to that of the velocity.

e Lyle N. Long and Howard Weiss, “The Velocity Dependence of Aerodynamic Drag: A Primer for

thematicians,” American Mathematical Monthly 106 (1999), 2, pp. 127-135.
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(b) Determine the limiting velocity after a long time.
(c) If m =10 kg, find the drag coefficient so that the limiting velocity is 49 m/s.
(d) Using the data in part (c), draw a direction field and compare it with Figure 1.1.3.

In each of Problems 26 through 33, draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as ¢t — oco. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that the right sides of these
equations depend on ¢ as well as y; therefore, their solutions can exhibit more complicated
behavior than those in the text.

€ 26 y=-2+1-y ¢ 2.y =t -2
¢ 8. y=c'ty 62 29y =1+2

¢ 30y =3sint+1+y 3Ly =2-1-)
6 32y =—Qt+y)/2 6 B y=lyp_y_1p

1.2 Solutions of Some Differential Equations

In the preceding section we derived the differential equations

d

md—;} =mg—p (1)
and p
p

=L —rp—k. 2

pritld )

Equation (1) models a falling object, and Eq. (2) models a population of field mice
preyed on by owls. Both of these equations are of the general form

dy

— =ay—>b 3
a - 3)

where a and b are given constants. We were able to draw some important qualitative
conclusions about the behavior of solutions of Egs. (1) and (2) by considering the
associated direction fields. To answer questions of a quantitative nature, however, we
need to find the solutions themselves, and we now investigate how to do that.

Consider the equation

d
e P _ o.5p — 450, 4)
1 dt
- which describes the interaction of certain populations of field mice and owls [see Eq. (8) of
Field Mice Section 1.1]. Find solutions of this equation.
and Owls To solve Eq. (4), we need to find functions p(f) that, when substituted into the equation,
(continued) reduce it to an obvious identity. Here is one way to proceed. First, rewrite Eq. (4) in the form
dp  p—900
-* _ , 5
dt 2 ®)
or, if p # 900,
dp/dt 1
=5 (6)

p—900 2
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By the chain rule the left side of Eq. (6) is the derivative of In [p — 900| with respect to ¢,so we
have

d 1
—1 —-900] = -. 7
priad 4 =5 ™)
Then, by integrating both sides of Eq. (7), we obtain
t
Inp —900| = 5 + C, )

where C is an arbitrary constant of integration. Therefore, by taking the exponential of both
sides of Eq. (8), we find that

Ip — 900] = e/P¥C = ¢Ce'/?, Q)
or
p —900 = £eCe'’?, (10)
and finally
p =900 + ce'’?, (11)

where ¢ = 4¢€ is also an arbitrary (nonzero) constant. Note that the constant function p = 900
is also a solution of Eq. (5) and that it is contained in the expression (11) if we allow c to take
the value zero. Graphs of Eq. (11) for several values of ¢ are shown in Figure 1.2.1.
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800 —
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600 |- \ \ \ \ \
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FIGURE 1.2.1 Graphs of p = 900 + ce'/? for several values of c.
These are solutions of dp/dt = 0.5p — 450.

Note that they have the character inferred from the direction field in Figure 1.1.4. For
instance, solutions lying on either side of the equilibrium solution p = 900 tend to diverge
from that solution.

In Example 1 we found infinitely many solutions of the differential equation (4),
corresponding to the infinitely many values that the arbitrary constant ¢ in Eq. (11)
might have. This is typical of what happens when you solve a differential equation. The
solution process involves an integration, which brings with it an arbitrary constant,
whose possible values generate an infinite family of solutions.
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Frequently, we want to focus our attention on a single member of the infinite family
of solutions by specifying the value of the arbitrary constant. Most often, we do this
indirectly by specifying instead a point that must lie on the graph of the solution. For
example, to determine the constant ¢ in Eq. (11), we could require that the population
have a given value at a certain time, such as the value 850 at time ¢ = 0. In other words,
the graph of the solution must pass through the point (0, 850). Symbolically, we can
express this condition as

p(0) = 850. (12)

Then, substituting ¢t = 0 and p = 850 into Eq. (11), we obtain
850 =900 + c.

Hence ¢ = —50, and by inserting this value into Eq. (11), we obtain the desired
solution, namely,
P =900 — 50¢'?. (13)

The additional condition (12) that we used to determine ¢ is an example of an
initial condition. The differential equation (4) together with the initial condition (12)
form an initial value problem.

Now consider the more general problem consisting of the differential equation (3)

and the initial condition
y(0) = yo, (14)

where yy is an arbitrary initial value. We can solve this problem by the same method
as in Example 1. If a # 0 and y # b/a, then we can rewrite Eq. (3) as

dy/dt
—— =a 15
y—(b/a) (>
By integrating both sides, we find that
In|y — (b/a)| = at + C, (16)

where C is arbitrary. Then, taking the exponential of both sides of Eq. (16) and solving
for y, we obtain
y = (b/a) + ce”, (17)

where ¢ = #e¢ is also arbitrary. Observe that ¢ = 0 corresponds to the equilibrium
solution y = b/a. Finally, the initial condition (14) requires that ¢ = yy — (b/a), so
the solution of the initial value problem (3), (14) is

y = (b/a) +[yo — (b/a)le™. (18)

For a # 0the expression (17) contains all possible solutions of Eq. (3) and is called
the general solution.’ The geometrical representation of the general solution (17) is
an infinite family of curves called integral curves. Each integral curve is associated
with a particular value of ¢ and is the graph of the solution corresponding to that

3If a = 0, then the solution of Eq. (3) is not given by Eq. (17). We leave it to you to find the general solution
in this case.
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EXAMPLE

2

A Falling
Object
(continued)

value of c. Satisfying an initial condition amounts to identifying the integral curve
that passes through the given initial point.

To relate the solution (18) to Eq. (2), which models the field mouse population, we
need only replace a by the growth rate r and replace b by the predation rate k. Then
the solution (18) becomes

p = (k/r) +[po — (k/r)]e", (19)

where py is the initial population of field mice. The solution (19) confirms the conclu-
sions reached on the basis of the direction field and Example 1. If py = k/r, then from
Eq. (19) it follows that p = k/r for all ¢; this is the constant, or equilibrium, solution.
If po # k/r, then the behavior of the solution depends on the sign of the coefficient
po — (k/r) of the exponential termin Eq. (19). If py > k/r,then p grows exponentially
with time £;if py < k/r,then p decreases and eventually becomes zero, corresponding
to extinction of the field mouse population. Negative values of p, while possible for
the expression (19), make no sense in the context of this particular problem.

To put the falling-object equation (1) in the form (3), we must identify a with —y/m
and b with —g. Making these substitutions in the solution (18), we obtain

v = (mg/y) + [vo — (mg/y)le "™, (20)

where vy is the initial velocity. Again, this solution confirms the conclusions reached
in Section 1.1 on the basis of a direction field. There is an equilibrium, or constant,
solution v = mg/y,and all other solutions tend to approach this equilibrium solution.
The speed of convergence to the equilibrium solution is determined by the exponent
—y/m. Thus, for a given mass m, the velocity approaches the equilibrium value more
rapidly as the drag coefficient y increases.

Suppose that, as in Example 2 of Section 1.1, we consider a falling object of mass m = 10 kg
and drag coefficient y = 2 kg/s. Then the equation of motion (1) becomes

dv v

— =98—-. 21

dt 5 @D
Suppose this object is dropped from a height of 300 m. Find its velocity at any time . How
long will it take to fall to the ground, and how fast will it be moving at the time of impact?

The first step is to state an appropriate initial condition for Eq. (21). The word “dropped” in

the statement of the problem suggests that the initial velocity is zero, so we will use the initial
condition

v(0) = 0. 22)

The solution of Eq. (21) can be found by substituting the values of the coefficients into the
solution (20),but we will proceed instead to solve Eq. (21) directly. First, rewrite the equation as

dv/dt 1
=——. 23
v—49 5 23)
By integrating both sides, we obtain
t
Injy—49) = —< +C, (24)

and then the general solution of Eq. (21) is

v =49 4 ce™', (25)
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where c is arbitrary. To determine ¢, we substitute ¢t = 0 and v = 0 from the initial condition
(22) into Eq. (25), with the result that ¢ = —49. Then the solution of the initial value problem
(21),(22) is
v=149(1 —e 7). (26)
Equation (26) gives the velocity of the falling object at any positive time (before it hits the
ground, of course).
Graphs of the solution (25) for several values of ¢ are shown in Figure 1.2.2, with the solution
(26) shown by the black curve. It is evident that all solutions tend to approach the equilibrium

solution v = 49. This confirms the conclusions we reached in Section 1.1 on the basis of the
direction fields in Figures 1.1.2 and 1.1.3.

100 =

60 l
40— (10.51, 43.01)

\ \
2 4 6 8 10 12 ¢

FIGURE 1.2.2 Graphs of the solution (25), v = 49 + ce™"/>, for several
values of c¢. The black curve corresponds to the initial condition v(0) = 0.

To find the velocity of the object when it hits the ground, we need to know the time at which
impact occurs. In other words, we need to determine how long it takes the object to fall 300 m.
To do this, we note that the distance x the object has fallen is related to its velocity v by the
equation v = dx/dt, or

dx

- _ o t/5
L =40 =), (27)

Consequently, by integrating both sides of Eq. (27), we have
x = 49t + 24567 4 ¢, (28)

where c is an arbitrary constant of integration. The object starts to fall when ¢ = 0,so we know
that x = 0 when ¢ = 0. From Eq. (28) it follows that ¢ = —245, so the distance the object has
fallen at time ¢ is given by

x = 49t +245¢75 — 245, (29)

Let T be the time at which the object hits the ground; then x = 300 when ¢t = 7. By substituting
these values in Eq. (29), we obtain the equation

49T 4 245¢7 15 — 545 = 0. (30)
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The value of T satisfying Eq. (30) can be approximated by a numerical process* using a scientific
calculator or computer, with the result that 7 = 10.51 s. At this time, the corresponding velocity
vr is found from Eq. (26) to be vy = 43.01 m/s. The point (10.51,43.01) is also shown in
Figure 1.2.2.

Further Remarks on Mathematical Modeling. Up to this point we have related our discus-
sion of differential equations to mathematical models of a falling object and of a
hypothetical relation between field mice and owls. The derivation of these models
may have been plausible, and possibly even convincing, but you should remember
that the ultimate test of any mathematical model is whether its predictions agree
with observations or experimental results. We have no actual observations or exper-
imental results to use for comparison purposes here, but there are several sources of
possible discrepancies.

In the case of the falling object, the underlying physical principle (Newton’s law
of motion) is well established and widely applicable. However, the assumption that
the drag force is proportional to the velocity is less certain. Even if this assumption is
correct, the determination of the drag coefficient y by direct measurement presents
difficulties. Indeed, sometimes one finds the drag coefficient indirectly—for example,
by measuring the time of fall from a given height and then calculating the value of y
that predicts this observed time.

The model of the field mouse population is subject to various uncertainties.
The determination of the growth rate r and the predation rate k depends on
observations of actual populations, which may be subject to considerable variation.
The assumption that r and k are constants may also be questionable. For example,
a constant predation rate becomes harder to sustain as the field mouse population
becomes smaller. Further, the model predicts that a population above the equilib-
rium value will grow exponentially larger and larger. This seems at variance with the
behavior of actual populations; see the further discussion of population dynamics in
Section 2.5.

If the differences between actual observations and a mathematical model’s pre-
dictions are too great, then you need to consider refining the model, making more
careful observations, or perhaps both. There is almost always a tradeoff between
accuracy and simplicity. Both are desirable, but a gain in one usually involves a loss
in the other. However, even if a mathematical model is incomplete or somewhat inac-
curate,it may nevertheless be useful in explaining qualitative features of the problem
under investigation. It may also give satisfactory results under some circumstances
but not others. Thus you should always use good judgment and common sense in
constructing mathematical models and in using their predictions.

PROBLEMS ."?, 1. Solve each of the following initial value problems and plot the solutions for several values
— of yo. Then describe in a few words how the solutions resemble, and differ from, each
other.

(a) dy/dt =—-y+5,  y(0)=yo

4A computer algebra system provides this capability; many calculators also have built-in routines for
solving such equations.
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(b) dy/dr==2y+5,  y(0) =y

(c) dy/dt =—=2y+10,  y(0) =y,

Follow the instructions for Problem 1 for the following initial value problems:
(a) dy/dt=y—5,  y(0) =y

(b) dy/dr=2y -5,  y(0)=yo

(c) dy/dr=2y—10,  y(0)=yo

. Consider the differential equation

dy/dt = —ay + b,

where both a and b are positive numbers.
(a) Find the general solution of the differential equation.
(b) Sketch the solution for several different initial conditions.
(c) Describe how the solutions change under each of the following conditions:
i. aincreases.
ii. b increases.
iii. Both @ and b increase, but the ratio b/a remains the same.

. Consider the differential equation dy/dt = ay — b.

(a) Find the equilibrium solution y,.

(b) Let Y(t) =y — y.; thus Y (¢) is the deviation from the equilibrium solution. Find the
differential equation satisfied by Y ().

. Undetermined Coefficients. Here is an alternative way to solve the equation

dy/dt = ay — b. @i)

(a) Solve the simpler equation
dy/dt = ay. (i1)

Call the solution y; (7).

(b) Observe that the only difference between Egs. (i) and (ii) is the constant —b in Eq. (i).
Therefore, it may seem reasonable to assume that the solutions of these two equations
also differ only by a constant. Test this assumption by trying to find a constant k such that
y = y1(t) + k is a solution of Eq. (i).

(c) Compare your solution from part (b) with the solution given in the text in Eq. (17).
Note: This method can also be used in some cases in which the constant b is replaced
by a function g(¢). It depends on whether you can guess the general form that the solution
is likely to take. This method is described in detail in Section 3.5 in connection with second
order equations.

. Use the method of Problem 5 to solve the equation

dy/dt = —ay + b.

. The field mouse population in Example 1 satisfies the differential equation

dp/dt = 0.5p — 450.

(a) Find the time at which the population becomes extinct if p(0) = 850.
(b) Find the time of extinction if p(0) = po, where 0 < py < 900.
(c) Find the initial population p if the population is to become extinct in 1 year.
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8.

10.

& 1L

12.

13.

14.

15.

Consider a population p of field mice that grows at a rate proportional to the current
population, so that dp/dt = rp.

(a) Find the rate constant r if the population doubles in 30 days.

(b) Find r if the population doubles in N days.

. The falling object in Example 2 satisfies the initial value problem

dv/dt = 9.8 — (v/5), v(0) = 0.

(a) Find the time that must elapse for the object to reach 98% of its limiting velocity.
(b) How far does the object fall in the time found in part (a)?

Modify Example 2 so that the falling object experiences no air resistance.

(a) Write down the modified initial value problem.

(b) Determine how long it takes the object to reach the ground.

(c) Determine its velocity at the time of impact.

Consider the falling object of mass 10 kg in Example 2, but assume now that the drag force
is proportional to the square of the velocity.

(a) If the limiting velocity is 49 m/s (the same as in Example 2), show that the equation
of motion can be written as

dv/dt = [(49)> — v?]/245.

Also see Problem 25 of Section 1.1.
(b) If v(0) = 0, find an expression for v(r) at any time.

(c) Plot your solution from part (b) and the solution (26) from Example 2 on the same
axes.

(d) Based on your plots in part (c), compare the effect of a quadratic drag force with that
of a linear drag force.

(e) Find the distance x(r) that the object falls in time z.
(f) Find the time 7 it takes the object to fall 300 m.
A radioactive material,such as the isotope thorium-234, disintegrates at a rate proportional

to the amount currently present. If Q(¢) is the amount present at time ¢,then dQ/dt = —rQ,
where r > 0 is the decay rate.

(a) If 100 mg of thorium-234 decays to 82.04 mg in 1 week, determine the decay rate r.
(b) Find an expression for the amount of thorium-234 present at any time z.

(c) Find the time required for the thorium-234 to decay to one-half its original amount.
The half-life of a radioactive material is the time required for an amount of this material
to decay to one-half its original value. Show that for any radioactive material that decays

according to the equation Q' = —rQ, the half-life r and the decay rate r satisty the equation
rt=1In2.

Radium-226 has a half-life of 1620 years. Find the time period during which a given amount
of this material is reduced by one-quarter.
According to Newton’s law of cooling (see Problem 23 of Section 1.1), the temperature
u(t) of an object satisfies the differential equation

du

—=—ku-T
T (u )

where T is the constant ambient temperature and k is a positive constant. Suppose that
the initial temperature of the object is #(0) = u.

(a) Find the temperature of the object at any time.
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16.

17.

& 18

19.

(b) Let 7 be the time at which the initial temperature difference u, — T has been reduced
by half. Find the relation between k and r.

Suppose that a building loses heat in accordance with Newton’s law of cooling (see Problem
15) and that the rate constant k has the value 0.15h~!. Assume that the interior temperature
is 70°F when the heating system fails. If the external temperature is 10°F, how long will it
take for the interior temperature to fall to 32°F?

Consider an electric circuit containing a capacitor, resistor, and battery; see Figure 1.2.3.
The charge Q(¢) on the capacitor satisfies the equation’

where R is the resistance, C is the capacitance, and V is the constant voltage supplied by
the battery.

(a) If Q(0) =0, find Q(¢) at any time ¢, and sketch the graph of O versus ¢.
(b) Find the limiting value Q; that Q(r) approaches after a long time.

(c) Suppose that Q(f;) = O, and that at time ¢ = 1, the battery is removed and the circuit
is closed again. Find Q(¢) for ¢ > t; and sketch its graph.

R

MWy

O~

FIGURE 1.2.3 The electric circuit of Problem 17.

A pond containing 1,000,000 gal of water is initially free of a certain undesirable chemical
(see Problem 21 of Section 1.1). Water containing 0.01 g/gal of the chemical flows into the
pond at a rate of 300 gal/h, and water also flows out of the pond at the same rate. Assume
that the chemical is uniformly distributed throughout the pond.

(a) Let Q(¢) be the amount of the chemical in the pond at time 7. Write down an initial
value problem for Q(t).

(b) Solve the problem in part (a) for Q(¢). How much chemical is in the pond after 1 year?
(c) At the end of 1 year the source of the chemical in the pond is removed; thereafter
pure water flows into the pond, and the mixture flows out at the same rate as before. Write
down the initial value problem that describes this new situation.

(d) Solve the initial value problem in part (c). How much chemical remains in the pond
after 1 additional year (2 years from the beginning of the problem)?

(e) How long does it take for Q(¢) to be reduced to 10 g?

(f) Plot Q(¢) versus ¢ for 3 years.

Your swimming pool containing 60,000 gal of water has been contaminated by 5 kg of
a nontoxic dye that leaves a swimmer’s skin an unattractive green. The pool’s filtering
system can take water from the pool, remove the dye, and return the water to the pool at
a flow rate of 200 gal/min.

>This equation results from Kirchhoff’s laws, which are discussed in Section 3.7.
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(a) Write down the initial value problem for the filtering process; let g(¢) be the amount
of dye in the pool at any time ¢.

(b) Solve the problem in part (a).

(¢) Youhave invited several dozen friends to a pool party that is scheduled to begin in 4 h.
You have also determined that the effect of the dye is imperceptible if its concentration
is less than 0.02 g/gal. Is your filtering system capable of reducing the dye concentration
to this level within 4 h?

(d) Find the time T at which the concentration of dye first reaches the value 0.02 g/gal.
(e) Find the flow rate that is sufficient to achieve the concentration 0.02 g/gal within 4 h.

1.3 Classification of Differential Equations

The main purpose of this book is to discuss some of the properties of solutions of
differential equations, and to present some of the methods that have proved effective
in finding solutions or, in some cases, approximating them. To provide a framework
for our presentation, we describe here several useful ways of classifying differential
equations.

Ordinary and Partial Differential Equations. One important classification is based on
whether the unknown function depends on a single independent variable or on sev-
eral independent variables. In the first case, only ordinary derivatives appear in the
differential equation, and it is said to be an ordinary differential equation. In the sec-
ond case, the derivatives are partial derivatives, and the equation is called a partial
differential equation.

All the differential equations discussed in the preceding two sections are ordinary
differential equations. Another example of an ordinary differential equation is

Q)  ,dow® 1
L e +R o + C o) = E@), (1)

for the charge Q(¢) on a capacitor in a circuit with capacitance C, resistance R, and
inductance L; this equation is derived in Section 3.7. Typical examples of partial
differential equations are the heat conduction equation

2 %ux, 1) Bu(x,1)
o =
ox2 ot

2

and the wave equation
2 u(x,t) _ u(x,t) _ 3)
ox? or?

Here, o” and a? are certain physical constants. Note that in both Egs. (2) and (3) the
dependent variable u depends on the two independent variables x and ¢. The heat
conduction equation describes the conduction of heat in a solid body, and the wave
equation arises in a variety of problems involving wave motion in solids or fluids.

Systems of Differential Equations. Another classification of differential equations de-
pends on the number of unknown functions that are involved. If there is a single
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function to be determined, then one equation is sufficient. However, if there are two
or more unknown functions, then a system of equations is required. For example, the
Lotka—Volterra, or predator—prey, equations are important in ecological modeling.
They have the form

dx/dt = ax — axy

_ (4)
dy/dt = —cy + yxy,

where x(¢) and y(¢) are the respective populations of the prey and predator species.
The constants a, «, ¢, and y are based on empirical observations and depend on the
particular species being studied. Systems of equations are discussed in Chapters 7
and 9; in particular, the Lotka—Volterra equations are examined in Section 9.5. In
some areas of application it is not unusual to encounter very large systems containing
hundreds, or even many thousands, of equations.

Order. The order of a differential equation is the order of the highest derivative that
appears in the equation. The equations in the preceding sections are all first order
equations, whereas Eq. (1) is a second order equation. Equations (2) and (3) are
second order partial differential equations. More generally, the equation

Flt,u@),u'@),...,u” 0] =0 )

is an ordinary differential equation of the nth order. Equation (5) expresses a relation
between the independent variable ¢ and the values of the function u and its first
derivatives «//,u”, ... ,u"™. Itis convenient and customary in differential equations to
write y for u(t), with y',y”, ..., y" standing for u/(¢),u”(¢), . ..,u"™(¢). Thus Eq. (5) is
written as

F(t,y,y,...,y") =0. (6)

For example,
y/// + 2ety// +yy/ — [4 (7)

is a third order differential equation for y = u(¢). Occasionally, other letters will be
used instead of ¢ and y for the independent and dependent variables; the meaning
should be clear from the context.

We assume that it is always possible to solve a given ordinary differential equation
for the highest derivative, obtaining

y = fiy.y Yy (8)

This is mainly to avoid the ambiguity that may arise because a single equation of
the form (6) may correspond to several equations of the form (8). For example, the
equation

V) +1y +4y=0 ©)
leads to the two equations
—t+ /1> —16 —t— /1> —16
y = vy 5 Y or y = — Y. (10)

Linear and Nonlinear Equations. A crucial classification of differential equations is
whether they are linear or nonlinear. The ordinary differential equation

F(t,y,y,....,y") =0
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is said to be linear if F is a linear function of the variables y,y’,...,y™; a similar
definition applies to partial differential equations. Thus the general linear ordinary
differential equation of order n is

ag()y” + a1y D + -+ a,(t)y = g(0). (11)

Most of the equations you have seen thus far in this book are linear; examples are
the equations in Sections 1.1 and 1.2 describing the falling object and the field mouse
population. Similarly, in this section, Eq. (1) is a linear ordinary differential equation
and Eqgs. (2) and (3) are linear partial differential equations. An equation that is not
of the form (11) is a nonlinear equation. Equation (7) is nonlinear because of the
term yy’. Similarly, each equation in the system (4) is nonlinear because of the terms
that involve the product xy.

A simple physical problem that leads to a nonlinear differential equation is the
oscillating pendulum. The angle 6 that an oscillating pendulum of length L makes
with the vertical direction (see Figure 1.3.1) satisfies the equation

d’o
prs + % sinf = 0, (12)

whose derivation is outlined in Problems 29 through 31. The presence of the term
involving sin # makes Eq. (12) nonlinear.

FIGURE 1.3.1 An oscillating pendulum.

The mathematical theory and methods for solving linear equations are highly
developed. In contrast, for nonlinear equations the theory is more complicated, and
methods of solution are less satisfactory. In view of this, it is fortunate that many
significant problems lead to linear ordinary differential equations or can be approx-
imated by linear equations. For example, for the pendulum, if the angle 6 is small,
then sin 6 = 6 and Eq. (12) can be approximated by the linear equation

a’0 g

pr + LO =0. (13)
This process of approximating a nonlinear equation by a linear one is called lineariza-
tion; it is an extremely valuable way to deal with nonlinear equations. Nevertheless,
there are many physical phenomena that simply cannot be represented adequately
by linear equations. To study these phenomena, it is essential to deal with nonlinear
equations.
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In an elementary text it is natural to emphasize the simpler and more straight-
forward parts of the subject. Therefore, the greater part of this book is devoted to
linear equations and various methods for solving them. However, Chapters 8 and 9,
as well as parts of Chapter 2, are concerned with nonlinear equations. Whenever it
is appropriate, we point out why nonlinear equations are, in general, more difficult
and why many of the techniques that are useful in solving linear equations cannot
be applied to nonlinear equations.

Solutions. A solution of the ordinary differential equation (8) on the interval
a <t < Bis a function ¢ such that ¢/, ¢", ..., "™ exist and satisfy

") = flt, (1), ¢ (1), ..., " V()] (14)

for every t in @ <t < f. Unless stated otherwise, we assume that the function f
of Eq. (8) is a real-valued function, and we are interested in obtaining real-valued
solutions y = ¢(¢).

Recall that in Section 1.2 we found solutions of certain equations by a process of
direct integration. For instance, we found that the equation

dp

— =0.5p — 450 15

00 1% (15)
has the solution

p =900 + ce'’?, (16)

where ¢ is an arbitrary constant. It is often not so easy to find solutions of differential
equations. However, if you find a function that you think may be a solution of a given
equation, it is usually relatively easy to determine whether the function is actually a
solution simply by substituting the function into the equation. For example, in this
way it is easy to show that the function y; () = cost is a solution of

YV'+y=0 17

for all . To confirm this, observe that y| (f) = —sint and y{(t) = —cos t; then it follows
that y{(t) + y1(t) = 0. In the same way you can easily show that y,(¢) = sint is also
a solution of Eq. (17). Of course, this does not constitute a satisfactory way to solve
most differential equations, because there are far too many possible functions for you
to have a good chance of finding the correct one by a random choice. Nevertheless,
you should realize that you can verify whether any proposed solution is correct by
substituting it into the differential equation. This can be a very useful check; it is one
that you should make a habit of considering.

Some Important Questions. Although for the equations (15) and (17) we are able to
verify that certain simple functions are solutions, in general we do not have such
solutions readily available. Thus a fundamental question is the following: Does an
equation of the form (8) always have a solution? The answer is “No.” Merely writing
down an equation of the form (8) does not necessarily mean that there is a function
y = ¢(¢) that satisfies it. So, how can we tell whether some particular equation has a
solution? This is the question of existence of a solution, and it is answered by theorems
stating that under certain restrictions on the function f in Eq. (8), the equation always
has solutions. This is not a purely mathematical concern for at least two reasons.
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If a problem has no solution, we would prefer to know that fact before investing
time and effort in a vain attempt to solve the problem. Further, if a sensible physical
problem is modeled mathematically as a differential equation, then the equation
should have a solution. If it does not, then presumably there is something wrong with
the formulation. In this sense an engineer or scientist has some check on the validity
of the mathematical model.

If we assume that a given differential equation has at least one solution, then
we may need to consider how many solutions it has, and what additional conditions
must be specified to single out a particular solution. This is the question of uniqueness.
In general, solutions of differential equations contain one or more arbitrary con-
stants of integration, as does the solution (16) of Eq. (15). Equation (16) represents
an infinity of functions corresponding to the infinity of possible choices of the con-
stant ¢. As we saw in Section 1.2, if p is specified at some time ¢, this condition will
determine a value for ¢; even so, we have not yet ruled out the possibility that there
may be other solutions of Eq. (15) that also have the prescribed value of p at the
prescribed time ¢. As in the question of existence of solutions, the issue of uniqueness
has practical as well as theoretical implications. If we are fortunate enough to find a
solution of a given problem, and if we know that the problem has a unique solution,
then we can be sure that we have completely solved the problem. If there may be
other solutions, then perhaps we should continue to search for them.

A third important question is: Given a differential equation of the form (8), can
we actually determine a solution, and if so, how? Note that if we find a solution of
the given equation, we have at the same time answered the question of the exis-
tence of a solution. However, without knowledge of existence theory we might,
for example, use a computer to find a numerical approximation to a “solution”
that does not exist. On the other hand, even though we may know that a solution
exists, it may be that the solution is not expressible in terms of the usual elemen-
tary functions—polynomial, trigonometric, exponential, logarithmic, and hyperbolic
functions. Unfortunately, this is the situation for most differential equations. Thus,
we discuss both elementary methods that can be used to obtain exact solutions of
certain relatively simple problems, and also methods of a more general nature that
can be used to find approximations to solutions of more difficult problems.

Computer Use in Differential Equations. A computer can be an extremely valuable tool
in the study of differential equations. For many years computers have been used
to execute numerical algorithms, such as those described in Chapter 8, to construct
numerical approximations to solutions of differential equations. These algorithms
have been refined to an extremely high level of generality and efficiency. A few lines
of computer code, written in a high-level programming language and executed (often
within a few seconds) on a relatively inexpensive computer, suffice to approximate to
ahigh degree of accuracy the solutions of a wide range of differential equations. More
sophisticated routines are also readily available. These routines combine the ability
to handle very large and complicated systems with numerous diagnostic features that
alert the user to possible problems as they are encountered.

The usual output from a numerical algorithm is a table of numbers, listing selected
values of the independent variable and the corresponding values of the dependent
variable. With appropriate software it is easy to display the solution of a differen-
tial equation graphically, whether the solution has been obtained numerically or as
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the result of an analytical procedure of some kind. Such a graphical display is often
much more illuminating and helpful in understanding and interpreting the solution of
a differential equation than a table of numbers or a complicated analytical formula.
There are on the market several well-crafted and relatively inexpensive special-
purpose software packages for the graphical investigation of differential equations.
The widespread availability of personal computers has brought powerful computa-
tional and graphical capability within the reach of individual students. You should
consider, in the light of your own circumstances, how best to take advantage of the
available computing resources. You will surely find it enlightening to do so.

Another aspect of computer use that is very relevant to the study of differential
equations is the availability of extremely powerful and general software packages
that can perform a wide variety of mathematical operations. Among these are Maple,
Mathematica,and MATLAB, each of which can be used on various kinds of personal
computers or workstations. All three of these packages can execute extensive numer-
ical computations and have versatile graphical facilities. Maple and Mathematica also
have very extensive analytical capabilities. For example, they can perform the ana-
lytical steps involved in solving many differential equations, often in response to a
single command. Anyone who expects to deal with differential equations in more
than a superficial way should become familiar with at least one of these products and
explore the ways in which it can be used.

For you, the student, these computing resources have an effect on how you should
study differential equations. To become confident in using differential equations, it
is essential to understand how the solution methods work, and this understanding is
achieved, in part, by working out a sufficient number of examples in detail. However,
eventually you should plan to delegate as many as possible of the routine (often
repetitive) details to a computer, while you focus on the proper formulation of the
problem and on the interpretation of the solution. Our viewpoint is that you should
always try to use the best methods and tools available for each task. In particular,
you should strive to combine numerical, graphical, and analytical methods so as to
attain maximum understanding of the behavior of the solution and of the underlying
process that the problem models. You should also remember that some tasks can best
be done with pencil and paper, while others require a calculator or computer. Good
judgment is often needed in selecting an effective combination.

PROBLEMS

In each of Problems 1 through 6, determine the order of the given differential equation; also
state whether the equation is linear or nonlinear.

d’y | dy d’y | dy

1. 22— 41— +2y =si 2. 142 4t fy=¢
ldt2+dt+y sin t (+y)dt2+tdt+y e
dly &y &y  dy dy

I AR AR AT SRR 4. =0
dt4+dl3+dt2+dl+y dz+y
d? d? d

5. d—g—f-sin(t—{—y):sint 6. d—g—|—td—);—i—(v:oszt)y:t3

In each of Problems 7 through 14, verify that each given function is a solution of the differ-
ential equation.

7.y —y=0; yi(t) =¢€', y,(t) = cosht
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8.y 42y =3y=0; yi)y=e, yn=¢

9.1y —y=1  y=3t++

10. y" 4+4y" +3y =1, yit) =1t/3, y(t)=e"+1/3

1120y +3ty =y =0, t>0; y@O=1"7 yoO=t"
12. 2y"+5ty +4y =0, t>0; yit) =172, y.(t) =t2Int
13. y"+y=sect, 0<t<m/2 y = (cost)Incost + tsint

t
14,y =2ty =1; y=e’2/ e ds+ e
0

In each of Problems 15 through 18, determine the values of r for which the given differential
equation has solutions of the form y = .

15. y'+2y=0 16. y" —y =0

17. y"+y' —6y =0 18. y" =3y"+2y' =0

In each of Problems 19 and 20, determine the values of r for which the given differential
equation has solutions of the form y = ¢" for ¢t > 0.

19. 2y +41y' +2y =0 20. 2y — 4ty +4y =0

In each of Problems 21 through 24, determine the order of the given partial differential equa-
tion; also state whether the equation is linear or nonlinear. Partial derivatives are denoted by

subscripts.
21, e +uyy +u, =0 22, Uy + Uy + vty +uuy, +u =0
23, Uy + 2y + Uyyyy =0 24. u, +uue =1+ vy

In each of Problems 25 through 28, verify that each given function is a solution of the given
partial differential equation.

25, Uye + Uy, = 0; u1(x,y) = cosxcoshy, u(x,y) =In@?*+y?)

2 . 242 .
26. oPuy = uy; ui(x,t) =e *'sinx, wuy(x,t) =e **’sinix, A areal constant
27. dPuy = uy; u(x,t) = sinAxsiniat, up(x,t) =sin(x — at), X areal constant
2 2
28. Puy = uy; u= (/)2 ¥/ >0

29. Follow the steps indicated here to derive the equation of motion of a pendulum, Eq. (12)
in the text. Assume that the rod is rigid and weightless, that the mass is a point mass, and
that there is no friction or drag anywhere in the system.

(a) Assume that the mass is in an arbitrary displaced position, indicated by the angle 6.
Draw a free-body diagram showing the forces acting on the mass.

(b) Apply Newton’s law of motion in the direction tangential to the circular arc on which
the mass moves. Then the tensile force in the rod does not enter the equation. Observe
that you need to find the component of the gravitational force in the tangential direc-
tion. Observe also that the linear acceleration, as opposed to the angular acceleration, is
Ld?0/dt*, where L is the length of the rod.

(c) Simplify the result from part (b) to obtain Eq. (12) in the text.

30. Another way to derive the pendulum equation (12) is based on the principle of
conservation of energy.

(a) Show that the kinetic energy 7T of the pendulum in motion is

(b) Show that the potential energy V of the pendulum, relative to its rest position, is

V =mgL(1 — cosb).
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(c) By the principle of conservation of energy, the total energy E = T + V is constant.
Calculate dE/dt, set it equal to zero, and show that the resulting equation reduces to
Eq. (12).

31. A third derivation of the pendulum equation depends on the principle of angular
momentum: The rate of change of angular momentum about any point is equal to the
net external moment about the same point.

(a) Show that the angular momentum M, or moment of momentum, about the point of
support is given by M = m1.2dé/dt.

(b) Set dM /dt equal to the moment of the gravitational force, and show that the resulting
equation reduces to Eq. (12). Note that positive moments are counterclockwise.

1.4 Historical Remarks

Without knowing something about differential equations and methods of solving
them, it is difficult to appreciate the history of this important branch of mathematics.
Further, the development of differential equations is intimately interwoven with the
general development of mathematics and cannot be separated from it. Nevertheless,
to provide some historical perspective, we indicate here some of the major trends in
the history of the subject and identify the most prominent early contributors. Other
historical information is contained in footnotes scattered throughout the book and
in the references listed at the end of the chapter.

The subject of differential equations originated in the study of calculus by Isaac
Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716) in the seventeenth
century. Newton grew up in the English countryside, was educated at Trinity Col-
lege, Cambridge, and became Lucasian Professor of Mathematics there in 1669. His
epochal discoveries of calculus and of the fundamental laws of mechanics date from
1665. They were circulated privately among his friends, but Newton was extremely
sensitive to criticism and did not begin to publish his results until 1687 with the
appearance of his most famous book, Philosophiae Naturalis Principia Mathemat-
ica. Although Newton did relatively little work in differential equations as such, his
development of the calculus and elucidation of the basic principles of mechanics pro-
vided a basis for their applications in the eighteenth century, most notably by Euler.
Newton classified first order differential equations according to the three forms
dy/dx = f(x), dy/dx = f(y), and dy/dx = f(x,y). For the latter equation he devel-
oped a method of solution using infinite series when f(x,y) is a polynomial in x
and y. Newton’s active research in mathematics ended in the early 1690s, except for
the solution of occasional “challenge problems” and the revision and publication of
results obtained much earlier. He was appointed Warden of the British Mint in 1696
and resigned his professorship a few years later. He was knighted in 1705 and, upon
his death, was buried in Westminster Abbey.

Leibniz was born in Leipzig and completed his doctorate in philosophy at the age
of 20 at the University of Altdorf. Throughout his life he engaged in scholarly work in
several different fields. He was mainly self-taught in mathematics, since his interest
in this subject developed when he was in his twenties. Leibniz arrived at the funda-
mental results of calculus independently, although a little later than Newton, but was
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the first to publish them, in 1684. Leibniz was very conscious of the power of good
mathematical notation and was responsible for the notation dy/dx for the deriva-
tive and for the integral sign. He discovered the method of separation of variables
(Section 2.2) in 1691, the reduction of homogeneous equations to separable ones
(Section 2.2, Problem 30) in 1691, and the procedure for solving first order linear
equations (Section 2.1) in 1694. He spent his life as ambassador and adviser to sev-
eral German royal families, which permitted him to travel widely and to carry on an
extensive correspondence with other mathematicians, especially the Bernoulli broth-
ers. In the course of this correspondence many problems in differential equations
were solved during the latter part of the seventeenth century.

The brothers Jakob (1654-1705) and Johann (1667-1748) Bernoulli of Basel did
much to develop methods of solving differential equations and to extend the range
of their applications. Jakob became professor of mathematics at Basel in 1687, and
Johann was appointed to the same position upon his brother’s death in 1705. Both
men were quarrelsome, jealous, and frequently embroiled in disputes, especially with
each other. Nevertheless, both also made significant contributions to several areas of
mathematics. With the aid of calculus, they solved a number of problems in mechanics
by formulating them as differential equations. For example, Jakob Bernoulli solved
the differential equation y’ = [a®/(b?y — a*)]'/? in 1690 and, in the same paper, first
used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able
to solve the equation dy/dx = y/ax. One problem which both brothers solved, and
which led to much friction between them, was the brachistochrone problem (see
Problem 32 of Section 2.3). The brachistochrone problem was also solved by Leibniz,
Newton, and the Marquis de I’Hopital. It is said, perhaps apocryphally, that Newton
learned of the problem late in the afternoon of a tiring day at the Mint and solved it
that evening after dinner. He published the solution anonymously, but upon seeing
it, Johann Bernoulli exclaimed, “Ah, I know the lion by his paw.”

Daniel Bernoulli (1700-1782),son of Johann, migrated to St. Petersburg as a young
man to join the newly established St. Petersburg Academy but returned to Basel
in 1733 as professor of botany and, later, of physics. His interests were primarily in
partial differential equations and their applications. For instance, it is his name that
is associated with the Bernoulli equation in fluid mechanics. He was also the first
to encounter the functions that a century later became known as Bessel functions
(Section 5.7).

The greatest mathematician of the eighteenth century, Leonhard Euler (1707-
1783), grew up near Basel and was a student of Johann Bernoulli. He followed his
friend Daniel Bernoulli to St. Petersburg in 1727. For the remainder of his life he
was associated with the St. Petersburg Academy (1727-1741 and 1766-1783) and
the Berlin Academy (1741-1766). Euler was the most prolific mathematician of all
time; his collected works fill more than 70 large volumes. His interests ranged over
all areas of mathematics and many fields of application. Even though he was blind
during the last 17 years of his life, his work continued undiminished until the very day
of his death. Of particular interest here is his formulation of problems in mechanics
in mathematical language and his development of methods of solving these mathe-
matical problems. Lagrange said of Euler’s work in mechanics, “The first great work
in which analysis is applied to the science of movement.” Among other things, Euler
identified the condition for exactness of first order differential equations (Section
2.6) in 1734-35, developed the theory of integrating factors (Section 2.6) in the same
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paper, and gave the general solution of homogeneous linear equations with constant
coefficients (Sections 3.1,3.3, 3.4, and 4.2) in 1743. He extended the latter results to
nonhomogeneous equations in 1750-51. Beginning about 1750, Euler made frequent
use of power series (Chapter 5) in solving differential equations. He also proposed
a numerical procedure (Sections 2.7 and 8.1) in 1768-69, made important contribu-
tions in partial differential equations, and gave the first systematic treatment of the
calculus of variations.

Joseph-Louis Lagrange (1736-1813) became professor of mathematics in his native
Turin at the age of 19. He succeeded Euler in the chair of mathematics at the Berlin
Academy in 1766 and moved on to the Paris Academy in 1787. He is most famous for
his monumental work Mécanique analytique, published in 1788, an elegant and com-
prehensive treatise of Newtonian mechanics. With respect to elementary differential
equations, Lagrange showed in 1762-65 that the general solution of an nth order
linear homogeneous differential equation is a linear combination of n independent
solutions (Sections 3.2 and 4.1). Later, in 1774-75, he gave a complete development
of the method of variation of parameters (Sections 3.6 and 4.4). Lagrange is also
known for fundamental work in partial differential equations and the calculus of
variations.

Pierre-Simon de Laplace (1749-1827) lived in Normandy as a boy but came to
Paris in 1768 and quickly made his mark in scientific circles, winning election to the
Académie des Sciences in 1773. He was preeminent in the field of celestial mechanics;
his greatest work, Traité de mécanique céleste, was published in five volumes between
1799 and 1825. Laplace’s equation is fundamental in many branches of mathematical
physics,and Laplace studied it extensively in connection with gravitational attraction.
The Laplace transform (Chapter 6) is also named for him, although its usefulness in
solving differential equations was not recognized until much later.

By the end of the eighteenth century many elementary methods of solving ordinary
differential equations had been discovered. In the nineteenth century interest turned
more toward the investigation of theoretical questions of existence and uniqueness
and to the development of less elementary methods such as those based on power
series expansions (see Chapter 5). These methods find their natural setting in the com-
plex plane. Consequently, they benefitted from, and to some extent stimulated, the
more or less simultaneous development of the theory of complex analytic functions.
Partial differential equations also began to be studied intensively, as their crucial role
in mathematical physics became clear. In this connection a number of functions, aris-
ing as solutions of certain ordinary differential equations, occurred repeatedly and
were studied exhaustively. Known collectively as higher transcendental functions,
many of them are associated with the names of mathematicians, including Bessel,
Legendre, Hermite, Chebyshev, and Hankel, among others.

The numerous differential equations that resisted solution by analytical means
led to the investigation of methods of numerical approximation (see Chapter 8).
By 1900 fairly effective numerical integration methods had been devised, but their
implementation was severely restricted by the need to execute the computations by
hand or with very primitive computing equipment. In the last 60 years the develop-
ment of increasingly powerful and versatile computers has vastly enlarged the range
of problems that can be investigated effectively by numerical methods. Extremely
refined and robust numerical integrators were developed during the same period
and are readily available. Versions appropriate for personal computers have brought
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REFERENCES

the ability to solve a great many significant problems within the reach of individual
students.

Another characteristic of differential equations in the twentieth century was the
creation of geometrical or topological methods, especially for nonlinear equations.
The goal is to understand at least the qualitative behavior of solutions from a
geometrical, as well as from an analytical, point of view. If more detailed informa-
tion is needed, it can usually be obtained by using numerical approximations. An
introduction to geometrical methods appears in Chapter 9.

Within the past few years these two trends have come together. Computers, and
especially computer graphics, have given a new impetus to the study of systems of
nonlinear differential equations. Unexpected phenomena (Section 9.8), such as
strange attractors, chaos, and fractals, have been discovered, are being intensively
studied, and are leading to important new insights in a variety of applications.
Although it is an old subject about which much is known, the study of differen-
tial equations in the twenty-first century remains a fertile source of fascinating and
important unsolved problems.

Computer software for differential equations changes too fast for particulars to be given in a book such
as this. A Google search for Maple, Mathematica, Sage, or MATLAB is a good way to begin if you need
information about one of these computer algebra and numerical systems.

There are many instructional books on computer algebra systems, such as the following:

Cheung, C.-K., Keough, G. E., Gross, R. H., and Landraitis, C., Getting Started with Mathematica (3rd ed.)
(New York: Wiley, 2009).

Meade, D. B., May, M., Cheung, C.-K., and Keough, G. E., Getting Started with Maple (3rd ed.) (New York:
Wiley, 2009).
For further reading in the history of mathematics, see books such as those listed below:

Boyer, C. B., and Merzbach, U. C., A History of Mathematics (2nd ed.) (New York: Wiley, 1989).

Kline, M., Mathematical Thought from Ancient to Modern Times (3 vols.) (New York: Oxford University
Press, 1990).

A useful historical appendix on the early development of differential equations appears in
Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover, 1956).

Encyclopedic sources of information about the lives and achievements of mathematicians of the
past are

Gillespie, C. C., ed., Dictionary of Scientific Biography (15 vols.) (New York: Scribner’s, 1971).

Koertge, N., ed., New Dictionary of Scientific Biography (8 vols.) (New York: Scribner’s, 2007).

Koertge, N., ed., Complete Dictionary of Scientific Biography (New York: Scribner’s, 2007 [e-book]).
Much historical information can be found on the Internet. One excellent site is the MacTutor History

of Mathematics archive
http://www-history.mcs.st-and.ac.uk/history/

created by John J. O’Connor and Edmund F. Robertson, Department of Mathematics and Statistics,
University of St. Andrews, Scotland.
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CHAPTER

2

First Order
Differential E.quations

This chapter deals with differential equations of first order

d
=~ fty), (1)

where f is a given function of two variables. Any differentiable function y = ¢(¢) that
satisfies this equation for all 7 in some interval is called a solution, and our object is
to determine whether such functions exist and, if so, to develop methods for finding
them. Unfortunately, for an arbitrary function f, there is no general method for solv-
ing the equation in terms of elementary functions. Instead, we will describe several
methods, each of which is applicable to a certain subclass of first order equations.
The most important of these are linear equations (Section 2.1), separable equa-
tions (Section 2.2), and exact equations (Section 2.6). Other sections of this chapter
describe some of the important applications of first order differential equations,intro-
duce the idea of approximating a solution by numerical computation, and discuss
some theoretical questions related to the existence and uniqueness of solutions.
The final section includes an example of chaotic solutions in the context of first order
difference equations, which have some important points of similarity with differential
equations and are simpler to investigate.

2.1 Linear Equations; Method of Integrating Factors

If the function f in Eq. (1) depends linearly on the dependent variable y, then
Eq. (1) is called a first order linear equation. In Sections 1.1 and 1.2 we discussed a
restricted type of first order linear equation in which the coefficients are constants.

31
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A typical example is
dy
- = b, 2
priialos @)
where a and b are given constants. Recall that an equation of this form describes the
motion of an object falling in the atmosphere.

Now we want to consider the most general first order linear equation, which is
obtained by replacing the coefficients a and b in Eq. (2) by arbitrary functions of ¢.
We will usually write the general first order linear equation in the standard form

d
d—y +p@)y =g, ©)
t
where p and g are given functions of the independent variable . Sometimes it is more
convenient to write the equation in the form
d
PO=+Q(0)y = GO, @)
where P, Q,and G are given. Of course, as long as P(f) # 0, you can convert Eq. (4)
to Eq. (3) by dividing Eq. (4) by P(¢).

In some cases it is possible to solve a first order linear equation immediately by
integrating the equation, as in the next example.

Solve the differential equation
EXAMPLE

1

d
@+ rz)d% 2ty =4t (5)

The left side of Eq. (5) is a linear combination of dy/dt and y, a combination that also
appears in the rule from calculus for differentiating a product. In fact,

dy d
4+ )= +2ty = —[(d+ )yl
4+ )d[-l— y dz[( + 1)yl
it follows that Eq. (5) can be rewritten as
i+ Pyl = 4t (6)
dt =a

Thus,even though y is unknown, we can integrate both sides of Eq. (6) with respect to 7, thereby
obtaining

@G+y=2+c, (7)
where c is an arbitrary constant of integration. By solving for y we find that
212 c
=—+ —. 8
Ve i e ®)

This is the general solution of Eq. (5).

Unfortunately, most first order linear equations cannot be solved as illustrated in
Example 1 because their left sides are not the derivative of the product of y and
some other function. However, Leibniz discovered that if the differential equation is
multiplied by a certain function w(¢), then the equation is converted into one that is
immediately integrable by using the product rule for derivatives, just as in Example 1.
The function p(t) is called an integrating factor and our main task is to determine
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EXAMPLE

2

how to find it for a given equation. We will show how this method works first for an
example and then for the general first order linear equation in the standard form (3).

Find the general solution of the differential equation
= +1y=1". )

Draw some representative integral curves; that is, plot solutions corresponding to several
values of the arbitrary constant c. Also find the particular solution whose graph contains the
point (0, 1).

The first step is to multiply Eq. (9) by a function (1), as yet undetermined; thus

d
O+ Sy = due’. (10)

The question now is whether we can choose () so that the left side of Eq. (10) is the derivative
of the product w(t)y. For any differentiable function . (f) we have

d _ dy dup)
E[u(t)y] = MU)E + 7)’, (11)

Thus the left side of Eq. (10) and the right side of Eq. (11) are identical, provided that we
choose () to satisfy
dp(® _

5 Su(o). (12)

Our search for an integrating factor will be successful if we can find a solution of Eq. (12).
Perhaps you can readily identify a function that satisfies Eq. (12): what well-known function
from calculus has a derivative that is equal to one-half times the original function? More
systematically, rewrite Eq. (12) as

du(t)/dt _1
w(t) 2

which is equivalent to

d
ZInlu@] = 1. (13)

Then it follows that
In|u@®)| =1+ C,

w(t) = ce'’”. (14)

The function w(z) given by Eq. (14) is an integrating factor for Eq. (9). Since we do not need
the most general integrating factor, we will choose ¢ to be 1 in Eq. (14) and use w (1) = e"/%.
Now we return to Eq. (9), multiply it by the integrating factor ¢/?, and obtain

e’/Z% + 1e'Py = 17, (15)

By the choice we have made of the integrating factor, the left side of Eq. (15) is the derivative
of ¢'?y, so that Eq. (15) becomes

d iy _ 156
E(e y) =ze". (16)
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By integrating both sides of Eq. (16), we obtain
ey = %65’/6 +c, 17)

where c is an arbitrary constant. Finally, on solving Eq. (17) for y, we have the general solution
of Eq. (9), namely,
y =2l +ce ' (18)

To find the solution passing through the point (0,1), we set t =0 and y =1 in Eq. (18),
obtaining 1 = (3/5) + c. Thus ¢ = 2/5, and the desired solution is

y= %e[ﬁ + %87[/2. (19)

Figure 2.1.1 includes the graphs of Eq. (18) for several values of ¢ with a direction field in
the background. The solution satisfying y(0) = 1 is shown by the black curve.
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FIGURE 2.1.1 Direction field and integral curves of y' + % y= %e’/ 3

the black curve passes through the point (0, 1).

Let us now extend the method of integrating factors to equations of the form

dy
cd = o(t 20
5 Ty =380, (20)

where a is a given constant and g(t) is a given function. Proceeding as in Example 2,
we find that the integrating factor p(f) must satisfy
dup

an _ 21
i (21)

rather than Eq. (12). Thus the integrating factor is w(f) = ¢*. Multiplying Eq. (20)
by u(t), we obtain
eat@ + aea[y — etl[g(t)
dt '
or

d
%(e‘”y) =e“g(1). (22)
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3

By integrating both sides of Eq. (22), we find that

ey = /e”’g(t) dt + ¢, (23)

where c is an arbitrary constant. For many simple functions g(¢), we can evaluate the
integral in Eq. (23) and express the solution y in terms of elementary functions, as
in Example 2. However, for more complicated functions g(?), it is necessary to leave
the solution in integral form. In this case

t
y=e" / e“g(s)ds + ce™™. (24)

to

Note that in Eq. (24) we have used s to denote the integration variable to distinguish
it from the independent variable ¢, and we have chosen some convenient value ¢y as
the lower limit of integration.

Find the general solution of the differential equation

dy
= oy =—4— 2
T t (25)

and plot the graphs of several solutions. Discuss the behavior of solutions as ¢ — oo.
Equation (25) is of the form (20) with a = —2; therefore, the integrating factor is
wu(t) = e~*. Multiplying the differential equation (25) by j(), we obtain

e*%% _ 2672ty — 4672{ _ t€72t,
or
d —2t —2t —2t
E(e y) =de " —te™ . (26)

Then, by integrating both sides of this equation, we have
e—2zy — _26—2! 4 %[6—21 4 %e—m +ec,

where we have used integration by parts on the last term in Eq. (26). Thus the general solution
of Eq. (25) is

y=—1+31t+ce”. 27)

A direction field and graphs of the solution (27) for several values of ¢ are shown in Figure
2.1.2. The behavior of the solution for large values of ¢ is determined by the term ce?. If ¢ # 0,
then the solution grows exponentially large in magnitude, with the same sign as c itself. Thus
the solutions diverge as t becomes large. The boundary between solutions that ultimately grow
positively and those that ultimately grow negatively occurs when ¢ = 0. If we substitute ¢ = 0
into Eq. (27) and then set ¢t = 0, we find that y = —7/4 is the separation point on the y-axis.
Note that for this initial value, the solution is y = —% —+ %t; it grows positively, but linearly
rather than exponentially.
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FIGURE 2.1.2 Direction field and integral curves of y' — 2y =4 — 1.

Now we return to the general first order linear equation (3)
dy

ca Ny = g(0),

o TPy =280

where p and g are given functions. To determine an appropriate integrating factor,
we multiply Eq. (3) by an as yet undetermined function p(¢), obtaining

d
u(z)d—f + POy = n(0)g(0). (28)

Following the same line of development as in Example 2, we see that the left side
of Eq. (28) is the derivative of the product w(f)y, provided that p(f) satisfies the
equation

dp(t)
dt
If we assume temporarily that w () is positive, then we have
du(t)/dt
O

= pOu(@). (29)

p(z)7

and consequently
Inu(t) = /p(t) dt + k.

By choosing the arbitrary constant k to be zero, we obtain the simplest possible
function for px, namely,

() = exp f p@)dt. (30)

Note that w(¢) is positive for all ¢, as we assumed. Returning to Eq. (28), we have

d
a[u(t)y] = n()g(). (31)
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Hence
n)y = f (g dt +c, (32)

where c is an arbitrary constant. Sometimes the integral in Eq.(32) can be evaluated
in terms of elementary functions. However, in general this is not possible, so the
general solution of Eq. (3) is

1 t
y=— [/ w(s)g(s) ds + c} , (33)
() to

where again £, is some convenient lower limit of integration. Observe that Eq. (33)
involves two integrations, one to obtain . (¢) from Eq. (30) and the other to determine
y from Eq. (33).

Solve the initial value problem
1y +2y =47, (34)
Y =2. (35)

In order to determine p(r) and g(¢) correctly, we must first rewrite Eq. (34) in the standard
form (3). Thus we have

Y +Q2/ty =4, (36)
so p(t) = 2/t and g(r) = 4t. To solve Eq. (36), we first compute the integrating factor w(¢):

2
u(t) = exp/ B dr = =22,

On multiplying Eq. (36) by () = >, we obtain
£y 42ty = (Py) =47,

and therefore
Py=t'+ec,

where c is an arbitrary constant. It follows that
c
y=~+ 5 (37)

is the general solution of Eq. (34). Integral curves of Eq. (34) for several values of ¢ are shown
in Figure 2.1.3. To satisfy the initial condition (35), it is necessary to choose ¢ = 1; thus
1

y=t2+t—2, t>0 (38)
is the solution of the initial value problem (34), (35). This solution is shown by the black curve
in Figure 2.1.3. Note that it becomes unbounded and is asymptotic to the positive y-axis as
t — 0 from the right. This is the effect of the infinite discontinuity in the coefficient p(¢) at
the origin. The function y = > 4 (1/¢%) for ¢t < 0 is not part of the solution of this initial value
problem.

This is the first example in which the solution fails to exist for some values of ¢. Again, this
is due to the infinite discontinuity in p(¢) at ¢t = 0, which restricts the solution to the interval
0<t<oo.

Looking again at Figure 2.1.3, we see that some solutions (those for which ¢ > 0) are asymp-
totic to the positive y-axis as t — 0 from the right, while other solutions (for which ¢ < 0)
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are asymptotic to the negative y-axis. The solution for which ¢ = 0, namely, y = 2, remains
bounded and differentiable even at t = 0. If we generalize the initial condition (35) to
then ¢ = yy — 1 and the solution (38) becomes

-1

y:12+y"t2 . 1> 0ifyy #£ 1. (40)
As in Example 3, this is another instance where there is a critical initial value, namely, y, = 1,
that separates solutions that behave in one way from others that behave quite differently.

i (1,2)
- t
1
FIGURE 2.1.3 Integral curves of the differential equation 1y’ + 2y = 4¢%;
the black curve passes through the point (1,2).
Solve the initial value problem
EXAMPLE

5

2y +ty =2, (41)
$(0) = 1. (42)
To convert the differential equation (41) to the standard form (3), we must divide by 2,
obtaining
Y+ @/2y=1 (43)
Thus p(¢) = t/2, and the integrating factor is u(t) = exp(t?/4). Then multiply Eq. (43) by (2),
so that
t
ey + Eetz/4y =", (44)

The left side of Eq. (44) is the derivative of e’/ 4y, so by integrating both sides of Eq. (44), we
obtain

ey = / et +c. (45)
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The integral on the right side of Eq. (45) cannot be evaluated in terms of the usual elementary
functions, so we leave the integral unevaluated. However, by choosing the lower limit of
integration as the initial point ¢t = 0, we can replace Eq. (45) by

t
e’z/“y = f lhds +c, (46)
0

where c is an arbitrary constant. It then follows that the general solution y of Eq. (41) is
given by

t
y= e"2/4/ e ds + ce N 47)
0

The initial condition (42) requires that ¢ = 1.

The main purpose of this example is to illustrate that sometimes the solution must be left in
terms of an integral. This is usually at most a slight inconvenience, rather than a serious obstacle.
For a given value of ¢, the integral in Eq. (47) is a definite integral and can be approximated to
any desired degree of accuracy by using readily available numerical integrators. By repeating
this process for many values of ¢ and plotting the results, you can obtain a graph of a solution.
Alternatively, you can use a numerical approximation method, such as those discussed in
Chapter 8, that proceed directly from the differential equation and need no expression for the
solution. Software packages such as Maple and Mathematica readily execute such procedures
and produce graphs of solutions of differential equations.

Figure 2.1.4 displays graphs of the solution (47) for several values of ¢. From the figure it
may be plausible to conjecture that all solutions approach a limit as t — co. The limit can be
found analytically (see Problem 32).

y
3

—2

-3

FIGURE 2.1.4 Integral curves of 2y’ +ty = 2.

PROBLEMS

In each of Problems 1 through 12:
(a) Draw a direction field for the given differential equation.
(b) Based on an inspection of the direction field, describe how solutions behave for large .

(c) Find the general solution of the given differential equation, and use it to determine how
solutions behave as t — oo.
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&
&

&
&
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1.y +3y=t+e?* ¢l 2.y -2y=re

3.y +y=te' +1 ¢ 4 y+1/py=3cos2t, >0
5.y —2y =3¢ &2 6.1y +2y=sint, t>0

7.y 42ty =2t " ¢ 8 1+)y +4ty=(1+7)2

9.2y +y=3t ¢ 10ty —y==pe', >0

11. y' 4+ y = 5sin2¢ & 12.2y +y=3"

In each of Problems 13 through 20, find the solution of the given initial value problem.
13. y/ — y = 2te*, y(©0) =1

14. y +2y =te”¥, y1) =0

15. ty +2y =12 —t + 1, yhy=41 >0

16. y' + (2/t)y = (cost)/t?, y@) =0, t>0

17. y' =2y = €%, y(0) =2

18. ty’ + 2y =ssint, yr/2)=1, t>0

19. £y + 42y = e, y(-1) =0, t<0

20 tyy + ¢+ Dy =1, yn2)=1, >0

In each of Problems 21 through 23:

(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as ¢ becomes large? Does the behavior depend on the choice of the initial value a?
Let ay be the value of a for which the transition from one type of behavior to another occurs.
Estimate the value of ay.

(b) Solve the initial value problem and find the critical value a, exactly.

(c) Describe the behavior of the solution corresponding to the initial value ay.
21. y =iy =2cost, y(0)=a

2.2y —y=¢€3 y0)=a

23. 3y =2y =2 y0)=a

In each of Problems 24 through 26:

(a) Draw a direction field for the given differential equation. How do solutions appear to
behave ast — 0? Does the behavior depend on the choice of the initial value a? Let a, be the
value of a for which the transition from one type of behavior to another occurs. Estimate the
value of ay.

(b) Solve the initial value problem and find the critical value a, exactly.

(c) Describe the behavior of the solution corresponding to the initial value ay.

¢l 24 y+@+by=2e", yl)=a, t>0

&0 25ty +2y=Ginn/t,  y(-m/2)=a, t<0
."Z 26. (sint)y’ + (cost)y = ¢, y)=a, O<t<m
."Z 27. Consider the initial value problem

Yy +3y=2cost,  y0)=-1.

Find the coordinates of the first local maximum point of the solution for ¢ > 0.

."Z 28. Consider the initial value problem

Y+iy=1-1t,  y0) =y,.

Find the value of y, for which the solution touches, but does not cross, the ¢-axis.
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& 29.

30.

31.

32.

33.

Consider the initial value problem
y’+%y:3+2c032t, y(0) =0.

(a) Find the solution of this initial value problem and describe its behavior for large 7.
(b) Determine the value of 7 for which the solution first intersects the line y = 12.

Find the value of y, for which the solution of the initial value problem
y —y=1+3sint,  y(0) =yo

remains finite as t — oo.
Consider the initial value problem

=3y =3t+2¢, y(0) = yp.

Find the value of y, that separates solutions that grow positively as t — oo from those
that grow negatively. How does the solution that corresponds to this critical value of yy
behave as t — oc0?

Show that all solutions of 2y" + ty = 2 [Eq. (41) of the text] approach a limit as t — oo,
and find the limiting value.
Hint: Consider the general solution, Eq. (47), and use L’Hopital’s rule on the first term.
Show that if @ and A are positive constants, and b is any real number, then every solution
of the equation

y +ay =be™
has the property that y — 0 as ¢t — oo.
Hint: Consider the cases a = A and a # A separately.

In each of Problems 34 through 37, construct a first order linear differential equation whose
solutions have the required behavior as 1 — oo. Then solve your equation and confirm that
the solutions do indeed have the specified property.

34.
35.
36.
37.
38.

All solutions have the limit 3 as t — oo.

All solutions are asymptotic to the line y =3 —fas t — oo.

All solutions are asymptotic to the line y = 2t — 5 as t — oo.

All solutions approach the curve y = 4 — f* ast — oo.

Variation of Parameters. Consider the following method of solving the general linear
equation of first order:

Y +p@)y =g®. )
(a) If g(r) = O for all #, show that the solution is
y =Aexp [— / p() dZ] , (ii)

where A is a constant.
(b) If g(¢) is not everywhere zero, assume that the solution of Eq. (i) is of the form

y =A@ exp [— / P dt] , (iii)
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where A is now a function of ¢. By substituting for y in the given differential equation,
show that A (#) must satisfy the condition

A'(t) = g(t) exp [/p(t) dt] . (iv)

(c) Find A(?) from Eq. (iv). Then substitute for A(¢) in Eq. (iii) and determine y. Verify
that the solution obtained in this manner agrees with that of Eq. (33) in the text. This
technique is known as the method of variation of parameters; it is discussed in detail in
Section 3.6 in connection with second order linear equations.

In each of Problems 39 through 42, use the method of Problem 38 to solve the given differential
equation.

39. y' =2y =1’ 40. y + (1/)y =3cos2t, >0
41. ty' + 2y =ssint, t>0 42. 2y +y =3

2.2 Separable Equations

In Section 1.2 we used a process of direct integration to solve first order linear
equations of the form

dy

priaid + b, (1)
where a and b are constants. We will now show that this process is actually applicable
to a much larger class of equations.

We will use x, rather than ¢, to denote the independent variable in this section for
two reasons. In the first place, different letters are frequently used for the variables in
a differential equation, and you should not become too accustomed to using a single
pair. In particular, x often occurs as the independent variable. Further, we want to
reserve ¢ for another purpose later in the section.

The general first order equation is

dy

Linear equations were considered in the preceding section, but if Eq. (2) is nonlinear,

then there is no universally applicable method for solving the equation. Here, we

consider a subclass of first order equations that can be solved by direct integration.
To identify this class of equations, we first rewrite Eq. (2) in the form

d
M(x,) + N.y) 2 = 0. 3)
X
Itis always possible to do this by setting M (x,y) = —f (x,y) and N (x,y) = 1,but there

may be other ways as well. If it happens that M is a function of x only and N is a
function of y only, then Eq. (3) becomes

d
M) + N(y)d—i —0. (4)
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EXAMPLE

1

Such an equation is said to be separable, because if it is written in the differential
form

M(x)dx+ N(y)dy =0, 5)

then, if you wish, terms involving each variable may be placed on opposite sides
of the equation. The differential form (5) is also more symmetric and tends to
suppress the distinction between independent and dependent variables.

A separable equation can be solved by integrating the functions M and N.
We illustrate the process by an example and then discuss it in general for Eq. (4).

Show that the equation

dy X2

= 6
dx 1—)? ©)
is separable, and then find an equation for its integral curves.
If we write Eq. (6) as
d
—2 (1) 2 =0, @)
dx

then it has the form (4) and is therefore separable. Recall from calculus that if y is a function
of x, then by the chain rule,

d _d dy , dy
o= fdyf(y) it A
For example, if f(y) = y — y*/3, then
d 3y 12 dy
Oy /A=A-y)

Thus the second term in Eq. (7) is the derivative with respect to x of y — y3/3, and the first
term is the derivative of —x*/3. Thus Eq. (7) can be written as

d x3 d y3
R —_— P T :0
dx( 3>+dx<y 3) ’

d x3 y3
E(‘?”‘?) =0

Therefore, by integrating, we obtain

or

- 4+3y—y =c, (®)

where c is an arbitrary constant. Equation (8) is an equation for the integral curves of Eq. (6).
A direction field and several integral curves are shown in Figure 2.2.1. Any differentiable
function y = ¢(x) that satisfies Eq. (8) is a solution of Eq. (6). An equation of the integral
curve passing through a particular point (xy, y) can be found by substituting x, and y, for x
and y, respectively, in Eq. (8) and determining the corresponding value of c.
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FIGURE 2.2.1 Direction field and integral curves of y = x?/(1 — y?).

Essentially the same procedure can be followed for any separable equation.
Returning to Eq. (4),let H; and H, be any antiderivatives of M and N, respectively.
Thus

Hi(x) =M,  Hy(y)=N(©), )
and Eq. (4) becomes
dy
H| Hj(y)— =0. 10
10 + Hy(y) I (10)
If y is regarded as a function of x, then according to the chain rule,
dy d dy d
Hi(y)— = — Hy(y) — = —Hy(y). 11
2()’)dx dy 2(y) = 2(y) 11)
Consequently, we can write Eq. (10) as

d
d—[Hl(x) + Hx(y)] = 0. (12)
X
By integrating Eq. (12), we obtain
Hi(x) + Hy(y) = c, (13)

where ¢ is an arbitrary constant. Any differentiable function y = ¢(x) that satisfies
Eq. (13) is a solution of Eq. (4); in other words, Eq. (13) defines the solution implic-
itly rather than explicitly. In practice, Eq. (13) is usually obtained from Eq. (5) by
integrating the first term with respect to x and the second term with respect to y. The
justification for this is the argument that we have just given.

The differential equation (4), together with an initial condition

y(xo) = yo, (14)
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EXAMPLE

2

forms an initial value problem. To solve this initial value problem, we must determine
the appropriate value for the constant ¢ in Eq. (13). We do this by setting x = x( and
y = yp in Eq. (13) with the result that

¢ = Hi(xo) + Ha(yo). (15)

Substituting this value of ¢ in Eq. (13) and noting that

X y
H1(x)—H1(xO)=/ M(s) ds, Hz(y)—Hz(YO)=/ N(s) ds,
Xo Yo

we obtain

x y
/ M(s) ds+/ N(s)ds = 0. (16)
X0 Yo

Equation (16) is an implicit representation of the solution of the differential equation
(4) that also satisfies the initial condition (14). Bear in mind that to determine an
explicit formula for the solution, you need to solve Eq. (16) for y as a function of x.
Unfortunately, it is often impossible to do this analytically; in such cases you can
resort to numerical methods to find approximate values of y for given values of x.

Solve the initial value problem

dy 3xX*+4x+2
o _xruTe 0)=—1 17
dx 20 —-1) y©) ’ (17)

and determine the interval in which the solution exists.
The differential equation can be written as

2(y — 1) dy = (3x* + 4x + 2) dx.
Integrating the left side with respect to y and the right side with respect to x gives
yr =2y =x>4+2x% +2x +c, (18)

where c is an arbitrary constant. To determine the solution satisfying the prescribed initial
condition, we substitute x = 0 and y = —1 in Eq. (18), obtaining ¢ = 3. Hence the solution of
the initial value problem is given implicitly by

y? =2y = x> +2x% +2x + 3. (19)

To obtain the solution explicitly, we must solve Eq. (19) for y in terms of x. That is a simple
matter in this case, since Eq. (19) is quadratic in y, and we obtain

y=1+vVx3+2x2+2x+4. (20)

Equation (20) gives two solutions of the differential equation, only one of which, however,
satisfies the given initial condition. This is the solution corresponding to the minus sign in
Eq. (20), so we finally obtain

y=¢(x)=1_\/m (21)

as the solution of the initial value problem (17). Note that if we choose the plus sign by mistake
in Eq. (20),then we obtain the solution of the same differential equation that satisfies the initial
condition y(0) = 3. Finally, to determine the interval in which the solution (21) is valid, we must
find the interval in which the quantity under the radical is positive. The only real zero of this
expression isx = —2,so the desired interval isx > —2. Some integral curves of the differential
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EXAMPLE

3

equation are shown in Figure 2.2.2. The black curve passes through the point (0, —1) and thus
is the solution of the initial value problem (17). Observe that the boundary of the interval
of validity of the solution (21) is determined by the point (-2, 1) at which the tangent line is
vertical.

®

FIGURE 2.2.2 Integral curves of y' = (3x? + 4x + 2)/2(y — 1); the
solution satisfying y(0) = —1 is shown in black and is valid for x > —2.

Solve the equation
dy 4x—x°

dx — 443

(22)

and draw graphs of several integral curves. Also find the solution passing through the point
(0,1) and determine its interval of validity.
Rewriting Eq. (22) as
(4 +yYdy = (4 — ) dx,

integrating each side, multiplying by 4, and rearranging the terms, we obtain
y 416y +x* —8x2 =, (23)

where c is an arbitrary constant. Any differentiable function y = ¢(x) that satisfies Eq. (23)
is a solution of the differential equation (22). Graphs of Eq. (23) for several values of ¢ are
shown in Figure 2.2.3.

To find the particular solution passing through (0, 1), we setx = 0 and y = 1 in Eq. (23) with
the result that ¢ = 17. Thus the solution in question is given implicitly by

Y+ 16y +x* —8x2 =17. (24)

It is shown by the black curve in Figure 2.2.3. The interval of validity of this solution extends
on either side of the initial point as long as the function remains differentiable. From the
figure we see that the interval ends when we reach points where the tangent line is verti-
cal. It follows from the differential equation (22) that these are points where 4 + y* = 0, or
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FIGURE 2.2.3 Integral curves of y = (4x — x3)/(4 + y?).
The solution passing through (0, 1) is shown by the black curve.

y = (—4)'/3 = —1.5874. From Eq. (24) the corresponding values of x are x = 43.3488. These
points are marked on the graph in Figure 2.2.3.

Note 1: Sometimes an equation of the form (2)

dy B
E —f(x,)’)

has a constant solution y = y;. Such a solution is usually easy to find because if
f(x,y0) = 0 for some value yy and for all x, then the constant function y =y, is a
solution of the differential equation (2). For example, the equation

dy  (y—3)cosx

dc  1+2y? (25)

has the constant solution y = 3. Other solutions of this equation can be found by
separating the variables and integrating.

Note 2: The investigation of a first order nonlinear equation can sometimes be
facilitated by regarding both x and y as functions of a third variable . Then

dy dy/dt

= . 26

dx  dx/dt (26)
If the differential equation is

d F

dy _ F(x,y) @7)

dx — G(x,y)’
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then, by comparing numerators and denominators in Egs. (26) and (27), we obtain
the system

dx/dt = G(x,y),  dy/dt=F(x,y). (28)

At first sight it may seem unlikely that a problem will be simplified by replacing a
single equation by a pair of equations, but in fact, the system (28) may well be more
amenable to investigation than the single equation (27). Chapter 9 is devoted to
nonlinear systems of the form (28).

Note 3: In Example 2 it was not difficult to solve explicitly for y as a function
of x. However, this situation is exceptional, and often it will be better to leave the
solution in implicit form, as in Examples 1 and 3. Thus, in the problems below and
in other sections where nonlinear equations appear, the words “solve the following
differential equation” mean to find the solution explicitly if it is convenient to do so,
but otherwise to find an equation defining the solution implicitly.

PROBLEMS

In each of Problems 1 through 8§, solve the given differential equation.

Ly =x/y 2.y =x/yd+x%)
3.y +y?sinx =0 4.y =(Gx*—1)/3+2y)
5.y = (cos? x)(cos? 2y) 6. xy' = (1—yH'?
dy x—e* dy X
7. = = 8. — =
dx v+ ey dx 1+ yz

In each of Problems 9 through 20:

(a) Find the solution of the given initial value problem in explicit form.

(b) Plot the graph of the solution.

(c) Determine (at least approximately) the interval in which the solution is defined.

¢ 9y =0-20y", yO)=-1/6 2 10.y=(0-20/y, yl)=-2

¢ 1 xdx+yedy=0, yO)=1 g 12.dr/do=r/0, r(1)=2

¢ 1By =2/(y+x%),  yO)=-2 14y =x A+ y0) =1
¢ 15y =2x/1+2y), y2)=0 ¢ 16,y =x(>+1)/4%,  y0)=-1/v2
17y =032-e)/2y-5. y0) =1

¢ 18y =("—e)/B+4y), y0 =1

“Z 19. sin2xdx + cos3ydy =0, y(/2) = /3

&2 20. (1 —x»)'2dy = arcsinxdx,  y(0) =1

Some of the results requested in Problems 21 through 28 can be obtained either by solving
the given equations analytically or by plotting numerically generated approximations to the
solutions. Try to form an opinion about the advantages and disadvantages of each approach.

."Z 21. Solve the initial value problem

y=(0+3H/3 —6y), y0)=1

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a
vertical tangent.
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& 22

& 2.

& 24

& 2.

& 26.

& 2.

& 28

29.

Solve the initial value problem
Yy =33y -4, y1)=0

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a
vertical tangent.

Solve the initial value problem
y=2"+x7  y0)=1

and determine where the solution attains its minimum value.
Solve the initial value problem

Y=Q2-e9/G+2y), y0)=0

and determine where the solution attains its maximum value.
Solve the initial value problem

V' =2cos2x/(3 +2y), y(0) =—-1

and determine where the solution attains its maximum value.
Solve the initial value problem

y=20+x00+y), y0)=0

and determine where the solution attains its minimum value.
Consider the initial value problem

y=ty@d—-y)/3,  y0) =y

(a) Determine how the behavior of the solution as ¢ increases depends on the initial
value y.
(b) Suppose thaty, = 0.5. Find the time 7 at which the solution first reaches the value 3.98.

Consider the initial value problem
V=ty@d-y/0+0,  y0) =y, >0.

(a) Determine how the solution behaves as t — oo.
(b) If yo = 2, find the time T at which the solution first reaches the value 3.99.
(c) Findtherange ofinitial values for which the solution liesin the interval 3.99 < y < 4.01
by the time ¢ = 2.
Solve the equation
dy ay+b
dx cy+d’

where a, b, c, and d are constants.

Homogeneous Equations. If the right side of the equation dy/dx =f(x,y) can
be expressed as a function of the ratio y/x only, then the equation is said to be
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& 30.

¢ 31
¢ 33

homogeneous.! Such equations can always be transformed into separable equations
by a change of the dependent variable. Problem 30 illustrates how to solve first order
homogeneous equations.

Consider the equation

dy y—4x .
- x—v I’ )
(a) Show that Eq. (i) can be rewritten as
dy  (y/x)—4, .
A~ 1—(/x’ @

thus Eq. (i) is homogeneous.

(b) Introduce a new dependent variable v so that v = y/x,or y = xv(x). Express dy/dx in
terms of x, v, and dv/dx.

(c) Replace y and dy/dx in Eq. (ii) by the expressions from part (b) that involve v and
dv/dx. Show that the resulting differential equation is

+xdv v—4

v x

d 1—v’

or
dv > —4
=T (iii)

Observe that Eq. (iii) is separable.

(d) Solve Eq. (iii), obtaining v implicitly in terms of x.

(e) Find the solution of Eq. (i) by replacing v by y/x in the solution in part (d).

(f) Draw a direction field and some integral curves for Eq. (i). Recall that the right side
of Eq. (i) actually depends only on the ratio y/x. This means that integral curves have
the same slope at all points on any given straight line through the origin, although the
slope changes from one line to another. Therefore, the direction field and the integral
curves are symmetric with respect to the origin. Is this symmetry property evident from
your plot?

The method outlined in Problem 30 can be used for any homogeneous equation. That
is, the substitution y = xv(x) transforms a homogeneous equation into a separable
equation. The latter equation can be solved by direct integration, and then replacing v
by y/x gives the solution to the original equation. In each of Problems 31 through 38:

(a) Show that the given equation is homogeneous.

(b) Solve the differential equation.

(c) Draw a direction field and some integral curves. Are they symmetric with respect to
the origin?

dy x*+xy+)* dy x*+3y?
— = W 32, — = ———
dx X2 ‘?/ dx 2xy

dy 4y —3x v dy 4x + 3y
= 34, L=

dx 2x—y ‘2 dx 2x+y

IThe word “homogeneous” has different meanings in different mathematical contexts. The homogeneous
equations considered here have nothing to do with the homogeneous equations that will occur in Chapter 3
and elsewhere.
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d 3
& 3. dlzﬂ 62 36. (2 + 3y + ) dx — X dy = 0
x  x-—y
dy  x*—3y? dy  3y? —x?
v, 37. — = 50, 38, — =
‘/2/ dx 2xy .?/ dx 2xy

2.3 Modeling with First Order Equations

Differential equations are of interest to nonmathematicians primarily because of the
possibility of using them to investigate a wide variety of problems in the physical,
biological, and social sciences. One reason for this is that mathematical models and
their solutions lead to equations relating the variables and parameters in the prob-
lem. These equations often enable you to make predictions about how the natural
process will behave in various circumstances. It is often easy to vary parameters in
the mathematical model over wide ranges, whereas this may be very time-consuming
or expensive, if not impossible, in an experimental setting. Nevertheless, mathemat-
ical modeling and experiment or observation are both critically important and have
somewhat complementary roles in scientific investigations. Mathematical models are
validated by comparison of their predictions with experimental results. On the other
hand, mathematical analyses may suggest the most promising directions to explore
experimentally, and they may indicate fairly precisely what experimental data will
be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathemat-
ical models. We begin by recapitulating and expanding on some of the conclusions
reached in those sections. Regardless of the specific field of application, there are
three identifiable steps that are always present in the process of mathematical
modeling.

Construction of the Model. In this step you translate the physical situation into math-
ematical terms, often using the steps listed at the end of Section 1.1. Perhaps most
critical at this stage is to state clearly the physical principle(s) that are believed to
govern the process. For example, it has been observed that in some circumstances
heat passes from a warmer to a cooler body at a rate proportional to the temperature
difference, that objects move about in accordance with Newton’s laws of motion, and
thatisolated insect populations grow at a rate proportional to the current population.
Each of these statements involves a rate of change (derivative) and consequently,
when expressed mathematically, leads to a differential equation. The differential
equation is a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only
an approximate description of the actual process. For example, bodies moving at
speeds comparable to the speed of light are not governed by Newton’s laws, insect
populations do not grow indefinitely as stated because of eventual lack of food or
space, and heat transfer is affected by factors other than the temperature difference.
Thus you should always be aware of the limitations of the model so that you will use
it only when it is reasonable to believe that it is accurate. Alternatively, you can adopt
the point of view that the mathematical equations exactly describe the operation of
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EXAMPLE

1

Mixing

a simplified physical model, which has been constructed (or conceived of) so as to
embody the most important features of the actual process. Sometimes, the process
of mathematical modeling involves the conceptual replacement of a discrete process
by a continuous one. For instance, the number of members in an insect population
changes by discrete amounts; however, if the population is large, it seems reasonable
to consider it as a continuous variable and even to speak of its derivative.

Analysis of the Model. Once the problem has been formulated mathematically, you are
often faced with the problem of solving one or more differential equations or, failing
that, of finding out as much as possible about the properties of the solution. It may
happen that this mathematical problem is quite difficult,and if so, further approxima-
tions may be indicated at this stage to make the problem mathematically tractable.
For example, a nonlinear equation may be approximated by a linear one, or a slowly
varying coefficient may be replaced by a constant. Naturally, any such approxima-
tions must also be examined from the physical point of view to make sure that the
simplified mathematical problem still reflects the essential features of the physical
process under investigation. At the same time, an intimate knowledge of the physics
of the problem may suggest reasonable mathematical approximations that will make
the mathematical problem more amenable to analysis. This interplay of understand-
ing of physical phenomena and knowledge of mathematical techniques and their
limitations is characteristic of applied mathematics at its best, and it is indispens-
able in successfully constructing useful mathematical models of intricate physical
processes.

Comparison with Experiment or Observation. Finally, having obtained the solution (or at
least some information about it), you must interpret this information in the con-
text in which the problem arose. In particular, you should always check that the
mathematical solution appears physically reasonable. If possible, calculate the values
of the solution at selected points and compare them with experimentally observed
values. Or ask whether the behavior of the solution after a long time is consistent
with observations. Or examine the solutions corresponding to certain special values of
parameters in the problem. Of course, the fact that the mathematical solution appears
to be reasonable does not guarantee that it is correct. However, if the predictions of
the mathematical model are seriously inconsistent with observations of the physical
system it purports to describe, this suggests that errors have been made in solving
the mathematical problem, that the mathematical model itself needs refinement, or
that observations must be made with greater care.

The examples in this section are typical of applications in which first order differ-
ential equations arise.

Attimet = 0 atank contains Q Ib of salt dissolved in 100 gal of water;see Figure 2.3.1. Assume
that water containing % Ib of salt/gal is entering the tank at a rate of r gal/min and that the
well-stirred mixture is draining from the tank at the same rate. Set up the initial value problem
that describes this flow process. Find the amount of salt Q(¢) in the tank at any time, and also
find the limiting amount Q, that is present after a very long time. If r = 3 and Qy = 20/, find
the time 7T after which the salt level is within 2% of Q; . Also find the flow rate that is required
if the value of T is not to exceed 45 min.

We assume that salt is neither created nor destroyed in the tank. Therefore, variations in
the amount of salt are due solely to the flows in and out of the tank. More precisely, the rate
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of change of salt in the tank, dQ/dt, is equal to the rate at which salt is flowing in minus the
rate at which it is flowing out. In symbols,

dQ .

s rate in — rate out. @
The rate at which salt enters the tank is the concentration } Ib/gal times the flow rate r gal/min,
or (r/4) Ib/min. To find the rate at which salt leaves the tank, we need to multiply the concen-
tration of salt in the tank by the rate of outflow, r gal/min. Since the rates of flow in and out
are equal, the volume of water in the tank remains constant at 100 gal, and since the mixture
is “well-stirred,” the concentration throughout the tank is the same, namely, [Q(¢)/100] 1b/gal.
Therefore, the rate at which salt leaves the tank is [rQ(#)/100] Ib/min. Thus the differential
equation governing this process is

dago r rQ
—_— = - —, 2
t 4 100 2)
The initial condition is
0(0) = Qo. (3)

rgal/min,% Ib/gal

r gal/min

FIGURE 2.3.1 The water tank in Example 1.

Upon thinking about the problem physically, we might anticipate that eventually the mixture
originally in the tank will be essentially replaced by the mixture flowing in, whose concentration
is % Ib/gal. Consequently, we might expect that ultimately the amount of salt in the tank would
be very close to 25 Ib. We can also find the limiting amount Q; = 25 by setting dQ/dt equal
to zero in Eq. (2) and solving the resulting algebraic equation for Q.

To solve the initial value problem (2), (3) analytically, note that Eq. (2) is both linear and
separable. Rewriting it in the standard form for a linear equation, we have

dao rQ r
ELE_T 4
dt + 100 4 )
Thus the integrating factor is ¢"/!® and the general solution is
O(f) =25 + ce /10, 5)

where cis an arbitrary constant. To satisfy the initial condition (3),we must choose ¢ = Qy — 25.
Therefore, the solution of the initial value problem (2), (3) is

O(f) =25+ (Qy — 25)e™ /10, (6)
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or
Ot) = 25(1 — e~/  Qpe/1 @

From Eq. (6) or (7), you can see that Q(t) — 25 (Ib) as t — oo, so the limiting value Q; is
25, confirming our physical intuition. Further, Q(¢) approaches the limit more rapidly as r
increases. In interpreting the solution (7), note that the second term on the right side is the
portion of the original salt that remains at time ¢, while the first term gives the amount of salt in
the tank as a consequence of the flow processes. Plots of the solution for r = 3 and for several
values of Q, are shown in Figure 2.3.2.

Q
50

40

30

—
20//

10

| | | | |
20 40 60 80 100 ¢

FIGURE 2.3.2 Solutions of the initial value problem (2), (3):
dQ/dt = (r/4) — rQ/100, Q(0) = Q, for r = 3 and several values of Q.

Now suppose that r = 3 and Qy = 2Q; = 50; then Eq. (6) becomes
Q(t) = 25 4 25¢ 0%, 8)

Since 2% of 25 is 0.5, we wish to find the time 7" at which Q(¢) has the value 25.5. Substituting
t = T and Q = 25.5 in Eq. (8) and solving for T, we obtain

T = (In50)/0.03 = 130.4 (min). 9)

To determine r so that T = 45, return to Eq. (6),set t = 45, Qy = 50, Q(t) = 25.5, and solve
for r. The result is

r = (100/45) In 50 = 8.69 gal/min. (10)

Since this example is hypothetical, the validity of the model is not in question. If the flow
rates are as stated, and if the concentration of salt in the tank is uniform, then the differential
equation (1) is an accurate description of the flow process. Although this particular example
has no special significance, models of this kind are often used in problems involving a pollutant
in a lake, or a drug in an organ of the body, for example, rather than a tank of salt water. In
such cases the flow rates may not be easy to determine or may vary with time. Similarly, the
concentration may be far from uniform in some cases. Finally, the rates of inflow and outflow
may be different, which means that the variation of the amount of liquid in the problem must
also be taken into account.
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EXAMPLE

2

Compound
Interest

Suppose that a sum of money is deposited in a bank or money fund that pays interest at an
annual rate r. The value S(¢) of the investment at any time ¢ depends on the frequency with
which interest is compounded as well as on the interest rate. Financial institutions have various
policies concerning compounding: some compound monthly, some weekly, some even daily.
If we assume that compounding takes place continuously, then we can set up an initial value
problem that describes the growth of the investment.

The rate of change of the value of the investment is dS/dt, and this quantity is equal to
the rate at which interest accrues, which is the interest rate r times the current value of the
investment S(¢). Thus

ds/dt =rS 1)

is the differential equation that governs the process. Suppose that we also know the value of
the investment at some particular time, say,

S(0) = Sp. (12)

Then the solution of the initial value problem (11), (12) gives the balance S(¢) in the account
at any time ¢. This initial value problem is readily solved, since the differential equation (11)
is both linear and separable. Consequently, by solving Eqgs. (11) and (12), we find that

S(t) = Spe™. (13)

Thus a bank account with continuously compounding interest grows exponentially.

Let us now compare the results from this continuous model with the situation in which
compounding occurs at finite time intervals. If interest is compounded once a year, then after
t years

S@) =So(1 +1r).

If interest is compounded twice a year, then at the end of 6 months the value of the investment
is So[1 + (r/2)], and at the end of 1 year it is So[1 + (r/2)]>. Thus, after ¢ years we have

S = S (1 i %)Zt.

In general, if interest is compounded m times per year, then

t

7o\ m
S =S(1+-) . (14)
The relation between formulas (13) and (14) is clarified if we recall from calculus that

fim S (14 )" = e
m—>00 m

The same model applies equally well to more general investments in which dividends and
perhaps capital gains can also accumulate, as well as interest. In recognition of this fact, we
will from now on refer to r as the rate of return.

Table 2.3.1 shows the effect of changing the frequency of compounding for a return rate
r of 8%. The second and third columns are calculated from Eq. (14) for quarterly and daily
compounding, respectively, and the fourth column is calculated from Eq. (13) for continuous
compounding. The results show that the frequency of compounding is not particularly impor-
tant in most cases. For example, during a 10-year period the difference between quarterly
and continuous compounding is $17.50 per $1000 invested, or less than $2/year. The differ-
ence would be somewhat greater for higher rates of return and less for lower rates. From the
first row in the table, we see that for the return rate r = 8%, the annual yield for quarterly
compounding is 8.24% and for daily or continuous compounding it is 8.33%.

Returning now to the case of continuous compounding, let us suppose that there may be
deposits or withdrawals in addition to the accrual of interest, dividends, or capital gains. If
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TABLE 2.3.1 Growth of Capital at a Return Rate r = 8%
for Several Modes of Compounding

S(@)/S(t) fromEq. (14)

S(1)/S(t)
Years m=4 m = 365 from Eq. (13)
1 1.0824 1.0833 1.0833
2 1.1717 1.1735 1.1735
5 1.4859 1.4918 1.4918
10 2.2080 2.2253 2.2255
20 4.8754 4.9522 4.9530
30 10.7652 11.0203 11.0232
40 23.7699 24.5239 24.5325

we assume that the deposits or withdrawals take place at a constant rate k, then Eq. (11) is
replaced by

ds/dt = rS + k,

or, in standard form,
ds/dt —rS =k, (15)

where k is positive for deposits and negative for withdrawals.
Equation (15) is linear with the integrating factor e, so its general solution is

S(t) = ce" — (k/r),

where ¢ is an arbitrary constant. To satisfy the initial condition (12), we must choose
¢ = Sy + (k/r). Thus the solution of the initial value problem (15), (12) is

S@t) = Spe" + (k/r)(e" —1). (16)

The first term in expression (16) is the part of S() that is due to the return accumulated on
the initial amount Sy, and the second term is the part that is due to the deposit or withdrawal
rate k.

The advantage of stating the problem in this general way without specific values for S, r, or
k lies in the generality of the resulting formula (16) for S(z). With this formula we can readily
compare the results of different investment programs or different rates of return.

For instance, suppose that one opens an individual retirement account (IRA) at age 25 and
makes annual investments of $2000 thereafter in a continuous manner. Assuming a rate of
return of 8%, what will be the balance in the IRA at age 65? We have Sy = 0, r = 0.08, and
k = $2000, and we wish to determine S(40). From Eq. (16) we have

S(40) = (25,000)(e** — 1) = $588,313. (17)

It is interesting to note that the total amount invested is $80,000, so the remaining amount of
$508,313 results from the accumulated return on the investment. The balance after 40 years
is also fairly sensitive to the assumed rate. For instance, S(40) = $508,948 if r = 0.075 and
S(40) = $681,508 if r = 0.085.

Let us now examine the assumptions that have gone into the model. First, we have assumed
that the return is compounded continuously and that additional capital is invested continu-
ously. Neither of these is true in an actual financial situation. We have also assumed that the
return rate r is constant for the entire period involved, whereas in fact it is likely to fluctuate
considerably. Although we cannot reliably predict future rates, we can use expression (16) to
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3

Chemicalsin
a Pond

determine the approximate effect of different rate projections. It is also possible to consider
rand k in Eq. (15) to be functions of ¢ rather than constants;in that case, of course, the solution
may be much more complicated than Eq. (16).

The initial value problem (15), (12) and the solution (16) can also be used to analyze a
number of other financial situations, including annuities, mortgages, and automobile loans.

Consider a pond that initially contains 10 million gal of fresh water. Water containing an
undesirable chemical flows into the pond at the rate of 5 million gal/yr, and the mixture in
the pond flows out at the same rate. The concentration y(¢) of chemical in the incoming water
varies periodically with time according to the expression y(f) = 2 + sin 2t g/gal. Construct a
mathematical model of this flow process and determine the amount of chemical in the pond
at any time. Plot the solution and describe in words the effect of the variation in the incoming
concentration.

Since the incoming and outgoing flows of water are the same, the amount of water in the
pond remains constant at 107 gal. Let us denote time by ¢, measured in years, and the chemical
by O(), measured in grams. This example is similar to Example 1, and the same inflow/outflow
principle applies. Thus

dQ .

—— =rate 1n — rate out,

dt
where “rate in” and “rate out” refer to the rates at which the chemical flows into and out of
the pond, respectively. The rate at which the chemical flows in is given by

rate in = (5 x 10°) gal/yr (2 + sin2¢) g/gal. (18)
The concentration of chemical in the pond is Q(r)/107 g/gal, so the rate of flow out is
rate out = (5 x 10°%) gal/yr [Q()/107] g/gal = Q(r)/2 g/yr. (19)
Thus we obtain the differential equation
d t
d—? = (5 x 10%(2 + sin2f) — % (20)

where each term has the units of g/yr.

To make the coefficients more manageable, it is convenient to introduce a new dependent
variable defined by q(t) = Q(t)/10°, or Q(t) = 10° g(¢). This means that ¢(¢) is measured in
millions of grams, or megagrams (metric tons). If we make this substitution in Eq. (20), then
each term contains the factor 10°, which can be canceled. If we also transpose the term involving
q(1) to the left side of the equation, we finally have

d .
d—‘t’ +1g=10+5sin2r. 1)
Originally, there is no chemical in the pond, so the initial condition is

q(0) =0. (22)

Equation (21) is linear, and although the right side is a function of time, the coefficient
of ¢ is a constant. Thus the integrating factor is ¢'/?. Multiplying Eq. (21) by this factor and
integrating the resulting equation, we obtain the general solution

. —i2
q(t) =20 — 3% cos 2t + 12 sin 2 + ce™"/”. (23)

The initial condition (22) requires that ¢ = —300/17,so the solution of the initial value problem
(21),(22) is
: —1/2
q(t) =20 — 39 cos 2t + ¥ sin2r — We 2. (24)
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Velocity

A plot of the solution (24) is shown in Figure 2.3.3, along with the line ¢ = 20. The exponential
term in the solution is important for small ¢, but it diminishes rapidly as ¢ increases. Later, the
solution consists of an oscillation, due to the sin 2t and cos 2t terms, about the constant level
q = 20. Note that if the sin2¢ term were not present in Eq. (21), then ¢ = 20 would be the
equilibrium solution of that equation.
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FIGURE 2.3.3 Solution of the initial value problem (21), (22):
dq/dt + %q =10+ 5sin2¢, q(0) =0.

Let us now consider the adequacy of the mathematical model itself for this problem.
The model rests on several assumptions that have not yet been stated explicitly. In the first
place, the amount of water in the pond is controlled entirely by the rates of flow in and out—
none is lost by evaporation or by seepage into the ground, and none is gained by rainfall.
The same is true of the chemical; it flows into and out of the pond, but none is absorbed by
fish or other organisms living in the pond. In addition, we assume that the concentration of
chemical in the pond is uniform throughout the pond. Whether the results obtained from the
model are accurate depends strongly on the validity of these simplifying assumptions.

A body of constant mass m is projected away from the earth in a direction perpendicular to the
earth’s surface with an initial velocity vy. Assuming that there is no air resistance, but taking
into account the variation of the earth’s gravitational field with distance, find an expression
for the velocity during the ensuing motion. Also find the initial velocity that is required to
lift the body to a given maximum altitude £ above the surface of the earth, and find the
least initial velocity for which the body will not return to the earth; the latter is the escape
velocity.

Let the positive x-axis point away from the center of the earth along the line of motion with
x = 0 lying on the earth’s surface; see Figure 2.3.4. The figure is drawn horizontally to remind
you that gravity is directed toward the center of the earth, which is not necessarily downward
from a perspective away from the earth’s surface. The gravitational force acting on the body
(that is, its weight) is inversely proportional to the square of the distance from the center of
the earth and is given by w(x) = —k/(x + R)?, where k is a constant, R is the radius of the
earth, and the minus sign signifies that w(x) is directed in the negative x direction. We know
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FIGURE 2.3.4 A body in the earth’s gravitational field.

that on the earth’s surface w(0) is given by —mg, where g is the acceleration due to gravity at
sea level. Therefore, k = mgR? and

mgR?
=—-—"— 25
w(x) R1 02 (25)
Since there are no other forces acting on the body, the equation of motion is
dv mgR?
— = 26
dt (R+x)?° (26)
and the initial condition is
v(0) = vp. (27)

Unfortunately, Eq. (26) involves too many variables since it depends on ¢, x, and v. To
remedy this situation, we can eliminate ¢ from Eq. (26) by thinking of x, rather than ¢, as the
independent variable. Then we can express dv/dt in terms of dv/dx by using the chain rule;

hence
dv dvdi)c B dv

dr " dedr  dx

and Eq. (26) is replaced by

dv gR?
w_ & 28
Ydx T TR+ (28)

Equation (28) is separable but not linear, so by separating the variables and integrating, we
obtain
v gR?

i X 29
2 R+x+c (29)

Since x = 0 when ¢ = 0, the initial condition (27) at # = 0 can be replaced by the condition that
v = vy when x = 0. Hence ¢ = (v3/2) — gR and

/ 2%R?
ve+ vg—zgR+Rg+x. (30)

Note that Eq. (30) gives the velocity as a function of altitude rather than as a function of time.
The plus sign must be chosen if the body is rising, and the minus sign must be chosen if it is
falling back to earth.

To determine the maximum altitude & that the body reaches, we set v =0 and x = £ in
Eq. (30) and then solve for &, obtaining

2
R

EZZgR—vg'

(31)
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Solving Eq. (31) for vy, we find the initial velocity required to lift the body to the altitude &,

namely,
§
= |2gR . 2
OV Ry G2

The escape velocity v, is then found by letting £ — co. Consequently,

ve = v/2gR. (33)

The numerical value of v, is approximately 6.9 mi/s, or 11.1 km/s.

The preceding calculation of the escape velocity neglects the effect of air resistance, so the
actual escape velocity (including the effect of air resistance) is somewhat higher. On the other
hand, the effective escape velocity can be significantly reduced if the body is transported a
considerable distance above sea level before being launched. Both gravitational and frictional
forces are thereby reduced; air resistance, in particular, diminishes quite rapidly with increasing
altitude. You should keep in mind also that it may well be impractical to impart too large an
initial velocity instantaneously; space vehicles, for instance, receive their initial acceleration
during a period of a few minutes.

PROBLEMS

1. Consider a tank used in certain hydrodynamic experiments. After one experiment the
tank contains 200 L of a dye solution with a concentration of 1 g/L. To prepare for
the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of
2 L/min, the well-stirred solution flowing out at the same rate. Find the time that will
elapse before the concentration of dye in the tank reaches 1% of its original value.

2. A tank initially contains 120 L of pure water. A mixture containing a concentration of
y g/L of salt enters the tank at a rate of 2 L/min, and the well-stirred mixture leaves the
tank at the same rate. Find an expression in terms of y for the amount of salt in the tank
at any time ¢. Also find the limiting amount of salt in the tank as ¢ — oco.

3. A tank originally contains 100 gal of fresh water. Then water containing 1 Ib of salt per
gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at
the same rate. After 10 min the process is stopped, and fresh water is poured into the tank
at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of
salt in the tank at the end of an additional 10 min.

4. A tank with a capacity of 500 gal originally contains 200 gal of water with 100 Ib of salt
in solution. Water containing 1 1b of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to overflow.
Find the concentration (in pounds per gallon) of salt in the tank when it is on the point
of overflowing. Compare this concentration with the theoretical limiting concentration if
the tank had infinite capacity.

."Z 5. A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration of

%(1 + % sint) oz/gal flows into the tank at a rate of 2 gal/min, and the mixture in the tank
flows out at the same rate.

(a) Find the amount of salt in the tank at any time.

(b) Plot the solution for a time period long enough so that you see the ultimate behavior
of the graph.

(c) The long-time behavior of the solution is an oscillation about a certain constant level.
What is this level? What is the amplitude of the oscillation?
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6.

10.

Suppose that a tank containing a certain liquid has an outlet near the bottom. Let /A(¢)
be the height of the liquid surface above the outlet at time ¢. Torricelli’s* principle states
that the outflow velocity v at the outlet is equal to the velocity of a particle falling freely
(with no drag) from the height A.

(a) Show that v = \/2gh, where g is the acceleration due to gravity.

(b) By equating the rate of outflow to the rate of change of liquid in the tank, show that
h(t) satisfies the equation

A(h)% = —aa\/2gh, @)

where A(h) is the area of the cross section of the tank at height 4 and a is the area of the
outlet. The constant « is a contraction coefficient that accounts for the observed fact that
the cross section of the (smooth) outflow stream is smaller than a. The value of « for water
is about 0.6.

(c) Consider a water tank in the form of a right circular cylinder that is 3 m high above
the outlet. The radius of the tank is 1 m, and the radius of the circular outlet is 0.1 m.
If the tank is initially full of water, determine how long it takes to drain the tank down to
the level of the outlet.

. Suppose that a sum Sy is invested at an annual rate of return r compounded continuously.

(a) Find the time T required for the original sum to double in value as a function of .
(b) Determine T if r = 7%.

(c) Find the return rate that must be achieved if the initial investment is to double in
8 years.

. A young person with no initial capital invests k dollars per year at an annual rate of

return r. Assume that investments are made continuously and that the return is
compounded continuously.

(a) Determine the sum S(z) accumulated at any time ¢.
(b) If r = 7.5%,determine k so that $1 million will be available for retirement in 40 years.

(¢) If k = $2000/year,determine the return rate r that must be obtained to have $1 million
available in 40 years.

. A certain college graduate borrows $8000 to buy a car. The lender charges interest at

an annual rate of 10%. Assuming that interest is compounded continuously and that
the borrower makes payments continuously at a constant annual rate k, determine the
payment rate k that is required to pay off the loan in 3 years. Also determine how much
interest is paid during the 3-year period.

A home buyer can afford to spend no more than $1500/month on mortgage payments.
Suppose that the interest rate is 6%, that interest is compounded continuously, and that
payments are also made continuously.

(a) Determine the maximum amount that this buyer can afford to borrow on a 20-year
mortgage; on a 30-year mortgage.

(b) Determine the total interest paid during the term of the mortgage in each of the cases
in part (a).

2Evangelista Torricelli (1608-1647), successor to Galileo as court mathematician in Florence, published
this resultin 1644. He is also known for constructing the first mercury barometer and for making important
contributions to geometry.
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11.

& 12

13.

¢ 14

A home buyer wishes to borrow $250,000 at an interest rate of 6% to finance the pur-
chase. Assume that interest is compounded continuously and that payments are also made
continuously.

(a) Determine the monthly payment that is required to pay off the loan in 20 years;
in 30 years.

(b) Determine the total interest paid during the term of the loan in each of the cases in
part (a).
A recent college graduate borrows $150,000 at an interest rate of 6% to purchase a con-

dominium. Anticipating steady salary increases, the buyer expects to make payments at a
monthly rate of 800 4 10¢, where ¢ is the number of months since the loan was made.

(a) Assuming that this payment schedule can be maintained, when will the loan be fully
paid?

(b) Assuming the same payment schedule, how large a loan could be paid off in exactly
20 years?

An important tool in archeological research is radiocarbon dating, developed by the
American chemist Willard F. Libby.? This is a means of determining the age of certain wood
and plant remains, and hence of animal or human bones or artifacts found buried at the
same levels. Radiocarbon dating is based on the fact that some wood or plant remains con-
tain residual amounts of carbon-14, a radioactive isotope of carbon. This isotope is accumu-
lated during the lifetime of the plant and begins to decay at its death. Since the half-life of
carbon-14 is long (approximately 5730 years*), measurable amounts of carbon-14 remain
after many thousands of years. If even a tiny fraction of the original amount of carbon-14
is still present, then by appropriate laboratory measurements the proportion of the orig-
inal amount of carbon-14 that remains can be accurately determined. In other words, if
Q(t) is the amount of carbon-14 at time ¢ and Q, is the original amount, then the ratio
Q(t)/Qp can be determined, as long as this quantity is not too small. Present measurement
techniques permit the use of this method for time periods of 50,000 years or more.

(a) Assuming that Q satisfies the differential equation Q" = —rQ, determine the decay
constant r for carbon-14.

(b) Find an expression for Q(¢) at any time ¢, if Q(0) = Q.
(c) Suppose that certain remains are discovered in which the current residual amount of
carbon-14 is 20% of the original amount. Determine the age of these remains.

Suppose that a certain population has a growth rate that varies with time and that this
population satisfies the differential equation

dy/dt = (0.5 +sint)y/5.

(a) Ify(0) = 1,find (or estimate) the time t at which the population has doubled. Choose
other initial conditions and determine whether the doubling time t depends on the initial
population.

(b) Suppose that the growth rate is replaced by its average value 1/10. Determine the
doubling time 7 in this case.

3Willard F. Libby (1908-1980) was born in rural Colorado and received his education at the University of
California at Berkeley. He developed the method of radiocarbon dating beginning in 1947 while he was
at the University of Chicago. For this work he was awarded the Nobel Prize in chemistry in 1960.
4McGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York: McGraw-Hill, 1997), Vol. 5,
p- 48.
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(c) Suppose that the term sin¢ in the differential equation is replaced by sin 27x¢; that is,
the variation in the growth rate has a substantially higher frequency. What effect does this
have on the doubling time t?

(d) Plot the solutions obtained in parts (a), (b), and (c) on a single set of axes.

Suppose that a certain population satisfies the initial value problem

dy/dt =r(t)y —k,  y(0) =y,

where the growth rate r(¢) is given by r(¢f) = (1 +sint)/5, and k represents the rate of
predation.

(a) Suppose that k = 1/5. Plot y versus ¢ for several values of y, between 1/2 and 1.

(b) Estimate the critical initial population y. below which the population will become
extinct.

(c) Choose other values of k and find the corresponding y, for each one.

(d) Use the data you have found in parts (b) and (c) to plot y. versus k.

Newton’s law of cooling states that the temperature of an object changes at a rate pro-
portional to the difference between its temperature and that of its surroundings. Suppose
that the temperature of a cup of coffee obeys Newton’s law of cooling. If the coffee has a
temperature of 200°F when freshly poured, and 1 min later has cooled to 190°F in a room
at 70°F, determine when the coffee reaches a temperature of 150°F.

Heat transfer from a body to its surroundings by radiation, based on the Stefan—
Boltzmann?® law, is described by the differential equation

du
dt

where u(¢) is the absolute temperature of the body at time ¢, 7" is the absolute temperature
of the surroundings, and « is a constant depending on the physical parameters of the body.
However, if u is much larger than T, then solutions of Eq. (i) are well approximated by
solutions of the simpler equation

= —a('—TY, ()

% = —au*. (ii)
Suppose that a body with initial temperature 2000 K is surrounded by a medium with
temperature 300 K and that @ = 2.0 x 10712 K=3/s.

(a) Determine the temperature of the body at any time by solving Eq. (ii).

(b) Plot the graph of u versus ¢.

(c) Findthe time 7 at which u(7) = 600—that is, twice the ambient temperature. Up to this
time the error in using Eq. (ii) to approximate the solutions of Eq. (i) is no more than 1%.

Consider an insulated box (a building, perhaps) with internal temperature u(t). According
to Newton’s law of cooling, u satisfies the differential equation

d

o= —klu =T, )
where T(¢) is the ambient (external) temperature. Suppose that 7'(¢) varies sinusoidally;
for example, assume that 7'(¢) = Ty + T cos wt.

3Jozef Stefan (1835-1893), professor of physics at Vienna, stated the radiation law on empirical grounds
in 1879. His student Ludwig Boltzmann (1844-1906) derived it theoretically from the principles of
thermodynamics in 1884. Boltzmann is best known for his pioneering work in statistical mechanics.
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(a) Solve Eq. (i) and express u(¢) in terms of ¢, k, Ty, Ty, and w. Observe that part of
your solution approaches zero as ¢ becomes large; this is called the transient part. The
remainder of the solution is called the steady state; denote it by S(¢).

(b) Suppose that 7 is measured in hours and that @ = /12, corresponding to a period of
24 h for T'(t). Further, let Ty = 60°F, T} = 15°F, and k = 0.2/h. Draw graphs of S(¢) and
T (¢) versus t on the same axes. From your graph estimate the amplitude R of the oscillatory
part of S(¢). Also estimate the time lag T between corresponding maxima of 7'(¢) and S(z).
(c) Letk, Ty, T, and w now be unspecified. Write the oscillatory part of S(¢) in the form
Rcos[w(t — 1)]. Use trigonometric identities to find expressions for R and t. Let 77 and w
have the values given in part (b), and plot graphs of R and 7 versus k.

Consider a lake of constant volume V' containing at time ¢ an amount Q(¢) of pollutant,
evenly distributed throughout the lake with a concentration c(¢), where c(t) = Q(@)/V.
Assume that water containing a concentration k of pollutant enters the lake at a rate r,
and that water leaves the lake at the same rate. Suppose that pollutants are also added
directly to the lake at a constant rate P. Note that the given assumptions neglect a number
of factors that may, in some cases, be important—for example, the water added or lost
by precipitation, absorption, and evaporation; the stratifying effect of temperature differ-
ences in a deep lake; the tendency of irregularities in the coastline to produce sheltered
bays; and the fact that pollutants are deposited unevenly throughout the lake but (usually)
at isolated points around its periphery. The results below must be interpreted in the light
of the neglect of such factors as these.

(a) If at time t =0 the concentration of pollutant is ¢, find an expression for the
concentration c(f) at any time. What is the limiting concentration as t — 0o0?

(b) If the addition of pollutants to the lake is terminated (k =0 and P =0 for ¢ > 0),
determine the time interval 7" that must elapse before the concentration of pollutants is
reduced to 50% of its original value; to 10% of its original value.

(c) Table 2.3.2 contains data® for several of the Great Lakes. Using these data, determine
from part (b) the time 7 that is needed to reduce the contamination of each of these lakes
to 10% of the original value.

TABLE 2.3.2 Volume and Flow Data for the Great

Lakes
Lake V (km? x 10%) r (km?/year)
Superior 12.2 65.2
Michigan 4.9 158
Erie 0.46 175
Ontario 1.6 209

A ball with mass 0.15 kg is thrown upward with initial velocity 20 m/s from the roof of a
building 30 m high. Neglect air resistance.

(a) Find the maximum height above the ground that the ball reaches.

(b) Assuming that the ball misses the building on the way down, find the time that it hits
the ground.

(c) Plot the graphs of velocity and position versus time.

This problem is based on R. H. Rainey, “Natural Displacement of Pollution from the Great Lakes,”
Science 155 (1967), pp. 1242-1243; the information in the table was taken from that source.
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Assume that the conditions are as in Problem 20 except that there is a force due to air
resistance of magnitude |v|/30 directed opposite to the velocity, where the velocity v is
measured in m/s.

(a) Find the maximum height above the ground that the ball reaches.

(b) Find the time that the ball hits the ground.

(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problem 20.

Assume that the conditions are as in Problem 20 except that there is a force due to air
resistance of magnitude v?/1325 directed opposite to the velocity, where the velocity v is
measured in m/s.

(a) Find the maximum height above the ground that the ball reaches.

(b) Find the time that the ball hits the ground.

(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problems 20 and 21.

A skydiver weighing 180 Ib (including equipment) falls vertically downward from an alti-
tude of 5000 ft and opens the parachute after 10 s of free fall. Assume that the force
of air resistance, which is directed opposite to the velocity, is of magnitude 0.75|v| when
the parachute is closed and is of magnitude 12|v| when the parachute is open, where the
velocity v is measured in ft/s.

(a) Find the speed of the skydiver when the parachute opens.

(b) Find the distance fallen before the parachute opens.

(c) What is the limiting velocity v, after the parachute opens?

(d) Determine how long the sky diver is in the air after the parachute opens.

(e) Plot the graph of velocity versus time from the beginning of the fall until the skydiver
reaches the ground.

A rocket sled having an initial speed of 150 mi/h is slowed by a channel of water. Assume
that during the braking process, the acceleration a is given by a(v) = —uv?, where v is the
velocity and p is a constant.

(a) Asin Example 4 in the text, use the relation dv/dt = v(dv/dx) to write the equation
of motion in terms of v and x.

(b) Ifitrequires a distance of 2000 ft to slow the sled to 15 mi/h, determine the value of p.
(c) Find the time t required to slow the sled to 15 mi/h.

A body of constant mass m is projected vertically upward with an initial velocity v,
in a medium offering a resistance k|v|, where k is a constant. Neglect changes in the
gravitational force.

(a) Find the maximum height x,, attained by the body and the time t,, at which this
maximum height is reached.

(b) Show that if kvy/mg < 1,then t,, and x,, can be expressed as

poo Vo [y Lku 1 ke
" g 2 mg 3 \mg ’

oo Wy 2kw Lk
" 2g 3mg 2 \mg '

(c) Show that the quantity kv,/mg is dimensionless.

A body of mass m is projected vertically upward with an initial velocity vy in a medium
offering a resistance k|v|, where k is a constant. Assume that the gravitational attraction
of the earth is constant.

(a) Find the velocity v(f) of the body at any time.
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(b) Use the result of part (a) to calculate the limit of v(¢) as k — O0—that is, as the resis-
tance approaches zero. Does this result agree with the velocity of a mass m projected
upward with an initial velocity v, in a vacuum?

(c) Use the result of part (a) to calculate the limit of v(¢) as m — 0—that is, as the mass
approaches zero.

27. A body falling in a relatively dense fluid, oil for example, is acted on by three forces
(see Figure 2.3.5): a resistive force R, a buoyant force B, and its weight w due to gravity.
The buoyant force is equal to the weight of the fluid displaced by the object. For a slowly
moving spherical body of radius a, the resistive force is given by Stokes’s law, R = 6mrpalv|,
where v is the velocity of the body, and w is the coefficient of viscosity of the surrounding
fluid.”

(a) Find the limiting velocity of a solid sphere of radius a and density p falling freely in a
medium of density p’ and coefficient of viscosity .

(b) In 1910 R. A. Millikan® studied the motion of tiny droplets of oil falling in an electric
field. A field of strength E exerts a force Ee on a droplet with charge e. Assume that E
has been adjusted so the droplet is held stationary (v = 0) and that w and B are as given
above. Find an expression for e. Millikan repeated this experiment many times, and from
the data that he gathered he was able to deduce the charge on an electron.

R4} +B

"o

.

FIGURE 2.3.5 A body falling in a dense fluid.

."?, 28. A mass of 0.25 kg is dropped from rest in a medium offering a resistance of 0.2|v|, where
v is measured in m/s.

(a) If the mass is dropped from a height of 30 m, find its velocity when it hits the ground.

(b) If the mass is to attain a velocity of no more than 10 m/s, find the maximum height
from which it can be dropped.

7Sir George Gabriel Stokes (1819-1903) was born in Ireland but for most of his life was at Cambridge
University, first as a student and later as a professor. Stokes was one of the foremost applied mathemati-
cians of the nineteenth century, best known for his work in fluid dynamics and the wave theory of light.
The basic equations of fluid mechanics (the Navier—Stokes equations) are named partly in his honor, and
one of the fundamental theorems of vector calculus bears his name. He was also one of the pioneers in
the use of divergent (asymptotic) series.

8Robert A. Millikan (1868-1953) was educated at Oberlin College and Columbia University. Later he
was a professor at the University of Chicago and California Institute of Technology. His determination of
the charge on an electron was published in 1910. For this work, and for other studies of the photoelectric
effect, he was awarded the Nobel Prize for Physics in 1923.
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(c) Suppose that the resistive force is k|v|, where v is measured in m/s and & is a constant.
If the mass is dropped from a height of 30 m and must hit the ground with a velocity of
no more than 10 m/s, determine the coefficient of resistance k that is required.

Suppose that a rocket is launched straight up from the surface of the earth with initial
velocity vg = /2gR, where R is the radius of the earth. Neglect air resistance.

(a) Find an expression for the velocity v in terms of the distance x from the surface of the
earth.

(b) Find the time required for the rocket to go 240,000 mi (the approximate distance from
the earth to the moon). Assume that R = 4000 mi.

Let v(r) and w() be the horizontal and vertical components, respectively, of the velocity of
a batted (or thrown) baseball. In the absence of air resistance, v and w satisfy the equations

dv/dt =0, dw/dt = —g.

(a) Show that
V=1UCOSA, w=—gt+usinA,

where u is the initial speed of the ball and A is its initial angle of elevation.

(b) Letx(z) and y(¢) be the horizontal and vertical coordinates, respectively, of the ball at
time ¢. If x(0) = 0 and y(0) = A, find x(¢) and y(¢) at any time ¢.

(c) Let g =32 ft/s?, u = 125 ft/s, and h = 3 ft. Plot the trajectory of the ball for several
values of the angle A; that is, plot x(¢) and y(f) parametrically.

(d) Suppose the outfield wall is at a distance L and has height H. Find a relation between
u and A that must be satisfied if the ball is to clear the wall.

(e) Suppose that L = 350 ft and H = 10 ft. Using the relation in part (d), find (or estimate
from a plot) the range of values of A that correspond to an initial velocity of u = 110 ft/s.
(f) For L =350 and H = 10, find the minimum initial velocity u and the corresponding
optimal angle A for which the ball will clear the wall.

A more realistic model (than that in Problem 30) of a baseball in flight includes the effect
of air resistance. In this case the equations of motion are

dv/dt = —rv, dw/dt = —g —rw,

where r is the coefficient of resistance.

(a) Determine v(f) and w(¢) in terms of initial speed u and initial angle of elevation A.
(b) Find x(¢) and y(¢) if x(0) = 0 and y(0) = A.

(c) Plot the trajectory of the ball for r = 1/5,u = 125, h = 3, and for several values of A.
How do the trajectories differ from those in Problem 31 with r = 0?

(d) Assuming that r = 1/5 and /& = 3, find the minimum initial velocity « and the optimal
angle A for which the ball will clear a wall that is 350 ft distant and 10 ft high. Compare
this result with that in Problem 30(f).

Brachistochrone Problem. One of the famous problems in the history of mathematics is
the brachistochrone’® problem: to find the curve along which a particle will slide without
friction in the minimum time from one given point P to another Q, the second point being
lower than the first but not directly beneath it (see Figure 2.3.6). This problem was posed
by Johann Bernoulli in 1696 as a challenge problem to the mathematicians of his day.

9The word “brachistochrone” comes from the Greek words brachistos, meaning shortest, and chronos,
meaning time.
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Correct solutions were found by Johann Bernoulli and his brother Jakob Bernoulli and
by Isaac Newton, Gottfried Leibniz, and the Marquis de L’'Hopital. The brachistochrone
problem is important in the development of mathematics as one of the forerunners of the
calculus of variations.

In solving this problem, it is convenient to take the origin as the upper point P and to
orient the axes as shown in Figure 2.3.6. The lower point Q has coordinates (x, yo). It is
then possible to show that the curve of minimum time is given by a function y = ¢(x) that
satisfies the differential equation

1+y2y =K, @)

where k? is a certain positive constant to be determined later.
(a) Solve Eq. (i) for y’. Why is it necessary to choose the positive square root?
(b) Introduce the new variable ¢ by the relation

y = k?sin*¢. (ii)

Show that the equation found in part (a) then takes the form
2k?sin® t dt = dx. (i)
(c) Letting @ = 2¢,show that the solution of Eq. (iii) for whichx = O when y = Ois given by
x = k>0 —sin0)/2, y =k*(1 — cos6)/2. (iv)

Equations (iv) are parametric equations of the solution of Eq. (i) that passes through
(0,0). The graph of Egs. (iv) is called a cycloid.

(d) If we make a proper choice of the constant k, then the cycloid also passes through the
point (x¢, yo) andis the solution of the brachistochrone problem. Find kifx, = 1 and yy = 2.

P x

Q(xo, yo)

y
FIGURE 2.3.6 The brachistochrone.

2.4 Differences Between Linear and Nonlinear Equations

Up to now, we have been primarily concerned with showing that first order differ-
ential equations can be used to investigate many different kinds of problems in the
natural sciences, and with presenting methods of solving such equations if they are
either linear or separable. Now it is time to turn our attention to some more general
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questions about differential equations and to explore in more detail some important
ways in which nonlinear equations differ from linear ones.

Existence and Uniqueness of Solutions. So far,we have discussed a number of initial value
problems, each of which had a solution and apparently only one solution. That raises
the question of whether this is true of all initial value problems for first order equa-
tions. In other words, does every initial value problem have exactly one solution?
This may be an important question even for nonmathematicians. If you encounter
an initial value problem in the course of investigating some physical problem, you
might want to know that it has a solution before spending very much time and effort
in trying to find it. Further, if you are successful in finding one solution, you might
be interested in knowing whether you should continue a search for other possible
solutions or whether you can be sure that there are no other solutions. For linear
equations, the answers to these questions are given by the following fundamental
theorem.

If the functions p and g are continuous on an open interval /:« < ¢ < 8 contain-
ing the point ¢ = fy, then there exists a unique function y = ¢(¢) that satisfies the
differential equation

y +py =g (1)

for each ¢ in 7, and that also satisfies the initial condition

y(to) = Yo, (2

where y is an arbitrary prescribed initial value.

Observe that Theorem 2.4.1 states that the given initial value problem Aas a solution
and also that the problem has only one solution. In other words, the theorem asserts
both the existence and the uniqueness of the solution of the initial value problem (1),
(2). In addition, it states that the solution exists throughout any interval / containing
the initial point ¢y in which the coefficients p and g are continuous. That is, the solution
can be discontinuous or fail to exist only at points where at least one of p and g is
discontinuous. Such points can often be identified at a glance.

The proof of this theorem is partly contained in the discussion in Section 2.1 leading
to the formula [Eq. (32) in Section 2.1]

)y = / n()g(t) dt + c, (3)
where [Eq. (30) in Section 2.1]
u(t) = exp / p@)dr. 4)

The derivation in Section 2.1 shows that if Eq. (1) has a solution, then it must be
given by Eq. (3). By looking slightly more closely at that derivation, we can also
conclude that the differential equation (1) must indeed have a solution. Since p is
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continuous for @ < t < g, it follows that u is defined in this interval and is a nonzero
differentiable function. Upon multiplying Eq. (1) by u(¢), we obtain

[k@®yl = u()g(). (5)

Since both u and g are continuous, the function ug is integrable, and Eq. (3) follows
from Eq. (5). Further, the integral of ug is differentiable, so y as given by Eq. (3)
exists and is differentiable throughout the interval « < ¢t < 8. By substituting the
expression for y from Eq. (3) into either Eq. (1) or Eq. (5), you can verify that
this expression satisfies the differential equation throughout the interval @ < ¢t < g.
Finally, the initial condition (2) determines the constant ¢ uniquely, so there is only
one solution of the initial value problem; this completes the proof.

Equation (4) determines the integrating factor w(f) only up to a multiplicative
factor that depends on the lower limit of integration. If we choose this lower limit to
be ty, then

t
u(t) = exp / p(s)ds, (6)
to

and it follows that (¢y) = 1. Using the integrating factor given by Eq. (6),and choos-
ing the lower limit of integration in Eq. (3) also to be #y, we obtain the general solution
of Eq. (1) in the form

1 t
y— L [ [ s ds+c]. ™)
() fo

To satisfy the initial condition (2), we must choose ¢ = yg. Thus the solution of the
initial value problem (1), (2) is

1 t
y=—= U n(s)g(s) ds +J’0} , 8)
() f

where u(¢) is given by Eq. (6).
Turning now to nonlinear differential equations, we must replace Theorem 2.4.1
by a more general theorem, such as the one that follows.

Let the functions f and 9df/dy be continuous in some rectangle o <t < f,
y <y < § containing the point (f, yo). Then, in some interval tp —h <t <ty +h
contained in o <t < B, there is a unique solution y = ¢(¢) of the initial value
problem

Y =fty),  ylt) =yo. 9)

Observe that the hypotheses in Theorem 2.4.2 reduce to those in Theorem 2.4.1 if
the differential equation is linear. In this case

ft,y)=—p®y+gt) and df(ty)/dy =—p(),

so the continuity of f and df /dy is equivalent to the continuity of p and g.

The proof of Theorem 2.4.1 was comparatively simple because it could be based
on the expression (3) that gives the solution of an arbitrary linear equation. There
is no corresponding expression for the solution of the differential equation (9), so
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the proof of Theorem 2.4.2 is much more difficult. It is discussed to some extent in
Section 2.8 and in greater depth in more advanced books on differential equations.

Here we note that the conditions stated in Theorem 2.4.2 are sufficient to guarantee
the existence of a unique solution of the initial value problem (9) in some interval
to —h <t <ty + h, but they are not necessary. That is, the conclusion remains true
under slightly weaker hypotheses about the function f. In fact, the existence of a
solution (but not its uniqueness) can be established on the basis of the continuity of
f alone.

An important geometrical consequence of the uniqueness parts of Theorems 2.4.1
and 2.4.2 is that the graphs of two solutions cannot intersect each other. Otherwise,
there would be two solutions that satisfy the initial condition corresponding to the
point of intersection, in contradiction to Theorem 2.4.1 or 2.4.2.

We now consider some examples.

Use Theorem 2.4.1 to find an interval in which the initial value problem
ty 42y = 412, (10)
yd)=2 (11)

has a unique solution.
Rewriting Eq. (10) in the standard form (1), we have

Y+ Q/0y =4,

sop(t) = 2/tand g(¢) = 4¢. Thus, for this equation, g is continuous for all #, while p is continuous
only for ¢ < 0 or for t > 0. The interval ¢ > 0 contains the initial point; consequently, Theorem
2.4.1 guarantees that the problem (10), (11) has a unique solution on the interval 0 < ¢ < oo.
In Example 4 of Section 2.1 we found the solution of this initial value problem to be

1
y:zz+t—2, t>0. (12)

Now suppose that the initial condition (11) is changed to y(—1) = 2. Then Theorem 2.4.1
asserts the existence of a unique solution for ¢ < 0. As you can readily verify, the solution is
again given by Eq. (12), but now on the interval —oco < t < 0.

Apply Theorem 2.4.2 to the initial value problem

dy 3x* +4x+42

Note that Theorem 2.4.1 is not applicable to this problem since the differential equation is
nonlinear. To apply Theorem 2.4.2, observe that

2 2
f(x’y):w’ g(x’y):_w
-0 dy 20=1D

Thus each of these functions is continuous everywhere except on the line y = 1. Consequently,a
rectangle can be drawn about the initial point (0, —1) in which both f and 8f /dy are continuous.
Therefore, Theorem 2.4.2 guarantees that the initial value problem has a unique solution in
some interval about x = 0. However, even though the rectangle can be stretched infinitely
far in both the positive and the negative x directions, this does not necessarily mean that the
solution exists for all x. Indeed, the initial value problem (13) was solved in Example 2 of
Section 2.2, and the solution exists only for x > —2.
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Now suppose we change the initial condition to y(0) = 1. The initial point now lies on the
line y = 1, so no rectangle can be drawn about it within which f and 9f/dy are continuous.
Consequently, Theorem 2.4.2 says nothing about possible solutions of this modified problem.
However, if we separate the variables and integrate, as in Section 2.2, we find that

v =2y =x°4+2x 4+ 2x +c.
Further,if x = 0 and y = 1, then ¢ = —1. Finally, by solving for y, we obtain
y=1++vx3+2x2+2x. (14)

Equation (14) provides two functions that satisfy the given differential equation for x > 0 and
also satisfy the initial condition y(0) = 1.

Consider the initial value problem
y=y" y0)=0 (15)

for t > 0. Apply Theorem 2.4.2 to this initial value problem and then solve the problem.

The function f(t,y) = y'/? is continuous everywhere, but 9f/dy does not exist when y = 0,
and hence it is not continuous there. Thus Theorem 2.4.2 does not apply to this problem, and
no conclusion can be drawn from it. However, by the remark following Theorem 2.4.2, the
continuity of f does ensure the existence of solutions, though not their uniqueness.

To understand the situation more clearly, we must actually solve the problem, which is easy
to do since the differential equation is separable. Thus we have

yRdy = dt,
e
3y P =t+4c
and
32
y=[kc+0]".

The initial condition is satisfied if ¢ = 0, so

y=¢(t) = (%t)a/z, t>0 (16)

satisfies both of Egs. (15). On the other hand, the function

y=¢(t) = — (§I)3/2, t>0 17)
is also a solution of the initial value problem. Moreover, the function
y=1y(t) =0, t>0 (18)
is yet another solution. Indeed, for an arbitrary positive #;, the functions

0, if0 <1<,

19
20 -], itr=1 (19)

y=x@ =

are continuous, are differentiable (in particular at r = #;), and are solutions of the initial value
problem (15). Hence this problem has an infinite family of solutions; see Figure 2.4.1, where a
few of these solutions are shown.
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Asalready noted, the nonuniqueness of the solutions of the problem (15) does not contradict
the existence and uniqueness theorem, since the theorem is not applicable if the initial point

lies on the -axis. If (f, yo) is any point not on the r-axis, however, then the theorem guarantees
1/3

that there is a unique solution of the differential equation y’ = y'/> passing through (¢, yo).

y

FIGURE 2.4.1 Several solutions of the initial value problem y’' = y'/3 y(0) = 0.

Interval of Definition. According to Theorem 2.4.1,the solution of a linear equation (1)

Yy +py =g,

subject to the initial condition y(f) = yo, exists throughout any interval about ¢ = £,
in which the functions p and g are continuous. Thus vertical asymptotes or other
discontinuities in the solution can occur only at points of discontinuity of p or g.
For instance, the solutions in Example 1 (with one exception) are asymptotic to the
y-axis, corresponding to the discontinuity at ¢ = 0 in the coefficient p(¢) = 2/¢, but
none of the solutions has any other point where it fails to exist and to be differentiable.
The one exceptional solution shows that solutions may sometimes remain continuous
even at points of discontinuity of the coefficients.

On the other hand, for a nonlinear initial value problem satisfying the hypotheses
of Theorem 2.4.2, the interval in which a solution exists may be difficult to determine.
The solution y = ¢(¢) is certain to exist as long as the point [¢, ¢(¢)] remains within a
region in which the hypotheses of Theorem 2.4.2 are satisfied. This is what determines
the value of % in that theorem. However, since ¢ () is usually not known, it may be
impossible to locate the point [¢, ¢(¢)] with respect to this region. In any case, the
interval in which a solution exists may have no simple relationship to the function f
in the differential equation y’ = f(¢,y). This is illustrated by the following example.

Solve the initial value problem
Y=y, y0=1, (20)

and determine the interval in which the solution exists.

Theorem 2.4.2 guarantees that this problem has a unique solution since f(t,y) = y* and
df /dy = 2y are continuous everywhere. To find the solution, we separate the variables and
integrate with the result that

y2dy =dt (21)
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and
—y‘1 =rt+c.
Then, solving for y, we have
1
=— . 22
y t+c ( )
To satisfy the initial condition, we must choose ¢ = —1, so
1
= — 23
Y= (23)

is the solution of the given initial value problem. Clearly, the solution becomes unbounded as
t — 1; therefore, the solution exists only in the interval —co < ¢ < 1. There is no indication
from the differential equation itself, however, that the point # = 1 is in any way remarkable.
Moreover, if the initial condition is replaced by

then the constant ¢ in Eq. (22) must be chosen to be ¢ = —1/yy, and it follows that

Yo
Sl p (25)

is the solution of the initial value problem with the initial condition (24). Observe that the
solution (25) becomes unbounded as t — 1/yy, so the interval of existence of the solution
is —oo <t <1/yyif yo > 0,and is 1/yy <t < oo if yo < 0. This example illustrates another
feature of initial value problems for nonlinear equations: the singularities of the solution may
depend in an essential way on the initial conditions as well as on the differential equation.

General Solution. Another way in which linear and nonlinear equations differ concerns
the concept of a general solution. For a first order linear equation it is possible to
obtain a solution containing one arbitrary constant, from which all possible solutions
follow by specifying values for this constant. For nonlinear equations this may not be
the case; even though a solution containing an arbitrary constant may be found, there
may be other solutions that cannot be obtained by giving values to this constant. For
instance, for the differential equation y’ = y? in Example 4, the expression in Eq. (22)
contains an arbitrary constant but does not include all solutions of the differential
equation. To show this,observe that the function y = 0 for all ¢ is certainly a solution of
the differential equation, but it cannot be obtained from Eq. (22) by assigning a value
to c. In this example we might anticipate that something of this sort might happen,
because to rewrite the original differential equation in the form (21), we must require
that y is not zero. However, the existence of “additional” solutions is not uncommon
for nonlinear equations; a less obvious example is given in Problem 22. Thus we will
use the term “general solution” only when discussing linear equations.

Implicit Solutions. Recall again that for an initial value problem for a first order linear
equation, Eq. (8) provides an explicit formula for the solution y = ¢(z). As long as
the necessary antiderivatives can be found, the value of the solution at any point can
be determined merely by substituting the appropriate value of ¢ into the equation.
The situation for nonlinear equations is much less satisfactory. Usually, the best that
we can hope for is to find an equation

F(t,y) =0 (26)
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involving ¢ and y that is satisfied by the solution y = ¢(¢). Even this can be done
only for differential equations of certain particular types, of which separable equa-
tions are the most important. The equation (26) is called an integral, or first integral,
of the differential equation, and (as we have already noted) its graph is an inte-
gral curve, or perhaps a family of integral curves. Equation (26), assuming it can
be found, defines the solution implicitly; that is, for each value of + we must solve
Eq. (26) to find the corresponding value of y. If Eq. (26) is simple enough, it may
be possible to solve it for y by analytical means and thereby obtain an explicit
formula for the solution. However, more frequently this will not be possible, and
you will have to resort to a numerical calculation to determine (approximately) the
value of y for a given value of . Once several pairs of values of t and y have been
calculated, it is often helpful to plot them and then to sketch the integral curve
that passes through them. You should arrange for a computer to do this for you, if
possible.

Examples 2, 3, and 4 are nonlinear problems in which it is easy to solve for an
explicit formula for the solution y = ¢(¢). On the other hand, Examples 1 and 3
in Section 2.2 are cases in which it is better to leave the solution in implicit form
and to use numerical means to evaluate it for particular values of the indepen-
dent variable. The latter situation is more typical; unless the implicit relation is
quadratic in y or has some other particularly simple form, it is unlikely that it can
be solved exactly by analytical methods. Indeed, more often than not, it is impos-
sible even to find an implicit expression for the solution of a first order nonlinear
equation.

Graphical or Numerical Construction of Integral Curves. Because of the difficulty in obtain-
ing exact analytical solutions of nonlinear differential equations, methods that yield
approximate solutions or other qualitative information about solutions are of corre-
spondingly greater importance. We have already described, in Section 1.1, how the
direction field of a differential equation can be constructed. The direction field can
often show the qualitative form of solutions and can also be helpful in identifying
regions of the fy-plane where solutions exhibit interesting features that merit more
detailed analytical or numerical investigation. Graphical methods for first order equa-
tions are discussed further in Section 2.5. An introduction to numerical methods for
first order equations is given in Section 2.7, and a systematic discussion of numerical
methods appears in Chapter 8. However, it is not necessary to study the numerical
algorithms themselves in order to use effectively one of the many software pack-
ages that generate and plot numerical approximations to solutions of initial value
problems.

Summary. The linear equation y’ + p(¢)y = g(¢) has several nice properties that can
be summarized in the following statements:

1. Assuming that the coefficients are continuous, there is a general solution, containing an
arbitrary constant, that includes all solutions of the differential equation. A particular
solution that satisfies a given initial condition can be picked out by choosing the proper
value for the arbitrary constant.

2. There is an expression for the solution, namely, Eq. (7) or Eq. (8). Moreover, although it
involves two integrations, the expression is an explicit one for the solution y = ¢(¢) rather
than an equation that defines ¢ implicitly.
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3. The possible points of discontinuity, or singularities, of the solution can be identified
(without solving the problem) merely by finding the points of discontinuity of the coeffi-
cients. Thus, if the coefficients are continuous for all ¢, then the solution also exists and is
differentiable for all .

None of these statements is true, in general, of nonlinear equations. Although a
nonlinear equation may well have a solution involving an arbitrary constant, there
may also be other solutions. There is no general formula for solutions of nonlinear
equations. If you are able to integrate a nonlinear equation, you are likely to obtain an
equation defining solutions implicitly rather than explicitly. Finally, the singularities
of solutions of nonlinear equations can usually be found only by solving the equation
and examining the solution. It is likely that the singularities will depend on the initial
condition as well as on the differential equation.

PROBLEMS

In each of Problems 1 through 6, determine (without solving the problem) an interval in which
the solution of the given initial value problem is certain to exist.

1. ¢ =3)y' + (Int)y = 2t, y() =2

2.1t =4y +y =0, y2)=1

3. y + (tant)y = sint, y(@) =0 4. (4 — 2y + 2ty = 312, y(=3)=1
5. (4—12)y + 2ty =3¢, y1) =-3 6. (Inr)y’ +y = cott, y2)=3

In each of Problems 7 through 12, state where in the fy-plane the hypotheses of Theorem 2.4.2
are satisfied.

[—y
f— 8 / — 1—[2— 2\1/2
y %15y Y= ¥9)
In |1y]
9. yy=—_-"_ 10. y' = (12 + y?)3?
y e+, y=@u+y)
d 1472 d tt
Yot 12, W _ Lcotty
dt 3y —y? dt 1+y

In each of Problems 13 through 16, solve the given initial value problem and determine how
the interval in which the solution exists depends on the initial value yj.

13. y' = —4t/y,  y(0) =y 4.y =202,  y(0) =y
15. Y +y*=0,  y0) =y, 16. y =2/yd+13),  y0) =y
In each of Problems 17 through 20, draw a direction field and plot (or sketch) several solutions

of the given differential equation. Describe how solutions appear to behave as ¢ increases and
how their behavior depends on the initial value y, when ¢ = 0.

17.y =1y3 —y) ¢ 18y =yB-1w)

19. y = —y(3 —ty) 620 y=t-1-y

21. Consider the initial value problem y’ = y!'/3,y(0) = 0 from Example 3 in the text.
(a) Isthere a solution that passes through the point (1,1)? If so, find it.
(b) Is there a solution that passes through the point (2,1)? If so, find it.

(c) Consider all possible solutions of the given initial value problem. Determine the set
of values that these solutions have at t = 2.
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22.

23.

24.

25.

26.

(a) Verify that both y;(t) =1 —t and y,(tf) = —t*>/4 are solutions of the initial value
problem
., —t+ P +4
y=4443441, y2) = 1.
Where are these solutions valid?

(b) Explain why the existence of two solutions of the given problem does not contradict
the uniqueness part of Theorem 2.4.2.

(c) Show that y = ct + ¢?, where ¢ is an arbitrary constant, satisfies the differential
equation in part (a) for t > —2¢. If ¢ = —1, the initial condition is also satisfied, and
the solution y = y; (¢) is obtained. Show that there is no choice of ¢ that gives the second
solution y = y; ().

(a) Show that ¢(f) = * is a solution of y' — 2y = 0 and that y = c¢(¢) is also a solution
of this equation for any value of the constant c.

(b) Show that ¢(f) = 1/t is a solution of y' + y*> =0 for ¢ > 0 but that y = c¢(¢) is not
a solution of this equation unless ¢ = 0 or ¢ = 1. Note that the equation of part (b) is
nonlinear, while that of part (a) is linear.

Show that if y = ¢(¢) is a solution of y' + p(¢)y = 0, then y = c¢(¢) is also a solution for
any value of the constant c.

Let y = y1(¢) be a solution of
Y +p®)y =0, (@)

and let y = y,(#) be a solution of
Y +p®y =g®. (ii)

Show that y = y;(t) + y,(¢?) is also a solution of Eq. (ii).
(a) Show that the solution (7) of the general linear equation (1) can be written in the
form

y=cyi() + y2(0), (i)

where c is an arbitrary constant.
(b) Show that y; is a solution of the differential equation

Yy +p@y =0, (i1)

corresponding to g(¢) = 0.
(c) Show that y, is a solution of the full linear equation (1). We see later (for example,
in Section 3.5) that solutions of higher order linear equations have a pattern similar to

Eq. ().

Bernoulli Equations. Sometimes it is possible to solve a nonlinear equation by making a
change of the dependent variable that converts it into a linear equation. The most important
such equation has the form

Y +p®y = q0)y",

and is called a Bernoulli equation after Jakob Bernoulli. Problems 27 through 31 deal with
equations of this type.

27.

(a) Solve Bernoulli’s equation when n = 0; whenn = 1.

(b) Show thatif n # 0,1, then the substitution v = y!~" reduces Bernoulli’s equation to a
linear equation. This method of solution was found by Leibniz in 1696.
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In each of Problems 28 through 31, the given equation is a Bernoulli equation. In each case
solve it by using the substitution mentioned in Problem 27(b).

28. 2y 42ty —y* =0, t>0
29. y' = ry — ky?, r > 0 and k > 0. This equation is important in population dynamics and is
discussed in detail in Section 2.5.

30. y =€y —o0y’, € > 0 and o > 0. This equation occurs in the study of the stability of fluid
flow.

31. dy/dt = (T cost + T)y — y*,where I' and T are constants. This equation also occurs in the
study of the stability of fluid flow.

Discontinuous Coefficients. Linear differential equations sometimes occur in which one or
both of the functions p and g have jump discontinuities. If #, is such a point of discontinuity,
then it is necessary to solve the equation separately for ¢ < £y and ¢ > fy. Afterward, the two
solutions are matched so that y is continuous at f; this is accomplished by a proper choice of
the arbitrary constants. The following two problems illustrate this situation. Note in each case
that it is impossible also to make y’ continuous at f.

32. Solve the initial value problem

y+2y=g1, y0) =0,

where

o 1, 0<tr<1,
1) =
& 0, t>1.

33. Solve the initial value problem

Y +pny=0, y0) =1,

where

© 2, 0<r<l1,
1) =
P 1, t>1.

2.5 Autonomous Equations and Population Dynamics

An important class of first order equations consists of those in which the independent
variable does not appear explicitly. Such equations are called autonomous and have
the form

dy/dt =f(y). (1)

We will discuss these equations in the context of the growth or decline of the popula-
tion of a given species, an important issue in fields ranging from medicine to ecology
to global economics. A number of other applications are mentioned in some of the
problems. Recall that in Sections 1.1 and 1.2 we considered the special case of Eq. (1)
in which f(y) = ay + b.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but the
main purpose of this section is to show how geometrical methods can be used to obtain
important qualitative information directly from the differential equation without
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solving the equation. Of fundamental importance in this effort are the concepts
of stability and instability of solutions of differential equations. These ideas were
introduced informally in Chapter 1, but without using this terminology. They are
discussed further here and will be examined in greater depth and in a more general
setting in Chapter 9.

Exponential Growth. Let y = ¢(¢) be the population of the given species at time ¢. The
simplest hypothesis concerning the variation of population is that the rate of change
of y is proportional'? to the current value of y; that is,

dy/dt =ry, 2)

where the constant of proportionality r is called the rate of growth or decline, depend-
ing on whether it is positive or negative. Here, we assume that r > 0,so the population

is growing.
Solving Eq. (2) subject to the initial condition
y(0) = yo, 3)
we obtain
y = yoe". (4)

Thus the mathematical model consisting of the initial value problem (2), (3) with
r > 0 predicts that the population will grow exponentially for all time, as shown in
Figure 2.5.1 for several values of y. Under ideal conditions, Eq. (4) has been observed
to be reasonably accurate for many populations, at least for limited periods of time.
However,itis clear that such ideal conditions cannot continue indefinitely; eventually,
limitations on space, food supply, or other resources will reduce the growth rate and
bring an end to uninhibited exponential growth.

—
o
\

0
\

| | |
1/r 2Ir 3/r 4/rt

FIGURE 2.5.1 Exponential growth: y versus ¢ for dy/dt = ry (r > 0).

101t was apparently the British economist Thomas Malthus (1766-1834) who first observed that many
biological populations increase at a rate proportional to the population. His first paper on populations
appeared in 1798.
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Logistic Growth. To take account of the fact that the growth rate actually depends on
the population, we replace the constant r in Eq. (2) by a function A(y) and thereby
obtain the modified equation

dy/dt = h(y)y. 5)

We now want to choose /(y) so that A(y) = r > 0 when y is small, 4(y) decreases
as y grows larger,and h(y) < 0 when y is sufficiently large. The simplest function that
has these properties is A(y) = r — ay, where a is also a positive constant. Using this
function in Eq. (5), we obtain

dy/dt = (r — ay)y. (6)

Equation (6) is known as the Verhulst!! equation or the logistic equation. It is often
convenient to write the logistic equation in the equivalent form

Y-y, %

where K = r/a. The constant r is called the intrinsic growth rate—that is, the growth
rate in the absence of any limiting factors. The interpretation of K will become clear
shortly.

We will investigate the solutions of Eq. (7) in some detail later in this section.
Before doing that, however, we will show how you can easily draw a qualitatively
correct sketch of the solutions. The same methods also apply to the more general
Eq. (1).

We first seek solutions of Eq. (7) of the simplest possible type—that is, constant
functions. For such a solution dy/dt = 0 for all ¢, so any constant solution of Eq. (7)
must satisfy the algebraic equation

r(l—y/K)y =0.

Thus the constant solutions are y = ¢1(t) = 0 and y = ¢»(t) = K. These solutions
are called equilibrium solutions of Eq. (7) because they correspond to no change
or variation in the value of y as ¢ increases. In the same way, any equilibrium solu-
tions of the more general Eq. (1) can be found by locating the roots of f(y) = 0.
The zeros of f(y) are also called critical points.

To visualize other solutions of Eq. (7) and to sketch their graphs quickly, we start
by drawing the graph of f(y) versus y. In the case of Eq. (7), f(y) = r(1 — y/K)y,
so the graph is the parabola shown in Figure 2.5.2. The intercepts are (0,0) and
(K,0), corresponding to the critical points of Eq. (7), and the vertex of the parabola
is (K/2,rK/4). Observe that dy/dt > 0 for 0 < y < K; therefore, y is an increasing
function of ¢ when y is in this interval; this is indicated by the rightward-pointing

Ppierre F. Verhulst (1804-1849) was a Belgian mathematician who introduced Eq. (6) as a model for
human population growth in 1838. He referred to it as logistic growth so Eq. (6) is often called the logistic
equation. He was unable to test the accuracy of his model because of inadequate census data, and it did
not receive much attention until many years later. Reasonable agreement with experimental data was
demonstrated by R. Pearl (1930) for Drosophila melanogaster (fruit fly) populations and by G. F. Gause
(1935) for Paramecium and Tribolium (flour beetle) populations.



2.5

Autonomous Equations and Population Dynamics 81

(K/2, rK/4)

\
K2 K\ y

FIGURE 2.5.2 f(y) versus y for dy/dt =r(1 — y/K)y.

arrows near the y-axis in Figure 2.5.2. Similarly, if y > K, then dy/dt < 0; hence y is
decreasing, as indicated by the leftward-pointing arrow in Figure 2.5.2.

In this context the y-axis is often called the phase line, and it is reproduced in its
more customary vertical orientation in Figure 2.5.3a. The dots at y =0 and y = K
are the critical points, or equilibrium solutions. The arrows again indicate that y is
increasing whenever 0 < y < K and that y is decreasing whenever y > K.

Further, from Figure 2.5.2, note that if y is near zero or K, then the slope f(y) is
near zero, so the solution curves are relatively flat. They become steeper as the value
of y leaves the neighborhood of zero or K.

To sketch the graphs of solutions of Eq. (7) in the ty-plane, we start with the equi-
librium solutions y = 0 and y = K; then we draw other curves that are increasing
when 0 < y < K, decreasing when y > K, and flatten out as y approaches either of
the values 0 or K. Thus the graphs of solutions of Eq. (7) must have the general shape
shown in Figure 2.5.3b, regardless of the values of r and K.

y y
A 4 ,(t) = K
Ke K \
7'}
Kj2
0e >
(@) (b)

FIGURE 2.5.3 Logistic growth: dy/dt = r(1 — y/K)y.
(a) The phase line. (b) Plots of y versus ¢.
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Figure 2.5.3b may seem to show that other solutions intersect the equilibrium
solution y = K, but is this really possible? No, the uniqueness part of Theorem 2.4.2,
the fundamental existence and uniqueness theorem, states that only one solution
can pass through a given point in the ty-plane. Thus, although other solutions may
be asymptotic to the equilibrium solution as ¢t — oo, they cannot intersect it at any
finite time. Consequently, a solution that starts in the interval 0 < y < K remains in
this interval for all time, and similarly for a solution that starts in K < y < oo.

To carry the investigation one step further, we can determine the concavity of the
solution curves and the location of inflection points by finding d?y/dt>. From
the differential equation (1), we obtain (using the chain rule)

dzy_ddy_d o d)’_/
5= = O =0 =FOFo). (®)

The graph of y versus ¢ is concave up when y” > 0—that is, when f and f’ have the
same sign. Similarly, it is concave down when y” < 0,which occurs when f and f’ have
opposite signs. The signs of f and f” can be easily identified from the graph of f(y)
versus y. Inflection points may occur when f'(y) = 0.

In the case of Eq. (7), solutions are concave up for 0 < y < K/2 where f is pos-
itive and increasing (see Figure 2.5.2), so that both f and f” are positive. Solutions
are also concave up for y > K where f is negative and decreasing (both f and f’ are
negative). For K/2 < y < K, solutions are concave down since here f is positive and
decreasing,so f is positive but f” is negative. There is an inflection point whenever the
graph of y versus # crosses the line y = K /2. The graphs in Figure 2.5.3b exhibit these
properties.

Finally, observe that K is the upper bound that is approached, but not exceeded,
by growing populations starting below this value. Thus it is natural to refer to
K as the saturation level, or the environmental carrying capacity, for the given
species.

A comparison of Figures 2.5.1 and 2.5.3b reveals that solutions of the nonlinear
equation (7) are strikingly different from those of the linear equation (1), at least
for large values of ¢. Regardless of the value of K—that is, no matter how small
the nonlinear term in Eq. (7)—solutions of that equation approach a finite value as
t — oo, whereas solutions of Eq. (1) grow (exponentially) without bound as t — oo.
Thus even a tiny nonlinear term in the differential equation (7) has a decisive effect
on the solution for large .

In many situations it is sufficient to have the qualitative information about a solu-
tiony = ¢(¢) of Eq. (7) that is shown in Figure 2.5.3b. This information was obtained
entirely from the graph of f(y) versus y and without solving the differential equation
(7). However, if we wish to have a more detailed description of logistic growth—for
example, if we wish to know the value of the population at some particular time—
then we must solve Eq. (7) subject to the initial condition (3). Provided that y # 0
and y # K, we can write Eq. (7) in the form

dy

Y
a—yKy ¥
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Using a partial fraction expansion on the left side, we have

(1 1/K

-4+ ———)dy=rdt.
y 1—y/K)

Then, by integrating both sides, we obtain
1n|y|—1n‘1—l‘=rt+c, 9)
K

where ¢ is an arbitrary constant of integration to be determined from the initial
condition y(0) = yo. We have already noted that if 0 < yp < K, then y remains in
this interval for all time. Thus in this case we can remove the absolute value bars
in Eq. (9), and by taking the exponential of both sides, we find that

y t
— = Ce", 10
1—g/K ¢ (10)

where C = e°. In order to satisfy the initial condition y(0) = yy, we must choose
C = yo/[1 — (yo/K)]. Using this value for C in Eq. (10) and solving for y, we obtain

_ yoK
yo+ (K —ype "

y (11)

We have derived the solution (11) under the assumption that 0 < yy < K. If
yo > K, then the details of dealing with Eq. (9) are only slightly different, and we
leave it to you to show that Eq. (11) is also valid in this case. Finally, note that
Eq. (11) also contains the equilibrium solutions y = ¢1(1) =0 and y = ¢ (t) = K
corresponding to the initial conditions yp = 0 and yy = K, respectively.

All the qualitative conclusions that we reached earlier by geometrical reason-
ing can be confirmed by examining the solution (11). In particular, if yy = 0, then
Eq. (11) requires that y(t) = 0 for all z. If yy > 0, and if we let t — oo in Eq. (11),
then we obtain

lim y(1) = yoK/yo = K.
—00

Thus, for each yy > 0,the solution approaches the equilibrium solutiony = ¢, () = K
asymptotically as t — oo. Therefore, we say that the constant solution ¢, (t) = K is
an asymptotically stable solution of Eq. (7) or that the point y = K is an asymp-
totically stable equilibrium or critical point. After a long time, the population is
close to the saturation level K regardless of the initial population size, as long as
it is positive. Other solutions approach the equilibrium solution more rapidly as r
increases.

On the other hand, the situation for the equilibrium solution y = ¢, (t) = 0is quite
different. Even solutions that start very near zero grow as ¢ increases and, as we have
seen,approach K ast — oo. We say that ¢ (¢) = 0is an unstable equilibrium solution
or that y = 0 is an unstable equilibrium or critical point. This means that the only
way to guarantee that the solution remains near zero is to make sure its initial value
is exactly equal to zero.
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EXAMPLE

1

The logistic model has been applied to the natural growth of the halibut population in certain
areas of the Pacific Ocean.”? Let y, measured in kilograms, be the total mass, or biomass,
of the halibut population at time ¢. The parameters in the logistic equation are estimated to
have the values r = 0.71 /year and K = 80.5 x 10° kg. If the initial biomass is yo = 0.25K, find
the biomass 2 years later. Also find the time 7 for which y(7) = 0.75K.

It is convenient to scale the solution (11) to the carrying capacity K; thus we write Eq. (11)
in the form

y Yo/ K
Z = . 12
K (yo/K)+[1 = (yo/K)]e~" (12)

Using the data given in the problem, we find that

Yo _ 0.25 N
K = 025+0.75 142 0.5797.

Consequently, y(2) = 46.7 x 10° kg.
To find 7, we can first solve Eq. (12) for t. We obtain

ot — o/K[1 — (y/K)]
O/K = (/K1
hence
_1, GBI = /K] (13)
ro (/KM = (yo/K)]

Using the given values of r and y,/K and setting y/K = 0.75, we find that

1 025025 1
— e 1 &2OD) 9~ 3095 years.
T 7071 075075 o7t years

=

The graphs of y/K versus ¢ for the given parameter values and for several initial conditions
are shown in Figure 2.5.4. The black curve corresponds to the initial condition y, = 0.25K.

y/K
1.75

1.50
1.25
1.00
0.75
0.50
0.25

|
7=3.095
FIGURE 2.54 y/K versus t for population model of halibut in the Pacific
Ocean. The black curve satisfies the initial condition y(0)/K = 0.25.

12A good source of information on the population dynamics and economics involved in making efficient
use of a renewable resource, with particular emphasis on fisheries, is the book by Clark listed in the
references at the end of this chapter. The parameter values used here are given on page 53 of this book
and were obtained from a study by H. S. Mohring.
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A Critical Threshold. We now turn to a consideration of the equation

d
ber-3)r w
where r and T are given positive constants. Observe that (except for replacing the
parameter K by T) this equation differs from the logistic equation (7) only in
the presence of the minus sign on the right side. However, as we will see, the solutions
of Eq. (14) behave very differently from those of Eq. (7).

For Eq. (14) the graph of f(y) versus y is the parabola shown in Figure 2.5.5.
The intercepts on the y-axis are the critical points y = 0 and y = T, corresponding
to the equilibrium solutions ¢ (1) =0 and ¢,(¢t) = T.1If 0 <y < T, then dy/dt < 0,
and y decreases as ¢ increases. On the other hand, if y > T, then dy/dt > 0, and y
grows as t increases. Thus ¢; () = 0 is an asymptotically stable equilibrium solution
and ¢,(¢t) = T is an unstable one. Further, f'(y) is negative for 0 <y < 7T//2 and
positive for 7/2 < y < T,so the graph of y versus ¢ is concave up and concave down,
respectively, in these intervals. Also, f'(y) is positive for y > T, so the graph of y
versus ¢ is also concave up there.

f(y)

-rT/4 [~
(T2, -rT/4)

FIGURE 2.5.5 f(y) versus y for dy/dt = —r(1 —y/T)y.

Figure 2.5.6(a) shows the phase line (the y-axis) for Eq. (14). The dots at y = 0 and
y = T are the critical points, or equilibrium solutions, and the arrows indicate where
solutions are either increasing or decreasing.

Solution curves of Eq. (14) can now be sketched quickly, as follows. First draw the
equilibrium solutions y = 0 and y = T.Then sketch curvesin the strip0 < y < T that
are decreasing as ¢ increases and change concavity as they cross the line y = 7/2.
Next draw some curves above y = T that increase more and more steeply as ¢ and y
increase. Make sure that all curves become flatter as y approaches either zero or 7.
The result is Figure 2.5.6(b), which is a qualitatively accurate sketch of solutions of
Eq. (14) for any r and T'. From this figure it appears that as time increases, y either
approaches zero or grows without bound, depending on whether the initial value y,
is less than or greater than 7'. Thus 7 is a threshold level, below which growth does
not occur.

We can confirm the conclusions that we have reached through geometrical rea-
soning by solving the differential equation (14). This can be done by separating the
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T/2

(a) (b)
FIGURE 2.5.6 Growth with a threshold: dy/dt = —r(1 —y/T)y.
(a) The phase line. (b) Plots of y versus ¢.

variables and integrating, just as we did for Eq. (7). However, if we note that Eq. (14)
can be obtained from Eq. (7) by replacing K by T and r by —r, then we can make
the same substitutions in the solution (11) and thereby obtain

_ T
yo+ (T — yo)e’

which is the solution of Eq. (14) subject to the initial condition y(0) = yy.

If0 < yo < T,then it follows from Eq. (15) that y — 0 as ¢t — oo. This agrees with
our qualitative geometric analysis. If yg > 7, then the denominator on the right side
of Eq. (15) is zero for a certain finite value of r. We denote this value by * and
calculate it from

y (15)

yo— (o — The™ =0,

which gives
1
=20
r yo—T

(16)

Thus, if the initial population y, is above the threshold 7', the threshold model predicts
that the graph of y versus ¢ has a vertical asymptote at f = ¢*; in other words, the
population becomes unbounded in a finite time, whose value depends on yy, T,and r.
The existence and location of this asymptote were not apparent from the geometric
analysis, so in this case the explicit solution yields additional important qualitative,
as well as quantitative, information.

The populations of some species exhibit the threshold phenomenon. If too few
are present, then the species cannot propagate itself successfully and the popula-
tion becomes extinct. However, if the population is larger than the threshold level,
then further growth occurs. Of course, the population cannot become unbounded, so
eventually Eq. (14) must be modified to take this into account.

Critical thresholds also occur in other circumstances. For example, in fluid mechan-
ics,equations of the form (7) or (14) often govern the evolution of a small disturbance
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y in a laminar (or smooth) fluid flow. For instance, if Eq. (14) holds and y < T, then
the disturbance is damped out and the laminar flow persists. However, if y > T,
then the disturbance grows larger and the laminar flow breaks up into a turbulent
one. In this case T is referred to as the critical amplitude. Experimenters speak of
keeping the disturbance level in a wind tunnel low enough so that they can study
laminar flow over an airfoil, for example.

Logistic Growth with a Threshold. As we mentioned in the last subsection, the threshold
model (14) may need to be modified so that unbounded growth does not occur when
y is above the threshold 7'. The simplest way to do this is to introduce another factor
that will have the effect of making dy/dt negative when y is large. Thus we consider

dy y y
= ——r(1-2) (1 %) (17)
wherer > 0and 0 < T < K.

The graph of f(y) versus y is shown in Figure 2.5.7. In this problem there are three
critical points,y =0,y = T, and y = K, corresponding to the equilibrium solutions
¢1(t) =0, ¢o(t) = T, and ¢3(t) = K, respectively. From Figure 2.5.7 we observe that
dy/dt > 0for T <y < K, and consequently y is increasing there. Further, dy/dt < 0
for y < T and for y > K, so y is decreasing in these intervals. Consequently, the
equilibrium solutions ¢ (f) and ¢3(¢) are asymptotically stable, and the solution ¢, (¢)
is unstable.

FIGURE 2.5.7 f(y) versusy fordy/dt = —r(1 —y/T)(1 — y/K)y.

The phase line for Eq. (17) is shown in Figure 2.5.84, and the graphs of some
solutions are sketched in Figure 2.5.8b. You should make sure that you understand
the relation between these two figures, as well as the relation between Figures 2.5.7
and 2.5.8a. From Figure 2.5.8b we see that if y starts below the threshold 7', then
y declines to ultimate extinction. On the other hand, if y starts above T, then y
eventually approaches the carrying capacity K. The inflection points on the graphs
of y versus ¢ in Figure 2.5.8b correspond to the maximum and minimum points, y;
and y,, respectively, on the graph of f(y) versus y in Figure 2.5.7. These values can
be obtained by differentiating the right side of Eq. (17) with respect to y, setting the
result equal to zero, and solving for y. We obtain

yi2= (K +T+VK2— KT +T2)/3, (18)

where the plus sign yields y; and the minus sign y».
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\ ¢3(t) =K
/

(a) ()
FIGURE 2.5.8 Logistic growth with a threshold: dy/dt = —r(1 —y/T)(1 — y/K)y.
(a) The phase line. (b) Plots of y versus ¢.

A model of this general sort apparently describes the population of the passen-
ger pigeon,'® which was present in the United States in vast numbers until late in the
nineteenth century. It was heavily hunted for food and for sport, and consequently its
numbers were drastically reduced by the 1880s. Unfortunately, the passenger pigeon
could apparently breed successfully only when present in a large concentration, cor-
responding to a relatively high threshold 7. Although a reasonably large number of
individual birds remained alive in the late 1880s, there were not enough in any one
place to permit successful breeding, and the population rapidly declined to extinc-
tion. The last survivor died in 1914. The precipitous decline in the passenger pigeon
population from huge numbers to extinction in a few decades was one of the early
factors contributing to a concern for conservation in this country.

PROBLEMS

Problems 1 through 6 involve equations of the form dy/dt = f(y). In each problem sketch the
graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable or unstable. Draw the phase line, and sketch several graphs of solutions
in the ty-plane.

1. dy/dt = ay + by?, a>0, b>0, y;>0

2. dy/dt = ay + by?, a>0, b>0, —o00o<y)<oo
3.dy/dt=y(y -1y —2), y =0

4. dy/dt =¢ — 1, —00 < yp < 00

S5.dyj/dt=e -1, —00 < yp < 00

6. dy/dt = —2(arctan y)/(1 + y?), —00 < yp < 00

7

. Semistable Equilibrium Solutions. Sometimes a constant equilibrium solution has the
property that solutions lying on one side of the equilibrium solution tend to approach it,

13See, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143-145.
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whereas solutions lying on the other side depart from it (see Figure 2.5.9). In this case the
equilibrium solution is said to be semistable.

(a) Consider the equation

dy/dt = k(1 —y)?, ®

where k is a positive constant. Show that y =1 is the only critical point, with the
corresponding equilibrium solution ¢(¢) = 1.

(b) Sketch f(y) versus y. Show that y is increasing as a function of ¢ for y < 1 and also
for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus
solutions below the equilibrium solution approach it,and those above it grow farther away.
Therefore, ¢(¢) = 1 is semistable.

(¢) Solve Eq. (i) subject to the initial condition y(0) = y, and confirm the conclusions
reached in part (b).

(@) t ) t

FIGURE 2.5.9 In both cases the equilibrium solution ¢(¢) = k is semistable.
(a) dy/dt < 0;(b) dy/dt > 0.

Problems 8 through 13 involve equations of the form dy/dt = f(y). In each problem sketch
the graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one
asymptotically stable, unstable, or semistable (see Problem 7). Draw the phase line, and sketch
several graphs of solutions in the ty-plane.

8.

9.
10.
11.
12.
13.
14.

15.

dy/dt = —k(y — 1), k>0, —00<yy<o00

dy/dt = y*(y> — 1), —00 < yp < 00

dy/dt = y(1 — y?), —00 < Yy < 00

dy/dt =ay —b./y, a>0, b>0, y>0

dy/dt = y*(4 — y?), —00 < Yy < 00

dy/dt = y*(1—y)*,  —oo<y)<o0

Consider the equation dy/dt = f(y) and suppose that y; is a critical point—that is,

f(y1) = 0. Show that the constant equilibrium solution ¢(¢) = y; is asymptotically stable
if f/(y1) < 0 and unstable if f'(y;) > 0.

Suppose that a certain population obeys the logistic equation dy/dt = ry[1 — (y/K)].

(a) Ifyo = K/3,find the time 7 at which the initial population has doubled. Find the value
of 7 corresponding to r = 0.025 per year.

(b) If yo/K = «, find the time T at which y(7)/K = B, where 0 < «, B < 1. Observe that

T — oo as @ — 0 or as B — 1. Find the value of T for r = 0.025 per year, « = 0.1, and
B=0.9.
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16. Another equation that has been used to model population growth is the Gompertz!4
equation

dy/dt = ryIn(K/y),

where r and K are positive constants.

(a) Sketch the graph of f(y) versus y, find the critical points, and determine whether each
is asymptotically stable or unstable.

(b) For 0 <y < K, determine where the graph of y versus 7 is concave up and where it is
concave down.

(c) ForeachyinO <y < K, show that dy/dt as given by the Gompertz equation is never
less than dy/dt as given by the logistic equation.

17. (a) Solve the Gompertz equation
dy/dt = ryIn(K/y),

subject to the initial condition y(0) = yy.

Hint: You may wish to let u = In(y/K).

(b) For the data given in Example 1 in the text (r = 0.71 per year, K = 80.5 x 10° kg,
vo/K = 0.25), use the Gompertz model to find the predicted value of y(2).

(c) For the same data as in part (b), use the Gompertz model to find the time 7 at which
y(r) = 0.75K.

18. A pond forms as water collects in a conical depression of radius a and depth /. Suppose that
water flows in at a constant rate k and is lost through evaporation at a rate proportional
to the surface area.

(a) Show that the volume V(f) of water in the pond at time ¢ satisfies the differential
equation

dV /dt = k — an(3a/7h)**V?53,

where « is the coefficient of evaporation.
(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically
stable?
(c) Find a condition that must be satisfied if the pond is not to overflow.

19. Consider a cylindrical water tank of constant cross section A. Water is pumped into the
tank at a constant rate k and leaks out through a small hole of area a in the bottom
of the tank. From Torricelli’s principle in hydrodynamics (see Problem 6 in Section 2.3)
it follows that the rate at which water flows through the hole is aa\/@, where 4 is the
current depth of water in the tank, g is the acceleration due to gravity,and « is a contraction
coefficient that satisfies 0.5 < o < 1.0.

(a) Show that the depth of water in the tank at any time satisfies the equation
dh/dt = (k — aa\/2gh)/A.

(b) Determine the equilibrium depth /4, of water, and show that it is asymptotically stable.
Observe that 4, does not depend on A.

14Benjamin Gompertz (1779-1865) was an English actuary. He developed his model for population growth,
published in 1825, in the course of constructing mortality tables for his insurance company.
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Harvesting a Renewable Resource. Suppose that the population y of a certain species of fish
(for example, tuna or halibut) in a given area of the ocean is described by the logistic equation

dy/dt =r(1 —y/K)y.

Although it is desirable to utilize this source of food, it is intuitively clear that if too many fish
are caught, then the fish population may be reduced below a useful level and possibly even
driven to extinction. Problems 20 and 21 explore some of the questions involved in formulating
a rational strategy for managing the fishery.'?

20. At a given level of effort, it is reasonable to assume that the rate at which fish are caught

21.

depends on the population y: the more fish there are, the easier it is to catch them. Thus we
assume that the rate at which fish are caught is given by Ey, where E is a positive constant,
with units of 1/time, that measures the total effort made to harvest the given species of
fish. To include this effect, the logistic equation is replaced by

dy/dt =r(1 —y/K)y — Ey. (i)

This equation is known as the Schaefer model after the biologist M. B. Schaefer, who
applied it to fish populations.

(a) Show thatif E < r, then there are two equilibrium points, y; = 0 and
yv»=KA-E/r)>0.

(b) Show that y = y, is unstable and y = y, is asymptotically stable.

(c) A sustainable yield Y of the fishery is a rate at which fish can be caught indefinitely.
It is the product of the effort £ and the asymptotically stable population y,. Find Y as a
function of the effort E; the graph of this function is known as the yield—effort curve.

(d) Determine E so as to maximize Y and thereby find the maximum sustainable yield Y.

In this problem we assume that fish are caught at a constant rate /# independent of the size
of the fish population. Then y satisfies

dy/dt =r(1 —y/K)y — h. (i)

The assumption of a constant catch rate 7 may be reasonable when y is large but becomes
less so when y is small.

(a) If h < rK/4, show that Eq. (i) has two equilibrium points y; and y, with y; < y,;
determine these points.

(b) Show that y; is unstable and y, is asymptotically stable.

(c) From a plot of f(y) versus y, show that if the initial population y, > y;, then y — y,
as t — oo, but that if yy < y;, then y decreases as ¢ increases. Note that y = 0 is not an
equilibrium point, so if yy < y;, then extinction will be reached in a finite time.

(d) If h > rK/4,show that y decreases to zero as t increases, regardless of the value of yj.
(e) If h = rK/4,show that there is a single equilibrium point y = K/2 and that this point
is semistable (see Problem 7). Thus the maximum sustainable yield is 4, = rK /4, corre-
sponding to the equilibrium value y = K /2. Observe that 4, has the same value as Y,

in Problem 20(d). The fishery is considered to be overexploited if y is reduced to a level
below K /2.

5 An excellent treatment of this kind of problem, which goes far beyond what is outlined here, may be
found in the book by Clark mentioned previously, especially in the first two chapters. Numerous additional
references are given there.



92

Chapter 2. First Order Differential Equations

Epidemics. The use of mathematical methods to study the spread of contagious diseases
goes back at least to some work by Daniel Bernoulli in 1760 on smallpox. In more recent years

many mathematical models have been proposed and studied for many different diseases.

16

Problems 22 through 24 deal with a few of the simpler models and the conclusions that can be
drawn from them. Similar models have also been used to describe the spread of rumors and
of consumer products.

22.

23.

24.

Suppose that a given population can be divided into two parts: those who have a given
disease and can infect others, and those who do not have it but are susceptible. Let x be the
proportion of susceptible individuals and y the proportion of infectious individuals; then
x +y = 1. Assume that the disease spreads by contact between sick and well members of
the population and that the rate of spread dy/dt is proportional to the number of such
contacts. Further, assume that members of both groups move about freely among each
other, so the number of contacts is proportional to the product of x and y. Sincex =1 — y,
we obtain the initial value problem

dy/dt =ay(1—y),  y(0) =y, (i)

where « is a positive proportionality factor, and y is the initial proportion of infectious
individuals.

(a) Find the equilibrium points for the differential equation (i) and determine whether
each is asymptotically stable, semistable, or unstable.

(b) Solve the initial value problem (i) and verify that the conclusions you reached in
part (a) are correct. Show that y(f) — 1ast — oo, which means that ultimately the disease
spreads through the entire population.

Some diseases (such as typhoid fever) are spread largely by carriers, individuals who can
transmit the disease but who exhibit no overt symptoms. Let x and y denote the propor-
tions of susceptibles and carriers, respectively, in the population. Suppose that carriers are
identified and removed from the population at a rate 8, so

dy/dt = —py. ®
Suppose also that the disease spreads at a rate proportional to the product of x and y; thus
dx/dt = —axy. (ii)

(a) Determine y at any time ¢ by solving Eq. (i) subject to the initial condition y(0) = y,.
(b) Use the result of part (a) to find x at any time ¢ by solving Eq. (ii) subject to the initial
condition x(0) = x.
(c) Find the proportion of the population that escapes the epidemic by finding the limiting
value of x as t — oo.

Daniel Bernoulli’s work in 1760 had the goal of appraising the effectiveness of a contro-
versial inoculation program against smallpox, which at that time was a major threat to
public health. His model applies equally well to any other disease that, once contracted
and survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (¢t = 0), and let n(f) be the
number of these individuals surviving ¢ years later. Let x(¢) be the number of members of
this cohort who have not had smallpox by year ¢ and who are therefore still susceptible.
Let B be the rate at which susceptibles contract smallpox, and let v be the rate at which

16A standard source is the book by Bailey listed in the references. The models in Problems 22, 23, and
24 are discussed by Bailey in Chapters 5, 10, and 20, respectively.
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people who contract smallpox die from the disease. Finally, let 1« (¢) be the death rate from
all causes other than smallpox. Then dx/dt, the rate at which the number of susceptibles
declines, is given by

dx/dt = —[ + p (D). (i)

The first term on the right side of Eq. (i) is the rate at which susceptibles contract smallpox,
and the second term is the rate at which they die from all other causes. Also

dn/dt = —vBx — u(t)n, (i1)

where dn/dt is the death rate of the entire cohort, and the two terms on the right side are
the death rates due to smallpox and to all other causes, respectively.

(a) Let z = x/n, and show that z satisfies the initial value problem
dz/dt = —Bz(1 — vz), z(0) = 1. (iii)

Observe that the initial value problem (iii) does not depend on u(f).

(b) Find z(¢) by solving Eq. (iii).

(c) Bernoulli estimated that v = g = {. Using these values, determine the proportion of
20-year-olds who have not had smallpox.

Note: On the basis of the model just described and the best mortality data available at the
time, Bernoulli calculated that if deaths due to smallpox could be eliminated (v = 0), then
approximately 3 years could be added to the average life expectancy (in 1760) of 26 years,
7 months. He therefore supported the inoculation program.

Bifurcation Points. For an equation of the form

dy/dt = f(a,y), (i)

where a is a real parameter, the critical points (equilibrium solutions) usually depend on the
value of a. As a steadily increases or decreases, it often happens that at a certain value of a, called
a bifurcation point, critical points come together, or separate, and equilibrium solutions may
be either lost or gained. Bifurcation points are of great interest in many applications, because
near them the nature of the solution of the underlying differential equation is undergoing an
abrupt change. For example, in fluid mechanics a smooth (laminar) flow may break up and
become turbulent. Or an axially loaded column may suddenly buckle and exhibit a large lateral
displacement. Or, as the amount of one of the chemicals in a certain mixture is increased, spiral
wave patterns of varying color may suddenly emerge in an originally quiescent fluid. Problems
25 through 27 describe three types of bifurcations that can occur in simple equations of the
form (i).
25. Consider the equation

dy/dt = a — y*. (ii)

(a) Find all of the critical points for Eq. (ii). Observe that there are no critical points if
a < 0, one critical point if a = 0, and two critical points if a > 0.

(b) Draw the phase line in each case and determine whether each critical point is
asymptotically stable, semistable, or unstable.

(c) In each case sketch several solutions of Eq. (ii) in the ty-plane.

(d) If we plot the location of the critical points as a function of a in the ay-plane, we obtain
Figure 2.5.10. This is called the bifurcation diagram for Eq. (ii). The bifurcation at a = 0
is called a saddle-node bifurcation. This name is more natural in the context of second
order systems, which are discussed in Chapter 9.
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26.

27.

28.

Asymptotically stable

-2 -1 1 2 3 4 a
\
N
N
gk S~ Unstable
2 T~

FIGURE 2.5.10 Bifurcation diagram for y’ = a — 2.

Consider the equation
dy/dt = ay —y* = y(a —y*). (iii)

(a) Again consider the cases a < 0,a = 0,and a > 0. In each case find the critical points,
draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.

(b) In each case sketch several solutions of Eq. (iii) in the ty-plane.

(c) Draw the bifurcation diagram for Eq. (iii)—that is, plot the location of the critical
points versus a. For Eq. (iii) the bifurcation point at a = 0 is called a pitchfork bifurcation.
Your diagram may suggest why this name is appropriate.

Consider the equation
dy/dt = ay —y* = y(a —y). (iv)

(a) Again consider the cases a < 0,a = 0,and a > 0. In each case find the critical points,
draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.

(b) In each case sketch several solutions of Eq. (iv) in the zy-plane.

(c) Draw the bifurcation diagram for Eq. (iv). Observe that for Eq. (iv) there are the
same number of critical points for a < 0 and a > 0 but that their stability has changed.
For a < 0 the equilibrium solution y = 0 is asymptotically stable and y = a is unstable,
while for a > 0 the situation is reversed. Thus there has been an exchange of stability as a
passes through the bifurcation point a = 0. This type of bifurcation is called a transcritical
bifurcation.

Chemical Reactions. A second order chemical reaction involves the interaction (colli-
sion) of one molecule of a substance P with one molecule of a substance Q to produce
one molecule of a new substance X; this is denoted by P + Q — X. Suppose that p and
q,where p # q, are the initial concentrations of P and Q, respectively, and let x(¢) be the
concentration of X at time ¢. Then p — x(¢) and ¢ — x(¢) are the concentrations of P and
Q at time ¢, and the rate at which the reaction occurs is given by the equation

dx/dt = a(p — x)(q — x), @)

where « is a positive constant.

(a) If x(0) =0, determine the limiting value of x(z) as ¢t — oo without solving the
differential equation. Then solve the initial value problem and find x(¢) for any ¢.
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(b) If the substances P and Q are the same, then p = ¢ and Eq. (i) is replaced by
dx/dt = a(p — x)%. (i1)

If x(0) = 0, determine the limiting value of x(¢) as t — oo without solving the differential
equation. Then solve the initial value problem and determine x(¢) for any ¢.

2.6 Exact Equations and Integrating Factors

EXAMPLE

1

For first order equations there are a number of integration methods that are applica-
ble to various classes of problems. The most important of these are linear equations
and separable equations, which we have discussed previously. Here, we consider a
class of equations known as exact equations for which there is also a well-defined
method of solution. Keep in mind, however, that those first order equations that
can be solved by elementary integration methods are rather special; most first order
equations cannot be solved in this way.

Solve the differential equation
2x 4y 4+ 2xyy = 0. 1)

The equation is neither linear nor separable, so the methods suitable for those types of
equations are not applicable here. However, observe that the function v(x, y) = x> + xy? has
the property that

a a9
2x 4y = —w, 2xy = —w 2)
ox ay
Therefore, the differential equation can be written as
dp oy dy
—+——=0 3
ox + ay dx ®)

Assuming that y is a function of x, we can use the chain rule to write the left side of Eq. (3) as
dyi(x,y)/dx. Then Eq. (3) has the form

dy _do oo
o e = +xy*) =0. 4)

By integrating Eq. (4) we obtain
Y(x,y) = x> +xy* =c, 5)

where c is an arbitrary constant. The level curves of ¥(x, y) are the integral curves of Eq. (1).
Solutions of Eq. (1) are defined implicitly by Eq. (5).

In solving Eq. (1) the key step was the recognition that there is a function v that
satisfies Egs. (2). More generally, let the differential equation

M(x,y) + N(x,y)y' =0 (6)
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Theorem 2.6.1

be given. Suppose that we can identify a function ¥(x, y) such that

W ey = e =
5(X’Y)—M(X»Y)a ay (X’Y)—N(XJ)’ (7)

and such that ¥(x,y) = ¢ defines y = ¢(x) implicitly as a differentiable function
of x. Then

0 W d
M(x,y) + N, y)y = 8—“’ v

d
v Ty = EW[X@(X)]

and the differential equation (6) becomes

;—xlﬁ[x,tﬁ(X)] =0. )

In this case Eq. (6) is said to be an exact differential equation. Solutions of Eq. (6),
or the equivalent Eq. (8), are given implicitly by

vx,y) =c, ©)

where c is an arbitrary constant.

In Example 1 it was relatively easy to see that the differential equation was exact
and, in fact, easy to find its solution, at least implicitly, by recognizing the required
function . For more complicated equations it may not be possible to do this so
easily. How can we tell whether a given equation is exact, and if it is, how can we find
the function y(x, y)? The following theorem answers the first question, and its proof
provides a way of answering the second.

Let the functions M, N,M,, and N,, where subscripts denote partial derivatives,
be continuous in the rectangular!’ region R:a < x < B,y < y < 8. Then Eq. (6)

M(x,y) + N(x,y)y =0
is an exact differential equation in R if and only if
My (x,y) = Nx(x,y) (10)
at each point of R. That is, there exists a function y satisfying Egs. (7),
Ye(x,y) = M(x,y), Yy(x,y) = N(x, ),
if and only if M and N satisty Eq. (10).

171t is not essential that the region be rectangular, only that it be simply connected. In two dimensions

this means that the region has no holes in its interior. Thus, for example, rectangular or circular regions
are simply connected, but an annular region is not. More details can be found in most books on advanced
calculus.
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The proof of this theorem has two parts. First, we show that if there is a function
¥ such that Egs. (7) are true, then it follows that Eq. (10) is satisfied. Computing
M, and N, from Egs. (7), we obtain

My(x7y) = Iﬂxy(xay), Nx(X,J’) = wyx(xuy)- (11)

Since M, and N, are continuous, it follows that v, and v, are also continuous. This
guarantees their equality, and Eq. (10) is valid.

We now show that if M and N satisfy Eq. (10), then Eq. (6) is exact. The proof
involves the construction of a function v satisfying Egs. (7)

Yu(x,y) = M(x,y), Py (x,y) = N(x,y).

We begin by integrating the first of Egs. (7) with respect to x, holding y constant. We
obtain

v(x,y) = Qx,y) + h(y), (12)

where Q(x,y) is any differentiable function such that dQ(x,y)/dx = M(x,y). For
example, we might choose

Or.y) = / M(s.y) ds, (13)

where xq is some specified constant in « < xy < 8. The function 4 in Eq. (12) is an
arbitrary differentiable function of y, playing the role of the arbitrary constant. Now
we must show that it is always possible to choose A (y) so that the second of Egs. (7)
is satisfied—that is, ¢, = N. By differentiating Eq. (12) with respect to y and setting
the result equal to N(x,y), we obtain

3
Yy(x,y) = a—f(x,y) +H(y) =Nx,y).

Then, solving for /’(y), we have
, a

In order for us to determine 4(y) from Eq. (14), the right side of Eq. (14), despite
its appearance, must be a function of y only. One way to show that this is true is to
show that its derivative with respect to x is zero. Thus we differentiate the right side
of Eq. (14) with respect to x, obtaining

oN a0 00
8—X(X,J’) - a@(&)’)- (15)

By interchanging the order of differentiation in the second term of Eq. (15), we have

aN(x ) aaQ(x )
ox Y dy dx R

or,since 0Q/dx = M,
oN oM
-y — — ),
ox ay

which is zero on account of Eq. (10). Hence, despite its apparent form, the right side of
Eq. (14) does not, in fact, depend on x. Then we find A(y) by integrating Eq. (14), and
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upon substituting this function in Eq. (12), we obtain the required function ¥ (x, y).
This completes the proof of Theorem 2.6.1.
It is possible to obtain an explicit expression for ¥(x, y) in terms of integrals (see
Problem 17),but in solving specific exact equations, it is usually simpler and easier just
to repeat the procedure used in the preceding proof. That is, integrate vy, = M with
respect to x, including an arbitrary function of /(y) instead of an arbitrary constant,
and then differentiate the result with respect to y and set it equal to N. Finally, use
this last equation to solve for 4(y). The next example illustrates this procedure.
Solve the differential equation
EXAMPLE . ) ,
2 (ycosx + 2xe’) + (sinx +x“e’ — 1)y’ = 0. (16)
By calculating M, and N,, we find that
M,(x,y) = cosx + 2xe” = N,(x,y),
so the given equation is exact. Thus there is a ¥/(x, y) such that
‘px(x’}’) = ycosx + 2xey5
Yy (x,y) = sinx + x2e’ —1.
Integrating the first of these equations, we obtain
Y(x,y) = ysinx + x>’ + h(y). 17)
Setting v/, = N gives
Yy (x,y) =sinx +x%e’ + 1 (y) = sinx + x%¢’ — 1.
Thus /'(y) = —1 and h(y) = —y. The constant of integration can be omitted since any solution
of the preceding differential equation is satisfactory; we do not require the most general one.
Substituting for A(y) in Eq. (17) gives
V(x,y) = ysinx + x%¢’ —y.
Hence solutions of Eq. (16) are given implicitly by
ysinx +x%e’ —y =c. (18)
Solve the differential equation
EXAMPLE S )
Bxy +y) + (x* +xy)y' =0. (19)

3

‘We have
M, (x,y) = 3x + 2y, Ni(x,y) =2x +y;

since M, # N,, the given equation is not exact. To see that it cannot be solved by the procedure
described above, let us seek a function i such that

Vebey) =3y 455 Yy(ny) =27 +ay. (20)
Integrating the first of Eqgs. (20) gives
YY) = 3%y + 2y + h(y), @1
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where £ is an arbitrary function of y only. To try to satisfy the second of Egs. (20), we compute
¥, from Eq. (21) and set it equal to NV, obtaining

3 +2xy+H(y) =x" +xy
or

H(y) = —1x* —xy. (22)

Since the right side of Eq. (22) depends on x as well as y, it is impossible to solve Eq. (22) for
h(y). Thus there is no ¥ (x, y) satisfying both of Egs. (20).

Integrating Factors. It is sometimes possible to convert a differential equation that is
not exact into an exact equation by multiplying the equation by a suitable integrating
factor. Recall that this is the procedure that we used in solving linear equations in
Section 2.1. To investigate the possibility of implementing this idea more generally,
let us multiply the equation

M(x,y) + N(x,y)y =0 (23)

by a function u and then try to choose u so that the resulting equation

1, IM(x, ) + nx, )N (x,y)y" =0 (24)
is exact. By Theorem 2.6.1, Eq. (24) is exact if and only if
(MM)y = (UN),. (25)

Since M and N are given functions, Eq. (25) states that the integrating factor x must
satisfy the first order partial differential equation

Mﬂy_Nle+(My_Nx)M=0' (26)

If a function p satisfying Eq. (26) can be found, then Eq. (24) will be exact. The
solution of Eq. (24) can then be obtained by the method described in the first part of
this section. The solution found in this way also satisfies Eq. (23),since the integrating
factor u can be canceled out of Eq. (24).

A partial differential equation of the form (26) may have more than one solution;
if this is the case, any such solution may be used as an integrating factor of Eq. (23).
This possible nonuniqueness of the integrating factor is illustrated in Example 4.

Unfortunately, Eq. (26), which determines the integrating factor u, is ordinarily
at least as hard to solve as the original equation (23). Therefore, although in princi-
ple integrating factors are powerful tools for solving differential equations,in practice
they can be found only in special cases. The most important situations in which simple
integrating factors can be found occur when p is a function of only one of the variables
x or y, instead of both.

Let us determine conditions on M and N so that Eq. (23) has an integrating factor
w that depends on x only. If we assume that u is a function of x only, then the partial
derivative u, reduces to the ordinary derivative du/dx and p, = 0. Making these
substitutions in Eq. (26), we find that

du M, — N,

dx N @7)
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EXAMPLE

4

If (M, — N,)/N is a function of x only, then there is an integrating factor u that also
depends only on x; further, x(x) can be found by solving Eq. (27), which is both linear
and separable.

A similar procedure can be used to determine a condition under which Eq. (23)
has an integrating factor depending only on y; see Problem 23.

Find an integrating factor for the equation
Gxy +y°) + (& +xp)y =0 (19)

and then solve the equation.
In Example 3 we showed that this equation is not exact. Let us determine whether it has an
integrating factor that depends on x only. On computing the quantity (M, — N,)/N, we find
that
My(x,y) = Ne(x,y) _ 3x+2y—(2x+y) 1
N(x,y) - X2 4 xy T x

(28)

Thus there is an integrating factor u that is a function of x only, and it satisfies the differential
equation

dp
o2 29
dx x (29)
Hence
w(x) = x. (30)
Multiplying Eq. (19) by this integrating factor, we obtain
GBx?y +x3°) + (X +x%y)y =0. (31)

Equation (31) is exact, since
%(3x2y +xy?) =3x% +2xy = %(}c3 +x%y).
Thus there is a function v such that
Ve (x,y) = 3x%y + xy?, Yy (x,y) = x° + x%y. (32)

Integrating the first of Egs. (32), we obtain

Yx.y) =y + 5% +h(y).
Substituting this expression for ¥(x, y) in the second of Egs. (32), we find that

X4+ xty + 1 () =2 + 2%y,

so 1'(y) = 0 and A(y) is a constant. Thus the solutions of Eq. (31), and hence of Eq. (19), are
given implicitly by
vy + %xzy2 =c. (33)

Solutions may also be found in explicit form since Eq. (33) is quadratic in y.
You may also verify that a second integrating factor for Eq. (19) is

n(x,y) = m

and that the same solution is obtained, though with much greater difficulty, if this integrating
factor is used (see Problem 32).
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P ROBLEMS Determine whether each of the equations in Problems 1 through 12 is exact. If it is exact, find
the solution.

L 2x+3)+Q2y—2)y =0 2. 2x+4y) + (2x —2y)y' =0
3. B —2xy+2) + (6> — x> +3)y =0 4. 2xy? +2y) + 2x%y +2x)y' =0
5. & _axtby 6. D _ _ax—by
dx bx +cy dx bx —cy
7. (e*siny — 2ysinx) + (e“cosy +2cosx)y =0
8. (e'siny +3y) — Bx —e*siny)y =0
9. (ye¥ cos2x — 2e* sin2x + 2x) + (xe” cos2x — 3)y' =0

10. (y/x+6x) + (Inx — 2)y' =0, x>0
11. (xIny +xy) + (yInx + xy)y’ = 0; x>0, y>0
x y dy
12. — =0
(2 +y2)32 + (2 +y2)32 dx

In each of Problems 13 and 14, solve the given initial value problem and determine at least
approximately where the solution is valid.

B @x=—y»+2y—x0y =0, yd)=3

14. O +y—1)— @y —x)y =0, y1) =0

In each of Problems 15 and 16, find the value of b for which the given equation is exact, and
then solve it using that value of b.

15. (x)? + bx’y) + (x + )x2y' =0 16. (ye* + x) + bxe*y =0

17. Assume that Eq. (6) meets the requirements of Theorem 2.6.1 in a rectangle R and is
therefore exact. Show that a possible function ¥(x, y) is

x y
vy = [ Mowds+ [ Newoar
X0 Yo
where (xy, yo) is a point in R.
18. Show that any separable equation

M) +N(y)y =0
is also exact.
In each of Problems 19 through 22, show that the given equation is not exact but becomes
exact when multiplied by the given integrating factor. Then solve the equation.
19. X’y +x(1 +y?»)y =0, n(x,y) =1/xy?
. e
20. (ﬂ e sinx) n (w) V=0,  u(xy) =y
y y
2L y+ @2x—ye)y' =0,  pux,y)=y
22. (x+2)siny + (xcosy)y =0, n(x,y) = xe
23. Show that if (N, — M,)/M = Q, where Q is a function of y only, then the differential
equation
M+ Ny =0

has an integrating factor of the form

n@y) = eXp/ O(y) dy.
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24. Show that if (N, — M,)/(xM — yN) = R, where R depends on the quantity xy only, then
the differential equation

M+ Ny =0

has an integrating factor of the form w(xy). Find a general formula for this integrating
factor.
In each of Problems 25 through 31, find an integrating factor and solve the given equation.
25. B2y +2xy +yH) + (2 +yH)y =0 26.y =¥ +y—1
27. 1+ (x/y —siny)y’ =0 28. y+(2xy—e @)y =0
29. e* + (e“coty +2ycscy)y =0
30. [4(°/y) + B/M] + [3(x/y*) +4yly =0
31. <3x+9> + (ﬁ +3X> Dy
y y x ) dx
Hint: See Problem 24.
32. Solve the differential equation

Gxy+y) + @ +xp)y =0

using the integrating factor u(x,y) = [xy(2x + y)]~'. Verify that the solution is the same
as that obtained in Example 4 with a different integrating factor.

2.7 Numerical Approximations: Euler’s Method

Recall two important facts about the first order initial value problem

d
d—f =f(ty), y(to) = yo. (1)

First, if f and 9f /dy are continuous, then the initial value problem (1) has a unique
solution y = ¢(¢) in some interval surrounding the initial point ¢ = fy. Second, it is
usually not possible to find the solution ¢ by symbolic manipulations of the differ-
ential equation. Up to now we have considered the main exceptions to the latter
statement: differential equations that are linear, separable, or exact, or that can be
transformed into one of these types. Nevertheless, it remains true that solutions of
the vast majority of first order initial value problems cannot be found by analytical
means, such as those considered in the first part of this chapter.

Therefore, it is important to be able to approach the problem in other ways. As we
have already seen, one of these ways is to draw a direction field for the differential
equation (which does not involve solving the equation) and then to visualize the
behavior of solutions from the direction field. This has the advantage of being a
relatively simple process, even for complicated differential equations. However, it
does not lend itself to quantitative computations or comparisons, and this is often a
critical shortcoming.

For example, Figure 2.7.1 shows a direction field for the differential equation

dy

32— 05y. 2
0 y 2
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From the direction field you can visualize the behavior of solutions on the rectangle
shown in the figure. On this rectangle a solution starting at a point on the y-axis
initially increases with ¢, but it soon reaches a maximum value and then begins to
decrease as ¢ increases further.
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irection field for Eq. (2): dy/dt =

You may also observe that in Figure 2.7.1 many tangent line segments at successive
values of ¢ almost touch each other. It takes only a bit of imagination to consider
starting at a point on the y-axis and linking line segments for successive values of  in
the grid, thereby producing a piecewise linear graph. Such a graph would apparently
be an approximation to a solution of the differential equation. To convert this idea
into a useful method for generating approximate solutions, we must answer several
questions, including the following:

1. Can we carry out the linking of tangent lines in a systematic and straightforward
manner?

2. If so, does the resulting piecewise linear function provide an approximation to an actual
solution of the differential equation?

3. If so,can we assess the accuracy of the approximation? That is, can we estimate how far
the approximation deviates from the solution itself?

It turns out that the answer to each of these questions is affirmative. The resulting
method was originated by Euler about 1768 and is referred to as the tangent line
method or the Euler method. We will deal with the first two questions in this section
but will defer a systematic discussion of the third question until Chapter 8.

To see how the Euler method works, let us consider how we might use tangent
lines to approximate the solution y = ¢(¢) of Egs. (1) near t = z. We know that the
solution passes through the initial point (¢, yo),and from the differential equation, we
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also know that its slope at this point is f (¢, yo). Thus we can write down an equation
for the line tangent to the solution curve at (¢, yo), namely,

y = Yo + f(to, yo) (t — to). 3)

The tangent line is a good approximation to the actual solution curve on an interval
short enough so that the slope of the solution does not change appreciably from its
value at the initial point; see Figure 2.7.2. Thus, if #; is close enough to ty, we can
approximate ¢(t;) by the value y; determined by substituting ¢ = #; into the tangent
line approximation at t = ty; thus

y1 = yo + f(to, yo) (t1 — to). 4)
y
Tangent line
Y=Y +f(t0v yo) @= to)
i D Soluti
77777777 olution
o(t;) y=0(®)
Yol-——

FIGURE 2.7.2 A tangent line approximation.

To proceed further, we can try to repeat the process. Unfortunately, we do not know
the value ¢(#1) of the solution at #;. The best we can do is to use the approximate
value y; instead. Thus we construct the line through (¢, y;) with the slope f (¢, y1),

y=y1+ft,y0) —n). Q)
To approximate the value of ¢(¢) at a nearby point ,,we use Eq. (5) instead, obtaining
y2 =y1+f(t1,y)(t2 — 1). (6)

Continuing in this manner, we use the value of y calculated at each step to deter-
mine the slope of the approximation for the next step. The general expression for the
tangent line starting at (¢, y,) is

Y =Yn+ [, yn) (¢ = tn); ™)
hence the approximate value y,; at t,4; in terms of ¢,, t,,1, and y,, is
Y1 = Yn + [, y) s — 1), n=0,1,2,.... (®)
If we introduce the notation f,, = f(¢,, y,), then we can rewrite Eq. (8) as
Ynt1 = Y+ fu - (b1 — b)), n=0,12,.... )

Finally, if we assume that there is a uniform step size 4 between the points ty, t1, t7, . . .,
then t,.1 = t, + h for each n, and we obtain Euler’s formula in the form

VYni1 = Vn + fuh, n=0,1,2,.... (10)



2.7 Numerical Approximations: Euler’s Method 105

EXAMPLE

1

To use Euler’s method, you repeatedly evaluate Eq. (9) or Eq. (10), depending on
whether or not the step size is constant, using the result of each step to execute the
next step. In this way you generate a sequence of values y1, y2, ys, . . . that approximate
the values of the solution ¢(¢) at the points t1, 5,3, . ... If, instead of a sequence of
points, you need a function to approximate the solution ¢ (), then you can use the
piecewise linear function constructed from the collection of tangent line segments.
That is, let y be given in [f, 4] by Eq. (7) with n = 0,1in [#,,] by Eq. (7) withn =1,
and so on.

Consider the initial value problem

d
d—f =3-2-05y, y0) =L 11)

Use Euler’smethod with step size & = 0.2 to find approximate values of the solution of Egs. (11)
att =0.2,0.4,0.6,0.8,and 1. Compare them with the corresponding values of the actual solution
of the initial value problem.

Note that the differential equation in the given initial value problem is the same as in Eq. (2).
This equation is linear, so it can be solved as in Section 2.1, using the integrating factor e'/2.
The resulting solution of the initial value problem (11) is

y=¢@t) =14 — 4t — 137/, (12)

To approximate this solution by means of Euler’s method, note that in this case
f(t,y) =3 —2t — 0.5y. Using the initial values #, = 0 and y, = 1, we find that

fo=rf{to,y0) =f(0,1)=3-0-05=25
and then, from Eq. (3), the tangent line approximation near ¢ = 0 is
y=14250—-0)=1+2.5t. (13)
Setting r = 0.2 in Eq. (13), we find the approximate value y; of the solution at t = 0.2, namely,
yi=1+2.5)(0.2)=1.5.
At the next step we have
fi=r02,15=3-2(0.2) — (0.5 (1.5 =3-04—-0.75 = 1.85.
Then the tangent line approximation near t = 0.2 is
y=15+1.85(0—-0.2) =113+ 1.85¢. (14)
Evaluating the expression in Eq. (14) for t = 0.4, we obtain
y2 =113 +1.85(0.4) = 1.87.

Repeating this computational procedure three more times, we obtain the results shown in
Table 2.7.1.

The first column contains the ¢-values separated by the step size & = 0.2. The third
column shows the corresponding y-values computed from Euler’s formula (10). In the
fourth column are the tangent line approximations found from Eq. (7). The second column
contains values of the solution (12) of the initial value problem (11), correct to five decimal
places. The solution (12) and the tangent line approximation are also plotted in Figure 2.7.3.

FromTable 2.7.1 and Figure 2.7.3 we see that the approximations given by Euler’s method for
this problem are greater than the corresponding values of the actual solution. This is because
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the graph of the solution is concave down and therefore the tangent line approximations lie
above the graph.

The accuracy of the approximations in this example is not good enough to be satisfactory in
a typical scientific or engineering application. For example, at ¢ = 1 the error in the approxi-
mation is 2.32363 — 2.11510 = 0.20853, which is a percentage error of about 9.86% relative to
the exact solution. One way to achieve more accurate results is to use a smaller step size, with
a corresponding increase in the number of computational steps. We explore this possibility in
the next example.

TABLE 2.7.1 Results of Euler’s Method with & = 0.2 for
V' =3-2t-05y, y(0)=1

Euler

t Exact withh =0.2 Tangent line
0.0 1.00000 1.00000 y=1+25t
0.2 1.43711 1.50000 y=113+1.85¢
0.4 1.75650 1.87000 y =1.364 + 1.265¢
0.6 1.96936 2.12300 y =1.6799 + 0.7385t
0.8 2.08584 2.27070 y = 2.05898 + 0.26465¢
1.0 2.11510 2.32363

JEES
-
_e

Tangent line approximation -~

\ \ \ \ \
0.2 0.4 0.6 0.8 1 ¢
FIGURE 2.7.3 Plots of the solution and a tangent line approximation
with 4 = 0.2 for the initial value problem (11): dy/dt =3 — 2t — 0.5y, y(0) = 1.

Of course, computations such as those in Example 1 and in the other examples in
this section are usually done on a computer. Some software packages include code
for the Euler method, while others do not. In any case, it is straightforward to write
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EXAMPLE

2

a computer program that will carry out the calculations required to produce results
such as those in Table 2.7.1. Basically, what is required is a loop that will evaluate
Eq. (10) repetitively, along with suitable instructions for input and output. The output
can be a list of numbers, as in Table 2.7.1, or a plot, as in Figure 2.7.3. The specific
instructions can be written in any high-level programming language with which you
are familiar.

Consider again the initial value problem (11)

dy

— =3-2t-05 0)=1.

a0 v,y
Use Euler’s method with various step sizes to calculate approximate values of the solution
for 0 <t <5. Compare the calculated results with the corresponding values of the exact
solution (12)

y=¢@t) =14 — 4t — 13¢7/2,

We used step sizes & = 0.1,0.05, 0.025, and 0.01, corresponding respectively to 50, 100, 200,
and 500 steps, to go from ¢ = 0 to ¢ = 5. The results of these calculations, along with the values
of the exact solution, are presented in Table 2.7.2. All computed entries are rounded to four
decimal places, although more digits were retained in the intermediate calculations.

TABLE 2.7.2 A Comparison of Exact Solution with Euler’s Method for Several
Step Sizes hfory’ =3 — 2t — 0.5y, y(0) =1

t Exact h=0.1 h =0.05 h =0.025 h=0.01
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 2.1151 22164 2.1651 2.1399 2.1250
2.0 1.2176 1.3397 1.2780 1.2476 1.2295
3.0 —0.9007 —0.7903 —0.8459 —0.8734 —0.8898
4.0 —3.75% —3.6707 —3.7152 —3.7373 —3.7506
5.0 —7.0671 —7.0003 —7.0337 —7.0504 —7.0604

What conclusions can we draw from the data in Table 2.7.2? The most important observation
is that, for a fixed value of ¢, the computed approximate values become more accurate as the
step size & decreases. You can see this by reading across a particular row in the table from left
to right. This is what we would expect, of course, but it is encouraging that the data confirm our
expectations. For example, for ¢t = 2 the approximate value with # = 0.1 is too large by 0.1221
(about 10%), whereas the value with 2 = 0.01 is too large by only 0.0119 (about 1%). In this
case, reducing the step size by a factor of 10 (and performing 10 times as many computations)
also reduces the error by a factor of about 10. By comparing the errors for other pairs of
values in the table, you can verify that this relation between step size and error holds for them
also: reducing the step size by a given factor also reduces the error by approximately the same
factor. Does this mean that for the Euler method the error is approximately proportional to
the step size? Of course, one example does not establish such a general result, but it is at least
an interesting conjecture.'®

18A more detailed discussion of the errors in using the Euler method appears in Chapter 8.
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EXAMPLE

3

A second observation from Table 2.7.2 is that, for a fixed step size &, the approximations
become more accurate as f increases, at least for t > 2. For instance, for 4 = 0.1 the error for
t = 5 is only 0.0668, which is a little more than one-half of the error at t = 2. We will return to
this matter later in this section.

All in all, Euler’s method seems to work rather well for this problem. Reasonably good
results are obtained even for a moderately large step size & = 0.1, and the approximation can
be improved by decreasing 4.

Let us now look at another example.

Consider the initial value problem

d

D412, YO =1 (15)
dt

The general solution of this differential equation was found in Example 2 of Section 2.1, and
the solution of the initial value problem (15) is

y=—-7+1r+ 1" (16)

Use Euler’s method with several step sizes to find approximate values of the solution on the
interval 0 < ¢ < 5. Compare the results with the corresponding values of the solution (16).

Using the same range of step sizes as in Example 2, we obtain the results presented in
Table 2.7.3.

TABLE 2.7.3 A Comparison of Exact Solution with Euler’s Method for Several Step Sizes &
fory =4—t+42y, y(0) =1

t Exact h=0.1 h =0.05 h =0.025 h=0.01
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
1.0 19.06990 15.77728 17.25062 18.10997 18.67278
2.0 149.3949 104.6784 123.7130 135.5440 143.5835
3.0 1109.179 652.5349 837.0745 959.2580 1045.395
4.0 8197.884 4042.122 5633.351 6755.175 7575.577
5.0 60573.53 25026.95 37897.43 47555.35 54881.32

The data in Table 2.7.3 again confirm our expectation that, for a given value of ¢, accuracy
improves as the step size £ is reduced. For example, for ¢ = 1 the percentage error diminishes
from 17.3% when & = 0.1t02.1% when & = 0.01. However, the error increases fairly rapidly as
t increases for a fixed 4. Even for 4 = 0.01, the error at t = 51is 9.4%, and it is much greater for
larger step sizes. Of course, the accuracy that is needed depends on the purpose for which the
results are intended, but the errors in Table 2.7.3 are too large for most scientific or engineering
applications. To improve the situation, we might either try even smaller step sizes or else restrict
the computations to a rather short interval away from the initial point. Nevertheless, it is clear
that Euler’s method is much less effective in this example than in Example 2.
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To understand better what is happening in these examples, let us look again at
Euler’s method for the general initial value problem (1)

d

d—f =f6y),  y)=yo,
whose solution we denote by ¢(f). Recall that a first order differential equation has
an infinite family of solutions, indexed by an arbitrary constant ¢, and that the initial
condition picks out one member of this infinite family by determining the value of c.
Thus in the infinite family of solutions, ¢ (¢) is the one that satisfies the initial condition
¢ (to) = yo.

At the first step Euler’s method uses the tangent line approximation to the graph
of y = ¢(¢) passing through the initial point (¢, yo), and this produces the approx-
imate value y; at ¢;. Usually y; # ¢(#1), so at the second step Euler’s method uses
the tangent line approximation not to y = ¢ (), but to a nearby solution y = ¢;(¢)
that passes through the point (71, y1). So it is at each subsequent step. Euler’s method
uses a succession of tangent line approximations to a sequence of different solutions
o), p1(8), d2(2), . .. of the differential equation. At each step the tangent line is con-
structed to the solution passing through the point determined by the result of the
preceding step, as shown in Figure 2.7.4. The quality of the approximation after many
steps depends strongly on the behavior of the set of solutions that pass through the
points (¢,,y,) forn =1,2,3,....

FIGURE 2.7.4 The Euler method.

In Example 2 the general solution of the differential equation is
y =14 — 4t + ce™'? (17)

and the solution of the initial value problem (11) corresponds to ¢ = —13. The family
of solutions (17) is a converging family since the term involving the arbitrary constant
¢ approaches zero as t — oco. It does not matter very much which solutions we are
approximating by tangent lines in the implementation of Euler’s method, since all
the solutions are getting closer and closer to each other as ¢ increases.
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On the other hand, in Example 3 the general solution of the differential equation is
y=—7+41t+ce”, (18)

and this is a diverging family. Note that solutions corresponding to two nearby values
of ¢ become arbitrarily far apart as ¢ increases. In Example 3 we are trying to follow
the solution for ¢ = 11/4, but in the use of Euler’s method we are actually at each
step following another solution that separates from the desired one faster and faster
as ¢ increases. This explains why the errors in Example 3 are so much larger than
those in Example 2.

In using a numerical procedure such as the Euler method, you must always keep
in mind the question of whether the results are accurate enough to be useful. In
the preceding examples, the accuracy of the numerical results could be determined
directly by a comparison with the solution obtained analytically. Of course, usually
the analytical solution is not available if a numerical procedure is to be employed, so
what we usually need are bounds for, or at least estimates of, the error that do not
require a knowledge of the exact solution. You should also keep in mind that the best
that we can expect, or hope for, from a numerical approximation is that it reflects
the behavior of the actual solution. Thus a member of a diverging family of solutions
will always be harder to approximate than a member of a converging family.

If you wish to read more about numerical approximations to solutions of initial
value problems, you may go directly to Chapter 8 at this point. There we present
some information on the analysis of errors and also discuss several algorithms that
are computationally much more efficient than the Euler method.

PROBLEMS

Most of the problems in this section call for fairly extensive numerical computations. To han-
dle these problems you need suitable computing hardware and software. Keep in mind that
numerical results may vary somewhat, depending on how your program is constructed and on
how your computer executes arithmetic steps, rounds off, and so forth. Minor variations in the
last decimal place may be due to such causes and do not necessarily indicate that something is
amiss. Answers in the back of the book are recorded to six digits in most cases, although more
digits were retained in the intermediate calculations.

In each of Problems 1 through 4:

(a) Find approximate values of the solution of the given initial value problem at # = 0.1,0.2,
0.3, and 0.4 using the Euler method with 7 = 0.1.

(b) Repeat part (a) with &z = 0.05. Compare the results with those found in (a).
(c) Repeat part (a) with &7 = 0.025. Compare the results with those found in (a) and (b).

(d) Find the solution y = ¢(¢) of the given problem and evaluate ¢(¢) at t = 0.1,0.2,0.3, and
0.4. Compare these values with the results of (a), (b), and (c).

¢ Ly=3+t-y, y0=1 ¢ 2.y=2-1 y0=1
¢ 3. y=05-t+2y, yO)=1 & 4.y =3cost—2y, y0)=0

In each of Problems 5 through 10, draw a direction field for the given differential equation
and state whether you think that the solutions are converging or diverging.

6L 5 y=5-34p ¢ 6 y=yG-w
¢ Ty =6-t/0+y) ¢ 8 y=-ty+01y°
¢l 9y =0£+y ¢ 10. y = +2t9)/B+1)
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In each of Problems 11 through 14, use Euler’s method to find approximate values of the
solution of the given initial value problem at t = 0.5,1,1.5,2,2.5,and 3:

(@)
(©)
& 1L
¢ 13
& 15

& 16.

& 1.

& 18

& 19

With & = 0.1. (b) With /2 = 0.05.
With & = 0.025. (d) With & = 0.01.

y=5-3/y  y0) =2 ¢ 12.y =y3-1ty), y0)=05
V=@G-t/0+y), yO=-2 14 y=-ty+017° y0) =1

Consider the initial value problem

Yy =37/3y" -4, y1)=0,
(a) Use Euler’s method with 2 = 0.1 to obtain approximate values of the solution at
t=1.2,14,1.6,and 1.8.
(b) Repeat part (a) with z = 0.05.
(c) Compare the results of parts (a) and (b). Note that they are reasonably close for
t =12, 1.4, and 1.6 but are quite different for r = 1.8. Also note (from the differ-
ential equation) that the line tangent to the solution is parallel to the y-axis when

y = £2/+/3 = +1.155. Explain how this might cause such a difference in the calculated
values.

Consider the initial value problem
y==r+y, y0=1

Use Euler’s method with 2 = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 0 < ¢ < 1. What is your best estimate of the value of the solution at r = 0.8?
Att =17 Are your results consistent with the direction field in Problem 9?

Consider the initial value problem

V=0 +2)/G+1%),  yl)=2

Use Euler’s method with 4 = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 1 < ¢ < 3. What is your best estimate of the value of the solution at t = 2.5?
At t = 3? Are your results consistent with the direction field in Problem 10?

Consider the initial value problem
y=-ty+01y’,  y0) =aq,

where « is a given number.

(a) Draw a direction field for the differential equation (or reexamine the one from Prob-
lem 8). Observe that there is a critical value of « in the interval 2 < o < 3 that separates
converging solutions from diverging ones. Call this critical value «y.

(b) Use Euler’smethod withz = 0.01 to estimate «y. Do this by restricting o to an interval
[a,b], where b — a = 0.01.

Consider the initial value problem

Y=y -, y0=a
where « is a given number.

(a) Draw a direction field for the differential equation. Observe that there is a critical
value of « in the interval 0 < « <1 that separates converging solutions from diverging
ones. Call this critical value .

(b) Use Euler’smethod with 2 = 0.01 to estimate «g. Do this by restricting o, to an interval
[a,b], where b — a = 0.01.
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20. Convergence of Euler’s Method. It can be shown that under suitable conditions on f,
the numerical approximation generated by the Euler method for the initial value problem
v =f(t,y), y(ty) = yo converges to the exact solution as the step size & decreases. This is
illustrated by the following example. Consider the initial value problem

Y=1—t+y, y(to) = yo.

(a) Show that the exact solution is y = ¢(¢) = (yo — fo)e' " +¢.
(b) Using the Euler formula, show that

ye = A+ )y 1 +h— hiy_q, k=12,....
(c) Noting that y; = (1 4+ h)(yo — to) + #1, show by induction that
Yn = (1+h)"(}’0—f0)+ln (1)

for each positive integer n.

(d) Consider a fixed point ¢ > £, and for a given n choose & = (t — ty)/n. Then t, = t for
every n. Note also that i — 0 asn — oo. By substituting for /2 in Eq. (i) and lettingn — oo,
show that y, — ¢(t) as n — oo.

Hint: lim (1 + a/n)" = €.

In each of Problems 21 through 23, use the technique discussed in Problem 20 to show that
the approximation obtained by the Euler method converges to the exact solution at any fixed
point as &7 — 0.

21. y' =y, yO) =1
2.y =2y-1, y0)=1 Hint:y; = (1 +2h)/2+1/2
23,y =1 —1+2y, y0) =1 Hint:yy = (14+2h) +1,/2

2.8 The Existence and Uniqueness Theorem

In this section we discuss the proof of Theorem 2.4.2, the fundamental existence and
uniqueness theorem for first order initial value problems. This theorem states that
under certain conditions on f(¢, y), the initial value problem

Y =fty), o) =y (1)

has a unique solution in some interval containing the point .

In some cases (for example, if the differential equation is linear) the existence
of a solution of the initial value problem (1) can be established directly by actually
solving the problem and exhibiting a formula for the solution. However, in general,
this approach is not feasible because there is no method of solving the differential
equation that applies in all cases. Therefore, for the general case, it is necessary to
adopt an indirect approach that demonstrates the existence of a solution of Egs. (1)
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Theorem 2.8.1

but usually does not provide a practical means of finding it. The heart of this method
is the construction of a sequence of functions that converges to a limit function sat-
isfying the initial value problem, although the members of the sequence individually
do not. As a rule, it is impossible to compute explicitly more than a few members
of the sequence; therefore, the limit function can be determined only in rare cases.
Nevertheless, under the restrictions on f(¢,y) stated in Theorem 2.4.2, it is possible
to show that the sequence in question converges and that the limit function has the
desired properties. The argument is fairly intricate and depends, in part,on techniques
and results that are usually encountered for the first time in a course on advanced
calculus. Consequently, we do not go into all the details of the proof here; we do,
however, indicate its main features and point out some of the difficulties that must
be overcome.

First of all, we note that it is sufficient to consider the problem in which the initial
point (fo, yo) is the origin; that is, we consider the problem

y =fty, y0)=0. ()

If some other initial point is given, then we can always make a preliminary change
of variables, corresponding to a translation of the coordinate axes, that will take the
given point (fy, yo) into the origin. The existence and uniqueness theorem can now
be stated in the following way.

If f and 9f/dy are continuous in a rectangle R: |¢| < a, |y| < b, then there is some
interval |f| < & < a in which there exists a unique solution y = ¢(¢) of the initial
value problem (2).

For the method of proof discussed here it is necessary to transform the initial value
problem (2) into a more convenient form. If we suppose temporarily that there is a
differentiable function y = ¢(¢) that satisfies the initial value problem, then f[¢, ¢ (¢)]
is a continuous function of ¢ only. Hence we can integrate y’ = f(z, y) from the initial
point ¢ = 0 to an arbitrary value of ¢, obtaining

t
¢(0) =f0 [ls, ()] ds, 3)

where we have made use of the initial condition ¢(0) = 0. We also denote the dummy
variable of integration by s.

Since Eq. (3) contains an integral of the unknown function ¢, it is called an integral
equation. This integral equation is not a formula for the solution of the initial value
problem, but it does provide another relation satisfied by any solution of Egs. (2).
Conversely, suppose that there is a continuous function y = ¢(¢) that satisfies the
integral equation (3); then this function also satisfies the initial value problem (2). To
show this, we first substitute zero for ¢ in Eq. (3), which shows that the initial condition
is satisfied. Further, since the integrand in Eq. (3) is continuous, it follows from the
fundamental theorem of calculus that ¢ is differentiable and that ¢/'(¢t) = f[¢, $(¢)].
Therefore, the initial value problem and the integral equation are equivalent in the
sense that any solution of one is also a solution of the other. It is more convenient
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to show that there is a unique solution of the integral equation in a certain interval
|t| < h. The same conclusion will then hold also for the initial value problem.

One method of showing that the integral equation (3) has a unique solution is
known as the method of successive approximations or Picard’s" iteration method.
In using this method, we start by choosing an initial function ¢y, either arbitrarily or
to approximate in some way the solution of the initial value problem. The simplest
choice is

do(t) =0; 4)

then ¢y at least satisfies the initial condition in Egs. (2), although presumably not the
differential equation. The next approximation ¢, is obtained by substituting ¢y (s) for
¢(s) in the right side of Eq. (3) and calling the result of this operation ¢ (¢). Thus

(1) = /Otf[S,cbo(S)]d& (5)
Similarly, ¢ is obtained from ¢;:
$a(t) = /O tf [s, $1(s)] ds, (6)
and, in general,
Gui1(t) = /O tf [5, ()] ds. (7)
In this manner we generate the sequence of functions {¢,} = {Go, $1. B2, - ., s - . .}.

Each member of the sequence satisfies the initial condition, but in general none sat-
isfies the differential equation. However, if at some stage, say, for n = k, we find that
dra1(t) = i (1), then it follows that ¢ is a solution of the integral equation (3). Hence
¢x 1s also a solution of the initial value problem (2), and the sequence is terminated
at this point. In general, this does not occur, and it is necessary to consider the entire
infinite sequence.

To establish Theorem 2.8.1, we must answer four principal questions:

1. Do all members of the sequence {¢,} exist, or may the process break down at some stage?

2. Does the sequence converge?

3. What are the properties of the limit function? In particular, does it satisfy the integral
equation (3) and hence the initial value problem (2)?

4. Is this the only solution, or may there be others?

We first show how these questions can be answered in a specific and relatively simple
example and then comment on some of the difficulties that may be encountered in
the general case.

19Charles-Emile Picard (1856-1914) was appointed professor at the Sorbonne before the age of 30. Except
for Henri Poincaré, he is perhaps the most distinguished French mathematician of his generation. He
is known for important theorems in complex variables and algebraic geometry as well as differential
equations. A special case of the method of successive approximations was first published by Liouville
in 1838. However, the method is usually credited to Picard, who established it in a general and widely
applicable form in a series of papers beginning in 1890.
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EXAMPLE

1

Solve the initial value problem

y =214y, y0)=0 (8)

by the method of successive approximations.
Note first that if y = ¢(¢), then the corresponding integral equation is

t
o) = / 2s[1 + ¢(s)] ds. )
0
If the initial approximation is ¢y () = 0, it follows that
t t
@m=/2m+@@mh=/km=ﬂ (10)
0 0
Similarly,
t t t4
d (1) = / 25[1 4 ¢1 (s)1ds = / 2s[1 4+ s?1ds = > + 5 (11)
0 0
and
‘ ‘ ! (6
¢3(t):/2s[1+¢2(s)]ds:/ [l—f-s + :|ds_l tots53 (12)
0 0
Equations (10), (11), and (12) suggest that
16 t2n
ou(t) =1 + + +o = (13)
3! n!

for each n > 1, and this result can be established by mathematical induction, as follows. Equa-
tion (13) is certainly true for n = 1;see Eq. (10). We must show that if it is true for n = k, then
it also holds for n = k + 1. We have

k1 () = / 2s[1 + @i ()] ds
0

t 2k
= 25 (1 +5? + + -+ 7) ds
/0 < 21 k!

A6 (2k+2
=7 —+ ot —, 14
R R Y (14)
and the inductive proof is complete.

A plot of the first four iterates, ¢ (t), ¢2(t), p3(t), and ¢4(¢), is shown in Figure 2.8.1. As k
increases, the iterates seem to remain close over a gradually increasing interval, suggesting
eventual convergence to a limit function.

It follows from Eq. (13) that ¢, (¢) is the nth partial sum of the infinite series

0
tzk

k!
k=1

(15)

hence lim ¢, (¢) exists if and only if the series (15) converges. Applying the ratio test, we see

that, for each t,
22

(k +1)! 2k

2
Tk+1
Thus the series (15) converges for all ¢, and its sum ¢(¢) is the limit of the sequence {¢, (1)}

Further, since the series (15) is a Taylor series, it can be differentiated or integrated term by
term as long as ¢ remains within the interval of convergence, which in this case is the entire

—-0 as k— oo. (16)

t-axis. Therefore, we can verify by direct computation that ¢(¢) = Y. t**/k! is a solution of the
k=1
integral equation (9). Alternatively, by substituting ¢ (¢) for y in Egs. (8), we can verify that this
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-15 -1 -0.5 05 1 15 ¢
FIGURE 2.8.1 Plots of the first four Picard iterates
¢1(1),...,¢4(¢) for Example 1: dy/dt = 2t(1 +y), y(0) =0.

function satisfies the initial value problem. In this example it is also possible, from the series
(15), to identify ¢ in terms of elementary functions, namely, ¢ (1) = et —1. However, this is not
necessary for the discussion of existence and uniqueness.

Explicit knowledge of ¢ () does make it possible to visualize the convergence of the sequence
of iterates more clearly by plotting ¢(f) — ¢« (t) for various values of k. Figure 2.8.2 shows
this difference for k = 1,2,3,4. This figure clearly shows the gradually increasing interval
over which successive iterates provide a good approximation to the solution of the initial value

problem.
Y k=2
1 7
k=3

0.8 E=1

06

0.4

02 k=4

| |
-1.5 -1 -0.5 0.5 1 15 ¢

FIGURE 2.8.2 Plots of ¢(¢) — ¢« (¢) for Example 1 fork =1,...,4.
Finally, to deal with the question of uniqueness, let us suppose that the initial value problem

has two different solutions ¢ and . Since ¢ and ¥ both satisfy the integral equation (9), we
have by subtraction that

ORRIOES / 2s[¢(s) — ()] ds.
0
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Taking absolute values of both sides, we have, if ¢ > 0,

t t
() —¥(O] = ‘/ 2s[p(s) — Y(9)]ds| < f 2s|¢(s) — Y(s)| ds.
0 0

If we restrict ¢ to lie in the interval 0 < ¢ < A/2, where A is arbitrary, then 2t < A and

t
160 — ()] < A f 6(5) — Yl ds for 0<t<A/. (17)
0
It is now convenient to introduce the function U defined by
t
U@ =/ lp(s) — Y(s)| ds. (18)
0
Then it follows at once that
U@ =0, (19)
Ut)>0, for t=>0. (20)

Further, U is differentiable, and U’(¢) = |¢(¢) — ¥(¢)|. Hence, by Eq. (17),

U@)y—AU@) <0 for 0<t=<A/2 (21)
Multiplying Eq. (21) by the positive quantity e~ gives
UM <0 for 0<t<A/2. (22)

Then, upon integrating Eq. (22) from zero to ¢ and using Eq. (19), we obtain
eMUWM) <0 for 0<t<A/2.

Hence U(¢) < 0for 0 <t < A/2. However,since A is arbitrary, we conclude that U(¢) < 0 for
all nonnegative . This result and Eq. (20) are compatible only if U(¢) = 0 for each > 0. Thus
U'(t) = 0 and therefore /() = ¢(¢) for all ¢ > 0. This contradicts the hypothesis that ¢ and
are two different solutions. Consequently, there cannot be two different solutions of the initial
value problem for ¢ > 0. A slight modification of this argument leads to the same conclusion
fort <0.

Returning now to the general problem of solving the integral equation (3), let us
consider briefly each of the questions raised earlier:

1. Do all members of the sequence {¢,} exist?

In the example, f and 9f/dy were continuous in the whole fy-plane, and each member
of the sequence could be explicitly calculated. In contrast, in the general case, f and df /dy
are assumed to be continuous only in the rectangle R: [f| < a, |y| < b (see Figure 2.8.3).
Furthermore, the members of the sequence cannot as a rule be explicitly determined. The
danger is that at some stage, say, for n = k, the graph of y = ¢, (¢) may contain points
that lie outside the rectangle R. More precisely, in the computation of ¢ (¢) it would be
necessary to evaluate f(¢, y) at points where it is not known to be continuous or even to
exist. Thus the calculation of ¢y (f) might be impossible.

To avoid this danger, it may be necessary to restrict ¢ to a smaller interval than |¢| < a.
To find such an interval, we make use of the fact that a continuous function on a closed
bounded region is bounded. Hence f is bounded on R; thus there exists a positive number
M such that

lfenl <M, (t,y)in R. (23)
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3.

We have mentioned before that

for each . Since f[t, ¢ (1)] is equal to ¢y, (t), the maximum absolute slope of the graph of
the equation y = ¢1(¢) is M. Since this graph contains the point (0,0), it must lie in
the wedge-shaped shaded region in Figure 2.8.4. Hence the point [t, ¢4, (f)] remains
in R at least as long as R contains the wedge-shaped region, which is for |¢| < b/M. We
hereafter consider only the rectangle D: |¢| < h,|y| < b, where h is equal either to a or to
b/M,whichever is smaller. With this restriction, all members of the sequence {¢,(¢)} exist.
Note that whenever b/M < a,you can try to obtain a larger value of & by finding a better
(that is, smaller) bound M for |f(¢,y)|, if this is possible.

y
(-a, b) (a, b)

R

(-a, -b) (a, -b)
FIGURE 2.8.3 Region of definition for Theorem 2.8.1.

y = ,(t)
Y y=0.8)
N --y=b
~ \ 77y:b
t
S t
——y=-b
N =t
t=—a t=-2 t=-2 [ [
M Mt‘:a t=-a t=a

(a) (b)
FIGURE 2.8.4 Regions in which successive iterates lie. (a) b/M < a;(b) b/M > a.

Does the sequence {¢,(f)} converge?

We can identify ¢, (1) = ¢1(t) + [¢2(t) — $1 (O] + - - + [¢n(t) — ¢pu_1(2)] as the nth par-
tial sum of the series

G + Y [pria (1) — g (D). 24)

k=1

The convergence of the sequence {¢,(¢)} is established by showing that the series (24)
converges. To do this, it is necessary to estimate the magnitude |@xi1(t) — ¢x ()| of the
general term. The argument by which this is done is indicated in Problems 15 through
18 and will be omitted here. Assuming that the sequence converges, we denote the limit
function by ¢, so that

$(0) = lim ¢, (0). (25)

What are the properties of the limit function ¢?

In the first place, we would like to know that ¢ is continuous. This is not, however, a
necessary consequence of the convergence of the sequence {¢, (¢)},even though each mem-
ber of the sequence is itself continuous. Sometimes a sequence of continuous functions
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converges to a limit function that is discontinuous. A simple example of this phenomenon

is given in Problem 13. One way to show that ¢ is continuous is to show not only that the

sequence {¢,} converges, but also that it converges in a certain manner, known as uniform

convergence. We do not take up this matter here but note only that the argument referred

to in the discussion of question 2 is sufficient to establish the uniform convergence of the

sequence {¢,} and, hence, the continuity of the limit function ¢ in the interval |¢| < A.
Now let us return to Eq. (7)

t
Dni1 (1) =/ fIs, n(s)] ds.
0

Allowing n to approach co on both sides, we obtain

$() = lim / FL5. 6a(5)] ds. (26)

We would like to interchange the operations of integrating and taking the limit on the
right side of Eq. (26) so as to obtain

o (1) = / lim fls, én ()] ds. @7)
0 n—oo

In general, such an interchange is not permissible (see Problem 14, for example), but once
again, the fact that the sequence {¢,(¢)} converges uniformly is sufficient to allow us to
take the limiting operation inside the integral sign. Next, we wish to take the limit inside
the function f, which would give

p(0) = / fls, lim ()] ds 28)
0 n—0o0
and hence
(1) = / fls,p(s)]ds. (29)
0

The statement that
Tim fls, ¢ (9)] = f1s, lim ¢, ()]

is equivalent to the statement that f is continuous in its second variable, which is known by
hypothesis. Hence Eq. (29) is valid, and the function ¢ satisfies the integral equation (3).
Thus ¢ is also a solution of the initial value problem (2).
4. Are there other solutions of the integral equation (3) besides y = ¢(t)?
To show the uniqueness of the solution y = ¢(¢),we can proceed much as in the example.
First, assume the existence of another solution y = v(¢). It is then possible to show (see
Problem 19) that the difference ¢ () — ¥(¢) satisfies the inequality

6() — ()] < A fo 16(s) — ¥is)| ds (30)

for 0 <t < h and a suitable positive number A. From this point the argument is identical
to that given in the example, and we conclude that there is no solution of the initial value
problem (2) other than the one generated by the method of successive approximations.
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PROBLEMS In each of Problems 1 and 2, transform the given initial value problem into an equivalent

problem with the initial point at the origin.
1. dy/dt = 1> +y?, y1) =2 2. dy/dt =1 —y?, y(=1)=3

In each of Problems 3 through 6, let ¢, (f) = 0 and define {¢,(¢)} by the method of succes-
sive approximations

(a) Determine ¢,(t) for an arbitrary value of n.

(b) Plot ¢,,(¢) forn =1,...,4. Observe whether the iterates appear to be converging.

(c) Express lim ¢,(t) = ¢(¢) in terms of elementary functions; that is, solve the given initial
value problelr;;.OO

(d) Plot |¢p(t) — ¢u(2)| for n=1,...,4. For each of ¢(1),...,¢4(¢), estimate the interval in
which it is a reasonably good approximation to the actual solution.

¢ 3. y=20+D, y0)=0 ¢ 4y=-y-1, y0)=0
¢ 5y =—y2+1  y0)=0 ¢ 6.y=y+1-1, y0)=0

In each of Problems 7 and 8, let ¢y (¢) = 0 and use the method of successive approximations to
solve the given initial value problem.

(a) Determine ¢, (¢) for an arbitrary value of n.
(b) Plot ¢, () forn =1,...,4. Observe whether the iterates appear to be converging.
(c) Show that the sequence {¢,(t)} converges.

¢ T y=wp+l,  y0O=0 ¢ 8 y=ty-1, y0=0
In each of Problems 9 and 10, let ¢y () = 0 and use the method of successive approximations
to approximate the solution of the given initial value problem.

(a) Calculate ¢ (2),...,¢3(2).
(b) Plot ¢y(1),...,¢3(t) and observe whether the iterates appear to be converging.

L 9y =>4y, y0)=0 ¢ 10.y=1-», y0)=0

In each of Problems 11 and 12, let ¢ (t) = 0 and use the method of successive approximations
to approximate the solution of the given initial value problem.

(a) Calculate ¢y (1), ..., ¢4(t), or (if necessary) Taylor approximations to these iterates. Keep
terms up to order six.

(b) Plot the functions you found in part (a) and observe whether they appear to be converging.
¢ 11y =—siny+1,  y0)=0 ¢ 12,y =32 +4+2)2(0—1), y0)=0

13. Let ¢, (x) = x" for 0 < x < 1 and show that

lim ¢, (c) 0, 0<x<1,
m ¢,x) =
n—o00 1, x=1.

This example shows that a sequence of continuous functions may converge to a limit
function that is discontinuous.

14. Consider the sequence ¢, (x) = 2nxe‘”"2, 0<x<l.
(a) Show that lim ¢, (x) =0 for 0 < x < 1; hence

1
f lim ¢, (x) dx = 0.
0

n—oo
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1
(b) Show that / 2nxe ™ dx = 1 — e~"; hence
0

1
lim ¢p(x)dx = 1.
0

Thus, in this example,
b b
lim ¢, (x) dx # / lim ¢, (x) dx,

even though lim ¢,(x) exists and is continuous.
n—oo

In Problems 15 through 18, we indicate how to prove that the sequence {¢,(¢)}, defined by
Egs. (4) through (7), converges.

15.

16.

17.

18.

If 8f /dy is continuous in the rectangle D, show that there is a positive constant K such that
|f([ay1)_f([sy2)| §K|y1_)’2|> (i)

where (¢,y1) and (, y,) are any two points in D having the same r coordinate. This inequality
is known as a Lipschitz?® condition.
Hint: Hold ¢ fixed and use the mean value theorem on f as a function of y only. Choose K
to be the maximum value of |9f/dy| in D.
If ¢,,—1(¢) and ¢, (¢) are members of the sequence {¢,(¢)}, use the result of Problem 15 to
show that

12, u (D] = F11. $u1 (D] < K| (1) — a1 (D)1

(a) Show that if |¢| < h, then
lp1 (D] < M]t],
where M is chosen so that |f(¢,y)| < M for (¢,y) in D.
(b) Use the results of Problem 16 and part (a) of Problem 17 to show that
|t

MK
[p2(t) — P (D) < 5

(c) Show, by mathematical induction, that
MKn—lmn - MEK"—1pn
n! - n

[ (£) — 1 (D] <
Note that
D) = p1(1) + [2(6) — P1(D] + - -+ + [Pu(O) — Pu_1(D)].

(a) Show that
[on (D] < 11 (D] + 1h2(1) — G1 (D] + -+ + |u (D) — P (D]
(b) Use the results of Problem 17 to show that

M
[n ()] < X [Kh +

(Kh)? (Khy"
2! n! ] '

(c) Show that the sum in part (b) converges as n — oo and, hence, the sum in part (a)
also converges as n — oo. Conclude therefore that the sequence {¢,(f)} converges since
it is the sequence of partial sums of a convergent infinite series.

20The German mathematician Rudolf Lipschitz (1832-1903), professor at the University of Bonn for many
years, worked in several areas of mathematics. The inequality (i) can replace the hypothesis that 9f /dy is
continuous in Theorem 2.8.1; this results in a slightly stronger theorem.
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19. In this problem we deal with the question of uniqueness of the solution of the integral
equation (3)

o) = / fls.¢(s)]ds.
0
(a) Suppose that ¢ and y are two solutions of Eq. (3). Show that, for z > 0,
t
o) — (1) = / {Fls, ()] = fls, ¥($)]} ds.
0

(b) Show that
lp(1) — ¥ ()] < _/0 [fls, @] = fls, ()]l ds.

(c) Use the result of Problem 15 to show that
t

lp(1) —y(0)] < K/ [p(s) — ¥(s)| ds,
0

where K is an upper bound for |3f /dy| in D. This is the same as Eq. (30), and the rest of
the proof may be constructed as indicated in the text.

2.9 First Order Difference Equations

Although a continuous model leading to a differential equation is reasonable and
attractive for many problems, there are some cases in which a discrete model may
be more natural. For instance, the continuous model of compound interest used in
Section 2.3 is only an approximation to the actual discrete process. Similarly, some-
times population growth may be described more accurately by a discrete than by
a continuous model. This is true, for example, of species whose generations do not
overlap and that propagate at regular intervals, such as at particular times of the cal-
endar year. Then the population y,; of the species in the year n + 1 is some function
of n and the population y, in the preceding year; that is,

i1 =f,yn), n=012,.... 1)

Equation (1) is called a first order difference equation. It is first order because the
value of y, ;1 depends on the value of y, but not on earlier values y,_1, y,—», and so
forth. As for differential equations, the difference equation (1) is linear if f is a linear
function of y,; otherwise, it is nonlinear. A solution of the difference equation (1) is
a sequence of numbers o, y1, ¥2, . . . that satisfy the equation for each n. In addition
to the difference equation itself, there may also be an initial condition

yo=a ()

that prescribes the value of the first term of the solution sequence.
We now assume temporarily that the function f in Eq. (1) depends only on y,,, but
not on . In this case

Yot =f(yn),  n=012,.... (3)
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If yg is given, then successive terms of the solution can be found from Eq. (3). Thus

y1=f(o),

and

y2=fOn =fIf o)l

The quantity f[f (yo)] is called the second iterate of the difference equation and is
sometimes denoted by f2(y). Similarly, the third iterate ys is given by

vs =f2) = FIFIF G0l = 2 (o).

and so on. In general, the nth iterate y, is

Yn :f(ynfl) an(yo).

This procedure is referred to as iterating the difference equation. It is often of pri-
mary interest to determine the behavior of y, as n — oo. In particular, does y,
approach a limit, and if so, what is it?

Solutions for which y, has the same value for all n are called equilibrium solutions.
They are frequently of special importance,just as in the study of differential equations.
If equilibrium solutions exist, you can find them by setting y,,.1 equal to y, in Eq. (3)
and solving the resulting equation

Yn = f(yn) (4)
for yy,.

Linear Equations. Suppose that the population of a certain species in a given region in
year n + 1, denoted by y,.1, is a positive multiple p, of the population y, in year n;
that is,

Yn+1 = PnYn; n=0,1,2,.... (5)

Note that the reproduction rate p, may differ from year to year. The difference
equation (5) is linear and can easily be solved by iteration. We obtain

Y1 = poYo,
Y2 = p1Y1 = P1P0Y0,

and, in general,
Yn = Pn—-1"""00Y0, n=1’25-"- (6)

Thus, if the initial population y, is given, then the population of each succeeding
generation is determined by Eq. (6). Although for a population problem p,, is intrin-
sically positive, the solution (6) is also valid if p, is negative for some or all values of
n. Note, however, that if p, is zero for some #n, then y, ;1 and all succeeding values of
y are zero; in other words, the species has become extinct.

If the reproduction rate p, has the same value p for each n, then the difference
equation (5) becomes

Yntl = PYn (7)

and its solution is
Yn = 0"Yo. ©)
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Equation (7) also has an equilibrium solution, namely, y,, = 0 for all n, corresponding
to the initial value yy = 0. The limiting behavior of y, is easy to determine from
Eq. (8). In fact,
0, if |p| < 1;
lim y, = { yo, itp=1; )
n—oo . .
does not exist, otherwise.

In other words, the equilibrium solution y, = 0 is asymptotically stable for |p| < 1
and unstable for |p| > 1.

Now we will modify the population model represented by Eq. (5) to include the
effect of immigration or emigration. If b, is the net increase in population in year
n due to immigration, then the population in year n + 1 is the sum of the part of
the population resulting from natural reproduction and the part due to immigration.
Thus

Ynt1 = pYn + by, n=0,1,2,..., (10)
where we are now assuming that the reproduction rate p is constant. We can solve
Eq. (10) by iteration in the same manner as before. We have

Y1 = pyo + bo,
y2 = p(pyo + bo) + b1 = p*yo + pbo + b1,
3 = p(p°yo + pbo + b1) + by = p’yo + p°by + pby + by,
and so forth. In general, we obtain

n—1

Yu =00+ P bo A pbus Fbumy = 0"y Y " b (1)
=0

Note that the first term on the right side of Eq. (11) represents the descendants of
the original population, while the other terms represent the population in year n
resulting from immigration in all preceding years.
In the special case where b,, = b # 0 for all n, the difference equation is
Yns1 = pYn + b, (12)

and from Eq. (11) its solution is
Yo =p"Yo+ A+ p+p" +---+ 0" b. (13)

If p # 1, we can write this solution in the more compact form

1-—p"

1—p

where again the two terms on the right side are the effects of the original population
and of immigration, respectively. Rewriting Eq. (14) as

b b

Yn=p"(Yo—T— )+ — (15)
1—p 1—p

makes the long-time behavior of y, more evident. It follows from Eq. (15) that

yn—>b/(1—p) if |p| < 1. If |p| >1 or if p=—1 then y, has no limit unless
yo =b/(1 — p). The quantity b/(1 — p), for p # 1, is an equilibrium solution of

yn=p"yo+ b, (14)
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EXAMPLE

1

Eq. (12), as can readily be seen directly from that equation. Of course, Eq. (14)
is not valid for p = 1. To deal with that case, we must return to Eq. (13) andlet p = 1
there. It follows that

Yn = Yo +nb, (16)

so in this case y, becomes unbounded as n — oo.

The same model also provides a framework for solving many problems of a finan-
cial character. For such problems, y, is the account balance in the nth time period,
pn =1+ r,, where r, is the interest rate for that period, and b, is the amount
deposited or withdrawn. The following example is typical.

A recent college graduate takes out a $10,000 loan to purchase a car. If the interest rate is
12%, what monthly payment is required to pay off the loan in 4 years?

The relevant difference equation is Eq. (12), where y,, is the loan balance outstanding in the
nth month, p = 1 + r, where r is the interest rate per month and b is the effect of the monthly
payment. Note that p = 1.01, corresponding to a monthly interest rate of 1%. Since payments
reduce the loan balance, b must be negative; the actual payment is |b|.

The solution of the difference equation (12) with this value for p and the initial condition
yo = 10,000 is given by Eq. (15); that is,

yn = (1.01)"(10,000 + 100b) — 100b. (17)

The value of b needed to pay off the loan in 4 years is found by setting y,s = 0 and solving
for b. This gives
(1.01)*

b=-100———
(1.0nH* -1

= —263.34. (18)

The total amount paid on the loan is 48 times |b|, or $12,640.32. Of this amount, $10,000 is
repayment of the principal and the remaining $2640.32 is interest.

Nonlinear Equations. Nonlinear difference equations are much more complicated and
have much more varied solutions than linear equations. We will restrict our attention
to a single equation, the logistic difference equation

Yn
vt = oy (1= 2. (19)
which is analogous to the logistic differential equation
dy y
a="(-%) (20)

that was discussed in Section 2.5. Note that if the derivative dy/dt in Eq. (20) is
replaced by the difference (y,4+1 — y»)/h, then Eq. (20) reduces to Eq. (19) with
p=1+hrand k = (1 4+ hr)K/hr.To simplify Eq. (19) a little more, we can scale the
variable y, by introducing the new variable u,, = y, /k. Then Eq. (19) becomes

Upy1 = pun(l — Uy), (21)

where p is a positive parameter.
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We begin our investigation of Eq. (21) by seeking the equilibrium, or constant, solu-
tions. These can be found by setting u,+1 equal to u, in Eq. (21), which corresponds
to setting dy/dt equal to zero in Eq. (20). The resulting equation is

Uy = Pty — pU, (22)
so it follows that the equilibrium solutions of Eq. (21) are

0 =0, uy=""1 (23)
o

The next question is whether the equilibrium solutions are asymptotically stable or
unstable. That is, for an initial condition near one of the equilibrium solutions, does
the resulting solution sequence approach or depart from the equilibrium solution?
One way to examine this question is by approximating Eq. (21) by a linear equation
in the neighborhood of an equilibrium solution. For example, near the equilibrium
solution u, = 0, the quantity u2 is small compared to u, itself, so we assume that we
can neglect the quadratic term in Eq. (21) in comparison with the linear terms. This

leaves us with the linear difference equation

U1 = pPlUy, (24)

which is presumably a good approximation to Eq. (21) for u, sufficiently near zero.
However, Eq. (24) is the same as Eq. (7), and we have already concluded, in Eq. (9),
that u, — 0 as n — oo if and only if |p| <1, or (since p must be positive) for
0 < p < 1.Thus the equilibrium solution u,, = 01is asymptotically stable for the linear
approximation (24) for this set of p values, so we conclude that it is also asymptoti-
cally stable for the full nonlinear equation (21). This conclusion is correct, although
our argument is not complete. What is lacking is a theorem stating that the solutions
of the nonlinear equation (21) resemble those of the linear equation (24) near the
equilibrium solution u,, = 0. We will not take time to discuss this issue here; the same
question is treated for differential equations in Section 9.3.

Now consider the other equilibrium solution u, = (p — 1)/p. To study solutions in
the neighborhood of this point, we write

1
Uy = —— + vy, (25)
o
where we assume that v, is small. By substituting from Eq. (25) in Eq. (21) and
simplifying the resulting equation, we eventually obtain

V1 = 2 — p)v, — ,ov,zl. (26)

Since v, is small, we again neglect the quadratic term in comparison with the linear
terms and thereby obtain the linear equation

Uns1 = (2 = P)vy. (27)

Referring to Eq. (9) once more, we find that v, — 0 as n — oo for |2 — p| < 1,0r in
other words for 1 < p < 3. Therefore, we conclude that for this range of values of p,
the equilibrium solution u, = (p — 1)/p is asymptotically stable.

Figure 2.9.1 contains the graphs of solutions of Eq. (21) for p =0.8,p = 1.5,
and p = 2.8, respectively. Observe that the solution converges to zero for p = 0.8
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and to the nonzero equilibrium solution for p = 1.5 and p = 2.8. The convergence is
monotone for p = 0.8 and p = 1.5 and is oscillatory for p = 2.8. The graphs shown
are for particular initial conditions, but the graphs for other initial conditions are
similar.

Un Un

| Up = Li = 0.6429

N

(a)

FIGURE 2.9.1 Solutions of u,,; = pu,(1 —u,):(a) p = 0.8; (b) p = 1.5;(c) p=2.8.

Another way of displaying the solution of a difference equation is shown in
Figure 2.9.2. In each part of this figure, the graphs of the parabola y = px(1 — x)
and of the straight line y = x are shown. The equilibrium solutions correspond to
the points of intersection of these two curves. The piecewise linear graph consist-
ing of successive vertical and horizontal line segments, sometimes called a stairstep
diagram, represents the solution sequence. The sequence starts at the point #y on
the x-axis. The vertical line segment drawn upward to the parabola at 1, corresponds
to the calculation of puy(1 — up) = u;.This value is then transferred from the y-axis to
the x-axis; this step is represented by the horizontal line segment from the parabola
to the line y = x. Then the process is repeated over and over again. Clearly, the
sequence converges to the origin in Figure 2.9.2a and to the nonzero equilibrium
solution in the other two cases.

To summarize our results so far: the difference equation (21) has two equilib-
rium solutions, u, = 0 and u,, = (p — 1)/p; the former is asymptotically stable for
0 < p < 1, and the latter is asymptotically stable for 1 < p < 3. When p = 1, the two
equilibrium solutions coincide at u = 0; this solution can be shown to be asymptoti-
cally stable. In Figure 2.9.3 the parameter p is plotted on the horizontal axis and u on
the vertical axis. The equilibrium solutions # = 0 and u = (p — 1)/p are shown. The
intervals in which each one is asymptotically stable are indicated by the solid portions
of the curves. There is an exchange of stability from one equilibrium solution to the
other at p = 1.

For p > 3, neither of the equilibrium solutions is stable, and the solutions of
Eq. (21) exhibit increasing complexity as p increases. For p somewhat greater than 3,
the sequence u, rapidly approaches a steady oscillation of period 2; that is, u,, oscil-
lates back and forth between two distinct values. For p = 3.2, a solution is shown in
Figure 2.9.4. For n greater than about 20, the solution alternates between the values
0.5130 and 0.7995. The graph is drawn for the particular initial condition uy = 0.3,
but it is similar for all other initial values between 0 and 1. Figure 2.9.4b also shows
the same steady oscillation as a rectangular path that is traversed repeatedly in the
clockwise direction.
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FIGURE 2.9.2 TIterates of u,,1 = pu,(1 — u,): (a) p =0.8;(b) p =1.5; (c) p = 2.8.
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FIGURE 2.9.3 Exchange of stability for u,,1 = pu,(1 — u,).
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FIGURE 2.9.4 A solution of u,,,1 = pu, (1 — u,) for
p = 3.2;period 2. (a) u, versus n; (b) a two-cycle.

At about p = 3.449, each state in the oscillation of period 2 separates into two
distinct states, and the solution becomes periodic with period 4;see Figure 2.9.5, which
shows a solution of period 4 for p = 3.5. As p increases further, periodic solutions
of period §, 16, .. . appear. The appearance of a new solution at a certain parameter
value is called a bifurcation.

The p-values at which the successive period doublings occur approach a limit that
is approximately 3.57. For p > 3.57, the solutions possess some regularity but no
discernible detailed pattern for most values of p. For example, a solution for p = 3.65
is shown in Figure 2.9.6. It oscillates between approximately 0.3 and 0.9, but its fine
structure is unpredictable. The term chaotic is used to describe this situation. One of
the features of chaotic solutions is extreme sensitivity to the initial conditions. This
is illustrated in Figure 2.9.7, where two solutions of Eq. (21) for p = 3.65 are shown.
One solution is the same as that in Figure 2.9.6 and has the initial value ©y = 0.3, while
the other solution has the initial value uy = 0.305. For about 15 iterations the two
solutions remain close and are hard to distinguish from each other in the figure. After
that, although they continue to wander about in approximately the same set of values,
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FIGURE 2.9.5 A solution of u,,.; = pu,(1 — u,) for p =3.5;
period 4. (a) u, versus n; (b) a four-cycle.
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FIGURE 2.9.6 A solution of u,,.; = pu, (1 — u,) for p = 3.65; a chaotic solution.




2.9 First Order Difference Equations 131

09

0.8

0.7

0.6

0.5

0.4

0.3
| | | | | |
10 20 30 40 50 60 n

FIGURE 2.9.7 Two solutions of u,,,1 = pu,(1 — u,) for p = 3.65;uy = 0.3 and u, = 0.305.

their graphs are quite dissimilar. It would certainly not be possible to use one of these
solutions to estimate the value of the other for values of n larger than about 15.

Itis only comparatively recently that chaotic solutions of difference and differential
equations have become widely known. Equation (20) was one of the first instances of
mathematical chaos to be found and studied in detail, by Robert May?! in 1974. On
the basis of his analysis of this equation as a model of the population of certain insect
species, May suggested that if the growth rate p is too large, then it will be impossible
to make effective long-range predictions about these insect populations. The occur-
rence of chaotic solutions in seemingly simple problems has stimulated an enormous
amount of research, but many questions remain unanswered. It is increasingly clear,
however, that chaotic solutions are much more common than was suspected at first
and that they may be a part of the investigation of a wide range of phenomena.

PROBLEMS

In each of Problems 1 through 6, solve the given difference equation in terms of the initial
value y,. Describe the behavior of the solution as n — oo.
n+1

1. yur1 = —0.9y, 2. Yyl = ——Vn
Ynt1 y Ynt1 n+2Y
n+3
3. Yot = ) —y, 4. Yoo = (=Dy,
Yn+1 n+1y Yur = (=1)""y
5. Yut1 =05y,+6 6. yp01 =—-05y,+6

2IRobert M. May (1938- ) was born in Sydney, Australia, and received his education at the University of
Sydney with a doctorate in theoretical physics in 1959. His interests soon turned to population dynamics
and theoretical ecology; the work cited in the text is described in two papers listed in the References at
the end of this chapter. He has held professorships at Sydney, at Princeton, at Imperial College (London),
and (since 1988) at Oxford.
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10.

11.

12.

13.

. Find the effective annual yield of a bank account that pays interest at a rate of 7%,

compounded daily; that is, divide the difference between the final and initial balances by
the initial balance.

. An investor deposits $1000 in an account paying interest at a rate of 8%, compounded

monthly, and also makes additional deposits of $25 per month. Find the balance in the
account after 3 years.

. A certain college graduate borrows $8000 to buy a car. The lender charges interest at an

annual rate of 10%. What monthly payment rate is required to pay off the loan in 3 years?
Compare your result with that of Problem 9 in Section 2.3.

A homebuyer wishes to take out a mortgage of $100,000 for a 30-year period. What monthly
payment is required if the interest rate is (a) 9%, (b) 10%, (c) 12%?

A homebuyer takes out a mortgage of $100,000 with an interest rate of 9%. What monthly
payment is required to pay off the loan in 30 years? In 20 years? What is the total amount
paid during the term of the loan in each of these cases?

If the interest rate on a 20-year mortgage is fixed at 10% and if a monthly payment of
$1000 is the maximum that the buyer can afford, what is the maximum mortgage loan that
can be made under these conditions?

A homebuyer wishes to finance the purchase with a $95,000 mortgage with a 20-year term.
What is the maximum interest rate the buyer can afford if the monthly payment is not to
exceed $900?

The Logistic Difference Equation. Problems 14 through 19 deal with the difference equation
(21)7 Upy1 = pun(l = Up).

14.

& 15

16.

¢ 1.

Carry out the details in the linear stability analysis of the equilibrium solution
u, = (p —1)/p. That is, derive the difference equation (26) in the text for the pertur-
bation v,,.

(a) For p =3.2, plot or calculate the solution of the logistic equation (21) for several
initial conditions, say, 1y = 0.2, 0.4, 0.6, and 0.8. Observe that in each case the solution
approaches a steady oscillation between the same two values. This illustrates that the
long-term behavior of the solution is independent of the initial conditions.

(b) Make similar calculations and verify that the nature of the solution for large » is
independent of the initial condition for other values of p, such as 2.6,2.8, and 3.4.

Assume that p > 1in Eq. (21).

(a) Draw a qualitatively correct stairstep diagram and thereby show that if u#, < 0, then
U, — —00 as n — 00.

(b) In a similar way, determine what happens as n — oo if uy > 1.

The solutions of Eq. (21) change from convergent sequences to periodic oscillations of
period 2 as the parameter p passes through the value 3. To see more clearly how this
happens, carry out the following calculations.

(a) Plot or calculate the solution for p = 2.9,2.95, and 2.99, respectively, using an initial
value u, of your choice in the interval (0,1). In each case estimate how many iterations
are required for the solution to get “very close” to the limiting value. Use any convenient
interpretation of what “very close” means in the preceding sentence.

(b) Plot or calculate the solution for p = 3.01, 3.05, and 3.1, respectively, using the same
initial condition as in part (a). In each case estimate how many iterations are needed to
reach a steady-state oscillation. Also find or estimate the two values in the steady-state
oscillation.
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“Z 18. By calculating or plotting the solution of Eq. (21) for different values of p, estimate the

¢ 19

value of p at which the solution changes from an oscillation of period 2 to one of period
4. In the same way, estimate the value of p at which the solution changes from period 4 to
period 8.

Let p; be the value of p at which the solution of Eq. (21) changes from period 2¢~! to
period 2. Thus, as noted in the text, p; = 3, p» = 3.449, and p; = 3.544.

(a) Using these values of py, 02, and ps, or those you found in Problem 18, calculate
(02 = p1)/(p3 — p2).

(b) Letd, = (0n — pu—1)/(Pnt1 — pu). Itcanbe shown that §, approaches alimitSasn — oo,
where § = 4.6692 is known as the Feigenbaum?? number. Determine the percentage
difference between the limiting value § and §,, as calculated in part (a).

(c) Assume that$; = § and use thisrelation to estimate p4, the value of p at which solutions
of period 16 appear.

(d) By plotting or calculating solutions near the value of p4 found in part (c), try to detect
the appearance of a period 16 solution.

(e) Observe that

Pn=p1+ (02— p1) + (03— 02) + -+ (00 — Pu-1)-

Assuming that (o5 — p3) = (p3 — p2)87", (o5 — p4) = (p3 — p2)8~%, and so forth, express p,
as a geometric sum. Then find the limit of p, as n — oo. This is an estimate of the value of
p at which the onset of chaos occurs in the solution of the logistic equation (21).

PROBLEMS

Miscellaneous Problems. One of the difficulties in solving first order equations is that there
are several methods of solution, each of which can be used on a certain type of equation. It
may take some time to become proficient in matching solution methods with equations. The
first 32 of the following problems are presented to give you some practice in identifying the
method or methods applicable to a given equation. The remaining problems involve certain
types of equations that can be solved by specialized methods.

In each of Problems 1 through 32, solve the given differential equation. If an initial condition
is given, also find the solution that satisfies it.

1.

dy x*—2y : dy _1+cosx

dx —  x “dx 2 —siny

dy 2x+y dy

L _= 7 0)=0 4, —=3-6 -2
311 y(@) P X +y — 2xy

dy 2xy +y*+1

d
6. x—i—l—xy:l—y, y1)=0

dx X2+ 2xy d

dy 43 +1 dy sin x

- = 8. x—+2y=— 2)=1
dx  yQ2+3y) Yix ey x @)

22This result for the logistic difference equation was discovered in August 1975 by Mitchell Feigenbaum
(1944- ), while he was working at the Los Alamos National Laboratory. Within a few weeks he had estab-
lished that the same limiting value also appears in a large class of period-doubling difference equations.
Feigenbaum, who has a doctorate in physics from M.L.T., is now at Rockefeller University.
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dy 2xy+1 dy
9. — =— 10. (x? - 2y —2x1)— =0
I 212y (xy +xy —y) + @y x)w
dy dy 1
11. (2 N— =0 12. — =
(x +)’)+(x+€)dx Y e
d d
132 1 p 24202 4 G+ +e+202 0, y2) =3
dx dx
dy dy e *cosy — e? cosx
15. (e +1)— =y — ye* 16. — =
€+ )dx yoye dx  —e¥siny + 2e¥ sinx
d d
17. D _ 43y 18. L yoy—e?2 y0)=3
dx dx
dy 3x*-2y—y°
9. == ——— 20. y ="
dx 2x + 3xy? r=e
dy 2y’ +6xy—4 dy x*—1
21, —+ ————— =0 22, —=— -1 =1
dx+ 3x2 + dxy + 3y? dx  y*+1° y=b
d d
23. zd—)t} +(+Dy=e* 24. 2sinysinx cosx + cosy sinzxd—y =0
2
X y X x7\ dy
25. |2- — - —=)—==0
(y ﬂ+ﬁ)+<ﬂ+ﬁ ygtﬁ
d
26. xy' =y + xe’/* 27. d—i = x72y)f|— 7 Hint: Let u = x*.
d d
28. 2y +3x) = —x 2 29, W _ Xty
dx dx x-—y
dy dy 3x%y + )2
30. (3y* +2xy) — (2 )= =0 31 —=————— 1H)=-2
(3y* + 2xy) (xy+x)dx I 2 13y y)

32. xy +y—y*e* =0, y1) =2
33. Riccati Equations. The equation

dy _ 2
7 = 0O+ @0y + g0y
is known as a Riccati?® equation. Suppose that some particular solution y; of this equation
is known. A more general solution containing one arbitrary constant can be obtained
through the substitution 1
= t —.
y=n@+ o(0)
Show that v(¢) satisfies the first order linear equation

dv

A ) — g
T (@2 +2q3y1)v — g3

Note that v(¢) will contain a single arbitrary constant.

2 Riccati equations are named for Jacopo Francesco Riccati (1676-1754), a Venetian nobleman, who
declined university appointments in Italy, Austria, and Russia to pursue his mathematical studies privately
at home. Riccati studied these equations extensively; however, it was Euler (in 1760) who discovered the
result stated in this problem.
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34. Using the method of Problem 33 and the given particular solution, solve each of the
following Riccati equations:

1 1
(@) y=14+2=-2ty+y:  y)=t (b) y/=—72—%+y2; ni) =
d 2cos?t —sin’ f + y?
(C) % = cos sm +y 5 yl(t)zsint

2cost

35. The propagation of a single action in a large population (for example, drivers turning on
headlights at sunset) often depends partly on external circumstances (gathering darkness)
and partly on a tendency to imitate others who have already performed the action in
question. In this case the proportion y(¢) of people who have performed the action can be
described®* by the equation

dy/dt = (1 — y)[x(1) + byl, )

where x(¢) measures the external stimulus and b is the imitation coefficient.

(a) Observe that Eq. (i) is a Riccati equation and that y;(f) = 1 is one solution. Use the
transformation suggested in Problem 33, and find the linear equation satisfied by v(¢).
(b) Find v(?) in the case that x(¢) = at, where a is a constant. Leave your answer in the
form of an integral.

Some Special Second Order Equations. Second order equations involve the second deriva-
tive of the unknown function and have the general form y” = f(t, y,y"). Usually such equations
cannot be solved by methods designed for first order equations. However, there are two types
of second order equations that can be transformed into first order equations by a suitable
change of variable. The resulting equation can sometimes be solved by the methods presented
in this chapter. Problems 36 through 51 deal with these types of equations.

Equations with the Dependent Variable Missing. For a second order differential equation
of the form y” = f(¢,)’), the substitution v = y’, v’ = y” leads to a first order equation of the
form v’ = f(¢,v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is obtained in solving the first order equation for
v, and a second is introduced in the integration for y. In each of Problems 36 through 41, use
this substitution to solve the given equation.

36. 2y +2ty' =1 =0, t>0 37. 0" +y =1, t>0
38,y +1(y)2 =0 39. 28y + (V) =2y, 1>0
40. y'+y =e! 41. 2y" = ()2, t>0

Equations with the Independent Variable Missing. Consider second order differential equa-
tions of the form y” = f(y,y’), in which the independent variable ¢ does not appear explicitly.
If welet v = y’, then we obtain dv/dt = f(y, v). Since the right side of this equation depends on
y and v, rather than on ¢ and v, this equation contains too many variables. However, if we think
of y as the independent variable, then by the chain rule, dv/dt = (dv/dy)(dy/dt) = v(dv/dy).
Hence the original differential equation can be written as v(dv/dy) = f(y,v). Provided that
this first order equation can be solved, we obtain v as a function of y. A relation between y
and ¢ results from solving dy/dt = v(y), which is a separable equation. Again, there are two

24See Anatol Rapoport, “Contribution to the Mathematical Theory of Mass Behavior: I. The Propagation
of Single Acts,” Bulletin of Mathematical Biophysics 14 (1952), pp. 159-169, and John Z. Hearon, “Note
on the Theory of Mass Behavior,” Bulletin of Mathematical Biophysics 17 (1955), pp. 7-13.
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arbitrary constants in the final result. In each of Problems 42 through 47, use this method to
solve the given differential equation.

2. 99"+ ) =0 43. y"+y =0
44,y +y()} =0 45. 2y%y" +2y(y")? =1
46. yy// _ (y/)3 =0 47. y// + (y/)z — e~V
Hint: In Problem 47 the transformed equation is a Bernoulli equation. See Problem 27 in
Section 2.4.
In each of Problems 48 through 51, solve the given initial value problem using the methods of
Problems 36 through 47.
48. y'y" =2, yO) =1, y(0) =2
49. y" —3y? =0, y0)y=2, y(0) =4
50. (14 2)y" +2ty' +3t72 =0, yh =2, yd)=-1
S5Lyy'—t=0, yD=2, yDH=1
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3

Second Order Linear

F.quations

Linear equations of second order are of crucial importance in the study of differential
equations for two main reasons. The first is that linear equations have a rich theo-
retical structure that underlies a number of systematic methods of solution. Further,
a substantial portion of this structure and of these methods is understandable at a
fairly elementary mathematical level. In order to present the key ideas in the sim-
plest possible context, we describe them in this chapter for second order equations.
Another reason to study second order linear equations is that they are vital to any
serious investigation of the classical areas of mathematical physics. One cannot go
very far in the development of fluid mechanics, heat conduction, wave motion, or
electromagnetic phenomena without finding it necessary to solve second order lin-
ear differential equations. As an example, we discuss the oscillations of some basic
mechanical and electrical systems at the end of the chapter.

3.1 Homogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the form

d’y dy
W:f<t7y’z>’ (1)

where f is some given function. Usually, we will denote the independent variable
by ¢ since time is often the independent variable in physical problems, but some-
times we will use x instead. We will use y, or occasionally some other letter, to
designate the dependent variable. Equation (1) is said to be linear if the function f

137
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has the form
dy dy
t,y,— | =g —pt)— —q( 2
f<,y,dt> 8 —pO—- =4Oy, )
that is, if f is linear in y and dy/dt. In Eq. (2) g, p, and g are specified functions of
the independent variable ¢ but do not depend on y. In this case we usually rewrite
Eq. (1) as

V' +p@y +qy =g, (3)

where the primes denote differentiation with respect to ¢. Instead of Eq. (3), we often
see the equation

P@y" +QMy + R0y = G(@). 4)

Of course, if P(f) # 0, we can divide Eq. (4) by P(¢) and thereby obtain Eq. (3) with
_ow _RO) _Gw

=730, AO=30. g0 =50 )

In discussing Eq. (3) and in trying to solve it, we will restrict ourselves to intervals in
which p, g, and g are continuous functions.'

If Eq. (1) is not of the form (3) or (4), then it is called nonlinear. Analytical investi-
gations of nonlinear equations are relatively difficult,so we will have little to say about
them in this book. Numerical or geometical approaches are often more appropriate,
and these are discussed in Chapters 8 and 9.

An initial value problem consists of a differential equation such as Eq. (1), (3), or
(4) together with a pair of initial conditions

y(t) = yo, y'(to) = yo, (6)

where yo and y;, are given numbers prescribing values for y and y’ at the initial
point #y. Observe that the initial conditions for a second order equation identify not
only a particular point (f, yo) through which the graph of the solution must pass,
but also the slope y;, of the graph at that point. It is reasonable to expect that two
initial conditions are needed for a second order equation because, roughly speaking,
two integrations are required to find a solution and each integration introduces an
arbitrary constant. Presumably, two initial conditions will suffice to determine values
for these two constants.

A second order linear equation is said to be homogeneous if the term g(¢) in
Eq. (3), or the term G(¢) in Eq. (4), is zero for all . Otherwise, the equation is
called nonhomogeneous. As a result, the term g(z), or G(¢), is sometimes called the
nonhomogeneous term. We begin our discussion with homogeneous equations, which
we will write in the form

P(0)y"+ Q)Y + R(t)y = 0. (7)

Later, in Sections 3.5 and 3.6, we will show that once the homogeneous equation
has been solved, it is always possible to solve the corresponding nonhomogeneous

There is a corresponding treatment of higher order linear equations in Chapter 4. If you wish, you may
read the appropriate parts of Chapter 4 in parallel with Chapter 3.
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EXAMPLE

1

equation (4), or at least to express the solution in terms of an integral. Thus the
problem of solving the homogeneous equation is the more fundamental one.

In this chapter we will concentrate our attention on equations in which the
functions P, Q, and R are constants. In this case, Eq. (7) becomes

ay” +by' +cy =0, (®)

where a, b, and c are given constants. It turns out that Eq. (8) can always be solved
easily in terms of the elementary functions of calculus. On the other hand, it is usu-
ally much more difficult to solve Eq. (7) if the coefficients are not constants, and
a treatment of that case is deferred until Chapter 5. Before taking up Eq. (8), let
us first gain some experience by looking at a simple example that in many ways is
typical.

Solve the equation
y” —y= 07 (9)

and also find the solution that satisfies the initial conditions
YO =2, Yy =-1 (10)

Observe that Eq. (9) is just Eq. (8) witha = 1,b = 0,and ¢ = —1. In words, Eq. (9) says that
we seek a function with the property that the second derivative of the function is the same as the
function itself. Do any of the functions that you studied in calculus have this property? A little
thought will probably produce at least one such function, namely, y;(f) = €', the exponential
function. A little more thought may also produce a second function, y,(¢) = e~'. Some further
experimentation reveals that constant multiples of these two solutions are also solutions. For
example, the functions 2¢' and Se™" also satisfy Eq. (9), as you can verify by calculating their
second derivatives. In the same way, the functions ¢;y; (f) = c¢1€’ and ¢, () = c e satisfy the
differential equation (9) for all values of the constants ¢; and c;.

Next, it is vital to notice that the sum of any two solutions of Eq. (9) is also a solution.
In particular, since ¢;y;(f) and c¢,y,(¢) are solutions of Eq. (9) for any values of ¢; and c¢,, so is
the function

y =ciy1(t) + coya(t) = cre’ + e (11)

Again, this can be verified by calculating the second derivative y” from Eq. (11). We have
Y =cie' — e and y” = cie’ + ce7; thus y” is the same as y, and Eq. (9) is satisfied.

Letus summarize what we have done so far in this example. Once we notice that the functions
y1(t) = €' and y,(f) = e~ are solutions of Eq. (9), it follows that the general linear combination
(11) of these functions is also a solution. Since the coefficients ¢; and ¢; in Eq. (11) are arbitrary,
this expression represents an infinite family of solutions of the differential equation (9).

It is now possible to consider how to pick out a particular member of this infinite family of
solutions that also satisfies a given set of initial conditions (10). In other words, we seek the
solution that passes through the point (0, 2) and at that point has the slope —1. First, we set
t =0andy =2 in Eq. (11); this gives the equation

c1+C = 2. (12)
Next, we differentiate Eq. (11) with the result that

Yy =cie — e,
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Then, setting t = 0 and y’ = —1, we obtain

cg—c=-—1. (13)
By solving Egs. (12) and (13) simultaneously for ¢; and ¢,, we find that
. a=1 (14)

D=

1 =
Finally, inserting these values in Eq. (11), we obtain
y= %e’ + %e", (15)

the solution of the initial value problem consisting of the differential equation (9) and the
initial conditions (10).

What conclusions can we draw from the preceding example that will help us to
deal with the more general equation (8),

ay” + by +cy =0,

whose coefficients a, b, and ¢ are arbitrary (real) constants? In the first place, in the
example the solutions were exponential functions. Further, once we had identified
two solutions, we were able to use a linear combination of them to satisfy the given
initial conditions as well as the differential equation itself.

It turns out that by exploiting these two ideas, we can solve Eq. (8) for any values
of its coefficients and also satisfy any given set of initial conditions for y and y'.
We start by seeking exponential solutions of the form y = ¢'*, where r is a parameter
to be determined. Then it follows that y' = re” and y” = r?¢’". By substituting these
expressions for y, y’, and y” in Eq. (8), we obtain

(ar* + br + ¢)e" =0,

or, since e £ 0,
ar’* +br+c=0. (16)

Equation (16) is called the characteristic equation for the differential equation (8).
Its significance lies in the fact that if  is a root of the polynomial equation (16), then
y =¢€" is a solution of the differential equation (8). Since Eq. (16) is a quadratic
equation with real coefficients, it has two roots, which may be real and different, real
but repeated, or complex conjugates. We consider the first case here and the latter
two cases in Sections 3.3 and 3.4.

Assuming that the roots of the characteristic equation (16) are real and different,
let them be denoted by ry and r,, where r; # r,. Then y; (t) = €' and y,(t) = "' are
two solutions of Eq. (8). Just as in Example 1, it now follows that

y=c1y1(0) + c2(t) = cre" + e’ 17)

is also a solution of Eq. (8). To verify that this is so, we can differentiate the expression
in Eq. (17); hence
y =cirie + cpre™ (18)

and
y' = cirie" + corse™. (19)
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Substituting these expressions for y, y’, and y” in Eq. (8) and rearranging terms, we
obtain
ay" + by +cy = ci(ar} + bri +c)e"" + cy(ar5 + bry +c)e™'. (20)

The quantities in the two sets of parentheses on the right-hand side of Eq. (20) are
zero because r; and r; are roots of Eq. (16); therefore, y as given by Eq. (17) is indeed
a solution of Eq. (8), as we wished to verify.

Now suppose that we want to find the particular member of the family of solutions
(17) that satisfies the initial conditions (6)

y(to) = yo, Y (to) = ¥y
By substituting t = #y and y = y, in Eq. (17), we obtain
c1€ + e = y. (21)
Similarly, setting t = #, and y’ =y, in Eq. (18) gives
cirie' + e =y (22)
On solving Egs. (21) and (22) simultaneously for ¢; and ¢, we find that

/ /

Yo — Yoz _ yort — Yo _

e ¢y = 0Tl (23)
n—n r—nr

1 =

Recall that r; — r, # 0 so that the expressions in Eq. (23) always make sense. Thus,
no matter what initial conditions are assigned—that is, regardless of the values of
fo, yo, and y; in Eqgs. (6)—it is always possible to determine ¢; and ¢, so that the
initial conditions are satisfied. Moreover, there is only one possible choice of ¢; and
¢, for each set of initial conditions. With the values of ¢; and ¢, given by Eq. (23), the
expression (17) is the solution of the initial value problem

ay" +by +cy=0,  y(to) =yo, Y (o) =y (24)

It is possible to show, on the basis of the fundamental theorem cited in the next
section, that all solutions of Eq. (8) are included in the expression (17), at least for the
case in which the roots of Eq. (16) are real and different. Therefore, we call Eq. (17)
the general solution of Eq. (8). The fact that any possible initial conditions can be
satisfied by the proper choice of the constants in Eq. (17) makes more plausible the
idea that this expression does include all solutions of Eq. (8).

Let us now look at some further examples.

Find the general solution of
y' +5y +6y=0. (25)

We assume that y = ¢, and it then follows that » must be a root of the characteristic equation
P 4+5r+6=0r+2)(r+3)=0.
Thus the possible values of r are r; = —2 and r, = —3; the general solution of Eq. (25) is

y= C1672[ + C2€73[. (26)
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Find the solution of the initial value problem
EXAMPLE
3 y'+5y+6y=0,  y0)=2, y(©0) =3 @7
The general solution of the differential equation was found in Example 2 and is given by
Eq. (26). To satisfy the first initial condition, we set ¢ = 0 and y = 2 in Eq. (26); thus ¢; and ¢,
must satisfy
¢+ = 2. (28)
To use the second initial condition, we must first differentiate Eq. (26). This gives
y = —2cie™? — 3c,e¥. Then, setting t = 0 and y’ = 3, we obtain
~2¢ — 3¢, =3. 29)
By solving Egs. (28) and (29), we find that ¢; =9 and ¢, = —7. Using these values in the
expression (26), we obtain the solution
y=9¢ =T (30)
of the initial value problem (27). The graph of the solution is shown in Figure 3.1.1.
y
0.5 1 15 2 t
FIGURE 3.1.1 Solution of the initial value problem (27):
V' +5y +6y=0, y(0) =2, y(0)=3.
Find the solution of the initial value problem
EXAMPLE L )
4 4y" =8y +3y=0, y0)=2, yO0)=3. (31)
If y = ", then we obtain the characteristic equation
4 —8r+3=0

whose roots are r =3/2 and r = 1/2. Therefore, the general solution of the differential
equation is

y = c1e? + cre'?. (32)
Applying the initial conditions, we obtain the following two equations for ¢; and ¢;:
a1t =2, satia=73.
The solution of these equations is ¢; = —%, = %, so the solution of the initial value problem
(31) is
y= —%63[/2 + %e’/z. (33)

Figure 3.1.2 shows the graph of the solution.
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1 32, 512
=S== + —
Y 2€ 2¢

1+

FIGURE 3.1.2 Solution of the initial value problem (31):
4y" —8y' +3y =0, y(0)=2, y'(0)=0.5.

The solution (30) of the initial value problem (27) initially increases (because its initial slope
is positive) but eventually approaches zero (because both terms involve negative exponential
functions). Therefore, the solution must have a maximum point, and the graph in Figure 3.1.1
confirms this. Determine the location of this maximum point.

The coordinates of the maximum point can be estimated from the graph, but to find
them more precisely, we seek the point where the solution has a horizontal tangent line.
By differentiating the solution (30),y = 9¢~* — 7e~*, with respect to ¢, we obtain

y = —18¢7% 4+ 21e7¥. (34)

Setting y’ equal to zero and multiplying by ¢*, we find that the critical value ¢, satisfies ¢’ = 7/6;
hence

ty, =1n(7/6) = 0.15415. (35)
The corresponding maximum value y,, is given by
108
Vm = 9e2m — Te3m = 2o = 2:20408. (36)

In this example the initial slope is 3, but the solution of the given differential equation
behaves in a similar way for any other positive initial slope. In Problem 26 you are asked to
determine how the coordinates of the maximum point depend on the initial slope.

Returning to the equation ay” 4+ by’ + cy = 0 with arbitrary coefficients, recall
that when r; # r,, its general solution (17) is the sum of two exponential functions.
Therefore, the solution has a relatively simple geometrical behavior: as ¢ increases,
the magnitude of the solution either tends to zero (when both exponents are nega-
tive) or else grows rapidly (when at least one exponent is positive). These two cases
are illustrated by the solutions of Examples 3 and 4, which are shown in Figures 3.1.1
and 3.1.2, respectively. There is also a third case that occurs less often: the solution
approaches a constant when one exponent is zero and the other is negative.

In Sections 3.3 and 3.4, respectively, we return to the problem of solving the
equation ay” + by’ + cy = 0 when the roots of the characteristic equation either
are complex conjugates or are real and equal. In the meantime, in Section 3.2,
we provide a systematic discussion of the mathematical structure of the solutions
of all second order linear homogeneous equations.
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PROBLEMS In each of Problems 1 through 8, find the general solution of the given differential equation.
= 1.y'+2y-3y=0 2.y +3y'+2y=0
3.6y) =y —y=0 4. 2y" =3y +y=0
5."4+5y =0 6. 4" -9 =0
7.9"=9"+9y =0 8. y'—=2y—=2y=0

In each of Problems 9 through 16, find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior as ¢ increases.

9. V' +y =2y=0,  yO =1, y(@O) =1
10. y"+4y' +3y =0, y0) =2, y(0)=-1
11. 6y" =5y +y =0, y0) =4, y©0) =0
12. y" +3y' =0, y0)=-2, y0)=3
13. y" +5y' +3y =0, y0)=1, y(©) =0
14. 2y" +y —4y =0, y0)=0, y@©0) =1
15. y" +8y' =9y =0, yh=1, y@d)=0
16. 4y" —y =0, y=2)=1, y2)=-1
17. Find a differential equation whose general solution is y = ¢je + ce™.
18. Find a differential equation whose general solution is y = c¢;e™"/? + c,e™ 2.
19. Find the solution of the initial value problem

y'—y=0, y0)=3 yO0=-3.

Plot the solution for 0 < ¢t < 2 and determine its minimum value.
20. Find the solution of the initial value problem

2y =3y +y=0, y0)=2, y(©0 =3.

Then determine the maximum value of the solution and also find the point where the
solution is zero.

21. Solve the initial value problem y” —y" — 2y =0, y(0) = «, y'(0) = 2. Then find « so that
the solution approaches zero as t — oo.

22. Solve the initial value problem 4y” —y = 0, y(0) = 2, y’(0) = B. Then find B so that the
solution approaches zero as t — oo.

In each of Problems 23 and 24, determine the values of «, if any, for which all solutions tend to
zero ast — oo; also determine the values of «, if any, for which all (nonzero) solutions become
unbounded as t — oo.

23,y —QRa—1y +a(@—1y=0
24y +QB—-a)y —2(a—-1y=0
25. Consider the initial value problem

2y"+3y' =2y =0, yO) =1, y(0) =-5,

where 8 > 0.
(a) Solve the initial value problem.

(b) Plot the solution when 8 = 1. Find the coordinates (f, yy) of the minimum point of
the solution in this case.

(c) Find the smallest value of 8 for which the solution has no minimum point.
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."?, 26. Consider the initial value problem (see Example 5)
Y'+5y +6y=0, y(0) =2, y'(0) =84,

where 8 > 0.
(a) Solve the initial value problem.

(b) Determine the coordinates t,, and y,, of the maximum point of the solution as func-
tions of g.

(c) Determine the smallest value of 8 for which y,, > 4.
(d) Determine the behavior of ¢, and y,, as f — oo.

27. Consider the equation ay” + by’ + cy = d, where a, b, ¢, and d are constants.
(a) Find all equilibrium, or constant, solutions of this differential equation.
(b) Let y, denote an equilibrium solution, and let Y = y — y,. Thus Y is the deviation of
a solution y from an equilibrium solution. Find the differential equation satisfied by Y.
28. Consider the equation ay” + by’ 4 cy = 0, where a, b, and c are constants with a > 0. Find
conditions on a, b, and c such that the roots of the characteristic equation are:
(a) real, different, and negative.
(b) real with opposite signs.
(c) real, different, and positive.

3.2 Solutions of Linear Homogeneous Equations; the Wronskian

In the preceding section we showed how to solve some differential equations of the
form

ay” + by +cy =0,

where a, b, and ¢ are constants. Now we build on those results to provide a clearer
picture of the structure of the solutions of all second order linear homogeneous
equations. In turn, this understanding will assist us in finding the solutions of other
problems that we will encounter later.

To discuss general properties of linear differential equations, it is helpful to intro-
duce a differential operator notation. Let p and g be continuous functions on an
open interval /—that is, for @ < t < g. The cases for « = —o0, or § = o0, or both,
are included. Then, for any function ¢ that is twice differentiable on /, we define the
differential operator L by the equation

Li¢] = ¢" +p¢’ + q¢. 1)
Note that L[¢] is a function on /. The value of L[¢] at a point ¢ is
L[g1(0) = ¢" (1) + p()¢' (1) + (D) (1).
For example, if p(t) = ,q(t) = 1 + t, and ¢(r) = sin 3¢, then

L[¢](t) = (sin3t)" + t*(sin3t)’ + (1 + ) sin 3¢
= —9sin 3¢ + 3t> cos 3¢ + (1 + ¢) sin 3t.
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Theorem 3.2.1

The operator L is often written as L = D?> + pD + g, where D is the derivative
operator.

In this section we study the second order linear homogeneous equation
L[¢](t) = 0. Since it is customary to use the symbol y to denote ¢(¢), we will usually
write this equation in the form

Liyl=y"+p®)y +4q@®)y = 0. 2)
With Eq. (2) we associate a set of initial conditions
y(to) =yo,  Y'(to) =y, 3)

where fp is any point in the interval /, and yo and y, are given real numbers.
We would like to know whether the initial value problem (2), (3) always has a solu-
tion, and whether it may have more than one solution. We would also like to know
whether anything can be said about the form and structure of solutions that might
be helpful in finding solutions of particular problems. Answers to these questions are
contained in the theorems in this section.

The fundamental theoretical result for initial value problems for second order
linear equations is stated in Theorem 3.2.1, which is analogous to Theorem 2.4.1
for first order linear equations. The result applies equally well to nonhomogeneous
equations, so the theorem is stated in that form.

(Existence and Uniqueness Theorem)

Consider the initial value problem

V' +p®y +q@y=g@®,  yto) =yo, Y (o) =y 4)

where p, g, and g are continuous on an open interval / that contains the point f.
Then there is exactly one solution y = ¢ () of this problem, and the solution exists
throughout the interval /.

We emphasize that the theorem says three things:

1. The initial value problem has a solution; in other words, a solution exists.
2. The initial value problem has only one solution; that is, the solution is unique.

3. The solution ¢ is defined throughout the interval I where the coefficients are continuous
and is at least twice differentiable there.

For some problems some of these assertions are easy to prove. For instance, we
found in Example 1 of Section 3.1 that the initial value problem

Yi=y=0,  y0)=2, y(©0=-1 ©)

has the solution
y=3e +3e". (6)
The fact that we found a solution certainly establishes that a solution exists for this
initial value problem. Further, the solution (6) is twice differentiable,indeed differen-
tiable any number of times, throughout the interval (—oo, co) where the coefficients

in the differential equation are continuous. On the other hand, it is not obvious, and
is more difficult to show, that the initial value problem (5) has no solutions other
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EXAMPLE

1

EXAMPLE

2

Theorem 3.2.2

than the one given by Eq. (6). Nevertheless, Theorem 3.2.1 states that this solution
is indeed the only solution of the initial value problem (5).

For most problems of the form (4), it is not possible to write down a useful expres-
sion for the solution. This is a major difference between first order and second order
linear equations. Therefore, all parts of the theorem must be proved by general meth-
ods that do not involve having such an expression. The proof of Theorem 3.2.1 is fairly
difficult, and we do not discuss it here.> We will, however, accept Theorem 3.2.1 as
true and make use of it whenever necessary.

Find the longest interval in which the solution of the initial value problem
=30y +ty —t+3)y=0, yH=2 yd=1

is certain to exist.

If the given differential equation is written in the form of Eq. (4), then p(t) = 1/(t — 3),
q(t) = —(t 4+ 3)/t(t — 3), and g(r) = 0. The only points of discontinuity of the coefficients are
t =0 and ¢ = 3. Therefore, the longest open interval, containing the initial point ¢ =1, in
which all the coefficients are continuous is 0 < ¢ < 3. Thus, this is the longest interval in which
Theorem 3.2.1 guarantees that the solution exists.

Find the unique solution of the initial value problem

Y +p@®)y +qt)y =0, () =0, Y(t) =0,

where p and g are continuous in an open interval / containing f.

The function y = ¢(¢) = 0 for all ¢ in [ certainly satisfies the differential equation and ini-
tial conditions. By the uniqueness part of Theorem 3.2.1, it is the only solution of the given
problem.

Let us now assume that y; and y, are two solutions of Eq. (2); in other words,

Lyl =y{+pyi +ay1 =0,

and similarly for y,. Then, just as in the examples in Section 3.1, we can generate
more solutions by forming linear combinations of y; and y,. We state this result as a
theorem.

(Principle of Superposition)
If y; and y, are two solutions of the differential equation (2),
Lyl =y"+p@®y +q@®y =0,

then the linear combination c;y; + ¢y, is also a solution for any values of the
constants ¢; and c;.

2A proof of Theorem 3.2.1 can be found, for example, in Chapter 6, Section 8 of the book by Coddington
listed in the references at the end of this chapter.
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A special case of Theorem 3.2.2 occurs if either ¢; or ¢; is zero. Then we conclude
that any constant multiple of a solution of Eq. (2) is also a solution.
To prove Theorem 3.2.2, we need only substitute

y =cy1(t) + cy2 (1) (7)

for y in Eq. (2). By calculating the indicated derivatives and rearranging terms, we
obtain

Llciy1 + e2y2] = [aiy1 + cay2]” + pleiyi + ezl + gleiyr + cayal
= c1y| + c2y; + c1py) + capys + c1qy1 + 2qy>
= c1ly] + pyi + ayil + e2lys + pys + qya]
= c1L[y1] + c2L[y2].

Since L[y1] =0 and L[y,] =0, it follows that L[ciy; + c2y2] = 0 also. Therefore,
regardless of the values of ¢; and c;, y as given by Eq. (7) satisfies the differential
equation (2), and the proof of Theorem 3.2.2 is complete.

Theorem 3.2.2 states that, beginning with only two solutions of Eq. (2), we can
construct an infinite family of solutions by means of Eq. (7). The next question is
whether all solutions of Eq. (2) are included in Eq. (7) or whether there may be
other solutions of a different form. We begin to address this question by examining
whether the constants ¢; and ¢, in Eq. (7) can be chosen so as to satisfy the initial
conditions (3). These initial conditions require ¢; and c; to satisfy the equations

c1y1(to) + c2y2(t) = Yo,

/ , / ®)
c1y1(to) + 2y, (t0) = Y-
The determinant of coefficients of the system (8) is
yi(to)  y2(to) / /
= , = Y1)y, (to) — y1(to)y2(0)- 9
Yi(to) 5 (to) Yoy ittt )

If W £ 0, then Egs. (8) have a unique solution (cy, ¢;) regardless of the values of
yo and y;,. This solution is given by

o = Yoy5(to) — ypy2(to) o= —yoy} (to) + yoy1(to) (10)
y1(to)ys(to) — ¥ (to)y2(to) y1(to)ys (to) — ¥} (to)y2(to)
or, in terms of determinants,
Yo y2(fo) yito) Yo
Yo Ys(to) yi(to) ¥
o =0 2 =7 o (11)

yi(to)  y2(to)
yi(to) Y5 (to)

yito) ya(to)
Yi(to)  y5(t)

With these values for ¢; and c¢;, the linear combination y = c1y;(¢) + c2y»(¢) satis-
fies the initial conditions (3) as well as the differential equation (2). Note that the
denominator in the expressions for ¢; and ¢; is the nonzero determinant W.

On the other hand, if W = 0, then the denominators appearing in Egs. (10) and
(11) are zero. In this case Egs. (8) have no solution unless y and y; have values that
also make the numeratorsin Egs. (10) and (11) equal to zero. Thus,if W = 0,there are
many initial conditions that cannot be satisfied no matter how ¢; and ¢, are chosen.
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EXAMPLE

3

Theorem 3.2.4

The determinant W is called the Wronskian® determinant, or simply the Wronskian,
of the solutions y; and y,. Sometimes we use the more extended notation W (y1, y2) (t)
to stand for the expression on the right side of Eq. (9), thereby emphasizing that the
Wronskian depends on the functions y; and y;, and that it is evaluated at the point
to. The preceding argument establishes the following result.

Suppose that y; and y, are two solutions of Eq. (2)
Liyl=y"+p@®)y +4q@®)y =0,
and that the initial conditions (3)
y(to) =yo,  Y'(to) =y
are assigned. Then it is always possible to choose the constants ¢y, ¢; so that
y = cy1(®) + coya(0)

satisfies the differential equation (2) and the initial conditions (3) if and only if the
Wronskian
W =y1ys —y1y2

is not zero at t.

In Example 2 of Section 3.1 we found that y,(t) = e~ and y,(¢) = ¢~ are solutions of the
differential equation
Y'+5y +6y=0.
Find the Wronskian of y; and y,.
The Wronskian of these two functions is
e—Zl 6—31 N
W= ’—26*2’ —3e¥| T ¢ E

Since W is nonzero for all values of ¢, the functions y; and y, can be used to construct solutions
of the given differential equation, together with initial conditions prescribed at any value of ¢.
One such initial value problem was solved in Example 3 of Section 3.1.

The next theorem justifies the term “general solution” that we introduced in

Section 3.1 for the linear combination ¢ y; + ¢2y».

Suppose that y; and y, are two solutions of the differential equation (2),
Liyl=y"+p®y +q@®y = 0.
Then the family of solutions
y=ciyi(t) + c2y2(1)

with arbitrary coefficients ¢; and ¢, includes every solution of Eq. (2) if and only if
there is a point f) where the Wronskian of y; and y; is not zero.

3Wronskian determinants are named for J6sef Maria Hoéné-Wronski (1776-1853), who was born in Pol-
and but spent most of his life in France. Wronski was a gifted but troubled man, and his life was marked
by frequent heated disputes with other individuals and institutions.
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Let ¢ be any solution of Eq. (2). To prove the theorem, we must determine whether
¢ is included in the linear combinations c1y; + ¢;y2. That is, we must determine
whether there are values of the constants ¢; and ¢, that make the linear combi-
nation the same as ¢. Let £y be a point where the Wronskian of y; and y; is nonzero.
Then evaluate ¢ and ¢’ at this point and call these values yo and y;,, respectively; thus

Yo = ¢(to), yo = ¢'(t0)-

Next, consider the initial value problem

V' +p@)y +qy=0,  yt)=yo, Y () =y (12)

The function ¢ is certainly a solution of this initial value problem. Further, because
we are assuming that W (yi,y,2)(%) is nonzero, it is possible (by Theorem 3.2.3)
to choose c¢; and ¢; such that y = c1y1(¢) + c2y2(¢) is also a solution of the initial
value problem (12). In fact, the proper values of ¢; and ¢; are given by Egs. (10) or
(11). The uniqueness part of Theorem 3.2.1 guarantees that these two solutions of
the same initial value problem are actually the same function; thus, for the proper
choice of ¢; and ¢,

@) = ciy1(t) + coy2(0), (13)

and therefore ¢ is included in the family of functions ¢;y; + ¢,y,. Finally, since ¢ is an
arbitrary solution of Eq. (2), it follows that every solution of this equation is included
in this family.

Now suppose that there is no point ) where the Wronskian is nonzero. Thus
W (y1,y2)(to) = 0 no matter which point ¢, is selected. Then (by Theorem 3.2.3) there
are values of yg and y;, such that the system (8) has no solution for ¢; and ¢;. Select
a pair of such values and choose the solution ¢(¢) of Eq. (2) that satisfies the initial
condition (3). Observe that such a solution is guaranteed to exist by Theorem 3.2.1.
However, this solution is not included in the family y = c¢1y1 4 c2y2. Thus this linear
combination does not include all solutions of Eq. (2) if W (y1, y2) = 0. This completes
the proof of Theorem 3.2.4.

Theorem 3.2.4 states that,if and only if the Wronskian of y; and y; is not everywhere
zero, then the linear combination c1y; + ¢y, contains all solutions of Eq. (2). It is
therefore natural (and we have already done this in the preceding section) to call the
expression

y=c1y1(t) + cy2(2)

with arbitrary constant coefficients the general solution of Eq. (2). The solutions
y1 and y; are said to form a fundamental set of solutions of Eq. (2) if and only if their
Wronskian is nonzero.

We can restate the result of Theorem 3.2.4 in slightly different language: to find
the general solution, and therefore all solutions, of an equation of the form (2), we
need only find two solutions of the given equation whose Wronskian is nonzero.
We did precisely this in several examples in Section 3.1, although there we did not
calculate the Wronskians. You should now go back and do that, thereby verifying
that all the solutions we called “general solutions” in Section 3.1 do satisfy the nec-
essary Wronskian condition. Alternatively, the following example includes all those
mentioned in Section 3.1, as well as many other problems of a similar type.
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Suppose that y; () = e and y,(¢) = €' are two solutions of an equation of the form (2). Show
that they form a fundamental set of solutions if r; # r,.
We calculate the Wronskian of y; and y;:

erlt erzt

rett pent| = (rp — r1) expl(r1 + r2)tl.

Since the exponential function is never zero, and since we are assuming that r, —r; # 0, it
follows that W is nonzero for every value of . Consequently, y; and y, form a fundamental
set of solutions.

Show that y,(¢) = ¢!/? and y,(¢) = ¢t~! form a fundamental set of solutions of
20y 43ty —y=0, t>0. (14)

We will show how to solve Eq. (14) later (see Problem 34 in Section 3.3). However, at
this stage we can verify by direct substitution that y; and y, are solutions of the differential
equation. Since y/ (1) = 17'/2 and y{(t) = — 11732, we have

208 (=37 + 313 ) =P = (=142 - D' =0.
Similarly, y,(t) = —¢~2 and y} (t) = 2t73,s0
20 43 (-t -1t =@ -3-Dr ' =0.

Next we calculate the Wronskian W of y; and y;:

2 1

Y
=12 g2 :_%t 2 (15)
2

Since W # 0 for t > 0, we conclude that y; and y, form a fundamental set of solutions there.

In several cases we have been able to find a fundamental set of solutions, and
therefore the general solution, of a given differential equation. However, this is often
a difficult task, and the question arises as to whether a differential equation of the
form (2) always has a fundamental set of solutions. The following theorem provides
an affirmative answer to this question.

Consider the differential equation (2),

Lliyl=y"+p®)y +q@)y =0,

whose coefficients p and g are continuous on some open interval /. Choose some
point #y in /. Let y; be the solution of Eq. (2) that also satisfies the initial conditions

}’(to) = 1’ y/(to) = O,
and let y, be the solution of Eq. (2) that satisfies the initial conditions
y(to) =0,  Y(to) = 1.

Then y; and y, form a fundamental set of solutions of Eq. (2).
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EXAMPLE

6

First observe that the existence of the functions y; and y; is ensured by the existence
part of Theorem 3.2.1. To show that they form a fundamental set of solutions, we need
only calculate their Wronskian at #y:

yi(to)  y2(to)

Wy, ty) =
(1, y2) (%) Vi) Yato)

10
- ‘0 1‘ 1
Since their Wronskian is not zero at the point ¢y, the functions y; and y, do form a
fundamental set of solutions, thus completing the proof of Theorem 3.2.5.

Note that the potentially difficult part of this proof, demonstrating the existence
of a pair of solutions, is taken care of by reference to Theorem 3.2.1. Note also that
Theorem 3.2.5 does not address the question of how to find the solutions y; and y,
by solving the specified initial value problems. Nevertheless, it may be reassuring to
know that a fundamental set of solutions always exists.

Find the fundamental set of solutions y; and y, specified by Theorem 3.2.5 for the differential
equation

V' —y=0, (16)

using the initial point £, = 0.

In Section 3.1 we noted that two solutions of Eq. (16) are y;(¢) = ¢' and y,(t) = e~"'. The
Wronskian of these solutions is W(yy,y,2)(t) = —2 # 0, so they form a fundamental set of
solutions. However, they are not the fundamental solutions indicated by Theorem 3.2.5 because
they do not satisfy the initial conditions mentioned in that theorem at the point ¢ = 0.

To find the fundamental solutions specified by the theorem, we need to find the solutions
satisfying the proper initial conditions. Let us denote by y;(¢) the solution of Eq. (16) that
satisfies the initial conditions

yO =1 y0=0. 17)
The general solution of Eq. (16) is
y=ce +ce, (18)
and the initial conditions (17) are satisfied if ¢; = 1/2 and ¢, = 1/2. Thus
y3(t) = Se' + e = coshr.
Similarly, if y4(¢) satisfies the initial conditions
yO =0, YO =1, (19)

then

1

_l U
ya(t) = 3¢ se

= sinht.
Since the Wronskian of y; and y, is

W (y3,y4)(t) = cosh® t — sinh® ¢ = 1,
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these functions also form a fundamental set of solutions, as stated by Theorem 3.2.5. Therefore,
the general solution of Eq. (16) can be written as

y = ky cosht + k, sinh ¢, (20)

as well as in the form (18). We have used k; and k, for the arbitrary constants in Eq. (20)
because they are not the same as the constants ¢; and ¢, in Eq. (18). One purpose of this
example is to make it clear that a given differential equation has more than one fundamental
set of solutions; indeed, it has infinitely many; see Problem 21. As a rule, you should choose
the set that is most convenient.

In the next section we will encounter equations that have complex-valued solu-
tions. The following theorem is fundamental in dealing with such equations and their
solutions.

Consider again the equation (2),

Liyl=y"+p@®y +q@t)y =0,

where p and g are continuous real-valued functions. If y = u(¢) 4 iv(¢) is a complex-
valued solution of Eq. (2), then its real part # and its imaginary part v are also
solutions of this equation.

To prove this theorem we substitute u(¢) + iv(¢) for y in L[y], obtaining
LIyl = u"(6) + iv" () + p(O)[d' (t) + v (O] 4+ q(O)[u(®) + iv(D)]. (21)

Then, by separating Eq. (21) into its real and imaginary parts (and this is where we
need to know that p(¢) and ¢(¢) are real-valued), we find that

Lyl =u"(®) + p(Ou'(t) + q@)u(t) + ilv" () + p(OV' (1) + q()v(D)]
= L[ul(®) + iL[v](?).

Recall that a complex number is zero if and only if its real and imaginary parts
are both zero. We know that L[y] = 0 because y is a solution of Eq. (2). Therefore,
L[u](t) = 0 and L[v](¢) = 0 also; consequently, u and v are also solutions of Eq. (2),
so the theorem is established. We will see examples of the use of Theorem 3.2.6 in
Section 3.3.

Incidentally, the complex conjugate y of a solution y is also a solution. This is a
consequence of Theorem 3.2.2 since y = u(t) — iv(¢) is a linear combination of two
solutions.

Now let us examine further the properties of the Wronskian of two solutions
of a second order linear homogeneous differential equation. The following the-
orem, perhaps surprisingly, gives a simple explicit formula for the Wronskian of
any two solutions of any such equation, even if the solutions themselves are not
known.
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(Abel’s Theorem)*
If y; and y, are solutions of the differential equation
Liyl=y"+p@®)y +q@®)y =0, (22)

where p and g are continuous on an open interval 7, then the Wronskian W (y1, y»)(f)
is given by

W (y1,y2)(t) = cexp [— f p(t) dt} , (23)

where c is a certain constant that depends on y; and y,, but not on ¢. Further,
W (y1, y2)(¢) either is zero for all ¢ in I (if ¢ = 0) or else is never zero in [ (if ¢ # 0).

To prove Abel’s theorem, we start by noting that y; and y, satisfy
Y1 +p@0y1 + 9@y =0,
Y2 +p0y; +q0)y2 =0.

If we multiply the first equation by —y,, multiply the second by y;, and add the
resulting equations, we obtain

(24)

Y15 = ¥1y2) +pO31ys — yiy2) =0. (25)
Next, we let W(t) = W(y1, y2)(t) and observe that
W' = y1y; = yiy2. (26)
Then we can write Eq. (25) in the form
W' +p()W = 0. (27)

Equation (27) can be solved immediately since it is both a first order linear equation
(Section 2.1) and a separable equation (Section 2.2). Thus

W(t) = cexp |:— /p(t) dt:| , (28)

where ¢ is a constant. The value of ¢ depends on which pair of solutions of Eq. (22)
is involved. However, since the exponential function is never zero, W(¢) is not
zero unless ¢ = 0, in which case W(¢) is zero for all ¢. This completes the proof of
Theorem 3.2.7.

Note that the Wronskians of any two fundamental sets of solutions of the same dif-
ferential equation can differ only by a multiplicative constant,and that the Wronskian
of any fundamental set of solutions can be determined, up to a multiplicative constant,

“The result in Theorem 3.2.7 was derived by the Norwegian mathematician Niels Henrik Abel (1802-
1829) in 1827 and is known as Abel’s formula. Abel also showed that there is no general formula for
solving a quintic, or fifth degree, polynomial equation in terms of explicit algebraic operations on the
coefficients, thereby resolving a question that had been open since the sixteenth century. His greatest
contributions, however, were in analysis, particularly in the study of elliptic functions. Unfortunately, his
work was not widely noticed until after his death. The distinguished French mathematician Legendre
called it a “monument more lasting than bronze.”
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EXAMPLE

7

without solving the differential equation. Further, since under the conditions of The-
orem 3.2.7 the Wronskian W is either always zero or never zero, you can determine
which case actually occurs by evaluating W at any single convenient value of .

In Example 5 we verified that y,(f) = t'/? and y,(¢) = ¢~! are solutions of the equation
262y + 3ty —y =0, t>0. (29)

Verify that the Wronskian of y; and y, is given by Eq. (23).

From the example just cited we know that W (y;, y»)(t) = —(3/2)t~3/2. To use Eq. (23), we
must write the differential equation (29) in the standard form with the coefficient of y” equal
to 1. Thus we obtain

//+3/ 1 =0
y y 2t2y_,

2t
so p(t) = 3/2t. Hence

3 3
Wy, y2)(1) = c exp [—/ 5 dt] =cexp (—E In t)
=ct2, (30)

Equation (30) gives the Wronskian of any pair of solutions of Eq. (29). For the particular
solutions given in this example, we must choose ¢ = —3/2.

Summary. We can summarize the discussion in this section as follows: to find the
general solution of the differential equation

V' +p)y +q)y=0, a<t<§,

we must first find two functions y; and y, that satisfy the differential equation in
a <t < B. Then we must make sure that there is a point in the interval where the
Wronskian W of y; and y, is nonzero. Under these circumstances y; and y, form a
fundamental set of solutions, and the general solution is

y = c1y1(t) + c2y2(0),

where ¢ and ¢, are arbitrary constants. If initial conditions are prescribed at a point
ina <t < B,then ¢ and ¢, can be chosen so as to satisfy these conditions.

PROBLEMS

In each of Problems 1 through 6, find the Wronskian of the given pair of functions.

1. &%, e 32 2. cost, sint
3. e, te 4. x, xe*
5. e'sint, e'cost 6. cos?0, 14 cos26

In each of Problems 7 through 12, determine the longest interval in which the given initial
value problem is certain to have a unique twice-differentiable solution. Do not attempt to find
the solution.

7.ty +3y=t, yh)=1, yady=2
8. (t—1)y =31y +4y =sint, y(-2)=2, y(-2)=1
9.1t —4)y"+3ty' +4y =2, y3) =0, y3)=-1

10. y" 4 (cost)y’ +3(n|t])y =0, y2)=3, y2 =1
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11. (x =3)y" +xy + (In|x))y = 0, y) =0, y@d)=1
12 (x=2)y" +y + (x=2)(tanx)y =0, y3) =1, y(3) =2

13. Verify that y;(1) = > and y,(f) ="' are two solutions of the differential equation
2y" — 2y = 0 for ¢t > 0. Then show that y = ¢ + ¢,¢~! is also a solution of this equation
for any ¢; and c;.

14. Verify that y;(t) = 1 and y,(¢) = t'/? are solutions of the differential equation
yy" + (¢)* = 0fort > 0.Then show that y = ¢; + ¢,t'/ is not, in general, a solution of this
equation. Explain why this result does not contradict Theorem 3.2.2.

15. Show that if y = ¢(¢) is a solution of the differential equation y” + p(#)y’ + q(t)y = g(1),
where g(¢) is not always zero, then y = c¢(¢), where c is any constant other than 1,is not a
solution. Explain why this result does not contradict the remark following Theorem 3.2.2.

16. Can y = sin(s?) be a solution on an interval containing ¢ = 0 of an equation
V' +p@)y" + q(t)y = 0 with continuous coefficients? Explain your answer.

17. If the Wronskian W of f and g is 3¢*, and if f(t) = €%, find g(¢).

18. If the Wronskian W of f and g is %¢', and if f(t) = ¢, find g ().

19. If W(f,g) is the Wronskian of f and g, and if u = 2f — g, v = f + 2g, find the Wronskian
W (u,v) of u and v in terms of W(f, g).

20. If the Wronskian of f and g is tcost —sint, and if u=f+3g,v=f—g, find the
Wronskian of u and v.

21. Assume that y; and y, are a fundamental set of solutions of y” + p(¢)y’ 4+ q(t)y = 0 and let
V3 = a1y + axy, and y, = byy; + byy,,where ay,a,,b,and b, are any constants. Show that

W (y3,y4) = (a1D2 — a2b) W (y1, y2).
Are y; and y, also a fundamental set of solutions? Why or why not?

In each of Problems 22 and 23, find the fundamental set of solutions specified by Theorem
3.2.5 for the given differential equation and initial point.

22. y"4+y =2y =0, th=0

23. y"+4y' +3y =0, fh=1

In each of Problems 24 through 27, verify that the functions y, and y, are solutions of the given
differential equation. Do they constitute a fundamental set of solutions?

24. y" +4y =0; y1(t) = cos2t, y,(t) =sin2t

25. 9" =2y +y=0;  yi(O)=¢, yt) =te

26. X*y" —x(x+2)y + (x+2)y=0, x>0; yix) =x, y2(x) =xe*

27. 1 —xcotx)y” —xy'+y=0, O0<x<m; yi(x) =x, y(x) =sinx

28. Consider the equation y” —y" —2y = 0.
(a) Show that y;(¢) = e~* and y,(¢) = ¢* form a fundamental set of solutions.
(b) Let y3(t) = =2¢%, y4(t) = y1(t) + 2y2(1), and ys(t) = 2y1(r) — 2y3(1). Are y3(1), y4(0),
and ys(¢) also solutions of the given differential equation?
(c) Determine whether each of the following pairs forms a fundamental set of solutions:

1@, y:(O]; 20, y3(D]; [y1(D),ya@];  [ya(®),ys®O].

In each of Problems 29 through 32, find the Wronskian of two solutions of the given differential
equation without solving the equation.

29. 2y —t(t+2)y + (¢ +2)y=0 30. (cost)y” + (sint)y —ty =0
31 X%y 4 xy' 4+ (¥ =)y =0, Bessel’s equation
32. (1 —x*)y" —2xy +a(@+1)y =0, Legendre’s equation
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33. Show that if p is differentiable and p(¢) > 0, then the Wronskian W (¢) of two solutions of
[pyYT + q®)y =0is W(t) = ¢/p(t), where c is a constant.

34. If the differential equation zy” 4+ 2y’ 4 te'y = 0 has y; and y, as a fundamental set of
solutions and if W (yy,y,)(1) = 2, find the value of W (y1,y,)(5).

35. If the differential equation r2y” — 2y’ + (3 +t)y = 0 has y; and y, as a fundamental set of
solutions and if W (y,y,)(2) = 3, find the value of W (y1,y,)(4).

36. If the Wronskian of any two solutions of y” + p(t)y’ 4+ g(¢)y = 01is constant, what does this
imply about the coefficients p and g?

37. If f, g, and h are differentiable functions, show that W (fg, fh) = f?W (g, h).

In Problems 38 through 40, assume that p and g are continuous and that the functions y; and
v, are solutions of the differential equation y” + p(¢)y’ 4+ ¢(¢)y = 0 on an open interval /.

38. Prove that if y; and y, are zero at the same point in /, then they cannot be a fundamental
set of solutions on that interval.

39. Prove that if y; and y, have maxima or minima at the same point in /, then they cannot
be a fundamental set of solutions on that interval.

40. Prove that if y; and y, have a common point of inflection ¢ in 7, then they cannot be a
fundamental set of solutions on 7 unless both p and g are zero at ;.

41. Exact Equations. The equation
P()y" + Q)y + Rx)y =0
is said to be exact if it can be written in the form
[P()YT +[f(x)y] =0,

where f(x) is to be determined in terms of P(x), Q(x), and R(x). The latter equation can
be integrated once immediately, resulting in a first order linear equation for y that can be
solved as in Section 2.1. By equating the coefficients of the preceding equations and then
eliminating f(x), show that a necessary condition for exactness is

P'(x) = Q'(x) + R(x) = 0.
It can be shown that this is also a sufficient condition.

In each of Problems 42 through 45, use the result of Problem 41 to determine whether the
given equation is exact. If it is, then solve the equation.

42. y"+xy'+y=0 43. y" +3x%y' +xy =0
44. xy" — (cosx)y' + (sinx)y =0, x>0 45. X*y" +xy' —y=0, x>0

46. The Adjoint Equation. Ifasecond order linear homogeneous equation is not exact, it can
be made exact by multiplying by an appropriate integrating factor 1 (x). Thus we require
that u(x) be such that

pEP@)Y" + p)QX)y + pnx)Rx)y =0
can be written in the form
L@ P@)yT + [f(x)y] =0.

By equating coefficients in these two equations and eliminating f(x), show that the
function p must satisfy

Pu"+ QP - Q'+ (P" = Q' + Ry =0.
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This equation is known as the adjoint of the original equation and is important in
the advanced theory of differential equations. In general, the problem of solving the
adjoint differential equation is as difficult as that of solving the original equation, so only
occasionally is it possible to find an integrating factor for a second order equation.

In each of Problems 47 through 49, use the result of Problem 46 to find the adjoint of the given
differential equation.

47. x*y" 4+ xy' + (x> —1?)y =0,  Bessel’s equation
48. (1 —x*)y" —2xy +a(@+1)y =0, Legendre’s equation
49. y" —xy =0, Airy’s equation

50. For the second order linear equation P(x)y” + Q(x)y" + R(x)y = 0, show that the adjoint
of the adjoint equation is the original equation.

51. A second order linear equation P(x)y” + Q(x)y" + R(x)y = 0 is said to be self-adjoint if
its adjoint is the same as the original equation. Show that a necessary condition for this
equation to be self-adjoint is that P'(x) = Q(x). Determine whether each of the equations
in Problems 47 through 49 is self-adjoint.

3.3 Complex Roots of the Characteristic Equation

We continue our discussion of the equation
ay” + by +cy =0, (1)

where a, b, and c¢ are given real numbers. In Section 3.1 we found that if we seek
solutions of the form y = ¢, then r must be a root of the characteristic equation

ar* + br+c=0. (2)

We showed in Section 3.1 that if the roots r; and r, are real and different, which
occurs whenever the discriminant b? — 4ac is positive, then the general solution of
Eq. (1) is

y =cre" + cre™. 3)

Suppose now that b?> — dac is negative. Then the roots of Eq. (2) are conjugate
complex numbers; we denote them by

ro=A+in, r=A—ip, 4)
where A and p are real. The corresponding expressions for y are
y1(t) = expl(A + ip)t], y2(t) = exp[(A — ip)t]. )

Our first task is to explore what is meant by these expressions, which involve
evaluating the exponential function for a complex exponent. For example, if
A= —1,u =2,and ¢ = 3, then from Eq. (5),

yi(3) = et (6)
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What does it mean to raise the number e to a complex power? The answer is provided
by an important relation known as Euler’s formula.

Euler’s Formula. To assign a meaning to the expressions in Egs. (5), we need to give
a definition of the complex exponential function. Of course, we want the definition
to reduce to the familiar real exponential function when the exponent is real. There
are several ways to discover how this extension of the exponential function should
be defined. Here we use a method based on infinite series; an alternative is outlined
in Problem 28.

Recall from calculus that the Taylor series for ¢’ about t = 0 is

o0 tn
=Zn—, —00 <t < 00. (7)
n=0 "

If we now assume that we can substitute it for ¢ in Eq. (7), then we have

0o .
el-t _ Z (lt)'n
n:

n=0
(— 1)nt2n (— 1)n 1t2n 1
Z Z 1 ®)
2n)! 2n - 1!
where we have separated the sum into its real and imaginary parts, making use of the
fact that i> = —1,i% = —i,i* = 1, and so forth. The first series in Eq. (8) is precisely

the Taylor series for cost about t = 0, and the second is the Taylor series for sin¢
about t = 0. Thus we have

e = cost +isint. 9)

Equation (9) isknown as Euler’s formula and is an extremely important mathematical
relationship. Although our derivation of Eq. (9) is based on the unverified assumption
that the series (7) can be used for complex as well as real values of the independent
variable, our intention is to use this derivation only to make Eq. (9) seem plausible.
We now put matters on a firm foundation by adopting Eq. (9) as the definition of e'.
In other words, whenever we write e/, we mean the expression on the right side of
Eq. (9).

There are some variations of Euler’s formula that are also worth noting. If we
replace ¢ by —¢ in Eq. (9) and recall that cos(—¢) = cost and sin(—¢) = —sin¢, then
we have

e = cost —isint. (10)

Further, if ¢ is replaced by ut in Eq. (9), then we obtain a generalized version of
Euler’s formula, namely,

€™ = cos ut + isin put. (11)

Next, we want to extend the definition of the exponential function to arbitrary
complex exponents of the form (A +iw)t. Since we want the usual properties
of the exponential function to hold for complex exponents, we certainly want
exp[(A + iu)t] to satisfy

e(k-‘riu)t _ ekteml (12)
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EXAMPLE

1

Then, substituting for ¢ from Eq. (11), we obtain

eIt — M (cos put + i sin ut)

= " cos ut + ie" sin ut. (13)
We now take Eq. (13) as the definition of exp[ (% + ixt)¢]. The value of the exponential
function with a complex exponent is a complex number whose real and imaginary
parts are given by the terms on the right side of Eq. (13). Observe that the real

and imaginary parts of exp[(X + ip)¢] are expressed entirely in terms of elementary
real-valued functions. For example, the quantity in Eq. (6) has the value

e 30 — 673 cos6 + ie 3 sin 6 = 0.0478041 — 0.0139113;.

With the definitions (9) and (13), it is straightforward to show that the usual laws of
exponents are valid for the complex exponential function. You can also use Eq. (13)
to verify that the differentiation formula

d
E(e”) =re" (14)

holds for complex values of r.

Find the general solution of the differential equation
Y +y +925y =0, (15)
Also find the solution that satisfies the initial conditions

y(0) =2, y'(0) =38, (16)

and draw its graph.
The characteristic equation for Eq. (15) is

rP4+r+925=0

S0 its roots are

r1:—%+3i, rzz—%—?)l..

Therefore, two solutions of Eq. (15) are

@ = eXp[<_% + 3i)t] = e "*(cos 3t +isin 3r) 17)
and
_ 1 . o —t)2 ..
Vo (t) = exp[(—i - 31)[] = e "*(cos 3t — isin 3¢). (18)
You can verify that the Wronskian W (yy,y,)(t) = —6ie™, which is not zero, so the general

solution of Eq. (15) can be expressed as a linear combination of y; (¢) and y,(¢) with arbitrary
coefficients.

However, the initial value problem (15), (16) has only real coefficients, and it is often
desirable to express the solution of such a problem in terms of real-valued functions.
To do this we can make use of Theorem 3.2.6, which states that the real and imaginary parts of
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a complex-valued solution of Eq. (15) are also solutions of Eq. (15). Thus, starting from either
y1(t) or y,(t), we obtain

u(t) = e* cos 3t, v(t) = e*sin 3¢ (19)

as real-valued solutions® of Eq. (15). On calculating the Wronskian of «(¢) and v(¢), we find
that W (u, v)(t) = 3e~', which is not zero; thus u(¢) and v(¢z) form a fundamental set of solutions,
and the general solution of Eq. (15) can be written as

y = ciu(t) + cou(t) = e "*(c; cos 3t + ¢, sin 31), (20)

where ¢; and ¢, are arbitrary constants.

To satisfy the initial conditions (16), we first substitute t = 0 and y = 2 in Eq. (20) with the
result that ¢; = 2. Then, by differentiating Eq. (20), setting ¢ = 0, and setting y’ = 8, we obtain
—3c1 + 3¢, = 8,50 that ¢; = 3. Thus the solution of the initial value problem (15), (16) is

y = e "?(2cos 3t + 3sin3t). (21)

The graph of this solution is shown in Figure 3.3.1.

From the graph we see that the solution of this problem is a decaying oscillation. The sine
and cosine factors control the oscillatory nature of the solution, and the negative exponential
factor in each term causes the magnitude of the oscillations to diminish as time increases.

/\ /\ L~/ | |

\/ \—% 8 10 ¢
1

FIGURE 3.3.1 Solution of the initial value problem (15), (16):
Y +y +925y =0, y(0)=2, y(0)=S8.

Complex Roots; The General Case. The functions y;(t) and y,(¢), given by Egs. (5) and
with the meaning expressed by Eq. (13), are solutions of Eq. (1) when the roots of
the characteristic equation (2) are complex numbers A =+ i. However, the solutions
y1 and y, are complex-valued functions, whereas in general we would prefer to have

SIf you are not completely sure that u(f) and v(t) are solutions of the given differential equation, you
should substitute these functions into Eq. (15) and confirm that they satisfy it.
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EXAMPLE

2

real-valued solutions because the differential equation itself has real coefficients. Just
as in Example 1, we can use Theorem 3.2.6 to find a fundamental set of real-valued
solutions by choosing the real and imaginary parts of either y; () or y,(¢). In this way
we obtain the solutions

u(t) = e cos ut, v(t) = " sin ut. (22)
By direct computation you can show that the Wronskian of # and v is
W (u,v)(t) = pe. (23)

Thus, as long as u # 0, the Wronskian W is not zero, so u and v form a fundamental
set of solutions. (Of course, if © = 0, then the roots are real and the discussion in this
section is not applicable.) Consequently, if the roots of the characteristic equation
are complex numbers A &+ iu, with u # 0, then the general solution of Eq. (1) is

y = c1e* cos ut 4 cre’ sin put, (24)

where ¢; and ¢, are arbitrary constants. Note that the solution (24) can be written
down as soon as the values of A and u are known. Let us now consider some further
examples.

Find the solution of the initial value problem
16y” — 8y" + 145y = 0, y(0)=-2, y(0) =1. (25)

The characteristic equation is 1672 — 87 + 145 = 0 and its roots are r = 1/4 & 3i. Thus the
general solution of the differential equation is

y = c1e'’* cos 3t + cye'’* sin 3t. (26)
To apply the first initial condition, we set ¢ = 0 in Eq. (26); this gives
y(0) =c; = -2.

For the second initial condition, we must differentiate Eq. (26) and then set ¢ = 0. In this way
we find that

Y (0) = je1 43¢ =1,
from which ¢, = 1/2. Using these values of ¢; and ¢, in Eq. (26), we obtain
y = —2¢"* cos 3t + Le*sin 3t 27)

as the solution of the initial value problem (25). The graph of this solution is shown in
Figure 3.3.2.

In this case we observe that the solution is a growing oscillation. Again the trigonometric
factors in Eq. (27) determine the oscillatory part of the solution, while the exponential factor
(with a positive exponent this time) causes the magnitude of the oscillation to increase with
time.
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10— y =—2e'" cos 3t + e”45|n3t
5

AAY

AV :
IV U

-10+—

FIGURE 3.3.2 Solution of the initial value problem (25):
16y” — 8y’ + 145y =0, y(0) = -2, y'(0) =1.

Find the general solution of
EXAMPLE V' 49y =0. (28)

3

The characteristic equation is r? + 9 = 0 with the roots r = £3i; thus A = 0 and p = 3. The
general solution is

y = c1 cos 3t + ¢, sin 3, (29)

FIGURE 3.3.3 Two typical solutions of Eq. (28):y” + 9y = 0.
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note that if the real part of the roots is zero, as in this example, then there is no exponential
factor in the solution. Figure 3.3.3 shows the graph of two typical solutions of Eq. (28). In each
case the solution is a pure oscillation whose amplitude is determined by the initial conditions.
Since there is no exponential factor in the solution (29), the amplitude of each oscillation
remains constant in time.

PROBLEMS

In each of Problems 1 through 6, use Euler’s formula to write the given expression in the form
a+ib.

1. exp(1 + 2i) 2. exp(2 — 3i)
3. e 4, /i
5. 21 6. 142
In each of Problems 7 through 16, find the general solution of the given differential equation.
7.y =2y +2y=0 8. y'=2y'+6y=0
9.y +2y -8 =0 10. y"+2y'+2y =0
11. y"+ 6y + 13y =0 12. 4y" +9y =0
13. y"+2y' +125y =0 14. 9"+ 9y —4y =0
15. y"+y +125y =0 16. y" +4y' + 625y =0

In each of Problems 17 through 22, find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior for increasing ¢.

17. y" +4y =0, y@0)=0, Y0 =1

18. y"+4y'+5y=0, yO) =1, y(©0)=0
19.y"=2y'+5y =0,  y@/2)=0, y(@/2)=2
20. y" +y =0, y(/3) =2, y(x/3)=-4

21. y"+y' +1.25y =0, y0)=3, Y0 =1

22. y" +2y' +2y =0, y(r/4) =2, y(x/4)=-2

."Z 23. Consider the initial value problem

3u" —u' +2u =0, u0) =2, u'0) =0.

(a) Find the solution u(z) of this problem.
(b) Fort > 0, find the first time at which |u(7)| = 10.

."Z 24. Consider the initial value problem

Su’ +2u +Tu=0, u) =2, u'0)=1.

(a) Find the solution u(z) of this problem.
(b) Find the smallest T such that |u(f)| < 0.1 forallz > T.

“Z 25. Consider the initial value problem

V' +2y+6y=0, y0)=2, yO0)=a=0.
(a) Find the solution y(¢) of this problem.
(b) Find « such that y =0 whent = 1.

(c) Find, as a function of «, the smallest positive value of 7 for which y = 0.
(d) Determine the limit of the expression found in part (c) as « — oo.



3.3 Complex Roots of the Characteristic Equation 165

& 26.

27.
28.

29.

30.
31.

32.

33.

Consider the initial value problem
y' +2ay + (@ + 1)y =0, y0) =1, y'(0)=0.

(a) Find the solution y(¢) of this problem.

(b) For a =1 find the smallest T such that |y(t)| < 0.1 fort > T.

(c) Repeat part (b) fora = 1/4,1/2,and 2.

(d) Using the results of parts (b) and (c), plot 7" versus a and describe the relation between
T and a.

Show that W (e* cos jut, e sin ut) = pe?.

In this problem we outline a different derivation of Euler’s formula.

(a) Show that y;(t) = cost and y,(¢f) =sin¢ are a fundamental set of solutions of
y" 4+ y = 0; that is, show that they are solutions and that their Wronskian is not zero.

(b) Show (formally) that y = ¢ is also a solution of y” + y = 0. Therefore,
e =cjcost+cysint (i)

for some constants ¢; and ¢,. Why is this so?

(c) Sett=0in Eq. (i) to show that ¢; = 1.

(d) Assuming that Eq. (14) is true, differentiate Eq. (i) and then set# = 0 to conclude that
¢, = i. Use the values of ¢; and ¢; in Eq. (i) to arrive at Euler’s formula.

Using Euler’s formula, show that
cost = (e +e7)/2, sint = (e — e /2i.

If ¢ is given by Eq. (13), show that e"1+72) = ¢"!e™ for any complex numbers r; and r;.
If ¢” is given by Eq. (13), show that

for any complex number r.
Consider the differential equation

ay" +by +cy =0,

where b? — 4ac < 0 and the characteristic equation has complex roots A & ixt. Substitute
the functions
u(t) =ecosput and () = e sin ut

for y in the differential equation and thereby confirm that they are solutions.

If the functions y; and y, are a fundamental set of solutions of y” + p(t)y' + q(t)y =0,
show that between consecutive zeros of y; there is one and only one zero of y,. Note
that this result is illustrated by the solutions y; (f) = cos¢ and y,(¢) = sin ¢ of the equation
y'+y=0.

Hint: Suppose that #; and ¢, are two zeros of y; between which there are no zeros of y,.
Apply Rolle’s theorem to y;/y; to reach a contradiction.

Change of Variables. Sometimes a differential equation with variable coefficients,

Y +p@®)y +q@®y =0, ()

can be putin a more suitable form for finding a solution by making a change of the independent
variable. We explore these ideas in Problems 34 through 46. In particular, in Problem 34 we
show that a class of equations known as Euler equations can be transformed into equations
with constant coefficients by a simple change of the independent variable. Problems 35 through
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42 are examples of this type of equation. Problem 43 determines conditions under which the
more general Eq. (i) can be transformed into a differential equation with constant coefficients.
Problems 44 through 46 give specific applications of this procedure.

34. Euler Equations. An equation of the form

,d%y dy ..
tﬁ—i—at——l—ﬂy 0, t>0, (i1)

where « and g are real constants, is called an Euler equation.
(a) Letx = Int and calculate dy/dt and dy/dt* in terms of dy/dx and d’y/dx>.
(b) Use the results of part (a) to transform Eq. (ii) into

d’y

dz-l—(a—l)——l—ﬁy 0. (iif)

Observe that Eq. (iii) has constant coefficients. If y; (x) and y,(x) form a fundamental set
of solutions of Eq. (iii), then y;(In¢) and y,(In¢) form a fundamental set of solutions of

Eq. (ii).

In each of Problems 35 through 42, use the method of Problem 34 to solve the given equation
fort > 0.

35. 2%y +1y +y=0 36. 2y +41y' +2y =0
37. 2y 43ty +125y =0 38. 2" — 4ty — 6y =0
39. 2y — 4ty +6y =0 40. y" —ty' +5y =0
41. 2" +3ty =3y =0 2. 2y +7ty +10y =0

43. In this problem we determine conditions on p and ¢ that enable Eq. (i) to be transformed
into an equation with constant coefficients by a change of the independent variable. Let
x = u(t) be the new independent variable, with the relation between x and ¢ to be specified
later.
(a) Show that
dy dx dy d’y dx\* d?y  dx dy
dr ~ dr dx’ WZ(E)E d? dx’

(b) Show that the differential equation (i) becomes

dx\* d’y  (d’x d ,
(;f) proia (ﬁ +p )—) d—i +qy =0. (iv)

(c) In order for Eq. (iv) to have constant coefficients, the coefficients of d’y/dx* and of
y must be proportional. If g(t) > 0, then we can choose the constant of proportionality to
be 1;hence

x=u() = /[q(z‘)]l/2 dt. v)

(d) With x chosen as in part (c), show that the coefficient of dy/dx in Eq. (iv) is also a
constant, provided that the expression

q'(1) +2p)q ()
2[g( P>
is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficients

by a change of the independent variable, provided that the function (¢’ + 2pq)/q¢>? is a
constant. How must this result be modified if g(¢) < 0?

(vi)
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In each of Problems 44 through 46, try to transform the given equation into one with constant
coefficients by the method of Problem 43. If this is possible, find the general solution of the
given equation.

44. y' +1y + ey =0, —00 <t <00

45. y" + 3ty + 2y =0, —00 <t <o

46. ty" + (? — 1)y’ + 3y = 0, 0<t<oo

3.4 Repeated Roots; Reduction of Order

EXAMPLE

1

In earlier sections we showed how to solve the equation
ay" +by +cy=0 (1)
when the roots of the characteristic equation
ar* +br+c=0 2)

either are real and different or are complex conjugates. Now we consider the third
possibility, namely, that the two roots r; and r, are equal. This case is transitional
between the other two and occurs when the discriminant 5% — 4ac is zero. Then it
follows from the quadratic formula that

ro=r,=-—b/2a. 3)
The difficulty is immediately apparent; both roots yield the same solution
i) =e " )

of the differential equation (1), and it is not obvious how to find a second solution.

Solve the differential equation
Y +4y +4y =0. ()

The characteristic equation is

P 4dr+4=0+2)7"=0,

so r; = r, = —2. Therefore, one solution of Eq. (5) is y,(t) = e~?. To find the general solution

of Eq. (§), we need a second solution that is not a constant multiple of y;. This second solution
can be found in several ways (see Problems 20 through 22); here we use a method originated
by D’Alembert® in the eighteenth century. Recall that since y; () is a solution of Eq. (1), so is
¢y (¢) for any constant c. The basic idea is to generalize this observation by replacing ¢ by a

6Jean d’Alembert (1717-1783), a French mathematician, was a contemporary of Euler and Daniel
Bernoulli and is known primarily for his work in mechanics and differential equations. D’Alembert’s
principle in mechanics and d’Alembert’s paradox in hydrodynamics are named for him, and the wave
equation first appeared in his paper on vibrating strings in 1747. In his later years he devoted himself
primarily to philosophy and to his duties as science editor of Diderot’s Encyclopédie.
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function v(¢) and then trying to determine v(¢) so that the product v(¢)y;(¢) is also a solution
of Eq. (1).

To carry out this program, we substitute y = v(#)y; (f) in Eq. (5) and use the resulting equation
to find v(¢). Starting with

y=v(@)y () = v()e ¥, (6)
we have
Y =v (e = 2v(t)e™® (7)
and
Y =0"()e™H — 4 (e + d4u(t)e . (8)

By substituting the expressions in Egs. (6), (7), and (8) in Eq. (5) and collecting terms, we
obtain
[V () — 4V (1) + 4v(1) + 40/ (1) — Bu(t) + 4v(1)]e ™ =0,

which simplifies to

V() = 0. )
Therefore,
V() = ¢
and
v(t) = cit + o, (10)

where ¢; and ¢; are arbitrary constants. Finally, substituting for v(¢) in Eq. (6), we obtain
y = cite ™ + cpe?. (11)

The second term on the right side of Eq. (11) corresponds to the original solution
y1(t) = exp(—2t), but the first term arises from a second solution, namely, y,(¢) = t exp(—21).
We can verify that these two solutions form a fundamental set by calculating their Wronskian:

e—2t te—lt

WOLyIO = 52 4 _ppe2

=e M 2t 427V =7V £0.

Therefore,
yiy=e?*,  y) =te* (12)

form a fundamental set of solutions of Eq. (5),and the general solution of that equation is given
by Eq. (11). Note that both y;(r) and y,(¢) tend to zero as t — oo; consequently, all solutions
of Eq. (5) behave in this way. The graph of a typical solution is shown in Figure 3.4.1.

| | | |
0.5 1 15 2 t

FIGURE 3.4.1 A typical solution of Eq. (5):y” + 4y +4y =0.
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The procedure used in Example 1 can be extended to a general equation whose
characteristic equation has repeated roots. That is, we assume that the coefficients in
Eq. (1) satisfy b> — 4ac = 0, in which case

Y1(f) — e—bt/2a
is a solution. To find a second solution, we assume that
y = v(O)y1(0) = v()e > (13)

and substitute for y in Eq. (1) to determine v(¢). We have
b
y/ — v/(t)efbt/Za _ Z_U([)efbt/Za (14)
a

and )
b b
Y =" (e PP — 2y (e PP 4 —u(t)e (15)
a 4a?

Then, by substituting in Eq. (1), we obtain
2

{a |:v”(t) — Zv’(t) + %v(z)} +b |:v’(t) — ;;av(t)i| + cv(t)} e b2 — . (16)

Canceling the factor exp(—bt/2a), which is nonzero, and rearranging the remaining
terms, we find that

b2 b?
av’(t) + (=b + b)V'(t) + <— - — 4+ c) v(t) =0. (17)
da 2a

The term involving v'(f) is obviously zero. Further, the coefficient of wv(¢) is
¢ — (b*/4a), which is also zero because b> — 4ac = 0 in the problem that we are
considering. Thus, just as in Example 1, Eq. (17) reduces to

V(1) =0,
S0
v(t) = 1 + cyt.
Hence, from Eq. (13), we have

—bt/2a

y =cie + cote P12, (18)

Thus y is a linear combination of the two solutions

yiey =€y = e (19)
The Wronskian of these two solutions is
e—bt/2a te—bt/2a
Wy, y2)(@) = _Ee*bt/za <1 B ﬂ) bt/ = e~bia, (20)
2a 2a

Since W (y1,y»)(t) is never zero, the solutions y; and y, given by Eq. (19) are a
fundamental set of solutions. Further, Eq. (18) is the general solution of Eq. (1)
when the roots of the characteristic equation are equal. In other words, in this case
there is one exponential solution corresponding to the repeated root and a second
solution that is obtained by multiplying the exponential solution by ¢.
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EXAMPLE

2

Find the solution of the initial value problem
y' =y +025y =0, y0)=2, y(0)= % (21)

The characteristic equation is
rP—r+025=0,

so the roots are r; = r, = 1/2. Thus the general solution of the differential equation is

112 4 cotet!?. (22)

y=ce
The first initial condition requires that
v(0) =¢ =2.

To satisfy the second initial condition, we first differentiate Eq. (22) and then set ¢ = 0. This
gives
YO) =ici+e=1,

so ¢; = —2/3. Thus the solution of the initial value problem is

12— 2gel2, (23)

y=2e

The graph of this solution is shown by the blue curve in Figure 3.4.2.

y
41
¥'(0) = 2: y = 2t 4 tetl?

HO) = L. n = Dptl2 24,812
y(O)—3.y—2e Ste

1

FIGURE 3.4.2 Solutions of y” —y" 4 0.25y =0, y(0) = 2, with
y'(0) = 1/3 (blue curve) and with y'(0) = 2 (black curve), respectively.

Let us now modify the initial value problem (21) by changing the initial slope; to be specific,
let the second initial condition be y’(0) = 2. The solution of this modified problem is

y =2e"% +te'?,

and its graph is shown by the black curve in Figure 3.4.2. The graphs shown in this figure suggest
that there is a critical initial slope, with a value between % and 2, that separates solutions that
grow positively from those that ultimately grow negatively. In Problem 16 you are asked to

determine this critical initial slope.
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The geometrical behavior of solutions is similar in this case to that when the
roots are real and different. If the exponents are either positive or negative, then
the magnitude of the solution grows or decays accordingly; the linear factor ¢ has
little influence. A decaying solution is shown in Figure 3.4.1 and growing solutions in
Figure 3.4.2. However, if the repeated root is zero, then the differential equation is
y” = 0 and the general solution is a linear function of ¢.

Summary. We can now summarize the results that we have obtained for second order
linear homogeneous equations with constant coefficients
ay” + by +cy =0. €))
Let r; and r, be the roots of the corresponding characteristic equation
ar* + br+c=0. )

If r; and r, are real but not equal, then the general solution of the differential
equation (1) is
y =cre" + cre™. (24)

If r; and r, are complex conjugates A & iu, then the general solution is
y = c1e™ cos ut + cpe* sin put. (25)
If r; = rp, then the general solution is

y = cie" + cpte’. (26)

Reduction of Order. 1t is worth noting that the procedure used in this section for equa-
tions with constant coefficients is more generally applicable. Suppose that we know
one solution y; (), not everywhere zero, of

Y +p®y +q@0y=0. 27)
To find a second solution, let
¥ = v(O)y1(0); (28)
then
Y =00y + vy (0)
and

Y =0"(0y1(0) + 20" Oy () + v(@O)y{ ©).
Substituting for y, y’, and y” in Eq. (27) and collecting terms, we find that
yiv” + 2y; + py)v' + (0 +pyi +qypv =0. (29)

Since y; is a solution of Eq. (27), the coefficient of vin Eq. (29) is zero, so that Eq. (29)
becomes

yiv" + Q2y; +py)v' =0. (30)
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EXAMPLE

3

Despite its appearance, Eq. (30) is actually a first order equation for the function v/
and can be solved either as a first order linear equation or as a separable equation.
Once v’ has been found, then v is obtained by an integration. Finally, y is determined
from Eq. (28). This procedure is called the method of reduction of order, because the
crucial step is the solution of a first order differential equation for v’ rather than
the original second order equation for y. Although it is possible to write down a
formula for v(¢), we will instead illustrate how this method works by an example.

Given that y;(t) = ¢! is a solution of
212y" + 3ty —y =0, t>0, (31)

find a fundamental set of solutions.
We set y = v(f)t~'; then

y =vtt—u?, Yy =0 = 2072 4 20,
Substituting for y, y’, and y” in Eq. (31) and collecting terms, we obtain
200 = 20 420t + 3t (v — v ) — ur !
=200+ (=443 + @ =3 =
=2n"—v =0. (32)

Note that the coefficient of vis zero, as it should be; this provides a useful check on our algebraic
calculations.
If we let w = v/, then Eq. (32) becomes

2tw' —w =0.
Separating the variables and solving for w(r), we find that
wt) =V (@) = ct'?;

then
v(t) = 2’ + k.

It follows that
y=v " =2t + ke, (33)

where c and k are arbitrary constants. The second term on the right side of Eq. (33) is a multiple
of y1(¢) and can be dropped, but the first term provides a new solution y,(f) = /2. You can
verify that the Wronskian of y; and y; is

Wy, y) (@) =377 #0 for 1>0. (34)

Consequently, y; and y, form a fundamental set of solutions of Eq. (31) for z > 0.

PROBLEMS

In each of Problems 1 through 10, find the general solution of the given differential equation.
1.y"=2y+y=0 2.9 4+6y+y=0

3.4y =4y =3y=0 4. 4y" +12y' +9y =0

5./ =2y +10y =0 6.y =6y +9y=0
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7.
9.

4y" +17y +4y =0 8. 16y" +24y' + 9y =0
25y" — 20y +4y =0 10. 2" +2y +y =0

In each of Problems 11 through 14, solve the given initial value problem. Sketch the graph of
the solution and describe its behavior for increasing ¢.

11.
12.
13.
14.

¢ 15

16.

& 1.

18.

19.

9y" =12y +4y =0, y0) =2, y0)=-1
V' =6y'+9 =0,  y0)=0, y0)=2

9y" + 6y + 82y =0, yO)y=-1, y(©0)=2
Y4y +4y=0,  y=D=2, y(=D=1
Consider the initial value problem

4" +12y'+9y =0,  yO) =1, y(0) =-4

(a) Solve the initial value problem and plot its solution for 0 < ¢ < 5.
(b) Determine where the solution has the value zero.
(c) Determine the coordinates (¢, yo) of the minimum point.

(d) Change the second initial condition to y'(0) = b and find the solution as a function
of b. Then find the critical value of b that separates solutions that always remain positive
from those that eventually become negative.

Consider the following modification of the initial value problem in Example 2:
V' —y +025y =0, y(0) =2, y'(0)=h.

Find the solution as a function of b, and then determine the critical value of b that
separates solutions that grow positively from those that eventually grow negatively.

Consider the initial value problem
4" +4y'+y=0,  yO)=1, y0) =2

(a) Solve the initial value problem and plot the solution.
(b) Determine the coordinates (¢, yy) of the maximum point.

(c) Change the second initial condition to y'(0) = b > 0 and find the solution as a function
of b.

(d) Find the coordinates (fy,yy) of the maximum point in terms of b. Describe the
dependence of ¢, and yy, on b as b increases.

Consider the initial value problem
9y" + 12y +4y =0, yO)=a>0, y (@0 =-1.

(a) Solve the initial value problem.

(b) Find the critical value of a that separates solutions that become negative from those
that are always positive.

Consider the equation ay” + by’ + cy = 0. If the roots of the corresponding characteristic
equation are real, show that a solution to the differential equation either is everywhere
zero or else can take on the value zero at most once.

Problems 20 through 22 indicate other ways of finding the second solution when the
characteristic equation has repeated roots.

20.

(a) Consider the equation y” + 2ay’ + a*y = 0. Show that the roots of the characteristic
equation are r; = r, = —a, so that one solution of the equation is e™.
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21.

22.

(b) Use Abel’s formula [Eq. (23) of Section 3.2] to show that the Wronskian of any two
solutions of the given equation is

W) = yi1(0)y, (1) — yiOy2(t) = cre™,

where ¢ is a constant.

(c) Lety;(r) = e and use the result of part (b) to obtain a differential equation satisfied
by a second solution y,(¢). By solving this equation, show that y,(t) = te™*.

Suppose that r; and r, are roots of ar?+ br+c =0 and that r; # ry; then exp(rit)
and exp(r,t) are solutions of the differential equation ay” + by’ + cy = 0. Show that
¢(t;r1,12) = [exp(rat) — exp(rit)]/(r, — rp) is also a solution of the equation for r, # ry.
Then think of r; as fixed, and use L'Hopital’s rule to evaluate the limit of ¢(¢;ry,r,) as
r, — ry, thereby obtaining the second solution in the case of equal roots.

(a) If ar? + br + ¢ = 0 has equal roots r{, show that
L[e"] = a(e™) + b(e") + ce' = a(r — r)%e". 6]

Since the right side of Eq. (i) is zero when r = ry, it follows that exp(r;?) is a solution of
Liyl=ay"+by +cy=0.

(b) Differentiate Eq. (i) with respect to r, and interchange differentiation with respect to
r and with respect to ¢, thus showing that

d d
—Lle"] =L [—e"] = L[te"] = ate’ (r — r)* + 2ae"' (r — 7). (ii)
or ar

Since the right side of Eq. (ii) is zero when r = ry, conclude that ¢ exp(r;¢) is also a solution
of L[y] =0.

In each of Problems 23 through 30, use the method of reduction of order to find a second
solution of the given differential equation.

23.
24.
25.
26.
27.
28.
29.
30.

31.

32.

£y’ —dty +6y=0, t>0; yi(t) =12

2y +2ty =2y =0, t>0; @) =t

2y +3ty +y=0, t>0,  y (1) =t"

2y —tt+2)y +E+2y=0, >0,  y(t)=t

xy' —y +43y =0, x>0; y1(x) = sinx?

=1y —xy'+y=0, x>1;  y@x)=¢"

Xy —(x—01875)y =0, x>0;  y(x)=x"4e>*

X2y 4 xy 4+ @ —0.25)y =0, x>0; yi(x) = x sinx

The differential equation
y// +5(xy/ +y) — O

arises in the study of the turbulent flow of a uniform stream past a circular cylinder. Verify
that y; (x) = exp(—38x?/2) is one solution, and then find the general solution in the form of
an integral.

The method of Problem 20 can be extended to second order equations with variable
coefficients. If y; is a known nonvanishing solution of y” + p(¢)y’ + ¢(t)y = 0,show that a
second solution y, satisfies (y2/y1)’ = W(y1,y2)/y?, where W(yy,y,) is the Wronskian of
y1 and y;. Then use Abel’s formula [Eq. (23) of Section 3.2] to determine y;.
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In each of Problems 33 through 36, use the method of Problem 32 to find a second independent
solution of the given equation.

33. 2y +3ty +y=0, t>0; yi(t) ="

4.ty —y +48y =0, t>0; y1(t) = sin(£?)

35. x =1y —xy'+y=0, x>1; yi(x) = e*

36. X*y" +xy + (x> =025y =0, x>0; y1(x) = x"?sinx

Behavior of Solutions as t — oco. Problems 37 through 39 are concerned with the behavior

of solutions as t — oo.

37. If a, b, and c are positive constants, show that all solutions of ay” + by’ + cy = 0 approach
Zero ast — oo.

38. (a) Ifa > 0and ¢ > 0,but b = 0,show that the result of Problem 37 is no longer true, but
that all solutions are bounded as t — oo.

(b) Ifa > 0and b > 0,but ¢ = 0, show that the result of Problem 37 is no longer true, but
that all solutions approach a constant that depends on the initial conditions as ¢t — oo.
Determine this constant for the initial conditions y(0) = yo,y'(0) = yj.

39. Show that y = sint is a solution of
y" + (ksin? 1)y + (1 — kcostsint)y = 0

for any value of the constant k. If 0 < k < 2,showthat1 — kcostsint > Oand k sin’¢ > 0.
Thus observe that even though the coefficients of this variable-coefficient differential equa-
tion are nonnegative (and the coefficient of y’ is zero only at the points t = 0, 7,27, ...),
it has a solution that does not approach zero as t — co. Compare this situation with the
result of Problem 37. Thus we observe a not unusual situation in the study of differential
equations: equations that are apparently very similar can have quite different properties.

Euler Equations. In each of Problems 40 through 45, use the substitution introduced in
Problem 34 in Section 3.3 to solve the given differential equation.

40. 2y" =3ty +4y =0, t>0
41. 2y" + 2ty +0.25y =0, t>0
42. 282" =5ty +5y =0, (>0
43. 2y + 3ty +y =0, t>0

44. 412y" — 8ty' + 9y = 0, t>0
45. 12y" + 5ty + 13y = 0, t>0

3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

We now return to the nonhomogeneous equation

Liyl=y"+p@®y +q@t)y =g, (1)

where p, ¢, and g are given (continuous) functions on the open interval I.
The equation

Llyl=y"+p@®y +4q@)y =0, ()
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Theorem 3.5.1

Theorem 3.5.2

in which g(#) = 0 and p and ¢ are the same as in Eq. (1), is called the homogeneous
equation corresponding to Eq. (1). The following two results describe the structure of
solutions of the nonhomogeneous equation (1) and provide a basis for constructing
its general solution.

If Y, and Y, are two solutions of the nonhomogeneous equation (1), then their
difference Y; — Y; is a solution of the corresponding homogeneous equation (2).
If, in addition, y; and y, are a fundamental set of solutions of Eq. (2), then

Yi(t) — Yao(t) = ciyi(t) + cay2(0), (3)

where ¢ and ¢, are certain constants.

To prove this result, note that Y; and Y> satisfy the equations

LY11(r) = g(), LIY>](1) = g(0). “4)
Subtracting the second of these equations from the first, we have
L[Y1](r) — L[Y>](t) = g(1) — g(1) = 0. ®)

However,
L[Y1] = L[Y2] = L[Y| = Y2,

so Eq. (5) becomes
LY - Y>]() =0. (6)

Equation (6) states that Y; — Y5 is a solution of Eq. (2). Finally, since by Theorem
3.2.4 all solutions of Eq. (2) can be expressed as linear combinations of a fundamental
set of solutions, it follows that the solution Y; — Y, can be so written. Hence Eq. (3)
holds and the proof is complete.

The general solution of the nonhomogeneous equation (1) can be written in the
form

y=0¢@) =ciyi1(t) + cy2(t) + Y (@), (7)

where y; and y;, are a fundamental set of solutions of the corresponding homoge-
neous equation (2), ¢; and ¢, are arbitrary constants,and Y is some specific solution
of the nonhomogeneous equation (1).

The proof of Theorem 3.5.2 follows quickly from the preceding theorem. Note
that Eq. (3) holds if we identify Y, with an arbitrary solution ¢ of Eq. (1) and Y, with
the specific solution Y. From Eq. (3) we thereby obtain

o) — Y (1) = ciy1(t) + coya (1), (8)

whichis equivalent to Eq. (7). Since ¢ is an arbitrary solution of Eq. (1), the expression
on the right side of Eq. (7) includes all solutions of Eq. (1); thus it is natural to call it
the general solution of Eq. (1).
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EXAMPLE

1

In somewhat different words, Theorem 3.5.2 states that to solve the nonhomoge-
neous equation (1), we must do three things:

1. Find the general solution c1y;(¢) + c2y2(¢) of the corresponding homogeneous equation.
This solution is frequently called the complementary solution and may be denoted by y.(¢).

2. Find some single solution Y (¢) of the nonhomogeneous equation. Often this solution is
referred to as a particular solution.

3. Form the sum of the functions found in steps 1 and 2.

We have already discussed how to find y.(¢), at least when the homogeneous equa-
tion (2) has constant coefficients. Therefore, in the remainder of this section and in
the next, we will focus on finding a particular solution Y (¢) of the nonhomogeneous
equation (1). There are two methods that we wish to discuss. They are known as
the method of undetermined coefficients (discussed here) and the method of varia-
tion of parameters (see Section 3.6). Each has some advantages and some possible
shortcomings.

Method of Undetermined Coefficients. The method of undetermined coefficients requires
us to make an initial assumption about the form of the particular solution Y (¢), but
with the coefficients left unspecified. We then substitute the assumed expression into
Eqg. (1) and attempt to determine the coefficients so as to satisfy that equation. If we
are successful, then we have found a solution of the differential equation (1) and can
use it for the particular solution Y (¢). If we cannot determine the coefficients, then
this means that there is no solution of the form that we assumed. In this case we may
modify the initial assumption and try again.

The main advantage of the method of undetermined coefficients is that it is straight-
forward to execute once the assumption is made about the form of Y (¢). Its major
limitation is that it is useful primarily for equations for which we can easily write
down the correct form of the particular solution in advance. For this reason, this
method is usually used only for problems in which the homogeneous equation has
constant coefficients and the nonhomogeneous term is restricted to a relatively small
class of functions. In particular, we consider only nonhomogeneous terms that consist
of polynomials, exponential functions, sines, and cosines. Despite this limitation, the
method of undetermined coefficients is useful for solving many problems that have
important applications. However, the algebraic details may become tedious, and a
computer algebra system can be very helpful in practical applications. We will illus-
trate the method of undetermined coefficients by several simple examples and then
summarize some rules for using it.

Find a particular solution of

Yy’ =3y — 4y =3e¥. ©)
We seek a function Y such that the combination Y”(f) —3Y'(t) — 4Y (¢) is equal to 3e*.
Since the exponential function reproduces itself through differentiation, the most plausible

way to achieve the desired result is to assume that Y (¢) is some multiple of ¥,

Y(r) = Ae”,
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where the coefficient A is yet to be determined. To find A, we calculate
Y'(t) =246%,  Y'(t) = 44,
and substitute for y, y’, and y” in Eq. (9). We obtain
(4A — 6A — 4A)e™ = 3¢”.
Hence —6Ae* must equal 3¢*,s0 A = —1/2. Thus a particular solution is
Y1) =—1e. (10)
Find a particular solution of
EXAMPLE y' =3y —4y = 2sint. 11)

2

By analogy with Example 1, let us first assume that Y (1) = A sint, where A is a constant to
be determined. On substituting in Eq. (11) we obtain

—Asint —3Acost —4Asint = 2sint,

or, by rearranging terms,
2+ 5A)sint +3Acost = 0. (12)

We want Eq. (12) to hold for all ¢. Thus it must hold for two specific points, such as t =0
and ¢ = 7/2. At these points Eq. (12) reduces to 34 = 0 and 2 + 5A = 0, respectively. These
contradictory requirements mean that there is no choice of the constant A that makes
Eq. (12) true for t = 0 and ¢ = 7/2, much less for all . Thus we conclude that our assumption
concerning Y (¢) is inadequate.

The appearance of the cosine term in Eq. (12) suggests that we modify our original
assumption to include a cosine term in Y (¢); that is,

Y (t) = Asint + B cost,
where A and B are to be determined. Then
Y'(t) = Acost — Bsint, Y"(t) = —Asint — Bcost.
By substituting these expressions for y,y’, and y” in Eq. (11) and collecting terms, we obtain
(—A+3B—4A)sint + (—B —3A —4B) cost = 2sint. (13)

To satisfy Eq. (13), we must match the coefficients of sin z and cos 7 on each side of the equation;
thus A and B must satisfy the equations

—5A+3B =2, —3A-5B=0.

By solving these equations for A and B, we obtain A = —5/17 and B = 3/17;hence a particular
solution of Eq. (11) is
Y1) = —3sint + 3 cost.

The method illustrated in the preceding examples can also be used when the right
side of the equation is a polynomial. Thus, to find a particular solution of

y' =3y —4y =4 —1, (14)

we initially assume that Y'(¢) is a polynomial of the same degree as the nonhomoge-
neous term; that is, Y (t) = A2 + Bt + C.
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EXAMPLE

3

EXAMPLE

4

To summarize our conclusions up to this point: if the nonhomogeneous term g()
in Eq. (1) is an exponential function e¥, then assume that Y (¢) is proportional to
the same exponential function; if g(¢) is sin St or cos ft, then assume that Y (¢) is a
linear combination of sin At and cos ft; if g(¢) is a polynomial, then assume that Y (¢)
is a polynomial of like degree. The same principle extends to the case where g(t) is
a product of any two, or all three, of these types of functions, as the next example
illustrates.

Find a particular solution of
y' =3y —4y = —8¢' cos2t. (15)

In this case we assume that Y (¢) is the product of ¢’ and a linear combination of cos 2t and
sin 2¢; that is,
Y (t) = Aé’ cos 2t + Be' sin 2t.

The algebra is more tedious in this example, but it follows that
Y'(t) = (A +2B)eé' cos2t + (—2A + B)e' sin 2t

and
Y'(t) = (=3A + 4B)é' cos 2t + (—4A — 3B)e' sin2t.

By substituting these expressions in Eq. (15), we find that A and B must satisfy
10A +2B =38, 2A —10B =0.
Hence A = 10/13 and B = 2/13; therefore, a particular solution of Eq. (15) is

Y() = %e’ cos 2t + 12—36' sin 2¢.

Now suppose that g(¢) is the sum of two terms, g(¢) = g1(¢) + g2(¢), and suppose
that Y7 and Y, are solutions of the equations

ay” +by' +cy = gi(t) (16)
and

ay” + by’ + cy = g (1), (17)
respectively. Then Y7 + Y3 is a solution of the equation

ay” + by +cy = g(1). (18)

To prove this statement, substitute Y;(¢) + Y, (¢) for y in Eq. (18) and make use
of Egs. (16) and (17). A similar conclusion holds if g(¢) is the sum of any finite
number of terms. The practical significance of this result is that for an equation
whose nonhomogeneous function g(¢) can be expressed as a sum, you can consider
instead several simpler equations and then add the results together. The following
example is an illustration of this procedure.

Find a particular solution of
y" =3y — 4y = 3e* 4 2sint — 8e' cos 2t. (19)
By splitting up the right side of Eq. (19), we obtain the three equations

y// _ 3yl _ 4y — 3621,
y" =3y —4y = 2sint,
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EXAMPLE

5

and
y' =3y —4y = —8¢' cos2t.

Solutions of these three equations have been found in Examples 1, 2, and 3, respectively.
Therefore, a particular solution of Eq. (19) is their sum, namely,

Y1) = -1 + L cost — Zsint + 19¢' cos 2t + Ze' sin 2t

The procedure illustrated in these examples enables us to solve a fairly large class
of problems in a reasonably efficient manner. However, there is one difficulty that
sometimes occurs. The next example illustrates how it arises.

Find a particular solution of
y' =3y —4y =2e". (20)

Proceeding as in Example 1, we assume that Y () = Ae~'. By substituting in Eq. (20), we
obtain
(A+3A —4A)e™" =2¢". (21)

Since the left side of Eq. (21) is zero, there is no choice of A that satisfies this equation.
Therefore, there is no particular solution of Eq. (20) of the assumed form. The reason for this
possibly unexpected result becomes clear if we solve the homogeneous equation

y' =3y —4y=0 (22)

that corresponds to Eq. (20). A fundamental set of solutions of Eq. (22) is y;(f) = ¢" and
y2(t) = e*. Thus our assumed particular solution of Eq. (20) is actually a solution of the
homogeneous equation (22); consequently, it cannot possibly be a solution of the nonho-
mogeneous equation (20). To find a solution of Eq. (20), we must therefore consider functions
of a somewhat different form.

At this stage, we have several possible alternatives. One is simply to try to guess the proper
form of the particular solution of Eq. (20). Another is to solve this equation in some different
way and then to use the result to guide our assumptions if this situation arises again in the future;
see Problems 29 and 35 for other solution methods. Still another possibility is to seek a simpler
equation where this difficulty occurs and to use its solution to suggest how we might proceed
with Eq. (20). Adopting the latter approach, we look for a first order equation analogous to
Eq. (20). One possibility is the linear equation

Y +y=2e" (23)

If we try to find a particular solution of Eq. (23) of the form Ae™, we will fail because e
is a solution of the homogeneous equation y’ 4+ y = 0. However, from Section 2.1 we already
know how to solve Eq. (23). An integrating factor is u(¢) = ¢', and by multiplying by n(¢) and
then integrating both sides, we obtain the solution

y=2e" +ce". 24)

The second term on the right side of Eq. (24) is the general solution of the homogeneous
equation y’ 4+ y = 0, but the first term is a solution of the full nonhomogeneous equation (23).
Observe that it involves the exponential factor e~ multiplied by the factor ¢. This is the clue
that we were looking for.

We now return to Eq. (20) and assume a particular solution of the form Y () = Ate™". Then

Y'(t) = Ae™" — Ate™, Y'(t) = —2Ae™" + Ate™". (25)
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Substituting these expressions for y, y’, and y” in Eq. (20), we obtain
(—2A —3A)e™" + (A + 34 — 4A)te™ =2¢7".

The coefficient of te™* is zero, so from the terms involving ¢’ we have —54 =2,0or A = —2/5.
Thus a particular solution of Eq. (20) is

Y(t) = —tte. (26)

The outcome of Example 5 suggests a modification of the principle stated pre-
viously: if the assumed form of the particular solution duplicates a solution of the
corresponding homogeneous equation, then modify the assumed particular solution
by multiplying it by ¢. Occasionally, this modification will be insufficient to remove
all duplication with the solutions of the homogeneous equation, in which case it is
necessary to multiply by ¢ a second time. For a second order equation, it will never
be necessary to carry the process further than this.

Summary. We now summarize the steps involved in finding the solution of an initial
value problem consisting of a nonhomogeneous equation of the form

ay” 4+ by +cy = g(1), (27)

where the coefficients a, b, and ¢ are constants, together with a given set of initial
conditions.

1. Find the general solution of the corresponding homogeneous equation.

2. Make sure that the function g(¢) in Eq. (27) belongs to the class of functions discussed
in this section; that is, be sure it involves nothing more than exponential functions, sines,
cosines, polynomials, or sums or products of such functions. If this is not the case, use the
method of variation of parameters (discussed in the next section).

3. Ifg(t)y =g1(t) + - - - + gn(t)—that is, if g(¢) is a sum of n terms—then form n subproblems,
each of which contains only one of the terms g; (), ..., g,(¢t). The ith subproblem consists
of the equation

ay" 4+ by +cy = gi(t),

where i runs from 1 to n.

4. For the ith subproblem assume a particular solution Y;(¢) consisting of the appropriate
exponential function, sine, cosine, polynomial, or combination thereof. If there is any
duplication in the assumed form of Y;(¢) with the solutions of the homogeneous equation
(found in step 1), then multiply Y;(¢) by ¢, or (if necessary) by 2, so as to remove the
duplication. See Table 3.5.1.

5. Find a particular solution Y;(¢) for each of the subproblems. Then the sum
Y1(t) + - - - 4+ Y, (¢) is a particular solution of the full nonhomogeneous equation (27).

6. Form the sum of the general solution of the homogeneous equation (step 1) and the
particular solution of the nonhomogeneous equation (step 5). This is the general solution
of the nonhomogeneous equation.

7. Use the initial conditions to determine the values of the arbitrary constants remaining in
the general solution.

For some problems this entire procedure is easy to carry out by hand, but often
the algebraic calculations are lengthy. Once you understand clearly how the method
works, a computer algebra system can be of great assistance in executing the details.
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TABLE 3.5.1 The Particular Solution of ay” + by’ + cy = gi(t)
gt Yi(0)
P,(t) = apt" +ayt" ' 4+ +a, FA" + A"+ + Ay

P, (H)e* F(A" + A"+ Ay)e

P, (t)e” sin pt PI(At" + A" 4 - + A,)e* cos Bt
n cos ﬂt 0 1 n

+ (Bot" + Bit"~' 4+ --- + B,))e* sin pt]

Notes. Here s is the smallest nonnegative integer (s = 0, 1, or 2) that will ensure that no
term in Y;(¢) is a solution of the corresponding homogeneous equation. Equivalently,
for the three cases, s is the number of times 0 is a root of the characteristic equation, « is
aroot of the characteristic equation, and « + i is a root of the characteristic equation,
respectively.

The method of undetermined coefficients is self-correcting in the sense that if you
assume too little for Y (¢), then a contradiction is soon reached that usually points the
way to the modification that is needed in the assumed form. On the other hand, if you
assume too many terms, then some unnecessary work is done and some coefficients
turn out to be zero, but at least the correct answer is obtained.

Proof of the Method of Undetermined Coefficients. In the preceding discussion we have
described the method of undetermined coefficients on the basis of several exam-
ples. To prove that the procedure always works as stated, we now give a general
argument, in which we consider three cases corresponding to different forms for the
nonhomogeneous term g ().

Case 1: g(t) = P,(t) = apt" + a;t"' + - - - + a,. In this case Eq. (27) becomes
ay’ +by +cy =apt" +a;t" t + - +ay,. (28)
To obtain a particular solution, we assume that
Y() = A" + A" 4+ Ayl + Apit 4 A, (29)
Substituting in Eq. (28), we obtain
aln(n — DA™ + -+ 24, 2]+ b(nAgt"™ + -+ Ay1)
+c(Apt" + At -+ A = at" + -+ ay (30)

Equating the coefficients of like powers of ¢, beginning with ", leads to the following
sequence of equations:
cAp = ay,

cAi{ +nbAy = ay,

CcA, +bA,_1 +2aA,_> = a,.

Provided that ¢ # 0, the solution of the first equation is Ay = ap/c, and the remaining
equations determine Ay, ..., A, successively. If c = 0 but b # 0, then the polynomial
on the left side of Eq. (30) is of degree n — 1, and we cannot satisfy Eq. (30). To be
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sure that aY”(¢) + bY'(¢) is a polynomial of degree n, we must choose Y (¢) to be a
polynomial of degree n + 1. Hence we assume that

Y(@) =t(Apt" + -+ Ay).

There is no constant term in this expression for Y (¢), but there is no need to include
such a term since a constant is a solution of the homogeneous equation when ¢ = 0.
Since b # 0, we have Ay = ayp/b(n + 1), and the other coefficients Ay, ..., A, can be
determined similarly. If both ¢ and b are zero, we assume that

Y(t) = 2(Apt" + -+ A).

The term aY” (¢) gives rise to a term of degree n, and we can proceed as before. Again
the constant and linear terms in Y (¢) are omitted, since in this case they are both
solutions of the homogeneous equation.

Case 2: g(t) = e*' P, (t). The problem of determining a particular solution of
ay” + by +cy = e P,(1) (31)
can be reduced to the preceding case by a substitution. Let
Y () = e*u(?);

then
Y'(t) = e [u/ (t) + au(t)]

and
Y (1) = e[’ (t) + 200 (1) + *u(t)).

Substituting for y,y’,and y” in Eq. (31), canceling the factor e*, and collecting terms,
we obtain

au (t) + Qaa + b/ (t) + (ac® + ba + c)u(t) = Py(1). (32)

The determination of a particular solution of Eq. (32) is precisely the same problem,
except for the names of the constants, as solving Eq. (28). Therefore, if ac® 4+ ba + ¢
is not zero, we assume that u(t) = Apt" + --- + A,; hence a particular solution of
Eq. (31) is of the form

Y(t) = e (Apt" + At -+ Ay). (33)

On the other hand, if ao? + b + cis zero but 2ax + b is not, we must take u(¢) to be of
the form t(Aopt" + - - - + A,). The corresponding form for Y (¢) is f times the expression
on the right side of Eq. (33). Note that if aa® + ba + ¢ is zero, then % is a solution
of the homogeneous equation. If both aa? + ba + ¢ and 2aa + b are zero (and this
implies that both ¢* and te* are solutions of the homogeneous equation), then the
correct form for u(t) is £>(Aot" + - - - + A,). Hence Y (¢) is ¢* times the expression on
the right side of Eq. (33).

Case 3: g(1) = e P,(r) cos Bt or e P,(¢) sin Bt. These two cases are similar, so we
consider only the latter. We can reduce this problem to the preceding one by noting
that, as a consequence of Euler’s formula, sin 8t = (e — e~") /2i. Hence g(t) is of
the form

eHip _ pla—ipyt

g(t) = Py(1) T ,
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and we should choose
Y1) = e“TPN A" 4 -+ Ay) + TP By 4 -+ + By),
or, equivalently,
Y() = e (Apt" 4 - - - + A,) cos Bt + e (Bot" + - - - + B,,) sin Bt.

Usually, the latter form is preferred. If o £ i satisfy the characteristic equation cor-
responding to the homogeneous equation, we must, of course, multiply each of the
polynomials by ¢ to increase their degrees by one.

If the nonhomogeneous function involves both cos gt and sin g, it is usually con-
venient to treat these terms together, since each one individually may give rise to the
same form for a particular solution. For example, if g(¢#) = ¢sint + 2 cos ¢, the form
for Y (t) would be

Y (t) = (Aot + Ay)sint + (Bot + By) cost,

provided that sin ¢ and cos ¢ are not solutions of the homogeneous equation.

PROBLEMS

In each of Problems 1 through 14, find the general solution of the given differential equation.
1.y’ =2y —3y =3e* 2.y +2y + 5y =3sin2t
LY =y =2y = =2t + 44 4.y +y — 6y =12e¥ + 12¢7%
LY =2y =3y = =3te”! 6. y'+2y =3+44sin2t
LY+ 9y =146 8.y +2y +y=2e"
. 2y"+3y +y =1 +3sint 10. y" 4y = 3sin2¢ + tcos 2t
11. v+ fu = coswt,  * # &} 12. u" + wiju = cos wot
13. y" +y +4y = 2sinh¢ 14. y" —y" — 2y = cosh 2t
Hint:sinht = (¢! —e™")/2 Hint: cosht = (¢! +e7")/2

O 3 N W

In each of Problems 15 through 20, find the solution of the given initial value problem.
15. y"+y =2y =21, y0)=0, Y0 =1

16. y" +4y = 1> + 3¢, y(0)=0, y(0)=2

17. y" =2y +y =te' +4, yO) =1, Y0 =1

18. y” — 2y — 3y = 3te?, y0) =1, y(©0) =0

19. y" +4y = 3sin2t, y0)=2, y(0) =-1

20. y" 4+ 2y + 5y =4e”' cos 2t, y©0) =1, y©) =0

In each of Problems 21 through 28:

(a) Determine a suitable form for Y'(¢) if the method of undetermined coefficients is to be
used.

(b) Use a computer algebra system to find a particular solution of the given equation.

&0 21y +3y =2t + 2 +5sin3t

&2 22. y' +y=t(1+sino)

&0 23.y' =5y +6y = e cos2t + ¥ (3t + 4)sint
&0 24y +2y +2y =3¢ +2e " cost +4e~'sint
@0 25y —4y +4y =21 +4te* +tsin2t

&0 26,y +4y =12sin2t + (6t +7) cos 2t
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&0 27y +3y +2y =e'(f + 1)sin2t + 3¢~ cost + de'
&0 28. Y +2y + 5y =3te cos2t — 2te % cost

29. Consider the equation
Y =3y —4y=2¢" @)

from Example 5. Recall that y;(t) = e~ and y,(¢) = ¢* are solutions of the corresponding
homogeneous equation. Adapting the method of reduction of order (Section 3.4), seek a
solution of the nonhomogeneous equation of the form Y () = v(¢)y;(¢) = v(t)e™’, where
v(t) is to be determined.

(a) Substitute Y (), Y'(t), and Y”(r) into Eq. (i) and show that v(f) must satisfy

v =50V =2.
(b) Let w(z) = v'(r) and show that w(r) must satisfy w’ — 5w = 2. Solve this equation
for w(t).

(c) Integrate w(¢) to find v(¢) and then show that
Y(©) = —2te™ + tcre” + e

The first term on the right side is the desired particular solution of the nonhomogeneous
equation. Note that it is a product of  and e™".

30. Determine the general solution of
N
Y+ 2%y = Z a,, sinmnt,
m=1

where L > O0and A #mx form=1,...,N.

“Z 31. In many physical problems the nonhomogeneous term may be specified by different
formulas in different time periods. As an example, determine the solution y = ¢(¢) of

f, 0<rt<m,
e !, t >,

y”+y={

satisfying the initial conditions y(0) = 0 and y’(0) = 1. Assume that y and y’ are also con-
tinuous at ¢t = . Plot the nonhomogeneous term and the solution as functions of time.
Hint: First solve the initial value problem for ¢ < ; then solve for ¢ > 7, determining the
constants in the latter solution from the continuity conditions at ¢t = .

."Z 32. Follow the instructions in Problem 31 to solve the differential equation

" / 1, 05[57’[2,
y +ZY+5y:{0 l>7t//2

with the initial conditions y(0) = 0 and y’(0) = 0.
Behavior of Solutions as t — oo. In Problems 33 and 34, we continue the discussion started
with Problems 37 through 39 of Section 3.4. Consider the differential equation
ay” + by +cy =g, @

where a, b, and c are positive.
33. If Y (t) and Y, (¢) are solutions of Eq. (i), show that Y;(t) — Y>(t) — 0 as t — oco. Is this
result true if b = 0?

34. 1If g(t) = d,a constant, show that every solution of Eq. (i) approaches d/c ast — co. What
happens if c = 0? What if b = 0 also?
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35. In this problem we indicate an alternative procedure’ for solving the differential equation
y' 4+ by +cy = (D*+bD + o)y =g(), 1)

where b and c are constants, and D denotes differentiation with respect to ¢. Let ; and r,
be the zeros of the characteristic polynomial of the corresponding homogeneous equation.
These roots may be real and different, real and equal, or conjugate complex numbers.

(a) Verify that Eq. (i) can be written in the factored form

(D —=r)(D —r)y =g,

where ry +r, = —band rir, =c.

(b) Letu = (D — rp)y. Then show that the solution of Eq (i) can be found by solving the
following two first order equations:

(D —ru = g(), (D —r)y = u().

In each of Problems 36 through 39, use the method of Problem 35 to solve the given differential
equation.

36. y" =3y —4y =3e"  (see Example 1)

37. 2y" +3y' +y=1>+3sint  (see Problem9)
38.y'+2y'+y=2¢"  (seeProblem 8)

39. y" +2y =3+ 4sin2t (see Problem 6)

3.6 Variation of Parameters

EXAMPLE

1

In this section we describe another method of finding a particular solution of a non-
homogeneous equation. This method, variation of parameters, is due to Lagrange and
complements the method of undetermined coefficients rather well. The main advan-
tage of variation of parameters is that it is a general method;in principle at least, it can
be applied to any equation, and it requires no detailed assumptions about the form
of the solution. In fact,later in this section we use this method to derive a formula for
a particular solution of an arbitrary second order linear nonhomogeneous differen-
tial equation. On the other hand, the method of variation of parameters eventually
requires us to evaluate certain integrals involving the nonhomogeneous term in the
differential equation, and this may present difficulties. Before looking at this method
in the general case, we illustrate its use in an example.

Find a particular solution of
y' +4y = 3csct. (1)

Observe that this problem is not a good candidate for the method of undetermined coeffi-
cients, as described in Section 3.5, because the nonhomogeneous term g(¢) = 3 csct involves

"R. S. Luthar, “Another Approach to a Standard Differential Equation,” Tiwo Year College Mathematics
Journal 10 (1979), pp. 200-201. Also see D. C. Sandell and F. M. Stein, “Factorization of Operators of
Second Order Linear Homogeneous Ordinary Differential Equations,” Two Year College Mathematics
Journal 8 (1977), pp. 132-141, for a more general discussion of factoring operators.



3.6 Variation of Parameters 187

a quotient (rather than a sum or a product) of sint or cost. Therefore, we need a different
approach. Observe also that the homogeneous equation corresponding to Eq. (1) is

y'+4y =0, @
and that the general solution of Eq. (2) is
Ye(t) = ¢ cos 2t + ¢, sin 2t. 3)

The basic idea in the method of variation of parameters is to replace the constants ¢; and ¢,
in Eq. (3) by functions u; (¢) and u,(t), respectively, and then to determine these functions so
that the resulting expression

v = uy(t) cos 2t + uy(t) sin 2t 4)

is a solution of the nonhomogeneous equation (1).

To determine u; and u,, we need to substitute for y from Eq. (4) in Eq. (1). However, even
without carrying out this substitution, we can anticipate that the result will be a single equation
involving some combination of uy, u,, and their first two derivatives. Since there is only one
equation and two unknown functions, we can expect that there are many possible choices of
u; and u, that will meet our needs. Alternatively, we may be able to impose a second condition
of our own choosing, thereby obtaining two equations for the two unknown functions u; and
1. We will soon show (following Lagrange) that it is possible to choose this second condition
in a way that makes the computation markedly more efficient.

Returning now to Eq. (4), we differentiate it and rearrange the terms, thereby obtaining

Y = —2uy(t) sin 2t + 2u, (1) cos 2t + uy (1) cos 2t + u, (¢) sin 2t. (5)

Keeping in mind the possibility of choosing a second condition on u; and u,, let us require the
sum of the last two terms on the right side of Eq. (5) to be zero; that is, we require that

) (1) cos 2t + u5(t) sin 2t = 0. (6)
It then follows from Eq. (5) that
v = —2uy(¢) sin 2t + 2u, (t) cos 2t. 7

Although the ultimate effect of the condition (6) is not yet clear, at the very least it has simplified
the expression for y'. Further, by differentiating Eq. (7) we obtain

¥ = —4u, (t) cos 2t — 4u,(t) sin 2t — 2u (¢) sin 2t + 2u)(t) cos 2t. 8)
Then, substituting for y and y” in Eq. (1) from Egs. (4) and (8), respectively, we find that

V' +4y = — 4uy(t) cos 2t — duy () sin 2t — 2u (t) sin 2t + 2u) (t) cos 2t
+ 4duy (t) cos 2t + du, () sin2t = 3 csct.

Hence u; and u, must satisfy
—2u (¢) sin 2t 4 2u}(t) cos 2t = 3 csct. 9)

Summarizing our results to this point, we want to choose u; and u, so as to satisfy Egs. (6)
and (9). These equations can be viewed as a pair of linear algebraic equations for the two
unknown quantities u} (t) and u}(¢). Equations (6) and (9) can be solved in various ways. For
example, solving Eq. (6) for u} (), we have

cos 2t
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Then, substituting for u}(¢) in Eq. (9) and simplifying, we obtain

3csctsin2t
(1) = —% — _3cost. 11)

Further, putting this expression for u} () back in Eq. (10) and using the double-angle formulas,
we find that
3costcos2t 3(1 —2sin’0) 3

A1) = = —csct — 3sint. 12
L0 =g 2sint g et osm (12)

Having obtained ] (r) and ) (f), we next integrate so as to find u; (r) and u,(¢). The result is
u(t) = =3sint + ¢; (13)
and
uy (1) = 3 1n|csct — cot| +3cost + c,. (14)
On substituting these expressions in Eq. (4), we have
y = —3sintcos2t + % In|csct — cott|sin2t + 3 costsin 2t
+ ¢1 cos 2t + ¢, sin 2¢.
Finally, by using the double-angle formulas once more, we obtain
y=3sint + % In|csct — cott|sin2t + ¢; cos 2t + ¢, sin 2t. (15)

The terms in Eq. (15) involving the arbitrary constants c¢; and ¢, are the general solution of the
corresponding homogeneous equation, while the remaining terms are a particular solution of
the nonhomogeneous equation (1). Thus Eq. (15) is the general solution of Eq. (1).

In the preceding example the method of variation of parameters worked well in
determining a particular solution, and hence the general solution, of Eq. (1). The next
question is whether this method can be applied effectively to an arbitrary equation.
Therefore, we consider

V' +p@y +qy =g, (16)

where p, g, and g are given continuous functions. As a starting point, we assume that
we know the general solution

ye(®) = c1y1(t) + c2y2(0) 17)
of the corresponding homogeneous equation
Y +p®y +q@ny=0. (18)

This is a major assumption. So far we have shown how to solve Eq. (18) only if it has
constant coefficients. If Eq. (18) has coefficients that depend on 7, then usually the
methods described in Chapter 5 must be used to obtain y.(¢).

The crucial idea, as illustrated in Example 1, is to replace the constants ¢; and ¢,
in Eq. (17) by functions u; (f) and u,(¢), respectively; thus we have

y =uiOy1(t) + uz(0)y2(0). (19)

Then we try to determine u (¢) and u, (¢) so that the expression in Eq. (19) is a solution
of the nonhomogeneous equation (16) rather than the homogeneous equation (18).
Thus we differentiate Eq. (19), obtaining

Y =ui@Oy1(t) + ur () (@) + ur(Oy2(t) + ua()ys(0). (20)
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Theorem 3.6.1

As in Example 1, we now set the terms involving u (¢) and u}(¢) in Eq. (20) equal to
zero; that is, we require that

uy (Oy1(t) + uy(y2(t) = 0. (21)
Then, from Eq. (20), we have

Y = w0y () + ua(6)y;(0). (22)
Further, by differentiating again, we obtain

V' = u Oy + ur ()Y (1) + u5 @)y, (1) + ua(0)y5(1). (23)
Now we substitute for y, y’, and y” in Eq. (16) from Egs. (19), (22), and (23),

respectively. After rearranging the terms in the resulting equation, we find that

w OO + pOyi©) + a0y (0]
+uw(O[y50) + pOys(6) + q0)y2(1)]

+uy (Y (1) + us (Y5 () = g(0). (24)

Each of the expressions in square brackets in Eq. (24) is zero because both y; and y,
are solutions of the homogeneous equation (18). Therefore, Eq. (24) reduces to

u (Y1) + uh ()5 (1) = g(0). (25)

Equations (21) and (25) form a system of two linear algebraic equations for the
derivatives u}(f) and u)(t) of the unknown functions. They correspond exactly to
Egs. (6) and (9) in Example 1.

By solving the system (21), (25) we obtain

8@ y1(H)g)
Wy, y)(@®) ' W,y @)’

where W (y1, y,) is the Wronskian of y; and y,. Note that division by W is permissible
since y; and y, are a fundamental set of solutions, and therefore their Wronskian
is nonzero. By integrating Egs. (26), we find the desired functions u;(¢) and u;(f),
namely,

ui(t) = uy(t) = (26)

y2(08(0) y1(0g®)
mt) =— | =—————dt+cy, wmt) = | =——=——dt+c. 27
Wy, y2)(@) Wy, y2)(@) @7)
If the integrals in Egs. (27) can be evaluated in terms of elementary functions, then we
substitute the results in Eq. (19), thereby obtaining the general solution of Eq. (16).
More generally, the solution can always be expressed in terms of integrals, as stated
in the following theorem.

If the functions p, ¢, and g are continuous on an open interval /, and if the functions
y1 and y;, are a fundamental set of solutions of the homogeneous equation (18)
corresponding to the nonhomogeneous equation (16)

Y +p@®)y +q)y =g,
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then a particular solution of Eq. (16) is

n0g6) / nog6)
Y = — ds, 28
© “)/ VoL = 0 | Fonne © 8

where £ is any conveniently chosen point in /. The general solution is

y=cyi(®) + cay2(t) + Y (1), (29)

as prescribed by Theorem 3.5.2.

By examining the expression (28) and reviewing the process by which we derived
it,we can see that there may be two major difficulties in using the method of variation
of parameters. As we have mentioned earlier, one is the determination of y;(¢) and
y2(t), a fundamental set of solutions of the homogeneous equation (18), when the
coefficients in that equation are not constants. The other possible difficulty lies in
the evaluation of the integrals appearing in Eq. (28). This depends entirely on the
nature of the functions yi, y,, and g. In using Eq. (28), be sure that the differential
equation is exactly in the form (16); otherwise, the nonhomogeneous term g(t) will
not be correctly identified.

A major advantage of the method of variation of parameters is that Eq. (28) pro-
vides an expression for the particular solution Y (¢) in terms of an arbitrary forcing
function g(¢). This expression is a good starting point if you wish to investigate the
effect of variations in the forcing function, or if you wish to analyze the response of
a system to a number of different forcing functions.

PROBLEMS

In each of Problems 1 through 4, use the method of variation of parameters to find a particular
solution of the given differential equation. Then check your answer by using the method of
undetermined coefficients.

1.y =5y + 6y = 2¢ 2.y —y =2y =2e!

3.y 42y +y =3¢ 4 Ay -y y = 16e”
In each of Problems 5 through 12, find the general solution of the given differential equation.
In Problems 11 and 12, g is an arbitrary continuous function.

5. y" +y =tant, 0<t<m/2 6. y" +9y =9 sec? 3t, 0<t<m/6
7.V + 4y +dy =t ¥, t>0 8. y'+4y =3csc2t, 0<t<m/2
9. 4y" +y = 2sec(t/2), —m<t<m 10. y" =2y +y=e'/(1 +1?)

11. y" =5y’ + 6y = g(¢) 12. y" +4y = g(0)

In each of Problems 13 through 20, verify that the given functions y; and y, satisfy the corre-
sponding homogeneous equation;then find a particular solution of the given nonhomogeneous
equation. In Problems 19 and 20, g is an arbitrary continuous function.

13. 2y =2y =32 -1, t>0; yit) =1, y,(t) =t7"

14, 2y —t@t+2)y + ¢ +2)y =23, t>0; yit)=t, y(t) =te
15. ty" — A+ 0y +y =12, >0 yit) =1+t y@)=e

16. (1 Hy' +ty —y=2(t—-12%", 0<t<l1; yit)y=e', y) =t
17. x*y" = 3xy' + 4y =x*Inx, x> 0; yix) =x%, y(x) =x*Inx
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18.

19.
20.

21.

22.

23.

24.

25.

26.

X2y 4 xy' 4+ (x* — 0.25)y = 3x*?sinx, x> 0;
y1(x) =x2sinx, y,(x) =x"?cosx
A=x)y"+xy'—y=gx), 0<x<1; y@=e, ykx=x

2.0 —1/2

X2y +xy 4+ =025y =gkx), x>0 yi(x) =x sinx, y,(x) =x""?cosx

Show that the solution of the initial value problem

Liyl=y"+p®y +qt)y =g,  yt) =yo, Y (t) =y, (i)

can be written as y = u(t) + v(¢), where u and v are solutions of the two initial value
problems

Llu]l =0, u(ty) =yo, u'(ty) =y, (ii)
Llvl=g@), ) =0, V() =0, (iii)

respectively. In other words, the nonhomogeneities in the differential equation and in the
initial conditions can be dealt with separately. Observe that u is easy to find if a fundamental
set of solutions of L[u] = 0 is known.

By choosing the lower limit of integration in Eq. (28) in the text as the initial point ¢,, show
that Y () becomes

! —
Y(t):/ y1(©)y2(8) — y1(H)ya(s) 2(s) ds

, Y1()Y5(s) — Yi($)ya(s)
Show that Y (¢) is a solution of the initial value problem
Liyl=g®), yt) =0, Y(n) =0.
Thus Y can be identified with v in Problem 21.
(a) Use the result of Problem 22 to show that the solution of the initial value problem
Vi4+y=g®, yto)=0, yt) =0 (i)
is

y= / sin(t — 5)g(s) ds. (ii)

0
(b) Use the result of Problem 21 to find the solution of the initial value problem
Y'+y=g®,  yO) =y Y0 =y,
Use the result of Problem 22 to find the solution of the initial value problem

Liyl=D -a)(D-byy=g(), yt) =0, yt) =0,

where a and b are real numbers with a # b.
Use the result of Problem 22 to find the solution of the initial value problem

Llyl=[D*=2AD + (A* + uH)ly =g(0),  y(to) =0, y'(t) =0.

Note that the roots of the characteristic equation are A £ iju.
Use the result of Problem 22 to find the solution of the initial value problem

Liyl=D—-a’y=g®), yl) =0, y() =0,

where a is any real number.
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27. By combining the results of Problems 24 through 26, show that the solution of the initial
value problem

Lyl = (D*+bD +0)y =g, yto) =0, y(t) =0,

where b and c¢ are constants, has the form

V=) = f K(t — )g(s) ds. (i)

The function K depends only on the solutions y; and y; of the corresponding homogeneous
equation and is independent of the nonhomogeneous term. Once K is determined, all
nonhomogeneous problems involving the same differential operator L are reduced to the
evaluation of an integral. Note also that although K depends on both # and s, only the com-
bination ¢ — s appears,so K is actually a function of a single variable. When we think of g(¢)
as the input to the problem and of ¢(¢) as the output, it follows from Eq. (i) that the output
depends on the input over the entire interval from the initial point ¢, to the current value ¢.
The integralin Eq. (i) is called the convolution of K and g,and K is referred to as the kernel.
28. The method of reduction of order (Section 3.4) can also be used for the nonhomogeneous

equation
V' +p@®y +q)y =g, )

provided one solution y; of the corresponding homogeneous equation is known. Let
y = v(t)y;(¢) and show that y satisfies Eq. (i) if v is a solution of

YOV + 2y () + pOy1 O = g(@). (ii)

Equation (ii) is a first order linear equation for v'. By solving this equation, integrating
the result, and then multiplying by y; (), you can find the general solution of Eq. (i).

In each of Problems 29 through 32, use the method outlined in Problem 28 to solve the given
differential equation.

29. 2y =2ty +2y =42, t>0; yi(t) =t

30. 2y + 7ty + 5y =t, t>0; yi(t) =t"

3.ty — A4y +y=r2, t>0; yi) =1+t (see Problem 15)

2. A=t)y'+ty —y=20t—-1%", 0<t<l; yi(t) =¢ (see Problem 16)

3.7 Mechanical and Electrical Vibrations

One of the reasons why second order linear equations with constant coefficients
are worth studying is that they serve as mathematical models of some important
physical processes. Two important areas of application are the fields of mechanical
and electrical oscillations. For example, the motion of a mass on a vibrating spring,
the torsional oscillations of a shaft with a flywheel, the flow of electric current in
a simple series circuit, and many other physical problems are all described by the
solution of an initial value problem of the form

ay’ +by +cy =g,  yO =yo. YO0 =y ey

This illustrates a fundamental relationship between mathematics and physics:
many physical problems may have the same mathematical model. Thus, once we know
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how to solve the initial value problem (1), it is only necessary to make appropriate
interpretations of the constants a, b, and ¢, and of the functions y and g, to obtain
solutions of different physical problems.

We will study the motion of a mass on a spring in detail because understanding the
behavior of this simple system is the first step in the investigation of more complex
vibrating systems. Further, the principles involved are common to many problems.
Consider a mass m hanging at rest on the end of a vertical spring of original length
[, as shown in Figure 3.7.1. The mass causes an elongation L of the spring in the
downward (positive) direction. In this static situation there are two forces acting at
the point where the mass is attached to the spring; see Figure 3.7.2. The gravitational
force, or weight of the mass, acts downward and has magnitude mg, where g is the
acceleration due to gravity. There is also a force Fy, due to the spring, that acts upward.
If we assume that the elongation L of the spring is small, the spring force is very nearly
proportional to L; this is known as Hooke’s® law. Thus we write Fy = —kL, where
the constant of proportionality k is called the spring constant, and the minus sign is
due to the fact that the spring force acts in the upward (negative) direction. Since
the mass is in equilibrium, the two forces balance each other, which means that

mg — kL =0. (2)

For a given weight w = mg, you can measure L and then use Eq. (2) to determine k.
Note that k has the units of force/length.

L
%M
= -

FIGURE 3.7.1 A spring-mass system.

F,=-kL

w=mg
FIGURE 3.7.2 Force diagram for a spring-mass system.

8Robert Hooke (1635-1703) was an English scientist with wide-ranging interests. His most important
book, Micrographia, was published in 1665 and described a variety of microscopical observations. Hooke
first published his law of elastic behavior in 1676 as ceiiinosssttuv; in 1678 he gave the interpretation ut
tensio sic vis, which means, roughly, “as the force so is the displacement.”
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In the corresponding dynamic problem, we are interested in studying the motion

of the mass when it is acted on by an external force or is initially displaced. Let
u(t), measured positive downward, denote the displacement of the mass from its
equilibrium position at time #; see Figure 3.7.1. Then u(r) is related to the forces
acting on the mass through Newton’s law of motion

mu (1) = f(t), (3)

where u” is the acceleration of the mass and f is the net force acting on the mass.
Observe that both u and f are functions of time. In this dynamic problem there are
now four separate forces that must be considered.

1.
2.

The weight w = mg of the mass always acts downward.

The spring force F is assumed to be proportional to the total elongation L + u of the
spring and always acts to restore the spring to its natural position. If L 4+ u > 0, then
the spring is extended, and the spring force is directed upward. In this case

F, = —k(L + u). 4)

On the other hand, if L + u < 0, then the spring is compressed a distance |L + u|, and
the spring force, which is now directed downward, is given by F,; = k|L + u|. However,
when L + u < 0, it follows that |L 4+ u| = —(L + u), so F; is again given by Eq. (4). Thus,
regardless of the position of the mass, the force exerted by the spring is always expressed
by Eq. (4).

The damping or resistive force F,; always acts in the direction opposite to the direction of
motion of the mass. This force may arise from several sources: resistance from the air or
other medium in which the mass moves, internal energy dissipation due to the extension
or compression of the spring, friction between the mass and the guides (if any) that con-
strain its motion to one dimension,or a mechanical device (dashpot) that imparts a resistive
force to the mass. In any case, we assume that the resistive force is proportional to the
speed |du/dt| of the mass; this is usually referred to as viscous damping. If du/dt > 0,
then u is increasing, so the mass is moving downward. Then F; is directed upward and is
given by

Fa(t) = —yu/ (1), (5)

where y is a positive constant of proportionality known as the damping constant. On
the other hand, if du/dt < 0, then u is decreasing, the mass is moving upward, and Fy is
directed downward. In this case, F; = y|u/(¢)|; since |u'(¢)| = —u/(¢), it follows that F,(¢)
is again given by Eq. (5). Thus, regardless of the direction of motion of the mass, the
damping force is always expressed by Eq. (5).

The damping force may be rather complicated, and the assumption that it is modeled

adequately by Eq. (5) may be open to question. Some dashpots do behave as Eq. (5)
states, and if the other sources of dissipation are small, it may be possible to neglect
them altogether or to adjust the damping constant y to approximate them. An important
benefit of the assumption (5) is that it leads to a linear (rather than a nonlinear) differential
equation. In turn, this means that a thorough analysis of the system is straightforward, as
we will show in this section and the next.
An applied external force F(¢) is directed downward or upward as F(¢) is positive or
negative. This could be a force due to the motion of the mount to which the spring is
attached, or it could be a force applied directly to the mass. Often the external force
is periodic.
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EXAMPLE

1

Taking account of these forces, we can now rewrite Newton’s law (3) as

mu’(t) = mg + Fy(t) + F4(t) + F (1)
=mg — k[L +u(t)] — yu'(t) + F(1). (6)

Since mg — kL = 0 by Eq. (2), it follows that the equation of motion of the mass is
mu (t) + yu'(t) + ku(t) = F(1), (7

where the constants m, y, and k are positive. Note that Eq. (7) has the same form as
Eq. (1).

It is important to understand that Eq. (7) is only an approximate equation for the
displacement u(¢). In particular, both Egs. (4) and (5) should be viewed as approx-
imations for the spring force and the damping force, respectively. In our derivation
we have also neglected the mass of the spring in comparison with the mass of the
attached body.

The complete formulation of the vibration problem requires that we specify two
initial conditions, namely, the initial position u, and the initial velocity vy of the mass:

u(0) = uo, u'(0) = vy. ®)

It follows from Theorem 3.2.1 that these conditions give a mathematical problem
that has a unique solution. This is consistent with our physical intuition that if the
mass is set in motion with a given initial displacement and velocity, then its posi-
tion will be determined uniquely at all future times. The position of the mass is
given (approximately) by the solution of Eq. (7) subject to the prescribed initial
conditions (8).

A mass weighing 4 b stretches a spring 2 in. Suppose that the mass is given an additional
6 in displacement in the positive direction and then released. The mass is in a medium that
exerts a viscous resistance of 6 Ib when the mass has a velocity of 3 ft/s. Under the assumptions
discussed in this section, formulate the initial value problem that governs the motion of the
mass.

The required initial value problem consists of the differential equation (7) and initial condi-
tions (8), so our task is to determine the various constants that appear in these equations. The
first step is to choose the units of measurement. Based on the statement of the problem, it is
natural to use the English rather than the metric system of units. The only time unit mentioned
is the second, so we will measure ¢ in seconds. On the other hand, both the foot and the inch
appear in the statement as units of length. It is immaterial which one we use, but having made
a choice, we must be consistent. To be definite, let us measure the displacement « in feet.

Since nothing is said in the statement of the problem about an external force, we assume
that F(¢) = 0. To determine m, note that

w 41b 1 1bs?

T g R 8 ft

The damping coefficient y is determined from the statement that yu’ is equal to 6 1b when «’
is 3 ft/s. Therefore,

61b ) Ib-s

Y= 3hus T i



196

Chapter 3. Second Order Linear Equations

The spring constant k is found from the statement that the mass stretches the spring by 2 in,

or 1/6 ft. Thus
41b b
24

160 R
Consequently, Eq. (7) becomes
s+ 2u' +24u =0,
or
' +16u" +192u = 0. 9)

The initial conditions are
u(0) = 1, u'(0) =0. (10)

The second initial condition is implied by the word “released” in the statement of the problem,
which we interpret to mean that the mass is set in motion with no initial velocity.

Undamped Free Vibrations. If there is no external force, then F(r) = 0 in Eq. (7). Let
us also suppose that there is no damping, so that y = 0; this is an idealized config-
uration of the system, seldom (if ever) completely attainable in practice. However,
if the actual damping is very small, then the assumption of no damping may yield
satisfactory results over short to moderate time intervals. In this case the equation
of motion (7) reduces to

mu” + ku = 0. (11)

The characteristic equation for Eq. (11) is
mr* + k=0
and its roots are r = +i,/k/m. Thus the general solution of Eq. (11) is
u = A coswot + Bsinwyt, (12)
where
wy =k/m. (13)

The arbitrary constants A and B can be determined if initial conditions of the form
(8) are given.
In discussing the solution of Eq. (11), it is convenient to rewrite Eq. (12) in the
form
u = Rcos(wpt — 8), (14)

or
u = Rcosdcos wpt + R sin § sin wot. (15)

By comparing Eq. (15) with Eq. (12), we find that A, B, R, and § are related by the
equations

A = Rcos$, B = Rsins. (16)
Thus
R=+A2+ B2, tand = B/A. 17)

In calculating 8, we must take care to choose the correct quadrant; this can be done
by checking the signs of cos § and sin § in Egs. (16).
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EXAMPLE

2

The graph of Eq. (14),or the equivalent Eq. (12),for a typical set of initial conditions
isshown in Figure 3.7.3. The graph is a displaced cosine wave that describes a periodic,
or simple harmonic, motion of the mass. The period of the motion is

T = Z—Z — 2 (%)1/2. (18)

The circular frequency wy = /k/m, measured in radians per unit time, is called the
natural frequency of the vibration. The maximum displacement R of the mass from
equilibrium is the amplitude of the motion. The dimensionless parameter § is called
the phase, or phase angle, and measures the displacement of the wave from its normal
position corresponding to § = 0.

u
R ________________________
R cos 6 /\ ‘ /\
T 1) o+m 6+ 2rm ot
Rl N~

FIGURE 3.7.3 Simple harmonic motion; # = R cos(wyt — §).

Note that the motion described by Eq. (14) has a constant amplitude that does not
diminish with time. This reflects the fact that, in the absence of damping, there is no
way for the system to dissipate the energy imparted to it by the initial displacement
and velocity. Further, for a given mass m and spring constant k, the system always
vibrates at the same frequency wy, regardless of the initial conditions. However, the
initial conditions do help to determine the amplitude of the motion. Finally, observe
from Eq. (18) that T increases as m increases, so larger masses vibrate more slowly.
On the other hand, T decreases as k increases, which means that stiffer springs cause
the system to vibrate more rapidly.

Suppose that a mass weighing 10 b stretches a spring 2 in. If the mass is displaced an additional
2 in and is then set in motion with an initial upward velocity of 1 ft/s, determine the position
of the mass at any later time. Also determine the period, amplitude, and phase of the motion.

The spring constant is k = 10 1b/2 in = 60 Ib/ft, and the mass is m = w/g = 10/32 Ib-s>/ft.
Hence the equation of motion reduces to

' +192u =0, (19)
and the general solution is
u = A cos(8v/3t) + Bsin(8v/31).

The solution satisfying the initial conditions #(0) = 1/6 ft and «/(0) = —1 ft/s is

u= % cos(8v/31) — % sin(8+/31). (20)
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The natural frequency is wy = +/192 = 13.856 rad/s, so the period is T = 27/wy = 0.45345 s.
The amplitude R and phase § are found from Egs. (17). We have

1 1 19
2 _ 4 T =0. .
=36 + %= 576 so R =0.18162 ft

The second of Eqs. (17) yields tan § = —+/3/4. There are two solutions of this equation, one in
the second quadrant and one in the fourth. In the present problem, cos§ > 0 and siné < 0, so
§ is in the fourth quadrant. In fact,

8 = —arctan(v/3/4) = —0.40864 rad.
The graph of the solution (20) is shown in Figure 3.7.4.

R=0.182 u =0.182 cos(8V3 ¢ + 0.409)

\/\W\/\/\
U Y

—0.2_

0.2

T = 0.453
L2003

FIGURE 3.7.4 An undamped free vibration: u” + 192u = 0, u(0) =1/6, u'(0) = —

Damped Free Vibrations. If we include the effect of damping, the differential equation
governing the motion of the mass is

mu” + yu' + ku = 0. (21)

We are especially interested in examining the effect of variations in the damping
coefficient y for given values of the mass 2 and spring constant k. The corresponding
characteristic equation is

mr? +yr+k =0,

and its roots are

—y . —dk 4k
PN S el (A< N S B (22)
2m 2m y2

Depending on the sign of y? — 4km, the solution u has one of the following forms:
y> —4km >0, u= Ae" + Be™'; (23)
yP—dkm =0, u=(A+Bne "™ (24)
(dkm — y*)1/?
2m

Since m, y, and k are positive, y* —4km is always less than y?. Hence,
if > — 4km > 0, then the values of r; and r, given by Eq. (22) are negative. If
y* — 4km < 0, then the values of r; and r, are complex, but with negative real part.
Thus, in all cases, the solution u tends to zero as t — oo; this occurs regardless of the

v —dkm <0, wu=e """ (Acosut+ Bsinut), pu= > 0. (25)
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values of the arbitrary constants A and B—that is, regardless of the initial conditions.
This confirms our intuitive expectation, namely, that damping gradually dissipates
the energy initially imparted to the system, and consequently the motion dies out
with increasing time.

The most important case is the third one, which occurs when the damping is small.
If we let A = Rcos§ and B = Rsiné§ in Eq. (25), then we obtain

u = Re ""*" cos(ut — 9). (26)

The displacement u lies between the curves u = +Re~""/>"; hence it resembles a
cosine wave whose amplitude decreases as ¢ increases. A typical example is sketched
in Figure 3.7.5. The motion is called a damped oscillation or a damped vibration. The
amplitude factor R depends on m, y, k, and the initial conditions.

u
L Re1t2m
1 T —
Rcoié ‘‘‘‘‘
\ \ \
[9) o+rm 6+ 2m + 3 ut
- _Re-1t2m

FIGURE 3.7.5 Damped vibration; u = Re™7"/>" cos(ut — §).

Although the motion is not periodic, the parameter x determines the frequency
with which the mass oscillates back and forth; consequently, x is called the quasi
frequency. By comparing p with the frequency wy of undamped motion, we find that

wo_ = am (AN
N N 4dkm 8km'

wy Vk/m

The last approximation is valid when y?/4km is small; we refer to this situation as
“small damping.” Thus the effect of small damping is to reduce slightly the frequency
of the oscillation. By analogy with Eq. (18), the quantity 7; = 27/ is called the
quasi period. It is the time between successive maxima or successive minima of
the position of the mass, or between successive passages of the mass through its
equilibrium position while going in the same direction. The relation between 7; and
T is given by

27)

-1/2 2
Td w( )/2 14
La_o_ (1Y) (14 2
T nun ( 4km + 8km )’ (28)

where again the last approximation is valid when y? /4km is small. Thus small damping
increases the quasi period.

Equations (27) and (28) reinforce the significance of the dimensionless ratio
y?/4km. It is not the magnitude of y alone that determines whether damping is large
or small, but the magnitude of y* compared to 4km. When y?/4km is small, then
damping has a small effect on the quasi frequency and quasi period of the motion.
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EXAMPLE

3

On the other hand, if we want to study the detailed motion of the mass for all time,
then we can never neglect the damping force, no matter how small.

As y?/4km increases, the quasi frequency u decreases and the quasi period Ty
increases. In fact, u — 0 and T; — oo as y — 2+/km. As indicated by Egs. (23), (24),
and (25), the nature of the solution changes as y passes through the value 2+/km.
The motion with y = 2+/km is said to be critically damped. For larger values of y
the motion is said to be overdamped. In these cases, given by Egs. (24) and (23),
respectively, the mass may pass through its equilibrium position at most once (see
Figure 3.7.6) and then creeps back to it. The mass does not oscillate about equilibrium,
as it does for small y. Two typical examples of critically damped motion are shown
in Figure 3.7.6, and the situation is discussed further in Problems 21 and 22.

-1
FIGURE 3.7.6 Critically damped motions: &’ + u' + 0.25u = 0; u = (A + Bt)e /2.

The motion of a certain spring-mass system is governed by the differential equation
u”" +0.125u" +u =0, (29)

where u is measured in feet and ¢ in seconds. If #(0) = 2 and #'(0) = 0, determine the position
of the mass at any time. Find the quasi frequency and the quasi period, as well as the time
at which the mass first passes through its equilibrium position. Also find the time 7 such that
lu(t)] < 0.1 forallt > 7.

The solution of Eq. (29) is

/255 V255
u:e’/16|:Acos G t + Bsin e ti|.

To satisfy the initial conditions, we must choose A = 2 and B = 2/+/255; hence the solution of
the initial value problem is

t
16 V255 s 16

_ 32 e /255 B
=——e¢ cos| —r—4], (30)
V255 16

_t/m( V255 2 . vzss)
u=e 2 cos t+
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FIGURE 3.7.7 Vibration with small damping (solid curve)
and with no damping (dashed curve).

where tan§ = 1/+/255, 50 § = 0.06254. The displacement of the mass as a function of time is
shown in Figure 3.7.7. For purposes of comparison, we also show the motion if the damping
term is neglected.

The quasi frequency is . = +/255/16 = 0.998, and the quasi period is T; = 27/ = 6.295 s.
These values differ only slightly from the corresponding values (1 and 27, respectively) for
the undamped oscillation. This is evident also from the graphs in Figure 3.7.7, which rise
and fall almost together. The damping coefficient is small in this example: only one-sixteenth
of the critical value, in fact. Nevertheless, the amplitude of the oscillation is reduced rather
rapidly. Figure 3.7.8 shows the graph of the solution for 40 < ¢ < 60, together with the graphs
of u = £0.1. From the graph it appears that 7 is about 47.5, and by a more precise calculation
we find that 7 = 47.5149 s.

O.Z; /\ u=0.1

_ 32 16 V255,
u=2e cos(lst 0.06254)

0.05
T
| | | | | -
40 45 | 50 55 YO t
|
~0.05|- |
|
|
| u=-0.1
~0.1 f
|

—O.15—\/

FIGURE 3.7.8 Solution of Example 3; determination of the time t after which |u(¢)| < 0.1.
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To find the time at which the mass first passes through its equilibrium position, we refer to
Eq. (30) and set +/255t/16 — § equal to /2, the smallest positive zero of the cosine function.
Then, by solving for ¢, we obtain

t:%(%—l—é)élﬁ?ﬁs.

Electric Circuits. A second example of the occurrence of second order linear differen-
tial equations with constant coefficients is their use as a model of the flow of electric
current in the simple series circuit shown in Figure 3.7.9. The current /, measured
in amperes (A), is a function of time ¢. The resistance R in ohms (£2), the capaci-
tance C in farads (F), and the inductance L in henrys (H) are all positive and are
assumed to be known constants. The impressed voltage E in volts (V) is a given func-
tion of time. Another physical quantity that enters the discussion is the total charge
Q in coulombs (C) on the capacitor at time ¢. The relation between charge O and
current / is

I =dQy/dt. (31)

Resistance R Capacitance C
MW 1€

(I Inductance L

Impressed voltage E(¢)
FIGURE 3.7.9 A simple electric circuit.

The flow of current in the circuit is governed by Kirchhoff’s” second law: I a closed
circuit the impressed voltage is equal to the sum of the voltage drops in the rest of the
circuit.

According to the elementary laws of electricity, we know that

The voltage drop across the resistor is IR.
The voltage drop across the capacitor is Q/C.
The voltage drop across the inductor is Ldl /dt.

Hence, by Kirchhoff’s law,

dl 1
L+ RI+—0=E®. 32
o+ +CQ 6] (32)

Gustav Kirchhoff (1824-1887) was a German physicist and professor at Breslau, Heidelberg, and Berlin.
He formulated the basic laws of electric circuits about 1845 while still a student at Albertus University in
his native Konigsberg. In 1857 he discovered that an electric current in a resistanceless wire travels at the
speed of light. He is also famous for fundamental work in electromagnetic absorption and emission and
was one of the founders of spectroscopy.
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The units for voltage, resistance, current, charge, capacitance, inductance, and time
are all related:

1 volt = 1 ohm - 1 ampere = 1 coulomb/1 farad = 1 henry - 1 ampere/1 second.

Substituting for / from Eq. (31), we obtain the differential equation

1
LO"+ RO + EQ =E®) (33)
for the charge Q. The initial conditions are

Q(to) = Qo, Q' (1) = I(ty) = Io. (34)

Thus we must know the charge on the capacitor and the current in the circuit at some
initial time ¢.

Alternatively, we can obtain a differential equation for the current / by differen-
tiating Eq. (33) with respect to ¢, and then substituting for dQ/dt from Eq. (31). The
result is

1
LI" +RI' + EI =FE), (35)
with the initial conditions
1(ty) = Iy, 1/(t0) = 16 (36)
From Eq. (32) it follows that

E(ty) = RIy — (1/C)Qo

7 .
Hence [ is also determined by the initial charge and current, which are physically
measurable quantities.

The most important conclusion from this discussion is that the flow of current in the
circuit is described by an initial value problem of precisely the same form as the one
that describes the motion of a spring—mass system. This is a good example of the uni-
fying role of mathematics: once you know how to solve second order linear equations
with constant coefficients, you can interpret the results in terms of mechanical vibra-
tions, electric circuits, or any other physical situation that leads to the same problem.

I, = (37)

PROBLEMS

In each of Problems 1 through 4, determine wy, R, and § so as to write the given expression in
the form u = R cos(wyt — §).

1. u=3cos2t+ 4sin2t 2. u= —cost++/3sint

3. u=4cos3t— 2sin3t 4. u = —2cosnt — 3sinnt

."2 5. A mass weighing 2 Ib stretches a spring 6 in. If the mass is pulled down an additional 3 in

and then released, and if there is no damping, determine the position u of the mass at any
time ¢. Plot u versus ¢. Find the frequency, period, and amplitude of the motion.

6. A massof 100 gstretches aspring 5 cm. If the mass is set in motion from its equilibrium posi-
tion with a downward velocity of 10 cm/s,and if there is no damping, determine the position
u of the mass at any time ¢. When does the mass first return to its equilibrium position?

7. A mass weighing 3 1b stretches a spring 3 in. If the mass is pushed upward, contracting
the spring a distance of 1 in, and then set in motion with a downward velocity of 2 ft/s,
and if there is no damping, find the position u of the mass at any time ¢. Determine the
frequency, period, amplitude, and phase of the motion.
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&2 10

11.

12.

13.

14.

15.

16.

17.

18.

19.

. A series circuit has a capacitor of 0.25 x 107° F and an inductor of 1 H. If the initial charge

on the capacitor is 107% C and there is no initial current, find the charge Q on the capacitor
at any time ¢.

. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a viscous

damper with a damping constant of 400 dyn-s/cm. If the mass is pulled down an additional
2 cm and then released, find its position u at any time ¢. Plot u versus . Determine the quasi
frequency and the quasi period. Determine the ratio of the quasi period to the period of
the corresponding undamped motion. Also find the time t such that |u()| < 0.05 cm for
allt > 7.

A mass weighing 16 1b stretches a spring 3 in. The mass is attached to a viscous damper
with a damping constant of 2 1b-s/ft. If the mass is set in motion from its equilibrium posi-
tion with a downward velocity of 3 in/s, find its position u at any time ¢. Plot u versus t.
Determine when the mass first returns to its equilibrium position. Also find the time t
such that |u(t)| < 0.01 in for all ¢ > 7.

A spring is stretched 10 cm by a force of 3 N. A mass of 2 kg is hung from the spring and
is also attached to a viscous damper that exerts a force of 3 N when the velocity of the
mass is 5 m/s. If the mass is pulled down 5 cm below its equilibrium position and given an
initial downward velocity of 10 cm/s, determine its position u at any time ¢. Find the quasi
frequency p and the ratio of u to the natural frequency of the corresponding undamped
motion.

A series circuit has a capacitor of 10~ F, a resistor of 3 x 10? , and an inductor of 0.2 H.
The initial charge on the capacitor is 107 C and there is no initial current. Find the charge
Q on the capacitor at any time ¢.

A certain vibrating system satisfies the equation u” 4+ yu’ + u = 0. Find the value of the
damping coefficient y for which the quasi period of the damped motion is 50% greater
than the period of the corresponding undamped motion.

Show that the period of motion of an undamped vibration of a mass hanging from a ver-
tical spring is 27./L/g, where L is the elongation of the spring due to the mass, and g is
the acceleration due to gravity.

Show that the solution of the initial value problem
mu” + yu' + ku =0, u(ty) = ug, u'(ty) = uy

can be expressed as the sum u = v+ w, where v satisfies the initial conditions
v(ty) = up, V'(ty) = 0, w satisfies the initial conditions w(f) = 0, w'(f) = u, and both v
and w satisfy the same differential equation as u. This is another instance of superposing
solutions of simpler problems to obtain the solution of a more general problem.

Show that A cos wyt + B sin wyt can be written in the form 7 sin(wyt — ). Determine r and
0 in terms of A and B. If R cos(wyt — 8) = rsin(wyt — 0), determine the relationship among
R,r, 8, and 6.

A mass weighing 8 1b stretches a spring 1.5 in. The mass is also attached to a damper with
coefficient y. Determine the value of y for which the system is critically damped; be sure
to give the units for y.

If a series circuit has a capacitor of C = 0.8 x 107° F and an inductor of L = 0.2 H, find
the resistance R so that the circuit is critically damped.

Assume that the system described by the equation mu” + yu’ + ku = 0 is either critically
damped or overdamped. Show that the mass can pass through the equilibrium position at
most once, regardless of the initial conditions.

Hint: Determine all possible values of ¢ for which u = 0.
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20.

21.

22.
23.

24.

& 2.

26.

Assume that the system described by the equation mu” + yu’ + ku = Ois critically damped
and that the initial conditions are u(0) = ug, u'(0) = vy. If vy = 0,showthatu — Oast — oo
but that u is never zero. If u is positive, determine a condition on v, that will ensure that
the mass passes through its equilibrium position after it is released.

Logarithmic Decrement. (a) For the damped oscillation described by Eq. (26), show
that the time between successive maxima is 7; = 27/ .

(b) Show that the ratio of the displacements at two successive maxima is given by
exp(yTy/2m). Observe that this ratio does not depend on which pair of maxima
is chosen. The natural logarithm of this ratio is called the logarithmic decrement and is
denoted by A.

(c) Showthat A = ry/mpu.Since m,ju,and A are quantities that can be measured easily for
a mechanical system, this result provides a convenient and practical method for determin-
ing the damping constant of the system, which is more difficult to measure directly. In par-
ticular, for the motion of a vibrating mass in a viscous fluid, the damping constant depends
on the viscosity of the fluid; for simple geometric shapes the form of this dependence is
known, and the preceding relation allows the experimental determination of the viscosity.
This is one of the most accurate ways of determining the viscosity of a gas at high pressure.

Referring to Problem 21, find the logarithmic decrement of the system in Problem 10.

For the system in Problem 17, suppose that A = 3 and 7; = 0.3 s. Referring to Problem
21, determine the value of the damping coefficient y.

The position of a certain spring—mass system satisfies the initial value problem
%u” +ku=0, u0) =2, u'0)=n.
If the period and amplitude of the resulting motion are observed to be 7w and 3,respectively,

determine the values of k and v.
Consider the initial value problem

u +yu +u=0, w0y =2, u'0)=0.

We wish to explore how long a time interval is required for the solution to become “neg-
ligible” and how this interval depends on the damping coefficient y. To be more precise,
let us seek the time t such that |u(#)| < 0.01 for all # > 7. Note that critical damping for
this problem occurs for y = 2.

(a) Let y = 0.25 and determine 7, or at least estimate it fairly accurately from a plot of
the solution.

(b) Repeat part (a) for several other values of y in the interval 0 < y < 1.5. Note that t
steadily decreases as y increases for y in this range.

(c) Create a graph of 7 versus y by plotting the pairs of values found in parts (a) and (b).
Is the graph a smooth curve?

(d) Repeat part (b) for values of y between 1.5 and 2. Show that t continues to decrease
until y reaches a certain critical value jyy, after which 7 increases. Find y, and the
corresponding minimum value of 7 to two decimal places.

(e) Another way to proceed is to write the solution of the initial value problem in
the form (26). Neglect the cosine factor and consider only the exponential factor and the
amplitude R. Then find an expression for t as a function of y. Compare the approximate
results obtained in this way with the values determined in parts (a), (b), and (d).

Consider the initial value problem
mu” + yu' + ku =0, u(0) =uy, u'(0)=vy.
Assume that y? < 4km.



206

Chapter 3. Second Order Linear Equations

27.

& 28

&2 29.

30.

(a) Solve the initial value problem.

(b) Write the solution in the form u(f) = Rexp(—yt/2m) cos(ut — §). Determine R in
terms of m, y, k, up, and vy.

(c) Investigate the dependence of R on the damping coefficient y for fixed values of the
other parameters.

A cubic block of side / and mass density p per unit volume is floating in a fluid of mass den-
sity po per unit volume, where py > p. If the block is slightly depressed and then released,
it oscillates in the vertical direction. Assuming that the viscous damping of the fluid and
air can be neglected, derive the differential equation of motion and determine the period
of the motion.

Hint: Use Archimedes’® principle: an object that is completely or partially submerged
in a fluid is acted on by an upward (buoyant) force equal to the weight of the displaced
fluid.

The position of a certain undamped spring—mass system satisfies the initial value problem
u +2u=0, u0) =0, u'0) =2.

(a) Find the solution of this initial value problem.
(b) Plot u versus f and ' versus ¢ on the same axes.

(c) Plot u’ versus u; that is, plot u(¢) and u/(¢) parametrically with ¢ as the parameter.
This plot is known as a phase plot, and the uu/'-plane is called the phase plane. Observe
that a closed curve in the phase plane corresponds to a periodic solution u(t). What is the
direction of motion on the phase plot as ¢ increases?

The position of a certain spring—mass system satisfies the initial value problem
Wt +2u=0, w0 =0, u0)=2

(a) Find the solution of this initial value problem.
(b) Plot u versus ¢ and u’ versus ¢ on the same axes.

(c) Plot u’ versus u in the phase plane (see Problem 28). Identify several corresponding
points on the curves in parts (b) and (c). What is the direction of motion on the phase plot
as t increases?

In the absence of damping, the motion of a spring-mass system satisfies the initial value
problem

mu" + ku =0, u) =a, ') =>.

(a) Show that the kinetic energy initially imparted to the mass is mb?/2 and that the
potential energy initially stored in the spring is ka®/2, so that initially the total energy in
the system is (ka® + mb?)/2.

(b) Solve the given initial value problem.

(c) Using the solution in part (b), determine the total energy in the system at any time ¢.
Your result should confirm the principle of conservation of energy for this system.

10 Archimedes (287-212 BC) was the foremost of the ancient Greek mathematicians. He lived in Syracuse
on the island of Sicily. His most notable discoveries were in geometry, but he also made important contri-
butions to hydrostatics and other branches of mechanics. His method of exhaustion is a precursor of the
integral calculus developed by Newton and Leibniz almost two millennia later. He died at the hands of a
Roman soldier during the Second Punic War.
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31. Suppose that a mass m slides without friction on a horizontal surface. The mass is attached
to a spring with spring constant k, as shown in Figure 3.7.10, and is also subject to viscous
air resistance with coefficient y. Show that the displacement u(¢) of the mass from its
equilibrium position satisfies Eq. (21). How does the derivation of the equation of motion
in this case differ from the derivation given in the text?

u(t)
k

m

FIGURE 3.7.10 A spring—mass system.

‘Q/ 32. In the spring—mass system of Problem 31, suppose that the spring force is not given by
Hooke’s law but instead satisfies the relation

F, = —(ku + ei®),

where k > 0 and € is small but may be of either sign. The spring is called a hardening spring
if € > 0 and a softening spring if ¢ < 0. Why are these terms appropriate?

(a) Show that the displacement u(¢) of the mass from its equilibrium position satisfies the
differential equation

mu’ 4+ yu' + ku+ eu® = 0.
Suppose that the initial conditions are
u(0) =0, u'(0)=1.

In the remainder of this problem, assume thatm =1,k = 1,and y = 0.

(b) Find u(r) when € = 0 and also determine the amplitude and period of the motion.
(c) Lete = 0.1. Plot a numerical approximation to the solution. Does the motion appear
to be periodic? Estimate the amplitude and period.

(d) Repeat part (c) for e = 0.2 and € = 0.3.

(e) Plot your estimated values of the amplitude A and the period T versus €. Describe
the way in which A and T, respectively, depend on e.

(f) Repeat parts (c), (d), and (e) for negative values of .

3.8 Forced Vibrations

We will now investigate the situation in which a periodic external force is applied
to a spring—mass system. The behavior of this simple system models that of many
oscillatory systems with an external force due, for example, to a motor attached to
the system. We will first consider the case in which damping is present and will look
later at the idealized special case in which there is assumed to be no damping.

Forced Vibrations with Damping. The algebraic calculations can be fairly complicated in
this kind of problem, so we will begin with a relatively simple example.
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EXAMPLE

1

Suppose that the motion of a certain spring-mass system satisfies the differential equation
u" 4+ u' +1.25u = 3cost 1)

and the initial conditions
u(0) =2, u'(0) = 3. 2)

Find the solution of this initial value problem and describe the behavior of the solution for
large .

The homogeneous equation corresponding to Eq. (1) has the characteristic equation
r? +r +1.25 = 0 with roots r = —0.5 & i. Thus the general solution u.(¢) of this homogeneous
equation is

12 cost + coe”?sint. (3)

u.(t) = ce

A particular solution of Eq. (1) has the form U(f) = Acost + Bsint, where A and B

are found by substituting U(r) for u in Eq. (1). We have U'(t) = —Asint + Bcost and
U’"(t) = —Acost — Bsint. Thus, from Eq. (1) we obtain

(0.25A + B)cost + (—A + 0.25B) sint = 3 cost.
Consequently, A and B must satisfy the equations
0.25A+ B =3, —-A+025B =0,
with the result that A = 12/17 and B = 48/17. Therefore, the particular solution is
U(t) = 3 cost + £ sint, (4)
and the general solution of Eq. (1) is
u=u )+ U(t)=cre " cost+ ce*sint + % cost + $5 sint. ®)

The remaining constants ¢; and ¢, are determined by the initial conditions (2). From Eq. (5)
we have

u(()):cl—i—%zz’ ”/(O)=—%C1+Cz+%=3,

so ¢; =22/17 and ¢, = 14/17. Thus we finally obtain the solution of the given initial value
problem, namely,

_ 2,2 14,12 2 a8
u= e "“cost+ 5e“sint + 5 cost + 5 sint. (6)

The graph of the solution (6) is shown by the black curve in Figure 3.8.1.

It is important to note that the solution consists of two distinct parts. The first two terms on
the right side of Eq. (6) contain the exponential factor e~*/?; as a result they rapidly approach
zero. It is customary to call these terms transient. The remaining terms in Eq. (6) involve only
sines and cosines, so they represent an oscillation that continues indefinitely. We refer to them
as a steady state. The solid and dashed blue curves in Figure 3.8.1 show the transient and the
steady state parts of the solution, respectively. The transient part comes from the solution
of the homogeneous equation corresponding to Eq. (1) and is needed to satisfy the initial
conditions. The steady state is the particular solution of the full nonhomogeneous equation.
After a fairly short time, the transient is vanishingly small and the full solution is essentially
indistinguishable from the steady state.
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Full solution

Steady state

Transient

8 1 16t

FIGURE 3.8.1 Solution of the initial value problem (1), (2):
u" +u +1.25u = 3cost, u(0) =2, u'(0) =3.

The equation of motion of a general spring—mass system subject to an external
force F(t) is [Eq. (7) in Section 3.7]

mu” (t) + yu'(t) + ku(t) = F(1), (7)

where m, y,and k are the mass,damping coefficient,and spring constant of the spring—
mass system. Suppose now that the external force is given by F{ cos wt, where Fy and
w are positive constants representing the amplitude and frequency, respectively, of
the force. Then Eq. (7) becomes

mu” + yu' + ku = Fycos wt. (8)

Solutions of Eq. (8) behave very much like the solution in the preceding example.
The general solution of Eq. (8) must have the form

u = cru(t) + coup(t) + Acoswt + Bsinwt = u.(t) + U(1). 9)

The first two terms on the right side of Eq. (9) are the general solution u.(f) of
the homogeneous equation corresponding to Eq. (8), and the latter two terms are
a particular solution U(¢) of the full nonhomogeneous equation. The coefficients
A and B can be found, as usual, by substituting these terms into the differen-
tial equation (8), while the arbitrary constants ¢; and ¢, are available to satisfy
initial conditions, if any are prescribed. The solutions u;(¢) and u;(¢) of the homo-
geneous equation depend on the roots r; and r, of the characteristic equation
mr? + yr + k = 0. Since m, y, and k are all positive, it follows that r; and r, either
are real and negative or are complex conjugates with negative real part. In either
case, both u;(¢) and u,(¢) approach zero as t — oo. Since u,(¢) dies out as ¢ increases,
it is called the transient solution. In many applications, it is of little importance and
(depending on the value of y) may well be undetectable after only a few seconds.
The remaining terms in Eq. (9)—namely, U(¢) = A cos wt + B sin wt—do not die
out as ¢ increases but persist indefinitely, or as long as the external force is applied.
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They represent a steady oscillation with the same frequency as the external force
and are called the steady state solution or the forced response. The transient solution
enables us to satisfy whatever initial conditions may be imposed. With increasing
time, the energy put into the system by the initial displacement and velocity is dis-
sipated through the damping force, and the motion then becomes the response of
the system to the external force. Without damping, the effect of the initial conditions
would persist for all time.

Itis convenient to express U (¢) as a single trigonometric term rather than as a sum
of two terms. Recall that we did this for other similar expressions in Section 3.7. Thus
we write

U(t) = Rcos(wt — §). (10)

The amplitude R and phase § depend directly on A and B and indirectly on the
parameters in the differential equation (8). It is possible to show, by straightforward
but somewhat lengthy algebraic computations, that

F 2,2
R= —0, CcoSsé = M, siné = B, (11)
A A A
where
A= \/mz(a)% — )2 +y2? and ] =k/m. (12)

Recall that wy is the natural frequency of the unforced system in the absence of
damping.

We now investigate how the amplitude R of the steady state oscillation depends on
the frequency w of the external force. Substituting from Eq. (12) into the expression
for Rin Eq. (11) and executing some algebraic manipulations, we find that

12
Rk ?\* ?
— =1 1-—) +T'— , 13

where I' = y?/mk. Observe that the quantity Rk/F, is the ratio of the amplitude R
of the forced response to Fy/k, the static displacement of the spring produced by a
force Fy.

For low frequency excitation—that is, as @ — 0—it follows from Eq. (13) that
Rk/Fy — 1 or R — Fy/k. At the other extreme, for very high frequency excitation,
Eq. (13) implies that R — 0 as w — oo. At an intermediate value of w the amplitude
may have a maximum. To find this maximum point, we can differentiate R with respect
to w and set the result equal to zero. In this way we find that the maximum amplitude
occurs when @ = wpay, Where

2 2 J/2 2 Vz
wmaX:wO_Wza)O (1_m> (14)
Note that wmax < wg and that wp,y is close to wy when y is small. The maximum
value of R is ,
F F
Rmax = 0 = _0 (1 + V_) 5 (15)
yoo/1 — (y?/4mk) Yoo 8mk

where the last expression is an approximation for small y. If y?/mk > 2,then wpax as
given by Eq. (14) is imaginary; in this case the maximum value of R occurs for w = 0,
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and R is a monotone decreasing function of w. Recall that critical damping occurs
when y?/mk = 4.

For small y it follows from Eq. (15) that Ry,ax = Fy/ywo. Thus, for lightly damped
systems, the amplitude R of the forced response when w is near wy is quite large
even for relatively small external forces, and the smaller the value of y, the more
pronounced is this effect. This phenomenon is known as resonance, and it is often
an important design consideration. Resonance can be either good or bad, depending
on the circumstances. It must be taken very seriously in the design of structures,
such as buildings and bridges, where it can produce instabilities that might lead to
the catastrophic failure of the structure. On the other hand, resonance can be put
to good use in the design of instruments, such as seismographs, that are intended to
detect weak periodic incoming signals.

Figure 3.8.2 contains some representative graphs of Rk/F versus w/w for several
values of I' = y?/mk. The graph corresponding to I' = 0.015625 is included because
this is the value of I' that occurs in Example 2 below. Note particularly the sharp
peak in the curve corresponding to I' = 0.015625 near w/wy = 1. The limiting case
as I' — 0 is also shown. It follows from Eq. (13), or from Egs. (11) and (12), that
R — Fy/m|w} — «?| as y — 0 and hence Rk/F, is asymptotic to the vertical line
® = wy, as shown in the figure. As the damping in the system increases, the peak
response gradually diminishes.

RE/F,
10 = |
r—-0 v}'
\
\
sl
I'=0.015625

02 04 06 08 1 12 14 16 18 2(0/650

FIGURE 3.8.2 Forced vibration with damping: amplitude of steady
state response versus frequency of driving force; I' = y?/mk.

Figure 3.8.2 also illustrates the usefulness of dimensionless variables. You can easily
verify that each of the quantities Rk /Fy,w/wo,and I is dimensionless. The importance
of this observation is that the number of significant parameters in the problem has
been reduced to three rather than the five that appear in Eq. (8). Thus only one
family of curves, of which a few are shown in Figure 3.8.2,is needed to describe the
response-versus-frequency behavior of all systems governed by Eq. (8).

The phase angle § also depends in an interesting way on w. For w near zero, it follows
from Egs. (11) and (12) that cos§ = 1 and sin§ = 0. Thus § = 0, and the response is
nearly in phase with the excitation, meaning that they rise and fall together and,
in particular, assume their respective maxima nearly together and their respective
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minima nearly together. For = wp we find that cosd = 0 and sind = 1,50 § = 7/2.
In this case the response lags behind the excitation by n/2; that is, the peaks of
the response occur /2 later than the peaks of the excitation, and similarly for the
valleys. Finally, for o very large, we have cos § = —1 and sin § = 0. Thus § = 7, so that
the response is nearly out of phase with the excitation; this means that the response
is minimum when the excitation is maximum, and vice versa. Figure 3.8.3 shows
the graphs of § versus w/wy for several values of I'. For small damping, the phase
transition from near § = 0 to near § = & occurs rather abruptly, whereas for larger
values of the damping parameter, the transition takes place more gradually.

1)
4=

3 L
I' = 0.015625

r=0.1

| | | |
0 1 2 3 4 wlo,

FIGURE 3.8.3 Forced vibration with damping: phase of steady
state response versus frequency of driving force; I' = y?/mk.

Consider the initial value problem
u” +0.125u' +u =3 coswt, u0) =2, u'0)=0. (16)

Show plots of the solution for different values of the forcing frequency , and compare them
with corresponding plots of the forcing function.

For this system we have wy = 1 and I' = 1/64 = 0.015625. Its unforced motion was discussed
in Example 3 of Section 3.7, and Figure 3.7.7 shows the graph of the solution of the unforced
problem. Figures 3.8.4,3.8.5,and 3.8.6 show the solution of the forced problem (16) for w = 0.3,
o = 1,and w = 2, respectively. The graph of the corresponding forcing function is also shown
in each figure. In this example the static displacement, Fy/k, is equal to 3.

Figure 3.8.4 shows the low frequency case, w/wy = 0.3. After the initial transient response is
substantially damped out, the remaining steady state response is essentially in phase with the
excitation, and the amplitude of the response is somewhat larger than the static displacement.
To be specific, R = 3.2939 and § = 0.041185.

The resonant case,w/wy = 1,is shown in Figure 3.8.5. Here the amplitude of the steady state
response is eight times the static displacement, and the figure also shows the predicted phase
lag of /2 relative to the external force.

The case of comparatively high frequency excitation is shown in Figure 3.8.6. Observe that
the amplitude of the steady forced response is approximately one-third the static displacement
and that the phase difference between the excitation and the response is approximately 7. More
precisely, we find that R = 0.99655 and that § = 3.0585.
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Forcing function

Solution

FIGURE 3.8.4 A forced vibration with damping; solution of
Eq. (16) with = 0.3:u” + 0.1251/ + u = 3 c0s 0.3¢, u(0) =2, u'(0) =0.

Solution

Forcing function

.5 A forced vibration with damping; solution of

Eq. (16) with w = 1: 4" + 0.1254' + u = 3cost, u(0) =2, u/(0) = 0.

FIGURE 3.8

Solution

FIGURE 3.8.6 A forced vibration with damping; solution of
Eq. (16) with = 2: u” + 0.125¢' + u = 3cos 2t, u(0) =2, u'(0) =0.

Forcing function
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Forced Vibrations Without Damping. We now assume that y =0 in Eq. (8), thereby
obtaining the equation of motion of an undamped forced oscillator,

mu” + ku = Fycos wt. 17)

The form of the general solution of Eq. (17) is different, depending on whether the
forcing frequency w is different from or equal to the natural frequency wy = /k/m
of the unforced system. First consider the case w # wy; then the general solution of
Eq. (17) is

U = ¢1 cos wyt + ¢ sin wyt + 2F—02 cos wt. (18)

m(w; — w*)

The constants c¢; and ¢; are determined by the initial conditions. The resulting motion
is, in general, the sum of two periodic motions of different frequencies (wy and w)
and different amplitudes as well.

It is particularly interesting to suppose that the mass is initially at rest, so that
the initial conditions are u(0) = 0 and u/(0) = 0. Then the energy driving the sys-
tem comes entirely from the external force, with no contribution from the initial
conditions. In this case it turns out that the constants ¢; and ¢, in Eq. (18) are
given by

Fy

=, =0, 19
“ m(a)% — w?) @ (19)
and the solution of Eq. (17) is
Fo
= ——— —(cos wt — cos wyt). 20
u o a)z)( w wol) (20)

This is the sum of two periodic functions of different periods but the same
amplitude. Making use of the trigonometric identities for cos(A £ B) with
A = (wg + w)t/2 and B = (wy — w)t/2, we can write Eq. (20) in the form
[ 2F, ) (a)o—a))ti| . (wo+ w)t
= sin .

S1n
m(wf — »?) 2 2

1)

If |wyp — w| is small, then wy+ w is much greater than |wy — w|. Consequently,
sin(wp + w)t/2 is a rapidly oscillating function compared to sin(wy — w)t/2. Thus the
motion is a rapid oscillation with frequency (wy + w)/2 but with a slowly varying

sinusoidal amplitude
2F, sin (wy — w)t
m|wj — @?| 2 '

This type of motion, possessing a periodic variation of amplitude, exhibits what is
called a beat. For example, such a phenomenon occurs in acoustics when two tuning
forks of nearly equal frequency are excited simultaneously. In this case the peri-
odic variation of amplitude is quite apparent to the unaided ear. In electronics, the
variation of the amplitude with time is called amplitude modulation.

Solve the initial value problem
u +u=0.5c0s0.8¢, u) =0, 0 =0, (22)

and plot the solution.
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In this case wy =1, v = 0.8, and Fy = 0.5, so from Eq. (21) the solution of the given
problem is

u = 2.77778(sin 0.1¢)(sin 0.9¢). (23)

A graph of this solution is shown in Figure 3.8.7. The amplitude variation has a slow frequency
of 0.1 and a corresponding slow period of 20rr. Note that a half-period of 10 corresponds to a
single cycle of increasing and then decreasing amplitude. The displacement of the spring—mass
system oscillates with a relatively fast frequency of 0.9, which is only slightly less than the
natural frequency .

Now imagine that the forcing frequency w is increased, say, to w = 0.9. Then the slow
frequency is halved to 0.05, and the corresponding slow half-period is doubled to 20. The
multiplier 2.7778 also increases substantially, to 5.2632. However, the fast frequency is only
marginally increased, to 0.95. Can you visualize what happens as w takes on values closer and
closer to the natural frequency wy = 1?

u
u=2.77778 sin 0.1t
3 / u=2.77778 sin 0.1t sin 0.9¢
/// \\\ /// \\
2 J N p N
/ / \
/ \ / \
/ N / N
1 _// \ b \
| /\/\ | I L\
i 10 20 30\ 40 50 60/ ¢t
\ A 4
\ / | 4
-1\ / N /
A\ /
\ 4
\ / N /
AN A N /
2
\\\ /// \ \\\\ ///
~o__- u=-277778sin0.1t S~___
-3+

FIGURE 3.8.7 A beat; solution of Eq. (22):
u' 4+ u=05c080.8 u) =0, u/'0)=0; u=2.77778(sin 0.1¢)(sin 0.9¢).

Now let us return to Eq. (17) and consider the case of resonance, where w = wy;
thatis, the frequency of the forcing function is the same as the natural frequency of the
system. Then the nonhomogeneous term Fj cos wt is a solution of the homogeneous
equation. In this case the solution of Eq. (17) is

Iy

U = ¢y cos wyt + ¢ sin wot + t sin wot. (24)
2ma)0

Consider the following example.
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Solve the initial value problem

u’ +u=05cost, u@) =0, u'0) =0, (25)

and plot the graph of the solution.
The general solution of the differential equation is

U=cy cost+cysint+0.25¢sint,

and the initial conditions require that ¢; = ¢, = 0. Thus the solution of the given initial value
problem is

u = 0.25tsinzt. (26)

The graph of the solution is shown in Figure 3.8.8.
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FIGURE 3.8.8 Resonance;solution of Eq. (25):
u' +u=0.5cost, u(0)=0, u/(0)=0; u=0.25¢sint.

Because of the term £ sin wt, the solution (24) predicts that the motion will become
unbounded as t — oo regardless of the values of ¢; and ¢;, and Figure 3.8.8 bears this
out. Of course, in reality, unbounded oscillations do not occur, because the spring
cannot stretch infinitely far. Moreover, as soon as u becomes large, the mathemat-
ical model on which Eq. (17) is based is no longer valid, since the assumption that
the spring force depends linearly on the displacement requires that u be small. As
we have seen, if damping is included in the model, the predicted motion remains
bounded; however, the response to the input function Fj cos wt may be quite large if
the damping is small and w is close to wy.
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PROBLEMS

In each of Problems 1 through 4, write the given expression as a product of two trigonometric
functions of different frequencies.

1.
3.

5.

10.

11.

12.

13.

14.

cos 9t — cos 7t 2. sin7t — sin 6t
cos it + cos 2t 4. sin 3t + sin 4t

A mass weighing 4 1b stretches a spring 1.5 in. The mass is given a positive displacement of
2 in from its equilibrium position and released with no initial velocity. Assuming that there
is no damping and that the mass is acted on by an external force of 2 cos 3¢ 1b, formulate
the initial value problem describing the motion of the mass.

. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of

10sin(z/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N
when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium
position with an initial velocity of 3 cm/s, formulate the initial value problem describing
the motion of the mass.

. (a) Find the solution of Problem 5.

(b) Plot the graph of the solution.

(c) If the given external force is replaced by a force 4 sin wt of frequency w, find the value
of w for which resonance occurs.

- (a) Find the solution of the initial value problem in Problem 6.

(b) Identify the transient and steady state parts of the solution.
(c) Plot the graph of the steady state solution.

(d) If the given external force is replaced by a force of 2 cos wt of frequency w, find the
value of w for which the amplitude of the forced response is maximum.

. If an undamped spring—-mass system with a mass that weighs 6 1b and a spring constant

1 Ib/in is suddenly set in motion at ¢ = 0 by an external force of 4 cos 7¢ Ib, determine the
position of the mass at any time, and draw a graph of the displacement versus ¢.

A mass that weighs 8 1b stretches a spring 6 in. The system is acted on by an external force
of 8sin 8¢ 1b. If the mass is pulled down 3 in and then released, determine the position of the
mass at any time. Determine the first four times at which the velocity of the mass is zero.
A spring is stretched 6 in by a mass that weighs 8 1b. The mass is attached to a dashpot

mechanism that has a damping constant of 0.25 1b-s/ft and is acted on by an external force
of 4 cos 2t 1b.

(a) Determine the steady state response of this system.

(b) If the given mass is replaced by a mass m, determine the value of m for which the
amplitude of the steady state response is maximum.

A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the
spring, and the motion takes place in a viscous fluid that offers a resistance numerically
equal to the magnitude of the instantaneous velocity. If the system is driven by an external
force of (3cos3t — 2sin3¢) N, determine the steady state response. Express your answer
in the form R cos(wt — §).

In this problem we ask you to supply some of the details in the analysis of a forced damped
oscillator.

(a) Derive Egs. (10), (11), and (12) for the steady state solution of Eq. (8).

(b) Derive the expression in Eq. (13) for Rk/Fj.

(c) Show that @2, and Ry, are given by Egs. (14) and (15), respectively.

Find the velocity of the steady state response given by Eq. (10). Then show that the velocity
is maximum when o = wy.
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15. Find the solution of the initial value problem

u' +u=FQ@), u(0) =0, u'0) =0,

where
Fot, 0<t<m,
Fit)y=FQRr—1t), nmn<t<2m,
0, 2w < t.

Hint: Treat each time interval separately, and match the solutions in the different
intervals by requiring u and «’ to be continuous functions of ¢.

16. A series circuit has a capacitor of 0.25 x 107° F, a resistor of 5 x 10> , and an inductor of
1 H. The initial charge on the capacitor is zero. If a 12-volt battery is connected to the cir-
cuit and the circuit is closed at ¢ = 0, determine the charge on the capacitor at t = 0.001 s,
att = 0.01 s,and at any time ¢. Also determine the limiting charge as t — oo.

."?/ 17. Consider a vibrating system described by the initial value problem

W'+ i +2u=2coswt,  u(0) =0, u'0)=2.

(a) Determine the steady state part of the solution of this problem.

(b) Find the amplitude A of the steady state solution in terms of w.

(c) Plot A versus w.

(d) Find the maximum value of A and the frequency w for which it occurs.

."?/ 18. Consider the forced but undamped system described by the initial value problem

u' +u =3coswt, u) =0, 0 =0.

(a) Find the solution u(t) for w # 1.

(b) Plot the solution u(t) versus t for w = 0.7, w = 0.8, and w = 0.9. Describe how the
response u(f) changes as w varies in this interval. What happens as w takes on val-
ues closer and closer to 1? Note that the natural frequency of the unforced system
is wy = 1.

."?/ 19. Consider the vibrating system described by the initial value problem

' +u=3coswt, u =1, ') =1.

(a) Find the solution for w # 1.

(b) Plot the solution u(¢) versus ¢ for o = 0.7, = 0.8, and w = 0.9. Compare the results
with those of Problem 18; that is, describe the effect of the nonzero initial conditions.

“?/ 20. For the initial value problem in Problem 18, plot «’ versus u for v = 0.7, » = 0.8, and

® = 0.9. Such a plot is called a phase plot. Use a ¢ interval that is long enough so that the
phase plot appears as a closed curve. Mark your curve with arrows to show the direction
in which it is traversed as ¢ increases.

Problems 21 through 23 deal with the initial value problem
u' + 01250 + 4u = F(1), u) =2, u'0)=0.

In each of these problems:

(a) Plot the given forcing function F(¢) versus ¢, and also plot the solution u(t) versus ¢ on the
same set of axes. Use a ¢ interval that is long enough so the initial transients are substantially
eliminated. Observe the relation between the amplitude and phase of the forcing term and
the amplitude and phase of the response. Note that wy = \/k/m = 2.

(b) Draw the phase plot of the solution; that is, plot u’ versus u.



3.8 Forced Vibrations 219

&0 21. F(1) =3cos(t/4)

&0 22. F(t) =3cos2t

&0 23. F(t) =3cos6t

“Z 24. A spring-mass system with a hardening spring (Problem 32 of Section 3.7) is acted on by

a periodic external force. In the absence of damping, suppose that the displacement of the
mass satisfies the initial value problem

Wt u+ b =cosot, w(0)=0, u'©0) =0.

(a) Let w =1 and plot a computer-generated solution of the given problem. Does the
system exhibit a beat?
(b) Plot the solution for several values of w between 1/2 and 2. Describe how the solution
changes as w increases.

."?, 25. Suppose that the system of Problem 24 is modified to include a damping term and that
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4

Higher Order Linear

F.quations

The theoretical structure and methods of solution developed in the preceding chapter
for second order linear equations extend directly to linear equations of third and
higher order. In this chapter we briefly review this generalization, taking particular
note of those instances where new phenomena may appear, because of the greater
variety of situations that can occur for equations of higher order.

4.1 General Theory of nth Order Linear Equations

An nth order linear differential equation is an equation of the form

dny dnfly dy
Py(t Pyt o+ Poi()—= + P,(0)y = G(¢). 1
0O+ PrO— 2 4 P (0 + Pa(Oy = GO (€]
We assume that the functions Py, . .., P,,and G are continuous real-valued functions

on some interval I: « <t < B, and that P, is nowhere zero in this interval. Then,
dividing Eq. (1) by Py (), we obtain
n

d y dnfly
t
T +pl()dz"*1

Llyl = + ot Pae (t)% +pa()y =g(1). 2
The linear differential operator L of order n defined by Eq. (2) is similar to the second
order operator introduced in Chapter 3. The mathematical theory associated with
Eq. (2) is completely analogous to that for the second order linear equation; for this
reason we simply state the results for the nth order problem. The proofs of most of
the results are also similar to those for the second order equation and are usually left
as exercises.

221
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Theorem 4.1.1

Since Eq. (2) involves the nth derivative of y with respect to ¢, it will, so to speak,
require 7 integrations to solve Eq. (2). Each of these integrations introduces an
arbitrary constant. Hence we expect that to obtain a unique solution it is necessary
to specify # initial conditions

y(to) =vo, Y t) =y ... Y V) =yIY, (3)

where f) may be any pointin the interval / and yy, yj, . . ., yg’fl) is any set of prescribed

real constants. The following theorem, which is similar to Theorem 3.2.1, guarantees
that the initial value problem (2), (3) has a solution and that it is unique.

If the functions p1,p», . . ., pn,and g are continuous on the open interval /, then there
exists exactly one solution y = ¢(¢) of the differential equation (2) that also satisfies
the initial conditions (3), where #; is any point in /. This solution exists throughout
the interval /.

We will not give a proof of this theorem here. However, if the coefficients p1,...,p,
are constants, then we can construct the solution of the initial value problem (2), (3)
much asin Chapter 3;see Sections 4.2 through 4.4. Even though we may find a solution
in this case, we do not know that it is unique without the use of Theorem 4.1.1. A
proof of the theorem can be found in Ince (Section 3.32) or Coddington (Chapter 6).

The Homogeneous Equation. As in the corresponding second order problem, we first
discuss the homogeneous equation

Lyl = y® +p1(0)y™V + -+ pui () + pu(t)y = 0. 4)

If the functions y1, y»,...,y, are solutions of Eq. (4), then it follows by direct
computation that the linear combination

y=cyi(t) + cy2(t) + -+ + cuyn(t), %)

where ¢y, ..., ¢, are arbitrary constants, is also a solution of Eq. (4). It is then natural
to ask whether every solution of Eq. (4) can be expressed as a linear combination
of y1,...,y,. This will be true if, regardless of the initial conditions (3) that are
prescribed, it is possible to choose the constants cy,...,c, so that the linear com-
bination (5) satisfies the initial conditions. That is, for any choice of the point ¢y in 7,
and for any choice of yg, y;, . . . ,yg’fl) ,we must be able to determine ¢y, ..., c, so that
the equations

cy1(to) + -+ -+ cpyu(to) = Yo
a1y (o) + - + ey, () = v

(6)
ey Vo) + - 4 ey V() = yi
are satisfied. Equations (6) can be solved uniquely for the constants c,...,c,,

provided that the determinant of coefficients is not zero. On the other hand, if the
determinant of coefficients is zero, then it is always possible to choose values of
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Theorem 4.1.2

EXAMPLE

1

Y05 Yoo -« - » y(()”fl) so that Egs. (6) do not have a solution. Therefore a necessary and
sufficient condition for the existence of a solution of Egs. (6) for arbitrary values of

Y0s Voo - - - ,y(()"_l) is that the Wronskian

Y1 Y2 co Yn
i ¥ R
W(y1,-~-,)’n): . . (7)
-1 -1 -1
ygn ) y;n ) . yfln )
is not zero at t = fy. Since £y can be any point in the interval /, it is necessary and
sufficient that W (y1, y»,...,y,) be nonzero at every point in the interval. Just as for
the second order linear equation, it can be shown that if yi, y», ..., y, are solutions

of Eq. (4), then W(y1,y2,...,y,) either is zero for every ¢ in the interval  or else is
never zero there; see Problem 20. Hence we have the following theorem.

If the functions py, p, . . ., p, are continuous on the open interval /, if the functions
Y1, Y2, - - -, yn are solutions of Eq. (4), and if W (y1,y2, ..., y,) () # 0 for at least one
point in /, then every solution of Eq. (4) can be expressed as a linear combination
of the solutions y1, y2, ..., Vu.

A set of solutions yy, ..., y, of Eq. (4) whose Wronskian is nonzero is referred to
as a fundamental set of solutions. The existence of a fundamental set of solutions can
be demonstrated in precisely the same way as for the second order linear equation
(see Theorem 3.2.5). Since all solutions of Eq. (4) are of the form (5), we use the term
general solution to refer to an arbitrary linear combination of any fundamental set
of solutions of Eq. (4).

Linear Dependence and Independence. We now explore the relationship between funda-
mental sets of solutions and the concept of linear independence, a central idea in the
study of linear algebra. The functions fi,f,...,f, are said to be linearly dependent
on an interval / if there exists a set of constants kq, ko, . . ., k,,, not all zero, such that

kifi(t) + kafo(t) + - - + kyfu(t) = 0 ®)

for all ¢ in /. The functions fi, ..., f, are said to be linearly independent on / if they
are not linearly dependent there.

Determine whether the functions fi (1) = 1,f,(t) = t,and f3(¢) = > are linearly independent or
dependent on the interval / : —oo <t < o0.
Form the linear combination

kifi(t) + kaofa (1) + ksfs (1) = ki + kat + kst®,
and set it equal to zero to obtain

ki + kot + kst? = 0. )
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EXAMPLE

2

If Eq. (9) is to hold for all ¢ in /, then it must certainly be true at any three distinct points in /.
Any three points will serve our purpose, but it is convenient to choose t = 0, = 1,and ¢t = —1.
Evaluating Eq. (9) at each of these points, we obtain the system of equations

k1 =0,

ki +k, + k3 =0, (10)

ki —ky+ ks =0.
From the first of Egs. (10) we note that k; = 0; then from the other two equations it follows
that k, = k3 = 0 as well. Therefore, there is no set of constants ki, k,, k3, not all zero, for
which Eq. (9) holds even at the three chosen points, much less throughout 7. Thus the given
functions are not linearly dependent on /, so they must be linearly independent. Indeed, they

are linearly independent on any interval. This can be established just as in this example, possibly
using a different set of three points.

Determine whether the functions
i =1, hO =2+t fi(t)=3—1, and fy() =4+

are linearly independent or dependent on any interval /.
Form the linear combination

kifi() + kafo(0) + kafs (D) + kafa(0) = ki + ka2 + 1) + k33 — £7) + ka(41 + 1%)
= (k1 + 2k + 3k3) + (ko + dky)t + (—ks + k4)[2. (11)

For this expression to be zero throughout an interval, it is certainly sufficient to require that
ki +2ko +3k3 =0, ko+4ks =0, —ksz+ks=0.

These three equations, with four unknowns, have many solutions. For instance, if k4 = 1, then
ks =1, k; = —4,and k; = 5. If we use these values for the coefficients in Eq. (11), then we
have

5H@) —4H0 + 0 + fa@) =0

for each value of t. Thus the given functions are linearly dependent on every interval.

The concept of linear independence provides an alternative characterization of
fundamental sets of solutions of the homogeneous equation (4). Suppose that the
functions y1, . . ., y, are solutions of Eq. (4) on an interval /,and consider the equation

kiyi () + -+ + knya(t) = 0. (12)
By differentiating Eq. (12) repeatedly, we obtain the additional n — 1 equations
kiy| (@) + -+ kny, (t) = 0,
: (13)
Ky @) + -+ Ky () = 0.

The system consisting of Egs. (12) and (13) is a system of z linear algebraic equations
for the n unknowns kj, ..., k,. The determinant of coefficients for this system is the
Wronskian W (yy,...,y,)() of y1,...,y,. This leads to the following theorem.
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Theorem 4.1.3

If y1(¢),...,yn(t) is a fundamental set of solutions of Eq. (4)
Lyl =y® +p1@y™ " + - + par1(®)y + pa®)y =0

on an interval 7, then y;(¢),...,y,(t) are linearly independent on /. Conversely, if
y1(1),...,yn(t) are linearly independent solutions of Eq. (4) on /, then they form a
fundamental set of solutions on /.

To prove this theorem, first suppose that y;(¢),...,y,(¢) is a fundamental set of
solutions of Eq. (4) on /. Then the Wronskian W (yy,...,y,)(t) # 0 for every ¢ in
1. Hence the system (12), (13) has only the solution ky = --- = k,, = 0 for every ¢
in [. Thus y(t), ..., y,(t) cannot be linearly dependent on / and must therefore be
linearly independent there.

To demonstrate the converse, let yi(¢),...,y,(¢) be linearly independent on /. To
show that they form a fundamental set of solutions, we need to show that their
Wronskian is never zero in /. Suppose that this is not true; then there is at least one
point fy where the Wronskian is zero. At this point the system (12), (13) has a nonzero

solution; let us denote it by k7, ..., k. Now form the linear combination
D) = kiyi(t) + - - + kyya(0). (14)
Then ¢(¢) satisfies the initial value problem
Liyl=0, yt)=0, y@)=0, ..., y"P)=0. (15)

The function ¢ satisfies the differential equation because it is a linear combination of
solutions; it satisfies the initial conditions because these are just the equations in the
system (12), (13) evaluated at t,. However, the function y(¢#) = 0 for all ¢ in 7 is also
a solution of this initial value problem, and by Theorem 4.1.1, the solution is unique.
Thus ¢(¢) = 0 for all # in . Consequently, y1(¢), ..., y,(¢) are linearly dependent on
I, which is a contradiction. Hence the assumption that there is a point where the
Wronskian is zero is untenable. Therefore, the Wronskian is never zero on 7, as was
to be proved.

Note that for a set of functions fi, .. ., f, that are not solutions of Eq. (4), the con-
verse part of Theorem 4.1.3 is not necessarily true. They may be linearly independent
on [/ even though the Wronskian is zero at some points, or even every point, but
with different sets of constants ky,. .., k, at different points. See Problem 25 for an
example.

The Nonhomogeneous Equation. Now consider the nonhomogeneous equation (2)

LIyl =y™ +p10y" ™" + -+ pa(O)y = g0).

If Y7 and Y, are any two solutions of Eq. (2), then it follows immediately from the
linearity of the operator L that

LYy = Y>](1) = LIY11(1) — LIY2](t) = g(1) — g(1) = 0.

Hence the difference of any two solutions of the nonhomogeneous equation (2) is a
solution of the homogeneous equation (4). Since any solution of the homogeneous
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equation can be expressed as a linear combination of a fundamental set of solutions
Y1, ---,Yn, it follows that any solution of Eq. (2) can be written as

y=cy1() + c2y2(t) + -+ + cuya(®) + Y (0, (16)
where Y is some particular solution of the nonhomogeneous equation (2). The linear
combination (16) is called the general solution of the nonhomogeneous equation (2).

Thus the primary problem is to determine a fundamental set of solutions y1,...,y,
of the homogeneous equation (4). If the coefficients are constants, this is a fairly
simple problem;it is discussed in the next section. If the coefficients are not constants,
it is usually necessary to use numerical methods such as those in Chapter 8 or series
methods similar to those in Chapter 5. These tend to become more cumbersome as
the order of the equation increases.

To find a particular solution Y (¢) in Eq. (16), the methods of undetermined coef-
ficients and variation of parameters are again available. They are discussed and
illustrated in Sections 4.3 and 4.4, respectively.

The method of reduction of order (Section 3.4) also applies to nth order linear
equations. If y; is one solution of Eq. (4), then the substitution y = v(?)y; (¢) leads to
a linear differential equation of order n — 1 for v’ (see Problem 26 for the case when
n = 3). However, if n > 3, the reduced equation is itself at least of second order, and
only rarely will it be significantly simpler than the original equation. Thus, in practice,
reduction of order is seldom useful for equations of higher than second order.

PROBLEMS

In each of Problems 1 through 6, determine intervals in which solutions are sure to exist.

Loy® +dy” +3y =t 2. ty" + (sint)y” + 3y = cost
3.1t — 1)y® + ey’ + 427y =0 4"+ + 2y + 1y =Int
5. x—Dy® + (x +1)y" + (tanx)y =0 6. (2 —4)y® +x2y"+9y =0

In each of Problems 7 through 10, determine whether the given functions are linearly depen-
dent or linearly independent. If they are linearly dependent, find a linear relation among
them.

7. i)y =2t=3, O =2 +1, f) =202t
8. fit)y=2t -3, H)=202+1, ft)=3>+t
9. ity =2t -3, O =+1, ) =22—t, L) = +1t+1
10. i) =2t -3, L =L+1, L =20t ful)=2+t+1

In each of Problems 11 through 16, verify that the given functions are solutions of the
differential equation, and determine their Wronskian.

11. y" +y =0; 1, cost, sint

12. y® +y" =0; 1, ¢, cost, sint

13. y" +2y" —y =2y =0; e, e, e

14. y® 42y 4y =0; 1, ¢, e, te!

15. xy" —y" =0; 1, x, x°

16. X3y +x%y" —2xy +2y =0; x, x%, 1/x

17. Show that W (5,sin?¢,cos2¢) = 0 for all ¢. Can you establish this result without direct
evaluation of the Wronskian?

18. Verity that the differential operator defined by

Lyl =y +p1@y"™ " + -+ pa()y
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19.

20.

is a linear differential operator. That is, show that

Llciyr + ¢2y2] = c1 Ly1] + 2 L[y2],

where y; and y, are n-times-differentiable functions and ¢; and ¢, are arbitrary constants.
Hence, show that if yy, y»,...,y, are solutions of L[y] = 0, then the linear combination
c1y1 + - -+ ¢qy, 1s also a solution of L[y] = 0.

Let the linear differential operator L be defined by
Liyl = aoy™ + aiy" ™" + -+ + any,
where ay,ay, . ..,a, are real constants.
(a) Find L[z"].
(b) Find L[e"].

(c) Determine four solutions of the equation y® — 5y” + 4y = 0. Do you think the four
solutions form a fundamental set of solutions? Why?

In this problem we show how to generalize Theorem 3.2.7 (Abel’s theorem) to higher
order equations. We first outline the procedure for the third order equation

/1

Y+ P10y + p2(0)y + p3(y = 0.
Let y1, 2, and y3 be solutions of this equation on an interval /.
(a) If W = W(yy,y2,y3), show that
yro Y2 y3
Wi=lyi ¥
oy

Hint: The derivative of a 3-by-3 determinant is the sum of three 3-by-3 determinants
obtained by differentiating the first, second, and third rows, respectively.

(b) Substitute for y{’,y5’, and yy from the differential equation; multiply the first row by
p3, multiply the second row by p,, and add these to the last row to obtain

W = —pi(OW.
(c) Show that
Wy1,y2,y3)(t) = cexp [— /P1(t) dt] .

It follows that W is either always zero or nowhere zero on /.
(d) Generalize this argument to the nth order equation

Y 4 pr@y" Y+ 4 )y =0
with solutions y, ..., y,. That is, establish Abel’s formula

Wi,...,y.) (@) = cexp [—/pl(z) dz]

for this case.

In each of Problems 21 through 24, use Abel’s formula (Problem 20) to find the Wronskian of
a fundamental set of solutions of the given differential equation.

21.
23.

V' 42y —y =3y =0 22. y(4)+y=()
' 2y —y +1y=0 24, 2yW 41y +y" —dy =0
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25. (a) Show that the functions f(¢) =*|t| and g(¢) = are linearly dependent on
O<t<landon—-1<t<0O.

(b) Show that f(¢) and g(¢) are linearly independent on —1 < ¢ < 1.
(c) Show that W(f,g)(r) is zero forallrin —1 < ¢ < 1.

26. Show that if y; is a solution of
Y+ 1@y +pa0)y +ps()y =0,

then the substitution y = y; (t)v(¢) leads to the following second order equation for v':

/11

v + GByy + pry)v” + Gyi 4 2p1y; + pay)v’ =0.

In each of Problems 27 and 28, use the method of reduction of order (Problem 26) to solve
the given differential equation.

27. 2—t)y"+ 2t =3)y"—ty'+y=0, t<2 yi(t) =¢
28. 2(t+3)y” =3t +2)y" +6(1+1)y —6y=0, t>0; yit) =12, yt) =13

4.2 Homogeneous Equations with Constant Coefficients

Consider the nth order linear homogeneous differential equation
Lyl = apy™ +aiy" ™" + -+ ay_1y' + any = 0, (1)

where ag, a1, ...,a, are real constants and ag # 0. From our knowledge of second
order linear equations with constant coefficients, it is natural to anticipate that y = e’
is a solution of Eq. (1) for suitable values of r. Indeed,

Lle™ = e (agr" + arr" " + -+ apar + a,) = " Z(r) ()

for all r, where
Zr) =apr" + a4 -+ a1 r + ay,. (3)

For those values of r for which Z(r) = 0, it follows that L[¢""]=0and y =¢" is a
solution of Eq. (1). The polynomial Z(r) is called the characteristic polynomial, and
the equation Z(r) = 0 is the characteristic equation of the differential equation (1).
Since ay # 0,we know that Z(r) is a polynomial of degree n and therefore has n zeros,!
say, r1, 72, . . . , 'y, some of which may be equal. Hence we can write the characteristic
polynomial in the form

Z(r) = ao(r —r))(r —ry) -~ (r —ry). 4)

! An important question in mathematics for more than 200 years was whether every polynomial equation
has at least one root. The affirmative answer to this question, the fundamental theorem of algebra, was
given by Carl Friedrich Gauss (1777-1855) in his doctoral dissertation in 1799, although his proof does
not meet modern standards of rigor. Several other proofs have been discovered since, including three by
Gauss himself. Today, students often meet the fundamental theorem of algebra in a first course on complex
variables, where it can be established as a consequence of some of the basic properties of complex analytic
functions.
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1

Real and Unequal Roots. If the roots of the characteristic equation are real and no
two are equal, then we have n distinct solutions e, e, ..., e of Eq. (1). If these
functions are linearly independent, then the general solution of Eq. (1) is

y =cre™ + e + -+ e )
One way to establish the linear independence of e/, e", ..., e is to evaluate their

Wronskian determinant. Another way is outlined in Problem 40.

Find the general solution of

Yy +y" =Ty —y + 6y =0. (6)
Also find the solution that satisfies the initial conditions
y(©0) =1, y'(0) =0, y'(0) = =2, y"'(0) = -1 (7
and plot its graph.
Assuming that y = ¢, we must determine r by solving the polynomial equation
4P =77 —r4+6=0. 8)
The roots of this equation are r; =1, r, = —1, r; = 2, and r4 = —3. Therefore, the general
solution of Eq. (6) is
y =cie' + e’ +cze? 4 cue . 9)
The initial conditions (7) require that ¢y, .. ., ¢4 satisfy the four equations

a+o+ g+ = 1,

C1—C2+2C3— 3C4: 0,

ci+c+4cs+ 9y = -2, (10)
c1— ¢+ 8¢z —27¢cy = —1.
By solving this system of four linear algebraic equations, we find that
clz%, Cz=1%, Cs=—%, C4=—%-
Thus the solution of the initial value problem is
y=4e + e =2 — L. 11)

The graph of the solution is shown in Figure 4.2.1.

0.5 1 t

-1

FIGURE 4.2.1 Solution of the initial value problem (6), (7):
y(4) +y/// _ 7y// _ y/ + 6y j— O’ y(o) — 1’ y/(O) — O’ y//(O) — _2’ y///(o) — _1.
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As Example 1 illustrates, the procedure for solving an nth order linear differential
equation with constant coefficients depends on finding the roots of a corresponding
nth degree polynomial equation. If initial conditions are prescribed, then a system
of n linear algebraic equations must be solved to determine the proper values of
the constants ¢y, . ..,c,. Each of these tasks becomes much more complicated as n
increases, and we have omitted the detailed calculations in Example 1. Computer
assistance can be very helpful in such problems.

For third and fourth degree polynomials there are formulas? analogous to the
formula for quadratic equations but more complicated, that give exact expressions for
the roots. Root-finding algorithms are readily available on calculators and computers.
Sometimes they are included in the differential equation solver, so that the process of
factoring the characteristic polynomial is hidden and the solution of the differential
equation is produced automatically.

If you are faced with the need to factor the characteristic polynomial by hand, here
is one result that is sometimes helpful. Suppose that the polynomial

ar" +air" 4 ayr+a, =0 (12)

has integer coefficients. If r = p/q is a rational root, where p and g have no common
factors, then p must be a factor of a,, and ¢ must be a factor of ay. For example, in
Eq. (8) the factors of ay are 1 and the factors of a, are +1, 2, 43, and +6. Thus
the only possible rational roots of this equation are 1, £2, 43, and +6. By testing
these possible roots, we find that 1, —1,2, and —3 are actual roots. In this case there
are no other roots, since the polynomial is of fourth degree. If some of the roots are
irrational or complex, as is usually the case, then this process will not find them, but
at least the degree of the polynomial can be reduced by dividing the polynomial by
the factors corresponding to the rational roots.

If the roots of the characteristic equation are real and different, we have seen
that the general solution (5) is simply a sum of exponential functions. For large values
of ¢ the solution is dominated by the term corresponding to the algebraically largest
root. If this root is positive, then solutions become exponentially unbounded, whereas
if it is negative, then solutions tend exponentially to zero. Finally, if the largest root
is zero, then solutions approach a nonzero constant as ¢ becomes large. Of course,
for certain initial conditions, the coefficient of the otherwise dominant term may be
zero; then the nature of the solution for large ¢ is determined by the next largest root.

Complex Roots. If the characteristic equation has complex roots, they must occur in
conjugate pairs, A %+ i, since the coefficients ag, a1, ay, . . . ,a, are real numbers. Pro-
vided that none of the roots is repeated, the general solution of Eq. (1) is still of the

2The method for solving the cubic equation was apparently discovered by Scipione dal Ferro (1465-
1526) about 1500, although it was first published in 1545 by Girolamo Cardano (1501-1576) in his Ars
Magna. This book also contains a method for solving quartic equations that Cardano attributes to his pupil
Ludovico Ferrari (1522-1565). The question of whether analogous formulas exist for the roots of higher
degree equations remained open for more than two centuries, until 1826, when Niels Abel showed that
no general solution formulas can exist for polynomial equations of degree five or higher. A more general
theory was developed by Evariste Galois (1811-1832) in 1831, but unfortunately it did not become widely
known for several decades.
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2

form of Eq. (5). However, just as for the second order equation (Section 3.3), we can
replace the complex-valued solutions e*™*" and e*~*" by the real-valued solutions

e cos put, e sin put (13)

obtained as the real and imaginary parts of e***" Thus, even though some of
the roots of the characteristic equation are complex, it is still possible to express the
general solution of Eq. (1) as a linear combination of real-valued solutions.

Find the general solution of

yP —y=0. (14)
Also find the solution that satisfies the initial conditions
y(0) =7/2, y'(0) = —4, y'(0) =5/2, y'(0) =-2 (15)

and draw its graph.
Substituting e” for y, we find that the characteristic equation is

1= =-D0*+1) =0.
Therefore, the roots are r = 1, —1,i, —i, and the general solution of Eq. (14) is
y= cle’ + e +c3cost+cysint.
If we impose the initial conditions (15), we obtain
¢ =0, ¢ =3, c;=1/2, cy=—1;
thus the solution of the given initial value problem is
y =3¢+ jcost—sint. (16)

The graph of this solution is shown in Figure 4.2.2.

\/\/\

/4 6 \8_10 12 \14 t

2L

FIGURE 4.2.2 Solution of the initial value problem (14), (15):
YO —y =0, y(0)=7/2, y(0) =—4, y'(0)=5/2, y"(0) = -

Observe that the initial conditions (15) cause the coefficient ¢; of the exponentially growing
term in the general solution to be zero. Therefore, this term is absent in the solution (16),
which describes an exponential decay to a steady oscillation, as Figure 4.2.2 shows. However,
if the initial conditions are changed slightly, then ¢; is likely to be nonzero, and the nature of
the solution changes enormously. For example, if the first three initial conditions remain the
same, but the value of y”’(0) is changed from —2 to —15/8, then the solution of the initial value
problem becomes

y=5e +2e '+ 1cost— sint. 17)
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The coefficients in Eq. (17) differ only slightly from those in Eq. (16), but the exponentially
growing term, even with the relatively small coefficient of 1/32, completely dominates the
solution by the time ¢ is larger than about 4 or 5. This is clearly seen in Figure 4.2.3, which
shows the graphs of the two solutions (16) and (17).

N~ O 0 R
I

= 4 6 ~— t

FIGURE 4.2.3 The blue curve is the solution of the initial value problem (14), (15)
and is the same as the curve in Figure 4.2.2. The black curve is the solution of the
modified problem in which the last initial condition is changed to y”"(0) = —15/8.

Repeated Roots. 1If the roots of the characteristic equation are not distinct—that is,
if some of the roots are repeated—then the solution (5) is clearly not the general
solution of Eq. (1). Recall that if | is a repeated root for the second order linear
equation agy” + a1y’ + apy = 0, then two linearly independent solutions are ¢!’ and
te"'. For an equation of order n, if a root of Z(r) = 0, say r = ry, has multiplicity s
(where s < n), then

ettt et .., et (18)

are corresponding solutions of Eq. (1). See Problem 41 for a proof of this statement,
which is valid whether the repeated root is real or complex.

Note that a complex root can be repeated only if the differential equation (1) is
of order four or higher. If a complex root A 4 iu is repeated s times, the complex
conjugate A — iu is also repeated s times. Corresponding to these 2s complex-valued
solutions, we can find 2s real-valued solutions by noting that the real and imaginary
parts of e+ eG+imt - ys=1o(G+W! are also linearly independent solutions:

eMcosput, eMsinut, te'cosut, teMsinut,
.., tleMcosut, tleMsin put.
Hence the general solution of Eq. (1) can always be expressed as a linear combination
of n real-valued solutions. Consider the following example.

Find the general solution of
Y9 42y +y=0. (19)

The characteristic equation is
A2 +1=+ D +1) =0.
The roots are r = i,i, —i, —i, and the general solution of Eq. (19) is

Yy =c1cost+ cysint + c3t cost + cut sint.
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In determining the roots of the characteristic equation, it may be necessary to
compute the cube roots, the fourth roots, or even higher roots of a (possibly com-
plex) number. This can usually be done most conveniently by using Euler’s formula
e = cost + isint and the algebraic laws given in Section 3.3. This is illustrated in the
following example.

Find the general solution of
yY+y=o0. (20)

The characteristic equation is
P 4+1=0.
To solve the equation, we must compute the fourth roots of —1. Now —1, thought of as a
complex number, is —1 + 0i. It has magnitude 1 and polar angle r. Thus

—1=cosm+isinm = ¢~

Moreover, the angle is determined only up to a multiple of 2. Thus

—1 = cos(xr + 2mn) + isin(x + 2mn) = 20,

where m is zero or any positive or negative integer. Thus

. T mu . (T mxw
(=Dt = l/Atma/D) — cos (Z + 7) + isin <Z + 7) .
The four fourth roots of —1 are obtained by setting m = 0, 1,2, and 3; they are
1+i —14i —1-i 1—i
It is easy to verify that, for any other value of m, we obtain one of these four roots. For
example, corresponding to m = 4, we obtain (1 + i)/+/2. The general solution of Eq. (20) is

y=e/V? <c1 cos \% + ¢, sin é) +e V2 (C3 cos % + ¢4 sin \%) ) (21)

In conclusion, we note that the problem of finding all the roots of a polynomial
equation may not be entirely straightforward, even with computer assistance. For
instance, it may be difficult to determine whether two roots are equal or merely
very close together. Recall that the form of the general solution is different in these
two cases.

If the constants ag, a1, . . . ,a, in Eq. (1) are complex numbers, the solution of Eq. (1)
is still of the form (4). In this case, however, the roots of the characteristic equation
are, in general, complex numbers, and it is no longer true that the complex conjugate
of aroot is also a root. The corresponding solutions are complex-valued.

PROBLEMS

In each of Problems 1 through 6, express the given complex number in the form
R(cos@ + isinf) = Re'.

Lo1+i 2. —1++/3i

3. -3 4. —i

5.V3—i 6. —1—i
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In each of Problems 7 through 10, follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7. 113 8. (11—l
9. 11/ 10. [2(cos 7/3 + isinm/3)]"/?
In each of Problems 11 through 28, find the general solution of the given differential equation.
11 y" =y" =y +y=0 12. y" =3y" 4+3y' =y =0
13. 2y” —4y" =2y +4y =0 14, y® —4y” +4y" =0
15. y© +y=0 16. yW —5y" +4y =0
17. y© —3y® 4+ 3y" —y =0 18. y© —y" =0
19. y© —3y® +3y” —3y" +2y' =0 20. y® —8y' =0
21, y® +8y@ +16y =0 22. y9 4+2y"+y=0
23. y" =5y"+3y'+y =0 24, y" +5y"+6y' +2y =0
&0 2518y +21y" +14y +4y =0 &0 26,y —Ty" +6y" +30y —36y =0
@0 27. 129431y + 75y + 37y + 5y =0 g0 28. y @ +6y" + 17y +22y' + 14y =0

In each of Problems 29 through 36, find the solution of the given initial value problem, and
plot its graph. How does the solution behave as t — co0?

& 29.
& 30.
¢ 3L
& 32
¢ 3.
¢ 34
¢ 3.
& 36.

37.

38.

39.

Y4y =0 y0) =0, y0) =1, y'(0)=2

YO +y=0,  yO0) =0, y©O0)=0, y'(©0)=-1, y"0)=0

YO —dy"+4y" =0,  y=-1, yh=2, y'(1)=0, y"(1)=0

Y =y'+y -y=0  y0 =2, y0)=-1, y"0)=-2

2y —y" =9y 44y +4y =0,  yO0)=-2, Y(©0)=0, y'0)=-2, y'0)=0
" +y +5y=0;  yO0) =2, yO0) =1, y'(0)=-1

6y +5y"+y =0;  y0)=-2, y0)=2, y"(0)=0

YO 46y + 17y +22y +14y =0;  yO) =1, y©)=-2, y'(0) =0,

y"(0)=3

Show that the general solution of y* — y = 0 can be written as

y =cjcost+ c;sint + c3cosht + ¢4 sinht.

Determine the solution satisfying the initial conditions y(0) =0, y'(0) =0, y"(0) =1,
y”(0) = 1. Why is it convenient to use the solutions cosh ¢ and sinh ¢ rather than e’ and
e 17

Consider the equation y® —y = 0.

(a) Use Abel’s formula [Problem 20(d) of Section 4.1] to find the Wronskian of a
fundamental set of solutions of the given equation.

(b) Determine the Wronskian of the solutions ¢, e, cos ¢, and sin ¢.
(c) Determine the Wronskian of the solutions cosh ¢, sinh ¢, cost, and sin z.
Consider the spring-mass system, shown in Figure 4.2.4, consisting of two unit masses

suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.

(a) Show that the displacements u; and u; of the masses from their respective equilibrium
positions satisfy the equations

u] + 5u; = 2uy, uy + 2uy = 2uy. 6]
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(b) Solve the first of Eqgs. (i) for u, and substitute into the second equation, thereby
obtaining the following fourth order equation for u;:

Ul + 7 + 6uy = 0. (ii)

Find the general solution of Eq. (ii).
(c) Suppose that the initial conditions are

w0 =1, @©0)=0, w©0) =2 0 =0. (iif)

Use the first of Egs. (i) and the initial conditions (iii) to obtain values for u{(0) and u/’(0).
Then show that the solution of Eq. (ii) that satisfies the four initial conditions on u; is
uy(t) = cost. Show that the corresponding solution u; is u,(t) = 2 cost.

(d) Now suppose that the initial conditions are
u1(0) = -2, u}(0) =0, u(0) =1, uy(0) = 0. (iv)

Proceed as in part (c) to show that the corresponding solutions are u;(f) = —2 cos /6t
and u, (1) = cos /61

(e) Observe that the solutions obtained in parts (c) and (d) describe two distinct modes
of vibration. In the first, the frequency of the motion is 1, and the two masses move in
phase, both moving up or down together; the second mass moves twice as far as the first.
The second motion has frequency +/6, and the masses move out of phase with each other,
one moving down while the other is moving up, and vice versa. In this mode the first mass
moves twice as far as the second. For other initial conditions, not proportional to either
of Egs. (iii) or (iv), the motion of the masses is a combination of these two modes.

FIGURE 4.2.4 A two-spring, two-mass system.

40. In this problem we outline one way to show thatif ry, ..., r, are all real and different, then
e’ ..., e"" are linearly independent on —oco < t < oo. To do this, we consider the linear
relation

eV 4. e =0, —00 <t < 00 (i)

and show that all the constants are zero.
(a) Multiply Eq. (i) by e™"* and differentiate with respect to ¢, thereby obtaining

C2(72 _ rl)e(’z_’”' R Cn(rn _ rl)e(m—rl)t —0.
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41.

(b) Multiply the result of part (a) by e~">~"V" and differentiate with respect to ¢ to obtain
e3(r3 — 1) (r3 — r)e T (1 — 1) (g — )T = 0.
(c) Continue the procedure from parts (a) and (b), eventually obtaining
Cn(rp —Tp-1) -+ (ry — rl)e(rnir"il)[ =0.

Hence ¢, = 0, and therefore,
Clerlt + -+ Cnfler"’” =0.

(d) Repeat the preceding argument to show that ¢,_; = 0. In a similar way it follows that
Cpp = --- = ¢y = 0. Thus the functions ¢''’, ..., e are linearly independent.

In this problem we indicate one way to show that if » = r; is a root of multiplicity s
of the characteristic polynomial Z(r), then e"t’, te'\!, ..., *~'e"1! are solutions of Eq. (1).
This problem extends to nth order equations the method for second order equations given
in Problem 22 of Section 3.4. We start from Eq. (2) in the text

L") =e"Z(r) (1)

and differentiate repeatedly with respect to r, setting r = r; after each differentiation.
(a) Observe that if ry is a root of multiplicity s, then Z(r) = (r — r)*q(r), where q(r) is
a polynomial of degree n — s and g(r1) # 0. Show that Z(ry), Z'(ry),...,Z" V(r)) are all
zero,but Z¥(ry) # 0.

(b) By differentiating Eq. (i) repeatedly with respect to r, show that

3 o a |l It
EL[e ]_L[are :|_L[te 1,

as—l |
ey o s—1 rt
57 Lle" = Lir"el.
(c) Show that e"!,ze"!, ..., r*"e"! are solutions of Eq. (1).

4.3 The Method of Undetermined Coefficients

A particular solution Y of the nonhomogeneous nth order linear equation with

constant coefficients

Lyl = agy™ + a1y P + -+ a,_1y + any = g(1) (1)

can be obtained by the method of undetermined coefficients, provided that g(¢) is
of an appropriate form. Although the method of undetermined coefficients is not

as

general as the method of variation of parameters described in the next section, it

is usually much easier to use when it is applicable.

Just as for the second order linear equation, when the constant coefficient lin-

ear differential operator L is applied to a polynomial Agt™ + At ' +... + A,,, an
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2

exponential function e*, a sine function sin B¢, or a cosine function cos ft, the result
is a polynomial, an exponential function, or a linear combination of sine and cosine
functions, respectively. Hence, if g(¢) is a sum of polynomials, exponentials, sines, and
cosines, or products of such functions, we can expect that it is possible to find Y (¢)
by choosing a suitable combination of polynomials, exponentials, and so forth, mul-
tiplied by a number of undetermined constants. The constants are then determined
by substituting the assumed expression into Eq. (1).

The main difference in using this method for higher order equations stems from
the fact that roots of the characteristic polynomial equation may have multiplicity
greater than 2. Consequently, terms proposed for the nonhomogeneous part of the
solution may need to be multiplied by higher powers of # to make them different from
terms in the solution of the corresponding homogeneous equation. The following
examples illustrate this. In these examples we have omitted numerous straightfor-
ward algebraic steps, because our main goal is to show how to arrive at the correct
form for the assumed solution.

Find the general solution of
y///_3y//+3y/_y=4et. (2)

The characteristic polynomial for the homogeneous equation corresponding to Eq. (2) is
P=3r+3r—1=@u-17°
so the general solution of the homogeneous equation is
Ve(t) = cre' + cate' + c3t’e. 3)

To find a particular solution Y (f) of Eq. (2), we start by assuming that Y (f) = Ae'. However,
since ¢', te', and 2’ are all solutions of the homogeneous equation, we must multiply this
initial choice by 3. Thus our final assumption is that Y (1) = Ar’¢’, where A is an undeter-
mined coefficient. To find the correct value for A, we differentiate Y (¢) three times, substitute
for y and its derivatives in Eq. (2), and collect terms in the resulting equation. In this way we
obtain

6Ae' = 4e'.
Thus A = % and the particular solution is

Y1) =3re. (4)
The general solution of Eq. (2) is the sum of y.(¢) from Eq. (3) and Y (¢) from Eq. (4):

y = cie' + cate! + cst’e’ + %t3e’.

Find a particular solution of the equation
y® 4+2y" 4y =3sint — 5cost. (5)
The general solution of the homogeneous equation was found in Example 3 of Section 4.2;
it is
Ve(t) = ¢y cost + ¢ sint + c3t cost + ¢yt sint, (6)
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EXAMPLE

3

corresponding to the roots r = i,i,—i,and —i of the characteristic equation. Our initial assump-
tion for a particular solutionis Y (f) = A sin¢ + B cos ¢, but we must multiply this choice by ¢* to
make it different from all solutions of the homogeneous equation. Thus our final assumption is

Y(t) = A’ sint + Bt* cost.

Next, we differentiate Y (¢) four times, substitute into the differential equation (4), and collect
terms, obtaining finally
—8Assint — 8B cost = 3sint — 5cost.

Thus A = —2, B = 2, and the particular solution of Eq. (4) is

Y () = —3sint + 1 cost. ™)

If g(¢) is a sum of several terms, it may be easier in practice to compute separately
the particular solution corresponding to each term in g(t). As for the second order
equation, the particular solution of the complete problem is the sum of the particular
solutions of the individual component problems. This is illustrated in the following
example.

Find a particular solution of
y" —4y =t +3cost +e . (8)
First we solve the homogeneous equation. The characteristic equation is 3 — 4r = 0, and

the roots are r = 0, £2; hence

ye(l) = ¢c1 + c2e* + ez

We can write a particular solution of Eq. (8) as the sum of particular solutions of the differential
equations
2t

y/// _ 4y/ — t, y/// _ 4y/ — 3COS l, y/// _ 4y/ — e 2

Our initial choice for a particular solution Y (¢) of the first equation is Ayt + A1, but a constant
is a solution of the homogeneous equation, so we multiply by ¢. Thus

Y1 () = t(Aot + Ay).
For the second equation we choose
Y>(t) = Bcost + Csint,

and there is no need to modify this initial choice since sin ¢ and cos ¢ are not solutions of the
homogeneous equation. Finally, for the third equation, since ¢~ is a solution of the homo-
geneous equation, we assume that

Y5(t) = Ete™.

The constants are determined by substituting into the individual differential equations; they

are Ag = —4, A; =0, B=0, C=—2,and E = }. Hence a particular solution of Eq. (8) is

Y(t) = —4* — 2sint + fre. ©))

You should keep in mind that the amount of algebra required to calculate
the coefficients may be quite substantial for higher order equations, especially if the
nonhomogeneous term is even moderately complicated. A computer algebra system
can be extremely helpful in executing these algebraic calculations.
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The method of undetermined coefficients can be used whenever it is possible to
guess the correct form for Y (¢). However, this is usually impossible for differential
equations not having constant coefficients, or for nonhomogeneous terms other than
the type described previously. For more complicated problems we can use the method
of variation of parameters, which is discussed in the next section.

PROBLEMS

In each of Problems 1 through 8, determine the general solution of the given differential
equation.

Ly =y =y +y=2e"+3 2. y® —y =31+ cost

3.y 4y 4y +y=e'+4t 4. y" =y =2sint

599 —4y'=r+¢ 6. y¥ +2y" +y =3+ cos2t
790 4y =1t 8 yW 4y =sin2t

In each of Problems 9 through 12, find the solution of the given initial value problem. Then
plot a graph of the solution.

9. y"+4y'=1,  yO0)=y(0)=0, y'(0)=1
10. y® 42y +y =3¢ + 4; y0)=y'(0)=0, y'(0)=y"0) =1
11, y" =3y"+2y =t +e; yO =1, yO)=-1, y©0)=-3
12. y® 4 2y" 4y + 8y — 12y = 12sint — e} y(0) =3, y'(0) =0,
Y0y =-1, y"(0)=2
In each of Problems 13 through 18, determine a suitable form for Y (¢) if the method of
undetermined coefficients is to be used. Do not evaluate the constants.

13y =2y +y =1 +2¢ 14. y" —y =te' +2cost
15. yW —2y" 4y =¢' +sint 16. y® +4y” =sin2t + te' + 4
17. y® —y" —y" +y =1 + 4+ tsint 18. y® 4+2y" +2y" =3¢ +2te™" + ¢ sint

19. Consider the nonhomogeneous nth order linear differential equation
aoy™ +ay" " -+ ayy = g (), (i)
where ay, . .., a, are constants. Verify that if g(¢) is of the form
e (bot" + -+ + by,
then the substitution y = e*'u(f) reduces Eq. (i) to the form
kou™ + kyu" Y 4+ - 4 kyu = bot™ + - - - + by, (ii)

where ko, ..., k, are constants. Determine k( and k,, in terms of the a’s and «. Thus the
problem of determining a particular solution of the original equation is reduced to the sim-
pler problem of determining a particular solution of an equation with constant coefficients
and a polynomial for the nonhomogeneous term.

Method of Annihilators. In Problems 20 through 22, we consider another way of arriving at
the proper form of Y (¢) for use in the method of undetermined coefficients. The procedure
is based on the observation that exponential, polynomial, or sinusoidal terms (or sums and
products of such terms) can be viewed as solutions of certain linear homogeneous differential
equations with constant coefficients. It is convenient to use the symbol D for d/dt. Then, for
example, e”" is a solution of (D + 1)y = 0; the differential operator D + 1 is said to annihilate,
or to be an annihilator of, e™*. In the same way, D?> + 4 is an annihilator of sin2¢ or cos 2¢,
(D —3)? = D?> — 6D + 9 is an annihilator of ¢ or te*, and so forth.
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20. Show that linear differential operators with constant coefficients obey the commutative
law. That is, show that

(D —a)(D = b)f =(D —b)(D —a)f
for any twice-differentiable function f and any constants a and b. The result extends at

once to any finite number of factors.
21. Consider the problem of finding the form of a particular solution Y (¢) of

(D-23D+1Y =3 —te™, (i)
where the left side of the equation is written in a form corresponding to the factorization

of the characteristic polynomial.

(a) Show that D — 2 and (D + 1)?, respectively, are annihilators of the terms on the right
side of Eq. (i), and that the combined operator (D — 2)(D + 1)? annihilates both terms on
the right side of Eq. (i) simultaneously.

(b) Apply the operator (D —2)(D + 1)? to Eq. (i) and use the result of Problem 20 to

obtain
(D -=2%D+1)°Y =0. (ii)
Thus Y is a solution of the homogeneous equation (ii). By solving Eq. (ii), show that
Y(t) = c16® + cate® + e3¢ + eyt + cse™ + cgte™ + crt?e ™, (iii)
where cy,...,c; are constants, as yet undetermined.

(c) Observe that e, te?, t?¢*, and e~ are solutions of the homogeneous equation cor-
responding to Eq. (i); hence these terms are not useful in solving the nonhomogeneous
equation. Therefore, choose ¢, ¢, ¢3, and ¢5 to be zero in Eq. (iii), so that

Y (1) = cut’e® + cote™ + ct’e . (iv)
This is the form of the particular solution Y of Eq. (i). The values of the coefficients c4, cg,
and ¢; can be found by substituting from Eq. (iv) in the differential equation (i).

Summary. Suppose that
L(D)y = g(0), ™)

where L(D) is a linear differential operator with constant coefficients, and g(¢) is a sum or
product of exponential, polynomial, or sinusoidal terms. To find the form of a particular
solution of Eq. (v), you can proceed as follows:

(a) Find a differential operator H (D) with constant coefficients that annihilates g(¢)—that is,
an operator such that H(D)g(t) = 0.

(b) Apply H(D) to Eq. (v), obtaining
H(D)L(D)y =0, (vi)

which is a homogeneous equation of higher order.
(c) Solve Eq. (vi).

(d) Eliminate from the solution found in step (c) the terms that also appear in the solution

of L(D)y = 0. The remaining terms constitute the correct form of a particular solution of

Eq. (v).

22. Use the method of annihilators to find the form of a particular solution Y (¢) for each of
the equations in Problems 13 through 18. Do not evaluate the coefficients.
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4.4 The Method of Variation of Parameters

The method of variation of parameters for determining a particular solution of the
nonhomogeneous nth order linear differential equation

Lyl =y™ +pi()y" " + -+ pur 0y + pa(t)y = g(1) (1)

is a direct extension of the method for the second order differential equation (see
Section 3.6). As before, to use the method of variation of parameters, it is first nec-
essary to solve the corresponding homogeneous differential equation. In general,
this may be difficult unless the coefficients are constants. However, the method of
variation of parameters is still more general than the method of undetermined coef-
ficients in that it leads to an expression for the particular solution for any continuous
function g, whereas the method of undetermined coefficients is restricted in practice
to a limited class of functions g.

Suppose then that we know a fundamental set of solutions yi, y»,...,y, of the
homogeneous equation. Then the general solution of the homogeneous equation is

Ye(®) = cay1(t) + coy2(t) + -+ + cayn (D). (2)

The method of variation of parameters for determining a particular solution of Eq. (1)
rests on the possibility of determining n functions uy, uy, . .. ,u, such that Y (¢) is of
the form

Y () = ui(Oy1(t) + uz(0)y2() + - - - + upy 0y, (t). (3)

Since we have n functions to determine, we will have to specify n conditions. One
of these is clearly that Y satisfy Eq. (1). The other n — 1 conditions are chosen so
as to make the calculations as simple as possible. Since we can hardly expect a sim-
plification in determining Y if we must solve high order differential equations for

ui,...,uU,,itis natural to impose conditions to suppress the terms that lead to higher
derivatives of uy, . .. ,u,. From Eq. (3) we obtain
Y'= (uyy +uzyy + - unyy) + @iyr +upys + o+, yn), 4)

where we have omitted the independent variable ¢ on which each function in Eq. (4)
depends. Thus the first condition that we impose is that

iy +uyyr + -+ uy, = 0. (5)

It follows that the expression (4) for Y’ reduces to

Y'=wy) +wy, + -+ iy, (6)

We continue this process by calculating the successive derivatives Y”, ..., Y"=D,
After each differentiation we set equal to zero the sum of terms involving derivatives
of uy,...,u,. In this way we obtain n — 2 further conditions similar to Eq. (5); that is,
Wy S+ u P =0, m=1,2,...,n-2. (7)

As a result of these conditions, it follows that the expressions for Y”,...,Y®=D

reduce to

ym — ul)’Yn) “ruz)’;m) +...+uny£lm), m=273,....n—1, ©)
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Finally, we need to impose the condition that Y must be a solution of Eq. (1). By
differentiating Y~V from Eq. (8), we obtain
YO = y” + oy + @ ). ©)
To satisfy the differential equation we substitute for Y and its derivatives in Eq. (1)
from Egs. (3), (6), (8), and (9). Then we group the terms involving each of the
functions y1, ..., y, and their derivatives. It then follows that most of the terms in the
equation drop out because each of yy,...,y, is a solution of Eq. (1) and therefore
Lly;1=0, i=1,2,...,n. The remaining terms yield the relation

n—

¢ (n—1)
Uy yy

Dpuhyy Tyt b = (10)
Equation (10), Eq. (5), and the n — 2 equations (7) provide n simultaneous linear
nonhomogeneous algebraic equations for u},u), ..., u:
yiuy + yauy + - + yutt,, =0,
Yy +ysuy + -+ yuu, =0,

yiuy +yauy + -+ v, =0, (11)

y;n l)u/ +- +y(n 1) ’ L =g

The system (11) is a linear algebraic system for the unknown quantities u}, . .., u),.
By solving this system and then integrating the resulting expressions, you can obtain
the coefficients uq, . . ., u,. A sufficient condition for the existence of a solution of the
system of equations (11) is that the determinant of coefficients is nonzero for each
value of . However, the determinant of coefficients is precisely W (y1,y2, ..., y»),and
it is nowhere zero since y1,..., Yy, is a fundamental set of solutions of the homoge-
neous equation. Hence it is possible to determine u, .. .,u,. Using Cramer’s’ rule,

we can write the solution of the system of equations (11) in the form

8(OW (1)
W (1)

Here W(t) = W(y1,y2,-..,yn)(t), and W, is the determinant obtained from W by

replacing the mth column by the column (0,0, . . ., 0, 1). With this notation a particular
solution of Eq. (1) is given by

gOWn(s) |
Y@—meﬁ o 9 (13)

u, () = , m=12,...,n. (12)

where ¢y is arbitrary. Although the procedure is straightforward, the algebraic com-
putations involved in determining Y (r) from Eq. (13) become more and more

3Cramer’s rule is credited to the Swiss mathematician Gabriel Cramer (1704-1752), professor at the
Académie de Calvin in Geneva, who published it in a general form (but without proof) in 1750. For small
systems the result had been known earlier.
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complicated as n increases. In some cases the calculations may be simplified to some

extent by using Abel’s identity (Problem 20 of Section 4.1),

W) = Wi,y () = cexp [— /m(r) dr] :

The constant ¢ can be determined by evaluating W at some convenient point.

Given that y;(¢) = €', y,(¢) = te', and y3(¢) = e™' are solutions of the homogeneous equation

corresponding to
Y=y =y +y =280,

determine a particular solution of Eq. (14) in terms of an integral.
We use Eq. (13). First, we have

e’ te! e’

W) =W, te,e)t)=le (+1De —e'|.

e (t+2)e e’

Factoring ¢’ from each of the first two columns and e~ from the third column, we obtain

1 t 1
W) =eé'|1 t+1 —1f.
1 t+2 1

Then, by subtracting the first row from the second and third rows, we have

(14)

1 t 1
W@ =e10 1 -=2|.

0 2 0
Finally, evaluating the latter determinant by minors associated with the first column, we find
that

W (t) = 4e'.
Next,
0 te' e’

Wi(t) = |0 (t+1e" —e'|.
1 (t+2)e e’

Using minors associated with the first column, we obtain

te' e’
W) = . =21
t+De" —e
In a similar way,
e e’
e e’
Wy (t) = |e' 0 —e'|=-— . L= 2
e —e
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and
e’ te! 0
4 te' )
Wi(t) = e (t+1)e 0] = =e”.
e (t+1)e
e (t+2e 1

Substituting these results in Eq. (13), we have

! -1 - ! ' 25
Y@ =¢ / §OCL=29 1oy ger f HOIL) R / O
t 4es " 4es o det
1t
= 1 / {et_s[—l +2(t —s)] + 6_(t_s)}g(s) ds. (15)
fo

Depending on the specific function g(¢),it may or may not be possible to evaluate the integrals
in Eq. (15) in terms of elementary functions.

PROBLEMS

In each of Problems 1 through 6, use the method of variation of parameters to determine the
general solution of the given differential equation.

1. y/// _l_y/:tan[’ —71’/2<[<7l’/2 2. y//,—y/zf
3. y///_zy//_y/+2y=e4t 4. y”’—l—y’:SCCl‘, —]'[/2<[<7T/2
5.V —y'+y —y=e'sint 6.y +2y" +y=sint

In each of Problems 7 and 8, find the general solution of the given differential equation. Leave
your answer in terms of one or more integrals.

7. y" —=y"+y —y=sect, -2 <t <m/2
8. y" —y =csct, O<t<m
In each of Problems 9 through 12, find the solution of the given initial value problem. Then
plot a graph of the solution.
9. y" +y =sect; yO)y =2, yO0) =1, y"0)=-2
10. y® 4+ 2y” +y =sint; y0) =2, y0)=0, y'©0)=-1, y"0)=1
11. y" —y" +y —y =sect; yO)y =2, y0) =-1, y"0) =1
12. y” —y =csct; /2y =2, y(#/2)=1, y'(n/2)=-1

13. Given that x,x?, and 1/x are solutions of the homogeneous equation corresponding to

3. 2.1

X3y 4+ x%y" = 2xy' + 2y = 2x*, x>0,

determine a particular solution.

14. Find a formula involving integrals for a particular solution of the differential equation

Y' =y +y —y=g@®.

15. Find a formula involving integrals for a particular solution of the differential equation

(€]

yW—y=g®.

Hint: The functions sint, cost, sinh#, and cosh¢ form a fundamental set of solutions of
the homogeneous equation.
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16. Find a formula involving integrals for a particular solution of the differential equation
Y =3y 43y -y =g0.
If g(t) = t %€, determine Y (¢).
17. Find a formula involving integrals for a particular solution of the differential equation
x¥*y” = 3x%y" +6xy —6y=g(x), x>0.

Hint: Verify that x,x?, and x> are solutions of the homogeneous equation.

REFERENCES  Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-
Hall, 1961; New York: Dover, 1989).
Coddington, E. A. and Carlson, R., Linear Ordinary Differential Equations (Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1997).






CHAPTER

5

Series Solutions of
Second Order

Linear Equations

Finding the general solution of a linear differential equation depends on determin-
ing a fundamental set of solutions of the homogeneous equation. So far, we have given
a systematic procedure for constructing fundamental solutions only if the equation
has constant coefficients. To deal with the much larger class of equations that have
variable coefficients, it is necessary to extend our search for solutions beyond the
familiar elementary functions of calculus. The principal tool that we need is the rep-
resentation of a given function by a power series. The basic idea is similar to that in
the method of undetermined coefficients: we assume that the solutions of a given dif-
ferential equation have power series expansions, and then we attempt to determine
the coefficients so as to satisfy the differential equation.

5.1 Review of Power Series

In this chapter we discuss the use of power series to construct fundamental sets of
solutions of second order linear differential equations whose coefficients are func-
tions of the independent variable. We begin by summarizing very briefly the pertinent
results about power series that we need. Readers who are familiar with power series
may go on to Section 5.2. Those who need more details than are presented here
should consult a book on calculus.

o0
1. A power series Y a,(x — xp)" is said to converge at a point x if
n=0

m
lim Z a,(x — xp)"
m—o0

n=0

247
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exists for that x. The series certainly converges for x = xy; it may converge for all x, or it
may converge for some values of x and not for others.

o0
2. The series Y a,(x — xo)" is said to converge absolutely at a point x if the series
n=0
oo oo
D lanx = x0)" =) lanllx — xo|"
n=0 n=0
converges. It can be shown that if the series converges absolutely, then the series
also converges; however, the converse is not necessarily true.
3. One of the most useful tests for the absolute convergence of a power series is the ratio
test. If a, # 0, and if, for a fixed value of x,
@ (x = x)" ! . a
lim G100 = X0 | Ix — xo| lim |[—2 | = |x — x| L,
n—00 an(x — _xo)" n—00
then the power series converges absolutely at that value of x if |x — xo|L < 1 and diverges
if |x — xo|L > 1. If |x — xo| L = 1, the test is inconclusive.
For which values of x does the power series
EXAMPLE

1

Z (_1)n+1n(x — 2y

n=1

converge?
To test for convergence, we use the ratio test. We have

lim

n—00

_1n+2 1 _2n+1 1
‘( Y2+ 1)(x —2) =|x—2|lim%=|x—2|.

(=D n(x —2)

According to statement 3, the series converges absolutely for [x —2| < 1,0or 1 < x < 3, and
diverges for |[x — 2| > 1. The values of x corresponding to |x — 2| = 1 arex = 1 and x = 3. The
series diverges for each of these values of x since the nth term of the series does not approach
Zero as n — 0.

o0
4. If the power series ) a,(x —x¢)" converges at x = xj, it converges absolutely for
n=0
|x — xo| < |x1 — xo|; and if it diverges at x = xy, it diverges for |x — xo| > |x; — xo].

5. For atypical power series, such as the one in Example 1, there is a positive number p, called

oo

the radius of convergence, such that > a,(x — x¢)" converges absolutely for |x — x| < p
and diverges for [x — x| > p.The inte’;v%l |x — xo| < piscalled the interval of convergence;
itisindicated by the hatched lines in Figure 5.1.1. The series may either converge or diverge
when |x — x| = p. Many important power series converge for all values of x. In this case
it is customary to say that p is infinite and the interval of convergence is the entire real
line. It is also possible for a power series to converge only at x,. For such a series we say
that p = 0 and the series has no interval of convergence. When these exceptional cases are
taken into account, every power series has a nonnegative radius of convergence p, and if
p > 0,then there is a (finite or infinite) interval of convergence centered at x.
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EXAMPLE

2

Series Series Series
diverges converses "~ diverges
g absolutely g
k\\\\\\\\\\\\\\\\\AII!IIHIHIHIHII‘
AARARRAARARRANNNNNN SR U RRERRERRRRRRIRR]
Xo— P Xo Xotp x

\ Series may /

converge or diverge
FIGURE 5.1.1 The interval of convergence of a power series.

Determine the radius of convergence of the power series
n2n
We apply the ratio test:

(x + 1)n+l nn

im 1y no lx+1]
n—oo | (n+ 1)27+1 (x + 1)» '

1 -
2 aient1 2

Thus the series converges absolutely for |[x+ 1| <2, or =3 <x <1, and diverges for
|x 4+ 1] > 2. The radius of convergence of the power series is p = 2. Finally, we check the
endpoints of the interval of convergence. At x = 1 the series becomes the harmonic series

n=1
which diverges. At x = —3 we have
(B 1>"

which converges but does not converge absolutely. The series is said to converge condition-
ally at x = —3. To summarize, the given power series converges for —3 < x < 1 and diverges
otherwise. It converges absolutely for —3 < x < 1 and has a radius of convergence 2.

oo o0
Suppose that > a,(x — xo)" and >_ b,(x — x()" converge to f(x) and g(x), respec-
n=0 n=0
tively, for |x — x| < p, p > 0.
6. The two series can be added or subtracted termwise, and

oo

F) £g00) =) (@, £b,)(x —x0)";

n=0

the resulting series converges at least for [x — xo| < p.
7. The two series can be formally multiplied, and

fgx) = [Z ay(x — x0)" } [Z by(x — xo)"} =) ealx — x0)",
n=0 n=0

where ¢, = aph, +a1b,_1 + --- + a,bo. The resulting series converges at least for
[x — xol < p.



250

Chapter 5. Series Solutions of Second Order Linear Equations

Further, if g(x¢) # 0, the series for f(x) can be formally divided by the series for g(x), and

f) < o
g(ix)_gdn(x Xo)".

In most cases the coefficients d, can be most easily obtained by equating coefficients in
the equivalent relation

D an(x—xp)" = [Z dy(x — xo)"} [Z bu(x — x@"}
n=0 n=0 n=0
= Z <Z dkbn—k) (x —xp)".

n=0 \k=0

In the case of division, the radius of convergence of the resulting power series may be less
than p.

8. The function f is continuous and has derivatives of all orders for |x — xy| < p. Moreover,
f',f",...can be computed by differentiating the series termwise; that is,
/) = ar +2a,(x — x0) + -+ - + na,(x —x)" ' + -
=) na,(x—x)"",
n=1
F/(x) = 2ay + 6az(x — xp) 4 - - - + n(n — Day,(x —x0)" > 4 - -
o0
= nn—Da,x —x)" 72,
n=2
and so forth, and each of the series converges absolutely for [x — xo| < p.
9. The value of a, is given by
™)
AT
The series is called the Taylor! series for the function f about x = xo.
o0 o0
10. If Y a,(x —x0)" = Y_ b,(x — x)" for each x in some open interval with center x,, then
n=0 n=0
o0
a, =b, for n=0,1,2,3,.... In particular, if ) a,(x — x¢)" =0 for each such x, then
n=0
a():al:...:an:...:().

A function f that has a Taylor series expansion about x = xg

X £
fo=>)" %(x - x0)",
n=0 :

I Brook Taylor (1685-1731), English mathematician, received his education at Cambridge University. His
book Methodus incrementorum directa et inversa, published in 1715, includes a general statement of the
expansion theorem thatis named for him. This is a basic resultin all branches of analysis, but its fundamental
importance was not recognized until 1772 (by Lagrange). Taylor was also the first to use integration by
parts, was one of the founders of the calculus of finite differences, and was the first to recognize the
existence of singular solutions of differential equations.
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EXAMPLE

3

EXAMPLE

4

with a radius of convergence p > 0,is said to be analytic at x = x(. All of the familiar
functions of calculus are analytic except perhaps at certain easily recognized points.
For example, sin x and e* are analytic everywhere, 1/x is analytic except at x = 0, and
tanx is analytic except at odd multiples of /2. According to statements 6 and 7, if f
and g are analytic at xo, then f + g, f - g, and f/g [provided that g(xy) # 0] are also
analytic at x = x¢. In many respects the natural context for the use of power series
is the complex plane. The methods and results of this chapter nearly always can be
directly extended to differential equations in which the independent and dependent
variables are complex-valued.

Shift of Index of Summation. The index of summation in an infinite series is a dummy
parameter just as the integration variable in a definite integral is a dummy variable.
Thus it is immaterial which letter is used for the index of summation. For example,

X pnyn o) 3V
Z n! = :

!
n=0 j=0 J:

Just as we make changes of the variable of integration in a definite integral, we find
it convenient to make changes of summation indices in calculating series solutions of
differential equations. We illustrate by several examples how to shift the summation
index.

o0
Write ) a,x" as a series whose first term corresponds to n = 0 rather than n = 2.
n=2
Letm =n — 2;thenn = m + 2,and n = 2 corresponds to m = 0. Hence

[o¢] o0
Z a,x" = Z X2 (1)
n=2

m=0

By writing out the first few terms of each of these series, you can verify that they contain
precisely the same terms. Finally, in the series on the right side of Eq. (1), we can replace the
dummy index m by 7, obtaining

o0 oo
Z a,x" = Z Ao x" 2. ?2)
n=2

n=0

In effect, we have shifted the index upward by 2 and have compensated by starting to count
at a level 2 lower than originally.

Write the series .
D (n+2)(n+ Day(x — xp)" 3)
n=2

as a series whose generic term involves (x — x,)" rather than (x — xp)" 2.
Again, we shift the index by 2 so that n is replaced by n + 2 and start counting 2 lower. We
obtain

D+ H 0+ 3 (x —x0)". )
n=0

You can readily verify that the terms in the series (3) and (4) are exactly the same.
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EXAMPLE

5

EXAMPLE

6

Write the expression
o0
X2 Z (r + n)anerrnfl (5)
n=0

as a series whose generic term involves x" .
First, take the x? inside the summation, obtaining

Z (r + n)a,x’ . (6)

n=0

Next, shift the index down by 1 and start counting 1 higher. Thus

Z (r + n)a,x ™ = Z r +n—Da,_1x . 7)

n=0 n=1

Again, you can easily verify that the two series in Eq. (7) are identical and that both are exactly
the same as the expression (5).

Assume that
Z na,x""! = Z a,x" ®)
n=1 n=0

for all x, and determine what this implies about the coefficients a,,.

We want to use statement 10 to equate corresponding coefficients in the two series. In order
to do this, we must first rewrite Eq. (8) so that the series display the same power of x in their
generic terms. For instance, in the series on the left side of Eq. (8), we can replace n by n + 1
and start counting 1 lower. Thus Eq. (8) becomes

> (4 Dagax" =) apx". )
n=0 n=0

According to statement 10, we conclude that
n+Da,1 = ay,, n=0,1,2,3,...

or
a

A =0,1,2,3,.... 10
1 n=0123 (10)

apy1 =

Hence, choosing successive values of n in Eq. (10), we have
ai ao a ao

ay = do, 0222—2, =3 T3

and so forth. In general,
ay = —, n=123,.... (11)

Thus the relation (8) determines all the following coefficients in terms of a. Finally, using the
coefficients given by Eq. (11), we obtain

) 0,
} : n 2 : X X
a,x = dy - = ape,
n!
n=0 n=0

where we have followed the usual convention that 0! = 1.
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PROBLEMS In each of Problems 1 through 8, determine the radius of convergence of the given power

series.
LY (x—3) 2% Ly
n=0 n=0 2n
00 2n 00
I 4.3 2y
n=0 . n=0
o (2x +1)" & (x — xo)"
5. 6.
ng n? ngl n
7§ 2y s
n=1

In each of Problems 9 through 16, determine the Taylor series about the point x, for the given
function. Also determine the radius of convergence of the series.

9. sinux, xo=0 10. e*, x0=0
11. X, Xo = 1 12. Xz, Xo = -1
1
13. 1 =1 14. =0
nx, X0 11z X0
1 1
15. =0 16. =2
1— xs X0 1— x? X0

o0
17. Given thaty = ) nx",compute y" and y” and write out the first four terms of each series,

n=0
as well as the coefficient of x” in the general term.

o0
18. Given that y = Y a,x", compute y’ and y” and write out the first four terms of each
n=0
series, as well as the coefficient of x” in the general term. Show that if y” =y, then the

coefficients ay and a; are arbitrary, and determine a, and a3 in terms of ay and a;. Show
thata,,, =a,/n+2)(n+1), n=0,1,2,3,....

In each of Problems 19 and 20, verify the given equation.

19. % a,(x — 1)l = i ay_1(x — 1"

n=0 n=1

o0 o0 o0
20. Y akp X + Y @ = ay + Y (arp + ago)xt
k=0 k=0 =1

In each of Problems 21 through 27, rewrite the given expression as a sum whose generic term

involves x".
21. Y n(n— Da,x"?2 22. 3 a,xt?
n=2 n=0
23. x Y na,x" M4 Y apxk 24. (1 —=x*) Y nn—a,x"?2
n=1 k=0 n=2
25. Y. m(m — Da,x" 2 +x Y kagx*! 26. Y. na,x" ' +x Y axt
m=2 k=1 n=1 n=0

27. x Y n(n—Da,x"2+ > a,x"

n=2 n=0
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28. Determine the a, so that the equation

o0 o0
Z na,x""' +2 Z a,x" =0

n=1 n=0

o0
is satisfied. Try to identify the function represented by the series Y a,x".
n=0

5.2 Series Solutions Near an Ordinary Point, Part I

In Chapter 3 we described methods of solving second order linear differential equa-
tions with constant coefficients. We now consider methods of solving second order
linear equations when the coefficients are functions of the independent variable. In
this chapter we will denote the independent variable by x. It is sufficient to consider
the homogeneous equation
d? d
P02 + Q02 + Rx)y =0, (1)
dx dx
since the procedure for the corresponding nonhomogeneous equation is similar.
Many problems in mathematical physics lead to equations of the form (1) having
polynomial coefficients; examples include the Bessel equation
xzy// +xy/ + (X2 _ UZ)y — 0,
where v is a constant, and the Legendre equation
(1 —x%)y" —2xy' +a(a+ 1)y =0,

where « is a constant. For this reason, as well as to simplify the algebraic computations,
we primarily consider the case in which the functions P, O, and R are polynomials.
However, as we will see, the method of solution is also applicable when P, Q,and R
are general analytic functions.

For the present, then, suppose that P, Q, and R are polynomials and that there is
no factor (x — ¢) that is common to all three of them. If there is such a factor (x — ¢),
then divide it out before proceeding. Suppose also that we wish to solve Eq. (1) in
the neighborhood of a point xy. The solution of Eq. (1) in an interval containing xg
is closely associated with the behavior of P in that interval.

A point x( such that P(x() # 01is called an ordinary point. Since P is continuous, it
follows that there is an interval about x, in which P(x) is never zero. In that interval
we can divide Eq. (1) by P(x) to obtain

V' +pX)y +q)y =0, ()

where p(x) = Q(x)/P(x) and g(x) = R(x)/P(x) are continuous functions. Hence,
according to the existence and uniqueness Theorem 3.2.1, there exists in that inter-
val a unique solution of Eq. (1) that also satisfies the initial conditions y(x¢) = yo,
Y'(xg) =y, for arbitrary values of y, and y;. In this and the following section, we
discuss the solution of Eq. (1) in the neighborhood of an ordinary point.

On the other hand, if P(xy) = 0, then x, is called a singular point of Eq. (1). In
this case at least one of Q(xy) and R(xy) is not zero. Consequently, at least one of
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EXAMPLE

1

the coefficients p and ¢ in Eq. (2) becomes unbounded as x — xg, and therefore
Theorem 3.2.1 does not apply in this case. Sections 5.4 through 5.7 deal with finding
solutions of Eq. (1) in the neighborhood of a singular point.

We now take up the problem of solving Eq. (1) in the neighborhood of an ordinary
point xy. We look for solutions of the form

y=ao+ai(x—x0) + -+ ay(x —x0)" + - =Y ay(x — x0)" 3)
n=0

and assume that the series converges in the interval |x — xy| < p for some p > 0.
While at first sight it may appear unattractive to seek a solution in the form of a
power series, this is actually a convenient and useful form for a solution. Within their
intervals of convergence, power series behave very much like polynomials and are
easy to manipulate both analytically and numerically. Indeed, even if we can obtain
a solution in terms of elementary functions, such as exponential or trigonometric
functions, we are likely to need a power series or some equivalent expression if we
want to evaluate them numerically or to plot their graphs.

The most practical way to determine the coefficients a,, is to substitute the series
(3) and its derivatives for y,y’,and y” in Eq. (1). The following examples illustrate this
process. The operations, such as differentiation, that are involved in the procedure
are justified so long as we stay within the interval of convergence. The differential
equations in these examples are also of considerable importance in their own right.

Find a series solution of the equation
Y'+y=0, —00 < X < 00. 4

As we know, sinx and cosx form a fundamental set of solutions of this equation, so
series methods are not needed to solve it. However, this example illustrates the use of
power series in a relatively simple case. For Eq. (4), P(x) = 1, Q(x) = 0, and R(x) = 1; hence
every point is an ordinary point.

We look for a solution in the form of a power series about x, = 0

oo
y=aytax+ax +oax+oo =Y ax 5)

n=0

and assume that the series converges in some interval |x| < p. Differentiating Eq. (5) term by
term, we obtain

Y =ai+2amx+ -+ na, " 4 =) na,x! (6)
n=1
and
V' =2a+---+nm—Dax" 4. = Zn(n — Da,x"2. (7)
n=2

Substituting the series (5) and (7) for y and y” in Eq. (4) gives

3 nn — Dax"2 + 3 a,x" = 0.
=2 =0
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To combine the two series, we need to rewrite at least one of them so that both series display
the same generic term. Thus, in the first sum, we shift the index of summation by replacing n
by n + 2 and starting the sum at O rather than 2. We obtain

Z n+2)(n+ Da,x" + Z a,x" =0

n=0 n=0

or

Z [m+2)(n+ Dayyr + a,]x" = 0.

n=0

For this equation to be satisfied for all x, the coefficient of each power of x must be zero; hence
we conclude that

(n+2)(n+ Da,yp +a, =0, n=20,1,2,3,.... 8)

Equation (8) is referred to as a recurrence relation. The successive coefficients can be
evaluated one by one by writing the recurrence relation first for n = 0, then for n = 1, and
so forth. In this example Eq. (8) relates each coefficient to the second one before it. Thus
the even-numbered coefficients (ag, az, a4, . ..) and the odd-numbered ones (ay, a3, as, . ..) are
determined separately. For the even-numbered coefficients we have

agp agp ap agp ay ap

©=3ITTa WS T Ta 4T g5 e

These results suggest that in general, if n = 2k, then

a, = dy = ————Aay, k=1,2,3,.... (9)

We can prove Eq. (9) by mathematical induction. First, observe that it is true for k = 1. Next,
assume that it is true for an arbitrary value of k and consider the case k + 1. We have
ax - (—1)* N
Ck+2)2k+1)  Qk+2)Qk+ D! T Ck+2)! "

Wf42 =

Hence Eq. (9) is also true for k + 1, and consequently it is true for all positive integers k.
Similarly, for the odd-numbered coefficients

a = a  m g — 03_+611 @ = as = I
T 23T e T 5.4 sy T 76 0
and in general, if n = 2k + 1, then®
(—=D*
= = —q, k=1,2,3,.... 10
= @1 = o ™ (10)

Substituting these coefficients into Eq. (5), we have

The result given in Eq. (10) and other similar formulas in this chapter can be proved by an induction
argument resembling the one just given for Eq. (9). We assume that the results are plausible and omit the
inductive argument hereafter.



5.2 Series Solutions Near an Ordinary Point, Part I 257
y=ay+ax— %xz— a—1x3+a—0x4+§x
T (;21:;;’0 20 ((2;11";1)1! il
=ao[l §+Z—T+ +((2’27 +]
+a [x—?—l-);—j—l- +(2(ni)1)|x2"+1+~-]
Z ((; ;‘ Z (2( _‘1_)1)‘ 2041 (11

Now that we have formally obtained two series solutions of Eq. (4), we can test them for
convergence. Using the ratio test, we can show that each of the series in Eq. (11) converges
for all x, and this justifies retroactively all the steps used in obtaining the solutions. Indeed,
we recognize that the first series in Eq. (11) is exactly the Taylor series for cosx about x = 0
and that the second is the Taylor series for sinx about x = 0. Thus, as expected, we obtain the
solution y = ag cos x + a; sin x.

Notice that no conditions are imposed on a, and a;; hence they are arbitrary. From Egs. (5)
and (6) we see that y and y’ evaluated at x = 0 are gy and ay, respectively. Since the initial
conditions y(0) and y’(0) can be chosen arbitrarily, it follows that ay and a; should be arbitrary
until specific initial conditions are stated.

Figures 5.2.1 and 5.2.2 show how the partial sums of the series in Eq. (11) approximate
cosx and sinx. As the number of terms increases, the interval over which the approximation is
satisfactory becomes longer, and for each x in this interval the accuracy of the approximation
improves. However, you should always remember that a truncated power series provides only
a local approximation of the solution in a neighborhood of the initial point x = 0; it cannot
adequately represent the solution for large |x|.

3; n=4 n=8 n=12 n=16 n=20
1
N1/ A AN )
2 4 6 8 10 «x
,1— \/
y =C0S X
2
n=2 n=6 n=10 n=14 n=18

FIGURE 5.2.1 Polynomial approximations to cos x. The value
of n is the degree of the approximating polynomial.
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Y n=5 n=9 n=13 n=17 n=21

|\)4
~
(0))
(0]
=
%
K

1+

2+

n=3 n=7 n=11 n=15 n=19

FIGURE 5.2.2 Polynomial approximations to sin x. The value
of n is the degree of the approximating polynomial.

In Example 1 we knew from the start that sin x and cos x form a fundamental set of
solutions of Eq. (4). However, if we had not known this and had simply solved Eq. (4)
using series methods, we would still have obtained the solution (11). In recognition
of the fact that the differential equation (4) often occurs in applications, we might
decide to give the two solutions of Eq. (11) special names, perhaps

00 _1)n ) —1)n
n=0 n=0

Then we might ask what properties these functions have. For instance, can we be sure
that C(x) and S(x) form a fundamental set of solutions? It follows at once from the
series expansions that C(0) = 1 and S(0) = 0. By differentiating the series for C(x)
and S(x) term by term, we find that

S'(x) = C(x), C'(x) = -Sx). (13)

Thus, at x = 0 we have $’(0) = 1 and C’(0) = 0. Consequently, the Wronskian of C
and Satx =0is

1 0
W(C,8)(0) = 01 =1, (14)

so these functions do indeed form a fundamental set of solutions. By substituting —x
for x in each of Egs. (12), we obtain C(—x) = C(x) and S(—x) = —S(x). Moreover,
by calculating with the infinite series,’ we can show that the functions C(x) and S(x)
have all the usual analytical and algebraic properties of the cosine and sine functions,

respectively.

3Such an analysis is given in Section 24 of K. Knopp, Theory and Applications of Infinite Series (New York:
Hafner, 1951).
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EXAMPLE

2

Although you probably first saw the sine and cosine functions defined in a more
elementary manner in terms of right triangles, it is interesting that these functions
can be defined as solutions of a certain simple second order linear differential equa-
tion. To be precise, the function sinx can be defined as the unique solution of the
initial value problem y” +y =0, y(0) = 0, y'(0) = 1; similarly, cosx can be defined
as the unique solution of the initial value problem y” +y =0, y(0) =1, y'(0) = 0.
Many other functions that are important in mathematical physics are also defined
as solutions of certain initial value problems. For most of these functions there is no
simpler or more elementary way to approach them.

Find a series solution in powers of x of Airy’s* equation

Y —xy =0, —00 < X < 00. 15)
For this equation P(x) = 1,Q(x) = 0,and R(x) = —x;hence every point is an ordinary point.
‘We assume that
y=> ax" (16)
n=0

and that the series converges in some interval |x| < p. The series for y” is given by Eq. (7); as
explained in the preceding example, we can rewrite it as

y' = Z(n +2)(n + Da,x". (17)
n=0

Substituting the series (16) and (17) for y and y” in Eq. (15), we obtain

Z n+2)(n+ Da,x" =x Z ax" = Z ax". (18)
n=0 n=0 n=0

Next, we shift the index of summation in the series on the right side of Eq. (18) by replacing
n by n — 1 and starting the summation at 1 rather than zero. Thus we have

2-lay + Z(n +2)(n+ Da,x" = Zan_lx".

n=1 n=1

Again, for this equation to be satisfied for all x in some interval, the coefficients of like powers
of x must be equal; hence a, = 0, and we obtain the recurrence relation

n+2)(n+ Da, o = a,4 for n=1,2,3,.... (19)

Since a, 1, is givenin terms of a, 1, the a’s are determined in steps of three. Thus ay determines
az, which in turn determines ag, . . . ;a; determines a4, which in turn determines a-, .. .; and a,
determines as, which in turn determines as, . ... Since a, = 0, we immediately conclude that
as=as=ap =---=0.

4Sir George Biddell Airy (1801-1892), an English astronomer and mathematician, was director of the
Greenwich Observatory from 1835 to 1881. He studied the equation named for him in an 1838 paper on
optics. One reason why Airy’s equation is of interest is that for x negative the solutions are similar to
trigonometric functions, and for x positive they are similar to hyperbolic functions. Can you explain why
it is reasonable to expect such behavior?
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For the sequence ay, as, ag, a9, ... we set n = 1,4,7,10,. .. in the recurrence relation:

ap as ap ae ap

B=33 %7567 2356 “T89 23562809 "

These results suggest the general formula

Az, = 0 n>4
¥ 2.3.5.6---3n—1)(3n)’ =
For the sequence ay, a4, a7,ay,. .., wesetn =2,5,8,11,... in the recurrence relation:
ay ag ay ay ay
ay = —— == — a = =
T3 7T 6.7 3467 Y7910 3.4.6-7-9-10°
In general, we have
a
n+1 — 5 > 4.
B =367 GGt
Thus the general solution of Airy’s equation is
¥ %6 Y
— 14 = ...
Y “‘)[Jrz-3+2.3-5-6Jr Y 3 Gronoen ]

x* X’

34t3267 7"

x3n+1
+a [x+ ot ] (20)

3.4 GmGntD)

Having obtained these two series solutions, we can now investigate their convergence.
Because of the rapid growth of the denominators of the terms in the series (20), we might
expect these series to have a large radius of convergence. Indeed, it is easy to use the ratio test
to show that both of these series converge for all x; see Problem 20.

Assuming for the moment that the series do converge for all x, let y; and y, denote the
functions defined by the expressions in the first and second sets of brackets, respectively,
in Eq. (20). Then, by choosing first ay = 1, a; = 0 and then ay = 0,a; = 1, it follows that y;
and y, are individually solutions of Eq. (15). Notice that y; satisfies the initial conditions
y1(0) =1, y(0) =0 and that y, satisfies the initial conditions y,(0) =0, y5(0) = 1. Thus
W(y1,y2)(0) = 1 # 0, and consequently y; and y, are a fundamental set of solutions. Hence
the general solution of Airy’s equation is

y = apy1(x) + ary»(x), —00 < X < 00.

In Figures 5.2.3 and 5.2.4, respectively, we show the graphs of the solutions y; and y, of
Airy’s equation, as well as graphs of several partial sums of the two series in Eq. (20). Again,
the partial sums provide local approximations to the solutions in a neighborhood of the origin.
Although the quality of the approximation improves as the number of terms increases, no
polynomial can adequately represent y; and y, for large |x|. A practical way to estimate the
interval in which a given partial sum is reasonably accurate is to compare the graphs of that
partial sum and the next one, obtained by including one more term. As soon as the graphs
begin to separate noticeably, we can be confident that the original partial sum is no longer
accurate. For example, in Figure 5.2.3 the graphs for n = 24 and n = 27 begin to separate
at about x = —9/2. Thus, beyond this point, the partial sum of degree 24 is worthless as an
approximation to the solution.
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N
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FIGURE 5.2.3 Polynomial approximations to the solution y; (x) of Airy’s equation.
The value of 7 is the degree of the approximating polynomial.
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FIGURE 5.2.4 Polynomial approximations to the solution y,(x) of Airy’s equation.
The value of n is the degree of the approximating polynomial.

Observe that both y; and y, are monotone for x > 0 and oscillatory for x < 0. You can
also see from the figures that the oscillations are not uniform but, rather, decay in amplitude
and increase in frequency as the distance from the origin increases. In contrast to Example 1,
the solutions y; and y, of Airy’s equation are not elementary functions that you have already
encountered in calculus. However, because of their importance in some physical applications,
these functions have been extensively studied, and their properties are well known to applied
mathematicians and scientists.

Find a solution of Airy’s equation in powers of x — 1.
EXAMPLE The point x = 1 is an ordinary point of Eq. (15), and thus we look for a solution of the form

3 e
y=) ak—1",
n=0
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where we assume that the series converges in some interval |x — 1| < p. Then

y = inan(x -t = i(n + Dapr (x = D",
and . n=1 n:OO
Y= nm—Day(e =17 = 1+ 2)(n+ Dagalx = 1"
n=2 n=0
Substituting for y and y” in Eq. (12), we obtain
i(n +2)(n+ Day(x —1)" =x i a,(x — D", (21)
n=0 n=0

Now to equate the coefficients of like powers of (x — 1), we must express x, the coefficient of y
in Eq. (15), in powers of x — 1; that is, we write x = 1 4+ (x — 1). Note that this is precisely the
Taylor series for x about x = 1. Then Eq. (21) takes the form

D+ 4 Daypx— 1" =1+ &-DIY a,(x—1)"

n=0 n=0

= ian(x D"+ ian(x — 1yt
n=0 n=0

Shifting the index of summation in the second series on the right gives

DD+ Do = 1" =Y aue = 1"+ Y (= 1"
n=0 n=0 n=1

Equating coefficients of like powers of x — 1, we obtain
2a; = ay,
(3-2)az = a; + ay,
(4-3)ay=a +a,
(5-Mas = a3 + ay,

The general recurrence relation is

n+2)n+ Da, =a, +a,_ for n>1. (22)
Solving for the first few coefficients a, in terms of ay and a;, we find that
ap a ap ap a ap aq as ap ap aq
w=5 wEgte W=t Tutn T T3 o
Hence

_1)2 _1)3 _1y4 _1)5
(x—1 +(x 1 +(x i3] +(x 1) +}

—a|1
Y “°[+ 2 6 24 30

(23)

—1)3 _1\4 —1\5
+a1[(x—1)+(x b + & ) & b +]

6 12 120

In general, when the recurrence relation has more than two terms, as in Eq. (22), the deter-
mination of a formula for a,, in terms ay and a; will be fairly complicated, if not impossible. In
this example such a formula is not readily apparent. Lacking such a formula, we cannot test the
two series in Eq. (23) for convergence by direct methods such as the ratio test. However, we
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shall see in Section 5.3 that even without knowing the formula for a,, it is possible to establish
that the two series in Eq. (23) converge for all x. Further, they define functions y; and y, that
are a fundamental set of solutions of the Airy equation (15). Thus

Yy = apy3(x) + a1ys(x)

is the general solution of Airy’s equation for —oo < x < oo.

It is worth emphasizing, as we saw in Example 3, that if we look for a solution
o0

of Eq. (1) of the form y = ) a,(x — x¢)", then the coefficients P(x), Q(x), and R(x)

n=0
in Eq. (1) must also be expressed in powers of x — xy. Alternatively, we can make
the change of variable x — xy = ¢, obtaining a new differential equation for y as a

o0
function of ¢, and then look for solutions of this new equation of the form )_ a,t".

n=0
When we have finished the calculations, we replace ¢ by x — xj (see Problem 19).

In Examples 2 and 3 we have found two sets of solutions of Airy’s equation. The
functions y; and y, defined by the series in Eq. (20) are a fundamental set of solutions
of Eq. (15) for all x,and this is also true for the functions y; and y4 defined by the series
in Eq. (23). According to the general theory of second order linear equations, each
of the first two functions can be expressed as a linear combination of the latter two
functions, and vice versa—a result that is certainly not obvious from an examination
of the series alone.

Finally, we emphasize that it is not particularly important if, as in Example 3, we are
unable to determine the general coefficient a,, in terms of ap and a;. What is essential
is that we can determine as many coefficients as we want. Thus we can find as many
terms in the two series solutions as we want, even if we cannot determine the general
term. While the task of calculating several coefficients in a power series solution is
not difficult, it can be tedious. A symbolic manipulation package can be very helpful
here; some are able to find a specified number of terms in a power series solution in
response to a single command. With a suitable graphics package we can also produce
plots such as those shown in the figures in this section.

PROBLEMS

In each of Problems 1 through 14:

(a) Seek power series solutions of the given differential equation about the given point xo;
find the recurrence relation.

(b) Find the first four terms in each of two solutions y; and y, (unless the series terminates
sooner).

(c) By evaluating the Wronskian W (y1, y»)(xo), show that y; and y, form a fundamental set
of solutions.

(d) If possible, find the general term in each solution.

Y=y =0, xo=0 Y —xy —y=0, xo=0
LY 4 kAxPy =0, xo =0, kaconstant

S QY —xy +4y =0, xo=0

Y =xy —y=0, xo=1
. A=x)y"+y=0, xo =0
Y +xy 42y =0, xo=0 . xy'+y +xy=0, xo=1

(14 X2y —dxy +6y =0, xo=0 10. (4—x%)y" +2y =0, xXo=0

N R L S
w o AN
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11.
12.
13.
14.

B —x)y" —3xy —y=0, xo=0
1=-x)y"+xy—y=0, xXo=0
2y" +xy +3y =0, X =0

2"+ (x+ 1)y +3y =0, xXp=2

In each of Problems 15 through 18:
(a) Find the first five nonzero terms in the solution of the given initial value problem.

(b) Plot the four-term and the five-term approximations to the solution on the same axes.

(c) From the plot in part (b) estimate the interval in which the four-term approximation is
reasonably accurate.

20.

21.

22.

LY =xy —y=0, y0) =2, y(©0) =1, see Problem 2

. 24Xy —xy +4y =0, y(0)=-1, y'(0)=3; see Problem 6
Y +xy 42y =0, y(0) =4, Y0 =-1; see Problem 7
A=)y +xy —y=0, y(0)=-3, y(0)=2; see Problem 12

. (a) By making the change of variable x — 1 = ¢ and assuming that y has a Taylor series in

powers of ¢, find two series solutions of
Y+ @ =DW + @ -1y=0

in powers of x — 1.

(b) Show that you obtain the same result by assuming that y has a Taylor series in powers
of x — 1 and also expressing the coefficient x> — 1 in powers of x — 1.

Show directly, using the ratio test, that the two series solutions of Airy’s equation about
x = 0 converge for all x;see Eq. (20) of the text.

The Hermite Equation. The equation

y' =2xy' + 1y =0, —00 < X < 00,

where A is a constant, is known as the Hermite® equation. It is an important equation in
mathematical physics.

(a) Find the first four terms in each of two solutions about x = 0 and show that they form
a fundamental set of solutions.

(b) Observe that if A is a nonnegative even integer, then one or the other of the series
solutions terminates and becomes a polynomial. Find the polynomial solutions for 2 = 0,
2,4, 6,8, and 10. Note that each polynomial is determined only up to a multiplicative
constant.

(c) The Hermite polynomial H, (x) is defined as the polynomial solution of the Hermite
equation with A = 2n for which the coefficient of x" is 2". Find Hy(x), ..., Hs(x).

Consider the initial value problem y’ = /1 — y?,y(0) = 0.
(a) Show that y = sinx is the solution of this initial value problem.

(b) Look for a solution of the initial value problem in the form of a power series about
x = 0. Find the coefficients up to the term in x* in this series.

SCharles Hermite (1822-1901) was an influential French analyst and algebraist. An inspiring teacher, he
was professor at the Ecole Polytechnique and the Sorbonne. He introduced the Hermite functions in 1864
and showed in 1873 that e is a transcendental number (that is, e is not a root of any polynomial equation
with rational coefficients). His name is also associated with Hermitian matrices (see Section 7.3), some of
whose properties he discovered.
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In each of Problems 23 through 28, plot several partial sums in a series solution of the given
initial value problem about x = 0, thereby obtaining graphs analogous to those in Figures 5.2.1
through 5.2.4.

."2 23. y" —xy ' —y =0, y0) =1, y(©0)=0; see Problem 2

."2 24. 24 x%)y" —xy' +4y =0, y0) =1, y'(0)=0; see Problem 6
.‘Q 25. " +xy' +2y =0, y(0) =0, y(©) =1, see Problem 7

."Z 26. (4—x*)y" +2y=0, y(0) =0, y(©) =1, see Problem 10
."?, 27. y" +x%y =0, y0)=1, y'(0)=0; see Problem 4

¢ 28 1—-xy +xy-2y=0, y0)=0, y©O =1

5.3 Series Solutions Near an Ordinary Point, Part II

In the preceding section we considered the problem of finding solutions of
Px)y" + Q(x)y" + Rx)y =0, (1)

where P, O, and R are polynomials, in the neighborhood of an ordinary point xg.
Assuming that Eq. (1) does have a solution y = ¢(x) and that ¢ has a Taylor series

y=0®) =Y ayx —x)" (2)
n=0

that converges for |x — xo| < p, where p > 0, we found that the a, can be determined
by directly substituting the series (2) for y in Eq. (1).

Let us now consider how we might justify the statement that if x( is an ordinary
point of Eq. (1), then there exist solutions of the form (2). We also consider the
question of the radius of convergence of such a series. In doing this, we are led to a
generalization of the definition of an ordinary point.

Suppose, then, that there is a solution of Eq. (1) of the form (2). By differentiating
Eq. (2) m times and setting x equal to x, we obtain

mla, = ¢ (xp).

Hence, to compute a, in the series (2), we must show that we can determine ¢ (x)
forn =0,1,2,... from the differential equation (1).

Suppose that y = ¢(x) is a solution of Eq. (1) satisfying the initial conditions
y(x0) = y0,Y'(x0) = y;-Then ag = yo and a; = y;. If we are solely interested in finding
a solution of Eq. (1) without specifying any initial conditions, then gy and a; remain
arbitrary. To determine ¢ (xo) and the corresponding a,, forn = 2,3, ..., we turn to
Eq. (1). Since ¢ is a solution of Eq. (1), we have

P()¢"(x) + Q(x)¢'(x) + R(x)p(x) = 0.
For the interval about x; for which P is nonzero, we can write this equation in the form
¢"(x) = —=p(0)$'(x) — q()P(x), 3)
where p(x) = Q(x)/P(x) and g(x) = R(x)/P(x). Setting x equal to xo in Eq. (3) gives
¢ (x0) = —p(x0)¢' (x0) — q(x0)¢p(x0)-
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Theorem 5.3.1

Hence a; is given by

2lay = ¢"(x0) = —p(x0)ar — q(xo)ap. 4)

To determine a3, we differentiate Eq. (3) and then set x equal to xy, obtaining
3laz = ¢"(x0) = —[pd" + (P’ + P9’ + q'¢]
X=X(

= —2lp(xp)az — [p'(x0) + q(x0)la1 — q'(x0)ao. %)

Substituting for a, from Eq. (4) gives a3 in terms of a; and . Since P, Q, and R are
polynomials and P(xp) # 0, all the derivatives of p and ¢ exist at xo. Hence, we can
continue to differentiate Eq. (3) indefinitely, determining after each differentiation
the successive coefficients a4, as, . . . by setting x equal to xg.

Notice that the important property that we used in determining the a, was that
we could compute infinitely many derivatives of the functions p and g. It might seem
reasonable to relax our assumption that the functions p and g are ratios of polyno-
mials and simply require that they be infinitely differentiable in the neighborhood of
xo. Unfortunately, this condition is too weak to ensure that we can prove the conver-
gence of the resulting series expansion for y = ¢(x). What is needed is to assume that
the functions p and q are analytic at xy; that is, they have Taylor series expansions that
converge to them in some interval about the point xy:

PO =po+pix —x0) - +pa(x —x0)" 4= Y pux—x0)", (6
n=0

q00) =qo+q(x —x0) + -+ qux —x0)" - =Y _gux—x0)". (7
n=0

With this idea in mind, we can generalize the definitions of an ordinary point and a
singular point of Eq. (1) as follows:if the functions p = Q/P and ¢ = R/P are analytic
at xo, then the point x is said to be an ordinary point of the differential equation (1);
otherwise, it is a singular point.

Now let us turn to the question of the interval of convergence of the series solution.
One possibility is actually to compute the series solution for each problem and then
to apply one of the tests for convergence of an infinite series to determine its radius
of convergence. Unfortunately, these tests require us to obtain an expression for the
general coefficient a, as a function of n, and this task is often quite difficult, if not
impossible; recall Example 3 in Section 5.2. However, the question can be answered
at once for a wide class of problems by the following theorem.

If xo is an ordinary point of the differential equation (1)
P)y" + Q)Y + R(x)y =0,

that is, if p = Q/P and g = R/P are analytic at xo, then the general solution of
Eq. (1) is

Y= an(x —x0)" = apy1(x) + ary>(x), (8)

n=0
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EXAMPLE

1

where a( and a; are arbitrary, and y; and y, are two power series solutions that are
analytic at x¢. The solutions y; and y, form a fundamental set of solutions. Further,
the radius of convergence for each of the series solutions y; and y, is at least as
large as the minimum of the radii of convergence of the series for p and q.

To see that y; and y; are a fundamental set of solutions, note that they have the
form yi(x) =14 by(x —x0)> 4+ --- and y>(x) = (x — xg) + c2(x — x0)> + - - -, where
by + ¢, = ap. Hence y; satisfies the initial conditions yi(xg) = 1, yj(x9) =0, and y»
satisfies the initial conditions y,(xp) = 0, y5(xo) = 1. Thus W(y1,y2)(x9) = 1.

Also note that although calculating the coefficients by successively differenti-
ating the differential equation is excellent in theory, it is usually not a practical
computational procedure. Rather, you should substitute the series (2) for y in the dif-
ferential equation (1) and determine the coefficients so that the differential equation
is satisfied, as in the examples in the preceding section.

We will not prove this theorem, which in a slightly more general form was estab-
lished by Fuchs.® What is important for our purposes is that there is a series solution
of the form (2) and that the radius of convergence of the series solution cannot be
less than the smaller of the radii of convergence of the series for p and g; hence we
need only determine these.

This can be done in either of two ways. Again, one possibility is simply to compute
the power series for p and ¢ and then to determine the radii of convergence by
using one of the convergence tests for infinite series. However, there is an easier
way when P, O, and R are polynomials. It is shown in the theory of functions of a
complex variable that the ratio of two polynomials, say, Q/P, has a convergent power
series expansion about a point x = xg if P(xp) # 0. Further, if we assume that any
factors common to Q and P have been canceled, then the radius of convergence of
the power series for Q/P about the point x is precisely the distance from x( to the
nearest zero of P. In determining this distance, we must remember that P(x) = 0 may
have complex roots, and these must also be considered.

What is the radius of convergence of the Taylor series for (1 + x?)~! about x = 0?
One way to proceed is to find the Taylor series in question, namely,

1

m:1—x2+x4—x6+...+(_1)"x2”Jr_....

Then it can be verified by the ratio test that p = 1. Another approach is to note that the zeros of
1 4 x? are x = +i. Since the distance in the complex plane from 0 to i or to —i is 1, the radius
of convergence of the power series about x = 0 is 1.

®Lazarus Immanuel Fuchs (1833-1902), a German mathematician, was a student and later a professor at
the University of Berlin. He proved the result of Theorem 5.3.1 in 1866. His most important research was
on singular points of linear differential equations. He recognized the significance of regular singular points
(Section 5.4), and equations whose only singularities, including the point at infinity, are regular singular
points are known as Fuchsian equations.
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EXAMPLE

2

EXAMPLE

3

EXAMPLE

4

What is the radius of convergence of the Taylor series for (x> — 2x +2)~! about x = 0? about
x=1?
First notice that
¥ —2x+2=0

has solutions x = 1 £ i. The distance in the complex plane from x = 0 to either x =1 +i or

x = 1 —iis +/2; hence the radius of convergence of the Taylor series expansion i a,x" about
x = 0is /2. "=

The distance in the complex plane from x = 1 to eitherx =1+ iorx =1 —iis 1;hence the
radius of convergence of the Taylor series expansion i b,(x —1)" aboutx = 11is 1.

n=0

According to Theorem 5.3.1, the series solutions of the Airy equation in Examples
2 and 3 of the preceding section converge for all values of x and x — 1, respectively,
since in each problem P(x) = 1 and hence is never zero.

A series solution may converge for a wider range of x than indicated by Theorem
5.3.1,so the theorem actually gives only a lower bound on the radius of convergence
of the series solution. This is illustrated by the Legendre polynomial solution of the
Legendre equation given in the next example.

Determine a lower bound for the radius of convergence of series solutions about x = 0 for the
Legendre equation
(1=xMy" = 2xy +a@+ 1)y =0,

where « is a constant.
Note that P(x) =1 — x?, Q(x) = —2x, and R(x) = a(a + 1) are polynomials, and that the
zeros of P, namely, x = +1, are a distance 1 from x = 0. Hence a series solution of the form

o0

> a,x" converges atleast for |x| < 1,and possibly for larger values of x. Indeed, it can be shown
n=0
thatif o is a positive integer, one of the series solutions terminates after a finite number of terms

and hence converges not just for |x| < 1 but for all x. For example, if « = 1, the polynomial
solution is y = x. See Problems 22 through 29 at the end of this section for a further discussion
of the Legendre equation.

Determine a lower bound for the radius of convergence of series solutions of the differential
equation
A4+ x3)y" +2xy +4x*y =0 9)
about the point x = 0; about the point x = —%.
Again P, Q, and R are polynomials, and P has zeros at x = =%i. The distance in the complex
plane from 0 to +i is 1, and from —% to +iis /1+ % = +/5/2. Hence in the first case the

oo o0
. . . n
series )~ a,x" converges at least for |x| < 1, and in the second case the series Y. b, (x + 1)
n=0 n=0

converges at least for |x + %| < \/5/2.

An interesting observation that we can make about Eq. (9) follows from Theorems 3.2.1
and 5.3.1. Suppose that initial conditions y(0) = y and y'(0) = y; are given. Since 1+ x? # 0
for all x, we know from Theorem 3.2.1 that there exists a unique solution of the initial value
problem on —oco < x < 0o. On the other hand, Theorem 5.3.1 only guarantees a series solution
of the form ) a,x" (with ay = yo,a; = y;) for —1 < x < 1. The unique solution on the interval

n=0
—00 < X < oo may not have a power series about x = 0 that converges for all x.
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EXAMPLE

5

Can we determine a series solution about x = 0 for the differential equation
Y+ Ginxy + (1 +x7)y =0,

and if so, what is the radius of convergence?

For this differential equation, p(x) = sinx and g(x) = 1 4 x?. Recall from calculus that sin x
has a Taylor series expansion about x = 0 that converges for all x. Further, g also has a Taylor
series expansion about x = 0, namely, g(x) = 1 + x?, that converges for all x. Thus there is

(o]
a series solution of the form y = Y a,x" with gy and g, arbitrary, and the series converges
for all x. n=0

PROBLEMS

In each of Problems 1 through 4, determine ¢ (xo), ¢ (xo), and ¢“ (x,) for the given point x,
if y = ¢(x) is a solution of the given initial value problem.

Ly +xy+y=0; yO0) =1, y(©0)=0

2. y"+ (sinx)y 4+ (cosx)y=0;  y(0)=0, »(0)=1

3.8 + (A 4+x0y +3(Inxy =0  y(1)=2, y@1)=0

4.y + X%y 4+ inx)y =0;  y0) =ap, y0)=a
In each of Problems 5 through 8, determine a lower bound for the radius of convergence of
series solutions about each given point x, for the given differential equation.

5.y +4y +6xy=0; x0=0, xo=4
L@ =2x =3y +xy 4y =0; xo=4, xo=-4 x=0
APy Ay 4y =0; Xo=0, xo=2
. xy'+y=0; xo=1

O 00 N N

. Determine a lower bound for the radius of convergence of series solutions about the given
xo for each of the differential equations in Problems 1 through 14 of Section 5.2.

10. The Chebyshev Equation. The Chebyshev’ differential equation is
A =x))y" —xy' +a’y =0,

where « is a constant.

(a) Determine two solutions in powers of x for |x| < 1, and show that they form a
fundamental set of solutions.

(b) Show that if « is a nonnegative integer n, then there is a polynomial solution of
degree n. These polynomials, when properly normalized, are called the Chebyshev
polynomials. They are very useful in problems that require a polynomial approximation
to a function defined on —1 < x < 1.

(c) Find a polynomial solution for each of the casese =n =0, 1,2, 3.

7Pafnuty L. Chebyshev (1821-1894), the most influential nineteenth-century Russian mathematician, was
for 35 years professor at the University of St. Petersburg, which produced a long line of distinguished
mathematicians. His study of Chebyshev polynomials began in about 1854 as part of an investigation of
the approximation of functions by polynomials. Chebyshev is also known for his work in number theory
and probability.
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For each of the differential equations in Problems 11 through 14, find the first four nonzero
terms in each of two power series solutions about the origin. Show that they form a fundamental
set of solutions. What do you expect the radius of convergence to be for each solution?

11. y" 4 (sinx)y =0 12. ¢y" +xy =0
13. (cosx)y” +xy —2y =0 14. ey +In(1 +x)y —xy =0

15. Letx and x? be solutions of a differential equation P(x)y” + Q(x)y’ + R(x)y = 0. Can you
say whether the point x = 0 is an ordinary point or a singular point? Prove your answer.

First Order Equations. The series methods discussed in this section are directly applicable
to the first order linear differential equation P(x)y’ + Q(x)y = 0 at a point xy, if the function
p = Q/P has a Taylor series expansion about that point. Such a point is called an ordinary

o0
point, and further, the radius of convergence of the series y = Y a,(x — x¢)" is at least as large

as the radius of convergence of the series for Q/P. In each of P;o%lems 16 through 21, solve the
given differential equation by a series in powers of x and verify that ay is arbitrary in each case.
Problems 20 and 21 involve nonhomogeneous differential equations to which series methods
can be easily extended. Where possible, compare the series solution with the solution obtained
by using the methods of Chapter 2.

16. y—y =0 17y —xy=0
18. y = €%y, three terms only 19. Ad-x)y =y
20. y —y =x? 21 y +xy=1+x

The Legendre Equation. Problems 22 through 29 deal with the Legendre® equation
A —=xby" —2xy +a(e+1)y =0.

Asindicated in Example 3,the pointx = Ois an ordinary point of this equation,and the distance
from the origin to the nearest zero of P(x) = 1 — x? is 1. Hence the radius of convergence of
series solutions about x = 0 is at least 1. Also notice that we need to consider only @ > —1
because if « < —1, then the substitution o« = —(1 + y), where y > 0, leads to the Legendre
equation (1 — x2)y” — 2xy’ + y(y + 1)y = 0.

22. Show that two solutions of the Legendre equation for |x| < 1 are

a(a+1) ala —2)(a+ 1D (a+3)
TR a1 o

@ =1-

> (o =2, 2 1)--- 2m—1
n Z(_l)ma (¢ —2m + )((;’:;)!) (o« +2m )xzm,
m=3
a@—D@@+2) ;5 (a—D@=3)a+2)(a+4)
3l o 51 *

y2(x) =x —

> =1 (a=2m+1D(@+2) - («+2m) ,,
+ 2(_1) Qm+1)! e

8 Adrien-Marie Legendre (1752-1833) held various positions in the French Académie des Sciences from
1783 onward. His primary work was in the fields of elliptic functions and number theory. The Legendre
functions,solutions of Legendre’s equation, first appeared in 1784 in his study of the attraction of spheroids.
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23

& 24

25.

26.

27.

28.

. Show that if « is zero or a positive even integer 2n, the series solution y; reduces to a
polynomial of degree 2n containing only even powers of x. Find the polynomials corre-
sponding to « = 0, 2, and 4. Show that if « is a positive odd integer 2n + 1, the series
solution y, reduces to a polynomial of degree 2n + 1 containing only odd powers of x.
Find the polynomials corresponding to « = 1,3, and 5.

. The Legendre polynomial P,(x) is defined as the polynomial solution of the Legendre
equation with « = n that also satisfies the condition P,(1) = 1.

(a) Using the results of Problem 23, find the Legendre polynomials Py(x),. .., P5(x).
(b) Plot the graphs of Py(x),...,Ps(x) for =1 <x < 1.
(c) Find the zeros of Py(x), ..., Ps(x).

It can be shown that the general formula for P, (x) is

1A cvken—260
Pav) =523+

2 - bl -2k
where [n/2] denotes the greatest integer less than or equal to n/2. By observing the form
of P,(x) for n even and n odd, show that P,(—1) = (—=1)".

The Legendre polynomials play an important role in mathematical physics. For example,in
solving Laplace’s equation (the potential equation) in spherical coordinates, we encounter
the equation

’F F
d (q))—f—cot(pd (9) +nn+1)F(p) =0, O<p<m,
dg? dy

where n is a positive integer. Show that the change of variable x = cos ¢ leads to the
Legendre equation with « = n for y = f(x) = F(arccos x).

Show that for n = 0, 1, 2, 3, the corresponding Legendre polynomial is given by
da 2 n
Falx) = 2nn! dx" o =D

This formula, known as Rodrigues’s formula,’ is true for all positive integers 7.
Show that the Legendre equation can also be written as

[(1 =)y = —a(a+ Dy.
Then it follows that
[(1=x)P, 0] = —n(n+ 1P,(x) and [(1 —x*)P,,(x)] = —m(m + 1)Pp,(x).

By multiplying the first equation by P,,(x) and the second equation by P, (x), integrating
by parts, and then subtracting one equation from the other, show that

1
/ P,(x)P,,(x)dx =0 if n#m.
-1

This property of the Legendre polynomials is known as the orthogonality property. If
m = n, it can be shown that the value of the preceding integral is 2/(2n + 1).

9Benjamin Olinde Rodrigues (1795-1851) published this result as part of his doctoral thesis from the
University of Paris in 1815. He then became a banker and social reformer but retained an interest in
mathematics. Unfortunately, his later papers were not appreciated until the late twentieth century.
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29. Given a polynomial f of degree n, it is possible to express f as a linear combination of
PO,P],PZ,...,P,,:

f) =) aPi(x).
k=0

Using the result of Problem 28, show that

_2k+1
)

1
/ f )Py (x) dx.
-1

Ay

5.4 Euler Equations; Regular Singular Points

In this section we will begin to consider how to solve equations of the form

P(x)y"+ Qx)y +Rx)y =0 (1)

in the neighborhood of a singular point x¢. Recall that if the functions P, Q, and R
are polynomials having no factors common to all three of them, then the singular
points of Eq. (1) are the points for which P(x) = 0.

Euler Equations. A relatively simple differential equation that has a singular point is
the Euler equation'”

Lyl =x*y" +axy + By =0, 2)
where « and 8 are real constants. In this case P(x) = x?, so x = 0 is the only singu-
lar point for Eq. (2); all other points are ordinary points. For convenience we first
consider the interval x > 0;later we extend our results to the interval x < 0.

Observe that (x") = rx’~! and (")” = r(r — 1)x" 2. Hence, if we assume that
Eq. (2) has a solution of the form
y=x, 3)
then we obtain
L[xr] — x2(xr)// + ax(xr)/ + ,er

= X*r(r — DX 7 Fax(rx™1) 4 Bx”

=x'[r(r—1) +ar + Bl. “4)
If r is a root of the quadratic equation
Fry=rr—1)4+ar+p8=0, (5)

then L[x"] is zero,and y = x" is a solution of Eq. (2). The roots of Eq. (5) are

-1+ /@17 =4p
2 9

(6)

and F(r) = (r — r1)(r — r2). As for second order linear equations with constant coef-
ficients, we consider separately the cases in which the roots are real and different, real

r,nr =

10This equation is sometimes called the Cauchy—Euler equation or the equidimensional equation. Euler
studied it in about 1740, but its solution was known to Johann Bernoulli before 1700.
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EXAMPLE

1

but equal, and complex conjugates. Indeed, the entire discussion of Euler equations
is similar to the treatment of second order linear equations with constant coefficients
in Chapter 3, with e’ replaced by x".

Real, Distinct Roots. If F(r) = 0 has real roots r; and r,, with r{ # r;, then y;(x) = x"
and y,(x) = x™ are solutions of Eq. (2). Since

W(xrl’xrz) — (rz _ rl)xr1+r271
is nonzero for r; # r, and x > 0, it follows that the general solution of Eq. (2) is
y=cx" + cx", x> 0. (7)

Note that if 7 is not a rational number, then x” is defined by x" = e’!n*,

Solve
2x%y" +3xy' —y =0, x> 0. 8)

Substituting y = x”" in Eq. (8) gives
XR2rr =D 4+3r—11=xQr+r—1)=xQr—D(r+1)=0.
Hence ry = % and r, = —1, so the general solution of Eq. (8) is

12 1

y=ax'"4cx T, x> 0. )

Equal Roots. If the roots r; and r, are equal, then we obtain only one solution
y1(x) = x™ of the assumed form. A second solution can be obtained by the method
of reduction of order, but for the purpose of our future discussion we consider an
alternative method. Since 7| = r, it follows that F(r) = (r — r;)2. Thus in this case,
not only does F(r;) = 0 but also F’'(r;) = 0. This suggests differentiating Eq. (4) with
respect to r and then setting r equal to 1. By differentiating Eq. (4) with respect to
r, we obtain

0 ry o 3 r _ i r o 2
5L[x 1= 8r[x Fnl= 8r[x (r—r)7]
= —r)*x Inx +2(r — r)x". (10)

However, by interchanging differentiation with respect to x and with respect to r, we
also obtain

0 0
—L[x'1=L |:—x’] = L[x"Inx].
or ar

The right side of Eq. (10) is zero for r = ry; consequently, L[x" Inx] =0 also.
Therefore,
y2(x) = x" Inx, x>0 (11)

is a second solution of Eq. (2). By evaluating the Wronskian of y;and y», we find that
W', x" Inx) = x>,

Hence x™ and x"' Inx are a fundamental set of solutions for x > 0, and the general
solution of Eq. (2) is
v =(c; +clnx)x, x> 0. (12)
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Solve
EXAMPLE X3y +5xy +4y=0, x>0. (13)
2 Substituting y = x” in Eq. (13) gives
Xrr—=1D)+5r+4=x"?+4r+4) =0.
Hencery =r, = —2,and
y=x"2(c; + e Inx), x>0 (14)
is the general solution of Eq. (13).
Complex Roots. Finally, suppose that the roots r; and r, of Eq. (5) are complex con-
jugates, say, r; = A +ip and rp, = A — ip, with u # 0. We must now explain what is
meant by x” when r is complex. Remembering that
X = erlnx (15)
when x > 0 and r is real, we can use this equation to define x" when r is complex.
Then, using Euler’s formula for ¢/*!"*, we obtain
xk+m — e(A-Hﬂ) Inx — eA lnxei;/, Inx — x)\ei/tlnx
= x*[cos(u Inx) + isin(u Inx)], x> 0. (16)
With this definition of x" for complex values of r, it can be verified that the usual
laws of algebra and the differential calculus hold, and hence x"* and x™ are indeed
solutions of Eq. (2). The general solution of Eq. (2) is
y = cpx* T xR, 17)
The disadvantage of this expression is that the functions x*** and x*~ are complex-
valued. Recall that we had a similar situation for the second order differential
equation with constant coefficients when the roots of the characteristic equation
were complex. Just as we did then, we can use Theorem 3.2.6 to obtain real-valued
solutions of Eq. (2) by taking the real and imaginary parts of x***, namely,
x*cos(ulnx) and x*sin(ulnx). (18)
A straightforward calculation shows that
Wx* cos(u Inx), x* sin(u Inx)] = px®L.
Hence these solutions form a fundamental set of solutions for x > 0, and the general
solution of Eq. (2) is
y = c1x” cos(u Inx) + cox* sin( In x), x> 0. (19)
Solve
EXAMPLE ¥’y 4+ xy +y=0. (20)

3

Substituting y = x” in Eq. (20) gives
Xro-—D+r+11=x0+1) =0.
Hence r = +i, and the general solution is
y = ¢ cos(Inx) + ¢, sin(In x), x> 0. (21)

The factor x* does not appear explicitly in Eq. (21) because in this example A = 0 and x* = 1.
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Now let us consider the qualitative behavior of the solutions of Eq. (2) near the
singular point x = 0. This depends entirely on the values of the exponents r; and r,.
First, if 7 is real and positive, then x” — 0 as x tends to zero through positive values.
On the other hand, if r is real and negative, then x” becomes unbounded. Finally, if
r =0, thenx” = 1. Figure 5.4.1 shows these possibilities for various values of r. If r is
complex, then a typical solution is x* cos(u In x). This function becomes unbounded or
approaches zero if X is negative or positive, respectively, and also oscillates more and
more rapidly as x — 0. This behavior is shown in Figures 5.4.2 and 5.4.3 for selected
values of A and . If A = 0, the oscillation is of constant amplitude. Finally, if there
are repeated roots, then one solution is of the form x" In x, which tends to zero if r > 0
and becomes unbounded if » < 0. An example of each case is shown in Figure 5.4.4.

Y 1/2
y=x y = a3
2 —
y=x0
1
y =l
7 = %302
| | | |
0.5 1 1.5 2 X
FIGURE 5.4.1 Solutions of an Euler equation; real roots.
Yy Yy
2 y=x"cos(5 In x) 1

WY .
\/W 1 5 2x

-1 y=x12cos(5In x)

/\ /\ |
\/ 0.1@ 025 0.375 0.5 x
2

FIGURE5.4.2 Solution of an Euler equation; FIGURE5.4.3 Solution of an Euler equation;

complex roots with negative real part. complex roots with positive real part.
Y
1=
\ \ \
0. 1 15 2x
y=xInx
-l y=x1tlnx

FIGURE 5.4.4 Typical second solutions of an Euler equation with equal roots.
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The extension of the solutions of Eq. (2) into the interval x < 0 can be carried out
in a relatively straightforward manner. The difficulty lies in understanding what is
meant by x” when x is negative and r is not an integer; similarly, In x has not been
defined for x < 0. The solutions of the Euler equation that we have given for x > 0
can be shown to be valid for x < 0, but in general they are complex-valued. Thus in
Example 1 the solution x'/? is imaginary for x < 0.

Itis always possible to obtain real-valued solutions of the Euler equation (2) in the
interval x < 0 by making the following change of variable. Let x = —&, where & > 0,
and let y = u(&). Then we have

dy dudg  du >y d ( du\d:i du 22)
dx  de dx  dE’ dx?  de\ de) dx  dg’
Thus, for x < 0, Eq. (2) takes the form
d’u du
2— _— =
£ pre +ozsdE +pu=0,  £>0. (23)

But except for names of the variables, this is exactly the same as Eq. (2); from Egs. (7),
(12),and (19), we have

& + 8
u) = (c1 +cxIné)én (24)
c1&" cos(uIn ) + c€* sin(u In &),

depending on whether the zeros of F(r) = r(r — 1) 4+ ar + B are real and different,
real and equal, or complex conjugates. To obtain u« in terms of x, we replace £ by —x
in Egs. (24).

We can combine the results for x > 0 and x < 0 by recalling that |x| = x whenx > 0
and that |x| = —x when x < 0. Thus we need only replace x by |x| in Egs. (7),(12),and
(19) to obtain real-valued solutions valid in any interval not containing the origin.

Hence the general solution of the Euler equation (2)

x2y//+axy/+’8y:0

in any interval not containing the origin is determined by the roots r; and r, of the
equation

Fry=rr—D+ar+p=0
as follows. If the roots are real and different, then
y=clx|" +colx|”. (25)
If the roots are real and equal, then
y=(c1+elnlx])|x|". (26)
If the roots are complex conjugates, then
y = lx|* [er cos(uuIn [x[) 4 ¢z sin(u In [x)], (27)

where ri,r, = A +iu.
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The solutions of an Euler equation of the form
(x = x0)°y" + alx —x0)y' + By =0 (28)

are similar. If we look for solutions of the form y = (x — x)", then the general solution
is given by Eq. (25), Eq. (26), or Eq. (27) with x replaced by x — xy. Alternatively,
we can reduce Eq. (28) to the form of Eq. (2) by making the change of independent
variable t = x — xy.

Regular Singular Points. We now return to a consideration of the general equation (1)
P)y" + Q)y + R(x)y =0,

where Xy is a singular point. This means that P(xp) = 0 and that at least one of Q and
R is not zero at xy.

Unfortunately, if we attempt to use the methods of the preceding two sections to
solve Eq. (1) in the neighborhood of a singular point x,, we find that these methods
fail. This is because the solution of Eq. (1) is often not analytic at xy and consequently
cannot be represented by a Taylor series in powers of x — xo. Examples 1, 2, and 3
illustrate this fact; in each of these examples, the solution fails to have a power series
expansion about the singular point x = 0. Therefore, to have any chance of solving
Eq. (1) in the neighborhood of a singular point, we must use a more general type of
series expansion.

Since the singular points of a differential equation are usually few in number, we
might ask whether we can simply ignore them, especially since we already know how
to construct solutions about ordinary points. However, this is not feasible. The sin-
gular points determine the principal features of the solution to a much larger extent
than you might at first suspect. In the neighborhood of a singular point the solution
often becomes large in magnitude or experiences rapid changes in magnitude. For
example, the solutions found in Examples 1,2, and 3 are illustrations of this fact. Thus
the behavior of a physical system modeled by a differential equation frequently is
most interesting in the neighborhood of a singular point. Often geometric singular-
ities in a physical problem, such as corners or sharp edges, lead to singular points
in the corresponding differential equation. Thus, although at first we might want to
avoid the few points where a differential equation is singular, it is precisely at these
points that it is necessary to study the solution most carefully.

As an alternative to analytical methods, we can consider the use of numerical
methods, which are discussed in Chapter 8. However, these methods are ill suited
for the study of solutions near a singular point. Thus, even if we adopt a numerical
approach,itis advantageous to combine it with the analytical methods of this chapter
in order to examine the behavior of solutions near singular points.

Without any additional information about the behavior of Q/P and R/P in the
neighborhood of the singular point, it is impossible to describe the behavior
of the solutions of Eq. (1) near x = xy. It may be that there are two distinct solu-
tions of Eq. (1) that remain bounded as x — x (as in Example 3); or there may be
only one, with the other becoming unbounded as x — xj (as in Example 1); or they
may both become unbounded as x — x; (as in Example 2). If Eq. (1) has solutions
that become unbounded as x — xy, it is often important to determine how these
solutions behave as x — x¢. For example, does y — oo in the same way as (x — xo) ™!
or |x — x| ~'/2, or in some other manner?
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EXAMPLE

4

Our goal is to extend the method already developed for solving Eq. (1) near an
ordinary point so that it also applies to the neighborhood of a singular point x.
To do this in a reasonably simple manner, it is necessary to restrict ourselves to cases
in which the singularities in the functions Q/P and R/P at x = x( are not too severe—
that is, to what we might call “weak singularities.” At this stage it is not clear exactly
what is an acceptable singularity. However, as we develop the method of solution,
you will see that the appropriate conditions (see also Section 5.6, Problem 21) to
distinguish “weak singularities” are

is finite (29)
and
. LR e
lim (x — x9)"—— is finite. (30)
X
This means that the singularity in Q/P can be no worse than (x — x¢) ! and the singu-
larity in R/P can be no worse than (x — xp) ~2. Such a point is called a regular singular

point of Eq. (1). For equations with more general coefficients than polynomials, x
is a regular singular point of Eq. (1) if it is a singular point and if both!!
R(x)

Q) 2
P and (x — x) % (31)

(x — xo)

have convergent Taylor series about xo—that is, if the functions in Eq. (31) are analytic
at x = xo. Equations (29) and (30) imply that this will be the case when P, Q, and R
are polynomials. Any singular point of Eq. (1) that is not a regular singular point is
called an irregular singular point of Eq. (1).

Observe that the conditions in Egs. (29) and (30) are satisfied by the Euler equation
(28). Thus the singularity in an Euler equation is a regular singular point. Indeed, we
will see that all equations of the form (1) behave very much like Euler equations near
a regular singular point. That is, solutions near a regular singular point may include
powers of x with negative or nonintegral exponents, logarithms, or sines or cosines
of logarithmic arguments.

In the following sections we discuss how to solve Eq. (1) in the neighborhood of a
regular singular point. A discussion of the solutions of differential equations in the
neighborhood of irregular singular points is more complicated and may be found in
more advanced books.

Determine the singular points of the Legendre equation
A=xb)y" —2xy +a@+1)y=0 (32)

and determine whether they are regular or irregular.

!'The functions given in Eq. (31) may not be defined at x¢, in which case their values at x( are to be
assigned as their limits as x — xo.
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In this case P(x) = 1 — x?, so the singular points are x = 1 and x = —1. Observe that when
we divide Eq. (32) by 1 — x?, the coefficients of y’ and y are —2x/(1 — x?) and (e + 1) /(1 — x?),
respectively. We consider the point x = 1 first. Thus, from Egs. (29) and (30), we calculate

lim(r— ) T2 EZDE 2
—x2 =1 (1-x)A4+x) »>114x
and
. B yala+1) x—1Da(@+1)
o= 4 =M a0
. x=D(=a)a+1)
= lim =0.
x—1 1 +Xx

Since these limits are finite, the point x = 1 is a regular singular point. It can be shown in a
similar manner that x = —1 is also a regular singular point.

Determine the singular points of the differential equation
EXAMPLE
5 2x(x —2)%y" +3xy + (x —2)y =0
and classify them as regular or irregular.
Dividing the differential equation by 2x(x — 2)?, we have

y// +

SRR B
260—22Y T oxx=2" T

so p(x) = Q(x)/P(x) = 3/2(x — 2)? and q(x) = R(x)/P(x) = 1/2x(x — 2). The singular points

are x = 0 and x = 2. Consider x = 0. We have

hmxp(x) = hmx =0,

_3
20202y
and

1
hmx q(x) = hmx m

Since these limits are finite, x = 0 is a regular singular point. For x = 2 we have

. 3 3 i
lim(x —2)p(x) = lim(x —2) 206 —2)? lim 2x—=2)’

so the limit does not exist; hence x = 2 is an irregular singular point.

Determine the singular points of
EXAMPLE

2
6 ( _ g) Y’ + (cosx)y’ + (sinx)y =0

and classify them as regular or irregular.
The only singular point is x = 7/2. To study it, we consider the functions

(- 3)r0=(-3) T = 5 2em

and
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Starting from the Taylor series for cos x about x = /2, we find that

cosx x—n/2?  (x—m/2)*
x—n/2_1+ 3! 55 T

which converges for all x. Similarly, sin x is analytic at x = 7/2. Therefore, we conclude that
/2 is a regular singular point for this equation.

PROBLEMS

In each of Problems 1 through 12, determine the general solution of the given differential
equation that is valid in any interval not including the singular point.

1. x%y 4+ 4xy +2y =0 2. (x+ 12" +3(x+ 1)y +0.75y =0

3. x%" —3xy +4y =0 4. xX*y" +3xy' +5y =0

5. %% —xy +y=0 6. (x—1)2y"+8(x—1)y +12y =0

7. x% +6xy —y=0 8. 2x?y" —4xy' + 6y =0

9. x%y" —5xy'+9y =0 10. (x —2)%y" +5(x —2)y' +8y =0
11, x2y" +2xy' +4y =0 12. x%y" —4xy' +4y =0

In each of Problems 13 through 16, find the solution of the given initial value problem. Plot
the graph of the solution and describe how the solution behaves as x — 0.

13. 2x%y" +xy' =3y =0, yh=1, yd=4

14. 4x%y" +8xy' +17y =0, y(1)=2, yd)=-3
15. x%y" —3xy' +4y =0, y=1) =2, y(1)=3
16. x?y” +3xy' + 5y =0, yh=1, yd)=-1

In each of Problems 17 through 34, find all singular points of the given equation and determine
whether each one is regular or irregular.

17. xy" + 1 —x)y' +xy =0 18. xX2(1 —x)%y" +2xy' +4y =0
19. (1 —x)y"+ (x=2)y —=3xy =0 20. X>(1 —x2)y" 4+ 2/x)y' +4y =0
21, A=) +x1—x)y + (1 +x)y=0

22, X2y 4+ xy + (x> =)y =0, Bessel equation

23. (x+3)y =20y + (1 —x2)y =0

24, x(1 = x23y" + (1 = x*)%y' +2(1 +x)y =0

25. x+2%(x =1y +3x -1y —2x+2)y=0

26. xB—x)y"+x+1)y —2y=0

27. (P H+x =2y +(x+1Dy +2y=0 28. xy" +e*y + (3cosx)y =0

29. y"+ (n|x])y +3xy =0 30. x2y" +2(e* — 1)y’ + (e *cosx)y =0
31. x?y" —=3(sinx)y + (1 +x>)y =0 32. xy" +y + (cotx)y =0

33. (sinx)y” +xy +4y =0 34, (xsinx)y” +3y' +xy =0

35. Find all values of « for which all solutions of x>y + axy’ + (5/2)y = 0 approach zero as
x — 0.

v

36. Find all values of 8 for which all solutions of x?y” + By = 0 approach zero as x — 0.
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37. Find y so that the solution of the initial value problem x?y” —2y =0,y(1) =1,y'(1) = y
is bounded as x — 0.

38. Find all values of « for which all solutions of x?y” + axy’ + (5/2)y = 0 approach zero as
X — 00.

39. Consider the Euler equation x?y” + axy’ + By = 0. Find conditions on « and g so that:
(a) All solutions approach zero as x — 0.
(b) All solutions are bounded as x — 0.
(c) All solutions approach zero as x — ©o.
(d) All solutions are bounded as x — oc.

(e) All solutions are bounded both as x — 0 and as x — oo.

40. Using the method of reduction of order, show that if r; is a repeated root of
rr—1)4+ar+ =0,
then x' and x"! In x are solutions of x?y” + axy’ + By = 0 for x > 0.

In each of Problems 41 and 42, show that the point x = 0 is a regular singular point. In each

problem try to find solutions of the form ) a,x". Show that (except for constant multiples)
n=0

there is only one nonzero solution of this form in Problem 41 and that there are no nonzero
solutions of this form in Problem 42. Thus in neither case can the general solution be found in
this manner. This is typical of equations with singular points.

41. 2xy" + 3y +xy =0
42. 2x%y" +3xy' — (1+x)y =0

43. Singularities at Infinity. The definitions of an ordinary point and a regular singular point
given in the preceding sections apply only if the point x; is finite. In more advanced work
in differential equations, it is often necessary to consider the point at infinity. This is done
by making the change of variable £ = 1/x and studying the resulting equation at £ = 0.
Show that, for the differential equation

P)y" + Q)y + R(x)y =0,
the point at infinity is an ordinary point if

1 [ZP(l/S)_Q(l/S)] and _RA/8)
P(1/8) § & §P(1/8)

have Taylor series expansions about & = 0. Show also that the point at infinity is a regular
singular point if at least one of the above functions does not have a Taylor series expansion,

but both
& [ZP(l/S) _ Q(l/é)] and R(1/%)
P1/%) & g £2P(1/%)

do have such expansions.

In each of Problems 44 through 49, use the results of Problem 43 to determine whether the
point at infinity is an ordinary point, a regular singular point, or an irregular singular point of
the given differential equation.

4.y +y=0
45. x*y" +xy' —4y =0
46. (1 —x*)y" —2xy +a(a+1)y =0, Legendre equation
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47. X2y 4 xy' 4+ (> =)y =0, Bessel equation
48. y" —2xy' + 1y =0, Hermite equation
49. y" —xy =0, Airy equation

5.5 Series Solutions Near a Regular Singular Point, Part I

We now consider the question of solving the general second order linear equation
P(x)y” + Q)y + R(x)y =0 (1)

in the neighborhood of a regular singular point x = x. For convenience we assume
that xo = 0. If xy # 0, we can transform the equation into one for which the regular
singular point is at the origin by letting x — xy equal ¢.

The assumption that x =0 is a regular singular point of Eq. (1) means that
xQ(x)/P(x) = xp(x) and x*R(x)/P(x) = x*q(x) have finite limits as x — 0 and are
analytic at x = 0. Thus they have convergent power series expansions of the form

xp(x) =Y pux", g =) g, )
n=0 n=0

on some interval |x| < p about the origin, where p > 0. To make the quantities xp(x)
and x*q(x) appear in Eq. (1), it is convenient to divide Eq. (1) by P(x) and then to
multiply by x2, obtaining

2y + xlxp)ly + [¥q0)ly =0, 3)
or
XY +x(Po + prx+ -+ pax + o)y
+(@o+qx+---+gux" +--)y=0. 4
If all of the coefficients p, and g, are zero, except possibly
2
Po =y§5% and qo=g%, (5)

then Eq. (4) reduces to the Euler equation

x*y" + poxy’ + qoy = 0, (6)
which was discussed in the preceding section. In general, of course, some of the coef-
ficients p,, and ¢,, n > 1, are not zero. However, the essential character of solutions
of Eq. (4) in the neighborhood of the singular point is identical to that of solu-
tions of the Euler equation (6). The presence of the terms p1x + - - - + p,x" + - - - and
qi1x + - - -+ qn.x" + - - - merely complicates the calculations.

We restrict our discussion primarily to the interval x > 0. The interval x < 0 can
be treated, just as for the Euler equation, by making the change of variable x = —¢&
and then solving the resulting equation for & > 0.

The coefficients in Eq. (4) can be viewed as “Euler coefficients” times power series.
To see this, you can write the coefficient of y" in Eq. (4) as

Pox[1 + (P1/po)x + (P2/Po)X* + -+ + (Pu/PO)X" + - -],
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EXAMPLE

1

and similarly for the coefficient of y. Thus it may seem natural to seek solutions of
Eq. (4) in the form of “Euler solutions” times power series. Hence we assume that

o0 o0
y=x(a+ax+- - +ax+)=x" Y ax" =Y ax"", )
n=0 n=0

where aj # 0. In other words, r is the exponent of the first nonzero term in the series,
and ay is its coefficient. As part of the solution, we have to determine:

1. The values of r for which Eq. (1) has a solution of the form (7).
2. The recurrence relation for the coefficients a,,.

o0
3. The radius of convergence of the series »_ a,x".

n=0

The general theory was constructed by Frobenius'? and is fairly complicated.

Rather than trying to present this theory, we simply assume, in this and the next
two sections, that there does exist a solution of the stated form. In particular, we
assume that any power series in an expression for a solution has a nonzero radius of
convergence and concentrate on showing how to determine the coefficients in such
a series. To illustrate the method of Frobenius, we first consider an example.

Solve the differential equation
2%y —xy' + (1 +x)y =0. (8)
It is easy to show that x = 0 is a regular singular point of Eq. (8). Further, xp(x) = —1/2
and x*q(x) = (1 +x)/2. Thus pg = —1/2,qo = 1/2,q, = 1/2,and all other p’s and ¢’s are zero.
Then, from Eq. (6), the Euler equation corresponding to Eq. (8) is
2x%y" —xy' +y=0. 9)

To solve Eq. (8), we assume that there is a solution of the form (7). Then y’ and y” are
given by

Y=Y a,(r+mx ! (10)
n=0
and .
V' = Z a,(r +n)(r +n — Hx*72, (1)
n=0

By substituting the expressions for y,y’, and y” in Eq. (8), we obtain

2% —xy + (1 +x)y = ZZan(r +n)(r+n—1x"™"

n=0

o0 oo o0
— Z a,(r +n)x" + Z a,x"" + Z apx L (12)
n=0

n=0 n=0

2Ferdinand Georg Frobenius (1849-1917) grew up in the suburbs of Berlin, received his doctorate in 1870
from the University of Berlin, and returned as professor in 1892. For most of the intervening years he was
professor at the Eidgenossische Polytechnikum at Ziirich. He showed how to construct series solutions
about regular singular points in 1874. His most distinguished work, however, was in algebra, where he was
one of the foremost early developers of group theory.
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The last term in Eq. (12) can be written as Y a,_1x"™", so by combining the terms in Eq. (12),
we obtain n=1

2%y —xy' + (L +x)y = aol2r(r — 1) —r + 1]x"

+ Z {2+ +n—1)—@F+n+1]a,+ a1 }x™*" =0. (13)

n=1

If Eq. (13) is to be satisfied for all x, the coefficient of each power of x in Eq. (13) must be zero.
From the coefficient of x” we obtain, since ay # 0,

2kFr=1) —r+1=2-3r+1=@0r-12r—1 =0. (14)

Equation (14) is called the indicial equation for Eq. (8). Note that it is exactly the polynomial
equation we would obtain for the Euler equation (9) associated with Eq. (8). The roots of the
indicial equation are

=1, rn=1/2. 15)

These values of r are called the exponents at the singularity for the regular singular point

x = 0. They determine the qualitative behavior of the solution (7) in the neighborhood of the
singular point.

Now we return to Eq. (13) and set the coefficient of x"*” equal to zero. This gives the relation

R +me+n—1)—¢+n+1a,+a, =0, n=1, (16)

or
an—1
2r+n)? —=3(r+n)+1

a, =

ap—1
=— 1. 17
+m-12r+m-11 "7 {1n

For each root r; and r, of the indicial equation, we use the recurrence relation (17) to determine

a set of coefficients a1, ay,.... Forr = r; = 1, Eq. (17) becomes
ap—1
n = P > 1.
a 2n+ n "
Thus
a; = o
=3
gy S _ @
T 527 3512
and

p_ @ _ @
T 73T T 3.5-11-2-3)°

In general, we have
="

=357 2n+ !

ap, n >4 (18)

If we multiply both the numerator and denominator of the right side of Eq. (18) by
2-4.6---2n = 2"n!, we can rewrite a,, as
(=12"
a, = ——a
2n+1)!

A%
—

0>
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Hence, if we omit the constant multiplier a,, one solution of Eq. (8) is

o (=D,
yl(x)=x{1+§(2n+l)!x}, x> 0. (19)
To determine the radius of convergence of the series in Eq. (19), we use the ratio test:
. 2|x|
=lim ———— =
n—oo (2n +2)(2n + 3)

+1
. an+1xn
Iim [———

n—00

a,x"

for all x. Thus the series converges for all x.
Corresponding to the second rootr = r, = %, we proceed similarly. From Eq. (17) we have

Qap—1 Qap—1 -1
a, = — = — S n>1.
2n(n—1) nn —1)
Hence
a; = i
1= 11’
ay ap
H=——=—
2T T23 T 1 -3)
ap agp
a3=—7=

3.5 (1-2-3)(1-3-5)°

and, in general,

_ (="
an_n![1.3.5...(2n_1)]ao, n>4. (20)

Just as in the case of the first root r;, we multiply the numerator and denominator by
2-4.6---2n = 2"n!. Then we have

_ (_1)7!27!

a, = ) ap, n>1.
Again omitting the constant multiplier ay, we obtain the second solution
= (=12
_ 12 ( n
Vo(x) =x |:1 + ,,Z=1: ) X j| , x> 0. (21)

As before, we can show that the series in Eq. (21) converges for all x. Since y; and y, behave
like x and x!/2, respectively, near x = 0, they form a fundamental set of solutions. Hence the
general solution of Eq. (8) is

y = c1y1(x) + c2y2(x), x> 0.

The preceding example illustrates that if x = 0 is a regular singular point, then
sometimes there are two solutions of the form (7) in the neighborhood of this point.
Similarly, if there is a regular singular point at x = xy, then there may be two solutions
of the form

y=(x—xp" Z an(x — xo)" (22)
n=0

that are valid near x = xo. However, just as an Euler equation may not have two
solutions of the form y = x”, so a more general equation with a regular singular point
may not have two solutions of the form (7) or (22). In particular, we show in the next



286

Chapter 5. Series Solutions of Second Order Linear Equations

section that if the roots r; and r, of the indicial equation are equal or differ by an
integer, then the second solution normally has a more complicated structure. In all
cases, though, it is possible to find at least one solution of the form (7) or (22); if r;
and r, differ by an integer, this solution corresponds to the larger value of r. If there
is only one such solution, then the second solution involves a logarithmic term, just
as for the Euler equation when the roots of the characteristic equation are equal. The
method of reduction of order or some other procedure can be invoked to determine
the second solution in such cases. This is discussed in Sections 5.6 and 5.7.

If the roots of the indicial equation are complex, then they cannot be equal or differ
by aninteger,so there are always two solutions of the form (7) or (22). Of course, these
solutions are complex-valued functions of x. However, as for the Euler equation, it
is possible to obtain real-valued solutions by taking the real and imaginary parts of
the complex solutions.

Finally, we mention a practical point. If P, Q, and R are polynomials, it is often
much better to work directly with Eq. (1) than with Eq. (3). This avoids the necessity
of expressing xQ(x)/P(x) and x>R(x)/P(x) as power series. For example, it is more
convenient to consider the equation

x(1+x)y" +2y +xy=0

than to write it in the form
2

x2 //+ 2x /+
Y 1+xy

:07
1+xy

which would entail expanding 2x/(1 + x) and x> /(1 + x) in power series.

PROBLEMS

In each of Problems 1 through 10:
(a) Show that the given differential equation has a regular singular point at x = 0.

(b) Determine the indicial equation, the recurrence relation, and the roots of the indicial
equation.

(c) Find the series solution (x > 0) corresponding to the larger root.

(d) If the roots are unequal and do not differ by an integer, find the series solution
corresponding to the smaller root also.

1. 2xy" +y +xy=0 2. X% +xy + (¥ —3)y=0
3.xy"+y=0 4. xy"+y —y=0

5. 3x%y" +2xy +x*y =0 6. X2y +xy +(x—2)y=0
7.x"+ 1 —x)y —y=0 8. 2x%y" +3xy + (2x> = 1)y =0
9. X2y —x(x+3)y + x+3)y=0 10. X%y + (P + )y =0

11. The Legendre equation of order « is
1 —x»y" —2xy +al@+ 1y =0.

The solution of this equation near the ordinary point x = 0 was discussed in Problems 22
and 23 of Section 5.3. In Example 4 of Section 5.4, it was shown that x = +1 are regular
singular points.

(a) Determine the indicial equation and its roots for the point x = 1.
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(b) Find a series solution in powers of x — 1 forx — 1 > 0.
Hint: Write 1 +x =2+ (x — 1) and x = 1 4+ (x — 1). Alternatively, make the change of
variable x — 1 =t and determine a series solution in powers of ¢.

12. The Chebyshev equation is

13.

(1 _xZ)y// _ xy/ + aZy — 0’

where « is a constant; see Problem 10 of Section 5.3.

(a) Show that x =1 and x = —1 are regular singular points, and find the exponents at
each of these singularities.

(b) Find two solutions about x = 1.

The Laguerre'? differential equation is
xy"+dA—-x)y +21ry=0.

(a) Show that x = 0 is a regular singular point.
(b) Determine the indicial equation, its roots, and the recurrence relation.

(c) Find one solution (x > 0). Show that if . = m, a positive integer, this solution reduces
to a polynomial. When properly normalized, this polynomial is known as the Laguerre
polynomial, L,,(x).

14. The Bessel equation of order zero is

15.

2y +xy +x2y =0.
(a) Show thatx = 0 is a regular singular point.

(b) Show that the roots of the indicial equation are r; = r, = 0.
(c) Show that one solution for x > 0 is

(_1)nx2n
22n(p1)2

Jox) =1 +Z
n=1

(d) Show that the series for Jy(x) converges for all x. The function J, is known as the
Bessel function of the first kind of order zero.

Referring to Problem 14, use the method of reduction of order to show that the second
solution of the Bessel equation of order zero contains a logarithmic term.
Hint: If y,(x) = Jo(x)v(x), then

@) = Jo) f _
VRO =00 | R

Find the first term in the series expansion of 1/x[Jy(x)]>.

16. The Bessel equation of order one is

2.,

2y +xy + @ =1y =0.

(a) Show that x = 0 is a regular singular point.
(b) Show that the roots of the indicial equation are r; = 1 and r, = —1.

13Edmond Nicolas Laguerre (1834-1886), a French geometer and analyst, studied the polynomials named
for him about 1879. He is also known for an algorithm for calculating roots of polynomial equations.
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(c) Show that one solution for x > 0 is
( 1)n 2n
J
10 =3 Z (n+ Dl

(d) Show that the series for J;(x) converges for all x. The function J; is known as the
Bessel function of the first kind of order one.

(e) Show that it is impossible to determine a second solution of the form

oo
x! E b,x", x> 0.
n=0

5.6 Series Solutions Near a Regular Singular Point, Part II

Now let us consider the general problem of determining a solution of the equation
Liyl = x%y" + xbp0)ly’ + [x*q@)ly = 0, (1)

where
xp(x) =Y pux", g =) g, )

and both series converge in an interval |x| < p for some p > 0. The point x =0 is a
regular singular point, and the corresponding Euler equation is

x%y" + poxy’ + qoy = 0. (3)

We seek a solution of Eq. (1) for x > 0 and assume that it has the form

y=¢(r,x)=x Zanx = Zanx 4)

n=0

where gy # 0, and we have written y = ¢(r,x) to emphasize that ¢ depends on r as
well as x. It follows that

o0 o0
y = Z (r + nya,x 1, y' = Z (r+n)(r+n—Da,x ™72 3)
n=0 n=0

Then, substituting from Egs. (2), (4), and (5) in Eq. (1) gives
apr(r — Dx" + a1 (r + D™+ a,(r + n)(r +n— DX+
+ @o+pix—+---+pux"+--0)
x [agrx” + ai(r + D™+ a, (r )
+ @+ g+ gux" £ )

X (apx" +ax™ M+ g™ ) = 0.
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Multiplying the infinite series together and then collecting terms, we obtain

ayF(Nx" + [aiF(r + 1) + ao(pir + q)x"*
+ {@mF(r +2) + ap(par + q2) + arlpr1(r + 1) + q11} x'*2
+ o+ {anF(r + n) 4+ ao(pur + qn) + a1[pa1(r + 1) + qu-1]
+ ot ap =1 +ql} X+ =0,

or, in a more compact form,

L{¢1(r,x) = aoF (r)x"

0 n—1
+ Y {F(r +may+ Y alr +kpu i+ qu il px =0, (6)

n=1 k=0

where

F(ry=r(r—1)+ por + qo. (7)

For Eq. (6) to be satisfied for all x > 0, the coefficient of each power of x must be
zZero.

Since ap # 0, the term involving x” yields the equation F(r) = 0. This equation is
called the indicial equation; note that it is exactly the equation we would obtain in
looking for solutions y = x” of the Euler equation (3). Let us denote the roots of
the indicial equation by r and r, with r; > r, if the roots are real. If the roots are
complex, the designation of the roots is immaterial. Only for these values of r can
we expect to find solutions of Eq. (1) of the form (4). The roots r; and r, are called
the exponents at the singularity; they determine the qualitative nature of the solution
in the neighborhood of the singular point.

Setting the coefficient of X" in Eq. (6) equal to zero gives the recurrence relation

n—1

Fr+ma, + Y al+kppi+quil =0, n=1. (8)
k=0

Equation (8) shows that, in general, a,, depends on the value of r and all the pre-
ceding coefficients ag, ai, .. .,a,-1. It also shows that we can successively compute
ay,as,...,a,,...in terms of ay and the coefficients in the series for xp(x) and x*q(x),
provided that F(r + 1), F(r +2),...,F(r +n),... are not zero. The only values of r
for which F(r) =0 are r = r; and r = r,; since r| > r,, it follows that r; + n is not
equal to r; or r, for n > 1. Consequently, F(r; +n) # 0 for n > 1. Hence we can
always determine one solution of Eq. (1) in the form (4), namely,

y1(x) = x" |:1 + Zan(rl)x"] , x> 0. 9)

n=1

Here we have introduced the notation a,(r;) to indicate that a,, has been determined
from Eq. (8) with r = r;. To specify the arbitrary constant in the solution, we have
taken a( to be 1.
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If r, is not equal to r1, and r; — r; is not a positive integer, then r, 4 n is not equal
to r; for any value of n > 1; hence F(r, + n) # 0, and we can also obtain a second
solution

ya(x) = x" |:1 + Z an(rz)x”:| , x> 0. (10)

n=1

Just as for the series solutions about ordinary points discussed in Section 5.3, the
series in Egs. (9) and (10) converge at least in the interval |x| < p where the series for
both xp(x) and x%q(x) converge Within their radii of convergence, the power series

1+ Z a,(r)x" and 1 + Z a,(r)x" define functions that are analytic at x = 0. Thus

the s1ngular behavior, if there is any, of the solutions y; and y; is due to the factors
x" and x™ that multiply these two analytic functions. Next, to obtain real-valued
solutions for x < 0, we can make the substitution x = —& with & > 0. As we might
expect from our discussion of the Euler equation, it turns out that we need only
replace x"! in Eq. (9) and x in Eq. (10) by |x|"* and |x|™, respectively. Finally, note
that if ; and r, are complex numbers, then they are necessarily complex conjugates
and r, # r + N for any positive integer N. Thus, in this case we can always find two
series solutions of the form (4); however, they are complex-valued functions of x.
Real-valued solutions can be obtained by taking the real and imaginary parts of
the complex-valued solutions. The exceptional cases in whichr; = orry —r =N,
where N is a positive integer, require more discussion and will be considered later in
this section.

Itis important to realize that r; and r,, the exponents at the singular point, are easy
to find and that they determine the qualitative behavior of the solutions. To calculate
ry and r,, it is only necessary to solve the quadratic indicial equation

r(r—1) 4+ por + qo =0, (11)
whose coefficients are given by
Po = lirr(l]xp(x), qo = lin})xzq(x). (12)
xX— X—

Note that these are exactly the limits that must be evaluated in order to classify the
singularity as a regular singular point; thus they have usually been determined at an
earlier stage of the investigation.

Further, if x = 0 is a regular singular point of the equation

P(x)y" + Qx)y + R(x)y =0, (13)

where the functions P, Q, and R are polynomials, then xp(x) = xQ(x)/P(x) and
x2q(x) = x*R(x)/P(x). Thus

hme(x) lim x 2R(x)
Po=10Pr 1T Pooy

(14)

Finally, the radii of convergence for the series in Egs. (9) and (10) are at least equal
to the distance from the origin to the nearest zero of P other than x = 0 itself.



5.6 Series Solutions Near a Regular Singular Point, Part II 291

EXAMPLE

1

Discuss the nature of the solutions of the equation
2x(1+x)y"+ B +x)y —xy=0

near the singular points.

This equation is of the form (13) with P(x) = 2x(1 + x), Q(x) = 3 + x, and R(x) = —x. The
points x = 0 and x = —1 are the only singular points. The point x = 0 is a regular singular
point, since

SO 34x 3

lime ) = limx =,
x—0 P(x) x—0 2_x(1 +x) 2

. R(x) . —X
limx’—— =limx>*——— =0
20 PGy T 0t 2x(1 40
Further, from Eq. (14),po = % and gy = 0. Thus the indicial equationis r(r — 1) + %r =0,and
the rootsare ry = 0,7, = —%. Since these roots are not equal and do not differ by an integer,
there are two solutions of the form

M@ =1+ a,0x" and y,@) = x| [HZan (—é)x"}
n=1

n=1

for 0 < |x| < p. A lower bound for the radius of convergence of each series is 1, the distance

from x = 0 to x = —1, the other zero of P(x). Note that the solution y; is bounded as x — 0,
indeed is analytic there, and that the second solution y, is unbounded as x — 0.
The point x = —1 is also a regular singular point, since
. Ox) .. (+DB+x)
1 1 =1 =-1
Jm G+ D e T ’
. R . (x+1D*(=x
1 1)? = =
xin—ll(x + ) P(x) x——1 2x(1 =+ x)

In this case py = —1,g0 = 0,so the indicial equationis 7(r — 1) — r = 0. The roots of the indicial
equation are r; = 2 and r, = 0. Corresponding to the larger root there is a solution of the form

Y1) =@ +1)° [1 +) a4,k + 1)"} .

n=1

The series converges at least for |x + 1| < 1,and y; is an analytic function there. Since the two
roots differ by a positive integer, there may or may not be a second solution of the form

o0
y200 =1+ a,0)(x+ 1"
n=1
We cannot say more without further analysis.
Observe that no complicated calculations were required to discover the information about
the solutions presented in this example. All that was needed was to evaluate a few limits and
solve two quadratic equations.

We now consider the cases in which the roots of the indicial equation are equal or
differ by a positive integer,r; — r, = N.As we have shown earlier, there is always one
solution of the form (9) corresponding to the larger root r; of the indicial equation.
By analogy with the Euler equation, we might expect that if r; = r,, then the second
solution contains a logarithmic term. This may also be true if the roots differ by an
integer.



292

Chapter 5. Series Solutions of Second Order Linear Equations

Equal Roots. The method of finding the second solution is essentially the same as the
one we used in finding the second solution of the Euler equation (see Section 5.4)
when the roots of the indicial equation were equal. We consider r to be a continuous
variable and determine a, as a function of r by solving the recurrence relation (8).
For this choice of a,,(r) for n > 1, the terms in Eq. (6) involving x' 1, x"+2 "3 _all
have coefficients equal to zero. Therefore, Eq. (6) reduces to

LI$)(r,x) = apF (rx" = ao(r — r)*x’, (15)
since r; is a repeated root of F(r). Setting r =r; in Eq. (15), we find that
L[¢](r1,x) = 0; hence, as we already know, y;(x) given by Eq. (9) is one solution
of Eq. (1). But more important, it also follows from Eq. (15), just as for the Euler
equation, that

r=r

3 3
L [%ﬂ (r1,%) = a0 [¥' (r = r1)?*]

=aol(r — r)*x" Inx + 2(r — r)x’] =0. (16)
r=ri
Hence, a second solution of Eq. (1) is
d¢p(r, x) 0 -
y2(x) = —r =3 {xr |:llo + Xl:an(r)xn]}
r=ri n= r=rq

= (x""Inx) |:ao + Z an(rl)x”] + x" Z a,(r)x"

n=1 n=1
o0

= y1(x) Inx + x" Za;(rl)x", x>0, 17)
n=1

where a),(r1) denotes da, /dr evaluated at r = ry.

Although Eq. (17) provides an explicit expression for a second solution y;(x), it
may turn out that it is difficult to determine a,(r) as a function of r from the recur-
rence relation (8) and then to differentiate the resulting expression with respect to r.
An alternative is simply to assume that y has the form of Eq. (17). That is, assume that

y=y1(x)Inx 4+ x" Zb,,x”, x>0, (18)

n=1

where y;(x) has already been found. The coefficients b, are calculated, as usual, by
substituting into the differential equation, collecting terms, and setting the coeffi-
cient of each power of x equal to zero. A third possibility is to use the method of
reduction of order to find y,(x) once y;(x) is known.

Roots r1 and r, Differing by an Integer N. For this case the derivation of the second solu-
tion is considerably more complicated and will not be given here. The form of this
solution is stated in Eq. (24) in the following theorem. The coefficients ¢, (r;) in
Eq. (24) are given by

d
Cn(rz) = E[(r - rz)an(r)] 5 n= 1929' R (19)

r=r
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Theorem 5.6.1

where a,(r) is determined from the recurrence relation (8) with ay = 1. Further, the
coefficient a in Eq. (24) is

a = lim(r — r)ay(r). (20)

If an (r,) is finite, then @ = 0 and there is no logarithmic term in y,. A full derivation
of formulas (19) and (20) may be found in Coddington (Chapter 4).

In practice, the best way to determine whether a is zero in the second solution
is simply to try to compute the a, corresponding to the root r, and to see whether it is
possible to determine ay (7;). If so, there is no further problem. If not, we must use
the form (24) with a # 0.

When r; — r, = N, there are again three ways to find a second solution. First, we
can calculate a and ¢, (r,) directly by substituting the expression (24) for y in Eq. (1).
Second, we can calculate ¢, (r;) and a of Eq. (24) using the formulas (19) and (20).
If this is the planned procedure, then in calculating the solution corresponding to
r = ry, be sure to obtain the general formula for a,(r) rather than just a,(r;). The
third alternative is to use the method of reduction of order.

The following theorem summarizes the results that we have obtained in this section.

Consider the differential equation (1)
¥y + x[xp )]y + [¥*q(x)]ly = 0,

where x = 0 is a regular singular point. Then xp(x) and x?q(x) are analytic at x = 0
with convergent power series expansions

oo (o¢]
p) =) px, g =) g
n=0 n=0

for |x| < p, where p > 0 is the minimum of the radii of convergence of the power
series for xp(x) and x*>g(x). Let r; and r, be the roots of the indicial equation

F(r) =r(r—1) 4 por + qo = 0,

withry > r,ifry and r, are real. Then in either the interval —p < x < 0 or the interval
0 < x < p, there exists a solution of the form

Y100 =[x [1 + Zan(n)x"} : (21)

n=1

where the a,(r;) are given by the recurrence relation (8) with ap = 1 and r = ry.
If r; — rp is not zero or a positive integer, then in either the interval —p < x < 0
or the interval 0 < x < p, there exists a second solution of the form

y2(x) = [x]? [1 =5 Zan(rz)x"} : (22)

n=1
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The a,(r;) are also determined by the recurrence relation (8) with @y =1 and
r = rp. The power series in Egs. (21) and (22) converge at least for |x| < p.
If r{ = r,, then the second solution is

y2(x¥) = y1) In x| + [x|" Y bu(r)x". (23)

n=1

If r; — r, = N, a positive integer, then

Y2() = ay; (x) In [x] + || [1 +3 cn<rz>x"] . (24)

n=1

The coefficients a,(r1), b,(r1), and ¢, (r;) and the constant a can be determined by
substituting the form of the series solutions for y in Eq. (1). The constant a may
turn out to be zero, in which case there is no logarithmic term in the solution (24).
Each of the series in Egs. (23) and (24) converges at least for |x| < p and defines a
function that is analytic in some neighborhood of x = 0.

In all three cases, the two solutions y;(x) and y,(x) form a fundamental set of
solutions of the given differential equation.

PROBLEMS

In each of Problems 1 through 12:
(a) Find all the regular singular points of the given differential equation.
(b) Determine the indicial equation and the exponents at the singularity for each regular
singular point.
1. xy” 4+ 2xy +6e*y =0 2. x5 —xQ+x)y +2+x)y=0
3. x(x = 1)y’ +6x2y +3y =0 4.y +4xy' +6y =0
5. x3y" +3(sinx)y —2y =0 6. 2x(x+2)y"+y —xy=0
7. X% 4+ (x4 sinx)y +y =0 8. x4+ DX +3x2—1)y +3y=0
9. x*(1 —x)y" — (1 +x)y +2xy =0 10. (x —2)*(x +2)y" +2xy' +3(x —2)y =0
11. (4—x)y"+2xy' +3y =0 12, x(x +3)%y" —2(x +3)y' —xy =0
In each of Problems 13 through 17:
(a) Show that x = 0is a regular singular point of the given differential equation.
(b) Find the exponents at the singular point x = 0.

(c) Find the first three nonzero terms in each of two solutions (not multiples of each other)
about x = 0.

13. xy"+y —y=0
14. xy” +2xy’ + 6e*y = 0; see Problem 1
15. x(x — 1)y" +6x%y + 3y = 0; see Problem 3
16. xy" +y =0
17. x*y” + (sinx)y’ — (cosx)y =0
18. (a) Show that
(Inx)y" + 3y +y =0

has a regular singular point at x = 1.
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19.

20.

21.

(b) Determine the roots of the indicial equation at x = 1.

(c) Determine the first three nonzero terms in the series i a,(x — 1)™*" corresponding
to the larger root. Take x — 1 > 0. =0
(d) What would you expect the radius of convergence of the series to be?
In several problems in mathematical physics, it is necessary to study the differential
equation

x(L—x)y"+ 1y — A +a+pxly —apy =0, ®

where «, B, and y are constants. This equation is known as the hypergeometric equation.
(a) Show thatx = 0 1is a regular singular point and that the roots of the indicial equation
are 0Oand 1 — y.
(b) Show that x = 1 is a regular singular point and that the roots of the indicial equation
are0and y —a — B.
(c) Assuming that 1 — y is not a positive integer, show that, in the neighborhood of x = 0,
one solution of Eq. (i) is

af al+DB+D ,

x) =1+ X+ X7
ne y- 1! Y+ 1)2!

What would you expect the radius of convergence of this series to be?
(d) Assuming that 1 —y is not an integer or zero, show that a second solution for
O<x<lis
(@a—y+DHB-—ry+1D
2-pl!

y2(x) = x'77 [l +

@—y+D@-y+DB—y+DB-y+2) , “}
* 2962 e

(e) Show that the point at infinity is a regular singular point and that the roots of the
indicial equation are « and B. See Problem 43 of Section 5.4.

Consider the differential equation

¥’y +axy + py =0,
where « and B are real constants and o # 0.
(a) Show thatx = 0 is an irregular singular point.

o0

(b) By attempting to determine a solution of the form ) a,x" ", show that the indicial
n=0

equation for r is linear and that, consequently, there is only one formal solution of the

assumed form.

(c) Showthatif B/« = —1,0,1,2,...,then the formal series solution terminates and there-
fore is an actual solution. For other values of 8/«, show that the formal series solution has
a zero radius of convergence and so does not represent an actual solution in any interval.

Consider the differential equation

" Q{ /! ﬁ .
y+;y+;y=0, (1)

where o # 0 and B # 0 are real numbers, and s and ¢ are positive integers that for the
moment are arbitrary.
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(a) Show thatifs > 1 or ¢ > 2, then the point x = 0 is an irregular singular point.
(b) Try to find a solution of Eq. (i) of the form

y= Za,,x’*”, x> 0. (ii)
n=0

Show thatif s = 2 and ¢ = 2, then there is only one possible value of r for which there is a
formal solution of Eq. (i) of the form (ii).

(c) Show thatif s = 1 and ¢ = 3, then there are no solutions of Eq. (i) of the form (ii).

(d) Show that the maximum values of s and 7 for which the indicial equation is quadratic in
r [and hence we can hope to find two solutions of the form (ii)] are s = 1 and t = 2. These
are precisely the conditions that distinguish a “weak singularity,” or a regular singular
point, from an irregular singular point, as we defined them in Section 5.4.

As anote of caution, we point out that although it is sometimes possible to obtain a formal
series solution of the form (ii) at an irregular singular point, the series may not have a
positive radius of convergence. See Problem 20 for an example.

5.7 Bessel’s Equation

In this section we illustrate the discussion in Section 5.6 by considering three special
cases of Bessel’s'* equation,

xzy// +xy/ 4 (X2 _ UZ)y — 0, (1)

where vis a constant. It is easy to show that x = Ois a regular singular point of Eq. (1).
We have

Po = lime(x) = limx1 =1,
x—0 P(x) x—=0 X
) R(x) . x? —1?
= lim =2 = limx®?"—— = —2.
0 xLI%X P(x) XILI(I)X x2 Y

Thus the indicial equation is
Fry=rr—=1) +por+qo=rr—1)+r—v*=r>—1*=0,

with the roots r = £v. We will consider the three cases v =0, v = %, and v =1 for
the interval x > 0.

Bessel Equation of Order Zero. In this case v = 0,so Eq. (1) reduces to
Lyl =x*y" +xy +x°y =0, @)

14Friedrich Wilhelm Bessel (1784-1846) left school at the age of 14 to embark on a career in the import-
export business but soon became interested in astronomy and mathematics. He was appointed director
of the observatory at Konigsberg in 1810 and held this position until his death. His study of planetary
perturbations led him in 1824 to make the first systematic analysis of the solutions, known as Bessel
functions, of Eq. (1). He is also famous for making,in 1838, the first accurate determination of the distance
from the earth to a star.
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and the roots of the indicial equation are equal: r; = r, = 0. Substituting

y=¢0r,x) =ax + ) a,x" 3)

n=1

in Eq. (2), we obtain

LIgIr,x) = ) aul(r+m)(r+n =1+ ¢+ m™* + a2
n=0 n=0

=a)lrr =D+ + a1[(r + Dr + r + Dx'*!
+ D fanlr+m)r+n =D+ +ml+a, )" =0. (4
n=2

As we have already noted, the roots of the indicial equation F(r) = r(r — 1) +r =0
are r; = 0 and r, = 0. The recurrence relation is

. ap_o(r) _ ap—o(r) n>2 (5)
r+nr+n—D+G+n  r+n?’ -7

an(r) =

To determine y;(x), we set r equal to 0. Then, from Eq. (4), it follows that for
the coefficient of x"*! to be zero we must choose a; = 0. Hence, from Eq. (5),
a3 = as = a; = --- = 0. Further,

a,(0) = —a,_»(0)/n*,  n=2,4,6,8,...,

or, letting n = 2m, we obtain

am(0) = —am2(0)/2m)*,  m=1,2,3,....

Thus
ap ap ag
a(0) = —2—2, as(0) = W’ ag(0) = —m,
and, in general,
o (0) = D0 103 (6)
22m (m!)z b b b b
Hence
o0 (_1)mx2m
yl(x)zao |:1+mZ=IW:|, x> 0. (7)

The function in brackets is known as the Bessel function of the first kind of order
zero and is denoted by Jy(x). It follows from Theorem 5.6.1 that the series converges
for all x and that Jy is analytic at x = 0. Some of the important properties of Jy are
discussed in the problems. Figure 5.7.1 shows the graphs of y = Jy(x) and some of
the partial sums of the series (7).



298 Chapter 5. Series Solutions of Second Order Linear Equations

yZ— n=4 n=8 n=12 n=16 n=20
1
\ VA RA N cN R S A
BN L6\ BN ¢
szo(x)
1+
n=2 n=6 n=10 n=14 n=18

FIGURE 5.7.1 Polynomial approximations to Jy(x), the Bessel function of the first kind
of order zero. The value of 7 is the degree of the approximating polynomial.

To determine y,(x), we will calculate’ a,,(0). First we note from the coefficient of
x*1in Eq. (4) that (r + 1)%a;(r) = 0. Thus a;(r) = 0 for all  near r = 0. So not
only does a;(0) =0 but also a{(0) = 0. From the recurrence relation (5) it fol-
lows that a5(0) = a5(0) = --- =a,,,,(0) = --- = 0; hence we need only compute
a,, (0),m =1,2,3,.... From Eq. (5) we have

Ao (r) = —aom—2(N)/(r +2m)*,  m=1,23,....

By solving this recurrence relation, we obtain
ap ( ) ao
aq\y) = —m—m—m——
TSI

and, in general,

(=D™ayg _- )

Gom(r) = (r+2)2---(r+2m?’ "=

The computation of ), (r) can be carried out most conveniently by noting that if

f@) =@ —a) (x — o) (x —03) -+ (x — )P,

and if x is not equal to oy, @y, . .., a,, then
/
X
f()= b1 B2 T Bn .
fx) X—o1 X—o X — oy

Applying this result to ay,, (r) from Eq. (8), we find that

a,, (r) ) 1 N 1 T 1
am(r) r+2 r+4 r+2m)’

15problem 10 outlines an alternative procedure, in which we simply substitute the form (23) of Section 5.6
in Eq. (2) and then determine the b,,.
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and setting r equal to 0, we obtain
, 1 1 1
a3, (0) = =2 [E tyt o+ %} am(0).

Substituting for ay,, (0) from Eq. (6), and letting

1 1 1
Hm = 1 —_ — —, 9
+ > + 3 +---+ - 9)
we obtain, finally,
(—)"a
a,,,(0) = W‘)g’ m=1,2,3,....

The second solution of the Bessel equation of order zero is found by setting ag = 1
and substituting for y;(x) and a},,(0) = b2,,(0) in Eq. (23) of Section 5.6. We obtain

> -1 m+1Hm
y2(x) =Jo(x)lnx+z( ) om

——X x> 0. (10)
2 2 ’
— 2°"(m))
Instead of y;, the second solution is usually taken to be a certain linear combination
of Jy and y,. It is known as the Bessel function of the second kind of order zero
and is denoted by Y. Following Copson (Chapter 12), we define'®

2
Yo(x) = ;[yz(x) + (y — In2)Jp(x)]. (11)

Here y is a constant known as the Euler-Mascheroni!” constant; it is defined by the
equation
y = lim (H, — Inn) = 0.5772. (12)
n— 00

Substituting for y,(x) in Eq. (11), we obtain

m+1
Yo(x) = % |:(y+ln )Jo(x) + Z D™ H 2'”1| , x> 0. (13)

22m (m;)z
The general solution of the Bessel equation of order zero for x > 0 is
y =cio(x) + 2 Yo (x).

Note that Jy(x) — 1 asx — 0 and that Yy (x) has a logarithmic singularity at x = 0;
that is, Yo (x) behaves as (2/7) Inx when x — 0 through positive values. Thus, if we
are interested in solutions of Bessel’s equation of order zero that are finite at the
origin, which is often the case, we must discard Y. The graphs of the functions Jy and
Yy are shown in Figure 5.7.2.

16Other authors use other definitions for Y. The present choice for Y) is also known as the Weber function,
after Heinrich Weber (1842-1913), who taught at several German universities.

7The Euler-Méscheroni constant first appeared in 1734 in a paper by Euler. Lorenzo Mdscheroni
(1750-1800) was an Italian priest and professor at the University of Pavia. He correctly calculated the first
19 decimal places of y in 1790.
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2\ 4 /s SWM 14 x
_057

FIGURE 5.7.2 The Bessel functions of order zero: J, and Y.

It is interesting to note from Figure 5.7.2 that for x large, both Jy(x) and Yy (x) are
oscillatory. Such a behavior might be anticipated from the original equation; indeed
it is true for the solutions of the Bessel equation of order v. If we divide Eq. (1) by
x2, we obtain

1 2
y//+;y/+<1_%>y:()

For x very large, it is reasonable to conjecture that the terms (1/x)y’ and (v*/x?)y are
small and hence can be neglected. If this is true, then the Bessel equation of order v
can be approximated by

y”—i—y:O.

The solutions of this equation are sin x and cos x; thus we might anticipate that the
solutions of Bessel’s equation for large x are similar to linear combinations of sin x
and cos x. This is correct insofar as the Bessel functions are oscillatory; however, it is
only partly correct. For x large the functions Jy and Y also decay as x increases; thus
the equation y” + y = 0 does not provide an adequate approximation to the Bessel
equation for large x, and a more delicate analysis is required. In fact, it is possible to
show that

2\'"? 7
Jo(x) = (E) cos< - Z> as x — oo (14)

and that

2\"? b
Yolx) = <E> sin( — Z) as x — o00. (15)

These asymptotic approximations, as x — oo, are actually very good. For example,
Figure 5.7.3 shows that the asymptotic approximation (14) to Jy(x) is reasonably
accurate for all x > 1. Thus to approximate Jy(x) over the entire range from zero to
infinity, you can use two or three terms of the series (7) for x < 1 and the asymptotic
approximation (14) for x > 1.
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FIGURE 5.7.3 Asymptotic approximation to Jy(x).

Bessel Equation of Order One-Half. This case illustrates the situation in which the roots
of the indicial equation differ by a positive integer but there is no logarithmic term
in the second solution. Setting v = % in Eq. (1) gives

Liyl=x*y" +xy + (x2 — %)y =0. (16)
When we substitute the series (3) for y = ¢(r, x), we obtain
Liglr,x) =Y [r+mr+n—1D+0+n = {lax™ + ) ax™
n=0 n=0

= (P = Yax’ +[(r+ 1> - Hapx™!

+ Z {[r +n)?* = ] an +apa}x*" =0. (17)
n=2
The roots of the indicial equation are r; = %, = —%; hence the roots differ by an

integer. The recurrence relation is
[(r+n)* — ] an = —a,, n>2. (18)

Corresponding to the larger root r; = %, we find, from the coefficient of x'*! in
Eq. (17), that a; = 0. Hence, from Eq. (18), a3 =as =--- = azy11 = --- = 0. Fur-

1
ther, for r = 3,

anz—%, n=2,46...,
or, letting n = 2m, we obtain
az,,,:—#m‘il), m=123.....
By solving this recurrence relation, we find that
ag agp
@ =—7, =7
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and, in general,
(=D™ag
Cm+1’

Hence, taking ap = 1, we obtain

m=1,2,3,....

Mm =

( 1)m 2m+1

& ( 1)m 2m B
_ 12 1/2
yix) =x |:1 + mE omT 1)'j| E —(2 o x> 0. (19)

The second power series in Eq. (19) is precisely the Taylor series for sin x; hence one
solution of the Bessel equation of order one-half is x~!/? sin x. The Bessel function
of the first kind of order one-half, J , is defined as (2/7)'/?y;. Thus

2\ 172
Jipl) = (—) sin x, x> 0. (20)
X
Corresponding to the root r; = —%, it is possible that we may have difficulty in
computing a; since N = r; — r, = 1. However, from Eq. (17) for r = —%, the coeffi-

cients of x" and x"*! are both zero regardless of the choice of ay and a;. Hence ay
and a; can be chosen arbitrarily. From the recurrence relation (18), we obtain a set
of even-numbered coefficients corresponding to ag and a set of odd-numbered coef-
ficients corresponding to a;. Thus no logarithmic term is needed to obtain a second

solution in this case. It is left as an exercise to show that, for r = —%,
@, — (=1)"a a _ D'ar n=12
2n — (2}’1)‘ ) 2n+1 = (2”—'—1)" — Ly Ly
Hence
2n ny2n+1
_ (—Dx (—Dx
ya(x) = x [aog o e Z TR
cosx sin x
:aoxl7 +a1)617, x> 0. (21)

The constant a; simply introduces a multiple of y;(x). The second solution of the
Bessel equation of order one-half is usually taken to be the solution for which
ap = (2/m)¥/? and a; = 0. It is denoted by J_; ». Then

2\ 172
J_1pk) = (E) cos x, x> 0. (22)

The general solution of Eq. (16) is y = ¢1J1,2(X) + c2J_12(x).

By comparing Egs. (20) and (22) with Egs. (14) and (15), we see that, except for a
phase shift of n/4, the functions J_;,, and Jy,, resemble Jy and Y, respectively, for
large x. The graphs of Ji» and J_1,, are shown in Figure 5.7.4.

Bessel Equation of Order One. This case illustrates the situation in which the roots of
the indicial equation differ by a positive integer and the second solution involves a
logarithmic term. Setting v = 1 in Eq. (1) gives

2.0

LIyl =x%y" +xy 4+ (x* = 1)y = 0. (23)
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FIGURE 5.74 The Bessel functions J;, and J_; 5.

If we substitute the series (3) for y = ¢(r,x) and collect terms as in the preceding
cases, we obtain

L{p)(r,x) = ap(r* — Dx" 4+ a1 [(r + 1)? — 1]x"H

o0
+> { [(r+n)?* —1]a,+an }x’”‘ =0. (24)

n=2
The roots of the indicial equation are r; = 1 and r, = —1. The recurrence relation is
[(r +n)? = Nay(r) = —ano(r),  n=2. (25)

Corresponding to the larger root r = 1, the recurrence relation becomes

an-2

a, = ————, n=234,....
n+2)n
We also find, from the coefficient of x"+! in Eq. (24), that a; = 0; hence, from the
recurrence relation, a; = as = - -- = 0. For even values of n, let n = 2m; then
o = -2 D2 m=123,....

Tom+22m) . 2m+ hm’
By solving this recurrence relation, we obtain

(=D™ag

Zm, m=1,2,3,.... (26)

Ao
The Bessel function of the first kind of order one, denoted by Ji, is obtained by
choosing ayp = 1/2. Hence

X o (_1)mx2m
N =2 2 Zn 4 D @)

The series converges absolutely for all x, so the function J; is analytic everywhere.
In determining a second solution of Bessel’s equation of order one, we illustrate
the method of direct substitution. The calculation of the general term in Eq. (28)
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below is rather complicated, but the first few coefficients can be found fairly easily.
According to Theorem 5.6.1, we assume that

y2(x) = aJi(x) Inx 4+ x~! |:1 + chx”:| , x> 0. (28)
n=1

Computing y) (x), y5 (x), substituting in Eq. (23), and making use of the fact that J; is
a solution of Eq. (23), we obtain

2axJ(x) + Z [(n—1)(n—2)c, + (n— Dy, —cp] X"+ Z:cnx"“Ll =0, (29)

n=0 n=0

where c¢g = 1. Substituting for J; (x) from Eq. (27), shifting the indices of summation
in the two series, and carrying out several steps of algebra, we arrive at

o0
—c1 +10- ¢+ colx + Y [(* = Dupn + o I¥”
n=2

2 (=) Q2m + Dx2mtl
- [“L 2 S+ i ] G0)
m=1

From Eq. (30) we observe first that ¢; = 0, and @ = —cy = —1. Further, since there
are only odd powers of x on the right, the coefficient of each even power of x on the
left must be zero. Thus, since ¢; = 0, we have ¢z = ¢s = --- = 0. Corresponding to
the odd powers of x, we obtain the following recurrence relation [let n = 2m + 1
in the series on the left side of Eq. (30)]:

(=D)"2m + 1)

) _=emr )
[(Cm +1)" = 1lcomy2 + com = 22m(m+1)m!’

m=123,.... (31)

When we set m = 1 in Eq. (31), we obtain
(3* = Dey + 0 = (=1)3/(2% - 20).

Notice that ¢, can be selected arbitrarily, and then this equation determines c4. Also
notice that in the equation for the coefficient of x, ¢, appeared multiplied by 0, and
that equation was used to determine a. That c; is arbitrary is not surprising, since c;

o0
is the coefficient of x in the expression x~! |:1 + > cnx”i|. Consequently, ¢, simply
n=1
generates a multiple of /1, and y, is determined only up to an additive multiple of J;.
In accordance with the usual practice, we choose ¢; = 1 /2%. Then we obtain

13 1 1
= 241 = (14 2) +1
“ 24.2[2+} 2421[<+2>+}

(=D oo H
_ﬂ( 2+ Hy).

It is possible to show that the solution of the recurrence relation (31) is

o C) Wk )
W T g (m — 1) T oo
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with the understanding that Hy = 0. Thus

1— Z (_1)m(Hm + Hm—]) x2m

1
y2(x) = =J1(x) Inx + p |: miom — D)1

i| , x> 0. (32)

m=1

The calculation of y,(x) using the alternative procedure [see Egs. (19) and (20)
of Section 5.6] in which we determine the ¢, (r,) is slightly easier. In particular, the
latter procedure yields the general formula for c,,, without the necessity of solving a
recurrence relation of the form (31) (see Problem 11). In this regard, you may also
wish to compare the calculations of the second solution of Bessel’s equation of order
zero in the text and in Problem 10.

The second solution of Eq. (23), the Bessel function of the second kind of order
one, Y7, is usually taken to be a certain linear combination of J; and y;. Following
Copson (Chapter 12), Y; is defined as

2

Yi(x) = ;[—YZ(X) + (v —In2)/1(0)], (33)

where y is defined in Eq. (12). The general solution of Eq. (23) for x > 0 is
y=calix) +Yix).

Notice that although J; is analytic at x =0, the second solution Y; becomes
unbounded in the same manner as 1/x as x — 0. The graphs of /; and Y; are shown
in Figure 5.7.5.

y
1_
y=J1(x)
0.5 yzyl(x)
\ \ \ \ \ /\
2 4\7 8 10\12/14 x
0.5

FIGURE 5.7.5 The Bessel functions J; and Y;.

PROBLEMS

In each of Problems 1 through 4,show that the given differential equation has aregular singular
point at x = 0, and determine two solutions for x > 0.

L 2%y +2xy +xy =0 2. ¢y +3xy' + (1 + 0y =0
3. X%y +xy +2xy =0 407" +4xy' + 2+ x)y =0
5. Find two solutions (not multiples of each other) of the Bessel equation of order %

Xy +xy + (K =92)y=0, x> 0.
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6.

Show that the Bessel equation of order one-half

Xy +xy + (K -1)y=0, x>0
can be reduced to the equation
V' +v=0

by the change of dependent variable y =x"'2v(x). From this, conclude that
y1(x) =x"2cosx and y,(x) = x~'/?sinx are solutions of the Bessel equation of order
one-half.

7. Show directly that the series for Jy(x), Eq. (7), converges absolutely for all x.

10.

. Show directly that the series for J;(x), Eq. (27), converges absolutely for all x and that

Ji(x) = =J1(x).

. Consider the Bessel equation of order v

Xy +xy + (2 =)y =0, x>0,

where v is real and positive.

(a) Show that x = 0 is a regular singular point and that the roots of the indicial equation
are v and —v.

(b) Corresponding to the larger root v, show that one solution is

=2 [1- 5755 G+ mroaes G)

- =nm™ X\ 2m
+ Zm!(l+v)~'-(m+v) <§> i|

m=3

(c) If2vis not an integer, show that a second solution is

=" [1- 17 () + g = (3)

= (=1 X\ 2m
+ Zm!(l — V) (m—v) <§) }

m=3

Note that y;(x) — 0 as x — 0, and that y,(x) is unbounded as x — 0.

(d) Verify by direct methods that the power series in the expressions for y; (x) and y,(x)
converge absolutely for all x. Also verify that y, is a solution, provided only that v is not
an integer.

In this section we showed that one solution of Bessel’s equation of order zero
Liyl=x"+xy +x*y =0

is Jo, where Jy(x) is given by Eq. (7) with ay = 1. According to Theorem 5.6.1, a second
solution has the form (x > 0)

Vo (x) =Jo(x) Inx + Z b,x".

n=1

(a) Show that

Liy:]l(x) = Z nn—1b,x" + Z nb,x" + Z bpx™2 + 2T} (x). (i)

n=2 n=1 n=1
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11.

12.

13.

14.

(b) Substituting the series representation for Jy(x) in Eq. (i), show that

(—1D)"2nx*"

2y 2 2 "=
bix + 2%box +Z(n by +buy2)x —_ZZ 221 ()2

o0
n=3 n=1

(i)

(c) Note that only even powers of x appear on the right side of Eq. (ii). Show that
b1 = b3 = b5 == 0, b2 = 1/22(1')2, and that

(2n)*boy + byyns = —2(=1)"(2n) /2" (n))’,  n=23,4,....

Deduce that

1 1 1 1 1
bi=——(14= d b=— (14=42-).
4 2242<+2) an 6 224262<+2+3>

The general solution of the recurrence relation is by, = (—1)"*'H,, /2% (n!)?. Substituting
for b, in the expression for y;(x), we obtain the solution given in Eq. (10).

Find a second solution of Bessel’s equation of order one by computing the ¢,(r;) and a
of Eq. (24) of Section 5.6 according to the formulas (19) and (20) of that section. Some
guidelines along the way of this calculation are the following. First, use Eq. (24) of this
section to show that a;(—1) and a;(—1) are 0. Then show that ¢;(—1) = 0 and, from the
recurrence relation, that ¢,(—1) = 0 for n = 3,5, .. .. Finally, use Eq. (25) to show that

e ) = «
r+r+3) T R D3+ +5)

a(r) =

and that

_ (—1)"a,
) = N o r Dot ot Y

Then show that
com(—=1) = (=) (Hy + Hpy)/2""mi(m = 1)), m > 1.

By a suitable change of variables it is sometimes possible to transform another differential
equation into a Bessel equation. For example, show that a solution of
2y + (P + L)y =0, x>0

is given by y = x!/2f (ax?), where f(£) is a solution of the Bessel equation of order v.
Using the result of Problem 12, show that the general solution of the Airy equation

Y —xy =0, x>0

is y = x"2[c1fiGix*?) + e2f2(3ix¥?)], where fi(§) and f,(§) are a fundamental set of
solutions of the Bessel equation of order one-third.

It can be shown that Jy has infinitely many zeros for x > 0. In particular, the first three
zeros are approximately 2.405, 5.520, and 8.653 (see Figure 5.7.1). Let ;,j =1,2,3,...,
denote the zeros of Jy; it follows that

1, x=0,

o) = {0 x=1.

Verify that y = Jo(};x) satisfies the differential equation

1
y”—i—;y’—f—}»fy:O, x> 0.
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CHAPTER

6

The Laplace

Transform

Many practical engineering problems involve mechanical or electrical systems acted
on by discontinuous or impulsive forcing terms. For such problems the methods
described in Chapter 3 are often rather awkward to use. Another method that is espe-
cially well suited to these problems, although useful much more generally, is based
on the Laplace transform. In this chapter we describe how this important method
works, emphasizing problems typical of those that arise in engineering applications.

6.1 Definition of the Laplace Transform

Improper Integrals. Since the Laplace transform involves an integral from zero to infin-
ity, a knowledge of improper integrals of this type is necessary to appreciate the
subsequent development of the properties of the transform. We provide a brief review
of such improper integrals here. If you are already familiar with improper integrals,
you may wish to skip over this review. On the other hand, if improper integrals are
new to you, then you should probably consult a calculus book, where you will find
many more details and examples.

An improper integral over an unbounded interval is defined as a limit of integrals
over finite intervals; thus

00 A
/a f@dr= lim / f@dt, 1)

where A is a positive real number. If the integral from a to A exists for each A > a,
and if the limit as A — oo exists, then the improper integral is said to converge to
that limiting value. Otherwise the integral is said to diverge, or to fail to exist. The
following examples illustrate both possibilities.

309
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EXAMPLE

EXAMPLE

I EXAMPLE

Let f(r) = e, t > 0, where c is a real nonzero constant. Then

o) A ect
/ e dt = lim e dt = lim —
0

A—o0 0 A—oo C

: 1 CcA
_,411—{20;(6 —1).

It follows that the improper integral converges to the value —1/cif ¢ < 0 and divergesif ¢ > 0.
If ¢ = 0, the integrand f(¢) is the constant function with value 1. In this case
A
lim 1dt:/}im(A—0)=oo

A—o0 Jo

so the integral again diverges.

Letf(t) = 1/t, t > 1. Then

e} A
/ é = lim / ﬂ = lim InA.
1 t A—oo Ji t A—00

Since lim In A = oo, the improper integral diverges.

A—00

Let f(t) =tP, t > 1, where p is a real constant and p # 1; the case p = 1 was considered in
Example 2. Then

0 A 1
/ t7dt = lim tPdt = lim 1—(A1*p - 1.
1

A—oo Jq A—oo | —p

As A — 00, A? - 0if p > 1, but A'? — oo if p < 1. Hence / tP dt converges to the
1

value 1/(p — 1) for p > 1 but (incorporating the result of Example 2) diverges for p < 1.

These results are analogous to those for the infinite series ) n7.
n=1

Before discussing the possible existence of / f(@) dt, it is helpful to define

a
certain terms. A function f is said to be piecewise continuous on an inter-
val @ <t < B if the interval' can be partitioned by a finite number of points
a=t <t <---<t, = fsothat

1. fis continuous on each open subinterval t; | < ¢ < f;.

2. fapproaches a finite limit as the endpoints of each subinterval are approached from within
the subinterval.

In other words, f is piecewise continuous on & < ¢ < §ifitis continuous there except
for a finite number of jump discontinuities. If f is piecewise continuous on <t < f8
for every B > «, then f is said to be piecewise continuous on ¢ > «. An example of a
piecewise continuous function is shown in Figure 6.1.1.

1t is not essential that the interval be closed; the same definition applies if the interval is open at one or
both ends.
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Theorem 6.1.1

FIGURE 6.1.1 A piecewise continuous function y = f(¢).

The integral of a piecewise continuous function on a finite interval is just the sum
of the integrals on the subintervals created by the partition points. For instance, for
the function f(¢) shown in Figure 6.1.1, we have

B h 2] B
/ F(6)dt = / £ di + / £ di + / £ dt. )
o o 151 153

For the function shown in Figure 6.1.1, we have assigned values to the function at
the endpoints & and B and at the partition points #; and t,. However, as far as the
integrals in Eq. (2) are concerned, it does not matter whether f(¢) is defined at these
points, or what values may be assigned to f(¢) at them. The values of the integrals in
Eq. (2) remain the same regardless.

A
Thus, if f is piecewise continuous on the interval a <t < A, then / f(t) dt exists.
A a

Hence, if f is piecewise continuous for ¢ > a, then f () dt exists for each A > a.

a
However, piecewise continuity is not enough to ensure convergence of the improper
[o.¢]
integral / f (@) dt, as the preceding examples show.
a
If f cannot be integrated easily in terms of elementary functions, the definition of

oo

convergence of f(¢) dt may be difficult to apply. Frequently, the most convenient

a
way to test the convergence or divergence of an improper integral is by the following
comparison theorem, which is analogous to a similar theorem for infinite series.

If f is piecewise continuous for ¢ > a,if |f(¢)| < g(t) when ¢ > M for some positive

(o.¢] (o.¢]
constant M, and if / g(t) dt converges, then / f () dt also converges. On the
M a

other hand, if f(¢) > g(¢#) > O fort > M, and if / g(t) dt diverges, then / f@) dt
M a

also diverges.

The proof of this result from calculus will not be given here. It is made plausible,
however, by comparing the areas represented by / g(t) dt and / |f(®)|dt. The
M M

functions most useful for comparison purposes are e and 17, which we considered
in Examples 1,2, and 3.
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Theorem 6.1.2

The Laplace Transform. Among the tools that are very useful for solving linear differ-
ential equations are integral transforms. An integral transform is a relation of the
form

B
F(s) = f K(s,t)f (¢) dt, 3)

where K(s,t) is a given function, called the kernel of the transformation, and the
limits of integration « and g are also given. It is possible that « = —o0, or g = oo,
or both. The relation (3) transforms the function f into another function F, which is
called the transform of f.

There are several integral transforms that are useful in applied mathematics, but
in this chapter we consider only the Laplace? transform. This transform is defined
in the following way. Let f () be given for ¢ > 0, and suppose that f satisfies certain
conditions to be stated a little later. Then the Laplace transform of f, which we will
denote by L{f(¢)} or by F(s), is defined by the equation

LU} = F(s) = /0 @) dr, @)

whenever this improper integral converges. The Laplace transform makes use of
the kernel K(s,t) = e™*'. Since the solutions of linear differential equations with
constant coefficients are based on the exponential function, the Laplace transform is
particularly useful for such equations. The general idea in using the Laplace transform
to solve a differential equation is as follows:

1. Use the relation (4) to transform an initial value problem for an unknown function f in
the r-domain into a simpler problem (indeed, an algebraic problem) for F in the s-domain.
2. Solve this algebraic problem to find F.

3. Recover the desired function f from its transform F. This last step is known as “inverting
the transform.”

In general, the parameter s may be complex, and the full power of the Laplace
transform becomes available only when we regard F(s) as a function of a complex
variable. However, for the problems discussed here, it is sufficient to consider only
real values of s. The Laplace transform F of a function f exists if f satisfies certain
conditions, such as those stated in the following theorem.

Suppose that

1. fis piecewise continuous on the interval 0 < ¢t < A for any positive A.

2. |f(@®)| < Ke™ when t > M. In this inequality, K, a, and M are real constants, K and M
necessarily positive.

Then the Laplace transform £{f (¢)} = F(s), defined by Eq. (4), exists for s > a.

2The Laplace transformis named for the eminent French mathematician P. S. Laplace, who studied the rela-
tion (3) in 1782. However, the techniques described in this chapter were not developed until a century or
more later. We owe them mainly to Oliver Heaviside (1850-1925), an innovative self-taught English elec-
trical engineer, who made significant contributions to the development and application of electromagnetic
theory. He was also one of the developers of vector calculus.
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EXAMPLE

4

EXAMPLE

5

EXAMPLE

6

To establish this theorem, we must show that the integral in Eq. (4) converges for
s > a. Splitting the improper integral into two parts, we have

00 M o
/ () dit = / e () dt + / () dr. ®)
0 0 M

The first integral on the right side of Eq. (5) exists by hypothesis (1) of the theorem;
hence the existence of F(s) depends on the convergence of the second integral. By
hypothesis (2) we have, fort > M,

|€7Stf([)| < Kefsteat — Ke(afs)t’

oo
and thus, by Theorem 6.1.1, F(s) exists provided that / e dt converges. Refer-

ring to Example 1 with ¢ replaced by a — s, we see thatA{his latter integral converges
when a — s < 0, which establishes Theorem 6.1.2.

In this chapter (except in Section 6.5), we deal almost exclusively with functions
that satisfy the conditions of Theorem 6.1.2. Such functions are described as piecewise
continuous and of exponential order as t — co. Note that there are functions that
are not of exponential order as t — co. One such function is f(z) = ¢’ Ast — oo,
this function increases faster than Ke®” regardless of how large the constants K and
a may be.

The Laplace transforms of some important elementary functions are given in the
following examples.

Let f(t) =1, t > 0. Then, as in Example 1,

A
—st

an:/eWm:—mf

0 A—oo §

Let f(t) = e, t > 0. Then, again referring to Example 1,
£{eat} — / e—steat dt — / e—(s—a)t dl

0 0

1
= s S > da.
s—a
Let
1, 0<r<l1,
fo=1{k =1,
0, t>1,

where k is a constant. In engineering contexts f(¢) often represents a unit pulse, perhaps of
force or voltage.
Note that f is a piecewise continuous function. Then

efst

B 1—e*

N

s s> 0.

oo 1
C{f(t)}:/ el (1) dt:/ eSdt = —
0 0 § 0

Observe that L{f(t)} does not depend on k, the function value at the point of discontinuity.
Even if f(¢) is not defined at this point, the Laplace transform of f remains the same. Thus
there are many functions, differing only in their value at a single point, that have the same
Laplace transform.



314

Chapter 6. The Laplace Transform

EXAMPLE

7

EXAMPLE

8

Let f(¢t) = sinat, t > 0. Then

Lisinat} = F(s) = / e 'sinat dt, s> 0.
0

Since
A
F(s) = lim e'sinat dt,
A—oo Jo

upon integrating by parts, we obtain

. e %" cos at
F(s) = lim |:—
A—o00 a

1 s

o0
== — 7'/. e cosat dt.
a a Jo

A second integration by parts then yields
1 2 s3]
F(s) =~ — S—Z/ e “'sinat dt
a a 0
2

1 Sk
a a

Hence, solving for F(s), we have

a
F(S):m, s> 0.

Now let us suppose that f; and f> are two functions whose Laplace transforms exist
fors > a; and s > a,,respectively. Then, for s greater than the maximum of a; and a,,

Licifi() + afh®)} = /0 e~[cifi(t) + cafa(D)) dt

=c / e (@) dt + Cz/ e (1) dt;
0 0

hence

Licifi(t) + o)} = il L{fi®)} + 2 L{H(0)}. (6)

Equation (6) states that the Laplace transform is a linear operator, and we make
frequent use of this property later. The sum in Eq. (6) can be readily extended to an
arbitrary number of terms.

Find the Laplace transform of f(f) = Se™* — 3sin4¢, ¢ > 0.
Using Eq. (6), we write
L{f()} = 5L{e7) — 3L{sin4t).

Then, from Examples 5 and 7, we obtain

s> 0.

5 12
L{f®)} = s12 2116
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PROBLEMS In each of Problems 1 through 4, sketch the graph of the given function. In each case deter-
=== mine whether f is continuous, piecewise continuous, or neither on the interval 0 < ¢ < 3.

2, 0<t<1 2, 0<t<1
1L f)y=32+¢t, 1<t<2 2. fO={@¢-1", 1<t<2
6—t, 2<t<3 1, 2<t<3
2, 0<t=<1 t, 0<r<1
3.f =141, 1l<t<2 4. fO)=13—-t, 1<t<2
3—t, 2<t<3 1, 2<t<3
5. Find the Laplace transform of each of the following functions:
(@) f() =t
(b) fo =7

(c) f(r) =", where n is a positive integer
6. Find the Laplace transform of f(¢#) = cos at, where a is a real constant.

Recall that cosh bt = (e*" + e~")/2 and sinh bt = (e** — ¢7") /2. In each of Problems 7 through
10, find the Laplace transform of the given function; a and b are real constants.

7. f(t) = cosh bt 8. f(t) = sinh bt
9. f(t) = e" cosh bt 10. f(t) = e sinh bt

Recall that cos bt = (¢ + e~?)/2 and that sin bt = (¢ — e~*')/2i. In each of Problems 11
through 14, find the Laplace transform of the given function; a and b are real constants.
Assume that the necessary elementary integration formulas extend to this case.

11. f(t) = sin bt 12. f(t) = cos bt
13. f(t) = e sinbt 14. f(t) = e cos bt

In each of Problems 15 through 20, use integration by parts to find the Laplace transform of
the given function; n is a positive integer and a is a real constant.

15. f(@t) = te” 16. f(t) = tsinat
17. f(t) = tcoshat 18. f(t) = t"e™
19. f(t) = *sinat 20. f(t) = *sinh at

In each of Problems 21 through 24, find the Laplace transform of the given function.

2. f0) = 1, O0<t<m 2. f() = t, 0<t<l1
' 0, m<t<oo ' 10, 1<t<oo
t O0<t<1
t, 0<t<l1 ’ =t=
23. f(t) = 24. f()y=32—-1, 1<t<?2
1, 1<t<o
0, 2<t<oo

In each of Problems 25 through 28, determine whether the given integral converges or diverges.

25. / GRS 26. / te™" dt
0 0

27./ 126 dt 28./ e~ costdt
1 0
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29.

30.

31.

Suppose that f and f’ are continuous for ¢t > 0 and of exponential order as t — co. Use
integration by parts to show thatif F(s) = L£{f(¢)},then lim F(s) = 0. The resultis actually

true under less restrictive conditions, such as those of Theorem 6.1.2.

The Gamma Function. The gamma function is denoted by I'(p) and is defined by the
integral

Fp+1) = /-00 e xP dx. @)
0

The integral converges as x — oo for all p. For p <0 it is also improper at x =0,
because the integrand becomes unbounded as x — 0. However, the integral can be shown
to converge atx =0 forp > —1.

(a) Show that, for p > 0,
F(p+1) = pr'(p).

(b) Show that I'(1) = 1.
(c) If p is a positive integer n, show that
Fn+1) =n.

Since T'(p) is also defined when p is not an integer, this function provides an extension
of the factorial function to nonintegral values of the independent variable. Note that it is
also consistent to define 0! = 1.

(d) Show that, for p > 0,

Pp+DH@P+2)---p+n-1)=T@+n)/TP).

Thus I'(p) can be determined for all positive values of p if I'(p) is known in a single interval
of unit length—say,0 < p < 1.1Itis possible toshow thatI" (3) = /7. FindI" () and I" ().

Consider the Laplace transform of #”, where p > —1.
(a) Referring to Problem 30, show that

o0

o 1
L{t"} = / et dt = — e xP dx
0 Pt Jo

=T(p+ /", s>0.
(b) Let p be a positive integer n in part (a); show that
L{"y =nl/s", s> 0.
(c) Show that
L{r?) = % /000 e dx, s> 0.

It is possible to show that

hence

L{7V?) = /7/s, s > 0.

(d) Show that
L{tY?) = 7/ (2537), s> 0.
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6.2 Solution of Initial Value Problems

Theorem 6.2.1

In this section we show how the Laplace transform can be used to solve initial value
problems for linear differential equations with constant coefficients. The usefulness
of the Laplace transform for this purpose rests primarily on the fact that the transform
of f” is related in a simple way to the transform of f. The relationship is expressed in
the following theorem.

Suppose that f is continuous and f’ is piecewise continuous on any interval
0 <t < A. Suppose further that there exist constants K,a, and M such that
|f ()] < Ke* fort > M. Then £{f'(t)} exists for s > a, and moreover,

L{f (0} = sc{f O} — £(0). (1)

To prove this theorem, we consider the integral

A
/ e (1) dt,
0

whose limitas A — oo, if it exists, is the Laplace transform of f”. To calculate this limit
we first need to write the integral in a suitable form. If f” has points of discontinuity
in the interval 0 <t < A, let them be denoted by #1,1,. .., . Then we can write the
integral as

A 5t 1% A
/ e () dt = / e () dt + / e dt+ -+ f e *'f (1) dt.
0 0

i 173

Integrating each term on the right by parts yields

A 1 2
| eroa=errof ool v eto
0 1

A
73

51 153 A
+s U e () dt + / efode+---+ / e (D) dz} )
0 151 173
Since f is continuous, the contributions of the integrated terms at #1,#, . . ., fx cancel.
Further, the integrals on the right side can be combined into a single integral, so that

we obtain
A

A
/ e () dt = e f(A) — F(0) ~|—s/ e 'f (1) dt. ()
0 0

Now we let A — oo in Eq. (2). The integral on the right side of this equa-
tion approaches £{f (¢)}. Further, for A > M, we have |f(A)| < Ke*'; consequently,
le™Af(A)| < Ke=“~94, Hence e *4f(A) — 0 as A — oo whenever s > a. Thus the
right side of Eq. (2) has the limit s£{f(¢)} — f(0) . Consequently, the left side of
Eq. (2) also has a limit, and as noted above, this limit is £{f'(¢)}. Therefore, for s > a,
we conclude that

L{f' 0} = s£{f (O} = f(0),

which establishes the theorem.
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Corollary 6.2.2

EXAMPLE

1

If f" and f” satisty the same conditions that are imposed on f and f’, respectively,
in Theorem 6.2.1, then it follows that the Laplace transform of f” also exists for s > a
and is given by

LU (O} = sC{f' O} — /(0
= s[sL{f O} = f(O)] = f(0)
=S’ L{f (O} = sf(0) = £(0). 3)
Indeed, provided the function f and its derivatives satisfy suitable conditions, an

expression for the transform of the nth derivative f"” can be derived by 7 successive
applications of this theorem. The result is given in the following corollary.

Suppose that the functions f,f/,...,f" D are continuous and that f* is piecewise
continuous on any interval 0 < ¢ < A. Suppose further that there exist constants
K,a,and M such that [f(t)| < Ke®, |f'(t)| < Ke®,...,|f" D) < Ke” for t > M.
Then £{f"(¢)} exists for s > a and is given by

LFP @O} = S"LUF O = S7FO) — -+ = sf 2 0) — £ (0). )

We now show how the Laplace transform can be used to solve initial value prob-
lems. Itis most useful for problems involving nonhomogeneous differential equations,
as we will demonstrate in later sections of this chapter. However, we begin by looking
at some homogeneous equations, which are a bit simpler.

Consider the differential equation

Y=y -=2y=0 ©)
and the initial conditions
yO =1 y(0=0. (6)
This problem is easily solved by the methods of Section 3.1. The characteristic equation is
P—r=2=0r-2r+1)=0,
and consequently, the general solution of Eq. (5) is

y= Cleit —+ C2€2t. (7)

2

To satisfy the initial conditions (6), we must have ¢; + ¢; = 1 and —¢; + 2¢;, = 0;hence ¢; = 5

and ¢, = 1, 50 the solution of the initial value problem (5) and (6) is
V=) =2e + L. ®)

Now let us solve the same problem by using the Laplace transform. To do this, we must
assume that the problem has a solution y = ¢(#), which with its first two derivatives satisfies the
conditions of Corollary 6.2.2. Then, taking the Laplace transform of the differential equation
(5), we obtain

L") = L{y'} = 2L{y} =0, )
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where we have used the linearity of the transform to write the transform of a sum as the sum
of the separate transforms. Upon using the corollary to express £{y"} and L£{y’} in terms of
L{y}, we find that Eq. (9) becomes

S Ly} = sy(0) — y'(0) — [sL{y} — y(0)] — 2L{y} = 0,

or
(s> —s=2)Y(s) + (1 —)y(0) — y'(0) = 0, (10)

where Y (s) = L{y}. Substituting for y(0) and y’(0) in Eq. (10) from the initial conditions (6),
and then solving for Y (s), we obtain

s—1 s—1
T s 2 6-26+D) an

We have thus obtained an expression for the Laplace transform Y (s) of the solution y = ¢ () of
the given initial value problem. To determine the function ¢, we must find the function whose
Laplace transform is Y (s), as given by Eq. (11).

This can be done most easily by expanding the right side of Eq. (11) in partial fractions.
Thus we write

Y(@s) =
s

s—1 a b a(s+1)+bs—2)

YOS 6D T2 skl 6oD6+D

(12)

where the coefficients a and b are to be determined. By equating numerators of the second
and fourth members of Eq. (12), we obtain

s—1=a(s+1)+b(s—2),

an equation that must hold for all s. In particular, if we set s = 2, then it follows that a = %
Similarly, if we set s = —1, then we find that b = % By substituting these values for a and b,
respectively, we have

13 2/3
Y(s)=%2+sil.

(13)

Finally, if we use the result of Example 5 of Section 6.1, it follows that 1¢* has the transform
%(s —2)71; similarly, %e" has the transform %(s + 1)~L. Hence, by the linearity of the Laplace

transform,
y=¢@1) = + 3¢
has the transform (13) and is therefore the solution of the initial value problem (5),(6). Observe

that it does satisfy the conditions of Corollary 6.2.2, as we assumed initially. Of course, this is
the same solution that we obtained earlier.

The same procedure can be applied to the general second order linear equation
with constant coefficients

ay” + by +cy =f(). (14)

Assuming that the solution y = ¢(¢) satisfies the conditions of Corollary 6.2.2 for
n = 2, we can take the transform of Eq. (14) and thereby obtain

als*Y (s) — sy(0) — y'(0)] + bsY (s) — y(0)] 4 cY (s) = F(s), (15)
where F(s) is the transform of f(¢). By solving Eq. (15) for Y (s), we find that
Yis) = (as + D)y(0) + ay'(0) F(s) (16)

as?> +bs+c as? +bs+c’
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The problem is then solved, provided that we can find the function y = ¢(¢) whose
transform is Y (s).

Even at this early stage of our discussion we can point out some of the essential
features of the transform method. In the first place, the transform Y (s) of the unknown
function y = ¢(¢) is found by solving an algebraic equation rather than a differential
equation,Eq. (10) rather than Eq. (5) in Example 1, or in general Eq. (15) rather than
Eq. (14). This is the key to the usefulness of Laplace transforms for solving linear,
constant coefficient, ordinary differential equations—the problem is reduced from
a differential equation to an algebraic one. Next, the solution satisfying given initial
conditions is automatically found, so that the task of determining appropriate values
for the arbitrary constants in the general solution does not arise. Further, as indicated
in Eq. (15), nonhomogeneous equations are handled in exactly the same way as
homogeneous ones; it is not necessary to solve the corresponding homogeneous
equation first. Finally, the method can be applied in the same way to higher order
equations, as long as we assume that the solution satisfies the conditions of Corollary
6.2.2 for the appropriate value of n.

Observe that the polynomial as® + bs + ¢ in the denominator on the right side of
Eq. (16) is precisely the characteristic polynomial associated with Eq. (14). Since the
use of a partial fraction expansion of Y (s) to determine ¢(¢) requires us to factor this
polynomial, the use of Laplace transforms does not avoid the necessity of finding
roots of the characteristic equation. For equations of higher than second order, this
may require a numerical approximation, particularly if the roots are irrational or
complex.

The main difficulty that occurs in solving initial value problems by the transform
method lies in the problem of determining the function y = ¢(¢) corresponding to
the transform Y (s). This problem is known as the inversion problem for the Laplace
transform; ¢ (¢) is called the inverse transform corresponding to Y (s),and the process
of finding ¢ (¢) from Y (s) is known as inverting the transform. We also use the notation
LYY (s)} to denote the inverse transform of Y (s). There is a general formula for
the inverse Laplace transform, but its use requires a familiarity with functions of a
complex variable, and we do not consider it in this book. However, it is still possible
to develop many important properties of the Laplace transform, and to solve many
interesting problems, without the use of complex variables.

In solving the initial value problem (5), (6), we did not consider the question of
whether there may be functions other than the one given by Eq. (8) that also have
the transform (13). By Theorem 3.2.1 we know that the initial value problem has no
other solutions. We also know that the unique solution (8) of the initial value problem
is continuous. Consistent with this fact, it can be shown that if f and g are continuous
functions with the same Laplace transform, then f and g must be identical. On the
other hand, if f and g are only piecewise continuous, then they may differ at one or
more points of discontinuity and yet have the same Laplace transform;see Example 6
in Section 6.1. This lack of uniqueness of the inverse Laplace transform for piecewise
continuous functions is of no practical significance in applications.

Thus there is essentially a one-to-one correspondence between functions and their
Laplace transforms. This fact suggests the compilation of a table, such as Table 6.2.1,
giving the transforms of functions frequently encountered, and vice versa. The entries
in the second column of Table 6.2.1 are the transforms of those in the first column.
Perhaps more important, the functions in the first column are the inverse transforms
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TABLE 6.2.1 Elementary Laplace Transforms
f@) = L7THF @)} F(s) = LIf (1) Notes
1. 1 1 s>0 Sec. 6.1; Ex. 4
s
1
2. " s s>a Sec. 6.1; Ex. 5
s—a
!
3. ", n =positive integer %, s> 0 Sec. 6.1; Prob. 31
s'l
r 1
4. P, p>-—1 w, s>0 Sec. 6.1; Prob. 31
spH+1
5. sinat 5 a 5 s> 0 Sec. 6.1; Ex. 7
s2+a
6. cosat S s s>0 Sec. 6.1; Prob. 6
s2 4+ a?
7. sinhat > a > s > |al Sec. 6.1; Prob. 8
2 —a
8. coshat 5 S > s > |a| Sec. 6.1; Prob. 7
2 —a
9. e"sinbt L s>a Sec. 6.1; Prob. 13
. G .6.1; .
s—a
10. e“ cos bt _ s>a Sec. 6.1; Prob. 14
(s —a)? + b?
!
11. t"e™, n = positive integer L, s>a Sec. 6.1; Prob. 18
(s — ayrt!
e—(‘S
12, u.(t) s s> 0 Sec. 6.3
s
13. u.(Of(t —c¢) e SF(s) Sec. 6.3
14. e“f (1) F(s—o) Sec. 6.3
1
15. f(en) °F (5) . c>0 Sec. 6.3; Prob. 25
c \c
t
16. / ft—og()de F(s)G(s) Sec. 6.6
0
17. §(t—c¢) e Sec. 6.5
18. f™(r) S"F(s) —s" 1 (0) — - - - — FD(0) Sec. 6.2; Cor. 6.2.2
19. (=0"f (1) F™(s) Sec. 6.2; Prob. 29
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EXAMPLE

2

of those in the second column. Thus, for example, if the transform of the solution of
a differential equation is known, the solution itself can often be found merely by
looking it up in the table. Some of the entries in Table 6.2.1 have been used as
examples, or appear as problems in Section 6.1, while others will be developed later
in the chapter. The third column of the table indicates where the derivation of the
given transforms may be found. AlthoughTable 6.2.1 is sufficient for the examples and
problems in this book, much larger tables are also available (see the list of references
at the end of the chapter). Transforms and inverse transforms can also be readily
obtained electronically by using a computer algebra system.
Frequently, a Laplace transform F(s) is expressible as a sum of several terms

F(s) = Fi(s) + Fa(s) + - - - + Fu (). (17)
Suppose that fi(t) = L7H{F(s)},...,[.(t) = L7{F,(s)}. Then the function
fO=H0O+ -+ fu®)

has the Laplace transform F(s). By the uniqueness property stated previously, no
other continuous function f has the same transform. Thus

LYY = LHFI()} + -+ LT HF, ()} (18)

that is, the inverse Laplace transform is also a linear operator.

In many problems it is convenient to make use of this property by decomposing a
given transform into a sum of functions whose inverse transforms are already known
or can be found in the table. Partial fraction expansions are particularly useful for
this purpose, and a general result covering many cases is given in Problem 39. Other
useful properties of Laplace transforms are derived later in this chapter.

As further illustrations of the technique of solving initial value problems by means
of the Laplace transform and partial fraction expansions, consider the following
examples.

Find the solution of the differential equation
' +y=sin2t (19)
satisfying the initial conditions
y0)y=2, YO =1 (20)

We assume that this initial value problem has a solution y = ¢ (), which with its first two
derivatives satisfies the conditions of Corollary 6.2.2. Then, taking the Laplace transform of
the differential equation, we have

s Y (s) — sy(0) — y'(0) + Y(s) = 2/(s* + 4),

where the transform of sin 2¢ has been obtained from line 5 of Table 6.2.1. Substituting for y(0)
and y’(0) from the initial conditions and solving for Y (s), we obtain

2s° +s2+85+6

YG6)= ————F—. 21
O =i he T @0
Using partial fractions, we can write Y (s) in the form
Yis) = as+b cs+d _(as+ b)(s* +4)+ (s +d) (s + 1) . (22)

“vr1tea” @+ D)2 +4)
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EXAMPLE

3

By expanding the numerator on the right side of Eq. (22) and equating it to the numerator in
Eq. (21), we find that

253 + 52 +854+6=(a+0c)s’+ (b+d)s* + (4a+c)s+ (4b+d)
for all 5. Then, comparing coefficients of like powers of s, we have

a+c=2, b+d=1,
4a+c=8, 4b +d = 6.

Consequently,a =2,c =0,b = %, and d = —%, from which it follows that

2s 53 23

Y(s):s2+1+s2+l_s2+4' (23)
From lines 5 and 6 of Table 6.2.1, the solution of the given initial value problem is
y=¢() =2cost+ %sint— %sin2t. (24)
Find the solution of the initial value problem
y@—y=0, (25)
yO =0 YO =1 Yy @©=0  y'(0)=0. (26)

In this problem we need to assume that the solution y = ¢(t) satisfies the conditions of
Corollary 6.2.2 for n = 4. The Laplace transform of the differential equation (25) is

s'Y (5) = s°y(0) — 57y'(0) — sy"(0) — y"(0) — Y(5) = 0.

Then, using the initial conditions (26) and solving for Y (s), we have

2

Y(s) = . 27
®) =57 (27)
A partial fraction expansion of Y (s) is
as+b cs+d
Y =
() == Tt

and it follows that

(as+b)*+ 1)+ (s +d)(? — 1) = s (28)

for all 5. By setting s = 1 and s = —1, respectively, in Eq. (28), we obtain the pair of equations
2(a+b) =1, 2(—a+b) =1,

and therefore a = 0 and b = 1. If we set s = 0 in Eq. (28), then b —d = 0,50 d = 1. Finally,
equating the coefficients of the cubic terms on each side of Eq. (28), we find that a 4+ ¢ = 0, so

¢ =0.Thus
1/2 1/2

s2—1 241
and from lines 7 and 5 of Table 6.2.1, the solution of the initial value problem (25), (26) is

Y(@s) =

(29)

sinht + sin ¢

> (30)

y=¢0 =
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The most important elementary applications of the Laplace transform are in the
study of mechanical vibrations and in the analysis of electric circuits; the govern-
ing equations were derived in Section 3.7. A vibrating spring-mass system has the
equation of motion

d*u du

m— v+ ku = F 0, 31)

where m is the mass, y the damping coefficient, k the spring constant, and F(¢) the
applied external force. The equation that describes an electric circuit containing an
inductance L, a resistance R, and a capacitance C (an LRC circuit) is
d*Q do 1
L—5 + R+ 0 =E®, (32)
where Q(¢) is the charge on the capacitor and E(¢) is the applied voltage. In terms of
the current I(¢) = dQ(r)/dt, we can differentiate Eq. (32) and write
d’l dl 1 dE
Ldt2 +Rdt + CI = ). (33)
Suitable initial conditions on u, Q, or I must also be prescribed.

We have noted previously, in Section 3.7, that Eq. (31) for the spring—mass system
and Egs. (32) or (33) for the electric circuit are identical mathematically, differing
only in the interpretation of the constants and variables appearing in them. There
are other physical problems that also lead to the same differential equation. Thus,
once the mathematical problem is solved, its solution can be interpreted in terms of
whichever corresponding physical problem is of immediate interest.

In the problem lists following this and other sections in this chapter are numerous
initial value problems for second order linear differential equations with constant
coefficients. Many can be interpreted as models of particular physical systems, but
usually we do not point this out explicitly.

PROBLEMS

In each of Problems 1 through 10, find the inverse Laplace transform of the given function.

1. F(s):ﬁ 2. F(s):m

3. F6) = 5oy 4. F(s) = - 3s_6

5. F(s):% 6. F(s):%

7. F(s):% 8. F(s):gszs(g;‘ij_:)lz
9. F(s) = % 10. F(s) = %

In each of Problems 11 through 23, use the Laplace transform to solve the given initial value
problem.

11. y" —y — 6y =0;
12. v/ +3y +2y =0;

y(0) =1,
y(©0) =1,

y0)=-1
y(0)=0



6.2 Solution of Initial Value Problems 325

13. y" =2y +2y =0; y@0) =0, y(@©) =1

14. y" —4y' +4y =0; yO =1, y@©0) =1

15,y =2y +4y =0; y0) =2, y(0)=0

16. vy +2y + 5y =0; yO0) =2, y(0) =-1

17. 9 —4y" +6y" =4y +y=0;  y0)=0, yO) =1, y' O =0, y"O=1
8. y®—y=0,  yO =1, y©0) =0, yO)=1 y"0)=0

19.y9 —dy=0;  yO) =1, YO0 =0, y"O)=-2, y"(0)=0

20. y" + @’y =cos2t, o® #4 y0) =1, y(@©0) =0

21. y" =2y 4+ 2y =cost; yO) =1, y0)=0

22, y" =2y 42y =e"; y@0)=0, YO0 =1

23. ' +2y +y=4de y0) =2, y(0) =-1

In each of Problems 24 through 27, find the Laplace transform Y (s) = L{y} of the solution of

the given initial value problem. A method of determining the inverse transform is developed
in Section 6.3. You may wish to refer to Problems 21 through 24 in Section 6.1.

1, O0<t<m,
24. y”+4y={ yO)y =1, y©0)=0
0, m<t<oo
25y ay= 10 0si<l 0)=0. y(0)=0
YAV i YO=0 YO =
2.y ray= ]t 0=l ©) =0, y(©0)=0
VY= e YO=0 YO=
t, 0<t<l1,
27. y'+y=432—-t, 1<t<2, yv@0)=0, y©0)=0
0, 2<t<o0;

28. The Laplace transforms of certain functions can be found conveniently from their Taylor
series expansions.

(a) Using the Taylor series for sin ¢

o (_1)nt2n+l

= oo

n=0

and assuming that the Laplace transform of this series can be computed term by term,
verify that

E{Slnt} = ﬁ, s> 1.
(b) Let
_ (sint)/t, t#0,
fo= 1, t=0.

Find the Taylor series for f about r = 0. Assuming that the Laplace transform of this
function can be computed term by term, verify that

L{f(t)} = arctan(1/s), s> 1.
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(c) The Bessel function of the first kind of order zero, Jy, has the Taylor series (see
Section 5.7)

o (_1)nt2n
Jo(t) = Z ek

n=0

Assuming that the following Laplace transforms can be computed term by term, verify
that

LUTOy=E+1D)72 0 s>1

and
LTV} = s e V&) s> 0.

Problems 29 through 37 are concerned with differentiation of the Laplace transform.
29. Let

F(s) = /oo e 'f (1) dt.
0

It is possible to show that as long as f satisfies the conditions of Theorem 6.1.2, it is
legitimate to differentiate under the integral sign with respect to the parameter s when
s> a.

(a) Show that F'(s) = L{—tf(1)}.

(b) Show that F™(s) = L{(—t)"f(t)}; hence differentiating the Laplace transform corre-
sponds to multiplying the original function by —t.

In each of Problems 30 through 35, use the result of Problem 29 to find the Laplace transform
of the given function; @ and b are real numbers and # is a positive integer.

30. f(t) = te" 31. f(t) = *sinbt
32. f(ty=1" 33, f(t) =t"e”
34. f(t) = te" sin bt 35. f(t) = te" cos bt

36. Consider Bessel’s equation of order zero

ty"+y +ty=0.

Recall from Section 5.7 thatr = Ois aregular singular point for this equation, and therefore
solutions may become unbounded as¢t — 0. However,let us try to determine whether there
are any solutions that remain finite at # = 0 and have finite derivatives there. Assuming
that there is such a solution y = ¢(¢), let Y (s) = L{¢(1)}.

(a) Show that Y (s) satisfies

1 +5)Y'(s) +5Y(s) =0.
(b) Show that Y (s) = c(1 + s?)~!/2, where c is an arbitrary constant.

(c) Writing (1 + s?)7!/2 = s71(1 4+ s72)~!/2, expanding in a binomial series valid for s > 1,
and assuming that it is permissible to take the inverse transform term by term, show that

_ o (_1)nt2n -
y= Cﬂg(; W = cJo(1),
where J is the Bessel function of the first kind of order zero. Note that J,(0) = 1 and that
Jo has finite derivatives of all orders at t = 0. It was shown in Section 5.7 that the second

solution of this equation becomes unbounded as t — 0.
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37.

38.

39.

6.3 Step Functions

For each of the following initial value problems, use the results of Problem 29 to find
the differential equation satisfied by Y (s) = L{¢(?)}, where y = ¢(¢) is the solution of the
given initial value problem.

(a) y'—ty=0; y@0)=1, y(0)=0 (Airy’sequation)

(b) 1 -2y =2ty +a(a+ 1)y =0; y(0)=0, y(0) =1 (Legendre’sequation)
Note that the differential equation for Y (s) is of first order in part (a), but of second order
in part (b). This is due to the fact that ¢ appears at most to the first power in the equation
of part (a), whereas it appears to the second power in that of part (b). This illustrates that
the Laplace transform is not often useful in solving differential equations with variable
coefficients, unless all the coefficients are at most linear functions of the independent
variable.

Suppose that ,
g = / foadr.
0

If G(s) and F(s) are the Laplace transforms of g(¢) and f(¢), respectively, show that
G(s) = F(s)/s.

In this problem we show how a general partial fraction expansion can be used to calculate
many inverse Laplace transforms. Suppose that

F(s) = P(s)/Q(s),

where Q(s) is a polynomial of degree n with distinct zeros ry,...,r,, and P(s) is a
polynomial of degree less than 7. In this case it is possible to show that P(s)/Q(s) has
a partial fraction expansion of the form

P(S) _ Al An .
0w s—n T Tson ®
where the coefficients A, ..., A, must be determined.
(a) Show that
A = P(r)/0'(rv), k=1,...,n (i1)

Hint: One way to do this is to multiply Eq. (i) by s — 4 and then to take the limit as s — ry.
(b) Show that

n

LR =3 2 g
k=1

~ Q'(ro) (i)

In Section 6.2 we outlined the general procedure involved in solving initial value
problems by means of the Laplace transform. Some of the most interesting elemen-
tary applications of the transform method occur in the solution of linear differential
equations with discontinuous or impulsive forcing functions. Equations of this type
frequently arise in the analysis of the flow of current in electric circuits or the vibra-
tions of mechanical systems. In this section and the following ones, we develop some
additional properties of the Laplace transform that are useful in the solution of such
problems. Unless a specific statement is made to the contrary, all functions appearing
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EXAMPLE

1

below will be assumed to be piecewise continuous and of exponential order, so that
their Laplace transforms exist, at least for s sufficiently large.

To deal effectively with functions having jump discontinuities, it is very helpful
to introduce a function known as the unit step function or Heaviside function. This
function will be denoted by u, and is defined by

0, t<c,
1, t>c.

wio = | M
Since the Laplace transform involves values of ¢ in the interval [0, 00), we are also
interested only in nonnegative values of ¢. The graph of y = u,(¢) is shown in Figure
6.3.1. We have somewhat arbitrarily assigned the value one to u, at t = c. However,
for a piecewise continuous function such as u., the value at a discontinuity point is
usually irrelevant. The step can also be negative. For instance, Figure 6.3.2 shows the

graphofy =1 — u.(1).

Y y
1+ -— 11—
‘ \
‘ \
|
i |
‘ 4
c t ¢ t
FIGURE 6.3.1 Graph of y = u.(2). FIGURE 6.3.2 Graphof y=1—u.(t).

Sketch the graph of y = A(t), where
h(t) = u (1) — uz, (1), t>0.
From the definition of u () in Eq. (1), we have

0-0=0, 0<t<m,
ht)y=31-0=1, 7 <t <2m,
1-1=0, 27 <t < 0.

Thus the equation y = h(¢) has the graph shown in Figure 6.3.3. This function can be thought
of as a rectangular pulse.

1 ~—

| |

| |

| |

| |

| N |

T 2n 3z t
FIGURE 6.3.3 Graph of y = u,(t) — uy,(¢).
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EXAMPLE

2

Consider the function

2, 0<t<4,
5, 4<t<T7,
= - 2
fw 1 7<i<9, (2)
1, =9,

whose graph is shown in Figure 6.3.4. Express f(¢) in terms of u.(t).

-1+ [ C—

FIGURE 6.3.4 Graph of the function in Eq. (2).

We start with the function f; (1) = 2, which agrees with f(¢) on [0,4). To produce the jump
of three units at t = 4, we add 3uy(¢) to fi(¢), obtaining

H(@®) =2+ 3us(),

which agrees with f(¢) on [0,7). The negative jump of six units at t =7 corresponds to
adding —6u;(t), which gives
f(0) = 2 + 3us(t) — 6us ().

Finally, we must add 2uy(f) to match the jump of two units at t = 9. Thus we obtain

f([) =2+ 3uy(t) — 6u;(t) + 2uy(t). (3)

The Laplace transform of u, for ¢ > 0 is easily determined:

L{uc(t)}zf e u (1) dt:/ e dt
0

c

= , s > 0. 4)

For a given function f defined for ¢ > 0, we will often want to consider the related
function g defined by

o) = 0, t<c,
y_g()_ f(t_C), tEC,
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Theorem 6.3.1

which represents a translation of f a distance ¢ in the positive ¢ direction; see Fig-
ure 6.3.5. In terms of the unit step function we can write g(¢) in the convenient
form

g = u(Of(t — o).

(a) (&)
FIGURE 6.3.5 A translation of the given function. (a) y = f(¢); (b) y = u.(0)f (t — ¢).

The unit step function is particularly important in transform use because of the fol-
lowing relation between the transform of f(¢) and that of its translation u.(¢)f (t — ¢).

If F(s) = £{f ()} exists for s > a > 0, and if ¢ is a positive constant, then

L{uOft — o)} =e “L{f()} =e “F(s), s>a. (5)
Conversely, if f(t) = £L7'{F(s)}, then
uOf(t —c) = L7 He “F(s)}. (6)

Theorem 6.3.1 simply states that the translation of f(¢) a distance c in the positive
t direction corresponds to the multiplication of F(s) by e~¢. To prove Theorem 6.3.1,
it is sufficient to compute the transform of u.(t)f (¢ — ¢):

Liuc(Of(t — o)} = /oo e Mu.f(t —c)dt
0

= /OO e (t — ) dr.

c

Introducing a new integration variable £ =t — ¢, we have
LlucOf t — o)} = / e EVf @ dE = e / e f (&) dt
0 0

=e “F(s).

Thus Eq. (5) is established; Eq. (6) follows by taking the inverse transform of both
sides of Eq. (5).

A simple example of this theorem occurs if we take f(¢f) = 1. Recalling that
£{1} = 1/s, we immediately have from Eq. (5) that £{u ()} = e=*/s. This result
agrees with that of Eq. (4). Examples 3 and 4 illustrate further how Theorem 6.3.1
can be used in the calculation of transforms and inverse transforms.
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If the function f is defined by

EXAMPLE
3 £6) = sint, 0<t<mn/4,
" | sint 4+ cos(t — n/4), t = n/4,
find £{f (t)}. The graph of y = f(¢) is shown in Figure 6.3.6.
y
2|
151
1
05 : ¥ =SiNt + uyy(t)cost - 7)
|
| | | | | |
05 £ 1 15 2 25 \3 t
FIGURE 6.3.6 Graph of the function in Example 3.
Note that f(f) = sint + g(¢), where
N t <m/4,
HOES
cos(t —m/4), t=>m/4.
Thus
g(t) = Uys(t) cos(t — m/4)
and
LU} = L{sin 1) + L{twga(0) cos(t — 7/4)}
= L{sint} + e ™/*L{cos t}.
Introducing the transforms of sin¢ and cos ¢, we obtain
s 1+ se ™4
H = —ms/4 —
Loy s2+1+e s2+1 s2+1
You should compare this method with the calculation of L{f(f)} directly from the definition.
Find the inverse transform of
EXAMPLE Fes) 1—e®
S) =
4 52

From the linearity of the inverse transform, we have
-1 a1 e
fO =L F@ =L S-S
s s
=t—w@)(t—2).
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Theorem 6.3.2

EXAMPLE

5

The function f may also be written as

0<t<?2,
, t>2.

,
fo=1,

The following theorem contains another very useful property of Laplace trans-
forms that is somewhat analogous to that given in Theorem 6.3.1.

If F(s) = £{f(¢)} exists for s > a > 0, and if ¢ is a constant, then

L{ef ()} = F(s — ¢), s> a+c. (7)
Conversely, if f(t) = £L7'{F(s)}, then
ef (1) = L7HF (s — o). ®)

According to Theorem 6.3.2, multiplication of f(¢) by e results in a translation of
the transform F(s) a distance c in the positive s direction, and conversely. To prove
this theorem, we evaluate £{e“'f(¢)}. Thus

L{e“f()) = / ooe’“ec’f(t) dt = f ooe*“*@‘f(t) dt
0 0

=F(s—o),

whichis Eq. (7). The restrictions > a + c follows from the observation that,according
to hypothesis (ii) of Theorem 6.1.2,|f(t)| < Ke;hence |e“'f(t)| < Ke“+9'. Equation
(8) is obtained by taking the inverse transform of Eq. (7), and the proof is complete.

The principal application of Theorem 6.3.2 is in the evaluation of certain inverse
transforms, as illustrated by Example 5.

Find the inverse transform of
1

G(s)=s2—4s+5'

By completing the square in the denominator, we can write

G(s) = F(s—2),

G—22+1
where F(s) = (s> +1)~L. Since £L7'{F(s)} = sint, it follows from Theorem 6.3.2 that

g(H) = L7YG(s)} = e sint.

The results of this section are often useful in solving differential equations, partic-
ularly those that have discontinuous forcing functions. The next section is devoted to
examples illustrating this fact.
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PROBLEMS

In each of Problems 1 through 6, sketch the graph of the
1. g(®) = u1 (t) + 2us(t) — 6uy(t) 2. gt =
3. (1) = f(t = Muz(0), 4.8 =
5. 8(0) = f(t = Dua(0),
6. g(1) = (t = Duy (1) = 2(t = ua (1) + (1 = 3us (1)

In each of Problems 7 through 12:

(a) Sketch the graph of the given function.
(b) Express f(¢) in terms of the unit step function u.(t).

where f(t) = 1

where f(t) = 2t

given function on the interval ¢ > 0.
(t = 3uz (1) — (t = Duz (1)

f@ —=3)us(), where f(t) =sint

1, 0<t<l1,
-1, 1<t<2,
1, 2<t<3,
-1, 3<t<4,
0, t>4.
2, 0<t<?2,
1, t>2.
t, 0<t<?2,
2, 2<t<S5,
7—1t, S5<t<T,
0, t>1.

0, t<1

P2 =2t+2, t>1

16. f([) = uy (t) + 2us(t) — 6uy(t)

0, 0<t<3,
7 fm=] 7 IE0E 8. f)
2, 5<t<7,
1, t>7.
1, 0<t<?2,
9. (1) = cid o 10. f(1) =
t, 0<t<l1,
o= == 12.
. 1) = . 1) =
t—2, 2<t<3,
0, t>3.
In each of Problems 13 through 18, find the Laplace transform of the given function.
0 t<2
13. f=1" 14. f(1) =
FO=14 2 122 f@
0, t<m
15. fy=3t—mn, w<t<2mw
0, t>2m

17. f@©) = (t = 3ua () — (¢ = 2)us(0)

18. f() =t —u (D — 1),

t>0

In each of Problems 19 through 24, find the inverse Laplace transform of the given function.

3!

19. F(s) = G2 20. F(s) =
_ —2s

21. F(s) = % 22. F(s) =

23. F(s) = % 24. F(s) =

25. Suppose that F(s) = L{f(¢)} exists for s > a > 0.
(a) Show that if ¢ is a positive constant, then

cifen = £ (2),

2
sT+s—2
2e2

s2—4

e + e—25 _ 6735 _ 6745

N

s > ca.
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(b) Show that if k is a positive constant, then

-1 Lt
c {F(ks)}_kf<k).

(c) Show that if @ and b are constants with a > 0, then

LY F(as+ b)) = %e’b’/“f( ) )

t
a

In each of Problems 26 through 29, use the results of Problem 25 to find the inverse Laplace
transform of the given function.

2"ty 25+ 1
26. F(s) = 27. F(§) = ——m——
) sntl ) 452 + 45+ 5
1 e
28. F(§) = ——mM8MM— 29. F(s) =
)= 09 12513 =1

In each of Problems 30 through 33, find the Laplace transform of the given function. In
Problem 33, assume that term-by-term integration of the infinite series is permissible.

1, 0<r<1
30, f) = 1, 0<r<1 31, f) = 0, 1<r<2
' o, =1 ’ )1, 2<t<3
0, 1>3
2n+1
32, f@0) =1 =y (0) 4+ + us () — 121 () = 1+ Y (= Dfu (1)
k=1
33. f() =14 Y (=D*uc(r). See Figure 6.3.7.
k=1
y
\ ' \ ¢ \
| | | | |
| | | | |
¢ J " J —
1 2 3 4 5 ¢t

FIGURE 6.3.7 The function f(¢) in Problem 33; a square wave.

34. Let f satisfy f(t + T) = f(¢) for all t > 0 and for some fixed positive number 7T'; f is said
to be periodic with period 7 on 0 < ¢ < co. Show that

T
/ e'f () dt

J0 0000
1—esT

L{fO}) =

In each of Problems 35 through 38, use the result of Problem 34 to find the Laplace transform
of the given function.

35 ) — 1, 0<r<1, 36 ) — 1, 0<t<1,
fO = 0, 1<t<2; JO= -1, 1<t<2;
f+2)=fQ. fa+2)=f@®.

Compare with Problem 33. See Figure 6.3.8.
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y
1 ) 4 ! 4 )
I I I | I
I | I | I
11 2| 31 4 5]
\ \ \ \ It
I | I | I
‘ [ [ \ [
1 P — —1o! o—

FIGURE 6.3.8 The function f(¢) in Problem 36; a square wave.

37. f(t) =t, 0<t<l1; 38. f(t) = sint, 0<t<m;
fa+1) =f@. fa+m=f@.
See Figure 6.3.9. See Figure 6.3.10.

y
1
T 2r 3 t
FIGURE 6.3.9 The function f(¢) in FIGURE 6.3.10 The function f(¢) in
Problem 37; a sawtooth wave. Problem 38; a rectified sine wave.

39. (a) If f(r) =1 —u(r), find L{f(2)}; compare with Problem 30. Sketch the graph of
y=fm.
t
(b) Letg@) = / f(& d&, where the function f is defined in part (a). Sketch the graph of
0
y = g(t) and find L{g(?)}.

(c) Let h(t) = g(t) —uy(t)g(t — 1), where g is defined in part (b). Sketch the graph of
y = h(¢) and find L{h(?)}.

40. Consider the function p defined by

o= ==L €+2) =p@)
PO=V 4 1<i<2: p =P

(a) Sketch the graph of y = p(?).

(b) Find L{p(r)} by noting that p is the periodic extension of the function % in
Problem 39(c) and then using the result of Problem 34.

(c) Find L{p(r)} by noting that
p) = / f(dt,
0

where f is the function in Problem 36, and then using Theorem 6.2.1.
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6.4 Differential Equations with Discontinuous Forcing Functions

EXAMPLE

1

In this section we turn our attention to some examples in which the nonhomogeneous
term, or forcing function, is discontinuous.

Find the solution of the differential equation
2y" +y +2y =g, 1)

where
1, 5<t<?20,

2
0, 0<tr<S5 and t=>20. @

g(t) = us(t) —ux(t) =

Assume that the initial conditions are
y(0) =0, y'(0)=0. (3)

This problem governs the charge on the capacitor in a simple electric circuit with a unit
voltage pulse for 5 < ¢ < 20. Alternatively,y may represent the response of a damped oscillator
subject to the applied force g(1).

The Laplace transform of Eq. (1) is

252Y (s) — 2s5y(0) —2y'(0) + sY (5) — y(0) + 2Y (s) = L{us(t)} — L{uz (1)}
— (6755 _ e*ZOS)/s.

Introducing the initial values (3) and solving for Y (s), we obtain

=55 _ g=20s
Y(s) = m 4)
To find y = ¢(¢), it is convenient to write Y (s) as
Y(s) = (e — e ™) H(s), ®)
where
o p— (6)

sQ2s24+5+2)°
Then, if 4(r) = L7 {H (s)}, we have
y = @) = us(Dh(t — 5) — uzo (A (t — 20). (7)

Observe that we have used Theorem 6.3.1 to write the inverse transforms of e=>H (s) and
e 2 H (s), respectively. Finally, to determine h(t), we use the partial fraction expansion of
H(s):

bs + ¢

a
Hs)=—-+-———. 8
) s+2s2+s+2 ®)
Upon determining the coefficients, we find that a = %, b=—-1,andc = — % Thus
12 +1 12 (1 +3)+3
H(S):L_zjizz:L_G)%
N S$° 4+ 85+ N (S+1) +E
1/2 1 s+ 3 1 V15/4
RS P AV e ®)
(s+7%) +(T) (s+73) +(T)
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Then, by referring to lines 9 and 10 of Table 6.2.1, we obtain
h(y=1-1 [e*’/“ cos(V151/4) + (v15/15)e " sin(v/15 t/4)] . (10)

In Figure 6.4.1 the graph of y = ¢(¢) from Egs. (7) and (10) shows that the solution consists
of three distinct parts. For 0 < ¢ < 5, the differential equation is

2y"+y +2y=0, (11)

and the initial conditions are given by Eq. (3). Since the initial conditions impart no energy
to the system, and since there is no external forcing, the system remains at rest; that is, y = 0
for 0 < t < 5.This can be confirmed by solving Eq. (11) subject to the initial conditions (3). In
particular, evaluating the solution and its derivative at t = 5, or, more precisely, as t approaches
5 from below, we have

y® =0, Yy =0. (12)
Once ¢ > 5, the differential equation becomes
2y"+y +2y=1, (13)

whose solution is the sum of a constant (the response to the constant forcing function) and
a damped oscillation (the solution of the corresponding homogeneous equation). The plot
in Figure 6.4.1 shows this behavior clearly for the interval 5 < ¢ < 20. An expression for this
portion of the solution can be found by solving the differential equation (13) subject to the
initial conditions (12). Finally, for # > 20 the differential equation becomes Eq. (11) again,
and the initial conditions are obtained by evaluating the solution of Egs. (13), (12) and its
derivative at ¢ = 20. These values are

y(20) = 0.50162,  y'(20) = 0.01125. (14)

The initial value problem (11), (14) contains no external forcing, so its solution is a damped
oscillation about y = 0, as can be seen in Figure 6.4.1.

&
0.8

0.6~
04—

0.2

10 20 30 40
\ \ /\ =
S

—0:2 =

FIGURE 6.4.1 Solution of the initial value problem (1), (2), (3):
2y" 4y + 2y = us(t) — uz(@), y(0) =0, y'(0)=0.
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EXAMPLE

2

Although it may be helpful to visualize the solution shown in Figure 6.4.1 as composed of
solutions of three separate initial value problems in three separate intervals, it is somewhat
tedious to find the solution by solving these separate problems. Laplace transform methods
provide a much more convenient and elegant approach to this problem and to others that
have discontinuous forcing functions.

The effect of the discontinuity in the forcing function can be seen if we examine the
solution ¢ (¢) of Example 1 more closely. According to the existence and uniqueness
Theorem 3.2.1, the solution ¢ and its first two derivatives are continuous except
possibly at the points =5 and ¢ = 20, where g is discontinuous. This can also be
seen at once from Eq. (7). One can also show by direct computation from Eq. (7)
that ¢ and ¢’ are continuous even at t = 5 and ¢ = 20. However, if we calculate ¢”,
we find that

lim ¢"(t) = 0, lim ¢"(t) = 1/2.
t—5— t—5+

Consequently, ¢”(¢) has a jump of 1/2 at t = 5. In a similar way, we can show that
@”(t) has a jump of —1/2 at t = 20. Thus the jump in the forcing term g(¢) at these
points is balanced by a corresponding jump in the highest order term 2y” on the left
side of the equation.

Consider now the general second order linear equation

V' +p@y +qy =g, (15)

where p and ¢ are continuous on some interval « < ¢t < f, but g is only piecewise
continuous there. If y = () is a solution of Eq. (15), then v and /' are continuous
ona <t < B,buty” hasjump discontinuities at the same points as g. Similar remarks
apply to higher order equations; the highest derivative of the solution appearing in
the differential equation has jump discontinuities at the same points as the forcing
function, but the solution itself and its lower derivatives are continuous even at those
points.

Describe the qualitative nature of the solution of the initial value problem

V' +4y =g, (16)
y(0) =0, y'(0) =0, 17)
where
0, 0<t<5,
g =1-5/5 5<t<10, (18)
1, t > 10,

and then find the solution.

In this example the forcing function has the graph shown in Figure 6.4.2 and is known as
ramp loading. It is relatively easy to identify the general form of the solution. For ¢ < 5 the
solution is simply y = 0. On the other hand, for ¢ > 10 the solution has the form

y = ¢ cos2t+ cysin2t + 1/4. (19)
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The constant 1/4 is a particular solution of the nonhomogeneous equation, while the other
two terms are the general solution of the corresponding homogeneous equation. Thus the
solution (19) is a simple harmonic oscillation about y = 1/4. Similarly, in the intermediate
range 5 < t < 10,the solution is an oscillation about a certain linear function. In an engineering
context, for example, we might be interested in knowing the amplitude of the eventual steady
oscillation.

0.5

|
5 10 15 20 ¢
FIGURE 6.4.2 Ramp loading; y = g(¢) from Eq. (18) or Eq. (20).

To solve the problem, it is convenient to write

g(0) = [us()(t — 5) — w0t — 10)] /5, (20)

as you may verify. Then we take the Laplace transform of the differential equation and use
the initial conditions, thereby obtaining

(S +DHY(s) = (e —e710) /552
or
Y(s) = (e —e'™H(s)/5, (21)
where

H(s) = (22)

s2(s24+4)°
Thus the solution of the initial value problem (16), (17), (18) is
y = ¢ = [us(Oh(t —5) — wo(Oht —10)] /5, (23)

where A(t) is the inverse transform of H (s). The partial fraction expansion of H (s) is

1/4 1/4
H(s) = =~ — 24
©=F-ara (24)

and it then follows from lines 3 and 5 of Table 6.2.1 that
h(t) = 11 — é sin 2¢. (25)

The graph of y = ¢(¢) is shown in Figure 6.4.3. Observe that it has the qualitative form that
we indicated earlier. To find the amplitude of the eventual steady oscillation, it is sufficient to
locate one of the maximum or minimum points for ¢ > 10. Setting the derivative of the solution
(23) equal to zero, we find that the first maximum is located approximately at (10.642,0.2979),
so the amplitude of the oscillation is approximately 0.0479.
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y
0.30—
0.20 —
0.10
| | | |
5 10 15 20 t
FIGURE 6.4.3 Solution of the initial value problem (16), (17), (18).
Note that in this example, the forcing function g is continuous but g’ is discontinuous at
t =5 and ¢t = 10. It follows that the solution ¢ and its first two derivatives are continuous
everywhere, but ¢ has discontinuities at t = 5 and at ¢+ = 10 that match the discontinuities in
g’ at those points.
PROBLEMS In each of Problems 1 through 13:

Y

(a) Find the solution of the given initial value problem.
(b) Draw the graphs of the solution and of the forcing function; explain how they are related.

1, 0<t<3m

Ly +y=f®; y0=0, YO =1; f(t):{o 3m<t<oo

1, #<t<2nm

2."+2y'+2y=h(n;  y0) =0, y©O) =1 h(t)={0, O<t<n and 1>27

3. y" 4+ 4y =sint — uy, () sin(t — 2x); y@0)=0, y©0)=0

4. y" +4y =sint + u, (¢) sin(t — w); y(0)=0, y(@©0) =0

5.9 43y +2 _f([) (0)_0 ,(0)_0 f([)— 1, 0§[<10
-y y y = ) y =y, Yy = U] = 0’ ¢ 10

6. ¥y +3y +2y = uy(1); y(0) =0, y(©0) =1

Ty +y=u(t);  yO)=1, y(0)=0

8. Y +Y +3y=1t—up)—m/2); y©0)=0, y©) =0

9.y +y=g@); 0 =0, y@O =1; (t) = t/2, 0<t<6
-y y=8 ) y =V, y = 1; g = 3’ ; . 6

sint, 0<t<m

10. y" +y + 3y = g(); 0)=0, y(0) =0; 1=
Yi+y + 3y =80); y©0) =0, y(0)=0; g() {0, -

11. y" + 4y = uy (t) — us, (t); y0)=0, y©0)=0
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& 12
¢ 13

14.

15.

& 16.

& 1.

¢ 18

YWW—y=w@®-w®; y0) =0, y@©0) =0 y(@©=0 y"(0)=0

YO+5y +dy=1-u(0;  yO) =0, y© =0, y(0)=0, y"0)=0

Find an expression involving u,(¢) for a function f that ramps up from zero at ¢t = ¢, to the
value hatt =1ty + k.

Find an expression involving u.(¢) for a function g that ramps up from zero at ¢t = ¢, to the
value h at t = ) + k and then ramps back down to zero at t = t, + 2k.

A certain spring—mass system satisfies the initial value problem
WS +u=kg),  u© =0, u(0)=0,

where g(t) = u3»(t) — us;»(t) and k > 0 is a parameter.

(a) Sketch the graph of g(r). Observe that it is a pulse of unit magnitude extending over
one time unit.

(b) Solve the initial value problem.

(c) Plot the solution for k = 1/2,k = 1,and k = 2. Describe the principal features of the
solution and how they depend on k.

(d) Find, to two decimal places, the smallest value of k for which the solution u(¢) reaches
the value 2.

(e) Suppose k = 2. Find the time 7 after which |u(f)| < 0.1 for all t > .
Modify the problem in Example 2 of this section by replacing the given forcing function
g(t) by

F©O = [us@O)(t =5) = ussr ()t =5 = k)] /k.

(a) Sketch the graph of f(¢) and describe how it depends on k. For what value of & is f(¢)
identical to g(¢) in the example?

(b) Solve the initial value problem

y'+4y=fw®, y0 =0, y(©) =0.

(¢) The solution in part (b) depends on k, but for sufficiently large ¢ the solution is always
a simple harmonic oscillation about y = 1/4. Try to decide how the amplitude of this
eventual oscillation depends on k. Then confirm your conclusion by plotting the solution
for a few different values of k.

Consider the initial value problem

Y ALY Hdy=f),  yO) =0, y(©0) =0,
where

0= 12k, 4—k<t<d+k
77 0, O<t<4—k and t>4+k

and 0 < k < 4.

(a) Sketch the graph of fi (¢). Observe that the area under the graph is independent of k.
If £ (¢) represents a force, this means that the product of the magnitude of the force and
the time interval during which it acts does not depend on k.

(b) Write fi(¢) in terms of the unit step function and then solve the given initial value
problem.

(c) Plotthesolutionfork =2,k =1,andk = % Describe how the solution depends on k.
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& 1.

& 20.

& 2L

& 22

Resonance and Beats. In Section 3.8 we observed that an undamped harmonic oscillator
(such as a spring-mass system) with a sinusoidal forcing term experiences resonance if the
frequency of the forcing term is the same as the natural frequency. If the forcing frequency
is slightly different from the natural frequency, then the system exhibits a beat. In Problems
19 through 23 we explore the effect of some nonsinusoidal periodic forcing functions.

Consider the initial value problem

Y'+y=f®, y0) =0, y0)=0,
where
F@ =uo®) +2) (= DFttr (0).
k=1
(a) Draw the graph of f(r) on an interval such as 0 < ¢ < 6.

(b) Find the solution of the initial value problem.

(c) Let n =15 and plot the graph of the solution for 0 < ¢ < 60. Describe the solution
and explain why it behaves as it does.

(d) Investigate how the solution changes as n increases. What happens as n — co?

Consider the initial value problem
Y +01y +y=£f@), y(0) =0, y'(0) =0,

where f(¢) is the same as in Problem 19.

(a) Plot the graph of the solution. Use a large enough value of n and a long enough
t-interval so that the transient part of the solution has become negligible and the steady
state is clearly shown.

(b) Estimate the amplitude and frequency of the steady state part of the solution.

(c) Compare the results of part (b) with those from Section 3.8 for a sinusoidally forced
oscillator.

Consider the initial value problem

Y+y=g®n, y0)=0, y©0) =0,
where
gty = uo(t) + Y (=D e (0).
k=1
(a) Draw the graph of g(¢) on an interval such as 0 < ¢ < 6. Compare the graph with
that of f(¢) in Problem 19(a).
(b) Find the solution of the initial value problem.

(c) Let n =15 and plot the graph of the solution for 0 < ¢ < 60. Describe the solution
and explain why it behaves as it does. Compare it with the solution of Problem 19.

(d) Investigate how the solution changes as n increases. What happens as n — 0o?

Consider the initial value problem
Y'+01y +y=g®, y0) =0, y(©) =0,

where g(#) is the same as in Problem 21.

(a) Plot the graph of the solution. Use a large enough value of n and a long enough -
interval so that the transient part of the solution has become negligible and the steady
state is clearly shown.

(b) Estimate the amplitude and frequency of the steady state part of the solution.
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(c) Compare the results of part (b) with those from Problem 20 and from Section 3.8 for
a sinusoidally forced oscillator.

&0 23. Consider the initial value problem
Y'+y=h®, y0)=0, y(0) =0,
where

F@O) =uo® +2) (=D urea(0).

k=1

Observe that this problem is identical to Problem 19 except that the frequency of the
forcing term has been increased somewhat.

(a) Find the solution of this initial value problem.

(b) Let n > 33 and plot the solution for 0 < ¢ < 90 or longer. Your plot should show a
clearly recognizable beat.

(c) From the graph in part (b), estimate the “slow period” and the “fast period” for this
oscillator.

(d) For a sinusoidally forced oscillator, it was shown in Section 3.8 that the “slow fre-
quency” is given by | — wy|/2, where wy is the natural frequency of the system and w is
the forcing frequency. Similarly, the “fast frequency” is (o + wy)/2. Use these expressions
to calculate the “fast period” and the “slow period” for the oscillator in this problem. How
well do the results compare with your estimates from part (c)?

6.5 Impulse Functions

In some applications it is necessary to deal with phenomena of an impulsive nature—
for example, voltages or forces of large magnitude that act over very short time
intervals. Such problems often lead to differential equations of the form

ay" + by +cy = g(1), (1)

where g() is large during a short interval o — t < ¢ < £y 4+ 7 for some 7 > 0, and is
otherwise zero.
The integral /(7), defined by

thy+t
I(v) = f g0 dt, ()
h—T
or, since g(t) = 0 outside of the interval () — 7, + 1), by
0= [ soa, 3)

is a measure of the strength of the forcing function. In a mechanical system, where
g(t) is a force, I(7) is the total impulse of the force g(¢) over the time interval
(to — 7,19 + 7). Similarly, if y is the current in an electric circuit and g(¢) is the time
derivative of the voltage, then /(7) represents the total voltage impressed on the
circuit during the interval (fyp — 7, + 7).
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In particular, let us suppose that ¢ is zero and that g(¢) is given by

1/2v, —t<t<rt,
0, t<-1 or t>r,

mo=¢m={ 4)
where 7 is a small positive constant (see Figure 6.5.1). According to Eq. (2) or (3),
it follows immediately that in this case, /(7) =1 independent of the value of t,
as long as v # 0. Now let us idealize the forcing function d, by prescribing it to act
over shorter and shorter time intervals; that is, we require that T — 07, as indicated
in Figure 6.5.2. As a result of this limiting operation, we obtain

lir{}+ d.(t) =0, t #0. 5)
Further, since /() = 1 for each t # 0, it follows that
1iI{)1+ I(v)=1. (6)
Y
1
[ 27 |
| |
| |
J L
- T t

FIGURE 6.5.1 Graph of y =d.(¢).

1
|

.
:T

t
FIGURE 6.5.2 Graphsofy =d.(t) ast — 0%.

Equations (5) and (6) can be used to define an idealized unit impulse function &,
which imparts an impulse of magnitude one at ¢ = 0 but is zero for all values of ¢
other than zero. That is, the “function” § is defined to have the properties

8() =0, t #0; (7)

/OO S(t)ydt =1. (8)

o0
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There is no ordinary function of the kind studied in elementary calculus that satisfies
both Egs. (7) and (8). The “function” §, defined by those equations, is an example of
what are known as generalized functions; it is usually called the Dirac® delta function.
Since §(¢) corresponds to a unit impulse at t = 0, a unit impulse at an arbitrary point
t =ty is given by 8(t — tp). From Egs. (7) and (8), it follows that

8(t—1) =0,  tF#t; ©))
/Oo 8t —ty)dt =1. (10)

The delta function does not satisfy the conditions of Theorem 6.1.2, but its Laplace
transform can nevertheless be formally defined. Since §(¢) is defined as the limit
of d.(t) as T — 0T, it is natural to define the Laplace transform of § as a similar
limit of the transform of d,. In particular, we will assume that 7y > 0 and will define
L{3(t — tp)} by the equation

L8t = t0)} = lim L{d:(t — 10)}. (11)

To evaluate the limit in Eq. (11), we first observe that if T < #y, which must eventually
be the case as T — 0, then#y — t > 0. Since d, (¢t — 1) is nonzero only in the interval
from ty — 7 to tp + 7, we have

L{d.(t — 1)} = /oo e *'d.(t — ty) dt
0

fo+t
= / e 'd (t — ty) dt.
I

) —T

Substituting for d. (¢ — ty) from Eq. (4), we obtain

1 [hfT 1 1=lo+1
L{d.(t —tp)} = —/ eSldt = ——e™

2T to—T 2St I=lH—71

_ 1 —Sty ( ,ST —ST

- 2sre (@ e

or
sinhst _,
Li{d (t —ty)} = e, (12)

3Paul A. M. Dirac (1902-1984), English mathematical physicist, received his Ph.D. from Cambridge in 1926
and was professor of mathematics there until 1969. He was awarded the Nobel Prize for Physics in 1933
(with Erwin Schrodinger) for fundamental work in quantum mechanics. His most celebrated result was the
relativistic equation for the electron, published in 1928. From this equation he predicted the existence of
an “anti-electron,” or positron, which was first observed in 1932. Following his retirement from Cambridge,
Dirac moved to the United States and held a research professorship at Florida State University.
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The quotient (sinhst)/st is indeterminate as t — 07, but its limit can be evaluated
by L’Hopital’s* rule. We obtain

inh h
i bt _ . scoshst
=0+ ST =0+ S
Then from Eq. (11) it follows that
L{8(t —tg)} = e, (13)
Equation (13) defines £{8(¢ — fy)} for any £, > 0. We extend this result, to allow 7, to
be zero, by letting fp — 0 on the right side of Eq. (13); thus
L{5@®)} = lim e =1, (14)
tp—0t
In a similar way, it is possible to define the integral of the product of the delta
function and any continuous function f. We have
oo [o.¢]
/ 3t —to)f (t) dt = lim f d.(t — to)f (¢) dt. (15)
o0 =0t ) _
Using the definition (4) of d.(¢) and the mean value theorem for integrals, we find
that
o0 1 o+t
| au-wroa=5 [ o
S 2t Jiy—r
1 * *
= o= 20 f) =),
T
where fy — T < t* < fy + t. Hence t* — tpas T — 07, and it follows from Eq. (15) that
oo
/ 8(t —to)f (1) dt = f(t0). (16)
—00
The following example illustrates the use of the delta function in solving an initial
value problem with an impulsive forcing function.
Find the solution of the initial value problem
EXAMPLE

1

2" +y +2y =8 -5), 17)
y0) =0,  y(©0)=0. (18)

This initial value problem arises from the study of the same electric circuit or mechanical
oscillator as in Example 1 of Section 6.4. The only difference is in the forcing term.

To solve the given problem, we take the Laplace transform of the differential equation and
use the initial conditions, obtaining

Q2 +5+2)Y(s) =e .

4Marquis Guillaume de L’Hépital (1661-1704) was a French nobleman with deep interest in mathematics.
For a time he employed Johann Bernoulli as his private tutor in calculus. L'Hopital published the first
textbook on differential calculus in 1696; in it appears the differentiation rule that is named for him.
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Thus S s
e e 1
Y(s) = = . 19
() 2SZ+S+2 2 (S+%)2+% ( )
By Theorem 6.3.2 or from line 9 of Table 6.2.1,
1 V15
£ — == e *sin ——1¢. (20)
ORI R ‘
Hence, by Theorem 6.3.1, we have
2 V15
y=LHY (@)} = NG us(t)e 4 sin 5 - 5), (21)

which is the formal solution of the given problem. It is also possible to write y in the form
0, t <5,

Y 2 e /4 sin @ (t—15), t=>5. (22)
J15 4

The graph of Eq. (22) is shown in Figure 6.5.3. Since the initial conditions at t = 0 are
homogeneous and there is no external excitation until # = 5, there is no response in the interval
0 <t < 5.The impulse at t = 5 produces a decaying oscillation that persists indefinitely. The
response is continuous at t = 5 despite the singularity in the forcing function at that point.
However, the first derivative of the solution has a jump discontinuity at = 5, and the second
derivative has an infinite discontinuity there. This is required by the differential equation (17),
since a singularity on one side of the equation must be balanced by a corresponding singularity

on the other side.

y
03F
021
0.1
| | —
5 10 15\__~ 20 t
—0.1F

FIGURE 6.5.3 Solution of the initial value problem (17), (18):
2y +y +2y=81t—-15), y0) =0, y(0)=0.

In dealing with problems that involve impulsive forcing, the use of the delta
function usually simplifies the mathematical calculations, often quite significantly.
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However, if the actual excitation extends over a short, but nonzero, time interval,
then an error will be introduced by modeling the excitation as taking place instan-
taneously. This error may be negligible, but in a practical problem it should not be
dismissed without consideration. In Problem 16 you are asked to investigate this
issue for a simple harmonic oscillator.

PROBLEMS  1n each of Problems 1 through 12:
— (a) Find the solution of the given initial value problem.
(b) Draw a graph of the solution.

¢ Ly +2y+2y=58¢-n; y0O =1 y©0 =0
6L 2.y +4y=08t—m—8t-2m; yO0)=0, y(©0)=0
6L 3 Y 3 2y =80-5 +up®;  y0) =0, y©0) =1/2
6L 4y —y=-206¢-3; yO =1 y©0 =0
¢ 5.y +2y+3y=sint+8t-31); y0)=0, y(©0) =0
L 6.y +ay=080t—4m;  yO)=1/2, y(©0)=0
¢ 1.y +y=8t—-2mcost; y0)=0, y@©0) =1
¢ 8y +day=28(t—m/4;  y(©0)=0, y(©0)=0

9

Y'Y = U () + 38 = 37/2) —ur(); y(0) =0, y'(0)=0

&2 10. 2y +y +4y =8t —n/6)sint;  y(0) =0, y(©0)=0

&0 11y +2y +2y =cost +8(t—7/2);  y(©0) =0, y(©0)=0

¢ 12y —y=5c-1;  yO =0, yO=0, y©)=0, y'(0)=0

."Z 13. Consider again the system in Example 1 of this section, in which an oscillation is excited
by a unit impulse at ¢t = 5. Suppose that it is desired to bring the system to rest again after

exactly one cycle—that is, when the response first returns to equilibrium moving in the
positive direction.

(a) Determine the impulse k3(¢t — 1y) that should be applied to the system in order to
accomplish this objective. Note that k is the magnitude of the impulse and £, is the time
of its application.

(b) Solve the resulting initial value problem, and plot its solution to confirm that it
behaves in the specified manner.

."Z 14. Consider the initial value problem
Yty +y=8t-1, y0) =0, y(©) =0,

where y is the damping coefficient (or resistance).
(a) Lety = % Find the solution of the initial value problem and plot its graph.

(b) Find the time #; at which the solution attains its maximum value. Also find the
maximum value y; of the solution.

(c) Lety =  and repeat parts (a) and (b).
(d) Determine how #; and y; vary as y decreases. What are the values of #; and y; when
y=0?

“Z 15. Consider the initial value problem

Y'+yy+y=kit—-1),  y0) =0, »y(0) =0,
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& 16.

where k is the magnitude of an impulse at t =1, and y is the damping coefficient (or
resistance).

(a) Lety = % Find the value of k for which the response has a peak value of 2; call this
value k.

(b) Repeat part (a) for y = 1.
(c) Determine how k; varies as y decreases. What is the value of k; when y = 0?

Consider the initial value problem
Y'+y=fi,  y0)=0, y(©0)=0,
wherefk(z) = [ug_i (t) — u4+k(t)]/2k with0 < k < 1.

(a) Find the solution y = ¢(t, k) of the initial value problem.
(b) Calculate klim+ ¢(t, k) from the solution found in part (a).
—0

(c) Observe that klirg fi(t) = 8(t —4). Find the solution ¢ (¢) of the given initial value
problem with fj () replaced by (¢t — 4). Is it true that ¢ (¢) = klirg ¢(t,k)?

(d) Plot ¢(1,1/2), ¢(t,1/4), and ¢ () on the same axes. Describe the relation between
@, k) and ¢ (7).

Problems 17 through 22 deal with the effect of a sequence of impulses on an undamped
oscillator. Suppose that

yV+y=£f@®, y0) =0, y@©0)=0.

For each of the following choices for f():

(a)
(b)
(©)

¢ 1.
& 1.

& 21
& 2.

& 24

Try to predict the nature of the solution without solving the problem.

Test your prediction by finding the solution and drawing its graph.
Determine what happens after the sequence of impulses ends.
20 20
f)y =38t —kn) ¢ 18 f0) = 3 (D8 — k)
k=1 k=1
20 20
f@) =Y 8t —km/2) 2 20. f(0) = X (=D} — kn/2)
k=1 k=1
15 40
f@) =3 81t = @k = Dl 0 22 f() = Y (=D — 11k/4)
k=1 k=1

The position of a certain lightly damped oscillator satisfies the initial value problem

20

Y401y +y =Y (=D —km),  y0) =0, y(0)=0.
k=1

Observe that, except for the damping term, this problem is the same as Problem 18.
(a) Try to predict the nature of the solution without solving the problem.

(b) Test your prediction by finding the solution and drawing its graph.

(c) Determine what happens after the sequence of impulses ends.

Proceed as in Problem 23 for the oscillator satisfying

15

Y +01y +y=Y8lt—Q2k—Drl,  y©0)=0, y(©0) =0.
k=1

Observe that, except for the damping term, this problem is the same as Problem 21.
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25. (a) By the method of variation of parameters, show that the solution of the initial value
problem

Vi+2y +2y=f®;  y0 =0, y(©0) =0
is
t
y :/ e I () sin(t — v) dr.
0
ow that if f(t) = §(t — m), then the solution of part (a) reduces to
b) Sh hat if hen the soluti fp d
y = u(t)e " sin(t — ).

(c) Use a Laplace transform to solve the given initial value problem with
f() = 8(t — m), and confirm that the solution agrees with the result of part (b).

6.6 The Convolution Integral

Theorem 6.6.1

Sometimes it is possible to identify a Laplace transform H (s) as the product of two
other transforms F(s) and G(s), the latter transforms corresponding to known func-
tions f and g, respectively. In this event, we might anticipate that H(s) would be
the transform of the product of f and g. However, this is not the case; in other
words, the Laplace transform cannot be commuted with ordinary multiplication.
On the other hand, if an appropriately defined “generalized product” is introduced,
then the situation changes, as stated in the following theorem.

If F(s) = £{f(1)} and G(s) = £{g(¢)} both exist for s > a > 0, then
H(s) = F(s)G(s) = L{h()}, s> a, (1)

where

t t
h(t) = fo ft — vg(v) dr = /0 f(g(t — v dr. )

The function 4 is known as the convolution of f and g; the integrals in Eq. (2) are
called convolution integrals.

The equality of the two integrals in Eq. (2) follows by making the change of vari-
able t — 7 = £ in the first integral. Before giving the proof of this theorem, let us
make some observations about the convolution integral. According to this theorem,
the transform of the convolution of two functions, rather than the transform of their
ordinary product, is given by the product of the separate transforms. It is conven-
tional to emphasize that the convolution integral can be thought of as a “generalized
product” by writing

h(t) = (f * g)(®). 3)
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In particular, the notation (f * g)(¢) serves to indicate the first integral appearing
in Eq. (2).

The convolution f x g has many of the properties of ordinary multiplication. For
example, it is relatively simple to show that

frxg=gxf (commutative law) 4)
[*@+g)=f*xg1+f*g  (distributive law) 5)
(fxg) xh=fx(@gxh) (associative law) (6)
Fr0=0%f=0. )

In Eq. (7) the zeros denote not the number 0 but the function that has the value 0
for each value of ¢. The proofs of these properties are left to you as exercises.

However,there are other properties of ordinary multiplication that the convolution
integral does not have. For example, it is not true in general that f * 1 is equal to f.
To see this, note that

t t
(f*l)(t):/f(t—t)~1dr=/f(t—r)dr.
0 0

If, for example, f(¢) = cos¢, then

=t

t
(f+«D(@) = / cos(t — t)dt = —sin(t — 1)
0 =
= —sin0 + sint
=sint.

Clearly, (f «1)(¢) # f(¢) in this case. Similarly, it may not be true that f *f is
nonnegative. See Problem 3 for an example.

Convolution integrals arise in various applications in which the behavior of the
system at time ¢ depends not only on its state at time ¢ but also on its past history.
Systems of this kind are sometimes called hereditary systems and occur in such diverse
fields as neutron transport, viscoelasticity, and population dynamics, among others.

Turning now to the proof of Theorem 6.6.1, we note first that if

F(s) = fo e f (&) dt

and

G(s) = /00 e Tg(1) dr,
0

then ~ ~
F(5)G(s) = /0 eSS () d /0 e Tg() dr ©)

Since the integrand of the first integral does not depend on the integration variable
of the second, we can write F(s)G(s) as an iterated integral

F(5)G(s) = /0 e‘”g(r)[ /O e“gf@dé] dr

= / g(r)[ / e‘s‘“’)f(é)dé} dr. )
0 0
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EXAMPLE

1

The latter integral can be put into a more convenient form by introducing a change
of variable. Let & = ¢ — 7, for fixed 7, so that d& = dt. Further, & = 0 corresponds to
t = r,and & = oo corresponds to ¢t = oo; then the integral with respect to & in Eq. (9)
is transformed into one with respect to t:

F($)G(s) = / g(r)[/ e f(t—1) dti| dr. (10)

0 T
The iterated integral on the right side of Eq. (10) is carried out over the shaded
wedge-shaped region extending to infinity in the ¢z-plane shown in Figure 6.6.1.

Assuming that the order of integration can be reversed, we rewrite Eq. (10) so that
the integration with respect to t is executed first. In this way we obtain

[e%e} t
F($)G(s) = / e“|:/ fit—1gl dt] dt (11)
0 0
or

F($)G(s) = /ooefsth(t) dt = £{h(t)}, (12)
0

where A(t) is defined by Eq. (2). This completes the proof of Theorem 6.6.1.

pé

=1, t—oo

\

=0 t
FIGURE 6.6.1 Region of integration in F(s)G(s).

Find the inverse transform of
His)= ———. 13
(s) 261 D) (13)
It is convenient to think of H(s) as the product of s=2 and a/(s* + a*), which, according to
lines 3 and 5 of Table 6.2.1, are the transforms of ¢ and sin at, respectively. Hence, by Theorem
6.6.1, the inverse transform of H (s) is
at — sinat

h(t) = f (t —t)sinardr = (14)
0

a?

You can verify that the same result is obtained if 4(¢) is written in the alternative form

t
h(t) = / tsina(t — ) dr,
0

which confirms Eq. (2) in this case. Of course, 4(f) can also be found by expanding H(s) in
partial fractions.
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EXAMPLE

2

Find the solution of the initial value problem

Y+ 4y =g, (15)
YO =3, YO0 =-1 (16)
By taking the Laplace transform of the differential equation and using the initial conditions,

we obtain
SY(s) —3s+14+4Y(s) = G(s)
or
3s—1 G(s)

Y(s) = .
) s2+4  s2+4

7

Observe that the first and second terms on the right side of Eq. (17) contain the dependence
of Y(s) on the initial conditions and forcing function, respectively. It is convenient to write

Y (s) in the form
s 1 2 1 2

s2+4 _§s2+4+§s2+4
Then, using lines 5 and 6 of Table 6.2.1 and Theorem 6.6.1, we obtain

Y(is)=3

G(s). (18)

t
y =3cos2t — %sin2t + %A sin2(t — 1)g(7) dt. (19)

If a specific forcing function g is given, then the integral in Eq. (19) can be evaluated (by
numerical means, if necessary).

Example 2 illustrates the power of the convolution integral as a tool for writing
the solution of an initial value problem in terms of an integral. In fact, it is possible
to proceed in much the same way in more general problems. Consider the problem
consisting of the differential equation

ay” 4+ by +cy = g(1), (20)

where a, b, and c are real constants and g is a given function, together with the initial
conditions

y©O)=yo, Y0 =yj. (21)

The transform approach yields some important insights concerning the structure
of the solution of any problem of this type.

The initial value problem (20), (21) is often referred to as an input—output problem.
The coefficients a, b, and ¢ describe the properties of some physical system, and g ()
is the input to the system. The values yo and y describe the initial state, and the
solution y is the output at time ¢.

By taking the Laplace transform of Eq. (20) and using the initial conditions (21),
we obtain

(as® + bs + )Y (s) — (as + b)yo — ay, = G(s).

If we let ( b G
as + b)yy + ay; s
b)) = ————m——— Us) = ———M— 22
() as> +bs+c ) as?> +bs+c’ (22)
then we can write
Y(s) = ®(s) + W(s). (23)

Consequently,

y =00+ ¥, 24
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where ¢(t) = L7 {®(s)} and ¥ (t) = £~ {W¥(s)}. Observe that ¢(¢) is the solution of
the initial value problem

ay’ +by' +cy=0,  y0)=yo, y(0) =y, (25)

obtained from Egs. (20) and (21) by setting g(¢) equal to zero. Similarly, ¥ (¢) is the
solution of

ay’ +by +cy =g, y0)=0, y(0)=0, (26)

in which the initial values yy and y;, are each replaced by zero.

Once specific values of a, b, and c are given, we can find ¢(f) = £~1{®(s)} by using
Table 6.2.1, possibly in conjunction with a translation or a partial fraction expansion.
To find ¥ (t) = £71{W(s)}, it is convenient to write W(s) as

V(s) = H()G(s), 27)

where H(s) = (as® + bs + ¢)~!. The function H is known as the transfer function’
and depends only on the properties of the system under consideration; that is, H (s) is
determined entirely by the coefficients a, b, and c. On the other hand, G(s) depends
only on the external excitation g(¢) that is applied to the system. By the convolution
theorem we can write

W) = £ H©SGs)) = /0 h(t — Dg(@) dr, (28)

where h(t) = £L7'{H (s)}, and g(¢) is the given forcing function.

To obtain a better understanding of the significance of /(¢), we consider the case in
which G(s) = 1; consequently, g(¢) = 8(t) and W(s) = H(s). This means that y = h(¢)
is the solution of the initial value problem

ay’ + by +cy = 8(1), y(0) =0, y'(0) =0, (29)

obtained from Eq. (26) by replacing g(¢) by 8(¢). Thus A(¢) is the response of the
system to a unit impulse applied at ¢t = 0, and it is natural to call /(¢) the impulse
response of the system. Equation (28) then says that y(¢) is the convolution of the
impulse response and the forcing function.

Referring to Example 2, we note that in that case, the transfer function is
H(s) = 1/(s> + 4) and the impulse response is /() = (sin2¢)/2. Also, the first two
terms on the right side of Eq. (19) constitute the function ¢(¢), the solution of the
corresponding homogeneous equation that satisfies the given initial conditions.

PROBLEMS

1. Establish the commutative, distributive, and associative properties of the convolution
integral.

(@) frg=gx*f
(b) frg+g)=f*xg1+f*g
(©) fx(gxh)y=(fxg) «h

SThis terminology arises from the fact that H(s) is the ratio of the transforms of the output and the input

of the problem (26).
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2. Find an example different from the one in the text showing that (f % 1)(#) need not be
equal to f(1).

3. Show, by means of the example f(¢) = sin¢, that f « f is not necessarily nonnegative.

In each of Problems 4 through 7, find the Laplace transform of the given function.
t t
4. f(t) = / (t — % cos2tdr 5. f@) = f e "Isintdr
0 0
t t
6. f(t) = / (t—1)e"dr 7. f(t) = / sin(t — ) cos tdt
0 0

In each of Problems 8 through 11, find the inverse Laplace transform of the given function by
using the convolution theorem.

1 N
8. F(s) = eI 9. F(s) = G+ D62+ 4)
- 1 B G(s)
10. F(s) = G+ 1262 +4) . F) = 5241

12. (a) If f(¢r) = ¢" and g(¢) = ¢", where m and n are positive integers, show that

1
fxg =ttt / u" (1 —u)" du.
0
(b) Use the convolution theorem to show that

m!n!

1
-y duy = —
/0 Wi —w'du = o

(c) Extend the result of part (b) to the case where m and n are positive numbers but not
necessarily integers.

In each of Problems 13 through 20, express the solution of the given initial value problem in
terms of a convolution integral.

1By +e?y=g@0:;  y0) =0, y©0)=1

14. y" +2y 42y = sinat; y0)=0, »(©0)=0

15. 4y" + 4y + 17y = g(0); y0)=0, »(©0) =0

16y +y+y=1-uw0; yO=1 y©0=-1

17.y"+ 4y +4y=g®);  y0) =2, y(0)=-3

18. y”" + 3y + 2y = cos at; y©0)=1, y(©) =0

19.y9 —y=g@®;  yO =0, y(@©0) =0, y©)=0, y"(0)=0

20. y 45y  +dy=g(t);  y(O)=1, y(©0)=0, y'(©0)=0, y"©0)=0

21. Consider the equation
60+ [ k- 99@ ds =0,

in which f and k are known functions, and ¢ is to be determined. Since the unknown
function ¢ appears under an integral sign, the given equation is called an integral equation;
in particular, it belongs to a class of integral equations known as Volterra integral equations.
Take the Laplace transform of the given integral equation and obtain an expression for
L{¢(t)} in terms of the transforms L{f(¢)} and L{k(¢)} of the given functions f and k. The
inverse transform of L{¢(¢)} is the solution of the original integral equation.
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22. Consider the Volterra integral equation (see Problem 21)

o) + /0 (t — () dE = sin21. )

(a) Solve the integral equation (i) by using the Laplace transform.
(b) By differentiating Eq. (i) twice, show that ¢(¢) satisfies the differential equation

¢" () + ¢(t) = —4sin 2t
Show also that the initial conditions are

$(0) =0, ¢'(0) =2.
(c) Solve the initial value problem in part (b), and verify that the solution is the same as
the one in part (a).
In each of Problems 23 through 25:
(a) Solve the given Volterra integral equation by using the Laplace transform.
(b) Convert the integral equation into an initial value problem, as in Problem 22(b).

(c) Solve the initial value problem in part (b), and verify that the solution is the same as the
one in part (a).

23. ¢ + [O (t—Op@) de =1 24. $(1) — /0 (t — P& dt = 1

25. $(1) +2 / cos(t — Hp(®) de = ¢
0

There are also equations, known as integro-differential equations, in which both derivatives
and integrals of the unknown function appear. In each of Problems 26 through 28:

(a) Solve the given integro-differential equation by using the Laplace transform.
(b) By differentiating the integro-differential equation a sufficient number of times, convert
it into an initial value problem.

(c) Solve the initial value problem in part (b), and verify that the solution is the same as the
one in part (a).

%. 00+ [(-po@di=1. 40 =0
2. 601 [-e0@de =~ 40 =1
8. 90 +00 = [ sinG-os@ds. 90 =1

29. The Tautochrone. A problem of interest in the history of mathematics is that of finding
the tautochrone®—the curve down which a particle will slide freely under gravity alone,
reaching the bottom in the same time regardless of its starting point on the curve. This
problem arose in the construction of a clock pendulum whose period is independent of
the amplitude of its motion. The tautochrone was found by Christian Huygens (1629-
1695) in 1673 by geometrical methods, and later by Leibniz and Jakob Bernoulli using
analytical arguments. Bernoulli’s solution (in 1690) was one of the first occasions on which

%The word “tautochrone” comes from the Greek words zauto, which means “same,” and chronos, which
means “time.”
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a differential equation was explicitly solved. The geometric configuration is shown in
Figure 6.6.2. The starting point P(a, ) is joined to the terminal point (0,0) by the arc C.
Arc length s is measured from the origin, and f(y) denotes the rate of change of s with

respect to y:
R T ) - ()
Y= dy dy ' !

Then it follows from the principle of conservation of energy that the time 7(b) required
for a particle to slide from P to the origin is

L fe .
T(®b) = —/ dy. (i)
V2gJo Jb—y
Y
P(a, b)
c
4
X

FIGURE 6.6.2 The tautochrone.

(a) Assume that T'(b) = Ty, a constant, for each b. By taking the Laplace transform of
Eq. (ii) in this case, and using the convolution theorem, show that

F(s) =,/ —=—; (iii)
s
then show that

f»=-——. (iv)

Hint: See Problem 31 of Section 6.1.
(b) Combining Egs. (i) and (iv), show that

dx 20—y
e ™
y y
where o = ¢T3 /n%.
(c) Use the substitution y = 2« sin*(6/2) to solve Eq. (v), and show that
x = a0 +sinb), y = a(l — cosb). (vi)

Equations (vi) can be identified as parametric equations of a cycloid. Thus the tautochrone
is an arc of a cycloid.
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CHAPTER

7

Systems of First
Order Linear

E.quations

There are many physical problems that involve a number of separate elements
linked together in some manner. For example, electrical networks have this char-
acter, as do many problems in mechanics and in other fields. In these and similar
cases, the corresponding mathematical problem consists of a system of two or
more differential equations, which can always be written as first order equations.
In this chapter we focus on systems of first order linear equations, and in par-
ticular equations having constant coefficients, utilizing some of the elementary
aspects of linear algebra to unify the presentation. In many respects this chap-
ter follows the same lines as the treatment of second order linear equations in
Chapter 3.

1.1 Introduction

Systems of simultaneous ordinary differential equations arise naturally in problems
involving several dependent variables, each of which is a function of the same single
independent variable. We will denote the independent variable by ¢ and will let
X1,X2,X3,... represent dependent variables that are functions of ¢. Differentiation
with respect to ¢ will be denoted by a prime.

For example, consider the spring—-mass system in Figure 7.1.1. The two masses
move on a frictionless surface under the influence of external forces F;(¢) and F>(¢),
and they are also constrained by the three springs whose constants are k1, k», and k3,

359
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respectively. Using arguments similar to those in Section 3.7, we find the following
equations for the coordinates x; and x; of the two masses:

d*x
mlﬁ = kao(xo — x1) — kix1 + Fi(t)

= —(k1 + ko)x1 + kaxo + F1 (1),
d2x2 (1)
m—a = —k3xy — ka(x2 — x1) + F2(1)

= kox1 — (ko + k3)x2 + F2(0).
A derivation of Egs. (1) is outlined in Problem 17.

FL(t) | Fo(t)
\ \
ky l k; l k3
m MWW | ™o
I I
| | | |

L1 | r2

‘—V

\
FIGURE 7.1.1 A two-mass, three-spring system.

Next, consider the parallel LRC circuit shown in Figure 7.1.2. Let V be the voltage
drop across the capacitor and I the current through the inductor. Then, referring
to Section 3.7 and to Problem 19 of this section, we can show that the voltage and
current are described by the system of equations

v
dt ~ L’

()
awv_ IV

@~ ¢ RC

where L is the inductance, C is the capacitance, and R is the resistance.

Q

~

! %

FIGURE 7.1.2 A parallel LRC circuit.

One reason why systems of first order equations are particularly important is that
equations of higher order can always be transformed into such systems. This is usually
required if a numerical approach is planned, because almost all codes for generat-
ing numerical approximations to solutions of differential equations are written for
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systems of first order equations. The following example illustrates how easy it is to
make the transformation.

The motion of a certain spring-mass system (see Example 3 of Section 3.7) is described by the
EXAMPLE second order differential equation

1

' +0.1254 +u =0. 3)

Rewrite this equation as a system of first order equations.
Let x; = u and x, = u'. Then it follows that x| = x,. Further, u” = x}. Then, by substituting
for u,u’, and u” in Eq. (3), we obtain

Xy +0.125x; + x; = 0.

Thus x; and x; satisfy the following system of two first order differential equations:

xX) =x,
, (4)
X5 = —x1 — 0.125x,.
The general equation of motion of a spring—mass system
mu” + yu' + ku = F(t) 5)

can be transformed into a system of first order equations in the same manner. If we
let x; = u and x, = ¢/, and proceed as in Example 1, we quickly obtain the system

= (©)
xy = —(k/m)x1 — (y/m)xz + F(t)/m.
To transform an arbitrary nth order equation
Y =Fty,y,. ...y ) ()
into a system of n first order equations, we extend the method of Example 1 by
introducing the variables x1,x,, ... ,x, defined by
=y, =y, xn=y, .. x=y"" (8)
It then follows immediately that
xX) =X,
2= ©)
Xy 1 = Xn,

and, from Eq. (7),
x;l =F(t9x1,x2""9xn)' (10)
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Theorem 7.1.1

Equations (9) and (10) are a special case of the more general system

x/l =Fi(t,x1,x2,...,X,),
x’2 = F(t,x1,X2,...,%X,), (11)
x;l — Fn(t,xl,XZ,.. .,x,,).

In asimilar way, the system (1) can be reduced to a system of four first order equations
of the form (11), and the system (2) is already in this form. In fact, systems of the
form (11) include almost all cases of interest, so much of the more advanced theory
of differential equations is devoted to such systems.

A solution of the system (11) on the interval /: o < ¢ < B 1is a set of n functions

X1 =9¢1(0), x2=¢2(t), ..., Xp=@u(0) (12)

that are differentiable at all points in the interval / and that satisfy the system of equa-
tions (11) at all points in this interval. In addition to the given system of differential
equations, there may also be given initial conditions of the form

xi(to) =x{, X)) =x3, ..., xu(to) =x), (13)
where ¢ is a specified value of ¢ in 7, and x(l), o ,x?l are prescribed numbers. The

differential equations (11) and the initial conditions (13) together form an initial
value problem.

A solution (12) can be viewed as a set of parametric equations in an n-dimensional
space. For a given value of ¢, Egs. (12) give values for the coordinates x1,...,x, of a
pointin the space. Ast changes, the coordinates in general also change. The collection
of points corresponding to « < ¢ < f forms a curve in the space. It is often helpful to
think of the curve as the trajectory, or path, of a particle moving in accordance with
the system of differential equations (11). The initial conditions (13) determine the
starting point of the moving particle.

The following conditions on Fi, F>,...,F,, which are easily checked in specific
problems, are sufficient to ensure that the initial value problem (11), (13) has a unique
solution. Theorem 7.1.1 is analogous to Theorem 2.4.2, the existence and uniqueness
theorem for a single first order equation.

Let each of the functions Fi,...,F, and the partial derivatives 9F;/dxy,...,
aF,/ox,,...,0F,/d0xy,...,0F,/dx, be continuous in a region R of txyx;---x,-
space defined by o <t < f, a1 <x1 < B1,...,0, <X, < B, and let the point
(to,x},x9,...,x%) be in R. Then there is an interval | — fo] < h in which there exists
a unique solution x; = ¢ (), . ..,x, = ¢,(¢) of the system of differential equations
(11) that also satisfies the initial conditions (13).

The proof of this theorem can be constructed by generalizing the argument in
Section 2.8, but we do not give it here. However, note that, in the hypotheses of the
theorem, nothing is said about the partial derivatives of Fi,..., F, with respect to
the independent variable ¢. Also, in the conclusion, the length 2/ of the interval in
which the solution exists is not specified exactly, and in some cases it may be very
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Theorem 7.1.2

short. Finally, the same result can be established on the basis of somewhat weaker but
more complicated hypotheses, so the theorem as stated is not the most general one
known, and the given conditions are sufficient, but not necessary, for the conclusion
to hold.

If each of the functions Fi,. .., F,, in Egs. (11) is a linear function of the dependent
variables x1, .. ., X,, then the system of equations is said to be linear; otherwise, it is
nonlinear. Thus the most general system of # first order linear equations has the form

xp =pu®xi+ -+ piaOx, + g1 (1),
Xy = pa()x1 + -+ + pa(Dx, + g2(0), (14)

x;, =pu(Ox1 + -+ + Pun(O)x, + gn(0).

If each of the functions gi(t),...,g,(¢t) is zero for all ¢ in the interval I, then the
system (14) is said to be homogeneous; otherwise, it is nonhomogeneous. Observe
that the systems (1) and (2) are both linear. The system (1) is nonhomogeneous unless
Fy(t) = F>(t) = 0, while the system (2) is homogeneous. For the linear system (14),
the existence and uniqueness theorem is simpler and also has a stronger conclusion.
It is analogous to Theorems 2.4.1 and 3.2.1.

If the functions pi1, pi2,--.,Pmn> &1,---,8n are continuous on an open interval
I: o <t < B, then there exists a unique solution x; = ¢1(t),...,X, = ¢,(t) of the
system (14) that also satisfies the initial conditions (13), where 7, is any point in /,
andx),...,x" are any prescribed numbers. Moreover, the solution exists throughout
the interval /.

Note that, in contrast to the situation for a nonlinear system, the existence and
uniqueness of the solution of a linear system are guaranteed throughout the interval
in which the hypotheses are satisfied. Furthermore, for a linear system the initial
values x{,...,xJ at t = £y are completely arbitrary, whereas in the nonlinear case the
initial point must lie in the region R defined in Theorem 7.1.1.

The rest of this chapter is devoted to systems of linear first order equations (non-
linear systems are included in the discussion in Chapters 8 and 9). Our presentation
makes use of matrix notation and assumes that you have some familiarity with the
properties of matrices. The basic facts about matrices are summarized in Sections 7.2
and 7.3, and some more advanced material is reviewed as needed in later sections.

PROBLEMS

In each of Problems 1 through 4, transform the given equation into a system of first order
equations.

1. u"+05u +2u=0 2. u"+0.5u +2u = 3sint

32U +tu 4+ (2 —025u=0 4. u® —u=0
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In each of Problems 5 and 6, transform the given initial value problem into an initial value
problem for two first order equations.

5.
6.
7.

u” +0.25u' + 4u = 2 cos 3t, w0 =1, uw'(0)=-2

u’' +pu +qu = g(), u0) =ug, u'(0) =u

Systems of first order equations can sometimes be transformed into a single equation of
higher order. Consider the system

xXp = =2x1 +xz, Xy =x1 — 2x.

(a) Solve the first equation for x, and substitute into the second equation, thereby obtain-
ing a second order equation for x;. Solve this equation for x; and then determine x;
also.

(b) Find the solution of the given system that also satisfies the initial conditions x; (0) = 2,
Xz(o) =3.

(c) Sketch the curve, for ¢ > 0, given parametrically by the expressions for x; and x,
obtained in part (b).

In each of Problems 8 through 12, proceed as in Problem 7.

(a) Transform the given system into a single equation of second order.

(b) Find x; and x;, that also satisfy the given initial conditions.

(c) Sketch the graph of the solution in the x;x,-plane for ¢ > 0.

8.

10.

12.

13.
14.

15.

Xy =3x1 — 2x, x1(0) =3 9. xj = 1.25x1 + 0.75x, x1(0) = -2
Xy =2x1 — 2xz, x(0) = % x5 = 0.75x1 + 1.25x,, x0)=1
Xy =x1 —2x, x1(0) = -1 11. X} = 2x,, x1(0)=3

Xy = 3x1 — 4x, x(0) =2 Xy = —=2x1, x(0) =4

xp=-05x 42,  x(0)=-2
x’2 = —le — O.sz, XZ(O) =2

Transform Eqgs. (2) for the parallel circuit into a single second order equation.

Show that if aq1, ap», a1, and a,, are constants with a;, and a,; not both zero, and if the
functions g; and g, are differentiable, then the initial value problem

Xy = anxi + apx, + g1(1), x1(0) = x)

Xy = Gy X| + anx; + & (1), x(0) = x3

can be transformed into an initial value problem for a single second order equation. Can
the same procedure be carried out if ay1, . . ., ay are functions of ¢?

Consider the linear homogeneous system

X' = puOx + p@)y,
Y =pa)x +pn)y.
Show that if x = x;(¢), y = y1(t) and x = x,(¢), y = y»(¢t) are two solutions of the given

system, then x = c1x1(t) 4+ c2x2(t), y = c1y1(t) + c2y2(2) is also a solution for any constants
¢1 and ¢;,. This is the principle of superposition.
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16. Let x =x1(t), y =y1(t) and x = x,(¢), y = y(t) be any two solutions of the linear
nonhomogeneous system

X =pu@®x+pp@®)y+ g,
V' =pa)x +pua®)y + & @).
Show that x = x1(t) — x2(t), y = y1(t) — y2(t) is a solution of the corresponding homoge-

neous system.

17. Equations (1) can be derived by drawing a free-body diagram showing the forces acting
on each mass. Figure 7.1.3a shows the situation when the displacements x; and x, of the
two masses are both positive (to the right) and x, > x;. Then springs 1 and 2 are elongated
and spring 3 is compressed, giving rise to forces as shown in Figure 7.1.3b. Use Newton’s
law (F = ma) to derive Egs. (1).

ky ky ks
F\/\/\/\/\/‘ LW VAVAVAVAVAVAVAVAVA B2 MMZ?%‘

| x| X,
|
| |
(@)
klxl = Fl(t) k2(x2_x1) - Fz(t)
— O
kz(ﬂCz - xl) ®) k3x2

FIGURE 7.1.3 (a) The displacements x; and x, are both positive.
(b) The free-body diagram for the spring—mass system.

18. Transform the system (1) into a system of first order equations by letting y; = x1, y» = x»,
y3 = xj,and y, = x5.

Electric Circuits. The theory of electric circuits, such as that shown in Figure 7.1.2, consisting
of inductors, resistors, and capacitors, is based on Kirchhoff’s laws: (1) The net flow of current
into each node (or junction) is zero, and (2) the net voltage drop around each closed loop
is zero. In addition to Kirchhoff’s laws, we also have the relation between the current / in
amperes through each circuit element and the voltage drop V in volts across the element:

V =RI, R = resistance in ohms;
av
C s 1, C = capacitance in farads!;
dl . .
LE =V, L = inductance in henrys.

Kirchhoff’s laws and the current-voltage relation for each circuit element provide a system of
algebraic and differential equations from which the voltage and current throughout the circuit
can be determined. Problems 19 through 21 illustrate the procedure just described.

! Actual capacitors typically have capacitances measured in microfarads. We use farad as the unit for
numerical convenience.
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19.

20.

Consider the circuit shown in Figure 7.1.2. Let [y, I, and I5 be the currents through the
capacitor, resistor, and inductor, respectively. Likewise, let V;, V,, and V3 be the corre-
sponding voltage drops. The arrows denote the arbitrarily chosen directions in which
currents and voltage drops will be taken to be positive.

(a) Applying Kirchhoff’s second law to the upper loop in the circuit, show that
Vi—Vy=0. (@)
In a similar way, show that
Vy— Vi =0. (if)
(b) Applying Kirchhoff’s first law to either node in the circuit, show that
L+L+1=0. (iii)

(c) Use the current-voltage relation through each element in the circuit to obtain the
equations

CV{ = 11, V2 = RIz, Llé = V3 (lV)
(d) Eliminate V>, V3,11, and I, among Egs. (i) through (iv) to obtain

V
CV|=—I — fl’ LI, =V,. ™)

Observe that if we omit the subscripts in Egs. (v), then we have the system (2) of this
section.

Consider the circuit shown in Figure 7.1.4. Use the method outlined in Problem 19 to show
that the current / through the inductor and the voltage V across the capacitor satisfy the
system of differential equations

dl dv
=—1-V =

—=—-I-V, — =2I-V
dt dt
R =1o0hm
L =1 henry
R =2 ohms
_1
C—Zfarad

FIGURE 7.1.4 The circuit in Problem 20.
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21. Consider the circuit shown in Figure 7.1.5. Use the method outlined in Problem 19 to show
that the current / through the inductor and the voltage V' across the capacitor satisfy the
system of differential equations

dI v 1%
LS — R - Ay S
dt =V e R,

R,

C
FIGURE 7.1.5 The circuit in Problem 21.

22. Consider the two interconnected tanks shown in Figure 7.1.6. Tank 1 initially contains
30 gal of water and 25 oz of salt, and Tank 2 initially contains 20 gal of water and 15 oz
of salt. Water containing 1 oz/gal of salt flows into Tank 1 at a rate of 1.5 gal/min. The
mixture flows from Tank 1 to Tank 2 at a rate of 3 gal/min. Water containing 3 oz/gal of salt
also flows into Tank 2 at a rate of 1 gal/min (from the outside). The mixture drains from
Tank 2 at a rate of 4 gal/min, of which some flows back into Tank 1 at a rate of 1.5 gal/min,
while the remainder leaves the system.

(a) Let Q;(¢) and Q5 (1), respectively, be the amount of salt in each tank at time ¢. Write
down differential equations and initial conditions that model the flow process. Observe
that the system of differential equations is nonhomogeneous.

(b) Find the values of Q; and Q, for which the system is in equilibrium—that is, does not
change with time. Let QF and QF be the equilibrium values. Can you predict which tank
will approach its equilibrium state more rapidly?

(c) Letx; = O1(r) — OF and x, = 0»(t) — OF. Determine an initial value problem for x;
and x,. Observe that the system of equations for x; and x, is homogeneous.

1.5 gal/min 1 gal/min
=  ——
1 oz/gal ‘ ‘ 3 oz/gal

-~ TN
3 gal/min
Q,(#) oz salt =0 Q,(t) oz salt
30 gal water :] 20 gal water
_—

—— e e, —_—— =

Tan
2.5 gal/min

FIGURE 7.1.6 Two interconnected tanks (Problem 22).
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23. Consider two interconnected tanks similar to those in Figure 7.1.6. Initially, Tank 1 contains
60 gal of water and QY oz of salt, and Tank 2 contains 100 gal of water and QY oz of salt.
Water containing g, oz/gal of salt flows into Tank 1 at a rate of 3 gal/min. The mixture
in Tank 1 flows out at a rate of 4 gal/min, of which half flows into Tank 2, while the
remainder leaves the system. Water containing g, oz/gal of salt also flows into Tank 2 from
the outside at the rate of 1 gal/min. The mixture in Tank 2 leaves it at a rate of 3 gal/min, of
which some flows back into Tank 1 at a rate of 1 gal/min, while the rest leaves the system.

(a) Draw a diagram that depicts the flow process described above. Let Q;(¢) and Q,(?),
respectively, be the amount of salt in each tank at time ¢. Write down differential equations
and initial conditions for Q; and Q, that model the flow process.

(b) Find the equilibrium values QF and OF in terms of the concentrations g; and g,.
(c) Isitpossible (by adjusting ¢; and ¢,) to obtain OF = 60 and Q% = 50 as an equilibrium
state?

(d) Describe which equilibrium states are possible for this system for various values of ¢,
and g;.

1.2 Review of Matrices

For both theoretical and computational reasons, it is advisable to bring some of the
results of matrix algebra® to bear on the initial value problem for a system of linear
differential equations. For reference purposes, this section and the next are devoted
to a brief summary of the facts that will be needed later. More details can be found
in any elementary book on linear algebra. We assume, however, that you are familiar
with determinants and how to evaluate them.

We designate matrices by boldfaced capitals A, B, C, ..., occasionally using bold-
faced Greek capitals @, W, . ... A matrix A consists of a rectangular array of numbers,
or elements, arranged in m rows and n columns—that is,

ai ain e ain
a1 an e aop

A= - 1)
Am1 Am2 -+ Qmp

We speak of A as anm x nmatrix. Although later in the chapter we will often assume
that the elements of certain matrices are real numbers, in this section we assume that

>The properties of matrices were first extensively explored in 1858 in a paper by the English algebraist
Arthur Cayley (1821-1895), although the word “matrix” was introduced by his good friend James Sylvester
(1814-1897) in 1850. Cayley did some of his best mathematical work while practicing law from 1849 to
1863; he then became professor of mathematics at Cambridge, a position he held for the rest of his life.
After Cayley’s groundbreaking work, the development of matrix theory proceeded rapidly, with significant
contributions by Charles Hermite, Georg Frobenius, and Camille Jordan, among others.
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the elements of matrices may be complex numbers. The element lying in the ith row
and jth column is designated by a;;, the first subscript identifying its row and the
second its column. Sometimes the notation (a;) is used to denote the matrix whose
generic element is a;;.

Associated with each matrix A is the matrix A”, which is known as the transpose
of A and is obtained from A by interchanging the rows and columns of A. Thus, if
A = (a;), then AT = (aj;). Also, we will denote by a;; the complex conjugate of a;;,
and by A the matrix obtained from A by replacing each element a;; by its conjugate
a;;. The matrix A is called the conjugate of A. It will also be necessary to consider

the transpose of the conjugate matrix A" . This matrix is called the adjoint of A and
will be denoted by A*.
For example, let

3 2—1
A= .
443 —5+2i

Then

AT 3 4+ 3i < 3 241
S \2—i —542i)° S \4-3i —5-2i)°
3 4—3i
AF = .
240 —5-2i

We are particularly interested in two somewhat special kinds of matrices: square
matrices, which have the same number of rows and columns—that is, m = n; and
vectors (or column vectors), which can be thought of as n x 1 matrices, or matri-
ces having only one column. Square matrices having n rows and n columns are
said to be of order n. We denote (column) vectors by boldfaced lowercase letters:
X,¥,&17,.... The transpose x” of an n x 1 column vectoris a 1 x n row vector—that
is, the matrix consisting of one row whose elements are the same as the elements in
the corresponding positions of x.

Properties of Matrices.

1. Equality. Two m x n matrices A and B are said to be equal if all corresponding
elements are equal—that is, if a;; = b;; for each i and j.

2. Zero. The symbol 0 will be used to denote the matrix (or vector) each of whose
elements is zero.

3. Addition. The sum of two m x n matrices A and B is defined as the matrix
obtained by adding corresponding elements:

A + B = (a;) + (by) = (a; + bj). (2)
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With this definition, it follows that matrix addition is commutative and associative,
so that

A+B=B+A, A+B+C=(A+B)+C. 3)

4. Multiplication by a Number. The product of a matrix A by a real or complex
number « is defined as follows:

A = a(aj) = (aa;); 4)

that is, each element of A is multiplied by «. The distributive laws
(A +B) = oA + oB, (x+ BA = aA + A (5)
are satisfied for this type of multiplication. In particular, the negative of A, denoted

by —A, is defined by
—A = (-DA. (6)

5. Subtraction. The difference A — B of two m x n matrices is defined by
A-B=A+(-B). (7)

Thus
A — B = (a;) — (by) = (a; — bj), ®)

which is similar to Eq. (2).

6. Multiplication. The product AB of two matrices is defined whenever the num-
ber of columns in the first factor is the same as the number of rows in the second.
If A and B are m x n and n x r matrices, respectively, then the product C = AB is an
m x r matrix. The element in the ith row and jth column of C is found by multiplying
each element of the ith row of A by the corresponding element of the jth column of
B and then adding the resulting products. In symbols,

cj = Zaikbk/- )
k=1

By direct calculation, it can be shown that matrix multiplication satisfies the
associative law

(AB)C = A(BC) (10)

and the distributive law
AB+ C)=AB + AC. (11)

However, in general, matrix multiplication is not commutative. For both products
AB and BA to exist and to be of the same size, it is necessary that A and B be square
matrices of the same order. Even in that case the two products are usually unequal,
so that, in general,

AB # BA. (12)
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EXAMPLE

1

To illustrate the multiplication of matrices, and also the fact that matrix multiplication is not
necessarily commutative, consider the matrices

1 -2 1 2 1 -1
A=lo 2 -1, B=|1 -1
2 1 1 2 -1 1

From the definition of multiplication given in Eq. (9), we have
2-2+4+2 142-1 -140+1

AB=|0+2-2 0-2+1 0+0-1
4+142 2-1-1 24041

2 2 0
=10 -1 -1
7 0 -1
Similarly, we find that
0 -3 0
BA=|1 -4 2
4 -5 4

Clearly, AB # BA.

7. Multiplication of Vectors. There are several ways of forming a product of two
vectors x and y, each with n components. One is a direct extension to n dimensions
of the familiar dot product from physics and calculus; we denote it by x”y and write

x'y= inyi. (13)
i=1
The result of Eq. (13) is a real or complex number, and it follows directly from Eq. (13)
that

xTy = yTx, XT(y +z) = xTy +x'z, (ax)Ty = a(xTy) = xT(ay). (14)

There is another vector product that is also defined for any two vectors having the
same number of components. This product, denoted by (x,y), is called the scalar or
inner product and is defined by

x.y) =Y x¥;. (15)
i=1

The scalar product is also a real or complex number, and by comparing Egs. (13) and
(15), we see that

x,y) =x"y. (16)

Thus, if all the elements of y are real, then the two products (13) and (15) are identical.
From Eq. (15) it follows that

x,y) = (y,%), xy+2) =Xy + (X2,

(17)
(ax,y) = a(x,y), (x,ay) = a(x,y).
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Note that even if the vector x has elements with nonzero imaginary parts, the scalar
product of x with itself yields a nonnegative real number

(x,X) = ixm = Z il (18)
i=1 i=1

The nonnegative quantity (x,x)!/?, often denoted by |x||, is called the length, or
magnitude, of x. If (x,y) = 0, then the two vectors x and y are said to be orthogonal.
For example, the unit vectors i, j, k of three-dimensional vector geometry form an
orthogonal set. On the other hand, if some of the elements of x are not real, then the
product

xx=3 a2 (19)
i=1

may not be a real number.
For example, let

1+i 3
Then
X'y =02 =D+ D)@+ 1 +)B) =4+3i,
) =0OC+D)+ (=D +A+DB)=2+7i
X'x =7+ (=2 + (1 +i)* =342,
xx) =D+ )ED)+Ad+0d - =T
8. Identity. The multiplicative identity, or simply the identity matrix L, is given by

1 0 -~ 0
01 -~ 0

=|. . |- (20)
00 - 1

From the definition of matrix multiplication, we have
Al=TA=A (21)

for any (square) matrix A. Hence the commutative law does hold for square matrices
if one of the matrices is the identity.

9. Inverse. The square matrix A is said to be nonsingular or invertible if there
is another matrix B such that AB = I and BA = I, where I is the identity. If there is
such a B, it can be shown that there is only one. It is called the multiplicative inverse,
or simply the inverse, of A, and we write B = A~!'. Then

AAT=ATA=L (22)

Matrices that do not have an inverse are called singular or noninvertible.
There are various ways to compute A~ from A, assuming that it exists. One way
involves the use of determinants. Associated with each element a;; of a given matrix
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EXAMPLE

2

is the minor M;;, which is the determinant of the matrix obtained by deleting the
ith row and jth column of the original matrix—that is, the row and column con-
taining a;;. Also associated with each element a;; is the cofactor C;; defined by the
equation

Cj = (=)™ M;;. (23)
If B = A™!, then it can be shown that the general element bjj is given by

detA’

bij = (24)

Although Eq. (24) is not an efficient way" to calculate A, it does suggest a con-
dition that A must satisfy for it to have an inverse. In fact, the condition is both
necessary and sufficient: A is nonsingular if and only if det A # 0. If det A = 0, then
A is singular.

Another (and usually better) way to compute A~ is by means of elementary row
operations. There are three such operations:

1. Interchange of two rows.
2. Multiplication of a row by a nonzero scalar.
3. Addition of any multiple of one row to another row.

The transformation of a matrix by a sequence of elementary row operations is
referred to as row reduction or Gaussian* elimination. Any nonsingular matrix A
can be transformed into the identity I by a systematic sequence of these operations.
Itis possible to show that if the same sequence of operations is then performed on I, it
is transformed into A ™!, It is most efficient to perform the sequence of operations on
both matrices at the same time by forming the augmented matrix A | I. The following
example illustrates the calculation of an inverse matrix in this way.

Find the inverse of

-1 -1
A=1|3 -1 2
2 2 3

3For large n the number of multiplications required to evaluate Al by Eq. (24) is proportional to n!. If we
use a more efficient method, such as the row reduction procedure described in this section, the number
of multiplications is proportional only to 73. Even for small values of n (such as n = 4), determinants are
not an economical tool in calculating inverses, and row reduction methods are preferred.

4Carl Friedrich Gauss (1777-1855) was born in Brunswick (Germany) and spent most of his life as pro-
fessor of astronomy and director of the Observatory at the University of Gottingen. Gauss made major
contributions to many areas of mathematics, including number theory, algebra, non-Euclidean and dif-
ferential geometry, and analysis, as well as to more applied fields such as geodesy, statistics, and celestial
mechanics. He is generally considered to be among the half-dozen best mathematicians of all time.
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We begin by forming the augmented matrix A | I:

1 -1 -1 1 0 0
All=|3 -1 2 0 1 0
2 2 3 0 0 1

The matrix A can be transformed into I by the following sequence of operations, and at the
same time, I is transformed into A~'. The result of each step appears below the statement.

(a) Obtain zeros in the off-diagonal positions in the first column by adding (—3) times the
first row to the second row and adding (—2) times the first row to the third row.

1 -1 -1 1 0 0
0o 2 513 1 0
0 4 512 0 1

(b) Obtain a 1 in the diagonal position in the second column by multiplying the second row
by %

1 -1 -1/ 1 0 O
01 3o b o
o 4 s5|-2 0 1

(c) Obtain zeros in the off-diagonal positions in the second column by adding the second row
to the first row and adding (—4) times the second row to the third row.

3 1 1
L0 5/- 3 0
5 3 1
o 1 3/-3 3 0
0 0 -5 4 -2 1

(d) Obtain a 1 in the diagonal position in the third column by multiplying the third row by
1
— 2 ) .
3

3 1 1
Lo 3/-3 3 0

s 3 1
o 1 3/-2 3 O
o 0 1t

(e) Obtain zeros in the off-diagonal positions in the third column by adding (—%) times the
third row to the first row and adding —%) times the third row to the second row.

7 _1 3
10 0| 5 —% 1
1 1 1
o 1 0p 3 =3 3
4 2 1
0 0 1|-5 5 -3

The last of these matrices is I| A~ a fact that can be verified by direct multiplication with
the original matrix A.

This example was made slightly simpler by the fact that the given matrix A hada 1
in the upper left corner (a;; = 1). If this is not the case, then the first step is to produce
a 1 there by multiplying the first row by 1/a11, as long as a;; # 0. If a;; = 0, then the
first row must be interchanged with some other row to bring a nonzero element
into the upper left position before proceeding. If this cannot be done, because every
element in the first column is zero, then the matrix has no inverse and is singular.
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A similar situation may occur at later stages of the process as well, and the remedy
is the same: interchange the given row with a lower row so as to bring a nonzero
element to the desired diagonal location. If this cannot be done, then the original
matrix is singular.

Matrix Functions. We sometimes need to consider vectors or matrices whose elements
are functions of a real variable ¢. We write

x1(1) apr () o a@)
x(1) = : ) A = : : ) (25)
xn(t) aml(t) e amn(t)

respectively.

The matrix A (¢) is said to be continuous at ¢ = ¢y or on an intervala < ¢t < B if each
element of A is a continuous function at the given point or on the given interval.
Similarly, A (¢) is said to be differentiable if each of its elements is differentiable, and
its derivative dA /dt is defined by

=) (26)

dt dt

that is, each element of dA/dt is the derivative of the corresponding element of A.
In the same way, the integral of a matrix function is defined as

b b
/ A dt = ( [ a;i (1) dt) ) (27)
sint t
AW = ( 1 cos t) ’

, cost 1 4 2 72
A(t)_< 0 —sint)’ _/0 A(t)dt_(n 0 )

Many of the rules of elementary calculus extend easily to matrix functions; in partic-

For example, if

then

ular,
d dA
7 (CA) = CE’ where C is a constant matrix; (28)
d dA dB
—(A+B) = — + —; 2
GATB) =+ (29)
d dB dA
E(AB) = AE + EB' (30)

In Egs. (28) and (30), care must be taken in each term to avoid interchanging the
order of multiplication. The definitions expressed by Eqs. (26) and (27) also apply as
special cases to vectors.

To conclude this section: some important operations on matrices are accomplished
by applying the operation separately to each element of the matrix. Examples include
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multiplication by a number, differentiation, and integration. However, this is not true
of many other operations. For instance, the square of a matrix is not calculated by
squaring each of its elements.

PROBLEMS 1 -2 0 4 =23

— CIfA = 3 2 —1]landB=|-1 5 01, find

-2 1 3 6 1 2
(a) 2A +B (b) A —4B
(c) AB (d) BA

14+i —142i i3
CIfA = dB = find
<3+2i 2 )an <2 —2i>’ n

(a) A-2B (b) 3A +B
(c) AB (d) BA
-2 1 2 1 2 3
.IfA=] 1 0 -3|landB=| 3 -1 -1/, find
2 -1 1 -2 1 0
(a) AT (b) BT
(c) A" +B" (d) (A+B)T
(7 A R
2—1 —2 43
(a) AT (b) A () A
3 2 -1 2 1 -1
.IfA=]2 -1 2|andB=|-2 3 3|, verify that 2(A + B) = 2A + 2B.
1 2 1 1 0 2
1 -2 0 2 1 -1 2 1 0
IfA=| 3 2 —-1|,B=|-2 3 3]|,andC=|1 2 2]|,verify that
-2 0 3 1 0 2 0 1 -1
(a) (AB)C = A(BC) (b) A+B)+C=A+B+C)

(c) AB+C)=AB+AC

. Prove each of the following laws of matrix algebra:

(a) A+B=B +A (b) A+ (B+C)=(A+B)+C
(c) a(A+B)=cA +aB (d) (@+ BA =aA + A
(e) A(BC) = (AB)C (f) AB+C)=AB+AC
2 -1+
.Ifx=] 3i |andy= 2 |, find
1—i 3—i
(a) xTy (®) y'y

(© xy) @ »y
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1-2i 2
9. Ifx = i andy=| 3—i |, show that
2 142i
(a) x'y =y'x (b) (xy) = (%, %)

In each of Problems 10 through 19, either compute the inverse of the given matrix, or else

show that it is singular.
-1
11. (3 )
6 2

10 1 4
\=2 3

1 2 3 11 -1
212 4 s 3.2 -1 1
35 6 11
1 2 1 2 1 0
4 -2 1 38 15. (o 2
1 -2 -7 0 0 2
1 -1 -1 2 3 1
6. {2 1 o0 17. -1 2 1
3 -2 1 4 -1 -1
1 0 0 -1 1 -1 2 0
0 -1 1 0 -1 2 -4 2
Bl o 1 o ol T T
0 1 -1 1 2 2 0 -1

20. If Ais a square matrix, and if there are two matrices B and C such that AB = Iand CA =1,
show that B = C. Thus, if a matrix has an inverse, it can have only one.

e 2et ¥ 2e! et 3
21. IfA(@) = | 2¢¢ e' —e¥|andB@) =|—e 2¢*' ¥ |, find
—e' 3¢t 2% ¢! —e ! —e*
(a) A+3B (b) AB
|
() dA/dr @ [ Awdr
0

In each of Problems 22 through 24, verify that the given vector satisfies the given differential
equation.

n oo (? 2 (4 .
.X—2 ) X, x_2e
nox=(> "} + Ne - (! ’+21rf
.X—3 _2X 1 e, X—Oe 1 e
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1 1 1 6 0
4. x =12 1 —-1]x, x=|-8le'+2]| 1]|e&*
0 -1 1 4 1

In each of Problems 25 and 26, verify that the given matrix satisfies the given differential
equation.

1 1 e—3t eZt
25. W = U, W(r) =
4 -2 ( ) _46—31‘ ezr

1 -1 4 e’ e et
26. W =|3 2 =11, V() = | —4e!  —e ¥ 26
2 1 -1 . — et

7.3 Systems of Linear Algebraic Equations; Linear Independence,

Eigenvalues, Eigenvectors

In this section we review some results from linear algebra that are important for the
solution of systems of linear differential equations. Some of these results are easily
proved and others are not;since we are interested simply in summarizing some useful
information in compact form, we give no indication of proofs in either case. All the
results in this section depend on some basic facts about the solution of systems of
linear algebraic equations.

Systems of Linear Algebraic Equations. A setofnsimultaneouslinear algebraic equations
in 1 variables

anxy + apxy + - -+ apx, = by,

(1)

a1 X1 + appX2 + -+ - + upXn = bn

can be written as
Ax = b, 2)

where the n x n matrix A and the vector b are given, and the components of x are
to be determined. If b = 0, the system is said to be homogeneous; otherwise, it is
nonhomogeneous.

If the coefficient matrix A is nonsingular—that is, if det A is not zero—then there
is a unique solution of the system (2). Since A is nonsingular, A~! exists, and the
solution can be found by multiplying each side of Eq. (2) on the left by A~'; thus

x=A"b. (3)

In particular, the homogeneous problem Ax = 0, corresponding to b = 0 in Eq. (2),
has only the trivial solution x = 0.
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EXAMPLE

1

On the other hand, if A is singular—that is, if det A is zero—then solutions of
Eq. (2) either do not exist, or do exist but are not unique. Since A is singular, A™!
does not exist, so Eq. (3) is no longer valid. The homogeneous system

Ax =10 4)

has (infinitely many) nonzero solutions in addition to the trivial solution. The situ-
ation for the nonhomogeneous system (2) is more complicated. This system has no
solution unless the vector b satisfies a certain further condition. This condition is that

(b,y) =0, )

for all vectors y satisfying A*y = 0, where A" is the adjoint of A. If condition (5) is
met, then the system (2) has (infinitely many) solutions. These solutions are of the
form

x=x0 +& (6)

where x© is a particular solution of Eq. (2), and & is the most general solution of the
homogeneous system (4). Note the resemblance between Eq. (6) and the solution of
anonhomogeneous linear differential equation. The proofs of some of the preceding
statements are outlined in Problems 26 through 30.

The results in the preceding paragraph are important as a means of classifying the
solutions of linear systems. However, for solving particular systems, it is generally best
to use row reduction to transform the system into a much simpler one from which
the solution(s), if there are any, can be written down easily. To do this efficiently, we
can form the augmented matrix

ayy e ai, | by
Alb=| | 7)

ap1 -+ Adpn ‘ by

by adjoining the vector b to the coefficient matrix A as an additional column. The
vertical line replaces the equals sign and is said to partition the augmented matrix.
We now perform row operations on the augmented matrix so as to transform A into
an upper triangular matrix—that is,a matrix whose elements below the main diagonal
are all zero. Once this is done, it is easy to see whether the system has solutions, and
to find them if it does. Observe that elementary row operations on the augmented
matrix (7) correspond to legitimate operations on the equations in the system (1).
The following examples illustrate the process.

Solve the system of equations
X1 — 2X2 + 3X3 = 7,
X1+ x — ZX3 = —5, (8)

2X1— X2 — X3 = 4.
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The augmented matrix for the system (8) is

1 -2 3 7
-1 1 -2 -5]. )
2 -1 -1 4
We now perform row operations on the matrix (9) with a view to introducing zeros in the
lower left part of the matrix. Each step is described and the result recorded below.

(a) Add the first row to the second row, and add (—2) times the first row to the third row.

1 -2 3 7
0 -1 1 2
0 3 -7|-10

(b) Multiply the second row by —1.

_
|
)
w
N

(e R R
|
S =N
|
N e
|
N N AN |

(d) Divide the third row by —4.

(e
—_
|
—_
|
\e}

(e
o
—
—

The matrix obtained in this manner corresponds to the system of equations

X1 —2x+3x3= 7,
X — X3 = —2, (10)
X3 = 1,

which is equivalent to the original system (8). Note that the coefficients in Egs. (10) form
a triangular matrix. From the last of Eqs. (10) we have x3 = 1, from the second equation

X; = =2+ x3 = —1, and from the first equation x; = 7 4+ 2x, — 3x3 = 2. Thus we obtain
2
x=|-1],
1

which is the solution of the given system (8). Incidentally, since the solution is unique, we
conclude that the coefficient matrix is nonsingular.
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EXAMPLE

2

Discuss solutions of the system

X1 —2xy +3x3 = by,
—X1+ X3 — ZX3 = bz, (11)
2x1 — Xp +3x3 = b3
for various values of by, b,, and bs.

Observe that the coefficients in the system (11) are the same as those in the system (8) except
for the coefficient of x5 in the third equation. The augmented matrix for the system (11) is

1 =2 3|h
-1 1 =2 |b]. (12)
2 -1 3 |b

By performing steps (a), (b), and (c) as in Example 1, we transform the matrix (12) into

1 2 3 by
0 1 —1| —b-b |. (13)
0 0 0| by +3b,+bs

The equation corresponding to the third row of the matrix (13) is

thus the system (11) has no solution unless the condition (14) is satisfied by by, b, and b;. It is
possible to show that this condition is just Eq. (5) for the system (11).

Let us now assume that by = 2,b, = 1,and b3 = —5,in which case Eq. (14) is satisfied. Then
the first two rows of the matrix (13) correspond to the equations

X1 — 2X2 + 3X3 = 2, (15)

Xy — X3 = -3.

To solve the system (15), we can choose one of the unknowns arbitrarily and then solve for
the other two. If we let x3 = o, where « is arbitrary, it then follows that

XZ=O(—3,

x1=2(a—-3)—3a+2=—a—4.

If we write the solution in vector notation, we have

—a—4 -1 —4
x=| a=3|=a] 1]|+]|-3]. (16)
a 1 0

It is easy to verify that the second term on the right side of Eq. (16) is a solution of the nonho-
mogeneous system (11) and that the first term is the most general solution of the homogeneous
system corresponding to (11).

Row reduction is also useful in solving homogeneous systems and systems in which
the number of equations is different from the number of unknowns.
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Linear Dependence and Independence. A set of k vectorsx™V, ..., x® issaid to be linearly
dependent if there exists a set of real or complex numbers cy, . .., ¢k, at least one of
which is nonzero, such that

axV 4+ 4 gx® =0. (17)

In other words,x, . .., x% are linearly dependent if there is a linear relation among
them. On the other hand, if the only set cy,..., ¢, for which Eq. (17) is satisfied is
ci=c =---=¢ =0,thenx®, ... x® are said to be linearly independent.
Consider now a set of n vectors, each of which has n components. Let x;; = x?) be
the ith component of the vector x?, and let X = (x;). Then Eq. (17) can be written as

1
x% )Cl +"'+x§n)cn X11€1 + -+ X1nCp

= : ; =0,

xill)cl +-- 4 xfln)cn Xn1C1 + -+ -+ XunCp

or, equivalently,
Xc =0. (18)

If det X # 0, then the only solution of Eq. (18) is ¢ = 0, but if det X = 0, there are
nonzero solutions. Thus the set of vectors xV, ..., x" is linearly independent if and
only if det X # 0.

Determine whether the vectors

2 —4
xXV=1 2], x®=|1], x9= 1 (19)
-1 3 -1

are linearly independent or linearly dependent. If they are linearly dependent, find a linear
relation among them.

To determine whether x, x®, and x® are linearly dependent, we seek constants ¢y, ¢;, and
¢z such that

x4+ 6x? 4+ e35x® = 0. (20)
Equation (20) can also be written in the form

12 -4\ [a 0
2 1 1f|lea]l=1o0 1)
-1 3 —-11) \e 0

and solved by means of elementary row operations starting from the augmented matrix

12 4]0
2 1 1) 0f. (22)
-1 3 —11]0

We proceed as in Examples 1 and 2.
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(a) Add (—2) times the first row to the second row, and add the first row to the third row.

1 2 —410
0 -3 910
0 5 =150

(b) Divide the second row by —3; then add (—5) times the second row to the third row.

1 2 410
0 1 3]0
0 0 00

Thus we obtain the equivalent system

(&1 +262 — 4C3 = 0,
(23)
C) — 3C3 =0.

From the second of Egs. (23) we have ¢, =3c¢s, and then from the first we obtain
¢; = 4¢3 — 2¢, = —2c¢3. Thus we have solved for ¢; and ¢, in terms of ¢3, with the latter remain-
ing arbitrary. If we choose c; = —1 for convenience, then ¢; = 2 and ¢, = —3. In this case the
relation (20) becomes

xM — 3X(2) —x® — 0,

and the given vectors are linearly dependent.
Alternatively, we can compute det(x;;), whose columns are the components of x x® and
x®, respectively. Thus

1 2 —4
det(x,-,-) = 2 1 1
-1 3 -1

and direct calculation shows that it is zero. Hence xV, x®, and x® are linearly dependent.
However, if the coefficients ¢y, ¢, and ¢; are required, we still need to solve Eq. (20) to find
them.

Frequently, it is useful to think of the columns (or rows) of a matrix A as vectors.
These column (or row) vectors are linearly independent if and only if det A # 0.
Further, if C = AB, then it can be shown that det C = (det A)(det B). Therefore, if
the columns (or rows) of both A and B are linearly independent, then the columns
(or rows) of C are also linearly independent.

Now let us extend the concepts of linear dependence and independence to a set
of vector functions xV(¢),...,x®(f) defined on an interval « < t < B. The vectors
xD@),...,x® (1) are said to be linearly dependent on o < ¢ < g if there exists a set
of constants cq,. .., cg, not all of which are zero, such that

axP@) + -+ ex®@) =0 forallzin the interval.

Otherwise, xV(¢),...,x%(¢) are said to be linearly independent. Note that if
xV(@),...,x®(t) are linearly dependent on an interval, they are linearly dependent
at each point in the interval. However, if xV(¢),...,x® (¢) are linearly independent
on an interval, they may or may not be linearly independent at each point; they may,
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in fact, be linearly dependent at each point, but with different sets of constants at
different points. See Problem 15 for an example.

Eigenvalues and Eigenvectors. The equation
Ax =y (24)

can be viewed as a linear transformation that maps (or transforms) a given vector x
into a new vector y. Vectors that are transformed into multiples of themselves are
important in many applications.” To find such vectors, we set y = Ax, where A is a
scalar proportionality factor, and seek solutions of the equation

AX = x, (25)

or
(A — ADx = 0. (26)

The latter equation has nonzero solutions if and only if X is chosen so that
det(A —AI) =0. (27)

Equation (27) is a polynomial equation of degree n in A and is called the characteristic
equation of the matrix A. Values of A that satisfy Eq. (27) may be either real- or
complex-valued and are called eigenvalues of A. The nonzero solutions of Eq. (25)
or (26) that are obtained by using such a value of 1 are called the eigenvectors
corresponding to that eigenvalue.

If Ais a 2 x 2 matrix, then Eq. (26) is

(") (E)=() o)

(a11 — AM)(axn — A) —apay =0,

and Eq. (27) becomes

or
A% — (a1 + an)i + ajjayn — apax = 0. (29)

The following example illustrates how eigenvalues and eigenvectors are found.

Find the eigenvalues and eigenvectors of the matrix

3 -1
A= (4 _2>. (30)

The eigenvalues A and eigenvectors x satisfy the equation (A — ADx = 0, or
3—1 -1 0
o (7). G1)
4 —2-1]\x 0

SFor example, this problem is encountered in finding the principal axes of stress or strain in an elastic
body, and in finding the modes of free vibration in a conservative system with a finite number of degrees
of freedom.
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The eigenvalues are the roots of the equation

3—A -1

det(A — AI) = 4 ’_1

=A2-1=2=0Q=-2)h+1) =0. (32)

Thus the eigenvalues are A; =2 and A, = —1.
To find the eigenvectors, we return to Eq. (31) and replace A by each of the eigenvalues in

turn. For A = 2 we have
1 -1\ [x; 0

Hence each row of this vector equation leads to the condition x; — x, = 0, so x; and x; are
equal but their value is not determined. If x; = ¢, then x, = c also, and the eigenvector x is

xV =¢ (1) , c#0. (34)

Thus there is an infinite family of eigenvectors,indexed by the arbitrary constant ¢,correspond-
ing to the eigenvalue ;. We will choose a single member of this family as a representative of
the rest; in this example it seems simplest to let ¢ = 1. Then, instead of Eq. (34), we write

xP = (1) (35)

and remember that any nonzero multiple of this vector is also an eigenvector. We say that x"
is the eigenvector corresponding to the eigenvalue A; = 2.
Now, setting A = —1 in Eq. (31), we obtain

00

Again we obtain a single condition on x; and x,, namely, 4x; — x, = 0. Thus the eigenvector
corresponding to the eigenvalue A, = —1is

1
x@ = <4> (37)

As Example 4 illustrates, eigenvectors are determined only up to an arbitrary
nonzero multiplicative constant; if this constant is specified in some way, then the
eigenvectors are said to be normalized. In Example 4, we chose the constant ¢ so
that the components of the eigenvectors would be small integers. However, any
other choice of c is equally valid, although perhaps less convenient. Sometimes it
is useful to normalize an eigenvector x by choosing the constant so that its length
Ix[ = x,x)!/* =1,

Since the characteristic equation (27) for an n x n matrix A is a polynomial equa-
tion of degree n in A, each such matrix has n eigenvalues 11, ..., ,, some of which
may be repeated. If a given eigenvalue appears m times as a root of Eq. (27), then
that eigenvalue is said to have algebraic multiplicity 2. Each eigenvalue has at least
one associated eigenvector, and an eigenvalue of algebraic multiplicity 71 may have g

or any nonzero multiple of this vector.
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linearly independent eigenvectors. The integer q is called the geometric multiplicity
of the eigenvalue, and it is possible to show that

1<qg=<m. (38)

Further, examples demonstrate that ¢ may be any integer in this interval. If each
eigenvalue of A is simple (has algebraic multiplicity 1), then each eigenvalue also has
geometric multiplicity 1.

Itis possible to show that if 11 and 1, are two eigenvalues of A andif ; # A,,then
their corresponding eigenvectors x) and x® are linearly independent (Problem 34).
This result extends to any set Ag, ..., A, of distinct eigenvalues: their eigenvectors
x ... x® are linearly independent. Thus, if each eigenvalue of an n x n matrix
is simple, then the n eigenvectors of A, one for each eigenvalue, are linearly inde-
pendent. On the other hand, if A has one or more repeated eigenvalues, then there
may be fewer than # linearly independent eigenvectors associated with A, since for a
repeated eigenvalue we may have g < m. As we will see in Section 7.8, this fact may
lead to complications later on in the solution of systems of differential equations.

Find the eigenvalues and eigenvectors of the matrix

0 1
A=|1 o 1. (39)
1 1 0

The eigenvalues A and eigenvectors x satisfy the equation (A — A)x = 0, or

—A 1 1\ [x 0
1 - 1|x|=]o0 (40)
1 1 2] \x;3 0
The eigenvalues are the roots of the equation
—A 1 1
detA—AD=| 1 -1 1|=-234+31+2=0. (41)
1 —x

The roots of Eq. (41) are Ay = 2,1, = —1,and A3 = —1. Thus 2 is a simple eigenvalue, and —1
is an eigenvalue of algebraic multiplicity 2, or a double eigenvalue.

To find the eigenvector xV corresponding to the eigenvalue A;, we substitute A =2 in
Eq. (40); this gives the system

2 1 1\ (x 0
1 =2 1||x]|=]0]. (42)
11 —=2) \x 0

We can reduce this to the equivalent system

2 -1 -1\ [(n 0
0 1 —-1]||x]l=|o0 (43)
0 0 0/ \x 0
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by elementary row operations. Solving this system yields the eigenvector

1
xV=|1]. (44)
1

For » = —1, Egs. (40) reduce immediately to the single equation

X1+ X2 +x3 = 0. (45)

Thus values for two of the quantities xj, x,, x3 can be chosen arbitrarily, and the third is
determined from Eq. (45). For example, if x; = ¢; and x, = ¢;, then x3 = —¢; — ¢;. In vector
notation we have

(&1 1
X = e =c 0 |+c 1 ]. (46)
—C1—C -1 -1